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Preface to the Fifth Edition

Financial engineering and numerical computation are genuinely different dis-

ciplines. But in finance many computational methods are used and have be-

come indispensable. This book explains how computational methods work in

financial engineering. The main focus is on computational methods; financial

engineering is the application. In this context, the numerical methods are

tools, the tools for computational finance.

Faced with the vast and rapidly growing field of financial engineering,

we need to choose a subarea to avoid overloading the textbook. We choose

the attractive field of option pricing, a core task of financial engineering

and risk analysis. The broad field of option pricing is both ambitious and

diverse enough to call for a wide range of computational tools. Confining

ourselves to option pricing enables a more coherent textbook and avoids

being distracted away from computational issues. We trust that the focus

on option-related methods is representative of, or least helpful for, the entire

field of computational finance.

The book starts with an introductory Chapter 1, which collects financial

and stochastic background. The remaining parts of the book are devoted to

computational methods. Organizing computational methods, roughly spea-

king, leads to distinguish stochastic and deterministic approaches. By “sto-

chastic methods” we mean computations based on random numbers, such as

Monte Carlo simulation. Chapters 2 and 3 are devoted to such methods. In

contrast, “deterministic methods” are frequently based on solving partial dif-

ferential equations. This is discussed in Chapters 4, 5 and 6. In the computer,

finally, everything is deterministic. The distinction between “stochastic” and

“deterministic” is mainly to motivate and derive different approaches.

All of the computational methods must be adapted to the underlying

model of a financial market. Here we meet different kinds of stochastic pro-

cesses, from geometric Brownian motion to Lévy processes. Based on the

chosen process an option model is selected. The classical choice is the Black–

Scholes model for vanilla options with one underlying asset. This benchmark

market model is “complete” in that all claims can be replicated. Established

by Black, Merton, Scholes and others, this model is the main application

of methods explained in Chapters 2 – 6. Chapter 7 goes beyond and ad-

dresses more general models. Allowing for jump processes, transaction costs,
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multiasset underlyings, or more complicated payoffs, leads to incomplete mar-

kets. Computational methods for incomplete markets are briefly discussed in

Chapter 7.

This book has been published in several editions. The first German edition

(2000) was mainly absorbed by the Black–Scholes equation. Later editions

(first English edition 2002) were carefully opened to more general models and

a wider selection of methods. The book has grown with the development of

the field. Faced with a large variety of possible computational tools, this book

attempts to balance the need for a sufficient number of powerful algorithms

with the limitations of a textbook. The balance has been gradually shifting

over the years and editions. Numerous investigations in our research group

have influenced the choice of covered topics. We have implemented and tested

many dozens of algorithms, and gained insight and experience. A significant

part of this knowledge has entered the book.

Readership

This book is written from the perspective of an applied mathematician. The

level of mathematics is tailored to advanced undergraduate science and en-

gineering majors. Apart from this basic knowledge the book is self-contained

and can be used for a course on the subject. The intended readership is

interdisciplinary and includes professionals in financial engineering, mathe-

maticians and scientists of many other fields.

An expository style may attract a readership ranging from students to

practitioners. Methods are introduced as tools for immediate application.

Formulated and summarized as algorithms, a straightforward implementation

in computer programs should be possible. In this way, the reader may learn

by computational experiment. Learning by calculating will be a possible way

to explore several aspects of the financial world. In some parts, this book

provides an algorithmic introduction to computational finance. To keep the

text readable for a wide audience, some aspects of proofs and derivations are

exported to exercises at which hints are frequently given.

New in the Fifth Edition

The revisions to this fifth edition are much more extensive than those of pre-

vious editions. Compared to the fourth edition, the page count has increased

by about 100 pages. The main addition is Chapter 7, which is devoted to in-

complete markets. It begins with an introduction to nonlinear Black–Scholes

type partial differential equations, as they arise from considering transaction

costs or ranges for a stochastic volatility. Numerical approaches require in-

struments that converge to viscosity solutions. These solutions are introduced

in an appendix. The role of monotonicity of numerical schemes is outlined.

Lévy processes, with a focus on Merton’s jump-diffusion and a numerical

approach to the resulting partial integro-differential equation are then ad-

dressed. The chapter ends with an exposition on how the Fourier transform

VI
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can be applied to option pricing. To complete the introduction of more gene-

ral models and methods, the Dupire equation is outlined in a new appendix.

In addition to the new Chapter 7, several larger extensions and new Secti-

ons have been written for this edition. The calculation of Greeks is described

in more detail, including the method of adjoints for a sensitivity analysis

(new Section 3.7). Penalty methods are introduced and applied to a two-

factor model in the new Section 6.7. More material is presented in the field

of analytical methods; in particular, Kim’s integral representation and its

computation have been added to Chapter 4. Tentative guidelines on how to

compare different algorithms and judge efficiency are given in the new Sec-

tion 4.9. The chapter on finite elements has been extended with a discussion

of two-asset options.

Apart from additional material listed above, the entire book has been

thoroughly revised. The clarity of the expository parts has been improved; all

sections have been tested in the class room. Numerous amendments, further

figures, exercises and many references have been added. For example, the

principal component analysis and its applications are included and the role

of different boundary conditions is outlined in more detail.

How to Use this Textbook

Exercises are stated at the end of each chapter. They range from easy rou-

tine tasks to laborious projects. In addition to these explicitly formulated

exercises, plenty of “hidden” exercises are spread throughout the book, with

comments such as “the reader may check.” Of course, the reader is encou-

raged to fill in those small intermediate steps that are excluded from the

text.

This book explains the basic ideas of several approaches, presenting more

material than is accomplishable in one semester. The following guidelines

have proved successful in teaching:

First Course:

Chapter 1 without Section 1.6.2,

Chapter 2,

Chapter 3 without Section 3.7,

Chapter 4, with one analytic method out of Section 4.8,

and without Section 4.9,

Chapter 6, or parts of it.

Second Course:

the remaining parts, in particular

Chapter 5 and Chapter 7.

Depending on the detail of explanation, the first course could be for under-

graduate students. The second course may attract graduate students.

VII
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Extensions in the Internet

There is an accompanying internet page:

www.compfin.de

This is intended to serve the needs of the computational finance community

and provides complementary material to this book. In particular, the collec-

tion Topics in Computational Finance, which is under construction, presents

several of our findings or figures that would go beyond the limited scope of a

textbook. In its final state, Topics is anticipated as a companion volume to

the Tools.
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Notations

Elements of Options:

t time

T maturity date, time to expiration

S price of underlying asset

Sj , Sji specific values of the price S

St price of the asset at time t

K strike price, exercise price

Ψ payoff function

V value of an option (VC value of a call, VP value of a put,
Am American, Eur European)

σ volatility

r interest rate (Appendix A1)

General Mathematical Symbols:

IR set of real numbers

IN set of integers > 0

∈ element in

⊆ subset of, ⊂ strict subset

[a, b] closed interval {x ∈ IR : a ≤ x ≤ b}
[a, b) half-open interval a ≤ x < b (analogously (a, b], (a, b))

P probability

E expectation (Appendices B1, B2)

Var variance

Cov covariance

log natural logarithm

:= defined to be
.
= equal except for rounding errors

≡ identical

=⇒ implication

⇐⇒ equivalence

O(hk) Landau-symbol: for h → 0

f(h) = O(hk) ⇐⇒ f(h)

h
k is bounded

∼ N (μ, σ2) normal distributed with expectation μ and variance σ2

∼ U [0, 1] uniformly distributed on [0, 1]



Notations

Δt small increment in t
tr transposed; Atr is the matrix where the rows

and columns of A are exchanged.

D set in IRn or in the complex plane, D̄ closure of D,

D◦ interior of D
∂D boundary of D
[0, 1]2 unit square

C0[a, b] set of functions that are continuous on [a, b]

∈ Ck[a, b] k-times continuously differentiable

C2,1 set of functions of two arguments, twice differentiable w.r.t.
to the first argument, and differentiable w.r.t. to the

second argument

L2 set of square-integrable functions

H Hilbert space, Sobolev space (Appendix C3)

Ω sample space (in Appendix B1)

f+ := max{f, 0}
d symbol for differentiation

u̇ time derivative du

dt
of a function u(t)

f ′ derivative of a function f

i symbol for imaginary unit

e symbol for the basis of the exponential function exp

∂ symbol for partial differentiation

1M =1 on a set M, =0 elsewhere (indicator function)

| “such that” in the set-builder notation { | }
and in conditional expectation

Integers:

i, j, k, l,m, n,M,N, ν

Various Variables:

Xt, X,X(t) random variable

Wt Wiener process, Brownian motion (Definition 1.7)

y(x, τ) solution of a partial differential equation for (x, τ)

w approximation of y

h discretization grid size

ϕ basis function (Chapter 5)

ψ test function (Chapter 5)

Abbreviations:

BDF Backward Difference Formula, see Section 4.2.1

CIR Cox Ingersoll Ross model, see Section 1.7.4

CFL Courant-Friedrichs-Lewy, see Section 6.5.1

Dow Dow Jones Industrial Average

FE Finite Element

FFT Fast Fourier Transformation
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FTBS Forward Time Backward Space, see Section 6.5.1

FTCS Forward Time Centered Space, see Section 6.4.2

GBM Geometric Brownian Motion, see (1.33)

LCP Linear Complementary Problem

MC Monte Carlo

ODE Ordinary Differential Equation

OTC Over the Counter

OU Ornstein Uhlenbeck

PDE Partial Differential Equation

PIDE Partial Integro-Differential Equation

PSOR Projected Successive Overrelaxation

QMC Quasi Monte Carlo

SDE Stochastic Differential Equation

SOR Successive Overrelaxation

TVD Total Variation Diminishing

i.i.d. independent and identical distributed

inf infimum, largest lower bound of a set of numbers

sup supremum, least upper bound of a set of numbers

supp(f) support of a function f : {x ∈ D : f(x) �= 0}
t.h.o. terms of higher order

w.r.t. with respect to

Hints on the Organization:

(2.6) number of equation (2.6)

(The first digit in all numberings refers to the chapter.)

(A4.10) equation in Appendix A; similarly B, C, D

−→ hint (for instance to an exercise)
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Chapter 1 Modeling Tools

for Financial Options

1.1 Options

What do we mean by option? An option is the right (but not the obligation)

to buy or sell one unit of a risky asset at a prespecified fixed price within a

specified period. An option is a financial instrument that allows —amongst

other things— to make a bet on rising or falling values of an underlying

asset. The underlying asset typically is a stock, or a parcel of shares of a

company. Other examples of underlyings include stock indices (as the Dow

Jones Industrial Average), currencies, or commodities. Since the value of an

option depends on the value of the underlying asset, options and other related

financial instruments are called derivatives (−→ Appendix A2). An option is

a contract between two parties about trading the asset at a certain future

time. One party is the writer, often a bank, who fixes the terms of the option

contract and sells the option. The other party is the holder, who purchases the

option, paying the market price, which is called premium. How to calculate a

fair value of the premium is a central theme of this book. The holder of the

option must decide what to do with the rights the option contract grants.

The decision will depend on the market situation, and on the type of option.

There are numerous different types of options, which are not all of interest

to this book. In Chapter 1 we concentrate on standard options, also known

as vanilla options. This Section 1.1 introduces important terms.

Options have a limited life time. The maturity date T fixes the time hori-

zon. At this date the rights of the holder expire, and for later times (t > T )

the option is worthless. There are two basic types of option: The call option

gives the holder the right to buy the underlying for an agreed price K by the

date T . The put option gives the holder the right to sell the underlying for

the price K by the date T . The previously agreed price K of the contract is

called strike or exercise price1. It is important to note that the holder is

not obligated to exercise —that is, to buy or sell the underlying according

to the terms of the contract. The holder may wish to close his position by

selling the option. In summary, at time t the holder of the option can choose

to

1 The price K as well as other prices are meant as the price of one unit of

an asset, say, in $.

R.U. Seydel, Tools for Computational Finance, Universitext,
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• sell the option at its current market price on some options exchange

(at t < T ),

• retain the option and do nothing,

• exercise the option (t ≤ T ), or

• let the option expire worthless (t ≥ T ).

In contrast, the writer of the option has the obligation to deliver or buy

the underlying for the strike price K, in case the holder chooses to exercise.

The risk situation of the writer differs strongly from that of the holder. The

writer receives the premium when he issues the option and somebody buys

it. This up-front premium payment compensates for the writer’s potential

liabilities in the future. The asymmetry between writing and owning options

is evident. This book mostly takes the standpoint of the holder (long position

in the option).

Not every option can be exercised at any time t ≤ T . For European

options, exercise is only permitted at expiration T . American options can

be exercised at any time up to and including the expiration date. For options

the labels American or European have no geographical meaning; both types

are traded in each continent. Options on stocks are mostly American style.

The value of the option will be denoted by V . The value V depends

on the price per share of the underlying, which is denoted S. This letter

S symbolizes stocks, which are the most prominent examples of underlying

assets. The variation of the asset price S with time t is expressed by St or

S(t). The value of the option also depends on the remaining time to expiry

T − t. That is, V depends on time t. The dependence of V on S and t is

written V (S, t). As we shall see later, it is not easy to define and to calculate

the fair value V of an option for t < T . But it is an easy task to determine

the terminal value of V at expiration time t = T . In what follows, we shall

discuss this topic, and start with European options as seen with the eyes of

the holder.

S

V

K

Fig. 1.1. Intrinsic value of a call with exercise price K (payoff function)
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1.1 Options

The Payoff Function

At time t = T , the holder of a European call option will check the current

price S = ST of the underlying asset. The holder has two alternatives to

acquire the underlying asset: either buying the asset on the spot market

(costs S), or buying the asset by exercising the call option (costs K). For

a rational investor, the decision is easy: the costs are to be minimal. The

holder will exercise the call if and only if S > K. For then the holder can

immediately sell the asset for the spot price S and makes a gain of S−K per

share. In this situation the value of the option is V = S−K. (This reasoning

ignores transaction costs.) In case S < K the holder will not exercise, since

then the asset can be purchased on the market for the cheaper price S. In

this case the option is worthless, V = 0. In summary, the value V (S, T ) of a

call option at expiration date T is given by

V (ST , T ) =

{
0 in case ST ≤ K (option expires worthless)

ST −K in case ST > K (option is exercised)

Hence

V (ST , T ) = max{ST −K, 0} .

Considered for all possible prices St > 0, max{St −K, 0} is a function of St,

in general for 0 ≤ t ≤ T .2 This payoff function is shown in Figure 1.1. Using

the notation f+ := max{f, 0}, this payoff can be written in the compact form

(St −K)+. Accordingly, the value V (ST , T ) of a call at maturity date T is

V (ST , T ) = (ST −K)+ . (1.1C)

For a European put, exercising only makes sense in case S < K. The

payoff V (S, T ) of a put at expiration time T is

V (ST , T ) =

{
K − ST in case ST < K (option is exercised)

0 in case ST ≥ K (option is worthless)

Hence

V (ST , T ) = max{K − ST , 0} ,

or

V (ST , T ) = (K − ST )+ , (1.1P)

compare Figure 1.2.

2 In this chapter, the payoff evaluated at t only depends on the current

value St. Payoffs that depend on the entire path St for all 0 ≤ t ≤ T occur

for exotic options, see Chapter 6.
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S

V

K

K

Fig. 1.2. Intrinsic value of a put with exercise price K (payoff function)

The curves in the payoff diagrams of Figures 1.1 and 1.2 show the option

values from the perspective of the holder. The profit is not shown. For an

illustration of the profit, the initial costs for buying the option at t = t0 must

be subtracted. The initial costs basically consist of the premium and the

transaction costs. Since both are paid upfront, they are multiplied by er(T−t0)

to take account of the time value; r is the continuously compounded interest

rate. Subtracting the costs leads to shifting down the curves in Figures 1.1

and 1.2. The resulting profit diagram shows a negative profit for some range

of S-values, which of course means a loss (see Figure 1.3).

The payoff function for an American call is (St−K)+ and for an American

put (K−St)
+ for any t ≤ T . The Figures 1.1 and 1.2 as well as the equations

(1.1C), (1.1P) remain valid for American type options.

K

S

V
K

Fig. 1.3. Profit diagram of a put

The payoff diagrams of Figures 1.1, 1.2 and the corresponding profit dia-

grams show that a potential loss for the purchaser of an option (long position)

is limited by the initial costs, no matter how bad things get. The situation for

the writer (short position) is reverse. For him the payoff curves of Figures 1.1,

1.2 as well as the profit curves must be reflected on the S-axis. The writer’s

profit or loss is the reverse of that of the holder. Multiplying the payoff of a

call in Figure 1.1 by (−1) illustrates the potentially unlimited risk of a short

4



1.1 Options

call. Hence the writer of a call must carefully design a strategy to compensate

for his risks. We will come back to this issue in Section 1.5.

A Priori Bounds

No matter what the terms of a specific option are and no matter how the

market behaves, the values V of the options satisfy certain bounds. These

bounds are known a priori. For example, the value V (S, t) of an American

option can never fall below the payoff, for all S and all t. These bounds follow

from the no-arbitrage principle (−→ Appendices A2, A3).

To illustrate the strength of no-arbitrage arguments, we assume for an

American put that its value V Am

P
is below the payoff. V < 0 contradicts the

definition of the option. Hence V ≥ 0, and S and V would be in the triangle

seen in Figure 1.2. That is, S < K and 0 ≤ V < K − S. This scenario would

allow an arbitrage strategy as follows: Borrow the cash amount of S + V ,

and buy both the underlying and the put. Then immediately exercise the

put, selling the underlying for the strike price K. The profit of this arbitrage

strategy is K−S−V > 0. This is in conflict with the no-arbitrage principle.

Hence the assumption that the value of an American put is below the payoff

must be wrong. We conclude for the put

V
Am

P
(S, t) ≥ (K − S)+ for all S, t .

Similarly, for the call

V
Am

C
(S, t) ≥ (S −K)+ for all S, t .

(The meaning of the notations V Am

C
, V Am

P
, V Eur

C
, V Eur

P
is evident.)

Other bounds are listed in Appendix D1. For example, a European put

on an asset that pays no dividends until T may also take values below the

payoff, but is always above the lower bound Ke−r(T−t) − S. The value of

an American option should never be smaller than that of a European option

because the American type includes the European type exercise at t = T and

in addition early exercise for t < T . That is

V
Am ≥ V

Eur

as long as all other terms of the contract are identical. When no dividends

are paid until T , the values of put and call for European options are related

by the put-call parity

S + V
Eur

P
− V

Eur

C
= Ke−r(T−t)

,

which can be shown by applying arguments of arbitrage (−→ Exercise 1.1).

Options in the Market

The features of the options imply that an investor purchases puts when the

price of the underlying is expected to fall, and buys calls when the prices are

5



Chapter 1 Modeling Tools for Financial Options

about to rise. This mechanism inspires speculators. An important application

of options is hedging (−→ Appendix A2).

The value of V (S, t) also depends on other factors. Dependence on the

strike K and the maturity T is evident. Market parameters affecting the

price are the interest rate r, the volatility σ of the price St, and dividends

in case of a dividend-paying asset. The interest rate r is the risk-free rate,

which applies to zero bonds or to other investments that are considered free

of risks (−→ Appendices A1, A2). The important volatility parameter σ can

be defined as standard deviation of the fluctuations in St, for scaling divided

by the square root of the observed time period. The larger the fluctuations,

represented by large values of σ, the harder is to predict a future value of the

asset. Hence the volatility is a standard measure of risk. The dependence of

V on σ is highly sensitive. On occasion we write V (S, t; T,K, r, σ) when the

focus is on the dependence of V on market parameters.

Time is measured in years. The units of r and σ2 are per year. Writing

σ = 0.2 means a volatility of 20%, and r = 0.05 represents an interest rate of

5%. Table 1.1 summarizes the key notations of option pricing. The notation

is standard except for the strike price K, which is sometimes denoted X , or

E.

The time period of interest is t0 ≤ t ≤ T . One might think of t0 de-

noting the date when the option is issued and t as a symbol for “today.”

But this book mostly sets t0 = 0 in the role of “today,” without loss of ge-

nerality. Then the interval 0 ≤ t ≤ T represents the remaining life time of

the option. The price St is a stochastic process, compare Section 1.6. In real

markets, the interest rate r and the volatility σ vary with time. To keep the

models and the analysis simple, we mostly assume r and σ to be constant on

0 ≤ t ≤ T . Further we suppose that all variables are arbitrarily divisible and

consequently can vary continuously —that is, all variables vary in the set IR

of real numbers.

Table 1.1. List of important variables

t current time, 0 ≤ t ≤ T
T expiration time, date of maturity, terminal time

r risk-free interest rate, continuously compounded

S, St spot price, current price per share of stock/asset/underlying

σ annual volatility

K strike, exercise price per share

V (S, t) value of an option at time t and underlying price S

The Geometry of Options

As mentioned, our aim is to calculate V (S, t) for fixed values of K,T, r, σ.

The values V (S, t) can be interpreted as a surface over the subset

S > 0 , 0 ≤ t ≤ T

6



1.1 Options

of the (S, t)-plane. Figure 1.4 illustrates the character of such a surface for

the case of an American put. For the illustration assume T = 1. The figure

depicts six curves obtained by cutting the option surface with the planes

t = 0, 0.2, . . . , 1.0. For t = T the payoff function (K − S)+ of Figure 1.2 is

clearly visible.

S

t

0

V

2

1

T

K

C

C

K

Fig. 1.4. Value V (S, t) of an American put (schematically)

Shifting this payoff curve parallel for all 0 ≤ t < T creates another surface,

which consists of the two planar pieces V = 0 (for S ≥ K) and V = K − S

(for S < K). This payoff surface (K − S)+ is a lower bound to the option

surface, V (S, t) ≥ (K − S)+. Figure 1.4 shows two curves C1 and C2 on

the option surface. The curve C1 is the early-exercise curve, because on the

planar part with V (S, t) = K−S holding the option is not optimal. (This will

be explained in Section 4.5.) The curve C2 has a technical meaning explained

below. Within the area limited by these two curves C1, C2, the option surface

is clearly above the payoff surface, V (S, t) > (K − S)+. Outside that area,

both surfaces coincide. This is strict “above” C1, where V (S, t) = K − S,

and holds approximately for S beyond C2, where V (S, t) ≈ 0 or V (S, t) < ε

for a small value of ε > 0. The location of C1 and C2 is not known, these

curves are calculated along with the calculation of V (S, t). Of special interest

is V (S, 0), the value of the option “today.” This curve is seen in Figure 1.4

for t = 0 as the front edge of the option surface. This front curve may be seen

as smoothing the corner in the payoff function. The schematic illustration of

Figure 1.4 is completed by a concrete example of a calculated put surface in

Figure 1.5. An approximation of the curve C1 is shown.

The above was explained for an American put. For other options the

bounds are different (−→ Appendix D1). As mentioned before, a European

put takes values above the lower bound Ke−r(T−t) − S, compare Figure 1.6

and Exercise 1.1b.

7



Chapter 1 Modeling Tools for Financial Options

4 6 8 10 12 14 16 18 20
S 0

0.2

0.4

0.6

0.8

1

t

0

1

2

3

4

5

6

7

Fig. 1.5. Value V (S, t) of an American put with r = 0.06, σ = 0.30, K = 10, T = 1

In summary, this Section 1.1 has introduced an option with the following

features: it depends on one underlying, and its payoff is (K − S)+ or (S −
K)+, with S evaluated at the current time instant. This is the standard

option called vanilla option. All other options are called exotic. To clarify the

distinction between vanilla options and exotic options, we hint at ways how

an option can be “exotic.” For example, an option may depend on a basket

of several underlying assets, or the payoff may be different, or the option may

be path-dependent in that V no longer depends solely on the current (St, t)

but on the entire path St for 0 ≤ t ≤ T . To give an example of the latter,

we mention an Asian option, where the payoff depends on the average value

of the asset for all times until expiry. Or for a barrier option the value also

depends on whether the price St hits a prescribed barrier during its life time.

We come back to exotic options later in the book.

1.2 Model of the Financial Market

Ultimately it is the market that decides on the value of an option. Above, we

have been anticipating “surfaces” V (S, t), pretending a value V for any S, t.

In the reality of markets, prices V mar of options are only known for a selection

of discrete values of the underlying’s prices, times, or parameters. Geometri-

cally, the available data form only relatively few points on the anticipated

“surfaces” V . If we try to calculate a reasonable value of the option, we need a

mathematical model of the market. Mathematical models can serve as appro-

ximations and idealizations of the complex reality of the financial world. The

8
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Fig. 1.6. Value of a European put V (S, 0) for T = 1, K = 10, r = 0.06, σ = 0.3.
The payoff V (S, T ) is drawn with a dashed line. For small values of S the value V
approaches its lower bound, here 9.4 − S.

most prominent example of a model is the model named after the pioneers

Black, Merton and Scholes. Their approaches have been both successful and

widely accepted. This Section 1.2 introduces some key elements of market

models. Based on a chosen mathematical model, the value and the potential

of an option is assessed. This includes both the calculation of V (S, t), and

an analysis of how sensitive V reacts on changes in S, t, or on variations in

the parameters. Of course, the results are subject to the uncertainty of the

model.

It is attractive to define the option surfaces V (S, t) on the half strip S > 0,

0 ≤ t ≤ T as solutions of suitable equations. Then calculating V amounts to

solving the equations. In fact, a series of assumptions allows to characterize

value functions V (S, t) as solutions of certain partial differential equations or

partial differential inequalities. The model of Black, Merton and Scholes is

represented by the famous Black–Scholes equation, which was suggested in

1973.

9



Chapter 1 Modeling Tools for Financial Options

Definition 1.1 (Black–Scholes equation)

∂V

∂t
+

1

2
σ

2
S

2
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (1.2)

Equation (1.2) is a partial differential equation (PDE) for the value function

V (S, t) of options. This equation may serve as symbol of the classical market

model. But what are the assumptions leading to the Black–Scholes equation?

Assumptions 1.2 (Black–Merton–Scholes model of the market)

(a) There are no arbitrage opportunities.

(b) The market is frictionless.

This means that there are no transaction costs (fees or taxes), the interest

rates for borrowing and lending money are equal, all parties have imme-

diate access to any information, and all securities and credits are available

at any time and in any size.3 Consequently, all variables are perfectly di-

visible —that is, can take any real number. Further, individual trading

will not influence the price.

(c) The asset price follows a geometric Brownian motion.

(This stochastic motion will be discussed in Sections 1.6–1.8.)

(d) r and σ are constant for 0 ≤ t ≤ T . No dividends are paid in that time

period. The option is European.

These are the assumptions that lead to the Black–Scholes equation (1.2). The

assumptions are rather strong, in particular, the volatility σ being constant.

Some of the assumptions can be weakened. We come to more complex models

later in the text. For brevity, we call the restricted model represented by

Assumptions 1.2 Black–Scholes model, because Merton has also extended it

to include jumps, which are ruled out by (c). A derivation of the Black–Scholes

partial differential equation (1.2) is given in Appendix A4. Admitting all real

numbers t within the interval 0 ≤ t ≤ T leads to characterize the model as

continuous-time model. In view of allowing also arbitrary values of S > 0,

V > 0, we speak of a continuous model.

A value function V (S, t) is not fully defined by merely requesting that it

solves (1.2) for all S and t out of the half strip. In addition to solving this

PDE, the function V (S, t) must satisfy a terminal condition. The terminal

condition for t = T is

V (S, T ) = Ψ(S) ,

where Ψ denotes the payoff function (1.1C) or (1.1P), depending on the type

of option. This terminal condition is no artificial requirement. It is a prime

statement and naturally represents the definition of an option. In theory, (1.2)

3 In particular, this holds for trading the underlying.

10



1.2 Model of the Financial Market

with V (S, T ) = Ψ(S) is a Cauchy problem and completes one possibility of

defining a value function V (S, t).

For computational purposes, the full half strip with S > 0 is typically

truncated, say, to Smin ≤ S ≤ Smax. Then boundary conditions for Smin

and Smax are needed in addition. Sometimes they are given by the financial

terms of the option, for example, for barrier options. But often boundary

conditions are secondary and artificial, and not immediately provided by the

financial construction. Rather, boundary conditions are required to make a

solution of the partial differential equation meaningful. In Chapter 4 we will

come back to the Black–Scholes equation and to boundary conditions.

For (1.2) an analytic solution is known [equation (A4.10) in Appendix A4].

Note that the partial differential equation (1.2) is linear in the value function

V .4 The partial differential equation is no longer linear when Assumptions

1.2(b) are relaxed. For example, for considering trading intervals Δt and

transaction costs as k per unit, one could add the nonlinear term

−

√
2

π

kσS2

√
Δt

∣∣∣∣∂2V

∂S2

∣∣∣∣
to (1.2), see [WiDH96], and Section 7.1. Also finite liquidity (feedback of

trading to the price of the underlying) leads to nonlinear terms in the PDE.

In the general case, closed-form solutions do not exist, and a solution is cal-

culated numerically, especially for American options. For the American-style

option a further nonlinearity stems from the early-exercise feature (−→ Chap-

ter 4). For solving (1.2) numerically, a variant with dimensionless variables

can be used (−→ Exercise 1.2).

Of course, the calculated value V of an option depends on the chosen mar-

ket model. Writing V (S, t; T,K, r, σ) suggests a focus on the Black–Scholes

equation. This could be made definite by writing V BS, for example. Other

market models may involve more parameters. Then, in general, the correspon-

ding value of the value function V is different from V BS. Since we mostly stick

to the market model of Assumptions 1.2, we drop the superscript. All our

prices V are model prices, not market prices. For the relation between our

model prices V and market prices V mar, see Section 1.10.

Based on the chosen mathematical model, a sensitivity analysis is pos-

sible. We ask, for example, how does the price V change to a value V + dV ,

when the price S of the underlying changes to S+dS? Similarly, what is the

effect of a change dσ in the parameter σ? When the value function V (S, t; . . .)

is smooth, the Taylor expansion

dS =
∂V

∂S
dS +

∂V

∂t
dt+

∂V

∂σ
dσ +

∂V

∂r
dr +

1

2

∂2V

∂S2
(dS)2 + . . . . (1.3)

4 The function V is not linear in S or t. Also the payoff is nonlinear; the

vanilla functions Ψ(S) = (K − S)+ and Ψ(S) = (S −K)+ are convex.
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Chapter 1 Modeling Tools for Financial Options

suggest an answer. The proper partial derivative of V is an amplification

factor. For small enough dt it provides a first-order guess on how sensitive

V may react to changes in the corresponding variable or parameter. In the

finance context, these partial derivatives of V are called “Greeks.” For exam-

ple, “delta” is the name for

Δ :=
∂V

∂S
.

The second-order derivative “gamma” ∂
2
V

∂S
2 is important too, and is included

in the list of first-order terms in (1.3) by reasons that will become clear in Sec-

tions 1.6 and 1.8. Several of these sensitivity parameters or hedge parameters

need to be approximated as well.

At this point, a word on the notation is appropriate. The symbol S for the

asset price is used in different roles: First it comes without subscript in the

role of an independent real variable S > 0 on which the value function V (S, t)

depends, say as solution of the partial differential equation (1.2). Second it is

used as St with subscript t to emphasize its random character as stochastic

process. When the subscript t is omitted, the current role of S becomes clear

from the context.

1.3 Numerical Methods

Applying numerical methods is inevitable in all fields of technology including

financial engineering. Often the important role of numerical algorithms is not

noticed. For example, an analytic formula at hand [such as the Black–Scholes

formula (A4.10)] might suggest that no numerical procedure is needed. But

closed-form solutions may include evaluating the logarithm or the computa-

tion of the distribution function of the normal distribution. Such elementary

tasks are performed using sophisticated numerical algorithms. In pocket cal-

culators one merely presses a button without being aware of the numerics.

The robustness of those elementary numerical methods is so reliable and

the efficiency so high that underlying algorithms almost appear not to exist.

But even for apparently simple tasks the methods are quite demanding (−→
Exercise 1.3). The methods must be carefully designed because inadequate

strategies might produce inaccurate results (−→ Exercise 1.4).

Spoilt by generally available black-box software and graphics packages we

take the support and the success of numerical workhorses for granted. We

make use of the numerical tools with great respect but without further com-

ments, and we just assume an education in elementary numerical methods.

An introduction to important methods and hints on the literature are given

in Appendix C1.

Since financial markets undergo apparently stochastic fluctuations, sto-

chastic approaches provide natural tools to simulate prices. These methods

12



1.3 Numerical Methods

are based on formulating and simulating stochastic differential equations.

This leads to Monte Carlo methods (−→ Chapter 3). In computers, related

simulations of options are performed in a deterministic manner. It will be

decisive how to simulate randomness (−→ Chapter 2). Chapters 2 and 3 are

devoted to tools for simulation. These methods can be applied easily even in

case the Assumptions 1.2 are not satisfied.

More efficient methods will be preferred provided their use can be justified

by the validity of the underlying models. For example it may be advisable to

solve the partial differential equations of the Black–Scholes type. Then one

has to choose among several methods. The most elementary ones are finite-

difference methods (−→ Chapter 4). A somewhat higher flexibility concerning

error control is possible with finite-element methods (−→ Chapter 5). The

numerical treatment of exotic options requires a more careful consideration of

stability issues (−→ Chapter 6). The methods based on differential equations

will be described in the larger part of this book. And beyond Black and

Scholes, even more tools are needed (−→ Chapter 7).

The various methods are discussed in terms of accuracy and speed. Ulti-

mately the methods must give quick and accurate answers to real-time pro-

blems posed in financial markets. Efficiency and reliability are key demands.

Internally the numerical methods must deal with diverse problems such as

convergence order or stability. So the numerical analyst is concerned in error

estimates and error bounds. Technical criteria such as complexity or storage

requirements are relevant for the implementation.

Fig. 1.7. Grid points in the (S, t)-domain

The mathematical formulation benefits from the assumption that all va-

riables take values in the continuum IR. This idealization is practical since

it avoids initial restrictions of technical nature, and it gives us freedom to

impose artificial discretizations convenient for the numerical methods. The

13



Chapter 1 Modeling Tools for Financial Options

hypothesis of a continuum applies to the (S, t)-domain of the half strip

0 ≤ t ≤ T , S > 0, and to the differential equations. In contrast to the

hypothesis of a continuum, the financial reality is rather discrete: Neither

the price S nor the trading times t can take any real value. The artificial

discretization introduced by numerical methods is at least twofold:

1.) The (S, t)-domain is replaced by a grid of a finite number of (S, t)-

points, illustrated in Figure 1.7.

2.) The differential equations are adapted to the grid and replaced by a

finite number of algebraic equations.

The restriction of the differential equations to the grid causes discretiza-

tion errors. The errors depend on the coarseness of the grid. In Figure 1.7,

the distance between two consecutive t-values of the grid is denoted Δt.5 So

the errors will depend on Δt and on ΔS. It is one of the aims of numerical

algorithms to control the errors. The left-hand figure in Figure 1.7 shows a

simple rectangle grid, whereas the right-hand figure shows a tree-type grid

as used in Section 1.4. The type of the grid matches the kind of underly-

ing equations. The values of V (S, t) are primarily approximated at the grid

points. Intermediate values can be obtained by interpolation.

The continuous model is an idealization of the discrete reality. But the

numerical discretization does not reproduce the original discretization. For

example, it would be a rare coincidence when Δt represents a day. The deri-

vations that go along with the twofold transition

discrete −→ continuous −→ discrete

do not compensate.

Another kind of discretization is that computers replace the real numbers

by a finite number of rational numbers, namely, the floating-point numbers.

The resulting rounding error will not be relevant for much of our analysis,

except for investigations of stability.

1.4 The Binomial Method

The major part of the book is devoted to continuous models and their dis-

cretizations. With much less effort a discrete approach provides us with a

short way to establish a first algorithm for calculating options. The resulting

binomial method is robust and widely applicable.

In practice one is often interested in the one value V (S0, 0) of an option

at the current spot price S0. Then it can be unnecessarily costly to calculate

5 The symbol Δt denotes a small increment in t (analogously ΔS,ΔW ). In

case Δ would be a number, the product with u would be denoted Δ · u or

uΔ.
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1.4 The Binomial Method

the surface V (S, t) for the entire domain to extract the required information

V (S0, 0). The relatively small task of calculating V (S0, 0) can be comfortably

solved using the binomial method. This method is based on a tree-type grid

applying appropriate binary rules at each grid point. The grid is not prede-

fined but is constructed by the method. For illustration see the right-hand

grid in Figure 1.7, and Figure 1.10.

1.4.1 A Discrete Model

We begin with discretizing the continuous time t, replacing t by equidistant

time instances ti. Let us use the notations

M : number of time steps

Δt := T

M

ti := i ·Δt, i = 0, ...,M

Si := S(ti)

So far the domain of the (S, t) half strip is semidiscretized in that it is replaced

by parallel straight lines with distance Δt apart, leading to a discrete-time

model. The next step of discretization replaces the continuous values Si along

the parallel t = ti by discrete values Sj,i, for all i and appropriate j. For a

better understanding of the S-discretization compare Figure 1.8. This figure

shows a mesh of the grid, namely, the transition from t to t+Δt, or from ti

to ti+1.

−

t i+1

t i

S i+1

Si

t+ Δt

p1−p

SuSd

t
S

t

S

Fig. 1.8. The principle setup of the binomial method
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Chapter 1 Modeling Tools for Financial Options

Assumptions 1.3 (binomial method)

(Bi1) The price S over each period of time Δt can only have two possible

outcomes: An initial value S either evolves “up” to Su, or “down” to

Sd, with 0 < d < u. Here u is the factor of an upward movement and

d is the factor of a downward movement.

(Bi2) The probability of an up movement is p, P(up) = p.

The rules (Bi1) and (Bi2) represent the framework of a binomial process.

Such a process behaves like tossing a biased coin where the outcome “head”

(up) occurs with probability p. At this stage of the modeling, the values of

the three parameters u, d and p are undetermined. They are fixed in a way

such that the model is consistent with the continuous model in case Δt→ 0.

This aim leads to further assumptions. The basic idea of the approach is

to equate the expectation and the variance of the discrete model with the

corresponding values of the continuous model. This amounts to require

(Bi3) Expectation and variance of S refer to their continuous counterparts,

evaluated for the risk-free interest rate r.

This assumption leads to equations for the parameters u, d, p. The resulting

probability P of (Bi2) does not reflect the expectations of an individual in the

market. Rather P is an artificial risk-neutral probability that matches (Bi3).6

The expectation E below in (1.4) refers to this probability; this is sometimes

written EP. (We shall return to the assumptions (Bi1), (Bi2), and (Bi3) in

the subsequent Section 1.5.) Let us further assume that no dividend is paid

within the time period of interest. This assumption simplifies the derivation

of the method and can be removed later.

1.4.2 Derivation of Equations

Recall the definition of the expectation for the discrete case, Appendix B1,

equation (B1.13), and conclude

E(Si+1) = pSiu+ (1 − p)Sid .

Here Si is an arbitrary value, which develops randomly to Si+1, when ti

proceeds to ti+1, following the assumptions (Bi1) and (Bi2). In this sense, E

is a conditional expectation. As will be seen in Section 1.7.2, the expectation

of the continuous model is

E(Si+1) = Si erΔt (1.4)

Equating gives

6 To distinguish this specific “money market measure” P from other pro-

babilities, one gives it a specific notation. In later sections we shall use the

symbol Q.
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1.4 The Binomial Method

erΔt = pu+ (1 − p)d . (1.5)

This is the first of three equations required to fix u, d, p. Solved for the risk-

neutral probability p we obtain

p =
erΔt − d

u− d
. (1.6)

To be a valid model of probability, 0 ≤ p ≤ 1 must hold. This is equivalent

to

d ≤ erΔt ≤ u . (1.7)

These inequalities relate the upward and downward movements of the asset

price to the riskless interest rate r. The inequalities (1.7) are no new assump-

tion but follow from the no-arbitrage principle. The assumption 0 < d < u is

sustained.

Next we equate variances. Via the variance the volatility σ enters the

model. From the continuous model we apply the relation

E(S2

i+1
) = S

2

i
e(2r+σ

2
)Δt

. (1.8)

For the relations (1.4) and (1.8) we refer to Section 1.8 (−→ Exercise 1.12).

Recall that the variance satisfies Var(S) = E(S2) − (E(S))2 (−→ Appendix

B1). Equations (1.4) and (1.8) combine to

Var(Si+1) = S
2

i
e2rΔt(eσ

2
Δt − 1) .

On the other hand the discrete model satisfies

Var(Si+1) = E(S2

i+1
) − (E(Si+1))

2

= p(Siu)2 + (1 − p)(Sid)
2 − S

2

i
(pu+ (1 − p)d)2 .

Equating variances of the continuous and the discrete model, and applying

(1.5) leads to

e2rΔt(eσ
2
Δt − 1) = pu

2 + (1 − p)d2 − (erΔt)2

e2rΔt+σ
2
Δt = pu

2 + (1 − p)d2 (1.9)

The equations (1.5), (1.9) constitute two relations for the three unknowns

u, d, p. We are free to impose an arbitrary third equation. One example is the

plausible assumption

u · d = 1 , (1.10)

which reflects a symmetry between upward and downward movement of the

asset price. Now the parameters u, d and p are fixed. They depend on r, σ

and Δt. So does the grid, which is analyzed next (Figure 1.9).

The above rules are applied to each grid line i = 0, . . . ,M , starting at

t0 = 0 with the specific value S = S0. Attaching meshes of the kind depicted

in Figure 1.8 for subsequent values of ti builds a tree with node values Suj
d

k
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Chapter 1 Modeling Tools for Financial Options

and j+k = i. In this way, specific discrete values Sj,i of Si and the nodes of the

tree are defined. Since the same constant factors u and d underlie all meshes

and since Sud = Sdu holds, after the time period 2Δt the asset price can only

take three values rather than four: The tree is recombining. It does not matter

which of the two possible paths we take to reach Sud. This property extends

to more than two time periods. Consequently the binomial process defined by

Assumption 1.3 is path independent. Accordingly at expiration time T = MΔt

the price S can take only the (M+1) discrete values SujdM−j , j = 0, 1, ...,M .

By (1.10) these are the values Su2j−M =: Sj,M . The number of nodes in the

tree grows quadratically in M . (Why?)

2 2SuSudSd

SuSd

S

Fig. 1.9. Sequence of several meshes (schematically)

The symmetry of the choice ud = 1 becomes apparent in that after two

time steps the asset value S repeats. (Compare also Figure 1.10.) For ud =

1, the central line of the tree grows vertically. The vertical arrangement is

advantageous for matching a tree to barriers. But to smooth the convergence,

it may be advisable to bend the tree such that its central line ends up at

the strike. (We return to such improvements below.) In a (t, S)-plane the

tree can be interpreted as a grid of exponential-like curves. The binomial

approach defined by (Bi1) with the proportionality between Si and Si+1

reflects exponential growth or decay of S. Since the tree extends from S0d
M

to S0u
M , all grid points have the desirable property S > 0, but for large M

the tree becomes unrealistically wide.

1.4.3 Solution of the Equations

Using the abbreviation α := erΔt we obtain by elimination (which the reader

may check in more generality in Exercise 1.14b) the quadratic equation

0 = u
2 − u(α−1 + αeσ

2
Δt︸ ︷︷ ︸

=:2β

) + 1 ,

with solutions u = β±
√
β2 − 1. By virtue of ud = 1 and Vieta’s Theorem, d

is the solution with the minus sign. In summary the three parameters u, d, p

are given by
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Fig. 1.10. Tree in the (S, t)-plane for M = 32 (data of Example 1.6)

β : =
1

2
(e−rΔt + e(r+σ

2
)Δt)

u = β +
√
β2 − 1

d = 1/u = β −
√
β2 − 1

p =
erΔt − d

u− d

(1.11)

A consequence of this approach is that up to terms of higher order the relation

u = eσ

√
Δt holds (−→ Exercise 1.6). Therefore the extension of the tree in

S-direction matches the volatility of the asset. So the tree is scaled well and

will cover a relevant range of S-values.

1.4.4 A Basic Algorithm

Next we transform the binomial method into an algorithm.

Forward Phase: Initializing the Tree

Now the factors u and d can be considered as known, and the node values of

S for each ti until tM = T can be calculated. The current spot price S = S0
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for t0 = 0 is the root of the tree. (To adapt the matrix-like notation to the

two-dimensional grid of the tree, this initial price will be also denoted S0,0.)

Each initial price S0 leads to another tree of node values Sj,i.

For i = 1, 2, ...,M calculate :

Sj,i := S0u
j

d
i−j

, j = 0, 1, ..., i

Now the grid points (Sj,i, ti) are fixed, on which approximations to the option

values Vj,i := V (Sj,i, ti) are to be calculated.

Calculating the Option Value, Valuation on the Tree

For tM and vanilla options, the payoff V (S, tM ) is known from (1.1C), (1.1P).

The payoff is valid for each S, including Sj,M = SujdM−j , j = 0, ...,M . This

defines the values Vj,M :

Call: V (S(tM ), tM ) = max {S(tM ) −K, 0}, hence:

Vj,M := (Sj,M −K)+ (1.12C)

Put: V (S(tM ), tM ) = max {K − S(tM ), 0}, hence:

Vj,M := (K − Sj,M )+ (1.12P)

The backward phase recursively calculates for tM−1, tM−2, ... the option

values V for all ti, starting from Vj,M . The recursion is based on Assumption

1.3, (Bi3). Repeating the equation that corresponds to (1.5) with double

index leads to

Sj,ie
rΔt = pSj,iu+ (1 − p)Sj,id ,

and

Sj,ie
rΔt = pSj+1,i+1 + (1 − p)Sj,i+1 .

Relating the Assumption 1.3, (Bi3) of risk neutrality to V , Vi = e−rΔtE(Vi+1),

we obtain in double-index notation the recursion

Vj,i = e−rΔt (pVj+1,i+1 + (1 − p)Vj,i+1) . (1.13)

So far, this recursion for Vj,i is merely an analogy, which might be seen as a

further assumption. But the following Section 1.5 will give a justification for

(1.13), which turns out to be a consequence of the no-arbitrage principle and

the risk-neutral valuation.

For European options, (1.13) is a recursion for i = M − 1, . . . , 0, starting

from (1.12), and terminating with V0,0. (For an illustration see Figure 1.11.)

The obtained value V0,0 is an approximation to the value V (S0, 0) of the

continuous model, which results in the limit M → ∞ (Δt → 0). The accuracy

of the approximation V0,0 depends on M . This is reflected by writing V
(M)

0

20



1.4 The Binomial Method
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Fig. 1.11. Tree in the (S, t)-plane with (S, t, V )-points for M = 32 (data as in

Figure 1.5)

(−→ Exercise 1.7). The basic idea of the approach implies that the limit of

V
(M)

0
for M → ∞ is the Black–Scholes value V (S0, 0) (−→ Exercise 1.8).

For American options, the above recursion must be modified by adding a

test whether early exercise is to be preferred. To this end the value of (1.13) is

compared with the value of the payoff Ψ(S). In this context, the value (1.13)

is the “continuation value,” denoted V
cont

j,i
. And at any time ti the holder

optimizes the position and decides which of the two choices

{ exercise, continue to hold }

is preferable. So the holder chooses the maximum

max{Ψ(Sj,i), V
cont

j,i
} .

This amounts to the dynamic programming principle: The optimality of the

decision policy must be optimal also for the remaining time period. In sum-

mary, the dynamic-programming procedure, based on the equations (1.12)

for i rather than M , combined with (1.13), reads as follows:

V
cont

j,i
:= e−rΔt · (pVj+1,i+1 + (1 − p)Vj,i+1)

Vj,i = max
{
(Sj,i −K)+, V cont

j,i

}
for a call

Vj,i = max
{
(K − Sj,i)

+
, V

cont

j,i

}
for a put

(1.14)
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The resulting algorithm is

Algorithm 1.4 (binomial method, basic version)

input: r, σ, S = S0, T, K, choice of put or call,

European or American, M

calculate: Δt := T/M, u, d, p from (1.11)

S0,0 := S0

Sj,M = S0,0u
j

d
M−j

, j = 0, 1, ...,M

(for American options, also Sj,i = S0,0u
jdi−j

for 0 < i < M , j = 0, 1, ..., i)

valuation: Vj,M from (1.12)

Vj,i for i < M

{
from (1.13) for European options

from (1.14) for American options

output: V0,0 is the approximation V
(M)

0
to V (S0, 0)

1.4.5 Improving the Convergence

The convergence order of the binomial method should be one. Then, ideally,

extrapolation would make sense (−→ Exercise 1.15). But the basic version of

Algorithm 1.4 suffers from the fact that the payoff is not smooth at the strike

K. This affects the accuracy at nodes near the kink (S, t, V ) = (K,T, 0). The

convergence of Algorithm 1.4 can be easily improved in one of two ways.

For S0 �= K the accuracy of the above basic version of Algorithm 1.4 also

depends on how the strike K is grasped by the tree and its grid points. The

error depending on M may oscillate, which is mainly caused by the erratic

way how the point (S, t) = (K,T ) takes its place among the nodes Sj,M .

This can be cured in an easy way. The tree can be bent such that for i = M

the medium grid point falls on the strike value K, no matter what (even)

value of M is chosen. This is possible by generalizing (1.10) to ud = γ for

a suitable value of γ (−→ Exercise 1.14). Corresponding special choices of

u and d smooth the error significantly. This improvement of Algorithm 1.4

is straightforward to implement. With this version, extrapolation does make

sense [LeR96].

Alternatively, certain critical intermediate results can be smoothed. Note

that, even when the option is of the American style, the continuation values

V cont

j,M−1
in the last line i = M−1 are European style. As suggested by [BrD96],

the linear combinations (1.13) for i = M − 1 can be replaced by the Black–

Scholes formula (A4.10) or (A4.11). This only makes sense for a few nodes

22



1.4 The Binomial Method

4.4292

4.4294

4.4296

4.4298

4.43

4.4302

4.4304

4.4306

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
4.43

4.4305

4.431

4.4315

4.432

4.4325

4.433

4.4335

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

4.4304

4.4305

4.4306

4.4307

4.4308

4.4309

4.431

4.4311

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
4.4304

4.4305

4.4306

4.4307

4.4308

4.4309

4.431

4.4311

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

Fig. 1.12. Example 1.5: European-style option. Approximations V (M)
over Δt =

1/M . top left: the basic Algorithm 1.4, linear convergence is hardly visible; top

right: the improved algorithm with ud = γ and γ from Exercise 1.14, linear con-

vergence is clearly visible; bottom left: extrapolated values V (M,extr)
based on two

approximations with M and M/2, V (M,extr)
:= 2V (M)

− V (M/2)
; bottom right:

V (M,extr)
over Δt2 shows quadratic convergence.

around the strike K, since for other j the improvement is not noticeable.

Equation (1.14) must be adapted (−→ Exercise 1.23).

Example 1.5 (European put)

Choose K = 10, S = S0 = 5, r = 0.06, σ = 0.3, T = 1.

Recall that for European-style vanilla options an analytic solution exists,

and Algorithm 1.4 is not needed. Hence, applying Algorithm 1.4 to Ex-

ample 1.5 is only to create an ideal setting for the purpose of investigating

accuracy and convergence. — The Table 1.2 lists approximations V (M)

to V (5, 0), both for ud = 1 and for ud = γ. The two main columns of

Table 1.2 are graphed in the top two illustrations of Figure 1.12. The

convergence towards the Black–Scholes value V (S, 0) is visible; the latter

was calculated by evaluating the analytic solution (A4.10). (In this book

the number of printed decimals illustrates at best the attainable accuracy

and does not reflect economic practice.)

The convergence rate of Algorithm 1.4 is visible in the results of Table

1.2, and in Figure 1.12. The rate is linear, O(Δt) = O(M−1). For S0 �= K
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and ud = 1 this rate is corrupted and hard to observe. The reader may

wish to investigate more closely how the error of the basic version with

ud = 1 decays with M (−→ Exercises 1.7). It turns out that for the

described basic version of the binomial method the convergence in M is

not monotonic. It will not be recommendable to extrapolate these V (M)-

data to the limit M → ∞, at least not the data of Table 1.2 (ud = 1).

But the linear convergence rate can be seen well from the much better

results obtained for ud = γ. The linear rate is reflected by the plots V (M)

over M−1, where the values of V (M) lie close to a straight line, which

in this figure represents the linear error decay. Here extrapolation works

well (lower illustrations in Figure 1.12). The convergence rate can also

be calculated from the data (−→ Exercises 1.15). This can be seen from

Table 1.2 in a perfect way.

In case the function V (S, 0) is to be approximated for several S out of

an interval of S-values, other methods should be applied. The Figure 1.6

shows related results obtained by using the methods of Chapter 4.

Table 1.2. Results of Example 1.5, for γ see Exercise 1.14

M V (M)
(5, 0) V (M)

(5, 0) with

for ud = 1 for ud = γ order

8 4.42507 4.43542
16 4.42925 4.43325 0.833
32 4.429855 4.431933 0.923
64 4.429923 4.431218 0.963
128 4.430047 4.430846 0.982
256 4.430390 4.430657 0.991

2048 4.430451 4.430489 0.999

Black–Scholes 4.43046477621

Example 1.6 (American put)

Choose K = 50, S = 50, r = 0.1, σ = 0.4, T = 0.41666... ( 5

12
for 5

months), M = 32.

Here the pricing is at the money, so γ = 1. Figure 1.10 shows the tree for

M = 32. The corresponding approximation to V0 is V (32) = 4.2719, calcu-

lated with Algorithm 1.4; almost three digits are correct. With M = 2048

and extrapolation we obtain 4.2842. At the early-exercise curve the sur-

face V (S, t) is not C2-smooth. As a consequence the convergence order is

not as close to q = 1 as in Example 1.5. — Note again that the function

V (S, 0) can be approximated with the methods of Chapter 4, compare

Figure 4.11.
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1.4 The Binomial Method

1.4.6 Sensitivities

The sensitivity parameters at (S, t) = (S0,0, 0)

delta =
∂V

∂S
, gamma =

∂2V

∂S2
, theta =

∂V

∂t
,

can be approximated by difference quotients. The variations of V with S

and t are expressed by the tree, and therefore information on derivatives

can be obtained as by-product. For example,
V1,1−V0,1

S1,1−S0,1
serves as a rough

approximation for delta. But this quotient is evaluated at t1 = Δt rather

than at t = 0. And a corresponding approximation of gamma requires three

node values, which are available for t2. To improve the accuracy, the difference

quotients should be evaluated at the root node (S, t) = (S0,0, 0). This can be

accomplished with a nice idea [PeV94]. The tree can be extended by starting

it with a root at t = −2Δt rather than at t = 0, with an S-value S−1,−2.

The extended tree follows the rules of Assumptions 1.3 and embeds the core

tree. In this way, two additional lines of nodes are created, one at each side of

the core tree. In particular, this creates two additional nodes at t = 0, with

S-values S−1,0 and S1,0, and corresponding V -values V−1,0 and V1,0. Figure

1.9 may serve as illustration, when Sud stands for S0,0. The approximations

are

delta:
V1,0 − V−1,0

S1,0 − S−1,0

gamma:

V1,0−V0,0

S1,0−S0,0
− V0,0−V

−1,0

S0,0−S
−1,0

(S1,0 − S−1,0)/2

theta:
V0,0 − V−1,−2

2Δt
(for example, when ud = 1)

The costs of calculating these difference quotients can be neglected, because

essentially the tree is not recalculated. This also holds for the extended tree:

Compared with the overall costs of O(M2), the costs of the 2M+5 additional

nodes of the improved version are relatively small as long as M is large.

Algorithm 1.4 needs to be adapted (−→ Exercise 1.23).

Since the above sensitivities with respect to S and t are revealed by one

calculated tree, they can be considered as bargain Greeks. In contrast, the

sensitivities with respect to the parameters σ and r are more costly to appro-

ximate; these are the expensive Greeks because the entire tree must be recal-

culated. For example, to set up a difference quotient for the Greek vega= ∂V

∂σ

requires to recalculate the tree for a parameter value σ1 close to σ. If the

corresponding value of the option obtained by the σ1-tree is denoted V1, then

we have a difference-quotient approximation

vega ≈
V − V1

σ − σ1

.
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In case one wishes an improved accuracy, one might apply a symmetric

difference quotient, and recalculate the tree again on the other side, for

σ2 := 2σ − σ1.

1.4.7 Extensions

The paying of dividends can be incorporated into the binomial algorithm. If

a dividend D is paid at tD the price of the asset drops by the same amount

D. To take this jump into account, the tree is cut at tD and the S-node

values for t < tD are modified appropriately, see the remarks in Chapter 4,

and [Hull00]. To allow for a constant dividend yield δ, replace r in (1.11) by

r − δ, but not in the discounting in (1.13), (1.14). (−→ Exercise 1.22)

An extension of the binomial model is the trinomial model. Here each mesh

offers three outcomes, with probabilities p1, p2, p3 and p1 + p2 + p3 = 1. The

trinomial model allows for higher accuracy. The reader may wish to derive

the trinomial method. For further hints, see Notes and Comments at the end

of Chapter 1.

1.5 Risk-Neutral Valuation

In the previous Section 1.4 we have used the Assumptions 1.3 to derive an

algorithm for valuation of options. This Section 1.5 discusses the assumptions

again, leading to a different interpretation.

The situation of a path-independent binomial process with the two fac-

tors u and d continues to be the basis of the argumentation. The scenario is

illustrated in Figure 1.13. Here the time period is the time to expiration T ,

which replaces Δt in the local mesh of Figure 1.8. Accordingly, this global

model is called one-period model. The one-period model with only two pos-

sible values of ST has two clearly defined values of the payoff, namely, V (d)

(corresponds to ST = S0d) and V (u) (corresponds to ST = S0u). In contrast

to the Assumptions 1.3 we neither assume the risk-neutral world (Bi3) nor

the corresponding probability P(up) = p from (Bi2). Instead we derive the

probability using the no-arbitrage argument. In this section the factors u and

d are assumed to be given.

Let us construct a portfolio of an investor with a short position in one

option and a long position consisting of Δ shares of an asset, where the asset

is the underlying of the option. The portfolio manager must choose the

number Δ of shares such that the portfolio is riskless. That is, a

hedging strategy is needed. To discuss the hedging properly assume that no

funds are added or withdrawn.

By Πt we denote the wealth of this portfolio at time t. Initially the value

is

Π0 = S0 ·Δ− V0 , (1.15)
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Fig. 1.13. One-period binomial model

where the value V0 of the written option is not yet determined. At the end

of the period the value VT either takes the value V (u) or the value V (d). So

the value of the portfolio ΠT at the end of the life of the option is either

Π
(u) = S0u ·Δ− V

(u)

or
Π

(d) = S0d ·Δ− V
(d)

.

In the no-arbitrage world,Δ is chosen such that the value ΠT is riskless. Then

all uncertainty is removed and Π(u) = Π(d) must hold. This is equivalent to

(S0u− S0d) ·Δ = V
(u) − V

(d)
,

which defines the strategy

Δ =
V (u) − V (d)

S0(u− d)
. (1.16)

With this value of Δ the portfolio with initial value Π0 evolves to the final

value ΠT = Π(u) = Π(d), regardless of whether the stock price moves up or

down. Consequently the portfolio is riskless.

If we rule out early exercise, the final value ΠT is reached with certainty.

The value ΠT must be compared to the alternative risk-free investment of

an amount of money that equals the initial wealth Π0, which after the time

period T reaches the value erTΠ0. Both the assumptions Π0e
rT < ΠT and

Π0e
rT > ΠT would allow a strategy of earning a risk-free profit. This is in

contrast to the assumed arbitrage-free world. Hence both Π0e
rT ≥ ΠT and

Π0e
rT ≤ ΠT and equality must hold.7 Accordingly the initial value Π0 of

7 For an American option it is not certain that ΠT can be reached because

the holder may choose early exercise. In this situation we have only the

inequality Π0e
rT ≤ ΠT .
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the portfolio equals the discounted final value ΠT , discounted at the interest

rate r,

Π0 = e−rT

ΠT .

This means

S0 ·Δ− V0 = e−rT (S0u ·Δ− V
(u)) ,

which upon substituting (1.16) leads to the value V0 of the option:

V0 = S0 ·Δ− e−rT (S0uΔ− V (u))

= e−rT {Δ · [S0e
rT − S0u] + V (u)}

= e
−rT

u−d
{(V (u) − V

(d))(erT − u) + V
(u)(u− d)}

= e
−rT

u−d
{V (u)(erT − d) + V

(d)(u − erT )}

= e−rT {V (u) e
rT

−d

u−d
+ V

(d) u−e
rT

u−d
}

= e−rT {V (u)q + V (d) · (1 − q)}

with

q :=
erT − d

u− d
. (1.17)

We have shown that with q from (1.17) the value of the option is given by

V0 = e−rT {V (u)
q + V

(d) · (1 − q)} . (1.18)

The expression for q in (1.17) is identical to the formula for p in (1.6), which

was derived in the previous section. Again we have

0 < q < 1 ⇐⇒ d < erT

< u .

Presuming these bounds for u and d, q can be interpreted as a probability Q.

Then qV (u) + (1 − q)V (d) is the expected value of the payoff with respect to

this probability (1.17),

EQ(VT ) = qV
(u) + (1 − q)V (d)

.

Now (1.18) can be written

V0 = e−rT

EQ(VT ) . (1.19)

That is, the value of the option is obtained by discounting the expected payoff

[with respect to q from (1.17)] at the risk-free interest rate r. An analogous

calculation shows

EQ(ST ) = qS0u+ (1 − q)S0d = S0e
rT

.

The probabilities p of Section 1.4 and q from (1.17) are defined by identical

formulas (with T corresponding to Δt). Hence p = q, and EP = EQ. But the

underlying arguments are different. Recall that in Section 1.4 we showed the

implication
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E(ST ) = S0e
rT =⇒ p = P(up) =

erT − d

u− d
,

whereas in this section we arrive at the implication

p = P(up) =
erT − d

u− d
=⇒ E(ST ) = S0e

rT

.

So both statements must be equivalent. Setting the probability of the up

movement equal to p is equivalent to assuming that the expected return on

the asset equals the risk-free rate. This can be rewritten as

e−rT

EP(ST ) = S0 . (1.20)

The important property expressed by equation (1.20) is that of a martingale:

The random variable e−rTST of the left-hand side has the tendency to remain

at the same level. That is why a martingale is also called “fair game.” A

martingale displays no trend, where the trend is measured with respect to EP.

In the martingale property of (1.20) the discounting at the risk-free interest

rate r exactly matches the risk-neutral probability P of (1.6)/(1.17). The

specific probability for which (1.20) holds is also called martingale measure.

Summary of results for the one-period model: Under the Assumptions 1.2 of

the market model, the choice Δ of (1.16) eliminates the random-dependence

of the payoff and makes the portfolio riskless. There is a specific probability

Q (P in Section 1.4) with Q(up) = q, q from (1.17), such that the value

V0 satisfies (1.19), and S0 the analogous property (1.20). These properties

involve the risk-neutral interest rate r. That is, the option is valued in a risk-

neutral world, and the corresponding Assumption 1.3 (Bi3) is meaningful.

In the real-world economy, growth rates in general are different from r,

and individual subjective probabilities differ from our Q. But the assumption

of a risk-neutral world leads to a fair valuation of options. The obtained value

V0 can be seen as a rational price. In this sense the resulting value V0 applies

to the real world. The risk-neutral valuation can be seen as a technical tool.

The assumption of risk neutrality is just required to define and calculate a

rational price or fair value of V0. For this specific purpose we do not need

actual growth rates of prices, and individual probabilities are not relevant.

But note that we do not really assume that financial markets are actually

free of risk.

The general principle outlined for the one-period model is also valid for

the multiperiod binomial model and for the continuous model of Black and

Scholes (−→ Exercise 1.8).

The Δ of (1.16) is the hedge parameter delta, which eliminates the risk

exposure of our portfolio caused by the written option. In multiperiod models

and continuous modelsΔmust be adapted dynamically. The expression (1.16)

can be seen as a discretized version of the continuous-case definition

Δ = Δ(S, t) =
∂V (S, t)

∂S
.
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1.6 Stochastic Processes

Brownian motion originally meant the erratic motion of a particle (pollen) on

the surface of a fluid, caused by tiny impulses of molecules. Wiener suggested

a mathematical model for this motion, the Wiener process. But earlier Bache-

lier had applied Brownian motion to model the motion of stock prices, which

instantly respond to the numerous upcoming information similar as pollen

react to the impacts of molecules (Figure 1.14). To model such behavior, we

use stochastic processes.
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Fig. 1.14. The Dow at 500 trading days from September 8, 1997 through August

31, 1999

A stochastic process is a family of random variables Xt, which are defined

for a set of parameters t (−→ Appendix B1). Here we consider the continuous-

time situation. That is, t ∈ IR varies continuously in a time interval I, which

typically represents 0 ≤ t ≤ T . A more complete notation for a stochastic

process is {Xt, t ∈ I}, or (Xt)0≤t≤T . Let the chance “play,” then the resulting

function Xt is called realization or path of the stochastic process.

Special properties of stochastic processes have lead to the following names:

Gaussian process: All finite-dimensional distributions (Xt1
, . . . , Xtk

) are

Gaussian. Hence specifically Xt is distributed normally for all t.
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Markov process: Only the present value of Xt is relevant for its future

motion. That is, the past history is fully reflected in the present value.8

An example of a process that is both Gaussian and Markov, is the Wie-

ner process. Wiener processes are important building blocks for models of

financial markets, and are the main theme of this section.

1.6.1 Wiener Process

Definition 1.7 (Wiener process, standard Brownian motion)

A Wiener process (or standard Brownian motion; notation Wt or W ) is

a time-continuous process for t ≥ 0 with the properties

(a) W0 = 0

(b) Wt ∼ N (0, t) for all t ≥ 0. That is, for each t the random variable

Wt is distributed normally, with mean E(Wt) = 0 and variance

Var(Wt) = E(W 2

t
) = t.

(c) All increments ΔWt := Wt+Δt −Wt on non overlapping time

intervals are independent: That is, the displacements Wt2
−Wt1

and Wt4
−Wt3

are independent for all 0 ≤ t1 < t2 ≤ t3 < t4.

(d) Wt depends continuously on t.

Generally for 0 ≤ s < t the propertyWt−Ws ∼ N (0, t−s) holds, in particular

E(Wt −Ws) = 0 , (1.21a)

Var(Wt −Ws) = E((Wt −Ws)
2) = t− s . (1.21b)

The relations (1.21a,b) can be derived from Definition 1.7 (−→ Exercise 1.9).

The relation (1.21b) is also known as

E((ΔWt)
2) = Δt . (1.21c)

The independence of the increments according to Definition 1.7(c) implies

for tj+1 > tj the independence of Wtj
and (Wtj+1

−Wtj
), but not of Wtj+1

and (Wtj+1
−Wtj

). Wiener processes are examples of martingales —there is

no drift. This process is an integral element of more involved models. For

example, Xt := α+ μt+Wt is a general Brownian motion with drift μ.

Discrete-Time Model

Let Δt > 0 be a constant time increment. For the discrete instances tj := jΔt

the value Wt can be written as a sum of increments ΔWk,

8 This assumption together with the assumption of an immediate reaction

of the market to arriving information are called hypothesis of the efficient

market [Bou98].
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WjΔt =

j∑
k=1

(
WkΔt −W(k−1)Δt

)︸ ︷︷ ︸
=:ΔWk

.

The ΔWk are independent and because of (1.21) normally distributed with

Var(ΔWk) = Δt. Increments ΔW with such a distribution can be calculated

from standard normally distributed random numbers Z. The implication

Z ∼ N (0, 1) =⇒ Z ·
√
Δt ∼ N (0, Δt)

leads to the discrete model of a Wiener process

ΔWk = Z
√
Δt for Z ∼ N (0, 1) for each k . (1.22)

We summarize the numerical simulation of a Wiener process as follows:

Algorithm 1.8 (simulation of a Wiener process)

Start: t0 = 0, W0 = 0; Δt

loop j = 1, 2, ... :

tj = tj−1 +Δt

draw Z ∼ N (0, 1)

Wj = Wj−1 + Z
√
Δt

The drawing of Z —that is, the calculation of Z ∼ N (0, 1)— will be explained

in Chapter 2. The values Wj are realizations of Wt at the discrete points tj .

The Figure 1.15 shows a realization of a Wiener process; 5000 calculated

points (tj ,Wj) are joined by linear interpolation.

Almost all realizations of Wiener processes are nowhere differentiable.

This becomes intuitively clear when the difference quotient

ΔWt

Δt
=
Wt+Δt −Wt

Δt

is considered. Because of relation (1.21b) the standard deviation of the nu-

merator is
√
Δt. Hence for Δt → 0 the normal distribution of the difference

quotient disperses and no convergence can be expected.

1.6.2 Stochastic Integral

For motivation, let us suppose that the price development of an asset is

described by a Wiener process Wt. Let b(t) be the number of units of the

asset held in a portfolio at time t. We start with the simplifying assumption

that trading is only possible at discrete time instances tj , which define a
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Fig. 1.15. Realization of a Wiener process, with Δt = 0.0002

partition of the interval 0 ≤ t ≤ T . Then the trading strategy b is piecewise

constant,

b(t) = b(tj−1) for tj−1 ≤ t < tj

and 0 = t0 < t1 < . . . < tN = T .
(1.23)

Such a function b(t) is called step function. The trading gain for the subin-

terval tj−1 ≤ t < tj is given by b(tj−1)(Wtj
−Wtj−1

), and

N∑
j=1

b(tj−1)(Wtj
−Wtj−1

) (1.24)

represents the trading gain over the time period 0 ≤ t ≤ T . The trading gain

(possibly < 0) is determined by the strategy b(t) and the price process Wt.

We now drop the assumption of fixed trading times tj and allow b to be

arbitrary continuous functions. This leads to the question whether (1.24) has

a limit when with N → ∞ the size of all subintervals tends to 0. If Wt would

be of bounded variation than the limit exists and is called Riemann–Stieltjes

integral ∫
T

0

b(t) dWt .
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In our situation this integral generally does not exist because almost all Wie-

ner processes are not of bounded variation. That is, the first variation of Wt,

which is the limit of
N∑

j=1

|Wtj
−Wtj−1

| ,

is unbounded even in case the lengths of the subintervals vanish for N → ∞.

Although this statement is not of primary concern for the theme of this

book9, we digress for a discussion because it introduces the important rule

(dWt)
2 = dt. For an arbitrary partition of the interval [0, T ] into N subin-

tervals the inequality

N∑
j=1

|Wtj
−Wtj−1

|2 ≤ max
j

(|Wtj
−Wtj−1

|)
N∑

j=1

|Wtj
−Wtj−1

| (1.25)

holds. The left-hand sum in (1.25) is the second variation and the right-

hand sum the first variation of W for a given partition into subintervals. The

expectation of the left-hand sum can be calculated using (1.21),

N∑
j=1

E(Wtj
−Wtj−1

)2 =

N∑
j=1

(tj − tj−1) = tN − t0 = T .

But even convergence in the mean holds:

Lemma 1.9 (second variation: convergence in the mean)

Let t0 = t
(N)

0
< t

(N)

1
< . . . < t

(N)

N
= T be a sequence of partitions of the

interval t0 ≤ t ≤ T with

δN := max
j

(t
(N)

j
− t

(N)

j−1
) . (1.26)

Then (dropping the (N))

l.i.m.
δN→0

N∑
j=1

(Wtj
−Wtj−1

)2 = T − t0 (1.27)

Proof: The statement (1.27) means convergence in the mean (−→ Appen-

dix B1). Because of
∑
Δtj = T − t0 we must show

E

⎛⎝∑
j

((ΔWj)
2 −Δtj)

⎞⎠2

→ 0 for δN → 0 .

Carrying out the multiplications and taking the mean gives

9 The less mathematically oriented reader may like to skip the rest of this

subsection.
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2
∑

j

(Δtj)
2

(−→ Exercise 1.10). This can be bounded by 2(T−t0)δN , which completes

the proof.

Part of the derivation can be summarized to

E((ΔWt)
2 −Δt) = 0 , Var((ΔWt)

2 −Δt) = 2(Δt)2 .

Symbolically, this property of a Wiener process is written

(dWt)
2 = dt (1.28)

It will be needed in subsequent sections.

Now we know enough about the convergence of the left-hand sum of (1.25)

and turn to the right-hand side of this inequality. The continuity ofWt implies

max
j

|Wtj
−Wtj−1

| → 0 for δN → 0 .

Convergence in the mean applied to (1.25) shows that the vanishing of this

factor must be compensated by an unbounded growth of the other factor, to

make (1.27) happen. So

N∑
j=1

|Wtj
−Wtj−1

| → ∞ for δN → 0 .

In summary, Wiener processes are not of bounded variation, and the integra-

tion with respect to Wt can not be defined as an elementary limit of (1.24).

The aim is to construct a stochastic integral∫
t

t0

f(s) dWs

for general stochastic integrands f(t). For our purposes it suffices to briefly

sketch the Itô integral, which is the prototype of a stochastic integral.

For a step function b from (1.23) an integral can be defined via the sum

(1.24), ∫
t

t0

b(s)dWs :=

N∑
j=1

b(tj−1)(Wtj
−Wtj−1

) . (1.29)

This is the Itô integral over a step function b. In case the b(tj−1) are

random variables, b is called a simple process. Then the Itô integral is again
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defined by (1.29). Stochastically integrable functions f can be obtained

as limits of simple processes bn in the sense

E

[ ∫ t

t0

(f(s) − bn(s))2ds
]
→ 0 for n → ∞ . (1.30)

Convergence in terms of integrals
∫

ds carries over to integrals
∫

dWt.

This is achieved by applying Cauchy convergence E
∫
(bn − bm)2ds → 0

and the isometry

E

[( ∫ t

t0

b(s) dWs

)2 ]
= E

[ ∫ t

t0

b(s)2 ds
]
.

Hence the integrals
∫
bn(s)dWs form a Cauchy sequence with respect to

convergence in the mean. Accordingly the Itô integral of f is defined as∫
t

t0

f(s) dWs := l.i.m.n→∞

∫
t

t0

bn(s) dWs ,

for simple processes bn defined by (1.30). The value of the integral is

independent of the choice of the bn in (1.30). The Itô integral as function

in t is a stochastic process with the martingale property.

If an integrand a(x, t) depends on a stochastic process Xt, the function

f is given by f(t) = a(Xt, t). For the simplest case of a constant integrand

a(Xt, t) = a0 the Itô integral can be reduced via (1.29) to∫
t

t0

dWs = Wt −Wt0
.

For the “first” nontrivial Itô integral consider Xt = Wt and a(Wt, t) = Wt.

Its solution will be presented in Section 3.2.

Wiener processes are the driving machines for diffusion models (next sec-

tion). There are other stochastic processes that can be used for modeling

financial markets. For several models jump processes are considered. We turn

to jump processes in Section 1.9.

1.7 Diffusion Models

Many fundamental models of financial markets use Wiener processes as dri-

ving process. These are the diffusion models discussed in this section. We

discuss the main representative geometric Brownian motion, and explain the

risk-neutral valuation in this context. Then we turn to more general proces-

ses, such as mean reversion.
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1.7 Diffusion Models

1.7.1 Itô Process

Phenomena in nature, technology and economy are often modeled by means of

deterministic differential equations ẋ = d

dt
x = a(x, t). This kind of modeling

neglects stochastic fluctuations and is not appropriate for stock prices. If

processes x are to include Wiener processes as special case, the derivative
d

dt
x is meaningless. To circumvent non-differentiability, integral equations are

used to define a general class of stochastic processes. Randomness is inserted

additively,

x(t) = x0 +

∫
t

t0

a(x(s), s)ds + randomness ,

with an Itô integral with respect to the Wiener process Wt. The first integral

in the resulting integral equation is an ordinary (Lebesgue- or Riemann-)

integral. The final integral equation is symbolically written as a “stochastic

differential equation” (SDE) and named after Itô.

Definition 1.10 (Itô stochastic differential equation)

An Itô stochastic differential equation is

dXt = a(Xt, t) dt+ b(Xt, t) dWt ; (1.31a)

this together with Xt0
= X0 is a symbolic short form of the integral

equation

Xt = Xt0
+

∫
t

t0

a(Xs, s) ds+

∫
t

t0

b(Xs, s) dWs . (1.31b)

The terms in (1.31) are named as follows:

a(Xt, t): drift term or drift coefficient

b(Xt, t): diffusion coefficient

The integral equation (1.31b) defines a large class of stochastic processes Xt;

solutions Xt of (1.31b) are called Itô process, or stochastic diffusion.

As intended, the Wiener process is a special case of an Itô process, because

from Xt = Wt the trivial SDE dXt = dWt follows, hence the drift vanishes,

a = 0, and b = 1 in (1.31). If b ≡ 0 and X0 is constant, then the SDE becomes

deterministic.

An experimental approach may help to develop an intuitive understanding

of Itô processes. The simplest numerical method combines the discretized

version of the Itô SDE

ΔXt = a(Xt, t)Δt+ b(Xt, t)ΔWt (1.32)

with the Algorithm 1.8 for approximating a Wiener process, using the same

Δt for both discretizations. The result is
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Algorithm 1.11 (Euler discretization of an SDE)

Approximations yj to Xtj
are calculated by

Start: t0, y0 = X0, Δt, W0 = 0

loop j = 0, 1, 2, ...

tj+1 = tj +Δt

ΔW = Z
√
Δt with Z ∼ N (0, 1)

yj+1 = yj + a(yj , tj)Δt+ b(yj, tj)ΔW

In the simplest setting, the step length Δt is chosen equidistant, Δt = T/m

for a suitable integer m. Of course the accuracy of the approximation depends

on the choice of Δt (−→ Chapter 3). The evaluation is straightforward. In

case the functions a and b are easy to calculate, the greatest effort may be to

calculate random numbers Z ∼ N (0, 1) (−→ Section 2.3). Solutions to the

SDE or to its discretized version for a given realization of the Wiener process

are called trajectories or paths. By simulation of the SDE we understand the

calculation of one or more trajectories. For the purpose of visualization, the

discrete data are mostly joined by straight lines.

Example 1.12 dXt = 0.05Xt dt+ 0.3Xt dWt

Without the diffusion term the exact solution would be Xt = X0e
0.05t.

For X0 = 50, t0 = 0 and a time increment Δt = 1/250 the Figure 1.16

depicts a trajectory Xt of the SDE for 0 ≤ t ≤ 1. For another realization

of a Wiener process Wt the solution looks different. This is demonstrated

for a similar SDE in Figure 1.17.

1.7.2 Geometric Brownian Motion

Next we discuss one of the most important continuous models for the motion

of stock prices St. This standard model assumes that the relative change (re-

turn) dS/S of a security in the time interval dt is composed of a deterministic

drift μ dt plus stochastic fluctuations in the form σdWt:

Model 1.13 (geometric Brownian motion, GBM)

dSt = μSt dt+ σSt dWt

(1.33, GBM)

This SDE is linear in Xt = St, and a(St, t) = μSt is the drift rate with

the expected rate of return μ, b(St, t) = σSt, σ is the volatility. (Compare

Example 1.12 and Figure 1.16.) The geometric Brownian motion of (1.33) is
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Fig. 1.16. Numerically approximated trajectory of Example 1.12 with a = 0.05Xt,

b = 0.3Xt, Δt = 1/250, X0 = 50

the reference model on which, for example, the Black–Scholes model is based.

To match Assumption 1.2 assume that μ and σ are constant.

A theoretical solution of (1.33) will be given in (1.54). The deterministic

part of (1.33) is the ordinary differential equation

Ṡ = μS

with solution St = S0e
μ(t−t0). For the linear SDE of (1.33) the expectation

E(St) solves Ṡ = μS. Hence

S0e
μ(t−t0) = E(St |St0

= S0)

is the expectation of the stochastic process and μ is the expected continuously

compounded return earned by an investor per year, conditional on starting

at S0. The rate of return μ is also called growth rate. The function S0e
μ(t−t0)

can be seen as a core about which the process fluctuates. Accordingly the

simulated values S1 of the ten trajectories in Figure 1.17 group around the

value 50 · e0.1 ≈ 55.26.

Let us test empirically how the values S1 distribute about their expected

value. To this end calculate, for example, 10000 trajectories and count how

many of the terminal values S1 fall into the subintervals k5 ≤ t < (k + 1)5,
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Fig. 1.17. 10 paths of SDE (1.33) with S0 = 50, μ = 0.1 and σ = 0.2

for k = 0, 1, 2 . . .. Figure 1.18 shows the resulting histogram. Apparently the

distribution is skewed. We revisit this distribution in the next section.

A discrete version of (1.33) is

ΔS

S
= μΔt+ σZ

√
Δt , (1.34a)

known from Algorithm 1.11. This approximation is valid as long as Δt is

small and S > 0 (−→ Exercise 1.24). The relative return reflected by the

ratio ΔS

S
is called one-period simple return, where we interpret Δt as one

period. According to (1.34a) this return satisfies

ΔS

S
∼ N (μΔt, σ2

Δt) . (1.34b)

The distribution of the simple return matches actual market data in a crude

approximation, see for instance Figure 1.21. This allows to calculate estimates

of historical values of the volatility σ.10 Of course this assumes the market

data to be correctly described by GBM. We will return to this in Section 1.8.

10 For the implied volatility see Exercise 1.5.
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Fig. 1.18. Histogram of 10000 calculated values S1 corresponding to (1.33), with

S0 = 50, μ = 0.1, σ = 0.2

1.7.3 Risk-Neutral Valuation

We digress for the length of this subsection and again turn to the topic of a

risk-neutral valuation, now for the continuous-time setting. In Section 1.5 we

have shown

V0 = e−rT

EQ(VT )

for the one-period model. Formally, the same holds true for the market model

based on GBM. But now the understanding of the risk-neutral probability Q

is more involved. This subsection sketches the framework for GBM.

Let us rewrite GBM from (1.33) to get

dSt = rSt dt+ (μ− r)St dt+ σSt dWt

= rSt dt+ σSt

[
μ− r

σ
dt+ dWt

]
,

(1.35)

where W is Wiener process under the probability measure P. In the reality

of the market, an investor expects μ > r as compensation for the risk that is

higher for stocks than for bonds. In this sense, the quotient γ of the excess

return μ− r to the risk σ,

γ :=
μ− r

σ
, (1.36)

41



Chapter 1 Modeling Tools for Financial Options

is called market price of risk. With this variable γ, (1.35) is written

dSt = rSt dt+ σSt[γ dt+ dWt] . (1.37)

For γ �= 0 the drifted Brownian motion W
γ

t
defined by

dW
γ

t
= γ dt+ dWt (1.38)

is no Wiener process under P. But under certain assumptions on γ there

is another probability measure Q such that the process W
γ

t
is a (standard)

Wiener process under Q.11 Equation (1.37) becomes

dSt = rSt dt+ σSt dW
γ

t
. (1.39)

Comparing this SDE to (1.33), notice that the growth rate μ is replaced by

the risk-free rate r. Together the transition consists of

μ → r

P → Q

W → W γ

which is named risk-neutral valuation principle for GBM. To simulate

(1.39) under Q, just apply the standard Algorithm 1.8 for the Wiener pro-

cess W
γ

t
. Then the rate r in (1.39) and W

γ

t
correspond to the “risk-neutral

measure” Q.

What is the reason for adjusting the probability measure P → Q? The

advantage of the risk-neutral measure Q is that the discounted process e−rtSt

is a martingale under Q,

d(e−rt

St) = σe−rt

St dW
γ

t
.

The fundamental theorem of asset pricing states that a market model

is free of arbitrage if and only if there exists a probability measure Q such

that the discounted asset prices are martingales with respect to Q [HaP81].

Hence the property of e−rt
St having no drift is an essential ingredient of a

no-arbitrage market and a prerequisite to modeling options. For a thorough

discussion of the continuous model, martingale theory is used. (Some more

background and explanation is provided by Appendix B3.) Let us summarize

the situation in a remark:

Remark 1.14 (risk-neutral valuation principle)

For modeling options with underlying GBM, the original probability is

adjusted to the risk-neutral probability Q. To simulate the process under

Q, the return rate μ is replaced by the risk-free interest rate r, and W
γ

t

is approximated as Wiener process.

11 Girsanov’s theorem, see Appendix B2. Q and P are equivalent.
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1.7.4 Mean Reversion

The assumptions of a constant interest rate r and a constant volatility σ are

quite restrictive. To overcome this simplification, SDEs for rt and σt have

been constructed that control rt or σt stochastically. One class of models is

based on the SDE

drt = α(R − rt) dt+ σrr
β

t
dWt , α > 0 , (1.40)

again with driving force Wt as Wiener process. The drift term in (1.40) is

positive for rt < R and negative for rt > R, which causes a pull to R. This ef-

fect is called mean reversion. A frequency parameter α influences the strength

of the reversion. The parameter R, which may depend on t, corresponds to

a long-run mean of the interest rate over time. SDE (1.40) defines a gene-

ral class of models, including several interesting special cases known under

special names:

β = 0, R = 0 : Ornstein–Uhlenbeck process (OU)

β = 0, R > 0 : Vasicek model

β = 1

2
, R > 0 : Cox–Ingersoll–Ross process (CIR)

Hull and White have extended the Vasicek model incorporating time depen-

dence in the parameters. The CIR model [CoxIR85] is also called square-root

process. Its volatility σr

√
r

t
and with it the stochastic part vanish when rt

tends to zero. An illustration of the mean reversion is provided by Figure

1.19. In a transient phase (until t ≈ 1 in the run documented in the figure)

the relatively large deterministic term dominates, and the range r ≈ R is re-

ached quickly. Thereafter the stochastic term dominates, and r dances about

the mean value R. Figure 1.19 shows this for a Cox–Ingersoll–Ross model.

For a discussion of related models we refer to [LaL96], [Hull00], [Kwok98].

The calibration of the models (that is, the adaption of the parameters to the

data) is a formidable task (−→ Section 1.10).

The SDE (1.40) is of a different kind as the GBM in (1.33). Coupling the

SDE for rt to that for St leads to a system of two SDEs. Even larger systems

are obtained when further SDEs are coupled to define a stochastic process Rt

or to calculate stochastic volatilities. Related examples are given by Examples

1.15 and 1.16 below. In particular for modeling options, stochastic volatilities

have shown great potential. We come back to this in the Examples 1.15 and

1.16 below.

1.7.5 Vector-Valued SDEs

The Itô equation (1.31) is formulated as scalar equation; accordingly the SDE

(1.33) represents a one-factor model. The general multifactor version can be

written in the same notation. Then Xt = (X
(1)

t
, . . . , X

(n)

t
) and a(Xt, t) are

n-dimensional vectors. The Wiener processes of each component SDE need
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Fig. 1.19. Simulation rt of the Cox–Ingersoll–Ross model (1.40) with β = 0.5 for

R = 0.05, α = 1, σr = 0.1, r0 = 0.15, Δt = 0.01

not be correlated. In the general situation, the Wiener process can be m-

dimensional, with components W
(1)

t
, ...,W

(m)

t
. Then b(Xt, t) is an (n ×m)-

matrix, with elements bik. The interpretation of the SDE systems is compo-

nentwise. The scalar stochastic integrals are sums of m stochastic integrals,

X
(i)

t
= X

(i)

0
+

∫
t

0

ai(Xs, s) ds+

m∑
k=1

∫
t

0

bik(Xs, s) dW (k)

s
, (1.41a)

for i = 1, ..., n, and t0 = 0 for convenience. Or in the symbolic SDE notation,

this system reads

dXt = a(Xt, t) dt+ b(Xt, t) dWt , (1.41b)

where b dW is a matrix multiplication. When we take the components of the

vector dW as uncorrelated,

E (dW (k)dW (j)) =

{
0 for k �= j

dt for k = j
(1.42)

then possible correlations between the components of dX must be carried by

b.12

12 We come back to this issue in Sections 2.3.3, and 3.5.5, and in Exercise

3.14.
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Example 1.15 (mean-reverting volatility tandem)

We consider a three-factor model [HoPS92] with stock price St, instan-

taneous spot volatility σt and an averaged volatility ζt serving as mean-

reverting parameter:

dS = σS dW (1)

dσ = −(σ − ζ)dt+ ασ dW (2)

dζ = β(σ − ζ)dt

Here and sometimes later on, we suppress the subscript t, which is pos-

sible when the role of the variables as stochastic processes is clear from

the context. The rate of return μ of S is zero; dW (1) and dW (2) may be

correlated. As seen from the SDE, the stochastic volatility σ follows the

mean volatility ζ and is simultaneously perturbed by a Wiener process.

Both σ and ζ provide mutual mean reversion, and stick together. Accor-

dingly the two SDEs for σ and ζ may be seen as a tandem controlling the

dynamics of the volatility. We recommend numerical tests. For motivation

see Figure 3.2.

Example 1.16 (Heston’s model)

Heston [Hes93] uses an Ornstein–Uhlenbeck process to model a stochastic

volatility σt. Then the variance vt := σ2

t
follows a Cox–Ingersoll–Ross

process (1.40). (−→ Exercise 1.20) The system of Heston’s model is

dSt = μSt dt+
√
vt St dW

(1)

t

dvt = κ(θ − vt) dt+ σv

√
vt dW

(2)

t

(1.43)

with two correlated Wiener processes W
(1)

t
,W

(2)

t
and suitable parameters

μ, κ, θ, σv, ρ, where ρ is the correlation between W
(1)

t
,W

(2)

t
. Hidden

parameters might be the initial values S0, v0, if not available. This model

establishes a correlation between price and volatility.

Computational Matters

Stochastic differential equations are simulated in the context of Monte Carlo

methods. Thereby, the SDE is integrated N times, with N large (N = 10000

or much larger). Then the weight of any single trajectory is almost negligible.

Expectation and variance are calculated over the N trajectories. Generally

this costs an enormous amount of computing time. The required instruments

are:

1.) Generating N (0, 1)-distributed random numbers (−→ Chapter 2)

2.) Integration methods for SDEs (−→ Chapter 3)
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1.8 Itô Lemma and Applications

Itô’s lemma is most fundamental for stochastic processes. It may help, for

example, to derive solutions of SDEs (−→ Exercise 1.11). Suppose a “chain”

of two functions Xt and g(Xt, t). When a differential equation for Xt is given,

what is the differential equation for g(Xt, t)?

1.8.1 Itô Lemma

Itô’s lemma is the stochastic counterpart of the chain rule for deterministic

functions x(t) and y(t) := g(x(t), t), which is

d

dt
g(x(t), t) =

∂g

∂x
·
dx

dt
+
∂g

∂t
,

and can be written

dx = a(x(t), t) dt ⇒ dg =

(
∂g

∂x
a+

∂g

∂t

)
dt .

Here we state the one-dimensional version of the Itô lemma; for the multidi-

mensional version see the Appendix B2.

Lemma 1.17 (Itô)

Suppose Xt follows an Itô process (1.31), dXt = a(Xt, t)dt+ b(Xt, t)dWt,

and let g(x, t) be a C2,1-smooth function (continuous ∂g

∂x
,

∂
2
g

∂x
2 ,

∂g

∂t
). Then

Yt := g(Xt, t) follows an Itô process with the same Wiener process Wt:

dYt =

(
∂g

∂x
a+

∂g

∂t
+

1

2

∂2g

∂x2
b
2

)
dt+

∂g

∂x
b dWt (1.44)

where the derivatives of g as well as the coefficient functions a and b in

general depend on the arguments (Xt, t).

For a proof we refer to [Arn74], [Øk98], [Ste01], [Pro04]. Here we confine

ourselves to the basic idea. When t varies by Δt, then X by ΔX =

a · Δt + b · ΔW and Y by ΔY = g(X + ΔX, t + Δt) − g(X, t). The

Taylor expansion of ΔY begins with the linear part ∂g

∂x
ΔX + ∂g

∂t
Δt, in

which ΔX = aΔt + bΔW is substituted. The additional term with the

derivative ∂
2
g

∂x
2 is new and is introduced via the O(Δx2)-term of the Taylor

expansion,
1

2

∂2g

∂x2
(ΔX)2 =

1

2

∂2g

∂x2
b
2(ΔW )2 + t.h.o.

Because of (1.28), (ΔW )2 ≈ Δt, the leading term is also of the order

O(Δt) and belongs to the linear terms. Taking correct limits (similar as

in Lemma 1.9) one obtains the integral equation represented by (1.44).
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1.8.2 Consequences for Geometric Brownian Motion

Suppose the stock price follows a geometric Brownian motion, hence Xt =

St, a = μSt, b = σSt, for constant μ, σ. The value Vt of an option depends

on St, Vt = V (St, t). Assuming a C2-smooth value function V depending on

S and t, we apply Itô’s lemma. For V (S, t) in the place of g(x, t) the result is

dVt =

(
∂V

∂S
μSt +

∂V

∂t
+

1

2

∂2V

∂S2
σ

2
S

2

t

)
dt+

∂V

∂S
σSt dWt . (1.45)

This SDE is used to derive the Black–Scholes equation, see Appendix A4.

As second application of Itô’s lemma consider Yt = log(St), viz g(x, t) :=

log(x), for St solving GBM with constant μ, σ. Itô’s lemma leads to the linear

SDE

d logSt = (μ−
1

2
σ

2) dt+ σdWt . (1.46)

In view of (1.31) the solution is straightforward:

Yt = Yt0
+ (μ−

1

2
σ

2)

∫
t

t0

ds+ σ

∫
t

t0

dWs

= Yt0
+ (μ−

1

2
σ

2)(t− t0) + σ(Wt −Wt0
)

(1.47)

From the properties of the Wiener process Wt we conclude that Yt is distribu-

ted normally. To write down the density function f̂(Yt), the mean μ̂ := E(Yt)

and the variance σ̂ are needed. For this linear SDE (1.46) the expectation

E(Yt) satisfies the deterministic part

d

dt
E(Yt) = μ−

σ2

2
.

The solution of ẏ = μ− σ
2

2
with initial condition y(t0) = y0 is

y(t) = y0 + (μ−
σ2

2
)(t− t0) .

In other words, the expectation of the Itô process Yt is

μ̂ := E(logSt) = logS0 + (μ−
σ2

2
)(t− t0) .

Analogously, we see from the differential equation for E(Y 2

t
) (or from the

analytic solution of the SDE for Yt) that the variance of Yt is σ2(t − t0). In

view of (1.46) the simple SDE for Yt implies that the stochastic fluctuation

of Yt is that of σWt, namely, σ̂2 := σ2(t− t0). So, from (B1.9) with μ̂ and σ̂,

the density of Yt is
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f̂(Yt) :=
1

σ
√

2π(t− t0)
exp

⎧⎪⎨⎪⎩−

(
Yt − y0 −

(
μ− σ

2

2

)
(t− t0)

)2

2σ2(t− t0)

⎫⎪⎬⎪⎭ .

Back transformation using Y = log(S) and considering dY = 1

S
dS and

f̂(Y )dY = 1

S
f̂(logS)dS = f(S)dS yields the density of St > 0:

fGBM(S, t− t0; S0, μ, σ) :=

1

Sσ
√

2π(t− t0)
exp

⎧⎪⎨⎪⎩−

(
log(S/S0) −

(
μ− σ

2

2

)
(t− t0)

)2

2σ2(t− t0)

⎫⎪⎬⎪⎭ (1.48)

This is the density of the lognormal distribution, conditional on St0
= S0. It

describes the probability of a transition

(S0, t0) −→ (S, t)

under the basic assumption that the stock price St follows a geometric Brow-

nian motion (1.33). The distribution is skewed, see Figure 1.20. Now the

skewed behavior coming out of the experiment reported in Figure 1.18 is

clear. Notice that the parameters in Figures 1.18 and 1.20 match. Figure

1.18 is an approximation of the solid curve in Figure 1.20.

