
Chapter 8
Live Music-Making: A Rich Open Task
Requires a Rich Open Interface

Dan Stowell and Alex McLean

Abstract In live human-computer music-making, how can interfaces successfully
support the openness, reinterpretation and rich signification often important in live
(especially improvised) musical performance? We argue that the use of design
metaphors can lead to interfaces which constrain interactions and militate against
reinterpretation, while consistent, grammatical interfaces empower the user to create
and apply their own metaphors in developing their performance. These metaphors
can be transitory and disposable, yet do not represent wasted learning since the
underlying grammar is retained. We illustrate this move with reflections from live
coding practice, from recent visual and two-dimensional programming language
interfaces, and from musical voice mapping research. We consider the integration
of the symbolic and the continuous in the human-computer interaction. We also
describe how our perspective is reflected in approaches to system evaluation.

8.1 Introduction

In this chapter we discuss themes of our research, strands of which reflect our
title’s assertion in various ways. Our focus here is on live music-making, in
particular improvised or part-improvised performances which incorporate digital
technologies.

D. Stowell (�)
Centre for Digital Music, Queen Mary University of London, London, UK
e-mail: dan.stowell@eecs.qmul.ac.uk

A. McLean (�)
Interdisciplinary Centre for Scientific Research in Music, University of Leeds, Leeds, UK
e-mail: a.mclean@leeds.ac.uk

S. Holland et al. (eds.), Music and Human-Computer Interaction, Springer
Series on Cultural Computing, DOI 10.1007/978-1-4471-2990-5 8,
© Springer-Verlag London 2013

139



140 D. Stowell and A. McLean

Is music-making rich and open? Rich, yes, as evident from the many varieties
of emotional and social content that a listener can draw out of music, meaningful
from many (although not all) perspectives (Cross and Tolbert 2008). Even unusually
constrained music styles such as minimalism often convey rich signification, their
sonic simplicity having a social meaning within wider musical culture. Music is
particularly rich in its inner relationships, with musical themes passed between
musicians both consciously and subconsciously, weaving a complex tapestry of
influence. And open, yes: the generative/composable nature of musical units means
a practically unbounded range of possible music performances. While musical
genres place constraints on music-making, such constraints are often seen as points
of departure, with artists celebrated for pushing boundaries and drawing a wide
range of cultural and meta-musical references into their work. As a result, new
musical genres spring up all the time.

We will start by considering the role of computers in music-making and
the interfaces that facilitate this, before focusing on live music-making explored
through approaches such as gestural interaction and live coding, and strategies that
may combine their advantages. Finally, we will consider the evaluation question
in relation to our position, and with respect to evaluation approaches we have
developed.

8.2 Rich Interfaces

Against the rich and open background of music as a whole, we examine the use
of computers in live music making. Famously, computers do nothing unless we
tell them to. We can think of them as lumps of silicon, passively waiting for
discontinuities amongst the electric and magnetic signals, which provide the on/off
states of digital representation. Computers operate somewhat like a mechanical
music box, where pins on a cylinder are read by tuned teeth of a steel comb. In
particular, computers are controlled by performative language, where describing
something causes it to happen. Beyond this, the magic of computation comes
when such sequences of events describe operations upon themselves, in other
words perform higher order, abstract operations. We can describe computers then
as providing an active system of formal language for humans to explore. Musicians
may choose to work directly in this system of discrete language, on the musical
level of notes and other discrete events such as percussive strikes. Alternatively,
they may use computer language to describe analogue systems such as traditional
musical instruments, and expressive movements thereof. As such, computers allow
us to engage with music either on the level of digital events or analogue movements,
but we contend that the greatest potential for a musically rich experience lies in
engaging with both levels, simultaneously.



8 Live Music-Making: A Rich Open Task Requires a Rich Open Interface 141

8.2.1 Interfaces and Metaphors

Many computer music interfaces are based on pre-existing music technology:
the mixing desk, the step-sequencer grid, the modular synth patchbay. These are
sometimes called design metaphors (Carroll et al. 1988), though they may often
behave more like similes, especially in interfaces which inherit features from
multiple prior technologies. Design metaphors have an advantage of providing a
good leg-up for those users who are familiar with the original technologies, but
can lead to problems: such users may get unpleasant surprises when the analogy
is incomplete, while unfamiliar users may face what seems like inexplicably-
motivated design decisions. In particular, these interfaces are full of skeuomorphic
design elements, originating in physical constraints which no longer apply. The user
may be left feeling as though they are dealing with a nonsensical metaphor, which
induces unneeded limitations (such as running out of display space), and embeds
now-irrelevant design decisions (e.g. based on wiring considerations).

