Chapter 5

Potential Theory and Spherical Harmonics

In this chapter we investigate solutions of the potential equation due to
Laplace in the homogeneous case and due to Poisson in the inhomogeneous
case. Parallel to the theory of holomorphic functions we develop the theory of
harmonic functions annihilating the Laplace equation. By the ingenious Per-
ron method we shall solve Dirichlet’s problem for harmonic functions. Then
we present the theory of spherical harmonics initiated by Legendre and elab-
orated by Herglotz to the present form. This system of functions constitutes
an explicit basis for the standard Hilbert space and simultaneously provides
a model for the ground states of atoms.

1 Poisson’s Differential Equation in R™

The solutions of 2-dimensional differential equations can often be obtained
via integral representations over the circle S'. As an example we remind the
reader of Cauchy’s integral formula. For n-dimensional differential equations
will appear integrals over the (n — 1)-dimensional sphere

St = {g:(gl,...,gn)e]&" : §§+...+§3=1}, n>2 (1)

At first, we shall determine the area of this sphere S"~!. Given the function
f=f&:5"1 5ReC'%S" L R) we set

| r@ae= [ reaue -3 [ €. @)
gn-1 =13

l€l=1
By the symbols X1, ..., Xy we denote the N € N regular surface parts with

their surface elements dwg satisfying

N
on—1 — UEZ, Ei ﬂfj =0X; ﬂ82j7 N
i=1
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We now consider a continuous function
f:{xzrfe]R” a<r<b, 565”71}—”1%
with 0 < a < b < 400, and we define the open sets
(’)izz{:ﬁ:rﬁ:feﬂi,re(a,b)}, i=1,...,N.

We require the integrability [ [f(z)|dz < 400 and set
a<|z|<b

2

fayde=3" / f() d. (3)
=1 o

a<|z|<b i
The surface parts X; are parametrized as follows
i E=€t)=E(tr, .. tn) Ty = X € YTy, X%), i=1,...,N

with the parameter domains T; C R"~!. By the representation

x=uz(t,r) =x(tr,..., th—1,7) =7&(t1, .-, tn-1), teT;, r¢e/(ab)
(4)
we obtain a parametrization of the sets O; for i = 1,..., N. The Jacobian of
this mapping is evaluated as follows:
7, (t) & (1)
Loty =| 0 =t = (60 G A A )
Tgtn—l (t) gtn—l (t) ' '
&(t) &(t)

Here the symbol A denotes the exterior vector product in R™. We have

gtl ATRS /\ftn—l = (Dl(t)’ e 7Dn(t))
with

n+j 8(617 cee vgj*17£j+17 R 7£n)
PR )

We note |£(t)| = 1 and infer £(t) - &, (t) =0 for all i = 1,...,n — 1. Therefore,
the vectors £(t) and &, A... A&, _, are parallel to each other and we deduce

Dj(t) = (=1)

, J=1,...,n.
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Setting dwe = i D;(t)?dty...dt,—1, t € T; we obtain
j=1
/f(a;) dx / FEE@)r™t | Dj(t)2dty ... dby_y dr
o, T % (a,b) J=1
b
:/rnfldr/f(rf)dwg, i=1,...,N.
a ol
Summation over ¢ = 1,..., N finally yields
b
/ flz)dz = /r”fl dr / f(ré) dwe. (6)
a<l|z|<b a Sn—1

Especially the functions f € CO(R™,R) with [ |f(z)|dz < +oo fulfill the
Rn

[ o= / e [ d. (7)

R Sn—1

identity

Before we continue to evaluate the area of the sphere S"~!, we shall explicitly
provide a calculus rule for the integral defined in (2). In this context we
consider the following special parametrization of S"~!

Yo &=t, i=1,...,n—1, fn:i\/l_t%_...—t%_l,
=t ota-n) €Ti={te R 5 <1},

We calculate

06 % O 1.0 &
oty oty Oty én
. . : : . : n—1 g
851 . agn—l afn 0 --. 1 _gn—l ; J gn
atnfl 8lenfl atnfl gn
A1 o /\n—l )\n )\1 o )\n—l )\n

The surface element of X1 consequently fulfills
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G(D2dty .. dt, . = dt,

dty...dtn—1

\/1—t§_..._tg_1

Therefore, the relation (2) implies

/ £(6) deoe
[€]=1

f(t]_,...,tn,]_,—f—\/f)+f(t17...,tn,1,—\/f) (
= dty...dt,—1
1 \/17t%7...7t$171

setting,/...:\/l—tf—...—tfl_l.

8)

We now return to evaluate the area for the (n — 1)-dimensional sphere S"~*

Wy 1= / dwe .

Sn—1

We take a continuous function g = ¢(r) : (0,400) — R, and require the
function f(z) = g(|z|) to fulfill

/|f(a:)|d:r < +o0.
RTL

Then the relation (7) yields

[ stz = ( ymrnlg<r> dr) ( / dwg>

R™ 0 gn—1
+o0o (9)

= wy / " Lg(r)dr.
0
We insert the function g(r) = e="", r € (0, +00) and obtain

—+oo

_ 2 — 2 —ai—..—a?
(.Un/rn 16 " dT:/e ] dr = /6 T dpy Lo day,

0 R Rn (10)
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Here we observe

—+o0

Definition 1.1. By the symbol

+oo
I'(z):= / t*te t dt, z2€C with Rez>0
0

we denote the Gamma-function.
Remark: We have
I'(z+1)=z2I(2) forall ze€C with Rez>0.
Therefore, we inductively obtain
I'(n)=(n-1)! for n=1,2,...