In summary, the assumption of GBM amounts to

St = S0 exp(Yt) , (1.49)

where the log-price Yt is a Brownian motion with drift, Yt = (μ− 1

2
σ2)t+σWt.

— Having derived the density (1.48), we now can prove equation (1.8), with

μ = r according to Remark 1.14 (−→ Exercise 1.12). For vector-valued SDEs

an appropriate version of the Itô lemma is (B2.1).

1.8.3 Integral Representation

An important application of a known density function is that it allows for an

integral representation of European options. This will be revisited in Subsec-

tion 3.5.1, where we show for a European put under GBM

V (S0, 0) = e−rT

∫ ∞

0

(K − ST )+ fGBM(ST , T ; S0, r, σ) dST . (1.50)

Note the risk-free interest rate r as argument in the density. This reflects that

the integral is the conditional expectation of the payoff under the assumed

risk-neutral measure,

EQ =

∫ ∞

0

payoff · density dST .
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Fig. 1.20. Density (1.48) over S for μ = 0.1, σ = 0.2, S0 = 50, t0 = 0 and t = 0.5
(dotted curve with steep gradient), t = 1 (solid curve), t = 2 (dashed) and t = 5

(dotted with flat gradient)

The integral representation for European-style options

V (S0, 0) = e−rT

EQ(V (ST , T ) | St starting from (S0, 0)) . (1.51)

holds for arbitrary payoff functions and density functions of a general class

of valuation models.

1.8.4 Bermudan Options

The integral representation (1.50)/(1.51) for European options can be applied

to approximate American options. To this end, discretize the time interval

0 ≤ t ≤ T into an equidistant grid of time instances ti, similar as done for

the binomial method of Section 1.4:

Δt :=
T

M
, ti := i Δt (i = 0, . . . ,M) .

This defines lines in the (S, t)-domain, and cuts it into M slices. An option

that restricts early exercise to specified discrete dates during its life is called a

Bermudan option. The above slicing defines an artificial Bermudan option,
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constructed for the purpose of approximating the corresponding American

option.

Let V Ber(M) denote the value of the Bermudan option in the above setting

of M slices of equal size. Clearly,

V
Eur ≤ V

Ber(M) ≤ V
Am for all M ,

because of the additional exercise possibilities of an otherwise identical op-

tion. Note that the Bermudan options serve as lower bounds for the American

option, and V Eur = V Ber(1). One can show

lim
M→∞

V
Ber(M) = V

Am
.

Hence, for suitable M the value V Ber(M) can be used as approximation to

V Am.

Let us consider the time slice ti ≤ t ≤ ti+1 for any i. For the valuation

of the option’s value at ti, the “inner payoff” is V (S, ti+1) along the line

t = ti+1. Since a Bermudan option can not be exercised for ti < t < ti+1, its

continuation value for ti is given by the integral representation of a European

option. This continuation value is

V
cont(x, ti) = e−r(ti+1−ti)

∫ ∞

−∞

V (ξ, ti+1) f(ξ, ti+1 − ti; x, . . .) dξ (1.52a)

for arbitrary x. Here a value S at line t = ti is represented by x, and the price

at ti+1 by ξ. The dots stand for the parameters of the risk-neutral evaluation

of the chosen model, and f is its density conditional on Sti
= x. For an

n-factor model, the domain of integration is IRn.

Since the Bermudan option can be exercised at ti, its value is again given

by the dynamic programming principle,

V (x, ti) = max {Ψ(x), V cont(x, ti) } , (1.52b)

where Ψ denotes the payoff. Equations (1.52) define for i = M − 1, . . . , 0 a

backward recursive algorithm. It starts from the given payoff at T , which

provides V (S, tM ). That is, only for the first time level i = M −1, the option

is “vanilla,” whereas for i < M − 1 the inner payoffs are given by (1.52b).

In the algorithm, the evaluation of the integral in (1.52a) is done by nu-

merical quadrature (−→ Appendix C1), and the continuation value functions

V cont are approximated by interpolating functions C(x) based on m nodes in

x-space [Que07]. In the simplest case of a one-factor model (n = 1), the nodes

may represent equidistantly chosen Sj (1 ≤ j ≤ m). The inner payoffs are

denoted gi, and the Bermudan option is to be evaluated at (x, 0) := (S, 0).

Algorithm 1.18 (Bermudan option)

set m nodes x1, . . . , xm ∈ IRn.

gM (x) := V (x, tM ) = V (x, T ) = Ψ(x).
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recursively backwards (i = M − 1, . . . , 0):

(1) input: gi+1

loop (j = 1, . . . ,m): calculate by quadrature

qj := e−r(ti+1−ti)

∫
gi+1(ξ) f(ξ, ti+1 − ti; xj , . . .) dξ

output: q1, . . . , qm
(2) interpolate (x1, q1), . . . , (xm, qm). output: C(x)

(3) gi(x) := max {Ψ(x), C(x)}

The final g0(x) is the approximation of V Ber(M)(x, 0), which in turn appro-

ximates V Am(x, 0). The integral (1.52a) is taken over a suitably truncated

interval ξmin ≤ ξ ≤ ξmax. The method works also for general non-GBM mo-

dels, as long as they are not path-dependent. The order of convergence in Δt

is linear. If necessary, the nodes xj can be readjusted after each i; extrapola-

tion is possible. For example, when two values V Ber(M)(x, 0), V Ber(2M)(x, 0)

are available, an improved approximation is

V̄ = 2V Ber(2M)(x, 0) − V
Ber(M)(x, 0) .

For details see [Que07].

1.8.5 Empirical Tests

It is inspiring to test the idealized Model 1.13 of a geometric Brownian motion

against actual empirical data. Suppose the time series S1, ..., SM represents

consecutive quotations of a stock price. To test the data, histograms of the

returns are helpful (−→ Figure 1.21). The transformation y = log(S) is most

practical. It leads to the notion of the log return, defined by13

Ri,i−1 := log
Si

Si−1

. (1.53)

Let Δt be the equally spaced sampling time interval between the quotations

Si−1 and Si, measured in years. Then (1.48) leads to

Ri,i−1 ∼ N ((μ−
σ

2

2
)Δt , σ2

Δt) .

Comparing with (1.34) we realize that the variances of the simple return

and of the log return are identical. The sample variance σ2Δt of the data

allows to calculate estimates of the historical volatility σ (−→ Exercise 1.13).

But the shape of actual market histograms is usually not in good agreement

with the well-known bell shape of the Gaussian density. The symmetry may

13 Since Si = Si−1 exp(Ri,i−1), the log return is also called continuously

compounded return in the ith time interval [Tsay02].
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be perturbed, and in particular the tails of the data are not well modeled

by the hypothesis of a geometric Brownian motion: The exponential decay

expressed by (1.48) amounts to thin tails. This underestimates extreme events

and hence hardly matches the reality of stock prices.
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Fig. 1.21. Histogram (compare Exercise 1.13): frequency of daily log returns Ri,i−1

of the Dow in the time period 1901-1999.

We conclude this section by listing again the analytic solution of the basic

linear constant-coefficient SDE (1.33)

dSt = μSt dt+ σSt dWt

of GBM. From (1.47) or (1.49), the process

St := S0 exp

((
μ−

σ
2

2

)
t+ σWt

)
(1.54)

solves the linear constant-coefficient SDE (1.33). Equation (1.54) generalizes

to the case of nonconstant coefficients (−→ Exercise 1.18). As a consequence

we note that St > 0 for all t, provided S0 > 0.
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1.9 Jump Models

The geometric Brownian motion Model 1.13 has continuous paths St. As

noted before, the continuity is at variance with those rapid asset price mo-

vements that can be considered almost instantaneous. Such rapid changes

can be modeled as jumps. This section introduces a basic building block of

a jump process, namely, the Poisson process. Related simulations (like that

of Figure 1.22) may look more authentic than continuous paths. But one has

to pay a price: With a jump process the risk of an option in general can not

be hedged away to zero. And calibration becomes more involved.

To define a Poisson process, denote the time instances for which a jump

arrives τj , with

τ1 < τ2 < τ3 < . . .

Let the number of jumps be counted by the counting variable Jt, where

τj = inf{t ≥ 0 , Jt = j} .

A Bernoulli experiment describes the probability that a jump occurs. For this

local discussion and an arbitrary time instant t, consider n subintervals of

length Δt := t

n
and allow for only two outcomes, jump yes or no, with the

probabilities
P(Jt − Jt−Δt = 1) = λΔt

P(Jt − Jt−Δt = 0) = 1 − λΔt
(1.55)

for some λ such that 0 < λΔt < 1. The parameter λ is referred to as the

intensity of this jump process. Consequently k jumps in 0 ≤ τ ≤ t have the

probability

P(Jt − J0 = k) =

(
n

k

)
(λΔt)k(1 − λΔt)n−k

,

where the trials in each subinterval are considered independent. A little rea-

soning reveals that for n→ ∞ this probability converges to

(λt)k

k!
e−λt

,

which is known as the Poisson distribution with parameter λ > 0 (−→ Ap-

pendix B1). This leads to the Poisson process.

Definition 1.19 (Poisson process)

The stochastic process {Jt , t ≥ 0} is called Poisson process if the following

conditions hold:

(a) J0 = 0

(b) Jt − Js are integer-valued for 0 ≤ s < t < ∞ and

P(Jt − Js = k) =
λk(t− s)k

k!
e−λ(t−s) for k = 0, 1, 2 . . .
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(c) The increments Jt2
− Jt1

and Jt4
− Jt3

are independent for all 0 ≤ t1 <

t2 < t3 < t4.

Several properties hold as consequence of this definition:

Properties 1.20 (Poisson process)

(d) Jt is right-continuous and nondecreasing.

(e) The times between successive jumps are independent and exponentially

distributed with parameter λ. Thus,

P(τj+1 − τj > Δτ) = e−λΔτ for each Δτ .

(f) Jt is a Markov process.

(g) E(Jt) = λt, Var(Jt) = λt

Simulating Jumps

Following the above introduction of Poisson processes, there are two possi-

bilities to calculate jump instances τj such that the above probabilities are

met. First, the equation (1.55) may be used together with uniform deviates

(−→ Chapter 2). In this way a Δt-discretization of a t-grid can be easily

exploited by drawing a random number to decide whether a jump occurs in

a subinterval. The other alternative is to calculate exponentially distributed

random numbers h1, h2, . . . (−→ Section 2.2.2) to simulate the intervals Δτ

between consecutive jump instances, and set

τj+1 := τj + hj .

The expectation of the hj is 1

λ
.

The unit amplitudes of the jumps of the Poisson counting process Jt are

not relevant for the purpose of establishing a market model. The jump sizes

of the price of a financial asset should be considered random. This requires

—in addition to the arrival times τj— another random variable.

Let the random variable St jump at τj , and denote τ+ the (infinitesimal)

instant immediately after the jump, and τ− the moment before. Then the

absolute size of the jump is

ΔS = S
τ
+ − S

τ
− ,

which we model as a proportional jump,

S
τ
+ = qS

τ
− with q > 0 . (1.56)

So, ΔS = qS
τ
− − S

τ
− = (q − 1)S

τ
− . The jump sizes equal q − 1 times the

current asset price. Accordingly, this model of a jump process depends on a

random variable qt and is written

dSt = (qt − 1)S
t
− dJt , where Jt is a Poisson process.
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We assume that qτ1
, qτ2

, ... are i.i.d. The resulting process with the two in-

volved processes Jt, qt is called compound Poisson process.

Jump Diffusion

Next we superimpose the jump process to stochastic diffusion, here to GBM.

The combined geometric Brownian and compound Poisson process is given

by

dSt = S
t
− (μ dt+ σ dWt + (qt − 1) dJt ) . (1.57)

Here σ is the same as for the GBM, hence conditional on no jump. Such a

combined model represented by (1.57) is called jump-diffusion process. It

involves three different stochastic driving processes, namely, Wt, Jt, and qt.

We assume that J, q,W are independent of one another. Figure 1.22 shows a

simulation of the SDE (1.57).

An analytic solution of (1.57) can be calculated on each of the jump-

free subintervals τj < t < τj+1 where the SDE is just the GBM diffusion

dS = S(μdt+ σdW ). For example, in the first subinterval until τ1, the solu-

tion is given by (1.54). At τ1 a jump of the size

(ΔS)1 := (qτ1
− 1)S

τ
−

1

occurs, and thereafter the solution continues with

St = S0 · exp

((
μ−

σ
2

2

)
t+ σWt

)
+ (qτ1

− 1)S
τ
−

1

,

until τ2. The interchange of continuous parts and jumps proceeds in this way,

all jumps are added. So the SDE can be written as

St = S0 +

∫
t

0

Ss(μds+ σdWs) +

Jt∑
j=1

S
τ
−

j

(qτj
− 1) , (1.58)

or

St = S0 exp

((
(μ−

σ2

2

)
t+ σWt

)
·

Jt∏
j=1

qj .

This is the model based on Merton’s paper [Mer76]. The equation (1.58)

can be rewritten in the log-framework, with Yt := logSt. The log-jump sizes

according to model (1.56) are

(ΔY )τ : = Y
τ
+ − Y

τ
− = log(qS

τ
−) − logS

τ
−

= log qτ .

Following (1.54), the model can be written

55



Chapter 1 Modeling Tools for Financial Options

Yt = Y0 +

(
μ−

σ
2

2

)
t+ σWt +

Jt∑
j=1

(ΔY )τj
(1.59)

—that is the sum of a drift term, a Brownian motion, and a jump process. The

summation term
∑

(ΔY ) in (1.59) is the compound process. Merton assumes

normally distributed ΔY , which amounts to lognormal q. In summary we

emphasize again that the jump-diffusion process has three driving processes,

namely, W,J , and q. As in the GBM case, see (1.49)/(1.54), the price process

is of the form St = S0 exp(Yt).
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Fig. 1.22. Example 1.21: Sample path St of (1.57); jump report in Table 1.3

Example 1.21 (jump-diffusion)

Here we assume an interest rate r = 0.06, and a process St following (1.57)

with diffusion volatility σ = 0.3. For a hypothetical crash modeling, let us

assume Poisson jumps with an intensity rate λ = 0.2, which means that

on the average one jump occurs every 5 years. Following Merton’s model,

we take log(q) ∼ N (μJ, σ
2

J
), and choose μJ = −0.3 and σJ = 0.4. To

get random numbers with distribution ∼ N (μJ, σ
2

J
), we calculate random

numbers Z ∼ N (0, 1) (Chapter 2), and set log q = σJZ + μJ. The chosen

value of μJ corresponds to a mean q = exp(μJ) = 0.7408, which amounts

to an average 26% drop in Sτ at a jump instant τ . For the integration of
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(1.57), a growth rate is chosen such that risk neutrality is achieved. As

will be explained in Section 7.3, the martingale property is satisfied with

μ = r − λ (exp[μJ + 1

2
σ2

J
] − 1) ,

which for our numbers gives the growth rate 0.0995. This rate μ is larger

than r, and —roughly speaking— compensates for the tendency that in

case μJ < 0 down jumps are more likely than up jumps. Now we are

ready to solve (1.57) numerically. In Figure 1.22 we show one calculated

trajectory. We see three jumps, with data in Table 1.3. In this particular

simulation, there are two heavy down jumps within the time interval

0 ≤ t ≤ 10, which are clearly visible in Figure 1.22.

Table 1.3 Jumps in Figure 1.22

τ log(q) q jump

0.99 −0.642 0.526 47% down

4.76 0.0495 1.05 5% up

5.72 −0.534 0.586 41% down

The task of valuing options leads to a partial integro-differential equation

(A4.14), shown in Appendix A4, and in Section 7.3.

The above jump-diffusion process is not the only jump process used in

finance. There are also processes with an infinite number of jumps in finite

time intervals. To model such processes, building blocks are provided by

a more general class of jump processes, namely, the Lévy processes. Simply

speaking, think of relaxing the properties (b), (d) of Definition 1.7 of a Wiener

process such that non-normal distributions and jumps are permitted. Consult

Section 7.3 for some basics on Lévy processes.

1.10 Calibration

Which model should be chosen for a particular application?

This is a truly fundamental question. The question involves two views,

namely, a qualitative and a quantitative aspect.

When one speaks of a “model,” the focus is on its quality. This refers

to the structure and the type of equation. Important ingredients of a model

are, for example, a diffusion term, a jump feature, a specific nonlinearity,

or whether the volatility is considered as a constant or a stochastic process.

Ideally, the model and its equations represent economical laws. On the other

hand, the quantitative aspect of the model consists in the choice of specific

numbers for the coefficients or parameters of the model. “Modeling” refers to
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the setup of a chosen equation, and “calibration” is the process of matching

the parameters of the chosen model to the data that represent reality.

The distinction between modeling and calibration is not always obvious.

For example, consider the class of mean-reversion models represented by

(1.40). There is the exponent β in the factor r
β

t
. This exponent β can be

regarded either as parameter, or as a structural element of the model. The

three cases

β = 0 : the factor is unity, rβ = 1, it “disappears,”

β = 1 : the factor is linear, it represents a proportionality,

β = 1/2 : the factor
√
r is a specific nonlinearity,

point at the qualitative aspect of this specific parameter. Typically, modeling

sets forth some argument why a certain parameter is preset in a specific way,

and not subjected to calibration. Modeling places emphasis on capturing

market behavior rather than the peculiarities of a given data set.

Let us denote N parameters to be calibrated by c1, . . . , cN . Examples are

the volatility σ in GBM (1.33), or α,R for the mean-reversion term in (1.40),

or the jump intensity λ of a jump-diffusion process. For the mean-reverting

volatility tandem of Example 1.15, the vector to calibrate consists of five

parameters,

c = (α, β, ρ, σ0, ζ0) .

Here ρ is the correlation between the two Wiener processes W (1)
,W

(2), and

σ0, ζ0 are the initial values for the processes σt, ζt. For the volatility tandem

it makes sense to assume ζ0 = σ0, which cuts down the calibration dimension

N from five to four. The initial stock price S0 is known. The interest rates

r that match a maturity T are obtained, for example, from EURIBOR, and

are not object of the calibration. Any attempt to cut down the calibration

dimension N is welcome because the costs of calibration are significant.

Suppose an initial guess of the calibration vector c. Then the calibration

procedure is based on the three steps

(1) simulate the model —that is, solve it numerically,

(2) compare the calculated results with the market data —that is,

calculate the defect, and

(3) adapt c such that the model better matches the data —that is,

the defect should decrease.

These three steps are repeated iteratively. How to perform step (3) is not ob-

vious; there is no unique way how to decrease the defect. A standard approach

is to minimize the defect in a least-squares fashion.

In our context of calibrating models for finance, data of vanilla options

are available as follows: The price S of the underlying is known as well as

market prices V mar for several strikes K and maturities T . Let the option

prices V mar be observed for M pairs (T1,K1), . . . , (TM ,KM ). That is, the

available data are
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S, (Tk,Kk, V
mar

k
), k = 1, . . . ,M .

For definiteness of the calibration require sufficiently many data in the sense

M ≥ N . Raw data may be subjected to a smoothing process [GlH10].

First, a model is specified. Then, in step (1), the chosen model is

evaluated for each of the M data (S, Tk,Kk), which gives model prices

V (S; 0; Tk,Kk; c). In general, this valuation process is expensive. An excel-

lent approach for the simultaneous valuation of a large number of European

options is the FFT method of Carr and Madan [CaM99], see Section 7.4. In

step (2), the result of the valuation is compared to the market prices. There

will be a defect. Therefore, in step (3), an iteration is set up to improve

the current fit c. The least-squares approach is to minimize the sum of the

squares of all defects, over all c,

min
c

M∑
k=1

(V mar

k
− V (S, 0;Tk,Kk; c))2 . (1.60)

The sum in (1.60) is a function of c and can be visualized as a surface over the

parameter c-space. It can be modified by weighting the terms appropriately.

Finally, the calibration results in a minimizing c (−→ Appendix C4). In view

of the data error, it hardly makes sense to calculate the minimizing parameter

vector c with high accuracy.

A simple example is provided by the implied volatility, see Exercise 1.5.

Here N = 1, M = 1, c := σ, and it is possible to make the defect vanish —

the minimum in (1.60) becomes zero. But in general the minimum of (1.60)

will be a positive value. It is tempting to regard this value as a measure of

the discrepancy or defect of the chosen model. But this would be misleading;

we come back to this below.

As a numerical example, we calibrate two models on the same data set

of standard European calls on the DAX index observed in the time period

January 2002 through September 2005. For this example, the calibration of

Heston’s model (1.43) results in the five parameters

κ = 1.63 , θ = 0.0934 , σv = 0.473 , v0 = 0.0821 , ρ = −0.8021 ,

with μ = r for the risk-neutrality. This parameter set matches the criterion

2κθ ≥ σv which guarantees v > 0. — The same data are applied to calibrate

the Black-Scholes model: The data are matched by GBM with the constant

σ = 0.239 (from [End08]). This is comparable to the calibration of the Heston

model with its
√
v0 ≈ 0.28.

So far, we have not come close to an answer to the initial question on the

“best” choice of an appropriate model. An attempt to decide on the quality of

a model might be to compare the defects. For instance, compare the values of

the sums in (1.60). In the above experiment, Heston’s model has the smaller

defect; the defect of the Black–Scholes model is five times as large.
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One might think that one model is better than another one, when the

discrepancy is smaller. But this is a wrong conclusion! Admitting a large

enough number of parameters enables to reach a seemingly best fit with a

small discrepancy. The danger with a large number of parameters is overfit-

ting. Overfitting can be detected as follows: Divide the data into halves, fit

the model on the one half (in-sample fit), and then test the quality of the fit

on the other half of the data (out-of-sample fit). In case the out-of-sample fit

matches the data much worse than the in-sample fit, we have a strong clue on

overfitting. Then any predictive power of the model may be lost. A vanishing

defect might be seen as hint of the model being useless. Overfitting is related

to the stability of parameters. If the parameters c change drastically when

exchanging one data set by a similar data set, then the model is considered

unstable. In order to obtain information on the parameter uncertainty, the

discrepancy must be analyzed more closely around the calculated best fit c.

The defect function (1.60) can exhibit a large flat region. Then significantly

different values of c yield a similar error. In this sense, a calibration problem

can be ill-posed [He06].

There is another test of the quality of a model, namely, how well hedging

works. A hedging strategy based on the model is compared to the reality of

the data. Empirical tests and comparisons in [Dah10], [End08] suggest that

in the context of option pricing, a stochastic volatility may be a more basic

ingredient of a good model than jump processes are. In terms of stability, out-

of-sample fitting, and hedging of options, Heston’s model (Example 1.16)

is recommendable — these conclusions have been based on the prices of

European options on the DAX 2002–2005. In terms of hedging capabilities,

the classical Black–Scholes model is competitive.

To summarize, it is obvious that calibration is a formidable task, in parti-

cular if several parameters are to be fitted. The attainable level of calibration

quality depends on the chosen model. In case the structure of the equation is

not designed properly, an attempt to improve parameters may be futile. For

a given model, it might well happen that a perfect calibration is never found.

It is unlikely that some model eventually might emerge as generally “most

recommendable.” Calibration does not remove the risk of having chosen the

wrong model. With our focus on computational tools, it does make sense

to consider the classical Black–Scholes model as a benchmark. It captures a

significant part of the essence of option markets.

60



Notes and Comments

Notes and Comments

on Section 1.1:

This section presents a brief introduction to standard options. For more com-

prehensive studies of financial derivatives we refer, for example, to [CoR85],

[WiDH96], [Hull00]. Mathematical detail can be found in [LaL96], [MuR97],

[KaS98], [Shi99], [Epps00], [Ste01]. Other books on financial markets include

[ElK99], [Gem00], [MeVN02], [DaJ03]. (All hints on the literature are examp-

les; an extensive overview on the many good books in this rapidly developing

field is hardly possible.)

on Section 1.2:

Black, Merton and Scholes developed their approaches concurrently, with

basic papers in 1973 ([BlS73], [Mer73]; compare also [Mer90]). Merton and

Scholes were awarded the Nobel Prize in economics in 1997. (Black had died

in 1995.) One of the results of these authors is the so-called Black–Scholes

equation (1.2) with its analytic solution formula (A4.10). For reference on

discrete-time models, consult [Pli97], [FöS02]. Transaction costs and market

illiquidity or feedback effects are discussed in Section 7.1.

on Section 1.3:

References on specific numerical methods are given where appropriate. As

computational finance is concerned, most quotations refer to research papers.

Other general text books discussing computational issues include [WiDH96],

[Hig04], [AcP05]; further hints can be found in [RoT97]. For the calculation

of the sample variance (Exercise 1.4) see [ChGL83], [Hig96].

on Section 1.4:

Binomial or trinomial methods are sometimes found under the heading tree

methods or lattice methods. Basic versions of the binomial method were in-

troduced in 1979 by [CoRR79]14 and [ReB79]. [CoRR79] suggested

u := eσ

√
Δt

, d := e−σ

√
Δt

, p̃ :=
1

2
(1 +

r

σ

√
Δt) , (CRR)

where p̃ is a first-order approximation to the p of (1.6) (the reader may

check). The influential paper by Cox, Ross and Rubinstein has coined the

name CRR for their approach. [HuW88] pointed out that (1.11) is slightly

more correct than the CRR choice. [ReB79] suggested the choice p = 1

2
,

which leads to values of u and d (−→ Exercise 1.21). Of course, another set

of parameters u, d, p leads to a different approximation. Example 1.6, which

is from [Hull00], and M = 100 yields V = 4.28041 with the parameter set

14 William Sharpe has been credited for suggesting the advantages of the

discrete-time approach.
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(1.11), and V = 4.27806 with u, d from (CRR). But for M → ∞ convergence

is maintained in either case. — The dynamic programming principle is due to

[Bel57]. In the literature, the result of the dynamic programming procedure

is often listed under the name Snell envelope.

The Table 1.2 might suggest that it is easy to obtain high accuracy with

binomial methods. This is not the case; flaws were observed in particular

close to the early-exercise curve [CoLV02]. As illustrated by Figure 1.10, the

described standard version wastes many nodes Sj,i close to zero and far away

from the strike region even for small M .

For advanced binomial methods and for speeding up convergence, con-

sult also [Bre91], [LeR96], [Lei99], [Kla01]. [FiG99] insert a patch of higher

resolution close to (S, t) = (K,T ) into the trinomial tree. The resulting ad-

aptive mesh model exhibits higher accuracy. In order to maintain accuracy

for barrier options one takes care that layers coincide with the barrier, see

for instance [DaL10]. For a detailed account of the binomial method see also

[CoR85]. By correcting the terminal probabilities, which come out of the bi-

nomial distribution (−→ Exercise 1.8), it is possible to adjust the tree to

actual market data [Rub94a], see also the implied tree of [DeK94], outlined

also in [Sey12]. [HoP02] explains how to implement the binomial method in

spreadsheets. Many applications of binomial trees are found in [Lyuu02].

on Section 1.5:

When we expect Δ to be positive, then we should assume the option is a call.

But the argumentation is the same for a put, thenΔ < 0. As shown in Section

1.5, a valuation of options based on a hedging strategy is equivalent to the

risk-neutral valuation described in Section 1.4. Another equivalent valuation

is obtained by a replication portfolio. This basically amounts to including

the risk-free investment, to which the hedged portfolio of Section 1.5 was

compared, into the portfolio. To this end, the replication portfolio includes

a bond with the initial value B0 := −(Δ · S0 − V0) = −Π0 and interest rate

r. The portfolio consists of the bond and Δ shares of the asset. At the end

of the period T the final value of the portfolio is Δ · ST + erT (V0 −Δ · S0).

The hedge parameter Δ and V0 are determined such that the value of the

portfolio is VT , independent of the price evolution. By adjusting B0 and Δ

in the right proportion we are able to replicate the option position. This

strategy is self-financing: No initial net investment is required. The result

of the self-financing strategy with the replicating portfolio is the same as

what was derived in Section 1.5. The reader may like to check this. For the

continuous-time case, see Appendix A4.

Frequently discounting is done with the factor (1 + r · Δt)−1. This r

would not be a continuously compounding interest rate. Our e−rΔt or e−rT is

consistent with the approach of Black, Merton and Scholes. For references on

risk-neutral valuation we mention [Hull00], [MuR97], [Kwok98] and [Shr04].
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on Section 1.6:

Introductions into stochastic processes and further hints on advanced lite-

rature can be found in [Doob53], [Fre71], [Arn74], [Bil79], [ReY91], [KlP92],

[Shi99], [Sato99], [Shr04]. In the literature, the terms Wiener process and

Brownian motion are often used as synonyms, and the modifier “standard”

is used to specialize on the drift-free case. Here we follow the convention as

in Definition 1.7, where the term Wiener process is mostly reserved for the

“standard” scalar drift-free Brownian motion. The definition of a Wiener pro-

cess depends on the underlying probability measure P, which enters through

the definition of independence, and by its distribution being Gaussian, see

(B1.1). For more hints on martingales, see Appendix B2. Algorithm 1.8 is

also called “Gaussian random walk.”

For a proof of the nondifferentiability of Wiener processes, see [HuK00].

In contrast to the results for Wiener processes, differentiable functions Wt

satisfy for δN → 0∑
|Wtj

−Wtj−1
| −→

∫
|W ′

s
| ds ,

∑
(Wtj

−Wtj−1
)2 −→ 0 .

The Itô integral and the alternative Stratonovich integral are explained in

[Doob53], [Arn74], [ChW83], [ReY91], [KaS91], [KlP92], [Mik98], [Øk98],

[Sch80], [Shr04]. The class of (Itô-)stochastically integrable functions is cha-

racterized by the properties f(t) is Ft adapted and E
∫
f(s)2ds < ∞. We

assume that all integrals occurring in the text exist. The integrator Wt needs

not be a Wiener process. The stochastic integral can be extended to semimar-

tingales [HuK00].

on Section 1.7:

The Algorithm 1.11 is sometimes named after Euler and Maruyama.

The general linear SDE is of the form

dXt = (a1(t)Xt + a2(t)) dt+ (b1(t)Xt + b2(t)) dWt .

The expectation E(Xt) of a solution process Xt of a linear SDE satisfies the

differential equation
d

dt
E(Xt) = a1E(Xt) + a2 ,

and for E(X2

t
) we have

d

dt
E(X2

t
) = (2a1 + b

2

1
)E(X2

t
) + 2(a2 + b1b2)E(Xt) + b

2

2
.

This is obtained by taking the expectation of the SDEs for Xt and X2

t
, the

latter one derived by Itô’s lemma [KlP92], [Mik98]. Combining both differen-

tial equations allows to calculate the variance. [KlP92] in Section 4.4 gives a

list of SDEs that are analytically solvable or reducible.
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A process (1.33) with variable μ(t), σ(t) is called generalized GBM [Shr04].

For CIR of Example 1.16, provided r0 > 0, R > 0, and a strong enough

upward drift in the sense
αR ≥ 1

2
σ

2

r
,

the solution of (1.40) satisfies rt > 0 for all t; this criterion is attributed to

Feller. For a PDE, the Feller condition is replaced by a boundary condition at

r = 0 [EkLT09]. Based on the CIR system and a dependent variable u(S, v, t)

a two-dimensional PDE is presented in [Hes93], see Example 5.7.

The model of a geometric Brownian motion of equation (1.33) is the

classical model describing the dynamics of stock prices. It goes back to Sa-

muelson (1965; Nobel Prize in economics in 1970). Already in 1900 Bachelier

had suggested to model stock prices with Brownian motion. Bachelier used

the arithmetic version, which can be characterized by replacing the left-hand

side of (1.33) by the absolute change dS. This amounts to the process of

the drifting Brownian motion St = S0 + μt+ σWt. Here even the theoretical

stock price can become negative. Main advantages of the geometric Brownian

motion are its exponential growth or decay, the success of the approaches of

Black, Merton and Scholes, which is based on that motion, and the existence

of moments (as the expectation). For positive S, the form (1.33) of GBM is

not as restrictive as it might seem, see Exercise 1.18. A variable volatility

σ(S, t) is called local volatility. Such a volatility can be used to make the

Black–Scholes model compatible with observed market prices [Dup94].

on Section 1.8:

The Itô lemma is also called Doeblin-Itô formula, after the early manuscript

[Doe40] was disclosed. The Algorithm 1.18 was suggested by [Que07], inclu-

ding the use of radial basis functions, a tricky control of truncation errors,

and a convergence analysis. The approximation quality of American options

is quite satisfactory even for small values of M .

In view of their continuity, GBM processes are not appropriate to model

jumps, which are characteristic for the evolution of stock prices. Jumps lead

to relatively heavy tails in the distribution of empirical returns (see Figure

1.21)15. As already mentioned, the tails of the lognormal distribution are

too thin. Other distributions match empirical data better. One example is

the Pareto distribution, which has tails behaving like x−α for large x and a

constant α > 0. A correct modeling of the tails is an integral basis for value

at risk (VaR) calculations. For the risk aspect consult [EmKM97], [BaN97],

[Dowd98], [ArDEH99], and the survey [EbFKO07]. For distributions that

match empirical data see [EbK95], [Shi99], [BoP00], [MaRGS00], [BrTT00].

Estimates of future values of the volatility are obtained by (G)ARCH me-

thods, which work with different weights of the returns [Shi99], [Hull00],

15 The thickness is measured by the kurtosis E((X − μ)4)/σ4. The normal

distribution has kurtosis 3. So the excess kurtosis is the difference to 3. Fre-

quently, data of returns are characterized by large values of excess kurtosis.
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[Tsay02], [FrHH04], [Rup04]. Promising are models of behavioral finance

that consider the market as dynamical system [Lux98], [BrH98], [ChDG00],

[BiV00], [MaCFR00], [Sta01], [DiBG01], [BiS06]. These systems experience

the nonlinear phenomena bifurcation and chaos, which require again numeri-

cal methods. Such methods exist, and are explained elsewhere [Sey10].

on Section 1.9:

Section 1.9 concentrates on Merton’s jump-diffusion process. For building

Lévy models we refer to [Sato99], [ConT04], and Section 7.3.

on Section 1.10:

The CIR-based Heston model can be extended to jump-diffusion. This can

be applied to both processes St and vt in (1.43), which defines a general class

of models with 10 parameters [DuPS00]. But applying jumps only for St , one

obtains the same quality with eight parameters [Bat96]. Also the OU-based

Schöbel–Zhu model is recommendable [ScZ99]. Another FFT based valuation

approach is [FeO08]. Artificial smoothing of the least-squares function (1.60)

allows to apply gradient-based methods. This is discussed in [KaMS09]. For

hedging issues and practical aspects, consult [Jos03].

Exercises

Exercise 1.1 Put-Call Parity

Consider a portfolio consisting of three positions related to the same asset,

namely, one share (price S), one European put (value VP), plus a short posi-

tion of one European call (value VC). Put and call have the same expiration

date T , and no dividends are paid.

a) Assume a no-arbitrage market without transaction costs. Show

S + VP − VC = Ke−r(T−t)

for all t, where K is the strike and r the risk-free interest rate.

b) Use the put-call parity to realize

VC(S, t) ≥ S −Ke−r(T−t)

VP(S, t) ≥ Ke−r(T−t) − S .

Exercise 1.2 Transforming the Black–Scholes Equation

Show that the Black–Scholes equation (1.2)

∂V

∂t
+
σ2

2
S

2
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0
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for V (S, t) with constant σ and r is equivalent to the equation

∂y

∂τ
=
∂

2
y

∂x2

for y(x, τ). For proving this, you may proceed as follows:

a) Use the transformation S = Kex and a suitable transformation t ↔ τ to

show that (1.2) is equivalent to

−V̇ + V
′′ + αV

′ + βV = 0

with V̇ = ∂V

∂τ
, V ′ = ∂V

∂x
, α, β depending on r and σ.

b) The next step is to apply a transformation of the type

V = K exp(γx+ δτ) y(x, τ)

for suitable γ, δ.

c) Transform the terminal condition of the Black–Scholes equation accordin-

gly.

Exercise 1.3 Standard Normal Distribution Function

Establish an algorithm to calculate

F (x) =
1

√
2π

∫
x

−∞

exp(−
t2

2
) dt .

Hint: Construct an algorithm to calculate the error function

erf(x) :=
2
√
π

∫
x

0

exp(−t2) dt

and use erf(x) to calculate F (x). Use quadrature methods (−→ Appendix

C1).

Exercise 1.4 Calculating the Sample Variance

An estimate of the variance of M numbers x1, ..., xM is

s
2

M
:=

1

M − 1

M∑
i=1

(xi − x̄)2, with x̄ :=
1

M

M∑
i=1

xi

The alternative formula

s
2

M
=

1

M − 1

⎛⎝ M∑
i=1

x
2

i
−

1

M

(
M∑
i=1

xi

)2
⎞⎠ (�)

can be evaluated with only one loop i = 1, ...,M , but should be avoided

because of the danger of cancellation. The following single-loop algorithm is

recommended instead of (�):
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α1 := x1, β1 := 0

for i = 2, ...,M :

αi := αi−1 +
xi − αi−1

i

βi := βi−1 +
(i− 1)(xi − αi−1)

2

i

a) Show x̄ = αM , s2
M

= βM

M−1
.

b) For the ith update in the algorithm carry out a rounding error analysis.

What is your judgment on the algorithm?

Exercise 1.5 Implied Volatility

For European options we take the valuation formula of Black and Scholes of

the type V = v(S, τ,K, r, σ), where τ denotes the time to maturity, τ := T−t.
For the definition of the function v see Appendix A4, equation (A4.10). If

actual market data V mar of the price are known, then one of the parameters

considered known so far can be viewed as unknown and fixed via the implicit

equation

V
mar − v(S, τ,K, r, σ) = 0 . (∗)

In this calibration approach the unknown parameter is calculated iteratively

as solution of equation (∗). Consider σ to be in the role of the unknown

parameter. The volatility σ determined in this way is called implied volatility

and is zero of f(σ) := V mar − v(S, τ,K, r, σ).

Assignment:

a) Implement the evaluation of VC and VP according to (A4.10).

b) Design, implement and test an algorithm to calculate the implied volatility

of a call. Use Newton’s method to construct a sequence xk → σ. The

derivative f ′(xk) can be approximated by the difference quotient

f(xk) − f(xk−1)

xk − xk−1

.

For the resulting secant iteration invent a stopping criterion that requires

smallness of both |f(xk)| and |xk − xk−1|.
c) Calculate the implied volatilities for the data

T − t = 0.211 , S0 = 5290.36 , r = 0.0328

and the pairs K,V from Table 1.4 (for more data see www.compfin.de).

For each calculated value of σ enter the point (K,σ) into a figure, joining

the points with straight lines. (You will notice a convex shape of the curve.

This shape has lead to call this phenomenon volatility smile.)
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Table 1.4. Calls on the DAX on Jan 4th 1999

K 6000 6200 6300 6350 6400 6600 6800

V 80.2 47.1 35.9 31.3 27.7 16.6 11.4

Exercise 1.6 Price Evolution for the Binomial Method

For β from (1.11) and u = β +
√
β2 − 1 show

u = exp
(
σ
√
Δt

)
+ O

(√
(Δt)3

)
.

Exercise 1.7 Implementing the Binomial Method

Design and implement an algorithm for calculating the value V (M) of a Eu-

ropean or American option. Use the basic version of Algorithm 1.4.

INPUT: r (interest rate), σ (volatility), T (time to expiration in years),

K (strike price), S (price of asset), and the choices

put or call, and European or American.

Control the mesh size Δt = T/M adaptively. For example, calculate V for

M = 8 and M = 16 and in case of a significant change in V use M = 32 and

possibly M = 64.

Test examples:

a) put, European, r = 0.06, σ = 0.3, T = 1, K = 10, S = 5

b) put, American, S = 9, otherwise as in a)

c) call, otherwise as in a)

d) The mesh size control must be done carefully and has little relevance to

error control. To make this evident, calculate for the test numbers a) a

sequence of V (M) values, say for M = 100, 101, 102, . . . , 150, and plot the

error |V (M) − 4.430465|.

Exercise 1.8 Limiting Case of the Binomial Model

Consider a European Call in the binomial model of Section 1.4. Suppose the

calculated value is V
(M)

0
. In the limit M → ∞ the sequence V

(M)

0
converges to

the value VC(S0, 0) of the continuous Black–Scholes model given by (A4.10)

(−→ Appendix A4). To prove this, proceed as follows:

a) Let jK be the smallest index j with SjM ≥ K. Find an argument why

M∑
j=jK

(
M

j

)
p

j (1 − p)M−j (S0u
j

d
M−j −K)

is the expectation E(VT ) of the payoff. (For an illustration see Figure

1.23.)
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b) The value of the option is obtained by discounting, V
(M)

0
= e−rT E(VT ).

Show

V
(M)

0
= S0BM,p̃(jK) − e−rT

KBM,p(jK) .

Here BM,p(j) is defined by the binomial distribution (−→ Appendix B1),

and p̃ := pue−rΔt.

c) For large M the binomial distribution is approximated by the normal

distribution with distribution F (x). Show that V
(M)

0
is approximated by

S0F

(
Mp̃− α√
Mp̃(1 − p̃)

)
− e−rT

KF

(
Mp− α√
Mp(1 − p)

)
,

where

α := −
log S0

K
+M log d

log u− log d
.

d) Substitute the p, u, d by their expressions from (1.11) to show

Mp− α√
Mp(1 − p)

−→
log S0

K
+ (r − σ

2

2
)T

σ
√
T

for M → ∞. Hint: Use Exercise 1.6: Up to terms of high order the appro-

ximations u = eσ

√
Δt, d = e−σ

√
Δt hold. (In an analogous way the other

argument of F can be analyzed.)
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Fig. 1.23. Illustration of a binomial tree and payoff for Exercise 1.8, here for a

put, (S, t) points for M = 8, K = S0 = 10. The binomial density of the risk-free

probability is shown, scaled with factor 10.
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Exercise 1.9

In Definition 1.7 the requirement (a) W0 = 0 is dispensable. Then the requi-

rement (b) reads

E(Wt −W0) = 0 , E((Wt −W0)
2) = t .

Use these relations to deduce (1.21).

Hint: (Wt −Ws)
2 = (Wt −W0)

2 + (Ws −W0)
2 − 2(Wt −W0)(Ws −W0)

Exercise 1.10

a) Suppose that a random variable Xt satisfies Xt ∼ N (0, σ2). Use (B1.4)

to show

E(X4

t
) = 3σ4

.

b) Apply a) to show the assertion in Lemma 1.9,

E

⎛⎝∑
j

((ΔWj)
2 −Δtj)

⎞⎠2

= 2
∑

j

(Δtj)
2

Exercise 1.11 Analytical Solution of Special SDEs

Apply Itô’s lemma to show

a) Xt = exp
(
λWt −

1

2
λ

2
t
)

solves dXt = λXt dWt

b) Xt = exp (2Wt − t) solves dXt = Xt dt+ 2Xt dWt

Hint: Use suitable functions g with Yt = g(Xt, t). In (a) start with Xt = Wt

and g(x, t) = exp(λx − 1

2
λ2t).

Exercise 1.12 Moments of the Lognormal Distribution

For the density function f(S; t− t0, S0) from (1.48) show

a)
∫∞

0
Sf(S; t− t0, S0) dS = S0e

μ(t−t0)

b)
∫∞

0
S2f(S; t− t0, S0) dS = S2

0
e(σ

2
+2μ)(t−t0)

Hint: Set y = log(S/S0) and transform the argument of the exponential

function to a squared term.

In case you still have strength afterwards, calculate the value of S for which

f is maximal.

Exercise 1.13 Return of the Underlying

Let a time series S1, ..., SM of a stock price be given (for example data in the

domain www.compfin.de).

The simple return

R̂i,j :=
Si − Sj

Sj

,
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an index number of the success of the underlying, lacks the desirable property

of additivity

RM,1 =

M∑
i=2

Ri,i−1 . (∗)

The log return

Ri,j := logSi − logSj .

has better properties.

a) Show Ri,i−1 ≈ R̂i,i−1, and

b) Ri,j satisfies (∗).
c) For empirical data calculate the Ri,i−1 and set up histograms. Calculate

sample mean and sample variance.

d) Suppose S is lognormally distributed. How can a value of the volatility

be obtained from an estimate of the variance?

e) The mean of the 26866 log returns of the time period of 98.66 years of

Figure 1.21 is 0.000199 and the standard deviation is 0.01069. Calculate

an estimate of the historical volatility σ.

Exercise 1.14 Anchoring the Binomial Grid at K

The equation (1.10) has established a kind of symmetry for the grid. As an

alternative, one may anchor the grid by requiring (for even M)

S0u
M/2

d
M/2 = K .

a) Give a geometrical interpretation.

b) Derive from equations (1.5), (1.9) and ud = γ for some constant γ (not

necessarily γ = 1 as in (1.10)) the relation

u = β +
√
β2 − γ for β :=

1

2
(γe−rΔt + e(r+σ

2
)Δt) .

c) Show that the solution is given by

ud = γ := exp

[
2

M
log

K

S0

]
.

Exercise 1.15 Extrapolation

Let η∗ ∈ IR denote the exact solution of an equation, Δ denotes the grid size

of a numerical approximation scheme, and η(Δ) the approximating solution.

Further assume an error model

η(Δ) − η
∗ = cΔ

q

,

with c, q ∈ IR. q is the order of the approximation scheme. Suppose that for

two grid sizes
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Δ1, Δ2 =
1

2
Δ1

approximations η1 := η(Δ1), η2 := η(Δ2) are calculated.

a) For the case of a known η∗ (or η∗ approximated with very high accuracy)

establish a formula for the order q out of η∗, η1, η2.

b) For a known order q show that

η
∗ =

1

2q − 1
(2q

η2 − η1).

In general, the error model holds only approximately. Hence this formula for

η∗ is only an approximation to the exact η∗ (“extrapolation”).

Exercise 1.16 Portfolios

Figure 1.24 sketches some payoffs over S: (a) bull spread, (b) bear spread, (c)

strangle, (d) butterfly spread. For each of these payoffs, construct portfolios

out of two or three vanilla options such that the portfolio meets the payoff.

K2K1

(a)

K1 K2

K1 K2

(d)

(b)

(c)

KK1 K2

Fig. 1.24. Four payoffs, value over S; see Exercise 1.16

Exercise 1.17 Bounds and Arbitrage

Using arbitrage arguments, show the following bounds for the values VC of

vanilla call options:

a) 0 ≤ VC

b) (S −K)+ ≤ V Am

C
≤ S

Exercise 1.18 Positive Itô Process

Let Xt be a positive one-dimensional Itô process for t ≥ 0.

Show that there exist functions α and β such that
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dXt = Xt(αt dt+ βt dWt)

and

Xt = X0 exp

{∫
t

0

(αs −
1

2
β

2

s
) ds+

∫
t

0

βs dWs

}

Exercise 1.19 General Black–Scholes Equation

Assume a portfolio

Πt = αtSt + βtBt

consisting of αt units of a stock St and βt units of a bond Bt, which obey

dSt = μ(St, t) dt+ σ(St, t) dWt

dBt = r(t)Bt dt

The functions μ, σ, and r are assumed to be known, and σ > 0. Further

assume the portfolio is self-financing in the sense

dΠt = αt dSt + βt dBt ,

and replicating such that ΠT equals the payoff of a European option. (Then

Πt equals the price of the option for all t.) Derive the Black–Scholes equation

for this scenario, assuming Πt = g(St, t) with g sufficiently often differentia-

ble.

Hint: coefficient matching of two versions of dΠt

Exercise 1.20 Ornstein–Uhlenbeck Process

An Ornstein–Uhlenbeck process is defined as solution of the SDE

dXt = −αXt dt+ γ dWt , α > 0

for a Wiener process W .

a) Show

Xt = e−αt

(
X0 + γ

∫
t

0

eαsdWs

)
b) Suppose the volatility σt is an Ornstein–Uhlenbeck process. Show that

the variance vt := σ2

t
follows a Cox–Ingersoll–Ross process, namely,

dvt = κ(θ − vt) dt+ σv

√
vt dWt .

Exercise 1.21 Binomial Method with p = 0.5

Use the equations (1.5), (1.9) and p = 1/2 to show

u = erΔt (1 +
√

eσ
2
Δt − 1)

d = erΔt (1 −
√

eσ
2
Δt − 1) .
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Exercise 1.22 Dividend Payment and the Binomial Method

A dividend yield δ can be calculated by annualizing a known dividend pay-

ment D per year by setting δ = D/S. For a binomial tree, the effects of

paying either

a) a fixed amount D or

b) a proportional amount δS

are different.

Assume a dividend payment at time tD < T and a node of the tree at tν = tD.

For a share value of S at tν−1 discuss the tree evolution at tν+1 with focus

on recombination, comparing the two scenarios a) and b).

Exercise 1.23 Improved Binomial Tree

The Algorithm 1.4 is to be improved as follows:

a) Apply the anchoring of Exercise 1.14.

b) Extend the tree by starting at −2Δt as discussed in Section 1.4.6, and cal-

culate approximations for the Greeks delta and gamma by using difference

quotients.

Use Example 1.5 to compare these approximations with those from the ana-

lytic values from Appendix A4. Implement this in a computer program.

Exercise 1.24 Negative Prices

Assume Z ∼ N (0, 1), S > 0, σ > 0, and a step (t, S) → (t +Δt, S +ΔS) of

the discretized GBM
ΔS

S
= μΔt+ σZ

√
Δt .

What is the probability that the resulting price S +ΔS is negative? Discuss

the result and think about remedy.
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with Specified Distributions

Simulation and valuation of finance instruments require numbers with speci-

fied distributions. For example, in Section 1.6 we have used numbers Z drawn

from a standard normal distribution, Z ∼ N (0, 1). If possible the numbers

should be random. But the generation of “random numbers” by digital com-

puters, after all, is done in a deterministic and entirely predictable way. If

this point is to be stressed, one uses the term pseudo-random1.

Computer-generated random numbers mimic the properties of true ran-

dom numbers as much as possible. This is discussed for uniformly distributed

numbers in Section 2.1. Suitable transformations generate normally distribu-

ted numbers (Sections 2.2, 2.3). Section 2.3 includes the vector case, where

normally distributed numbers are calculated with prescribed correlation.

Another approach is to dispense with randomness and to generate quasi-

random numbers, which aim at avoiding one disadvantage of random num-

bers, namely, the potential lack of equidistributedness. The resulting low-

discrepancy numbers will be discussed in Section 2.5. These numbers are

used for the deterministic Monte Carlo integration (Section 2.4).

Definition 2.1 (sample from a distribution)

A sequence of numbers is called a sample from F if the numbers are

independent realizations of a random variable with distribution function

F .

If F is the uniform distribution over the interval [0, 1) or [0, 1], then we call

the samples from F uniform deviates (variates), notation ∼ U [0, 1]. If F is

the standard normal distribution then we call the samples from F standard

normal deviates (variates); as notation we use ∼ N (0, 1). The basis of the

random-number generation is to draw uniform deviates.

1 Since in our context the predictable origin is clear we omit the modifier

“pseudo,” and hereafter use the term “random number.” Similarly we talk

about randomness of these numbers when we mean apparent randomness.

R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-2993-6_2, © Springer-Verlag London Limited 2012
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Chapter 2 Generating Random Numbers with Specified Distributions

2.1 Uniform Deviates

A standard approach to calculate uniform deviates is provided by linear con-

gruential generators.

2.1.1 Linear Congruential Generators

Choose integers M, a, b, with a, b < M , a �= 0. For N0 ∈ IN a sequence of

integers Ni is defined by

Algorithm 2.2 (linear congruential generator)

Choose N0.

For i = 1, 2, ... calculate

Ni = (aNi−1 + b) mod M

(2.1)

The modulo congruence N = Y mod M between two numbers N and Y is

an equivalence relation [Gen98]. The number N0 is called the seed. Numbers

Ui ∈ [0, 1) are defined by

Ui = Ni/M , (2.2)

and will be taken as uniform deviates. Whether the numbers Ui are suitable

will depend on the choice of M,a, b and will be discussed next.

Properties 2.3 (periodicity)

(a)Ni ∈ {0, 1, ...,M − 1}
(b)The Ni are periodic with period ≤ M .

(Because there are not M + 1 different Ni. So two in {N0, ..., NM}
must be equal, Ni = Ni+p with p ≤ M .)

Obviously, some peculiarities must be excluded. For example, N = 0 must be

ruled out in case b = 0, because otherwise Ni = 0 would repeat. In case a = 1

the generator settles down to Nn = (N0 + nb) mod M . This sequence is too

easily predictable. Various other properties and requirements are discussed in

the literature, in particular in [Knu95]. In case the period is M , the numbers

Ui are distributed “evenly” when exactly M numbers are needed. Then each

grid point on a mesh on [0,1] with mesh size 1

M
is occupied once.

After these observations we start searching for good choices of M,a, b.

There are numerous possible choices with bad properties. For serious com-

putations we recommend to rely on suggestions of the literature. [PrTVF92]

presents a table of “quick and dirty” generators, for example, M = 244944,

a = 1597, b = 51749. Criteria are needed to decide which of the many possible

generators are recommendable.

76
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2.1.2 Quality of Generators

What are good random numbers? A practical answer is the requirement that

the numbers should meet “all” aims, or rather pass as many tests as possible.

The requirements on good number generators can roughly be divided into

three groups.

The first requirement is that of a large period. In view of Property 2.3

the number M must be as large as possible, because a small set of numbers

makes the outcome easier to predict —a contrast to randomness. This leads

to select M close to the largest integer machine number. But a period p close

to M is only achieved if a and b are chosen properly. Criteria for relations

among M,p, a, b have been derived by number-theoretic arguments. This is

outlined in [Rip87], [Knu95]. For 32-bit computers, a common choice has been

M = 231 − 1, a = 16807, b = 0.

A second group of requirements are the statistical tests that check whether

the numbers are distributed as intended. The simplest of such tests evaluates

the sample mean μ̂ and the sample variance ŝ2 (B1.11) of the calculated

random variates, and compares to the desired values of μ and σ2. (Recall

μ = 1/2 and σ2 = 1/12 for the uniform distribution.) Another simple test is

to check correlations. For example, it would not be desirable if small numbers

are likely to be followed by small numbers.

A slightly more involved test checks how well the probability distribution

is approximated. This works for general distributions (−→ Exercise 2.14).

Here we briefly summarize an approach for uniform deviates. Calculate j

samples from a random number generator, and investigate how the samples

distribute on the unit interval. To this end, divide the unit interval into

subintervals of equal length ΔU , and denote by jk the number of samples

that fall into the kth subinterval

kΔU ≤ U < (k + 1)ΔU .

Then jk/j should be close the desired probability, which for this setup is ΔU .

Hence a plot of the quotients

jk

jΔU
for all k

against kΔU should be a good approximation of 1, the density of the uniform

distribution. This procedure is just the simplest test; for more ambitious tests,

consult [Knu95].

The third group of tests is to check how well the random numbers dis-

tribute in higher-dimensional spaces. This issue of the lattice structure is

discussed next. We derive a priori analytical results on where the random

numbers produced by Algorithm 2.2 are distributed.
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2.1.3 Random Vectors and Lattice Structure

Random numbers Ni can be arranged in m-tuples (Ni, Ni+1, ..., Ni+m−1) for

i ≥ 1. Then the tuples or the corresponding points (Ui, ..., Ui+m−1) ∈ [0, 1)m

are analyzed with respect to correlation and distribution. The sequences defi-

ned by the generator of Algorithm 2.2 lie on (m−1)-dimensional hyperplanes.

This statement is trivial since it holds for the M parallel planes through

U = i/M , i = 0, ...,M − 1. But if all points fall on only a small number of

parallel hyperplanes (with large empty gaps in between), then the generator

would be impractical in many applications. Next we analyze the generator

whether such unfavorable planes exist, restricting ourselves to the casem = 2.

For m = 2 the hyperplanes are straight lines, and are defined by z0Ni−1 +

z1Ni = λ, with parameters z0, z1, λ. The modulus operation can be written

Ni = (aNi−1 + b) mod M

= aNi−1 + b− kM for kM ≤ aNi−1 + b < (k + 1)M ,

k an integer, k = k(i). A side calculation for arbitrary z0, z1 shows

z0Ni−1 + z1Ni = z0Ni−1 + z1(aNi−1 + b− kM)

= Ni−1(z0 + az1) + z1b− z1kM

= M · {Ni−1

z0 + az1

M
− z1k︸ ︷︷ ︸

=:c

} + z1b .

We divide by M and obtain the equation of a straight line in the (Ui−1, Ui)-

plane, namely,

z0Ui−1 + z1Ui = c+ z1bM
−1
, (2.3)

one line for each parameter c. The points calculated by Algorithm 2.2 lie

on these straight lines. To eliminate the seed we take i > 1. For each tuple

(z0, z1), the equation (2.3) defines a family of parallel straight lines, one

for each number out of the finite set of c’s. The question is whether there

exists a tuple (z0, z1) such that only few of the straight lines cut the square

[0, 1)2? In this case wide areas of the square would be free of random points,

which violates the requirement of a “uniform” distribution of the points. The

minimum number of parallel straight lines (hyperplanes) cutting the square,

or equivalently the maximum distance between them serve as measures of the

equidistributedness. We now analyze the number of straight lines, searching

for the worst case.

For integers (z0, z1) satisfying

z0 + az1 = 0 mod M (2.4)

the parameter c is integer. By solving (2.3) for c = z0Ui−1 + z1Ui − z1bM
−1

and applying 0 ≤ U < 1 we obtain the maximal interval Ic such that for
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2.1 Uniform Deviates

each integer c ∈ Ic its straight line cuts or touches the square [0, 1)2. We

count how many such c’s exist, and have the information we need. For some

constellations of a,M, z0 and z1 it may be possible that the points (Ui−1, Ui)

lie on very few of these straight lines!

Example 2.4 Ni = 2Ni−1 mod 11 (that is, a = 2, b = 0, M = 11)

We choose z0 = −2, z1 = 1, which is one tuple satisfying (2.4), and

investigate the family (2.3) of straight lines

−2Ui−1 + Ui = c

in the (Ui−1, Ui)-plane. For Ui ∈ [0, 1) we have −2 < c < 1. In view of

(2.4) c is integer and so only the two integers c = −1 and c = 0 remain.

The two corresponding straight lines cut the interior of [0, 1)2. As Figure

2.1 illustrates, the points generated by the algorithm form a lattice. All

points on the lattice lie on these two straight lines. The figure lets us

discover also other parallel straight lines such that all points are caught

(for other tuples z0, z1). The practical question is: What is the largest

gap? (−→ Exercise 2.1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 2.1. The points (Ui−1, Ui) of Example 2.4
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Example 2.5 Ni = (1229Ni−1 + 1) mod 2048

The requirement of equation (2.4)

z0 + 1229z1

2048
integer

is satisfied by z0 = −1, z1 = 5, because

−1 + 1229 · 5 = 6144 = 3 · 2048 .

For c from (2.3) and Ui ∈ [0, 1) we have

−1 −
5

2048
< c < 5 −

5

2048
.

All points (Ui−1, Ui) lie on only six straight lines, with c ∈ {−1, 0, 1, 2, 3, 4},
see Figure 2.2. On the “lowest” straight line (c = −1) there is only one

point. The distance between straight lines measured along the vertical

Ui–axis is 1

z1
= 1

5
.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 2.2. The points (Ui−1, Ui) of Example 2.5

Higher-dimensional vectors (m > 2) are analyzed analogously. The gene-

rator called RANDU

Ni = aNi−1 mod M , with a = 216 + 3, M = 231
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may serve as example. Its random points in the cube [0, 1)3 lie on only 15

planes (−→ Exercise 2.2). For many applications this must be seen as a severe

defect.

In Example 2.4 we asked what the maximum gap between the parallel

straight lines is. In other words, we have searched for strips of maximum

size in which no point (Ui−1, Ui) falls. Alternatively we can directly analyze

the lattice formed by consecutive points. For illustration consider again Fi-

gure 2.1. We follow the points starting with ( 1

11
,

2

11
). By vectorwise adding

an appropriate multiple of (1, a) = (1, 2) the next two points are obtained.

Proceeding in this way one has to take care that upon leaving the unit square

each component with value ≥ 1 must be reduced to [0, 1) to observe mod M .

The reader may verify this with Example 2.4 and numerate the points of the

lattice in Figure 2.1 in the correct sequence. In this way the lattice can be

defined. This process of defining the lattice can be generalized to higher di-

mensions m > 2. (−→ Exercise 2.3)

A disadvantage of the linear congruential generators of Algorithm 2.2 is

the boundedness of the period by M and hence by the word length of the

computer. The situation can be improved by shuffling the random numbers

in a random way. For practical purposes, the period gets close enough to

infinity. (The reader may test this on Example 2.5.) For practical advice we

refer to [PrTVF92].

2.1.4 Fibonacci Generators

The original Fibonacci recursion motivates trying the formula

Ni+1 := (Ni +Ni−1) mod M .

It turns out that this first attempt of a three-term recursion is not suitable

for generating random numbers (−→ Exercise 2.15). The modified approach

Ni+1 := (Ni−ν −Ni−μ) mod M (2.5)

for suitable ν, μ ∈ IN is called lagged Fibonacci generator. For many choices

of ν, μ the approach (2.5) leads to recommendable generators.

Example 2.6

Ui := Ui−17 − Ui−5 ,

in case Ui < 0 set Ui := Ui + 1.0

The recursion of Example 2.6 immediately produces floating-point numbers

Ui ∈ [0, 1). This generator requires a prologue in which 17 initial U ’s are ge-

nerated by means of another method. The generator can be run with varying

lags ν, μ. [KaMN89] recommends
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Algorithm 2.7 (Fibonacci generator)

Repeat: ζ := Ui − Uj

if ζ < 0, set ζ := ζ + 1

Ui := ζ

i := i− 1

j := j − 1

if i = 0, set i := 17

if j = 0, set j := 17

Initialization: Set i = 17, j = 5, and calculate U1, ..., U17 with a congru-

ential generator, for instance with M = 714025, a = 1366, b = 150889.

Set the seed N0 = your favorite dream number, possibly inspired by the

system clock of your computer.

Figure 2.3 depicts 10000 random points calculated by means of Algorithm

2.7. Visual inspection suggests that the points are not arranged in some

apparent structure. The points appear to be sufficiently random. But the

generator provided by Example 2.6 is not sophisticated enough for ambitious

applications; its pseudo-random numbers are rather correlated.

A generator of uniform deviates that can be highly recommended is the

Mersenne twister [MaN98], it has a truly remarkable long period.

2.2 Extending to Random Variables From Other

Distributions

Frequently normal variates are needed. Their generation is based on uniform

deviates. The simplest strategy is to calculate

X :=

12∑
i=1

Ui − 6, for Ui ∼ U [0, 1] .

X has expectation 0 and variance 1. The Central Limit Theorem (−→ Appen-

dix B1) assures that X is approximately normally distributed (−→ Exercise

2.4). But this crude attempt is not satisfying. Better methods calculate non

uniformly distributed random variables, for example, by a suitable transfor-

mation out of a uniformly distributed random variable [Dev86]. But the most

obvious approach inverts the distribution function.
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0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 2.3. 10000 (pseudo-)random points (Ui−1, Ui), calculated with Algorithm 2.7

2.2.1 Inversion

The following theorem is the basis for inversion methods.

Theorem 2.8 (inversion)

Suppose U ∼ U [0, 1] and F be a continuous strictly increasing distribution

function. Then F−1(U) is a sample from F .

Proof: Let P denote the underlying probability.

U ∼ U [0, 1] means P(U ≤ ξ) = ξ for 0 ≤ ξ ≤ 1.

Consequently

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x) .
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Application

Following Theorem 2.8, the inversion method takes uniform deviates u ∼
U [0, 1] and sets x = F−1(u) (−→ Exercises 2.5, 2.16). To judge the inversion

method we consider the normal distribution as the most important example.

Neither for its distribution function F nor for its inverse F−1 there is a

closed-form expression (−→ Exercise 1.3). So numerical methods are used.

We discuss two approaches.

Numerical inversion means to calculate iteratively a solution x of the

equation F (x) = u for prescribed u. This iteration requires tricky termina-

tion criteria, in particular when x is large. Then we are in the situation u ≈ 1,

where tiny changes in u lead to large changes in x (Figure 2.4). The appro-

ximation of the solution x of F (x) − u = 0 can be calculated with bisection,

or Newton’s method, or the secant method (−→ Appendix C1).

Alternatively the inversion x = F−1(u) can be approximated by a suitably

constructed function G(u),

G(u) ≈ F
−1(u) .

Then only x = G(u) needs to be evaluated. Constructing such an appro-

ximation formula G, it is important to realize that F−1(u) has “vertical”

tangents at u = 1 (horizontal in Figure 2.4). This pole behavior must be

reproduced correctly by the approximating function G. This suggests to use

rational approximation (−→ Appendix C1). For the Gaussian distribution

one incorporates the point symmetry with respect to (u, x) = (1

2
, 0), and the

pole at u = 1 (and hence at u = 0) in the ansatz for G (−→ Exercise 2.6).

Rational approximation of F−1(u) with a sufficiently large number of terms

leads to high accuracy [Moro95]. The formulas are given in Appendix D2.

u=F(x)
1/2

x

1

u

Fig. 2.4. Normal distribution; small changes in u can lead to large changes in x
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2.2.2 Transformations in IR1

Another class of methods uses transformations between random variables.

We start the discussion with the scalar case. If we have a random variable X

with known density and distribution, what can we say about the density and

distribution of a transformed h(X)?

Theorem 2.9

Suppose X is a random variable with density f(x) and distribution F (x).

Further assume h : S −→ B with S,B ⊆ IR, where S is the support2 of

f(x), and let h be strictly monotonous.

(a) Then Y := h(X) is a random variable. Its distribution FY is

FY (y) = F (h−1(y)) in case h′ > 0

FY (y) = 1 − F (h−1(y)) in case h′ < 0.

(b) If h−1 is absolutely continuous then for almost all y the density of

h(X) is

f(h−1(y))

∣∣∣∣ dh−1(y)

dy

∣∣∣∣ . (2.6)

Proof:

(a) For h′ > 0 we have P(h(X) ≤ y) = P(X ≤ h−1(y)) = F (h−1(y)) .

(b) For absolutely continuous h−1 the density of Y = h(X) is equal to the

derivative of the distribution function almost everywhere. Evaluating

the derivative
dF (h

−1
(y))

dy
with the chain rule implies the assertion. The

absolute value in (2.6) is necessary such that a positive density comes

out in case h′ < 0. (See for instance [Fisz63], § 2.4 C.)

Application

Since we are able to calculate uniform deviates, we start from X ∼ U [0, 1]

with f being the density of the uniform distribution,

f(x) = 1 for 0 ≤ x ≤ 1, otherwise f = 0 .

Here the support S is the unit interval. What we need are random numbers

Y matching a prespecified target density g(y). It remains to find a transfor-

mation h such that the density in (2.6) is identical to g(y),

1 ·

∣∣∣∣ dh−1(y)

dy

∣∣∣∣ = g(y) .

Then we only evaluate h(X).

2 f is zero outside S. (In this section, S is no asset price.)
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Example 2.10 (exponential distribution)

The exponential distribution with parameter λ > 0 has the density

g(y) =

{
λe−λy for y ≥ 0

0 for y < 0 .

Here the range B consists of the nonnegative real numbers. The aim is to

generate an exponentially distributed random variable Y out of a U [0, 1]-

distributed random variable X . To this end we define the monotonous

transformation from the unit interval S = [0, 1] into B by the decreasing

function

y = h(x) := −
1

λ
log x

with the inverse function h−1(y) = e−λy for y ≥ 0. For this h verify

f(h−1(y))

∣∣∣∣ dh−1(y)

dy

∣∣∣∣ = 1 ·
∣∣(−λ)e−λy

∣∣ = λe−λy = g(y)

as density of h(X). Hence h(X) is distributed exponentially.

Application:

In case U1, U2, ... are nonzero uniform deviates, the numbers h(Ui)

−
1

λ
log(U1), −

1

λ
log(U2), ...

are distributed exponentially. (−→ Exercise 2.17)

Attempt to Generate a Normal Distribution

Starting from the uniform distribution (f = 1) a transformation y = h(x) is

searched such that its density equals that of the standard normal distribution,

1 ·

∣∣∣∣ dh−1(y)

dy

∣∣∣∣ = 1
√

2π
exp

(
−

1

2
y
2

)
.

This is a differential equation for h−1 without analytical solution. As we will

see, a transformation can be applied successfully in IR2. To this end we need

a generalization of the scalar transformation of Theorem 2.9 into IRn.

2.2.3 Transformations in IRn

The generalization of Theorem 2.9 to the vector case is

Theorem 2.11

Suppose X is a random variable in IRn with density f(x) > 0 on the

support S. The transformation h : S → B, S,B ⊆ IRn is assumed to be

invertible and the inverse be continuously differentiable on B. Y := h(X)

is the transformed random variable. Then Y has the density
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f(h−1(y))

∣∣∣∣∂(x1, ..., xn)

∂(y1, ..., yn)

∣∣∣∣ , y ∈ B , (2.7)

where x = h−1(y) and
∂(x1,...,xn)

∂(y1,...,yn)
is the determinant of the Jacobian

matrix of all first-order derivatives of h−1(y).

(Theorem 4.2 in [Dev86])

2.3 Normally Distributed Random Variables

In this section the focus is on applying the transformation method in IR2 to

generate Gaussian random numbers. We describe the classical approach of

Box and Muller. Inversion is one of several valid alternatives.3

2.3.1 Method of Box and Muller

To apply Theorem 2.11 we start with the unit square S := [0, 1]2 and the

density (2.7) of the bivariate uniform distribution. The transformation is{
y1 =

√
−2 logx1 cos 2πx2 =: h1(x1, x2)

y2 =
√
−2 logx1 sin 2πx2 =: h2(x1, x2) ,

(2.8)

h(x) is defined on [0, 1]2 with values in IR2. The inverse function h−1 is given

by ⎧⎨⎩
x1 = exp

{
− 1

2
(y2

1
+ y

2

2
)
}

x2 =
1

2π
arctan

y2

y1

where we take the main branch of arctan. The determinant of the Jacobian

matrix is

∂(x1, x2)

∂(y1, y2)
= det

(
∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

)
=

=
1

2π
exp
{
− 1

2
(y2

1
+ y

2

2
)
}⎛⎝−y1

1

1 +
y
2
2

y
2
1

1

y1

− y2

1

1 +
y
2
2

y
2
1

y2

y2

1

⎞⎠
= −

1

2π
exp
{
− 1

2
(y2

1
+ y

2

2
)
}
.

This shows that

∣∣∣∂(x1,x2)

∂(y1,y2)

∣∣∣ is the density (2.7) of the bivariate standard normal

distribution. Since this density is the product of the two one-dimensional

densities,

3 See also the Notes on this section.
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∂(y1, y2)

∣∣∣∣ = [ 1
√

2π
exp
(
− 1

2
y
2

1

)]
·

[
1

√
2π

exp
(
− 1

2
y
2

2

)]
,

the two components of the vector y are independent. So, when the com-

ponents of the vector X are ∼ U [0, 1], the vector h(X) consists of two inde-

pendent standard normal variates. Let us summarize the application of this

transformation:

Algorithm 2.12 (Box–Muller)

(1) generate U1 ∼ U [0, 1] and U2 ∼ U [0, 1].

(2) θ := 2πU2, ρ :=
√
−2 logU1

(3) Z1 := ρ cos θ is a normal variate

(as well as Z2 := ρ sin θ).

The variables U1, U2 stand for the components of X . Each application of the

algorithm provides two standard normal variates. Note that a line structure

in [0, 1]2 as in Example 2.5 is mapped to curves in the (Z1, Z2)-plane. This

underlines the importance of excluding an evident line structure.

Marsaglia

2

Box Muller

RSD

U  , U1 2

x  , x
y  , y

1 2

V  , V1 2

1 2

h

Fig. 2.5. Transformations of the Box–Muller–Marsaglia approach, schematically

2.3.2 Variant of Marsaglia

The variant of Marsaglia prepares the input in Algorithm 2.12 such that

trigonometric functions are avoided. For U ∼ U [0, 1] we have V := 2U − 1

∼ U [−1, 1]. (Temporarily we misuse also the financial variable V for local

purposes.) Two values V1, V2 calculated in this way define a point in the

(V1, V2)-plane. Only points within the unit disk are accepted:

D := { (V1, V2) | V 2

1
+ V

2

2
< 1 } ; accept only (V1, V2) ∈ D .

88



2.3 Normally Distributed Random Variables

In case of rejection both values V1, V2 must be rejected. As a result, the

surviving (V1, V2) are uniformly distributed on D with density f(V1, V2) = 1

π

for (V1, V2) ∈ D. A transformation from the disk D into the unit square

S := [0, 1]2 is defined by(
x1

x2

)
=

(
V 2

1
+ V 2

2
1

2π
arg((V1, V2))

)
.

That is, the Cartesian coordinates V1, V2 on D are mapped to the squared ra-

dius and the normalized angle.4 For illustration, see Figure 2.5. These “polar

coordinates” (x1, x2) are uniformly distributed on S (−→ Exercise 2.7).

Application

For input in (2.8) use V 2

1
+ V 2

2
as x1 and 1

2π
arctan V2

V1
as x2. With these

variables the relations

cos 2πx2 =
V1√

V 2

1
+ V 2

2

, sin 2πx2 =
V2√

V 2

1
+ V 2

2

,

hold, which means that it is no longer necessary to evaluate trigonometric

functions. The resulting algorithm of Marsaglia has modified the Box–Muller

method by constructing input values x1, x2 in a clever way.

Algorithm 2.13 (polar method)

(1) Repeat: generate U1, U2 ∼ U [0, 1]; V1 := 2U1 − 1,

V2 := 2U2 − 1, until W := V 2

1
+ V 2

2
< 1.

(2) Z1 := V1

√
−2 log(W )/W

Z2 := V2

√
−2 log(W )/W

are both standard normal variates.

The probability that W < 1 holds is given by the ratio of the areas, π/4 =

0.785... So in about 21% of all U [0, 1] drawings the (V1, V2)-tuple is rejected

because of W ≥ 1. Nevertheless the savings of the trigonometric evaluations

makes Marsaglia’s polar method more efficient than the Box–Muller method.

Figure 2.6 illustrates normally distributed random numbers (−→ Exercise

2.8).

4 arg((V1, V2)) = arctan(V2/V1) with the proper branch
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0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

Fig. 2.6. 10000 numbers ∼ N (0, 1) (values entered horizontally and separated ver-

tically with distance 10
−4

)

2.3.3 Correlated Random Variables

The above algorithms provide independent normal deviates. In many applica-

tions random variables are required that depend on each other in a prescribed

way. Let us first recall the general n-dimensional density function.

Multivariate normal distribution (notations):

X = (X1, ..., Xn), μ = EX = (EX1, ...,EXn)

The covariance matrix (B1.8) of X is denoted Σ, and has elements

Σij = (CovX)ij := E ((Xi − μi)(Xj − μj)) , σ
2

i
= Σii ,

for i, j = 1, . . . , n. Using this notation, the correlation coefficients are

ρij :=
Σij

σiσj

(⇒ ρii = 1) , (2.9)

which set up the correlation matrix. The correlation matrix is a scaled version

of Σ. The density function f(x1, ..., xn) corresponding to N (μ,Σ) is

f(x) =
1

(2π)n/2

1

(detΣ)1/2
exp

{
−

1

2
(x− μ)trΣ

−1(x− μ)

}
. (2.10)

By theory, a covariance matrix (or correlation matrix) Σ is symmetric, and

positive semidefinite. If in practice a matrix Σ̃ is corrupted by insufficient

data, a close matrix Σ can be calculated with the features of a covariance

matrix [Hig02]. In case detΣ �= 0 the matrix Σ is positive definite, which we

assume now.

Below we shall need a factorization of Σ into Σ = AAtr . From numerical

mathematics we know that for symmetric positive definite matrices Σ the

Cholesky decomposition Σ = LLtr exists, with a lower triangular matrix L

(−→ Appendix C1). There are numerous factorizations Σ = AA
tr other than
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2.3 Normally Distributed Random Variables

Cholesky. A more involved factorization of Σ is the principal component

analysis, which is based on eigenvectors (−→ Exercise 2.18).

Transformation

Suppose Z ∼ N (0, I) and x = Az, A ∈ IRn×n, where z is a realization of Z,

0 is the zero vector, and I the identity matrix. We see from

exp

{
−

1

2
ztrz

}
= exp

{
−

1

2
(A−1

x)tr(A−1
x)

}
= exp

{
−

1

2
xtrA

−tr

A
−1
x

}
and from dx = | detA|dz that

1

| detA|
exp

{
−

1

2
xtr(AAtr)−1

x

}
dx = exp

{
−

1

2
ztrz

}
dz

holds for arbitrary nonsingular matrices A. To complete the transformation,

we need a matrix A such that Σ = AAtr. Then | detA| = (detΣ)1/2, and

the densities with the respect to x and z are converted correctly. In view of

the general density f(x) recalled in (2.10), AZ is normally distributed with

AZ ∼ N (0, AAtr), and hence the factorization Σ = AA
tr implies

AZ ∼ N (0, Σ) .

Finally, translation with vector μ implies

μ+AZ ∼ N (μ,Σ) . (2.11)

Application

Suppose we need a normal variate X ∼ N (μ,Σ) for given mean vector μ and

covariance matrix Σ. This is most conveniently based on the Cholesky de-

composition of Σ. Accordingly, the desired random variable can be calculated

with the following algorithm:

Algorithm 2.14 (correlated random variable)

(1) Calculate the Cholesky decomposition AAtr = Σ

(2) Calculate Z ∼ N (0, I) componentwise

by Zi ∼ N (0, 1), i = 1, ..., n, for instance,

with Marsaglia’s polar algorithm

(3) μ+AZ has the desired distribution ∼ N (μ,Σ)

Special case n = 2: In this case, in view of (2.9), only one correlation number

is involved, namely, ρ := ρ12 = ρ21, and the covariance matrix must be of the

form
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Fig. 2.7. Simulation of a correlated vector process with two components, and μ =

0.05, σ1 = 0.3, σ2 = 0.2, ρ = 0.85, Δt = 1/250

Σ =

(
σ2

1
ρσ1σ2

ρσ1σ2 σ2

2

)
. (2.12)

In this two-dimensional situation it makes sense to carry out the Cholesky

decomposition analytically (−→ Exercise 2.9). Figure 2.7 illustrates a highly

correlated two-dimensional situation, with ρ = 0.85. An example based on

(2.12) is (3.28).

2.4 Monte Carlo Integration

A classical application of random numbers is the Monte Carlo integration.

The discussion in this section will serve as background for Quasi Monte Carlo,

a topic of the following Section 2.5.

Let us begin with the one-dimensional situation. Assume a probability

distribution with density g. Then the expectation of a function f is

E(f) =

∞∫
−∞

f(x)g(x) dx ,
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2.4 Monte Carlo Integration

compare (B1.4). For a definite integral on an interval D = [a, b], we use the

uniform distribution with density

g =
1

b− a
· 1D =

1

λ1(D)
· 1D ,

where λ1(D) denotes the length of the interval D. This leads to

E(f) =
1

λ1(D)

b∫
a

f(x) dx ,

or
b∫
a

f(x) dx = λ1(D) · E(f) .

This equation is the basis of Monte Carlo integration. It remains to appro-

ximate E(f). For independent samples xi ∼ U [a, b] the law of large numbers

(−→ Appendix B1) establishes the estimator

1

N

N∑
i=1

f(xi)

as approximation to E(f). The approximation improves as the number of

trials N goes to infinity; the error is characterized by the Central Limit

Theorem.

This principle of the Monte Carlo Integration extends to the higher-

dimensional case. Let D ⊂ IRm be a domain on which the integral∫
D

f(x) dx

is to be calculated. For example, D = [0, 1]m. Such integrals occur in finance,

for example, when mortgage-backed securities (CMO, collateralized mortgage

obligations) are valuated [CaMO97]. The classical or stochastic Monte Carlo

integration draws random samples x1, ..., xN ∈ D which should be indepen-

dent and uniformly distributed. Then

θN := λm(D)
1

N

N∑
i=1

f(xi) (2.13)

is an approximation of the integral. Here λm(D) is the volume of D (or the

m-dimensional Lebesgue measure [Nie92]). We assume λm(D) to be finite.

From the law of large numbers follows convergence of θN to λm(D)E(f) =∫
D
f(x) dx for N → ∞. The variance of the error

δN :=

∫
D

f(x) dx − θN
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satisfies

Var(δN ) = E(δ2
N

) − (E(δN ))2 =
σ2(f)

N
(λm(D))2 , (2.14a)

with the variance of f

σ
2(f) :=

∫
D

f(x)2 dx−

(∫
D

f(x) dx

)2

. (2.14b)

Hence the standard deviation of the error δN tends to 0 with the order

O(N−1/2). This result follows from the Central Limit Theorem or from other

arguments (−→ Exercise 2.10). The deficiency of the order O(N−1/2) is the

slow convergence (−→ Exercise 2.11 and the second column in Table 2.1). To

reach an absolute error of the order ε, equation (2.14a) tells that the sample

size is N = O(ε−2). To improve the accuracy by a factor of 10, the costs (that

is the number of trials, N) increase by a factor of 100. Another disadvantage

is the lack of a genuine error bound. The probabilistic error of (2.14) does

not rule out the risk that the result may be completely wrong. The σ2(f) in

(2.14b) is not known and must be approximated, which adds to the uncer-

tainty of the error. And the Monte Carlo integration responds sensitively to

changes of the initial state of the used random-number generator. This may

be explained by the potential clustering of random points.

In many applications the above deficiencies are balanced by two good fea-

tures of Monte Carlo integration: A first advantage is that the orderO(N−1/2)

of the error holds independently of the dimension m. Another good feature

is that the integrands f need not be smooth, square integrability suffices

(f ∈ L2, see Appendix C3).

So far we have described the basic version of Monte Carlo integration,

stressing the slow decline of the probabilistic error with growing N . The

variance of the error δ can also be diminished by decreasing the numerator

in (2.14a). This variance of the problem can be reduced by suitable methods.

(We will come back to this issue in Section 3.5.4.)

We conclude the excursion into the stochastic Monte Carlo integration

with the variant for those cases in which λm(D) is hard to calculate. For

D ⊆ [0, 1]m and x1, ..., xN ∼ U [0, 1]m use∫
D

f(x) dx ≈
1

N

N∑
i=1

xi∈D

f(xi) . (2.15)

For the integral (1.50) with density fGBM see Section 3.5.
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2.5 Sequences of Numbers with Low Discrepancy

2.5 Sequences of Numbers with Low Discrepancy

One difficulty with random numbers is that they may fail to distribute uni-

formly. Here, “uniform” is not meant in the stochastic sense of a distribution

∼ U [0, 1], but has the meaning of an equidistributedness that avoids extreme

clustering or holes. The aim is to generate numbers for which the deviation

from uniformity is minimal. This deviation is called “discrepancy.” Another

objective is to obtain good convergence for some important applications.

2.5.1 Discrepancy

The bad convergence behavior of the stochastic Monte Carlo integration is

not inevitable. For example, for m = 1 and D = [0, 1] an equidistant x-grid

with mesh size 1/N leads to a formula (2.13) that resembles the trapezoidal

sum ((C1.2) in Appendix C1). For smooth f , the order of the error is at least

O(N−1). (Why?) But such a grid-based evaluation procedure is somewhat

inflexible because the grid must be prescribed in advance and the number

N that matches the desired accuracy is unknown beforehand. In contrast,

the free placing of sample points with Monte Carlo integration can be per-

formed until some termination criterion is met. It would be desirable to find

a compromise in placing sample points such that the fineness advances but

clustering is avoided. The sample points should fill the integration domain D
as uniformly as possible. To this end we require a measure of the equidistri-

butedness.

Let Q ⊆ [0, 1]m be an arbitrary axially parallel m-dimensional rectangle

in the unit cube [0, 1]m of IRm. That is, Q is a product of m intervals. Suppose

a set of points x1, ..., xN ∈ [0, 1]m. The decisive idea behind discrepancy is

that for an evenly distributed point set, the fraction of the points lying within

the rectangle Q should correspond to the volume of the rectangle (see Figure

2.8). Let # denote the number of points, then the goal is

# of xi ∈ Q

# of all points in [0, 1]m
≈

vol(Q)

vol([0, 1]m)

for as many rectangles as possible. This leads to the following definition:

Definition 2.15 (discrepancy)

The discrepancy of the point set {x1, ..., xN} ⊂ [0, 1]m is

DN := sup
Q

∣∣∣∣# of xi ∈ Q

N
− vol(Q)

∣∣∣∣ .
Analogously the variant D∗

N
(star discrepancy) is obtained when the set of

rectangles is restricted to those Q∗, for which one corner is the origin:
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Fig. 2.8 On the idea of discrepancy

Table 2.1 Comparison of different convergence rates to zero

N 1
√

N

√
log log N

N
log N

N
(log N)2

N
(log N)3

N

10
1 .31622777 .28879620 .23025851 .53018981 1.22080716

10
2 .10000000 .12357911 .04605170 .21207592 .97664572

10
3 .03162278 .04396186 .00690776 .04771708 .32961793

10
4 .01000000 .01490076 .00092103 .00848304 .07813166

10
5 .00316228 .00494315 .00011513 .00132547 .01526009

10
6 .00100000 .00162043 .00001382 .00019087 .00263694

10
7 .00031623 .00052725 .00000161 .00002598 .00041874

10
8 .00010000 .00017069 .00000018 .00000339 .00006251

10
9 .00003162 .00005506 .00000002 .00000043 .00000890

Q
∗ =

m∏
i=1

[0, yi)

where y ∈ IRm denotes the corner diagonally opposite the origin.

The more evenly the points of a sequence are distributed, the closer the

discrepancy DN is to zero. Here DN refers to the first N points of a sequence

of points (xi), i ≥ 1. The discrepancies DN and D∗
N

satisfy (−→ Exercise

2.12b)
D

∗
N

≤ DN ≤ 2m

D
∗
N
.
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The discrepancy allows to find a deterministic bound on the error δN of

the Monte Carlo integration,

|δN | ≤ v(f)D∗

N
; (2.16)

here v(f) is the variation of the function f with v(f) < ∞, and the domain

of integration is D = [0, 1]m [Nie92], [TrW92], [MoC94]. This result is known

as Theorem of Koksma and Hlawka. The bound in (2.16) underlines the

importance to find numbers x1, ..., xN with small value of the discrepancy

DN . After all, a set of N randomly chosen points satisfies

E(DN ) = O

(√
log logN

N

)
.

This is in accordance with the O(N−1/2) law. The order of magnitude of

these numbers is shown in Table 2.1 (third column).

Definition 2.16 (low-discrepancy point sequence)

A sequence of points or numbers x1, x2, ..., xN , ... ∈ [0, 1]m is called low-

discrepancy sequence if

DN = O

(
(logN)m

N

)
. (2.17)

Deterministic sequences of numbers satisfying (2.17) are also called quasi-

random numbers, although they are fully deterministic. Table 2.1 reports on

the orders of magnitude. Since log(N) grows only modestly, a low discrepancy

essentially means DN ≈ O(N−1) as long as the dimension m is small. The

equation (2.17) expresses some dependence on the dimension m, contrary to

Monte Carlo methods. But the dependence on m in (2.17) is less stringent

than with classical quadrature.

2.5.2 Examples of Low-Discrepancy Sequences

In the one-dimensional case (m = 1) the point set

xi =
2i− 1

2N
, i = 1, ..., N (2.18)

has the value D∗
N

= 1

2N
; this value can not be improved (−→ Exercise 2.12c).

The monotonous sequence (2.18) can be applied only when a reasonable N is

known and fixed; forN → ∞ the xi would be newly placed and an integrand f

evaluated again. Since N is large, it is essential that the previously calculated

results can be used when N is growing. This means that the points x1, x2, ...

must be placed “dynamically” so that they are preserved and the fineness

improves when N grows. This is achieved by the sequence
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1

2
,

1

4
,
3

4
,

1

8
,
5

8
,
3

8
,
7

8
,

1

16
, ...

This sequence is known as van der Corput sequence. To motivate such a

dynamical placing of points imagine that you are searching for some item in

the interval [0, 1] (or in the cube [0, 1]m). The searching must be fast and

successful, and is terminated as soon as the object is found. This defines N

dynamically by the process.

The formula that defines the van der Corput sequence can be formulated

as algorithm. Let us study an example, say, x6 = 3

8
. The index i = 6 is

written as binary number

6 = (110)2 =: (d2 d1 d0)2 with di ∈ {0, 1} .

Then reverse the binary digits and put the radix point in front of the sequence:

(. d0 d1 d2)2 =
d0

2
+
d1

22
+
d3

23
=

1

22
+

1

23
=

3

8

If this is done for all indices i = 1, 2, 3, ... the van der Corput sequence

x1, x2, x3, ... results. These numbers can be defined with the following func-

tion:

Definition 2.17 (radical-inverse function)

For i = 1, 2, ... let j be given by the expansion in base b (integer ≥ 2)

i =

j∑
k=0

dkb
k

,

with digits dk ∈ {0, 1, ..., b− 1}, which depend on b, i. Then the radical-

inverse function is defined by

φb(i) :=

j∑
k=0

dkb
−k−1

.

The function φb(i) is the digit-reversed fraction of i. This mapping may be

seen as reflecting with respect to the radix point. To each index i a rational

number φb(i) in the interval 0 < x < 1 is assigned. Every time the number

of digits j increases by one, the mesh becomes finer by a factor 1/b. This

means that the algorithm fills all mesh points on the sequence of meshes with

increasing fineness (−→ Exercise 2.13). The above classical van der Corput

sequence is obtained by

xi := φ2(i) .

The radical-inverse function can be applied to construct points xi in the m-

dimensional cube [0, 1]m. The simplest construction is the Halton sequence.
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Definition 2.18 (Halton sequence)

Let p1, ..., pm be pairwise prime integers. The Halton sequence is defined

as the sequence of vectors

xi := (φp1
(i), ..., φpm

(i)) , i = 1, 2, ...

Usually one takes p1, ..., pm as the first m prime numbers. Figure 2.9 shows

for m = 2 and p1 = 2, p2 = 3 the first 10000 Halton points. Compared to the

pseudo-random points of Figure 2.3, the Halton points are distributed more

evenly.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fig. 2.9. 10000 Halton points from Definition 2.18, with p1 = 2, p2 = 3

Halton sequences xi of Definition 2.18 are easily constructed, but fail to

be uniform when the dimension m is high, see Section 5.2 in [Gla04]. Then

correlations between the radical-inverse functions for different dimensions are
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observed. This problem can be cured with a simple modification of the Halton

sequence, namely, by using only every lth Halton number [KoW97]. The leap

l is a prime different from all bases p1, . . . , pm. The result is the “Halton

sequence leaped”

xk := (φp1
(lk), ..., φpm

(lk)) , k = 1, 2, ... (2.19)

This modification has shown good performance for dimensions at least up to

m = 400. As reported in [KoW97], l = 409 is one example of a good leap

value.

Other sequences have been constructed out of the van der Corput se-

quence. These include the sequences developed by Sobol, Faure and Nie-

derreiter, see [Nie92], [MoC94], [PrTVF92]. All these sequences are of low

discrepancy, with

N ·D∗
N

≤ Cm(logN)m +O
(
(logN)m−1

)
.

The Table 2.1 shows how fast the relevant terms (logN)m/N tend to zero.

If m is large, extremely large values of the denominator N are needed before

the terms become small. But it is assumed that the bounds are unrealistically

large and overestimate the real error. For the Halton sequence in case m = 2

the constant is C2 = 0.2602.

Quasi Monte Carlo (QMC) methods approximate the integrals with the

arithmetic mean θN of (2.13), but use low-discrepancy numbers xi instead

of random numbers. QMC is a deterministic method. Practical experience

with low-discrepancy sequences are better than might be expected from the

bounds known so far. This also holds for the bound (2.16) by Koksma and

Hlawka; apparently a large class of functions f satisfy |δN | � v(f)D∗
N

, see

[SpM94].

Notes and Comments

on Section 2.1:

The linear congruential method is sometimes called Lehmer generator. Easily

accessible and popular generators are RAN1 and RAN2 from [PrTVF92].

Further references on linear congruential generators are [Mar68], [Rip87],

[Nie92], [LEc99]. Example 2.4 is from [Fis96], and Example 2.5 from [Rip87].

Nonlinear congruential generators are of the form

Ni = f(Ni−1) mod M .

Hints on the algorithmic implementation are found in [Gen98]. Generally it is

advisable to run the generator in integer arithmetic in order to avoid rounding

errors that may spoil the period, see [Lehn02]. For Fibonacci generators we
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refer to [Bre94]. The version of (2.5) is a subtractive generator. Additive

versions (with a plus sign instead of the minus sign) are used as well [Knu95],

[Gen98]. The codes in [PrTVF92] are recommendable. For simple statistical

tests with illustrations see [Hig04].

There are multiplicative Fibonacci generators of the form

Ni+1 := Ni−νNi−μ mod M .

Hints on parallelization are given in [Mas99]. For example, parallel Fibonacci

generators are obtained by different initializing sequences. Note that com-

puter systems and software packages often provide built-in random number

generators. But often these generators are not clearly specified, and should

be handled with care.

on Sections 2.2, 2.3:

The inversion result of Theorem 2.8 can be formulated placing less or no

restrictions on F , see [Rip87], p. 59, [Dev86], p. 28, or [Lan99], p. 270. There

are numerous other methods to calculate normal and non normal variates;

for a detailed overview with many references see [Dev86]. The Box–Muller

approach was suggested in [BoM58]. Marsaglia’s modification was published

in a report quoted in [MaB64]. Several algorithms are based on the rejection

method [Dev86], [Fis96]. Fast algorithms include the “ziggurat” generator,

which works with precomputed tables [MaT00], and the Wallace algorithm

[Wal96], which works with a pool of random numbers and suitable transfor-

mations. Platform-dependent implementation details place emphasis on the

one or the other advantage. A survey on Gaussian random number generators

is [ThLLV07]. For simulating Lévy processes, see [ConT04]. For singular sym-

metric positive semidefinite matrices Σ (xtrΣx ≥ 0 for all x), the Cholesky

decomposition can be cured, see [GoV96], or [Gla04].

on Section 2.4:

The bounds on errors of the Monte Carlo integration refer to arbitrary func-

tions f ; for smooth functions better bounds can be expected. In the one-

dimensional case the variation is defined as the supremum of
∑

j
|f(tj) −

f(tj−1)| over all partitions, see Section 1.6.2. This definition can be genera-

lized to higher-dimensional cases. A thorough discussion is [Nie78], [Nie92].

An advanced application of Monte Carlo integration uses one or more me-

thods of reduction of variance, which allows to improve the accuracy in many

cases [HaH64], [Rub81], [Nie92], [PrTVF92], [Fis96], [Kwok98], [Lan99]. For

example, the integration domain can be split into subsets (stratified samp-

ling) [RiW03]. Another technique is used when for a control variate g with

g ≈ f the exact integral is known. Then f is replaced by (f − g) + g and

Monte Carlo integration is applied to f − g. Another alternative, the method

of antithetic variates, will be described in Section 3.5.4 together with the

control-variate technique.
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on Section 2.5:

Besides the supremum discrepancy of Definition 2.15 the L2-analogy of an

integral version is used. Hints on speed and preliminary comparison are found

in [MoC94]. For application on high-dimensional integrals see [PaT95]. For

large values of the dimension m, the error (2.17) takes large values, which

might suggest to discard its use. But the notion of an effective dimension and

practical results give a favorable picture at least for CMO applications of or-

der m = 360 [CaMO97]. The error bound of Koksma and Hlawka (2.16) is not

necessarily recommendable for practical use, see the discussion in [SpM94].

