
Chapter 5

Potential Theory and Spherical Harmonics

In this chapter we investigate solutions of the potential equation due to
Laplace in the homogeneous case and due to Poisson in the inhomogeneous
case. Parallel to the theory of holomorphic functions we develop the theory of
harmonic functions annihilating the Laplace equation. By the ingenious Per-
ron method we shall solve Dirichlet’s problem for harmonic functions. Then
we present the theory of spherical harmonics initiated by Legendre and elab-
orated by Herglotz to the present form. This system of functions constitutes
an explicit basis for the standard Hilbert space and simultaneously provides
a model for the ground states of atoms.

1 Poisson’s Differential Equation in R
n

The solutions of 2-dimensional differential equations can often be obtained
via integral representations over the circle S1. As an example we remind the
reader of Cauchy’s integral formula. For n-dimensional differential equations
will appear integrals over the (n− 1)-dimensional sphere

Sn−1 :=
{
ξ = (ξ1, . . . , ξn) ∈ R

n : ξ21 + . . .+ ξ2n = 1
}
, n ≥ 2. (1)

At first, we shall determine the area of this sphere Sn−1. Given the function
f = f(ξ) : Sn−1 → R ∈ C0(Sn−1,R) we set

∫

Sn−1

f(ξ) dωξ =

∫

|ξ|=1

f(ξ) dωξ :=

N∑
i=1

∫

Σi

f(ξ) dωξ. (2)

By the symbols Σ1, . . . , ΣN we denote the N ∈ N regular surface parts with
their surface elements dωξ satisfying

Sn−1 =

N⋃
i=1

Σi, Σi ∩Σj = ∂Σi ∩ ∂Σj , i �= j.
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We now consider a continuous function

f :
{
x = rξ ∈ R

n : a < r < b, ξ ∈ Sn−1
}
→ R

with 0 ≤ a < b ≤ +∞, and we define the open sets

Oi :=
{
x = rξ : ξ ∈ Σi, r ∈ (a, b)

}
, i = 1, . . . , N.

We require the integrability
∫

a<|x|<b

|f(x)| dx < +∞ and set

∫

a<|x|<b

f(x) dx =

N∑
i=1

∫

Oi

f(x) dx. (3)

The surface parts Σi are parametrized as follows

Σi : ξ = ξ(t) = ξ(t1, . . . , tn−1) : Ti → Σi ∈ C1(Ti, Σi), i = 1, . . . , N

with the parameter domains Ti ⊂ R
n−1. By the representation

x = x(t, r) = x(t1, . . . , tn−1, r) = rξ(t1, . . . , tn−1), t ∈ Ti, r ∈ (a, b)
(4)

we obtain a parametrization of the sets Oi for i = 1, . . . , N . The Jacobian of
this mapping is evaluated as follows:

Jx(t, r) =

∣∣∣∣∣∣∣∣∣

rξt1(t)
...

rξtn−1(t)

ξ(t)

∣∣∣∣∣∣∣∣∣
= rn−1

∣∣∣∣∣∣∣∣∣

ξt1(t)
...

ξtn−1(t)

ξ(t)

∣∣∣∣∣∣∣∣∣
= rn−1

(
ξ(t) · ξt1 ∧ . . . ∧ ξtn−1

)
.

Here the symbol ∧ denotes the exterior vector product in R
n. We have

ξt1 ∧ . . . ∧ ξtn−1 = (D1(t), . . . , Dn(t))

with

Dj(t) := (−1)n+j ∂(ξ1, . . . , ξj−1, ξj+1, . . . , ξn)

∂(t1, . . . , tn−1)
, j = 1, . . . , n.

We note |ξ(t)| = 1 and infer ξ(t) · ξti(t) = 0 for all i = 1, . . . , n− 1. Therefore,
the vectors ξ(t) and ξt1 ∧ . . . ∧ ξtn−1 are parallel to each other and we deduce

Jx(t, r) = rn−1

√√√√
n∑

j=1

Dj(t)2. (5)
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Setting dωξ =

√
n∑

j=1

Dj(t)2 dt1 . . . dtn−1, t ∈ Ti we obtain

∫

Oi

f(x) dx =

∫

Ti×(a,b)

f(rξ(t))rn−1

√√√√
n∑

j=1

Dj(t)2 dt1 . . . dtn−1 dr

=

b∫

a

rn−1 dr

∫

Σi

f(rξ) dωξ, i = 1, . . . , N.

Summation over i = 1, . . . , N finally yields

∫

a<|x|<b

f(x) dx =

b∫

a

rn−1 dr

∫

Sn−1

f(rξ) dωξ. (6)

Especially the functions f ∈ C0(Rn,R) with
∫
Rn

|f(x)|dx < +∞ fulfill the

identity
∫

Rn

f(x) dx =

+∞∫

0

rn−1 dr

∫

Sn−1

f(rξ) dωξ. (7)

Before we continue to evaluate the area of the sphere Sn−1, we shall explicitly
provide a calculus rule for the integral defined in (2). In this context we
consider the following special parametrization of Sn−1:

Σ± : ξi = ti, i = 1, . . . , n− 1, ξn = ±
√

1− t21 − . . .− t2n−1,

t = (t1, . . . , tn−1) ∈ T :=
{
t ∈ R

n−1 : |t| < 1
}
.

We calculate

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ξ1
∂t1

· · · ∂ξn−1

∂t1

∂ξn
∂t1

...
...

...

∂ξ1
∂tn−1

· · · ∂ξn−1

∂tn−1

∂ξn
∂tn−1

λ1 · · · λn−1 λn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 − ξ1
ξn

...
. . .

...
...

0 · · · 1 −ξn−1

ξn

λ1 · · · λn−1 λn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n−1∑
j=1

λj
ξj
ξn

+ λn.

The surface element of Σ± consequently fulfills
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dωξ =

√√√√
n∑

j=1

Dj(t)2 dt1 . . . dtn−1 =

√√√√√
n∑

j=1

ξj(t)2

ξn(t)2
dt1 . . . dtn−1

=
dt1 . . . dtn−1√

1− t21 − . . .− t2n−1

, t ∈ T.

Therefore, the relation (2) implies
∫

|ξ|=1

f(ξ) dωξ

=

∫

|t|<1

f(t1, . . . , tn−1,+
√
. . .) + f(t1, . . . , tn−1,−√

. . .)√
1− t21 − . . .− t2n−1

dt1 . . . dtn−1

(8)

setting
√
. . . =

√
1− t21 − . . .− t2n−1.

We now return to evaluate the area for the (n− 1)-dimensional sphere Sn−1

ωn :=

∫

Sn−1

dωξ.

We take a continuous function g = g(r) : (0,+∞) → R, and require the
function f(x) = g(|x|) to fulfill

∫

Rn

|f(x)| dx < +∞.

Then the relation (7) yields

∫

Rn

g(|x|) dx =

( +∞∫

0

rn−1g(r) dr

)( ∫

Sn−1

dωξ

)

= ωn

+∞∫

0

rn−1g(r) dr.

(9)

We insert the function g(r) = e−r2 , r ∈ (0,+∞) and obtain

ωn

+∞∫

0

rn−1e−r2 dr =

∫

Rn

e−|x|2 dx =

∫

Rn

e−x2
1−...−x2

n dx1 . . . dxn

=

( +∞∫

−∞

e−t2 dt

)n

=
√
π
n
.

(10)
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Here we observe

+∞∫

−∞

e−t2 dt =

√√√√
∫

R2

∫
e−|x|2 dx dy =

√√√√√2π

+∞∫

0

e−r2r dr

=
√
π

√[
− e−r2

]+∞

0
=

√
π.

Definition 1.1. By the symbol

Γ (z) :=

+∞∫

0

tz−1e−t dt, z ∈ C with Re z > 0

we denote the Gamma-function.

Remark: We have

Γ (z + 1) = zΓ (z) for all z ∈ C with Re z > 0.

Therefore, we inductively obtain

Γ (n) = (n− 1)! for n = 1, 2, . . .

With the aid of the substitution t = 	2 and dt = 2	 d	 we calculate

Γ
(1
2

)
=

+∞∫

0

t−
1
2 e−t dt =

+∞∫

0

1

	
e−�2

2	 d	

= 2

+∞∫

0

e−�2

d	 =

+∞∫

−∞

e−�2

d	 =
√
π.

Substituting t = r2 and dt = 2r dr, we finally deduce

Γ
(n
2

)
=

+∞∫

0

t
n−2
2 e−t dt =

+∞∫

0

rn−2e−r22r dr = 2

+∞∫

0

rn−1e−r2 dr.

From the relation (10) we get the following identity for the area of the sphere
Sn−1, namely

ωn =
2
(
Γ ( 12 )

)n

Γ (n2 )
. (11)

We now become acquainted with a class of functions which have similar prop-
erties as the class of holomorphic functions.
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Definition 1.2. On the open set Ω ⊂ R
n with n ≥ 2 we name the function

ϕ = ϕ(x) ∈ C2(Ω,R) harmonic in Ω, if ϕ satisfies the Laplacian differential
equation

Δϕ(x) = ϕx1x1(x) + . . .+ ϕxnxn(x) = 0 for all x ∈ Ω. (12)

At first, we shall find the radially symmetric harmonic functions in R
n \ {0}.

Here we begin with the ansatz

ϕ(x) = f(|x|), x ∈ R
n \ {0}, (13)

using the function f = f(r) : (0,+∞) → R ∈ C2((0,+∞),R). According
to Chapter 1, Section 8 we decompose the Laplace operator with respect to
n-dimensional polar coordinates (ξ, r) ∈ Sn−1 × (0,+∞) as follows:

Δ =
∂2

∂r2
+

n− 1

r

∂

∂r
+

1

r2
Λ. (14)

Here the operator Λ is independent of the radius r . Therefore, the function
ϕ is harmonic in R

n \ {0} if and only if the function f satisfies the following
ordinary differential equation

∂2f

∂r2
(r) +

n− 1

r

∂f

∂r
(r) = 0, r ∈ (0,+∞). (15)

The linear solution space of this ordinary differential equation is 2-dimensional,
and we easily verify: The general solution of (15) is given by

f(r) = a+ b log r, r ∈ (0,+∞), a, b ∈ R, if n = 2,

f(r) = a+ br2−n, r ∈ (0,+∞), a, b ∈ R, if n ≥ 3.

We observe that the solutions f �≡ const of (15) behave at the origin like

lim
r→0+

|f(r)| = +∞.

Therefore, the radially symmetric solutions ϕ(x) = f(|x|), x ∈ R
n \ {0} of the

Laplacian differential equation possess a singularity at the point x = 0. This
phenomenon enables us to derive an integral representation for the solutions
of Poisson’s differential equation. We meet with a comparable situation in
Cauchy’s integral.

Definition 1.3. A domain G ⊂ R
n satisfying the assumptions of the Gaus-

sian integral theorem from Chapter 1, Section 5 is named a normal domain in
R

n.

Definition 1.4. On the normal domain G ⊂ R
n we define the function

ϕ(y;x) :=
1

2π
log |y−x|+ψ(y;x), x, y ∈ G with x �= y, n = 2, (16)
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and alternatively

ϕ(y;x) :=
1

(2− n)ωn
|y−x|2−n+ψ(y;x), x, y ∈ G with x �= y, n ≥ 3.

(17)
Here the function ψ(·;x) - defined by y 
→ ψ(y;x) - is harmonic in G and
belongs to the class C1(G) for each fixed x ∈ G. Furthermore, we observe
the regularity property ψ ∈ C0(G×G). Then we name ϕ(y;x) a fundamental
solution of the Laplace equation in G.

Of central significance for the potential theory is the following

Theorem 1.5. On the normal domain G ⊂ R
n with n ≥ 2, we consider a

solution u = u(x) ∈ C2(G) ∩ C1(G) of Poisson’s differential equation

Δu(x) = f(x), x ∈ G (18)

prescribing the function f = f(x) ∈ C0(G) as its right-hand side. Then we
have the integral representation

u(x) =

∫

∂G

(
u(y)

∂ϕ

∂ν
(y;x)− ϕ(y;x)

∂u

∂ν
(y)
)
dσ(y)

+

∫

G

ϕ(y;x)f(y) dy

(19)

for all x ∈ G. Here the symbol ν : ∂G → R
n denotes the exterior unit normal

for the domain ∂G, dσ(y) means the surface element on the boundary ∂G,
and ϕ(y;x) indicates a fundamental solution.

Proof:

1. We present our proof only for the case n ≥ 3. Take a fixed point x ∈ G
and choose ε0 > 0 so small that the condition

Bε(x) :=
{
y ∈ R

n : |y − x| < ε
}
⊂⊂ G

is satisfied for all 0 < ε < ε0. We introduce the polar coordinates

y = x+ rξ, ξ ∈ R
n with |ξ| = 1

about the point x, and denote the radial derivative by ∂
∂r . On the domain

Gε := G \Bε(x) we apply Green’s formula and obtain
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∫

Gε

f(y)ϕ(y;x) dy

=

∫

Gε

(
Δu(y)ϕ(y;x)− u(y)Δyϕ(y;x)

)
dy

=

∫

∂Gε

(
ϕ(y;x)

∂u

∂ν
(y)− u(y)

∂ϕ

∂ν
(y;x)

)
dσ(y)

=

∫

∂G

(
ϕ(y;x)

∂u

∂ν
(y)− u(y)

∂ϕ

∂ν
(y;x)

)
dσ(y)

−
∫

∂Bε(x)

(
ϕ(y;x)

∂u

∂r
(y)− u(y)

∂ϕ

∂r
(y;x)

)
dσ(y)

(20)

for all ε ∈ (0, ε0).
2. Observing (17), we now see

lim
ε→0+

∫

∂Bε(x)

ϕ(y;x)
∂u

∂r
(y) dσ(y) = 0. (21)

Furthermore, we calculate

lim
ε→0+

∫

∂Bε(x)

u(y)
∂ϕ

∂r
(y;x) dσ(y)

= lim
ε→0+

∫

∂Bε(x)

u(y)
1

ωn
|y − x|1−n dσ(y)

+ lim
ε→0+

∫

∂Bε(x)

u(y)
∂

∂r
ψ(y;x) dσ(y)

= lim
ε→0+

∫

∂Bε(x)

(
u(y)− u(x)

) 1

ωn
|y − x|1−n dσ(y)

+u(x) lim
ε→0+

∫

∂Bε(x)

1

ωn
ε1−n dσ(y)

= u(x).