With the aid of the substitution ¢t = p? and dt = 20 dp we calculate

N 7
F(—) = /t_%e_tdt = /—6_922ng
2 0
0 0
+oo +o00
=2 / e do = /6792 do = /7.
0 —o0

Substituting ¢t = 72 and dt = 2r dr, we finally deduce

“+o00 +oo +o0
F(g) = / t"Tetdt = / 2= o dr = 9 / m=le=m* qr.
0 0 0

From the relation (10) we get the following identity for the area of the sphere

571 namely
2(r(y))
—. (11)
2

I'(3)

Wy =

We now become acquainted with a class of functions which have similar prop-
erties as the class of holomorphic functions.
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Definition 1.2. On the open set 2 C R™ with n > 2 we name the function
o = ¢(z) € C*(£2,R) harmonic in £2, if ¢ satisfies the Laplacian differential
equation

Ap(2) = Poya (@) + oo+ Que, () =0 for all x € . (12)

At first, we shall find the radially symmetric harmonic functions in R™ \ {0}.
Here we begin with the ansatz

p(x) = f(lz]), = eR"\{0}, (13)

using the function f = f(r) : (0,400) — R € C?((0,+00),R). According
to Chapter 1, Section 8 we decompose the Laplace operator with respect to
n-dimensional polar coordinates (&,7) € S"~! x (0, +00) as follows:

02 n-190 1
2t 5 T2
aor r Or r

Here the operator A is independent of the radius r . Therefore, the function

¢ is harmonic in R™ \ {0} if and only if the function f satisfies the following
ordinary differential equation

aQ_f(T) n—10f
or? r Or

The linear solution space of this ordinary differential equation is 2-dimensional,
and we easily verify: The general solution of (15) is given by

A= (14)

(r) =0, r € (0,+00). (15)

fry=a+blogr, re(0,+00), a,beR, if n=2,
fry=a+b*", re(0,+00), a,beR, if n>3.
We observe that the solutions f # const of (15) behave at the origin like

i |£(r)] = +oc.
Therefore, the radially symmetric solutions ¢(z) = f(|z]), x € R™\ {0} of the
Laplacian differential equation possess a singularity at the point = 0. This
phenomenon enables us to derive an integral representation for the solutions
of Poisson’s differential equation. We meet with a comparable situation in
Cauchy’s integral.

Definition 1.3. A domain G C R" satisfying the assumptions of the Gaus-
sian integral theorem from Chapter 1, Section 5 is named a normal domain in

R™.

Definition 1.4. On the normal domain G C R™ we define the function

1
plysa) = o logly —a|+4(yse), zyeG with x#y,  n=2 (16)
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and alternatively

1 . ,
ﬂ%w%Zzgjgﬁfw—ﬂ2‘+www% z,y€G with z#y, n>3.
(17)

Here the function ¢(;x) - defined by y — ¥(y;x) - is harmonic in G and
belongs to the class C1(G) for each fized x € G. Furthermore, we observe
the regularity property 1 € C°(G x G). Then we name ¢(y;x) a fundamental
solution of the Laplace equation in G.

Of central significance for the potential theory is the following

Theorem 1.5. On the normal dﬁmam G C R™ with n > 2, we consider a
solution u = u(z) € C*(G) N CY(G) of Poisson’s differential equation

Au(z) = f(z), reG (18)
prescribing the function f = f(z) € C°(G) as its right-hand side. Then we

have the integral representation

uw) = [ (w0 SE ) — ol ) 5o 0)) do )

+/w@ﬂﬂm@

G

for all x € G. Here the symbol v : 0G — R"™ denotes the exterior unit normal
for the domain 0G, do(y) means the surface element on the boundary 0G,
and p(y; x) indicates a fundamental solution.

Proof:

1. We present our proof only for the case n > 3. Take a fixed point z € G
and choose £y > 0 so small that the condition

B.(z) := {yER" sy — <6} ccG
is satisfied for all 0 < & < g9. We introduce the polar coordinates
y=x+7ré, EeR” with £ =1

about the point x, and denote the radial derivative by %. On the domain

G. := G\ B.(x) we apply Green’s formula and obtain
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/ Fw)o(y:z) dy

Ge

(Auly)ely:2) — uly)A,(y:a) ) dy

!
/

= (scv(y; x)%(y) - u(y)g—f(y; x)) do(y)
G

= / (sa(y;x)%(y) —U(y)g—f(y;w)) do(y)
oG

- [ () - uw) S ) doy)
9B (x)
for all € € (0,¢9).

2. Observing (17), we now see

o . au —
Jim Py )5 (y)do(y) =0.

0B ()

Furthermore, we calculate

. dp
Jim, u(y) 5, (y;z) do(y)
9B.(z)
T _ _ 1—-n
= lim / u(y) nly x| " do(y)
9B.(2)

(20)

3. From (20), (21), and (22) together with the passage to the limit ¢ — 0+

we now infer the stated identity
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[+ [ (65w - el )5 0) doly) = o)
G oG
for arbitrary points = € G. q.e.d.

Theorem 1.6. Given the point T= (%1, . ,%n) € R™ and the radius R €

(0,400), we consider the ball Br(z) := {x € R™ : |z— & | < R}. Let the
function

w=u(zy,...,2,) € C2(Bgr(2)) N C'(Bg(2))

solve the Laplace equation Au(zy,...,x,) = 0 in BR@). Then we have a
power series

k kn
Px1y...,xn) = E Aoy oy X1 oo Ty

k1,...,kn=0
R
for xz; € C with |z;] < e i=1,...,n

with the real coefficients ag, ., € R for ki,...,k, = 0,1,2,..., converging
absolutely in the designated complex polycylinder such that

w(z) = P(xi— 21, ..., ¢0— Ty) for zeR™ with |a:j—§j|§

£

23)
Proof:
1. It suffices only to prove the statement above in the case 2=0and R = 1,
which can easily be verified with the aid of the transformation
Ty :=% +Ry,y € B1(0) satisfying T : B;(0) — Bg(z).
Furthermore, we only consider the situation n > 3. With the function

1

mw—ﬂzf", y € B:= B(0)

we obtain a fundamental solution of the Laplace equation in B for each
fixed x € B. Theorem 1.5 yields the representation formula

ue) = [ (u)Got0) — o) 5o W) doly),  we B (@0
OB

The points z € B being fixed and y € 0B arbitrary, we comprehend

1 -n
Lo(yx) =y Vyply;z) = ;y-(\y*xll Vy\y*xl)

(25)
:%y-(\y*x\’"(y*x)) = éy'(y*@'

w wnly — x|™
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2. We take arbitrary A € R, y € 9B and = = (z1,...,2,) € C" satisfying

lz;| < ﬁ for j =1,...,n and consider the composite quantity
ly — = <Z(yj—17j)2) = (1—22ijj+zx?>
j=1 j=1 j=1
Abbreviating

n n
QZZ—ZZijTj—FZIL’? eC
j=1 j=1

we see

et w0t -3 ()0 35 () (- 2um 3o

=0 =0

Here we observe
n n n n
ol = =2) wims + > 2] < 23 Iyl gl + 3 Ll
j=1 j=1 j=1 j=1

1
<2—n+ < 1.