Rigorous attempts to base computer interface design around coherent metaphors
have consistently met with failure (Blackwell 2006b). From this it would seem
that structuring software design around fixed metaphors does not hold cognitive
advantage, beyond helping users adjust to software interfaces in the short term.
It seems likely that this is because such metaphors typically reflect neither the
“problem space” (the target music domain) nor the breadth of possibilities provided
by the computer. The target music domain is in any case hard to specify and may
vary from genre to genre or track to track. If we assume that everyone has their
own systems of metaphor (Cognitive Semantics; Lakoff and Johnson 1980), then
we should instead develop interfaces that let people apply their own metaphors.
This is an important part of our definition of an open interface.

Runciman and Thimbleby (1986) state a slightly more general version of this
requirement: “premature design commitments must be avoided” (p. 440). They
give examples from programming language design and from spreadsheet interfaces,
arguing in particular that interfaces should allow the user to assign input and output
roles to parts of the interface at will, rather than having the roles pre-defined by the
designer. (It is interesting to consider how that idea might be incorporated into music
programming interfaces.) The cells of a spreadsheet can indeed be flexibly allocated
as input or output, and this flexibility and freedom of spatial arrangement is one
aspect of spreadsheets which allows users to construct their own metaphors on top of
the basic architecture (Hendry and Green 1994). Spreadsheets also provide a “low-
viscosity” interface particularly suited to incremental or exploratory working (ibid.).
Spreadsheets are a central focus of research in the field of end-user programming,
essentially being programming environments targetted at those writing code for
their own use. Spreadsheets are not designed for professional programmers, but are
widely used by professionals in a wide range of other domains (Blackwell 2006a),
and so must be taken seriously as programming environments.



142 D. Stowell and A. McLean

Spreadsheet interfaces were originally motivated by a design metaphor for paper
worksheets, but they now have standard features (such as absolute and relative cross-
referencing) which are not constrained by the metaphor, instead providing a reusable
toolset for users to build and edit their own structures. They are however oriented
towards static data representations rather than temporal forms such as music. In the
following subsections we describe some of our work which strives towards similar
openness in a sound/music context, toward musical interfaces which allow the user
to define and repurpose their own metaphors.

8.2.2 Mapping Vocal Gestures

A specific musical example comes from one of our (DS’s) research into interfaces
based on extended vocal techniques – in particular, beatboxing, which is a genre of
vocal percussion (Stowell 2010, Section 2.2). Vocal expression is potentially a very
rich source of information that could be used by musical interactive systems – pitch,
loudness, timbre, linguistic content (if any) – and traditions such as beatboxing
demonstrate a wide variety of timbral gestures, rich in signification.

One way to connect such a vocal signal to a computer system is by detecting
vocal “events” in real time and classifying them (Stowell and Plumbley 2010, and
citations within). However, vocal events can be robustly classified into only a small
number of classes (especially in real time, where only the start of the event’s sound
is known), so the end result is a system which can learn to trigger one of a small
number of options – like playing a drum machine with only three or four buttons.
Much of the richness of the audio input is discarded. This can create a system
which is accessible for immediate use by amateurs, but does not lead to long-
term engagement as a tool for musical expression, certainly not for experienced
beatboxers.

A more expressive way to make use of the vocal source is to treat the timbral
input data as a continuous space, and to try to recreate some of the nuance of
performers’ continuous timbral gestures; for example by controlling a synthesiser
such that it performs analogous gestures (Stowell and Plumbley 2011). Any
“classification” is deferred to the perception of the listener, who can understand
nuances and significations in a way that is beyond at least current technology. In
a user study with beatboxers (discussed further below), this approach was found
useful. Further, we informally observed the interface’s openness in the fact that the
participating beatboxers found new sounds they could get out of the system (e.g. by
whistling, trilling) that had not been designed in to it!