(22)

3. From (20), (21), and (22) together with the passage to the limit ε → 0+
we now infer the stated identity
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∫

G

f(y)ϕ(y;x) dy +

∫

∂G

(
u(y)

∂ϕ

∂ν
(y;x)− ϕ(y;x)

∂u

∂ν
(y)
)
dσ(y) = u(x)

for arbitrary points x ∈ G. q.e.d.

Theorem 1.6. Given the point
◦
x= (

◦
x1, . . . ,

◦
xn) ∈ R

n and the radius R ∈
(0,+∞), we consider the ball BR(

◦
x) := {x ∈ R

n : |x− ◦
x | < R}. Let the

function

u = u(x1, . . . , xn) ∈ C2(BR(
◦
x)) ∩ C1(BR(

◦
x))

solve the Laplace equation Δu(x1, . . . , xn) = 0 in BR(
◦
x). Then we have a

power series

P(x1, . . . , xn) =

∞∑
k1,...,kn=0

ak1...knx
k1
1 · . . . · xkn

n

for xj ∈ C with |xj | ≤
R

4n
, j = 1, . . . , n

with the real coefficients ak1...kn ∈ R for k1, . . . , kn = 0, 1, 2, . . ., converging
absolutely in the designated complex polycylinder such that

u(x) = P(x1−
◦
x1, . . . , xn−

◦
xn) for x ∈ R

n with |xj−
◦
xj | ≤

R

4n
.

(23)

Proof:

1. It suffices only to prove the statement above in the case
◦
x= 0 and R = 1,

which can easily be verified with the aid of the transformation

Ty :=
◦
x +Ry, y ∈ B1(0) satisfying T : B1(0) → BR(

◦
x).

Furthermore, we only consider the situation n ≥ 3. With the function

ϕ(y;x) :=
1

(2− n)ωn
|y − x|2−n, y ∈ B := B1(0)

we obtain a fundamental solution of the Laplace equation in B for each
fixed x ∈ B. Theorem 1.5 yields the representation formula

u(x) =

∫

∂B

(
u(y)

∂ϕ

∂ν
(y;x)− ϕ(y;x)

∂u

∂ν
(y)
)
dσ(y), x ∈ B. (24)

The points x ∈ B being fixed and y ∈ ∂B arbitrary, we comprehend

∂
∂νϕ(y;x) = y · ∇yϕ(y;x) =

1

ωn
y ·
(
|y − x|1−n∇y|y − x|

)

=
1

ωn
y ·
(
|y − x|−n(y − x)

)
=

1

ωn|y − x|n y · (y − x).

(25)
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2. We take arbitrary λ ∈ R, y ∈ ∂B and x = (x1, . . . , xn) ∈ C
n satisfying

|xj | ≤ 1
4n for j = 1, . . . , n and consider the composite quantity

|y − x|λ :=

( n∑
j=1

(yj − xj)
2

)λ
2

=

(
1− 2

n∑
j=1

yjxj +
n∑

j=1

x2
j

)λ
2

.

Abbreviating

	 := −2
n∑

j=1

yjxj +
n∑

j=1

x2
j ∈ C

we see

|y − x|λ = (1 + 	)
λ
2 =

∞∑
l=0

(λ
2

l

)
	l =

∞∑
l=0

(λ
2

l

)(
− 2

n∑
j=1

yjxj +
n∑

j=1

x2
j

)l

.

Here we observe

|	| =
∣∣∣− 2

n∑
j=1

yjxj +

n∑
j=1

x2
j

∣∣∣ ≤ 2

n∑
j=1

|yj | |xj |+
n∑

j=1

|xj |2

≤ 2
1

4n
n+

1

16n2
n ≤ 3

4
< 1.

3. The function

ψ(x) := |y − x|λ, xk ∈ C with |xj | ≤
1

4n
, j = 1, . . . , n

is consequently holomorphic for each fixed point y ∈ ∂B. On account of
the relation (25), the function

F (x, y) := u(y)
∂ϕ

∂ν
(y;x)− ϕ(y;x)

∂u

∂ν
(y), |xj | ≤

1

4n

is holomorphic on the given polycylinder for each fixed y ∈ ∂B and
bounded. Now Theorem 2.12 from Chapter 4, Section 2 about holomorphic
parameter integrals, together with (24), now yields that the function u(x)
is holomorphic on the given polycylinder. Therefore, the function u can
be expanded into the power series specified above. Since the function u(x)
is real-valued, the coefficients ak1...kn are real as well. They are namely
the coefficients of the associate Taylor series.

q.e.d.

Of central interest is the following

Theorem 1.7. Let us take the point
◦
x∈ R

n, the radius R ∈ (0,+∞), and the
number λ ∈ R with λ < n. Furthermore, let the function f = f(y1, . . . , yn) be
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holomorphic in an open neighborhood U ⊂ C
n satisfying U ⊃⊃ BR(

◦
x). Then

the function

F (x1, . . . , xn) :=

∫

BR(
◦
x)

f(y)

|y − x|λ dy, x ∈ BR(
◦
x) (26)

can be locally expanded into a convergent power series about the point
◦
x.

Proof: Applying the transformation Ty :=
◦
x +Ry, y ∈ B1(0) we can concen-

trate our considerations on the case
◦
x= 0 and R = 1. We therefore investigate

the singular integral

F (x1, . . . , xn) :=

∫

|y|<1

f(y)

|y − x|λ dy, x ∈ B := B1(0).

The point x ∈ B being fixed, we consider the transformation of variables due
to E.E. Levi, namely

y = x+ 	(ξ − x) = (1− 	)x+ 	ξ, 0 < 	 ≤ 1, |ξ| = 1;

ξn = ξn(ξ1, . . . , ξn−1) = ±

√√√√1−
n−1∑
i=1

ξ2i .

The so-defined mapping (ξ1, . . . , ξn−1, 	) 
→ y is bijective, and we have

∂(y1, . . . , yn)

∂(ξ1, . . . , ξn−1, 	)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y1
∂ξ1

· · · ∂yn
∂ξ1

...
...

∂y1
∂ξn−1

· · · ∂yn
∂ξn−1

∂y1
∂	

· · · ∂yn
∂	

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

	 · · · 0 −	
ξ1
ξn

...
. . .

...
...

0 · · · 	 −	
ξn−1

ξn
ξ1 − x1 · · · ξn−1 − xn−1 ξn − xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= 	n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 − ξ1
ξn

...
. . .

...
...

0 · · · 1 −ξn−1

ξn
ξ1 − x1 · · · ξn−1 − xn−1 ξn − xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
	n−1

ξn

( n−1∑
i=1

ξi(ξi − xi) + ξn(ξn − xn)

)

=
	n−1

ξn

(
1−

n∑
i=1

ξixi

)
�= 0 for |ξ| = 1, |x| < 1.

The transformation formula for multiple integrals now yields

F (x) =

∫

|y|<1

f(y)

|y − x|λ dy

=

1∫

0

∫

ξ21+...+ξ2n−1<1

ξn(ξ1,...,ξn−1)>0

f(x+ 	(ξ − x))

	λ|ξ − x|λ
	n−1

|ξn|

(
1−

n∑
k=1

ξkxk

)
dξ1 . . . dξn−1 d	

+

1∫

0

∫

ξ21+...+ξ2n−1<1

ξn(ξ1,...,ξn−1)<0

f(x+ 	(ξ − x))

	λ|ξ − x|λ
	n−1

|ξn|

(
1−

n∑
k=1

ξkxk

)
dξ1 . . . dξn−1 d	

=

1∫

0

	n−1−λ

( ∫

|ξ|=1

f(x+ 	(ξ − x))

|ξ − x|λ (1− ξ · x) dωξ

)
d	.

As in the proof of Theorem 1.6 we expand the function |ξ−x|λ into a conver-
gent power series. With the aid of Theorem 2.12 from Chapter 4, Section 2 we
infer that the function F (x) can be expanded into a convergent power series
in a neighborhood of the point x = 0.

q.e.d.

Definition 1.8. A function ϕ = ϕ(x1, . . . , xn) : Ω → R defined on the open
set Ω ⊂ R

n is named real-analytic in Ω if the following condition holds true:

For each point
◦
x= (

◦
x1, . . . ,

◦
xn) ∈ Ω there exists a sufficiently small number

ε = ε(
◦
x) > 0 and a convergent power series
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P(z1, . . . , zn) =

∞∑
k1,...,kn=0

ak1...knz
k1
1 · . . . · zkn

n

for zj ∈ C with |zj | ≤ ε, j = 1, . . . , n

with the real coefficients

ak1...kn ∈ R for k1, . . . , kn = 0, 1, 2, . . .

such that the identity

ϕ(x1, . . . , xn) = P(x1−
◦
x1, . . . , xn−

◦
xn), |xj−

◦
xj | ≤ ε, j = 1, . . . , n

is satisfied.

Theorem 1.9. (Analyticity theorem for Poisson’s equation)
The real-analytic function f = f(x1, . . . , xn) : Ω → R is defined on the open
set Ω ⊂ R

n with n ≥ 2. Furthermore, let the function u = u(x1, . . . , xn) ∈
C2(Ω) represent a solution of Poisson’s differential equation

Δu(x1, . . . , xn) = f(x1, . . . , xn), (x1, . . . , xn) ∈ Ω.

Then this function u(x) is real-analytic in the set Ω.

Proof: Taking
◦
x∈ Ω and BR(

◦
x) ⊂⊂ Ω, Theorem 1.5 allows us to represent

the solution u(x) by the fundamental solution ϕ in the following form

u(x) =

∫

∂BR(
◦
x)

(
u(y)

∂ϕ

∂ν
(y;x)− ϕ(y;x)

∂u

∂ν
(y)
)
dσ(y) +

∫

BR(
◦
x)

ϕ(y;x)f(y) dy

with x ∈ BR(
◦
x). According to Theorem 1.6, the first integral on the right-hand

side represents a real-analytic function about the point
◦
x. From Theorem 1.7

we infer that the second integral yields a real-analytic function about the

point
◦
x as well.

q.e.d.

2 Poisson’s Integral Formula with Applications

In Theorem 1.5 from Section 1 we have constructed an integral representa-
tion for the solutions of Poisson’s equation in normal domains G with the
aid of the fundamental solution ϕ(y;x). The representation formula becomes
particularly simple if the function ϕ(.;x) vanishes on the boundary ∂G. This
motivates the following
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Definition 2.1. On a normal domain G ⊂ R
n we have the fundamental solu-

tion ϕ = ϕ(y;x) given. We call this function a Green’s function of the domain
G, if the boundary condition

ϕ(y;x) = 0 for all y ∈ ∂G (1)

is satisfied for all x ∈ G.

Theorem 2.2. Given the ball BR := {y ∈ R
n : |y| < R} with R ∈ (0,+∞)

and n ≥ 2, we have the following Green’s function:

ϕ(y;x) =
1

2π
log

∣∣∣∣
R(y − x)

R2 − xy

∣∣∣∣, y ∈ BR, x ∈ BR, (2)

in the case n = 2 and

ϕ(y;x) =
1

(2− n)ωn

(
1

|y − x|n−2
−

(
R
|x|

)n−2

∣∣∣y − R2

|x|2 x
∣∣∣
n−2

)

=
1

(2− n)ωn

(
1

|y − x|n−2
− Rn−2

(R4 − 2R2(x · y) + |x|2|y|2)n−2
2

)
(3)

for y ∈ BR, x ∈ BR in the case n ≥ 3.

Proof:

1. At first, we consider the case n = 2. Taking the point x ∈ BR as fixed,
the expression

f(y) :=
R(y − x)

R2 − xy
=

Ry −Rx

−xy +R2
, y ∈ C

is a Möbius transformation with the nonsingular coefficient matrix
(

R −Rx

−x R2

)
, det

(
R −Rx

−x R2

)
= R(R2 − |x|2) > 0.

Furthermore, we have

|f(R)| =
∣∣∣∣
R2 −Rx

−xR+R2

∣∣∣∣ =

∣∣∣∣
R2 −Rx

R2 −Rx

∣∣∣∣ = 1,

|f(−R)| =
∣∣∣∣
−R2 −Rx

Rx+R2

∣∣∣∣ =

∣∣∣∣
R2 +Rx

R2 +Rx

∣∣∣∣ = 1,

|f(iR)| =
∣∣∣∣
iR2 −Rx

−iRx+R2

∣∣∣∣ =

∣∣∣∣
iR2 −Rx

R2 + iRx

∣∣∣∣ =

∣∣∣∣
R2 + iRx

R2 + iRx

∣∣∣∣ = 1,

f(0) = − x

R
∈ B1.
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This implies
|f(y)| = 1 for all y ∈ ∂BR

and then

ϕ(y;x) =
1

2π
log

∣∣∣∣
R(y − x)

R2 − xy

∣∣∣∣ = 0

for all y ∈ ∂BR and all x ∈ BR. Finally, we note that

ϕ(y;x) =
1

2π
log

∣∣∣∣
y − x

R− x
Ry

∣∣∣∣ =
1

2π
log |y − x| − 1

2π
log

∣∣∣∣R− x

R
y

∣∣∣∣

=
1

2π
log |y − x| − 1

2π
log

∣∣∣∣−
x

R

(
y − R2

x

)∣∣∣∣

=
1

2π
log |y − x| − 1

2π
log

∣∣∣∣y −
R2

|x|2x
∣∣∣∣−

1

2π
log

∣∣∣∣
x

R

∣∣∣∣

=:
1

2π
log |y − x|+ ψ(y;x), y ∈ BR, x ∈ BR \ {0}.

The function ψ(·;x) is harmonic in BR as the real part of a holomorphic
function.

2. We now consider the case n ≥ 3, and begin with the following ansatz:

ϕ(y;x) =
1

(2− n)ωn

(
1

|y − x|n−2
− K

|y − λx|n−2

)
, y ∈ BR.