3
- g < =2
=S4 T2 < g
3. The function

1
Y(x) = |y — x|, z € C  with |xj\§57 j=1,....,n

is consequently holomorphic for each fixed point y € dB. On account of
the relation (25), the function

Fle,) = uly) 92 () — oy ) oely), Jogl < o

is holomorphic on the given polycylinder for each fixed y € 9B and
bounded. Now Theorem 2.12 from Chapter 4, Section 2 about holomorphic
parameter integrals, together with (24), now yields that the function u(z)
is holomorphic on the given polycylinder. Therefore, the function v can
be expanded into the power series specified above. Since the function u(x)
is real-valued, the coefficients ay,. x, are real as well. They are namely
the coefficients of the associate Taylor series.

q.e.d.

Of central interest is the following

Theorem 1.7. Let us take the point £€ R", the radius R € (0, +00), and the
number A € R with A < n. Furthermore, let the function f = f(y1,...,yn) be
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holomorphic in an open neighborhood U C C" satisfying U DD BR(i), Then
the function

F(ml,...,xn)::/ W 4 e B (26)

ly — x>
BR(‘%)

can be locally expanded into a convergent power series about the point .

Proof: Applying the transformation Ty :=2 +Ry, y € B1(0) we can concen-
trate our considerations on the case 2= 0 and R = 1. We therefore investigate
the singular integral

F(zy,...,2,) = / f_(y) dy, x € B := B1(0).
The point = € B being fixed, we consider the transformation of variables due
to E. E. Levi, namely

y=x+ o0& —x)=(1-0)r+ 0, 0<o<1, [l=1

gn = gn(gla"'afnfl) =4

The so-defined mapping (1, ...,&,—1, 0) — y is bijective, and we have

731 &1
ogsworyn)

a(gla"-agn—lvg) 6y1 8yn
aénfl agnfl
do do

&1

0 —o2L

¢ %t

fn—l

0o .- _
Y Y fn
fl_xl gnfl_xnfl gn_xn
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1 0 &
s
:Qn—l
0 - 1 &1
&n
51_(51 gnfl_xnfl gn_xn

_ (qu D+ 6l =)

:9’;1 (1_2@-%) 40 for |¢|=1, |z|<l.
n i=1

The transformation formula for multiple integrals now yields

Fw = [ |yf—(yaz|A dy
ly|<1

] PR
n k=1

0 g2y . +e2_ <1
En(€1yeees En—1)>0

/ / x:rg & x)) "1 <1Z§kxk) déy ... dép—1dpo
1§ — x| 1 —

0 2442 <1
En(€1,e36n—1)<0

:/ (/ fx+@ >>(1_§_m)dwg>d@

1€1=1

As in the proof of Theorem 1.6 we expand the function |¢ —z|* into a conver-
gent power series. With the aid of Theorem 2.12 from Chapter 4, Section 2 we
infer that the function F'(z) can be expanded into a convergent power series
in a neighborhood of the point « = 0.

q.e.d.
Definition 1.8. A function ¢ = @(x1,...,2,) : 2 = R defined on the open
set £2 C R™ is named real-analytic in §2 if the following condition holds true:

For each point r= (:%1, . ,%n) € (2 there exists a sufficiently small number

o .
e =¢(x) > 0 and a convergent power series
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oo

k En
P21y y2n) = E oy o 21+ oo 2y
ki,....kn=0

for z; € C with |zj]<e, j=1,...,n
with the real coefficients
Ok, b, ER  for ki,...,k,=0,1,2,...

such that the identity

o o o .
O(T1,y ) = Plr1— 1,00, Tp— Tn), lzj—x; | <e, j=1,...,n

is satisfied.

Theorem 1.9. (Analyticity theorem for Poisson’s equation)

The real-analytic function f = f(x1,...,2,) : 2 = R is defined on the open
set £2 C R™ with n > 2. Furthermore, let the function w = u(z1,...,z,) €
C?(92) represent a solution of Poisson’s differential equation

Au(zy,. . xn) = f(21,...,Tn), (X1,...,2p) € £2.
Then this function u(z) is real-analytic in the set 2.

Proof: Taking € 2 and BR(%) CC {2, Theorem 1.5 allows us to represent
the solution u(x) by the fundamental solution ¢ in the following form

uw) = [ (s — o0 5o w) o)+ [ elwr)dy

dBr(2) Br(Z)

with z € BR(JOL'). According to Theorem 1.6, the first integral on the right-hand
side represents a real-analytic function about the point . From Theorem 1.7
we infer that the second integral yields a real-analytic function about the

point  as well.
q.e.d.

2 Poisson’s Integral Formula with Applications

In Theorem 1.5 from Section1 we have constructed an integral representa-
tion for the solutions of Poisson’s equation in normal domains G with the
aid of the fundamental solution ¢(y;x). The representation formula becomes
particularly simple if the function ¢(.; ) vanishes on the boundary dG. This
motivates the following
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Definition 2.1. On a normal domain G C R™ we have the fundamental solu-
tion ¢ = p(y; ) given. We call this function a Green’s function of the domain
G, if the boundary condition

o(y;2) =0 for all y € 0G (1)
is satisfied for all x € G.

Theorem 2.2. Given the ball Bg := {y € R" : |y| < R} with R € (0,+00)
and n > 2, we have the following Green’s function:

R(y— )

27| y € Br, € Bg, (2)

o(y;x) = log

in the case n = 2 and

R n—2
(p(y;x):@ 1 <|y 1 - (m) n2>

(3)

_ 1 ( 1 R"2 >
2= nwn \ly—2["2 (RY—2R2(x - y) + |z[2ly[?) T

fory € Bg, x € By in the case n > 3.

Proof:

1. At first, we consider the case n = 2. Taking the point z € Bpg as fixed,

the expression

_ R(y—z) Ry— Rz
R2 -7y  —Ty+ R’

yeC

is a Mobius transformation with the nonsingular coefficient matrix

R —Rx R —Rx 9 9
@) det I = R(R* — |z|°) > 0.