The classification approach is not exactly enforcing a metaphor but pre-judging
what variation in the input is musically salient, which has a similar channeling,
constraining effect on creative options (a premature design decision). This research
is one example in which designing for an open musical interaction can allow for
richer musical possibilities. Similar lessons might be drawn about physical gesture



8 Live Music-Making: A Rich Open Task Requires a Rich Open Interface 143

interfaces, for example – should one discretise the gestures or map them contin-
uously? The continuous-mapping approach has been used by some performers to
achieve detailed expressive performance, even when the mappings are simple.1

8.2.3 Shape in Notation

When we fix gesture as marks on a two dimensional surface, we call it a notation. In
Western culture these marks generally represent discrete events, but may also repre-
sent continuous mappings. Indeed, precursors to staff notation include cheironomic
neumes, which notate the articulation of melody with curved lines. In both discrete
and continuous notations, one dimension is generally dedicated to time, and the
other to a quality, classically pitch. The time dimension, or timeline, is also present
in notation interfaces in much music software, from the commercial offerings of
sequencers to the experimental drawn sound interfaces such as Xenakis’s UPIC.
In effect this software constrains users to considering just one dimension at a time
to describe the state of a musical moment. This allows the evolution of a musical
quality in detail, but makes cross-parameter relationships difficult to describe.

The Acid Sketching system was developed by one of the present authors (AM)
to explore the use of geometric forms and relationships in a music interface
beyond standard dimensional mappings. The Acid Sketching interface consists
of an ordinary pen and paper, where the latter also acts as a projection surface.
When shapes are drawn on the paper with an ink pen, they are identified and
analysed using computer vision. These shapes are translated to sound synthesis
parameters, and their relative positions translated into a polyphonic sequence, using
a minimum spanning tree algorithm. This use of a minimum spanning tree turns
a visual arrangement into a linear sequence of events, a kind of dimensionality
reduction. The path along the minimum spanning tree is traced, as shown in Fig. 8.1.
We claim for a richness from using this graph structure, as it is built from the
highly salient perceptual measure of relative distance in 2D space. After all when
we view a picture, our eyes do not generally read from left to right, but instead
jump around multiple fixation points, influenced by the structure of the scene
(Henderson 2003).

Each shape that is drawn on the page represents a particular sound event.
The nature of each sound event is given by morphological measurements of
its corresponding shape, where each measurement is mapped to sound synthesis
parameters. Specifically, roundness is calculated as the ratio of a shape’s perimeter
length to its area, and maps to envelope modulation; angle is that of the shape’s
central axis relative to the scene, and maps to resonance; and finally, the shape’s
area maps to pitch, with larger shapes giving lower pitched sounds.

1http://ataut.net/site/Adam-Atau-4-Hands-iPhone.

http://ataut.net/site/Adam-Atau-4-Hands-iPhone


144 D. Stowell and A. McLean

Fig. 8.1 Sequencing of shapes in Acid Sketching. Each shape is drawn to represent a different
sound, given by its size, angle and roundness. Shapes are shown with a darker hue when they
are ‘played’. (a) Central shape is ‘played’, circles shown moving towards nearest neighbours.
(b) Circles continue to trace line towards nearest neighbours. (c) Nearest neighbour shapes are
‘played’, with circle moving between the cross shape and the final neighbouring shape. (d) The
final shape is ‘played’, and the process repeated (Color figure online)

Visual feedback is projected on to the paper using a standard data projector. This
feedback takes the form of moving dots, tracing the path from one shape to the
next along the edges of the minimum spanning tree, flood-filling each shape as
its corresponding sound event is triggered. The geometric relationships employed
by the Acid Sketching prototype are not formally tested, but we assert them to
be perceptually salient. The correspondence between shape and timbre appear
to be straightforwardly learnable, suggesting that this prototype system could be
developed further into an engaging interface for live music.

Acid sketching demonstrates a use of analogue symbols which have morpho-
logical properties continuously mapped from those of what is represented. Further
work by Stead (2011) demonstrates a similar system which allows mappings to be
user controlled in a straightforward manner, in effect allowing the user to create
their own vision-sound metaphors. A further challenge is to integrate analogue and
discrete symbols in a mutually supporting manner. In particular, we look forward



8 Live Music-Making: A Rich Open Task Requires a Rich Open Interface 145

to the development of programming languages which are enriched with analogue
symbols, in much the same way that language is enriched with prosodic speech.