Here the point x ∈ BR is fixed; the constants K and λ have still to be
chosen adequately. At first, we see that the function

ψ(y;x) := − 1

(2− n)ωn

K

|y − λx|n−2

is harmonic in y ∈ BR if λx �∈ BR holds true. The condition ϕ(y;x) = 0
for all y ∈ ∂BR is satisfied if and only if

1

|y − x|n−2
=

K

|y − λx|n−2

or equivalently

K
2

n−2 |y − x|2 = |y − λx|2 for all y ∈ ∂BR

is correct. On account of |y| = R we can transform this identity into

K
2

n−2 (R2 − 2(y · x) + |x|2) = R2 − 2λ(y · x) + λ2|x|2

and finally into
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R2
(
K

2
n−2 − 1

)
− 2(x · y)

(
K

2
n−2 − λ

)
+ |x|2

(
K

2
n−2 − λ2

)
= 0.

Setting λ := K
2

n−2 we obtain

0 = R2(λ− 1) + |x|2(λ− λ2) = (λ− 1){R2 − λ|x|2}.

Since the case λ = 1, K = 1 and consequently ϕ ≡ 0 has to be excluded as

the trivial one, we choose λ :=
(

R
|x|

)2
and K = λ

n−2
2 =

(
R
|x|

)n−2

. Now we

obtain Green’s function of the domain BR with the following expression

ϕ(y;x) =
1

(2− n)ωn

(
1

|y − x|n−2
−

(
R
|x|

)n−2

∣∣∣y −
(

R
|x|

)2
x
∣∣∣
n−2

)
, y ∈ BR,

for x ∈ BR \ {0}. We note

R
|x|∣∣∣y − R2

|x|2 x
∣∣∣
=

R∣∣∣|x|y −R2 x
|x|

∣∣∣
=

(
R2

|x|2|y|2 − 2R2(x · y) +R4

) 1
2

,

and Green’s function satisfies

ϕ(y;x) =
1

(2− n)ωn

(
1

|y − x|n−2
− Rn−2

(|x|2|y|2 − 2R2(x · y) +R4)
n−2
2

)

for all y ∈ BR and x ∈ BR. q.e.d.

Theorem 2.3. (Poisson’s integral formula)
In the ball BR := {y ∈ R

n : |y| < R} of radius R ∈ (0,+∞) in the Euclidean
space R

n with n ≥ 2, let the function u = u(x) = u(x1, . . . , xn) ∈ C2(BR) ∩
C0(BR) solve Poisson’s differential equation

Δu(x) = f(x), x ∈ BR

for the right-hand side f = f(x) ∈ C0(BR). Then we have the Poisson integral
representation

u(x) =
1

Rωn

∫

|y|=R

|y|2 − |x|2
|y − x|n u(y) dσ(y) +

∫

|y|≤R

ϕ(y;x)f(y) dy (4)

for all x ∈ BR. Here the symbol ϕ = ϕ(y;x) denotes Green’s function given
in Theorem 2.2.

Proof:
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1. At first, we assume the regularity u ∈ C2(BR). Theorem 1.5 from Section 1
yields the identity

u(x) =

∫

|y|=R

u(y)
∂ϕ

∂ν
(y;x) dσ(y) +

∫

|y|≤R

ϕ(y;x)f(y) dy, x ∈ BR.

We confine ourselves to the case n ≥ 3. According to Theorem 2.2 we have
Green’s function

ϕ(y;x) =
1

(2− n)ωn

(
|y − x|2−n −K|y − λx|2−n

)
, y ∈ BR, x ∈ BR,

with λ :=

(
R

|x|

)2

and K =

(
R

|x|

)n−2

= λ
n−2
2 .

Taking x ∈ BR as fixed and y ∈ ∂BR arbitrarily, we calculate

∂

∂ν
ϕ(y;x) =

y

R
· ∇yϕ(y;x)

=
1

Rωn
y ·
(
|y − x|1−n y − x

|y − x| −K|y − λx|1−n y − λx

|y − λx|

)

=
1

Rωn
y ·
(

y − x

|y − x|n −K
y − λx

|y − λx|n

)
.

This formula remains true for n = 2 as well, where K = 1 is fulfilled in
this case. We additionally note that

|y − λx|2 = R2 − 2λ(x · y) + λ2|x|2

= R2 − 2
R2

|x|2 (x · y) + R4

|x|2

=
R2

|x|2
(
|x|2 − 2(x · y) +R2

)
= λ|y − x|2

and consequently
|y − λx|n = λ

n
2 |y − x|n.

Finally, we obtain

∂

∂ν
ϕ(y;x) =

1

Rωn|y − x|n y ·
(
y − x−Kλ−n

2 (y − λx)
)

=
1

Rωn|y − x|n y ·
(
(1− λ−n

2 K)y − (1−Kλ
−n+2

2 )x
)

=
|y|2

Rωn|y − x|n
(
1− 1

λ

)
=

|y|2
Rωn|y − x|n

(
1− |x|2

R2

)

=
|y|2 − |x|2

Rωn|y − x|n for all y ∈ ∂BR and x ∈ BR.
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Therefore, we get the Poisson integral representation

u(x) =
1

Rωn

∫

|y|=R

|y|2 − |x|2
|y − x|n u(y) dσ(y)+

∫

|y|≤R

ϕ(y;x)f(y) dy, x ∈ BR.

2. Now assuming u ∈ C2(BR) ∩ C0(BR), part 1 of our proof yields the
following identity for all 	 ∈ (0, R):

u(x) =
1

	ωn

∫

|y|=�

|y|2 − |x|2
|y − x|n u(y) dσ(y) +

∫

|y|≤�

ϕ(y;x, 	)f(y) dy.

Here ϕ(y;x, 	) denotes Green’s function for the ball B�. We observe the
transition to the limit 	 → R− and obtain

u(x) =
1

Rωn

∫

|y|=R

|y|2 − |x|2
|y − x|n u(y) dσ(y) +

∫

|y|≤R

ϕ(y;x,R)f(y) dy

for all x ∈ BR. q.e.d.

Remarks:

1. In the special case n = 2 and f = 0 we obtain for 0 ≤ 	 < R and
0 ≤ ϑ < 2π:

u(	 cosϑ, 	 sinϑ) =
1

2π

2π∫

0

R2 − 	2

R2 − 2	R cos(λ− ϑ) + 	2
u(R cosλ,R sinλ) dλ.

2. We name

P (x, y,R) :=
1

Rωn

|y|2 − |x|2
|y − x|n , y ∈ BR, x ∈ BR

the Poisson kernel.
3. Later in Chapter 9 we shall investigate the boundary behavior of Poisson’s

integral.

Theorem 2.4. We consider a solution u = u(x) ∈ C2(G) of Poisson’s differ-
ential equation Δu(x) = f(x), x ∈ G in the domain G ⊂ R

n. For each ball
BR(a) ⊂⊂ G we then have the identity

u(a) =
1

2πR

∫

|x−a|=R

u(x) dσ(x)− 1

2π

∫

|x−a|≤R

∫
log
( R

|x− a|

)
f(x) dx (5)

in the case n = 2, and alternatively
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u(a) =
1

Rn−1ωn

∫

|x−a|=R

u(x) dσ(x)

− 1

(n− 2)ωn

∫

|x−a|≤R

(
|x− a|2−n −R2−n

)
f(x) dx

(6)

in the case n ≥ 3.

Proof: Via an adequate translation we can achieve a = 0. We then consider
Green’s function

ϕ(y; 0) =
1

2π
log
∣∣∣ y
R

∣∣∣ = − 1

2π
log

R

|y| , y ∈ BR, n = 2,

and alternatively

ϕ(y; 0) = − 1

(n− 2)ωn

(
1

|y|n−2
− 1

Rn−2

)
, y ∈ BR, n ≥ 3.

Poisson’s integral formula now yields

u(0) =
1

2πR

∫

|y|=R

u(y) dσ(y)− 1

2π

∫

|y|≤R

∫
log
( R

|y|

)
f(y) dy

in the case n = 2 and

u(0) =
1

Rn−1ωn

∫

|y|=R

u(y) dσ(y)− 1

(n− 2)ωn

∫

|y|≤R

(
1

|y|n−2
− 1

Rn−2

)
f(y) dy

in the case n ≥ 3. q.e.d.

Corollary: Harmonic functions u have the mean value property

u(a) =
1

Rn−1ωn

∫

|y−a|=R

u(y) dσ(y), (7)

if BR(a) ⊂⊂ G is satisfied.

Theorem 2.5. (Harnack’s inequality)
Let the function u(x) ∈ C2(BR) be harmonic in the ball BR = {y ∈ R

n :
|y| < R} of radius R ∈ (0,+∞), and we assume u(x) ≥ 0 for all x ∈ BR.
Then we have the estimate

1− |x|
R(

1 + |x|
R

)n−1 u(0) ≤ u(x) ≤
1 + |x|

R(
1− |x|

R

)n−1 u(0) for all x ∈ BR. (8)
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Proof: At first we assume u ∈ C2(BR), and later we establish the inequality
above for functions u ∈ C2(BR) by a passage to the limit. From Theorem 2.3
we infer

u(x) =

∫

|y|=R

P (x, y,R)u(y) dσ(y), x ∈ BR.

For arbitrary points y ∈ R
n with |y| = R and x ∈ BR we have the following

inequality:
|y|2 − |x|2
(R+ |x|)n ≤ |y|2 − |x|2

|y − x|n ≤ |y|2 − |x|2
(R− |x|)n .

We multiply this inequality by 1
Rωn

u(y) and then integrate over the boundary
∂BR:

1

Rωn

R2 − |x|2
(R+ |x|)n

∫

|y|=R

u(y) dσ(y) ≤ u(x) ≤ 1

Rωn

R2 − |x|2
(R− |x|)n

∫

|y|=R

u(y) dσ(y).

Using the mean value property of harmonic functions we obtain

Rn−2 R2 − |x|2
(R+ |x|)n u(0) ≤ u(x) ≤ Rn−2 R2 − |x|2

(R− |x|)n u(0)

and consequently

1− |x|2
R2(

1 + |x|
R

)n u(0) ≤ u(x) ≤
1− |x|2

R2(
1− |x|

R

)n u(0), x ∈ BR.

Finally, this implies

1− |x|
R(

1 + |x|
R

)n−1 u(0) ≤ u(x) ≤
1 + |x|

R(
1− |x|

R

)n−1 u(0), x ∈ BR.

q.e.d.

Theorem 2.6. (Liouville’s theorem for harmonic functions)
Let u(x) : Rn → R denote a harmonic function satisfying u(x) ≤ M for all
x ∈ R

n, with a constant M ∈ R. Then we have u(x) ≡ const, x ∈ R
n.

Proof: We consider the harmonic function v(x) := M −u(x), x ∈ R
n and note

that v(x) ≥ 0 for all x ∈ R
n. Harnack’s inequality now yields

1− |x|
R(

1 + |x|
R

)n−1 v(0) ≤ v(x) ≤
1 + |x|

R(
1− |x|

R

)n−1 v(0), x ∈ BR, R > 0.

We observe R → +∞ and obtain v(x) = v(0) for all x ∈ R
n and finally

u(x) ≡ const, x ∈ R
n.

q.e.d.

Fundamentally important in the sequel is
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Definition 2.7. Let G ⊂ R
n denote a domain and u = u(x) = u(x1, . . . , xn) :

G → R ∈ C0(G) a continuous function. We name u weakharmonic (super-
harmonic, subharmonic), if

u(a) = ( ≥, ≤ )
1

rn−1ωn

∫

|x−a|=r

u(x) dσ(x) =
1

ωn

∫

|ξ|=1

u(a+ rξ) dσ(ξ)

for all a ∈ G and r ∈ (0, ϑ(a)) with a certain ϑ(a) ∈ (0, dist(a,Rn \ G)] is
correct.

Remarks:

1. The function u : G → R ∈ C0(G) is superharmonic if and only if the
function −u is subharmonic.

2. A function is weakharmonic if and only if this function is simultaneously
superharmonic and subharmonic.

3. A weakharmonic function is characterized by the mean value property -
and should be carefully distinguished from certain weak solutions of the
Laplace equation in Sobolev spaces, which are not necessarily continuous
functions in general.

4. If the functions u, v : G → R are superharmonic and the constant α ∈
[0,+∞) is given, then the following continuous functions

w1(x) := αu(x),

w2(x) := u(x) + v(x),

w3(x) := min{u(x), v(x)}, x ∈ G,

are superharmonic as well. For w1 and w2 this statement is evident, and
we investigate the function w3. Taking the point a ∈ G and the radius
r ∈ (0, ϑ(a)) we infer

1

ωn

∫

|ξ|=1

w3(a+ rξ) dσ(ξ) =
1

ωn

∫

|ξ|=1

min{u(a+ rξ), v(a+ rξ)} dσ(ξ)

≤ min

{
1

ωn

∫

|ξ|=1

u(a+ rξ) dσ(ξ),
1

ωn

∫

|ξ|=1

v(a+ rξ) dσ(ξ)

}

≤ min{u(a), v(a)} = w3(a).

5. If the functions u, v : G → R are subharmonic and the constant α ∈
[0,+∞) is given, then the following functions

w1(x) := αu(x),

w2(x) := u(x) + v(x),

w3(x) := max{u(x), v(x)}, x ∈ G,
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are subharmonic functions in G as well.

Theorem 2.8. Let the function u = u(x) ∈ C2(G) be defined on the domain
G ⊂ R

n. Then this twice continuously differentiable function u is weakhar-
monic (superharmonic, subharmonic) in G if and only if the relation

Δu(x) = 0 (≤ 0, ≥ 0) for all x ∈ G

is correct.

Proof: We present our proof only in the case n ≥ 3. We define f(x) := Δu(x),
x ∈ G and see f ∈ C0(G). Theorem 2.4 yields the following identity for all
points a ∈ G and radii r ∈ (0, ϑ(a)):

u(a) =
1

rn−1ωn

∫

|x−a|=r

u(x) dσ(x)

− 1

(n− 2)ωn

∫

|x−a|≤r

(|x− a|2−n − r2−n)f(x) dx.

Setting

χ(a, r) := − 1

(n− 2)ωn

∫

|x−a|≤r

(|x− a|2−n − r2−n)f(x) dx

we easily see: The function u is weakharmonic (superharmonic, subharmonic)
if and only if

χ(a, r) = 0 (≥ 0, ≤ 0) for all a ∈ G, r ∈ (0, ϑ(a))

holds true. We finally note the inequality |x− a|2−n − r2−n ≥ 0 for all x ∈ G
with |x− a| ≤ r, and we obtain the statement above.

q.e.d.