Furthermore, we have

R? — Rz R?— Rz
= |————— = = 1
(B —TR + R? ’ R? — Rx ’
F(—R)| = —R? - Rx B R? + Rx B
| RE+R?>| |R2+Rx|
|f(iR)|— iR? — Rx _ iR? — Rx _ R?2 +iRx _
" |—iRT+ R? R2+iRx| |R2+iRx ’

J0)=-% €Bu.
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This implies
lf(y)] =1 for all y € OBg

and then

. =1
o(y; ) —log

for all y € 9BR and all x € Bg. Finally, we note that

1 y—x 1 1 T
) = —1 Tl = “logly—x|— —log|R— <
Plysz) = 5 -log | — %y‘ 5 108 ly — ] — o og‘R Ry‘
——lo | —x\——lo _z —R—2
= g1y g R Y =
2 1 -
= —log|y—x\ —log —mzx ——log %

1
=: o logly —a|+u(y:x),  y€Br, x€Br\{0}.

The function v (-;z) is harmonic in Bg as the real part of a holomorphic
function.
. We now consider the case n > 3, and begin with the following ansatz:

1 1 K _
o(y;r) = - , y € Bg.
(2=n)wn \ |y —2|""2 |y — Az|"~2

Here the point x € Bp is fixed; the constants K and A have still to be
chosen adequately. At first, we see that the function

1 K
(2 = n)wn |y — Az"—2

Y(y; @) = —

is harmonic in y € Bg if Az € Bg holds true. The condition o(y;x) = 0
for all y € 0Bp is satisfied if and only if

1 K

ly — "2 |y — |2

or equivalently
K ly —z? = |y — \z|? for all y € 0Bgr
is correct. On account of |y| = R we can transform this identity into
K2 (R = 2(y - 2) + [of’) = B = 20(y - @) + XJaf?

and finally into
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R? (K_ - 1) — 2z -y) (K_ - /\> + W(Kﬁ - )\2> ~0.

Setting \ := K722 we obtain
0=R*\—1)+[z*(A = 2\ = (A= D{R? - \|z|?}.

Since the case A = 1, K = 1 and consequently ¢ = 0 has to be excluded as
2 — n—2
the trivial one, we choose A := (%) and K = \"2° = (%) . Now we

obtain Green’s function of the domain B with the following expression

1 ( 1 (%)%2

2= o, \ly —z*2 R\’
- () -

for z € Bg \ {0}. We note

Qo(ya l’) = n_2>a ye ERa

R

‘y— %x‘ ’|x\y—R2% |z[?|y]? = 2R*(z - y) + R* )

and Green’s function satisfies

2

1 ( 1 Rn2 )
2—n)w, \ly —z["2  (|z]2|y|? — 2R%(x - y) + R*) "2

o(y;x) = (

for all y € By and x € Bp. q.e.d.

Theorem 2.3. (Poisson’s integral formula)

In the ball B := {y € R™ : |y| < R} of radius R € (0,400) in the Euclidean
space R™ with n > 2, let the function u = u(z) = u(x1,...,z,) € C*(Bg)N
C°(BRr) solve Poisson’s differential equation

Au(z) = f(x), x € Bg

for the right-hand side f = f(z) € C°(Br). Then we have the Poisson integral
representation

L e |
= ZR O [R Pl fW)dy ()

for all x € Br. Here the symbol ¢ = p(y;x) denotes Green’s function given
in Theorem 2.2.

Proof:
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1. At first, we assume the regularity u € C?(Bg). Theorem 1.5 from Section 1
yields the identity

0
w0 = [ wad)+ [ i@, o€ B
lyl=R ly|I<R
We confine ourselves to the case n > 3. According to Theorem 2.2 we have

Green’s function

e(y;z) = m(@*ﬂ%n*my*/\ﬂ%n)’ y € B, z € Bg,

2 n—2
with ) := <£) and K = (E) — A\
|| 2|

Taking = € By as fixed and y € 0Bpg arbitrarily, we calculate

9 . _Y .
5@(1/,:6)— 7 Vyp(y; )

_ 1 l—n Yy —2x
= RV (Iy z| 2]
1 y—z Yy — Az )
= y . —_— K .
Ruwy, (Iy—:vl” ly — Az|™
This formula remains true for n = 2 as well, where K = 1 is fulfilled in

this case. We additionally note that
ly — x> = R* — 2A\(z - y) + N[z

L, Y—Ar
~Kly = el "|yms>

R R4
— R (py)
FESERNNE

R2
= 1o (ol =26 ) + B?) = Ny —af?

and consequently
ly — Az = A2 |y — ™.
Finally, we obtain

0 1 n
Cotyir)=——— gy (y—az— KA F(y— A
5, ¥ 3 2) Roonly — " (y x *(y »’C))
1 n —n42
P (171> _ ly[? (17@)
Ruwy, |y — z|? A Ruw, |y — x| R?
yl? — |=/?

:m forall ye€ dBr and =z € Bpg.
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Therefore, we get the Poisson integral representation

we) = [ MR a [ owasan o b

ly|=R [y|<R

2. Now assuming u € C?(Bg) N C°(Bg), part 1 of our proof yields the
following identity for all ¢ € (0, R):

ue) = [ =R ot : / oy, 01 0) dy

Here ¢(y; x, 0) denotes Green’s function for the ball B,. We observe the
transition to the limit p — R— and obtain

ww) = [ awy+ [ e mswa

ly — x|
ly|=R ly|I<R

for all x € Bp. q.e.d.

Remarks:

1. In the special case n = 2 and f = 0 we obtain for 0 < p < R and
0<9<2m:

. 1 27 R2_g2 .
u(pcosd, psind) = %/RQ ~90Rcos(r—0) + &2 u(Rcos A, Rsin \) dA.
0
2. We name
1 [yl — = B
P(z,y, R) = Ron y—a y€Br, x€DBg

the Poisson kernel.
3. Later in Chapter 9 we shall investigate the boundary behavior of Poisson’s
integral.

Theorem 2.4. We consider a solution u = u(x) € C*(GQ) of Poisson’s differ-
ential equation Au(z) = f(x), x € G in the domain G C R™. For each ball
Br(a) CC G we then have the identity

u(a):ﬁl / u(x)da(x)—% /|/ log<ﬁ>f(a:)dx (5)
z—a|=R z—al<R

in the case n = 2, and alternatively
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u(a) = Rn—;lwn / u(zx) do(x)
) |z—a|=R (6)
e / (\x—a\Q_”—RQ_")f(x) dx
lz—a|<R

in the case n > 3.