8.3 Programming Languages

How would one design a computer music interface that can allow for a rich,
structured yet open-ended musical expression? One answer is to design for an
interaction pattern that makes use of human abilities to represent ideas in a
structured but unbounded way, to abstract, to make meta-references – all well-
represented in the linguistic faculty. A grammatical interface is a consistent and so
learnable interface. Many different levels of musical expression find a representation
in formalised language, from music-theoretic abstractions, through pattern manipu-
lations such as modulations and L-systems, down to sample-by-sample structures
for audio synthesis and effects. Hence the grammatical interface represented by
programming/scripting languages is used in some of the more open sound-and-
music systems (SuperCollider, CMusic, ChucK, SAOL).

8.3.1 The Skeuomorph vs. The Abstract Grammar

A grammatical interface is consistent, and so both learnable and powerful, but
perhaps it achieves this at some cost. It sits well with our linguistic faculty but
may be in tension with some other faculties: an abstract grammar lacks anchoring
in familiar relations such as physical spatial arrangement, relationship to external
entities, or signification by reference to common understandings. This is the
converse of the situation with the skeuomorph, whose cognitive benefit is anchored
in some experiential memory which provides signification and is useful for recall –
but only if the user shares this prior experience, and if they are unlikely to be overly
constrained by habits learned from it.

Hence our proposal that interfaces should let people apply their own metaphors,
providing a more transitory use of metaphor than that often baked in to an interface
by its designers. The signification and accumulated knowledge assumed by a
skeuomorph becomes outdated over time, from year to year or even gig to gig,
yet the relationship between performer and audience is rich in signification. One
question is then how to support this without requiring users to build their own user
interface afresh for each new situation, and without discarding the learning they
have already acquired. A grammatical interface goes a long way toward satisfying
this, since most of the learning is invested in the underlying composable structure;
but there is work still to be done on managing the relationship between the language
and the referential aspects of a music performance (both for the performer and the
audience).



146 D. Stowell and A. McLean

Fig. 8.2 Solo performance by Stowell as MCLD, combining beatboxing with live coded audio
processing

8.3.2 Live Coding

Live coding (Collins et al. 2004) is an emerging practice of creative public
programming, used to make music and other art forms in a live context. It renders
digital performance in some sense more transparent to the audience, allowing them
to share in the creative process.

Improvised performance with a tightly-constrained system (such as a simple
drum machine) can be expressive; but improvised performance with an open system
(such as an audio-oriented programming environment) allows for an interaction that
coherently gives access to many of the different levels of music-making in the digital
system, from high-level structure to phrasing to sound design and effects.

Most current livecoders are using performance systems that have not been around
for long enough to reach the well-publicised figure of 10,000 h of practice for
mastery; the virtuoso livecoder might not yet have been encountered. However,
many people spend many hours typing and/or programming in their daily lives, and
one advantage of a programming interface over a skeuomorphic interface might be
that it can recruit skills developed in neighbouring arenas.

A livecoder, like any improvising performer, is under pressure to do something
interesting in the moment. Livecoders can use abstraction and scheduling so the
notion of “in the moment” may be a little different to that for more traditional
instrumental improvisers. It can lead to a lack of immediacy in how the performer’s
actions relate to the music, which can sometimes deny the more raw physiological
expressionism that some people seek in music. Hence it may be useful to combine
the symbolic interaction of livecoding with open gesture-based expression; one of
us (AM) has been doing this in collaboration with vocalists, guitarists, drummers
and banjo players. The other (DS) has taken both roles in solo live performance
by combining livecoding with beatboxing (Fig. 8.2). The cognitive load for one



8 Live Music-Making: A Rich Open Task Requires a Rich Open Interface 147

performer carrying out both roles is high, but the combination of continuous organic
expression with symbolic abstraction helps to provide immediate multimodal access
to the multiple levels of musical ideas. Compare this situation with dual-task
experiments such as that of Dromey and Bates (2005) which found evidence of
cognitive competition between manual and speech tasks performed concurrently. In
the beatboxing-and-livecoding scenario, the vocal and typing tasks are not indepen-
dent since they both work towards a common goal, but are only loosely coupled
since they tend to operate on different timescales. We argue (from experience not
experiment) that the skill gained from learning such a multimodal interaction allows
confluence rather than competition of the modalities.