Theorem 2.9. (Maximum and minimum principle)
The superharmonic (subharmonic) function u = u(x) : G → R - defined on
the domain G ⊂ R

n - may attain its global minimum (maximum) at a point
◦
x∈ G; this means

u(x) ≥ u(
◦
x)

(
u(x) ≤ u(

◦
x)
)

for all x ∈ G.

Then we have
u(x) ≡ const in G.
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Proof: Since the reflection u → −u transfers subharmonic functions into su-
perharmonic ones, the statement has only to be shown for superharmonic
functions. Now the superharmonic function u : G → R ∈ C0(G) may attain

its global minimum at the point
◦
x∈ G. We then consider the nonvoid set

G∗ :=
{
x ∈ G : u(x) = inf

y∈G
u(y) = u(

◦
x)
}

which is closed in the domain G. We now show that this set G∗ is open as
well. If namely a ∈ G∗ is an arbitrary point, we observe

inf
y∈G

u(y) = u(a) ≥ 1

ωn

∫

|ξ|=1

u(a+ rξ) dσ(ξ) for all r ∈ (0, ϑ(a)). (9)

This implies u(x) = u(a) for all points x ∈ R
n with |x − a| < ϑ(a). Conse-

quently, the set G∗ is open. Since G is a domain and especially connected, we

easily see by continuation along paths: u(x) ≡ u(
◦
x) for all x ∈ G. We finally

obtain u(x) ≡ const, x ∈ G.
q.e.d.

Theorem 2.10. Let the function u : G → R ∈ C0(G) be superharmonic
(subharmonic) in the bounded domain G ⊂ R

n. Furthermore, all sequences of
points {x(k)}k=1,2,... ⊂ G satisfying lim

k→∞
x(k) = x ∈ ∂G have the property

lim inf
k→∞

u(x(k)) ≥ M
(
lim sup
k→∞

u(x(k)) ≤ M
)

with a constant M ∈ R. Then we have the behavior

u(x) ≥ M
(
u(x) ≤ M

)
for all x ∈ G.

Proof: It suffices to consider superharmonic functions u : G → R. If the
statement u(x) ≥ M for all x ∈ G were false, we have a point ξ ∈ G with
μ := u(ξ) < M . We now construct a sequence of connected compact subsets
of G exhausting the set G; this means Θj ↑ G for j → ∞ satisfying

ξ ∈ Θ1 ⊂ Θ2 ⊂ . . . .

Due to Theorem 2.9, the superharmonic function u attains its minimum at a
boundary point y(j) ∈ ∂Θj of each compact set Θj . Therefore, we have the
inequalities

u(y(j)) ≤ u(ξ) = μ for j = 1, 2, . . .

From the sequence {y(j)}j=1,2,... ⊂ G we now select a convergent subsequence
{x(k)}k=1,2,... ⊂ {y(j)}j=1,2,.... We then obtain a sequence {x(k)}k=1,2,... ⊂ G
satisfying
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lim
k→∞

x(k) = x ∈ ∂G and lim inf
k→∞

u(x(k)) ≤ μ < M.

However, this contradicts the assumption

lim inf
k→∞

u(x(k)) ≥ M for all {x(k)}k=1,2,... ⊂ G with lim
k→∞

x(k) ∈ ∂G.

q.e.d.

Theorem 2.11. Let G ⊂ R
n denote a bounded domain. Furthermore, we

consider two functions u = u(x), v = v(x) : G → R ∈ C0(G), which are
weakharmonic in G. Then we have the estimate

sup
x∈G

|u(x)− v(x)| ≤ sup
x∈∂G

|u(x)− v(x)|.

Proof: The function w(x) := u(x) − v(x), x ∈ G is continuous in G and
weakharmonic in G. Setting M := sup

x∈∂G
|u(x)−v(x)|, Theorem 2.10 yields the

inequality
−M ≤ w(x) ≤ M for all x ∈ G.

This implies the stated estimate. q.e.d.

Theorem 2.12. Let G ⊂ R
n denote a bounded domain. Then the Green func-

tion ϕG(y;x) for this domain is uniquely determined, and we have

ϕG(y;x) < 0 for all y ∈ G and fixed x ∈ G. (10)

Proof: (Only for n ≥ 3.)

1. Let the two Green functions

ϕj(y;x) =
1

(2− n)ωn
|y − x|2−n + ψj(y;x), y ∈ G, x ∈ G; j = 1, 2

be given. Then we infer 0 = ϕ1(y;x) = ϕ2(y;x) for y ∈ ∂G, x ∈ G and
therefore

ψ1(y;x) = ψ2(y;x), y ∈ ∂G, x ∈ G.

Theorem 2.11 now implies ψ1(y;x) ≡ ψ2(y;x), and finally

ϕ1 ≡ ϕ2, y ∈ G, x ∈ G.

2. We take the point x ∈ G as fixed and consider Green’s function

ϕG(y;x) =
1

(2− n)ωn
|y − x|2−n + ψ(y;x), y ∈ G

for the domain G. Then the function χ(y) := ϕ(y;x) : G \ {x} → R

is harmonic. Arbitrary sequences {y(k)}k=1,2,... ⊂ G′ := G \ {x} with
lim
k→∞

y(k) ∈ ∂G′ = ∂G ∪ {x} now satisfy
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lim sup
k→∞

χ(y(k)) ≤ 0.

Therefore, Theorem 2.10 yields χ(y) ≤ 0 for all y ∈ G′ and Theorem 2.9
implies the inequality (10).

q.e.d.

Remark: The existence question for Green’s function on Dirichlet domains G
will be answered affirmatively in the next section.

3 Dirichlet’s Problem for the Laplace Equation in R
n

In this paragraph the symbol G ⊂ R
n always means a bounded domain, and

f = f(x) : ∂G → R ∈ C0(∂G) denotes a continuous function on its boundary
∂G. Our interest is devoted to the following Dirichlet’s boundary value problem
for the Laplace equation

u = u(x) ∈ C2(G) ∩ C0(G),

Δu(x) = 0 for all x ∈ G,

u(x) = f(x) for all x ∈ ∂G.

(1)

Theorem 3.1. (Uniqueness theorem)
Consider two solutions u(x), v(x) of the Dirichlet problem (1) for the data G
and f . Then we have

u(x) ≡ v(x) in G.

Proof: The function w(x) := v(x)−u(x), x ∈ G belonging to the class C2(G)∩
C0(G) is especially weakharmonic in G and has the boundary values

w(x) = v(x)− u(x)

= f(x)− f(x) = 0 for all x ∈ ∂G.

Theorem 2.11 from Section 2 implies w(x) ≡ 0 in G and therefore

v(x) ≡ u(x), x ∈ G.
q.e.d.

With the aid of Poisson’s integral formula we can explicitly solve the Dirichlet
problem on balls.

Theorem 3.2. On the ball BR(a) := {y ∈ R
n : |y − a| < R} with the center

a ∈ R
n and the radius R ∈ (0,+∞) we consider Poisson’s integral

u(x) :=
1

Rωn

∫

|y−a|=R

|y − a|2 − |x− a|2
|y − x|n f(y) dσ(y), x ∈ BR(a). (2)
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Then the function u belongs to the regularity class C2(BR(a)) ∩ C0(BR(a))
and is harmonic in BR(a). Furthermore, we have the boundary behavior

lim
x→◦

x
x∈BR(a)

u(x) = f(
◦
x) for all

◦
x∈ ∂BR(a). (3)

Consequently, the given function u solves Dirichlet’s problem (1) on the ball
G = BR(a) for the continuous boundary function f : ∂BR(a) → R being
prescribed.

Proof:

1. At first, we consider the situation a = 0, R = 1 and set B := B1(0) ⊂ R
n.

Then we obtain the function

u(x) =
1

ωn

∫

|y|=1

|y|2 − |x|2
|y − x|n f(y) dσ(y) =

∫

|y|=1

P (y;x)f(y) dσ(y), x ∈ B

(4)
with Poisson’s kernel

P (y;x) :=
1

ωn

|y|2 − |x|2
|y − x|n , y ∈ ∂B, x ∈ B.

2. Formula (4) immediately implies the regularity u ∈ C2(B). According to
part 1 in the proof of Theorem 2.3 from Section 2 the following identity is
satisfied:

P (y;x) =
1

ωn

|y|2 − |x|2
|y − x|n =

∂

∂ν
ϕ(y;x)

= y · ∇yϕ(y;x), y ∈ ∂B, x ∈ B.

(5)

Here the symbol ϕ(y;x) denotes Green’s function for the unit ball B
described in Section 2, Theorem 2.2. We note that ϕ is symmetric, more
precisely

ϕ(x; y) = ϕ(y;x) for all x, y ∈ B with x �= y. (6)

Furthermore, we have

ΔxP (y;x) = y · ∇y

(
Δxϕ(y;x)

)
= 0, x ∈ B, y ∈ ∂B. (7)

Consequently, we obtain

Δu(x) =

∫

|y|=1

ΔxP (y;x)f(y) dσ(y) = 0 for all x ∈ B. (8)
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3. Applying Theorem 2.3 from Section 2 to the harmonic function v(x) ≡ 1,
x ∈ B we deduce

1 =
1

ωn

∫

|y|=1

|y|2 − |x|2
|y − x|n 1 dσ(y) =

∫

|y|=1

P (y;x) dσ(y) for allx ∈ B. (9)

Furthermore, P (y;x) > 0 for all y ∈ ∂B and all x ∈ B is satisfied.
4. We now show that the relation

lim
x→◦

x
x∈B

u(x) = f(
◦
x)

is correct for all boundary points
◦
x∈ ∂B. We take an arbitrary point

x ∈ B and see

u(x)− f(
◦
x) =

1

ωn

∫

|y|=1

|y|2 − |x|2
|y − x|n

(
f(y)− f(

◦
x)
)
dσ(y)

=
1

ωn

∫

y∈∂B

|y−◦
x|≥2δ

|y|2 − |x|2
|y − x|n

(
f(y)− f(

◦
x)
)
dσ(y)

+
1

ωn

∫

y∈∂B

|y−◦
x|≤2δ

|y|2 − |x|2
|y − x|n

(
f(y)− f(

◦
x)
)
dσ(y).

(10)

The function f is continuous at the point
◦
x. Given the quantity ε > 0 we

therefore have a number δ = δ(ε) > 0 such that |f(y) − f(
◦
x)| ≤ ε holds

true for all points y ∈ ∂B with |y− ◦
x | ≤ 2δ. This implies

∣∣∣∣∣
1

ωn

∫

y∈∂B

|y−◦
x|≤2δ

|y|2 − |x|2
|y − x|n

(
f(y)− f(

◦
x)
)
dσ(y)

∣∣∣∣∣

≤ 1

ωn

∫

y∈∂B

|y−◦
x|≤2δ

|y|2 − |x|2
|y − x|n

∣∣∣f(y)− f(
◦
x)
∣∣∣ dσ(y)

≤ ε for all x ∈ B.

(11)

Choosing a point x ∈ B with |x− ◦
x | ≤ δ we infer the following estimate

for all y ∈ ∂B with |y− ◦
x | ≥ 2δ, namely

|y − x| ≥ |y− ◦
x | − | ◦x−x| ≥ 2δ − δ = δ.
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Consequently, for all y ∈ ∂B with |y− ◦
x | ≥ 2δ and x ∈ B with |x− ◦

x | ≤
η < δ we have

|y|2 − |x|2
|y − x|n ≤ (|y|+ |x|)(|y| − |x|)

δn

≤ 2

δn
(| ◦x | − |x|) ≤ 2

δn
| ◦x −x|

≤ 2η

δn
.

Setting M := sup
y∈∂B

|f(y)| we now can estimate as follows:

∣∣∣∣∣
1

ωn

∫

y∈∂B

|y−◦
x|≥2δ

|y|2 − |x|2
|y − x|n

(
f(y)− f(

◦
x)
)
dσ(y)

∣∣∣∣∣

≤ 1

ωn

∫

y∈∂B

|y−◦
x|≥2δ

|y|2 − |x|2
|y − x|n

∣∣∣f(y)− f(
◦
x)
∣∣∣ dσ(y)

≤ 2M

ωn

∫

y∈∂B

|y−◦
x|≥2δ

|y|2 − |x|2
|y − x|n dσ(y)

≤ 2M

ωnδn
2ηωn ≤ ε,

(12)

if we choose η ∈ (0, δ) sufficiently small. With the aid of (10), (11), and
(12) we deduce

|u(x)− f(
◦
x)| ≤ 2ε for all x ∈ B with |x− ◦

x | ≤ η. (13)

This implies

lim
x→◦

x
x∈B

u(x) = f(
◦
x) for all

◦
x∈ ∂B.

5. The function

u(x) :=
1

ωn

∫

|y|=1

|y|2 − |x|2
|y − x|n f(y) dσ(y), x ∈ B

solves Dirichlet’s problem on the unit ball B. We now utilize the trans-
formation

x = Tξ =
1

R
(ξ − a), ξ ∈ BR(a).
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Then the function v(ξ) := u(Tξ), ξ ∈ BR(a) gives us a solution of Dirich-
let’s problem

v = v(ξ) ∈ C2(BR(a)) ∩ C0(BR(a)),

Δv(ξ) = 0 for all ξ ∈ BR(a),

v(ξ) = g(ξ) for all ξ ∈ ∂BR(a),

(14)

where we have set g(ξ) := f(Tξ), ξ ∈ ∂BR(a). Taking

η := T−1y = Ry + a, y ∈ ∂B

we see η ∈ ∂BR(a) and dσ(η) = Rn−1 dσ(y). On this basis we calculate

v(ξ) = u(Tξ) =
1

ωn

∫

|y|=1

|y|2 − |Tξ|2
|y − Tξ|n f(y) dσ(y)

=
1

ωn

∫

|η−a|=R

|Tη|2 − |Tξ|2
|Tη − Tξ|n f(Tη)

1

Rn−1
dσ(η)

=
1

Rn−1ωn

∫

|η−a|=R

1
R2

(
|η − a|2 − |ξ − a|2

)

1
Rn |η − ξ|n

g(η) dσ(η)

=
1

Rωn

∫

|η−a|=R

|η − a|2 − |ξ − a|2
|η − ξ|n g(η) dσ(η), ξ ∈ BR(a).

q.e.d.