The analogy of the equidistant lattice in (2.18) in higher-dimensional space

has unfavorable values of the discrepancy, DN = O

(
1

m
√

N

)
. For m > 2 this

is worse than Monte Carlo, compare [Rip87]. — Monte Carlo does not take

advantage of smoothness of integrands. In the case of smooth integrands,

sparse-grid approaches are highly competitive. These most refined quadra-

ture methods moderate the curse of the dimension, see [GeG98], [GeG03],

[Rei04].

Van der Corput sequences can be based also on other bases. Halton’s

paper is [Hal60]. Computer programs that generate low-discrepancy numbers

are available. For example, Sobol numbers are calculated in [PrTVF92] and

Sobol- and Faure numbers in the computer program FINDER [PaT95] and

in [Tez95]. At the current state of the art it is open which point set has

the smallest discrepancy in the m-dimensional cube. There are generalized

Niederreiter sequences, which include Sobol- and Faure sequences as special

cases [Tez95]. In several applications deterministic Monte Carlo seems to be

superior to stochastic Monte Carlo [PaT96]. A comparison based on finance

applications has shown good performance of Sobol numbers; in [Jon11] Sobol

numbers are outperformed by Halton sequences leaped (2.19). [NiJ95] and

Chapter 5 in [Gla04] provide more discussion and many references.

Besides volume integration, Monte Carlo is needed to integrate over pos-

sibly high-dimensional probability distributions. Drawing samples from the

required distribution can be done by running a cleverly constructed Markov

chain. This kind of method is called Markov Chain Monte Carlo (MCMC).

That is, a chain of random variables X0, X1, X2, . . . is constructed where for

given Xj the next state Xj+1 does not depend on the history of the chain

X0, X1, X2, . . . , Xj−1. By suitable construction criteria, convergence to any

chosen target distribution is obtained. For MCMC we refer to the literature,

for example to [GiRS96], [Lan99], [Beh00], [Tsay02], [Häg02].
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Exercises

Exercise 2.1

Consider the random number generatorNi = 2Ni−1 mod 11. For (Ni−1, Ni) ∈
{0, 1, ..., 10}2 and integer tuples with z0 + 2z1 = 0 mod 11 the equation

z0Ni−1 + z1Ni = 0 mod 11

defines families of parallel straight lines, on which all points (Ni−1, Ni) lie.

These straight lines are to be analyzed. For which of the families of parallel

straight lines are the gaps maximal?

Exercise 2.2 Deficient Random Number Generator

For some time the generator

Ni = aNi−1 mod M, with a = 216 + 3, M = 231

was in wide use. Show for the sequence Ui := Ni/M

Ui+2 − 6Ui+1 + 9Ui is integer!

What does this imply for the distribution of the triples (Ui, Ui+1, Ui+2) in

the unit cube?

Exercise 2.3 Lattice of the Linear Congruential Generator

a) Show by induction over j

Ni+j −Nj = a
j(Ni −N0) mod M

b) Show for integer z0, z1, ..., zm−1⎛⎜⎜⎝
Ni

Ni+1

...

Ni+m−1

⎞⎟⎟⎠−

⎛⎜⎜⎝
N0

N1

...

Nm−1

⎞⎟⎟⎠ = (Ni −N0)

⎛⎜⎜⎝
1

a
...

am−1

⎞⎟⎟⎠+M

⎛⎜⎜⎝
z0

z1
...

zm−1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
1 0 · · · 0

a M · · · 0
...

...
. . .

...

am−1 0 · · · M

⎞⎟⎟⎠
⎛⎜⎜⎝

z0

z1
...

zm−1

⎞⎟⎟⎠
Exercise 2.4 Coarse Approximation of Normal Deviates

Let U1, U2, ... be independent random numbers ∼ U [0, 1], and

Xk :=

k+11∑
i=k

Ui − 6 .

Calculate mean and variance of the Xk.
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Exercise 2.5 Cauchy-Distributed Random Numbers

A Cauchy-distributed random variable has the density function

fc(x) :=
c

π

1

c2 + x2
.

Show that its distribution function Fc and its inverse F−1

c
are

Fc(x) =
1

π
arctan

x

c
+

1

2
, F

−1

c
(y) = c tan(π(y −

1

2
)) .

How can this be used to generate Cauchy-distributed random numbers out

of uniform deviates?

Exercise 2.6 Inverting the Normal Distribution

Suppose F (x) is the standard normal distribution function. Construct a rough

approximation G(u) to F−1(u) for 0.5 ≤ u < 1 as follows:

a) Construct a rational function G(u) (−→ Appendix C1) with correct

asymptotic behavior, point symmetry with respect to (u, x) = (0.5, 0),

using only one parameter.

b) Fix the parameter by interpolating a given point (x1, F (x1)).

c) What is a simple criterion for the error of the approximation?

Exercise 2.7 Uniform Distribution

For the uniformly distributed random variables (V1, V2) on [−1, 1]2 consider

the transformation (
X1

X2

)
=

(
V 2

1
+ V 2

2
1

2π
arg((V1, V2))

)
where arg((V1, V2)) denotes the corresponding angle. Show that (X1, X2) is

distributed uniformly.

Exercise 2.8 Programming Assignment: Normal Deviates

a) Write a computer program that implements the Fibonacci generator

Ui :=Ui−17 − Ui−5

Ui :=Ui + 1 in case Ui < 0

in the form of Algorithm 2.7.

Tests: Visual inspection of 10000 points in the unit square.

b) Write a computer program that implements Marsaglia’s Polar Algorithm

(Algorithm 2.13). Use the uniform deviates from a).

Tests:

1.) For a sample of 5000 points calculate estimates of mean and variance.
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2.) For the discretized SDE

Δx = 0.1Δt+ Z
√
Δt, Z ∼ N (0, 1)

calculate some trajectories for 0 ≤ t ≤ 1, Δt = 0.01, x0 = 0.

Exercise 2.9 Correlated Distributions

Suppose we need a two-dimensional random variable (X1, X2) that must be

normally distributed with mean 0, and given variances σ2

1
, σ2

2
and prespecified

correlation ρ. How is X1, X2 obtained out of Z1, Z2 ∼ N (0, 1)?

Exercise 2.10 Error of the Monte Carlo Integration

The domain for integration is Q = [0, 1]m. For

ΘN :=
1

N

N∑
i=1

f(xi) , E(f) :=

∫
f dx , g := f − E(f)

and σ2(f) from (2.14b) show

a) E(g) = 0

b) σ
2(g) = σ

2(f)

c) σ2(δN ) = E(δ2
N

) = 1

N
2

∫
(
∑
g(xi))

2 dx = 1

N
σ2(f)

Hint on (c): When the random points xi are i.i.d. (independent iden-

tical distributed), then also f(xi) and g(xi) are i.i.d. A consequence is∫
g(xi)g(xj) dx = 0 for i �= j.

Exercise 2.11 Experiment on Monte Carlo Integration

To approximate the integral ∫
1

0

f(x) dx

calculate a Monte Carlo sum

1

N

N∑
i=1

f(xi)

for f(x) = 5x4 and, for example, N = 100000 random numbers xi ∼ U [0, 1].

The absolute error behaves like cN−1/2. Compare the approximation with

the exact integral for several N and seeds to obtain an estimate of c.

Exercise 2.12 Bounds on the Discrepancy

(Compare Definition 2.15) Show

a) 0 ≤ DN ≤ 1,

b) D∗
N

≤ DN ≤ 2mD∗
N

(show this at least for m ≤ 2),

c) D
∗
N

≥ 1

2N
for m = 1.
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Exercise 2.13 Algorithm for the Radical-Inverse Function

Use the idea

i =
(
dkb

k−1 + ...+ d1

)
b+ d0

to formulate an algorithm that obtains d0, d1, ..., dk by repeated division by

b. Reformulate φb(i) from Definition 2.17 into the form φb(i) = z/bj+1 such

that the result is represented as rational number. The numerator z should be

calculated in the same loop that establishes the digits d0, ..., dk.

Exercise 2.14 Testing the Distribution

Let X be a random variate with density f and let a1 < a2 < ... < al define

a partition of the support of f into subintervals, including the unbounded

intervals x < a1 and x > al. Recall from (B1.1), (B1.2) that the probability

of a realization of X falling into ak ≤ x < ak+1 is given by

pk :=

ak+1∫
ak

f(x) dx , k = 1, 2, . . . , l− 1 ,

which can be approximated by (ak+1 − ak)f
(

ak+ak+1

2

)
. Perform a sample of

j realizations x1, . . . , xj of a random number generator, and denote jk the

number of samples falling into ak ≤ x < ak+1. For normal variates with

density f from (B1.9) design an algorithm that performs a simple statistical

test of the quality of the x1, . . . , xj .

Hints: See Section 2.1 for the special case of uniform variates. Argue for what

choices of a1 and al the probabilities p0 and pl may be neglected. Think about

a reasonable relation between l and j.

Exercise 2.15 Quality of Fibonacci-Generated Numbers

Analyze and visualize the planes in the unit cube, on which all points fall

that are generated by the Fibonacci recursion

Ui+1 := (Ui + Ui−1) mod 1 .

Exercise 2.16

Use the inversion method and uniformly distributed U ∼ U [0, 1] to calculate

a stochastic variable X with distribution

F (x) = 1 − e−2x(x−a)
, x ≥ a .

Exercise 2.17 Time-Changed Wiener Process

For a time-changing function τ(t) set τj := τ(j Δt) for some time increment

Δt.

a) Argue why Algorithm 1.8 changes to Wj = Wj−1 + Z
√
τj − τj−1 (last

line).
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Fig. 2.10. Prices of the DAX assets Allianz (S1), BMW (S2), and HeidelbergCe-

ment; 500 trading days from Nov 5, 2005; eigenvalues of the covariance matrix are

400.8, 25.8, 2.73; eigenvectors centered at the mean point and scaled by
√

λ are

shown, and the plane spanned by v(1), v(2)
.

b) Let τj be the exponentially distributed jump instances of a Poisson expe-

riment, see Section 1.9 and Property 1.20e. How should the jump intensity

λ be chosen such that the expectation of theΔτ isΔt? Implement and test

the algorithm, and visualize the results. Experiment with several values

of the jump intensity λ.

Exercise 2.18 Spectral Decomposition of a Covariance Matrix

For symmetric positive definite n× n matrices Σ there exists a set of ortho-

normal eigenvectors v(1), . . . , v(n) and eigenvalues λ1 ≥ . . . ≥ λn > 0 such

that

Σv
(j) = λjv

(j)
, j = 1, . . . , n.

Arrange the n eigenvector columns into the n×n matrix B := (v(1), . . . , v(n)),

and the eigenvalues into the diagonal matrices Λ := diag(λ1, . . . , λn) and

Λ
1
2 := diag(

√
λ1, . . . ,

√
λn).

a) Show ΣB = BΛ.

b) Show that

A := BΛ
1
2
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factorizes Σ in the sense Σ = AAtr .

c) Show

AZ =

n∑
j=1

√
λj Zj v

(j)

d) And the reversal of Section 2.3.3 holds: For a random vector X ∼ N (0, Σ)

the transformed random vector A−1X has uncorrelated components:

Show Cov(A−1X) = I and Cov(B−1X) = Λ.

e) For the 2 × 2 matrix

Σ =

(
5 1

1 10

)
calculate the Cholesky decomposition and BΛ

1
2 .

Hint: The above is the essence of the principal component analysis. Here Σ

represents a covariance matrix or a correlation matrix. (For an example see

Figure 2.10.) The matrix B and the eigenvalues in Λ reveal the structure of

the data. B defines a linear transformation of the data to a rectangular coor-

dinate system, and the eigenvalues λj measure the corresponding variances.

In case λk+1 � λk for some index k, the sum in c) can be truncated after the

kth term in order to reduce the dimension. The computation of B and Λ (and

hence A) is costly, but a dominating λ1 allows for a simple approximation of

v
(1) by the power method.
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3 Monte Carlo Simulation

with Stochastic Differential Equations
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Fig. 3.1. Illustration of the Monte Carlo approach for a European put, with K = 50,

S0 = 50, T = 1, σ = 0.2, r = 0; five simulated paths in the (S, t)-plane with payoff;

vertical axis: V . The front curve V (S, 0) is shown.

The Sections 1.5 and 1.7.3 have introduced the principle of risk-neutral eva-

luation, which can be summarized by

V (S0, 0) = e−rT

EQ(V (ST , T ) | St starting from (S0, 0)) ,

where EQ represents the expectation under a risk-neutral measure. For the

Black–Scholes model, this expectation is an integral as in (1.50). This suggests

two approaches of calculating V . Either approximate the integral, or calculate

the expectation by simulating the underlying stochastic differential equation

(SDE) repeatedly. The latter approach is illustrated in Figure 3.1. Five paths

St are calculated for 0 ≤ t ≤ T in the risk-neutral fashion, each starting from

S0. Then for each resulting ST the payoff is calculated, here for a European

put. The figure illustrates the bulk of the work. (In reality, thousands of

paths are calculated.) It remains the comparably cheap task of calculating

the mean of the payoffs as approximation for EQ. This is the Monte Carlo

approach. The Monte Carlo approach works for general models, for example,

for systems of equations, see Figure 3.2.
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This chapter is based on the ability to numerically integrate SDEs. There-
fore a significant part of the chapter is devoted to this topic. AgainXt denotes
a stochastic process and a solution of an SDE (1.31),

dXt = a(Xt, t) dt+ b(Xt, t) dWt for 0 ≤ t ≤ T ,

where the driving process W is a Wiener process. We assume a t-grid with
0 = t0 < t1 < . . .. For convenience, the step length Δt = tj+1 − tj is taken
equidistant. As is common usage in numerical analysis, we also use the h-
notation, h := Δt. For Δt = h = T/m the index j runs from 0 to m − 1.
The solution of a discrete version of the SDE is denoted yj . That is, yj

should be an approximation to Xtj
, or yt an approximation to Xt. Weaker

requirements will be discussed below. The initial value for t = 0 is assumed
a given constant,

y0 = X0 .

For example, from Algorithm 1.11 we know the Euler discretization{
yj+1 = yj + a(yj , tj)Δt+ b(yj, tj)ΔWj , tj = jΔt ,

ΔWj = Wtj+1
−Wtj

= Z
√
Δt with Z ∼ N (0, 1) .

(3.1)

Since an approximation yT also depends on the chosen step length h, we also
write yh

T
. From numerical methods for deterministic ODEs (b ≡ 0) we know

the discretization error of Euler’s method is O(h),

XT − y
h

T
= O(h) .

The Algorithm 1.11 (repeated in equation (3.1)) is an explicit method in that
in every step j → j + 1 the values of the functions a and b are evaluated at
the previous approximation (yj , tj). Evaluating b at the left-hand mesh point
(yj , tj) is consistent with the Itô integral and the Itô process, compare the
notes at the end of Chapter 1.

After we have seen in Chapter 2 how Z ∼ N (0, 1) can be calculated, all
elements of Algorithm 1.11 are known, and we are equipped with a method to
numerically integrate SDEs (−→ Exercise 3.1). In this chapter we learn about
other methods, and discuss the accuracy of numerical solutions of SDEs. The
exposition of Sections 3.1 through 3.3 follows [KlP92]. Readers content with
Euler’s method (3.1) may like to skip these sections.

After a brief exposition on constructing bridges (Section 3.4), we turn to
the main theme, namely, Monte Carlo methods for pricing options. The basic
principle is outlined for European options (Section 3.5). For American options
parametric methods and regression methods are introduced in Section 3.6.
The final Section 3.7 discusses the calculation of sensitivities.
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3.1 Approximation Error
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Fig. 3.2. Example 1.15, α = 0.3, β = 10, σ0 = ζ0 = 0.2, realization of the volatility

tandem σt, ζt (dashed) for 0 ≤ t ≤ 1, Δt = 0.004

3.1 Approximation Error

To study the accuracy of numerical approximations, we choose the example
of a linear SDE

dXt = αXt dt+ βXt dWt, initial value X0 for t = 0 .

For this equation with constant coefficients α, β we derived in Section 1.8 the
analytical solution

Xt = X0 exp
((
α− 1

2
β

2
)
t+ βWt

)
. (3.2)

For a given realization of the Wiener process Wt we obtain as solution a
trajectory (sample path) Xt. For another realization of the Wiener process
the same theoretical solution (3.2) takes other values. If a Wiener process Wt

is given, we call a solution Xt of the SDE a strong solution. In this sense the
solution (3.2) is a strong solution. If one is free to select a Wiener process,
then a solution of the SDE is called weak solution. For a weak solution, only
the distribution of X is of interest, not its path.

Assuming an identical sample path of a Wiener process for the SDE and
for a numerical approximation yh

t
, a pathwise comparison of the trajectories

Xt with y
h

t
is possible for all tj . For example, for tm = T the absolute error
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of a strong solution for a given Wiener process is |XT −yh

T
|. For another path

of the Wiener process the error is somewhat different. We average the error
over “all” sample paths of the Wiener process:

Definition 3.1 (absolute error)

For a strong solution Xt of the SDE with approximation yh

t
the absolute

error at T is ε(h) := E(|XT − yh

T
|).

In practice we represent the set of all sample paths of a Wiener process by
N different simulations.

Example 3.2 (Euler method)

For the SDE with X0 = 50, α = 0.06, β = 0.3, T = 1 we investigate
experimentally how the absolute error of the Euler method (3.1) depends
on h. Starting with a first choice of h we calculate N = 50 simulations
and for each realization the values of XT and yT —that is XT,k, yT,k

for k = 1, ..., N . Again: to obtain pairs of comparable trajectories, also
the theoretical solution (3.2) is fed with the same Wiener process used in
(3.1). Then we calculate the estimate ε̂ of the absolute error ε,

ε̂(h) :=
1
N

N∑
k=1

|XT,k − y
h

T,k
| .

Such an experiment was performed for five values of h. In this way the
first series of results were obtained (first line in Table 3.1). Such a series
of experiments was repeated twice, using other seeds. As Table 3.1 shows,
ε̂(h) decreases with decreasing h, but slower than one would expect from
the behavior of the Euler method applied to deterministic differential
equations. The order can be determined by fitting the values of the table.
We bypass this and test the order O(h1/2) right away. To this end, divide
each ε̂(h) of the table by the corresponding h

1/2. This shows that the
order O(h1/2) is correct, because each entry of the table leads essentially
to the same constant value, here 2.8. Apparently this example satisfies
ε̂(h) ≈ 2.8 h1/2. For another example we would expect a different constant.

Table 3.1. Results of Example 3.2

Table of the ε̂(h) h = 0.01 h = 0.005 h = 0.002 h = 0.001 h = 0.0005

series 1 (with seed1) 0.2825 0.183 0.143 0.089 0.070
series 2 (with seed2) 0.2618 0.195 0.126 0.069 0.062
series 3 (with seed3) 0.2835 0.176 0.116 0.096 0.065
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3.1 Approximation Error

These results obtained for the estimates ε̂ are assumed to be valid for ε.
This leads to postulate

ε(h) ≤ c h
1/2 = O(h1/2).

The order of convergence is worse than the order O(h), which Euler’s method
(3.1) achieves for deterministic differential equations (b ≡ 0). But in view of
(1.28), (dW )2 = h, the order O(h1/2) is no surprise. For a proof of the order,
see [KlP92].

Definition 3.3 (strong convergence)

yh

T
converges strongly to XT with order γ > 0,

if ε(h) = E(|XT − yh

T
|) = O(hγ).

yh

T
converges strongly, if

lim
h→0

E(|XT − y
h

T
|) = 0 .

Hence the Euler method applied to SDEs converges strongly with order 1/2.
Note that convergence refers to fixed finite intervals, here for a fixed value T .
For long-time integration (T → ∞), see the Notes at the end of this chapter.

Strongly convergent methods are appropriate when the trajectory itself is
of interest. This was the case for Figures 1.16 and 1.17. Often the pointwise
approximation of Xt is not our real aim but only an intermediate result in
the effort to calculate a moment. For example, many applications in finance
need to approximate E(XT ). A first conclusion from this situation is that of
all calculated yi only the last is required, namely, yT . A second conclusion is
that for the expectation a single sample value of yT is of little interest. The
same holds true if the ultimate interest is Var(XT ) rather than XT . In this
situation the primary interest is not strong convergence with the demanding
requirement yT ≈ XT and even less yt ≈ Xt for t < T . Instead the concern is
the weaker requirement to approximate moments or other functionals of XT .
Then the aim is to achieve E(yT ) ≈ E(XT ), or E(|yT |q) ≈ E(|XT |q), or more
general E(g(yT )) ≈ E(g(XT )) for an appropriate function g.

Definition 3.4 (weak convergence)

yh

T
converges weakly to XT with respect to g with order β > 0,

if E(g(XT )) − E(g(yh

T
)) = O(hβ).

y
h

T
converges weakly to XT with order β,

if this holds for all polynomials g.

The Euler scheme is weakly O(h1) convergent provided the coefficient func-
tions a and b are four times continuously differentiable ([KlP92], Chapter
14). For the special polynomial g(x) = x, (B1.4) implies convergence of the
mean E(x). For g(x) = x2 the relation Var(X) = E(X2) − (E(X))2 implies
convergence of the variance (the reader may check). Proceeding in this way
implies weak convergence with respect to all moments.
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Since the properties of the integrals on which expectation is based lead
to

|E(X) − E(Y )| = |E(X − Y )| ≤ E(|X − Y |) ,

we confirm that strong convergence implies weak convergence with respect
to g(x) = x.

When weakly convergent methods are evaluated, the outcomes XT and
yT need not be based on the same stochastic process, only their probability
distributions must be close. This allows for a simplification of Euler’s me-
thod. The increments ΔW can be replaced by other random variables ΔŴ
that have the same expectation and variance. ΔWj can be replaced by the
simple approximation ΔŴj = ±

√
Δt, where each sign occurs with probabi-

lity 1/2. The moments match; in particular, expectation and variance of ΔŴ
and ΔW are the same: E(ΔŴ ) = 0, E(ΔŴ 2) = Δt. The replacing random
variables ΔŴj are by far easier to evaluate, costs can be saved significantly
(−→ Exercise 3.15). The simplified Euler method is again weakly convergent
with order 1.

3.2 Stochastic Taylor Expansion

The derivation of algorithms for the integration of SDEs is based on stocha-
stic Taylor expansions. To facilitate the understanding of stochastic Taylor
expansions we confine ourselves to the scalar and autonomous1 case, and
first introduce the terminology by means of the deterministic case. That is,
we begin with d

dt
Xt = a(Xt). The chain rule for arbitrary f ∈ C1(IR) is

d
dt
f(Xt) = a(Xt)

∂

∂x
f(Xt) =: Lf(Xt) .

With the linear operator L this rule in integral form is

f(Xt) = f(Xt0
) +
∫

t

t0

Lf(Xs) ds . (3.3)

This version is resubstituted for the integrand f̃(Xs) := Lf(Xs), which re-
quires at least f ∈ C2, and gives the term in braces:

f(Xt) = f(Xt0
) +
∫

t

t0

{
f̃(Xt0

) +
∫

s

t0

Lf̃(Xz) dz
}

1 An autonomous differential equation does not explicitly depend on the
independent variable, here a(Xt) rather than a(Xt, t). The standard GBM
Model 1.13 of the stock market is autonomous for constant μ and σ.
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3.2 Stochastic Taylor Expansion

=f(Xt0
) + f̃(Xt0

)
∫

t

t0

ds+
∫

t

t0

∫
s

t0

Lf̃(Xz) dz ds

=f(Xt0
) + Lf(Xt0

)(t− t0) +
∫

t

t0

∫
s

t0

L
2
f(Xz) dz ds

This version of the Taylor expansion consists of two terms and the remainder
as double integral. To get the next term of the second-order derivative, apply
(3.3) for L2f(Xz), and split off the term

L
2
f(Xt0

)
∫

t

t0

∫
s

t0

dz ds = L
2
f(Xt0

)
1
2
(t− t0)2

from the remainder double integral. At this stage, the remainder is a triple
integral. This procedure is repeated to obtain the Taylor formula in integral
form. Each further step requires more differentiability of f .

We now devote our attention to stochastic diffusion and investigate the
Itô-Taylor expansion of the autonomous scalar SDE

dXt = a(Xt) dt+ b(Xt) dWt .

Itô’s Lemma for g(x, t) := f(x) is

df(Xt) =
{
a
∂

∂x
f(Xt) +

1
2
b
2
∂2

∂x2
f(Xt)︸ ︷︷ ︸

=:L0
f(Xt)

}
dt+ b

∂

∂x
f(Xt)︸ ︷︷ ︸

=:L1
f(Xt)

dWt ,

or in integral form

f(Xt) = f(Xt0
) +
∫

t

t0

L
0
f(Xs) ds+

∫
t

t0

L
1
f(Xs) dWs . (3.4)

This SDE will be applied for different choices of f . Specifically for f(x) ≡ x

the SDE (3.4) recovers the original SDE

Xt = Xt0
+
∫

t

t0

a(Xs) ds+
∫

t

t0

b(Xs) dWs . (3.5)

First apply (3.4) to f = a and to f = b. The resulting versions of (3.4) are
substituted in (3.5) leading to

Xt =Xt0
+
∫

t

t0

{
a(Xt0

) +
∫

s

t0

L
0
a(Xz) dz +

∫
s

t0

L
1
a(Xz) dWz

}
ds

+
∫

t

t0

{
b(Xt0

) +
∫

s

t0

L
0
b(Xz) dz +

∫
s

t0

L
1
b(Xz) dWz

}
dWs
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with
L

0
a = aa

′ + 1

2
b2a′′

L
1
a = ba

′

L
0
b = ab

′ + 1

2
b2b′′

L
1
b = bb

′
.

(3.6)

Summarizing the four double integrals into one remainder expression R, we
have

Xt = Xt0
+ a(Xt0

)
∫

t

t0

ds+ b(Xt0
)
∫

t

t0

dWs +R , (3.7a)

with

R =
∫

t

t0

∫
s

t0

L
0
a(Xz) dz ds+

∫
t

t0

∫
s

t0

L
1
a(Xz) dWz ds

+
∫

t

t0

∫
s

t0

L
0
b(Xz) dz dWs +

∫
t

t0

∫
s

t0

L
1
b(Xz) dWz dWs .

(3.7b)

The order of the terms is limited by the number of repeated integrations. In
view of (1.28), dW 2 = dt, we expect the last of the integrals in (3.7b) to be
of first order (and show this below).

In an analogous fashion the integrands in (3.7b) can be replaced using
(3.4) with appropriately chosen f . In this way triple integrals occur. We
illustrate this for the integral on f = L1b, which is the double integral of
lowest order. The non-integral term of (3.4) allows to split off another “ground
integral” with constant integrand,

R = L
1
b(Xt0

)
∫

t

t0

∫
s

t0

dWz dWs + R̃ .

In view of (3.6) and (3.7a) this result can be summarized as

Xt =Xt0
+ a(Xt0

)
∫

t

t0

ds+ b(Xt0
)
∫

t

t0

dWs

+ b(Xt0
)b′(Xt0

)
∫

t

t0

∫
s

t0

dWz dWs + R̃ .

(3.8)

A general treatment of the Itô-Taylor expansion with an appropriate forma-
lism is found in [KlP92].

The next step is to formulate numerical algorithms out of the equations
derived by the stochastic Taylor expansion. To this end the integrals must
be solved. For (3.8) we need a solution of the double integral. For Xt = Wt

the Itô Lemma with a = 0, b = 1 and y = g(x) := x2 leads to the equation
d(W 2

t
) = dt+ 2Wt dWt. Specifically for t0 = 0 this is the equation∫

t

0

∫
s

0

dWz dWs =
∫

t

0

Ws dWs = 1

2
W

2

t
− 1

2
t . (3.9)

Another derivation of (3.9) uses
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3.3 Examples of Numerical Methods

n∑
j=1

Wtj
(Wtj+1

−Wtj
) = 1

2
W

2

t
− 1

2

n∑
j=1

(Wtj+1
−Wtj

)2

for t = tn+1 and t1 = 0, and takes the limit in the mean on both sides (−→
Exercise 3.2). The general version of (3.9) needed for (3.8) is∫

t

t0

Ws dWs = 1

2
(Wt −Wt0

)2 − 1

2
(t− t0) .

With Δt := t−t0 and the random variable ΔWt := Wt−Wt0
this is rewritten

as ∫
t

t0

∫
s

t0

dWz dWs = 1

2
(ΔWt)

2 − 1

2
Δt . (3.10)

Since this double integral is of order Δt, it completes the list of first-order
terms.

Also the three other double integrals∫
t

t0

∫
s

t0

dz ds ,
∫

t

t0

∫
s

t0

dWz ds ,
∫

t

t0

∫
s

t0

dz dWs

are needed for the construction of higher-order numerical methods. The first
integral is elementary, it is of second order and not stochastic. The two others
depend on each other via the equation∫

t

t0

∫
s

t0

dz dWs +
∫

t

t0

∫
s

t0

dWz ds =
∫

t

t0

dWs

∫
t

t0

ds (3.11)

(−→ Exercise 3.3). This indicates that the two remaining double integrals are
of order (Δt)3/2. We will return to these integrals in the following section.

3.3 Examples of Numerical Methods

Now we apply the stochastic Taylor expansion to construct numerical me-
thods for SDEs. First we check how Euler’s method (3.1) evolves. Here we
evaluate the integrals in (3.7a) and substitute

t0 → tj , t→ tj+1 = tj +Δt .

This leads to

Xtj+1
= Xtj

+ a(Xtj
)Δt+ b(Xtj

)ΔWj +R .

After neglecting the remainder R the Euler scheme of (3.1) results, here for
autonomous SDEs.

To obtain higher-order methods, further terms of the stochastic Taylor
expansions are added. We may expect a “repair” of the half-order O(

√
Δt)

by including the lowest-order double integral of (3.8), which is calculated in
(3.10). The resulting correction term, after multiplying with bb′, is added to
the Euler scheme. Discarding the remainder R̃, an algorithm results, which
is due to [Mil74].
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Algorithm 3.5 (Milstein)

Start: t0 = 0, y0 = X0, W0 = 0, Δt = T/m

loop j = 0, 1, 2, ...,m− 1 :
tj+1 = tj +Δt

Calculate the values a(yj), b(yj), b′(yj)

ΔW = Z
√
Δt with Z ∼ N (0, 1)

yj+1 = yj + aΔt+ bΔW +
1
2
bb

′ · ((ΔW )2 −Δt)

This integration method by Milstein is strongly convergent with order one
(−→ Exercise 3.8). Adding the correction term has raised the strong conver-
gence order of Euler’s method to 1.

Runge–Kutta Methods

A disadvantage of the Taylor-expansion methods is the use of the derivatives
a′, b′, ... Analogously as with deterministic differential equations there is
the alternative of Runge–Kutta–type methods, which only evaluate a or b for
appropriate arguments.

As an example we discuss the factor bb′ of Algorithm 3.5, and see how to
replace it by an approximation. Starting from

b(y +Δy) − b(y) = b
′(y)Δy +O((Δy)2)

and using Δy = aΔt+ bΔW we deduce in view of (1.28) that

b(y +Δy) − b(y) = b
′(y)(aΔt+ bΔW ) +O(Δt)

= b
′(y)b(y)ΔW +O(Δt) .

Applying (1.28) again, we substitute ΔW =
√
Δt and arrive at an O(

√
Δt)-

approximation of the product bb′, namely,

1
√
Δt

(
b[yj + a(yj)Δt+ b(yj)

√
Δt] − b(yj)

)
.

This expression is used in the Milstein scheme of Algorithm 3.5. The resulting
variant

ŷ :=yj + aΔt+ b
√
Δt

yj+1 =yj + aΔt+ bΔW +
1

2
√
Δt

(ΔW 2 −Δt)[b(ŷ) − b(yj)]
(3.12)

is a Runge–Kutta method, which also converges strongly with order one.
Versions of these schemes for nonautonomous SDEs read analogously.
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3.3 Examples of Numerical Methods

Taylor Scheme with Weak Second-Order Convergence.

Next we investigate the method that results when in the remainder term
(3.7b) the ground integrals of all double integrals are split off. This is done
by applying (3.4) for f = L0a, f = L1a, f = L0b, f = L1b . Then the new
remainder R̃ consists of triple integrals. For f = L1b this analysis was carried
out at the end of Section 3.2. With (3.6) and (3.10) the correction term

bb
′
1
2

(
(ΔW )2 −Δt

)
has resulted, leading to the strong convergence order one of the Milstein
scheme. For f = L0a the integral is not stochastic and the term(

aa
′ +

1
2
b
2
a
′′

)
1
2
Δt

2

is an immediate consequence. For f = L1a and f = L0b the integrals are
again stochastic, namely,

I(1,0) :=
∫

t

t0

∫
s

t0

dWz ds =
∫

t

t0

(Ws −Wt0
) ds ,

I(0,1) :=
∫

t

t0

∫
s

t0

dz dWs =
∫

t

t0

(s− t0) dWs .

Summarizing all terms, the preliminary numerical scheme is

yj+1 = yj + aΔt+ bΔW +
1
2
bb

′
(
(ΔW )2 −Δt

)
+

1
2

(
aa

′ +
1
2
b
2
a
′′

)
Δt

2 + ba
′
I(1,0) +

(
ab

′ +
1
2
b
2
b
′′

)
I(0,1) .

(3.13)

It remains to approximate the two stochastic integrals I(0,1) and I(1,0). Setting
ΔY := I(1,0) we have in view of (3.11)

I(0,1) = ΔWΔt−ΔY .

At this state the two stochastic double integrals I(0,1) and I(1,0) are expressed
in terms of only one random variable ΔY , in addition to the variable ΔW
used before. Since for weak convergence only the correct moments are needed,
all occurring random variables (here ΔW and ΔY ) can be replaced by other
random variables with the same moments. The normally distributed random
variable ΔY has expectation, variance and covariance

E(ΔY ) = 0, E(ΔY 2) =
1
3
(Δt)3, E(ΔYΔW ) =

1
2
(Δt)2 (3.14)

(−→ Exercise 3.4). Such a random variable can be realized by two indepen-
dent normally distributed variates Z1 and Z2,
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ΔY =
1
2
(Δt)3/2

(
Z1 +

1
√

3
Z2

)
with Zi ∼ N (0, 1), i = 1, 2

(3.15)

(−→ Exercise 3.5). With this realization of ΔY we have approximations of
I(0,1) and I(1,0), which are substituted into (3.13).

Next the random variable ΔW is replaced by other variates for which the
moments match. Choosing ΔW̃ trivalued such that the two values ±

√
3Δt

occur with probability 1/6, and the value 0 with probability 2/3, then the
random variable ΔỸ := 1

2
Δt ΔW̃ has the moments in (3.14) up to terms

of order O(Δt3) (−→ Exercise 3.6). As a consequence, the simplification of
(3.13)

yj+1 = yj + aΔt+ bΔW̃ +
1
2
bb

′

(
(ΔW̃ )2 −Δt

)
+

1
2

(
aa

′ +
1
2
b
2
a
′′

)
Δt

2 +
1
2

(
a
′
b+ ab

′ +
1
2
b
2
b
′′

)
ΔW̃Δt

(3.16)

is second-order weakly convergent.

Higher–Dimensional Cases

In higher-dimensional cases there are additionally mixed terms. We distin-
guish two kinds of “higher–dimensional”:

1.) y ∈ IRn

, a, b ∈ IRn. Then, for instance, replace bb′ by ∂b

∂y
b, where ∂b

∂y
is

the Jacobian matrix of all first-order partial derivatives.
2.) For multiple Wiener processes the situation is more complicated, because

then simple explicit integrals as in (3.9) do not exist. Only the Euler
scheme remains simple: for m Wiener processes the Euler scheme is

yj+1 = yj + aΔt+ b
(1)
ΔW

(1) + ...+ b
(m)

ΔW
(m)

.

The Figure 3.2 depicts two components of the system of Example 1.15.

Jump Diffusion

Jump diffusion can be simulated analogously as pure diffusion. Thereby the
jump times are not included in the equidistant grid of the jΔt. An alternative
is to simulate the jump times τ1, τ2, . . . separately, and superimpose them on
the Δt-size grid. Then the jumps can be carried out correctly. With such
jump-adapted schemes higher accuracy can be obtained [BrLP06], see also
[HiK05].
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3.4 Intermediate Values

3.4 Intermediate Values

Integration methods as discussed in the previous section calculate approxi-
mations yj only at the grid points tj . This leaves the question how to obtain
intermediate values, namely, approximations y(t) for t �= tj . This situation
is simple for deterministic ODEs. There we have in general smooth soluti-
ons, which suggests to construct an interpolation curve joining the calculated
points (yj , tj). The deterministic nature guarantees that the interpolation is
reasonably close to the exact solution, at least for small steps Δt.

A smooth interpolation is at variance with the stochastic nature of so-
lutions of SDEs. When Δt is small, it may be sufficient to match the “ap-
pearance” of a stochastic process. For example, a linear interpolation is easy
to be carried out. Such an interpolating continuous polygon was used for
the Figures 1.16 and 1.17. Another easily executable alternative would be to
construct an interpolating step function with step length Δt. Such an argu-
mentation is concerned with the graphical aspects of filling, and does not pay
attention to the law given by an underlying SDE.

The situation is different when the gaps between two calculated yj and
yj+1 are large. Then the points that are supposed to fill the gaps should
satisfy the underlying SDE. A Brownian bridge is a proper means to fill the
gaps in Brownian motion. For illustration assume that y0 (for t = 0) and yT

(for t = T ) are to be connected. Then the Brownian bridge defined by

Bt = y0

(
1 −

t

T

)
+ yT

t

T
+
{
Wt −

t

T
WT

}
(3.17)

describes the stochastic behavior that matches Brownian motion. The first
two terms represent a straight-line connection between y0 and yT . This line
segment stands for the trend. The term Wt −

t

T
WT describes the stochastic

fluctuation (−→ Exercise 3.7).
Bridges such as the Brownian bridge have important applications. For

example, suppose that for a stochastic process St a large step has been taken
from S0 to some value ST . The question may be, what is the largest value of
St in the gap 0 < t < T ? Or, does St reach a certain barrier B? Of course,
answers can be expected only with a certain probability. A crude method
to tackle the problem would be to calculate a dense chain of Stj

in the gap
with a small step size Δt. This is a costly way to get the information. As
an alternative, one can evaluate the relevant probabilities of the behavior of
bridges directly, without explicitly constructing intermediate points. In this
way, larger steps are possible, and costs are reduced. There are several alter-
native ways to calculate intermediate values, in particular in the multifactor
case [Gla04]. For example, the principal component analysis can be applied to
approximate the bridge. Here the covariance matrix is taken from the vector
(W (t0), . . . ,W (tm)), where tm = T .
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3.5 Monte Carlo Simulation

As pointed out in Section 2.4 in the context of calculating integrals, Monte
Carlo is attractive in high-dimensional spaces. The same characterization
holds when Monte Carlo (MC) is applied to the valuation of options. For sake
of clarity we describe the approach for European vanilla options in context
with the one-dimensional Black–Scholes model. But bear in mind that MC is
broadly applicable, which will be demonstrated by means of an exotic option
at the end of this section.

From Section 1.7.2 we take the one-factor model of a geometric Brownian
motion of the asset price St,

dS
S

= μ dt+ σ dW .

Here μ is the expected growth rate. When options are to be priced we assume
a risk-neutral world and replace μ accordingly (by r, or by r − δ in case
of a dividend yield δ, compare Section 1.7.3 and Remark 1.14. Recall the
lognormal distribution of GBM, with density function (1.48).

The Monte Carlo simulation of options can be seen in two ways: either
dynamically as a process of simulating numerous paths of prices St with
subsequent appropriate valuation (as suggested by Figure 3.1), or as the
formal MC approximation of integrals. For the latter view we briefly recall
the integral representation of options in Subsection 3.5.1. Both views are
equivalent; the simulation aspect can be seen as financial interpretation and
implementation of the MC procedure for integrals.

3.5.1 Integral Representation

In the one-period model of Section 1.5 the valuation of an option was sum-
marized in (1.19) as the discounted values of a probable payoff,

V0 = e−rT

EQ(VT ) .

For the binomial model we prove for European options in Exercise 1.8 that
this method produces

V
(M)

0
= e−rT

E(VT ) ,

where E reflects expectation with respect to the risk-free probability of the bi-
nomial method. And for the continuous-time Black–Scholes model, the result
in (A4.11b) for a put is

V0 = e−rT [K F (−d2) − e(r−δ)T
S F (−d1)] , (3.18)

similarly for a call. Since F is an integral (−→ Appendix D2), equation (3.18)
is a first version of an integral representation. Its origin is either the analytic
solution of the Black–Scholes PDE, or the representation
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3.5 Monte Carlo Simulation

V0 = e−rT

∞∫
0

(K − ST )+ fGBM(ST , T ; S0, r, σ) dST . (3.19)

Here fGBM(ST , T ; S0, μ, σ) is the density (1.48) of the lognormal distribution,
with μ = r, or μ replaced by r − δ to match a continuous dividend yield δ.
It is not difficult to prove that (3.18) and (3.19) are equivalent (−→ Exercise
3.9 for δ = 0). We summarize the integral representation as

V (S0, 0) = e−rT

EQ(V (ST , T ) |S0) (3.20)

The risk-neutral expectation EQ is explained in Section 1.5. All these expec-
tations are conditional on paths starting at t = 0 with the value S0.

An integral representation offers another way to calculate V0, namely, via
an approximation by means of numerical quadrature methods (see Appendix
C1), rather than applying MC. Of course, in this one-dimensional situation,
the approximation of the closed-form solution (3.18) is more efficient. But in
higher-dimensional spaces integrals corresponding to (3.19) can be become
attractive for computational purposes. Note that the integrand is smooth
because the zero branch of the put’s payoff (K − ST )+ needs not be inte-
grated; in (3.19) the integration is cut to the interval 0 ≤ ST ≤ K. Any
numerical quadrature method can be applied, such as sparse-grid quadrature
[GeG98], [Rei04], [Que07]. But in what follows, we stay with Monte Carlo
approximations.

3.5.2 Basic Version for European Options

The simulation aspect of Monte Carlo has been described before, see Figure
3.1. The procedure consists in calculating a large number N of trajectories
of the SDE, always starting from S0, and then average over the payoff values
Ψ((ST )k) of the samples (ST )k, k = 1, . . . , N , in order to obtain informa-
tion on the probable behavior of the process. This is identical to the formal
MC method for approximating an integral as (3.19), see Section 2.4. The
equivalence with the simulation aspect is characterized by the convergence

1
N

N∑
k=1

Ψ((ST )k) −→

∫ ∞

−∞

Ψ(ST ) fGBM(ST ) dST = E(Ψ(ST )),

see (B1.3). The probability distribution of the samples (ST )k must match
the density of the chosen model, here fGBM. For the Black–Scholes model,
these samples are provided by integrating the correct SDE (1.33) under the
risk-neutral measure (μ = r for a non-dividend paying asset). Finally, the
result is discounted at the risk-free rate r to obtain the value for t = 0.

123



After having chosen the three items model, current initial value S0, and
payoff function Ψ , the Monte Carlo method works as follows:

Algorithm 3.6 (Monte Carlo simulation of European options)

(1) For k = 1, ..., N : Choose a seed and integrate the SDE of the underly-
ing model for 0 ≤ t ≤ T under the risk-neutral measure. (for example,
dS = rS dt+ σS dW )
Let the final result be (ST )k.

(2) By evaluating the payoff function Ψ one obtains the values

(V (ST , T ))k := Ψ((ST )k), k = 1, ..., N.

(3) An estimate of the risk-neutral expectation is

Ê(V (ST , T )) :=
1
N

N∑
k=1

(V (ST , T ))k.

(4) The discounted variable

V̂ := e−rT

Ê(V (ST , T ))

is a random variable with E(V̂ ) = V (S0, 0).

In case the underlying receives a continuous dividend yield δ, replace
the r in step (1) by r − δ. (not in step (4)!) The resulting V̂ is the desired
approximation V̂ ≈ V (S0, 0). In this simple form, the Monte Carlo simulation
can only be applied to European options where the exercise date is fixed. Only
the value V (S0, 0) is obtained, and the lack of other information on V (S, t)
does not allow to check whether the early-exercise constraint of an American
option is violated. For American options a greater effort in simulation is
necessary, see Section 3.6. The convergence behavior corresponds to that
discussed for Monte Carlo integration, see Section 2.4. In practice the number
N must be chosen large, for example, N = 10000. This explains why Monte
Carlo simulation in general is expensive. For standard European options with
univariate underlying that satisfies the Assumption 1.2, the alternative of
evaluating the Black–Scholes formula is by far cheaper. But in principle both
approaches provide the same result, where we neglect that accuracies and
costs are different.

For multivariate options the MC algorithm works analogously, see the
example in Section 3.5.5. But the integration of a system of n SDEs clearly
has costs depending on n. So the costs of MC depend on n. In practice, this
can affect the error. In case the budget in computing time is limited, which
is standard for realtime calculations, a limit on the budget will limit the
number N of paths, and in turn, the error. If one path costs κ seconds, and
the budget for N paths is b seconds, then (2.14a) states that the attainable
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error is of the order
√
κ/

√
b. In this sense, κ = O(n) does influence the error

of MC considerably.
Note that the above Algorithm 3.6 is a crude version of Monte Carlo simu-

lation, which needs to be refined. Since the simulations are independent, the
confidence intervals provided by the Central Limit Theorem can be applied
(−→ Appendix B1). In this way, a probabilistic error control is incorporated.
Also methods of variance reduction are applied, see Section 3.5.4.
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Fig. 3.3. Ten sequences of Monte Carlo simulations on Example 3.7, each with a

maximum of 10000 paths. horizontal axis: N , vertical axis: mean value V̂ (suffers

from bias, see Section 3.5.3)

Example 3.7 (European put)

Consider a European put with the parameters S0 = 5, K = 10, r =
0.06, σ = 0.3, T = 1. For the linear SDE dS = rS dt + σS dW with
constant coefficients the theoretical solution is known, see equation (1.54).
For the chosen parameters we have

S1 = 5 exp(0.015 + 0.3W1) ,

which requires “the” value of the Wiener process at t = 1. Related values
W1 can be obtained from (1.22) with Δt = T as W1 = Z

√
T , Z ∼ N (0, 1).

But for this illustration we do not take advantage of the analytic solu-
tion formula, because MC is not limited to linear SDEs with constant
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coefficients. To demonstrate the general procedure we integrate the SDE
numerically with step length Δt < T , in order to calculate an approxi-
mation to S1. Any of the methods derived in Section 3.3 can be applied.
For simplicity we use Euler’s method. Since the chosen value of r is small,
the discretization error of the drift term is small compared to the stan-
dard deviation of W1. As a consequence, the accuracy of the integration
for small values of Δt is hardly better than for larger values of the step
size. Artificially we choose Δt = 0.02 for the time step. Hence each tra-
jectory requires to calculate 50 normal variates ∼ N (0, 1). Figure 3.3
shows the values V̂ ≈ V (S0, 0) for 10 sequences of simulations, each with
a maximum of N = 10000 trajectories, calculated with Algorithm 3.6.
Each sequence has started with a different seed for the calculation of the
random numbers from Section 2.3.
The Example 3.7 is a European put with the same parameters as Example
1.5. This allows to compare the results of the simulation with the more
accurate results from Table 1.2, where we have obtained V (5, 0) ≈ 4.43.
The simulations reported in Figure 3.3 have difficulties to come close to
this value. Since Figure 3.3 depicts all intermediate results for sample sizes
N < 10000, the convergence behavior of Monte Carlo can be observed. For
this example and N < 2000 the accuracy is bad; for N ≈ 6000 it reaches
acceptable values, and hardly improves for 6000 < N ≤ 10000. Note that
the “convergence” is not monotonous, and one of the simulations delivers
a frustratingly inaccurate result. (−→ Exercise 3.11)

3.5.3 Bias

The sampling error of Monte Carlo, which is characterized by the central
limit theorem, was already discussed in Section 2.4. Recall the size of this
error is proportional to N−1/2. In principle, the same error is encountered
when Monte Carlo is applied to option valuation. In case of the Black–Scholes
model, when the closed-form solution (1.54) of the SDE can be used in step (1)
of Algorithm 3.6, the sampling error is basically the only error. But for general
options, approximations are often based on discretizations (as in Example
3.7), and some bias is encountered. As a result, the error deteriorates.

Bias typically occurs when the option is path-dependent —that is, its
value depends on St for possibly all t ≤ T . For example, the volatility may
be local, which means that it depends on St, σ = σ(S). Another example is
furnished by the lookback option, where the valuation depends on

x := E

(
max

0≤t≤T

St

)
.

In both examples, a time discretization may help with a finite number m of
values Stj

, with the notation as used in (3.1). Even if the underlying SDE is

           Chapter 3 Monte Carlo Simulation with Stochastic Differential Equations126



3.5 Monte Carlo Simulation

such that a closed-form solution is available, the estimator provided by the
discretely sampled maximum

x̂ := max
0≤j≤m

Stj

almost surely underestimates x. That is, the estimator x̂ of x is biased, with

bias(x̂) := E(x̂) − x �= 0 . (3.21)

The lookback option is one example where local information on the indi-
vidual paths is required. Other examples of exotic options requiring Stj

for
several tj are barrier options, and Asian options, see Section 6.1. In these
examples, if applied to the Black–Scholes model, the analytic solution can be
used locally in each step. Two alternatives for a step from t to t+Δt are

St+Δt = St exp[(μ− 1

2
σ

2)Δt+ σΔW ] (unbiased)
St+Δt = St (1 + μΔt+ σΔW ) (Euler’s step, biased)

(3.22)

For the bias due to the application of Euler’s scheme, see Exercise 3.10.
Compare Figures 3.3 and 3.5 for results with and without bias.

Fortunately, when sufficient computing time is available, this bias can be
made arbitrarily small by taking sufficiently large values of m. There is a
tradeoff between making the variance small (N → ∞), and making the bias
small (m→ ∞, Δt → 0). The mean square error

MSE(x̂) := E[(x̂− x)2] (3.23a)

measures both errors: A straightforward calculation (which the reader may
check) shows

MSE(x̂) = (E(x̂) − x)2 + E[(x̂− E(x̂))2]

= (bias(x̂))2 + Var(x̂)
(3.23b)

The final aim is to make MSE small, and the investigator must balance the
effort in controlling the bias or the sampling error.

We outline this for a Monte Carlo approximation that makes use of a nu-
merical integration scheme such as Euler’s method. For brevity, write again
h for the step Δt. Let x̂ := yh

T
be the result of a weakly convergent discretiza-

tion scheme, see Definition 3.4, with order β and g =identity. Then the bias
of the discretization is of the order β,

bias(x̂) = α1h
β

, α1 a constant.

Since the variance of Monte Carlo is of the order N−1 (N the sample size,
see (2.14a)), (3.23b) leads to model the mean square error as

MSE = α
2

1
h

2β +
α2

N
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for some constant α2. This error model allows to analyze the tradeoff (N → ∞
or h → 0) more closely (−→ Exercise 3.13). It turns out that for optimally
chosen h,N the error

√
MSE behaves like

√
MSE ∼ C

−
β

1+2β

where C denotes the costs of the approximation. Applying Euler’s method
(β = 1) gives the exponent −1/3, clearly worse than the exponent −1/2 of
an unbiased Monte Carlo. As [Gla04] points out, this result emphasizes the
importance of high-order schemes (β > 1) for high demands of accuracy.
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Fig. 3.4. Ten series of antithetic simulations on Example 3.7

3.5.4 Variance Reduction

To improve the accuracy of simulation and thus the efficiency, it is essential to
apply methods of variance reduction. We explain the methods of the antithetic

variates and the control variates. In many cases these methods decrease the
variances.

Antithetic Variates

If a random variable satisfies Z ∼ N (0, 1), then also −Z ∼ N (0, 1). Let V̂
denote the approximation obtained by Monte Carlo simulation. With little
extra effort during the original Monte Carlo simulation we can run in parallel
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a side calculation which uses −Z instead of Z. For each original path this
creates a “partner” path, which looks like a mirror image of the original. The
partner paths also define a Monte Carlo simulation of the option, called the
antithetic variate, denoted by V −. The average

VAV := 1

2

(
V̂ + V

−

)
(3.24)

(AV for antithetic variate) is a new approximation, which in many cases is
more accurate than V̂ . Since V̂ and VAV are random variables we can only
aim at

Var(VAV) < Var(V̂ ) .

In view of the properties of variance and covariance (equation (B1.7)),

Var(VAV) = 1

4
Var(V̂ + V

−)

= 1

4
Var(V̂ ) + 1

4
Var(V −) + 1

2
Cov(V̂ , V −) .

(3.25)

From
|Cov(X,Y )| ≤

1
2
[Var(X) + Var(Y )]

(follows from (B1.7)) we deduce

Var(VAV) ≤
1
2
(Var(V̂ ) + Var(V −)) .

By construction, Var(V̂ ) = Var(V −) should hold. Hence Var(VAV) ≤ Var(V̂ ).
This shows that in the worst case only the efficiency is slightly deteriorated
by the additional calculation of V −. The favorable situation is when the co-
variance is negative. Then (3.25) shows that the variance of VAV can become
significantly smaller than that of V̂ . Since we have chosen the random num-
bers −Z for the calculation of V −, the chances are high that V̂ and V − are
negatively correlated and hence Cov(V̂ , V −) < 0. In this situation VAV is a
better approximation than V̂ . Variance reduction by antithetic variates may
not be too effective, but is easily implemented.

In Figure 3.4 we simulate Example 3.7 again, now with antithetic variates.
With this example and the chosen random number generator2 the variance
reaches small values already for small N . Compared to Figure 3.3 the conver-
gence is somewhat smoother. The accuracy the experiment shown in Figure
3.3 reaches with N = 6000 is achieved already with N = 2000 in Figure 3.4.
But in the end, the error has not become really small. The main reason for
the remaining significant error in the experiment reported by Figure 3.4 is
the bias due to the discretization error of the Euler scheme. To remove this
source of error, we repeat the above experiments with the analytical solution
of (1.54). The result is shown in Figure 3.5 for crude Monte Carlo, and in

2 the simple generator of Algorithm 2.7
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Figure 3.6 for MC with antithetic variates. These figures better reflect the
convergence behavior of Monte Carlo simulation. By the way, applying the
Milstein scheme of Algorithm 3.5 does not improve the picture: No qualita-
tive change is visible if we replace the Euler-generated simulations of Figures
3.3/3.4 by their Milstein counterparts. This may be explained by the fact
that the weak convergence order of Milstein’s method equals that of the Eu-
ler method. — Recall that Example 3.7 is chosen merely for illustration; here
other methods are by far more efficient than Monte Carlo approaches.
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Fig. 3.5. Five series of Monte Carlo simulations on Example 3.7, using the analytic

solution of the SDE (compare to Fig. 3.3)

Control Variates

Again V denotes the exact value of the option and V̂ a Monte Carlo appro-
ximation. For comparison we calculate in parallel another option, which is
closely related to the original option, and for which we know the exact value
V ∗. Let the Monte Carlo approximation of V ∗ be denoted V̂ ∗. This variate
serves as control variate with which we wish to “control” the error. The addi-
tional effort to calculate the control variate V̂ ∗ is small in case the simulations
of the asset S are identical for both options. This situation arises when S0, μ

and σ are identical and only the payoff differs. When the two options are
similar enough one may expect a strong positive correlation between them.
So we expect relatively large values of Cov(V, V ∗) or Cov(V̂ , V̂ ∗), close to its
upper bound,
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Fig. 3.6. Five series of Monte Carlo simulations on Example 3.7 using the analytic

solution of the SDE and antithetic variates (3.24) (compare to Fig. 3.4)

Cov(V̂ , V̂ ∗) ≈
1
2
Var(V̂ ) +

1
2
Var(V̂ ∗) .

This leads us to define “closeness” between the options as sufficiently large
covariance in the sense

Cov(V̂ , V̂ ∗) >
1
2
Var(V̂ ∗) . (3.26)

The method is motivated by the assumption that the unknown error V−V̂ has
the same order of magnitude as the known error V ∗ − V̂ ∗. This anticipation
can be written V ≈ V̂ + (V ∗ − V̂

∗), and leads to define

VCV := V̂ + V
∗ − V̂

∗ (3.27)

as another approximation (CV for control variate). We see from (B1.6) (with
β = V

∗) and (B1.7) that

Var(VCV) = Var(V̂ − V̂
∗) = Var(V̂ ) + Var(V̂ ∗) − 2Cov(V̂ , V̂ ∗) .

If (3.26) holds, then Var(VCV) < Var(V̂ ). In this sense Var(VCV) is a better
approximation than V̂ .
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Fig. 3.7. Example 3.8, binary option. horizontal: (S1, S2)-plane, vertical: V (S1, S2);

top: two paths starting at S1 = S2 = 5 with their payoff values; bottom: N = 1000

terminal points with their payoff values

3.5.5 Application to an Exotic Option

As mentioned before, the error of Monte Carlo methods basically does not
vary with the dimension. As an example we choose a two-dimensional binary
put to illustrate that MC can be applied as easily as in a one-dimensional
situation.

Assume that two underlying assets S1(t), S2(t) obey a two-dimensional
GBM,
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dS1 = S1 (μ1 dt+ σ1 dW (1))

dS2 = S2 (μ2 dt+ σ2 (ρ dW (1) +
√

1 − ρ2 dW (2))) .
(3.28)

This makes use of Exercise 2.9: W (1) and W (2) are two uncorrelated Wiener
processes, and the way they interact in (3.28) establishes a correlation ρ

between S1 and S2. The analytic solution of (3.28) is given by

S1(T ) = S1(0) exp
(

(μ1 −
1
2
σ

2

1
)T + σ1W

(1)(T )
)

S2(T ) = S2(0) exp
(

(μ2 −
1
2
σ

2

2
)T + σ2(ρW (1)(T ) +

√
1 − ρ2W

(2)(T ))
)
,

(3.29)
which generalizes (1.54).

Example 3.8 (2D European binary put)

A two-asset cash-or-nothing put pays the fixed cash amount c in case

S1(T ) < K1 and S2(T ) < K2 .

We choose the parameters T = 1, K1 = K2 = 5, σ1 = 0.2, σ2 = 0.3,
ρ = 0.3, c = 1, r = 0.1; no dividends, so the “costs of carry” are taken as
μ1 = μ2 = r. The value V (S1, S2, 0) is to be evaluated at S1(0) = S2(0) =
5.

Figure 3.7 illustrates both the payoff of this exotic option and the Monte Carlo
approach. The top figure depicts the box characterizing the payoff. Further,
two paths starting at S1(0) = S2(0) = 5 are drawn. For t = T , one of the
paths ends inside the box; accordingly the payoff value there is V = c = 1.
The other path terminates “outside the strike,” the payoff value is zero. Since
we have the analytic solution (3.29), no paths need to be calculated. Rather,
terminal points (S1(T ), S2(T )) are evaluated by (3.29). The lower figure in
Figure 3.7 shows 1000 points calculated in this way. Taking the mean value
and discounting as in Algorithm 3.6, yields approximations to V (5, 5, 0). With
N = 105 simulations we obtain

V (5, 5, 0) ≈ 0.174 ,

using random numbers based on the simple generator of Algorithm 2.7. The
accuracy is almost three digits.3 Using Euler’s method rather than the analy-
tic solution, Example 3.8 offers nice possibilities to conduct empirical studies
in controlling either the bias or the sample error. We conclude Example 3.8
with Figure 3.8, which depicts the entire surface V (S1, S2, 0), calculated with
Algorithm 1.18 [Que07].

3 This example has an analytic solution based on bivariate distribution
functions, see [Haug98].
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Fig. 3.8. Example 3.8: surface V (S1, S2, 0) calculated by Algorithm 1.18. With

kind permission of Sebastian Quecke.

3.6 Monte Carlo Methods for American Options

The equation (3.20) can be generalized to American options. Similar as for
European options, Monte Carlo applied to American options requires simu-
lating paths St of the underlying model. Again, for ease of exposition, we
think of the prototype example of the univariate Black–Scholes model where
we integrate dSt = rSt dt+σSt dWt for t ≥ 0. Whereas for European options
it is clear to integrate until expiration, t = T , the American option requires
to continuously investigate whether early exercise is advisable.

3.6.1 Stopping Time

For motivation, think of a price limit β of an asset, such that a stop-buy
order is to be carried out at that level. The decision is prompted by the event
that St reaches β for some “stopping time” τ . Or, for the life of an American
option, the decisive event is “early exercise,” which amounts to a “stop” in
holding the option. To mimic reality, one must take care that for any t the
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decision (on early exercise, for example) is only based on the information that

is known so far. This situation suggests defining a stopping time to be not
anticipating. A stochastic process St builds a natural filtration Ft, which is
interpreted as a model of the information available at time t (−→ Appendix
B2). Accordingly, for a stopping time τ we require {τ ≤ t} ∈ Ft for all t ≥ 0,
where the set {τ ≤ t} represents all decisions until time t. That is:

Definition 3.9 (stopping time)

A stopping time τ with respect to a filtration Ft is a random variable
that is Ft-measurable for all t ≥ 0.

Typically, a decision is triggered when τ is reached, such as exercising early.
For any time t we know whether τ ≤ t —that is, whether the decision is made.
Suppose we travel along the path of a specific realization of a stochastic
process St and look up at the event that defines τ . In this way we get a
realization of the random variable τ ; for each path obtain another value.

S
0

T

0

S

τ

β

t

Fig. 3.9. The strategy of Example 3.10 to define a stopping time τ

Two examples should make the concept of a stopping time clearer.

Example 3.10 (hitting time)

For a value β, which fixes a level of S, define

τ := inf{ t > 0 | St ≥ β } ,

and τ := ∞ if such a t does not exist.

This example, illustrated in Figure 3.9, fulfills the requirements of a stopping
time.4 It defines a stopping strategy, “stop when St has reached β.”

The example

t
∗ := moment when St reaches its maximum over 0 ≤ t ≤ T

is no stopping time, because for each t < T it can not be decided whether
t
∗ ≤ t or t∗ > t; it is not possible to decide whether to stop.

4 For a proof see [HuK00], p.42, or [Shr04], p.341.
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In the context of American options, of all possible stopping times, the
stopping at the early-exercise curve is optimal (illustrated in Figure 3.10).
This optimal stopping gives the American option its optimal value. From a
practical point of view, the stopping at the early-exercise curve can not be
established as in Example 3.10, because the curve is not known initially. But
the following characterization of the value V (S, 0) of an American option
holds true:

V (S, 0) = sup
0≤τ≤T

EQ(e−rτ

Ψ(Sτ ) | S0 = S) ,

where τ is a stopping time and Ψ is the payoff.
(3.30)

This result is a special case for t = 0 of a more general formula for V (S, t),
which is proved in [Ben84]. Clearly, (3.30) includes the case of a European
option for τ := T , in which case taking the supremum is not effective.

S

0

T

0
S K

τ

t

Fig. 3.10. The optimal stopping time τ of a vanilla put. The heavy curve is the

early-exercise curve, and the zigzag symbolizes a path St.

3.6.2 Parametric Methods

A practical realization of (3.30) leads to calculating lower bounds V low(S, 0)
and upper bounds V up(S, 0) such that

V
low(S, 0) ≤ V (S, 0) ≤ V

up(S, 0) . (3.31)

Since by (3.30) V (S, 0) is given by taking the supremum over all stopping
times, a lower bound is obtained by taking a specific stopping strategy. To
illustrate the idea, choose the stopping strategy of Example 3.10 with a level
β, see Figure 3.9. If we denote for each calculated path the resulting stopping
time by τ̃ = τ̃(β), a lower bound to V (S, 0) is given by

V
low(β)(S, 0) := EQ(e−rτ̃

Ψ(Sτ̃ ) | S0 = S) . (3.32)

This value depends on the parameter β, which is indicated by writing V low(β).
The bound is calculated by Monte Carlo simulation over a sample of N paths,
where the paths are stopped according to the chosen stopping rule. Procedure
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and costs of such a simulation for one value of β are analogous as in Algorithm
3.6. Repeating the experiment for another value of β may produce a better
(larger) value V low(β).

It is difficult to get a tolerable accuracy when working with only a single
parameter β. The situation can be slightly improved by choosing a finishing
line different from Figure 3.9. A simple but nicely working approximation
uses a parabola in the (S, t)-domain with horizontal tangent at t = T . Again
this approach requires only one parameter β (−→ Exercise 3.12). A result of
this approach is illustrated in Figure 3.11.
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Fig. 3.11. Monte Carlo approximations V low(β)
(S, 0) (+) for several values of β

(Exercise 3.12, random numbers from [MaN98]). The dashed line represents the

exact value V (S, 0).

There are many examples how to obtain better lower bounds. For instance,
the early-exercise curve can be approximated by pieces of curves or pieces of
straight lines, which are defined by several parameters; β then symbolizes a
vector of parameters. The idea is to optimize in the chosen parameter space,
trusting that

sup
β

V
low(β) ≈ V.

As illustrated by Figure 3.11, the corresponding surface to be maximized is
not smooth. Accordingly, an optimization in the parameter space is costly, see
Appendix C4. Recall that each evaluation of V low(β) for one β is expensive.
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Fig. 3.12. No stopping time; maximizing the payoff of a given path

What kind of parametric approximation, and what choice of the parame-
ters can be considered “good” when V (S, t) is still unknown? To this end,
upper bounds V up can be constructed, and one attempts to push the diffe-
rence V up−V low close to zero in order to improve the approximation provided
by (3.31).5 An upper bound can be obtained, for example, when one peers
into the future. As a crude example, the entire path St for 0 ≤ t ≤ T may be
simulated, and the option is “exercised” in retrospect when

e−rt

Ψ(St)

is maximal. This is illustrated in Figure 3.12. Pushing the lower bounds
V

low(β) towards upper bounds amounts to search in the β-parameter space
for a better combination of β-values. As a by-product of approximating
V (S, 0), the corresponding parameters β provide an approximation of the
early-exercise curve.

The above is just a crude strategy how Monte Carlo can be applied to
approximate American options. In particular, the described simple approach
to obtain upper bounds is not satisfactory. Consult [AnB04] for a systematic
way of constructing reasonable upper bounds. Typically, the upper bounds
are more costly than the lower ones. Bounds are also provided by the stocha-
stic grids of [BrG04].

3.6.3 Regression Methods

One basic idea of regression methods is to approximate the American-style
option by a Bermudan option. A Bermudan option restricts early exercise to
specified discrete dates during its life. As in Section 1.8.4, the time instances
with the right to exercise are created artificially by a finite set of discrete
time instances ti :

5 Since the bounds are approximated by stochastic methods, it may happen
that the true value V (S, 0) is not inside the calculated interval (3.31).
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Fig. 3.13. Setting for a Bermudan option; schematic illustration with five trajec-

tories and M = 5 exercise times; data as in Figure 3.1; horizontal axis: S, vertical

axis: t. The points (Si,k, ti) are marked.

Δt :=
T

M
, ti := iΔt (i = 0, . . . ,M) ,

see the illustration of Figure 3.13. The situation resembles the time discretiza-
tion of the binomial method of Section 1.4. In that semidiscretized setting the
value of the dynamic programming procedure of equation (1.14) generalizes
to

Vi(S) = max{Ψ(S) , V cont

i
(S)} ,

where the continuation value or holding value V cont

i
is defined by the condi-

tional expectation

V
cont

i
(S) := e−rΔt

EQ(Vi+1(Si+1) | Si = S) .

[On the binomial tree, this is equation (1.13).] EQ is calculated as before
under the assumption of risk neutrality.

In the context of a Bermudan option, we define the continuation value

Ci(x) := e−rΔt

EQ(V (Sti+1
, ti+1) | Sti

= x) . (3.33)

This function needs to be approximated. If we can do it, then the general
recursion is:
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Principle 3.11 (dynamic programming)

Set VM (x) = Ψ(x). For i = M − 1, ..., 1
calculate Ci(x) for x > 0 and
Vi(x) := V (x, ti) = max {Ψ(x), Ci(x)}

V0 := V (S0, 0) = max {Ψ(S0), C0(S0)}

To calculate an approximation Ĉi(x) for Ci(x), data are generated by
running N simulations. All simulating paths are calculated starting from
S0, according to the underlying risk-neutral model. This creates paths
S1(t), . . . , SN (t) for 0 ≤ t ≤ T (N = 5 in Figure 3.13). At the discrete ti
values, this establishes Si,k := Sk(ti) and assigns (Si,k, ti) to (Si+1,k, ti+1)
for k = 1, . . . , N and all i. Dropping the index k, this amounts to the tran-
sition Si −→ Si+1. On Si+1 a valuation Vi+1 is calculated by the recursion.
Hence N pairs (Si, e−rΔtVi+1) are provided for each i. These pairs match
(3.33) and form the data basis on which (x,C(x)) is approximated by a sui-
table minimization method such as least squares.6 This sets up the basic
principle of regression methods.

Algorithm 3.12 (regression I)

(a) Simulate N paths S1(t), ..., SN (t). Calculate and store the values

Si,k := Sk(ti) , i = 1, ...,M, k = 1, ..., N .

(b) For i = M set VM,k := Ψ(SM,k) for all k.
(c) For i = M − 1, ..., 1:

Approximate Ci(x) using suitable basis functions φ0, ..., φL (monomi-
als, for example)

Ci(x) ≈
L∑

l=0

alφl(x) =: Ĉi(x)

by least squares over the N points

(xk, yk) := (Si,k, e−rΔt

Vi+1,k) , k = 1, ..., N,

and set
Vi,k := max

{
Ψ(Si,k), Ĉi(Si,k)

}
.

(d) Ĉ0 := e−rΔt 1

N
(V1,1 + ...+ V1,N ) , V0 = max

{
Ψ(S0), Ĉ0

}
In step (c), the coefficients a0, . . . , aL of the approximation Ĉ result from

a minimization. Step (d) is needed because (c) does not work for i = 0
since all S0,k = S0. In case the S and the x are vectors, the algorithm also
describes the multifactor case. Note that for convergence both N and L must
be increased.

6 For least squares see Appendix C4.
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3.6 Monte Carlo Methods for American Options

The above basic version of regression can be improved in several ways.
[LonS01] has introduced a special version of the regression, incorporating as
a subalgorithm the calculation of the stopping time of each path. Working
with individual stopping times enables to set up an interleaving mechanism
over the time levels for comparing cash flows. The central step in (c) changes
to

Vi,k :=
{
Ψ(Si,k) for Ψ(Si,k) ≥ Ĉi(Si,k)
Vi+1,k for Ψ(Si,k) < Ĉi(Si,k)

(3.34)

This requires to adapt steps (b), (c), (d). Points out-of-the-money do not enter
the regression. To save storage, intermediate values can be filled in by using a
bridging technique. Following [Jon09], a significant speed-up is possible when
working with a cash-flow vector g, and an integer stopping time vector τ (the
integer factors k of τk = kΔt). The resulting algorithm is:

Algorithm 3.13 (regression II)

(a) Simulate N paths as in Algorithm 3.12.
(b) Set gk := Ψ(SM,k), τk = M for k = 1, ..., N .
(c) For i = M − 1, ..., 1:

For the subset of in-the-money-points

(xk, yk) := (Si,k, e−r(τk−i)Δt

gk) ,

approximate Ci(x) by Ĉi(x) ,
and for those k with Ψ(Si,k) ≥ Ĉi(Si,k): update

gk := Ψ(Si,k), τk := i .

(d) Ĉ0 :=
1
N

N∑
k=1

e−rτkΔt

gk , V0 := max{Ψ(S0), Ĉ0}.

Figure 3.14 shows a simple setting as an attempt to illustrate the regres-
sion method, with strike K = 10, and M = 2, N = 5. For i = 1, four of the
paths are in the money. Their continuation values Vi+1,k are denoted a, b, c, d
in Figure 3.14. The heavy line is the regression Ĉ, here a straight line be-
cause it is based only on the two regressors φ0 = 1, φ1 = x. The maximum
max{Ψ, Ĉ} is easy to check: for the points a and b the payoff is larger than
Ĉ(S).

Recently, many refined Monte Carlo methods for the calculation of Ame-
rican options have been suggested. For an overview on related approaches,
consult Chapter 8 in [Gla04]. At current state, the robust regression of [Jon11]
appears to be the most efficient approach; it has priced options on baskets
of up to 30 assets. One basic ingredient of this method is to neglect outliers,
with the effect of a remarkable bias reduction.
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Fig. 3.14. Regression; illustration for a put with r = 0, M = 2, K = 10

3.7 Accuracy, and Sensitivity

Monte Carlo simulation is of great importance for general models where no
specific assumptions (as those of Black, Merton and Scholes) have led to
efficient approaches. For example, in case the interest rate r cannot be re-
garded as constant but is modeled by some SDE (such as equation (1.40)),
then a system of SDEs must be integrated. Examples of stochastic volatility
are provided by Example 1.15, compare Figure 3.2, or by the Heston model
(1.43). In such cases, a Monte Carlo simulation can be the method of choice.
Then the Algorithm 3.6 is adapted appropriately. Monte Carlo methods are
especially attractive for multifactor models with high dimension.

The demands for accuracy of Monte Carlo simulation should be kept on
a low level. In many cases an error of 1% must suffice. Recall that it does not
make sense to decrease the Monte Carlo sampling error significantly below the
error of the time discretization of the underlying SDE (and vice versa). When
the amount of available random numbers is too small or its quality poor,
then no improvement of the error can be expected. The methods of variance
reduction can save a significant amount of costs [BoBG97], [ScH97], [Pla99].
Note that different variance-reduction techniques can be combined with each
other. The efficiency of Monte Carlo simulations can be enhanced by suitably
combining several discretizations with different levels of coarseness [Gil08].
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3.7 Accuracy, and Sensitivity

Sensitivity

A great computational challenge is to estimate how the price V changes when
parameters or initial states change, see Section 1.4.6. A sensitivity analysis
based on approximating partial derivatives amounts to calculating Greeks,
and can be used for calibration. Recall that for tree methods and for finite-
difference methods there are easy ways to establish approximations to the
Greeks delta, gamma, and theta, without the need for any recalculations. For
Monte Carlo methods, this task is more costly. When results are required for
slightly changed parameter values, to set up difference quotients, it may be
necessary to rerun Monte Carlo.

As an example we comment on approximating delta= ∂V

∂S
. A simple ap-

proach is to apply two runs of Monte Carlo simulation, one for S0 and one
for a close value S0−ΔS. Then an approximation of delta is obtained by the
difference quotient

V (S0) − V (S0 −ΔS)
ΔS

. (3.35)

The incrementΔS must be chosen carefully and not too small, because (B1.6)
in Appendix B1 tells us that the variance of (3.35) for arbitrary numerator
scales with (ΔS)−2. So it is important to investigate how the numerator de-
pends on ΔS. Simulating the two terms V (S0) and V (S0−ΔS) using common
random numbers improves the situation, see [Gla04]. Computing time can be
saved by working with series of precalculated random numbers. The crude
approach symbolized by (3.35) does not require additional programming, but
the costs are prohibitive for multiasset options.

With some more sophistication, the effort can be reduced. For example,
options are often priced for different maturities. When Monte Carlo is combi-
ned with a bridging technique, several such options can be priced effectively
in a single run [RiW03]. A general reference on estimating sensitivities is
Chapter 7 in [Gla04].

There are alternatives improving accuracy and saving computing time.
For example, Malliavin calculus allows to shift the differencing to the density
function, which leads via a kind of integration by parts to a different integral
to be approximated by Monte Carlo. For references on this technique consult
[FoLLLT99].

Another method that speeds up a sensitivity analysis significantly is the
adjoint method developed by [GiG06], which is described next.

Pathwise Sensitivities

Sensitivities can be approximated in a pathwise fashion. Consider similar as
in (1.41) a system of autonomous SDEs

dXt = a(Xt) dt+ b(Xt) dWt (3.36)

where Xt ∈ IRn, and Wt ∈ IRm is a vector of independent Wiener processes.
That is, b is n×m and takes care of possible correlations (−→ Exercise 3.14).
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For a standard discretization with M steps assume t0 = 0, T = Δt · M ,
tj := jΔt, j = 0, . . . ,M , and let Ψ(X(T )) denote the discounted payoff. The
Euler discretization of (3.36) is

y(tj+1) = y(tj) + a(y(tj))Δt+ b(y(tj))Z(tj)
√
Δt . (3.37)

We consider one calculated path Xt, 0 ≤ t ≤ T , represented by y(tj),
0 ≤ j ≤ M , and keep its random vectors Z(tj) available. The aim is to
estimate the sensitivity vector

s(0)tr :=
∂Ψ(X(T ))
∂X(0)

(taken as a row vector). By the chain rule,

s(0)tr =
∂Ψ(X(T ))
∂X(T )

∂X(T )
∂X(0)

. (3.38)

The first factor is easily available. The endeavor is to approximate the matrix
∂X(T )

∂X(0)
. To this end, we use the dynamics as created by the Euler method

(3.37), and calculate the approximation

∂y(T )
∂y(0)

.

As outlined in [Gla04, Section 7.2], we differentiate the ith component of the
Euler formula (3.37) with respect to yk(t0), which gives

∂yi(tj+1)
∂yk(t0)

=
∂yi(tj)
∂yk(t0)

+
n∑

l=1

∂ai(y(tj))
∂yl(tj)

∂yl(tj)
∂yk(t0)

Δt

+
∂

∂yk(t0)

m∑
ν=1

biν(y(tj))Zν(tj)
√
Δt

for all i, k = 1, . . . , n. The last term is
m∑

ν=1

n∑
l=1

∂biν(y(tj))
∂yl(tj)

∂yl(tj)
∂yk(t0)

Zν(tj)
√
Δt .

With
Δik(j) :=

∂yi(tj)
∂yk(t0)

this is written

Δik(j + 1) = Δik(j) +
n∑

l=1

∂ai(y(tj))
∂yl(tj)

Δlk(j)Δt

+
m∑

ν=1

n∑
l=1

∂biν(y(tj))
∂yl(tj)

Δlk(j)Zν(tj)
√
Δt .

(3.39)
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3.7 Accuracy, and Sensitivity

This recursion (3.39) can be written in matrix notation. To this end, we use
the definition (as in [GiG06]) of the entries of (n× n)-matrices D(j)

Dik(j) := δik +
∂ai(y(tj))
∂yk(tj)

Δt+
m∑

ν=1

∂biν(y(tj))
∂yk(tj)

Zν(tj)
√
Δt . (3.40)

(Here δik = 1 for k = i, and = 0 for k �= i, is the Kronecker symbol and no
dividend yield.) The resulting recursion for the (n × n)-matrices Δ(j) with
elements Δik(j) is

Δ(j + 1) = D(j)Δ(j), j = 0, . . . ,M − 1, Δ(0) = I . (3.41)

This summarizes the evolution of the path in a forward fashion. After M
matrix products the final matrix Δ(M) is the estimate ∂y(T )

∂y(0)
for ∂X(T )

∂X(0)
.

Then an approximation s̄(0)tr of the sensitivity vector s(0)tr is obtained via
the product (3.38).

Adjoint Method

As suggested by [GiG06], a backward view is possible too. To see this, rewrite
the above as

s̄(0)tr : =
∂Ψ(y(T ))
∂y(T )

∂y(T )
∂y(0)

=
∂Ψ(y(T ))
∂y(T )

Δ(M)

=
∂Ψ(y(T ))
∂y(T )

D(M − 1) · . . . ·D(0)
.

The observation of [GiG06] is that s̄(0) can be calculated with a backward
recursion, which operates n-vectors rather than (n × n)-matrices. We start
with the row vector

s̄(M)tr :=
∂Ψ(y(T ))
∂y(T )

and obtain
(s̄(M − 1))tr =

∂Ψ

∂y(T )
D(M − 1) ,

or
s̄(M − 1) = (D(M − 1))tr

s̄(M) .

The next row vector is

(s̄(M − 2))tr =
∂Ψ

∂y(T )
D(M − 1)D(M − 2) = (s̄(M − 1))trD(M − 2),

or
s̄(M − 2) = (D(M − 2))tr s̄(M − 1) ,

and so on, which results in the recursion

s̄(j) = (D(j))tr s̄(j + 1), j = M − 1, . . . , 0, s̄(M) =
(

∂Ψ

∂y(T )

)
tr

. (3.42)
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This backward recursion updates the n components of the vector s for every
j, whereas the forward recursion (3.41) updates the n2 entries of Δ in each
step. Hence the forward recursion (3.41) involves a factor of n more arith-
metic operations than the backward recursion. Consequently, the backward
recursion should be significantly faster for n > 1. But there is one drawback
of the potentially fast backward recursion: Its implementation requires to
store the entire path of the y-vectors with their Z-vectors in order to have
the D-matrices available. For very small step sizes Δt (M large) this dete-
riorates the speed somewhat. And switching to another payoff Ψ requires to
recalculate the backward recursion, whereas the forward recursion can use
the previous Δ(M) again. Observing these two features, the backward recur-
sion (3.42) (“adjoint method”) is highly advantageous. — The above method
approximates pathwise deltas. In a similar way, sensitivities with respect to
parameters can be calculated, see [GiG06].

Example 3.14 (Heston-Hull-White model)

Extending Heston’s model (1.43) by an SDE for the interest rate rt leads
to the system

dSt = rtSt dt+
√
vt St dW̃ (1)

t

dvt = κ(θ − vt) dt+ σ2

√
vt dW̃ (2)

t

drt = α(R(t) − rt) dt+ σ3 dW̃ (3)

t

(3.43)

The function R in the mean-reversion term for rt can be chosen as to
match the current term structure [HaH10], here chosen as constant for
simplicity:

R ≡ 0.06, α = 0.1, κ = 3, θ = 0.12,
σ2 = 0.04, σ3 = 0.01, T = 1, K = 100.

The mean reversion level θ = 0.12 corresponds to a volatility of about
35%. The Brownian motions W̃ (1)

t
, W̃

(2)

t
, W̃

(3)

t
are assumed (partly) cor-

related:
ρ12 = 0.6, ρ13 = ρ23 = 0 ,

hence W̃ (3)

t
is not correlated with W̃

(1)

t
, W̃

(2)

t
. Accordingly, the Cholesky

decomposition (Section 2.3.3) has a block structure, and Exercise 2.9 can
be applied. To cast it into the framework of (1.41), observe n = 3,

X :=

⎛⎝S

v

r

⎞⎠ , a(X) =

⎛⎝ X1X3

κ(θ −X2)
α(R−X3)

⎞⎠
and

b(X) dWt =

⎛⎝ X1

√
X2 0 0

σ2

√
X2 ρ12 σ2

√
X2

√
1 − ρ2

12
0

0 0 σ3

⎞⎠⎛⎝dW (1)

t

dW (2)

t

dW (3)

t

⎞⎠
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3.7 Accuracy, and Sensitivity

with independent Wiener processes W (i). In the discretization the Wiener
process can be taken as

√
ΔtZ1(t),

√
ΔtZ2(t),

√
ΔtZ3(t)

with Zi ∼ N (0, 1).
√
Δt b(X)Z is a vector, an its partial derivatives enter

(3.40).
For a concrete example, we price a European call. Since the interest rate
is variable, we discount each trajectory with its proper rate. Hence, the
discounted payoff is

exp
(
−

∫
T

0

rt dt
)

(ST −K)+ .

For experiments, we have chosen the starting point

S0 = 95, v0 = θ, r0 = R ,

approximated the discounting integral by the trapezoidal sum (C1.2), and
obtained V (S0, v0, r0, 0) ≈ 13.1 . The reader is encouraged to set up the
matrix D(j) and test the adjoint method.
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Fig. 3.15. Quasi Monte Carlo applied to Example 3.7
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Test with Halton Points

To complete this chapter, we test the Monte Carlo simulation in a fully
deterministic variant. To this end we insert the quasi-random two-dimensional
Halton points into Algorithm 2.13 and use the resulting quasi normal deviates
to calculate solutions of the SDE. In this way, for Example 3.7 acceptable
accuracy is reached already for about 2000 paths, much better than what is
shown in the experiments reported by Figures 3.3 or 3.5.

A closer investigation reveals that normal deviates based on Box-Muller-
Marsaglia (Algorithm 2.13) with two-dimensional Halton points lose the equi-
distributedness; the low discrepancy is not preserved. Apparently the quasi-
random method does not simulate independence [Gen98]. A related visual
inspection resembles Figure 2.6. This sets the stage for the slightly faster
inversion method [Moro95] (−→ Appendix D2), based on one-dimensional
low-discrepancy sequences. Figure 3.15 shows the result. The scaling of the
figure is the same as before.

Notes and Comments

on Sections 3.1, 3.2:

Under suitable assumptions it is possible to prove existence and uniqueness
for strong solutions, see [KlP92]. Usually the discretization error dominates
other sources of error. We have neglected the sampling error (the difference
between ε̂ and ε), imperfections in the random number generator, and roun-
ding errors. Typically these errors are likely to be less significant. Section 3.2
closely follows Section 5.1 of [KlP92].

on Section 3.3:

[KlP92] discusses many methods for the approximation of paths of SDEs,
and proves their convergence. An introduction is given in [Pla99]. Possible
orders of strongly converging schemes are integer multiples of 1

2
whereas the

orders of weakly converging methods are whole numbers. Simple adaptions
of deterministic schemes do not converge for SDEs. For the integration of
random ODEs we refer to [GrK01]. Maple routines for SDEs can be found in
[CyKO01], and MATLAB routines in [Hig01].

For ODEs and SDEs linear stability is investigated. This is concerned
with the long-time behavior of solutions of the test equation dXt = αXt dt+
βXt dWt, where α is a complex number with negative real part. This situation
does not appear relevant for applications in finance. The numerical stability
in the case Re(α) < 0 depends on the step size h and the relation among
the three parameters α, β, h. For this topic and further references we refer to
[SaM96], [Hig01], [Pla99].
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Notes and Comments

on Section 3.4:

For Brownian bridges see, for instance, [KaS91], [ReY91], [KlP92], [Øk98],
[Mor98], [Gla04]. Other bridges than Brownian bridges are possible. For a
Gamma process and a Gaussian bridge this is shown in [RiW02], [RiW03].
For the effectiveness of Monte Carlo integration improved with bridging tech-
niques, see [CaMO97]. The probability that a Brownian bridge passes a given
barrier is found in [KaS91], see also [Gla04]. The maximum of a Wiener pro-
cess tied down to W0 = 0, W1 = a on 0 ≤ t ≤ 1 has the distribution F (x)
of Exercise 2.16. And the time instant at which the maximum is attained is
distributed with

F (x) =
2
π

arcsin(
√
x) for 0 ≤ x ≤ 1 .

Another alternative to fill large gaps is to apply fractal interpolation
[Man99].

on Section 3.5:

In the literature the basic idea of the approach summarized by equation
(3.19) is analyzed using martingale theory, compare the references in Chap-
ter 1 and Appendix B2. An early paper suggesting MC for the pricing of
options is [Boy77]. The calculation of risk indices such as value at risk is an
important application of Monte Carlo methods, see the notes on Section 1.8.
The equivalence of the Monte Carlo simulation (representation (3.18)/(3.19))
with the solution of the Black–Scholes equation is guaranteed by the theo-
rem of Feynman and Kac [KaS91], [Nef96], [Reb96], [Øk98], [Bjö98], [TaR00],
[Shr04]. A standard reference on MC in finance is [Gla04].

Monte Carlo simulations can be parallelized in a trivial way: The single
simulations can be distributed among the processors in a straightforward
fashion because they are independent of each other. If M processors are
available, the speed reduces by a factor of 1/M . But the streams of random
numbers in each processor must be independent. For related generators see
[Mas99]. In doubtful and sensitive cases Monte Carlo simulation should be
repeated with other random-number generators, and with low-discrepancy
numbers [Jäc02].

The method of control variates can be modified with a parameter α,

V
α

CV
:= V̂ + α(V ∗ − V̂

∗),

where one tries to find a value of α such that the variance is minimized.
For a discussion of variance reduction and examples, consult Chapter 4
in [Gla04]. For the variance-reduction method of importance sampling, see
[New97], [Gla04]. In particular, a change of drift helps driving the underlying
assets into “important” regions. An optimal drift is possible that reduces the
variance significantly. [Aro03] suggests a truncated version of the Robbins-
Monro algorithm, and [Jon11] reduces the number of insignificant paths for
his robust regression with a deterministic method.
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on Section 3.6:

For Monte Carlo simulation on American options see also [BrG97], [BoBG97],
[Kwok98], [Rog00], [Fu01], [LonS01], [Gla04]. Note that for multivariate op-
tions of the American style the costs are increasing with the dimension more
significantly than for European options. For parametric methods, the parame-
ter vector β defines surfaces rather than curves. And for regression methods,
the calculation of C or Ĉ is costly and does depend on the dimension. A nice
experiment with a parametric method is given in [Hig04]. Significant savings
are possible when the dimension is reduced by a principle component analysis
(−→ Exercise 2.18).

A first version of regression was introduced by [Til93], where the continua-
tion value was approximated based on subsets of paths. This bundling tech-
nique was modified in [Car96] by an improved regression. As [Til93] points
out, a single set of paths of an underlying asset can be generated and then
used repeatedly to value many different derivatives. Lack of independence
makes it difficult to prove convergence, or to set up confidence intervals. For
these aspects, see [Egl05], and [AnB04] and the references therein.

Exercises

Exercise 3.1 Implementing Euler’s Method

Implement Algorithm 1.11. Start with a test version for one scalar SDE, then
develop a version for a system of SDEs. Test examples:
a) Perform the experiment of Figure 1.17.
b) Integrate the system of Example 1.15 for α = 0.3, β = 10 and the initial

values S0 = 50, σ0 = 0.2, ξ0 = 0.2 for 0 ≤ t ≤ 1.
We recommend to plot the calculated trajectories.

Exercise 3.2 Itô Integral in Equation (3.9)

Let the interval 0 ≤ s ≤ t be partitioned into n subintervals, 0 = t1 < t2 <

... < tn+1 = t. For a Wiener process Wt assume Wt1
= 0.

a) Show
n∑

j=1

Wtj

(
Wtj+1

−Wtj

)
=

1
2
W

2

t
−

1
2

n∑
j=1

(
Wtj+1

−Wtj

)2
b) Use Lemma 1.9 to deduce Equation (3.9).

Exercise 3.3 Integration by Parts for Itô Integrals

a) Show ∫
t

t0

s dWs = tWt − t0Wt0
−

∫
t

t0

Ws ds
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Exercises

Hint: Start with the Wiener process Xt = Wt and apply the Itô Lemma
with the transformation y = g(x, t) := tx.

b) Denote ΔY :=
∫

t

t0

∫
s

t0
dWz ds. Show by using a) that∫
t

t0

∫
s

t0

dz dWs = ΔWΔt−ΔY .

Exercise 3.4 Moments of Itô Integrals for Weak Solutions

a) Use the Itô isometry

E

⎡⎣(∫ b

a

f(t, ω) dWt

)2
⎤⎦ =

∫
b

a

E
[
f

2(t, ω)
]

dt

to show its generalization

E [I(f)I(g)] =
∫

b

a

E[fg] dt , where I(f) =
∫

b

a

f(t, ω) dWt .

Hint: 4fg = (f + g)2 − (f − g)2.
b) For ΔY :=

∫
t

t0

∫
s

t0
dWz ds the moments are

E[ΔY ] = 0, E[ΔY 2] =
Δt3

3
, E[ΔYΔW ] =

Δt2

2
and E[ΔYΔW 2] = 0.

Show this by using a) and E

[∫
b

a
f(t, ω) dWt

]
= 0.

Exercise 3.5

By transformation of two independent standard normally distributed random
variables Zi ∼ N (0, 1), i = 1, 2, two new random variables are obtained by

ΔŴ := Z1

√
Δt, ΔŶ :=

1
2
(Δt)3/2

(
Z1 +

1
√

3
Z2

)
.

Show that ΔŴ and ΔŶ have the moments of (3.14).

Exercise 3.6

In addition to (3.14) further moments are

E(ΔW ) = E(ΔW 3) = E(ΔW 5) = 0, E(ΔW 2) = Δt, E(ΔW 4) = 3Δt2.

Assume a new random variable ΔW̃ satisfying

P

(
ΔW̃ = ±

√
3Δt
)

=
1
6
, P

(
ΔW̃ = 0

)
=

2
3

and the additional random variable
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ΔỸ :=
1
2
ΔW̃Δt .

Show that the random variables ΔW̃ and ΔỸ have up to terms of order
O(Δt3) the same moments as ΔW and ΔY .

Exercise 3.7 Brownian Bridge

For a Wiener process Wt consider

Xt := Wt −
t

T
WT for 0 ≤ t ≤ T .

Calculate Var(Xt) and show that√
t

(
1 −

t

T

)
Z with Z ∼ N (0, 1)

is a realization of Xt.

Exercise 3.8 Error of the Milstein Scheme

To which formula does the Milstein scheme reduce for linear SDEs? Per-
form the experiment outlined in Example 3.2 using the Milstein scheme of
Algorithm 3.5. Set up a table similar as in Table 3.1 to show

ε̂(h) ≈ h

for Example 3.2.

Exercise 3.9 Monte Carlo and European Option

For a European put with time to maturity τ := T − t prove that

V (St, t) = e−rτ

∞∫
0

(K − ST )+
1

STσ
√

2πτ
exp

{
−

[ln(ST /St) − (r − σ
2

2
)τ ]2

2σ2τ

}
dST

= e−rτ

KF (−d2) − StF (−d1) ,

where d1 and d2 are defined in (A4.10).
Hints: The second equation is to be shown, the first only collects the terms
of (3.18). Use (K − ST )+ = 0 for ST > K, and get two integrals.

Exercise 3.10 Bias of the Euler Approximation

Given is the SDE dSt = St(μ dt + σ dWt) with constant μ, σ. Let Ŝ denote
an Euler approximation at t2 := 2Δt, calculated with two steps of length Δt,
starting at t0 := 0 with the value S0.
a) Calculate E(Ŝ).
b) Calculate the bias E(Ŝ) − S0 exp[μt2] .
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Exercises

Exercise 3.11 Monte Carlo for European Options

Implement a Monte Carlo method for single-asset European options, based
on the Black–Scholes model. Perform experiments with various values of N
and a random number generator of your choice. Compare results obtained
by using the analytic solution formula for St with results obtained by using
Euler’s discretization. For c) B is the barrier such that the option expires
worthless when St ≥ B for some t.
input: S0, number of simulations (trajectories) N , payoff function Ψ(S), risk-
neutral interest rate r, volatility σ, time to maturity T , strike K.
payoffs:

a) vanilla put, with Ψ(S) = (K − S)+, S0 = 5, K = 10, r = 0.06, σ = 0.3,
T = 1.

b) binary call, with Ψ(S) = 1S>K , S0 = K = σ = T = 0.5, r = 0.1
c) up-and-out barrier: call with S0 = 5, K = 6, r = 0.05, σ = 0.3, T = 1,

B = 8.
Hint: Correct values are: a) 4.43046 b) 0.46220 [Que07] c) 0.0983 [Hig04]

Exercise 3.12 Project: Monte Carlo Experiment

Construct as hitting curve a parabola with horizontal tangent at (S, t) =
(K,T ), similar as in Figure 3.10. The parabola is defined by the intersection
with the S-axis, (S, t) = (β, 0). Choose K = 10, r = 0.006, σ = 0.3, and
S0 = 9 and simulate for several values of β the GBM dS = rS dt + σS dW
several thousand times, and calculate the hitting time for each trajectory.
Estimate a lower bound to V (S0, 0) using (3.30). Decide whether an exact
calculation of the hitting point makes sense. (Run experiments comparing
such a strategy to implementing the hitting time restricted to the discrete
time grid.) Think about how to implement upper bounds.