Connecting livecoding with performers’ sounds and gestures is one way to
integrate the organic and continuous into the programming interaction. As we will
see in the following section, it is possible to cast programming itself in terms such
that the symbolic and the continuous are both part of the ontology of the language.

8.3.3 Visual Programming Notation

Programming language source code is generally considered as discrete, one di-
mensional text constrained by syntactical rules. Myers (1990, p. 2) contrasts visual
programming languages as “any system that allows the user to specify a program
in a two (or more) dimensional fashion.” This definition is highly problematic,
for a number of reasons. First, several text based languages, such as Haskell
and Python have two dimensional syntax, where vertical alignment is significant.
Second, amongst those systems known as visual programming languages, it is
rare that 2D arrangement has any real syntactical significance, including Patcher
languages such as Puredata and Max/MSP (Puckette 1988). Indeed lines and boxes
in visual programming languages allow non-visual, high dimensional syntax graphs
of hypercubes and up.

The significance of visual notation then is generally as secondary notation
(Blackwell and Green 2002), in that it is not syntactical but still of key importance
to human readability. We can relate this to Dual Coding theory (Paivio 1990), in
treating visuospatial and linguistic representations as not being in opposition, but
rather supporting one another, with humans able to attend to both simultaneously,
experiencing an integrated whole. Visual layout therefore not only supports read-
ability, but supplements code with meaningful expression that is in general ignored
by the software interpreter.

Some computer music interfaces, such as the ReacTable by Jordà et al. (2007),
Nodal by Mcilwain et al. (2006) and Al-Jazari by Dave Griffiths (McLean et al.
2010) use visual layout in primary syntax. In the case of the ReacTable, Euclidean
proximity is used to connect functions in a dataflow graph, and proximity and
relative orientation are used as function parameters. In the case of Nodal and
Al-Jazari, city block distance maps to time, in terms of the movements of agents
across a grid. Inspired by the ReacTable in particular, one of us (AM) is developing



148 D. Stowell and A. McLean

a visual, pure functional programming notation based on Haskell, designed for live
coding of musical pattern. This is a work in progress, but feedback from preliminary
workshops with non-programmers has already been highly encouraging (McLean
and Wiggins 2011). All four of the aforementioned visual programming languages
allow, and with the exception of Nodal are designed primarily for live coding.
Whereas research from the live coding field has mainly been concerned with time,
we can think of this research as extending computer music notation into space.

We assert that integration between linguistic and spatial representations is what
makes a musical experience rich. We can relate this to beatboxing, which is expe-
rienced both in terms of discrete instrumental events via categoral perception, and
continuous expression within spatial experience. This is much like the relationship
between the perception of words and prosody, respectively discrete and continu-
ous, but both symbolic and integrated into a whole experience. By considering
a programming notation as necessarily having both linguistic and visuospatial
significance, we look to find ways of including both forms of representation in the
human-computer interaction.

8.4 Rich and Open Evaluation

This attitude towards musical interface design must be reflected in our approach
to evaluation. Much development of new musical interfaces happens without an
explicit connection to HCI research, and without systematic evaluation. Of course
this can be a good thing, but it can often lead to systems being built which have
a rhetoric of generality yet are used for only one performer or one situation.
With a systematic approach to HCI-type issues one can learn from previous
experience and move towards designs that incorporate digital technologies with
broader application – e.g. enabling people who are not themselves digital tool
designers.

Wanderley and Orio (2002) made a useful contribution to the field by applying
experimental HCI techniques to music-related tasks. While useful, their approach
was derived from the “second wave” task-oriented approach to HCI, using sim-
plified tasks to evaluate musical interfaces, using analogies to Fitts’ Law to
support evaluation through simple quantifiable tests. This approach leads to some
achievements, but has notable limitations. In particular, the experimental setups are
so highly reduced as to be unmusical, leading to concerns about the validity of
the test. Further, such approaches do not provide for creative interactions between
human and machine.