Proof: Via an adequate translation we can achieve a = 0. We then consider
Green’s function

1 y 1 R _
10)= 5 -log|%| = —log i, yeDn, —2,
p(y;0) = 5 - log | o7 8 ] y € Br n
and alternatively
1 1 1 —
;0) = — — , € Bg, > 3.

Poisson’s integral formula now yields

w0) = gz [ wwda) =5 [ ro() rwdy

lyl=R ly|<R
in the case n = 2 and
1 1 1 1
= — d R e c— - d
0= g, [ - gy [ (G g
ly|=R lyI<R
in the case n > 3. q.e.d.

Corollary: Harmonic functions u have the mean value property

wo) = i [ ul)dot). 7

ly—al=R
it Br(a) CC G is satisfied.

Theorem 2.5. (Harnack’s inequality)

Let the function u(z) € C*(Bg) be harmonic in the ball B = {y € R" :
ly| < R} of radius R € (0,+c0), and we assume u(x) > 0 for all € Bg.
Then we have the estimate

_ lal Izl
Y u(0) < u(x) < e u(0) forall x € Bgr. (8)

| \;I
|z| n—1 || n—1
(1+%) (1-%)
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Proof: At first we assume u € C?(Bpg), and later we establish the inequality
above for functions u € C?(Bgr) by a passage to the limit. From Theorem 2.3
we infer
u(z) = / P(z,y, R)u(y) do(y), r € Bpg.
ly|=R

For arbitrary points y € R™ with |y| = R and « € Bgr we have the following
inequality:

yl? —l=l* _ lyl? == _ |yI* — |=?

(R+[zh)» = ly—a" — (R—|z))"
We multiply this inequality by RL%u(y) and then integrate over the boundary
OBg:

1 R?—|af? 1 R?—|zf?
R e | U080 <06 < g [ et

ly|l=R lyl=R

Using the mean value property of harmonic functions we obtain

R2 — af? R — Jaf?
R~ 4(0) <u(z) < R"? ————u(0)
(R+ [a])" (R — [a])"
and consequently

_ ‘;’”{_Lz 1— |z
m u(0) < u(z)

Finally, this implies

IN

ﬁu S %’U,(O), .TEBR.
(14 %) (%) ted

Theorem 2.6. (Liouville’s theorem for harmonic functions)
Let u(z) : R™ — R denote a harmonic function satisfying u(z) < M for all
x € R™, with a constant M € R. Then we have u(x) = const, xr € R™.

Proof: We consider the harmonic function v(z) := M —u(z), x € R™ and note
that v(x) > 0 for all x € R™. Harnack’s inequality now yields

1 _ lzl 14 Lzl
R y(0) < v(z) < — R

We observe R — +oo and obtain v(z) = v(0) for all x € R™ and finally
u(x) =const, x € R™.

(0), z € B, R>0.

q.e.d.

Fundamentally important in the sequel is
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Definition 2.7. Let G C R™ denote a domain and u = u(z) = u(x1,...,Tp)
G — R € C°G) a continuous function. We name u weakharmonic (super-
harmonic, subharmonic), if

1

u(a) = (Z,S)m

/ u(z)do(z) = 1 u(a 4+ r€) do(§)

W,

ja—al=r =

for all a € G and r € (0,9(a)) with a certain ¥(a) € (0, dist(a, R™ \ G)] is
correct.

Remarks:

1. The function u : G — R € C°(G) is superharmonic if and only if the
function —wu is subharmonic.

2. A function is weakharmonic if and only if this function is simultaneously
superharmonic and subharmonic.

3. A weakharmonic function is characterized by the mean value property -
and should be carefully distinguished from certain weak solutions of the
Laplace equation in Sobolev spaces, which are not necessarily continuous
functions in general.

4. If the functions u,v : G — R are superharmonic and the constant a €
[0,4+00) is given, then the following continuous functions

wr () = au(z),
wa(z) = u(z) + v(2),
ws(z) := min{u(z),v(z)}, z € G,

are superharmonic as well. For w; and ws this statement is evident, and
we investigate the function ws. Taking the point ¢ € G and the radius
r € (0,9(a)) we infer

1 wz(a+r€)do(€) = i / min{u(a + 7€), v(a + r&)} do(§)

W,
[€]=1 [€]=1

gmin{wL /u(CL—&-Tf)dU(f)ai /v(a—i—r{)da({)}

n

"ei=1 j6l=1
< min{u(a),v(a)} = ws(a).

5. If the functions u,v : G — R are subharmonic and the constant a €
[0,4+00) is given, then the following functions

wy(x) = au(x),
we(x) = u(x) + v(x),

ws(z) := max{u(z),v(z)}, z € G,



326 Chapter 5 Potential Theory and Spherical Harmonics

are subharmonic functions in G as well.

Theorem 2.8. Let the function u = u(z) € C*(G) be defined on the domain
G C R™. Then this twice continuously differentiable function u is weakhar-
monic (superharmonic, subharmonic) in G if and only if the relation

Au(z) =0 (L0, >0) forall z€G
s correct.

Proof: We present our proof only in the case n > 3. We define f(x) := Au(z),
r € G and see f € C°(G). Theorem 2.4 yields the following identity for all
points a € G and radii r € (0,9(a)):

u(a) = r”*llwn / u(z) do(x)
|z—a|=r
1 2—n __ 7,2771 z)dzx
= / (= ) () dr.
Setting
o)== () de
la—al<r

we easily see: The function u is weakharmonic (superharmonic, subharmonic)
if and only if

x(a,r) =0 (>0, <0) forall ae G, re(0,9a))

holds true. We finally note the inequality |z — a[*>=™ — 72~ >0 for all z € G

with |z — a| < r, and we obtain the statement above. qed

Theorem 2.9. (Maximum and minimum principle)
The superharmonic (subharmonic) function u = u(z) : G — R - defined on
the domain G C R™ - may attain its global minimum (mazimum) at a point

re G'; this means
u(x) > u(x) (u(x) < u(:%)) forall z€G.