Exercise 3.13 Error of Biased Monte Carlo

Assume
MSE = ζ(h,N) := α

2

1
h

2β +
α2

N

as error model of a Monte Carlo simulation with sample size N , based on a
discretization of an SDE with stepsize h, where α1, α2 are two constants.
a) Argue why for some constant α3

C(h,N) := α3

N

h

is a reasonable model for the costs of the MC simulation.
b) Minimize ζ(h,N) with respect to h,N subject to the side condition

α3N/h = C

for given budget C.
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c) Show that for the optimal h,N
√

MSE = α4C
−

β

1+2β .

Exercise 3.14 SDE in Standard Form

Let us denote (1.41) as “standard form” of a system of SDEs, with uncorre-
lated Wiener processes W (1)

t
, . . . ,W

(m)

t
. What is the vector a and the matrix

b for
a) the example of equation (3.28),
b) the Heston model of equation (1.43).

For the Heston model, first transform the unknown v0 to the right-hand side
by scaling ṽt := vt/v0.

Exercise 3.15 Binary Random Variate

Let α, β, p with 0 < p < 1 be given numbers. Design an algorithm that
outputs α with probability p and β with probability 1 − p.
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Chapter 4 Standard Methods for

Standard Options

We now enter the part of the book that is devoted to the numerical solution of
equations of the Black–Scholes type. In this chapter, we discuss “standard”
options in the sense as introduced in Section 1.1 and assume the scenario
characterized by the Assumptions 1.2. In case of European vanilla options
the value function V (S, t) solves the Black–Scholes equation (1.2). It is not
really our aim to solve this partial differential equation for vanilla payoff be-
cause it possesses an analytic solution (−→ Appendix A4). Ultimately our
intention is to solve more general equations and inequalities. In particular,
American options will be calculated numerically. But also European options
without vanilla payoff are of interest; we encounter them for Bermudan op-
tions in Section 1.8.4, and for Asian options in Section 6.3.4. The goal is not
only to calculate single values V (S0, 0) —for this purpose tree methods can
be applied— but also to approximate the curve V (S, 0), or even the surface
defined by V (S, t) on the half strip S > 0, 0 ≤ t ≤ T . Thereby we collect in-
formation on early exercise, and on delta hedging by observing the derivative
∂V

∂S
.
American options obey inequalities of the type of the Black–Scholes equa-

tion (1.2). To allow for early exercise, the Assumptions 1.2 must be weakened.
As a further generalization, the payment of dividends must be taken into ac-
count; otherwise early exercise does not make sense for American calls.

The main part of this chapter outlines a PDE approach based on finite
differences. We begin with unrealistically simplified boundary conditions in
order to keep the explanation of the discretization schemes transparent. Later
sections will discuss appropriate boundary conditions, which turn out to be
tricky in the case of American options. At the end of this chapter we will be
able to implement a finite-difference algorithm for standard American (and
European) options. Note that this assumes constant coefficients. If we work
carefully, the resulting finite-difference computer program will yield correct
approximations. But the finite-difference approach is not necessarily the most
efficient one. Hints on other methods will be given at the end of this chapter.
For nonstandard options we refer to Chapter 6.

The classical finite-difference methods will be explained in some detail
because they are the most elementary approaches to approximate differential
equations. As a side-effect, this chapter serves as introduction to several fun-

R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-2993-6_4, © Springer-Verlag London Limited 2012

155

http://dx.doi.org/10.1007/978-1-4471-2993-6_4


Chapter 4 Standard Methods for Standard Options

damental concepts of numerical mathematics. A trained reader may like to
skip Sections 4.2 and 4.3. The aim of this chapter is to introduce concepts,
as well as a characterization of the free boundary (early-exercise curve), and
of linear complementarity.

In addition to the finite-difference approach, “standard methods” include
analytic methods, which to a significant part are based on nonnumerical ana-
lysis. The Section 4.8 will give an introduction to several such methods, in-
cluding interpolation, a method of lines, and a method that solves an integral
equation.

The broad field of available methods for pricing standard options calls
for comparisons to judge on the relative merits of different approaches. Alt-
hough such an endeavor goes beyond the scope of a text book, we offer some
guidelines in Section 4.9.

4.1 Preparations

We allow for dividends paid with a continuous yield of constant level, because
numerically this is a trivial extension from the case of no dividend. In case of
a discrete dividend with, for example, one payment per year, a first remedy
would be to convert the dividend to a continuous yield (−→ Exercise 4.1).1

A continuous flow of dividends is modeled by a decrease of S in each time
interval dt by the amount

δS dt ,

with a constant δ ≥ 0. This continuous dividend model can be easily built into
the Black–Scholes framework. The standard model of a geometric Brownian
motion represented by the SDE (1.33) is generalized to

dS
S

= (μ− δ) dt+ σ dW .

This is the basis for this chapter. The corresponding Black–Scholes equation
for the value function V (S, t) is

∂V

∂t
+
σ2

2
S

2
∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV = 0 . (4.1)

For constant r, σ, δ, this equation is equivalent to the equation

∂y

∂τ
=
∂2y

∂x2
(4.2)

1 But the corresponding solutions V (S, t) and their early-exercise struc-
ture will be different. The Notes and Comments summarize how to correctly
compensate for a discrete dividend payment.
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4.1 Preparations

for y(x, τ) with 0 ≤ τ , x ∈ IR. The equivalence is proved by means of the
transformations

for constant r, σ, δ :

S = Kex

, t = T −
2τ
σ2
, q :=

2r
σ2
, qδ :=

2(r − δ)
σ2

,

V (S, t) = V
(
Kex

, T − 2τ

σ
2

)
=: v(x, τ) and

v(x, τ) =: K exp
{
− 1

2
(qδ − 1)x−

(
1

4
(qδ − 1)2 + q

)
τ
}
y(x, τ) .

(4.3)

For the case of no dividend payments (δ = 0) the derivation was carried out
earlier (−→ Exercise 1.2). For Black–Scholes-type equations with variable
σ(S, t), see Appendix A6.

The transformation S = Kex is motivated by the observation that the
Black–Scholes equation in the version (4.1) has variable coefficients Sj with
powers matching the order of the derivative with respect to S. That is, the
relevant terms in (4.1) are of the type

S
j
∂jV

∂Sj

, for j = 0, 1, 2 .

The transformed version in equation (4.2) has constant coefficients (=1),
which simplifies implementing numerical algorithms.

In view of the time transformation in (4.3) the expiration time t = T

is determined in the “new” time by τ = 0, and t = 0 is transformed to
τmax := 1

2
σ

2
T . Up to the scaling by 1

2
σ

2 the new time variable τ represents
the remaining life time of the option. And the original domain of the half
strip S > 0, 0 ≤ t ≤ T belonging to (4.1) becomes the strip

−∞ < x < ∞, 0 ≤ τ ≤ 1

2
σ

2
T ,

on which we are going to approximate a solution y(x, τ) to (4.2). After that
calculation we again apply the transformations of (4.3) to derive out of y(x, τ)
the value of the option V (S, t) in the original variables.

Under the transformations (4.3) the terminal conditions (1.1C) and (1.1P)
become initial conditions for y(x, 0). A vanilla call, for example, satisfies

V (S, T ) = max{S −K, 0} = K · max{ex − 1, 0} .

From (4.3) we find

V (S, T ) = K exp
{
−
x

2
(qδ − 1)

}
y(x, 0) ,

and thus
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y(x, 0) = exp
{
x

2
(qδ − 1)

}
max{ex − 1, 0}

=
{

exp
{

x

2
(qδ − 1)

}
(ex − 1) for x > 0

0 for x ≤ 0 .

Using

exp
{
x

2
(qδ − 1)

}
(ex − 1) = exp

{
x

2
(qδ + 1)

}
− exp

{
x

2
(qδ − 1)

}
the initial conditions y(x, 0) for vanilla options in the new variables read

call: y(x, 0) = max
{

e
x

2
(qδ+1) − e

x

2
(qδ−1)

, 0
}

(4.4C)

put: y(x, 0) = max
{

e
x

2
(qδ−1) − e

x

2
(qδ+1)

, 0
}

(4.4P)

In Section 4.4 we shall discuss possible boundary conditions needed when the
boundaries x→ −∞ and x → +∞ are truncated.

The equation (4.2) is of the type of a parabolic partial differential equation
and is the simplest diffusion or heat-conducting equation. Both equations
(4.1) and (4.2) are linear in the dependent variables V or y. The differential
equation (4.2) is also written yτ = yxx or ẏ = y′′. The diffusion term is yxx.

In principle, the methods of this chapter can be applied directly to (4.1).
But the equations and algorithms are easier to derive for the algebraically
equivalent version (4.2). Note that numerically the two equations are not

equivalent. A direct application of this chapter’s methods to version (4.1) can
cause severe difficulties. This will be discussed in Chapter 6. These difficulties
will not occur for equation (4.2), which is well-suited for standard options
with constant coefficients. The equation (4.2) is integrated in forward time
—that is, for increasing τ starting from τ = 0. This fact is important for
stability investigations. For increasing τ the version (4.2) makes sense; this
is equivalent to the well-posedness of (4.1) for decreasing t.

4.2 Foundations of Finite-Difference Methods

This section describes the basic ideas of finite differences as they are applied
to the PDE (4.2).

4.2.1 Difference Approximation

Each two times continuously differentiable function f satisfies

f
′(x) =

f(x+ h) − f(x)
h

−
h

2
f
′′(ξ) ;
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4.2 Foundations of Finite-Difference Methods

where ξ is an intermediate number between x and x+h. The accurate position
of ξ is usually unknown. Such expressions are derived by Taylor expansions.
We discretize x ∈ IR by introducing a one-dimensional grid of discrete points
xi with

... < xi−1 < xi < xi+1 < ...

For example, choose an equidistant grid with mesh size h := xi+1 − xi. The
x is discretized, but the function values fi := f(xi) are not discrete, fi ∈ IR.
For f ∈ C2 the derivative f ′′ is bounded, and the term −h

2
f ′′(ζ) can be

conveniently written as O(h). This leads to the practical notation

f
′(xi) =

fi+1 − fi

h
+O(h) . (4.5a)

Analogous expressions hold for the partial derivatives of y(x, τ), which inclu-
des a discretization in τ . This suggests to replace the neutral notation h by
either Δx or Δτ , respectively. The fraction in (4.5) is the difference quoti-
ent that approximates the differential quotient f ′(xi); the O(hp)-term is the
error. The one-sided (i.e. nonsymmetric) difference quotient (4.5a) is of the
order p = 1. Error orders of p = 2 are obtained by central differences

f
′(xi) =

fi+1 − fi−1

2h
+O(h2) (for f ∈ C3) (4.5b)

f
′′(xi) =

fi+1 − 2fi + fi−1

h2
+O(h2) (for f ∈ C4) (4.5c)

or by one-sided differences that involve more terms, such as

f
′(xi) =

−fi+2 + 4fi+1 − 3fi

2h
+O(h2) (for f ∈ C3) . (4.5d)

Rearranging terms and indices of (4.5d) provides the approximation formula

fi ≈
4
3
fi−1 −

1
3
fi−2 +

2
3
hf

′(xi) , (BDF2)

which is of second order. The latter difference quotient leads to one example
of a backward differentiation formula (BDF). Equidistant grids are advanta-
geous in that algorithms are easy to implement, and error terms are easily
derived by Taylor’s expansion. This chapter works with equidistant grids.

4.2.2 The Grid

Either the x-axis, or the τ -axis, or both can be discretized. If only one of the
two independent variables x or τ is discretized, one obtains a semidiscretiza-
tion consisting of parallel lines. This is used in Exercise 4.10 and in Section
4.8.3. Here we perform a full discretization leading to a two-dimensional grid.

Let Δτ and Δx be the mesh sizes of the discretizations of τ and x. The
step in τ is Δτ := τmax/νmax for τmax = 1

2
σ

2
T and a suitable integer νmax.
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x

x
τ

τ

τ

Δ

Δτ
ν+1

ν

i i+1i 1x x x

Fig. 4.1. Detail and notations of the grid

The choice of the x-discretization is more complicated. The infinite interval
−∞ < x < ∞ must be replaced by a finite interval a ≤ x ≤ b. Here the end
values a = xmin < 0 and b = xmax > 0 must be chosen such that for the
corresponding Smin = Kea and Smax = Keb and the interval Smin ≤ S ≤
Smax a sufficient quality of approximation is obtained.2 For a suitable integer
m the step length in x is defined by Δx := (b − a)/m. Additional notations
for the grid are

τν := ν ·Δτ for ν = 0, 1, ..., νmax

xi := a+ iΔx for i = 0, 1, ...,m
yi,ν := y(xi, τν),
wi,ν approximation to yi,ν .

This defines a two-dimensional uniform grid as illustrated in Figure 4.1. Note
that the equidistant grid in this chapter is defined in terms of x and τ , and
not for S and t. Transforming the (x, τ)-grid via the transformation in (4.3)
back to the (S, t)-plane, leads to a nonuniform grid with unequal distances
of the grid lines S = Si = Kexi: The grid is increasingly dense close to Smin.
(This is not advantageous for the accuracy of the approximations of V (S, t).
We will come back to this in Section 5.2.) The Figure 4.1 illustrates only a
small part of the entire grid in the (x, τ)-strip. The grid lines x = xi and
τ = τν can be indicated by their indices (Figure 4.2).

The points where the grid lines τ = τν and x = xi intersect, are called
nodes. In contrast to the theoretical solution y(x, τ), which is defined on a
continuum, the wi,ν are only defined for the nodes. The error wi,ν − yi,ν

depends on the choice of parameters νmax, m, xmin, xmax. A priori we do not
know which choice of parameters matches a prespecified error tolerance. An
example of the order of magnitude of these parameters is given by xmin = −5,
xmax = 5 or smaller, νmax = 100, m = 100. Such a choice of xmin, xmax has
shown to be reasonable for a wide range of r, σ-values and accuracies. The
actual error is then controlled via the numbers νmax and m of grid lines.

2 Too large values of |a| or b lead to underflow or overflow.
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4.2 Foundations of Finite-Difference Methods

4.2.3 Explicit Method

Substituting the expressions from (4.5)

∂yi,ν

∂τ
=
yi,ν+1 − yi,ν

Δτ
+O(Δτ)

∂2yi,ν

∂x2
=
yi+1,ν − 2yi,ν + yi−1,ν

Δx2
+O(Δx2)

into (4.2) and discarding the error terms leads to the equation

wi,ν+1 − wi,ν

Δτ
=
wi+1,ν − 2wi,ν + wi−1,ν

Δx2

for the approximation w. Solving for wi,ν+1 we obtain

wi,ν+1 = wi,ν +
Δτ

Δx2
(wi+1,ν − 2wi,ν + wi−1,ν) .

With the abbreviation
λ :=

Δτ

Δx2

the result is written compactly

wi,ν+1 = λwi−1,ν + (1 − 2λ)wi,ν + λwi+1,ν

(4.6)

The Figure 4.2 accentuates the nodes that are connected by this formula.
Such a graphical scheme illustrating the structure of the equation, is called
stencil (or molecule).

τ

i+1ii-1

ν+1

ν

x

Fig. 4.2. Connection scheme (stencil) of the explicit method
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The equation (4.6) and the Figure 4.2 suggest an evaluation organized by
time levels. All nodes with the same index ν form the ν-th time level. For a
fixed ν the values wi,ν+1 for all i of the time level ν + 1 are calculated. Then
we advance to the next time level. The formula (4.6) is an explicit expression
for each of the wi,ν+1; the values w at level ν+1 are not coupled. Since (4.6)
provides an explicit formula for all wi,ν+1 (i = 0, 1, ...,m), this method is
called explicit method or forward-difference method.
Start: For ν = 0 the values of wi,0 are given by the initial conditions

wi,0 = y(xi, 0) for y from (4.4), 0 ≤ i ≤ m .

Hence we proceed from ν = 0 to ν = 1, and so on. The w0,ν and wm,ν for
1 ≤ ν ≤ νmax are fixed by boundary conditions. For the next few pages, to
simplify matters, we artificially set w0,ν = wm,ν = 0 for all ν. The correct
boundary conditions are deferred to Section 4.4.

For the following analysis it is useful to collect all values w of the time
level ν into a vector,

w
(ν) := (w1,ν , ..., wm−1,ν)tr .

The next step towards a vector notation of the explicit method is to introduce
the constant (m− 1) × (m− 1) tridiagonal matrix

A := Aexpl :=

⎛⎜⎜⎜⎜⎜⎜⎝

1 − 2λ λ 0 · · · 0

λ 1 − 2λ
. . . . . .

...

0
. . .

. . .
. . . 0

...
. . . . . . . . . λ

0 · · · 0 λ 1 − 2λ

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.7a)

Now the explicit method in matrix-vector notation reads

w
(ν+1) = Aw

(ν) for ν = 0, 1, 2, ... (4.7b)

The formulation of (4.7) with the matrix A and the iteration (4.7b) is needed
only for theoretical investigations. An actual computer program would rather
use the version (4.6). In the vector notation of (4.7), the inner-loop index i

does not occur explicitly.
To illustrate the behavior of the explicit method, we perform an experi-

ment with an artificial example, where initial conditions and boundary con-
ditions are not related to finance.

Example 4.1

yτ = yxx, y(x, 0) = sinπx, x0 = 0, xm = 1, boundary conditions
y(0, τ) = y(1, τ) = 0 (that is, w0,ν = wm,ν = 0).
The aim is to calculate an approximation w for one (x, τ), for example, for
x = 0.2, τ = 0.5. The exact solution is y(x, τ) = e−π

2
τ sinπx, such that

162



4.2 Foundations of Finite-Difference Methods

y(0.2, 0.5) = 0.004227.... We carry out two calculations with the same
Δx = 0.1 (hence 0.2 = x2), and two different Δτ :

(a)Δτ = 0.0005 =⇒ λ = 0.05
0.5 = τ1000, w2,1000

.= 0.00435
(b)Δτ = 0.01 =⇒ λ = 1,

0.5 = τ50, w2,50

.= −1.5 ∗ 108 (the actual numbers depend on the
computer)

It turns out that the choice ofΔτ in (a) has led to a reasonable approximation,
whereas the choice in (b) has caused a disaster. Here we have a stability
problem!

4.2.4 Stability

Let us perform an error analysis of an iteration w(ν+1) = Aw(ν) + d(ν). The
iteration (4.7) is a special case, with matrix Aexpl, and the vector d(ν) vanishes
for our preliminary boundary conditions w0,ν = wm,ν = 0. In general we use
the same notation w for the theoretical definition of w and for the values
of w that are obtained by numerical calculations in a computer. Since we
now discuss rounding errors, we must distinguish between the two meanings.
Let w(ν) denote the vectors theoretically defined by the iteration. Hence, by
definition, the w(ν) are free of rounding errors. But in computational reality,
rounding errors are inevitable. We denote the computer-calculated vector by
w̄(ν) and the error vectors by

e
(ν) := w̄

(ν) − w
(ν)

,

for ν ≥ 0. The result in a computer can be written

w̄
(ν+1) = Aw̄

(ν) + d
(ν) + r

(ν+1)
.

Here the vectors r(ν+1) denote the rounding errors that occur during the
calculation of Aw̄(ν) + d

(ν). Let us concentrate on the effect of the rounding
errors that occur for an arbitrary ν, say for ν∗. We ask for the propagation of
this error for increasing ν > ν∗. Without loss of generality we set ν∗ = 0, and
for simplicity take r(ν) = 0 for ν > 1. That is, we investigate the effect the
initial rounding error e(0) has on the iteration. The initial error e(0) represents
the rounding error during the evaluation of the initial condition (4.4), when
w̄(0) is calculated. According to this scenario we have w̄(ν+1) = Aw̄(ν) + d(ν)

for ν > 1. The relation

Ae
(ν) = Aw̄

(ν) −Aw
(ν) = w̄

(ν+1) − w
(ν+1) = e

(ν+1)

between consecutive errors is applied repeatedly and results in

e
(ν) = A

ν

e
(0)
. (4.8)

163



Chapter 4 Standard Methods for Standard Options

For the method to be stable, previous errors must be damped. This leads to
require Aνe(0) → 0 for ν → ∞. Elementwise this means limν→∞{(Aν)ij} = 0
for ν → ∞ and for any pair of indices (i, j). The following lemma provides a
criterion for this requirement.

Lemma 4.2

ρ(A) < 1 ⇐⇒ A
ν

z → 0 for all z and ν → ∞

⇐⇒ lim
ν→∞

{(Aν)i,j} = 0

Here ρ(A) is the spectral radius of A,

ρ(A) := max
i

|μA

i
| ,

where μA

1
, ..., μA

m−1
denote the eigenvalues of A. The proof can be found in

text books on numerical analysis, for example, in [IsK66]. As a consequence
of Lemma 4.2 we require for stable behavior that |μA

i
| < 1 for all eigenvalues,

here for i = 1, ...,m−1. To check the criterion of Lemma 4.2, the eigenvalues
μA

i
of A are needed. To this end we split the matrix A into

A = I − λ ·

⎛⎜⎜⎜⎝
2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=:G

.

It remains to investigate the eigenvalues μG of the tridiagonal matrix G.3

Lemma 4.3

Let G =

⎛⎜⎜⎜⎝
α β 0

γ
. . . . . .
. . . . . . β

0 γ α

⎞⎟⎟⎟⎠ be an N2-matrix.

The eigenvalues μG

k
and the eigenvectors v(k) of G are

μ
G

k
= α+ 2β

√
γ

β
cos

kπ

N + 1
, k = 1, ..., N ,

v
(k) =

(√
γ

β
sin

kπ

N + 1
,

(√
γ

β

)2

sin
2kπ
N + 1

, ...,

(√
γ

β

)
N

sin
Nkπ

N + 1

)
tr

.

Proof: Substitute into Gv = μGv.

3 The zeros in the corner of the matrix symbolize the triangular zero struc-
ture of (4.7a).
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To apply the lemma observe N = m − 1, α = 2, β = γ = −1, and the fact
that for β = γ the eigenvectors are the same for A and G. We obtain the
eigenvalues μG and finally the eigenvalues μA of A:

μ
G

k
= 2 − 2 cos

kπ

m
= 4 sin2

(
kπ

2m

)
μ

A

k
= 1 − λμ

G = 1 − 4λ sin2
kπ

2m

Now we can state the stability requirement |μA

k
| < 1 as∣∣∣∣1 − 4λ sin2

kπ

2m

∣∣∣∣ < 1, k = 1, ...,m− 1 .

This implies the two inequalities λ > 0 and

−1 < 1 − 4λ sin2
kπ

2m
, rewritten as

1
2
> λ sin2

kπ

2m
.

The largest sin-term is sin (m−1)π

2m
; for increasing m this term grows monoto-

nically approaching 1.
In summary we have shown for (4.7)

For 0 < λ ≤
1
2

the explicit method w
(ν+1) = Aw

(ν) is stable.

In view of λ = Δτ/Δx2 this stability criterion amounts to bounding the Δτ
step size,

0 < Δτ ≤
Δx2

2
(4.9)

This explains what happened with Example 4.1. The values of λ in the two
cases of this example are

(a) λ = 0.05 ≤
1
2

(b) λ = 1 >
1
2

In case (b) the chosen Δτ and hence λ were too large, which led to an
amplification of rounding errors resulting eventually in the “explosion” of
the w-values.

The explicit method is stable only as long as (4.9) is satisfied. As a conse-
quence, the parameters m and νmax of the grid resolution can not be chosen
independent of each other. If the demands for accuracy are high, the step
size Δx will be small, which in view of (4.9) bounds Δτ quadratically. This
situation suggests searching for a method that is unconditionally stable.
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4.2.5 An Implicit Method

Introducing the explicit method in Subsection 4.2.3, we have approximated
the time derivative with a forward difference, “forward” as seen from the ν-th
time level. Now we try the backward difference

∂yi,ν

∂τ
=
yi,ν − yi,ν−1

Δτ
+O(Δτ) ,

which yields the alternative to (4.6)

−λwi+1,ν + (2λ+ 1)wi,ν − λwi−1,ν = wi,ν−1
(4.10)

The equation (4.10) relates the time level ν to the time level ν − 1. For the
transition from ν − 1 to ν only the value wi,ν−1 on the right-hand side of
(4.10) is known, whereas on the left-hand side of the equation three unknown
values of w wait to be computed. Equation (4.10) couples three unknowns.
The corresponding stencil is shown in Figure 4.3. There is no simple explicit
formula with which the unknowns can be obtained one after the other. Rather
a system must be considered, all equations simultaneously. A vector notation
reveals the structure of (4.10): With the matrix

A := Aimpl :=

⎛⎜⎜⎜⎝
1 + 2λ −λ 0

−λ
. . . . . .
. . . . . . −λ

0 −λ 1 + 2λ

⎞⎟⎟⎟⎠ (4.11a)

the vector w(ν) is implicitly defined as solution of the system of linear equa-
tions Aw(ν) = w(ν−1). To have a consistent numbering, we rewrite this as

Aw
(ν+1) = w

(ν) for ν = 0, ..., νmax − 1 (4.11b)

Here we have assumed again w0,ν = wm,ν = 0. For each time level ν such a
system of equations must be solved. This method is sometimes called implicit

method. But to distinguish it from other implicit methods, we call it fully

implicit, or backward-difference method, or more accurately backward time

centered space scheme (BTCS). The method is unconditionally stable for all
Δτ > 0. This is shown analogously as in the explicit case (−→ Exercise 4.2).
The costs of this implicit method are low, because the matrix A is constant
and tridiagonal. Initially, for ν = 0, the LR-decomposition (−→ Appendix
C1) is calculated once. Then the costs for each ν are only of the order O(m).
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ν−1

i+1ii-1

ν+1

ν

Fig. 4.3. Stencil of the backward-difference method (4.10)

4.3 Crank–Nicolson Method

For the methods of the previous section the discretizations of ∂y

∂τ
are of the or-

der O(Δτ). It seems preferable to use a method where the time discretization
of ∂y

∂τ
has the better order O(Δτ2), and the stability is unconditional. Let us

again consider equation (4.2), the equivalent to the Black–Scholes equation,

∂y

∂τ
=
∂2y

∂x2
.

Crank and Nicolson suggested to average the forward- and the backward
difference method. For easy reference, we collect the underlying approaches
from the above:

forward for ν:

wi,ν+1 − wi,ν

Δτ
=
wi+1,ν − 2wi,ν + wi−1,ν

Δx2

backward for ν + 1:

wi,ν+1 − wi,ν

Δτ
=
wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1

Δx2

Addition yields

wi,ν+1 − wi,ν

Δτ
=

1
2Δx2

(wi+1,ν−2wi,ν+wi−1,ν+wi+1,ν+1−2wi,ν+1+wi−1,ν+1)

(4.12)
The equation (4.12) involves in each of the time levels ν and ν + 1 three
values w (Figure 4.4). This is the basis of an efficient method. Its features
are summarized in Theorem 4.4.
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i+1ii 1

ν

ν+1

Fig. 4.4. Stencil of the Crank–Nicolson method (4.12)

Theorem 4.4 (Crank–Nicolson)

Suppose y is smooth in the sense y ∈ C4. Then:
1.) The order of the method is O(Δτ2) +O(Δx2).
2.) For each ν a linear system of a simple tridiagonal structure must be

solved.
3.) Stability holds for all Δτ > 0.

Proof:

1.) order: A practical notation for the symmetric difference quotient of second
order for yxx is

δxxwi,ν :=
wi+1,ν − 2wi,ν + wi−1,ν

Δx2
. (4.13)

Apply the operator δxx to the exact solution y. Then by Taylor expansion
for y ∈ C4 one shows

δxxyi,ν =
∂2

∂x2
yi,ν +

Δx2

12
∂4

∂x4
yi,ν +O(Δx4) .

The local discretization error ε describes how well the exact solution y of (4.2)
satisfies the difference scheme,

ε :=
yi,ν+1 − yi,ν

Δτ
−

1
2
(δxxyi,ν + δxxyi,ν+1) .

Applying the operator δxx of (4.13) to the expansion of yi,ν+1 at τν and
observing yτ = yxx leads to

ε = O(Δτ2) +O(Δx2) .

(−→ Exercise 4.3)

2.) system of equations: With λ := Δτ

Δx
2 the equation (4.12) is rewritten

−
λ

2
wi−1,ν+1 + (1 + λ)wi,ν+1 −

λ

2
wi+1,ν+1

=
λ

2
wi−1,ν + (1 − λ)wi,ν +

λ

2
wi+1,ν

(4.14)
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4.3 Crank–Nicolson Method

The values of the new time level ν + 1 are implicitly given by the system
of equations (4.14). For the simplest boundary conditions w0,ν = wm,ν = 0
equation (4.14) is a system of m− 1 equations. With matrices

A := ACN :=

⎛⎜⎜⎜⎜⎝
1 + λ −λ

2
0

−λ

2

. . . . . .

. . . . . . −λ

2

0 −λ

2
1 + λ

⎞⎟⎟⎟⎟⎠ ,

B := BCN :=

⎛⎜⎜⎜⎜⎝
1 − λ

λ

2
0

λ

2

. . . . . .

. . . . . . λ

2

0 λ

2
1 − λ

⎞⎟⎟⎟⎟⎠
(4.15a)

the system (4.14) is rewritten

Aw
(ν+1) = Bw

(ν)
. (4.15b)

The eigenvalues of A are real and lie between 1 and 1+2λ. (This follows from
the Theorem of Gerschgorin, see Appendix C1). This rules out a zero eigen-
value, and so A must be nonsingular and the solution of (4.15b) is uniquely
defined.

3.) stability: The matrices A and B can be rewritten in terms of a constant
tridiagonal matrix,

A = I + λ

2
G, G :=

⎛⎜⎜⎜⎝
2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

⎞⎟⎟⎟⎠ , B = I − λ

2
G .

Now the equation (4.15b) reads

(2I + λG︸ ︷︷ ︸
=:C

)w(ν+1) = (2I − λG)w(ν)

= (4I − 2I − λG)w(ν)

= (4I − C)w(ν)
,

which leads to the formally explicit iteration

w
(ν+1) = (4C−1 − I)w(ν)

. (4.16)

The eigenvalues μC

k
of C for k = 1, ...,m− 1 are known from Lemma 4.3,

μ
C

k
= 2 + λμ

G

k
= 2 + λ(2 − 2 cos

kπ

m
) = 2 + 4λ sin2

kπ

2m
.
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In view of (4.16) we require for a stable method that for all k∣∣∣∣ 4
μC

k

− 1
∣∣∣∣ < 1 .

This is guaranteed because of μC

k
> 2. Consequently, the Crank–Nicolson

method (4.12)/(4.15) is unconditionally stable for all λ > 0 (Δτ > 0).

Although correct boundary conditions are still lacking, it makes sense to
formulate the basic version of the Crank–Nicolson algorithm for the PDE
(4.2).

Algorithm 4.5 (Crank–Nicolson)

Start: Choose m, νmax; calculate Δx,Δτ

w
(0)

i
= y(xi, 0) with y from (4.4), 0 ≤ i ≤ m

Calculate the LR-decomposition of A
loop: for ν = 0, 1, ..., νmax − 1 :

Calculate c := Bw
(ν) (preliminary)

Solve Ax = c using e.g. the LR-decomposition—

that is, solve Lz = Bw(ν) and Rx = z

w
(ν+1) := x

The LR-decomposition is the symbol for the solution of the system of linear
equations. Later we shall see when to replace it by the RL-decomposition.
It is obvious that the matrices A and B are not stored in the computer. —
Next we show how the vector c in Algorithm 4.5 is modified to realize correct
boundary conditions.

4.4 Boundary Conditions

On the unbounded domain −∞ < x < ∞ the initial-value problem yτ = yxx

with initial condition (4.4) and τ ≥ 0 is well-posed. But the truncation to the
interval xmin ≤ x ≤ xmax changes the type of the problem. To make the PDE-
problem well-posed in the finite-domain case, boundary conditions must be
imposed artificially. They are not stated in the option’s contract, and are not
needed by Monte Carlo methods. Boundary conditions are the price one has
to pay when PDE-based approaches are applied. Since boundary conditions
are often approximations of the reality, the “localized solution” on the finite
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4.4 Boundary Conditions

domain xmin ≤ x ≤ xmax in general is different from the solution of the pure
initial-value problem. For simplicity, we neglect this difference, and denote
the localized solution again by y. We need to formulate boundary conditions
such that the localized solution is close to the solution of the original problem.
The choice of boundary conditions is not unique.

In the variety of possible boundary conditions there are two kinds so
important and so frequent that they have names. For Dirichlet conditions,
a value is assigned to y, whereas a Neumann condition assigns a value to
the derivative dy/dx. For a call, for example, y(xmin) = 0 is Dirichlet, and
∂y(xmax)

∂x
= 1 is Neumann. More generally, with xb standing for xmin or xmax,

y(xb, t) = α(t)

for some function α(t) is an example of a Dirichlet condition. A discretized
version is w0,ν = α(τν). That is, our preliminary boundary conditions w0,ν =
wm,ν = 0 have been of Dirichlet type. And a Neumann condition would be

∂y(xb, t)
∂x

= β(t)

for some function β(t). On our grid, a second-order approximation (4.5b) for
this Neumann condition is

w1,ν − w−1,ν = β(τν ) 2Δx ,

which uses a fictive grid point x−1 outside the interval. The required informa-
tion on w−1,ν is provided by a discretized version of the PDE. Alternatively,
the one-sided second-order difference quotient (4.5d) can be applied. As a
result, one or more entries of the matrix A would change, which makes a
finite-difference realization of a Neumann condition a bit cumbersome. Di-
richlet conditions are easier to cope with. Let us try to analyze V (S, t) for
S = 0 and S → ∞ in order to derive Dirichlet conditions

y(x, τ) for x = xmin and xmax , or
w0,ν and wm,ν for ν = 1, ..., νmax ,

consistent with the Black-Scholes model.
The boundary conditions for the expiration time t = T are obvious. They

give rise to the simplest cases of boundary conditions for t < T : As motivated
by the Figures 1.1 and 1.2 and the equations (1.1C), (1.1P), the value VC of
a call and the value VP of a put must satisfy

VC(S, t) = 0 for S = 0, and
VP(S, t) → 0 for S → ∞

(4.17)

also for all t < T . This follows, for example, from the integral representation
(3.20), because discounting does not affect the value 0 of the payoff. And
S(0) = 0 implies S(t) = 0 for all t > 0 because of dS = S(μ dt + σ dW );
hence the value VC(0, t) = 0 can be predicted safely. The same holds true for
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S(0) → ∞ and V of (1.1P). This holds for European as well as for American
options, with or without dividend payments.

The boundary conditions on each of the “other sides” of S, where V �= 0,
are more difficult. We postpone the boundary conditions for American options
to the next section, and investigate European options in this section.

From (4.17) and the put-call parity (−→ Exercise 1.1) we deduce the
additional boundary conditions for European options. The result is

VC(S, t) = S −Ke−r(T−t) for S → ∞

VP(S, t) = Ke−r(T−t) − S for S → 0
(4.18)

(without dividend payment, δ = 0). The lower bounds for European options
(−→ Appendix D1) are attained at the boundaries. In (4.18) for S ≈ 0 we do
not discard the term S, because the realization of the transformation (4.3)
requires Smin > 0, see Section 4.2.2.4 Boundary conditions analogous as in
(4.18) hold for the case of a continuous flow of dividend payments (δ > 0).
We skip the derivation, which can be based on transformation (4.3) and the
additional transformation S = Seδ(T−t) (−→ Exercise 4.4). In summary, the
asymptotic boundary conditions for European options in the (x, τ)-world are
as follows:

Boundary Conditions 4.6 (European options)

y(x, τ) = r1(x, τ) for x → −∞ ,

y(x, τ) = r2(x, τ) for x → ∞ , with
call: r1(x, τ) := 0 ,

r2(x, τ) := exp
(

1

2
(qδ + 1)x+ 1

4
(qδ + 1)2τ

)
put: r1(x, τ) := exp

(
1

2
(qδ − 1)x+ 1

4
(qδ − 1)2τ

)
,

r2(x, τ) := 0

(4.19)

Truncation: As noted above, the theoretical domain −∞ < x <∞ is trunca-
ted to the finite interval

a := xmin ≤ x ≤ xmax =: b .

Although (4.19) is valid only for x → −∞ and x → ∞, we may apply the
dominant terms r1(x, τ) and r2(x, τ) to approximate boundary conditions at
x = a and x = b. This suggests the boundary conditions

w0,ν = r1(a, τν)
wm,ν = r2(b, τν)

for all ν. These approximations are explicit formulas and easy to implement.
To this end return to the Crank–Nicolson equation (4.14), in which some

4 For S = 0 the PDE is no longer parabolic.
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of the terms on both sides of the equations are known by the boundary
conditions. For the equation with i = 1 these are terms

from the left-hand side: −
λ

2
w0,ν+1 = −

λ

2
r1(a, τν+1)

from the right-hand side:
λ

2
w0,ν =

λ

2
r1(a, τν)

and for i = m− 1

from the left-hand side: −
λ

2
wm,ν+1 = −

λ

2
r2(b, τν+1)

from the right-hand side:
λ

2
wm,ν =

λ

2
r2(b, τν)

These known boundary values are collected on the right-hand side of system
(4.14). So we finally arrive at

Aw
(ν+1) = Bw

(ν) + d
(ν)

d
(ν) : =

λ

2
·

⎛⎜⎜⎜⎜⎝
r1(a, τν+1) + r1(a, τν)

0
...
0

r2(b, τν+1) + r2(b, τν)

⎞⎟⎟⎟⎟⎠
(4.20)

The preliminary version (4.15b) is included as special case, with d(ν) = 0.
The statement in Algorithm 4.5 that defines c is modified to the statement

Calculate c := Bw
(ν) + d

(ν)
.

The methods of Section 4.2 can be adapted by analogous formulas. The ma-
trix A is not changed, and the stability is not affected by adding the vector
d, which is constant with respect to w.

4.5 American Options as Free Boundary Problems

In Sections 4.1 through 4.3 we so far have considered tools for the Black–
Scholes differential equation —that is, we have investigated European opti-
ons. Now we turn our attention to American options. Recall that the value
of an American option can never be smaller than the value of a European
option,

V
Am ≥ V

Eur
.
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In addition, an American option has at least the value of the payoff. So we
have elementary lower bounds for the value of American options, but —as
we will see— additional numerical problems to cope with.

4.5.1 Early-Exercise Curve

A European option can have a value that is smaller than the payoff (compare,
for example, Figure 1.6). This can not happen with American options. Recall
the arbitrage strategy: if for instance an American put would have a value
V Am

P
< (K −S)+, one would simultaneously purchase the asset and the put,

and exercise immediately. An analogous arbitrage argument implies that for
an American call the situation V Am

C
< (S −K)+ can not prevail. Therefore

the inequalities

V
Am

P
(S, t) ≥ (K − S)+ for all (S, t)

V
Am

C
(S, t) ≥ (S −K)+ for all (S, t)

(4.21)

hold. For a put this is illustrated schematically in Figure 4.5. The inequalities
for V make the problem of calculating an American option nonlinear.

(t)fS
S

0

V

possible European option for t<T
possible American option for t<T

payoff function for t=T

K

K

Fig. 4.5. V (S, t) for a put and a t < T , schematically

For American options we have noted in (4.17) the boundary conditions
that prescribe V = 0. The boundary conditions at each of the other “ends”
of the S-axis are still needed. In view of the inequalities (4.21) it is clear that
the missing boundary conditions will be of a different kind than those for
European options, which are listed in (4.18). Let us investigate the situation
of an American put, which is illustrated in Figure 4.5. First discuss the
left-end part of the curve VP(S, t), for small S > 0, and some t < T . Without
the possibility of early exercise the inequality VP(S, t) < K − S holds for
r > 0 and sufficiently small S. But in view of (4.21) the American put should
satisfy VP(S, t) ≡ K − S at least for small S. To understand what happens
for “medium” values of S, imagine to approach from the right-hand side,
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where V Am

P
(S, t) > (K − S)+. Continuity and monotony of VP suggest the

curve V Am

P
(S, t) hits the straight line of the payoff at some value Sf with

0 < Sf < K, see Figure 4.5. This contact point Sf is defined by

V
Am

P
(S, t) > (K − S)+ for S > Sf(t),

V
Am

P
(S, t) = K − S for S ≤ Sf(t) .

(4.22)

Convexity of V (S, .) guarantees that there is only one contact point Sf for
each t. For S < Sf the value V Am

P
equals the straight line of the payoff and

nothing needs to be calculated. For each t, the curve V Am

P
(S, t) reaches its

left boundary at Sf(t).
The above situation holds for any t < T , and the contact point Sf varies

with t, Sf = Sf(t). For all 0 ≤ t < T , the contact points Sf(t) form a curve
in the (S, t)-half strip. The curve Sf is the boundary separating the area
with V > payoff and the area with V = payoff. The curve Sf of a put is
illustrated in the left-hand diagram of Figure 4.6. A priori the location of the
boundary Sf is unknown, the curve is “free.” This explains why the problem
of calculating V Am

P
(S, t) for S > Sf(t) is called free boundary problem.

hold hold

T

S

stop

t

T

S

call

stop

t

S (T) S (T)

S

put

S
f

f f

f

Fig. 4.6. Continuation region (shaded) and stopping region for American options

For American calls the situation is similar, except that the contact only
occurs for dividend-paying assets, δ �= 0. This is seen from

V
Am

C
≥ V

Eur

C
≥ S −Ke−r(T−t)

> S −K

for δ = 0, r > 0, t < T , compare Exercise 1.1. V Am

C
> S−K for δ = 0 implies

that early-exercise does not pay. American and European calls on assets that
pay no dividends are identical, V Am

C
= V

Eur

C
. A typical curve V Am

C
(S, t) for

δ �= 0 contacting the payoff is shown in Figure 4.9. And the free boundary Sf

may look like the right-hand diagram of Figure 4.6.

The notation Sf(t) for the free boundary is motivated by the process of
solving PDEs. But the primary meaning of the curve Sf is economical. The
free boundary Sf is the early-exercise curve. The time instance ts when a
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price process St reaches the early-exercise curve is the optimal stopping time,
compare also the illustration of Figure 3.10. Let us explain this for the case
of a put; for a call with dividend payment the argument is similar.

For a put, in case S > Sf , early-exercise causes an immediate loss, because
(4.22) implies the exercise balance −V +K−S < 0. Receiving the strike price
K does not compensate the loss of S and V . Accordingly, the rational holder
of the option does not exercise when S > Sf . This explains why the area
S > Sf is called continuation region (shaded in Figure 4.6).

On the other side of the boundary curve Sf , characterized by V = K−S,
each change of S is compensated by a corresponding move of V . Here the
only way to create a profit is to exercise and invest the proceeds K at the
risk-free rate for the remaining time period T − t. The resulting profit will be

Ker(T−t) −K ,

which relies on r > 0. (For r = 0 American and European put are identical.)
To maximize the profit, the holder of the option will maximize T − t, and
accordingly exercise as soon as V ≡ K − S is reached. Hence, the boundary
curve Sf is the early-exercise curve. And the area S ≤ Sf is called stopping

region.5

Now that the curve Sf is recognized as having such a distinguished im-
portance as early-exercise curve, we should make sure that the properties of
Sf are as suggested by Figures 4.5 and 4.6. In fact, the curves Sf(t) are con-
tinuously differentiable in t, and monotonous not decreasing / not increasing
as illustrated. There are both upper and lower bounds to Sf(t). For more
details and proofs see Appendix A5. Here we confine ourselves to the bounds
given by the limit t→ T (t < T, δ > 0):

put: lim
t→T

−

Sf(t) = min(K,
r

δ
K) (4.23P)

call: lim
t→T

−

Sf(t) = max(K,
r

δ
K) (4.23C)

These bounds express a qualitatively different behavior of the early-exercise
curve in the two situations 0 < δ < r and δ > r. This is illustrated in Figure
4.7 for a put. For the chosen numbers, for all δ ≤ 0.06 the limit of (4.23P)
is the strike K (lower diagram). Compare to Figures 1.4 and 1.5 to get a
feeling for the geometrical importance of the curve as contact line where two
surfaces merge. For larger values of S the surface V (S, t) approaches 0 in a
way illustrated by Figure 4.8.

5 When a discrete dividend is paid, the stopping area is not necessarily
connected (−→ Exercise 4.1b).
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Fig. 4.7. Early-exercise curves of an American put, r = 0.06, σ = 0.3, K = 10,

and dividend rates δ = 0.12 (top figure), δ = 0.08 (middle), δ = 0.04 (bottom); raw

data of a finite-difference calculation without interpolation or smoothing
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Fig. 4.8. Calculated curves of a put matching Figures 1.4, 1.5. C1 is the curve Sf .

The three curves C2 have the meaning V < 10
−k

for k = 3, 5, 7.

4.5.2 Free Boundary Problem

Again we start with a put. For the European option, the left-end boundary
condition is formulated for S = 0. For the American option, the left-end
boundary is given along the curve Sf (Figure 4.5). In order to calculate the
free boundary Sf(t) we need an additional condition. To this end consider the
slope ∂V

∂S
with which V Am

P
(S, t) touches at Sf(t) the straight line K−S, which

has the constant slope −1. By geometrical reasons we can rule out for V Am

P
the

case ∂V (Sf (t),t)

∂S
< −1, because otherwise (4.21) and (4.22) would be violated.

Using arbitrage arguments, the case ∂V (Sf(t),t)

∂S
> −1 can also be ruled out

(−→ Exercise 4.9). It remains the condition ∂V Am

P
(Sf(t), t)/∂S = −1. That

is, V (S, t) touches the payoff function tangentially. This tangency condition
is commonly called the high-contact condition, or smooth pasting. For the
somewhat hypothetical case of a perpetual option (T = ∞) the tangential
touching can be calculated analytically (−→ Exercise 4.8). In summary, two

boundary conditions must hold at the contact point Sf(t):

V
Am

P
(Sf(t), t) = K − Sf(t)

∂V Am

P
(Sf(t), t)
∂S

= −1
(4.24P)
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4.5 American Options as Free Boundary Problems

As before, the right-end boundary condition VP(S, t) → 0 must be observed
for S → ∞.

0

5

10

15

20

0 5 10 15 20 25 30

Fig. 4.9. Value V (S, 0) of an American call with K = 10, r = 0.25, σ = 0.6, T = 1

and dividend flow δ = 0.2. Crosses indicate the corresponding curve of a European

call; the payoff is shown. A special value is V (K, 0) = 2.18728.

For American calls analogous boundary conditions can be formulated.
For a call in case δ > 0, r > 0 the free boundary conditions

V
Am

C
(Sf(t), t) = Sf(t) −K

∂V Am

C
(Sf(t), t)
∂S

= 1
(4.24C)

must hold along the right-end boundary for Sf(t) > K. The left-end boundary
condition at S = 0 remains unchanged. Figure 4.9 shows an American call
on a dividend-paying asset. The high contact on the payoff is visible.

We note in passing that the transformation ζ := S/Sf(t), y(ζ, t) := V (S, t)
allows to set up a Black–Scholes-type PDE on a rectangle. In this way, the
unknown front Sf(t) is fixed at ζ = 1, and is given implicitly by an ordinary
differential equation as part of a nonlinear PDE (−→ Exercise 4.11). Such a
front-fixing approach is numerically relevant; see the Notes on Section 4.7.
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4.5.3 Black–Scholes Inequality

The Black–Scholes equation (4.1) is valid on the continuation region (shaded
areas in Figure 4.6). For the numerical approach of the following Section 4.6
the computational domain will be the entire half strip S > 0, 0 ≤ t ≤ T ,
including the stopping areas. This will allow locating the early-exercise curve
Sf . The approach requires to adapt the Black–Scholes equation in some way
to the stopping areas.

To this end, define the Black–Scholes operator as

LBS(V ) :=
1
2
σ

2
S

2
∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV .

With this notation the Black–Scholes equation reads

∂V

∂t
+ LBS(V ) = 0 .

What happens with this operator on the stopping regions? To this end we
substitute the payoff into ∂V

∂t
+ LBS(V ) for the case of a put. (The reader

may carry out the analysis for the case of a call.) For the put, for S ≤ Sf ,

V = K − S ,
∂V

∂t
= 0 ,

∂V

∂S
= −1 ,

∂2V

∂S2
= 0 .

Hence
∂V

∂t
+ LBS(V ) = −(r − δ)S − r(K − S) = δS − rK .

From (4.23P) we have the bound δS < rK, which leads to conclude

∂V

∂t
+ LBS(V ) < 0 .

The Black–Scholes equation changes to an inequality on the stopping region.
The same inequality holds for the call. In summary, on the entire half strip
American options must satisfy an inequality of the Black–Scholes type,

∂V

∂t
+

1
2
σ

2
S

2
∂

2
V

∂S2
+ (r − δ)S

∂V

∂S
− rV ≤ 0 . (4.25)

The inequalities (4.21) and (4.25) hold for all (S, t). In case the strict inequa-
lity “>” holds in (4.21), equality holds in (4.25). The contact boundary Sf

divides the half strip into the stopping region and the continuation region,
each with appropriate version of V :

put: V
Am

P
= K − S for S ≤ Sf (stop)

V
Am

P
solves (4.1) for S > Sf (hold)

call: V
Am

C
= S −K for S ≥ Sf (stop)

V
Am

C
solves (4.1) for S < Sf (hold)
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4.5 American Options as Free Boundary Problems

This shows that also for American options the Black–Scholes equation (4.1)
must be solved, however, with special arrangements because of the free boun-
dary. We have to look for methods that simultaneously calculate V along with
the unknown Sf .

Note that ∂V

∂S
is continuous when Sf is crossed, but ∂

2
V

∂S
2 and ∂V

∂t
are

not continuous. It must be expected that this lack of smoothness along the
early-exercise curve Sf affects the accuracy of numerical approximations.

4.5.4 Penalty Formulation

In this subsection we outline an approach that allows for a unified treatment
of stopping region and continuation region. Note that inequality (4.25) can be
written as an equality by introducing a penalty term p(V ) ≥ 0, and requesting

∂V

∂t
+ LBS(V ) + p(V ) = 0 .

The penalty term p should be zero for the continuation region, and should
be positive for the stopping area. When calculating an approximation V , the
distance to Sf is not known, but the distance V − Ψ of V to the payoff Ψ is
available and serves as decisive building block of a penalty term. There are
several possibilities to construct a penalty p. One classical approach will be
described in Section 7.2. Another way to set up a penalty can be accomplished
by a term such as

p(V ) :=
ε

V − Ψ
for a small ε > 0 .

Let V ε denote a solution of the penalty equation. For V ε distinctly above Ψ ,
the term p is close to zero, and the Black–Scholes equation results approxi-
mately. On the other hand, for V ε approaching Ψ , the penalty term p grows
and eventually dominates the Black–Scholes part of the equation.

Note that p and the resulting PDE are nonlinear in V , which complicates
the numerical solution. The penalty formulation is advantageous especially in
cases where an analysis of the early-exercise curve is difficult. See Section 6.7
for an exposition of the penalty approach in the two-dimensional situation.
For the standard options of this Chapter 4, we pursue another method, which
allows to preserve the linear equation.

4.5.5 Obstacle Problem

A brief digression into obstacle problems will motivate the procedure. We
assume an “obstacle” g(x), say with g(x) > 0 for α < x < β, g ∈ C2, g′′ < 0
and g(−1) < 0, g(1) < 0, compare Figure 4.10. Across the obstacle a function
u with minimal length is stretched like a rubber thread. Between x = α and
x = β the curve u clings to the boundary of the obstacle. For α and β we
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g(x)

α β
x

u(x)

11

Fig. 4.10. Function u(x) across an obstacle g(x)

encounter high-contact conditions, where the curve of u touches the obstacle
tangentially. Initially, these two values x = α and x = β are unknown. This
obstacle problem is a simple free boundary problem.

The aim is to reformulate the obstacle problem such that the free boun-
dary conditions do not show up explicitly. This may promise computational
advantages. The function u shown in Figure 4.10 is defined by the require-
ments u ≥ g, u(−1) = u(1) = 0, u ∈ C1[−1, 1], and by:

for − 1 < x < α : u′′ = 0 (then u > g)
for α < x < β : u = g (then u′′ = g′′ < 0)
for β < x < 1 : u

′′ = 0 (then u > g) .

The characterization of the two outer intervals is identical. This manifests a
complementarity in the sense

if u > g, then u
′′ = 0 ;

if u = g, then u
′′
< 0 .

In retrospect it is clear that American options are complementary in an ana-
logous way:

if V > payoff, then Black–Scholes equation ∂V

∂t
+ LBS(V ) = 0

if V = payoff, then Black–Scholes inequality ∂V

∂t
+ LBS(V ) < 0

This analogy motivates searching for a solution of the obstacle problem. The
obstacle problem can be reformulated as⎧⎪⎨⎪⎩

find a function u such that
u
′′(u− g) = 0, −u′′ ≥ 0, u− g ≥ 0 ,

u(−1) = u(1) = 0, u ∈ C1[−1, 1] .

(4.26)

The key line (4.26) is a linear complementarity problem (LCP). This
formulation does not mention the free boundary conditions at x = α and
x = β explicitly. This will be advantageous because α and β are unknown. If
a solution to (4.26) is known, then α and β are read off from the solution. So
we construct a numerical solution procedure for the complementarity version
(4.26) of the obstacle problem.
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4.5 American Options as Free Boundary Problems

Discretization of the Obstacle Problem

A finite-difference approximation for u′′ on the grid xi = −1 + iΔx, with
Δx = 2

m
, gi := g(xi) leads to{

(wi−1 − 2wi + wi+1)(wi − gi) = 0,
− wi−1 + 2wi − wi+1 ≥ 0, wi ≥ gi

}
0 < i < m ,

and w0 = wm = 0. The wi are approximations to u(xi). In view of the signs
of the factors in the first line in this discretization scheme it can be written
using a scalar product. To this end define a vector notation using

G :=

⎛⎜⎜⎜⎝
2 −1 0

−1
. . .

. . .
. . . . . . −1

0 −1 2

⎞⎟⎟⎟⎠ and w :=

⎛⎝ w1

...
wm−1

⎞⎠ , g :=

⎛⎜⎝ g1
...

gm−1

⎞⎟⎠ .

Then the discretized complementarity problem is rewritten in the form{
(w − g)trGw = 0 ,
Gw ≥ 0 , w ≥ g

(4.27)

To calculate (4.27) one solves Gw = 0 under the side condition w ≥ g. This
will be explained in Section 4.6.2.

4.5.6 Linear Complementarity for American Put Options

In analogy to the simple obstacle problem described above we now derive
a linear complementarity problem for American options. Here we confine
ourselves to American puts without dividends (δ = 0); the general case will
be listed in Section 4.6. The transformations (4.3) lead to

∂y

∂τ
=
∂2y

∂x2
as long as V

Am

P
> (K − S)+ .

Also the side condition (4.21) is transformed: The relation

V
Am

P
(S, t) ≥ (K − S)+ = Kmax{1 − ex

, 0}

leads to the inequality

y(x, τ) ≥ exp{ 1

2
(q − 1)x+ 1

4
(q + 1)2τ}max{1 − ex

, 0}

= exp{ 1

4
(q + 1)2τ}max{(1 − ex)e

1
2
(q−1)x

, 0}

= exp{ 1

4
(q + 1)2τ}max{e

1
2
(q−1)x − e

1
2
(q+1)x

, 0}
=: g(x, τ)
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This function g allows to write the initial condition (4.4) as y(x, 0) = g(x, 0).
In summary, we require yτ = yxx as well as

y(x, 0) = g(x, 0) and y(x, τ) ≥ g(x, τ) ,

and, in addition, the boundary conditions, and y ∈ C1 with respect to x.
For x → ∞ the function g vanishes, g(x, τ) = 0, so the boundary condition
y(x, τ) → 0 for x→ ∞ can be written

y(x, τ) = g(x, τ) for x→ ∞ .

The same holds for x → −∞ (−→ Exercise 4.5). In practice, the boundary
conditions are formulated for xmin and xmax. Collecting all expressions, the
American put is formulated as linear complementarity problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
∂y

∂τ
−
∂2y

∂x2

)
(y − g) = 0 ,

∂y

∂τ
−
∂2y

∂x2
≥ 0 , y − g ≥ 0

y(x, 0) = g(x, 0), y(xmin, τ) = g(xmin, τ) ,

y(xmax, τ) = g(xmax, τ) , y ∈ C1 with respect to x .

The exercise boundary is automatically captured by this formulation. An
analogous formulation holds for the American call. Both of the formulations
are comprised by Problem 4.7 below. In Section 5.3 we will return to the
obstacle problem with a version as variational problem.

4.6 Computation of American Options

In the previous sections we have derived a linear complimentarity problem
for both put and call of an American-style option. We summarize the results
into Problem 4.7. This assumes for a put r > 0, and for a call δ > 0; otherwise
the American option is not distinct from the European counterpart.

Problem 4.7 (linear complementarity problem)∣∣∣∣∣∣∣∣∣∣∣

notations of (4.3), including

q =
2r
σ2

, qδ =
2(r − δ)
σ2

,

put: g(x, τ) := exp{ τ

4
((qδ − 1)2 + 4q)}max{e

x

2
(qδ−1) − e

x

2
(qδ+1)

, 0}

call: g(x, τ) := exp{ τ

4
((qδ − 1)2 + 4q)}max{e

x

2
(qδ+1) − e

x

2
(qδ−1)

, 0}
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4.6 Computation of American Options∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
∂y

∂τ
−
∂

2
y

∂x2

)
(y − g) = 0

∂y

∂τ
−
∂2y

∂x2
≥ 0 , y − g ≥ 0

xmin ≤ x ≤ xmax , 0 ≤ τ ≤
1
2
σ

2
T

y(x, 0) = g(x, 0)
y(xmin, τ) = g(xmin, τ) , y(xmax, τ) = g(xmax, τ)

As outlined in Section 4.5, the free boundary problem of American options
is described in Problem 4.7 such that the free boundary condition does not
show up explicitly. We now enter the discussion of the numerical solution of
Problem 4.7.

4.6.1 Discretization with Finite Differences

We use the same grid as in Section 4.2.2, with wi,ν denoting an approximation
to y(xi, τν), and gi,ν := g(xi, τν) for 0 ≤ i ≤ m, 0 ≤ ν ≤ νmax. The backward
difference, the explicit, and the Crank–Nicolson method can be combined
into one formula,

wi,ν+1 − wi,ν

Δτ
= θ

wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1

Δx2
+

(1 − θ)
wi+1,ν − 2wi,ν + wi−1,ν

Δx2
,

with the choices θ = 0 (explicit), θ = 1

2
(Crank–Nicolson), θ = 1 (backward-

difference method). This family of numerical schemes parameterized by θ is
often called θ-method.

The differential inequality ∂y

∂τ
− ∂

2
y

∂x
2 ≥ 0 becomes the discrete version

wi,ν+1 − λθ(wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1)
− wi,ν − λ(1 − θ)(wi+1,ν − 2wi,ν + wi−1,ν) ≥ 0 ,

(4.28)

where we use again the abbreviation λ := Δτ

Δx
2 . With the notations

bi,ν := wi,ν + λ(1 − θ)(wi+1,ν − 2wi,ν + wi−1,ν) , i = 2, . . . ,m− 2
b1,ν and bm−1,ν incorporate the boundary conditions

b
(ν) := (b1,ν , ..., bm−1,ν)tr

w
(ν) := (w1,ν , ..., wm−1,ν)tr

g
(ν) := (g1,ν , ..., gm−1,ν)tr
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and

A :=

⎛⎜⎜⎜⎜⎝
1 + 2λθ −λθ 0

−λθ
. . . . . .
. . . . . . . . .

0
. . . . . .

⎞⎟⎟⎟⎟⎠ ∈ IR(m−1)×(m−1) (4.29)

(4.28) is rewritten in vector form as

Aw
(ν+1) ≥ b

(ν) for all ν .

Such inequalities for vectors are understood componentwise. The inequality
y − g ≥ 0 leads to

w
(ν) ≥ g

(ν)
,

and
(

∂y

∂τ
− ∂

2
y

∂x
2

)
(y − g) = 0 becomes(
Aw

(ν+1) − b
(ν)

)
tr
(
w

(ν+1) − g
(ν+1)

)
= 0 .

The initial and boundary conditions are

wi,0 = gi,0 , i = 1, ...,m− 1 , (w(0) = g
(0)) ;

w0,ν = g0,ν , wm,ν = gm,ν , ν ≥ 1

The boundary conditions are realized in the vectors b(ν) as follows:

b2,ν, ..., bm−2,ν as defined above,
b1,ν = w1,ν + λ(1 − θ)(w2,ν − 2w1,ν + g0,ν) + λθg0,ν+1

bm−1,ν = wm−1,ν + λ(1 − θ)(gm,ν − 2wm−1,ν + wm−2,ν) + λθgm,ν+1

(4.30)
We summarize the discrete version of the Problem 4.7 into an Algorithm:

Algorithm 4.8 (computation of American options)

For ν = 0, 1, ..., νmax − 1 :

Calculate the vectors g := g(ν+1),

b := b(ν) from (4.29), (4.30).
Calculate the vector w as solution of the problem

Aw − b ≥ 0, w ≥ g, (Aw − b)tr(w − g) = 0. (4.31)

w
(ν+1) := w

This completes the chosen finite-difference discretization.
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The remaining problem is to solve the complementarity problem in
matrix-vector form (4.31). In principle, how to solve (4.31) is a new topic
independent of the discretization background. But accuracy and efficiency
will depend on the context of selected methods. We pause for a moment to
become aware how broad the range of possible finite-difference methods is.

Recall from Subsection 4.5.3 that V (S, t) is not C2-smooth over the free
boundary Sf . This is a source of possible inaccuracies. The order two of the
basic Crank–Nicolson scheme must be expected to be deteriorated. The effect
caused by lacking smoothness depends on the choice of several items, namely,
the

(1) kind of transformation/PDE (from no transformation over a mere τ :=
T − t to the transformation (4.3)),

(2) kind of discretization (from backward-difference over Crank–Nicolson
to more refined schemes like BDF2),

(3) method of solution for (4.31).

The latter can be a direct elimination method, or an iteratively working in-
direct method. Large systems as they occur in PDE context are frequently
solved iteratively, in particular in high-dimensional spaces. Such approaches
sometimes benefit from smoothing properties. Both an iterative procedure
(following [WiDH96]) and a direct approach (following [BrS77]) will be dis-
cussed below. It turns out that in the one-dimensional scenario of this chapter
(one underlying asset), the direct approach is faster.

4.6.2 Reformulation and Analysis of the LCP

In each time level ν in Algorithm 4.8, a linear complementarity problem (4.31)
must be solved. This is the bulk of work in Algorithm 4.8. Before entering
the numerical solution, we analyze the LCP. Since this subsection is general
numerical analysis independent of the finance framework, we momentarily use
vectors x, y, r freely in other context.6 For the analysis we transform problem
(4.31) from the w-world into an x-world with

x := w − g

y := Aw − b .
(4.32)

Then it is easy to see (the reader may check) that the task of calculating a
solution w for (4.31) is equivalent to the following problem:

6 Notation: In this Subsection 4.6.2 , x does not have the meaning of trans-
formation (4.3), and r not that of an interest rate, and y is no PDE solution.
Here, x, y ∈ IRm−1.
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Problem 4.9 (Cryer)

Find vectors x and y such that for b̂ := b−Ag

Ax− y = b̂ , x ≥ 0 , y ≥ 0 , xtry = 0 .
(4.33)

First we make sure that the above problem has a unique solution. To this
end one shows the equivalence of Problem 4.9 with a minimization problem.

Lemma 4.10

The Problem 4.9 is equivalent to the minimization problem

min
x≥0

G(x), where G(x) :=
1
2
(xtrAx) − b̂trx is strictly convex. (4.34)

Proof. The derivatives of G are Gx = Ax − b̂ and Gxx = A. Lemma 4.3
implies that A has positive eigenvalues. Hence the Hessian matrix Gxx

is symmetric and positive definite. So G is strictly convex, and has a
unique minimum on each convex set in IRn, for example on x ≥ 0. The
Theorem of Kuhn and Tucker minimizes G under Hi(x) ≤ 0, i = 1, . . . ,m.
According to this theorem,7 a vector x0 to be a minimum is equivalent to
the existence of a Lagrange multiplier y ≥ 0 with

grad G(x0) +
(
∂H(x0)
∂x

)
tr

y = 0 , ytrH(x0) = 0 .

The set x ≥ 0 leads to define H(x) := −x. Hence the Kuhn–Tucker
condition is Ax− b̂+(−I)try = 0, ytrx = 0, and we have reached equation
(4.33).

An iterative procedure can be derived from the minimization problem stated
in Lemma 4.10. This algorithm is based on the SOR method [Cry71]. For
an introduction to iterative methods for the solution of systems of linear
equations Ax = b we refer to Appendix C2. Note that (4.31) is not in the
easy form of equation Ax = b discussed in Appendix C2; a modification of
the standard SOR will be necessary. The iteration of the SOR method for
Ax = b̂ = b − Ag is written componentwise (−→ Exercise 4.6) as iteration
for the correction vector x(k) − x

(k−1):

r
(k)

i
:= b̂i −

i−1∑
j=1

aijx
(k)

j
− aiix

(k−1)

i
−

n∑
j=i+1

aijx
(k−1)

j
(4.35a)

7 For the Kuhn–Tucker (or Karush-Kuhn-Tucker) theory we refer to [StW70],
[Str07]. In our context, m− 1.
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x
(k)

i
= x

(k−1)

i
+ ωR

r
(k)

i

aii

. (4.35b)

Here k denotes the number of the iteration, n = m− 1, and aij is element of
the matrix A. In the cases i = 1, i = m−1 one of the sums in (4.35a) is empty.
The relaxation parameter ωR is a factor chosen in a way that should improve
the convergence of the iteration. The “projected” SOR method for solving
(4.33) starts from a vector x(0) ≥ 0 and is identical to the SOR method up
to a modification on (4.35b) serving for x(k)

i
≥ 0.

Algorithm 4.11 (PSOR, projected SOR for Problem 4.9)

outer loop: k = 1, 2, . . .
inner loop: i = 1, ...,m− 1

r
(k)

i
as in (4.35a)

x
(k)

i
= max

{
0, x(k−1)

i
+ ωR

r
(k)

i

aii

}
y
(k)

i
= −r

(k)

i
+ aii

(
x

(k)

i
− x

(k−1)

i

)
(4.36)

We see that this method solves Ax = b̂ for b̂ = b − Ag iteratively by com-

ponentwise considering x(k) ≥ 0. The vector y or the components y(k)

i
con-

verging against yi, are not used explicitly for the algorithm. But since y ≥ 0
is shown (Aw ≥ b), the vector y serves an important role in the proof of
convergence. Transformed back into the w-world of problem (4.31) by means
of (4.32), the Algorithm 4.11 solves (4.31).

A proof of the convergence of Algorithm 4.11 is based on Lemma 4.10.
One shows that the sequence defined in Algorithm 4.11 minimizes G. The
main steps of the argumentation are sketched as follows:
For 0 < ωR < 2 the sequence G(x(k)) is decreasing monotonically;
Show x(k+1) − x(k) → 0 for k → ∞;
The limit exists because x(k) moves in a compact set {x | G(x) ≤ G(x(0))};
The vector r from (4.35) converges toward −y;
Assuming r ≥ 0 and rtrx �= 0 leads to a contradiction to x(k+1)−x(k) → 0.
(For the proof see [Cry71].)

Another formulation has shown to be a basis for a direct solution:

Problem 4.12 (Cryer’s problem restated)

Solve Aw = b componentwise such that
the side condition w ≥ g is obeyed.
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An implementation must be done carefully such that the boundary conditions
and all the LCP requirements in (4.33) are met. The structure of Problem
4.12 is slightly different from the system Aw = b without side condition
[JaLL90].

Recall that a direct method establishes in a first phase an equivalent sys-
tem Ãw = b̃ with a triangular matrix Ã. The elimination of the components
wi is the second phase of a direct method. Obeying the side condition w ≥ g

is easy to arrange for standard options. As analyzed earlier, for a put wi = gi

for small indexes i, and for a call this holds for large indices. In both cases
there is only one index if separating the components with wi = gi from those
with wi > gi. For a put and the unknown index if ,

wi = gi for 1 ≤ i ≤ if , and wi > gi for if < i ≤ m.

The index if marks the location of the free boundary. As suggested by Bren-
nan and Schwartz [BrS77], the elimination procedure runs forward for a put,
starting with i = 1. To have the elimination phase run in a forward loop, the
matrix Ã must be a lower triangular matrix. That is, in the case of a put,
the decomposition of A is a RL-decomposition, and Ã = L (−→ Appendix
C1). After starting with i = 1, the algorithm for i > 1 then always calculates
the next component wi of Ãw = b̃, and corrects wi := gi in case wi < gi.
For the call the elimination phase runs in a backward loop. This requires the
traditional upper triangular matrix Ã as calculated by the LR-decomposition.

In this way, a direct method for solving Problem 4.12 is established, which
is as efficient as solving a standard system of linear equations. (−→ Exercise
4.12) This elegant approach of Brennan and Schwartz allows to treat the
nonlinear problem of valuing an American option as if it were linear.

4.6.3 An Algorithm for Calculating American Options

We return to the original meaning of the variables x, y, r, as used for in-
stance in (4.2), (4.3). It remains to substitute a proper algorithm for (4.31)
into Algorithm 4.8. From the analysis of Subsection 4.6.2, we either apply
the iterative Algorithm 4.11 (−→ Exercise 4.7), or implement the fast direct
method. The resulting algorithm is formulated in Algorithm 4.13 with an
LCP-solving module that implements the iterative version. The implemen-
tation of the direct version is left to the reader (−→ Exercise 4.12). Recall
gi,ν := g(xi, τν) (0 ≤ i ≤ m) and g(ν) := (g1,ν , . . . , gm−1,ν)tr . The Figure 4.11
depicts a result of Algorithm 4.13 for Example 1.6. Here we obtain the con-
tact point with value Sf(0) = 36.3. Figure 4.13 shows the American put that
corresponds to the call in Figure 4.9.
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Algorithm 4.13 (prototype core algorithm)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Set up the function g(x, τ) listed in Problem 4.7.
Choose θ (θ = 1/2 for Crank–Nicolson).
For PSOR: choose 1 ≤ ωR < 2 (for example, ωR = 1),

fix an error bound ε (for example, ε = 10−5).
Fix the discretization by choosing xmin, xmax, m, νmax

(for example, xmin = −5, xmax = 5 or 3, νmax = m = 100).
Calculate Δx := (xmax − xmin)/m,

Δτ := 1

2
σ2T/νmax

xi := xmin + iΔx for i = 0, . . . ,m
Initialize the iteration vector w with

g(0) = (g(x1, 0), . . . , g(xm−1, 0)).
Calculate λ := Δτ/Δx

2 and α := λθ.

τ-loop: for ν = 0, 1, ..., νmax − 1:
τν := νΔτ

bi := wi + λ(1 − θ)(wi+1 − 2wi + wi−1) for 2 ≤ i ≤ m− 2
b1 := w1 + λ(1 − θ)(w2 − 2w1 + g0,ν) + αg0,ν+1

bm−1 := wm−1 + λ(1 − θ)(gm,ν − 2wm−1 + wm−2) + αgm,ν+1

LCP solution, directly as in Exercise 4.12, or with PSOR:

| Set componentwise v = max(w, g(ν+1))
| (v is the iteration vector of the projected SOR.)
| PSOR-loop:

| as long as ‖vnew − v‖2 > ε:
| for i = 1, 2, ...,m− 1:
| ρ := (bi + α(vnew

i−1
+ vi+1))/(1 + 2α)

| (with vnew

0
= vm = 0)

| vnew

i
= max{gi,ν+1, vi + ωR(ρ− vi)}

| v := v
new (after testing for convergence)

w
(ν+1) = w = v

European options:

For completeness we mention that it is possible to calculate European opti-
ons with Algorithm 4.13 after some modifications. In the iterative version,
replacing the line

vnew

i
= max{gi,ν+1, vi + ωR(ρ− vi)}

by the line
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Fig. 4.11. (Example 1.6) American put, K = 50, r = 0.1, σ = 0.4, T =
5
12

. V (S, 0)
(solid curve) and payoff V (S, T ) (dashed). Special value: V (K, 0) = 4.2842

vnew

i
= vi + ωR(ρ− vi)

recovers the standard SOR for solving Aw = b (without w ≥ g). If in addition
the boundary conditions are adapted, then the program resulting from Algo-
rithm 4.13 can be applied to European options. The same holds true for the
direct method. And applying the analytic solution formula should be most
economical, when the entire surface is not required. But for the purpose of
testing Algorithm 4.13 it may be recommendable to compare its results to
something “known.”

Back to American options, we complete the analysis, summarizing how a
concrete financial task is solved with the core Algorithm 4.13, which is formu-
lated in artificial variables such as xi, gi,ν , wi and not in financial variables.
This requires an interface between the real world and the core algorithm.
The interface is provided by the transformations in (4.3). This important
ingredient must be included for completeness. Let us formulate the required
transition between the real world and the numerical machinery of Algorithm
4.13 as another algorithm:
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4.6 Computation of American Options

Algorithm 4.14 (American options)

Input: strike K, time to expiration T , spot price S0, r, δ, σ

Perform the core Algorithm 4.13.
(The τ -loop ends at τend = 1

2
σ2T .)

For i = 1, . . . ,m− 1:
wi approximates y(xi,

1

2
σ2T ),

Si = K exp{xi}

V (Si, 0) = Kwi exp{−xi

2
(qδ − 1)} exp{−τend(1

4
(qδ − 1)2 + q)}

Test for early exercise: Approximate Sf(0):
(in case PSOR was used)

Choose ε∗ = K · 10−5 (for example)
For a put:

if := max{ i | |V (Si, 0) + Si −K| < ε∗ }

S0 < Sif
: stopping region!

For a call:
if := min{ i | |K − Si + V (Si, 0)| < ε∗ }

S0 > Sif
: stopping region!

In case the direct method was used, the index if is known from the algorithm.
The Algorithm 4.14 evaluates the data at the final time level τend, which
corresponds to t = 0. The computed information for the intermediate time
levels can be evaluated analogously. In this way, the locations of Sif

can be
put together to form an approximation of the free-boundary or stopping-time
curve Sf(t). But note that this approximation will be a crude step function.
It requires some effort to calculate the curve Sf(t) with reasonable accuracy,
see the illustration of curve C1 in Figure 4.8.

Modifications

The above Algorithm 4.13 (along with Algorithm 4.14) is the prototype of
a finite-difference algorithm. Improvements are possible. For example, the
equidistant time step Δτ can be given up in favor of a variable time stepping.
A few very small time steps initially will help to quickly damp the influence
of the nonsmooth payoff. The effect of the kink of the payoff at the strike
K is illustrated by Figure 4.12. The turmoil at the corner is seen, but also
the relatively rapid smoothing within a few time steps. Figure 4.12 shows
explicitly the dependence of V on S; implicit in the Figure is the dependence
on t with corresponding oscillations. The effect of the lack of smoothness is
heavier in case the payoff is discontinuous (binary option). In this context it
is advisable to start with a few fully implicit backward time steps (θ = 1)
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Fig. 4.12. Finite differences, Crank–Nicolson; American put with r = 0.06, σ = 0.3,
T = 1, K = 10; M = 1000, xmin = −2, xmax = 2, Δx = 1/250, Δt = 1/1000, payoff

and V (S, tν) for tν = 1 − νΔt, ν = 1, . . . , 10.

before switching to Crank–Nicolson (θ = 1/2). Such a procedure is called
Rannacher stepping, see [Ran84], [PoVF03], and the Notes on Section 4.3.
After one run of the algorithm it is advisable to refine the initial grid to have
a possibility to control the error. This simple strategy will be discussed in
some more detail in Section 4.7.

Practical experience with boundary conditions (4.18) suggests working
with Smin = 0.05 and Smax = 5K. For the transformation (4.3) S = Kex this
amounts to xmin = −3 − logK, xmax = 1.6. This is to be modified for other
transformations, see the choice in Figure 7.4.

Sensitivities

The Greeks delta, gamma, theta are easily obtained by difference quotients.
These approximations are formed by the V -values that were calculated on
the finite-difference grid. For vega and rho, a recalculation is necessary, see
Section 1.4.6.
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4.7 On the Accuracy

4.7 On the Accuracy

Necessarily, each result obtained with the means of this chapter is subjected
to errors in several ways. The most important errors have been mentioned
earlier; in this section we collect them. Let us emphasize again that in ge-
neral the existence of errors must be accepted, but not their magnitude. By
investing sufficient effort, many of the errors can be kept at a tolerable level.

(a) modeling error

The assumptions defining the underlying financial model are restrictive.
The Assumption 1.2, for example, will not exactly match the reality of a
financial market. And the parameters of the equations (such as volatility
σ) are unknown and must be estimated. Hence the equations of the model
are only crude approximations of the “reality.”

(b) discretization errors

Under the heading “discretization error” we summarize several errors that
are introduced when the continuous PDE is replaced by a set of appro-
ximating equations defined on a grid. An essential portion of the dis-
cretization error is the error between differential quotients and difference
quotients. For example, a Crank–Nicolson discretization is of the order
O(Δ2), if Δ is a measure of the grid size, and if the solution function
is sufficiently smooth. Other discretization errors include the localization
error caused by truncating the infinite interval −∞ < x < ∞ to a finite
interval, the implementation of the boundary conditions, or a quantifica-
tion error when the strike (x = 0) is not part of the grid. In passing we
recommend that the strike be one of the grid points, xk = 0 for one k.

(c) error from solving the linear equation

An iterative solution of the linear systems of equation Aw = b means
that the error approaches 0 when k → ∞, where k counts the number
of iterations. By practical reasons the iteration must be terminated at a
finite kmax such that the effort is bounded. Hence an error remains from
the linear equations. The error tends to be small for direct elimination
methods.

(d) rounding error

The finite number of digits l of the mantissa is the reason for rounding
errors.

In general, one has no accurate information on the size of these errors.
Typically, the modeling errors are larger than the discretization errors. For a
stable method, the rounding errors are the least problem. The numerical ana-
lyst, as a rule, has limited potential in manipulating the modeling error. So
the numerical analyst concentrates on the other errors, especially on discreti-
zation errors. To this end we may use the qualitative assertion of Theorem
4.4. But such an a priori result is only a basic step toward our ultimate goal
formulated in Problem 4.15.
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4.7.1 Elementary Error Control

We neglect modeling errors and try to solve the a posteriori error problem:
Problem 4.15 (principle of an error control)

Let the exact result of a solution of the continuous equations be denoted
η∗. The approximation η calculated by a given algorithm depends on a
representative grid size Δ, on kmax, on the word length l of the computer,
and maybe on several additional parameters, symbolically written

η = η(Δ, kmax, l) .

Choose Δ, kmax, l such that the absolute error of η does not exceed a
prescribed error tolerance ε,

|η − η
∗| < ε .

This problem is difficult to solve, because we implicitly assume an efficient

approximation avoiding an overkill with extremely small values of Δ or large
values of kmax or l. Time counts in real-time application. So we try to avoid
unnecessary effort of achieving a tiny error |η−η∗| � ε. The exact size of the
error is unknown. But its order of magnitude can be estimated as follows.

Let us assume the method is of order p. We simplify this statement to

η(Δ) − η
∗ = γΔ

p

. (4.37)

Here γ is a priori unknown. By calculating two approximations, say for grid
sizes Δ1 and Δ2, the constant γ can be calculated. To this end subtract the
two calculated approximations η1 and η2,

η1 := η(Δ1) = γΔ
p

1
+ η

∗

η2 := η(Δ2) = γΔ
p

2
+ η

∗

to obtain
γ =

η1 − η2

Δ
p

1
−Δ

p

2

.

A simple choice of the grid size Δ2 for the second approximation is the
refinement Δ2 = 1

2
Δ1. This leads to

γ

(
Δ1

2

)
p

=
η1 − η2

2p − 1
. (4.38)

Especially for p = 2 the relation

γΔ
2

1
= 4

3
(η1 − η2)

results. In view of the scenario (4.37) the absolute error of the approximation
η1 is given by

4

3
|η1 − η2|

and the error of η2 by (4.38).
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Fig. 4.13. Value V (S, 0) of an American put with K = 10, r = 0.25, σ = 0.6,
T = 1 and dividend flow δ = 0.2. For special values see Table 4.1. Crosses mark the

corresponding curve of a European option.

Table 4.1. Results reported in Figure 4.13

m = νmax V (10, 0)

50 1.8562637
100 1.8752110
200 1.8800368
400 1.8812676
800 1.8815842

1600 1.8816652

The above procedure does not guarantee that the error η is bounded by
ε. This flaw is explained by the simplification in (4.37), and by neglecting
the other type of errors of the above list (b)–(c). Here we have assumed γ

constant, which in reality depends on the parameters of the model, for ex-
ample, on the volatility σ. But testing the above rule of thumb (4.37)/(4.38)
on European options shows that it works reasonably well. Here we compare
the finite-difference results to the analytic solution formula (A4.10), the nu-
merical errors of which are comparatively negligible. The procedure works
similar well for American options, although then the function V (S, t) is not
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C2-smooth at Sf(t). (The effect of the lack in smoothness is similar as in
Figure 4.12.) In practical applications of Crank–Nicolson’s method one can
observe quite well that doubling of m and νmax decreases the absolute error
approximately by a factor of four. To obtain a minimum of information on
the error, the core Algorithm 4.13 should be applied at least for two grids
following the lines outlined above. The information on the error can be used
to match the grid size Δ to the desired accuracy.
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1.8814

1.8816

1.8818

0 5e-06 1e-05 1.5e-05 2e-05 2.5e-05

Fig. 4.14. Approximations depending on Δ2
, with Δ = (xmax−xmin)/m = 1/νmax;

results of Figure 4.13 and Table 4.1.

Let us illustrate the above considerations with an example, compare Figu-
res 4.13 and 4.14, and Table 4.1. For an American put and xmax = −xmin = 5
we calculate several approximations, and test equation (4.37) in the form
η(Δ) = η∗ + γΔ2. We illustrate the approximations as points in the (Δ2, η)-
plane. The better the assumption (4.37) is satisfied, the closer the calculated
points lie on a straight line. Figure 4.14 indicates that this error-control model
can be expected to work well.

In order to check the error quality of a computer program on standard
American options, one may check the put-call symmetry relation (A5.3). For
example, for the parameters of Figure 4.13 / Table 4.1, the corresponding
call with S = K and switched parameters r = 0.2, δ = 0.25 is calculated, and
the results match very well: For the finest discretization in Table 4.1, about
8 digits match with the value of the corresponding call. But this is only a
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necessary criterion for accuracy; the number of matching digits of (A5.3) does
not relate to the number of correct digits of V (S, 0).

4.7.2 Extrapolation

The obviously reasonable error model sketched above suggests applying (4.37)
to obtain an improved approximation η at practically zero cost. Such a pro-
cedure is called extrapolation (−→ Exercise 1.15). In a graphical illustration
η over Δ2 as in Figure 4.14, extrapolation amounts to construct a straight
line through two of the calculated points. The value of the straight line for
Δ2 = 0 gives the extrapolated value from

η
∗ ≈

4η2 − η1

3
. (4.39)

In our example, this procedure allows to estimate the correct value to be
close to 1.8817. Combining, for example, two approximations of rather low
quality, namely, m = 50 with m = 100, gives already an extrapolated appro-
ximation of 1.8815. And based on the two best approximations of Table 4.1,
the extrapolated approximation is 1.881690.8

Typically, the extrapolation formula provided by (4.39) is significantly
more accurate than η2. But we have no further information on the accuracy
from the calculated η1, η2. Calculating a third approximation η3 reveals more
information. For example, a higher-order extrapolation can be constructed
(−→ Exercise 4.13). Figure 4.15 reports on the accuracies.

The convergence rate in Theorem 4.4 was derived under the assumptions
of a structured equidistant grid and a C4-smooth solution. Practical experi-
ments with nonuniform grids and nonsmooth data suggest that the conver-
gence rate may still behave reasonably. But the finite-difference discretization
error is not the whole story. The more flexible finite-element approaches in
Chapter 5 will shed light on convergence under more general conditions.

4.8 Analytic Methods

Numerical methods typically are designed such that they achieve conver-
gence. So, in principle, every accuracy can be reached, only limited by the
available computer time and by hardware restrictions. In several cases this
high potential of numerical methods is not needed. Rather, some analytic
formula may be sufficient that delivers medium accuracy at low cost. Such
“analytic methods” have been developed. Often their accuracy is reasonable
as compared to the underlying modeling error. The limited accuracy goes

8 With m = 20000, our best result was 1.8816935

199



Chapter 4 Standard Methods for Standard Options

1e-06

1e-05

0.0001

0.001

0.01

0.1

10 100 1000 10000

lo
g 

of
 a

bs
ol

ut
e 

er
ro

r

log(m)

Fig. 4.15. Finite difference methods, log of absolute error in V (K, 0) over log(m),

where m = νmax, and the basis of the logarithm is 10. Solid line: plain algorithm,

results in Table 4.1; dashed line: extrapolation (4.39) based on two approximations;

dotted line: higher-order extrapolation of Exercise 4.13. Note that the axes in Figure

4.15 are completely different from those of Figure 4.14.

along with a nice feature that is characteristic for analytic methods: their
costs are clear, and known in advance.

In reality there is hardly a clear-cut between numerical and analytic me-
thods. On the one hand, numerical methods require analysis for their deriva-
tion. And on the other hand, analytic methods involve numerical algorithms.
These may be elementary evaluations of functions like the logarithm or the
square root as in the Black–Scholes formula, or may consist of a sub-algorithm
like Newton’s iteration for zero finding. (The latter situation might cause
some uncertainty on the costs.) There is hardly a purely analytic method.

The finite-difference approach, which approximates the surface V (S, t),
requires intermediate values for 0 < t < T for the purpose of approxima-
ting V (S, 0). In the financial practice one is basically interested in values for
t = 0, intermediate values are rarely asked for. So the only temporal input
parameter is the time to maturity T − t (or T in case the current time is
set to zero, t = 0). Recall that also in the Black–Scholes formula, time only
enters in the form T − t (−→ Appendix A4). So it makes sense to write the
formula in terms of the time to maturity τ ,

τ := T − t ,
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which leads to the compact version of the Black–Scholes formulas (A4.10),

d1(S, τ ;K, r, σ) :=
1

σ
√
τ

{
log

S

K
+
(
r +

σ2

2

)
τ

}
d2(S, τ ;K, r, σ) :=

1
σ
√
τ

{
log

S

K
+
(
r −

σ2

2

)
τ

}
= d1 − σ

√
τ

V
Eur

P
(S, τ ;K, r, σ) = −SF (−d1) +Ke−rτ

F (−d2)

V
Eur

C
(S, τ ;K, r, σ) = SF (d1) −Ke−rτ

F (d2)

(4.40)

(dividend-free case). F denotes the cumulated standard normal distribution
function. For dividend-free vanilla options we only need an approximation
formula for the American put V Am

P
; the other cases are covered by the Black–

Scholes formula.
This Section introduces into four analytic methods. The first two (Sub-

sections 4.8.1, 4.8.2) are described in detail such that the implementation
of the algorithms is an easy matter. Of the method of lines (in Subsection
4.8.3) only basic ideas are set forth. More detail is presented on the integral
representation (Subsection 4.8.4). We assume r > 0.

4.8.1 Approximation Based on Interpolation

If a lower bound V low and an upper bound V up on the American put are
available,

V
low ≤ V

Am

P
≤ V

up
,

then the idea is to construct an α aiming at

V
Am

P
= αV

up + (1 − α)V low
.

This is the approach of [Joh83]. The parameter α, 0 ≤ α ≤ 1, defines an
interpolation between V low and V up. Since V Am

P
depends on the market data

S, τ,K, r, σ, the single parameter α and the above interpolation can not be
expected to provide an exact value of V Am

P
. (An exact value would mean that

an exact formula for V Am

P
would exist.) Rather a formula for α is developed

as a function of S, τ,K, r, σ such that the interpolation formula αV up + (1−
α)V low provides a good approximation for a wide range of market data. The
smaller the gap between V low and V up , the better is the approximation.

An immediate candidate for the lower bound V
low is the value V Eur

P
pro-

vided by the Black–Scholes formula,

V
Eur

P
(S, τ ;K) ≤ V

Am

P
(S, τ ;K) .

From (4.18) the left-hand boundary condition of a European put with strike
K̃ is K̃e−rτ . Clearly, for K̃ = Kerτ and S = 0,

V
Am

P
(0, τ ;K) = V

Eur

P
(0, τ ;Kerτ) ,
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Fig. 4.16. Bounds on an American put V (S, t; K) for t = 0 as function of S, with

K = 10, r = 0.06, σ = 0.3, τ = 1. Medium curve: the American put; lower curve:

the European put V Eur
(S, 0; K); upper curve: the European put V Eur

(S, 0; K̃), with

K̃ = Ke
rτ

since both sides equal the payoff value K. From the properties of the Ameri-
can put we conclude that

V
Am

P
(S, τ ;K) ≤ V

Eur

P
(S, τ ;Kerτ )

at least for small S > 0. In fact, this holds for all S, which can be shown with
Jensen’s inequality, see Appendix B1. In summary, the upper bound is

V
up := V

Eur

P
(S, τ ;Kerτ ) ,

see Figure 4.16. The resulting approximation formula is

V := αV
Eur

P
(S, τ ;Kerτ ) + (1 − α)V Eur

P
(S, τ ;K) . (4.41)

The parameter α depends on S, τ,K, r, σ, so does V . Actually, the Black–
Scholes formula (4.40) suggests that α and V only depend on the three di-
mensionless parameters

S/K (“moneyness”) , rτ , and σ
2
τ .

The approximation must be constructed such that the lower bound (K−S)+

of the payoff is obeyed. As we will see, all depends on the free boundary Sf ,
which must be approximated as well.
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[Joh83] set up a model for α with two free parameters a0, a1, which were
determined by carrying out a regression analysis based on computed values
of V Am

P
. The result is

α :=
(

rτ

a0rτ + a1

)
β

, β :=
ln(S/Sf)
ln(K/Sf)

,

a0 = 3.9649 , a1 = 0.032325 .

(4.42)

The ansatz for α is designed such that for S = K (and hence β = 1) upper
and lower bound behavior and calculated option values can be matched with
reasonable accuracy with only two parameters a0, a1. The S-dependent β is
introduced to improve the approximation for S < K and S > K. Obviously,
S = Sf ⇒ β = 0 ⇒ α = 1, which captures the upper bound. And for the
lower bound, α = 0 is reached for S → ∞, and for rτ = 0. (The reader may
discuss (4.42) to check the assertions.)

The model for α of equation (4.42) involves the unknown free-boundary
curve Sf . To approximate Sf , observe the extreme cases

Sf = K for τ = 0

Sf = K
2r

σ2 + 2r
for T → ∞ .

(For the latter case consult Exercise 4.8 and Appendix A5.) This motivates
to set the approximation Sf for Sf as

Sf := K

(
2r

σ2 + 2r

)
γ

, (4.43)

for a suitably modeled exponent γ. To match the extreme cases, γ should
vanish for τ = 0, and γ ≈ 1 for large values of τ . [Joh83] suggests

γ :=
σ2τ

b0σ
2τ + b1

,

b0 = 1.04083 , b1 = 0.00963 .
(4.44)

The constants b0 and b1 were again obtained by a regression analysis.
The analytic expressions of (4.43), (4.44) provide an approximation V of

Sf , and then by (4.42), (4.41) an approximation of V Am

P
for S > Sf , based

on the Black–Scholes formulas (4.40) for V Eur

P
.

Algorithm 4.16 (interpolation)

For given S, τ,K, r, σ evaluate γ, Sf , β based on Sf , and α .

Evaluate the Black–Scholes formula for V Eur

P

for the arguments in (4.41).

Then V from (4.41) is an approximation to V Am

P
for S > Sf .
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This purely analytic method is fast and simple. Numerical experiments
show that the approximation quality of Sf is poor. But for S not too close
to Sf the approximation quality of V is quite good. As reported in [Joh83],
the error is small for rτ ≤ 0.125, which is satisfied for average values of the
risk-free rate r and time to maturity τ . For larger values of rτ , when the gap
between lower and upper bound widens, the approximation works less well.
An extension to options on dividend-paying assets is given in [Blo86].

4.8.2 Quadratic Approximation

Next we describe an analytic method due to [MaM86]. Recall that in the
continuation region both V Am

P
and V Eur

P
obey the Black–Scholes equation.

Since this equation is linear, also the difference

p(S, τ) := V
Am

P
(S, τ) − V

Eur

P
(S, τ) (4.45)

satisfies the Black–Scholes equation. The relation V Am ≥ V Eur suggests to
interpret the difference p as early-exercise premium. Since both V Am

P
and

V Eur

P
have the same payoff, the terminal condition for τ = 0 is zero, p(S, 0) =

0. The closeness of p(S, τ) to zero should scale roughly by

H(τ) := 1 − e−rτ

. (4.46)

This motivates introducing a scaled version f of p,

p(S, τ) =: H(τ) f(S,H(τ)) (4.47)

For the analysis we repeat the Black–Scholes equation, here for p(S, τ), where
subscripts denote partial differentiation, and q := 2r

σ
2 :

−
q

r
pτ + S

2
pSS + qSpS − qp = 0 (4.48)

Substituting (4.47) and

pS = HfS , pSS = HfSS , pτ = Hτf +HfHHτ

and using
1
r
Hτ = 1 −H

yields after a short calculation (the reader may check) the modified version
of the Black–Scholes equation

S
2
fSS + qSfS −

q

H
f
[
1 +H(1 −H)

fH

f

]
= 0 . (4.49)

H and q are nonzero for r > 0. Note that (4.49) is the “full” equation, nothing
is simplified yet. No partial derivative with respect to t shows up, but instead
the partial derivative fH .
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At this point, following [MaM86], we introduce a simplifying approxima-
tion. The factor H(H − 1) for the H varying in the range 0 ≤ H < 1 is a
quadratic term with maximum value of 1/4, and close to zero for τ ≈ 0 and
for large values of τ , compare (4.46). This suggests that the term

H(1 −H)
fH

f
(4.50)

may be small compared to 1, and to neglect it in (4.49). (This motivates the
name “quadratic approximation.”) The resulting equation

S
2
fSS + qSfS −

q

H
f = 0 (4.51)

is an ordinary differential equation with analytical solution, parameterized
by H . An analysis similar as in Exercise 4.8 leads to the solution

f(S) = αS
λ

, where λ := −
1
2

{
(q − 1) +

√
(q − 1)2 +

4q
H

}
, (4.52)

for a parameter α. Combining (4.45), (4.47) and (4.52) we deduce for S > Sf

the approximation V

V
Am

P
(S, τ) ≈ V (S, τ) := V

Eur

P
(S, τ) + αH(τ)Sλ (4.53)

The parameter α must be such that V reaches the payoff at Sf ,

V
Eur

P
(Sf , τ) + αHS

λ

f
= K − Sf . (4.54)

Here Sf is parameterized by H via (4.46), and therefore depends on τ . To fix
the two unknowns Sf and α let us warm up the high-contact condition. This
requires the partial derivative of V with respect to S. The main part is

∂V Eur

P
(S, τ)

∂S
= F (d1) − 1

where F is the cumulated normal distribution function, and d1 (and below
d2) are the expressions defined by (4.40). d1 and d2 depend on all relevant
market parameters; we emphasize the dependence on S by writing d1(S).
This gives the high-contact condition

∂V (Sf , τ)
∂S

= F (d1(Sf)) − 1 + αλHS
λ−1

f
= −1 ,

and immediately α in terms of Sf :

α = −
F (d1(Sf))
λHS

λ−1

f

. (4.55)

Substituting into (4.54) yields one equation for the remaining unknown Sf ,
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V
Eur

P
(Sf , τ) − F (d1(Sf))

1
λ
Sf = K − Sf ,

which in view of the put-call parity (A4.11a) and F (−d) = 1 − F (d) reads

SfF (d1) −Ke−rτ

F (d2) − Sf +Ke−rτ − F (d1)
Sf

λ
−K + Sf = 0 .