For live music-making, what is needed is more of a “third wave” approach which
finds ways to study human-computer interaction in more musical contexts in which
real-time creative interactions can occur. And live music-making can feed back into
HCI more generally, developing HCI for expressive and ludic settings and for open
interactions.



8 Live Music-Making: A Rich Open Task Requires a Rich Open Interface 149

One of us (DS) developed a structured qualitative evaluation method using
discourse analysis (DA) (Stowell et al. 2009). DA originates in linguistics and
sociology, and means different things to different people: at its core, it is a detailed
analysis of texts (here, transcribed participant interviews) to elucidate the structured
worlds represented in those texts. In the context of a user of a new interface, it can
be used to explore how they integrate that interface into their conceptual world(s),
which gives a detailed impression of affordances relatively uncontaminated by the
investigator’s perspective.

This approach is useful and could benefit from further exploration, perhaps in
different contexts of interface use. The approach bears an interesting comparison
against that of Wilkie et al. (2010), who analyse musicians’ language using an
embodied cognition approach, which differs in that it decomposes text using a
set of simple metaphors claimed to be generally used in abstract thought. As in
any exploratory domain, the approach which attempts to infer structure “directly”
from data and the approach which applies a priori structural units each have their
advantages.

Such rich and open evaluation approaches sit well with the nature of creative
musical situations. Alternative approaches may be worthwhile in some cases,
such as controlled experimental comparisons, but often risk compromising the
musical situation. As one example from a slightly different domain, Dubnov et al.
(2006) conduct a numerical analysis of an audience’s self-evaluated response to a
composed piece of music over time. The study went to great lengths to numerically
explore audience response in an authentic musical context – commissioning a
composed piece whose structure can take two configurations, attracting a concert
audience willing to be wired up to continuous rating system, etc. Their results were
fairly inconclusive, demonstrating mainly that such a scientistic approach is at least
possible if logistically difficult. (Simpler approaches in the same mould exist in
the computer-games literature, where the audience can often be only one person
(Mandryk and Atkins 2007).) In evaluating systems for music-makers we have
the added complication that gathering concurrent data is generally not possible:
self-reports would distract from the music-making process, while physiological
measures (including brain activity sensors) are generally disrupted by the muscle
movement impulses (and sweating) that occur in most music-making. Thus we see
little prospect in the immediate future for concurrent protocols, hence the use of
retrospective protocols in e.g. Stowell et al. (2009).

Music-making HCI evaluation is still very much an unfinished business: there
is plenty of scope for development of methodologies and methods. Evaluation of
music-making, like that of computer games, fits well with the developments in the
HCI field that are called “third paradigm” (non-task-focused, experiential, ludic).
But further: music-making is a key area in which the development of rich and open,
yet structured, HCI approaches are crucial to the development of the field.



150 D. Stowell and A. McLean

8.5 Rich and Open Questions

In relating the above themes we have provided a particular view on music
interaction, extrapolating from existing analog and digital interactions to try to look
towards what could be possible. We conclude then by outlining the themes we have
touched upon, and proposing directions we might take in our search for new, rich
and open music interactions.

Firstly, in a research field in which the study of embodied interaction is beginning
to mature (e.g. through gestural and tablet interfaces), we highlight the role of
computer languages and grammatical interfaces. This aspect is represented by the
small but growing community of live coding researchers, and we argue it allows
for a productive, creative repurposing for musical expression. This focus is not
mainstream in musical interface research: in presenting their paper for the New
Interfaces for Musical Expression conference, Aaron et al. (2011) noted that the
word language was conspicuously missing from the top 200 keywords for the
conference. In sympathy we take the view that programming languages give us an
opportunity to explore music that we have only begun to comprehend. We add to the
argument well made by Patel (2007), that music and natural language share close
family resemblances, by considering computer language as a third category with
its own unique properties. The research theme, ongoing for many years in many
guises, is in how to address the properties of computer language to music, towards
expressive, higher-order music notations.

An issue we have not discussed is that of learning to program, and whether the
strategies we propose could enable (or hinder) the use of programming-type musical
systems more widely. We have argued that a grammatical interface is flexible and
learnable, and also that such a music interface can productively combine symbolic
and continuous aspects; but we have also noted the tension with the anchored
accessibility offered by more skeuomorphic designs.