Then we have
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Proof: Since the reflection w — —u transfers subharmonic functions into su-
perharmonic ones, the statement has only to be shown for superharmonic
functions. Now the superharmonic function u : G — R € C°(G) may attain

its global minimum at the point Z € G. We then consider the nonvoid set

G* = {x €G : u(r) = inf u(y) = u(%)}
yeG
which is closed in the domain G. We now show that this set G* is open as
well. If namely a € G* is an arbitrary point, we observe

inf u(y) = u(a) > € / u(a +71€)do(&) for all r e (0,9(a)). (9)

yeG W,
|£1=1

This implies u(x) = u(a) for all points x € R"™ with |z — a| < ¥(a). Conse-
quently, the set G* is open. Since G is a domain and especially connected, we
easily see by continuation along paths: u(z) = u(%) for all z € G. We finally

obtain u(z) = const, x € G. q.e.d.

Theorem 2.10. Let the function v : G — R € CY%G) be superharmonic
(subharmonic) in the bounded domain G C R™. Furthermore, all sequences of
points {x(k)}k:m,m C G satisfying klim 2®) = 2 € OG have the property

— 00

lim inf u(z®) > M ( lim sup u(z®)) < M)

k—o00 k— o0
with a constant M € R. Then we have the behavior
u(x) > M (u(x) < M) forall z€G.

Proof: Tt suffices to consider superharmonic functions v : G — R. If the
statement u(z) > M for all © € G were false, we have a point £ € G with
w=u(§) < M. We now construct a sequence of connected compact subsets
of G exhausting the set G; this means @; 1 G for j — oo satisfying

§€@1C@2C....

Due to Theorem 2.9, the superharmonic function u attains its minimum at a
boundary point y) € 00; of each compact set ©;. Therefore, we have the
inequalities

u(y(j))gu(g):u for j=1,2,...

From the sequence {y(j )} j=1,2,... C G we now select a convergent subsequence
{.’I}(k)}k:LQ)m - {y(j)}j:mw. We then obtain a sequence {ai(k)}kzl,z,,,, cG
satisfying
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lim ™ =z €dG  and likm inf u(z™) < p < M.
—00

k— o0

However, this contradicts the assumption

liminfu(z®) > M  forall {z®}_1o  cG with lim 2™ € dG.

k—oc0 k—o0

q.e.d.

Theorem 2.11. Let G C R" denote a bounded domain. Furthermore, we
consider two functions u = u(z), v = v(z) : G - R € C°G), which are
weakharmonic in G. Then we have the estimate

sup [u(z) — v()| < sup |u(x) — v(o)].
z€G z€IG

Proof: The function w(z) := u(xr) — v(x), z € G is continuous in G and
weakharmonic in G. Setting M := sup |u(z)—v(z)|, Theorem 2.10 yields the
x€0G
inequality
—M<w(x)<M forall zeG.

This implies the stated estimate. q.e.d.

Theorem 2.12. Let G C R” denote a bounded domain. Then the Green func-
tion g (y;x) for this domain is uniquely determined, and we have

wa(y;x) <0 forall ye G and fived x€G. (10)
Proof: (Only for n > 3.)

1. Let the two Green functions

1 . _
Sﬁj(y;z):mh/*ﬂ2 +¥i(y;z),  yelG, zeG j=12

be given. Then we infer 0 = ¢1(y; ) = p2(y; ) for y € 9G, x € G and
therefore
Uiy o) = Poly;z),  yedG, zed.

Theorem 2.11 now implies ¥1(y; x) = ¥2(y; =), and finally
P1 = $2, y6G7 z € G.

2. We take the point z € G as fixed and consider Green’s function

1
ea(y;z) = mw -

P+ (ysz),  yeQ

for the domain G. Then the function x(y) = ¢(y;z) : G\ {z} = R
is harmonic. Arbitrary sequences {y*};—15. . C G’ := G\ {z} with
klim y*) € 0G’ = G U {z} now satisfy

—00
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lim sup X(y(k)) <0.

k—oc0

Therefore, Theorem 2.10 yields x(y) < 0 for all y € G’ and Theorem 2.9

implies the inequality (10). qed

Remark: The existence question for Green’s function on Dirichlet domains G
will be answered affirmatively in the next section.

3 Dirichlet’s Problem for the Laplace Equation in R™

In this paragraph the symbol G C R™ always means a bounded domain, and
f=f(x): 0G — R € C°(OG) denotes a continuous function on its boundary
O0G. Our interest is devoted to the following Dirichlet’s boundary value problem
for the Laplace equation

u(z ) € C*(G)NCY(G),
Au(z) = forall z €@, (1)
u(z) = ( ) for all z € 0G.

Theorem 3.1. (Uniqueness theorem)
Consider two solutions u(zx), v(x) of the Dirichlet problem (1) for the data G
and f. Then we have

u(zr) = v(w) in G.

Proof: The function w(x) := v(x) —u(x), z € G belonging to the class C*(G)N
C°(G) is especially weakharmonic in G and has the boundary values

= f(z)— f(x) =0  forall ze€dG.

Theorem 2.11 from Section 2 implies w(z) = 0 in G and therefore

= €G.
o(r) =u(x), @ wed.
With the aid of Poisson’s integral formula we can explicitly solve the Dirichlet
problem on balls.

Theorem 3.2. On the ball Br(a) :={y € R" : |y —a| < R} with the center
a € R™ and the radius R € (0,+00) we consider Poisson’s integral

u(z) = L / ly —al” — |z —af fly)do(y), x € Br(a). (2)

ly — x|
ly—al=R
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Then the function u belongs to the regularity class C?(Bgr(a)) N C°(Bg(a))
and is harmonic in Br(a). Furthermore, we have the boundary behavior

limu(z) = f(z)  forall € 0Bgla). (3)
acewB_g?a)
Consequently, the given function u solves Dirichlet’s problem (1) on the ball
G = Bg(a) for the continuous boundary function f : OBr(a) — R being
prescribed.