This can be summarized to

Sf F (d1(Sf))
[
1 −

1
λ

]
+Ke−rτ

[
1 − F (d2(Sf))

]
−K = 0 . (4.56)

Since d1 and d2 vary with Sf , (4.56) is an implicit equation for Sf and must
be solved iteratively. In this way a sequence of approximations S1, S2, ... to
Sf is constructed. We summarize

Algorithm 4.17 (quadratic approximation)

For given S, τ,K, r, σ evaluate q =
2r
σ2
, H = 1 − e−rτ

and λ from (4.52).
Solve (4.56) iteratively for Sf .

(This involves a sub-algorithm, from which F (d1(Sf))
should be saved.)

Evaluate V Eur

P
(S, τ) using the Black–Scholes formula (4.40).

V := V
Eur

P
(S, τ) −

1
λ
SfF (d1(Sf))

(
S

Sf

)
λ

(4.57)

is the approximation for S > Sf ,

and V = K − S for S ≤ Sf .

Note that λ < 0, and λ depends on τ via H(τ). The time-consuming part of
the quadratic-approximation method consists of the numerical root finding
procedure. But here a moderate accuracy suffices, since a very small error in
Sf does not affect the error in V̄ . (−→ Exercise 4.14, Exercise 4.15)

4.8.3 Analytic Method of Lines

In solving PDEs numerically, the method of lines is a well-known approach.
It is based on a semidiscretization, where the domain (here the (S, τ) half
strip) is replaced by a set of lines parallel to the S-axis, each defined by a
constant value of τ . To this end, the interval 0 ≤ τ ≤ T is discretized into
νmax sub-intervals by τν := νΔτ , Δτ := T/νmax, ν = 1, . . . , νmax − 1. To
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Fig. 4.17. Method of lines, situation as in Figure 1.5. The early-exercise curve is

indicated.

deserve the attribute “analytic,” we assume νmax to be small, say, work with
three lines. We write the Black–Scholes equation as in Section 4.5.3,

−
∂V (S, τ)

∂τ
+ LBS(V (S, τ)) = 0 , (4.58)

where the negative sign compensates for the transition from t to τ , and replace
the partial derivative ∂V/∂τ by the difference quotient

V (S, τ) − V (S, τ −Δτ)
Δτ

.

This gives a semidiscretized version of (4.58), namely, the ordinary differential
equation

w(S, τ −Δτ) − w(S, τ) +Δτ LBS(w(S, τ)) = 0 ,

which holds for S > Sf . Here we use the notation w rather than V to indicate
that a discretization error is involved. This semidiscretized version is applied
for each of the parallel lines, τ = τν , ν = 1, . . . , νmax − 1. Figure 4.17 may
motivate the procedure. For each line τ = τν , the function w(S, τν−1) is
known from the previous line, starting from the known payoff for τ = 0. The
equation to be solved for each line τν is

1
2
Δτ σ

2
S

2
∂2w

∂S2
+Δτ rS

∂w

∂S
− (1 +Δτ r)w = −w(·, τν−1) (4.59)

This is a second-order ordinary differential equation for w(S, τν), with boun-
dary conditions for Sf(τν) and S → ∞. The solution is obtained analytically,
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τS (       )
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τ

Fig. 4.18. Method of lines, situation along line τν : A: solution is given by payoff;

B: inhomogeneous term of differential equation given by payoff; C: inhomogeneous

term given by −w(., τν−1)

similar as in Exercise 4.8. Hence there is no discretization error in S-direction.
The right-hand function −w(S, τν−1) is known, and is an inhomogeneous term
of the ODE.

The resulting analytic method of lines is carried out in [CaF95]. The above
describes the basic idea. A complication arises from the early-exercise curve,
which separates each of the parallel lines into two parts. Since for the previous
line τν−1 the separation point lies more “on the right” (recall that for a put the
curve Sf(τ) is monotonically decreasing for growing τ), the inhomogeneous
term w(·, τν−1) consists of two parts as well, but separated differently (see
Figure 4.18). Accordingly, neglecting for the moment the input of previous
lines τν−2, τν−3, . . ., the analytic solution of (4.59) for the line τν consists of
three parts, defined on the three intervals

A: 0 < S < Sf(τν) ,
B: Sf(τν) ≤ S < Sf(τν−1) ,
C: Sf(τν−1) ≤ S .

On the left-hand interval A, w equals the payoff; nothing needs to be cal-
culated. For the middle interval B the inhomogeneous term −w(., τν−1) is
given by the payoff. Since the analytic solution involves two integration con-
stants, and since the inhomogeneous terms differ on the intervals B and C,
we encounter together with the unknown Sf(τν) five unknown parameters.
One of the integration constants is zero because of the boundary condition
for S → ∞, similar as in Exercise 4.8. The unknown separation point Sf(τν)
is again fixed by the high-contact conditions (4.24P). Two remaining condi-
tions are given by the requirement that both w and dw

dS
are continuous at the

matching point Sf(τν−1). This fixes all variables for the line τν .
Over all lines, νmax type-B intervals are involved, and the only remaining

type-C interval is that for S ≥ Sf(τ0) = K. The resulting formulas are
somewhat complex, for details see [CaF95]. The method is used along with
extrapolation. To this end, carry out the method three times, with νmax =
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1, 2, 3, and denote the results V 1, V 2, V 3. Then the three-point extrapolation
formula

V :=
1
2
(9V 3 − 8V 2 + V 1) (4.60)

gives rather accurate results.
The method of lines can be carried out numerically [Mey02]. For lines

parallel to the t-axis, see Exercise 4.10 and Figure 4.21.

4.8.4 Integral Representations

Recall for European put options the integral representation (1.50)

V
Eur

P
(S, τ) = e−rτ

∫ ∞

0

(K − ST )+ fGBM(ST , T ; S, r − δ, σ) dST ,

where τ := T − t denotes the remaining time to expiration, and fGBM is the
density function from (1.48). Solving this integral one arrives at the Black–
Scholes formula. We repeat from (4.40) the two functions (here with constant
dividend yield rate δ ≥ 0),

d1(S, τ ;K) :=
log S

K
+
(
r − δ + σ

2

2

)
τ

σ
√
τ

, d2(S, τ ;K) := d1 − σ
√
τ , (4.61)

for τ > 0. With d1, d2 evaluated at S, τ,K, recall

V
Eur

P
(S, τ) = −Se−δτ

F (−d1) +Ke−rτ

F (−d2) ,

where F denotes the standard normal cumulative distribution. (See also Ap-
pendix A4.) Further recall from (4.45) the early-exercise premium p, with

V
Am

P
(S, τ) = V

Eur

P
(S, τ) + p(S, τ) .

As suggested by [Kim90] and others, the premium function p can be re-
presented as an integral over functions depending on the free boundary Sf .
The result is

V
Am

P
(S, τ) = V

Eur

P
(S, τ) +

∫
τ

0

[ rKe−rξ

F (−d2(S, ξ;Sf(τ − ξ)))

− δSe−δξ

F (−d1(S, ξ;Sf(τ − ξ))) ] dξ .
(4.62)

Note that the integral is identical to∫
τ

0

[ rKe−r(τ−ξ)
F (−d2(S, τ − ξ;Sf(ξ)))

− δSe−δ(τ−ξ)
F (−d1(S, τ − ξ;Sf(ξ))) ] dξ .

(4.63)
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Integral Equation for Sf

Substitute V (Sf(τ), τ) = K − Sf(τ) into (4.62) and obtain

K − Sf(τ) = − Sf(τ) e−δτ

F (−d1(Sf(τ), τ ;K))
+Ke−rτ

F (−d2(Sf(τ), τ ;K))

+
∫

τ

0

[ rKe−rξ

F (−d2(Sf(τ), ξ;Sf (τ − ξ)))

− δSf(τ) e−δξ

F (−d1(Sf(τ), ξ;Sf(τ − ξ))) ] dξ

(4.64)

This constitutes an integral equation for the free-boundary function Sf(τ) of
an American put.

Numerical Solution of the Integral Equation

We denote the integrand in (4.64) by g(Sf(τ), Sf(τ−ξ), ξ). (−→ Exercise 4.16)
Let the τ -interval be subdivided by discrete τν into M subintervals, with
τ0 = 0, τM = τ , and with equidistant steps Δτ = τ/M , and tν = νΔτ . The
numerical treatment resembles that for ODE initial-value problems. Basically
the integral is approximated by a composite trapezoidal sum (C1.2). Note
from Appendix A.5 that Sf(τ) for τ → 0+ is known,

Sf0 := lim
τ→0+

Sf(τ) = min{K,
r

δ
K} .

We use the notation Sfν := Sf(τν). Specifically for τ1, the integral and (4.64)
can be approximated by the trapezoidal rule

K − Sf1 = V
Eur

P
(Sf1, τ1) +

Δτ

2
[g(Sf1, Sf1, τ0) + g(Sf1, Sf0, τ1)] , (4.65)

which is solved iteratively for its only unknown Sf1 by any root-finding pro-
cedure. After Sf1 is calculated to sufficient accuracy, the next equation is

K − Sf2 = V
Eur

P
(Sf2, τ2)

+
Δτ

2
[g(Sf2, Sf2, τ0) + 2g(Sf2, Sf1, τ1) + g(Sf2, Sf0, τ2)] ,

which is solved for Sf2. In this way, the composite trapezoidal sum builds up
until we reach the final iteration for Sfn. So, recursively for k = 2, . . . ,M
solve

K − Sfk = V
Eur

P
(Sfk, τk)

+
Δτ

2

[
g(Sfk, Sfk, τ0) + 2

k−1∑
ν=1

g(Sfk, Sf(k−ν), τν) + g(Sfk, Sf0, τk)

]
(4.66)

for Sfk. This recursion is run for τ = T to obtain values for t = 0.
The iterative solution of the above nonlinear equations (as (4.65), (4.66))

can be done, for example, by the secant method (C1.5). The error control of
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the integral equation method represented by (4.66) involves the discretization
error of the trapezoidal sum as well as the error remaining when the secant
iteration is stopped. Recall that the secant method requires two reasonable
initial guesses. Alternatively, we recommend the highly robust bisection me-
thod. There is ample opportunity to test various strategies. (−→ Exercise
4.17)

Evaluation of the Premium

Now, the free boundary Sf is approximated by the chain of points

(τ0, Sf0), (τ1, Sf1), . . . , (τM , SfM) .

Based on this approximation, the evaluation of (4.62) is a simple task. Apply
the analogous trapezoidal sum with the same discretization to approximate
V (S, τ) for τ = τM :

V (S, τ) ≈ V
Eur

P
(S, τ)+

+
Δτ

2
[g(S, SfM , 0) + 2

M−1∑
ν=1

g(S, Sf(M−ν), τν) + g(S, Sf0, τ)] .
(4.67)

The evaluation of (4.67) does not need any further iteration and is much
cheaper than the preceding recursion (4.66).

Calculation of the Greeks

The same holds true for evaluating greeks. After calculating the partial de-
rivatives of (4.62), one obtains corresponding formulas for the greeks. For
example, delta is given by the formula

Δ
Am

P
= −e−δτ

F (−d1) −
∫

τ

0

g
Δ

P
dξ

for a function gΔ

P
defined below. The calculation works as simply as in (4.67);

the free boundary Sf is not calculated again. And similarly, other Greeks are
obtained, both for put and call. The resulting formulas are given in [HuSY96].
With the version of (4.63), and d1 evaluated at the arguments (S, τ−ξ, Sf(ξ)),

g
Δ

P
= δe−δ(τ−ξ)

F (−d1(S, τ − ξ, Sf(ξ))) +
e−d

2
1/2

√
2π

e−δ(τ−ξ)
rK − δSf(ξ)
σSf(ξ)

√
τ − ξ

For these arguments and ξ → τ , |d1| is getting infinite, and

g
Δ

P
=
{

0 for S > Sf

δ for S < Sf
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4.8.5 Other Methods

The early-exercise curve Sf(τ) can be approximated by pieces of exponential
functions

B exp(bτ) for τ1 ≤ τ ≤ τ2 ,

for parameters B, b and suitable intervals for τ . Substituting this expression
for Sf(τ) into d1 and d2 in (4.62) leads to the observation that the inte-
grals can be evaluated analytically in terms of the distribution function F .
The parameters B, b are determined such that the high-contact boundary-
condition condition is satisfied. Depending on the number of pieces of ex-
ponential functions, a good approximation of (4.62) is obtained. This is the
method of [Ju98]. The accuracy of the highly efficient three-piece approxima-
tion corresponds to that of the integral-equation method with aboutM = 100
subintervals.

[BrD96] established LUBA, an analytic method for American calls. The
derivation is beyond the scope of this textbook, but is worth at least a brief
sketch because of its striking computational power. The method starts from a
capped call, which is basically a vanilla European call, with the exception that
for t < T the option is exercised at the first time t such that St reaches the
cap. The price of the capped call can be replicated with two barrier options.
Their analytical formulas constitute a lower bound LB on the option. This
in turn, via the integral representation (4.62) lends to an upper bound UB.
Then LB and UB are interpolated with a regression ansatz comparable to
the interpolation of Section 4.8.1. The resulting specific approximation of
[BrD96] is called LUBA, which stands for lower upper bound approximation.

4.9 Criteria for Comparisons

In this chapter, we have learned about the basic structure of finite-difference
methods, and we have studied several analytic approaches. How do these
methods compare? As we shall see, this question is difficult to answer. There
are several criteria to judge the performance of a computational method.
The criteria include reliability, range of applicability, amount of information
provided by the method, and speed, and error. Speed and error are relatively
easy to compare, and we shall concentrate on these two criteria.

For the computational arena, we need to define a set of test examples,
based on which we have to calculate a benchmark in high accuracy. Results
of any chosen method will be compared to the benchmark. To measure the
deviation, a suitable error must be defined. This Section 4.9 roughly sketches
the steps of a comparison.
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Set of Test Examples

We concentrate on the valuation of plain-vanilla options. This restriction to
vanillas has the advantage that all kind of numerical methods are applicable
and can be compared. And we confine ourselves to the valuation of American
put options. The parameters K,S, T, σ, r, δ are chosen

K = 100
S ∈ {90, 100, 110, 150}
T ∈ {0.5, 1, 2}
σ ∈ {0.1, 0.3, 0.5}
r ∈ {0.05, 0.1} for δ = 0; r ∈ {0.15, 0.2} for δ = 0.1

Altogether these are 72 combinations with dividend rate δ = 0 and as many
for δ = 0.1. But for σ = 0.1, in 12 of these cases, either

V (S, 0) ≈ 0 or V (S, 0) = payoff

occurs. In these cases, a relative error is meaningless, or nothing is to be
calculated. Hence we remove theses 12 cases (σ = 0.1, S = 90, S = 150). The
remaining 60 parameter combinations were organized into two files.9

For each set of parameters we calculated V (S, 0) with rather high accu-
racy (7–8 decimal digits). To this end, we applied as reference method an
extrapolation based on finite-difference approximations, as suggested in Sec-
tion 4.7.2. The obtained values complete the benchmark files. Any method
can be compared to the benchmark as long as its relative error is not smaller
than 10−6.

Measure of the Error

To measure performances, we calculate the root mean square relative error

RMS :=

√√√√ 1
60

60∑
i=1

(
V i − Vi

Vi

)2

. (4.68)

Here Vi denotes the “accurate” benchmark value of the ith parameter com-
bination, and V i denotes the value calculated with the method whose per-
formance is to be measured.

Arena of Competing Methods

We have chosen the following prototypical methods:
B-M : binomial method with M time steps, Algorithm 1.4,

M = 12, 25, 50, . . . , 1600;
FD-BS-M : finite differences Brennan-Schwartz, Algorithm 4.14,

with M := m = νmax, M = 200, 400, . . . , 6400;

9 The files BENCHMARK00 for δ = 0 and BENCHMARK01 for δ = 0.1 can be
found on www.compfin.de.
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Fig. 4.19. Computing times and RMS errors of several methods, see the text.

Points mark calculated RMS errors; corresponding points are connected by lines.

J: Johnson’s interpolation, Algorithm 4.16;
Q: quadratic approximation, Algorithm 4.17;
I-M : integral-equation method with M subintervals, Section 4.8.4,

M = 50, 100, . . . , 3200;
FD-BS-ex: version of FD-BS with two solutions with M and M/2

and extrapolation.
Keep in mind that the above methods provide different amount of informa-
tion; in some sense we compare apples with oranges. The integer M represents
a fineness of discretization, which is consecutively doubled for clarity of ex-
position. Computing times in Figure 4.19 report the time in seconds needed
to valuate all of the 60 options for δ = 0; overhead is subtracted.10 The log
scaling in Figure 4.19 is most practical (−→ Exercise 4.18). For the versions

10 The above methods were implemented in FORTRAN (F90 compiler) and
run on a DS20 processor.
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with shortest computing time (J), the time is hardly measurable, which is
indicated by a bar of likely computing times.

Preliminary Results

In the sense of Pareto optimization, smaller values in Figure 4.19 are prefer-
red to larger ones. Entries in the lower left part of the figure refer to methods
with higher efficiency. The Pareto frontier in this figure is largely dominated
by the binomial method (B). This holds at least for medium demands for
accuracy. Both the analytic methods (J) and (Q) do not need the evaluation
of the the Black–Scholes formula and hence √, log, exp in full accuracy. So
their evaluation can be accelerated. Hence, for low accuracy, Johnson’s inter-
polation method (J) and the quadratic approximation (Q) are competitive.
This is not clear from the figure, where unnecessary accuracy of the underly-
ing Black–Scholes formula falsely suggests that the quadratic approximation
(Q) is dominated by the binomial method. For high demands for accuracy,
the finite-difference method is competitive. The basic version of the binomial
method dominates the basic version of the integral-equation method (I). The
aspect of convergence applies to FD, B, I, but not to the fixed accuracy of
Q, J. This may be seen as distinction between a numerical method and an
analytic method.

Outlook

The above observations should not be considered as definite recommendati-
ons. It is important to realize that the conclusions refer to speed and RMS
error only. Several aspects are neglected and lacking. For example, the finite-
difference method calculates the surface V (S, t), and provides more infor-
mation than the binomial method. Or, the integral-equation method allows
to calculate the Greeks more effectively, and approximates the early-exercise
curve very well (B does not). The above has selected one representative me-
thod of important classes of methods. These basic versions are implemented
and compared. There are more efficient methods not shown in Figure 4.19.
For example, LUBA has shown to dominate the methods with comparable
accuracy. Neither the highly efficient front-fixing methods are shown, nor the
improvement [Hei09] of the integral method, nor the fast approximation by
exponential pieces. Improvements differ in the degree of speedup. Further,
storage requirements are not taken into account. Implementation details do
matter! And applied to a specific type of exotic option, the prototype me-
thods chosen for Figure 4.19 may behave and compare differently. Monte
Carlo methods are not included at all, because their merits are beyond va-
nilla options. So the conclusions of this section aim at basic principles. They
are tentative, and not comprehensive. We do not answer the question, what
might be the “best” method for a particular application. For early compa-
risons, see [BrD96], [AiC97], [BrD97], [KaK03]. More recent developments
have not been compared.
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Notes and Comments

on Section 4.1:

General references on numerical PDEs include [Smi78], [Vic81], [CiL90],
[Tho95], [Mor96]. A special solution of (4.2) is

y(x, τ) =
1

2
√
πτ

exp
(
−
x

2

4τ

)
.

For small values of τ , the transformation (4.3) may take bad values in the
argument of the exponential function because qδ can be too large. The result
will be an overflow. In such a situation, the transformation

τ := 1

2
σ2(T − t)

x := log
(

S

K

)
+
(
r − δ − σ

2

2

)
(T − t)

y(x, τ) := e−rtV (S, t)

can be used as alternative [BaP96]. Again (4.2) results, but initial conditions
and boundary conditions must be adapted appropriately (see also Appendix
A6). The equations also hold for options on foreign currencies. Then δ repres-
ents the foreign interest rate. As will be seen in Section 6.4, the quantities
q and qδ are basically the Péclet number. It turns out that large values of
the Péclet number are a general source of difficulties. For other transformati-
ons see [ZhWC04]. Well-posed means the existence of a unique solution that
depends continuously on the data.

For the valuation of American options in case of discrete dividend pay-
ments there is a big difference between call and put. A call is exercised imme-
diately prior to the dividend date, provided some analytically known criteria
are satisfied [Kwok98]. In contrast, a put must be calculated numerically. By
arbitrage reasons, the stock price jumps at the ex-dividend date tD,

S
t
+

D

= S
t
−

D

−D ,

whereD is the amount paid at tD. The price Vt of the put does not jump along
the path St because the option’s holder has no benefit from the payment. This
continuity of V (St, t) can be written

V (S, t−
D

) = V (S −D, t
+

D
) ,

which amounts to a jump in the value function V (S, t) at tD. For a numerical
implementation, place a node tν at tD, interrupt the integration of the PDE
at tD, and apply interpolation to evaluate V at Si − D in case this is not
a node. Then the PDE is applied again. For a method-of-lines approach see
[Mey02]. Exercise 4.1b provides some insight into the early-exercise structure.
For tD < t < T the early-exercise curve is that of a non-dividend paying stock
[Omb87], [BaW88].
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on Section 4.2:

We follow the notation wi,ν for the approximation at the node (xi, τν), to
stress the surface character of the solution y over a two-dimensional domain.
In the literature a frequent notation is wν

i
, which emphasizes the different

character of the space variable (here x) and the time variable (here τ). Our
vectors w(ν) with components w(ν)

i
come close to this convention.

Finite differences work also for nonuniform meshes. Then formally the
truncation errors are of first order only. But under mild assumptions on a
slowly varying mesh, second-order accuracy can be obtained [MaW86].

Summarizing the Black–Scholes equation to

∂V

∂t
+ LBS(V ) = 0 (4.69)

where LBS represents the other terms of the equation, see Section 4.5.3, mo-
tivates an interpretation of the finite-difference schemes in the light of nume-
rical ODEs. There the forward approach is known as explicit Euler method

and the backward approach as implicit Euler method. The explicit scheme
corresponds to the trinomial-tree method mentioned in Section 1.4 [Hull00].

on Section 4.3:

Crank and Nicolson suggested their approach in 1947 [CrN47]. Theorem 4.4
discusses three main principles of numerical analysis, namely, order of conver-
gence, stability, and efficiency. A Crank–Nicolson variant has been developed
that is consistent with the volatility smile, which reflects the dependence of
the volatility on the strike [AnB97].

In view of the representation (4.12) the Crank–Nicolson approach corre-
sponds to the ODE trapezoidal rule. Following these lines suggests to apply
other ODE approaches, some of which lead to methods that relate more than
two time levels. In particular, backward difference formula (BDF) are of in-
terest, which evaluate L at only one time level. The relevant second-order
discretization is listed in the end of Section 4.2.1. Using this formula (BDF2)
for the time discretization, a three-term recursion involving w(ν+1), w(ν),
w

(ν−1) replaces the two-term recursion (4.15b) (−→ Exercise 4.10). But mul-
tistep methods such as BDF may suffer from the lack of smoothness at the
exercise boundary. This effect is mollified when the inequality is tackled by
a penalty term. But even then it is interesting to consider other alternati-
ves with better stability properties than Crank–Nicolson. Crank–Nicolson is
A-stable, several other methods are L-stable, which better damp out high-
frequency oscillation, see [Cash84], [KhVY07], [IkT07]. For numerical ODEs
we refer to [Lam91], [HaNW93]. From the ODE analysis circumstances are
known where the implicit Euler method behaves superior to the trapezoidal
rule. The latter method may show a slowly damped oscillating error. Accor-
dingly, in several PDE situations the fully implicit method of Section 4.2.5
behaves better than Crank–Nicolson [Ran84], [ZvVF00].
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on Section 4.4:

The boundary condition VC(0, t) = 0 in (4.17) can be shown independently
of any underlying model [Mer73]. If European options are evaluated via the
analytic formula (A4.10), the boundary conditions in (4.19) are of no practical
interest. When boundary conditions are not clear, it sometimes helps to set
VSS = 0 (or yxx = 0), which amounts to assume linear behavior. See [TaR00]
for a discussion, and for the effect of boundary conditions on accuracy and
stability. For bounds on the error caused by truncating the infinite x- or S-
interval, see [KaN00]. Boundary conditions for a term structure equation are
discussed in [EkLT09].

on Section 4.5:

For a proof of the Black–Scholes inequality, see [LaL96], p.111. The obstacle
problem in this chapter is described following [WiDH96]. Also the smooth
pasting argument of Exercise 4.9 is based on that work. For other arguments
concerning smooth pasting see [Moe76], and [Kwok98]. There you find a dis-
cussion of Sf(t), and of the behavior of this curve for t→ T . There are several
different possibilities to implement the boundary conditions at xmin, xmax,
see [TaR00], p. 122. The accuracy can be improved with artificial boundary
conditions [HaW03]. For direct methods, see also [DeHR98], [IkT07]. Front-
fixing goes back to Landau 1950, see [Cra84]. For front-fixing applications to
finance, consult, for example, [NiST02], [ZhWC04], [HoY08], and the com-
ments on Section 4.7.

The general definition of a linear complementarity problem is

AB = 0 , A ≥ 0 , B ≥ 0 ,

where A and B are abbreviations of more complex expressions. This can be
also written

min(A,B) = 0 .

A general reference on free boundaries and on linear complementarity is
[ElO82].

Figure 4.20 shows a detail of approximations to an early-exercise curve.
The finite-difference calculated points are connected by straight lines (das-
hed). The figure also shows a local approximation valid close to maturity:
For t < T and t → T , the asymptotic behavior of Sf can be approximated
by, for example,

Sf(t) ∼ K

(
1 − σ

√
(t− T ) log(T − t)

)
for an American put without dividends [BaBRS95], [MuR97]. For other asym-
ptotic formulas, see [GoO02], [ChC03], [ChC07]. Discrete dividend payments
change the early-exercise curve [Mey02].

For a proof of the high-contact condition or smooth-pasting principle see
[Moe76], p.114. For a discussion of the smoothness of the free boundary Sf

see [MuR97] and the references therein.
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Fig. 4.20. Approximations of an early-exercise curve of an American put

(T = 1, σ = 0.3, K = 10); dashed: finite-difference approximation, solid: asym-

ptotic behavior for t ≈ T . The validity of the asymptotic curve is much smaller

than shown here.

on Section 4.6:

By choosing the θ in (4.28) one fixes at which position along the time axis
the second-order spatial derivatives are focused. With

θ =
1
2
−

1
12

Δx2

Δτ

a scheme results that is fourth-order accurate in x-direction. The applica-
tion on American options requires careful compensation of the discontinuities
[Mayo00]. One possibility of a variable Δτ -time stepping is to set the nodes

τν := τmax

ν2

ν2
max

,

suggested by [HoY08].
Based on the experience of this author, an optimal choice of the relaxation

parameter ωR in Algorithm 4.13 can not be given. The simple strategy ωR = 1
appears recommendable. The method of Brennan and Schwartz has been
analyzed in [JaLL90].
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on Section 4.7:

Since the accuracy of the results is not easily guaranteed, it does seem ad-
visable to hesitate before exposing wealth to a chance of loss or damage.
After having implemented a finite-difference algorithm it is a must to com-
pare the results with the numbers obtained by means of other algorithms.
The lacking smoothness of solutions near (S, t) ≈ (K,T ) due to the nons-
mooth payoff can be largely improved by solving for the difference function
V Am

P
(S, τ)−V Eur

P
(S, τ), see also Section 4.8.2. The lacking smoothness along

the early-exercise curve can be diminished by using a front-fixing approach,
which can be applied to the above difference. But one mast pay a price.
Note that the nonlinearity has entered the front-fixing equation (4.72) (−→
Exercise 4.11). The success of the front-fixing approach depends on whe-
ther the corresponding root-finding iteration finds a solution. Further, in
our experience the lack of smoothness is only hidden and might lead to in-
stabilities, such as oscillations in the early-exercise curve. A transformation
such as log(S/Sf) does not lead to constant coefficients because one of the
factors depends on the early-exercise curve. The alternative front-fixing ap-
proach of [HoY08] first applies the transformation S = Kex, τ = T − t.
Then the infinite (x, τ)-strip is truncated to a finite domain by the function
a(τ) := xf(τ)−L for large enough |L| (L > 0 for a put, L < 0 for a call), where
xf(τ) := log(Sf(T − τ)/K) denotes the transformed early-exercise curve. The
final boundary-value problem localized on a rectangle is obtained by trans-
forming the independent variable x to z := x− a(τ) (for a put). Front-fixing
approaches have shown to be highly efficient.

The question how accurate different methods are has become a major
concern in recent research; see for instance [CoLV02]. Clearly one compares
a finite-difference European option with the analytic formula (A4.10). The
latter is to be preferred, except the surface is the ultimate object. The cor-
rectness of codes can be checked by testing the validity of symmetry relations
(A5.3).

Greeks such as delta= ∂V

∂S
can be calculated accurately by solving specific

PDEs that are derived from the Black–Scholes equation by differentiating.
But delta can be approximated easily based on the a calculated approxima-
tion of V . To this end, calculate an interpolating Lagrange polynomial L(S)
on the line t = 0 based on three to five neighboring nodes (Appendix C1),
and take the derivative L′(S).

We have introduced finite differences mainly in view of calculating stan-
dard American options. For exotic options PDEs occur, the solutions of which
depend on three or more independent variables [WiDH96], [Bar97], [TaR00];
see also Chapter 6.

on Section 4.8:

There are many analytic methods. Classical approaches include [GeJ84],
[BuJ92]. The quadratic approximation method has been extended to the more
general situation of commodity options, where the cost of carry is involved
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[BaW87], and a more ambitious initial guess is constructed. Integral repre-
sentations are based on an inhomogeneous differential equation as that in
Section 4.5.3. Kim’s integral representation (4.62) can be derived via Mel-
lin’s transformation [PaS04], or via Duhamel’s principle [Kwok98], see also
[Jam92]. A condition number is derived by [Hei07]. For implementations and
improvements, see [KaK03], [Hei09]. The exponential function has been used
for approximating the early-exercise curve already in [Omb87]. There are
other approaches with integral equations. From the Black–Scholes equation
and the high-contact condition we recommend to derive

∂VP(Sf(t), t)
∂t

= 0 .

This equation enables an effective construction of the the early-exercise curve
[ChC03], [ChC07].

A calculator that applies the analytic methods of this chapter can be found
on the website www.compfin.de. This calculator may be used for tests, for
example, using the data of Figures 4.11 (Example 1.6), and of Figure 4.13
(Table 4.1).

on other methods:

Here we give a few hints on methods neither belonging to this chapter on
finite differences, nor to Chapters 5 or 6. General hints can be found in
[RoT97], in particular with the references of [BrD97]. Closely related to linear
complementarity problems are minimization methods. An efficient realization
by means of methods of linear optimization is suggested in [DeH99]. The
uniform grid can only be the first step toward more flexible approaches, such
as the finite elements to be introduced in Chapter 5. For grid stretching
and coordinate transformations see [Int07], [LeO08]. For spectral methods
consult [ZhWC04]. For penalty methods we refer to [FoV02], [NiST02], and
to Section 6.7. Another possibility to enhance the power of finite differences
is the multigrid approach; for general expositions see [Hac85], [TrOS01]; for
application to finance see [ClP99], [Oos03]. An irregular grid based on Sobol
points is suggested in [BeS08].

Exercises

Exercise 4.1 Discrete Dividend Payment

Assume that a stock pays a dividend D at ex-dividend date tD, with 0 <

tD < T .
a) Assume that a known dividend is paid once per year. Calculate a corre-

sponding continuous dividend rate δ under the assumptions

Ṡ = (μ− δ)S , μ = 0, S(1) = S(0) −D > 0 .
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Generalize the result to general growth rates μ and arbitrary tD. (To
apply for options, note that this assumes T = 1.)

b) Define for an American put with strike K

t̃ := tD −
1
r

log
(
D

K
+ 1
)
.

Assume S = 0, r > 0, D > 0, and a time instant t in t̃ < t < tD. Argue
that instead of exercising early it is reasonable to wait for the dividend.
Note: For t̃ > 0, depending on S, early exercise may be reasonable for
0 ≤ t < t̃.

Exercise 4.2 Stability of the Fully Implicit Method

The backward-difference method is defined via the solution of the equation
(4.11). Prove the stability.
Hint: Use the results of Section 4.2.4 and w(ν) = A−1w(ν−1).

Exercise 4.3 Crank–Nicolson Order

Let the function y(x, τ) solve the equation

yτ = yxx

and be sufficiently smooth. With the difference quotient

δxxwi,ν :=
wi+1,ν − 2wi,ν + wi−1,ν

Δx2

the local discretization error ε of the Crank–Nicolson method is defined

ε :=
yi,ν+1 − yi,ν

Δτ
−

1
2

(δxxyi,ν + δxxyi,ν+1) .

Show
ε = O(Δτ2) +O(Δx2) .

Exercise 4.4 Boundary Conditions of a European Call

Show that under the transformation (4.3)

Se−δ(T−t) −Ke−r(T−t) =

exp
{
x

2
(qδ + 1) +

τ

4
(qδ + 1)2

}
− exp

{
x

2
(qδ − 1) +

τ

4
(qδ − 1)2

}
holds, and prove (4.19).
Hints: Either transform the Black–Scholes equation (4.1) with

S := S̄ exp(δ(T − t))

into a dividend-free version to obtain the dividend version (A4.11a) of (4.18),
or apply the dividend version of the put-call parity.
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Exercise 4.5 Boundary Conditions of American Options

Show that the boundary conditions of American options satisfy

lim
x→±∞

y(x, τ) = lim
x→±∞

g(x, τ) ,

where g is defined in Problem 4.7.

Exercise 4.6 Gauß–Seidel as Special Case of SOR

Let the n×n matrix A = ((aij)) additively be partitioned into A = D−L−U ,
with D diagonal matrix, L strict lower triangular matrix, U strict upper
triangular matrix, x ∈ IRn, b ∈ IRn. The Gauß–Seidel method is defined by

(D − L)x(k) = Ux
(k−1) + b

for k = 1, 2, . . .. Show that with

r
(k)

i
:= bi −

i−1∑
j=1

aijx
(k)

j
−

n∑
j=i

aijx
(k−1)

j

and for ωR = 1 the relation

x
(k)

i
= x

(k−1)

i
+ ωR

r
(k)

i

aii

holds. For general 1 < ωR < 2 this defines the SOR (successive overrelaxa-
tion) method.

Exercise 4.7

Implement Algorithms 4.13 and 4.14.
Test example: Example 1.6 and others.

Exercise 4.8 Perpetual Put Option

For T → ∞ it is sufficient to analyze the ODE

σ
2

2
S

2
d2
V

dS2
+ (r − δ)S

dV
dS

− rV = 0 .

Consider an American put with high contact to the payoff V = (K − S)+ at
S = Sf . Show:
a) Upon substituting the boundary condition for S → ∞ one obtains

V (S) = c

(
S

K

)
λ2

, (4.70)

where λ2 = 1

2

(
1 − qδ −

√
(qδ − 1)2 + 4q

)
, q = 2r

σ
2 , qδ = 2(r−δ)

σ
2

and c is a positive constant.
Hint: Apply the transformation S = Kex. (The other root λ1 drops out.)
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b) V is convex.
For S < Sf the option is exercised; then its intrinsic value is K − S. For
S > Sf the option is not exercised and has a value V (S) > K − S. The
holder of the option decides when to exercise. This means, the holder makes
a decision on the high contact Sf such that the value of the option becomes
maximal [Mer73].
c) Show: V ′(Sf) = −1, if Sf maximizes the value of the option.

Hint: Determine the constant c such that V (S) is continuous in the contact
point.

Exercise 4.9 Smooth Pasting of the American Put

Suppose a portfolio consists of an American put and the corresponding un-
derlying. Hence the value of the portfolio is Π := V Am

P
+S, where S satisfies

the SDE (1.33). Sf is the value for which we have high contact, compare
(4.22).
a) Show that

dΠ =

⎧⎨⎩
0 for S < Sf(
∂V Am

P

∂S
+ 1
)

σS dW +O(dt) for S > Sf .

b) Use this to argue
∂V Am

P

∂S
(Sf(t), t) = −1 .

Hint: Use dS > 0 ⇒ dW > 0 for small dt. Assume ∂V

∂S
> −1 and

construct an arbitrage strategy for dS > 0.

Exercise 4.10 Semidiscretization, Method of Lines

For a semidiscretization of the Black–Scholes equation (1.2) consider the se-
midiscretized domain

0 ≤ t ≤ T , S = Si := iΔS , ΔS :=
Smax

m
, i = 0, 1, . . . ,m

for suitable values of Smax > K and m. On this set of lines parallel to the t-
axis define for τ := T − t and 1 ≤ i ≤ m−1 functions wi(τ) as approximation
to V (Si, τ).
a) Using the standard second-order difference schemes of Section 4.2.1, derive

the ODE system ẇ = Bw that up to boundary conditions approximates
(1.2). Here w is the vector (w1, . . . , wm−1)tr and ẇ denotes differentiation
w.r.t. τ . Show that B is a tridiagonal matrix, and calculate its coefficients.

b) For a European option assume Dirichlet boundary conditions for w0(τ)
and wm(τ) and set up a vector c such that

ẇ = Bw + c (4.71)
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Fig. 4.21. Method of lines for a binary call option, compare Exercise 4.10 (K =

10, T = 1, r = 0.06, δ = 0, σ = 0.3). With kind permission of Miriam Weingarten.

realizes the ODE system with correct boundary conditions, and with in-
itial conditions from the payoff.

c) Use the BDF2 formula of Section 4.2.1, and implement this scheme for
the initial value problem with (4.71) and a European call option. (See
Figure 4.21 for an illustration.)

Exercise 4.11 Front-Fixing for American Options

Apply the transformation

ζ :=
S

Sf(t)
, y(ζ, t) := V (S, t)

to the Black–Scholes equation (4.1).
a) Show

∂y

∂t
+
σ2

2
ζ
2
∂2y

∂ζ2
+
[
(r − δ) −

1
Sf

dSf

dt
]
ζ
∂y

∂ζ
− ry = 0 (4.72)

b) Set up the domain for (ζ, t) and formulate the boundary conditions for
an American call. (Assume δ > 0.)

c) (Project) Set up a finite-difference scheme to solve the derived boundary-
value problem. The curve Sf(t) is implicitly defined by the above PDE,
with final value Sf(T ) = max(K, r

δ
K).
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Exercise 4.12 Brennan–Schwartz Algorithm

Let A be a tridiagonal matrix as in (C1.6), and b and g vectors. The system
of equations Aw = b is to be solved such that the side condition w ≥ g is
obeyed componentwise. Assume for the case of a put wi = gi for 1 ≤ i ≤ if

and wi > gi for if < i ≤ n, where if is unknown.
a) Formulate an algorithm similar as in (C1.7) that solves Aw = b in the

backward/forward approach. In the final forward loop, for each i the cal-
culated candidate w̃i is tested for wi ≥ gi: Set wi := max{w̃i, gi} .

b) Apply the algorithm to the case of a put with A, b, g from Section 4.6.1.
For the case of a call adapt the forward/backward algorithm (C1.7). In-
corporate this approach into Algorithm 4.13 by replacing the PSOR-loop.

Exercise 4.13 Extrapolation of Higher Order

Similar as in Section 4.7 assume an error model

η
∗ = η(Δ) − γ1Δ

2 − γ2Δ
3

and three calculated values

η1 := η(Δ) , η2 := η

(
Δ

2

)
, η3 := η

(
Δ

4

)
.

Show that
η
∗ =

1
21

(η1 − 12η2 + 32η3) .

Exercise 4.14

a) Derive (4.49).
b) Derive (4.56).

Exercise 4.15 Analytic Method for the American Put

(Project) Implement both the Algorithm 4.16 and Algorithm 4.17. For Al-
gorithm 4.17 choose as initial guess the average of the strike and the lower
bound (A5.1). A secant method (C1.5) is a good choice for the iteration.
Think of how to combine Algorithms 4.16 and 4.17 into a hybrid algorithm.

Exercise 4.16

Consider the functions d1 and d2 of (4.61). For the three cases S < Sf(τ),
S = Sf(τ), S > Sf(τ), calculate the limit for ξ → 0+ of

rKe−rξ

F (−d2(S, ξ;Sf(τ − ξ))) − δSf(τ) e−δξ

F (−d1(S, ξ;Sf(τ − ξ)))

Exercise 4.17 Project

Implement Kim’s integral equation method (Section 4.8.4).
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Exercise 4.18 Complexity

With n underlyings and time t an option problem comprises n+1 independent
variables. Assume that we discretize each of the n+1 axes with M grid points,
then Mn+1 nodes are involved. Hence the complexity C of the n-factor model
is

C := O(Mn+1) ,

which amounts to an exponential growth with the dimension, nicknamed
curse of dimension. Depending on the chosen method, the error E is of the
order M−�,

E := O

(
1
M �

)
.

Argue

logC = −
n+ 1
�

logE + γ

for a method-dependent constant γ.

227



Chapter 5 Finite-Element Methods

The finite-difference approach with equidistant grids is easy to understand
and straightforward to implement. Resulting uniform rectangular grids are
comfortable, but in many applications not flexible enough. Steep gradients
of the solution require locally a finer grid such that the difference quotients
provide good approximations of the differentials. On the other hand, a flat
gradient may be well modeled on a coarse grid. Arranging such a flexibility
of the grid with finite-difference methods is possible but cumbersome.

An alternative type of methods for solving PDEs that does provide high
flexibility is the class of finite-element methods (FEM). A “finite element”
designates a mathematical topic such as an interval and defined thereupon
a piece of function. There are alternative names as variational methods, or
weighted residuals, or Galerkin methods. These names hint at underlying prin-
ciples that serve to derive suitable equations. As these different names sug-
gest, there are several different approaches leading to finite elements. The
methods are closely related.

The flexibility of finite-element methods is not only favorable to approxi-
mate functions, but also to approximate domains of computation that are
not rectangular. This is important for multifactor options. For the one-
dimensional situation of standard options, the possible improvement of a
finite-element method over the standard methods of the previous chapter
is not significant. With the focus on standard options, Chapter 5 may be
skipped on first reading. But options with several underlyings may lead to
domains of computation that are more “fancy.”

For example, a two-asset basket with portfolio value α1S1 + α2S2 in the
case of a call option leads to a payoff of type Ψ(S1, S2) = (α1S1+α2S2−K)+.
If such an option is endowed with barriers, then it is reasonable to set up
barriers such that the payoff takes a constant value. For the two-asset basket,
this amounts to barrier lines α1S1 +α2S2 =constant. This naturally leads to
trapezoidal shapes of domains. For a special case with two knock-out barriers
the payoff and the domain are illustrated by Figure 5.1. This example will be
considered in Section 5.4, see the domain in Figure 5.8. In more complicated
examples, the domain may be elliptic (−→ Exercise 5.4). In such situations
of non-rectangle domains, finite elements are ideally applicable and highly
recommendable.

R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-2993-6_5, © Springer-Verlag London Limited 2012
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Fig. 5.1. Payoff of a call on a two-asset basket, with knock-out barrier (Example

5.5)

Faced with the huge field of finite-element methods, in this chapter we
confine ourselves to a step-by-step exposition towards the solution of two-
asset options. We start with an overview on basic approaches and ideas (in
Section 5.1). Then in Section 5.2, we describe the approximation with the
simplest finite elements, namely, piecewise straight-line segments, and apply
this to a stationary model problem. These approaches will be applied to the
time-dependent situation of pricing standard options, in Section 5.3. This
sets the stage to the main application of FEM in financial engineering, op-
tions on two or more assets. Section 5.4 will present an application to an
exotic option with two underlyings. Here we derive a weak form of the PDE,
and discuss boundary conditions. Finally, in Section 5.5, we will introduce to
error estimates. Methods more subtle than just the Taylor expansion of the
discretization error are required to show that quadratic convergence is possi-
ble with unstructured grids and nonsmooth solutions. To keep the exposition
of an error analysis short, we concentrate on the one-dimensional situation.
But the ideas extend to multidimensional scenarios.

x

Fig. 5.2. Discretization of a continuum
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5.1 Weighted Residuals

Many of the principles on which finite-element methods are based, can be
interpreted as weighted residuals. What does this mean? This heading points
at ways in which a discretization can be set up, and how an approximation
can be defined. There lies a duality in a discretization. This is illustrated by
means of Figure 5.2, which shows a partition of an x-axis. This discretization
is either represented by

(a) discrete grid points xi, or by
(b) a set of subintervals.

The two ways to see a discretization lead to different approaches of construc-
ting an approximation w. Let us illustrate this with the one-dimensional
situation of Figure 5.3. An approximation w based on finite differences is
built on the grid points and primarily consists of discrete points (Figure
5.3a). Finite elements are founded on subdomains (intervals in Figure 5.3b)
with piecewise functions, which are defined by suitable criteria and consti-
tute a global approximation w. In a narrower sense, a finite element is a pair
consisting of one piece of subdomain and the corresponding function defi-
ned thereupon, mostly a polynomial. Figure 5.3 reflects the respective basic
approaches; in a second step the isolated points of a finite-difference calcu-
lation can well be extended to continuous piecewise functions by means of
interpolation (−→ Appendix C1).

x

(a)
w

background of finite differences:
skeleton of points

x

(b)w

finite elements:
piecewise defined functions

Fig. 5.3. Two kinds of approximations (one-dimensional situation)

A two-dimensional domain can be partitioned into triangles, for example,
where w is again represented by piecewise polynomials. Figure 5.4 depicts the
simplest such situation, namely, a triangle in an (x, y)-plane, and a piece of a
linear function defined thereupon. Figure 5.8 below will provide an example
how triangles easily fill a seemingly “irregular” domain.

As will be shown next, the approaches of finite-element methods use inte-
grals. If done properly, integrals require less smoothness. This often matches
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Chapter 5 Finite-Element Methods

applications better and adds to the flexibility of finite-element methods. The
integrals can be derived in a natural way from minimum principles, or are
constructed artificially. Finite elements based on polynomials make the cal-
culation of the integrals easy.

y

x

w

Fig. 5.4. A simple finite element in two dimensions, based on a triangle

5.1.1 The Principle of Weighted Residuals

To explain the principle of weighted residuals we discuss the formally simple
case of the differential equation

Lu = f . (5.1)

Here L symbolizes a linear differential operator. Important examples are

Lu : = −u′′ for u(x), or (5.2a)
Lu : = −uxx − uyy for u(x, y) . (5.2b)

Solutions u of the differential equation are studied on a domain D ⊆ IRn,
with n = 1 in (5.2a) and n = 2 in (5.2b). The piecewise approach starts with
a partition of the domain into a finite number m of subdomains Dk,

D =
m⋃

k=1

Dk . (5.3)

All boundaries of D should be included, and approximations to u are calcula-
ted on the closure D̄. The partition is assumed disjoint up to the boundaries
of Dk, so D◦

j
∩D◦

k
= ∅ for j �= k. In the one-dimensional case (n = 1), for ex-

ample, the Dk are subintervals of a whole interval D. In the two-dimensional
case, (5.3) may describe a partition into triangles, as illustrated in Figure 5.8.

The ansatz for approximations w to a solution u is a basis representation,

w :=
N∑

i=1

ci ϕi . (5.4)
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5.1 Weighted Residuals

The ϕi are functions called basis functions, or trial functions. In the case
of one independent variable x the ci ∈ IR are constant coefficients, and the
ϕi are functions of x. Typically, N is chosen and ϕ1, ..., ϕN are prescribed.
Depending on this choice, the free parameters c1, ..., cN are to be determined
such that w ≈ u.

We have m subdomains and N basis functions. In the one-dimensional
situation (n = 1), nodes and subintervals interlace, and m and N essentially
can be identified. For n = 1 these two numbers differ by at most one, depen-
ding on whether the solution is known or unknown at the end points of the
interval D. In the latter case is convenient to have the summation index in
(5.4) run as i = 0, . . . ,m. For dimensions n > 1 the number m of subdomains
(e.g. triangles in case n = 2) in general is very different from the number N
of basis functions (nodes). For example, in Figure 5.8 we have 75 triangles
and 51 nodes; 26 of the nodes are interior nodes and 25 are placed along the
boundary. That is, 1 ≤ k ≤ 75. The number N refers to the number of nodes
for which a value of u is to be approximated.

One strategy to determine the coefficients ci is based on the residual
function

R := Lw − f . (5.5)

We look for a w such that the residual R becomes “small.” Since the ϕi are
considered prescribed, in view of (5.4) N conditions or equations must be
established to define and calculate the unknown c1, ..., cN . To this end we
weight the residual R by introducing N weighting functions (test functions)

ψ1, ..., ψN and require

∫
D

Rψj dD = 0 for j = 1, ..., N (5.6)

This amounts to the requirement that the residual be orthogonal to the set
of weighting functions ψj . The “dD” in (5.6) symbolizes the integration that
matches D ⊆ IRn, as dx for n = 1. For ease of notation, we frequently drop
dx as well as the D at the n-dimensional integral. The system of equations
(5.6) for the model problem (5.1) consists of the N equations∫

D

Lwψj =
∫
D

f ψj (j = 1, ..., N) (5.7)

for the N unknowns c1, ..., cN , which define w. Often the equations in (5.7)
are written using a formulation with inner products,

(Lw,ψj) = (f, ψj) ,

defined as the corresponding integrals in (5.7). For linear L the ansatz (5.4)
implies
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Chapter 5 Finite-Element Methods∫
Lwψj =

∫ (∑
i

ciLϕi

)
ψj =

∑
i

ci

∫
Lϕiψj︸ ︷︷ ︸
=:aij

.

The integrals aij constitute a matrix A. The rj :=
∫
fψj set up a vector r

and the coefficients cj a vector c = (c1, ..., cN )tr. Now the system of equations
in vector notation is rewritten as

Ac = r . (5.8)

This outlines the general principle, but leaves open the questions how
to handle boundary conditions and how to select the basis functions ϕi and
the weighting functions ψj . The freedom to choose trial functions ϕi and test
functions ψj allows to construct several different methods. For the time being
suppose that these functions have sufficient potential to be differentiated or
integrated. We will enter a discussion of relevant function spaces in Section
5.5.

5.1.2 Examples of Weighting Functions

We postpone the choice of basis functions ϕi and begin with listing important
examples of how to select weighting functions ψ:

1.) Galerkin method, also called Bubnov–Galerkin method:
Choose ψj := ϕj . Then ai,j =

∫
Lϕiϕj .

2.) collocation:

Choose ψj := δ(x − xj). Here δ denotes Dirac’s delta function, which in
IR1 satisfies

∫
fδ(x− xj) dx = f(xj). As a consequence,∫

Lwψj = Lw(xj) ,∫
fψj = f(xj) .

That is, a system of equations Lw(xj) = f(xj) results, which amounts to
evaluating the differential equation at selected points xj .

3.) least squares:

Choose
ψj :=

∂R

∂cj

This choice of test functions deserves its name least-squares, because to
minimize

∫
(R(c1, ..., cN ))2 the necessary criterion is the vanishing of the

gradient, so ∫
D

R
∂R

∂cj
= 0 for all j .
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xi xmxi+1xi−1x2x10x

1

0
x.....

ϕ

.....

i

Fig. 5.5. “Hat function”: simple choice of finite elements

5.1.3 Examples of Basis Functions

For the choice of suitable basis functions ϕi our concern will be to meet two
aims: The resulting methods must be accurate, and their implementation
should become efficient.

The efficiency can be focused on the sparsity of matrices. In particular, if
the matrix A of the linear equations is sparse, then the system can be solved
efficiently even when it is large. In order to achieve sparsity we require that
ϕi ≡ 0 on most of the subdomains Dk. Figure 5.5 illustrates an example
for the one-dimensional case n = 1. This hat function of Figure 5.5 is the
simplest example related to finite elements. It is piecewise linear, and each
function ϕi has a support consisting of only two subintervals, ϕi(x) �= 0 for
x ∈ support. A consequence is∫

D

ϕiϕj = 0 for |i− j| > 1 , (5.9)

as well as an analogous relation for
∫
ϕ′

i
ϕ′

j
. We will discuss hat functions in

the following Section 5.2. Basis functions more advanced than the canonical
hat functions are constructed using piecewise polynomials of higher degree.
In this way, basis functions can be obtained with C1- or C2-smoothness (−→
Exercise 5.1). Recall from interpolation (−→ Appendix C1) that polynomials
of degree three can lead to C2-smooth splines.

5.1.4 Smoothness

The accuracy depends on the smoothness of the basis functions. Depending
on the chosen method, different kinds of smoothness are relevant. Let us
illustrate this matter on the model problem (5.2a),

Lu = −u′′, u, ϕ, ψ ∈ { u | u(0) = u(1) = 0 } .

Integration by parts implies formally∫
1

0

ϕ
′′
ψ = −

∫
1

0

ϕ
′
ψ
′ =
∫

1

0

ϕψ
′′
,
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Chapter 5 Finite-Element Methods

because the boundary conditions u(0) = u(1) = 0 let the nonintegral terms
vanish. These three versions of the integral can be distinguished by the
smoothness requirements on ϕ and ψ, and by the question whether the in-
tegrals exist. One will choose the integral version that corresponds to the
underlying method, and to the smoothness of the solution. For example, for
Galerkin’s approach the elements aij of A consist of the integrals

−

∫
1

0

ϕ
′

i
ϕ
′

j
.

We will return to the topics of accuracy, convergence, and function spaces in
Section 5.5 (with Appendix C3).

5.2 Galerkin Approach with One-Dimensional Hat

Functions

As mentioned before, any required flexibility is provided by finite-element
methods. This holds to a larger extent in higher-dimensional spaces. In this
section, for simplicity, we stick to the one-dimensional situation, x ∈ IR. The
dependence on the time variable t is postponed to Section 5.3.

Assume a partition of the x-domain by a set of increasing mesh points
x0, . . . , xm. A nonuniform spacing is advisable in several instances in order
to improve the accuracy. For example, close to the strike, a denser grid is
appropriate to mollify the lack of smoothness of a payoff. In contrast, to
model infinity, one rarefies the nodes for larger x and shifts the final node xm

to a large value. One strategy is to select a spacing such that locally (up to
additional scaling and shifts) sinh(xi) = ηi, where ηi are chosen equidistantly.
A dense spacing is also advisable for barrier options close to the barrier, where
the gradient of option prices is high.

5.2.1 Hat Functions

The prototype of a finite-element method makes use of the hat functions,
which we define formally (compare Figures 5.5 and 5.6).

Definition 5.1 (hat functions)

For 1 ≤ i ≤ m− 1 set

ϕi(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x− xi−1

xi − xi−1

for xi−1 ≤ x < xi

xi+1 − x

xi+1 − xi

for xi ≤ x < xi+1

0 elsewhere
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xi xm

1

0
x x x
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1 i+1x .....

2 i−1x

ϕ

0

0

x0 x1 x2 xm−1 xm

1

0
x

.....

ϕm

Fig. 5.6. Special “hat functions” ϕ0 and ϕm

and for the boundary functions

ϕ0(x) : =

⎧⎨⎩
x1 − x

x1 − x0

for x0 ≤ x < x1

0 elsewhere

ϕm(x) : =

⎧⎪⎨⎪⎩
x− xm−1

xm − xm−1

for xm−1 ≤ x ≤ xm

0 elsewhere.

For each node xi there is one hat function. These m+ 1 hat functions satisfy
the following properties.

Properties 5.2 (hat functions)

(a) The ϕ0, ..., ϕm form a basis of the space of polygons

{ g ∈ C0[x0, xm] | g straight line on Dk := [xk, xk+1] ,
for all k = 0, ...,m− 1 } .

That is to say, for each polygon v on the union of D0, ...,Dm−1 there are
unique coefficients c0, ..., cm such that

v =
m∑

i=0

ciϕi .

(b) On any Dk only ϕk and ϕk+1 �= 0 are nonzero. Hence

ϕiϕj = 0 for |i− j| > 1 ,

which explains (5.9).
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(c) A simple approximation of the integral
∫

xm

x0
fϕj dx can be calculated as

follows:
Substitute f by the interpolating polygon

fp :=
m∑

i=0

fiϕi , where fi := f(xi) ,

and obtain for each j the approximating integral

Ij :=
∫

xm

x0

fpϕj dx =
∫

xm

x0

m∑
i=0

fiϕiϕj dx =
m∑

i=0

fi

∫
xm

x0

ϕiϕj dx︸ ︷︷ ︸
=:bij

.

The bij constitute a symmetric matrix B and the fi a vector f̄ . If we
arrange all integrals Ij (0 ≤ j ≤ m) into a vector, then all integrals can
be written in a compact way in vector notation as

Bf̄ .

This will approximate the vector r in (5.8).

(d) The “large” (m+ 1)2–matrix B := (bij) can be set up Dk-elementwise by
(2×2)-matrices (discussed below in Section 5.2.2). The (2×2)-matrices are
those integrals that integrate only over a single subdomain Dk. For each
Dk in our one-dimensional setting exactly the four integrals

∫
ϕiϕjdx for

i, j ∈ {k, k + 1} are nonzero. They can be arranged into a (2 × 2)-matrix∫
xk+1

xk

(
ϕ2

k
ϕkϕk+1

ϕk+1ϕk ϕ2

k+1

)
dx .

(The integral over a matrix is understood elementwise.) These are the
integrals on Dk, where the integrand is a product of the factors

xk+1 − x

xk+1 − xk

and
x− xk

xk+1 − xk

.

The four numbers

1
(xk+1 − xk)2

∫
xk+1

xk

(
(xk+1 − x)2 (xk+1 − x)(x − xk)

(x− xk)(xk+1 − x) (x− xk)2

)
dx

result. With hk := xk+1 − xk integration yields the element-mass matrix

(−→ Exercise 5.2)
1
6
hk

(
2 1
1 2

)
.
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k

D

D

j

i

D0

1

2

Fig. 5.7. Assembling in the one-dimensional setting

(e) Analogously, integrating ϕ′
i
ϕ′

j
yields∫

xk+1

xk

(
ϕ′2

k
ϕ′

k
ϕ′

k+1

ϕ
′
k+1

ϕ
′
k

ϕ
′2
k+1

)
dx

=
1
h2

k

∫
xk+1

xk

(
(−1)2 (−1)1
1(−1) 12

)
dx =

1
hk

(
1 −1
−1 1

)
.

These matrices are called element-stiffness matrices. They are used to set
up the matrix A.

5.2.2 Assembling

The next step is to assemble the matrices A and B. It might to be tempting
to organize this task as follows: Run a double loop on all basis indices (node
indices) i, j and check for each (i, j) on which Dk the integral∫

Dk

ϕiϕj

is nonzero. Such a procedure of performing a double loop is cumbersome as
compared to the alternative of running a single loop on the subdomain index
k and benefit from all relevant integrals on Dk, which are precalculated above.
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To this end, split the integrals∫
xm

x0

=
m−1∑
k=0

∫
Dk

to construct the (m+1)×(m+1)-matrices A = (aij) and B = (bij) additively

out of the small element matrices. For the case of the one-dimensional hat
functions with subintervals

Dk = { x | xk ≤ x ≤ xk+1 }

the element matrices are (2 × 2), see above. In this case only those integrals
of ϕ′

i
ϕ′

j
and ϕiϕj are nonzero, for which i, j ∈ Ik, where

i, j ∈ Ik := {k, k + 1} . (5.10)

Ik is the set of indices of those products of basis functions that are nonzero
on Dk. The assembling algorithm performs a loop over the subdomain index
k = 0, 1, . . . ,m − 1 and distributes the (2 × 2)-element matrices additively
to the positions (i, j) ∈ Ik. Before the assembling is started, the matrices A
and B must be initialized with zeros. For k = 0, ...,m− 1 one obtains for A
the (m+ 1)2-matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

h0
− 1

h0

− 1

h0

1

h0
+ 1

h1
− 1

h1

− 1

h1

1

h1
+ 1

h2
− 1

h2

− 1

h2

. . . . . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5.11a)

The matrix B is assembled in an analogous way. In the one-dimensional
situation the matrices are tridiagonal. For an equidistant grid with h = hk

the matrix A specializes to

A =
1
h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0
−1 2 −1

−1 2
. . .

. . .
. . .

. . .
. . . 2 −1

0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.11b)

and B to

B =
h

6

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0
1 4 1

1 4
. . .

. . . . . . . . .
. . . 4 1

0 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5.11c)
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5.2.3 A Simple Application

In order to demonstrate the procedure, let us consider the simple time-
independent (“stationary”) model boundary-value problem

Lu := −u′′ = f(x) with u(x0) = u(xm) = 0 . (5.12)

We perform a Galerkin approach and substitute w :=
∑

m

i=0
ciϕi into the

differential equation. In view of (5.7) this leads to

m∑
i=0

ci

∫
xm

x0

Lϕiϕj dx =
∫

xm

x0

fϕj dx .

Next we apply integration by parts on the left-hand side, and invoke Property
5.2(c) on the right-hand side. The resulting system of equations is

m∑
i=0

ci

∫
xm

x0

ϕ
′

i
ϕ
′

j
dx︸ ︷︷ ︸

aij

=
m∑

i=0

fi

∫
xm

x0

ϕiϕj dx︸ ︷︷ ︸
bij

, j = 0, 1, ...,m . (5.13)

This system is preliminary because the homogeneous boundary conditions
u(x0) = u(xm) = 0 are not yet taken into account.

At this state, the preliminary system of equations (5.13) can be written
as

Ac = Bf̄ . (5.14)

It is easy to see that the matrix A from (5.11b) is singular, because
A(1, 1, ..., 1)tr = 0. This singularity reflects the fact that the system (5.14)
does not have a unique solution. This is consistent with the differential equa-
tion −u′′ = f(x): If u(x) is solution, then also u(x)+α for arbitrary α. Unique
solvability is attained by satisfying the boundary conditions; a solution u of
−u′′ = f must be fixed by at least one essential boundary condition. For
our example (5.12) we know in view of u(x0) = u(xm) = 0 the coefficients
c0 = cm = 0. This information can be inserted into the system of equations
in such a way that the matrix A changes to a nonsingular matrix without
losing symmetry. To this end, cancel the first and the last of the n+ 1 equa-
tions in (5.14), and make use of c0 = cm = 0. Now the inner part of size
(m− 1)× (m− 1) of A remains. The matrix B is (m− 1)× (m+ 1). Finally,
for the special case of an equidistant grid, the system of equations is
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2 −1 0

−1 2
. . .

. . . . . . . . .
. . . 2 −1

0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
c1

c2
...

cm−2

cm−1

⎞⎟⎟⎟⎟⎠ =

h2

6

⎛⎜⎜⎜⎜⎝
1 4 1 0

1 4 1
. . . . . . . . .

1 4 1
0 1 4 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

f̄0

f̄1

...
f̄m−1

f̄m

⎞⎟⎟⎟⎟⎠ .

(5.15)

In (5.15) we have used an equidistant grid for sake of a lucid exposition.
Our main focus is the nonequidistant version, which is also implemented
easily. In case nonhomogeneous boundary conditions are prescribed, appro-
priate values of c0 or cm are predefined. The importance of finite-element
methods in structural engineering has lead to call the global matrix A the
stiffness matrix, and B is called the mass matrix.

5.3 Application to Standard Options

We have emphasized that finite elements are especially advantageous in
higher-dimensional spaces (several underlyings). But it works also for the
one-dimensional case of standard options. This is the theme of this section.
In contrast to the previous section, time must be included.

5.3.1 European Options

We know that the valuation of single-asset European options with vanilla
payoff makes use of the Black–Scholes formula. But for the sake of exposition,
and for non-vanilla payoff, let us briefly sketch a finite-element approach.
Here we apply the FEM approach to the transformed version yτ = yxx of the
Black–Scholes equation. In view of the general basis representation in (5.4)
we may think of starting from w =

∑
wiϕi(x, τ) with constant coefficients wi.

This would require two-dimensional basis functions. (We shall come back to
such functions in Section 5.4.) To make use of one-dimensional hat functions,
apply a separation ansatz in the form

∑
wi(τ)ϕi(x) with functions wi(τ).

As a consequence of this simple approach, the same x-grid is applied for all
τ , which results in a rectangular grid in the (x, τ)-plane. Dirichlet boundary
conditions

y(xmin, τ) = α(τ), y(xmax, τ) = β(τ)

mean that in view of the shape of ϕ0, ϕm (Definition 5.1, Figure 5.6) the
values w0 = α or wm = β would be known. It is practical to separate known
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terms and restrict the sum to the terms with unknown weights wi. This can be
managed by introducing a special function ϕb that compensates for Dirichlet
boundary conditions on y. The function ϕb(x, τ) is no basis function, and is
constructed in advance. For example,

ϕb(x, τ) := (β(τ) − α(τ))
x− xmin

xmax − xmin

+ α(τ)

does the job for the above boundary conditions. So ϕb can be considered
to be known, and the sum

∑
wiϕi does not reflect any nonzero Dirichlet

boundary conditions on y. The final ansatz then is∑
i

wi(τ)ϕi(x) + ϕb(x, τ) , (5.16)

and the index i counts those nodes xi for which no boundary conditions of
the above type are prescribed, 1 ≤ i ≤ m− 1 in case two Dirichlet boundary
conditions are given. The basis functions ϕ1, . . . , ϕN are chosen to be the hat
functions, which incorporate the discretization of the x-axis. Hence, N = m−
1, and x0 corresponds to xmin, and xm to xmax. The functions w1, . . . , wm−1

are unknown.
Calculating derivatives of (5.16) and substituting into yτ = yxx leads to

the Galerkin approach

xm∫
x0

[
m−1∑
i=1

ẇiϕi + ϕ̇b

]
ϕj dx =

xm∫
x0

[
m−1∑
i=1

wiϕ
′′

i
+ ϕ

′′

b

]
ϕj dx

for j = 1, . . . ,m−1. The overdot represents differentiation with respect to τ ,
and the prime with respect to x. Arranging the terms that involve derivatives
of ϕb into vectors a(τ), b(τ),

a(τ) :=

⎛⎜⎝
∫
ϕ′′

b
(x, τ)ϕ1(x) dx

...∫
ϕ
′′
b
(x, τ)ϕm−1(x) dx

⎞⎟⎠ , b(τ) :=

⎛⎜⎝
∫
ϕ̇b(x, τ)ϕ1(x) dx

...∫
ϕ̇b(x, τ)ϕm−1(x) dx

⎞⎟⎠
and using the matrices A,B as in (5.11), we arrive after integration by parts
at

Bẇ + b = −Aw − a . (5.17)

Note that for the specific ϕb from above ϕ′′
b

= 0 and a = 0. For vanilla options,
α and β can be drawn from (4.19), and b can be set up analytically. This
completes the semidiscretization. Time τ is still continuous, and (5.17) defines
the unknown vector function w(τ) := (w1(τ), . . . , wm−1(τ))tr as solution of a
system of ordinary differential equations. This is a method of lines approach.
The lines are defined by x = xi for 1 ≤ i ≤ m − 1, and the approximations
along the lines are given by wi(τ).
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Initial conditions for τ = 0 are derived from (5.16). Assume the initial
condition from the payoff as y(x, 0) = γ(x), then

N∑
i=1

wi(0)ϕi(x) + ϕb(x, 0) = γ(x) .

For vanilla payoff, γ is given by (4.4). Specifically for x = xj the sum reduces
to wj(0) · 1, leading to

wj(0) = γ(xj) − ϕb(xj , 0) .

To complete the discretization, time τ must be discretized. Standard soft-
ware for ODEs can be applied to (5.17), in particular, codes for stiff systems.
For discretizing with difference quotients consult Section 4.2.1. For exam-
ple, apply the ODE trapezoidal rule as in (4.12) for the discretization of
ẇ in (5.17). We leave the derivation of the resulting Crank–Nicolson type
discretization as an exercise to the reader. With the usual notation as in
w(ν) := w(τν), the result can be written

(B +
Δτ

2
A)w(ν+1) =(B −

Δτ

2
A)w(ν)

−
Δτ

2
(a(ν) + a

(ν+1) + b
(ν) + b

(ν+1))
(5.18)

The structure of (5.18) strongly resembles the finite-difference approach
(4.15). This similarity suggests that the order is the same, because for the
finite-element A’s and B’s we have (compare (5.11))

A = O

(
1
Δx

)
, B = O(Δx) .

The separation of the variables x and τ in (5.16) allows to investigate the or-
ders of the discretizations separately. In Δτ , the order O(Δτ2) of the Crank–
Nicolson type approach (5.18) is clear from the ODE trapezoidal rule. It
remains to derive the order of convergence with respect to the discretization
in x. Because of the separation of variables it is sufficient to derive the con-
vergence for a one-dimensional model problem. This will be done in Section
5.5.

5.3.2 Variational Form of the Obstacle Problem

To warm up for the discussion of the American option case, let us return
to the simple obstacle problem of Section 4.5.5 with the obstacle function
g(x, τ). This problem can be formulated as a variational inequality. The func-
tion u solving the obstacle problem can be characterized by comparing it to
functions v out of a set K of competing functions
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K := { v ∈ C0[−1, 1] | v(−1) = v(1) = 0 ,

v(x) ≥ g(x) for − 1 ≤ x ≤ 1, v piecewise ∈ C1 } .

The requirements on u imply u ∈ K. For v ∈ K we have v − g ≥ 0 and in
view of −u′′ ≥ 0 also −u′′(v − g) ≥ 0. Hence for all v ∈ K the inequality∫

1

−1

−u′′(v − g) dx ≥ 0

must hold. By the LCP formulation (4.26) the integral∫
1

−1

−u′′(u− g) dx = 0

vanishes. Subtracting yields∫
1

−1

−u′′(v − u) dx ≥ 0 for any v ∈ K .

The obstacle function g does not occur explicitly in this formulation; the
obstacle is implicitly defined in K. Integration by parts leads to

[−u′(v − u)︸ ︷︷ ︸
=0

]1−1
+
∫

1

−1

u
′(v − u)′ dx ≥ 0 .

The integral-free term vanishes because of u(−1) = v(−1), u(1) = v(1). In
summary, we have derived the statement:

If u solves the obstacle problem (4.26), then∫
1

−1

u
′(v − u)′ dx ≥ 0 for all v ∈ K .

(5.19)

Since v varies in the set K of competing functions, an inequality such as in
(5.19) is called variational inequality. The characterization of u by (5.19) can
be used to construct an approximation w: Instead of u, find a w ∈ K such
that the inequality (5.19) is satisfied for all v ∈ K,

1∫
−1

w
′(v − w)′ dx ≥ 0 for all v ∈ K

The characterization (5.19) is related to a minimum problem, because the
integral vanishes for v = u.
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5.3.3 Variational Form of an American Option

Analogously as the simple obstacle problem also the problem of calculating
American options can be formulated as variational problem, compare Pro-
blem 4.7. The class of comparison functions must be redefined as

K := { v ∈ C0[xmin, xmax] | ∂v

∂x
piecewise C0

,

v(x, τ) ≥ g(x, τ) for all x, τ , v(x, 0) = g(x, 0) ,
v(xmax, τ) = g(xmax, τ), v(xmin, τ) = g(xmin, τ) } .

(5.20)

For the following, v ∈ K for the K from (5.20). Let y denote the exact
solution of Problem 4.7. As solution of the partial differential inequality, y is
C2-smooth on the continuation region, and y ∈ K. From

v ≥ g,
∂y

∂τ
−
∂

2
y

∂x2
≥ 0

we deduce ∫
xmax

xmin

(
∂y

∂τ
−
∂2y

∂x2

)
(v − g) dx ≥ 0 .

Invoking the complementarity∫
xmax

xmin

(
∂y

∂τ
−
∂

2
y

∂x2

)
(y − g) dx = 0

and subtraction gives∫
xmax

xmin

(
∂y

∂τ
−
∂2y

∂x2

)
(v − y) dx ≥ 0 .

Integration by parts leads to the inequality∫
xmax

xmin

(
∂y

∂τ
(v − y) +

∂y

∂x

(
∂v

∂x
−
∂y

∂x

))
dx−

∂y

∂x
(v − y)

∣∣∣∣∣
xmax

xmin

≥ 0 .

The nonintegral term vanishes, because at the boundary for xmin, xmax, in
view of v = g, y = g, the equality v = y holds. The final result is

I(y; v) :=
∫

xmax

xmin

(
∂y

∂τ
· (v − y) +

∂y

∂x

(
∂v

∂x
−
∂y

∂x

))
dx ≥ 0 for all v ∈ K .

(5.21)
The exact y is characterized by the fact that the inequality (5.21) holds for
all comparison functions v ∈ K. For the special choice v = y the integral
takes its minimal value,

min
v∈K

I(y; v) = I(y; y) = 0 .
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A more general question is, whether the inequality (5.21) holds for a ŷ ∈ K
that is not C2-smooth on the continuation region.1 The aim is to construct a
ŷ ∈ K such that I(ŷ; v) ≥ 0 for all v ∈ K, and

inf
v∈K

I(ŷ; v) = 0 .

This formulation of our problem is called weak version, because it does not

use ŷ ∈ C2. Solutions ŷ of this minimization problem, which are globally
continuous but only piecewise ∈ C1 are called weak solutions. The original
partial differential equation requires y ∈ C2 and hence more smoothness. Such
C2-solutions are called strong solutions or classical solutions (−→ Section 5.5).

5.3.4 Implementation of Finite Elements

Now we approach the inequality (5.21) with finite-element methods. As a
first step to approximately solve the minimum problem, assume as in Section
5.3.1 separation approximations for ŷ and v in the similar forms∑

i

wi(τ)ϕi(x) for ŷ ,∑
i

vi(τ)ϕi(x) for v .
(5.22)

The reduced smoothness of these expressions match the requirements of K
from (5.20); time dependence is incorporated in the coefficient functions wi

and vi. Since the basis functions ϕi represent the xi-grid, we again perform
a semidiscretization. Plugging the ansatz (5.22) into (5.21) gives

∫ ⎧⎨⎩
(∑

i

dwi

dτ
ϕi

)⎛⎝∑
j

(vj − wj)ϕj

⎞⎠+

(∑
i

wiϕ
′
i

)⎛⎝∑
j

(vj − wj)ϕ′
j

⎞⎠⎫⎬⎭ dx

=
∑

i

∑
j

dwi

dτ
(vj − wj)

∫
ϕiϕj dx+

∑
i

∑
j

wi(vj − wj)
∫
ϕ
′

i
ϕ
′

j
dx ≥ 0.

Translated into vector notation this is equivalent to(
dw
dτ

)
tr

B(v − w) + wtrA(v − w) ≥ 0

1 For the Black–Scholes y(x, τ) or V (S, t) the weaker y ∈ C2,1 suffices.
Recall that the American option is widely C2-smooth, except across the early-
exercise curve.
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or

(v − w)tr

(
B

dw
dτ

+Aw

)
≥ 0 .

The matrices A and B are defined via the assembling described above; for
equidistant steps the special versions in (5.11b), (5.11c) arise.

As a second step, the time is discretized. To this end let us define the
vectors

w
(ν) := w(τν ), v

(ν) := v(τν) .

Upon substituting, and θ-averaging the Aw term as in Section 4.6.1, we arrive
at the inequalities(
v
(ν+1) − w

(ν+1)

)
tr

(
B

1
Δτ

(w(ν+1) − w
(ν)) + θAw

(ν+1) + (1 − θ)Aw(ν)

)
≥ 0

(5.23a)
for all ν. For θ = 1/2 this is a Crank–Nicolson-type method. Rearranging
(5.23a) leads to(

v
(ν+1) − w

(ν+1)

)
tr
(
(B +Δτ θA)w(ν+1) + (Δτ(1 − θ)A−B)w(ν)

)
≥ 0 .

With the abbreviations

r : = (B −Δτ(1 − θ)A)w(ν)

C : = B +Δτ θA
(5.23b)

the inequality can be rewritten as(
v
(ν+1) − w

(ν+1)

)
tr
(
Cw

(ν+1) − r

)
≥ 0 . (5.23c)

This is the fully discretized version of I(ŷ; v) ≥ 0.

Side Conditions

ŷ(x, τ) ≥ g(x, τ) amounts to∑
wi(τ)ϕi(x) ≥ g(x, τ) .

For hat functions ϕi (with ϕi(xi) = 1 and ϕi(xj) = 0 for j �= i) and x = xj

this implies wj(τ) ≥ g(xj , τ). With τ = τν we have

w
(ν) ≥ g

(ν); analogously v(ν) ≥ g
(ν)

.

For each time level ν we must find a solution that satisfies both the inequality
(5.23) and the side condition

w
(ν+1) ≥ g

(ν+1) for all v
(ν+1) ≥ g

(ν+1)
.

In summary, the algorithm is

248



5.3 Application to Standard Options

Algorithm 5.3 (finite elements for American standard options)

Choose θ (θ = 1/2). Calculate w(0)
, and C from (5.23b).

For ν = 1, ..., νmax :

Calculate r = (B −Δτ(1 − θ)A)w(ν−1) and g = g
(ν)

Construct a w such that for all v ≥ g

(v − w)tr(Cw − r) ≥ 0, w ≥ g.

Set w(ν) := w

Let us emphasize again the main step, which is the kernel of this algorithm
and the main labor: Construct w such that

(FE)
for all v ≥ g

(v − w)tr(Cw − r) ≥ 0 , w ≥ g .
(5.24)

This task (FE) can be reformulated into a task we already solved in Section
4.6. To this end recall the finite-difference equation (4.31), replacing A by C,
and b by r. There the following holds for w:

(FD)
Cw − r ≥ 0 , w ≥ g

(Cw − r)tr(w − g) = 0
(5.25)

Theorem 5.4 (equivalence)

The solution of the problem (FE) is equivalent to the solution of problem
(FD).
Proof:

a) (FD) =⇒ (FE):
Let w solve (FD), so w ≥ g, and

(v − w)tr(Cw − r) = (v − g)tr (Cw − r)︸ ︷︷ ︸
≥0

− (w − g)tr(Cw − r)︸ ︷︷ ︸
=0

hence (v − w)tr(Cw − r) ≥ 0 for all v ≥ g

b) (FE) =⇒ (FD):
Let w solve (FE), so w ≥ g, and

vtr(Cw − r) ≥ wtr(Cw − r) for all v ≥ g
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Suppose the kth component of Cw − r is negative, and make vk arbi-
trarily large. Then the left-hand side becomes arbitrarily small, which
is a contradiction. So Cw − r ≥ 0. Now

w ≥ g =⇒ (w − g)tr(Cw − r) ≥ 0

Set in (FE) v = g, then (w − g)tr(Cw − r) ≤ 0.
Therefore (w − g)tr(Cw − r) = 0.

Implementation

As a consequence of this equivalence, the solution of the finite-element pro-
blem (FE) can be calculated with the methods we applied to solve problem
(FD) in Section 4.6. Following the exposition in Section 4.6.2, the kernel of
the finite-element Algorithm 5.3 can be written as follows

(FE′)
Solve Cw = r componentwise such that
the side condition w ≥ g is obeyed.

The vector v is not calculated. The boundary conditions on w are set up in
the same way as discussed in Section 4.4 and summarized in Algorithm 4.13.
Consequently, the finite-element algorithm parallels Algorithm 4.13 closely
in the special case of an equidistant x-grid; there is no need to repeat this
algorithm (−→ Exercise 5.3). In the general nonequidistant case, the off-
diagonal and the diagonal elements of the tridiagonal matrix C vary with i,
and the formulation of the SOR-loop gets more involved. The details of the
implementation are technical and omitted. The Algorithm 4.14 is the same
in the finite-element case.

The computational results match those of Chapter 4 and need not be re-
peated. The costs of the presented simple version of a finite-element approach
are slightly lower than that of the finite-difference approach, because we can
take advantage of an optimal spacing of the mesh points xi.

5.4 Two-Asset Options

In Section 3.5.5 we discussed an option based on two assets with prices S1, S2.
There we applied Monte Carlo to simulate the GBM model, see Example 3.8.
For the mathematical model we have chosen the Black–Scholes market. The
corresponding PDE for the value function V (S1, S2, t) is

∂V

∂t
+

1
2
σ

2

1
S

2

1

∂2V

∂S2

1

+ (r − δ1)S1

∂V

∂S1

− rV

+
1
2
σ

2

2
S

2

2

∂
2
V

∂S2

2

+ (r − δ2)S2

∂V

∂S2

+ ρσ1σ2S1S2

∂
2
V

∂S1∂S2

= 0 ,
(5.26)
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1 2
S

1

S =y

=x

2

1

2

Fig. 5.8. A simple regular finite-element discretization of a domain D into triangles

Dk (see Example 5.5)

with dividend rates δ1, δ2. (For the general case see Section 6.2.) Note that
for S2 = 0 the familiar one-dimensional Black–Scholes equation results. The
model is completed by a payoff function Ψ(S1, S2) and the terminal condition
V (S1, S2, T ) = Ψ(S1, S2). The computational domain D is two-dimensional,
D ⊂ IR2 (disregarding time t).

Example 5.5 (European call on a basket with double barrier)

We consider a call on a two-asset basket with two knock-out barriers. The
payoff of this exotic European-style option is

Ψ(S1, S2) = (S1 + S2 −K)+ ,

up to the barriers (see Figure 5.1). In the underlying basket the two assets
are of equal weight. The two knock-out barriers are given by B1 and B2,
down-and-out at B1, and up-and-out at B2. That is, the option ceases to
exist when S1 + S2 < B1, or when S1 + S2 > B2; in both cases V = 0. In
this example, the computational domain D is easy to define: The value
function is zero outside the barriers. Hence the domain is bounded by the
two lines S1 + S2 = B1 and S1 + S2 = B2. This shape of D naturally
suggests to tile the domain into a grid of triangular elements Dk. One
possible triangulation is shown in Figure 5.8, where a structured regular
subdivision is applied. For this example we choose the parameters
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K = 1 , T = 1 , σ1 = σ2 = 0.25 , ρ = 0.7 , r = 0.05 ,
δ1 = δ2 = 0 , B1 = 1 , B2 = 2 .

The values V for S1 → 0 and S2 → 0 are known by the one-dimensional
Black–Scholes equation; just set either S1 = 0 or S2 = 0 in (5.26). These
values of single-asset double-barrier options can be evaluated by a closed-
form formula, see [Haug07]. We shall come back to this example below.

5.4.1 Analytical Preparations

It is convenient to solve the Black–Scholes equation in a “divergence-free”
version. To this end, use standard PDE variables x := S1, y := S2, τ := T − t

for the independent variables, and u(x, y, τ) for the dependent variable, and
derive the vector PDE for u

−∇ · (D(x, y)∇u) + b(x, y)tr∇u+ ru = ut = −
∂

∂τ
u , (5.27)

This makes use of the formal “nabla” vector ∇ := ( ∂

∂x
,

∂

∂y
)tr, and

D(x, y) :=
1
2

(
σ2

1
x2 ρσ1σ2xy

ρσ1σ2xy σ2

2
y2

)
,

b(x, y) := −

(
(r − δ1 − σ

2

1
− ρσ1σ2/2)x

(r − δ2 − σ
2

2
− ρσ1σ2/2) y

)
.

(5.28)

∇u is the gradient of u, and the dot-product notation ∇ · U for a vector
function U denotes the divergence ∂U

∂x
+ ∂U

∂y
; the · corresponds to the scalar

product, similar as tr for vectors. The reader is invited to check the equivalence
with (5.26). (−→ Exercise 5.5) The advantage of version (5.27) over (5.26) lies
in a simple treatment of the second-order derivatives; they can be removed,
and a weak version can be derived. This will become apparent below.

5.4.2 Galerkin Ansatz

The partial differential equation (5.27) can represented by R(u, x, y, t) = 0,
where

R(u, x, y, t) := −∇ · (D(x, y)∇u(x, y, t)) + b(x, y)tr∇u(x, y, t)

+ ru(x, y, t) +
∂u(x, y, t)

∂t

denotes the residual. As in Section 5.1, the residual is used to set up an
integral equation. To this end, introduce weighting functions v, multiply the
residual of the PDE with v(x, y, t) and request∫

D

R(u, x, y, t) v dxdy = 0 . (5.29)
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This integral over the computational domain D ⊂ IR2 is a double integral.
It depends on t, and should vanish for all 0 ≤ t ≤ T and arbitrary v. We
consider u to be a solution in case (5.29) holds for “all” v. This is the core
of Galerkin-type approaches. It is a weak version of the PDE and requires
less regularity of its “weak” solutions u. Aspects of accuracy are postponed
to Section 5.5.

To exploit the potentiality of the integral version (5.29), we transform the
second-order derivatives to first order, comparable to integration by parts.
The leading integral over the second-order term is∫

D

−∇ · (D∇u) v dxdy .

The reader may check for the vector U := vD∇u the formula for the diver-
gence ∇ · U , namely,

∇ · (vD∇u) = (∇v)tr

D∇u + v∇ ·D∇u ,

and hence

−

∫
D

v∇ · (D∇u) dxdy =
∫
D

(∇v)tr

D∇u dxdy −
∫
D

∇ · (vD∇u) dxdy .

Next we quote the divergence theorem, here for the two-dimensional situation:∫
D

∇ · U dxdy =
∫

∂D

U trn ds , (5.30)

where ∂D denotes the boundary of D, and n is the outward unit normal
vector on ∂D. (n is perpendicular to the curve ∂D and points away from D.)
The parameter s measures the arclength along the boundary ∂D.2 We apply
the divergence theorem to the specific vector U := vD∇u, and arrive at the
result for the second-order term

−

∫
D

v∇ · (D∇u) dxdy =
∫
D

(∇v)tr

D∇u dxdy −
∫

∂D

(vD∇u)tr

n ds .

In (5.27)/(5.28) the matrix D is symmetric, D = Dtr. For symmetric D the
integrand in the boundary integral is v(∇u)trDn. After the above transfor-
mations of the leading integral, we rewrite (5.29) into∫

D

[
(∇v)tr

D∇u+ vbtr∇u+ ruv +
∂u

∂t
v

]
dxdy −

∫
∂D

v(∇u)tr

Dn ds = 0

(5.31)

2 Recall from calculus the definition
∫

C
f(x, y)ds =

∫
b

a
f(g(ξ), h(ξ))ds

dξ
dξ

where (g(ξ), h(ξ)) for a ≤ ξ ≤ b is a parameterization of a planar curve C;
ξ is the curve parameter. The value of this “line integral” is independent of
the orientation of the curve C and independent of the particular paramete-
rization.
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Recall that both u and v as well as ∇u and ∇v depend on x, y, t, and the
integrals on t. This is the weak version of the PDE (5.27).

Next discretize the time 0 ≤ t ≤ T as in Chapter 4, say, with equidistant
steps Δt. For the simplest implicit approach, the derivative with respect to
time t is resolved by the first-order difference quotient,

∂u(x, y, t)
∂t

≈
u(x, y, t+Δt) − u(x, y, t)

Δt
.

For backward running time t,

upre := u(x, y, t+Δt)

is known at time t from the calculation of the previous time level. The ana-
logue of the fully implicit time-stepping method is then to solve (5.31) at
time level t for ∂u

∂t
replaced by

1
Δt

(upre − u) ,

starting at t = T −Δt with the payoff, upre = Ψ . With this approximation,
the function u in (5.31) then approximates the value function V at time level
t. Alternatively, a second-order time-discretization can be applied, similar as
in Section 4.3. For the required regularity of the functions u and v, consult
Section 5.5.

5.4.3 The Boundary

Boundary conditions enter via the boundary integral around the boundary
∂D. In practice, the computational domain D is defined by specifying ∂D.
To this end, we express the curve ∂D as the union of a finite number of
non-overlapping smooth boundary curves ∂D1, ∂D2, . . .. Each of these curves
must be parameterized as in

∂D1 := { (g1(ξ), h1(ξ)) | a1 ≤ ξ ≤ b1 } .

In this way, an orientation is given by starting the curve at the parameter
value ξ = a1 and ending at ξ = b1. By specifying parameter intervals as
a1 ≤ ξ ≤ b1 and parametric functions as g1, h1, the entire boundary is
defined. The convention is that the orientation is done such that the domainD
is on the left-hand side, as we run through the parameterizations for increasing
parameter values ξ.

Now the curve ∂D is defined and we address the boundary integral along
that curve. It is split into a sum of integrals according to the piecewise smooth
curves ∂D1, ∂D2, . . .. For example, the boundary of the domain in Figure 5.8
consists of four such parts. (−→ Exercise 5.6)
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The product-type integrand f(x, y) := v(∇u)trDn suggests to place em-
phasis on two specific kinds of boundary condition, namely,

• v is prescribed (Dirichlet boundary conditions),
• (∇u)trDn is prescribed (Neumann boundary conditions).

The boundary differential operator (∇u)trDn = ntrD∇u can be considered
as a generalized directional derivative since ∂u

∂n
= ntr∇u. Mixed boundary

conditions are possible as well. If we cast the components of the vector ntrD

into a vector (α1, α2), then all type of boundary conditions can be written in
the form

α1(x, y)
∂u

∂x
+ α2(x, y)

∂u

∂y
= α0(x, y)u+ β(x, y)

with proper functions α0 and β. Then v(α0(x, y)u + β(x, y)) is substituted
into the boundary integral, which is approximated numerically using the ed-
ges of the triangulation of D.

Fortunately, the boundary conditions are frequently of simple form. In
particular one encounters the two types

• u = 0 (or v = 0), which is of Dirichlet type with α1 = α2 = β = 0 and
α0 �= 0.

• (∇u)trDn = 0, which is of Neumann type with α0 = β = 0 and
nonzero vector (α1, α2).

The boundary ∂D may consist, for example, of two parts ∂DD and ∂DN

with ∂D = ∂DD ∪ ∂DN, ∂DD ∩ ∂DN = ∅, and Dirichlet conditions on ∂DD

and Neumann conditions on ∂DN. Clearly, boundary integrals vanish for the
special cases v = 0 or (∇u)trDn = 0. Neumann conditions are advantageous
in that they need not be specified for weak formulations. This entails an
advantage of FEM over discretizing the PDEs by finite differences. In the
latter case, all boundary conditions must be implemented. For FEM it suffices
to implement Dirichlet conditions. Defining the right boundary conditions
can be demanding. Aside to be financially meaningful, another aim is the
problem to be well-posed —that is, it defines a unique solution. To some
extent, defining proper boundary conditions is an art.

Example 5.6 (European binary put as in Example 3.8)

In Chapter 3 this example was simulated with Monte Carlo, and no boun-
dary or boundary conditions were needed. Here we prepare the example
to be solved by FEM. Again, x := S1, y := S2. As in Chapter 4, the
domain 0 < x < ∞, 0 < y < ∞ must be truncated to finite size. A simple
choice of a computational domain is a rectangle

D = { (x, y) | 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax }

with xmax, ymax large enough such that zero boundary conditions can be
chosen as approximation for x = xmax or y = ymax. The rectangle is
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bounded by four straight lines, which can be parameterized, for example,
by

∂D1 := { x = ξ, y = 0 | 0 ≤ ξ ≤ xmax }

∂D2 := { x = xmax, y = ξ | 0 ≤ ξ ≤ ymax }

∂D3 := { x = xmax − ξ, y = ymax | 0 ≤ ξ ≤ xmax }

∂D4 := { x = 0, y = ymax − ξ | 0 ≤ ξ ≤ ymax } .

Now ∂D = ∂D1 ∪ ∂D2 ∪ ∂D3 ∪ ∂D4, and the parameterized curve has the
domain on the left.
Dirichlet conditions are imposed for ∂D2 and ∂D3, where we have chosen
to approximate boundary values by requesting u = 0. For y = 0 the
boundary conditions can be chosen as the values of the one-dimensional
European binary put. An analytic formula for the one-dimensional case
of a European binary put is

V
Eur

binP
(S, t) := c e−r(T−t)

F

(
−

log(S/K) + (r − σ2/2)(T − t)
σ
√
T − t

)
,

for a face value c, with standard normal distribution F [Haug07]. For y = 0
we set S = x. The same formula can be applied for the boundary with x =
0; then S = y. In this way, on ∂D1 and ∂D4 the boundary conditions are
of Dirichlet type with u = V

Eur

binP
. With this choice of boundary conditions,

∂DD = ∂D and ∂DN = ∅. But there is a simpler choice: As [PiH00] point
out, this Dirichlet condition is implicitly defined by the PDE, because the
one-dimensional PDE is embedded in (5.26) for S1 = 0 or S2 = 0. So
no boundary condition needs to be specified along ∂D1 and ∂D4. This
amounts to zero Neumann conditions. Both the Dirichlet version and the
Neumann version work. The latter has the advantage of avoiding the effort
of evaluating V Eur

binP
.

The implementation of the weak form in (5.31) is straightforward when,
for example, the package FreeFem++ is applied. Thereby a figure similar
as Figure 3.8 is produced easily.

5.4.4 Involved Matrices

The accuracy of FEM depends on how the grid is chosen. Algorithms for
mesh generation and mesh adaption are needed, but these are demanding
topics. It is cumbersome to implement a two-dimensional FEM yourself. For
first results, one may work with a fixed structured grid. But in general it
is advisable and comfortable to apply a FEM package to solve (5.31). Here
we merely focus on how the two-dimensional analogue of the hat functions
enters.

For the Galerkin ansatz we apply the basis representation

w(x, y, t) =
∑

i

wi(t)ϕi(x, y) (5.32)
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1
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l

x

i

l

jk

Fig. 5.9. Two-dimensional hat function ϕl(x, y) (zero outside the shaded area)

as approximation for u, and set v = ϕj . This ansatz separates time τ and
“space” (x, y). The functions ϕi are defined on D.

For basis functions, we choose the two-dimensional hat functions, which
perfectly match triangular elements. The situation is shown schematically in
Figure 5.9. There the central node l is node of several adjacent triangles,
which are the support (shaded) on which ϕl is built by planar pieces. This
approach defines a tent-like hat function ϕl, which is zero “outside.” By
linear combination of such basis functions, piecewise planar surfaces above
the computational domain are constructed. Locally, for one triangle, this may
look like the element in Figure 5.4.

Note that ∇w =
∑
wi∇ϕi. The weak form of (5.31) leads to∫

D

(∇ϕj)tr

D

∑
wi∇ϕi + ϕj

[
btr(
∑

wi∇ϕi) + r

∑
wiϕi +

∑ ∂wi

∂t
ϕi

]
dxdy

−

∫
∂D

ϕj(
∑

wi∇ϕi)tr

Dn ds = 0 ,

for all j. This is a system of ODEs∑
i

wi

∫
D

[
(∇ϕj)tr

D∇ϕi + ϕjb
tr∇ϕi + ϕjrϕi

]
dxdy

+
∑

i

∂wi

∂t

∫
D

ϕiϕj dxdy −
∑

i

wi

∫
∂D

ϕj(∇ϕi)tr

Dn ds = 0 .
(5.33)

As an exercise, the reader should rewrite this ODE system in matrix-vector
notation. In summary, FEM needs the integrals over the domain D
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Fig. 5.10. Rough approximation of the value function V (S1, S2, 0) of a basket

double-barrier call option, Example 5.5. With kind permission of Anna Kvetnaia.