Theorem 3.3. (Regularity theorem for weakharmonic functions)
Let the weakharmonic function u = u(x) : G → R ∈ C0(G) be given on the
domain G ⊂ R

n. Then the function u is real-analytic in G and satisfies the
Laplace equation Δu(x) = 0 for all x ∈ G.

Proof: Let the point a ∈ G be chosen arbitrarily. For a suitable radius R ∈
(0,+∞) we then consider the ball BR(a) ⊂⊂ G, where we solve Dirichlet’s
problem with the aid of Theorem 3.2, namely

v = v(x) ∈ C2(BR(a)) ∩ C0(BR(a)),

Δv(x) = 0 for all x ∈ BR(a),

v(x) = u(x) for all x ∈ ∂BR(a).

(15)

Theorem 2.11 from Section 2 now yields u(x) ≡ v(x) in BR(a). Consequently,
we have u ∈ C2(G) and Δu(x) = 0 for all x ∈ G. According to Theorem 1.9
in Section 1, the function u is real-analytic in G.

q.e.d.
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We now intend to solve Dirichlet’s problem (1) for a large class of domains G.
In this context we use an ingenious method proposed by O.Perron.

Definition 3.4. Let G ⊂ R
n denote a bounded domain on which the con-

tinuous function u = u(x) : G → R ∈ C0(G) is given. Then we define the
harmonically modified function

v(x) := [u]a,R(x)

:=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u(x), x ∈ G with |x− a| ≥ R

1

Rωn

∫

|y−a|=R

|y − a|2 − |x− a|2
|y − x|n u(y) dσ(y), x ∈ G with |x− a| < R

for all a ∈ G and R ∈ (0, dist(a,Rn \G)).

Remark: The function v = v(x) : G → R ∈ C0(G) is harmonic in BR(a) and
coincides with the original function on the complement of this ball G\BR(a).

In the sequel we need the important

Proposition 3.5. Let the point a ∈ G and the radius R ∈ (0, dist(a,Rn \G))
be chosen as fixed, whereas u = u(x) denotes a superharmonic function in G.
Then the harmonically modified function

v(x) := [u]a,R(x), x ∈ G

is superharmonic in G as well, and we have

v(x) ≤ u(x) for all x ∈ G.

Proof:

1. At first, we show the inequality v(x) ≤ u(x) for all x ∈ G. In this context
we only have to verify v(x) ≤ u(x) for all x ∈ BR(a). The function

w(x) := u(x)− v(x), x ∈ BR(a)

is superharmonic in the ball BR(a). Each sequence of points

{x(k)}k=1,2,··· ⊂ BR(a)

with lim
k→∞

x(k) =
◦
x∈ ∂BR(a) satisfies

lim inf
k→∞

w(x(k)) = w(
◦
x) = 0.

From Section 2, Theorem 2.10 we infer w(x) ≥ 0, x ∈ BR(a) and conse-
quently

v(x) ≤ u(x) for all x ∈ BR(a).
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2. We now show that v is superharmonic in G. Choose an arbitrary point
ξ ∈ ∂BR(a) and a quantity ϑ(ξ) ∈ (0, dist(ξ,Rn \G)]. Using part 1 of our
proof, we then obtain

1

	n−1ωn

∫

|x−ξ|=�

v(x) dσ(x) ≤ 1

	n−1ωn

∫

|x−ξ|=�

u(x) dσ(x) ≤ u(ξ) = v(ξ)

for all 	 ∈ (0, ϑ(ξ)). Consequently, the function v is superharmonic in G:
In the ball BR(a) the function v is harmonic anyway, and in G \ BR(a)
this function v is superharmonic.

q.e.d.

We additionally need the following

Proposition 3.6. (Harnack’s lemma)
We consider a sequence wk(x) : G → R, k = 1, 2, . . . of harmonic functions
in G, which are descending in the following way:

w1(x) ≥ w2(x) ≥ w3(x) ≥ . . . for all x ∈ G.

Furthermore, let the sequence converge at one point
◦
x∈ G which means

lim
k→∞

wk(
◦
x) > −∞.

Then the sequence of functions {wk(x)}k=1,2, uniformly converges in each
compact set Θ ⊂ G towards a function harmonic in G, namely

w(x) := lim
k→∞

wk(x), x ∈ G.

Proof:Without loss of generality we assume
◦
x= 0 and for the ball the inclusion

BR ⊂ G with a radius R ∈ (0,+∞). For the indices k, l ∈ N with k ≤ l we
define the nonnegative functions vkl(x) := wk(x) − wl(x) ≥ 0, x ∈ BR. We
apply Harnack’s inequality and obtain

0 ≤ vkl(x) ≤
1 + |x|

R(
1− |x|

R

)n−1 vkl(0) ≤
1 + 1

2(
1− 1

2

)n−1 vkl(0), x ∈ BR
2
.

Setting K := 3
2 · ( 12 )1−n = 3 · 2n−2 we infer

|wk(x)− wl(x)| ≤ K|wk(0)− wl(0)|

for all x ∈ BR
2

and all k, l ∈ N.
(16)

Since the limit lim
k→∞

wk(0) exists, the sequence {wk(x)}k=1,2,... converges uni-

formly in BR
2

towards the function w(x). When we cover a compact set



336 Chapter 5 Potential Theory and Spherical Harmonics

Θ ⊂ G by finitely many balls we comprehend that the sequence of func-
tions {wk(x)}k=1,2,... converges uniformly in Θ towards the function w(x).
The transition to the limit in Poisson’s integral formula shows that the limit
function w(x) is harmonic in G.

q.e.d.

In order to solve Dirichlet’s problem we utilize the following set of admissible
functions

M :=
{
v : G → R ∈ C0(G) : v is in G superharmonic, and

for all sequences {x(k)}k=1,2,... ⊂ G with lim
k→∞

x(k) = x∗ ∈ ∂G

we have lim inf
k→∞

v(x(k)) ≥ f(x∗)
}
.

Here the symbol f : ∂G → R denotes a continuous boundary function. Since

v(x) := M := max
x∈∂G

f(x) ∈ M

holds true, we have M �= ∅.
Proposition 3.7. Let us define the function

u(x) := inf
v∈M

v(x), x ∈ G.

Then u is harmonic in G and we have

m ≤ u(x) ≤ M for all x ∈ G.

Here we abbreviate m := inf
x∈∂G

f(x) and M := sup
x∈∂G

f(x).

Proof:

1. We take a sequence of points {xi}i=1,2,3,... ⊂ G which are dense in G. For
each index i ∈ N, there exists a sequence of functions {vij}j=1,2,... ⊂ M
satisfying

lim
j→∞

vij(x
i) = u(xi).

The minimum principle implies the estimate vij(x) ≥ m for all x ∈ G and
all i, j ∈ N. We now define the functions

vk(x) := min
1≤i,j≤k

vij(x), x ∈ G

for each index k ∈ N. Evidently, we have vk(x) ≥ vk+1(x), x ∈ G for
all k ∈ N. The minimum of finitely many superharmonic functions is
superharmonic again according to a previous remark, and we infer

vk ∈ M, k = 1, 2, . . .

We observe u(xi) ≤ vk(x
i) ≤ vik(x

i) for 1 ≤ i ≤ k, and we obtain

lim
k→∞

vk(x
i) = u(xi) for all i = 1, 2, . . .
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2. In the disc BR(a) ⊂⊂ G we harmonically modify the function vk to the
following function

wk(x) := [vk]a,R(x), x ∈ G.

With the aid of Proposition 3.5 we see {wk}k=1,2,... ⊂ M. Furthermore,
we have wk(x) ≥ wk+1(x) in BR(a) for all k ∈ N and

u(xi) ≤ wk(x
i) ≤ vk(x

i) for all i, k ∈ N.

Therefore, we obtain

lim
k→∞

wk(x
i) = u(xi) for all i ∈ N.

According to Harnack’s lemma the sequence {wk(x)}k=1,2,... converges
uniformly in BR(a) towards a harmonic function w(x), and we compre-
hend

w(xi) = u(xi) for all xi ∈ BR(a), i = 1, 2, . . .

Since w and u are continuous functions, we infer the identity u(x) = w(x),
x ∈ BR(a). Consequently, the function u has to be harmonic in G, because
the ball BR(a) ⊂⊂ G has been chosen arbitrarily.

3. The inclusion M ∈ M implies the estimate u(x) ≤ M for all x ∈ G. Since
the inequality vij(x) ≥ m for all x ∈ G and all i, j ∈ N holds true and
consequently vk(x) ≥ m in G for all k ∈ N is valid, we finally obtain

u(x) = lim
k→∞

vk(x) ≥ m for all x ∈ G.

q.e.d.

Definition 3.8. Let us consider the bounded domain G ⊂ R
n. We name a

boundary point x ∈ ∂G regular if we have a superharmonic function

Φ(y) = Φ(y;x) : G → R with lim
y→x
y∈G

Φ(y) = 0

and
	(ε) := inf

y∈G
|y−x|≥ε

Φ(y) > 0 for all ε > 0.

If each boundary point of the domain G is regular, we speak of a Dirichlet
domain.

Remark: A point x ∈ ∂G is regular if and only if we have a number r > 0 and
a superharmonic function Ψ = Ψ(y) : G ∩Br(x) → R satisfying

lim
y→x

y∈G∩Br(x)

Ψ(y) = 0 and inf
r>|y−x|≥ε

y∈G

Ψ(y) > 0, 0 < ε < r.
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Here we set m := inf
r>|y−x|≥ 1

2 r
y∈G

Ψ(y) > 0 and consider the following function

Φ(y) :=

{
min

(
1, 2Ψ(y)

m

)
, y ∈ G ∩Br(x)

1, y ∈ G \Br(x)

which is superharmonic in G.

Theorem 3.9. (Dirichlet problem for the Laplacian)
Let G ⊂ R

n denote a bounded domain with n ≥ 2. Then the Dirichlet problem

u = u(x) ∈ C2(G) ∩ C0(G),

Δu(x) = 0 in G,

u(x) = f(x) on ∂G

(17)

can be solved for all continuous boundary functions f : ∂G → R if and only if
G is a Dirichlet domain in the sense of Definition 3.8.

Proof:

‘=⇒’ Let the Dirichlet problem be solvable for all continuous boundary
functions f : ∂G → R. Taking an arbitrary point ξ ∈ ∂G we define the
function f(y) := |y − ξ|, y ∈ ∂G, and we solve Dirichlet’s problem (17) for
these boundary values. We apply the minimum principle to the harmonic
function u = u(x) : G → R and obtain

u(x) > 0 for all x ∈ G \ {ξ}.

Therefore, the boundary point ξ is regular.

‘⇐=’ LetG be a Dirichlet domain and x ∈ ∂G an arbitrary regular boundary
point. Then we have an associate superharmonic function Φ(y) = Φ(y;x) :
G → R due to Definition 3.8. Since the function f : ∂G → R is continuous,
we can prescribe ε > 0 and obtain a quantity δ = δ(ε) > 0 satisfying

|f(y)− f(x)| ≤ ε for all y ∈ ∂G with |y − x| ≤ δ.

We now define
η(ε) := inf

y∈G
|y−x|≥δ(ε)

Φ(y) > 0.

1. Let the upper barrier function

v+(y) := f(x) + ε+ (M −m)
Φ(y)

η(ε)
, y ∈ G
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be given. Evidently, the function v+ is superharmonic in G. Furthermore,
an arbitrary sequence {y(k)}k=1,2,... ⊂ G with y(k) → y+ ∈ ∂G for k → ∞
satisfies

lim inf
k→∞

v+(y(k)) ≥ f(y+).

Consequently, v+ ∈ M holds true.
2. Now we consider the lower barrier function

v−(y) := f(x)− ε− (M −m)
Φ(y)

η(ε)
, y ∈ G.

We choose v ∈ M arbitrarily. Considering a sequence {y(k)}k=1,2,... ⊂ G
with y(k) → y− ∈ ∂G for k → ∞, we can estimate

lim inf
k→∞

(
v(y(k))− v−(y(k))

)

≥ lim inf
k→∞

(
v(y(k))− f(y−)

)
+ lim inf

k→∞

(
f(y−)− v−(y(k))

)

≥ 0.

Furthermore, the function v − v− is superharmonic in G, and Theorem
2.10 from Section 2 yields v − v− ≥ 0 in G. This implies

v(y) ≥ v−(y), y ∈ G for all v ∈ M.

3. The harmonic function

u(y) := inf
v∈M

v(y), y ∈ G

constructed in Proposition 3.7 now attains the prescribed boundary values
f continuously. On account of 1. and 2. the estimate

v−(y) ≤ u(y) ≤ v+(y) for all y ∈ G

is fulfilled, which means

f(x)− ε− (M −m)
Φ(y)

η(ε)
≤ u(y) ≤ f(x) + ε+ (M −m)

Φ(y)

η(ε)
, y ∈ G.

Using the relation lim
y∈G
y→x

Φ(y) = 0 we obtain

|f(x)− u(y)| ≤ ε+ (M −m)
Φ(y)

η(ε)
≤ 2ε

for all y ∈ G with |y − x| ≤ δ∗(ε). This implies

lim
y∈G
y→x

u(y) = f(x).

Therefore, the function u solves Dirichlet’s problem (17) for the boundary
values f . q.e.d.
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Figure 1.6 Poincaré’s condition of exterior support balls

Theorem 3.10. (Poincaré’s condition)
A boundary point x ∈ ∂G is regular, if we have a ball Br(a) with the center
a ∈ R

n and the radius r ∈ (0,+∞) satisfying G ∩ Br(a) = {x}. Especially,
bounded domains with a regular C2-boundary are Dirichlet domains.

Proof: For n = 2 we consider in G the harmonic function

Φ(y) := log

(
|y − a|

r

)
, y ∈ G,

and for n ≥ 3 we consider the harmonic function

Φ(y) := r2−n − |y − a|2−n, y ∈ G.

Then we immediately obtain the statements above. q.e.d.

Theorem 3.11. Let BR := {x ∈ R
n : |x| < R} denote the ball about the

origin of radius R > 0 and consider the pointed ball ḂR := BR \ {0}. The
function u = u(x) ∈ C2(ḂR) ∩ C0(BR) is assumed to be harmonic in ḂR.
Then the function u is harmonic in BR.