Proof:

1. At first, we consider the situation ¢ = 0, R = 1 and set B := B1(0) C R".
Then we obtain the function

— i 7|y|2 — |.L“‘2 o = ;T g X
w5 |/ i s = / Ply:a)f(y) do(y), =€ B

(4)
with Poisson’s kernel
Lyl =P

= on =l y€ 0B, xz¢€B.
n

P(y;z)

2. Formula (4) immediately implies the regularity v € C?(B). According to
part 1 in the proof of Theorem 2.3 from Section 2 the following identity is

satisfied: 2 — [af? p
1 |ly|©— |z
P(y: S - B bl B .
(y;2) on =l 5, ¥ 37

(5)
=y Vyp(y; ), y€ 0B, xe€B.

Here the symbol ¢(y;x) denotes Green’s function for the unit ball B
described in Section 2, Theorem 2.2. We note that ¢ is symmetric, more
precisely

o(z;y) = o(y; x) forall z,ye€ B with =z #uy. (6)
Furthermore, we have
A P(y;x) =y -V, (Axw(y;a:)) =0, r€B, yedB. (1)
Consequently, we obtain

Au(z) = / A P(y;2) f(y)do(y) =0 for all z € B. (8)

ly|=1
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3. Applying Theorem 2.3 from Section 2 to the harmonic function v(z) =1,
x € B we deduce

R O s 1do(y) = / P(y;x)do(y) for allz € B. (9)
wn, ly — ="

ly|=1 lyl=1

1=

Furthermore, P(y;z) > 0 for all y € 9B and all x € B is satisfied.
4. We now show that the relation

lim u(z) = f(x)
weh

is correct for all boundary points 1€ OB. We take an arbitrary point
x € B and see

we) = 1) = o [ B ()~ 18)) doto)
ly|=1
_ ! WP =12 ey eon) o
Wy / ly —a| (f(y) f( )) do(y) (10)
yeEOB
ly—=|>26
1 ly[* — Jz]? o
o / W(f(y) - f(fv)) do(y).
yEOB
ly—a|<28

The function f is continuous at the point . Given the quantity € > 0 we
therefore have a number § = d(g) > 0 such that |f(y) — f(z)| < € holds
true for all points y € OB with |y— %\ < 26. This implies

= [ M ) - ) aot)

Wn, |y_x|n
y€OB
ly—z(<28
1 / \ylz—lch?‘ ‘
< = LA T bd N — ()| do (11)
< o =] f(y) = f(z)| do(y)
yeEOB
ly—z| <28

< ¢ for all z € B.

Choosing a point € B with |z— §| < § we infer the following estimate
for all y € OB with |y— §| > 20, namely

ly—a| > ly— x| — |[z—x| > 26 — 6 = .
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Consequently, for all y € 9B with |y— 5:| > 20 and z € B with |z— %\ <
n < § we have

lyl> = 121> _ (yl+ |=zD(lyl — |=])

|y _ x|n — o
2 o 2 o
< sollzl=lz]) = lw —a
<2
- 5n
Setting M := sup |f(y)| we now can estimate as follows:
y€IB
1 / lyl* - |x|2( o
- WL L ()~ £(8)) doty
- (1) - 1)) dotw)
yEIB
ly—2|>25
1 / yl* — |z ‘ o
< - W= 1) 1) doty
— |1 = 1) dotw)
yeOB
ly—&1>25 (12)
2M 2 2
S S
y -zl
y€EOB
ly—7|>25
2M
< 2nw, < &
WnpO™

if we choose n € (0, ) sufficiently small. With the aid of (10), (11), and
(12) we deduce

lu(z) — f(z)] <2  forall z€B with |z—z|<n. (13)

This implies
lim u(z) = f(z) for all € OB.

oy
z€EB

5. The function

wwy= o [ UM a0, ees

Wn ly — z|™
ly|=1

solves Dirichlet’s problem on the unit ball B. We now utilize the trans-
formation

r=Te=5(€~a), €€ Bala).
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Then the function v(§) := u(T€), £ € Br(a) gives us a solution of Dirich-
let’s problem

v =1v(§) € C*(Br(a)) N C°(Br(a)),
Av(€) =0 for all ¢ € Bgr(a), (14)

v(§) =g(&)  forall ¢ € dBg(a),
where we have set g(&) := f(T€), £ € 0Br(a). Taking

n:=T'y=Ry+a, y € OB
we see ) € OBg(a) and do(n) = R" ! do(y). On this basis we calculate

2 2
o —urg = - [ Mo

ly|=1
1 / |Tyf? - |Te]? 1

T
[n—al=R

| 7 (In— al? = g — af?)
© Ry, / Ul
n—al=F f

f(y)do(y)

do(n)

g(n) do(n)

1 _al2 1 g2
" Rw / I (|177—§|ii d g(n) do(n), ¢ € Br(a).
nln—a\=R

q.e.d.

Theorem 3.3. (Regularity theorem for weakharmonic functions)
Let the weakharmonic function u = u(x) : G — R € C°(G) be given on the
domain G C R™. Then the function u is real-analytic in G and satisfies the
Laplace equation Au(x) =0 for all x € G.

Proof: Let the point a € G be chosen arbitrarily. For a suitable radius R €
(0, +00) we then consider the ball Br(a) CC G, where we solve Dirichlet’s
problem with the aid of Theorem 3.2, namely

v =wv(x) € C*(Bgr(a)) N C°(Bg(a)),
Av(z) =0 for all = € Bg(a), (15)
v(z) = u(z) for all x € 0Bg(a).

Theorem 2.11 from Section 2 now yields u(z) = v(x) in Br(a). Consequently,
we have u € C%(G) and Au(z) = 0 for all z € G. According to Theorem 1.9
in Section 1, the function u is real-analytic in G.

q.e.d.
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We now intend to solve Dirichlet’s problem (1) for a large class of domains G.
In this context we use an ingenious method proposed by O. Perron.

Definition 3.4. Let G C R"™ denote a bounded domain on which the con-
tinuous function u = u(z) : G - R € C%QG) is given. Then we define the
harmonically modified function

v(z) := [u]a,r(7)

u(x), x € G with |t —a| > R
T / v TZ|/ — J:rn al u(y)do(y), v € G with |x —a| < R
ly—al=R

for alla € G and R € (0, dist(a, R™ \ G)).

Remark: The function v = v(x) : G — R € C°(G) is harmonic in Bg(a) and
coincides with the original function on the complement of this ball G\ Br(a).