∫
(∇ϕj)tr

D∇ϕi (“diffusion terms”)∫
ϕjb

tr∇ϕi (“convection terms”)∫
γϕjϕi (“reaction terms”)

where γ is chosen appropriately, in addition to boundary integrals along ∂D.
For each number k of a triangle, there are three nodes of the triangle, i, j, l

in Figure 5.9. Hence the table I of index sets that assigns nodes to triangles
includes the entry

Ik := {i, j, l} .

Only for the three node numbers i, j, l ∈ Ik the local integrals on Dk are
nonzero. They can be arranged into 3×3 element matrices. For the derivation
of the integrals, it makes sense to use a local numbering 1k, 2k, 3k for the nodes
of Dk. For each global matrix, the assembling loop over k distributes up to
27 local integrals calculated on Dk, nine integrals of each of the above three
types.3

Back to Example 5.5, we solve (5.31) with FEM. The Figure 5.10 shows a
FEM solution with 192 triangles, and Figure 5.11 illustrates a mesh structure

3 Basic ingredients for the calculation of the local integrals on an arbitrary
triangle Dk are the relations in Exercise 5.7. See also Exercises 5.8 and 5.11.
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for higher resolution obtained with FreeFem++. In the two-dimensional case,
because of the higher costs, we typically confine ourselves to an accuracy
lower than in the one-dimensional situation. Based on our results we state

V (1.25, 0.25, 0) ≈ 0.2949 .

 0  0.5  1  1.5  2  0
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Fig. 5.11. Finer approximation of the value function V (S1, S2, 0) of a basket

double-barrier call option, Example 5.5

Example 5.7 (Heston’s PDE)

In Example 1.16 Heston’s model was introduced, where v denotes a sto-
chastic volatility. The corresponding PDE from [Hes93] is

∂V

∂t
+

1
2
vS

2
∂2V

∂S2
+

1
2
σ

2

v
v
∂2V

∂v2
+ ρσvvS

∂2V

∂S∂v

+ rS
∂V

∂S
+ [κ(θ − v) − λv]

∂V

∂v
− rV = 0 ,

(5.34)

with parameters as in (1.43), and λ standing for the market price of vo-
latility risk. Here we are interested in solutions V (S, v, t) on part of a
two-dimensional (S, v)-plane. The PDE (5.34) can be cast into version
(5.27). As exercise, the reader is encouraged to derive D and b, and with
the payoff of a call and an own choice of parameters, to think about suita-
ble boundary conditions, and to do experiments with (5.34). Note that for
a call a reasonable requirement for maximum values of the volatility v is
V = S. — When in addition the interest rate r is replaced by a stochastic
variable, the PDE is based on a three-dimensional domain [HaH10].
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5.5 Error Estimates

The similarity of the finite-element equation (5.18) with the finite-difference
equation (4.15) suggests that the errors may be of the same order. In fact, nu-
merical experiments confirm that the finite-element approach with the linear
basis functions from Definition 5.1 produces errors decaying quadratically
with the mesh size. Applying the finite-element Algorithm 5.3 and entering
the calculated data into a diagram as Figure 4.14, confirms the quadratic
order experimentally. The proof of this order of the error is more difficult for
finite-element methods because weak solutions assume less smoothness. For
standard options, the separation of variables in (5.16) also separates the dis-
cussion of the order, and an analysis of the one-dimensional situation suffices.
This section explains some basic ideas of how to derive error estimates. We
begin with reconsidering some of the related topics that have been introduced
in previous sections.

5.5.1 Strong and Weak Solutions

Our exposition will be based on the model problem (5.12). That is, the simple
second-order differential equation

−u′′ = f(x) for α < x < β (5.35a)

with homogeneous Dirichlet-boundary conditions

u(α) = u(β) = 0 (5.35b)

will serve as illustration. The differential equation is of the form Lu = f , com-
pare (5.2). The domain D ⊆ IRn on which functions u are defined specializes
for n = 1 to the open and bounded interval D = { x ∈ IR1 | α < x < β }. For
continuous f , solutions of the differential equation (5.35a) satisfy u ∈ C2(D).
In order to have operative boundary conditions, solutions u must be con-
tinuous on D including its boundary, which is denoted ∂D. Therefore we
require u ∈ C0(D̄) where D̄ := D ∪ ∂D. In summary, classical solutions of
second-order differential equations require

u ∈ C2(D) ∩ C0(D̄) . (5.36)

The function space C2(D) ∩ C0(D̄) must be reduced further to comply with
the boundary conditions.

For weak solutions the function space is larger (−→ Appendix C3). For
functions u and v we define the inner product

(u, v) :=
∫
D

uv dx . (5.37)

Classical solutions u of Lu = f satisfy
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(Lu, v) = (f, v) for all v . (5.38)

Specifically for the model problem (5.35) integration by parts leads to

(Lu, v) = −

∫
β

α

u
′′
v dx = −u′v

∣∣∣β
α

+
∫

β

α

u
′
v
′ dx .

The nonintegral term on the right-hand side of the equation vanishes in case
also v satisfies the homogeneous boundary conditions (5.35b). The remaining
integral is a bilinear form, which we abbreviate

b(u, v) :=
∫

β

α

u
′
v
′ dx . (5.39)

Bilinear forms as b(u, v) from (5.39) are linear in each of the two arguments
u and v. For example, b(u1 + u2, v) = b(u1, v) + b(u2, v) holds. The bilinear
form (5.39) is symmetric, b(u, v) = b(v, u). For several classes of more general
differential equations analogous bilinear forms are obtained. Formally, (5.38)
can be rewritten as

b(u, v) = (f, v) , (5.40)

where we assume that v satisfies the homogeneous boundary conditions
(5.35b).

The equation (5.40) has been derived out of the differential equation, for
the solutions of which we have assumed smoothness in the sense of (5.36).
Many “solutions” of practical importance do not satisfy (5.36) and, accor-
dingly, are not classical. In several applications, u or derivatives of u have
discontinuities. For instance consider the obstacle problem of Section 4.5.5:
The second derivative u′′ of the solution fails to be continuous at α and β.
Therefore u /∈ C2(−1, 1) no matter how smooth the data function is, compare
Figure 4.10. As mentioned earlier, integral relations require less smoothness.

In the derivation of (5.40) the integral version resulted as a consequence
of the primary differential equation. This is contrary to wide areas of applied
mathematics, where an integral relation is based on first principles, and the
differential equation is derived in a second step. For example, in the calculus
of variations a minimization problem may be described by an integral perfor-
mance measure, and the differential equation is a necessary criterion [Str07].
This situation suggests considering the integral relation as an equation of
its own right rather than as offspring of a differential equation. This leads
to the question, what is the maximal function space such that (5.40) with
(5.37), (5.39) is meaningful? That means to ask, for which functions u and v

do the integrals exist? For a more detailed background we refer to Appendix
C3. For the introductory exposition of this section it may suffice to sketch
the maximum function space briefly. The suitable function space is denoted
H1, the version equipped with the boundary conditions is denoted H1

0
. This

Sobolev space consists of those functions that are continuous on D and that
are piecewise differentiable and satisfy the boundary conditions (5.35b). This
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function space corresponds to the class of functions K in (5.20). By means
of the Sobolev space H1

0
a weak solution of Lu = f is defined, where L is a

second-order differential operator and b the corresponding bilinear form.

Definition 5.8 (weak solution)

u ∈ H1

0
is called weak solution [of Lu = f ], if b(u, v) = (f, v) holds for all

v ∈ H1

0
.

This definition implicitly expresses the task: find a u ∈ H1

0
such that

b(u, v) = (f, v) for all v ∈ H1

0
. This problem is called variational problem.

The model problem (5.35) serves as example for Lu = f ; the corresponding
bilinear form b(u, v) is defined in (5.39) and (f, v) in (5.37). For the integrals
(5.37) to exist, we in addition require f to be square integrable (f ∈ L2,
compare Appendix C3). Then (f, v) exists because of the Schwarzian inequa-
lity (C3.7). In a similar way, weak solutions are introduced for more general
problems; the formulation of Definition 5.8 applies.

h

1
2

S

H

w

u

C

Fig. 5.12. Approximation spaces

5.5.2 Approximation on Finite-Dimensional Subspaces

For a practical computation of a weak solution the infinite-dimensional space
H1

0
is replaced by a finite-dimensional subspace. Such finite-dimensional sub-

spaces are spanned by basis functions ϕi. Simple examples are the hat functi-
ons of Section 5.2. Reminding of the important role splines play as basis func-
tions, the finite-dimensional subspaces are denoted S, and are called finite-

element spaces. As stated in Property 5.2(a), the hat functions ϕ0, ..., ϕm span
the space of polygons. Recall that each such polygon v can be represented as
linear combination
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v =
m∑

i=0

ciϕi .

The coefficients ci are uniquely determined by the values of v at the nodes,
ci = v(xi). We call hat functions “linear elements” because they consist of
piecewise straight lines. Apart from linear elements, for example, also qua-
dratic or cubic elements are used, which are piecewise polynomials of second
or third degree [Zie77], [Cia91], [Sch91]. The attainable accuracy is different
for basis functions consisting of higher-degree polynomials.

Since by definition the functions of the Sobolev space H1

0
fulfill the homo-

geneous boundary conditions, each subspace does so as well. The subscript 0

indicates the realization of the homogeneous boundary conditions (5.35b)4.
A finite-dimensional subspace of H1

0
is defined by

S0 := { v =
m∑

i=0

ciϕi | ϕi ∈ H1

0
} . (5.41)

Properties of S0 are determined by the basis functions ϕi. As mentioned
earlier, basis functions with small supports give rise to sparse matrices. The
partition (5.3) is implicitly included in the definition S0 because this infor-
mation is contained in the definition of the ϕi. For our purposes the hat
functions suffice. The larger m is, the better S0 approximates the space H1

0
,

since a finer discretization (smaller Dk) allows to approximate the functions
from H1

0
better by polygons. We denote the largest diameter of the Dk by

h, and ask for convergence. That is, we study the behavior of the error for
h → 0 (basically m→ ∞).

In analogy to the variational problem expressed in connection with Defi-
nition 5.8, a discrete weak solution w is defined by replacing the space H1

0
by

a finite-dimensional subspace S0:

Problem 5.9 (discrete weak solution)

Find a w ∈ S0 such that b(w, v) = (f, v) for all v ∈ S0.

The quality of the approximation relies on the discretization fineness h of
S0, which is occasionally emphasized by writing wh. The transition from
the continuous variational problem following Definition 5.8 to the discrete
Problem 5.9 is sometimes called the principle of Rayleigh–Ritz.

4 In this subsection the meaning of the index 0 is twofold: It is the index of
the “first” hat function, and serves as symbol of the homogeneous boundary
conditions (5.35b).
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5.5.3 Quadratic Convergence

Having defined a weak solution u and a discrete approximation w, we turn
to the error u−w. To measure the distance between functions in H1

0
we use

the norm ‖ ‖1 (−→ Appendix C3). That is, our first aim is to construct a
bound on ‖u−w‖1. Let us suppose that the bilinear form is continuous and
H1-elliptic:

Assumptions 5.10 (continuous H1-elliptic bilinear form)

(a) There is a γ1 > 0 such that
|b(u, v)| ≤ γ1‖u‖1‖v‖1 for all u, v ∈ H1

(b)There is a γ2 > 0 such that
b(v, v) ≥ γ2‖v‖2

1
for all v ∈ H1

The assumption (a) is the continuity, and the property in (b) is called H1-
ellipticity. Under the Assumptions 5.10, the problem to find a weak solution
following Definition 5.8, possesses exactly one solution u ∈ H1

0
; the same holds

true for Problem 5.9. This is guaranteed by the Theorem of Lax–Milgram
[Cia91], [BrS02]. In view of S0 ⊆ H1

0
,

b(u, v) = (f, v) for all v ∈ S0 .

Subtracting b(w, v) = (f, v) and invoking the bilinearity implies

b(w − u, v) = 0 for all v ∈ S0 . (5.42)

The property of (5.42) is called error projection property. The Assumptions
5.10 and the error projection are the basic ingredients to obtain a bound on
the error ‖u− w‖1:

Lemma 5.11 (Céa)

Suppose the Assumptions 5.10 are satisfied. Then

‖u− w‖1 ≤
γ1

γ2

inf
v∈S0

‖u− v‖1 . (5.43)

Proof: v ∈ S0 implies ṽ := w − v ∈ S0. Applying (5.42) for ṽ yields

b(w − u,w − v) = 0 for all v ∈ S0 .

Therefore

b(w − u,w − u) = b(w − u,w − u) − b(w − u,w − v)
= b(w − u, v − u) .

Applying the assumptions shows

γ2‖w − u‖2

1
≤ |b(w − u,w − u)| = |b(w − u, v − u)|
≤ γ1‖w − u‖1‖v − u‖1 ,
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from which
‖w − u‖1 ≤

γ1

γ2

‖v − u‖1

follows. Since this holds for all v ∈ S0, the assertion of the lemma is
proven.

Let us check whether the Assumptions 5.10 are fulfilled by the model problem
(5.35). For (a) this follows from the Schwarzian inequality (C3.7) with the
norms

‖u‖1 =

(∫
β

α

(u2 + u
′2) dx

)1/2

, ‖u‖0 =

(∫
β

α

u
2 dx

)1/2

,

because (∫
β

α

u
′
v
′ dx

)2

≤

(∫
β

α

u
′2 dx

)(∫
β

α

v
′2 dx

)
≤ ‖u‖2

1
‖v‖2

1
.

The Assumption 5.10(b) can be derived from the inequality of the Poincaré-
type ∫

β

α

v
2 dx ≤ (β − α)2

∫
β

α

v
′2 dx ,

which in turn is proven with the Schwarzian inequality (−→ Exercise 5.9).
Adding

∫
v′2 dx on both sides leads to

‖v‖2

1
≤ [(β − α)2 + 1] b(v, v) ,

from which the constant γ2 of Assumption 5.10(b) results. So Céa’s lemma
applies to the model problem.

The next question is, how small the infimum in (5.43) may be. This is
equivalent to the question, how close the subspace S0 can approximate the
space H1

0
. (−→ Figure 5.12) We will show that for hat functions and S0 from

(5.41) the infimum is of the order O(h). Again h denotes the maximum mesh
size, and the notation wh reminds us that the discrete solution depends on
the grid with a spacing symbolized by h. To apply Céa’s lemma, we need an
upper bound for the infimum of ‖u− v‖1. Such a bound is found easily by a
specific choice of v, which is taken as an arbitrary interpolating polygon uI.
Then by (5.43)

‖u− wh‖1 ≤
γ1

γ2

inf
v∈S0

‖u− v‖1 ≤
γ1

γ2

‖u− uI‖1 . (5.44)

It remains to bound the error of interpolating polygons. This bound is pro-
vided by the following lemma, which is formulated for C2-smooth functions
u:
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Lemma 5.12 (error of an interpolating polygon)

For u ∈ C2 let uI be an arbitrary interpolating polygon and h the maximal
distance between two consecutive nodes. Then
(a) max

x

|u(x) − uI(x)| ≤ h
2

8
max |u′′(x)|

(b) max
x

|u′(x) − u′
I
(x)| ≤ hmax |u′′(x)|

We leave the proof to the reader (−→ Exercise 5.10). Lemma 5.12 asserts

‖u− uI‖1 = O(h) ,

which together with (5.44) implies the claimed error statement

‖u− wh‖1 = O(h) . (5.45)

Recall that this assertion is based on a continuous and H1-elliptic bilinear
form and on hat functions ϕi. The O(h)-order in (5.45) is dominated by the
unfavorable O(h)-order of the first-order derivative in Lemma 5.12(b). This
low order is at variance with the actually observed O(h2)-order attained by
the approximation wh itself (not its derivative). In fact, the square order
holds. The final result is

‖u− wh‖0 ≤ Ch
2‖u‖2 (5.46)

for a constant C. This result is proven with the following lemma, which is
based on a tricky idea due to Nitsche.

Lemma 5.13

Assume b is a symmetric bilinear form satisfying Assumption 5.10, and u

and w are defined as above. Then

‖u− w‖1 ≤ Kh
1‖f‖0 implies ‖u− w‖0 ≤ Ch

2‖f‖0 .

Proof: Consider the auxiliary problem Lz = f̃ := u−w, with weak version

b(z, ṽ) = (f̃ , ṽ)0 for all ṽ ∈ H1

0
,

which defines z. Choose specifically ṽ = u− w = f̃ . Then

b(z, u− w) = (u− w, u − w)0 = ‖u− w‖2

0

Invoking the error-projection property we note

0 = b(u− w, v) = b(v, u− w) for all v ∈ S0 .

Subtracting this, yields

b(z − v, u− w) = ‖u− w‖2

0
for all v ∈ S0 .

We apply the continuity of b,

‖u− w‖2

0
≤ γ1‖z − v‖1 ‖u− w‖1 for all v ∈ S0 ,
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and choose specifically v as the finite-element approximation of z. Then

‖u− w‖2

0
≤ γ1K1h

1‖f̃‖0 ·K2h
1‖f‖0 = Ch

2‖u− w‖0 ‖f‖0 ,

from which the assertion follows.
This error of the order h2 can be observed for the examples of Section 5.4,
but not easily. The error is somewhat hidden among the other errors, namely,
localization error, interpolation error, and the error of the time discretization.

The derivations of this section have been focused on the model problem
(5.35) with a second-order differential equation and one independent variable
x (n = 1), and have been based on linear elements. Most of the assertions can
be generalized to higher-order differential equations, to higher-dimensional
domains (n > 1), and to nonlinear elements. For example, in case the elements
in S are polynomials of degree k, and the differential equation is of order 2l,
S ⊆ Hl, and the corresponding bilinear form on Hl satisfies the Assumptions
5.10 with norm ‖ ‖l, then the inequality

‖u− wh‖l ≤ Ch
k+1−l‖u‖k+1

holds. This general statement includes for k = 1, l = 1 the special case of
equation (5.46) discussed above. For the analysis of the general case, we refer
to [Cia91], [Hac92]. This includes boundary conditions more general than the
homogeneous Dirichlet conditions of (5.35b).

Notes and Comments

on Section 5.1:

As an alternative to piecewise defined finite elements one may use polynomials
ϕj that are defined globally on D, and that are pairwise orthogonal. Then
the orthogonality is the reason for the vanishing of many integrals. Such type
of methods are called spectral methods. Since the ϕi are globally smooth on
D, spectral methods can produce high accuracies. In other context, spectral
methods were applied in [Fru08]. Rayleigh–Ritz approaches choose the ϕi as
eigenfunctions of L. For symmetric L this leads to diagonal matrices A.

Specifically designed basis functions can be generated by some low-
dimensional approximation, comparable to PCA in finite dimensions (−→
Exercise 2.18). Suitable are functions that represent preferred patterns of the
solution. Then the number N of modes ϕi can be small. Such methods are
described under the heading principle orthogonal decomposition (POD), or
Karhunen–Loève expansion.
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on Section 5.2:

In the early stages of their development, finite-element methods have been
applied intensively in structural engineering. In this field, stiffness matrix and
mass matrix have a physical meaning leading to these names [Zie77].

on Section 5.3:

The approximation
∑
wi(τ)ϕi(x) for ŷ is a one-dimensional finite-element

approach. The geometry of the grid and the accuracy resemble the finite-
difference approach. A two-dimensional approach as in∑

wiϕi(x, τ)

with two-dimensional hat functions and constant wi is more involved and
more flexible. Sections 5.3.2 – 5.3.4 widely follow [WiDH96].

on Section 5.4:

For the calculation of the local integrals on an arbitrary triangle Dk consult
the special FEM literature, such as [Sch91]. In general an irregular triangu-
lation better exploits the potential adaptivity of FEM. In particular, close to
the barriers a fine mesh is required for high accuracy [PoFVS00]. Since the
gradient of u varies with time, a dynamic mesh refinement might be advisa-
ble, provided accuracy or stability do not deteriorate. For American options,
boundary conditions V = Ψ along the boundary are recommendable.

on Section 5.5:

The assumption u ∈ C2 in Lemma 5.12 can be weakened to u′′ ∈ L2 [StF73].
For domains D ∈ IR2 the claim of Lemma 5.12 holds analogously; then the
second-order derivative u′′ is replaced by the Hessian matrix of the second-
order derivatives of u. This can be applied to mesh adaption, where one
attempts to place nodes such that the Hessian is equilibrated across the mesh.
The finite-dimensional function space S0 in (5.41) is assumed to be subspace
of H1

0
. Elements with this property are called conforming elements. A more

accurate notation for S0 of (5.41) is S1

0
. In the general case, conforming

elements are characterized by Sl ⊆ Hl. In the representation of v in equation
(5.41) we avoid discussing the technical issue of how to organize different
types of boundary conditions.

There are also smooth basis functions ϕ, for example, cubic Hermite po-
lynomials. For sufficiently smooth solutions, such basis functions produce
higher accuracy than hat functions do. For the accuracy of finite-element
methods consult, for example, [StF73], [Cia91], [Hac92], [BaS01], [BrS02],
[AcP05].
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on other methods:

Finite-element methods are frequently used for approximating exotic options,
in particular in multidimensional situations. For different types of options
special methods have been developed. For applications, computational re-
sults and accuracies see also [Top00], [AcP05], [Top05]. Front-fixing has been
applied with finite elements in [HoY08]. The accuracy aspect is also treated
in [FuST02]. Galerkin methods are used with wavelet functions in [MaPS02],
[HiMS05]; the latter paper is specifically devoted to stochastic volatility.
A penalty approach with FEM is discussed in [KoLM07], where rectangular
subdomains are furnished with basis functions as product of one-dimensional
hat functions of the type ϕ(x, y) = ϕi(x)ϕj(y).

Exercises

Exercise 5.1 Cubic B-Spline

Suppose an equidistant partition of an interval be given with mesh-size
h = xk+1 − xk. Cubic B-splines have a support of four subintervals. In
each subinterval the spline is a piece of polynomial of degree three. Apart
from special boundary splines, the cubic B-splines ϕi are determined by the
requirements

ϕi(xi) = 1
ϕi(x) ≡ 0 for x < xi−2

ϕi(x) ≡ 0 for x > xi+2

ϕ ∈ C2(−∞,∞) .

To construct these ϕi proceed as follows:
a) Construct a spline S(x) that satisfies the above requirements for the spe-

cial nodes
x̃k := −2 + k for k = 0, 1, ..., 4 .

b) Find a transformation Ti(x), such that ϕi = S(Ti(x)) satisfies the requi-
rements for the original nodes.

c) For which i, j does ϕiϕj = 0 hold?

Exercise 5.2 Finite-Element Matrices

For the hat functions ϕ from Section 5.2 calculate for arbitrary subinterval
Dk all nonzero integrals of the form∫

ϕiϕj dx,
∫
ϕ
′
i
ϕj dx,

∫
ϕ
′
i
ϕ
′
j
dx

and represent them as local 2 × 2 matrices.
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Exercise 5.3 Calculating Options with Finite Elements

Design an algorithm for the pricing of standard options by means of finite
elements. To this end proceed as outlined in Section 5.3. Start with a simple
version using an equidistant discretization stepΔx. If this is working properly
change the algorithm to a version with nonequidistant x-grid. Distribute the
nodes xi closer around x = 0. Always place a node at the strike.

Exercise 5.4

Suppose the situation of two asset prices S1(t) and S2(t) for t > 0 governed
by GBM (3.28), with initial price point (S1(0), S2(0)). Barriers of a barrier
option can be aligned such that the probability of (S1(t), S2(t)) reaching the
barrier has the same constant value.
a) Show that this curve of constant probability has an elliptical shape.
b) Let the covariance matrix be

Σ =
(

σ2

1
ρσ1σ2

ρσ1σ2 σ2

2

)
Calculate its eigenvalues λ1, λ2.

c) Sketch representative ellipses in an (S1, S2)-plane. How do they depend
on ρ?

Exercise 5.5

a) Prove the equivalence of (5.26) and (5.27). Specialize this to the one-
dimensional case of the Black–Scholes equation.

b) Show
btr∇u+ ru = ∇ · (bu) + γu

and determine γ.
c) With the transformation

x := log(
S1

K1

), y := log(
S2

K2

)

and writing u(x, y, t) for V leads to the PDE

ut + 1

2
σ

2

1
uxx + (r − δ1 −

1

2
σ

2

1
)ux − ru

+ 1

2
σ

2

2
uyy + (r − δ2 −

1

2
σ

2

2
)uy + ρσ1σ2uxy = 0 .

(5.47)

What are the matrix D and the vector b such that we arrive at (5.27)?

Exercise 5.6

The boundary ∂D of the trapezoidal domain D in Figure 5.8 consists of four
straight lines. What are the four unit outward vectors n orthogonal to ∂D?
Give a parameter representation of the boundary.
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Exercise 5.7

In the three-dimensional (x, y, w)-space let the plane w(x, y) = c1+c2 x+c3 y

interpolate the three points (xi, yi, wi), i = 1, 2, 3. Show⎛⎝ 1 x1 y1

1 x2 y2

1 x3 y3

⎞⎠⎛⎝ c1

c2

c3

⎞⎠ =

⎛⎝w1

w2

w3

⎞⎠ .

By inversion, establish a formula for ∇w = (c2, c3)tr.

Exercise 5.8

Consider the domain D := {(x, y) | x ≥ 0, y ≥ 0, 1 ≤ x + y ≤ 2} tiled by 12
triangles Dk, where triangles and nodes are numbered as in Figure 5.13.
a) Set up the index set I with entries Ik = {ik, jk, lk}, which assigns node

numbers to the kth triangle for 1 ≤ k ≤ 12.
b) Formulate the assembling algorithm that builds up the global stiffness

matrix out of the element stiffness matrices⎛⎜⎝ s
(k)

11
s
(k)

12
s
(k)

13

s
(k)

21
s
(k)

22
s
(k)

23

s
(k)

31
s
(k)

32
s
(k)

33

⎞⎟⎠
for a general index set I and 1 ≤ k ≤ m.

c) The example of Figure 5.13 leads to a banded stiffness matrix. What is
the bandwidth?

S =y

=x

8

11

124

10

12

S1

2

9

6

7

5

3

12

11

10 8

79

6 4

5 3

2 1

Fig. 5.13. Specific triangulation and numbering, see Exercise 5.8
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Exercise 5.9

Assume a function v(ζ) with α ≤ ζ ≤ β and v(α) = 0.
a) Show

(v(ζ))2 ≤ (ζ − α)
∫

ζ

α

(v′(x))2 dx .

(Hint: Recall v(ζ) =
∫

ζ

α
v′(x) dx, and apply the Schwarzian inequality

(C3.7).)
b) Use a) to show ∫

β

α

(v(ζ))2 dζ ≤
1
2
(β − α)2

∫
β

α

(v′(x))2 dx .

Exercise 5.10

Prove Lemma 5.12, and for u ∈ C2 the assertion ‖u− wh‖1 = O(h).

Exercise 5.11 Variable Volatility (Project)

For variable volatility σ(S, t) and constant K,T, r, δ , PDEs of the type

∂y

∂τ
−

1
2
σ̂

2(x, τ)
(
∂2y

∂x2
−

1
4
y

)
= 0

are to be solved, with τ = T − t and transformations S ↔ x, V ↔ y from
the Black–Scholes model given by (A6.2), (A6.3); consult Appendix A6.
a) For an American put, apply these transformations to derive from V (S, t) ≥

(K − S)+ an inequality y(x, τ) ≥ g(x, τ).
b) Carry out the finite-element formulation for the linear complementarity

problem analogously as in Section 5.3.4.
c) Integrals will include local integrals∫

σ
2(x, τ)ϕiϕj dx,

∫
σ

2(x, τ)ϕ′

i
ϕj dx

Apply Simpson’s quadrature rule∫
b

a

f(x)dx ≈
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
to approximate the above local integrals.

d) Set up a finite-element code, and test it with the artificial function [Fen05]

σ(S) := 0.3 −
0.2

log(S/K)2 + 1
.

272



Chapter 6 Pricing of Exotic Options

In Chapter 4 we discussed the pricing of vanilla options (standard options)
by means of finite differences. The methods were based on the simple partial
differential equation (4.2),

∂y

∂τ
=
∂2y

∂x2
,

which was obtained from the Black–Scholes equation (4.1) for V (S, t) via the
transformations (4.3). These transformations have exploited the simple struc-
ture of the Black–Scholes operator and relied on the assumption of constant
coefficients.

Exotic options lead to partial differential equations that are not of the
simple structure of the basic Black–Scholes equation (4.1). In the general case,
the transformations (4.3) are no longer useful and the PDEs must be solved
directly. Thereby numerical instabilities or spurious solutions may occur that
do not play any role for the methods of Chapter 4. To cope with the “new”
difficulties, Chapter 6 introduces ideas and tools not needed in Chapter 4.
Exotic options often involve higher-dimensional problems. This significantly
adds to the complexity. An exhaustive discussion of the wide field of exotic
options is beyond the scope of this book. The aim of this chapter will not be
to formulate algorithms, but to give an outlook on several relevant aspects
of computation, and on phenomena of stability. In this chapter, we still stick
to the GBM model and move in the Black–Scholes world; for more general
models see Chapter 7.

Sections 6.1 and 6.2 give a brief overview on important types of exotic
options. Section 6.3 introduces approaches for path-dependent options, with
the focus on Asian options. Then numerical aspects of convection-diffusion
problems are discussed (in Section 6.4), and upwind schemes are analyzed
(in Section 6.5). After these preparations, the Section 6.6 arrives at a state
of the art high-resolution method. Finally, Section 6.7 will address penalty
methods, with application to two-asset options.

R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-2993-6_6, © Springer-Verlag London Limited 2012
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Chapter 6 Pricing of Exotic Options

6.1 Exotic Options

So far, this book has mainly concentrated on standard options. These are
the American or European call or put options with vanilla payoff functions
(1.1C) or (1.1P) as discussed in Section 1.1, based on a single underlying
asset. The options traded on official exchanges are mainly standard options;
there are market prices quoted in relevant newspapers.

All nonstandard options are called exotic options. That is, at least one
of the features of a standard option is violated. One of the main possible
differences between standard and exotic options lies in the payoff; examples
are given in this section. Another extension from standard to exotic is an in-
crease in the dimension, from single-factor to multifactor options; this will be
discussed in Section 6.2. The distinctions between put and call, and between
European and American options remain valid for exotic options.

Financial institutions have been imaginative in designing exotic options
to meet the needs of clients. Many of the products have a highly complex
structure. Exotic options are traded outside the exchanges (OTC), and often
they are illiquid and no market prices are available. Then exotic options must
be priced based on models. In general, their parameters are taken from the
results obtained when standard options with comparable terms are calibrated
to market prices. The simplest models extend the Black–Scholes model, which
was summarized by Assumption 1.2.

Next we list some important types of exotic options. For more explanation
we refer to [Hull00], [Wil98].

Binary Option: Binary options (or digital options) have a discontinuous
payoff. For example, a binary put has the payoff

Ψ(S) := c ·

{
1 if S < K

0 if S ≥ K

for a fixed amount c. See Figure 4.21 for an illustration of a binary call, and
Section 3.5.5 for a two-dimensional example.

Chooser Option: After a specified period of time the holder of a chooser option
can choose whether the option is a call or a put. The value of a chooser option
at this time is

max{VC, VP}

Compound Option: Compound options are options on options. Depending on
whether the options are put or call, there are four main types of compound
options. For example, the option may be a call on a call.

Path-Dependent Options

Options with payoff depending not only on the current value ST but also on
the path of St for previous times t < T are called path dependent. Important
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6.1 Exotic Options

path-dependent options are the barrier option, the lookback option, and the
Asian option.

Barrier Option: For a barrier option the payoff is contingent on the underlying
asset’s price St reaching a certain threshold value B, which is called barrier.
Barrier options can be classified depending on whether St reaches B from
above (down) or from below (up). Another feature of a barrier option is
whether it ceases to exist when B is reached (knock out), or conversely comes
into existence (knock in). Obviously, for a down option, S0 > B and for an up
option S0 < B. Depending on whether the barrier option is a put or a call,
several different types are possible. For example, the payoff of a European
down-and-out call is

VT =
{

(ST −K)+ in case St > B for all t
0 in case St ≤ B for some t

In the Black–Merton–Scholes framework, the value of the option before the
barrier has been triggered still satisfies the Black–Scholes equation. The de-
tails of the barrier feature come in through the specification of boundary
conditions [Wil98]. An example of an up-and-out call is illustrated in Figure
7.3, and a two-asset double barrier is discussed in Example 5.5.

Lookback Option: The payoff of a lookback option depends on the maximum
or minimum value the asset price St reaches during the life of the option. For
example, the payoff of a lookback option is

max
t

St − ST .

Average Option / Asian Option: The payoff from an Asian option depends
on the average price of the underlying asset. This will be discussed in more
detail in Section 6.3.

The exotic options of the above short list gain in complexity when they
are multifactor options.

Pricing of Exotic Options

Several types of exotic options can be reduced to the Black–Scholes equation.
In these cases the methods of Chapter 4 or Chapter 5 are adequate. In par-
ticular, barrier options under GBM are close to the standard options. For a
knock-out option with barrier B, a boundary condition will be V (B, t) = 0,
which is part of (4.19). Since their numerical treatment is widely analogous,
we will not touch barrier options specifically.

For a number of options of the European type the Black–Scholes evalua-
tion formula (A4.10) can be applied. For related reductions of exotic options
we refer to [Hull00], [WiDH96], [Kwok98]. Approximations are possible with
binomial methods or with Monte Carlo simulation. The Algorithm 3.6 app-
lies, only the calculation of the payoff (step 2) must be adapted to the exotic
option.
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Fig. 6.1. Rainbow option of a put on the minimum of two assets; top: payoff

Ψ(S1, S2) = (1 − min(S1, S2))
+
; bottom: V (S1, S2, 0) approximated by a binomial

method, level curves for slices with constant values of S1, S2, V

6.2 Options Depending on Several Assets

The options listed in Section 6.1 depend on one underlying asset. Options
depending on several assets are discussed next. Two large groups of mul-
tifactor options are the rainbow options and the baskets. The subdivision
into the groups is by their payoff. Assume n underlying assets with prices
S1, . . . , Sn. Different from the notation in previous chapters, the index refers
to the number of the asset. Recall that two examples of exotic options with
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two underlyings occurred earlier in this text: Example 3.8 of a binary put,
and Section 5.4 with a basket-barrier call.

Rainbow options compare the value of individual assets [Smi97]. Examples
of payoffs include

max (S1, . . . , Sn) “n-color better-of option”
min (S1, S2) “two-color worse-of option”
(S2 − S1)+ “outperformance option”
(min (S1 −K, . . . , Sn −K))+ “min call option”
(S2 − S1 −K)+ “spread call.”

Weights are possible too, for instance, (c1S2 − c2S1)+. The outperformance
option is also called spread option. Figure 6.1 (top) illustrates the payoff of
a min put, and Figure 6.2 (bottom) the payoff of a max call. A basket is
an option with payoff depending on a portfolio of assets. An example is the
payoff of a basket call, (

n∑
i=1

ciSi −K

)+

,

where the weights ci are given by the portfolio. To gain a better feeling for
such kind of options, it is recommendable to sketch the above payoffs for
n = 2.

For the pricing of multifactor options the instruments introduced in the
previous chapters apply. This holds for the four large classes of methods dis-
cussed before, namely, the PDE methods, the tree methods, the evaluation of
integrals by quadrature, and the Monte Carlo methods. Each class subdivides
into further methods.

For the choice of an appropriate method, the dimension n is crucial. For
large values of n, in particular PDE methods suffer from the curse of dimen-
sion (−→ Exercise 4.18). At present state it is not possible to decide, above
which threshold level of n standard discretizations are too expensive.

PDE methods require relevant PDEs and boundary conditions. Often a
Black–Merton–Scholes scenario is assumed. To extend the one-factor model,
an appropriate generalization of geometric Brownian motion is needed. We
begin with the two-factor model, with the prices of the two assets S1 and S2.
The assumption of a constant-coefficient GBM is then expressed as

dS1 = μ1S1 dt+ σ1S1 dW (1)

dS2 = μ2S2 dt+ σ2S2 dW (2)

E( dW (1) dW (2)) = ρ dt ,

(6.1a)

where ρ is the correlation between the two assets, −1 ≤ ρ ≤ 1. Note that the
third equation in (6.1a) is equivalent to Cov( dW (1), dW (2)) = ρ dt, because
E( dW (1)) = E( dW (2)) = 0. The correlation ρ is given by the covariance of
the returns dS

S
, since
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Fig. 6.2. Max call, with payoff Ψ(S1, S2) = (max(S1, S2) − K)
+
; numbers from

Exercise 6.7; top: (S1, S2)-plane with the grid of the tree for the payoff, t = T , with

M = 20; bottom: the payoff

Cov

(
dS1

S1

,
dS2

S2

)
= E(σ1 dW (1)

σ2 dW (2)) = ρσ1σ2 dt . (6.1b)

Compared to the more general system (1.41), the version (6.1a) with corre-
lated Wiener processes has pulled out the scaling by the volatilities σ1, σ2.
Then, following Section 2.3.3 and Exercise 2.9, the correlated Wiener proces-
ses can be decoupled by Cholesky decomposition of the correlation matrix
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6.2 Options Depending on Several Assets(
1 ρ

ρ 1

)
.

This leads to
dW (1) = dZ1

dW (2) = ρ dZ1 +
√

1 − ρ2 dZ2 ,

(6.1c)

where Z1 and Z2 are independent standard normally distributed processes.
This was used already in (3.28). The resulting two-dimensional Black–Scholes
equation was applied in Section 5.4, see equation (5.26). This is derived by
the two-dimensional version of the Itô-Lemma (−→ Appendix B2) and by
a no-arbitrage argument. The resulting PDE (5.26) has independent varia-
bles (S1, S2, t). Usually, the time variable is not counted when the dimension
is discussed. In this sense, the PDE (5.26) is two-dimensional, whereas the
classic Black–Scholes PDE (1.2) is considered as one-dimensional.

The general n-factor model is analogous. The appropriate GBM model is
a straightforward generalization of (6.1a),

dSi = (μi − δi)Si dt+ σiSi dW (i)
, i = 1, . . . , n

E(dW (i)dW (j)) = ρij dt , i, j = 1, . . . , n
(6.2a)

where ρij is the correlation between asset i and asset j, and δi denotes a
dividend flow rate paid by the ith asset. For a simulation of such a stochastic
vector process see Section 2.3.3. The Black–Scholes-type PDE of the model
(6.2a) is

∂V

∂t
+

1
2

n∑
i,j=1

ρijσiσjSiSj

∂
2
V

∂Si∂Sj

+
n∑

i=1

(r − δi)Si

∂V

∂Si

− rV = 0 . (6.2b)

The derivation uses the general Itô formula (B2.1) (−→ Exercise 6.5).
Boundary conditions depend on the specific type of option. For example

in the “two-dimensional” situation in (S1, S2, t)-space, one boundary can be
defined by the plane S1 = 0 and the other by the plane S2 = 0. It may be
appropriate to apply the Black–Scholes vanilla formula (A4.10) along these
planes, or to define one-dimensional sub-PDEs only for the purpose to calcu-
late the values of V (S1, 0, t) and V (0, S2, t) along the boundary planes.

After the PDE with boundary conditions is set up, solutions are appro-
ximated by numerical methods. Standard discretizations are straightforward
and work for small n. As a rule of thumb, for n = 2 and n = 3, such elemen-
tary PDE approaches are competitive to Monte Carlo. For large n, sparse-grid
technology or multigrid are better choices, see the references in Section 3.5.1
and at the end of Chapter 4. Generally in a multidimensional situation, fi-
nite elements are recommendable. But FE methods suffer from the curse of
dimension too. Irregular grids have been applied successfully [BeS08].
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For tree methods, the binomial method can be generalized canonically
[BoEG89]. (−→ Exercise 6.7) But already for n = 2 the recombining stan-
dard tree with M time levels requires 1

3
M3+O(M2) nodes, and for n = 3 the

number of nodes is of the order O(M4). Tree methods also suffer from the
curse of dimension. But obviously not all of the nodes of the canonical bino-
mial approach are needed. The ultimate aim is to approximate the lognormal
distribution, and this can be done with fewer nodes. Nodes in IRn should
be constructed in such a way that the number of nodes grows comparably
slower than the quality of the approximation of the distribution function.
An example of a two-dimensional approach is presented in [Lyuu02]. Gene-
ralizing the trinomial approach to higher dimensions is not recommendable
because of storage requirements, but other geometrical structures as icosahe-
dral volumes can be applied. For different tree approaches, see [McW01]. For a
convergence analysis of tree methods, and for an extension to Lévy processes,
consult [FoVZ02], [MaSS06]. A tree approach that makes use of decoupling
(similar as in Section 2.3.3) has shown to be favorable in multidimensional
cases [KoM09].

An advantage of tree methods and of Monte Carlo methods is that no
boundary conditions are needed. The essential advantage of MC methods is
that they are much less affected by high dimensions, see the notes on Section
3.6. A correlation is achieved by dW = LdZ, where LLtr is the Cholesky
decomposition of the ρ-matrix. An example of a five-dimensional American-
style option is calculated in [BrG04], [LonS01], and one with dimension 30
in [Jon11]. It is most inspiring to perform Monte Carlo experiments on exo-
tic options. For European-style options, this amounts to a straightforward
application of Section 3.5 (−→ Exercise 6.1).

6.3 Asian Options

The price of an Asian option1 depends on the average price of the underlying
and hence on the history of St. We choose this type of option to discuss
some strategies of how to handle path-dependent options. Let us first define
different types of Asian options via their payoff.

6.3.1 The Payoff

There are several ways how an average of past values of St can be formed.
If the price St is observed at discrete time instances ti, say equidistantly
with time interval h := T/n, one obtains a times series St1

, St2
, . . . , Stn

. An
obvious choice of average is the arithmetic mean

1 Again, the name has no geographical relevance.

280



6.3 Asian Options

1
n

n∑
i=1

Sti
=

1
T
h

n∑
i=1

Sti
.

If we imagine the observation as continuously sampled in the time period
0 ≤ t ≤ T, the above mean corresponds to the integral

Ŝ :=
1
T

∫
T

0

St dt (6.3)

The arithmetic average is used mostly. Sometimes the geometric average is
applied, which can be expressed as(

n∏
i=1

Sti

)1/n

= exp

(
1
n

log
n∏

i=1

Sti

)
= exp

(
1
n

n∑
i=1

logSti

)
.

Hence the continuously sampled geometric average of the price St is the
integral

Ŝg := exp

(
1
T

∫
T

0

logSt dt

)
.

The averages Ŝ and Ŝg are formulated for the time period 0 ≤ t ≤ T , which
corresponds to a European option. To allow for early exercise at time t < T ,
Ŝ and Ŝg are modified appropriately, for instance to

Ŝ :=
1
t

∫
t

0

Sθ dθ .

With an average value Ŝ like the arithmetic average of (6.3) the payoff of
Asian options can be written conveniently:

Definition 6.1 (Asian option)

With an average Ŝ of the price evolution St the payoff functions of Asian
options are defined as

(Ŝ −K)+ average price call

(K − Ŝ)+ average price put

(ST − Ŝ)+ average strike call

(Ŝ − ST )+ average strike put

The price options are also called rate options, or fixed strike options; the
strike options are also called floating strike options. Compared to the vanilla
payoffs of (1.1P), (1.1C), for an Asian price option the average Ŝ replaces S
whereas for the Asian strike option Ŝ replaces K. The payoffs of Definition
6.1 form surfaces on the quadrant S > 0, Ŝ > 0. The reader may visualize
these payoff surfaces.
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6.3.2 Modeling in the Black–Scholes Framework

The above averages can be expressed by means of the integral

At :=
∫

t

0

f(Sθ, θ) dθ , (6.4)

where the function f(S, t) depends on the type of chosen average. In particu-
lar f(S, t) = S corresponds to the continuous arithmetic average (6.3), up to
scaling by the length of interval. For Asian options the price V is a function of
S,A and t, which we write V (S,A, t). To derive a partial differential equation
for V using a generalization of Itô’s Lemma we require a differential equation
for A. This is given by (6.4). Compare with (1.31) to see2

dA = aA(t) dt+ bA dWt ,

with aA(t) := f(St, t) , bA := 0 .

For St the standard GBM of (1.33) is assumed. By the multidimensional
version (B2.1) of Itô’s Lemma adapted to Yt := V (St, At, t), the two terms
in (1.44) or (1.45) that involve bA as factors to ∂V

∂A
,

∂
2
V

∂A
2 vanish. Accordingly,

dVt =
(
∂V

∂t
+ μS

∂V

∂S
+

1
2
σ

2
S

2
∂2V

∂S2
+ f(S, t)

∂V

∂A

)
dt+ σS

∂V

∂S
dWt .

The derivation of the Black–Scholes-type PDE goes analogously as outlined
in Appendix A4 for standard options and results in

∂V

∂t
+

1
2
σ

2
S

2
∂2V

∂S2
+ rS

∂V

∂S
+ f(S, t)

∂V

∂A
− rV = 0 . (6.5)

Compared to the original vanilla version (1.2), only one term in (6.5) is new,
namely,

f(S, t)
∂V

∂A
.

As we will see below, the lack of a second-order derivative with respect to A
may cause numerical difficulties. The transformations (4.3) cannot be applied
advantageously to (6.5). — As an alternative to the definition of At in (6.4),
one can scale by t. This leads to a different “new term” (−→ Exercise 6.2e).

2 The ordinary integral At is random but has zero quadratic variation
[Shr04].
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6.3.3 Reduction to a One-Dimensional Equation

Solutions to (6.5) are defined on the domain

S > 0 , A > 0 , 0 ≤ t ≤ T

of the (S,A, t)-space. The extra A-dimension leads to significantly higher
costs when (6.5) is solved numerically. This is the general situation. But in
some cases it is possible to reduce the dimension. Let us discuss an example,
concentrating on the case f(S, t) = S of the arithmetic average.

We consider a European arithmetic average strike (floating strike) call
with payoff (

ST −
1
T
AT

)+

= ST

(
1 −

1
TST

∫
T

0

Sθ dθ

)+

.

An auxiliary variable Rt is defined by

Rt :=
1
St

∫
t

0

Sθ dθ ,

and the payoff is rewritten

ST

(
1 −

1
T
RT

)+

= ST · function(RT , T ) . (6.6)

This motivates trying a separation of the solution in the form

V (S,A, t) = S ·H(R, t) (6.7)

for some function H(R, t). In this role, R is an independent variable. From
(6.6) the payoff follows:

H(RT , T ) = (1 − 1

T
RT )+ (6.8a)

Substituting the separation ansatz (6.7) into the PDE (6.5) leads to a PDE
for H ,

∂H

∂t
+

1
2
σ

2
R

2
∂

2
H

∂R2
+ (1 − rR)

∂H

∂R
= 0 (6.8b)

(−→ Exercise 6.2c). To solve this PDE, boundary conditions are required.
Their choice in general is not unique. The following considerations from
[WiDH96] suggest boundary conditions.

A right-hand boundary condition for R → ∞ follows from the payoff
(6.8a), which implies H(RT , T ) = 0 for RT → ∞. The integral At = StRt is
bounded, hence S → 0 for R → ∞. For S → 0 a European call option is not
exercised, which suggests to prescribe the boundary condition

H(R, t) = 0 for R→ ∞ and all t . (6.9)
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Fig. 6.3. Asian European fixed strike put, K = 100, T = 0.2, r = 0.05, σ = 0.25,
payoff (t = 0.2) and three solution surfaces for t = 0.14, t = 0.06, and t = 0. With

kind permission of Sebastian Göbel. (Figure continued on facing page)
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At the left-hand boundary R = 0 we encounter more difficulties. Note
that the integral Rt satisfies the SDE

dRt = (1 + (σ2 − μ)Rt) dt− σRt dWt

(−→ Exercise 6.2d). Even if R0 = 0 holds, this SDE shows that dR0 = dt
and Rt will not stay at 0. So there is no reason to expect RT = 0, and the
value of the payoff cannot be predicted. Another kind of boundary condition
is required.

To this end, we start from the PDE (6.8b), which for R → 0 is equivalent
to

∂H

∂t
+

1
2
σ

2
R

2
∂2H

∂R2
+
∂H

∂R
= 0 .

Assuming that H is bounded, one can prove that the term

R
2
∂2H

∂R2

vanishes for R → 0. The resulting boundary condition is

∂H

∂t
+
∂H

∂R
= 0 for R → 0 . (6.10)

The vanishing of the second-order derivative term is shown by contradiction:
Assuming a nonzero value of R2 ∂

2
H

∂R
2 leads to

∂2H

∂R2
= O

(
1
R2

)
,

which can be integrated twice to

H = O(logR) + c1R+ c2 .

This contradicts the boundedness of H for R → 0.
For a numerical realization of the boundary condition (6.10) in the finite-

difference framework of Chapter 4, we may use the second-order formula

∂H

∂R

∣∣∣
0,ν

=
−3H0,ν + 4H1,ν −H2,ν

2ΔR
+O(ΔR2) . (6.11)

The indices have the same meaning as in Chapter 4. We summarize the
boundary-value problem of PDEs in (6.12).

∂H

∂t
+

1
2
σ

2
R

2
∂2H

∂R2
+ (1 − rR)

∂H

∂R
= 0

H(RT , T ) =
(
1 − RT

T

)+
H = 0 for R→ ∞

∂H

∂t
+
∂H

∂R
= 0 for R = 0

(6.12)
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Solving this problem numerically for 0 ≤ t ≤ T , R ≥ 0, gives H(R, t), and
via (6.7) the required values of V .

6.3.4 Discrete Monitoring

Instead of defining a continuous averaging as in (6.3), a realistic scenario is
to assume that the average is monitored only at discrete time instances

t1, t2, . . . , tM .

These time instances are not to be confused with the grid times of the nume-
rical discretization. The discretely sampled arithmetic average at tk is given
by

Atk
:=

1
k

k∑
i=1

Sti
, k = 1, . . . ,M . (6.13)

A new average is updated from the previous one by

Atk
= Atk−1

+
1
k

(Stk
−Atk−1

)

or
Atk−1

= Atk
+

1
k − 1

(Atk
− Stk

) .

The latter of these update formulas is relevant to us, because we integrate
backwards in time. The discretely sampled At is constant between consecutive
sampling times, and A jumps at tk with the step

1
k − 1

(Atk
− Stk

) .

For each k this jump can be written

A
−(S) = A

+(S) +
1

k − 1
(A+(S) − S), where S = Stk

. (6.14a)

A− and A+ denote the values of A immediately before and immediately
after sampling at tk. The no-arbitrage principle implies continuity of V at
the sampling instances tk in the sense of continuity of V (St, At, t) for any
realization of a random walk. In our setting, this continuity is written

V (S,A+
, tk) = V (S,A−

, tk) . (6.14b)

But for a fixed (S,A) the equations (6.14a/b) define a jump of V at tk.
The numerical application of the jump condition (6.14) is as follows: The

A-axis is discretized into discrete values Aj , j = 1, . . . , J . For each time period
between two consecutive sampling instances, say for tk+1 → tk, the option’s
value is independent of A because in our discretized setting At is piecewise
constant; accordingly ∂V

∂A
= 0 in (6.5). Based on this semi-discretization, J
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one-dimensional Black–Scholes equations are integrated separately and inde-
pendently for the short time interval from tk+1 to tk, one BS-equation for
each j. Each of the one-dimensional Black–Scholes problems has its own “ter-
minal” condition to start from. For each Aj , the “first” terminal condition
for tM = T is taken from the payoff surface. Proceeding backwards in time,
at each sampling time tk the J parallel one-dimensional Black–Scholes pro-
blems are halted because new terminal conditions must be derived from the
jump condition (6.14). The new values for V (S,Aj , tk) that serve as terminal
values (starting values for the backward integration) for the next time period
tk → tk−1, are defined by the jump condition. Since Aj + 1

k−1
(Aj −S) in ge-

neral does not agree with one of the node values Aj , interpolation is applied.
Hence the starting function for the next BS-step for A = Aj can be written

V
interpol(S, A+

1
k − 1

(A− S), tk) .

Only at these sampling times tk the J standard one-dimensional Black–
Scholes problems are coupled; the coupling is provided by the interpola-
tion. In this way, a sequence of surfaces V (S,A, tk) is approximated for
tM = T, . . . , t1 = 0 in a line-wise fashion. Figure 6.3 shows3 the payoff and
three surfaces calculated for an Asian European fixed strike put. As this il-
lustration indicates, there is a kind of rotation of this surface as t varies from
T to 0.

6.4 Numerical Aspects

A direct numerical approach to the PDE (6.5) for functions V (S,A, t) depen-
ding on three independent variables requires more effort than in the V (S, t)-
case. For example, a finite-difference approach uses a three-dimensional grid.
And a separation ansatz as in Section 5.3 applies with two-dimensional basis
functions. Although much of the required technology is widely analogous to
the approaches discussed in Chapters 4 and 5, a thorough numerical treat-
ment of higher-dimensional PDEs is beyond the scope of this book. Here we
confine ourselves to PDEs with two independent variables, as in (6.8b).

6.4.1 Convection-Diffusion Problems

Before entering a discussion on how to solve numerically a PDE like (6.8b)
without using transformations like (4.3), we perform an experiment with
our well-known “classical” Black–Scholes equation (1.2). In contrast to the
procedure of Chapter 4 we directly apply finite-difference quotients to (1.2).
Here we use the second-order differences of Section 4.2.1 for a European call,

3 after interpolation; MATLAB graphics; similar [ZvFV99]
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0

0.5

1

1.5

2

2.5

12 12.5 13 13.5 14 14.5 15

Fig. 6.4. European call, K = 13, r = 0.15, σ = 0.01, T = 1. Crank–Nicolson

approximation V (S, 0) with Δt = 0.01, ΔS = 0.1 and centered difference scheme

for
∂V
∂S

. Comparison with the exact Black–Scholes values (dashed).

and compare the numerical approximation with the exact solution (A4.10).
Figure 6.4 shows the result for V (S, 0). The lower part of the figure depicts
an oscillating error, which seems to be small. But differentiating magnifies
oscillations. This is clearly visible in Figure 6.5, where the important hedge
variable delta= ∂V

∂S
is depicted. The wiggles are even worse for the second-

order derivative gamma. These oscillations are financially unrealistic and are
not tolerable, and we have to find its causes. The oscillations are spurious

in that they are produced by the numerical scheme and are not solutions
of the differential equation. The spurious oscillations do not exist for the
transformed version yτ = yxx, which is illustrated by Figure 6.6.

In order to understand possible reasons why spurious oscillations may
occur, we invoke elementary fluid dynamics, where so-called convection-
diffusion equations play an important role. For such equations, the second-
order term is responsible for diffusion and the first-order term for convection.
The ratio of convection to diffusion (their coefficients, scaled by a characte-
ristic length) is the Péclet number, a dimensionless parameter characterizing
the convection-diffusion problem. It turns out that the Péclet number is re-
levant for the understanding of underlying phenomena. Let us see what the
Péclet numbers are for several PDEs discussed so far in the text.
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Fig. 6.5. Delta=
∂V
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, otherwise the same data as in Figure 6.4

As a first example we take the original Black–Scholes equation (1.2), with

diffusion term:
1
2
σ

2
S

2
∂2V

∂S2

convection term: rS
∂V

∂S

length scale: ΔS

When the coefficients —not the derivatives— enter the Péclet number, and
ΔS is taken as characteristic length, the number is

rS

1

2
σ2S2

ΔS =
2r
σ2

ΔS

S
.

Since this dimensionless parameter involves the mesh size ΔS it is also called
mesh Péclet number.4 Experimental evidence indicates that the higher the
Péclet number, the higher the danger that the numerical solution exhibits
oscillations.

Next we examine other PDEs for their Péclet numbers: The PDE yτ =
yxx has no convection term, hence its Péclet number is zero. Asian options

4 In case of a continuous dividend flow δ, replace r by r − δ.
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Fig. 6.6. European put, K = 10, r = 0.06, σ = 0.30, T = 1. Approximation

delta=
∂V
∂S

(S, 0) based on yτ = yxx with m = 40. Comparison with the exact

Black–Scholes values (dashed).

described by the PDE (6.5) have a cumbersome situation: With respect to A
there is no diffusion term (i.e., no second-order derivative), hence its Péclet
number is ∞! For the original Black–Scholes equation the Péclet number
basically amounts to r/σ2. It may become large when a small volatility σ is
not compensated by a small riskless interest rate r. And for the reduced PDE
(6.8b), the Péclet number is

ΔR(1 − rR)
1

2
σ2R2

,

here a small σ can not be compensated by a small r.
These investigations of the Péclet numbers do not yet explain why spurious

oscillations occur, but should open our eyes to the relation between convection
and diffusion in the different PDEs. Let us discuss causes of the oscillations
by means of a model problem. The model problem is the pure initial-value
problem for a scalar function u defined on t ≥ 0, x ∈ IR,

∂u

∂t
+ a

∂u

∂x
= b

∂2u

∂x2
, u(x, 0) = u0(x) . (6.15)

We assume b ≥ 0. This sign of b does not contradict the signs in (6.8b) since
there we have a terminal condition for t = T , whereas (6.15) prescribes an
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initial condition for t = 0. The equation (6.15) is meant to be integrated in
forward time with discretization step size Δt > 0. So the equation (6.15) is a
model problem representing a large class of convection-diffusion problems, to
which the equation (6.8b) belongs. For the Black–Scholes equation, the simple
transformation S = Kex, t = T−τ , which works even for variable coefficients
r, σ, produces (6.15) except for a further term −ru on the right-hand side
(compare Exercise 1.2). And for constant r, σ the transformed equation yτ =
yxx is a member of the class (6.15), although it lacks convection. Discussing
the stability properties of the model problem (6.15) will help us understanding
how discretizations of (1.2) or (6.8b) behave. For the analysis assume an
equidistant grid on the x-range, with grid size Δx > 0 and nodes xj = jΔx

for integers j. And for sake of simplicity, assume a and b are constants.

6.4.2 Von Neumann Stability Analysis

First we apply to (6.15) the standard second-order centered space difference
schemes in x-direction together with a forward time step, leading to

wj,ν+1 − wj,ν

Δt
+ a

wj+1,ν − wj−1,ν

2Δx
= bδxxwj,ν (6.16)

with δxxwj,ν defined as in (4.13). This scheme is called Forward Time Cente-

red Space (FTCS). “Forward time” reflects the explicit (forward) Euler step,
and “centered space” refers to our well-established second-order difference
quotients. Instead of performing an eigenvalue-based stability analysis as in
Chapter 4, we now apply the von Neumann stability analysis. This method
expresses the approximations wj,ν of the ν-th time level by a sum of eigen-

modes or Fourier modes,

wj,ν =
∑

k

c
(ν)

k
eikηjΔx

, (6.17)

where i denotes the imaginary unit, and kη are the wave numbers with fun-
damental wave number5 η := 2π/L. A set of coefficients c(ν)

k
in (6.17) exists

for each time level tν , it is the basis of the discrete Fourier transform (C1.8),
which takes numbers wj into coefficients ck, and back. Substituting the ex-
pression (6.17) into the FTCS-difference scheme (6.16) leads to a correspon-
ding sum for wj,ν+1 with coefficients c(ν+1)

k
(−→ Exercise 6.3). The linearity

of the scheme (6.16) allows to find a relation

c
(ν+1)

k
= Gkc

(ν)

k
,

5 L stands for the wave length or the length of the interval. In case of a
partition into n steps of size Δx, ηΔx = 2π/n. Since η will drop out below,
we may set η = 1 for the following analysis. It will be sufficient to study the
propagation of eikx.
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where Gk is the growth factor of the mode with wave number k. In case
|Gk| ≤ 1 holds, it is guaranteed that the modes eikx in (6.17) are not ampli-
fied, which means the method is stable. This parallels Lemma 4.2 without
the need of calculating eigenvalues.

Applying the von Neumann stability analysis to (6.16) leads to

Gk = 1 − 2λ+
(

γ

2
+ λ
)
e−ikηΔx +

(
λ− γ

2

)
eikηΔx ,

where we use the abbreviations

γ :=
aΔt

Δx
, λ :=

bΔt

Δx2
, β :=

aΔx

b
. (6.18)

Here γ = βλ is the famous Courant number, and β is the mesh Péclet number.
For a finite value of the latter, assume b > 0. Using eiα = cosα+ i sinα and

s := sin
kηΔx

2
, cos kηΔx = 1 − 2s2 , sin kηΔx = 2s

√
1 − s2 ,

we arrive at
Gk = 1 − 2λ+ 2λ cos kηΔx− iβλ sin kηΔx (6.19)

and
|Gk|

2 = (1 − 4λs2)2 + 4β2
λ

2
s
2(1 − s

2) .

A straightforward discussion of this polynomial on 0 ≤ s
2 ≤ 1 reveals that

|Gk| ≤ 1 for
0 ≤ λ ≤ 1

2
, λβ

2 ≤ 2 . (6.20)

The inequality 0 ≤ λ ≤ 1

2
brings back the stability criterion of Section 4.2.4.

The inequality λβ2 ≤ 2 is an additional restriction to the parameters λ and
β. Because of

λβ
2 =

a2Δt

b

this restriction depends on the discretization steps Δt, Δx, and on the con-
vection parameter a and the diffusion parameter b as defined in (6.18). The
restriction due to the convection becomes apparent when we, for example,
choose λ = 1

2
for a maximal time step Δt. Then |β| ≤ 2 is a bound imposed

on the mesh Péclet number, which restricts Δx to Δx ≤ 2b/|a|. A violation
of this bound might be an explanation why the difference schemes of (6.16)
applied to the Black–Scholes equation (1.2) exhibit faulty oscillations.6 The
bounds on |β| and Δx are not active for problems without convection (a = 0).
Note that the bounds give a severe restriction on problems with small values
of the diffusion constant b. For b → 0 (no diffusion) and a �= 0 we encoun-
ter the consequence Δt → 0, and the scheme (6.16) can not be applied at
all. Although the constant-coefficient model problem (6.15) is not the same

6 In fact, the situation is more subtle. We postpone an outline of how di-

spersion is responsible for the oscillations to Section 6.5.2.
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as the Black–Scholes equation (1.2) or the equation (6.8b), the above ana-
lysis reflects the core of the difficulties. We emphasize that small values of
the volatility represent small diffusion. So other methods than the standard
finite-difference approach (6.16) are needed.

6.5 Upwind Schemes and Other Methods

The instability analyzed for the model combination (6.15)/(6.16) occurs when
the mesh Péclet number is high and because the symmetric and centered
difference quotient is applied to the first-order derivative. Next we discuss
the extreme case of an infinite Péclet number of the model problem, namely,
b = 0. The resulting PDE is the prototypical equation

∂u

∂t
+ a

∂u

∂x
= 0 . (6.21)

6.5.1 Upwind Scheme

The standard FTCS approach for (6.21) does not lead to a stable scheme.
The PDE (6.21) has solutions in the form of traveling waves,

u(x, t) = F (x− at) ,

where F (ξ) = u0(ξ) in case initial conditions u(x, 0) = u0(x) are incorpora-
ted. For a > 0, the profile F (ξ) drifts in positive x-direction: the “wind blows
to the right.” Seen from a grid point (j, ν), the neighboring node (j − 1, ν)
lies upwind and (j + 1, ν) lies downwind. Here the j indicates the node xj

and ν the time instant tν . Information flows from upstream to downstream
nodes. Accordingly, the first-order difference scheme

wj,ν+1 − wj,ν

Δt
+ a

wj,ν − wj−1,ν

Δx
= 0 (6.22)

is called upwind discretization (a > 0). The scheme (6.22) is also called For-
ward Time Backward Space (FTBS) scheme.

Applying the von Neumann stability analysis to the scheme (6.22) leads
to growth factors given by

Gk := 1 − γ + γe−ikηΔx

. (6.23)

Here γ = aΔt

Δx
is the Courant number from (6.18). As in Subsection 6.4.2,

the stability requirement |Gk| ≤ 1 should hold such that the coefficients c(ν)

k

remain bounded for all k and ν → ∞. It is easy to see that

γ ≤ 1 ⇒ |Gk| ≤ 1 .
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(The reader may sketch the complex G-plane to realize the situation.) The
condition |γ| ≤ 1 is called the Courant–Friedrichs–Lewy (CFL) con-

dition. The above analysis shows that this condition is sufficient to ensure
stability of the upwind-scheme (6.22) applied to the PDE (6.21) with pres-
cribed initial conditions.

In case a < 0, the scheme in (6.22) is no longer an upwind scheme. The
upwind scheme for a < 0 is

wj,ν+1 − wj,ν

Δt
+ a

wj+1,ν − wj,ν

Δx
= 0 (6.24)

The von Neumann stability analysis leads to the restriction |γ| ≤ 1, or
λ|β| ≤ 1 if expressed in terms of the mesh Péclet number, see (6.18). This
again emphasizes the importance of small Péclet numbers.

We note in passing that the FTCS scheme for ut + aux = 0, which is
unstable, can be cured by replacing wj,ν by the average of its two neighbors.
The resulting scheme

wj,ν+1 = 1

2
(wj+1,ν + wj−1,ν) − 1

2
γ(wj+1,ν − wj−1,ν) (6.25)

is called Lax–Friedrichs scheme. It is stable if and only if the CFL condition
is satisfied. A simple calculation shows that the Lax–Friedrichs scheme (6.25)
can be rewritten in the form

wj,ν+1 − wj,ν

Δt
= −a

wj+1,ν − wj−1,ν

2Δx
+

1
2Δt

(wj+1,ν − 2wj,ν + wj−1,ν) .

(6.26)
This is a FTCS scheme with the additional term

(Δx)2

2Δt
δxxwj,ν ,

representing the PDE

ut + aux = ζuxx with ζ = Δx
2
/2Δt .

That is, the stabilization is accomplished by adding artificial diffusion ζuxx.
The scheme (6.26) is said to have numerical dissipation.

We return to the model problem (6.15) with b > 0. For the discretization
of the a∂u

∂x
term we now apply the appropriate upwind scheme from (6.22) or

(6.24), depending on the sign of the convection constant a. This noncentered
first-order difference scheme can be written

wj,ν+1 = wj,ν − γ
1−sign(a)

2
(wj+1,ν − wj,ν)

− γ
1+sign(a)

2
(wj,ν − wj−1,ν)

+ λ(wj+1,ν − 2wj,ν + wj−1,ν)

(6.27)

with parameters γ, λ as defined in (6.18). For a > 0 the growth factors are
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Fig. 6.7. European call, K = 13, r = 0.15, σ = 0.01, T = 1. Approximation V (S, 0),
calculated with upwind scheme for

∂V
∂S

and Δt = 0.01, ΔS = 0.1. Comparison with

the exact Black–Scholes values (dashed)

Gk = 1 − λ(2 + β)(1 − cos kηΔx) − iλβ sin kηΔx .

The analysis follows the lines of Section 6.4 and leads to the single stability
criterion

λ ≤
1

2 + |β|
. (6.28)

This inequality is valid for both signs of a (−→ Exercise 6.4). For λ � β the
inequality (6.28) is less restrictive than (6.20). For example, a hypothetical
value of λ = 1

50
leads to the bound |β| ≤ 10 for the FTCS scheme (6.16) and

to the bound |β| ≤ 48 for the upwind scheme (6.27).
The Figures 6.7 and 6.8 show the Black–Scholes solution (dashed curve)

and an approximation obtained by using the upwind scheme as in (6.27). No
oscillations are visible, but the low order of the approximation can be seen
from the moderate gradient, which does not reflect the steep gradient of the
reality. The spurious wiggles have disappeared but the steep profile is heavily
smeared. So the upwind scheme discussed above is a motivation to look for
better methods (in Section 6.6).
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Fig. 6.8. Delta=
∂V
∂S

(S, 0), same data as in Figure 6.7

6.5.2 Dispersion

The spurious wiggles are attributed to dispersion. Dispersion is the pheno-
menon of different modes traveling at different speeds. We explain dispersion
for the simple PDE ut + aux = 0. Consider for t = 0 an initial profile u

represented by a sum of Fourier modes, as in (6.17). Because of the linearity
it is sufficient to study how the kth mode eikx is conveyed for t > 0. The
differential equation ut +aux = 0 conveys the mode without change, because
eik[x−at] is a solution. For an observer who travels with speed a along the
x-axis, the mode appears “frozen.”

This does not hold for the numerical scheme. Here the amplitude and the
phase of the kth mode may change. That is, the special initial profile of the
Fourier mode

eikx = 1 · eik[x−0]

changes to
c(t) · eik[x−d(t)]

,

where c(t) is the amplitude and d(t) the phase (up to the traveler distance
at). Their values must be compared to those of the exact solution.

To be specific, we study the upwind scheme for ut + aux = 0 (a > 0),
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w(x, t+Δt) − w(x, t)
Δt

+ a
w(x, t) − w(x −Δx, t)

Δx
= 0 .

Let w(x, t) denote the exact solution for specified values of Δx,Δt. Apply
Taylor’s expansion to derive the equivalent differential equation

wt + awx = ζwxx + ξwxxx +O(Δ2) ,

with the coefficients

ζ :=
a

2
(Δx− aΔt) =

a

2
Δx(1 − γ) ,

ξ :=
a

6
(−Δx2 + 3aΔtΔx− 2a2

Δt
2) =

a

6
Δx

2(1 − γ)(2γ − 1)

depending on Δx,Δt. A solution can be obtained for the truncated PDE
wt + awx = ζwxx + ξxxx. Substituting w = ei(ωt+kx) with undetermined
frequency ω gives ω and

w = exp{−ζk2
t} · exp{ik[x− t(ξk2 + a)]}

as solution of the truncated PDE. This defines amplitudes c(t) and phase
shifts d(t),

ck(t) = exp{−ζk2
t}

dk(t) = ξk
2
t .

The w = ck(t)eik[x−at−dk(t)] represents the solution of the applied upwind
scheme. It is compared to the exact solution u = eik[x−at] of the model pro-
blem, for which all modes propagate with the same speed a and without
decay of the amplitude. The phase shift dk in w due to a nonzero ξ becomes
more relevant if the wave number k gets larger. That is, modes with different
wave numbers drift across the finite-difference grid at different rates. Conse-
quently, an initial signal represented by a sum of modes, changes its shape
as it travels. The different propagation speeds of different modes eikx give
rise to oscillations. This phenomenon is called dispersion. (Note that in our
scenario of the simple model problem with upwind scheme, for γ = 1 and
γ = 1

2
we have ξ = 0 and dispersion vanishes.)

A value of |c(t)| < 1 amounts to dissipation. If a high phase shift is
compensated by heavy dissipation (c ≈ 0), then the dispersion is damped
and may be hardly noticeable.

For several numerical schemes, related values of ζ and ξ have been in-
vestigated. For the influence of dispersion or dissipation see, for example,
[Tho95], [QuSS00], [TaR00], [Str07]. Dispersion is to be expected for nume-
rical schemes that operate on those versions of the Black–Scholes equation
that have a convection term. This holds in particular for the θ-methods as
described in Section 4.6.1, and for the upwind scheme. Numerical schemes
for the convection-free version yτ = yxx do not suffer from dispersion since
a = 0.
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6.6 High-Resolution Methods

The naive FTCS approach of the scheme (6.16) is only first-order in t-
direction and suffers from severe stability restrictions. There are second-order
approaches with better properties. A large class of schemes has been deve-
loped for so-called conservation laws, which in the one-dimensional situation
are written

∂u

∂t
+

∂

∂x
f(u) = 0 . (6.29)

The function f(u) represents the flux in the equation (6.29), which originally
was tailored to applications in fluid dynamics. We introduce the method of
Lax and Wendroff for the flux-conservative equation (6.29). Then we present
basic ideas of high-resolution methods.

6.6.1 Lax–Wendroff Method

The Lax–Wendroff scheme is based on

uj,ν+1 = uj,ν +Δt
∂uj,ν

∂t
+O(Δt2) = uj,ν −Δt

∂f(uj,ν)
∂x

+O(Δt2) .

This expression makes use of (6.29) and replaces time derivatives by space
derivatives. For suitably adapted indices the basic scheme is applied three
times on a staggered grid. The staggered grid (see Figure 6.9) uses half steps
of lengths 1

2
Δx and 1

2
Δt and intermediate mode numbers j− 1

2
, j+ 1

2
, ν+ 1

2
.

The main step is the second-order centered step (CTCS) with the center in
the node (j, ν + 1

2
) (square in Figure 6.9). This main step needs the flux

function f evaluated at approximations w obtained for the two intermediate
nodes

(
j ± 1

2
, ν + 1

2

)
, which are marked by crosses in Figure 6.9. These two

intermediate values are provided by the Lax–Friedrich steps (6.25).

ν +1 Δx

t

ν

j-1 j j+1

Δ  

Fig. 6.9. Staggered grid for the Lax–Wendroff scheme.
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Algorithm 6.2 (Lax–Wendroff)

w
j+

1
2
,ν+

1
2

:= 1

2
(wj,ν + wj+1,ν ) − Δt

2Δx
(f(wj+1,ν) − f(wj,ν))

w
j−

1
2
,ν+

1
2

:= 1

2
(wj−1,ν + wj,ν) − Δt

2Δx
(f(wj,ν) − f(wj−1,ν))

wj,ν+1 := wj,ν − Δt

Δx

(
f(w

j+
1
2
,ν+

1
2
) − f(w

j−
1
2
,ν+

1
2
)
) (6.30)

The half-step values w
j+

1
2
,ν+

1
2

and w
j−

1
2
,ν+

1
2

are provisional and discarded
after wj,ν+1 is calculated. A stability analysis for the special case f(u) = au

in equation (6.29) (that is, of equation (6.21)) leads to the CFL condition
as before. The Lax–Wendroff step is centered and of second order in both
x and t. This explicit method fits well discontinuities and steep fronts as
the Black–Scholes delta-profile in Figures 6.5 and 6.8. But there are still
spurious wiggles in the vicinity of steep gradients. The Lax–Wendroff scheme
produces oscillations near sharp fronts. We need to find a way to damp out
the oscillations.

6.6.2 Total Variation Diminishing

Since ut +aux convects an initial profile F (x) with velocity a, a monotonicity
of F will be preserved for all t > 0. So it makes sense to require also a
numerical scheme to be monotonicity preserving. That is,

wj,0 ≤ wj+1,0 for all j ⇒ wj,ν ≤ wj+1,ν for all j, ν ≥ 1
wj,0 ≥ wj+1,0 for all j ⇒ wj,ν ≥ wj+1,ν for all j, ν ≥ 1 .

A stronger requirement is that oscillations be diminished. To this end we
define the total variation of the approximation vector w(ν) at the ν-th time
level as

TV(w(ν)) :=
∑

j

|wj+1,ν − wj,ν | . (6.31)

The aim is to construct a method that is total variation diminishing (TVD),

TV(w(ν+1)) ≤ TV(w(ν)) for all ν .

Before we come to a criterion for TVD, note that the schemes discussed in
this section are explicit and of the form

wj,ν+1 =
∑

l

dl wj+l,ν . (6.32)

For example, the upwind scheme (6.22) for a > 0

wj,ν+1 = (1 − γ)wj,ν + γwj−1,ν
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has two coefficients in (6.32), d−1 = γ and d0 = 1 − γ. The coefficients dl

decide whether the scheme (6.32) is monotonicity preserving or TVD.

Lemma 6.3 (monotonicity and TVD)

(a) The scheme (6.32) is monotonicity preserving if and only if dl ≥ 0 for
all dl.

(b) The scheme (6.32) is total variation diminishing (TVD) if and only if

dl ≥ 0 for all dl , and
∑

l

dl ≤ 1 .

The proof of (a) is left to the reader; for proving (b) the reader may find help
in [Wes01], see also [Krö97]. As a consequence of Lemma 6.3 note that TVD
implies monotonicity preservation.

The criterion of Lemma 6.3 is straightforward to check. For example, we
can be certain now about the upwind scheme’s monotonicity preservation
shown in Figures 6.7, 6.8. The Lax–Wendroff scheme satisfies dl ≥ 0 for
all l only in the exceptional case γ = 1. For practical purposes, in view
of nonconstant coefficients a, the Lax–Wendroff scheme is not TVD. For
f(u) = au, the upwind scheme (6.22) and the Lax–Friedrichs scheme (6.25)
are TVD for |γ| ≤ 1 (−→ Exercise 6.6).

6.6.3 Numerical Dissipation

For clarity we continue to discuss the matters for the linear scalar equation
(6.21),

ut + aux = 0 , for a > 0 .

For this equation it is easy to substitute the two provisional half-step values
of the Lax–Wendroff algorithm into the equation for wj,ν+1. Then a straight-
forward calculation shows that the Lax–Wendroff scheme can be obtained by
adding a diffusion term to the upwind scheme (6.22). To show this, make use
of the difference operator

δ
−

x
wj,ν := wj,ν − wj−1,ν (6.33)

and rewrite the upwind scheme as

wj,ν+1 = wj,ν − γδ
−

x
wj,ν , γ =

aΔt

Δx
.

The reader may check that the Lax–Wendroff scheme is obtained by adding
the term

−δ−
x
{ 1

2
γ(1 − γ)(wj+1,ν − wj,ν)} (6.34)

to the upwind scheme. So the Lax–Wendroff scheme is rewritten

wj,ν+1 = wj,ν − γδ
−

x
wj,ν − δ

−

x
{ 1

2
γ(1 − γ)(wj+1,ν − wj,ν)} .
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That is, the Lax–Wendroff scheme is the first-order upwind scheme plus the
term (6.34), which is

− 1

2
γ(1 − γ)(wj+1,ν − 2wj,ν + wj−1,ν ) .

Hence the added term is —similar as for the Lax–Friedrichs scheme (6.26)—
the discretized analogue of the artificial diffusion

− 1

2
aΔt(Δx − aΔt)uxx .

Adding this artificial dissipation term (6.34) to the upwind scheme makes the
scheme a second-order method.

The aim is to find a scheme that will give us neither the wiggles of the Lax–
Wendroff scheme nor the smearing and low accuracy of the upwind scheme.
On the other hand, we wish to benefit both from the second-order accuracy of
the Lax–Wendroff scheme and from the smoothing capabilities of the upwind
scheme. A core idea is not to add the same amount of dissipation everywhere
along the x-axis, but to add artificial dissipation in the right amount where
it is needed. This flexibility is achieved by a proper factor on the diffusion
(6.34). The resulting hybrid scheme will be of Lax–Wendroff type when the
gradient is flat, and will be upwind-like at strong gradients of the solution.
The decision on how much dissipation to add will be based on the solution.

In order to meet the goals, high-resolution methods control the artificial
dissipation by introducing a limiter �j,ν such that

wj,ν+1 = wj,ν − γδ
−
x
wj,ν − δ

−
x
{ �j,ν

1

2
γ(1 − γ)(wj+1,ν − wj,ν)} . (6.35)

Obviously this hybrid scheme specializes to the upwind scheme for �j,ν = 0
and is identical to the Lax–Wendroff scheme for �j,ν = 1. Accordingly, �j,ν = 0
should be chosen for strong gradients in the solution profile and �j,ν = 1 for
smooth sections. To check the smoothness of the solution one defines the
smoothness parameter

qj,ν :=
wj,ν − wj−1,ν

wj+1,ν − wj,ν

. (6.36)

The limiter �j,ν will be a function of qj,ν . We now drop the indices j, ν. For
q ≈ 1 the solution will be considered smooth, so we require the function
� = �(q) to satisfy �(1) = 1 to reproduce the Lax–Wendroff scheme. Several
strategies have been suggested to choose the limiter function �(q) such that
the scheme (6.35) is total variation diminishing. For a thorough discussion of
this matter we refer to [Swe84], [Krö97], [Tho99]. One example of a limiter
function is the van Leer limiter, which is defined by

�(q) =
{

0 , q ≤ 0
2q

1+q
, q > 0 (6.37)

The above principles of high-resolution methods have been applied suc-
cessfully to financial engineering. The transfer of ideas from the simple pro-
blem (6.21) to the Black–Scholes world is quite involved. The methods are
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TVD for the Black–Scholes equation, which is in nonconservative form. Fur-
ther the methods can be applied to nonuniform grids, and to implicit me-
thods. The application of the Crank-Nicolson approach can be recommended.
The equations (6.36), (6.37) introduce a nonlinearity in w(ν+1). Hence non-
linear equations are solved for each time step ν; Newton’s method is applied
to calculate the approximation w(ν+1) [ZvFV98].

6.7 Penalty Method for American Options

As we have seen in Chapter 4, the PDE description of an American-style
option leads to a linear complementarity problem (LCP), which was restated
in Problem 4.12 as an equation under an inequality as side condition. Such
problems can be solved numerically by imposing a penalty in case the in-
equality is violated. For motivation see Section 4.5.4, and study the simple
setting of Exercise 6.8. Penalty methods have been applied repeatedly for the
pricing of American options, see for instance [FoV02], [NiST02], [KoLM07].
Here we describe the approach of [NiST08].

6.7.1 LCP Formulation

Similar as in Section 4.5.3 we denote the n-dimensional Black–Scholes ope-
rator of (6.2b)

LBS(V ) :=
1
2

n∑
i,j=1

ρij σiσjSiSj

∂2V

∂Si∂Sj

+
n∑

i=1

(r − δi)Si

∂V

∂Si

− rV (6.38)

and the payoff by Ψ(S1, . . . , Sn). For example, for a basket put,

Ψ(S1, . . . , Sn) =

(
K −

n∑
i=1

ciSi

)+

.

With the vector S := (S1, . . . , Sn) the LCP is

(V − Ψ)
(
∂V

∂t
+ LBS(V )

)
= 0

∂V

∂t
+ LBS(V ) ≤ 0

V ≥ Ψ

(6.39)

In addition, the terminal condition V (S, T ) = Ψ(S) must hold, and boundary
conditions. Since the domain is S > 0, there are n bounding planes given by
Si = 0, i = 1, . . . , n. For each i let

Di := { (S1, . . . , Si−1, 0, Si+1, . . . , Sn) | Sj > 0 for j �= i }
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denote the domain of the associated (n − 1)-dimensional American option
problem with the same terms, and Gi(S, t) for S ∈ Di be its solution. Then
the boundary conditions for the bounding planes Si = 0 are defined by

V (S, t) = Gi(S, t) for S ∈ Di (6.40)

for all i = 1, . . . , n. Note that these boundary conditions amount to the
recursive solution of all lower-dimensional American option problems. This is
an enormous amount of work for larger n, and limits the approach to small
values of the dimension. The final item to be specified are the boundary
conditions for Si → ∞. For the case of a put,

lim
Si→∞

V (S, t) = 0 for all i .

The above equations define the LCP for an n-asset American option under
the Black–Scholes model.

6.7.2 Penalty Formulation

In the following, we stay with the American put with a basket payoff. For a
penalty approach, replace the LCP formulation (6.39) by

∂V ε,C

∂t
+ LBS(V ε,C) +

ε C

V ε,C + ε− q
= 0

with q := K −
n∑

i=1

ciSi .

(6.41)

q is the basic part of the basket’s payoff. We call the solution of the penalty
formulation (6.41) V ε,C ; it is supposed to approximate V . Clearly, the va-
lue function V and its approximation V ε,C should both satisfy V ≥ q. The
parameter ε in the penalty term

p :=
ε C

V ε,C + ε− q
(6.42)

must be chosen small with 0 < ε � 1. The parameter C > 0 is a tune factor
to be fixed later. For V ε,C � q, the penalty term is of the order ε, and (6.41)
approximates the Black–Scholes equation. As V ε,C approaches the payoff,
V ε,C ≈ q, the penalty term p approaches the value C > 0, and

∂V ε,C

∂t
+ LBS(V ε,C) ≈ −C < 0 .

This reflects the complementarity of American options. Note that the equa-
tion (6.41) is nonlinear in V .7

7 Actually, the LCP (6.39) is nonlinear as well, which is not correctly re-
flected by the name “LCP”.
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6.7.3 Discretization of the Two-Factor Model

For the discretization of the American-style basket put we restrict ourselves
to the case n = 2. Then the lower-dimensional American put problems are
the plain-vanilla cases discussed in Chapter 4, and the corresponding stan-
dard value functions G1(S2, t) for S1 = 0 and G2(S1, t) for S2 = 0 can be
considered “known” or delegated to a subalgorithm. The functions G1 and
G2 are defined by the Black–Scholes equation/inequality, and by their payoff
and volatility:

G1(S2, t) with payoff (K − c2S2)+, volatility σ2 ,

G2(S1, t) with payoff (K − c1S1)+, volatility σ1 .

Here we apply a standard finite-difference scheme, widely analogous as
in Chapter 4. The nonlinearity of the PDE (6.41) prevents a transformation
such as (4.3). Hence the discretization is applied to (6.41) directly. For ease
of notation, we use the variables

x := S1, y := S2 ,

and ρ for ρ12. Then the penalty problem (6.41) for V ε,C(x, y, t) is restated as
(the superscript ε, C of V ε,C is dropped)

∂V

∂t
+

1
2
σ

2

1
x

2
∂2V

∂x2
+

1
2
σ

2

2
y
2
∂2V

∂y2
+ ρσ1σ2xy

∂2V

∂x∂y

+ (r − δ1)x
∂V

∂x
+ (r − δ2)y

∂V

∂y
− rV +

ε C

V + ε− q
= 0

(6.43)

with terminal and boundary conditions. For a put with basket payoff these
are:

q(x, y) := K − c1x− c2y

Ψ(x, y) := (q(x, y))+

V
ε,C(x, y, T ) = Ψ(x, y)

V
ε,C(x, 0, t) = G2(x, t)

V
ε,C(0, y, t) = G1(y, t)

lim
x→∞

V
ε,C(x, y, t) = lim

y→∞
V

ε,C(x, y, t) = 0 ,

for 0 ≤ t ≤ T, x ≥ 0, y ≥ 0. An equidistant grid on the truncated domain

0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, 0 ≤ t ≤ T

is defined by imax, jmax and νmax subintervals,
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Δx :=
xmax

imax

, xi := iΔx, i = 0, . . . , imax

Δy :=
ymax

jmax

, yj := jΔy, j = 0, . . . , jmax

Δt :=
T

νmax

, tν := νΔt, ν = νmax, . . . , 0 .

Furthermore, we use the notations

qi,j := q(xi, yj) ,

w
ν

i,j
approximation to V ε,C(xi, yj, tν) .

To simplify the exposition, we choose imax = jmax, xmax = ymax and use the
notation h := Δx = Δy. The difference quotients are defined in Chapter
4, except for the mixed second-order derivative, which is discretized by the
second-order term

δxyw
ν

i,j
:=

1
2h2

(wν

i+1,j+1
−wν

i+1,j
−wν

i,j+1
+2wν

i,j
−wν

i−1,j
−wν

i,j−1
+w

ν

i−1,j−1
)

By stability reasons (−→ Section 6.4, 6.5) the first-order derivatives with
respect to x and y are discretized by upwind schemes. For δ1 ≤ r, δ2 ≤ r, the
upwind schemes are

δxw
ν

i,j
:=

w
ν

i+1,j
− w

ν

i,j

h
,

δyw
ν

i,j
:=

wν

i,j+1
− wν

i,j

h
,

since the integration is backward in time. Substituting all difference quotients
into (6.43) is routine.

As in Chapter 4, we may choose among explicit or implicit schemes. The
difference quotient

δtw
ν

i,j
:=

w
ν+1

i,j
− wν

i,j

Δt

for the time derivative ∂V

∂t
leads to an explicit scheme when the difference

quotients with respect to x, y are evaluated at level ν + 1, and leads to an
implicit scheme when the evaluation is at level ν. In the latter case, since we
integrate backward in time, wν+1 is considered as calculated and the wν are
to be calculated next. For the explicit scheme, stability requirements lead to
severe restrictions on the step size Δt, and to a slow algorithm; it will not be
discussed further.

But for the implicit scheme, the nonlinear penalty term (6.42) makes a
difference. In case we plug in wν

i,j
for V ε,C , the equation to be solved at time

level tν is nonlinear and requires an iterative solution. To speed up a Newton
iteration, good initial guesses must be made available. These are given by the
previous time level, provided the time steps Δt are small. Such a restriction
on Δt due to the nonlinearity may make the method expensive. But there

306



Notes and Comments

is an alternative. When w
ν+1

i,j
is used for V ε,C in the penalty term, then the

nonlinearity at time level tν is known, and for each ν only a linear system
needs to be solved. This procedure is called semi-implicit or linear-implicit.
The alternative of a fully nonlinear equation [with wν

i,j
in (6.42)] is referred

to as fully implicit.
The semi-implicit scheme now reads

w
ν+1

i,j
− wν

i,j

Δt
+

1
2
σ

2

1
x

2

i
δxxw

ν

i,j
+

1
2
σ

2

2
y
2

j
δyyw

ν

i,j
+ ρσ1σ2xiyj δxyw

ν

i,j

+ (r − δ1)xi δxw
ν

i,j
+ (r − δ2)yj δyw

ν

i,j
− rw

ν

i,j
+

ε C

w
ν+1

i,j
+ ε− qi,j

= 0

for ν = νmax − 1, . . . , 0, and w
νmax

i,j
= Ψ(xi, yj). We leave it to the reader to

plug in the difference quotients, to organize the equation, and to introduce a
matrix-vector notation for the equation to be solved at time level tν .

In [NiST08] the explicit, the semi-implicit, and the fully implicit schemes
were analyzed for the uncorrelated case δ = 0. In these numerical experiments
it turned out that the semi-implicit variant is recommendable in terms of
accuracy and costs. In case

C ≥ rK , Δt ≤
ε

rK
(6.44)

holds, the semi-implicit method satisfies the required inequality

w
ν

i,j
≥ Ψ(xi, yj)

for all ν, see [NiST08]. This restricts the step size Δt to a small value. Hence,
one will not choose a too small value of ε and do without high demands on
the accuracy of V ε,C . For example, one chooses ε = 0.01 or ε = 0.001. But
for the fully implicit method the step size Δt must be restricted too in order
to maintain the convergence of the Newton method. And the mild bound on
Δt in (6.44) does not depend on h (as would do the bound of the explicit
method). Our experiments indicate an O(ε) error of V ε,C

.

Notes and Comments

on Section 6.1:

For barrier options we refer, for example, to [ZvFV99], [StWH99], [Ave00],
[PoFVS00], [ZvVF00]. [DaL10] suggest a tree method with an initial trinomial
step tuned so that the following tree has layers coinciding with the barrier.
For lookback options we mention [Kat95], [FoVZ99], [Dai00]. [Haug98] is a
rich source of analytical formula for option pricing.
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on Section 6.2:

To see how the multidimensional volatilities of the model enter into a lumped
volatility, consult [Shr04]. Other multidimensional PDEs arise when stocha-
stic volatilities are modeled with SDEs, see [BaR94], [ZvFV98a], [Oos03],
[HiMS05], [HaH10], or Example 5.7. A list of exotic options with various
payoffs is presented in Section 19.2 of [Deu01]. Also the n-dimensional PDEs
can be transformed to simpler forms. This is shown for n = 2 and n = 3 in
[Int07]. For the n-dimensional Black–Scholes problem, see [Kwok98], [AcP05],
[CaD05]. An ADI method is applied to American options on two stocks in
[ViZ02]. Refined ADI methods work with non-equidistant grids [HaH10]. Con-
sult also the efficient operator splitting method [IkT09], which decouples the
treatment of the early-exercise constraint and the solution of the linear sys-
tem. Further higher-dimensional PDEs related to finance can be found in
[TaR00].

on Section 6.3:

PDEs in the context of Asian options were introduced in [KeV90], [RoS95]. A
reduction as in (6.8b) from V (S,A, t) to H(R, t) is called similarity reduction.
The derivation of the boundary-value problem (6.12) follows [WiDH96]. For
the discrete sampling discussed in Section 6.3.4 see [WiDH96], [ZvFV99].
The strategies introduced for Asian options work similarly for other path-
dependent options. An overview on methods for Asian options, and a semi-
analytical method are found in [Zha01].

on Section 6.4:

The von Neumann stability analysis is tailored to linear schemes and pure
initial-value problems. It does not rigorously treat effects caused by boun-
dary conditions. In this sense it provides a necessary stability condition for
boundary-value problems. For a rigorous treatment of stability see [Tho95],
[Tho99]. The stability analysis based on eigenvalues of iteration matrices as
used in Chapter 4 is an alternative to the von Neumann analysis.

Spurious oscillations are special solutions of the difference equations and
do not correspond to solutions of the differential equation. The spurious os-
cillations are not related to rounding errors. This may be studied analytically
for the simple ODE model boundary-value problem au′ = bu′′, which is the
steady state of (6.15), along with boundary conditions u(0) = 0, u(1) = 1.
Here for mesh Péclet numbers aΔx

b
> 2 the analytical solution of the discrete

centered-space analog is oscillatory, whereas the solution u(x) of the diffe-
rential equation is monotone, see [Mor96]. The model problem is extensively
studied in [PeT83], [Mor96]. The mesh Péclet number is also called “algebraic
Reynold’s number of the mesh.”

on Section 6.5:

It is recommendable to derive the equivalent differential equation in Section
6.5.2.
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Notes and Comments

on Section 6.6:

The Lax–Wendroff scheme is an example of a finite-volume method. Another
second-order scheme for (6.21) is the leapfrog scheme δ2

t
w+ aδ2

x
w = 0, which

involves three time levels. The discussion of monotonicity is based on inves-
tigations of Godunov, see [Krö97], [Wes01]. The Lax–Wendroff scheme for
(6.21) and γ ≥ 0 can also be written

w
ν+1

j
= w

ν

j
− 1

2
γ(wν

j+1
− w

ν

j−1
) + 1

2
γ

2(wν

j+1
− 2wν

j
+ w

ν

j−1
) .

(This version adopts the frequent notation wν

j
for our wj,ν .) Here the diffusion

term has a slightly different factor than (6.34). The numerical dissipation
term is also called artificial viscosity. In [Wes01], p. 348, the Lax–Wendroff
scheme is embedded in a family of schemes. A special choice of the family
parameter yields a third-order scheme. The TVD criterion can be extended
to implicit schemes and to schemes that involve more than two time levels.
For the general analysis of numerical schemes for conservation laws (6.29) we
refer to [Krö97].

on Section 6.7:

In [NiST08] the linear systems were solved iteratively with the bi-conjugate
gradient method Bi-CGSTAB [vdV92], [Saad03]. Choosing Δt small provi-
des good initial guesses for the next time level, which accelerates the ite-
ration. Hence the limitation Δt ≤ ε

rK
is not too severe in practice. In our

experiments, the penalty method did not achieve better results than a sim-
ple binomial-tree method. For the convergence of penalty methods consult
[FoV02]. A penalty method with a smooth penalty has been implemented
with finite elements in [KoLM07]. The weak formulation (compare Section
5.4) works with the relatively simple choice of boundary conditions V = Ψ

along the boundary. Exercise 6.8 follows [NiST02].

on other methods:

Computational methods for exotic options are under rapid development. The
universal binomial method can be adapted to exotic options [Kla01], [JiD04].
[TaR00] gives an overview on a class of PDE solvers. For barrier options
see [ZvFV99], [ZvVF00], [FuST02]. For two-factor barrier options and their
finite-element solution, see [PoFVS00]. PDEs for lookback options are gi-
ven in [Bar97]. Using Monte Carlo for path-dependent options, considerable
efficiency gains are possible with bridge techniques [RiW02], [RiW03]. For
Lévy process models, see, for example, [ConT04], [AlO06]. We recommend to
consult, for example, the issues of the Journal of Computational Finance.
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Exercises

Exercise 6.1 Project: Monte Carlo Valuation of Exotic Options

Perform Monte Carlo valuations of barrier options, basket options, and Asian
options, each European style.