Proof: We restrict our considerations to the case n ≥ 3 and set

v(x) :=
1

Rωn

∫

|y|=R

R2 − |x|2
|y − x|n u(y) dσ(y), x ∈ BR.

This function v is harmonic in BR and continuous in BR with the boundary
values
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v(x) = u(x), x ∈ ∂BR.

Since the functions u and v are continuous in BR, we have a constant M > 0
such that

sup
x∈BR

|u(x)− v(x)| ≤ M

holds true. Given the quantity ε > 0, we now can choose a sufficiently small
number δ = δ(ε) ∈ (0, R) such that

M ≤ ε
(
|x|2−n −R2−n

)
for all x ∈ R

n with |x| = δ(ε).

We consider the spherical shell Kε := {x ∈ R
n : δ(ε) ≤ |x| ≤ R} and see

|u(x)− v(x)| ≤ ε
(
|x|2−n −R2−n

)
for all x ∈ ∂Kε.

The maximum principle for harmonic functions now yields

|u(x)− v(x)| ≤ ε
(
|x|2−n −R2−n

)
for all x ∈ Kε.

Since the number ε > 0 has been chosen arbitrarily and the behavior δ(ε) ↓ 0
for ε ↓ 0 can be achieved, we obtain

u(x) ≡ v(x), x ∈ ḂR.

Now the functions u and v are continuous in BR, and we infer

u(x) ≡ v(x), x ∈ BR.

Therefore, the function u is harmonic in BR. q.e.d.

Remarks:

1. When we consider the Riemannian theorem on removable singularities
for holomorphic functions, it suffices to assume the boundedness of the
functions in the neighborhood of a singular point in order to continue
them holomorphically into this point.

2. There are bounded domains, where the Dirichlet problem cannot be solved
for arbitrary boundary values. For example, we consider the domain

G := ḂR, ∂G = ∂BR ∪ {0}.

On account of Theorem 3.11, there does not exist a harmonic function for
the boundary values f(x) = 1, |x| = R and f(0) = 0.
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4 Theory of Spherical Harmonics in 2 Variables:
Fourier Series

The theory of spherical harmonics has been founded by Laplace and Legendre
and is applied in quantum mechanics to the investigation of the spectrum for
the hydrogen atom. We owe the theory in arbitrary spatial dimensions n ≥ 2 to
G.Herglotz. In the next two paragraphs we utilize Banach and Hilbert spaces
introduced in Chapter 2, Section 6. At first, we consider the case n = 2.

On the unit circle line S1 := {x ∈ R
2 : |x| = 1} we consider the functions

u = u(x) ∈ C0(S1,R). They are identified with the 2π-periodic continuous
functions

C0
2π(R,R) :=

{
v : R → R ∈ C0(R,R) :

v(ϕ+ 2πk) = v(ϕ)

for all ϕ ∈ R, k ∈ Z

}

via û(ϕ) := u(eiϕ), 0 ≤ ϕ ≤ 2π. We endow the space C0(S1,R) with the norm

‖u‖0 := max
x∈S1

|u(x)|, u ∈ C0(S1,R) (1)

and get a Banach space with the topology of uniform convergence. By the
inner product

(u, v) :=

2π∫

0

u(eiϕ)v(eiϕ) dϕ, u, v ∈ C0(S1,R) (2)

the set C0(S1,R) becomes a pre-Hilbert-space. We complete this space with
respect to the L2-norm induced by the inner product (2), namely

‖u‖ :=
√

(u, u), u ∈ C0(S1,R), (3)

and obtain the Lebesgue space L2(S1,R) of the square integrable, measurable
functions on S1. Furthermore, we note the inequality

‖u‖ ≤
√
2π‖u‖0 for all u ∈ C0(S1,R). (4)

If a sequence converges with respect to the Banach-space-norm ‖ · ‖0, this is
as well the case with respect to the Hilbert-space-norm ‖ · ‖. However, the
opposite direction is not true, since the Hilbert space L2(S1,R) also contains
discontinuous functions.

Theorem 4.1. (Fourier series)
The system of functions

1√
2π

,
1√
π
cos kϕ,

1√
π
sin kϕ, ϕ ∈ [0, 2π], k = 1, 2, . . .

represents a complete orthonormal system - briefly c.o.n.s. - in the pre-Hilbert-
space H := C0(S1, R) endowed with the inner product from (2).
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Proof:

1. We easily verify that the system of functions S given is orthonormal,
which means ‖u‖ = 1 for all u ∈ S and (u, v) = 0 for all u, v ∈ S with
u �= v. It remains for us to comprehend that this orthonormal system of
functions is complete in the pre-Hilbert-space H. According to Theorem
6.19 from Chapter 2, Section 6 we have to show that the Fourier series
for each element u ∈ H approximates this element with respect to the
Hilbert-space-norm ‖ · ‖ from (3).

2. Let the function
u = u(x) ∈ H = C0(S1,R)

be given arbitrarily. We then continue u harmonically onto the disc

B = {x ∈ R
2 : |x| < 1}

via

u(z) =
1

2π

2π∫

0

1− r2

|eiϕ − z|2u(e
iϕ) dϕ, |z| < 1; (5)

here we have set z = reiϑ. We now expand Poisson’s kernel as follows:

1− r2

|eiϕ − z|2 =
1− r2

|eiϕ − reiϑ|2

=
1− r2

|1− rei(ϑ−ϕ)|2

=
1− r2

(1− rei(ϑ−ϕ))(1− rei(ϕ−ϑ))

= −1 +
1

1− rei(ϕ−ϑ)
+

1

1− re−i(ϕ−ϑ)

= −1 +

∞∑
k=0

rkeik(ϕ−ϑ) +

∞∑
k=0

rke−ik(ϕ−ϑ)

= 1 + 2

∞∑
k=1

rk cos k(ϕ− ϑ).

(6)

Here the series converges locally uniformly for 0 ≤ r < 1 and ϕ, ϑ ∈ R.
Now we have

cos k(ϕ− ϑ) = cos kϕ cos kϑ+ sin kϕ sin kϑ,

and we obtain the following identity with g(ϕ) := u(eiϕ), ϕ ∈ [0, 2π):
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u(reiϑ) =
1

2π

2π∫

0

{
1 + 2

∞∑
k=1

rk
(
cos kϕ cos kϑ+ sin kϕ sin kϑ

)}
g(ϕ) dϕ

=
1

2π

2π∫

0

g(ϕ) dϕ+

∞∑
k=1

{(
1

π

2π∫

0

g(ϕ) cos kϕ dϕ

)
rk cos kϑ

+

(
1

π

2π∫

0

g(ϕ) sin kϕ dϕ

)
rk sin kϑ

}
.

Finally, we set

ak :=
1

π

2π∫

0

g(ϕ) cos kϕ dϕ, k = 0, 1, 2, . . . (7)

and

bk :=
1

π

2π∫

0

g(ϕ) sin kϕ dϕ, k = 1, 2, . . . . (8)

With the representation

u(reiϑ) =
1

2
a0+

∞∑
k=1

(
ak cos kϑ+bk sin kϑ

)
rk, 0 ≤ r < 1, 0 ≤ ϑ < 2π (9)

we obtain the Fourier expansion of a harmonic function within the unit
disc.

3. Since the function u(z) is continuous in B, we find a radius r ∈ (0, 1) to
each given ε > 0, such that

|u(reiϑ)− g(ϑ)| ≤ ε for all ϑ ∈ [0, 2π). (10)

Furthermore, we can choose an integer N = N(ε) ∈ N so large that

∣∣∣∣
a0
2

+

N∑
k=1

rk
(
ak cos kϑ+ bk sin kϑ

)
− u(reiϑ)

∣∣∣∣ ≤ ε for all ϑ ∈ [0, 2π)

(11)
is satisfied. For the quantity ε > 0 given, we therefore find real coefficients
A0, . . . , AN and B1, . . . , BN , such that the trigonometric polynomial

Fε(ϑ) := A0 +

N∑
k=1

(
Ak sin kϑ+Bk cos kϑ

)
, 0 ≤ ϑ < 2π

fulfills the following inequality
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|Fε(ϑ)− g(ϑ)| ≤ 2ε for all ϑ ∈ [0, 2π). (12)

From the relation (4) we infer

‖Fε − g‖ ≤ 2
√
2π ε. (13)

On account of the minimal property for the Fourier coefficients due to
Chapter 2, Section 6, Proposition 6.17, the Fourier series belonging to the
system of functions above approximates the given function with respect
to the Hilbert-space-norm. From Theorem 6.19 in Chapter 2, Section 6
we infer that this system of functions represents a complete orthonormal
system in H.

q.e.d.

Remark: We leave the following question unanswered: Which functions g =
g(ϑ) satisfy the identity (9) pointwise even for the radius r = 1, which concerns
the validity of the pointwise equation

u(eiϑ) =
1

2
a0 +

∞∑
k=1

(
ak cos kϑ+ bk sin kϑ

)
, 0 ≤ ϑ < 2π.

We have shown only the convergence in the square mean. For continuous
functions the identity above is not satisfied, in general. The investigations
on the convergence of Fourier series gave an important motivation for the
development of the analysis.

We now present the relationship of trigonometric functions to the Laplace
operator. At first, we remind the reader of the decomposition for the Laplacian
in polar coordinates:

Δ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
. (14)

For an arbitrary C2-function f = f(r) we therefore have the identity

Δ

(
f(r)

cos kϕ
sin kϕ

)
=

(
f ′′(r) +

1

r
f ′(r)− k2

r2
f(r)

)
cos kϕ
sin kϕ

=
(
Lkf(r)

) cos kϕ
sin kϕ

.

Here we abbreviate

Lkf(r) := f ′′(r) +
1

r
f ′(r)− k2

r2
f(r), r > 0.

We note that

Lk(r
k) = k(k − 1)rk−2 + krk−2 − k2rk−2 = 0, k = 0, 1, 2, . . .

and obtain

Δ(rk cos kϕ) = 0 = Δ(rk sin kϕ), k = 0, 1, 2, . . . (15)
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Proposition 4.2. Let the function u = u(x1, x2) ∈ C2(BR) be given on the
disc BR := {(x1, x2) ∈ R

2 : x2
1 + x2

2 < R2}. By the symbols

ak(r) =
1

π

2π∫

0

u(reiϕ) cos kϕ dϕ, bk(r) =
1

π

2π∫

0

u(reiϕ) sin kϕ dϕ (16)

we denote the Fourier coefficients of the function u and by

ãk(r) =
1

π

2π∫

0

Δu(reiϕ) cos kϕ dϕ, b̃k(r) =
1

π

2π∫

0

Δu(reiϕ) sin kϕ dϕ (17)

we mean the Fourier coefficients of the function Δu for 0 < r < R. Now we
have the equation

ãk(r) = Lkak(r), b̃k(r) = Lkbk(r), 0 < r < R. (18)

Remark: The Fourier coefficients of Δu are consequently obtained by formal
differentiation of the Fourier series

u(reiϑ) =
1

2
a0(r) +

∞∑
k=1

(
ak(r) cos kϑ+ bk(r) sin kϑ

)
.

Proof of Proposition 4.2: We evaluate as follows:

ãk(r) =
1

π

2π∫

0

Δu(reiϕ) cos kϕ dϕ,

=
1

π

2π∫

0

{(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2

)
u(reiϕ)

}
cos kϕ dϕ

=

(
∂2

∂r2
+

1

r

∂

∂r

){
1

π

2π∫

0

u(reiϕ) cos kϕ dϕ

}
− k2

πr2

2π∫

0

u(reiϕ) cos kϕ dϕ

= Lkak(r), 0 < r < R, k = 0, 1, 2, . . .

Similarly we show the relation (18) for the functions bk(r). q.e.d.

Theorem 4.3. We choose k ∈ R and define Ṙ
2 := R

2 \{0}. Furthermore, the
symbol Hk = Hk(ξ) : S

1 → R denotes a function defined on the unit circle S1

with the properties

|x|kHk

(
x

|x|

)
∈ C2(Ṙ2) and Δ

{
|x|kHk

(
x

|x|

)}
= 0, x ∈ Ṙ

2.
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Then we infer k ∈ Z, and we have the identity

Hk(e
iϑ) = Ak cos kϑ+Bk sin kϑ

with the real constants Ak, Bk.

Proof: At first, we calculate

0 = Δ

{
|x|kHk

(
x

|x|

)}

=

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2

)[
rkHk(e

iϕ)
]

=
[
k(k − 1)rk−2 + krk−2

]
Hk(e

iϕ) + rk−2 ∂2

∂ϕ2
Hk(e

iϕ).

Therefore, the functions Hk(e
iϕ) satisfy the linear ordinary differential equa-

tion
d2

dϕ2
Hk(e

iϕ) + k2Hk(e
iϕ) = 0, 0 ≤ ϕ ≤ 2π.

This means that

Hk(e
iϕ) = Ak cos kϕ+Bk sin kϕ, Ak, Bk ∈ R

holds true if k �= 0 is correct. Since the function Hk is periodic in [0, 2π], we
infer k ∈ Z. In the case k = 0 we obtain the solution

H0(e
iϕ) = A0 +B0ϕ, A0, B0 ∈ R.

Therefore, B0 = 0 holds true, and the theorem is proved. q.e.d.

5 Theory of Spherical Harmonics in n Variables

Theorem 4.3 from Section 4 suggests the following definition of the spherical
harmonics in R

n:

Definition 5.1. Let Hk = Hk(x1, . . . , xn) ∈ C2(Ṙn) denote a harmonic func-
tion on the set Ṙn := R

n\{0} which is homogeneous of degree k, more precisely

Hk(tx1, . . . , txn) = tkH(x1, . . . , xn) for all x ∈ Ṙ
n, t ∈ (0,+∞).

Then we name
Hk = Hk(ξ1, . . . , ξn) : S

n−1 → R

an n-dimensional spherical harmonic (or spherically harmonic function) of
degree k; here the symbol

Sn−1 := {ξ = (ξ1, . . . , ξn) ∈ R
n : ξ21 + . . .+ ξ2n = 1}

denotes the (n− 1)-dimensional unit sphere in the Euclidean space R
n.
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In this paragraph we answer the following questions for n ≥ 2:

1. Are there spherical harmonics in all spatial dimensions, and for which
degrees of homogeneity k do they exist?

2. Is the system of spherically harmonic functions complete?
3. In which relationship do the spherical harmonics appear with respect to

the Laplace operator?