However our argument for rich and open interfaces does not rest on computer
languages alone, but in greater integration between abstract language, and embodied
gesture. The expressive power of natural language lies in its close integration with
prosodic gesture when it is communicated, and accordingly the full potential for
computer language can only be unlocked when it is fully integrated with visual and
gestural interfaces.

References

Aaron, S., Blackwell, A. F., Hoadley, R., & Regan, T. (2011). A principled approach to developing
new languages for live coding. Proceedings of New Interfaces for Musical Expression, 2011,
381–386.

Blackwell, A. F. (2006a). Psychological issues in end-user programming. In H. Lieberman,
F. Paternò, & V. Wulf (Eds.), End user development (Human-computer interaction series
9th ed., pp. 9–30). Dordrecht: Springer. doi:10.1007/1-4020-5386-X 2. chap 2.

http://dx.doi.org/10.1007/1-4020-5386-X_2


8 Live Music-Making: A Rich Open Task Requires a Rich Open Interface 151

Blackwell, A. F. (2006b). The reification of metaphor as a design tool. ACM Transactions on
Computer-Human Interaction, 13(4), 490–530. doi:10.1145/1188816.1188820.

Blackwell, A., & Green, T. (2002). Notational systems – the cognitive dimensions of notations
framework. In J. M. Carroll (Ed.), HCI models, theories, and frameworks: Toward a multidis-
ciplinary science (pp. 103–134). San Francisco: Morgan Kaufmann.

Carroll, J. M., Mack, R. L., & Kellogg, W. A. (1988). Interface metaphors and user interface design.
In M. Helander (Ed.), Handbook of human-computer interaction (pp. 67–85). New York:
Elsevier.

Collins, N., McLean, A., Rohrhuber, J., & Ward, A. (2004). Live coding in laptop performance.
Organised Sound, 8(03), 321–330. doi:10.1017/S135577180300030X.

Cross, I., & Tolbert, E. (2008). Music and meaning. In The Oxford handbook of music psychology.
Oxford: Oxford University Press.

Dromey, C., & Bates, E. (2005). Speech interactions with linguistic, cognitive, and visuomotor
tasks. Journal of Speech, Language, and Hearing Research, 48(2), 295–305.

Dubnov, S., McAdams, S., & Reynolds, R. (2006). Structural and affective aspects of music
from statistical audio signal analysis: Special topic section on computational analysis of style.
Journal of the American Society for Information Science and Technology, 57(11), 1526–1536.
doi:10.1002/asi.v57:11.

Henderson, J. (2003). Human gaze control during real-world scene perception. Trends in Cognitive
Sciences, 7(11), 498–504. doi:10.1016/j.tics.2003.09.006.

Hendry, D. G., & Green, T. R. G. (1994). Creating, comprehending and explaining spreadsheets:
A cognitive interpretation of what discretionary users think of the spreadsheet model. Interna-
tional Journal of Human Computer Studies, 40(6), 1033–1066. doi:10.1006/ijhc.1994.1047.

Jordà, S., Geiger, G., Alonso, M., & Kaltenbrunner, M. (2007). The reacTable: Exploring the
synergy between live music performance and tabletop tangible interfaces. In Proceedings of
tangible and embedded interaction (pp. 139–146). doi:10.1145/1226969.1226998.

Lakoff, G., & Johnson, M. (1980). Metaphors we live by (2nd ed.). Chicago: University of Chicago
Press.

Mandryk, R. L., & Atkins, M. S. (2007). A fuzzy physiological approach for continuously
modeling emotion during interaction with play technologies. International Journal of Human
Computer Studies, 65(4), 329–347. doi:10.1016/j.ijhcs.2006.11.011.

Mcilwain, P., Mccormack, J., Lane, A., & Dorin, A. (2006). Composing with nodal networks. In T.
Opie & A. Brown (Eds.), Proceedings of the Australasian Computer Music Conference 2006
(pp. 101–107).

McLean, A., & Wiggins, G. (2011). Texture: Visual notation for the live coding of pattern. In Pro-
ceedings of the International Computer Music Conference 2011 (pp. 612–628). Huddersfield.