Exercise 6.2 PDEs for Arithmetic Asian Options

a) Use the higher-dimensional Itô-formula (→ Appendix B2) to show that
the value function V (S,A, t) of an Asian option satisfies

dV =
(
∂V

∂t
+ S

∂V

∂A
+ μS

∂V

∂S
+

1
2
σ

2
S

2
∂

2
V

∂S2

)
dt+ σS

∂V

∂S
dW ,

where S is the price of the asset and A its average.
b) Construct a suitable riskless portfolio and derive the Black–Scholes equa-

tion
∂V

∂t
+ S

∂V

∂A
+

1
2
σ

2
S

2
∂

2
V

∂S2
+ rS

∂V

∂S
− rV = 0 .

c) Use the transformation V (S,A, t) = Ṽ (S,R, t) = SH(R, t), with R = A

S

and transform the Black–Scholes equation (6.5) to

∂H

∂t
+

1
2
σ

2
R

2
∂2H

∂R2
+ (1 − rR)

∂H

∂R
= 0 .

d) From
Rt+dt = Rt + dRt , dSt = μSt dt+ σSt dWt

derive the SDE

dRt = (1 + (σ2 − μ)Rt) dt− σRt dWt

e) For

At :=
1
t

t∫
0

Sθ dθ

show dA = 1

t
(S −A) dt and derive the PDE

∂V

∂t
+

1
2
σ

2
S

2
∂2V

∂S2
+ rS

∂V

∂S
+

1
t
(S −A)

∂V

∂A
− rV = 0 .

Exercise 6.3 Neumann Stability Analysis

Assume a difference scheme in the form (6.32)

w
(ν+1)

j
=
∑

l

dl w
(ν)

j+l
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and make use of the Fourier transform (6.17)

w
(ν)

j
=

n−1∑
k=0

c
(ν)

k
eikηjΔx for η =

2π
nΔx

.

a) What are the coefficients dl for the FTCS method (6.16)?
b) Prove linear independence

n−1∑
k=0

αk exp[i2π

n
kj] = 0 =⇒ αk = 0 for all k

Hint: FFT equivalence (C1.8).
c) Show

c
(ν+1)

k
= c

(ν)

k

∑
l

dl eikηlΔx

.

Exercise 6.4 Upwind Scheme

Apply von Neumann’s stability analysis to

∂u

∂t
+ a

∂u

∂x
= b

∂2u

∂x2
, a > 0, b > 0

using the upwind scheme for the left-hand side and the centered second-order
difference quotient for the right-hand side.

Exercise 6.5 Towards the Black–Scholes Equation

a) For the model equation (6.2a) set up the vector a and the matrix b for
the general notation (1.41).

b) Let LLtr be the Cholesky decomposition of the ρ-matrix, and b̃ := bL.
Show

trace(b̃b̃trVSS) =
n∑

i,j=1

ρijσiσjSiSj

∂2V

∂Si∂Sj

.

c) Show

dV =

[
∂V

∂t
+

n∑
i=1

(μi − δi)Si

∂V

∂Si

+
1
2

n∑
i,j=1

ρijσiσjSiSj

∂
2
V

∂Si∂Sj

]
dt

+
n∑

i=1

σiSi

∂V

∂Si

dW (i)
.
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Exercise 6.6 TVD of a Model Problem

Analyze whether the upwind scheme (6.22), the Lax–Friedrichs scheme (6.25)
and the Lax–Wendroff scheme (6.30) applied to the scalar partial differential
equation

ut + aux = 0 , a > 0, t ≥ 0, x ∈ IR

satisfy the TVD property.
Hint: Apply Lemma 6.3.

Exercise 6.7 Binomial Tree for Two Assets

A two-asset binomial tree with (x, y)-coordinates representing the assets, and
time-coordinate t, is assumed to develop as follows: Each node with position
(x, y) may develop for t → t + Δt with equal probabilities 0.25 to the four
positions

(xu, yA), (xu, yB), (xd, yC), (xd, yD) (∗)

for constants u, d,A,B,C,D.
a) Show that the tree is recombining for AD = BC.

Hint: Sketch the possible values in a (x, y)-plane.
Following [Rub94b], a tree is defined for interest rate r, asset parameters
σ1, σ2, correlation ρ, and dividend rates δ1, δ2, by

μi := r − δi − σ
2

i
/2 for i = 1, 2

u := exp(μ1Δt+ σ1

√
Δt)

d := exp(μ1Δt− σ1

√
Δt)

A := exp(μ2Δt+ σ2

√
Δt[ρ+

√
1 − ρ2])

B := exp(μ2Δt+ σ2

√
Δt[ρ−

√
1 − ρ2])

C := exp(μ2Δt− σ2

√
Δt[ρ−

√
1 − ρ2])

D := exp(μ2Δt− σ2

√
Δt[ρ+

√
1 − ρ2])

For initial prices x0 := S0

1
, y0 := S0

2
, and time level tν := νΔt, the S1-

components of the grid according to (∗) distribute in the same way as for the
one-dimensional tree,

x
ν

i
:= S

0

1
u

i

d
ν−i for i = 0, . . . , ν .

b) Show that the second (S2-)components belonging to xν

i
are

y
ν

i,j
:= S

0

2
exp(μ2νΔt) exp

(
σ2

√
Δt

[
ρ(2i− ν) +

√
1 − ρ2(2j − ν)

])
.

for j = 0, . . . , ν.
Hints: For ν → ν + 1, u corresponds to i → i + 1, and d corresponds to
i→ i; C exp(2σ2

√
Δt) = B.
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c) Set up a computer program that implements this binomial method. Ana-
logously as in Section 1.4 work in a backward recursion for ν = M, . . . , 0.
For each time level tν set up the (x, y)-grid with the above rules and
Δt = T/M . For tM = T fix V by the payoff Ψ , and use for ν < M

V
cont

i,j
= exp(−rΔt)

1
4
(V ν+1

i,j
+ V

ν+1

i+1,j
+ V

ν+1

i,j+1
+ V

ν+1

i+1,j+1
) .

Test example: max call with Ψ(S1, S2) = (max(S1, S2)−K)+, S0

1
= S0

2
=

K = T = 1, r = 0.1, σ1 = 0.2, σ2 = 0.3, ρ = 0.25, δ1 = δ2 = 0. For
M = 2000 an approximation of the American-style option is 0.0309527,
and for the European style 0.0164554.

Exercise 6.8 Initial-Value Problem with Penalty Term

Consider the ODE initial-value problem

u
′ = −u , u(0) = 2

with the additional constraint

u(t) ≥ 1 .

a) Give an analytical solution.
b) Discuss for a value of ε with 0 < ε � 1 the initial-value problem

v
′ = −v +

ε

v − 1 − ε
, v(0) = 2 .

Hint: Do some numerical experiments.
c) Show that the solution v(t) of the initial-value problem in b) satisfies

1 ≤ v ≤ 2 , v
′ ≤ 0 , v

′′ ≥ 0 ,

for t ≥ 0.
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7 Beyond Black and Scholes

The Black–Scholes (BS) model for the value V (S, t) of a vanilla option is based
on some assumptions on the market. In particular, the BS model assumes
the price St of the asset on which the option is written to follow a geometric
Brownian motion with a constant volatility σ. Further, transaction costs are
neglected, and trading of the underlying is supposed to have no influence on
the price St. As has been discussed extensively, the value function V (S, t) for
standard options (“plain vanilla”) of the European type, satisfies the Black–
Scholes equation (1.2),

∂V

∂t
+

1
2
σ

2
S

2
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 . (BSE)

Solutions of this linear equation are subject to the terminal condition
V (S, T ) = Ψ(S), where Ψ defines the payoff.

The BS-model is the core example of a complete market. In these idealized
markets, the risk exposure to variations in the underlying can be hedged away.
The corresponding risk strategy is unique. Hence vanilla options modeled by
Assumption 1.2 have a unique price, given by the costs of the replication
strategy (−→ Appendix A4). Essentially, Chapters 4 through 6 have applied
numerical methods to complete markets.

For the more realistic incomplete markets, there are no perfect hedges, and
a risk remains. Each hedging strategy leads to a specific model with its own
price [ConT04]. The hedger compensates the remaining risk in incomplete
markets by charging an additional risk premium. Hence the value function
or expected value is not the price for which the option is sold. Depending on
the way how the comfortable assumption of completeness of the BS-market
is lost, different models are set up, calling for different numerical approaches.
This Chapter 7 is devoted to computational tools for incomplete markets.

Relaxing several of the assumptions of the Black–Scholes market, nonli-

near extensions of the BS equation can be derived. These “nonlinear Black–
Scholes type equations” are of the form

∂V

∂t
+

1
2

[
σ̂(S, t,

∂
2
V

∂S2
)
]2
S

2
∂

2
V

∂S2
+ rS

∂V

∂S
− rV = 0 . (7.1)

In this class of models, the volatility σ̂ is a function that may incorporate
several types of nonlinearity. The standard PDE (BSE) is included for σ̂ ≡ σ.
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In Section 7.1 we describe three scenarios leading to three different functi-
ons σ̂ of the volatility. A nonlinear PDE as (7.1) requires special numerical
treatment, which will be the focus of Section 7.2.

Another stream of research beyond Black and Scholes is devoted to jump
processes (Section 7.3). One of the numerical approaches is based on partial
integro-differential equations (PIDE). Some highly efficient methods apply
the Fourier transform; a basic approach is discussed in Section 7.4.

7.1 Nonlinearities in Models for Financial Options

In this section we briefly discuss three sources of nonlinearity in (7.1). We
start with transaction costs based on Leland’s approach [Lel85], and touch
the more sophisticated model of Barles and Soner [BaS98]. Then we turn
to specifying ranges of volatility. Finally we address the feedback by market
illiquidity.

7.1.1 Leland’s Model of Transaction Costs

Basic for the Black–Scholes model is the idea of rebalancing the portfolio
continuously. But in financial reality this continuous trading would cause ar-
bitrarily high trading costs. Keeping transaction costs low forces to abandon
the optimal Black–Scholes hedging. But without the ideal BS hedging, the
model suffers from hedging errors. To compromise, the hedger searches a ba-
lance between keeping both the transaction costs low and the hedging errors
low.

Suppose that instead of rebalancing continuously, trading is only possible
at discrete time instances with time step Δt apart (Δt fixed and finite). We
assume a transaction cost rate proportional to the trading volume νS:

trading ν assets costs the amount c|ν|S
for some cost parameter c.

Here we sketch a heuristic derivation of a model due to [Lel85], [HoWW94].
The discussion of this model parallels that for the Black–Scholes model, now
adapted to the discrete scenario.1 The stochastic changes of the asset with
price S and of a riskless bond with price B are

ΔS = μSΔt+ σSΔW

ΔB = rBΔt .

The portfolio with value Π is taken in the form

1 All other BS-assumptions remain untouched [Kwok98]. The following ana-
lysis uses or modifies Appendix A4 with (A4.1), (A4.3), (A4.8). Δ means the
increment, and not the greek ∂V

∂S
.
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Π = αS + βB ,

with α units of the asset and β units of the bond. Suppose the portfolio is self-
financing in the sense SΔα+BΔβ = 0, which is sufficient for ΔΠ = αΔS +
βΔB. Further assume that trading is such that the portfolio Π replicates the
value of the option.

By definition, ν = Δα. After one time interval, ν = Δα assets are traded,
with transaction costs cS|Δα|. The change in the value of the portfolio is

ΔΠ = αΔS + βΔB − cS|Δα|

= (αμS + βrB)Δt + ασSΔW − cS|Δα| .

Let V be the value function of the option. Itô’s lemma adapted to the discrete
scenario gives

ΔV =
∂V

∂S
ΔS +

(
∂V

∂t
+
σ2

2
S

2
∂2V

∂S2

)
Δt .

By the no-arbitrage principle ΔV = ΔΠ holds for the replicating and self-
financing portfolio. And coefficient matching will give further information.
But first let us approximate the Δα-term.

From BS theory we expect α ≈ ∂V

∂S
. So ν = Δα will be approximated by

∂V (S +ΔS, t+Δt)
∂S

−
∂V (S, t)
∂S

=
∂2V (S, t)
∂S2

ΔS +
∂2V (S, t)
∂S ∂t

Δt+ t.h.o. ,

invoking Taylor’s expansion. After substituting ΔS we realize that the term
of lowest order is

σS
∂2V (S, t)
∂S2

ΔW .

In summary, the transaction costs in ΔΠ can be approximated by

−cS|Δα| = −cσS2

∣∣∣∂2V (S, t)
∂S2

∣∣∣ |ΔW | + t.h.o. ,

which is path-dependent. Leland [Lel85] boldly suggested to approximate
|ΔW | ≈ E(|ΔW |). Exercise 7.1 tells

E(|ΔW |) =
√
Δt

√
2
π
.

In this way, the trading cost term −cS |Δα| is approximated by the determi-
nistic expression

−cσS2

∣∣∣∂2
V (S, t)
∂S2

∣∣∣ √Δt√ 2
π
. (7.2)
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This may be seen as further assumption, motivated by the above arguing.
The approximation (7.2) of the transaction costs and its artificial parameter√

2/π ≈ 0.8 reflect the lack of a unique price in incomplete markets.
With this somewhat artificial approximation (7.2) of the trading costs

−cS|α|, coefficient matching of ΔV = ΔΠ leads to match the remaining
stochastic terms,

ασSΔW = σS
∂V

∂S
ΔW ,

or α = ∂V

∂S
, which is the famous “delta hedging,” consistent with the modeling

ofΔα above. The remaining terms are deterministic. Use βB+S ∂V

∂S
= Π = V

to obtain (
μS

∂V

∂S
+ rV − rS

∂V

∂S

)
Δt− cS|Δα|

=
(
∂V

∂t
+
σ2

2
S

2
∂2V

∂S2
+ μS

∂V

∂S

)
Δt

(7.3)

The μ-terms cancel out. (7.3) with transaction costs replaced by (7.2) lead
to the variant of the Black–Scholes equation. With the coefficient

γ :=

√
2
π

(
2c

σ
√
Δt

)
(7.4)

the resulting equation is

∂V

∂t
+

1
2
σ

2
S

2
∂2V

∂S2
+

1
2
σ

2
S

2
γ

∣∣∣∂2V

∂S2

∣∣∣+ rS
∂V

∂S
− rV = 0 (7.5)

Formally, this becomes the standard Black–Scholes equation with a modified
volatility

σ̂
2(Γ ) := σ

2[1 + γ sign(Γ )] , (7.6)

with Γ := ∂
2
V

∂S
2 . For convex payoff, this amounts to augment the volatility to

a constant σ̂ > σ (Leland’s scenario). In this case Γ does not change sign,
and the PDE (7.5) is again linear. But note that for instance for barrier
options, Γ does change sign, and the PDE is nonlinear and of the general
type of equation (7.1). For c = 0 (no transaction costs) (7.5) specializes to
the BS-equation. To have a well-posed PDE, Δt must be such that γ < 1. In
particular, Δt → 0 does not make sense.

7.1.2 The Barles and Soner Model of Transaction Costs

Barles and Soner [BaS98] assume a price process dSt = St(μ dt+σ dWt), with
constant volatility σ, 0 ≤ t ≤ T , and model transactions using the following
variables:

αt shares of the asset with price St,
βt shares of the bond,
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Lt cumulative transfer form cash to stock, nondecreasing, L(0) = 0,
Mt cumulative transfer from stock to cash, nondecreasing, M(0) = 0.

Consequently,

αt = α0 + Lt −Mt

βt = β0 −

∫
t

0

Sτ · (1 + c) dLτ +
∫

t

0

Sτ · (1 − c) dMτ +
∫

t

0

rβτ dτ
.

That is, in both cases buying and selling of stocks, transaction costs
∫
Sτ c

are charged to β, where c again denotes proportional transaction costs. The
further derivation of [BaS98] is based on a utility function. The final result is

∂V

∂t
+

1
2
σ

2
S

2
∂2V

∂S2
·

[
1 + f

(
er(T−t)

a
2
S

2
∂2V

∂S2

)]
+ rS

∂V

∂S
− rV = 0 (7.7)

where a is a parameter representing proportional transaction costs and risk
aversion. The function f is the unique solution of the ODE

df(x)
dx

=
f(x) + 1

2
√
xf(x) − x

with f(0) = 0 .

The resulting function f is singular at x = 0 (−→ Exercise 7.2). Figure
7.1 shows the difference between the BS-solution and the solution of the
corresponding nonlinear model (7.7).

7.1.3 Specifying a Range of Volatilities

The two above models of transaction costs come up with a nonlinear volatility
function σ̂(Γ ). Usually this function is not known, and is subject to specu-
lation (modeling). It will be easier to specify a range of volatility, assuming
that σ̂ lies within an interval or band

0 < σmin ≤ σ ≤ σmax < 1 .

This is the uncertain-volatility model of [AvP94], [AvLP95], [Lyo95].
The derivation starts as above, leading to (7.3) with c = 0. (Transaction

costs are not considered here.) Formally, the result is the Black–Scholes equa-
tion (BSE), except that σ is no constant, but is considered as a stochastic
variable σ(t):

∂V

∂t
+

1
2
σ(t)2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 .

This is a PDE with stochastic control parameter σ(t). There is an ambitious
theory for such controlled diffusion processes, see the monograph [Kry80]. To
avoid the use of this methodology, we adopt a simplified arguing, similar as
in [Wil98].
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Fig. 7.1. V (S, T−t): difference between solutions of (BSE) and (7.7); K = 100, r =

0.1, σ = 0.2, a = 0.02, T = 1. With kind permission of Pascal Heider.

Using an argumentation of Black and Scholes, we construct a portfolio of
one option (value V ), and hedge it with −α units of the underlying asset,

Π = V − αS .

Assuming a change in the value of this portfolio in the formΔΠ = ΔV −αΔS,
we have as above

ΔΠ =
∂V

∂S
ΔS +

(
∂V

∂t
+
σ

2

2
S

2
∂

2
V

∂S2

)
Δt− αΔS .

The choice α = ∂V

∂S
eliminates the risk represented by the ΔW -terms. This

results in

ΔΠ =
(
∂V

∂t
+
σ2

2
S

2
∂2V

∂S2

)
Δt .

Note that the return ΔΠ of the portfolio still depends on the unknown sto-
chastic σ(t).
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7.1 Nonlinearities in Models for Financial Options

We now define artificially two specific functions σ+(t) and σ−(t) chosen
such that the return ΔΠ(σ) increases by the maximum amount, or by the
least amount:

σ+(t) chosen such that ΔΠ(σ+) is a maximum,
σ−(t) chosen such that ΔΠ(σ−) is a minimum.

These returns reflect the best case and the worst case as seen by the holder.
For every function σ(t) the no-arbitrage principle holds. Hence both cases
σ+(t) and σ−(t) result in a return ΔΠ = rΠΔt. This can be summarized as

σ
+ maximizes max

σmin≤σ≤σmax

ΔΠ(σ) = rΠΔt

σ
− minimizes min

σmin≤σ≤σmax

ΔΠ(σ) = rΠΔt

In view of the expression for ΔΠ(σ), the two artificial functions σ+, σ− enter
via the term

σ
2
∂2V

∂S2

For ΔΠ to become a maximum or minimum, σ+ (or σ−) will equal σmin or
σmax, depending on the sign of Γ = ∂

2
V

∂S
2 . To become a maximum, set

σ
+(Γ ) :=

{
σmax if Γ ≥ 0
σmin if Γ < 0 .

(7.8a)

And to become a minimum, set

σ
−(Γ ) :=

{
σmax if Γ < 0
σmin if Γ ≥ 0 .

(7.8b)

This defines two specific control functions σ, which after substitution into
the PDE ΔΠ(σ) = rΠΔt yields two nonlinear PDEs

∂V

∂t
+

1
2
σ̂(Γ )2S2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 , (7.9)

with σ̂ = σ+ and σ̂ = σ− from (7.8). Let us denote the corresponding soluti-
ons V + and V −. Since σ+ yields the maximum return, we expect V ≤ V +,
and similarly, V − ≤ V . This provides the range V − ≤ V ≤ V + for the option
price.

In the special case of vanilla options, the convexity of V (S, .) implies
Γ ≥ 0 and hence σ+ = σmax and σ− = σmin; the nonlinearity is not effective
then. The monotonicity of V with respect to σ is clear for vanilla options,
but is not valid, for example, for barrier options. And convexity of V (S, .)
is lost for barrier options, butterfly spreads, digital options, and many other
options [PoFV03]. The great potential of the uncertain-volatility model is
illustrated by Figure 7.2. For the example of a butterfly option, and an un-
certainty interval 0.15 ≤ σ ≤ 0.25 we show the band V − ≤ V ≤ V +, with two
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Black–Scholes curves therein. The payoff of a butterfly spread is illustrated
schematically in Figure 1.24(d), see also Exercise 7.4. The functions V −, V +

were calculated with the methods explained in Section 7.2. For barrier op-
tions, the success of the method is doubtful because of the high sensitivity
w.r.t. σ close to the barrier. Then the bandwidth may be so large that it is
not of practical use. Such an example is shown in Figure 7.3.

7.1.4 Market Illiquidity

As pointed out by [FrS97], [ScW00], [FrP02], the assumption that a big in-
vestor can trade large amounts of an asset without affecting its price, is not
realistic. There will be a feedback, and the assumption of an infinite market
liquidity may fail. [FrS97], [ScW00] introduce a market liquidity parameter
λ, with 0 ≤ λ ≤ 1, and derive the nonlinear PDE

∂V

∂t
+

1
2

σ2S2

(1 − λ
∂
2
V

∂S
2 )2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 . (7.10)

Here we do not discuss further details. Note that this model is also of the
form of equation (7.1).

7.2 Numerical Solution of Nonlinear Black–Scholes

Equations

All the nonlinear PDEs of Section 7.1 fall under the general type of equation

∂V

∂t
+

1
2
σ̂

2(S, t,
∂2V

∂S2
)S2

∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV = 0 , (7.11)

which we are going to solve next. In this form, equation (7.11) represents the
value of a European-style option. There is no analytical solution known for
(7.11), so a numerical approach is needed also in the European case.

For an American-style option, a penalization can be applied, and an ad-
ditional nonlinear term appears in (7.11). A classical penalty approach (e.g.,
[ElO82], [FoV02]) is to add the penalty p̂max(Ψ − V, 0), where Ψ denotes
the payoff, and the penalty parameter p̂ is chosen large, say, p̂ = 106. The
resulting PDE is

∂V

∂t
+

1
2
σ̂

2(S, t,
∂2V

∂S2
)S2

∂2V

∂S2
+(r−δ)S

∂V

∂S
−rV +p̂max(Ψ−V, 0) = 0 . (7.12)

In the continuation region, for V ≥ Ψ , the penalty term is zero, and (7.11)
results. For p̂ → ∞, think of dividing the equation by p̂ to be convinced that
V sticks close to Ψ . In Chapter 4, we could conserve the linear equation by
the elegant complementarity approach. In (7.12) the PDE is nonlinear by
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Fig. 7.2. V (S, 0) of a European butterfly spread, uncertain-volatility model of Avel-

laneda at al., Section 7.1.3; with K = 100, K1 = 85, K2 = 115, r = 0.13, σmin =

0.15, σmax = 0.25, δ = 0.03, T = 0.27. Four curves are shown: the bounding func-

tions V +
and V − as heavy lines, and V with dotted curves of the standard Black–

Scholes model with constant volatilities σ = 0.15 (the steeper curve) and σ = 0.25
(the lower profile).

the volatility function σ̂, and thus the nonlinear penalty term does not cause
further harm.

7.2.1 Transformation

The transformation (4.3) of Chapter 4 is not valid here, because the volatility
σ̂ is no longer constant. But assuming constant r, δ, the independent variables
S, t can be transformed similarly. The transformation from variables S, t, V
to x, τ, u is

x := log
S

K
, τ :=

1
2
σ

2

0
· (T − t) , u(x, τ) := e−x

V (S, t)
K

. (7.13)

σ0 is a scaling parameter. As a result of the transformation, VS = u+ux and
SVSS = ux + uxx. Here we use the notations VS , VSS , uτ , ux, uxx for partial
derivatives. And (7.11) becomes
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− uτ + σ̃
2(x, τ, ux, uxx)(ux + uxx) +

2(r − δ)
σ2

0

ux −
2δ
σ2

0

u = 0

with σ̃ :=
1
σ0

σ̂

(
S, t,

∂2V

∂S2

)
=

1
σ0

σ̂

(
Kex

, T −
2τ
σ2

0

,
e−x

K
(ux + uxx)

)
.

(7.14)
(Transform (7.12) in Exercise 7.3.) For example, for Leland’s model,

σ̃
2 = 1 + γ sign(ux + uxx) .

For all of the models of Section 7.1 the nonlinearity is of the type

σ̃
2(x, τ, s) · s with s := ux + uxx , (7.15)

with σ̃ from (7.14).
The payoffs Ψ of the options are transformed as well. Let u∗ denote the

transformed payoff. For the payoff of a vanilla put,

V (S, T ) = Ke
x

u(x, 0) = (K − S)+ = K(1 − ex)+

and hence
u(x, 0) = u

∗(x) := (e−x − 1)+ .
Similarly, for a vanilla call,

u(x, 0) = u
∗(x) := (1 − e−x)+ .

This is similar for exotic options (−→ Exercise 7.4).
Finally, boundary conditions are chosen (as in Section 4.4) and transfor-

med. For example, applying (4.18) for a vanilla call of the European type,

u(xmax, τ) =
e−xmax

K
V (Smax, t)

=
e−xmax

K
(Smaxe−δ(T−t) −Ke−r(T−t))

= e−δ(T−t) − exp(−r(T − t) − xmax)

= exp(−τ
2δ
σ2

0

) − exp(−τ
2r
σ2

0

− xmax)

u(xmin, τ) = 0 .

For a vanilla put and Smin ≈ 0 one may choose

u(xmin, τ) =
1
K

e−xminKe−r(T−t) = exp(−τ
2r
σ2

0

− xmin)

u(xmax, τ) = 0 .

For vanilla American-style options with penalty formulation (7.12), the non-
zero boundary conditions are just that u is in contact with the payoff,

u(xmin) = u
∗(xmin) = e−xmin − 1 for a put, and

u(xmax) = u
∗(xmax) = 1 − e−xmax for a call.
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7.2.2 Discretization

Finite differences in a standard fashion as in Chapter 4, with the same grid,
lead to nonlinear equations for the vector w(ν) of approximate values at time
level τν = τν−1 +Δτ . The equidistant x-spacing with mesh size Δx consists
of m subintervals, see Section 4.2.2. The components w0 and wm are defined
by boundary conditions. The finite differences include

δxwi,ν :=
wi+1,ν − wi−1,ν

2Δx

δxxwi,ν :=
wi+1,ν − 2wi,ν + wi−1,ν

Δx2

where Δx2 is understood as (Δx)2. For the discretization replace s by s̄ with

s̄i,ν := (δx + δxx)wi,ν =
wi+1,ν − wi−1,ν

2Δx
+
wi+1,ν − 2wi,ν + wi−1,ν

Δx2

Substituting into the PDEs is the next step. Here we confine ourselves to the
European case (7.11); the discretization of (7.12) is analogous and left to the
reader. Define

Li,ν :=σ̃2(xi, τν , δxwi,ν , δxxwi,ν)(δxwi,ν + δxxwi,ν)

+
2(r − δ)
σ2

0

δxwi,ν −
2δ
σ2

0

wi,ν

to arrive at the θ-approach

−wi,ν+1 + wi,ν

Δτ
+ θLi,ν+1 + (1 − θ)Li,ν = 0 . (7.16)

Recall that this includes Crank–Nicolson for θ = 1

2
, and for θ = 1 the fully

implicit Euler (BDF). The σ̃ of the above examples is represented by the
discretization σ̃(xi, τν , s̄i,ν) with

s̄i,ν = wi−1,ν

(
−

1
2Δx

+
1

Δx2

)
−

2
Δx2

wi,ν + wi+1,ν

(
1

2Δx
+

1
Δx2

)
= αwi−1,ν −

2
Δx2

wi,ν + β wi+1,ν

(7.17a)
where we denote

α := −
1

2Δx
+

1
Δx2

, β :=
1

2Δx
+

1
Δx2

(7.17b)

and reuse the notation σ̃ for the three-argument version. The discretized
version of the operator Li,ν is now

Li,ν = σ̃
2(xi, τν , s̄i,ν)s̄i,ν +

r − δ

σ2

0
Δx

(wi+1,ν − wi−1,ν) −
2δ
σ2

0

wi,ν (7.18)
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and the θ-method reads

−wi,ν+1 + wi,ν + θΔτLi,ν+1 + (1 − θ)ΔτLi,ν = 0 . (7.19)

With the vector notation w(ν) as in Chapter 4 this is written

F (w(ν+1)
, w

(ν)) = 0 .

For the fully implicit BDF method (θ = 1), the ith equation of the vector
equation F = 0 reads

Fi = − w
(ν+1)

i
+ w

(ν)

i

+Δτ

[
σ̃

2(xi, τν+1, αw
(ν+1)

i−1
−

2
Δx2

w
(ν+1)

i
+ βw

(ν+1)

i+1
)·

(αw(ν+1)

i−1
−

2
Δx2

w
(ν+1)

i
+ βw

(ν+1)

i+1
)

−
r − δ

σ2

0
Δx

w
(ν+1)

i−1
−

2δ
σ2

0

w
(ν+1)

i
+

r − δ

σ2

0
Δx

w
(ν+1)

i+1

]
= 0

(7.20a)

For i = 0 and i = m, boundary conditions enter. Their basic structure is

F
(ν)

0
:= u(xmin, τν) − w

(ν)

0

F
(ν)

m
:= u(xmax, τν) − w

(ν)

m
.

(7.20b)

For the θ-method (7.19) they enter in the form θF (ν+1) + (1 − θ)F (ν). The
nonlinear equation F (w(ν+1), w(ν)) = 0 with components defined by (7.20)
represents a discretization of (7.11). It is solved iteratively by Newton’s me-
thod.

7.2.3 Convergence of the Discrete Equations

The above numerical scheme is of the form

F (Δτ,Δx, ν, i, wi,ν , w̃) = 0

where w̃ stands for the vector of all wk,l. For such a scheme convergence to
the unique viscosity solution (−→ Appendix C5) can be proved, provided F

satisfies three conditions [BaDR95], namely,
∗ stability,
∗ consistency, and
∗ monotonicity.

Not for the numerical scheme but for the equation an additional property
must be assumed, namely, the strong uniqueness. For the uniqueness we refer
to the special literature [CrIL92].

The proof that for a particular scheme all of these three criteria are sa-
tisfied, can be quite involved [PoFV03], [Hei10], [HeS10]. Checking stability
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7.2 Numerical Solution of Nonlinear Black–Scholes Equations

and consistency is rather standard. Here we concentrate on the monotonicity
of the scheme, which is a new aspect as compared to the investigations for
the linear equation in Chapter 4.

Definition 7.1 (monotone scheme)

A discretization F (w(ν+1), w(ν)) is monotone if for all i = 0, . . . ,m

(a) Fi(w(ν+1) + ε
(ν+1)

, w
(ν) + ε

(ν)) ≥ Fi(w(ν+1)
, w

(ν))

for all
ε
(ν+1) = (0, . . . , 0, ε(ν+1)

i−1
, 0, ε(ν+1)

i+1
, 0, . . . , 0) ≥ 0

ε
(ν) = (0, . . . , 0, ε(ν)

i−1
, ε

(ν)

i
, ε

(ν)

i+1
, 0, . . . , 0) ≥ 0 ,

and

(b) Fi(w(ν+1) + ε
(ν+1)

, w
(ν)) ≤ Fi(w(ν+1)

, w
(ν))

for all
ε
(ν+1) = (0, . . . , 0, ε(ν+1)

i
, 0, . . . , 0) ≥ 0 .

Translated into the fully implicit scheme (7.20), the condition (a) of mo-
notonicity reads

Fi(w
(ν+1)

i
, w

(ν+1)

i−1
+ ε1, w

(ν+1)

i+1
+ ε2, w

(ν)

i
+ ε3) ≥

Fi(w
(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
)

for scalar ε1, ε2, ε3, ε. Because of transitivity, it suffices to show separately

(a1) Fi(w
(ν+1)

i
, w

(ν+1)

i−1
+ ε, w

(ν+1)

i+1
, w

(ν)

i
) ≥ Fi(w

(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
)

(a2) Fi(w
(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
+ ε, w

(ν)

i
) ≥ Fi(w

(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
)

(a3) Fi(w
(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
+ ε) ≥ Fi(w

(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
)

for (a) to hold, and for (b)

Fi(w
(ν+1)

i
+ ε, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
) ≤ Fi(w

(ν+1)

i
, w

(ν+1)

i−1
, w

(ν+1)

i+1
, w

(ν)

i
) .

Next we check under which conditions the scheme (7.20) is monotone.
[Hei10] has shown that the scheme converges whenever the nonlinear term
σ̃2(x, τ, s)s satisfies conditions (i)–(iii):
Theorem 7.2

Assume σ̃2(x, τ, ux, uxx) in the form σ̃2(x, τ, s), with s from (7.15), and
(i) σ̃2(x, τ, s)s is continuous and monotone increasing in s,
(ii) there exists a constant c+ > 0 such that for all s and ε > 0

σ̃
2(x, τ, s+ ε) · (s+ ε) ≥ σ̃

2(x, τ, s) · s+ c+ε

(iii) Δx is small enough such that
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c+
2 −Δx

Δx
−

2(r − δ)
σ2

0

≥ 0 and c+
2 +Δx

Δx
+

2(r − δ)
σ2

0

≥ 0

Then the fully implicit BDF scheme (7.20) converges to the viscosity
solution of (7.11).

Proof: Here we confine ourselves to the proof of monotonicity. As noted above,
we can proceed componentwise and check (a1), (a2), (a3), and (b) separately.
We begin with 0 < i < m.

To show (a1), perturb w
(ν+1)

i−1
→ w

(ν+1)

i−1
+ ε for ε > 0. Then s̄i,ν → s̄i,ν + αε,

and
Fi(w

(ν+1)

i
, w

(ν+1)

i−1
+ ε, w

(ν+1)

i+1
, w

(ν)

i
) =

− w
(ν+1)

i
+ w

(ν)

i
+Δτ

[
σ̃

2(xi, τν+1, s̄i,ν + αε)(s̄i,ν + αε)

−
r − δ

σ2

0
Δx

(w(ν+1)

i−1
+ ε) −

2δ
σ2

0

w
(ν+1)

i
+

r − δ

σ2

0
Δx

w
(ν+1)

i+1

]
≥ −w

(ν+1)

i
+ w

(ν)

i
+Δτ

[
σ̃

2(xi, τν+1, s̄i,ν)s̄i,ν + c+εα

−
r − δ

σ2

0
Δx

w
(ν+1)

i−1
−

2δ
σ2

0

w
(ν+1)

i
+

r − δ

σ2

0
Δx

w
(ν+1)

i+1
−

r − δ

σ2

0
Δx

ε

]
where the inequality is due to (ii). Compare with Fi in (7.20) and realize two
extra terms. By (iii), with α from (7.17b), they are

c+εα−
r − δ

σ2

0
Δx

ε =
ε

2Δx

[
c+

2 −Δx

Δx
−

2(r − δ)
σ2

0

]
≥ 0 .

So we have shown (a1), the first of the four criteria of monotonicity.

To show (a2), perturb w
(ν+1)

i+1
→ w

(ν+1)

i+1
+ ε. Then s̄i,ν → s̄i,ν + εβ and the

perturbed Fi is

− w
(ν+1)

i
+ w

(ν)

i
+Δτ

[
σ̃

2(xi, τν+1, s̄i,ν + βε)(s̄i,ν + βε)

−
r − δ

σ2

0
Δx

w
(ν+1)

i−1
−

2δ
σ2

0

w
(ν+1)

i
+

r − δ

σ2

0
Δx

w
(ν+1)

i+1
+ ε

r − δ

σ2

0
Δx

]
.

Again we obtain a lower bound by (ii), and arrive at the sum of two extra
terms

c+εβ + ε
r − δ

σ2

0
Δx

,

which is ≥ 0 by (iii). So the perturbed Fi is larger or equal the unperturbed
Fi, and (a2) is satisfied.

           Chapter 7 Beyond Black and Scholes328



7.2 Numerical Solution of Nonlinear Black–Scholes Equations

The assertion (a3) is clearly satisfied since the perturbation w
(ν)

i
→ w

(ν)

i
+ ε

only affects the term outside the brackets.

To show (b), perturb w(ν+1)

i
→ w

(ν+1)

i
+ ε. Then s̄i,ν → s̄i,ν −

2ε

Δx
2 , and Fi is

perturbed to

− w
(ν+1)

i
− ε+ w

(ν)

i
+Δτ

[
σ̃

2(xi, τν+1, s̄i,ν − ε
2

Δx2
)(s̄i,ν − ε

2
Δx2

)

−
r − δ

σ2

0
Δx

w
(ν+1)

i−1
−

2δ
σ2

0

w
(ν+1)

i
−

2δ
σ2

0

ε+
r − δ

σ2

0
Δx

w
(ν+1)

i+1

]
.

By the monotonicity (i) and by ε > 0, δ ≥ 0, the above is smaller or equal to
the unperturbed Fi —that is, (b) holds true.
Finally, monotonicity must be checked for F0 and Fm. For θ = 1, F0 depends
on w

(ν+1)

0
and Fm depends on w

(ν+1)

m . Hence only (b) needs to be checked,
which is clearly satisfied.
This ends the proof that the conditions (i), (ii), (iii) imply monotonicity of
the fully implicit scheme.

Example 7.3 (Leland’s model)

Let us inspect whether the criteria (i), (ii), (iii) of Theorem 7.2 are satisfied
for Leland’s model of transaction costs. For (i) we require |γ| < 1. With some
simple manipulations, one shows that (ii) is satisfied with c+ = 1 − γ. And
for (iii) to hold, the grid size Δx must be small enough. (−→ Exercise 7.5).
Specifically, for zero dividend rate δ = 0 the θ-method is

− w
(ν+1)

i
+ w

(ν)

i
+Δτ · θ [σ̃2(s̄(ν+1)

i
)s̄(ν+1)

i
+

2r
σ2

0

δxw
(ν+1)

i
]

+Δτ(1 − θ) [σ̃2(s̄(ν)

i
)s̄(ν)

i
+

2r
σ2

0

δxw
(ν)

i
] = 0 .

�

Sufficient conditions for the Crank–Nicolson scheme (θ = 1/2) to converge
include (i), (ii), (iii), and in addition (iv) and (v):
(iv) There exists a constant c− > 0 such that for all ε > 0 and s

σ̃
2(x, τ, s− ε)(s− ε) ≥ σ̃

2(x, τ, s)s− c−ε

(v)
Δτ ≤

Δx
2

c−

σ
2

0

σ2

0
+Δxδ

,

see [Hei10], [HeS10]. Condition (iv) holds for Leland’s model with c− = 1+γ,
and for the uncertain volatility model with c− = σ2

max
. Conditions (iii) and

(iv) amount to stability bounds. We emphasize that in the case of nonlinear
models, unconditional stability does not hold!
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Fig. 7.3. V (S, 0) of a European up-and-out barrier call, uncertain-volatility model

of Avellaneda at al., Section 7.1.3; with barrier B = 115, and K = 100, r =

0.1, σmin = 0.1, σmax = 0.3, δ = 0, T = 0.2. In addition to the two curves V +
and

V − (solid lines) three V curves are shown (with dotted lines) of the standard Black–

Scholes model with constant volatilities σ = 0.1 (the steepest) and σ = 0.2, 0.3.

The above has discussed convergence towards the viscosity solution. An
application of the uncertain-volatility model to a butterfly is shown in Figure
7.2. Another illustration is the barrier option in Figure 7.3. — When in case of
an American-style option a penalty approach is applied, further assumptions
are needed to assert convergence to the solution for p̂→ ∞, even though one
keeps p̂ fixed.

7.3 Option Valuation Under Jump Processes

In this section, we sketch some instruments of Lévy processes as background
to the application of partial integro-differential equations. The focus is on one
important example, namely Merton’s jump diffusion, and on strategies for a
numerical valuation of options under such processes. This is no introduction
to Lévy processes; for expositions on Lévy processes consult, for instance,
[Sato99], [Shi99], [ConT94].
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7.3 Option Valuation Under Jump Processes

For a Lévy process Xt, all increments Xt+Δt −Xt are stochastically inde-
pendent. Further, they are stationary, which means that all increments have
the distribution of Xt. Instead of requiring continuity, Lévy processes must
be “càdlàg” (French for “continu à droite avec limites à gauche”): For all t,
the process Xt is right-continuous (Xt = X

t
+), and the left limit X

t
− exists.

Important examples of Lévy processes are the Wiener process (Section 1.6.1),
and the Poisson process (Section 1.9).

7.3.1 Characteristic Functions

A classification of Lévy processes Xt is based on the Fourier transformation2

φXt
(ζ) := E(exp(iζXt)) . (7.21)

The function φXt
singles out characteristic properties of a random variable

Xt. φXt
is called characteristic function of Xt, and ψXt

(ζ) [shorter: ψ(ζ)]
defined by exp(tψ(ζ)) = φXt

(ζ) is the characteristic exponent. It suffices
to take t = 1, since the distribution of X1 characterizes the process. The
characteristic exponent ψ(ζ) satisfies the Lévy-Khinchin representation

ψ(ζ) = iγζ −
1
2
σ

2
ζ
2 +

∞∫
−∞

(
exp(iζx) − 1 − iζx1{|x|≤1}

)
ν(dx) . (7.22)

The three terms in this representation characterize different aspects of Xt.
γ ∈ IR corresponds to a deterministic trend, σ2 to the variance of a diffusion
(Brownian-motion) part of Xt, and ν is a measure on IR characterizing the
activity of jumps ΔXt := Xt −X

t
− ,

ν(A) := E [#{t ∈ [0, 1] | ΔXt �= 0, ΔXt ∈ A}] .

The Lévy measure ν(A) counts the (expected) number of jumps of “size”
within A per unit time [ConT04]. ν(A) is not a probability measure. For
the Lévy measure ν, require

∫
IR

min(x2
, 1) ν(dx) < ∞ and ν({0}) = 0. In

the integrand of (7.22), the subtracted term iζx1{|x|≤1} causes the integrand
to be of the order O(|x|2) for x → 0. This compensation along with the
constraints on ν implies existence of the integral. For many important Lévy
processes, ν(dx) has a convenient representation

ν(dx) = fL(x) dx (7.23)

with a Lévy density fL. The three items γ, σ2, ν (“characteristic triplet”)
characterize a Lévy process in a unique way.

2 For the Fourier transform, see Section 7.4.
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Example 7.4 (compound Poisson process)

For a Poisson process Jt with jump intensity λ, a compound Poisson process
is

Xt :=
Jt∑

j=1

ΔXτj
,

where the jump sizes ΔXτj
are assumed i.i.d. with distribution density f , and

independent of the Poisson process J . The characteristic function φXt
(ζ) of

the compound Poisson process is

E(exp[iζXt)) = exp[λt (φΔX(ζ) − 1)]

= exp
[
t

∫
IR

(eiζx − 1)ν(dx)
]

(7.24)

with Lévy measure ν(dx) = λf(x) dx. The first of the equations in (7.24) uses
rules of the conditional expectation [ConT04], whereas the second just applies
(7.21) with the definition (B1.4) of the expectation, including

∫
IR
ν(dx) = λ.

The characteristic exponent ψcP is the integral in (7.24), γ = σ = 0. �

As in (1.49), financial models typically arise in exponential form. For
such exponential Lévy processes there is a useful criterion for the martingale
property, and hence for risk-neutral valuation:

Lemma 7.5 (martingale criterion)

Let Xt be a Lévy process. eXt is a martingale if and only if ψX(−i) = 0 and
E(eXt) < ∞.

Proof: We extend ζ to complex numbers, and note that

E(eXt) = E(e−iiXt) = φXt
(−i) = etψ(−i)

.

Then by independence and stationarity,

E(eXt | Fs) − eXs = E(eXt−s) − eX0 = e(t−s)ψ(−i) − 1 .

(−→ Exercise 7.6)
In finance applications, with an asset price St for t ≥ 0, the absence of
arbitrage implies that the discounted e−rtSt is a martingale with respect
to a risk-neutral measure. This suggests to represent St in the form St =
S0 exp(rt+Xt). Then the discounted St is the situation to which the Lemma
7.5 applies.

Example 7.6 (Brownian motion with drift)

A Lévy process Xt is Brownian motion if and only if ν ≡ 0 (no jump). For
ease of comparison with (1.54) and (1.59) we take the drift γ in the form
γ = μ− 1

2
σ2. For the Brownian motion with drift (Bwd) Xt := γt+ σWt we

use a result from probability3 and conclude for the characteristic exponent

3 E(eiζX) = exp(iζγ − ζ2σ2/2) holds for X ∼ N (γ, σ2), see [JaP03] p. 108.

           Chapter 7 Beyond Black and Scholes332



7.3 Option Valuation Under Jump Processes

ψBwd(ζ) = i(μ−
1
2
σ

2)ζ −
1
2
σ

2
ζ
2
.

Clearly, ψBwd(−i) = μ. Hence by Lemma 7.5 eX

t
is martingale for μ = 0.

Hence the discounted

S0e−rt exp(rt+Xt) = S0e−rt exp[(r − 1

2
σ2)t+ σWt]

is martingale. This recovers the well-known riskless drift rate r for a numerical
simulation of GBM in the Black-Scholes model.

Example 7.7 (Merton’ s jump diffusion)

We now combine Examples 7.4 and 7.6. As a special case of Example 7.4 we
choose as in Section 1.9 the jump sizes ΔY in the log process Yt := logSt to
be normally distributed, ΔY ∼ N (μJ, σ

2

J
). (log q in Section 1.9) Furnished

with a drifted Brownian motion, this is Merton’s jump-diffusion model (1.57)
with jump intensity λ and γ = μ− 1

2
σ2. The Lévy density of the compound

Poisson process (cP) is λ times the density of the normal distribution,

fL(x) = fcP(x) := λ
1

σJ

√
2π

exp
[
−

(x− μJ)2

2σ2

J

]
. (7.25)

Since the two processes are independent, and by the exponential structure in
(7.21), the two characteristic exponents add:

ψ(ζ) = ψBwd(ζ) + ψcP(ζ)

= iγζ −
1
2
σ

2
ζ
2 +
∫
IR

(eiζx − 1)ν(dx)

and
ψ(−i) = γ +

1
2
σ

2 +
∫
IR

(ex − 1)ν(dx) .

Similar as in Exercise 1.12 we calculate the integral∫ ∞

−∞

(ex − 1)fcP(x) dx = λ

(
exp
[
iμJζ −

1
2
σ

2

J
ζ
2

]
− 1
)
.

Hence to see whether St = exp(Yt) is a martingale, we check ψ(−i) = γ +
1

2
σ2 +λ(exp[μJ + 1

2
σ2

J
]− 1). By Lemma 7.5, a martingale can be obtained by

choosing a drift with

γ = −
σ2

2
− λ

(
exp
[
μJ +

1
2
σ

2

J

]
− 1
)
.

This makes S0e−rt exp(rt+ γt+ σWt +
∑

Jt

j=1
log qj) a martingale. When ap-

plied to simulation of SDEs under the risk-neutral measure for Monte Carlo,
this risk-neutral valuation amounts to the drift rate in Example 1.21. That
is, the SDE is
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dS
S

= (r − λ(exp[μJ + 1

2
σ2

J
] − 1)) dt+ σ dWt .

In case of a dividend yield with rate δ, the term δdt is subtracted on the
right-hand side, similar as in Section 3.5. �

For other models, a risk-neutral growth rate can be obtained in an ana-
logous way. A table of risk-neutral drift rates is given in [Sch03], p.80. For a
jump diffusion, jumps are comparably “rare,” there is only a finite number of
them in any time interval. Apart from Merton’s model another jump-diffusion
model is Kou’s model, which works with an asymmetric double exponential
distribution of jump sizes [Kou02].

There are Lévy processes of infinite activity: Then in every time interval
an infinite number of jumps occurs. Examples include the VG-process (Va-
riance Gamma) [MaS90], the NIG-process (Normal Inverse Gaussian), the
hyperbolic process [EbK95] and the CGMY process [CaGMY03]. Specifically
for VG and NIG, see also [Gla04]. Time deformation plays an important role
for constructing Lévy processes. For example, with a Wiener process Wt and
a Gamma process Gt as subordinator replacing time, VG can be represented
as

St = S0ert+Xt with Xt = θGt + σWGt
.

This includes GBM with the standard time Gt = t and parameter θ = −σ2/2.
Such a subordinating process Gt can be regarded as “business time,” which
runs faster than the calendar time when the trading volume is high, and
slower otherwise. Then, for a Wiener process Wt, a class of Lévy processes is
defined by WGt

. With a t-grid as in Algorithm 1.8, a time-changed process
can be generated as Wj = Wj−1 + Z

√
GjΔt −G(j−1)Δt

(−→ Exercise 2.17).

7.3.2 Option Valuation with PIDEs

Assume European options based on a price process St = S0 exp(rt + Xt),
where Xt is a Lévy process such that eXt is a martingale, with Lévy measure
ν, and the integral

∫
|y|≥1

e2yν(dy) exists. Then the value function V (S, t)
satisfies

∂V (S, t)
∂t

+ rS
∂V

∂S
+

1
2
σ

2
S

2
∂2V

∂S2
− rV

+
∫
IR

[
V (Sey

, t) − V (S, t) − (ey − 1)S
∂V (S, t)
∂S

]
ν(dy) = 0

(7.26)

A proof can be found in [ConT04]p. 385-387.

Definition 7.8 (PIDE)

An equation of the above type (7.26) is called partial integro-differential equa-

tion (PIDE).
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7.3 Option Valuation Under Jump Processes

The integral term in (7.26) complicates the numerical solution since it is a
nonlocal term accumulating information on all −∞ < y < ∞, in contrast to
the local character of the partial derivatives. For general Lévy processes, the
three terms under the integral can not be separated, otherwise the integral
may fail to converge. It can be separated in the case of Merton’s jump-
diffusion model, because this process is of finite activity, λ = ν(IR) < ∞.

In what follows, we discuss Merton’s jump-diffusion process, with lognor-
mal distribution for q = ey. The integral in (7.26) can be split into three
terms with three integrals∫

IR

V (Sey

, t)ν(dy) − V (S, t)
∫

IR

ν(dy) − S
∂V (S, t)
∂S

∫
IR

(ey − 1)ν(dy) .

In view of ν(dy) = λf(y)dy, factors λ show up. f is the standard normal
density, and the integrals become expectations. Then the first integral can be
written λE(V (Sey, t)), and the second integral is λ. The integral c := E(ey−1)
does not depend on V and can be calculated beforehand since the distribution
for q = ey is stipulated.4 The lognormal density for q is

fq(x) =
1

√
2πσJ · x

exp
{
−

(log x− μJ)2

2σ2

J

}
1{x>0}

and we recover the constant of Example 7.7:

c : =
∫ ∞

0

(x − 1)fq(x) dx

=
∫ ∞

−∞

(ey − 1)f(y) dy = exp[μJ +
1
2
σ

2

J
] − 1 .

With the precalculated number c, the resulting equation can be ordered into

∂V

∂t
+

1
2
σ

2
S

2
∂2V

∂S2
+ (r − λc)S

∂V

∂S
− (λ+ r)V + λE(V (qS, t)) = 0 . (7.27)

The last term is an integral taken over the unknown solution function V (S, t).
So the resulting equation is a PIDE, a special case of (7.26). Note that the
product λc is the drift compensation in Example 7.7. The standard Black–
Scholes PDE is included for λ = 0. A simplified derivation of (7.27) can
be found in Appendix A4. For further discussions, see for example [Mer76],
[Wil98], [Tsay02], [ConT04].

4 The parameters are not the same as those in (1.48).
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7.3.3 Transformation of the PIDE

We approach the PIDE (7.27) with the transformation

τ := T − t , x := logS , u(x, τ) := V (ex

, T − τ) , (7.28)

which appears moderate as compared to (4.3). Substituting accordingly

ux =
∂V

∂S
S , uxx = ux + S

2
∂2V

∂S2

into (7.27) leads to

−uτ + 1

2
σ2(uxx − ux) + (r − λc)ux − (λ+ r)u + λE(V (qex, T − τ)) = 0 ,

which is organized into

uτ − 1

2
σ2uxx − (r − λc− 1

2
σ2)ux + (λ+ τ)u − λE(V (qex, T − τ)) = 0 .

After the above transformation S = ex we next transform the jump-size
variable q = ey. Ignoring the factor λ, the integral term changes to

E(V (qex

, T − τ)) = E(V (ex+y

, T − τ)) = E(u(x+ y, τ))

=
∫
IR

u(x+ y, τ)f(y) dy =
∫
IR

u(z, τ)f(z − x) dz ,
(7.29)

where we have applied the substitution z := x+y. The function f for Merton’s
jump-diffusion model is the density of y = log q ∼ N (μJ, σ

2

J
). In summary,

the PIDE of Merton’s jump-diffusion model is

Problem 7.9 (Merton’s jump-diffusion PIDE)

uτ − 1

2
σ2uxx − (r − λc− 1

2
σ2)ux + (λ + r)u

− λ

∫
IR

u(z, τ)f(z − x) dz = 0 ,

with f(y) =
1

√
2πσJ

exp
[
−

(y − μJ)2

2σ2

J

]
and c = exp[μJ + 1

2
σ

2

J
] − 1 .

(7.30)

This is the problem to be solved numerically.
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7.3 Option Valuation Under Jump Processes

7.3.4 Numerical Approximation

For an approximation of the integral (7.29) we truncate the domain to a
finite interval xmin ≤ x ≤ xmax. In view of the meaning of the integral,
this truncation amounts to disregard large jumps. This might be seen as a
weakness of the approach, but jumps that large are highly improbable. The
simplest discretization approach is to use an equidistant x-grid with

Δx :=
xmax − xmin

m
, xi := xmin + iΔx , i = 0, . . . ,m ,

for a suitable integer m. As in Chapter 4, the time-stepping nodes are τν , and
the approximations of u(xi, τν) are denoted by wi,ν . The integral in (7.30) is
evaluated at each node (x, τ) = (xi, τν). That is, for each i, ν, the numbers∫

IR

u(z, τν)f(z − xi) dz ≈

∫
xmax

xmin

u(z, τν)f(z − xi) dz

are to be approximated. Applying the composite trapezoidal rule (C1.2) with

fi,l := f(xl − xi) = f((l − i)Δx) ,

the approximation of the integral for each i, ν is

Δx

[
w0,νfi,0

2
+

m−1∑
l=1

wl,νfi,l +
wm,νfi,m

2

]
. (7.31)

The numbers fi,l are elements of a Toeplitz matrix.5 That is, the entries take
only 2m + 1 different numbers. Due to the exponential structure of f , the
elements in the northeast and southwest corners of the fi,l-matrix go to zero.
In this sense, this Toeplitz matrix has a “banded” structure. In summary, for
each i, ν the integral is approximated by a scalar product of the row vector

Δx

(
fi,0

2
, fi,1 , . . . , fi,m−1 ,

fi,m

2

)
times the vector w(ν). In (7.31) the first term w0,ν and the last term wm,ν

(where boundary conditions enter) must be treated separately in case we deal
with the short vector (w1, . . . , wm−1) as in Section 4.2.3. Now assemble all
the rows into an (m + 1)2-matrix C. Then for all i within time level ν, the
integrals are represented by the product

Cw
(ν)

.

Neglecting the fact that many of its elements are close to zero, the matrix C
is dense, which reflects the nonlocal character of the integral. This is in con-
trast to the local character of standard finite differences with its tridiagonal

5 The entries of a Toeplitz matrix are constant along each diagonal.
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matrices. The transformation (7.28) is different from (4.3), but tridiagonal
matrices can be derived from (7.30) in a similar way as done in Chapter 4.
The dense matrix C adds to the tridiagonal matrices, which makes the solu-
tion of linear systems with full matrices in each time step ν → ν + 1 more
expensive. In an attempt to save costs, splitting has been suggested. This
means to evaluate the integral at the previous line (ν). In this way, the mul-
tiplication Cw only shows up in the right-hand side of the known terms. The
tridiagonality of the left-hand side matrices is maintained, and the method
still converges. Up to boundary conditions, this splitting can be represented
by an Euler-type implicit scheme

w(ν+1) − w(ν)

Δτ
= Gw

(ν+1) + λCw
(ν)

,

where the matrix G represents the local information of the differentials. Neit-
her G nor C are symmetric. We leave it to the reader to set up the system of
equations (−→ Exercise 7.7). The matrices G and C are used for the analy-
sis, no matrix is needed for the algorithm. — For an illustration how a larger
intensity λ increases the value of an option see Figure 7.4.
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Fig. 7.4. V (S, 0) of a European put option, solution of Problem 7.9; parameters as

in Example 1.21: K = 10, r = 0.06, σ = 0.3, T = 1, with Merton’s jump diffusion,

μJ = −0.3, σJ = 0.4, and three values of jump intensity λ: 0 (lower curve, no jump),

0.1, and 0.2 (top curve); xmin = −3, xmax = log(K) + 1.6 = 3.9. The chosen value

of μJ = −0.3 corresponds to q = exp(μJ) = 0.74, or a 26% fall in the asset price.
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7.4 Application of the Fourier Transform

Since the splitting can deteriorate the accuracy, a fixed point iteration
has been suggested [dHaFV05]. The integral term E(V ) with its truncation
and discretization challenges the control of the involved errors. For example,
[CoV05] give an estimate of the error induced by truncating the integral,
as well as a convergence proof for finite differences applied to general Lévy
models. Codes for American options based on a penalty formulation or on an
LCP formulation can be easily modified and extended by an integral term.
The techniques of Chapter 4 or Chapter 5 can be applied. Application of
FFT increases the efficiency [dHaFV05]. Typically, each Lévy process calls
for a separate algorithm. A Monte Carlo approach is [MeA02]. For Merton’s
model and European options, an analytic solution is given [Mer76], which
allows to test corresponding algorithms.

7.4 Application of the Fourier Transform

The Fourier transform F of a real function f is defined by6

F [f(u)] :=
∫ ∞

y=−∞

eiuy

f(y) dy . (7.32)

This requires integrability of f . The inverse Fourier transformation is

F−1[g(x)] =
1
2π

∫ ∞

u=−∞

e−ixu

g(u) du , (7.33)

A sufficiently well-behaved f is recovered by the inversion,

f = F−1Ff .

We perform this process of transform and inverse transform for a function c(k)
to be defined below. The application of the Fourier transform in our context
and the outline of three steps of the subsequent analysis is symbolized as
follows:

(1)
c(k) ◦ −→ • g(u) = integral

↓ (2)

c(k) ◦ ←− • g(u) = formula
(3)

Step (1) is the forward Fourier transform (7.32) of a function c(k). The re-
sult is an integral expression g(u). In our context this integral can be solved

6 There are different conventions for the Fourier transform; for background,
see special literature, for example [Vre03]. To get used to it try Exercise 7.8.
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analytically (step (2)), which produces a formula for g(u). The inverse trans-
formation (7.33) in step (3) is approximated numerically by the Fast Fourier
Transformation (FFT), based on (C1.8). The detour (1)–(3) is worth the ef-
fort, because the FFT calculation of c(k) is faster to evaluate than the original
c(k).

Recall the characteristic function (7.21) φ of a Lévy process Xt. These
functions are the Fourier transform of the density function of X ,

φXt
(u) := E(exp(iuXt)) =

∫ ∞

−∞

eiuX

fdensityX dx = F [fdensityX ] . (7.34)

The characteristic functions φ of many processes X are known and available
as analytical expressions, for example, in [Sch03], [ConT04], [KwLW12].

In the following, we investigate a European call with vanilla payoff
Ψ(S) = (S − K)+ with an arbitrary underlying Lévy process St. The in-
tegral representation of the call’s value under the risk-neutral measure Q

is
V (St, t; K) = e−r(T−t)

EQ[Ψ(ST ) |St]

= e−r(T−t)

∫ ∞

ST =K

(ST −K) fdensity(ST ) dST

where f is the density of ST of the Lévy process starting at t with the value
St. Transform

ST = es

, K = ek

, dST = esds ; (7.35)

note that k ∈ IR. Then

V (St, t; K) = e−r(T−t)

∫ ∞

k

(es − ek)f̂(s) ds

where f̂(s) = esf(es) is the density of logS, similar as in Section 1.8.2.
Following [CaM99], in order to make the function integrable, we scale the
integral with a factor exp(αk) (a constant):

c(k) := eαke−r(T−t)

∫ ∞

k

(es − ek)f̂(s) ds = eαk

V (St, t; K) (7.36)

and denote F [c(u)] its Fourier transform. We leave the choice of α open until
later.

As outlined above, when F [c] is calculated, then the call’s value V (S, t)
is recovered from the inverse Fourier transformation,

V (St, t; ek) =
(

1
2π

∫ ∞

−∞

e−iuxF [c(u)] du
)
·e−αk

,

which can approximated efficiently by the Fast Fourier Transform (FFT).
This outlines the program of the three steps (1),(2),(3), and now we turn to
its realization.
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The Fourier transform of c(k) is

F [c(u)] =
∫ ∞

k=−∞

eiuk

c(k) dk

=
∫ ∞

−∞

eiukeαke−r(T−t)

∫ ∞

s=k

(es − ek)f̂(s) ds dk

= e−r(T−t)

∫ ∞

k=−∞

∫ ∞

s=k

e(iu+α)k(es − ek)f̂(s) ds dk

= e−r(T−t)

∫ ∞

s=−∞

∫
s

k=−∞

e(iu+α)k(es − ek)f̂(s) dk ds

where the last equation holds since

{k ≤ s < ∞| −∞ < k < ∞} = {−∞ < k ≤ s | −∞ < s < ∞} .

This leads to

F [c(u)] = e−r(T−t)

∫ ∞

−∞

f̂(s)
∫

s

−∞

[e(iu+α)k+s − e(iu+α+1)k] dk ds

= e−r(T−t)

∫ ∞

−∞

f̂(s)
[
ese(iu+α)k

iu+ α
−

e(iu+α+1)k

iu+ α+ 1

]
s

k=−∞

ds .
(7.37)

To have the integral exist, we require the factor eαk to vanish for k → −∞,
which leads to choose α > 0. That is, the factor exp(αk) amounts to a
damping of the integral. The bracketed term in (7.37) is

(iu+ α+ 1)es(iu+α+1) − (iu+ α)es(iu+α+1)

iu(2α+ 1) + α(α + 1) − u2
,

and we come up with

F [c(u)] =
e−r(T−t)

iu(2α+ 1) + α(α+ 1) − u2

∫ ∞

−∞

f̂(s)eis(u−(α+1)i) ds .

We denote the integral therein φ(u− (α+1)i), because it is the characteristic
function of the density f̂ . For φ an analytic expression is known. Hence

F [c(u)] =
e−r(T−t) φ(u− (α + 1)i)
α2 + α− u2 + iu(2α+ 1)

=: g(u) (7.38)

can be considered to be a known function g, and step (2) is completed. For
the final choice of the parameter α > 0 we further request g(u) = F [c(u)] to
be integrable as well. Since the integration is along real values of u one has
to take care that the denominator has only imaginary roots in u. The choice
of α is discussed in the literature [CaM99], [KwLW12]. Usually α = 3 works
well.
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The inverse Fourier transformation evaluates

e−αk
1
2π

∫ ∞

−∞

e−iku

g(u) du .

The integral is real, and hence its integrand is real too. Think of g from (7.38)
being split into real part and imaginary part, g(u) = g1(u) + ig2(u). Then
i(cos(ku)g2(u) − sin(ku)g1(u)) = 0, and we conclude that g1(u) is an even
function, and g2(u) is an odd function. Hence the integrand

cos(ku)g1(u) + sin(ku)g2(u)

is even, and the value of the call is

V (St, t; ek) =
e−αk

π

∫ ∞

0

e−iku

g(u) du . (7.39)

Next, the semi-infinite integration interval is truncated to finite length A.
Thereby, for most Lévy models the truncation error can be made arbitrarily
small because the characteristic function φ decays exponentially fast at infi-
nity.7 With the restriction to the integration interval 0 ≤ u ≤ A and M − 1
subintervals with equal length Δu, the discrete grid points are

uj := jΔu = j
A

M − 1
, j = 0, . . . ,M − 1 .

Choosing the trapezoidal sum (C1.2) for the quadrature, the approximation
is ∫ ∞

0

e−iku

g(u) du ≈
A

M − 1

M−1∑
j=0

βj g(uj) e−ikuj (7.40)

with weights β0 = βM−1 = 1

2
and βj = 1 for 1 ≤ j ≤M − 2. The trapezoidal

sum goes along with a sampling error of the order O(Δu2).
So far, the log-strike k = logK is not specified. The aim is to exploit the

potential of FFT, which calculates sums of the type

M−1∑
j=0

aj e−iνj
2π

M (7.41)

for complex numbers a0, . . . , aM−1, one sum for each ν. This amounts to
calculate a vector of M such sums, for ν = 0, . . . ,M − 1. Applying FFT we
gain the possibility to calculate for M strikes simultaneously. Let us calculate
the call values for the log-strike values

kν := −b+Δk · ν , ν = 0, . . . ,M − 1 , (7.42)

7 This does not hold for the VG process, see [ConT04], [KwLW12].
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7.4 Application of the Fourier Transform

for suitable values of b andΔk, which define the k-range and the strike spacing
of interest. Substituting these values kν into the above sum (7.40) produces

A

M − 1

M−1∑
j=0

βj g(uj) exp[−i(−b+Δk ν)j
A

M − 1
] .

The argument of the exponential function is

ibj
A

M − 1
− iνjΔk

A

M − 1
.

To apply FFT aiming at (7.41), steps Δk and Δu = A

M−1
must be chosen

such that
Δk

A

M − 1
= Δk Δu =

2π
M

. (7.43)

Then the sum in (7.40) is

A

M − 1

M−1∑
j=0

βjg(uj) exp[ibj
A

M − 1
] e−iνj

2π

M ,

which is the standard FFT applied to (7.41) for the complex numbers

aj := Aβjg(uj) exp[ibj
A

M − 1
] , i = 0, . . . ,M − 1 . (7.44)

This completes the calculation of a bunch of European call values: The inte-
gral in (7.39) is approximated by the FFT sum (7.41) with coefficients (7.44).
For the highly efficient calculation of the FFT sums (7.41) consult standard
literature on numerical analysis (such as [PrTVF92]), and related software
packages.

The above method amounts to a fast algorithm in case option prices are to
be calculated on a grid of many strikes, all options with the same maturity T .
The log-strike grid of the values kν is defined by (7.42) with the parameters
b and Δk, which in turn are based on A,M . By (7.43),

Δk =
2π
A

M − 1
M

.

And to cover log strikes in the at-the-moment range around k = 0, one aims
at

b =
(M − 1)Δk

2
.

Efficiency of FFT is maximal for M a power of 2. The equation (7.43) is a
limitation that requests a careful design of parameters M and A.

In this section, we have explained the classical FFT approach of Carr and
Madan [CaM99]. The Fast Fourier Transform can be applied also for early-
exercise options [LoFBO08]. A novel transform is based on Fourier-cosine

343



expansions [FaO08], which is also applied to barrier options [FaO09]. The
resulting algorithms converge exponentially fast. In summary, FFT-based
methods have shown a rich potential, in particular for option pricing under
Lévy models.

Notes and Comments

on Section 7.1:

For a critical account of Leland’s approach see [ZhZ07]. The nonlinear version
(7.4) – (7.6) is due to [HoWW94]. A piecewise linear treatment is suggested
in [ChHK04]. The paper [AvP96] discusses equation (7.5), suggesting a mo-
dification for the case γ ≥ 1, where σ̂2 would be negative for Γ < 0. For
bounds on V in case of “misspecified” volatility, see [ElKJS98]. For related
work, consult also [Gra01], [Ehr08], [GlDN10].

Apart from the one-factor case, ranges for parameters play a role also
in multiasset cases. For example, consider two assets with prices S1, S2, and
assume a correlation in the range −1 ≤ ρmin ≤ ρ ≤ ρmax ≤ 1. In the Black–
Scholes equation (6.2), the term

ρσ1σ2S1S2

∂2V

∂S1∂S2

occurs. Depending on the sign of the cross derivative ∂
2
V

∂S1∂S2
, ρ is chosen either

as ρmin or ρmax in order to characterize a “worst-case,” see [Top05].
To complete the introduction into more general models we have outlined

the Dupire equation in Appendix A6.

on Section 7.2:

For reference and examples consult [Hei10], [HeS10], [FoV12]. The assumption
of a constant c+ in Theorem 7.2 is not always easily satisfied. For example,
in the Barles and Soner model of Section 7.1.2 and a payoff with jump dis-
continuity (as digital option), c+ = c+(Δx) = O(Δx2), which affects the
assumptions of Theorem 7.2, and has strong implications on stability. Apart
from nonsmooth payoffs, also the PDE itself is typically not smooth. For
American options, the penalty term in (7.12) causes a lack of smoothness.
Also the volatility function σ̃ may be nonsmooth. This happens, for example,
in Leland’s model when VSS changes sign. Newton method then works with a
generalized derivative. The higher the degree of “non-smoothness,” the worse
the convergence rate of CN. The BDF method (7.20) is highly recommended.
An a priori check of convergence criteria is advisable.
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Exercises

on Section 7.3:

The definition of Lévy processes includes stochastic continuity. A table of
Lévy densities fL is in [Sch03] p.154. The Lévy-Khinchin representation (7.22)
is a scalar setting; [CaW04] develops analytic expressions for the characte-
ristic function of time-changed Lévy process in a general vector setting. In
this framework, Heston’s stochastic-volatility model can be represented as
time-changed Brownian motion.

For time-changed Lévy processes, consult [AnéG00], [CaGMY03], [ConT04],
[CaW04]. Time-changed Lévy processes have been successfully applied to
match empirical data. For processes with density function (Merton, VG,
NIG), Algorithm 1.18 can be applied [Que07]. Lévy-process models have been
extended by incorporating stochastic volatilities [CaGMY03], [Kal06]. A sub-
ordinator τ(t) can be constructed as integral of a square-root process.

[Pha97] investigates properties of American options. Heston presents the
characteristic function for his model in [Hes93]. His model extended by jump
diffusion [Bat96] can be cast into the above framework: in this case a two-
dimensional PDE is considered. For computational approaches see [AnA00],
[MaPS02], [BrLN04], [AlO05], [dHaFV05], [dHaFL05], [CoV05], [AlO06].

on Section 7.4:

Choosing the weights wj of Simpson’s sums instead of trapezoidal sums, the
integrations get more accurate. An application to VG is found in [CaM99].
Modifications and extensions of the above basic approach are described and
reviewed in [KwLW12]. For references on transform methods in option pri-
cing, see [FaO09].

Exercises

Exercise 7.1

Let ΔW be the increment of a Wiener process, see Section 1.6.1. Show

E(|ΔW |) =
√
Δt

√
2
π
.

Exercise 7.2 Barles–Soner Model

The differential equation of Barles and Soner is:

df(x)
dx

=
f(x) + 1

2
√
xf(x) − x

with f(0) = 0 .

a) By numerical computations, analyze the solution for −2 ≤ x ≤ 2.
b) Construct an approximating function f̂(x) in a piecewise fashion.
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Exercise 7.3 Transformation of Nonlinear Black–Scholes Models

According Section 7.2, consider the following nonlinear PDE

Vt +
1
2
σ

2(t, S, VSS)S2
VSS + (r − δ)SVS − rV + p̂max(Ψ − V, 0) = 0 ,

where σ2(t, S, VSS) depends on the particular model; r is the risk-free interest
rate and δ is the continuous dividend yield. Apply the transformation (7.13)

x = log(S/K), τ = σ
2

0
(T − t)/2, u(x, τ) = e−x

V (S, t)/K,

with K > 0 and a model-dependent parameter σ0, and derive a PDE for u.

Exercise 7.4 Payoffs of Spreads

We consider portfolios of two or more options of the same type with the same
underlying stock. K1, K2, K are strikes with K1 < K2.
a) A butterfly spread is a portfolio with

• one long call with strike K1,
• one long call with strike K2,
• two short calls with strike K = K2−K1

2
.

The payoff is

Ψ(S) =

⎧⎪⎨⎪⎩
0 for S ≤ K1

S −K1 for K1 < S ≤ K

K2 − S for K < S ≤ K2

0 for K2 ≤ S

b) A bull spread is a portfolio with
• one long call with strike K1,
• one short call with strike K2,
The payoff is

Ψ(S) =

{ 0 for S ≤ K1

S −K1 K1 < S ≤ K2

K2 −K1 K2 < S

For both spreads explain and sketch the payoff. Apply the transformation
(7.13) (Exercise 7.3) to derive the transformed payoff u∗(x). For b), apply
the transformation with K2.

Exercise 7.5 Convergence of the Fully Implicit Method

Two out of the three criteria for monotony in Theorem 7.2 are (i) and (ii).
For
a) Leland’s model of transaction costs, with parameter γ, and
b) the model of uncertain volatility with σmin ≤ σ ≤ σmax,
show that (i) and (ii) are satisfied. What are the constants c+? For b), σ− of
(7.8b) suffices.
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Exercises

Exercise 7.6

For a Lévy process Xt adapted to a filtration Ft show

E(eXt | Fs) − eXs = E(eXt−s) − eX0 .

Exercise 7.7 Project: Implementing a PIDE

Set up a computer program to solve Merton’s jump diffusion (7.30) nume-
rically. To this end, concentrate on European-style vanilla options. Set up
boundary conditions using (4.18), and use a BDF implicit scheme. Think of
how to choose xmin, xmax in relation to the strike K.
Hint: For testing the core part of the program, set the jump intensity λ = 0
and compare to the Black–Scholes value.

Exercise 7.8 Fourier Transform

Consider the Fourier transform

F [f(u)] :=
∫ ∞

−∞

e
iuy

f(y) dy .

For the example f(y) := e−a|y| and complex a show that∫
A

−A

e
iuy

f(y) dy

converges for A→ ∞ and Re(a) > 0.
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Appendix A Financial Derivatives

A1 Investment and Risk

Basic markets in which money is invested trade in particular with
equities (stocks),
bonds, and
commodities.

Front pages of The Financial Times or The Wall Street Journal open with
charts informing about the trading in these key markets. Such charts sum-
marize a myriad of buys and sales, and of individual gains and losses. The
assets bought in the markets are held in the portfolios of investors.

An easy way to buy or sell an asset is a spot contract, which is an agree-
ment on the price, assuming delivery on the same date. Typical examples
are furnished by the trading of stocks on an exchange, where the spot price
is paid the same day. On the spot markets, gain or loss, or risks are clearly
visible. — The spot contracts are contrasted with those contracts that agree
today (t = 0) to sell or buy an asset for a certain price at a certain future

time (t = T ). Historically, the first objects traded in this way have been com-
modities, such as agricultural products, metals, or oil. For example, a farmer
may wish to sell in advance the crop expected for the coming season. Such
trading has been extended to stocks, currencies and other financial instru-
ments. Today there is a virtually unlimited variety of contracts on objects
and their future state, from credit risks to weather prediction.

The future price of the underlying asset is usually unknown, it may move
up or down in an unexpected way. For example, scarcity of a product will
result in higher prices. Or the prices of stocks may decline sharply. But the
contract must fix a price today, for an exchange of asset and payment that
will happen in weeks or months. At maturity, the spot price usually differs
from the agreed price of the contract. The difference between spot price and
contract price may be significant. Hence contracts into the future are risky.
Financial risk of assets is defined as the degree of uncertainty of their return.

No investment is really free of risks. But some bonds can come close to
the idealization of being riskless. If the issuer of a bond has top ratings,
then the return of a bond at maturity can be considered safe, and its value
is known today with certainty. Such a bond is regarded as “riskless asset.”

R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-2993-6, © Springer-Verlag London Limited 2012
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Appendix A Financial Derivatives

The rate earned on a riskless asset is the risk-free interest rate. To avoid the
complication of re-investing coupons, zero-coupon bonds are considered. The
interest rate, denoted r, depends on the time to maturity T . The interest rate
r is the continuously compounded interest which makes an initial investment
S0 grow to S0erT . We assume the interest rate r to be nonnegative. Often
r > 0 will be taken constant throughout the time period 0 ≤ t ≤ T . A
candidate for r is the LIBOR1. Examples of bonds in real bond markets that
come close to our idealized risk-free bond are issued by governments of AAA
rated countries. See [Hull00] for further introduction, and consult for instance
The Wall Street Journal for market diaries.

All other assets are risky, with equities being the most prominent ex-
amples. Hedging is possible to protect against financial loss. Many hedging
instruments have been developed. Since these financial instruments depend
on the particular asset that is to be hedged, they are called derivatives. Main
types of derivatives are futures, forwards, options, and swaps2. They are ex-
plained below in some more detail. Tailoring and pricing derivatives is the
core of financial engineering. Hedging with derivatives is the way to bound
financial risks and to protect investments.

A2 Financial Derivatives

Derivatives are instruments to assist and regulate agreements on transactions
of the future. Derivatives can be traded on specialized exchanges.

Futures and forwards are agreements between two parties to buy or sell
an asset at a certain time in the future for a certain delivery price. Both par-
ties make a binding commitment, there is nothing to choose at a later time.
For forwards no premiums are required and no money changes hands until
maturity. A basic difference between futures and forwards is that futures con-
tracts are traded on exchanges and are more formalized, whereas forwards are
traded in the over-the-counter market (OTC). Also the OTC market usually
involves financial institutions. Large exchanges on which futures contracts
are traded are the Chicago Board of Trade (CBOT), the Chicago Mercantile
Exchange (CME), and the Eurex.

Options are rights to buy or sell underlying assets for an exercise price

(strike), which is fixed by the terms of the option contract. That is, the
purchaser of the option is not obligated to buy or sell the asset. This decision
will be based on the payoff, which is contingent on the underlying asset’s
behavior. The buying or selling of the underlying asset by exercising the
option at a future date (t = T ) must be distinguished from the purchase of the

1 London Interbank Offered Rate
2 A comprehensive glossary of financial terms is provided by

www.bloomberg.com/analysis
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A2 Financial Derivatives

option (at t = 0, say), for which a premium is paid. After the Chicago Board
of Options Exchange (CBOE) opened in 1973, the volume of the trading with
options has grown dramatically.

Swaps are contracts regulating an exchange of cash flows at different
future times. A common type of swap is the interest-rate swap, in which two
parties exchange interest payments periodically, typically fixed-rate payments
for floating-rate payments. Counterparty A agrees to pay to counterparty B
a fixed interest rate on some notional principal, and in return party B agrees
to pay party A interest at a floating rate on the same notional principal. The
principal itself is not exchanged. Each of the parties borrows the money at
his market. The interest payment is received from the counterparty and paid
to the lending bank. Since the interest payments are in the same currency,
the counterparties only exchange the interest differences. The swap rate is the
fixed-interest rate fixed such that the deal (initially) has no value to either
party (“par swap”). For a currency swap, the two parties exchange cash flows
in different currencies.

An important application of derivatives is hedging. Hedging means to
eliminate or limit risks. For example, consider an investor who owns shares
and wants protection against a possible decline of the price below a value
K in the next three months. The investor could buy put options on this
stock with strike K and with a maturity that matches his three months time
horizon. Since the investor can exercise his puts when the share price falls
below K, it is guaranteed that the stock can be sold at least for the price K
during the life time of the option. With this strategy the value of the stock
is protected. The premium paid when purchasing the put option plays the
role of an insurance premium. — Hedging is intrinsic for calls. The writer
of a call must hedge his position to avoid being hit by rising asset prices.
Generally speaking, options and other derivatives facilitate the transfer of
financial risks.

What kind of principle is so powerful to serve as basis for a fair valuation
of derivatives? The concept is arbitrage, or rather the assumption that arbi-
trage is not possible in an idealized market. Arbitrage means the existence of
a portfolio, which requires no investment initially, and which with guarantee
makes no loss but very likely a gain at maturity. Or shorter: arbitrage is a
self-financing trading strategy with zero initial value and positive terminal
value.

If an arbitrage profit becomes known, arbitrageurs will take advantage and
try to lock in.3 This makes the arbitrage profits shrink. In an idealized market,
informations spread rapidly and arbitrage opportunities become apparent. So
arbitrage cannot last for long. Hence, in efficient markets at most very small
arbitrage opportunities are observed in practice. For the modeling of financial
markets this leads to postulate the no-arbitrage principle: One assumes

3 This assumes that investors prefer more to less, the basis for a rational
pricing theory [Mer73].
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an idealized market such that arbitrage is ruled out. Arguments based on
the no-arbitrage principle resemble indirect proofs in mathematics: Suppose
a certain financial situation. If this assumed scenario enables constructing an
arbitrage opportunity, then there is a conflict to the no-arbitrage principle.
Consequently, the assumed scenario is impossible.

For valuing derivatives one compares the return of the risky financial
investment with the return of an investment that is free of risk. For the
comparison, one calculates the gain the same initial capital would yield when
invested in riskless bonds. To compare properly, one chooses a bond with time
horizon T matching the terms of the derivative that is to be priced. Then, by
the no-arbitrage principle, the risky investment should have the same price as
the equivalent risk-free strategy. The construction and choice of derivatives
to optimize portfolios and protect against extreme price movements is the
essence of financial engineering.

The pricing of options is an ambitious task and requires sophisticated
algorithms. Since this book is devoted to computational tools, mainly con-
centrating on options, the features of options are part of the text (Section 1.1
for standard options, and Section 6.1 for exotic options). This text will not
enter further the discussion of forwards, futures, and swaps, with one excep-
tion: We choose the forward as an example (below) to illustrate the concept
of arbitrage. For a detailed discussion of futures, forwards and swaps we refer
to the literature, for instance to [Hull00], [BaR96], [MuR97], [Wil98], [Shi99],
[Lyuu02].

A3 Forwards and the No-Arbitrage Principle

As stated above, a forward is a contract between two parties to buy or sell an
asset to be delivered at a certain time T in the future for a certain delivery
price F . The time the parties agree on the forward contract (fixing T and
F ) is set to t0 = 0. Since no premiums and no money change hands until
maturity, the initial value of a forward is zero.

The party with the long position agrees to buy the underlying asset; the
other party assumes the short position and agrees to sell the asset.

For the subsequent explanations St denotes the price of the asset in the
time interval 0 ≤ t ≤ T . To fix ideas, we assume just one interest rate r for
both borrowing or lending risk-free money over the time period 0 ≤ t ≤ T .
By the definition of the forward, at time of maturity T the party with the
long position pays F to get the asset, which is then worth ST .

Arbitrage Arguments

As will be shown next, the no-arbitrage principle enforces the forward price

to be
F = S0 erT

. (A3.1)
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A3 Forwards and the No-Arbitrage Principle

Thereby it is assumed that the asset does not produce any income (dividends)
and does not cost anything until t = T .

Let us see how the no-arbitrage principle is invoked. We ask what the fair
price F of a forward is at time t = 0, when the terms of a forward are settled.
Then the spot price of the asset is S0.

Assume first F > S0erT . Then an arbitrage strategy exists as follows: At
t = 0 borrow S0 at the interest rate r, buy the asset, and enter into a
forward contract to sell the asset for the price F at t = T . When the time
instant T has arrived, the arbitrageur completes the strategy by selling
the asset (+F ) and by repaying the loan (−S0erT ). The result is a riskless
profit of F − S0erT > 0. This contradicts the no-arbitrage principle, so
F − S0erT ≤ 0 must hold.
Suppose next the complementary situation F < S0erT . In this case an
investor who owns the asset4 would sell it, invest the proceeds at interest
rate r for the time period T , and enter a forward contract to buy the asset
at t = T . In the end there would be a riskless profit of S0erT − F > 0.
The conflict with the no-arbitrage principle implies S0erT − F ≤ 0.
Combining the two inequalities ≤ and ≥ proves the equality. [S0er1T ≤
F ≤ S0er2T in case of different rates 0 ≤ r1 ≤ r2 for lending or borrowing]

One of the many applications of forwards is to hedge risks caused by foreign
exchange.

Example (hedging against exchange rate moves)

A U.S. corporation will receive one million euro in three months (on Decem-
ber 25), and wants to hedge against exchange rate moves. The corporation
contacts a bank (“today” on September 25) to ask for the forward foreign
exchange quotes. The three-month forward exchange rate is that $1.1428 will
buy one euro, says the bank.5 Why this? For completeness, on that day the
spot rate is $1.1457. If the corporation and the bank enter into the corre-
sponding forward contract on September 25, the corporation is obligated to
sell one million euro to the bank for $1,142,800 on December 25. The bank
then has a long forward contract on euro, and the corporation is in the short
position.

Let us summarize the terms of the forward:
asset: one million euro
asset price St: the value of the asset in US $ (S0 = $1, 145, 700)
maturity T= 1/4 (three months)
delivery price F : $1,142,800 (forward price)

To understand the forward price in the above example, we need to generalize
the basic forward price S0erT to a situation where the asset produces income.

4 otherwise: short sale, selling a security the seller does not own.
5 September 25, 2003
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In the foreign-exchange example, the asset earns the foreign interest rate,
which we denote δ. To agree on a forward contract, F e−rT = S0e−δT , so

F = S0e(r−δ)T
. (A3.2)

(See [Hull00].) On the date of the example the three-month interest rate in
the U.S. was r = 1%, and in the euro world δ = 2%. So

S0e(r−δ)T = 1145700e−0.01
1
4 = 1142800

which explains the three-month forward exchange rate of the example.

A4 The Black–Scholes Equation

The Classical Equation

This appendix applies Itô’s lemma to derive the Black–Scholes equation out
of Assumption 1.2. The basic assumption of a geometric Brownian motion of
the stock price amounts to

dSt = μSt dt+ σSt dWt (A4.1)

with constant μ and σ. Consider a portfolio consisting at time t of αt shares
of the asset with value St, and of βt shares of the bond with value Bt. The
bond is assumed riskless with

dBt = rBt dt . (A4.2)

At time t the wealth process of the portfolio is

Πt := αtSt + βtBt . (A4.3)

The portfolio is supposed to hedge a European option with value Vt, and
payoff VT at maturity T . So we aim at constructing αt and βt such that the
portfolio replicates the payoff,

ΠT = VT = payoff . (A4.4)

The European option cannot be traded before maturity; neither any invest-
ment is required in 0 < t < T for holding the option nor is there any payout
stream. To compare the values of Vt and Πt, and to apply no-arbitrage argu-
ments, the portfolio should have an equivalent property. Suppose the portfo-
lio is “closed” for 0 < t < T in the sense that no money is injected into or
removed from the portfolio. This amounts to the self-financing property

dΠt = αt dSt + βt dBt . (A4.5)

That is, changes in the value of Πt are due only to changes in the prices S
or B. Equation (A4.5) is equivalent to S dαt + B dβt = 0 , indicating that
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the quantities of stocks and bonds are continuously rebalanced —certainly
an idealization.

Now the no-arbitrage principle is invoked. Replication (A4.4) and self-
financing (A4.5) imply

Πt = Vt for all t in 0 ≤ t ≤ T , (A4.6)

because both investments have the same payout stream. So the replicating
and self-financing portfolio is equivalent to the risky option. The portfolio
duplicates the risk of the option. How this fixes dynamically the quantities
αt and βt of stocks and bonds is described next.

Assuming a sufficiently smooth value function Πt = V (S, t), we infer from
Itô’s lemma (Section 1.8)

dΠ =
(
μS

∂V

∂S
+
∂V

∂t
+

1
2
σ

2
S

2
∂

2
V

∂S2

)
dt+ σS

∂V

∂S
dW . (A4.7)

On the other hand, substitute (A4.1) and (A4.2) into (A4.5) and obtain
another version of dΠ , namely,

dΠ = (αμS + βrB) dt + ασS dW . (A4.8)

Because of uniqueness, the coefficients of both versions must match. Compa-
ring the dW coefficients for σ �= 0 leads to the hedging strategy

αt =
∂V (St, t)

∂S
. (A4.9)

Matching the dt coefficients gives a relation for β, in which the stochastic
αμS terms drop out. The βB term is replaced via (A4.3) and (A4.6), which
amounts to

S
∂V

∂S
+ βB = V .

This results in the renowned Black–Scholes equation (1.2),

∂V

∂t
+

1
2
σ

2
S

2
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 .

The terminal condition is given by (A4.4).
Choosing in (A4.9) the delta hedge Δ(S, t) := α = ∂V

∂S
provides a dynamic

strategy to eliminate the risk that lies in stochastic fluctuations and in the
unknown drift μ of the underlying asset. The corresponding number of units
of the underlying asset makes the portfolio (A4.3) riskless. Hence the delta

Δ = ∂V

∂S
plays a crucial role for a perfect hedging of portfolios. Of course,

this delta hedging works under the stringent assumption that the market is
correctly described by the model defined by Assumption 1.2. But note that
a continuous rebalancing of the portfolio is not realistic in practice. Real
markets are incomplete and perfect hedges do not exist. Delta hedging only
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neutralizes the prime risk of direct exposure to the underlying. Other risks,
such as volatility risk and model risk, remain.

Having a model at hand as the Black–Scholes equation, it can be used
inversely to calculate a probability distribution that matches underlying mar-
ket prices (−→ Exercise 1.5). This calibrates the model’s crucial market pa-
rameter σ. Then, in turn, the hedging variable is calculated from the model.
Symbolically, this application of the methods can be summarized by

V
mar −→ σ −→ Δ .

The methods of option valuation are intrinsic to this process. (In reality,
hedging must be done in discrete time.)

In the above sense of eliminating risk, the modeling of V is risk neutral.
Note that in the derivation of the Black–Scholes equation the standard un-
derstanding of constant coefficients μ, σ, r was actually not used. In fact the
Black–Scholes equation holds also for time-varying deterministic functions
μ(t), σ(t), r(t) (−→ Exercise 1.19). For reference see, for example, [BaR96],
[Duf96], [HuK00], [Ste01]. As will be shown below, there is a simple analytic
formula for Δ in case of European options in the Black–Scholes model.

The Solution and the Greeks

The Black–Scholes equation has a closed-form solution. For a European call
with vanilla payoff and continuous dividend yield δ as in (4.1) (in Section
4.1) the formulas are

d1 :=
log S

K
+
(
r − δ + σ

2

2

)
(T − t)

σ
√
T − t

(A4.10a)

d2 := d1 − σ
√
T − t =

log S

K
+
(
r − δ − σ

2

2

)
(T − t)

σ
√
T − t

(A4.10b)

VC(S, t) = Se−δ(T−t)
F (d1) −Ke−r(T−t)

F (d2) . (A4.10c)

Here F denotes the standard normal cumulative distribution (with density
f , compare Exercise 1.3 or Appendix D2). The value VP(S, t) of a put is
obtained by applying the put-call parity on (A4.10c), see Exercise 1.1. For a
continuous dividend yield δ as in (4.1) the put-call parity of European options
is

VP = VC − Se−δ(T−t) +Ke−r(T−t) (A4.11a)

from which

VP = −Se−δ(T−t)
F (−d1) +Ke−r(T−t)

F (−d2) (A4.11b)

follows.
The Black-Scholes formulas (A4.10) and (A4.11b) can be applied to Euro-

pean options also for discrete dividend payments. To this end, the stock price
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A4 The Black–Scholes Equation

is reduced by the present value of all dividends during the life of the option
[Hull00], [MuR97]. For example, assume one dividend is paid with known
ex-dividend date tD (0 < tD < T ) and known amount D. Then evaluate the
Black-Scholes formula at (S̃, t) with

S̃ := S −De−r(tD−t)

instead of S, and with δ = 0.
For nonconstant but known deterministic coefficient functions σ(t), r(t),

δ(t), the closed-form solution is modified by introducing integral mean values
[Kwok98], [Øk98], [Wil98], [Zag02]. For example, replace the term r(T − t)
by the more general term

∫
T

t
r(s) ds, and replace

σ
√
T − t −→

⎛⎝ T∫
t

σ
2(s) ds

⎞⎠1/2

.

Differentiating the Black–Scholes formula gives delta, Δ = ∂V

∂S
, as

Δ = e−δ(T−t)
F (d1) for a European call,

Δ = e−δ(T−t) (F (d1) − 1) for a European put.
(A4.12)

The delta Δ of (A4.9) is the most prominent example of the “Greeks.”
Also other derivatives of V are denoted by Greek sounding names:

gamma =
∂2V

∂S2
, theta =

∂V

∂t
, vega =

∂V

∂σ
, rho =

∂V

∂r
.

As pointed out by [Wil98], vega and rho, the derivatives with respect to
parameters must be handled with care. In case of the Black–Scholes model,
analytic expressions can be obtained by differentiating (A4.10). For example,

gamma = e−δ(T−t)
f(d1)

σS
√
T − t

,

both for European put and call. For other Greeks see, for instance, [Haug98].
— The essential parts of a derivation of the Black–Scholes formula (A4.10)
can be collected from this book; see for instance Exercise 1.8 or Exercise 3.9.

Hedging a Portfolio in Case of a Jump-Diffusion Process

Next consider a jump-diffusion process as described in Section 1.9, summa-
rized by equation (1.57). The portfolio is the same as above, see (A4.3), and
we invoke the same assumptions such as replication and self-financing. Itô’s
lemma is applied in a piecewise fashion on the time intervals between jumps.
Accordingly (A4.7) is modified by adding the jumps in V with jumps sizes

ΔV := V (S
τ
+ , τ) − V (S

τ
− , τ)
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for all jump instances τj . Consequently the term ΔV dJ is added to (A4.7).
On the other hand, (1.57) leads to add the term α(q − 1)S dJ to (A4.8).
Comparing coefficients of the dW terms in both expressions of Π suggests
the hedging strategy (A4.9), namely, α = ∂V

∂S
, and allows to shorten both

versions of Π by subtracting equal terms. This is a piecewise argumentation
for hedging the diffusion, not the jumps [Wil98]. Let us denote the resulting
values of the reduced portfolios by Π̃ . Then (A4.7) leads to

dΠ̃ =
(
∂V

∂t
+

1
2
σ

2
S

2
∂2V

∂S2

)
dt+ (V (qS, t) − V (S, t)) dJ

and (A4.8) becomes

dΠ̃ =
(
rV − rS

∂V

∂S

)
dt+

∂V

∂S
(q − 1)S dJ

(The reader may check.)
Different from the analysis leading to the classical Black–Scholes equation,

dΠ̃ is not deterministic and it does not make sense to equate both versions.
The risk can not be perfectly hedged away to zero in the case of jump-diffusion
processes. That is, the market is not complete, and the equivalent martingale
measure is not unique. Following [Mer76], we apply the expectation operator
over the random variable q to both versions of Π̃ . Denote this expectation E,
with

E(X) =
∫ ∞

−∞

xfq(x) dx (A4.13)

in case qt has a density fq that obeys q > 0. The expectations of both versions
of E(Π̃) can be equated. The result is

0 =
(
∂V

∂t
+

1
2
σ

2
S

2
∂2V

∂S2
+ rS

∂V

∂S
− rV

)
dt

+ E

(
[V (qS, t) − V (S, t) − (q − 1)S

∂V

∂S
] dJ
)
.