In Chapter 1, Section 8 we have represented the Laplace operator in R
n with

respect to spherical coordinates. We utilize r ∈ (0,+∞) and ξ = (ξ1, . . . , ξn) ∈
Sn−1, and the function u = u(rξ) satisfies the identity

Δu(rξ) =
∂2

∂r2
u(rξ) +

n− 1

r

∂

∂r
u(rξ) +

1

r2
Λu(rξ); (1)

here the symbol Λ denotes the invariant Laplace-Beltrami operator on the
sphere Sn−1. We now endow the space of functions C0(Sn−1,R) with the
inner product

(u, v) :=

∫

Sn−1

u(ξ)v(ξ) dσ(ξ), u, v ∈ C0(Sn−1,R) (2)

and we obtain a pre-Hilbert-space H = C0(Sn−1,R). Setting

‖u‖ :=
√
(u, u)

the set H becomes a normed space.

Theorem 5.2. The function

Hk = Hk(ξ1, . . . , ξn) : S
n−1 → R

is an n-dimensional spherical harmonic of the degree k ∈ R if and only if the
following differential equation

ΛHk(ξ) + k
{
k + (n− 2)

}
Hk(ξ) = 0, ξ ∈ Sn−1 (3)

is satisfied. If Hk and Hl are two spherical harmonics with different degrees
k �= l satisfying k + l �= 2− n, we then have the orthogonality relation

(Hk, Hl) = 0. (4)

Proof:

1. On account of (1) we have the identity

0 = ΔHk(rξ) = Δ
{
rkHk(ξ)

}

=
{
k(k − 1)rk−2 + k(n− 1)rk−2

}
Hk(ξ) + rk−2ΛHk(ξ)
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and equivalently

ΛHk(ξ) +
{
k2 + (n− 2)k

}
Hk(ξ) = 0, ξ ∈ Sn−1.

2. The symmetry of the operator Λ from Theorem 8.7 in Chapter 1, Section 8
yields

{
k2 + (n− 2)k

} ∫

Sn−1

Hk(ξ)Hl(ξ) dσ(ξ)

= −
∫

Sn−1

(
ΛHk(ξ)

)
Hl(ξ) dσ(ξ)

= −
∫

Sn−1

Hk(ξ)
(
ΛHl(ξ)

)
dσ(ξ)

=
{
l2 + (n− 2)l

} ∫

Sn−1

Hk(ξ)Hl(ξ) dσ(ξ).

This implies that

0 =
{
k2 − l2 + (n− 2)(k − l)

}
(Hk, Hl) = {k − l}{k + l + n− 2}(Hk, Hl)

and therefore (Hk, Hl) = 0 if k �= l and k + l �= 2− n is fulfilled.
q.e.d.

Remarks: The spherical harmonics of the degree k are consequently eigenfunc-
tions of the Laplace-Beltrami operator Λ on the sphere Sn−1 to the eigenvalue
−k{k+ (n− 2)}. The orthogonality condition (4) is especially satisfied in the
case k ≥ 0, l ≥ 0 and k �= l.

At this moment we do not yet know for which degrees k ∈ R (nonvanish-
ing) spherical harmonics of the degree k exist. This will be investigated now:
Given the continuous boundary function, we shall construct a harmonic func-
tion with the aid of Poisson’s integral and shall decompose this function into
homogeneous harmonic functions of the degrees k = 0, 1, 2, . . .. Here we have
to expand Poisson’s kernel suitably with the aid of power series.

We take ν > 0 as fixed and choose h = cosϑ ∈ [−1,+1] with ϑ ∈ [0, π]; then
we consider the following expression in t ∈ (−1,+1):



350 Chapter 5 Potential Theory and Spherical Harmonics

(1− 2ht+ t2)−ν = (1− 2(cosϑ)t+ t2)−ν

= (1− eiϑt)−ν(1− e−iϑt)−ν

=

{ ∞∑
m=0

(
−ν
m

)
(−eiϑt)m

}{ ∞∑
m=0

(
−ν
m

)
(−e−iϑt)m

}

=

{ ∞∑
m=0

[
ν
m

]
eimϑtm

}{ ∞∑
m=0

[
ν
m

]
e−imϑtm

}
.

Here we set
[
ν
m

]
:=

(
−ν
m

)
(−1)m =

−ν(−ν − 1)(−ν − 2) . . . (−ν −m+ 1)

m!
(−1)m

=
ν(ν + 1)(ν + 2) . . . (ν +m− 1)

m!
, m ∈ N,

[
ν
0

]
:= 1.

Defining the real coefficients

c(ν)m (h) :=

m∑
k=0

[
ν
k

][
ν

m− k

]
eikϑe−i(m−k)ϑ

=

m∑
k=0

[
ν
k

][
ν

m− k

]
e−i(m−2k)ϑ

=
1

2

m∑
k=0

[
ν
k

][
ν

m− k

]{
ei(m−2k)ϑ + e−i(m−2k)ϑ

}

=

m∑
k=0

[
ν
k

][
ν

m− k

]
cos(m− 2k)ϑ,

we obtain the following identity for t ∈ (−1,+1):

(1− 2ht+ t2)−ν =

∞∑
m=0

c(ν)m (h)tm, t ∈ (−1,+1). (5)

On account of the Binomial Theorem, we have the following expansion for
p ∈ Z:
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cos pϑ =
1

2

(
eipϑ + e−ipϑ

)
=

1

2

{
(eiϑ)p + (e−iϑ)p

}

=
1

2

{
(cosϑ+ i sinϑ)p + (cosϑ− i sinϑ)p

}

= (cosϑ)p −
(
p
2

)
(cosϑ)p−2(sinϑ)2 +

(
p
4

)
(cosϑ)p−4(sinϑ)4 − . . .

Due to the formula sin2 ϑ = 1 − cos2 ϑ, Gegenbaur’s polynomials c
(ν)
m (h) are

polynomials in h = cosϑ of the degree m. Furthermore, we utilize the relation

∞∑
m=0

c(ν)m (−h)(−t)m = (1− 2ht+ t2)−ν =
∞∑

m=0

c(ν)m (h)tm,

and comparison of the coefficients yields

c(ν)m (−h) = (−1)mc(ν)m (h), m = 0, 1, 2, . . . (6)

Therefore, Gegenbaur’s polynomials can be represented in the form

c(ν)m (h) = γ(ν)
m hm + γ

(ν)
m−2h

m−2 + . . . (7)

with the real constants γ
(ν)
m , γ

(ν)
m−2, . . . . Furthermore, we have the estimate

∣∣∣c(ν)m (h)
∣∣∣ ≤

m∑
k=0

[
ν
k

][
ν

m− k

]
= c(ν)m (1) for all h ∈ [−1,+1]. (8)

With ν = 1
2 we obtain the Legendre polynomials by c

( 1
2 )

m (h). We now choose
n ∈ N \ {1}. With the aid of (5) we expand as follows for t ∈ (−1,+1) and
h ∈ [−1,+1]:

1− t2

(1− 2ht+ t2)
n
2
=

∞∑
m=0

c
(n
2 )

m (h)(1− t2)tm =:

∞∑
m=0

Pm(h;n)tm. (9)

For the case n = 2 we have derived the following expansion in the proof of
Theorem 4.1 from Section 4 (compare the formula (6)):

1− t2

1− 2ht+ t2
= 1 + 2

∞∑
m=1

(cosmϑ)tm, t ∈ (−1,+1). (10)

Therefore, we have P0(h; 2) = 1 and Pm(h; 2) = 2 cosmϑ, m = 1, 2, . . .. For
the case n ≥ 3 we calculate
(
1 +

2t

n− 2

∂

∂t

)
1

(1− 2ht+ t2)
n
2 −1

=
1− 2ht+ t2 + 2−n

2
2t

n−2 (−2h+ 2t)

(1− 2ht+ t2)
n
2

=
1− t2

(1− 2ht+ t2)
n
2
.
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Therefore, we have the identity

1− t2

(1− 2ht+ t2)
n
2
=

(
1+

2t

n− 2

∂

∂t

)
1

(1− 2ht+ t2)
n
2 −1

, t ∈ (−1,+1). (11)

Together with (9) we infer

∞∑
m=0

Pm(h;n)tm =
1− t2

(1− 2ht+ t2)
n
2
=

(
1 +

2t

n− 2

∂

∂t

) ∞∑
m=0

c
(n
2 −1)

m (h)tm,

and comparision of the coefficients yields the formula

Pm(h;n) = c
(n
2 −1)

m (h)
( 2m

n− 2
+ 1

)
, m = 0, 1, 2, . . . (12)

The relations (8) and (12) imply the estimate

|Pm(h;n)| ≤ Pm(1;n), h ∈ [−1,+1], m ∈ {0, 1, 2, . . .}. (13)

This inequality holds true for n = 2, 3, . . .

We now can expand the Poisson kernel: We choose η ∈ Sn−1 as fixed and
x = rξ with r ∈ [0, 1) and ξ ∈ Sn−1 to be variable. We utilize the parameter
of homogeneity τ ∈ R with |τr| < 1, and obtain the following relation with
the aid of the expansion (9):

|η|2 − |τx|2
|η − τx|n =

1− (τr)2{
|η − (τr)ξ|2

}n
2

=
1− (τr)2{

1− 2(τr)(ξ, η) + (τr)2
}n

2

=

∞∑
m=0

{
Pm

(
(ξ, η);n

)
rm
}
τm.

(14)

For each x ∈ R
n with |x| < 1 and each τ ∈ R with |τx| < 1 we have the

identity

0 = Δx

{
|η|2 − |τx|2
|η − τx|n

}
=

∞∑
m=0

Δx

{
Pm

(
(ξ, η);n

)
rm
}
τm.

Taking η ∈ Sn−1 fixed, the comparison of coefficients yields

Δx

{
Pm

(
(ξ, η);n

)
rm
}
= 0, |x| < 1, m = 0, 1, 2, . . . . (15)

On account of (7) and (12) we have the representation
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Pm

(
(ξ, η);n

)
rm =

(
π(m)
m (ξ, η)m + π

(m)
m−2(ξ, η)

m−2 + . . .
)
rm

= π(m)
m (x, η)m + π

(m)
m−2(x, η)

m−2|x|2 + . . .

with the real constants π
(m)
m , π

(m)
m−2, . . .. Therefore, Pm((ξ, η);n)rm is a ho-

mogeneous polynomial of the degree m in the variables x1, . . . , xn. On ac-
count of (15), we obtain an n-dimensional spherical harmonic of the degree
m ∈ {0, 1, 2, . . .} with Pm((ξ, η);n) for each fixed η ∈ Sn−1. Given the function
f = f(η) : Sn−1 → R ∈ C0(Sn−1,R), then the integral

f̃(ξ) :=
1

ωn

∫

|η|=1

Pm

(
(ξ, η);n

)
f(η) dσ(η), ξ ∈ Sn−1

represents an n-dimensional spherical harmonic of the degree m. Here f̃(ξ)rm

means a homogeneous polynomial in the variables x1, . . . , xn.

Theorem 5.3. Let the function f = f(x) : Sn−1 → R ∈ C0(Sn−1,R) be
prescribed, and the function u = u(x) : B := {x ∈ R

n : |x| < 1} → R of the
class C2(B) ∩ C0(B) solves the Dirichlet problem

Δu(x) = 0 for all x ∈ B,

u(x) = f(x) for all x ∈ ∂B = Sn−1.

For each R ∈ (0, 1) we then have the representation

u(x) =

∞∑
m=0

{
1

ωn

∫

|η|=1

Pm

(
ξ1η1 + . . .+ ξnηn;n

)
f(η) dσ(η)

}
rm (16)

with x = rξ, ξ ∈ Sn−1 and 0 ≤ r ≤ R. The series on the right-hand side
converges uniformly.

Proof: The unique solution of the Dirichlet problem above is given by Poisson’s
integral. With the aid of the expansion (14) for τ = 1 we infer

u(x) =
1

ωn

∫

|η|=1

|η|2 − |x|2
|η − x|n f(η) dσ(η)

=
1

ωn

∫

|η|=1

{ ∞∑
m=0

Pm

(
(ξ, η);n

)
rm
}
f(η) dσ(η), x ∈ B.

For all ξ, η ∈ Sn−1 and 0 ≤ r ≤ R < 1 we obtain the inequality
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∣∣∣∣
∞∑

m=0

Pm

(
(ξ, η);n

)
rm
∣∣∣∣ ≤

∞∑
m=0

∣∣∣Pm

(
(ξ, η);n

)∣∣∣rm ≤
∞∑

m=0

Pm(1;n)Rm

=
1−R2

(1− 2R+R2)
n
2

=
1 +R

(1−R)n−1

respecting (9) and (13). Due to the Weierstraß majorant test, the following
series

∞∑
m=0

Pm

(
(ξ, η);n

)
rm

converges uniformly on Sn−1 × Sn−1 × [0, R] for all R ∈ (0, 1). This implies

u(x) =

∞∑
m=0

{
1

ωn

∫

|η|=1

Pm

(
ξ1η1 + . . .+ ξnηn;n

)
f(η) dσ(η)

}
rm, |x| ≤ R,

where the given series converges uniformly for all R ∈ (0, 1).
q.e.d.

We choose k = 0, 1, 2, . . . and denote by

Mk :=
{
f : Sn−1 → R : f is n-dimensional spherical harmonic of degree k

}

the linear space of the n-dimensional spherical harmonics of the order k. We
already know dimMk ≥ 1 for k = 0, 1, 2, . . . and intend to show dimMk <
+∞ in the sequel. For the function f = f(η) ∈ H = C0(Sn−1,R) we define
the projector on Mk by

P kf(ξ) = f̂(ξ) :=
1

ωn

∫

|η|=1

Pk

(
ξ1η1 + . . .+ ξnηn;n

)
f(η) dσ(η).

Theorem 5.4. For each integer k = 0, 1, 2, . . . the linear operator P k : H →
H has the following properties:

a) (P kf, g) = (f,P kg) for all f, g ∈ H;
b) P k(H) = Mk;
c) P k ◦ P k = P k.