McLean, A., Griffiths, D., Collins, N., & Wiggins, G. (2010, July 5–7). Visualisation of live code.
In Proceedings of Electronic Visualisation and the Arts London 2010 (pp. 26–30). London.

Myers, B. (1990). Taxonomies of visual programming and program visualization. Journal of Visual
Languages and Computing, 1(1), 97–123. doi:10.1016/S1045-926X(05)80036-9.

Paivio, A. (1990). Mental representations: A dual coding approach (Oxford psychology series).
USA: Oxford University Press, New York.

Patel, A. D. (2007). Music, language, and the brain (1st ed.). USA: Oxford University Press,
New York.

Puckette, M. (1988). The patcher. In C. Lischka & J. Fritsch (Eds.), Proceedings of the 1988
International Computer Music Conference, Cologne, September 20–25, 1988 (pp. 420–429).

Runciman, C., & Thimbleby, H. (1986). Equal opportunity interactive systems. International
Journal of Man–machine Studies, 25(4), 439–451. doi:10.1016/S0020-7373(86)80070-0.

Stead, A. G. (2011). User configurable machine vision for mobiles. In Proceedings of psychology
of programming interest group. York: University of York. http://www.ppig.org/papers/23/15
%20Stead.pdf.

Stowell, D. (2010). Making music through real-time voice timbre analysis: machine learning and
timbral control. PhD thesis, School of Electronic Engineering and Computer Science, Queen
Mary University of London. http://www.mcld.co.uk/thesis/.

http://dx.doi.org/10.1145/1188816.1188820
http://dx.doi.org/10.1017/S135577180300030X
http://dx.doi.org/10.1002/asi.v57:11
http://dx.doi.org/10.1016/j.tics.2003.09.006
http://dx.doi.org/10.1006/ijhc.1994.1047
http://dx.doi.org/10.1145/1226969.1226998
http://dx.doi.org/10.1016/j.ijhcs.2006.11.011
http://dx.doi.org/10.1016/S1045-926X(05)80036-9
http://dx.doi.org/10.1016/S0020-7373(86)80070-0
http://www.ppig.org/papers/23/15%20Stead.pdf
http://www.ppig.org/papers/23/15%20Stead.pdf
http://www.mcld.co.uk/thesis/


152 D. Stowell and A. McLean

Stowell, D., & Plumbley, M. D. (2010). Delayed decision-making in real-time
beatbox percussion classification. Journal of New Music Research, 39(3), 203–213.
doi:10.1080/09298215.2010.512979.

Stowell, D., & Plumbley, M. D. (2011). Learning timbre analogies from unlabelled data by multi-
variate tree regression. Journal of New Music Research. doi:10.1080/09298215.2011.596938.

Stowell, D., Robertson, A., Bryan-Kinns, N., & Plumbley, M. D. (2009). Evaluation of live human-
computer music-making: Quantitative and qualitative approaches. International Journal of
Human Computer Studies, 67(11), 960–975. doi:10.1016/j.ijhcs.2009.05.007.

Wanderley, M. M., & Orio, N. (2002). Evaluation of input devices for musical
expression: Borrowing tools from HCI. Computer Music Journal, 26(3), 62–76.
doi:10.1162/014892602320582981.

Wilkie, K., Holland, S., & Mulholland, P. (2010). What can the language of musicians tell us about
music interaction design? Computer Music Journal, 34(4), 34–48.

http://dx.doi.org/10.1080/09298215.2010.512979
http://dx.doi.org/10.1080/09298215.2011.596938
http://dx.doi.org/10.1016/j.ijhcs.2009.05.007
http://dx.doi.org/10.1162/014892602320582981

	Chapter 8: Live Music-Making: A Rich Open Task Requires a Rich Open Interface
	8.1 Introduction
	8.2 Rich Interfaces
	8.2.1 Interfaces and Metaphors
	8.2.2 Mapping Vocal Gestures
	8.2.3 Shape in Notation

	8.3 Programming Languages
	8.3.1 The Skeuomorph vs. The Abstract Grammar
	8.3.2 Live Coding
	8.3.3 Visual Programming Notation

	8.4 Rich and Open Evaluation
	8.5 Rich and Open Questions
	References