Since all stochastic terms are assumed independent, the second part of the
equation is

E[...] E(dJ) .

Using from (1.55)
E(dJ) = λdt

and the abbreviation
c := E(q − 1)

this second part of the equation becomes

{E(V (qS, t)) − V (S, t) − cS
∂V

∂S
} λdt .
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A5 Early-Exercise Curve

The integral c = E(q − 1) does not depend on V . This number c can be cal-
culated via (A4.13) as soon as a distribution for q is stipulated. For instance,
one may assume a lognormal distribution, with relevant parameters fitted
from marked data. [The parameters are not the same as those in (1.48).]
With the precalculated number c, the resulting differential equation can be
ordered into

∂V

∂t
+

1
2
σ

2
S

2
∂2V

∂S2
+ (r − λc)S

∂V

∂S
− (λ+ r)V + λE(V (qS, t)) = 0 . (A4.14)

Note that the last term is an integral taken over the unknown solution func-
tion V (S, t). So the resulting equation is a partial integro-differential equation
(PIDE). See Section 7.3 for a numerical solution.

A5 Early-Exercise Curve

This appendix briefly discusses properties of the early-exercise curve Sf of
standard American put and call options described by the Black–Scholes mo-
del, compare Section 4.5.1. Note that this excludes discrete dividend pay-
ments. Then the following holds for the
Put:

(1) Sf is continuously differentiable for 0 ≤ t < T .
(2) Sf is nondecreasing.
(3) A lower bound is

Sf(t) >
λ2

λ2 − 1
K , where

λ2 =
1
σ2

{
−

(
r − δ −

σ2

2

)
−

√(
r − δ −

σ2

2

)2

+ 2σ2r

}
.

(A5.1)

(4) An upper bound for t < T is given by (4.23P),

Sf(t) < lim
t→T

t<T

Sf(t) = min
(
K,

r

δ
K

)
.

For proofs of (1) see [MuR97], [Kwok98]. For the smoothness of the value
function V (S, t) on the continuation region, see [MuR97]. Monotonicity of
V (S, t) with respect to time implies (2), as shown for instance in [Kwok98].

The monotonicity of Sf leads to conclude that a lower bound is obtained
by T → ∞. This limiting case is the perpetual option, compare Exercise 4.8.
Specifically for δ = 0, λ2 simplifies, and the lower bound is K q

1+q
, where
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Fig.A.1. Approximation of the early-exercise curve of an American put with K =

10, T = 40, r = 0.06, σ = 0.3, δ = 0, which leads to λ2 = −
4
3

and a lower bound of
4
7
K (output of a finite-difference calculation, not smoothed)

q := 2r

σ
2 . For an illustration of a long horizon T = 40 see Figure A.1. Simple

calculus shows that λ2 is the same as the λ2 in Exercise 4.8.

Here we give a proof of property (4). For t = T the value V Am

P
equals the

payoff, V Am

P
(S, T ) = K−S for S < K. Substitute this into the Black–Scholes

equation gives6
∂V

∂t
+ 0 − (r − δ)S − rV = 0 ,

or
∂V (S, T )

∂t
= rK − δS .

Observe that
∂V (S, T )

∂t
≤ 0

because otherwise for t close to T a contradiction to V ≥payoff results. Hence,
for t = T and S < K,

rK − δS ≤ 0 , S ≥
r

δ
K .

6 Recall the context: V means V Am

P
.
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This makes sense only for δ > r, which we assume now. Either

Sf(T ) := lim
t→T

t<T

Sf(t)

satisfies Sf(T ) = r

δ
K, or there is one of the two open intervals (i) Sf(T ) < r

δ
K,

(ii) r

δ
K < Sf(T ):

(i) There is S such that Sf(T ) < S <
r

δ
K. Then

∂V (S, T )
∂t

= rK − δS > 0 ,

which contradicts ∂V (S,T )

∂t
≤ 0.

(ii) There is S such that r

δ
K < S < Sf(T ). Then rK < δS and

K(erdt − 1) < S(eδdt − 1) .

That is, dividend earns more than interest on K, and early exercise is not
optimal. This contradicts the meaning of S < Sf(T ).

Finally we discuss the case δ ≤ r. By the definition of Sf , Sf(T ) > K cannot
happen. Assume Sf(T ) < K. Then for Sf(T ) < S < K and t = T

dV
dt︸︷︷︸
≤0

= rK − δS︸ ︷︷ ︸
>0

leads to a contradiction. So Sf(T ) = K for δ ≤ r. Both assertions are
summarized to

lim
t→T

t<T

Sf(t) = min
(
K,

r

δ
K

)
.

We conclude with listing the properties of an American
Call:

(1) Sf is continuously differentiable for 0 ≤ t < T .
(2) Sf is nonincreasing.
(3) An upper bound is

Sf(t) <
λ1

λ1 − 1
K , where

λ1 =
1
σ2

{
−

(
r − δ −

σ2

2

)
+

√(
r − δ −

σ2

2

)2

+ 2σ2r

}
.

(A5.2)

(4) A lower bound for t < T is given by (4.23C),

Sf(t) > max
(
K,

r

δ
K

)
.
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Derivations are analogous as in the case of the American put. We note from
properties (4) two extreme cases for t→ T :

put : r → 0 ⇒ Sf → 0
call : δ → 0 ⇒ Sf → ∞ .

The second assertion is another clue that for a call early exercise will never
be optimal when no dividends are paid (δ = 0). Likewise, an American put
is identical to the European counterpart in case r = 0.

By the way, the symmetry of the above properties is reflected by

Sf,call(t; r, δ)Sf,put(t; δ, r) = K
2

V
Am

C
(S, T − t;K, r, δ) = V

Am

P
(K,T − t;S, δ, r) .

(A5.3)

This put-call symmetry is derived in [McS98], [Det01]. Note that the put-
call symmetry is derived under the assumptions of the Black–Scholes model,
whereas the put-call parity for European options is independent of the un-
derlying model. For discrete dividend payments, Sf needs not be continuous
[Mey02], [VeN06].

A6 Equations With Volatility Function

An extension of the Black–Scholes equation allows for variable coefficients,

∂V

∂t
+
σ(S, t)2

2
S

2
∂2V

∂S2
+ (r(S, t) − δ(S, t))S

∂V

∂S
− r(S, t)V = 0 , (A6.1)

see, for example, [BaP96], [AnB97], [AcP05]. This assumes r, δ, σ to be de-
terministic functions. For the special case of constant coefficients, the trans-
formation (4.3) leads to the (backward) heat equation (4.2), see also Exercise
1.2. For variable coefficients this transformation can not be applied.

Variable Volatility

In many applications, r and δ can be assumed constant, and only σ is taken as
function σ(S, t), for example, in local volatility problems. In such a situation,
the transformation of the independent variables

x := log(S/K) − (r − δ)t

V̂ (x, t) := V (S, t) , σ̂(x, t) := σ(S, t)
(A6.2)

leads to
∂V̂

∂t
+

1
2
σ̂

2

(
∂2V̂

∂x2
−
∂V̂

∂x

)
− rV̂ = 0 .
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(The reader is encouraged to show this as an exercise.) This version still has
a convection term ∂V̂

∂x
, which may be the source of dispersion. With a further

transformation, the scaling V̂ (x, t) ↔ y(x, t) via

V̂ (x, t) = K exp
(
x

2
+ rt

)
y(x, t) , (A6.3)

which is an important ingredient of Exercise 1.2, we arrive at

∂y

∂t
+

1
2
σ̂

2(x, t)
(
∂2y

∂x2
−

1
4
y

)
= 0 .

Consult [Int07] for these transformations, the lack of dispersion of related
numerical schemes, and for the higher-dimensional case. Of course, for the
backward situation of the Black–Scholes scenario, in addition the time is
reversed by τ := T − t in order to obtain the well-posed problem

∂y

∂τ
−

1
2
σ̂

2(x, τ)
(
∂2y

∂x2
−

1
4
y

)
= 0 . (A6.4)

Dupire’s Equation

In practice, an important question is how to choose the local volatility func-
tion σ(S, t) such that the corresponding model (A6.4) yields results consistent
with the market. In particular, one attempts to match the volatility smile,
which amounts to a somewhat convex shape of the values of implied volatility
over the strike K.

Recall that the value function depends on

V (S, t; K,T ; r, σ, δ).

For Black and Scholes, K and T are fixed, and V (S, t) is calculated for inde-
pendent variables S, t. Dupire [Dup94] switches the role of these variables: He
keeps S, t fixed and calculates V (., .; K,T ) for independent variables K,T .

Dupire’s local volatility model is built as follows: For a general diffusion
process dS = a(S, t) dt+b(S, t) dW , consider a European call with the integral
representation

V (S0, t0; K,T ) = e
−r(T−t0)

∫ ∞

−∞

(ST −K)+ p (ST , T ;S0, t0) dST

= e
−r(T−t0)

∫ ∞

K

(ST −K) p(ST , T ;S0, t0) dST .

(A6.5)

Here p(ST , T ;S0, t0) is the probability density of a transition forward from
(S0, t0) to (ST , T ). A special case is (1.48)/(1.50), where fGBM characteri-
zes the transition with respect to GBM with a = rS, b = σS. For general
a(S, t), b(S, t), the transition probability p solves a partial differential equa-
tion, namely, the famous Fokker–Planck Equation
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∂p

∂T
−

1
2
∂

2

∂S2

T

[b(ST , T )2 ·p(ST , T ;S0, t0)]+
∂

∂ST

[a(ST , T ) ·p(ST , T ;S0, t0)] = 0

(A6.6)
with initial conditions for T = t0:

p(ST , T = t0;S0, t0) = δ(ST − S0) = Dirac’s delta function.

To deduce an equation for V depending on K,T , the partial derivatives

∂V

∂T
,
∂V

∂K
,
∂2V

∂K2

of (A6.5) are calculated, which yields expressions with partial derivatives
of p. The Fokker–Planck equation (A6.6) substitutes ∂p

∂T
. Specifically, for a

Black–Scholes type process with

a(S, t) = (r − δ)S
b(S, t) = σ(S, t)S

(A6.7)

(δ again the dividend rate), one arrives at

∂V

∂T
=

1
2
σ(K,T )2K2

∂2V

∂K2
− (r − δ)K

∂V

∂K
− δV . (A6.8)

This is the Dupire PDE. Compare it with the Black–Scholes equation, and
notice the different sign of the diffusion term (the second-order derivative) of
the Dupire equation, which reflects its forward character. The (K,T )-domain
for Dupire is T ≥ t, K > 0, and V (S, t; K,T = t) = (S − K)+ for a call is
an initial condition. Formally this is (1.1), but here K is the independent
variable and S is the constant. If a model for the local volatility function σ

is postulated, then European options of all strikes K and maturities T can
be calculated in a single “sweep” by solving the forward equation (A6.8).
Transformations analogous to (A6.2), (A6.3) again lead to (A6.4), with τ

replaced by T .
Also the inverse problem is of interest. One can show that the numerator

and the denominator of the radicand below in (A6.9) are nonnegative. Hence
the Dupire equation can be solved for σ(K,T ),

σ(K,T ) =

√
2

∂V

∂T
+ (r − δ)K ∂V

∂K
+ δV

K2 ∂
2
V

∂K
2

. (A6.9)

Upon calibrating the formula (A6.9), one must regard its sensitivity to noise
in the data, in particular, for small denominators. For example, using the
moving least squares algorithm of [GlH10], the derivatives

a1 :=
∂V

∂T
, a2 :=

∂V

∂K
, a3 :=

∂2V

∂K2
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can be extracted from market data, as well as a0 := V, all depending on
(S, t; K,T ). This gives an approximation

σ̄(K,T ) =
√

2(a1 + (r − δ)Ka2 + δa0)/(a3K
2)

of the volatility function (A6.9). After the approximation σ̄ is calibrated
based on vanilla data, it can be used to price nonvanilla instruments. There
are further approximations for σ(K,T ), consult [Wil98], [Deu02], [Fen05]. A
reference on the Fokker–Planck equation is [Ris89].
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B1 Essentials of Stochastics

This appendix lists some basic instruments and notations of probability
theory and statistics. For further foundations we refer to the literature, for
example, [Fel50], [Fisz63], [Bil79], [Mik98], [JaP03], [Shr04].

Let Ω be a sample space. In our context Ω is mostly uncountable, for
example, Ω = IR. A subset of Ω is an event and an element ω ∈ Ω is a
sample point. The sample space Ω represents all possible scenarios. Classes
of subsets of Ω must satisfy certain requirements to be useful for probability.
One assumes that such a class F of events is a σ-algebra or a σ-field1. That is,
Ω ∈ F , and F is closed under the formation of complements and countable
unions. In our finance scenario, F represents the space of events that are
observable in a market. If t denotes time, all information available until t can
be regarded as a σ-algebra Ft. Then it is natural to assume a filtration —that
is, Ft ⊆ Fs for t < s.

The sets in F are also called measurable sets. A measure on these sets is
the probability measure P, a real-valued function taking values in the interval
[0, 1] with the three axioms

P(A) ≥ 0 for all events A ∈ F , P(Ω) = 1 ,

P

(
∞⋃

i=1

Ai

)
=

∞∑
i=1

P(Ai) for any sequence of disjoint Ai ∈ F .

The triplet (Ω,F ,P) is called a probability space. An assertion is said to hold
almost everywhere (P–a.e.) if it is wrong with probability 0.

A real-valued function X on Ω is called random variable if the sets

{X ≤ x } := {ω ∈ Ω | X(ω) ≤ x } = X
−1((−∞, x])

are measurable for all x ∈ IR. That is, {X ≤ x} ∈ F . This book does not
explicitly indicate the dependence on the sample spaceΩ. We write X instead
of X(ω), or Xt or X(t) instead of Xt(ω) when the random variable depends
on a parameter t.

1 This notation with σ is not related with volatility.

R.U. Seydel, Tools for Computational Finance, Universitext,
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For x ∈ IR a distribution function F (x) of X is defined by the proba-
bility P that X ≤ x,

F (x) := P(X ≤ x) . (B1.1)

Distributions are nondecreasing, right-continuous, and satisfy the limits
lim

x→−∞
F (x) = 0 and lim

x→+∞
F (x) = 1. Every absolutely continuous distribu-

tion F has a derivative almost everywhere, which is called density function.
For all x ∈ IR a density function f has the properties f(x) ≥ 0 and

F (x) =

x∫
−∞

f(t) dt . (B1.2)

To stress the dependence on X , the distribution is also written FX and the
density fX . If X has a density f then the kth moment is defined as

E(Xk) :=

∞∫
−∞

x
k

f(x) dx =

∞∫
−∞

x
k dF (x) , (B1.3)

provided the integrals exist. The most important moment of a distribution is
the expected value or mean

μ := E(X) :=
∫ ∞

−∞

xf(x) dx . (B1.4)

The variance is defined as the second central moment

σ
2 := Var(X) := E((X − μ)2) =

∫ ∞

−∞

(x − μ)2f(x) dx . (B1.5)

A consequence is
σ

2 = E(X2) − μ
2
.

The expectation depends on the underlying probability measure P, which is
sometimes emphasized by writing EP. Here and in the sequel we assume that
the integrals exist. The square root σ =

√
Var(X) is the standard deviation

of X . For α, β ∈ IR and two random variables X , Y on the same probability
space, expectation and variance satisfy

E(αX + βY ) = αE(X) + βE(Y )

Var(αX + β) = Var(αX) = α
2
Var(X) .

(B1.6)

The covariance of two random variables X and Y is

Cov(X,Y ) := E ((X − E(X))(Y − E(Y ))) = E(XY ) − E(X)E(Y ) ,

from which

Var(X ± Y ) = Var(X) + Var(Y ) ± 2Cov(X,Y ) (B1.7)
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B1 Essentials of Stochastics

follows. More general, the covariance between the components of a vector X

is the matrix

Cov(X) = E[(X − E(X))(X − E(X))tr ] = E(XXtr) − E(X)E(X)tr , (B1.8)

where the expectation E is applied to each component. The diagonal carries
the variances of the components Xi. Back to the scalar world: Two random
variables X and Y are called independent if

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) .

Independent variables are uncorrelated. For independent random variablesX
and Y the equations

E(XY ) = E(X)E(Y ) ,
Var(X + Y ) = Var(X) + Var(Y )

are valid; analogous assertions hold for more than two independent random
variables. For convex functions φ, Jensen’s inequality holds:

φ(E(X)) ≤ E(φ(X)) .

Normal distribution (Gaussian distribution): The density of the nor-
mal distribution is

f(x) =
1

σ
√

2π
exp
(
−

(x− μ)2

2σ2

)
. (B1.9)

X ∼ N (μ, σ2) means: X is normally distributed with expectation μ and
variance σ2. An implication is Z = X−μ

σ
∼ N (0, 1), which is the standard

normal distribution, or X = σZ+μ ∼ N (μ, σ2). The values of the correspon-
ding distribution function F (x) can be approximated by analytic expressions
(−→ Appendix D2) or numerically (−→ Exercise 1.3). For multidimensional
Gaussian, see Section 2.3.3.
Uniform distribution over an interval a ≤ x ≤ b:

f(x) =
1

b− a
for a ≤ x ≤ b ; f = 0 elsewhere. (B1.10)

This uniform distribution has expected value 1

2
(a+b) and variance 1

12
(b−a)2.

If the uniform distribution is considered over a higher-dimensional domain
D, then the value of the density is is the inverse of the volume of D,

f =
1

vol(D)
· 1D .

For example, on a unit disc we have f = 1/π.
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Estimates of mean and variance of a normally distributed random variable
X from a sample of M realizations x1, ..., xM are given by

μ̂ : =
1
M

M∑
k=1

xk

ŝ
2 : =

1
M − 1

M∑
k=1

(xk − μ̂)2 .

(B1.11)

These expressions of the sample mean μ̂ and the sample variance ŝ2 satisfy
E(μ̂) = μ and E(ŝ2) = σ2. That is, μ̂ and ŝ2 are unbiased estimates. For
the computation see Exercise 1.4, or [PrTVF92]. The covariance (B1.8) is
calculated analogously.
Central Limit Theorem: Suppose X1, X2, ... are independent and identi-
cally distributed (i.i.d.) random variables, and μ := E(Xi), Sn :=

∑
n

i=1
Xi,

σ2 = E(Xi − μ)2. Then for each a

lim
n→∞

P

(
Sn − nμ

σ
√
n

≤ a

)
=

1
√

2π

∫
a

−∞

e
−z

2
/2 dz (= F (a)). (B1.12)

As a consequence, the probability that μ̂ hits —for large enough n— the
interval

μ− a
σ
√
n
≤ μ̂ ≤ μ+ a

σ
√
n

is F (a)−F (−a) = 2F (a)− 1. For example, a = 1.96 leads to a probability of
0.95. That is, the 95% confidence interval has a (half) width of about 2σ/

√
n.

The weak law of large numbers states that for all ε > 0

lim
n→∞

P

(∣∣∣∣Sn

n
− μ

∣∣∣∣ > ε

)
= 0 ,

and the strong law says P(lim
n

Sn

n
= μ) = 1.

For a discrete probability space the sample space Ω is countable. The ex-
pectation and the variance of a discrete random variable X with realizations
xi are given by

μ = E(X) =
∑
ω∈Ω

X(ω)P(ω) =
∑

i

xi P(X = xi)

σ
2 =

∑
i

(xi − μ)2 P(X = xi) .
(B1.13)

Occasionally, the underlying probability measure P is mentioned in the nota-
tion. For example, a Bernoulli experiment2 with Ω = {ω1, ω2} and P(ω1) = p

has expectation

2 repeated independent trials, where only two possible outcomes are possi-
ble for each trial, such as tossing a coin
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EP(X) = pX(ω1) + (1 − p)X(ω2) .

The probability that for n Bernoulli trials the event ω1 occurs exactly k times,
is

P(X = k) = bn,p(k) :=
(
n

k

)
p

k(1 − p)n−k for 0 ≤ k ≤ n . (B1.14)

The binomial coefficient defined as(
n

k

)
=

n!
(n− k)!k!

states in how many ways k elements can be chosen out of a population of
size n. For the binomial distribution bn,p(k) the mean is μ = np, and the
variance σ2 = np(1 − p). The probability that event ω1 occurs at least M
times is

P(X ≥M) = Bn,p(M) :=
n∑

k=M

(
n

k

)
p

k(1 − p)n−k

. (B1.15)

This follows from the axioms of the probability measure.
For the Poisson distribution the probability that an event occurs exactly
k times within a specified (time) interval is given by

P(X = k) =
ak

k!
e
−a for k = 0, 1, 2, . . . (B1.16)

and a constant a > 0. Its mean and variance are both a.
Convergence in the mean: A sequence Xn is said to converge in the
(square) mean to X , if E(X2

n
) < ∞, E(X2) < ∞ and if

lim
n→∞

E((X −Xn)2) = 0 .

A notation for convergence in the mean is

l.i.m.n→∞Xn = X .

B2 More Advanced Topics

General Itô Formula

Let dXt = a(.)dt + b(.)dWt, where Xt is n-dimensional, a(.) too, and b(.)
(n × m)matrix and Wt m-dimensional, with uncorrelated components, see
(1.42). Let g be twice continuously differentiable, defined for (X, t) with values
in IR. Then g(X, t) is an Itô process with
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dg =
[
∂g

∂t
+ g

tr

x
a+

1
2

trace (btrgxxb)
]

dt+ g
tr

x
b dWt . (B2.1)

gx is the gradient vector of the first-order partial derivatives with respect
to x, and gxx is the matrix of the second-order derivatives, all evaluated at
(X, t). The matrix btrgxxb is m×m. (Recall that the trace of a matrix is the
sum of the diagonal elements.)

(B2.1) is derived via Taylor expansion. The linear terms g
tr

x
dX are

straightforward. The quadratic terms are

1
2

dXtr

gxx dX ,

from which the order dt terms remain

1
2
(b dW )tr

gxxb dW =
1
2

dW tr

b
tr

gxxb dW =:
1
2
dW

tr

AdW .

These remaining terms are

1
2

trace (A) dt .

A matrix manipulation shows that the elements of btrgxxb are

n∑
i=1

n∑
j=1

gxixj
bilbjk for l, k = 1, . . . ,m .

This is different from bb
tr
gxx, but the traces are equal:

trace (btrgxxb) = trace (bbtrgxx) =
∑
i,j

∂2g

∂xi∂xj

m∑
k=1

bikbjk︸ ︷︷ ︸
=:cij

.

Consult also [Øk98].

Exercise: Let X be vector and Y scalar, where dX = a1 dt + b1 dW , dY =
a2 dt+ b2 dW , and consider g(X,Y ) := XY . Show

d(XY ) = Y dX +X dY + dX dY
= (Xa2 + Y a1 + b1b2) dt+ (Xb2 + Y b1) dW .

(B2.2)

Application:

dS = rS dt+ σS dŴ ⇒ d(e−rt

S) = e
−rt

σS dŴ (B2.3)

for any Wiener process Ŵ .
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Filtration of a Stochastic Process

The filtration of a Brownian motion is defined as

FW

t
:= σ{Ws | 0 ≤ s ≤ t} . (B2.4)

Here σ{.} denotes the smallest σ-algebra containing the sets put in braces.
FW

t
is a model of the information available at time t, since it includes every

event based on the history of Ws, 0 ≤ s ≤ t. The null sets N are included
in the sense Ft := σ(FW

t
∪N ) (“augmented”). In the same way, the natural

filtration of a general stochastic process X is built.

Conditional Expectation

We recall conditional expectation because it is needed for martingales. Let G
be a sub σ-algebra of F .

E(X | G) is defined to be the (unique) G-measurable random variable Y with
the property

E(XZ) = E(Y Z)

for all G-measurable Z (such that E(XZ) < ∞). This is the conditional
expectation of X given G. Or, following [Doob53], an equivalent definition is
via ∫

A

E(Y | G) dP =
∫

A

Y dP for all A ∈ G .

In case E(X | Y ), set G = σ(Y ).
For properties of conditional expectation consult, for example, [Mik98],
[Shr04].

Martingales

Assume the standard scenario (Ω,F ,Ft,P) with a filtration Ft ⊂ F .

Definition: Ft-Martingale Mt with respect to P is a process, which is
“adapted” (that is, Ft-measurable), E(|Mt|) < ∞, and

E(Mt | Fs) = Ms (P-a.s.) for s ≤ t . (B2.5)

The martingale property means that at time instant s with given information
set Fs all variations of Mt for t > s are unpredictable; Ms is the best forecast.
The SDE of a martingale has no drift term.

Examples

any Wiener process Wt ,
W 2

t
− t for any Wiener process Wt ,

exp(λWt −
1

2
λ2t) for any λ ∈ IR and any Wiener process Wt ,

Jt − λt for any Poisson process Jt with intensity λ.
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For martingales, consult for instance [Doob53], [Nef96], [Øk98], [Shi99],
[Pro04], [Shr04].

For an adapted process γ define a process Zγ

t
by

Z
γ

t
:= exp

(
−

1
2

∫
t

0

γ
2

s
ds−

∫
t

0

γs dWs

)
. (B2.6)

Since Z0 = 1, the integral equation

logZt = logZ0 −
1
2

t∫
0

γ
2

s
ds−

t∫
0

γs dWs

follows, which is the SDE

d(logZt) = (0 −
1
2
γ

2

t
) dt− γt dWt .

This is the Itô SDE for logZt when Z solves the drift-free dZt = −Ztγt dWt,
Z0 = 1. In summary, Zt is the unique Itô process such that dZt = −Ztγt dWt,
Z0 = 1. Let Zγ be a martingale. From the martingale properties, E(Zγ

T
) =

E(Zγ

0
) = 1. Hence the Radon-Nikodym framework assures that an equivalent

probability measure Q(γ) can be defined by

dQ(γ)
dP

= Z
γ

T
or Q(A) :=

∫
A

Z
γ

T
dP . (B2.7)

Girsanov’s Theorem

Suppose a process γ is such that Zγ is a martingale. Then

W
γ

t
:= Wt +

∫
t

0

γs ds (B2.8)

is a Wiener process and martingale under Q(γ).

B3 State-Price Process

Normalizing

A fundamental result of Harrison and Pliska [HaP81] states that the existence
of a martingale implies an arbitrage-free market. This motivates searching for
a martingale. Since martingales have no drift term, we attempt to construct
SDEs without drift.

Let Xt be a vector of asset prices, and bt the corresponding vector of a
trading strategy. Then the scalar product btr

t
Xt represents the wealth of the

portfolio. The trading strategy is self-financing when d(btrX) = b
trdX .
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B3 State-Price Process

Definition: A scalar positive Itô process Yt with the property that the pro-
duct YtXt has zero drift is called state-price process or pricing kernel or
deflator for Xt.

The importance of state-price processes is highlighted by the following theo-
rem.

Theorem: Assume that for Xt a state-price process Yt exists, b is self-
financing, and Y b

tr
X is bounded below. Then

(a) Y btrX is a martingale, and
(b) the market does not admit self-financing arbitrage strategies.
([Nie99], p.148)

Sketch of Proof:

(a) Y is a state-price process, hence there exists σ such that d(YtXt) = σ dWt

(zero drift). By Itô’s lemma,

d(Y btrX) = Y d(btrX) + dY btrX + dY d(btrX) .

(B2.2) and the self-financing property imply

d(Y btrX) = Y btr dX + dY btrX + dY btr dX
= btr[Y dX + dY X + dY dX ]
= btr d(XY ) = btrσ dW =: σ̂ dW ,

hence zero drift of Y btrX .

It remains to show that Y btrX is a martingale.
Because of the boundedness, Z̃ := Y btrX−c is a positive scalar Itô process
for some c, with zero drift. For every such process there is a γ̃ such that
Z̃ has the form

Z̃t = Z̃0Z
γ̃

t
.

Hence Y b
tr
X = Z̃ + c has the same properties as Z

γ̃ , namely, it is a
supermartingale. The final step is to show E(Zt) =constant. Now Q is
defined via (B2.7). (The last arguments are from martingale theory.)

(b) Assume arbitrage in the sense

b
tr

0
X0 = 0 , P(btr

t
Xt ≥ 0) = 1 ,

P(btr
t
Xt > 0) > 0 for some fixed t .

For that t:
btrX > 0 ⇒ Y btrX > 0 .

Now EQ(Y btrX) > 0 is intuitive. This amounts to

EQ(Y btrX | F0) > 0 .

Because Y btrX is a martingale, Y0b
tr

0
X0 > 0 follows. This contradicts

b
tr

0
X0 = 0, so the market is free of arbitrage.
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Existence of a State-Price Process

In order to discuss the existence of a state-price process we investigate the
drift term of the product YtXt. To this end take X as satisfying the vector
SDE

dX = μ
X dt+ σ

X dW .

The coefficient functions μX and σX may vary with X . If no confusion arises,
we drop the superscriptX . Recall (−→ Exercise 1.18) that each scalar positive
Itô process must satisfy

dY = Y αdt+ Y β dW

for some α and β, where β and W can be vectors (β a one-row matrix).
Without loss of generality, we take the SDE for Y in the form

dY = −rY dt− Y γ dW . (B3.1)

(We leave the choice of the one-row matrix γ still open.) Itô’s lemma (B2.1)
allows to calculate the drift of Y X . By (B2.2) the result is the vector

Y (μ− rX − σγtr) .

Hence Y is a state-price process for X if and only if

μ
X − rX = σ

X

γtr (B3.2)

holds. This is a system of n equations for the m components of γ .

Special case geometric Brownian motion: For scalar X = S and W , μX = μS,
σX = σS, (B3.2) reduces to

μ− r = σγ .

Given μ, σ �= 0, r, the equation (B3.2) determines γ. (As explained in Section
1.7.3, γ is called the market price of risk.)

Discussion whether (B3.2) admits a (unique) solution:

Case I: unique solution γ, and hence a unique state-price process.

Case II: multiple solutions: no arbitrage, but there are contingent claims
that cannot be hedged.

Case III: no solution: The market admits arbitrage.

A market is said to be complete, if there is a unique martingale measure (Case
I). This is equivalent to the statement that any contingent claim can be rep-
licated with a self-financing portfolio of traded assets. Otherwise the market
is called incomplete. As seen in Appendix A4, the Black–Scholes market is
complete, its price is unique. Models with jump processes are incomplete.

A solution of (B3.2) for full rank of the matrix σ is given by
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B3 State-Price Process

γ
∗ := (μ− rX)tr(σσtr)−1

σ ,

which satisfies minimal length γ∗γ∗tr ≤ γγtr for any other solution γ of (B3.2),
see [Nie99].

Note that (B3.2) provides zero drift of Y X but is not sufficient for Y X to
be a martingale. But it is “almost” a martingale; a small additional condition
suffices. Those trading strategies b are said to be admissible if Y btrX is a
martingale.3 There is ample literature on these topics; we just name [ReY91],
[BaR96], [Duf96], [MuR97], [Nie99], [ConT04].

Application: Derivative Pricing Formula for European Options

Let Xt be a vector price process, and b a self-financing trading strategy such
that a European claim C is replicated. That is, for Vt = b

tr

t
Xt the payoff is

reached: VT = btr
T
XT = C. (Compare Appendix A4 for this argument.) We

conclude from the above Theorem and from (B2.5)

Ytb
tr

t
Xt = EQ(YT b

tr

T
XT | Ft) ,

or
Vt =

1
Yt

EQ(YTC | Ft) .

Specifically for the Black–Scholes model with C = Ψ(ST ), the relation
EQ(YTC | F0) = EQ(YTC) holds, see [LaL96] p. 69, or [HuK00] p. 136. This
gives the value of European options as

V0 =
1
Y0

EQ(YTC) .

This result is basic for Monte Carlo simulation, compare Subsection 3.5.1. Yt

represents a discounting process, for example, e−rt. (Other discounting pro-
cesses are possible, as long as they are tradable. They are called numeraires.)
For a variable interest rate rs,

Vt = EQ(exp(−
∫

T

t

rs ds)C | Ft)

In the special case r and γ constant, Zt = exp(− 1

2
γ2t− γWt) and

V (t)
ert

= EQ

(
C

erT

| Ft

)
⇒ V (t) = e

−r(T−t)
EQ(C | Ft) .

3 Sufficient is that Y btrX be bounded below, such that it can not become
arbitrarily negative. This rules out the “doubling strategy.” For our purpose,
we may consider the criterion as technical. [Gla04] on p.551: “It is common
in applied work to assume that” a solution to an SDE with no drift term is
a martingale.

377



Appendix C Numerical Methods

C1 Basic Numerical Tools

This appendix briefly describes numerical methods used in this text. For
additional information and detailed discussion we refer to the literature, for
example to [Sch89], [HäH91], [PrTVF92], [StB96], [GoV96], [QuSS00].

Condition

Suppose a function f(x) is to be evaluated. When a small change Δx in x

produces a large change Δf in f , we call the evaluation of f an ill-conditioned

problem. This characterization expressing low opinion is justified in case the
changes represent errors. Taylor expansion

f(x+Δx) = f(x) + f
′(x)Δx +

1
2!
f
′′(x)Δx2 +O(Δx3)

leads to

Δf =
df(x)

dx
Δx+O(Δx2) .

Hence the derivative df(x)

dx
is the amplification factor of Δx, also called the

absolute condition number. Accuracy in the sense of correct digits is measured
by the relative errors

εx :=
Δx

x
, εf :=

Δf

f
.

From the above we obtain the amplification factor in the relative changes,
with

εf ≈
df(x)

dx
x

f
εx .

In terms of error analysis, small condition numbers are desirable. But there
are applications where a large value is welcome.

Example

Let V (S) denote the price of an option with underlying S. The number

l :=
∂V

∂S

S

V
, with εV ≈ l · εS

R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-2993-6, © Springer-Verlag London Limited 2012
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Appendix C Numerical Methods

measures how much a rise of εS percent in S is amplified to a rise of εV percent
in V . (Here a large factor l may not be judged as “ill.”) In our context, this
relative condition number l is called leverage. Notice that “Delta” = ∂V

∂S
is a

factor in the leverage.

Interpolation

Suppose n+1 pairs of numbers (xi, yi), i = 0, 1, ..., n are given, with xi �= xj

for i �= j. These points in the (x, y)-plane are to be connected by a curve. An
interpolating function Φ(x) satisfies

Φ(xi) = yi for i = 0, 1, ..., n .

Depending on the choice of the class of functions Φ we distinguish different
types of interpolation. A prominent example is furnished by polynomials,

Φ(x) = Pn(x) = a0 + a1x+ ...+ anx
n ;

the degree n matches the number n+ 1 of points. The evaluation of a poly-
nomial is done by the nested multiplication given by

Pn(x) = (...((anx+ an−1)x+ an−2)x + ...+ a1)x + a0 ,

which is also called Horner’s method. A classical approach of polynomial
interpolation is based on the Lagrange polynomials

Lk(x) :=
n∏

i=0

i�=k

x− xi

xk − xi

,

for k = 0, . . . , n. By construction, the Lk(x) are of degree n, and Lk(xk) = 1,
Lk(xi) = 0 for i �= k. Clearly, the polynomial

P (x) := L0(x)y0 + ...+ Ln(x)yn

interpolates P (xi) = yi for i = 0, ..., n. To calculate P (x) for a given x, use
Neville’s algorithm.

In case many points are given, the interpolation with one polynomial is
generally not advisable since the high degree goes along with strong oscil-
lations. A piecewise approach is preferred where low-degree polynomials are
defined locally on one or more subintervals xi ≤ x ≤ xi+1 such that globally
certain smoothness requirements are met. The simplest example is obtained
when the points (xi, yi) are joined by straight-line segments in the order
x0 < x1 < ... < xn. The resulting polygon is globally continuous and linear
over each subinterval. For the error of polygon approximation of a function
we refer to Lemma 5.12. A C2-smooth interpolation is given by the cubic
spline using locally defined third-degree polynomials

Si(x) := ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3 for xi ≤ x < xi+1
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that interpolate the points and are C2-smooth at the nodes xi.
Interpolation is applied for graphical illustration, numerical integration,

and for solving differential equations. Generally interpolation is used to ap-
proximate functions.

Rational Approximation

Rational approximation is based on

Φ(x) =
a0 + a1x+ ...+ anx

n

b0 + b1x+ ...+ bmx
m

. (C1.1)

Rational functions are advantageous in that they can approximate functions
with poles. If the function that is to be approximated has a pole at x = ξ,
then ξ must be zero of the denominator of Φ.

Quadrature

Approximating the definite integral∫
b

a

f(x) dx

is a classic problem of numerical analysis. Simple approaches replace the
integral by ∫

b

a

Pm(x) dx ,

where the polynomial Pm(x) approximates the function f(x). The resulting
formulas are called quadrature formulas. For example, an equidistant partition
of the interval [a, b] into m subintervals defines nodes xi and support points
(xi, f(xi)), i = 0, . . . ,m for interpolation. After integrating the resulting
polynomial Pm(x), the Newton-Cotes formulas result. The simplest case m =
1 defines the trapezoidal rule. We note in passing that the trapezoidal rule is
also applied to differential equations ẏ = f(t, y). Derived from their equivalent
integral equation, the discretized step

y(t+ h) = y(t) +
h

2
[f(t, y(t)) + f(t+ h, y(t+ h))]

results.
For quadrature, a partition of the interval can be used favorably. Applying

the trapezoidal rule in each of n subintervals of length

h =
b− a

n

leads to the composite formula of the composite trapezoidal sum

T (h) := h

[
f(a)

2
+ f(a+ h) + ...+ f(b− h) +

f(b)
2

]
. (C1.2)
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The error of T (h) satisfies a quadratic expansion

T (h) =
∫

b

a

f(x) dx+ c1h
2 + c2h

4 + ... ,

with a number of terms depending on the differentiability of f , and with con-
stants ci independent of h. This asymptotic expansion is fundamental for the
high accuracy that can be achieved by extrapolation. Extrapolation evaluates
T (h) for a few h, for example, obtained by h0, h1 = h0

2
, hi = hi−1

2
. Based on

the values Ti := T (hi), an interpolating polynomial T̃ (h2) is calculated with
T̃ (0) serving as approximation to the exact value T (0) of the integral.

For f ∈ C2[a, b], the error behavior reflected by the above expansion can
be simplified to

|T (h) −

b∫
a

f(x) dx| ≤ c h
2
,

or written even shorter with the Landau symbol:

The error is of the order O(h2) .

Zeros of Functions

The aim is to calculate a zero x∗ of a function f(x). An approximation is
constructed in an iterative manner. Starting from some suitable initial guess
x0 a sequence x1, x2, . . . is calculated such that the sequence converges to x∗.
A classical approach is Newton’s method, which calculates the iterates by

xk+1 = xk −
f(xk)
f ′(xk)

.

In the vector case a system of linear equations needs to be solved in each
step,

Df(xk)(xk+1 − xk) = −f(xk) , (C1.3)

where Df denotes the Jacobian matrix of all first-order partial derivatives.

Example from Finance

Suppose a three-year bond with a principal of $100 that pays a 6% coupon
annually. Further assume zero rates of 5.8% for the first year, 6.3% for a
two-year investment, and 6.4% for the three-year maturity. Then the present

value (sum of all discounted future cashflows) is

6e−0.058 + 6e−0.063∗2 + 106e−0.064∗3 = 98.434

The yield to maturity (YTM) is the percentage rate of return y of the bond,
when it is bought for the present value and is held to maturity. The YTM
for the above example is the zero y of the cubic equation
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0 = 98.434− 6e−y − 6e−2y − 106e−3y

which is 0.06384, or 6.384%, obtained with one iteration of Newton’s method
(C1.3), when started with 0.06 .

Convergence

There are modifications and alternatives to Newton’s method. Different me-
thods are distinguished by their convergence speed. Note that convergence
is not guaranteed for any arbitrary choice of x0. In the scalar case, bisec-

tion is a safe but slowly converging method. Newton’s method for sufficiently
regular problems shows fast convergence locally. That is, the error decays
quadratically in a neighborhood of x∗,

‖xk+1 − x
∗‖ ≤ C‖xk − x

∗‖p for p = 2

for some constant C. This holds for an arbitrary vector norm ‖x‖ such as

‖x‖2 :=
(∑

i

x
2

i

)1/2

(Euclidian norm)

‖x‖∞ := max
i

|xi| (maximum norm),

(C1.4)

i = 1, . . . , n for x ∈ IRn.
The derivative f ′(xk) can be approximated by difference quotients. If the

difference quotient is based on f(xk) and f(xk−1), in the scalar case, the
secant method

xk+1 = xk −
xk − xk−1

f(xk) − f(xk−1)
f(xk) (C1.5)

results. It requires two initial guesses x0 and x1 to start the iteration. The
secant method is generally faster than Newton’s method if the speed is mea-
sured with respect to costs in evaluating f(x) or f ′(x).

Gerschgorin’s Theorem

A criterion for localizing the eigenvalues of a matrix A with elements
aij , i, j = 1, . . . , n is given by Gerschgorin’s theorem: Each eigenvalue lies
in the union of the discs

Dj := { z complex and |z − ajj | ≤
n∑

k=1

k �=j

|ajk| }

(j = 1, ..., n). The centers of the discs Dj are the diagonal elements of A, and
the radii are given by the off-diagonal row sums (absolute values).

Triangular Decomposition

Let L denote a lower-triangular matrix (where the elements lij satisfy lij = 0
for i < j) and R an upper-triangular matrix (with elements rij = 0 for
i > j); the diagonal elements of L satisfy l11 = ... = lnn = 1. Matrices
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A, L, R are supposed to be of size n × n and vectors x, b, ... have n com-
ponents. Frequently, numerical methods must solve one or more systems of
linear equations

Ax = b .

A well-known direct method to solve this system is Gaussian elimination.
First, in a “forward”-phase, an equivalent system

Rx = b̂

is calculated. Then, in a “backward”-phase starting with the last com-
ponent xn, all components of x are calculated one by one in the order
xn, xn−1, . . . , x1. Gaussian elimination requires 2

3
n3 +O(n2) arithmetic ope-

rations for full matrices A. With this count of O(n3), Gaussian elimination
must be considered as an expensive endeavor, and is prohibitive for large va-
lues of n. (For alternatives, see iterative methods below in Appendix C2.) The
forward phase of Gaussian elimination is equivalent to an LR-decomposition.
This means the factorization into the product of two triangular matrices L,R
in the form

PA = LR .

Here P is a permutation matrix arranging for an exchange of rows that cor-
responds to the pivoting of the Gaussian algorithm. The LR-decomposition
exists for all nonsingular A. After the LR-decomposition is calculated, only
two equations with triangular matrices need to be solved,

Ly = Pb and Rx = y .

Tridiagonal Matrices

For tridiagonal matrices the LR-decomposition specializes to an algorithm
that requires only O(n) operations, which is inexpensive. Since several of
the matrices in this book are tridiagonal, we include the algorithm. Let the
tridiagonal system Ax = b be in the form⎛⎜⎜⎜⎜⎝

α1 β1 0
γ2 α2 β2

. . . . . . . . .
γn−1 αn−1 βn−1

0 γn αn

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x1

x2

...
xn−1

xn

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
b1

b2
...

bn−1

bn

⎞⎟⎟⎟⎟⎠ . (C1.6)

Starting the Gaussian elimination with the first row to produce zeros in the
subdiagonal during a forward loop, the algorithm is as follows:
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α̂1 := α1, b̂1 := b1

(forward loop) for i = 2, . . . , n :

α̂i = αi − βi−1

γi

α̂i−1

, b̂i = bi − b̂i−1

γi

α̂i−1

xn :=
b̂n

α̂n

(backward loop) for i = n− 1, . . . , 1 :

xi =
1
α̂i

(b̂i − βixi+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(C1.7)

Here the “new” elements of the equivalent triangular system are indicated
with a “hat;” the necessary checks for nonsingularity (α̂i−1 �= 0) are omitted.
The algorithm (C1.7) needs about 8n operations. If one would start Gaussian
elimination from the last row and produces zeros in the superdiagonal, an
RL-decomposition results. The reader may wish to formulate the related
backward/forward algorithm as an exercise.

Cholesky Decomposition

A real matrix A is called symmetric if Atr = A, and is called positive definite,
if xtrAx > 0 for all x �= 0. For symmetric positive definite matrices there is
exactly one lower-triangular matrix L with positive diagonal elements such
that

A = LLtr .

Here the diagonal elements of L are not normalized. For a computer program
of Cholesky decomposition see [PrTVF92].

Power Method

Assume an (n× n) matrix A with eigenvalues λj satisfying

|λ1| > |λ2| ≥ . . . ≥ |λn|.

Then λ1 is called dominant eigenvalue. Its eigenvector v (i.e., Av = λ1v and
v �= 0) can be approximated iteratively by the power method: Start from any
initial vector x(0) �= 0 and iterate for k = 0, 1, 2, . . .

x
(k+1) :=

z

‖z‖
, where z := Ax

(k)

for any vector norm ‖ ‖. The vectors x(k) converge towards v for k → ∞,
and the quotients x(k+1)

j
/x

(k)

j
for any index j such that x(k)

j
�= 0 converge

to λ1. The general method for calculating all eigenvalues of a matrix is the
QR-algorithm.
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Fast Fourier Transform

A powerful tool is the Fast Fourier Transform (FFT). It transforms two
strings of complex numbers onto each other,

g0, ..., gn−1 ←→ c0, ..., cn−1 .

Typically n is large. FFT is based on the equivalence

cν =
1
n

n−1∑
j=0

gje
−iνj

2π

n ⇐⇒ gj =
n−1∑
ν=0

cνe
iνj

2π

n (C1.8)

for ν, j = 0, 1, ..., n−1. The FFT algorithm succeeds in O(n logn) operations,
see [PrTVF92].

C2 Iterative Methods for Ax = b

The system of linear equations Ax = b in IRn can be written

Mx = (M −A)x + b ,

where M is a suitable matrix. For nonsingular M the system Ax = b is
equivalent to the fixed-point equation

x = (I −M
−1
A)x +M

−1
b ,

which leads to the iteration

x
(k+1) = (I −M

−1
A︸ ︷︷ ︸

=:B

)x(k) +M
−1
b . (C2.1)

The computation of x(k+1) is done by solving the system of equations
Mx(k+1) = (M − A)x(k) + b. Subtracting the fixed-point equation and app-
lying Lemma 4.2 shows

convergence ⇐⇒ ρ(B) < 1 ;

ρ(B) is the spectral radius of matrix B. For this convergence criterion there
is a sufficient criterion that is easy to check. Natural matrix norms satisfy
‖B‖ ≥ ρ(B). Hence ‖B‖ < 1 implies convergence. Let bij denote the elements
of B. Application to the matrix norms

‖B‖∞ = max
i

n∑
j=1

|bij | ,

‖B‖1 = max
j

n∑
i=1

|bij | ,
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produces sufficient convergence criteria: The iteration converges if

n∑
j=1

|bij | < 1 for 1 ≤ i ≤ n

or if
n∑

i=1

|bij | < 1 for 1 ≤ j ≤ n .

By obvious reasons these criteria are called row sum criterion and column
sum criterion. The preconditioner matrix M is constructed such that rapid
convergence of (C2.1) is achieved. Further, the structure of M must be simple
so that the linear system is easily solved for x(k+1).

Simple examples are obtained by additive splitting of A into the form
A = D − L− U , with

D diagonal matrix,
L strict lower-triangular matrix,
U strict upper-triangular matrix.

Jacobi’s Method

Choosing M := D implies M −A = L+ U and establishes the iteration

Dx
(k+1) = (L+ U)x(k) + b .

By the above convergence criteria a strict diagonal dominance of A is suffi-
cient for the convergence of Jacobi’s method.

Gauß–Seidel Method

Here the choice is M := D − L. This leads via M −A = U to the iteration

(D − L)x(k+1) = Ux
(k) + b .

SOR (Successive Overrelaxation)

The SOR method can be seen as a modification of the Gauß-Seidel method,
where a relaxation parameter ωR is introduced and chosen in a way that
speeds up the convergence:

M :=
1
ωR

D − L =⇒ M −A =
(

1
ωR

− 1
)
D + U

(
1
ωR

D − L

)
x

(k+1) =
((

1
ωR

− 1
)
D + U

)
x

(k) + b

The SOR-method can be written as follows:

387



Appendix C Numerical Methods⎧⎪⎪⎪⎨⎪⎪⎪⎩
BR : =

(
1
ωR

D − L

)−1(( 1
ωR

− 1
)
D + U

)
x

(k+1) = BRx
(k) +

(
1
ωR

D − L

)−1

b

The Gauß–Seidel method is obtained as special case for ωR = 1.

Choosing ωR

The difference vectors d(k+1) := x(k+1) − x(k) satisfy

d
(k+1) = BRd

(k)
. (C2.2)

This is the power method for eigenvalue problems. Hence the d(k) converge
to the eigenvector of the dominant eigenvalue ρ(BR). Consequently, if (C2.2)
converges then

d
(k+1) = BRd

(k) ≈ ρ(BR)d(k)
,

and |ρ(BR)| ≈ ‖d
(k+1)

‖

‖d
(k)‖

for arbitrary vector norms. There is a class of matrices
A with

ρ(BGS) = (ρ(BJ))
2
, BJ := D

−1(L + U)

ωopt =
2

1 +
√

1 − ρ(BJ)2
,

see [Var62], [StB96]. Here BJ denotes the iteration matrix of the Jacobi me-
thod and BGS that of the Gauß-Seidel method. For matrices A of that kind a
few iterations with ωR = 1 suffice to estimate the value ρ(BGS), which in turn
gives an approximation to ωopt. With our experience with Cryer’s projected
SOR applied to the valuation of options (Section 4.6) the simple strategy
ωR = 1 is frequently recommendable.

This appendix has merely introduced classic iterative solvers, which are
stationary in the sense that the preconditioner matrix M does not vary with
k. For an overview on advanced nonstationary iterative methods see [Bar94].

C3 Function Spaces

Let real-valued functions u, v, w be defined on D ⊆ IRn. We assume that D is a
domain. That is, D is open, bounded and connected. The space of continuous
functions is denoted C0(D) or C(D). The functions in Ck(D) are k times
continuously differentiable: All partial derivatives up to order k exist and are
continuous on D. The sets Ck(D) are examples of function spaces. Functions
in Ck(D̄) have in addition bounded and uniformly continuous derivatives and
consequently can be extended to D̄.
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Apart from being distinguished by differentiability, functions are also cha-
racterized by their integrability. The proper type of integral is the Lebesgue
integral. The space of square-integrable functions is

L2(D) :=
{
v |

∫
D

v
2 dx < ∞

}
. (C3.1)

For example, v(x) = x−1/4 ∈ L2(0, 1) but v(x) = x−1/2 /∈ L2(0, 1). More
general, for p > 0 the Lp-spaces are defined by

Lp(D) :=
{
v |

∫
D

|v(x)|p dx < ∞

}
.

For p ≥ 1 these spaces have several important properties [Ada75]. For exam-
ple,

‖v‖p :=
(∫

D

|v(x)|p dx
)1/p

(C3.2)

is a norm.
In order to establish the existence of integrals such as∫

b

a

uv dx,
∫

b

a

u
′
v
′ dx

we might be tempted to use a simple approach, defining a function space

H1(a, b) :=
{
u ∈ L2(a, b) | u′ ∈ L2(a, b)

}
, (C3.3)

with D = (a, b). But a classical derivative u′ may not exist for u ∈ L2 or needs
not be square integrable. What is needed is a weaker notion of derivative.

Weak Derivatives

In Ck-spaces classical derivatives are defined in the usual way. For L2-spaces
weak derivatives are defined. For motivation let us review standard integration
by parts ∫

b

a

uv
′ dx = −

∫
b

a

u
′
v dx , (C3.4)

which is correct for all u, v ∈ C1(a, b) with v(a) = v(b) = 0. For u /∈ C1

the equation (C3.4) can be used to define a weak derivative u′ provided
smoothness is transferred to v. For this purpose define

C∞

0
(D) := { v ∈ C∞(D) | supp(v) is a compact subset of D } .

v ∈ C∞
0

(D) implies v = 0 at the boundary of D. For D ⊆ IRn one uses the
multi-index notation

α := (α1, ..., αn), αi ∈ IN ∪ {0}
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with

|α| :=
n∑

i=1

αi .

Then the partial derivative of order |α| is defined as

D
α

v :=
∂|α|

∂x
α1

1
...∂x

αn

n

v(x1, ..., xn) .

If a w ∈ L2 exists with∫
D

uD
α

v dx = (−1)|α|

∫
D

wv dx for all v ∈ C∞

0
(D) ,

the weak derivative of u with multi-index α is defined by D
α
u := w.

Sobolev Spaces

The definition (C3.3) is meaningful if u′ is considered as weak derivative in
the above sense. More general, one defines the Sobolev spaces

Hk(D) :=
{
v ∈ L2(D) | Dα

v ∈ L2(D) for |α| ≤ k
}
. (C3.5)

The index 0 specifies the subspace of H1 that consists of those functions that
vanish at the boundary of D. For example,

H1

0
(a, b) :=

{
v ∈ H1(a, b) | v(a) = v(b) = 0

}
.

The Sobolev spaces Hk are equipped with the norm

‖v‖k :=

⎛⎝∑
|α|≤k

∫
D

|Dα

v|2 dx

⎞⎠1/2

, (C3.6)

which is the sum of L2-norms of (C3.2). For the special case discussed in
Chapter 5 with k = 1, n = 1, D = (a, b), the norm is

‖v‖1 :=

(∫
b

a

(v2 + (v′)2) dx

)1/2

.

Embedding theorems state which function spaces are subsets of other func-
tion spaces. In this way, elements of Sobolev spaces can be characterized and
distinguished with respect to smoothness and integrability. For instance, the
space H1 includes those functions that are globally continuous on all of D
and its boundary and are piecewise C1-functions.

Hilbert Spaces

The function spaces L2 and Hk have numerous properties. Here we just men-
tion that both spaces are Hilbert spaces. Hilbert spaces have an inner product
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( , ) such that the space is complete with respect to the norm ‖v‖ :=
√

(v, v).
In complete spaces every Cauchy sequence converges. In Hilbert spaces the
Schwarzian inequality

|(u, v)| ≤ ‖u‖ ‖v‖ (C3.7)

holds. Examples of Hilbert spaces and their inner products are

L2(D) with (u, v)0 :=
∫
D

u(x)v(x) dx

Hk(D) with (u, v)k :=
∑
|α|≤k

(Dα

u,D
α

v)0

For further discussion of function spaces we refer, for instance, to [Ada75],
[KaA64], [Hac92], [Wlo87].

C4 Minimization

Minimization methods are developed for a wide range of applications, inclu-
ding optimization under constraints or optimal control problems. Here we
confine ourselves to a few introductory remarks on unconstrained minimiza-
tion, setting the stage to solve a calibration problem. For general literature
on minimization/optimization and parameter estimation refer, for example,
to [PrTVF92]. For the special application, curve fitting by least squares, see
below.

In what follows, x is a vector in IRn, and x∗ a specific vector that minimizes
a scalar function g locally,

g(x∗) ≤ g(x) for all x in a neighborhood of x∗ .

A more ambitious task is to find a global minimum on the entire x-space. The
vector x may represent n parameters of a model (c in Section 1.10), and g

may stand for the least-squares function used for calibration, see (1.60). Since
the methods of this appendix neglect possible constraints such as x ≥ 0, we
need to check x∗ for feasibility after its calculation. For simplicity assume
that at least one minimum exists.

A standard assumption of classical minimization methods is smoothness
of g. Then, locally, the directional derivative in any direction x− x∗ is non-
negative,

(grad g(x∗))tr(x− x
∗) ≥ 0 .

In order to set up an iterative process to approach a minimum, one may
look into the direction −grad(g(x)) of steepest descent of g. This seems to
be a convincing idea, but the steepest-descent method often requires a large
number of iterations. A faster approach is obtained by invoking Newton’s
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method. Recall that a necessary criterion for a minimum is the vanishing of
all first-order partial derivatives,

grad g(x∗) = 0 .

This suggests to apply a Newton-type method to search for a zero of

f(x) := grad g(x) .

Then a sequence of iterates x1, x2, . . . is defined by (C1.3),

H(xk)(xk+1 − xk) = −grad g(xk) , (C4.1)

where H(x) = Df(x) denotes the Hesse matrix of all second-order partial
derivatives of g,

H(x) =

⎛⎜⎝
∂
2
g

∂x1∂x1
· · · ∂

2
g

∂x1∂xn

...
...

∂
2
g

∂xn∂x1
· · · ∂

2
g

∂xn∂xn

⎞⎟⎠ .

The method defined by (C4.1) is also called Gauss-Newton method. Locally,
the convergence is fast, namely, of second order.

The evaluation of the Hessian H(x) is cumbersome, in particular in fi-
nance, where g is not given explicitly and is approximated numerically. The-
refore one resorts to cheaper approximations H̃(x) of the Hessian. Such ma-
trices H̃ are obtained by updates. The resulting method is then called quasi-
Newton. One such approximation method is named BFGS1, see for example
[Bro70]. This Newton-type method of approximating x∗ iteratively is a local
method. The quality of the initial guess x0 decides on how fast the conver-
gence is, and to which local minimum the iteration goes. A combination of a
steepest-descent method with a locally fast Newton-type method is provided
by the Levenberg-Marquardt method, see [PrTVF92].

When g is not smooth enough, or when differentiability is doubtful, or
when g has many local minima, simulated annealing can be applied. This
method works with random numbers searching the entire x-space. For refe-
rences on simulated annealing see, for instance, [FaS88], [KiGV83].

Frequently, a two-phase hybrid approach is applied. In a first phase the
comparably slow simulated annealing is applied to single out globally candi-
dates for minima. In the second phase these rough approximations are then
used as initial vectors for the locally (fast) converging Newton-type method.

Another class of minimization methods is provided by genetic algorithms,
where the minimum is approximated by constructing an evolution process.
For applications to finance, see [Chen02], [BenHC05].

1 after Broyden, Fletcher, Goldfarb, Shanno
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Least Squares

Assume a set of N points

(xk, yk) , k = 1, . . . , N, xk ∈ IR, yk ∈ IR .

The aim is to construct a smooth curve C(x) passing “nicely” through the
cloud of points. This is the problem of data fitting, or curve fitting, and can be
solved by simple linear algebra. Interpolation would not be the right answer
when N is large. Rather one restricts the shape of C to be of a special kind.
With n+1 free parameters a0, . . . , an and as many basis functions φ0, . . . , φn

we build C,

C(x) :=
n∑

l=0

alφl(x) .

In general, n � N . The simplest example is a polynomial,

C(x) = a0 + a1x+ . . .+ anx
n

.

The basic strategy (“least squares”) is to determine the parameters ai such
that the sum of squared differences between C and the data

N∑
k=1

(C(xk) − yk)2

gets minimal. Since the a’s enter linearly in C, there is a (N × n)-matrix A

such that

A

⎛⎝ a0

...
an

⎞⎠ =

⎛⎜⎝ C(x1)
...

C(xN )

⎞⎟⎠ ,

and ‖Aa− y‖2

2
is minimal. Here we arrange the a’s into a vector a, and the

y’s into a vector y, and use the norm from (C1.4). The solution a of the least
squares problem is that of the system of linear equations

AtrAa = Atry ,

and can be calculated via an orthogonal decomposition of A. Least squares
is also called regression, or best fit.
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Appendix C5 Viscosity Solutions

For nonlinear problems, topics such as convergence are quite involved, in par-
ticular for nonsmooth solutions. We saw already for vanilla American options
that solutions are not twice continuously differentiable. The nonlinearity of
American-style options is a mild one, and rather straightforward numerical
algorithms work (Chapter 4). But in general, nonlinear problems need not
even have a unique solution. For motivation, let us look at the nonlinear PDE

∂u

∂t
+
∣∣∣∣∂u∂x
∣∣∣∣ = 0 for −∞ < x < ∞, t > 0

with initial condition u(x, 0) = |x|, from [Bar97]. This initial-value problem
has two solutions,

u1(x, t) = |x| − t

u2(x, t) = (|x| − t)+ .

Setting up a numerical scheme, the concern is to which of the two solutions
the method will converge. (If it converges at all.)

This situation has lead to define a specific kind of weak solution, namely,
the viscosity solution. For the above example, it can be shown that u2 is the
unique viscosity solution. Numerical methods can be set up that converge to
a viscosity solution.

Assume (as in [CrIL92], [Bar97]) a PDE that can be written as

H(x, u(x),Du(x),D2
u(x)) = 0 ,

where u is a scalar function, Du and D2u correspond to first and second-order
derivatives, and H is continuous. The notion of a viscosity solution requires
the PDE to be proper, in the sense

H(x, u, p, A) ≤ H(x, v, p, A) for u ≤ v (sign convention)
H(x, u, p, A) ≤ H(x, u, p, B) for A ≥ B (“degenerate elliptic”) .

If we allow x ∈ D ⊂ IRn, n > 1, then Du represents the gradient and D2
u the

Hessian matrix. The ellipticity means that H is nonincreasing in its second-
order derivative matrix argument, which for scalar q = A can also be written

H(x, u, p, q + ε) ≤ H(x, u, p, q) for all ε ≥ 0 .

The first step towards the concept of a viscosity solution is to show that
a classical solution u can be characterized in an “unusual way” by comparing
it to smooth test functions ϕ.

Theorem

Assume the PDE can be written H(x, u,Du,D2u) = 0, x ∈ D, with
continuous and proper H . Then for u ∈ C2(D) the following is equivalent:
u is (classical) solution if and only if both criteria (a) and (b) hold:
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(a) All ϕ ∈ C2(D) with local minimum of u− ϕ at x0 satisfy

H(x0, u(x0),Dϕ(x0),D2
ϕ(x0)) ≥ 0 .

(b)All ϕ ∈ C2(D) with local maximum of u− ϕ at x0 satisfy

H(x0, u(x0),Dϕ(x0),D2
ϕ(x0)) ≤ 0 .

Note that the above criteria (a) and (b) do not require the existence of first
and second-order derivatives of u. Only u ∈ C

0 is used [for u(x0) = ϕ(x0)].
This situation suggests to define a weak solution u as follows.

Definition (continuous viscosity solution)

Let H be continuous and proper. Any continuous u (u ∈ C0(D)) is called
continuous viscosity solution of H(x, u,Du,D2u) = 0 if and only if (a)
and (b) are satisfied.

Example (Black–Scholes equation)

The Black–Scholes equation can be represented as above by an equation
H = 0. To this end, set x := (S, τ), u(x) := V (S, τ), p := Du = (VS , Vτ )tr ,
A := D2u, and realize

H(x, u, p, A) : = ptr

(
−rx1

1

)
−

1
2
σ

2
x

2

1

(
1
0

)
tr

A

(
1
0

)
+ ru

= Vτ −
1
2
σ

2
S

2
VSS − rSVS + rV .

The sign convention holds for r ≥ 0. For convenience rewrite H as
H(V, VS , Vτ , VSS). To check the ellipticity note that

H(u, y, z, q + ε) = z −
1
2
σ

2
S

2(q + ε) − rSy + ru

= H(u, y, z, q)− ε
1
2
σ

2
S

2 ≤ H(u, y, z, q)

holds for all ε ≥ 0 [FoV12]. Hence H is proper.
Let V be a solution of H(V, VS , Vτ , VSS) = 0, and ϕ ∈ C2,1 be any test

function with

V − ϕ ≤ 0 and ϕ(S0, τ0) = V (S0, τ0) for some (S0, τ0).

That is, at the point (S0, τ0) there is a local maximum of f(S, τ) := V (S, τ)−
ϕ(S, τ). In case also V ∈ C

2,1, then the gradient vanishes,

∂V (S0, τ0)
∂S

=
∂ϕ(S0, τ0)

∂S
,

∂V (S0, τ0)
∂τ

=
∂ϕ(S0, τ0)

∂τ
,

and the Hessian is negative semidefinite, which specifically implies fSS ≤ 0,
hence

395



Appendix C Numerical Methods

∂
2
V (S0, τ0)
∂S2

≤
∂

2
ϕ(S0, τ0)
∂S2

.

For H this implies

H(V (S0, τ0), ϕS(S0, τ0), ϕτ (S0, τ0), ϕSS(S0, τ0)) ≤
H(V (S0, τ0), ϕS(S0, τ0), ϕτ (S0, τ0), VSS(S0, τ0)) = 0 ,

and criterion (b) holds. The analysis for (a) V − ϕ ≥ 0 is analogous. Hence
a classical solution V of the Black–Scholes equation is also a (continuous)
viscosity solution.
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Appendix D Complementary Material

This appendix lists useful formula without further explanation. Many formu-
las can be found in [Haug98].

D1 Bounds for Options

The following bounds for vanilla options can be derived based on arbitrage
arguments, see [Mer73], [CoR85], [Ing87], [Kwok98], [Hull00]. If neither the
subscript C nor P is listed, the inequality holds for both put and call. If
neither the Eur nor the Am is listed, the inequality holds for both American
and European options. We always assume r > 0.
a) Bounds valid for both American and European options, no matter whether

dividends are paid or not:

0 ≤ VC(St, t) ≤ St

0 ≤ VP(St, t) ≤ K

V Eur(St, t) ≤ V Am(St, t)

St −K ≤ V Am

C
(St, t)

K − St ≤ V Am

P
(St, t)

V
Eur

P
(St, t) ≤ Ke−r(T−t)

Lower bounds incorporating a continuous dividend yield δ (set δ = 0
in case there is no dividend yield): The above relations and the put-call
parity (A4.11a) imply

St e−δ(T−t) −Ke−r(T−t) ≤ VC(St, t)

Ke−r(T−t) − St e−δ(T−t) ≤ VP(St, t)

The zero of the lower bound is Ke(δ−r)(T−t).

R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-2993-6, © Springer-Verlag London Limited 2012
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V

V

put

call

K

K

K

S

S

Fig.D.1. Bounding curves for the value of vanilla put and call options (r > 0, δ =

0); for both put and call a European value function is plotted, with r > 0, δ = 0.

b) For bounds on the early-exercise boundary, see Appendix A5.
c) Monotonicity of the value function:

Monotonicity with respect to S:

VC(S1, t) < VC(S2, t) for S1 < S2

VP(S1, t) > VP(S2, t) for S1 < S2 ,

which implies
∂VC

∂S
> 0 ,

∂VP

∂S
< 0 .

Monotonicity of American options with respect to time:

V Am

C
(S, t1) ≥ V Am

C
(S, t2) for t1 < t2

V Am

P
(S, t1) ≥ V Am

P
(S, t2) for t1 < t2 ,

which implies
∂V Am

∂t
≤ 0 .
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Options are convex with respect to K and with respect to S. This holds
for the standard Black–Merton–Scholes model; for other models relations
are more complicated [ElKJS98].
To express monotonicity with respect to the strike K or to the time to
expiration T , we indicate dependencies by writing V (S, t;T,K), and only
quote the parameter that is changed.

V Am( . ;T1) ≤ V Am( . ;T2) for T1 < T2

VC( . ;K1) ≥ VC( . ;K2) for K1 < K2

VP( . ;K1) ≤ VP( . ;K2) for K1 < K2

V ( . ;σ1) ≤ V ( . ;σ2) for σ1 < σ2

The first of these inequalities implies that the value of a perpetual option
(T → ∞) is an upper bound to the value of an American option.

d) Put-call parity relation for American options:

Ke−r(T−t) + V
Am

C
(S, t) ≤ S + V

Am

P
(S, t) .

This holds no matter whether dividends are paid or not. If the asset pays
no dividends, then also the upper bound

S + V
Am

P
(S, t) − V

Am

C
(S, t) ≤ K

holds.

D2 Approximation Formula

Distribution Function of the Standard Normal Distribution

f(x) :=
1

√
2π

exp
(
−
x2

2

)

F (x) :=

x∫
−∞

f(t) dt

The calculation of F can be based on the error function, see Exercise 1.3.
Applying quadrature is not the most efficient way to approximate the integral.
For full double-precision accuracy, there are generic codes available (as the
function derf in FORTRAN). For such high accuracy —according to our
findings— it is also recommendable to approximate F by a spline.

Frequently lower accuracy suffices. Related approximations of the error
function can be found in [Hart68], which is a rich source of approximation
formulas for all kind of functions and different requirements of precision.
Here we present an algorithm from [AbS68], formula (26.2.17), which does
not make use of the error function.
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Let us define
z :=

1
1 + 0.2316419x

and the coefficients

a1 = 0.319381530 a4 = −1.821255978
a2 = −0.356563782 a5 = 1.330274429
a3 = 1.781477937 .

Then

F (x) = 1 − f(x)
(
a1z + a2z

2 + a3z
3 + a4z

4 + a5z
5
)

+ ε(x) ,

for 0 ≤ x <∞ with an absolute error ε bounded by

|ε(x)| < 7.5 ∗ 10−8
.

Hence we have the approximating formula

F (x) ≈ 1 − f(x)z((((a5z + a4)z + a3)z + a2)z + a1) ,

which requires 17 arithmetic operations and the evaluation of the exponen-
tial function to obtain an accuracy of about 7 decimals. For x < 0 apply
F (x) = 1 − F (−x). To save time, the evaluation of the exponential function
should not use the generic double-precision code since this would be too much
effort for a final seven-digit accuracy. An alternative can be found in [Hart68].
A seven-digit version for F that does not need the exponential function, is
formula (26.2.119) in [AbS68].

Inversion Formula

A FORTRAN code for the inversion of the normal distribution can be found
in

http://lib.stat.cmu.edu/apstat/111.

(Many other codes relevant for statistical computation can be obtained via
the .../apstat page.) Here we report the formula of [Moro95] to appro-
ximate the inverse function of the standard normal distribution

F (x) :=
1

√
2π

x∫
−∞

exp
(
−
t2

2

)
dt .

That is, we calculate x = G(u) such that G(u) ≈ F−1(u). The interval
0 < u < 1 is truncated to 10−12 ≤ u ≤ 1 − 10−12. Symmetry with respect
to (x, u) = (0, 0.5) is exploited. The interval is subdivided into two relevant
parts, namely,

0.08 < u < 0.92 and 0.92 ≤ u ≤ 1 − 10−12
.
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The part 10−12 ≤ u ≤ 0.08 is obtained by symmetry. For each of the two
subintervals an appropriate approximation is given. In the middle part of the
interval a rational approximation in the form

(u− 0.5)

3∑
j=0

aj(u− 0.5)2j

1 +
3∑

j=0

bj(u− 0.5)2j

is used, whereas the tails are approximated by a polynomial in log(− log r),
where 10−12 ≤ r ≤ 0.08.

Algorithm (inversion of the standard normal distribution)

input: u, drawn from U(0, 1)
y := u− 0.5
in case |y| < 0.42:

r := y2

x := y
((a3r+a2)r+a1)r+a0

(((b3r+b2)r+b1)r+b0)r+1

in case |y| ≥ 0.42:
r := u , in case y > 0 set r := 1 − u

r := log(− log r)
x := c0 + r(c1 + r(c2 + r(c3 + r(c4 + r(c5 + r(c6 + r(c7 + rc8)))))))
in case y < 0 set x := −x

output: x

The coefficients of the above algorithm are given by1

a0 = 2.50662823884,
a1 = −18.61500062529,
a2 = 41.39119773534,
a3 = −25.44106049637

b0 = −8.47351093090,
b1 = 23.08336743743,
b2 = −21.06224101826,
b3 = 3.13082909833

c0 = 0.3374754822726147,
c1 = 0.9761690190917186,
c2 = 0.1607979714918209,
c3 = 0.0276438810333863,
c4 = 0.0038405729373609,
c5 = 0.0003951896511919,
c6 = 0.0000321767881768,

1 These digits are listed in [Moro95].
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c7 = 0.0000002888167364,
c8 = 0.0000003960315187

The rational approximation formula for |y| < 0.42 (that is, 0.08 < u < 0.92)
is reported to have a largest absolute error of 3 · 10−9.

D3 Software

A dedicated computer person will program the mathematics such that the
resulting codes run with utmost possible speed. Such a person will probably
use compilers like C, C++, or FORTRAN to create production codes, where
the speed counts. But there are packages available that make programming,
implementing, testing, and graphics more comfortable. For example, MAT-
LAB offers a platform for scientific computation and numerical experiments,
and includes a Financial Derivatives Toolbox.2

Several programs related to finance have been published. For MATLAB
codes see [Hig04], for MATHEMATICA codes see [Sto03], and C++ programs
are in [AcP05], [Levy08]. For elementary computations, spreadsheets are also
used. Programs in various levels can also found, for example, in [Hull00],
[Haug98]. Pseudo codes for several types of options can be found in [ClS98].

For partial differential equations, the finite-element program PDE2D is
available via the University of Texas, El Paso. See also the finite-element pro-
grams referred to in [AcP05], such as FreeFem++. The PREMIA project offers
codes via www-rocq.inria.fr/mathfi . For further hints and test algorithms
see the platform www.compfin.de .

2 Figures 3.8, 5.10, 6.3 and 7.1 are based on MATLAB graphics. The other
figures in this book were prepared using xfig and gnuplot.
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processes. Mathem. Finance 13 (2003) 345–382.

[CaM99] P. Carr, D.B. Madan: Option valuation using the fast Fourier trans-

form. J. Computational Finance 2,4 (1999) 61–73.

[CaW04] P. Carr, L. Wu: Time-changed Lévy processes and option pricing. J.
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204, 209, 213, 216, 218, 221–222, 251,

279, 290, 312, 334, 353, 356–357,

361–364, 397, 399

Doeblin 64

Double barrier 251–252, 258–259

Dow Jones Industrial Average 1, 30

Drift 31, 37, 38, 42, 48, 56, 63–64,

126, 149, 332–335, 373–377,

Drift correction 149

Drifted Brownian motion 31, 42, 48,

64, 332–333

Dupire 363–364

Dynamic programming 21, 50, 62,

139–140

Dynamical system 65

Early exercise 5, 7, 11, 21, 27, 49,

124, 156, 174, 204, 209, 215, 216,

281, 308, 398

Early–exercise curve (Free boundary)

Sf 7, 24, 62, 136–138, 156, 174–181,

207–208, 212, 218–221, 359–362

Efficient market 31, 351

Eigenmode 292, see Fourier mode

Element matrix 240, 258, 269

Elliptic 264–266, 270, 394–395

Empirical data 51, 64, 71, 345

Error control 13, 68, 125, 196–198,

210

Error damping 164

Error function 66, 399

Error projection 264–266

Estimate 13, 40, 51, 64, 66, 71, 104,

105, 112–113, 124, 144, 195–199, 260,

370

Euler discretization method 38, 63,

110, 112–114, 117–118, 120, 126–130,

133, 144, 150, 152, 153, 217, 292, 325

EURIBOR 58

Excess return 41

Exercising an option 1–3, 5–7, 50,

134, 174–176, 223–224, 283, 350

Exotic option, see Option

Expectation 16, 28, 31, 39, 45, 47,

54, 63, 70, 82, 92, 107, 109, 113–114,

119, 122–124, 139, 331–332, 335, 340,

345, 347, 358, 368–371, 373, 377

Expiration 2, see also Maturity

Explicit method 110, 161–165, 185,

217, 292, 300, 306–307
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Exponential distribution 54, 86, 334

Exponential growth 18, 64, 227

Extrapolation 22–24, 51, 71–72,

199–200, 208–209, 213–214, 226, 382

Factorization, see Decomposition

Fast Fourier Transformation (FFT)

59, 65, 311, 339–344, 386

Faure sequence 100, 102

Feller condition 64

Feynman–Kac theorem 149

Fibonacci generator 81–82, 100–101,

104, 106

Filtration 135, 347, 367, 373

Financial engineering 12, 230, 302,

350–352

Finite differences 25, 158–171, 177,

183, 185–187, 193–194, 200, 212–215,

217-221, 231, 244, 249–250, 255, 260,

288, 292–302, 306–307, 325–329,

337–339

Finite elements 199, Chapter 5

Finite–volume method 309

Fokker–Planck equation 363–365

Foreign exchange 216, 353–354

Forward 350, 352–354

Forward difference 162, 166

Forward equation 364

Forward time backward space (FTBS)

294

Forward time centered space (FTCS)

292–296, 299, 311

Fourier mode 292–294, 297–298

Fourier transformation 292, 311, 331,

339–343, 347, 386

Fractal interpolation 149

Free boundary problem 173–187

Front fixing 179, 215, 218, 220, 225,

269

Fundamental theorem of asset pricing

42

Function spaces 236, 260–262, 268,

388–391

Future 350

Galerkin method 229, 234–243,

252–258, 269

GARCH 64

Gaussian process 30–31

Gauß–Seidel method 223, 387–388

Geometric Brownian motion (GBM)

10, 38–43, 47–48, 51–53, 55–56,

58–59, 64, 122–123, 132, 153, 156,

209, 250, 270, 273, 275, 277, 282,

315, 333–334, 354, 363, 376

Gerschgorin 169, 383

Girsanov 42, 374

Godunov 309

Greek 12, 25, 74, 143, 194, 211, 215,

220, 357

Grid 13–15, 17–18, 49, 71, 95, 102,

110, 120, 121, 138, 159–160, 165, 171,

183, 194–199, 221, 227, 229–231, 236,

242, 247, 251, 256, 265, 270, 278,

279, 292, 298, 299, 303, 305, 325,

337, 342–343

Halton sequence 98–100, 102, 148

Hat function 235–243, 248, 256–257,

262–263, 265–266, 268, 269

Harrison 374

Hedging 6, 26, 60, 62, 315–318,

350–351, 353, 355–358

Hermite polynomial 268

Hesse matrix, Hessian 188, 268, 392,

394–395

Heston’s model 45, 59–60, 65, 142,

154, 259, 345

Heston–Hull–White model 146

High–contact condition 178–179,

182, 205, 208, 212, 218, 221, 223–224

High resolution 299–302

Hilbert space 390–391

Histogram 40–41, 51–52, 71

Hitting time 135, 153

Holding value, see Continuation value

Illiquidity 322

Implicit method 166–169, 217, 222,

254, 303, 306–307, 309, 325–329, 346,

347

Implied tree 78

Implied volatility 40, 59, 67, 363

Importance sampling 149

Incomplete market 315, 318, 355,

358, 376

Independent random variable 31–32,

53–55, 75, 88, 90, 93, 103, 105, 119,

125, 143, 147, 149, 151, 279, 331–333,

358, 369–370

Ingersoll 43–45, 73

Initial conditions 47, 157–158, 162,

184, 244, 294, 364

Inner product 233, 260, 391

Integrability 94, 234, 236, 389–390
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Integral equation 37, 46, 210–212,

214–215, 221, 226, 252, 374

Integral representation 48–50,

122–123, 171, 209, 212, 221, 340, 363

Interest rate r 4, 6, 10, 16, 28–29,

42–43, 48, 58, 62, 146–147, 259, 291,

350–354, 377

Interpolation 14, 32, 121, 201, 212,

214–216, 231, 235, 267, 288, 380

Intrinsic value 2, 4, 224

Inversion method 83–84, 87, 101,

106, 148, 400–401

Isometry 36, 151

Iteration 59, 67, 84, 162–163,

188–191, 195, 200, 210–211, 220, 306,

309, 339, 383, 386–388, 391–392

Itô integral 35–36, 63, 110, 150–151

Itô Lemma or formula, see Lemma of

Itô

Itô process 37, 46–47, 72, 110, 371,

374–376

Itô–Taylor expansion 115–116

Jacobi matrix 87, 120, 382

Jacobi method 387–388

Jensen’s inequality 202, 369

Jump 10, 26, 53, 64, 107, 216,

287–288, 331, 336, 344

Jump diffusion 55–58, 65, 120, 330,

333–336, 338, 345, 347, 357–358

Jump process 53–57, 316, 330–339,

376

Karush–Kuhn–Tucker theorem 188

Kim’s integral equation 209, 226

Koksma–Hlawka bound 97, 100, 102

Kurtosis 64

Lack of smoothness 193, 198, 217,

220, 230, 344, 394

Lagrange polynomial 220, 380

Landau 218, 382

Lattice method, see Binomial method

Law of large numbers 93, 370

Lax–Friedrichs scheme 295, 299,

301–302, 312

Lax–Milgram theorem 264

Lax–Wendroff scheme 299–302, 309,

312

Leap frog 309

Least squares 58–59, 65, 140, 234,

364, 391, 393

Lebesgue integral 37, 93, 389

Lehmer generator 100

Leland 316–318, 324, 329, 344, 346

Lemma of Céa 264–265

Lemma of Itô 46–48, 63–64, 115–116,

151, 279, 282, 310, 317, 354–355, 357,

371, 375–376

Levenberg–Marquardt method 392

Leverage 380

Lévy–Khinchin representation 331

Lévy process 57, 101, 280, 309,

330–335, 339–340, 345

LIBOR 350

Limiter 302

Linear complementarity problem (LCP)

182, see Complementarity

Linear element 263, see Hat function

Liquidity 11, 322

Local discretization error 168, 222

Lognormal 48, 56, 64, 70–71,

122–123, 280, 335, 359

Long position 2, 4, 26, 352

Low discrepancy 97, see Discrepancy

LUBA method 212, 215

Madan 59, 343

Malliavin 143

Market model, see Model of the Market

Market price of risk 42, 259, 376

Markov Chain Monte Carlo 102

Markov process 31, 54

Marsaglia method 88–89, 101, 104,

148

Martingale 29, 31, 36, 42, 57, 149,

332–334, 358, 373–377

Maruyama 63

Mass matrix 238, 242, 268

Maturity (expiration) T 1, 3, 6, 58,

349–354

Maximum of a Wiener process 149

Mean reversion 43, 45, 58, 146

Mean square error 127

Measurable 135, 367, 373

Merton 9–10, 55–56, 61, 142, 275,

277, 330, 333–336, 339, 345, 347, 399

Mersenne twister 82

Method of lines 156, 201, 206–209,

216, 224–225, 243

Milstein 118–119, 130, 152

Minimization 140, 188, 221, 247, 261,

391–393

Mode, see Fourier mode

Model error 195
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Model of the Market 8–11, 31, 36,

41–42, 54, 57–58, 65, 195, 315–322,

351, 363, 374–376

Model problem

– −u′′ = f 241, 260, 265

– ut + aux = buxx 291, 295

– ut + aux = 0 294, 301

Modulo congruence 76

Moment 64, 70, 113–114, 119–120,

151–152, 368

Moneyness 202

Monotonicity of a numerical scheme

300–301, 309, 326–329

Monte Carlo method 45, 75, 92–97,

100–102, 105, Chapter 3, 170, 215,

275, 277, 279–280, 309–310, 333, 339,

377

Multifactor model 43–45, 140, 142,

227, 229, 274–277

Multigrid 221, 279

Negative price 74

Neumann boundary condition 255

Neumann stability analysis 292–296,

308, 310

Newton’s method 67, 84, 200, 303,

306–307, 326, 344, 382–383, 391–392

Niederreiter sequence 100, 102

NIG process 334, 345

Nitsche 266

No–arbitrage principle 5, 351–352,

see Arbitrage

Nobel Prize 61, 64

Node 17–20, 22, 25, 50–51, 62, 74,

160–162, 216, 219, 227, 233, 236–237,

257–258, 266, 268, 271, 280, 294, 299,

312

Nonconstant coefficients 52, 301, 357

Nonlinear 11, 57–58, 65, 100, 174,

179, 181, 190, 210, 220, 303–307,

315–329, 346, 394

Norm 264–267, 383, 386, 389–391,

393

Normal distribution 12, 31–32, 64,

66, 75, 84, 86–87, 90, 104, 201, 205,

333, 369, 399–401

Normal Inverse Gaussian (NIG) 334,

345

Numerical dissipation 295, 301, 309

Obstacle problem 181–184, 218,

244–246, 261

One–factor model 43, 50, 122

One–period model 26–29, 41, 122

Option 1, 350–351, 354–355

– American 2, 4–5, 7–8, 11, 21–22,

24, 49–50, 134–141, 172–194, 197–

198, 201–214, 216, 218–220, 222–226,

246–249, 268, 272, 274, 280, 303–305,

308, 322, 324, 330, 339, 345, 359–362,

394, 397–399

– Asian 8, 127, 275, 280–288,

290–291, 308, 310

– Average , see Asian option

– Barrier 8, 11, 18, 62, 121, 127,

149, 153, 212, 229–230, 236, 251–252,

258–259, 268, 270, 275, 307, 309, 318,

321–322, 330, 344

– Basket 8, 141, 229–230, 251,

276–277, 303–305

– Bermudan 49–50, 138–139, 155

– Binary 132–133, 193, 225, 255–256,

274

– Call 1–5, and all over

– Chooser 274

– Compound 274

– European 2–3, 5, 7, 9–10, and all

over

– Exotic 3, 8, 13, 127, 132–133, 251,

273–276, 308–310

– Lookback 126–127, 275, 307, 309

– Path–dependent 8, 51, 126,

274–275, 280, 309, 317

– Perpetual 178, 223–224, 359, 399

– Put 1, 3–5, 7–9, and all over

– Rainbow 276–277

– Vanilla (standard) 1, 8, 11, 20,

50, 58, 72, 136, 155, 158, 201, 213,

242–244, 274, 281–282, 305, 315, 321,

324, 340, 356, 397–399

Order of convergence or error 13, 22,

24, 46, 51, 69, 71–72, 94–95, 112-113,

116–120, 127–128, 148, 159, 167–168,

171, 187, 195–196, 217, 219, 222,

226–227, 244, 254, 260–267, 286, 292,

294–296, 299–302, 306, 309, 311, 317,

342, 382, 392

Ornstein–Uhlenbeck (OU) process 43,

45, 73

Oscillations 193, 217, 220, 289–291,

293, 296–298, 300, 308, 380

Overfitting 60

Parallelization 101, 149

Parameterization of a curve 205,

253–256

426



Index

Parametric method 136–138, 150

Pareto 64, 215

Partial differential equation (PDE)

9–13, 64, Chapters 4–7, p. 363–364,

394, 402

Partial integro-differential equation

(PIDE) 57, 330, 334, 359

Partition of a domain 33–34, 106,

150, 231–232, 236, 263, 269, 381

Path (Trajectory) 3, 8, 18, 30, 38–40,

45, 53, 109–113, 123–124, 126–127,

129, 132–136, 138–141, 144–147, 153,

216, 274

Path–(in)dependent, see Option

Pathwise sensitivity 143–147

Payoff 2–5, 7–11, 20–22, and all over

Péclet number 216, 289–291,

293–295, 308

Penalty method 181, 217, 221, 269,

303–307, 309, 313, 322–324, 330, 339,

344

Period of random numbers 76–81

Phase shift 298

Pliska 374

Poincaré inequality 265

Poisson distribution 53, 107, 371

Poisson process 53–56, 331–333, 373

Pole behavior 84, 381

Polygon 121, 237–238, 262–263,

265–266, 380

Polynomial 113, 220, 231–232, 235,

263, 267, 269, 293, 380–381, 293, 401

Portfolio 26–29, 32, 62, 65, 72–73,

224, 229, 277, 310, 316–317, 320, 346,

349, 351–352, 354–355, 357–358, 374,

376

Power method 108, 385, 388

Preconditioner 387–388

Premium 1–2, 4, 204, 209, 211, 315,

350–352

Principal component analysis (PCA)

91, 108, 267

Probability 16–17, 26, 28–29, 41–42,

48, 53, 63, 69, 74, 77, 83, 89, 92, 102,

106, 114, 120–123, 154, 270, 331–332,

356, 363, 367–371, 374

Profit 4–5, 27, 176, 351, 353

Projection SOR 189, see SOR

Pseudo–random number 75, 82, 99

Put, see Option

Put–call parity 5, 65, 172, 206, 222,

356, 362, 397, 399

Put–call symmetry 198, 362

Quadratic approximation 204–206,

214–215, 220

Quadrature 50–51, 66, 97, 102, 123,

272, 277, 342, 381, 399

Quasi Monte Carlo 100, 147

Quasi–random number 148

Radial basis function 64

Radical–inverse function 98–99, 106

Radon–Nikodym 374

Random number 32, 38, 45, 54,

56, Chapter 2, 126, 129, 133, 137,

142–143, 148–149, 392

Random variable 29–31, 35, 54, 70,

75, 82–91, 102, 104–105, 114, 117,

119–120, 124, 128–129, 135, 151–152,

331, 358, 367–370, 373

Random walk 63, 287

RANDU 80

Range of volatility 319–322

Rannacher 194

Rational approximation 84, 381,

401–402

Rayleigh–Ritz principle 263, 267

Regression 138–142, 149–150, 203,

212, 393

Relaxation parameter 189, 219, 387

Replication portfolio 62, 212, 315,

317, 354–355, 357, 376–377

Residual 229–234, 252–253,

Return 29, 38–42, 45, 51–52, 64,

70–71, 277, 320–321, 349, 352, 382

Riemann–(Stieltjes–) integral 33, 37

Risk 1–2, 4–6, 42, 53, 60, 64, 94, 259,

315, 319–320, 349–358, 376

Risk free, risk neutral 6, 16–17, 20,

26–29, 36, 41–42, 48, 50, 57, 59, 62,

65, 69, 109, 122–124, 139–140, 176,

291, 316, 332–334, 340, 349, 354

Root mean square error (RMS) 213

Ross 43–45, 61, 73

Rounding error 14, 67, 100, 148,

163–165, 195, 308

Rubinstein 61

Runge–Kutta method 118

Sample 51, 56, 60, 75, 77, 83, 93–95,

102, 106, 111–113, 123, 127, 136, 153,

281, 287, 367, 370

Sample variance 51, 61, 66, 71, 77

Sampling error 126–127, 133, 142,

148, 342

Samuelson 64
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Schöbel–Zhu model 65

Scholes 9, see Black

Schwartz 190, 213, 219, 226

Schwarzian inequality 262, 265, 272,

391

SDE, see Stochastic Differential

Equation

Secant method 84, 210–211, 226, 383

Seed 76, 78, 82, 112, 124, 126

Self–financing 62, 73, 317, 351,

354–357, 374–377

Separation of variables 242–244, 247,

260, 283, 288

Semidiscretization 15, 139, 159,

206–207, 224, 243, 247

Sensitivity analysis 11–12, 25,

143–147, 194

Short position 4, 26, 65, 352–353

Short sale 353

Shuffling 81

Similarity reduction 308

Simple process 36–37

Simpson sum 345

Simulated Annealing 392

Simulation 13, 32, 38, 53, 55, 57, 75,

92, Chapter 3, 275, 279, 333, 377

Singular matrix 101, 241

Smooth, see Differentiable

Smooth pasting 178, 218, 224, see

High contact

Snell envelope 62

Sobol sequence 100, 102, 221

Sobolev space 261–263, 390

Software 12, 101, 259, 400, 402

Soner 318, 344, 345

SOR 188–193, 223, 226, 250, 387–388

Sparse grid 102, 123, 279

Sparse matrix 235, 263

Spectral decomposition 107

Spectral method 221, 267

Spectral radius 164, 386

Spline 235, 262, 269, 399

Spot market 3, 349

Spot price 6, 14, 19, 193, 349, 353

Spread 72, 277, 321–323, 346

Spurious 273, 289, 291, 296–298, 300,

308

Square integrable 94, 262, 389

Square root process 43, 345

Stability 13–14, 60, 148, 158, 163–

170, 173, 195, 217–218, 222, 268,

292–296, 299–300, 306–308, 310–311,

326, 329, 344

Staggered grid 299

Standard deviation 6, 32, 94, 369

State–price process 374–377

Stencil 161, 166–168

Step length 38, 110, 121, 126, 146,

148, 152–153, 160, 165, 193–194, 210,

219, 254, 287, 292, 299, 306–307, 343

Stiffness matrix 242, 268, 271

Stochastic differential equation (SDE)

13, 37–48, 52, 55, 63, 70, 73, 109–126,

142–148, 152–154, 224, 286, 310,

333–334, 373–377

Stochastic integral 32–37, 44, 63, 119

Stochastic process 6, 30–31, 36–39,

43–47, 53, 57, 63, 110, 114, 121, 135,

373

Stochastic Taylor expansion 114–117

Stopping time 134–138, 141, 176, 193

Stopping region 175–181, 193

Strangle 72

Stratified sampling 101

Stratonovich integral 63

Strike price K 1–8, 18, 22–23, 58, 65,

and many more

Strong convergence 113–114, 118–119

Strong (classical) solution 111–112,

148, 247, 260, 394–396

Subordinator 334, 345

Support 85–86, 106, 235, 257, 263,

269

Swap 350

Symmetry of put and call 198, 220,

362

Tail of a distribution 52, 64, 401

Taylor expansion 11, 46, 114–119,

159, 168, 230, 298, 317, 372, 379

Terminal condition 10, 66, 157, 204,

251, 288, 291, 303, 315

Test function, see Weighting function

Time 1–4, 6, 10, 15, 31, 106, 135,

157, 349

Time-changed process 106, 334, 345

Toeplitz matrix 337

Total variation diminishing (TVD)

300–303, 309, 312

Trading strategy 33, 316–317, 351,

354, 374, 377

Trajectory, see Path

Transaction costs 3–4, 10–11,

316–319, 329, 346

Transformations 48, 51, 66, 85–89,

91, 104, 108, 151, 157, 172, 179, 187,
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216, 220–223, 225, 270, 310, 323, 331,

336, 339, 362–364

Trapezoidal rule 210, 217, 244, 337,

381

Trapezoidal sum (composite rule) 95,

147, 210–211, 342, 381

Traveling wave 294

Tree method 143, 155, 217, 277–278,

307, see Binomial method

Trial function, see Basis function

Triangle as subdomain 231–233, 251,

257–258, 271

Tridiagonal matrix 162, 164, 166,

168–169, 224, 226, 240, 250, 338, 384

Trinomial model 26, 61–62, 217, 280,

307

Truncation error 64, 170, 172, 217,

337, 339, 342

Two-asset model 132–133, 250–252,

255–256, 270, 276–278, 305, 312

Underlying 1–6, 8, 10–11

Uniform distribution 75–77, 82–89,

93, 95, 104, 106, 369

Upwind scheme 294–298, 300–302,

306, 311–312

Value at Risk 64, 149

Value function 9–12, 47

Van der Corput sequence 98–100,

102

Van Leer limiter 302

Variable volatility 64, 272, 362–365

Variance 16–17, 31, 45, 47, 51, 63, 66,

71, 73, 77, 93–94, 101, 105, 113–114,

119, 127–129, 149, 331, 368–371

Variance Gamma process (VG) 334

Variance reduction 128–131, 141–142,

149

Variation 33–35, 97

Variational problem 184, 244–246,

262–263

Vasicek model 43

Vieta 18

Viscosity solution 326, 328, 394–396

Volatility 6, 10, 17, 19, 38, 40, 43, 45,

51, 57–60, 64

– Implied 59, 67, 363

– Local 64, 362–364

– Variable 64, 272, 362

Volatility smile 67, 217, 363

Von Neumann stability, see Neumann

stability

Wallace algorithm 101

Wave 294

Wave number 292–293, 298

Wavelet 269

Weak convergence 113–114, 119–120,

127, 130, 148

Weak derivative or version 230, 247,

252–257, 266, 268, 309, 389–390

Weak solution 111, 151, 247, 253,

260, 262–264, 394–395

Weighted residuals 230–234

Weighting function 233–234, 252

Wiener process (standard Brownian

motion) Wt 30–38, 41–47, 57–58,

63, 73, 106, 110–112, 120, 125, 133,

143, 147, 149–152, 154, 278, 331, 334,

345, 372–374

Writer 1–5, 351

Ziggurat algorithm 101
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