Proof:

a) Let the functions f, g ∈ H be chosen arbitrarily. Then we have
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(P kf, g) =

∫

|ξ|=1

P kf(ξ)g(ξ) dσ(ξ)

=

∫

|ξ|=1

∫

|η|=1

Pk(ξ1η1 + . . .+ ξnηn)f(η)g(ξ) dσ(η) dσ(ξ)

= (f,P kg).

b) and c) In our considerations preceding Theorem 5.3 we already have seen
that

f̂(ξ) = P kf(ξ) ∈ Mk for all f ∈ H.

Therefore, we have P k(H) ⊂ Mk. Choosing f ∈ Mk arbitrarily we infer
Δx(f(ξ)r

k) = 0 in Ṙ
n with x = rξ. Now our Theorem 5.3 yields the

representation

f(ξ)rk =
∞∑

m=0

(
Pmf(ξ)

)
rm, ξ ∈ Sn−1, r ∈ [0, 1).

Comparison of the coefficients implies

f(ξ) = P kf(ξ), ξ ∈ Sn−1.

Consequently, we obtain Mk ⊂ P k(H) and P k ◦ P k = P k. q.e.d.

We now show that dimMk ∈ N for k = 0, 1, 2, . . . is correct. For a fixed index
k ∈ {0, 1, 2, . . .} we choose an orthonormal system {ϕα}α=1,...,N of dimension
N ∈ N in the linear subspace Mk ⊂ H. Then we have

(ϕα, ϕβ) = δαβ for all α, β ∈ {1, . . . , N}

and
P kϕα(ξ) = ϕα(ξ), α = 1, . . . , N.

For each ξ ∈ Sn−1 we infer
∫

|η|=1

1

ω n
Pk

(
(ξ, η);n

)
ϕα(η) dσ(η) = ϕα(ξ), α = 1, . . . , N.

Bessel’s inequality now yields

N∑
α=1

ϕ2
α(ξ) =

N∑
α=1

{ ∫

|η|=1

1

ωn
Pk

(
(ξ, η);n

)
ϕα(η) dσ(η)

}2

≤
∫

|η|=1

{
1

ωn
Pk

(
(ξ, η);n

)}2

dσ(η) for all ξ ∈ Sn−1.
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Therefore, we have

N =

∫

|ξ|=1

N∑
α=1

ϕ2
α(ξ) dσ(ξ)

≤
∫

|ξ|=1

∫

|η|=1

{
1

ωn
Pk

(
(ξ, η);n

)}2

dσ(η) dσ(ξ).

Consequently, we get the following estimate for the dimension of Mk, namely

dimMk ≤
∫

|ξ|=1

∫

|η|=1

{
1

ωn
Pk

(
(ξ, η);n

)}2

dσ(η) dσ(ξ) < +∞, k = 0, 1, 2, . . .

(17)
We now set N = N(k, n) := dimMk and choose N orthonormal functions
Hk1(ξ), . . . , HkN (ξ) in Mk spanning the vector space Mk. Each element f ∈
Mk can be represented in the form

f(ξ) = c1Hk1(ξ) + . . .+ cNHkN (ξ), ξ ∈ Sn−1,

with the real coefficients cj = cj [f ] for j = 1, . . . , N . More generally, taking
f = f(ξ) ∈ H we have the identity

1

ωn

∫

|η|=1

Pk

(
(ξ, η);n

)
f(η) dσ(η) = c1[f ]Hk1(ξ) + . . .+ cN [f ]HkN (ξ)

with the real constants c1[f ], . . . , cN [f ]. This implies

cl[f ] =

∫

|ξ|=1

Hkl(ξ)

{
1

ωn

∫

|η|=1

Pk

(
(ξ, η);n

)
f(η) dσ(η)

}
dσ(ξ)

=

∫

|η|=1

f(η)

{
1

ωn

∫

|ξ|=1

Pk

(
(ξ, η);n

)
Hkl(ξ) dσ(ξ)

}
dσ(η)

=

∫

|η|=1

f(η)Hkl(η) dσ(η).

Therefore, we obtain

1

ωn

∫

|η|=1

Pk

(
(ξ, η);n

)
f(η) dσ(η) =

∫

|η|=1

{N(k,n)∑
l=1

Hkl(ξ)Hkl(η)

}
f(η) dσ(η)

and consequently
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∫

|η|=1

{
1

ωn
Pk

(
(ξ, η);n

)
−

N(k,n)∑
l=1

Hkl(ξ)Hkl(η)

}
f(η) dσ(η) = 0

for all ξ ∈ Sn−1 and each f = f(η) ∈ H. Since the functions Pk((ξ, η);n)
and Hkl(ξ) are continuous, we get the addition theorem for the n-dimensional
spherical harmonics

N(k,n)∑
l=1

Hkl(ξ)Hkl(η) =
1

ωn
Pk

(
ξ1η1 + . . .+ ξnηn;n

)
, ξ, η ∈ Sn−1 (18)

for k = 0, 1, 2, . . . and n = 2, 3, . . .. We insert ξ = η into (18) and integrate
over the unit sphere Sn−1. Then we obtain

N(k, n) =

∫

|ξ|=1

N(k,n)∑
l=1

(
Hkl(ξ)

)2
dσ(ξ) = Pk(1;n).

On account of (9), we finally deduce the expansion

∞∑
k=0

N(k, n)tk =

∞∑
k=0

Pk(1;n)t
k =

1− t2

(1− t)n
=

1 + t

(1− t)n−1
, |t| < 1.

We summarize our results as follows:

Theorem 5.5. I. The cardinality N(k, n) of all linear independent spherical
harmonics in R

n of the order k is finite. The number N(k, n) = dimMk

is determined by the equation

1 + t

(1− t)n−1
=

∞∑
k=0

N(k, n)tk, |t| < 1. (19)

II. Let Hk1(ξ), . . . , HkN (ξ) represent the N = N(k, n) orthonormal spherical
harmonics of the order k, which means

∫

|ξ|=1

Hkl(ξ)Hkl′(ξ) dσ(ξ) = δll′ for l, l′ ∈ {1, . . . , N} (20)

is satisfied. Then we have the representation

N(k,n)∑
l=1

Hkl(ξ)Hkl(η) =
1

ωn
Pk

(
ξ1η1 + . . .+ ξnηn;n

)
(21)

for all ξ, η ∈ Sn−1. Here the functions Pk(h;n) are defined by the equation

1− t2

(1− 2ht+ t2)
n
2
=

∞∑
k=0

Pk(h;n)t
k, −1 < t < +1, −1 ≤ h ≤ +1.

(22)



358 Chapter 5 Potential Theory and Spherical Harmonics

III. Each solution u = u(x) ∈ C2(B) ∩ C0(B) of Dirichlet’s problem

Δu(x) = 0 in B,

u(x) = f(x) on ∂B = Sn−1

possesses the representation as uniformly convergent series

u(x) =

∞∑
k=0

{
N(k,n)∑
l=1

( ∫

|η|=1

f(η)Hkl(η) dσ(η)

)
Hkl(ξ)

}
rk (23)

with x = rξ, ξ ∈ Sn−1 and 0 ≤ r ≤ R; here R ∈ (0, 1) can be chosen
arbitrarily.

Proof: Statement III immediately follows from (18) together with Theorem
5.3. q.e.d.

Analogously to Theorem 4.1 from Section 4, we obtain the following result for
arbitrary dimensions n ≥ 2:

Theorem 5.6. (Completeness of spherical harmonics)
The n-dimensional spherical harmonics {Hkl(ξ)}k=0,1,2,...; l=1,...,N(k,n) consi-
tute a complete orthonormal system of functions in H. More precisely,

(Hkl, Hk′l′) = δkk′δll′ , k, k′ = 0, 1, 2, . . . , l, l′ = 1, . . . , N(k, n)

holds true, and for each element f ∈ H we have the relation

lim
M→∞

∥∥∥∥f(ξ)−
M∑
k=0

N(k,n)∑
l=1

fklHkl(ξ)

∥∥∥∥ = 0

or equivalently

‖f‖2 =

∞∑
k=0

N(k,n)∑
l=1

f2
kl.

Here we have used the following abbreviations

fkl := (f,Hkl), k = 0, 1, 2, . . . , l = 1, . . . , N(k, n)

for the Fourier coefficients.

Proof: We have only to show the completeness for the system of the n-
dimensional spherical harmonics. To each element f ∈ H we have a function
u = u(x) with the following properties:

1. the function u is harmonic for all |x| < 1;
2. the function u is continuous for |x| ≤ 1 and satisfies the boundary condi-

tion
u(x) = f(x) for all |x| = 1.
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According to Theorem 5.5, Statement III we see: For each ε > 0 there exists
a radius r ∈ (0, 1) and an index M = M(ε) ∈ N, such that

∣∣∣∣f(ξ)−
M(ε)∑
k=0

rk
N(k,n)∑
l=1

fklHkl(ξ)

∣∣∣∣ ≤ ε for all ξ ∈ Sn−1.

This implies ∥∥∥∥f(ξ)−
M(ε)∑
k=0

rk
N(k,n)∑
l=1

fklHkl(ξ)

∥∥∥∥ ≤ √
ωn ε,

and the minimal property of the Fourier coefficients yields

∥∥∥∥f(ξ)−
M(ε)∑
k=0

N(k,n)∑
l=1

fklHkl(ξ)

∥∥∥∥ ≤ √
ωn ε.

From this relation we immediately infer the statement. q.e.d.
Corollaries from Theorem 5.6:

1. With f(ξ) and g(ξ) we consider two real, continuous functions on Sn−1,
and then Parseval’s equation

∫

|ξ|=1

f(ξ)g(ξ) dσ(ξ) =
∞∑
k=0

N(k,n)∑
l=1

fklgkl

holds true with

fkl =

∫

|ξ|=1

f(ξ)Hkl(ξ) dσ(ξ), gkl =

∫

|ξ|=1

g(ξ)Hkl(ξ) dσ(ξ).

2. Nontrivial spherical harmonicsHj of the order j �= 0,±1,±2, . . . do not ex-
ist. Due to Theorem 5.2 such a function would satisfy the orthogonality re-
lations (Hj , Hkl) = 0. The system of functions {Hkl}k=0,1,2,...; l=1,...,N(k,n)

being complete in H, we infer Hj = 0 for all j �= 0,±1,±2, . . .

At the end of this paragraph we shall investigate the relationship of the spher-
ical harmonics to the Laplace operator in R

n. From (1) we infer the decom-
position

Δ =
∂2

∂r2
+

n− 1

r

∂

∂r
+

1

r2
Λ in R

n.

We note (3) and obtain the following identity for arbitrary C2-functions f =
f(r):

Δ
{
f(r)Hkl(ξ)

}
=

{
f ′′(r) +

n− 1

r
f ′(r)− k(k + (n− 2))

r2
f(r)

}
Hkl(ξ)

=
(
Lk,nf(r)

)
Hkl(ξ), l = 1, . . . , N(k, n)

(24)
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with the operator

Lk,nf(r) :=

(
∂2

∂r2
+

n− 1

r

∂

∂r
− k(k + (n− 2))

r2

)
f(r).

Evidently, we have Lk,2 = Lk with the operator Lk from Section 4.

Let the function u = u(x1, . . . , xn) ∈ C2(BR) with BR := {x ∈ R
n : |x| < R}

be chosen arbitrarily. We now expand u in H with respect to the spherical
harmonics

u = u(rξ) =

∞∑
k=0

N(k,n)∑
l=1

fkl(r)Hkl(ξ), 0 ≤ r < R, ξ ∈ Sn−1. (25)

Here we utilize the n-dimensional Fourier coefficients

fkl(r) :=

∫

|η|=1

u(rη)Hkl(η) dσ(η), k = 0, 1, 2, . . . , l = 1, . . . , N(k, n).

(26)
We then expand the function ũ(x) = Δu(x), x ∈ BR in H with respect to
spherical harmonics as well, and we obtain the n-dimensional Fourier series

Δu(x) = Δu(rξ) =

∞∑
k=0

N(k,n)∑
l=1

f̃kl(r)Hkl(ξ), 0 ≤ r < R, ξ ∈ Sn−1, (27)

with the Fourier coefficients f̃kl(r) = Lk,nfkl(r). We consequently obtain the
series for Δu in H by formal differentiation of the series for u. This is the
content of the following

Proposition 5.7. Let the function u = u(x) ∈ C2(BR) be given, and its
Fourier coefficients fkl(r) are defined due to the formula (26). Then the
Fourier coefficients f̃kl(r) of Δu, namely

f̃kl(r) :=

∫

|η|=1

Δu(rη)Hkl(η) dσ(η), k = 0, 1, 2, . . . , l = 1, . . . , N(k, n),

satisfy the identity

f̃kl(r) = Lk,nfkl(r), k = 0, 1, 2, . . . , l = 1, . . . , N(k, n), (28)

with 0 ≤ r < R.

Proof: We choose 0 ≤ r < R, and calculate with the aid of (3) as follows:
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f̃kl(r) =

∫

|ξ|=1

Δu(rξ)Hkl(ξ) dσ(ξ)

=

∫

|ξ|=1

{(
∂2

∂r2
+

n− 1

r

∂

∂r
+

1

r2
Λ

)
u(rξ)

}
Hkl(ξ) dσ(ξ)

=

(
∂2

∂r2
+

n− 1

r

∂

∂r

) ∫

|ξ|=1

u(rξ)Hkl(ξ) dσ(ξ)

+
1

r2

∫

|ξ|=1

u(rξ)ΛHkl(ξ) dσ(ξ)

=

(
∂2

∂r2
+

n− 1

r

∂

∂r
− k(k + (n− 2))

r2

) ∫

|ξ|=1

u(rξ)Hkl(ξ) dσ(ξ)

= Lk,nfkl(r) for k = 0, 1, 2, . . . , l = 1, . . . , N(k, n).
q.e.d.

Remark: The most important partial differential equation of the second order
in quantum mechanics, namely the Schrödinger equation, contains the Lapla-
cian as its principal part. Therefore, the investigation of eigenvalues of this
operator is of central interest. This will be presented in Chapter 8.

Figure 1.7 Portrait of Joseph A. F. Plateau (1801–1883)

Universitätsbibliothek der Rheinischen Friedrich-Wilhelms-Univerität Bonn;
taken from the book by S.Hildebrandt and A. Tromba: Panoptimum –
Mathematische Grundmuster des Vollkommenen, Spektrum-Verlag Heidel-
berg (1986).
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