In the sequel we need the important

Proposition 3.5. Let the point a € G and the radius R € (0, dist(a, R™ \ G))
be chosen as fized, whereas u = u(z) denotes a superharmonic function in G.
Then the harmonically modified function

v(z) = [u]g,r(), xeG
is superharmonic in G as well, and we have
v(z) < u(x) forall ze€Q@.

Proof:

1. At first, we show the inequality v(z) < u(x) for all z € G. In this context
we only have to verify v(z) < u(x) for all x € Br(a). The function

w(x) == u(z) —v(x), x € Bg(a)
is superharmonic in the ball Bgr(a). Each sequence of points
{z®} =12, € Br(a)

with lim z® =z € O0Br(a) satisfies

k—o0

lim inf w(z®™) = w(z) = 0.
k— o0
From Section 2, Theorem 2.10 we infer w(z) > 0, x € Br(a) and conse-
quently
v(z) < u(x) for all z € Bg(a).
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2. We now show that v is superharmonic in GG. Choose an arbitrary point
& € 0Br(a) and a quantity ¥(§) € (0,dist(§, R™ \ G)]. Using part 1 of our
proof, we then obtain

! / v(m)da(x)ég% / u(z) do(x) < u(€) = v(€)

Qn_lwn " 1Wn
lz—&l=¢ lz—¢&l=¢

for all p € (0,9(€)). Consequently, the function v is superharmonic in G:
In the ball Bg(a) the function v is harmonic anyway, and in G \ Bg(a)
this function v is superharmonic.

q.e.d.
We additionally need the following

Proposition 3.6. (Harnack’s lemma)
We consider a sequence wi(z) : G — R, k = 1,2,... of harmonic functions
in G, which are descending in the following way:

w (z) > we(z) > wy(x) > ... forall ze€G.
Furthermore, let the sequence converge at one point &€ G which means

lim wy, (%) > —oc.
k—o0

Then the sequence of functions {wy(z)}r=12, uniformly converges in each
compact set © C G towards a function harmonic in G, namely

w(z) == lim wg(z), z€d.
Proof: Without loss of generality we assume 2= 0 and for the ball the inclusion
Bpr C G with a radius R € (0,+00). For the indices k,l € N with k¥ <1 we

define the nonnegative functions vy (z) := wi(x) — wi(x) > 0, x € Br. We
apply Harnack’s inequality and obtain
1

O

Setting K := 2. (3)!=" =3.2"72 we infer

+
N[

0 < vpi(2) = Ukt (0 vkt (0),

N\:u

wi(2) — wi(2)] < Klw(0) — wi (0)]

for all z € B and all k,l € N.

(16)

Since the limit klim wy(0) exists, the sequence {wy(x)}x=1,2,... converges uni-
—o0

formly in @ towards the function w(z). When we cover a compact set
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© C G by finitely many balls we comprehend that the sequence of func-
tions {wg(z)}x=1,2,.. converges uniformly in @ towards the function w(x).
The transition to the limit in Poisson’s integral formula shows that the limit

function w(z) is harmonic in G.
q.e.d.

In order to solve Dirichlet’s problem we utilize the following set of admissible
functions

M = {v :G — R e C%G) : vis in G superharmonic, and
for all sequences {x(k)}kzl,l___ C G with klim k) = 2% € G
—00

we have lim inf v(z(*®)) > f(x*)}
k—o00

Here the symbol f : G — R denotes a continuous boundary function. Since
=M =
v(x) max flx) e M

holds true, we have M # ().
Proposition 3.7. Let us define the function

u(x) == vlen/f/1 v(z), z €.

Then u is harmonic in G and we have
m<u(z) <M forall z €.
Here we abbreviate m := inf f(x) and M := sup f(x).
r€IG 2€0G
Proof:

1. We take a sequence of points {.’L‘i}i:172)3,m C G which are dense in G. For
each index ¢ € N, there exists a sequence of functions {v;;};=12,.. C M
satisfying ‘ ‘

lim v;;(2*) = u(z*).
j—oo

The minimum principle implies the estimate v;;(x) > m for all z € G and
all 7,7 € N. We now define the functions

vg(x) = 1§Hil,ij%lcvij(x), zeqd

for each index k € N. Evidently, we have vi(x) > vii1(z), x € G for
all £ € N. The minimum of finitely many superharmonic functions is
superharmonic again according to a previous remark, and we infer

v € M, k=1,2,...
We observe u(z?) < vy () < vig(x?) for 1 < i < k, and we obtain

lim vy (2") = u(z?) forall i=1,2,...
k— o0
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2. In the disc Br(a) CC G we harmonically modify the function v to the
following function

wi () = [vk]a,r(T), z € G.

With the aid of Proposition 3.5 we see {wy }x=1,2,.. C M. Furthermore,
we have wg(x) > wia1(x) in Br(a) for all k € N and

u(z') < wp(z') < vg(a?) for all 4,k eN.
Therefore, we obtain

lim wy,(2") = u(z?) forall 7eN.
k—o0
According to Harnack’s lemma the sequence {wy(z)}r=12,.. converges
uniformly in Br(a) towards a harmonic function w(x), and we compre-
hend
w(z?) = u(z?) for all z'€ Bg(a), i=1,2,...

Since w and u are continuous functions, we infer the identity u(z) = w(z),
x € Br(a). Consequently, the function u has to be harmonic in G, because
the ball Br(a) CC G has been chosen arbitrarily.

3. The inclusion M € M implies the estimate u(z) < M for all x € G. Since
the inequality v;j(z) > m for all x € G and all 4,j € N holds true and
consequently vg(z) > m in G for all k € N is valid, we finally obtain

u(z) = klirrgo vp(z) > m forall zeG.

q.e.d.

Definition 3.8. Let us consider the bounded domain G C R™. We name a
boundary point x € G regular if we have a superharmonic function

P(y) =P(y;x) : G =R with g}l—r}}v P(y)=0
yeG

and
o(e):= inf &(y) >0 forall €>0.
yeG
ly—a|>e
If each boundary point of the domain G is regular, we speak of a Dirichlet
domain.

Remark: A point x € G is regular if and only if we have a number r» > 0 and
a superharmonic function ¥ = ¥(y) : G N B,(z) — R satisfying

lim ¥(y)=0 and inf  ¥(y) >0, O<e<r
Yy r>|y—z|>e
yEGNB-(z) yeG
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Here we set m := inf  ¥(y) > 0 and consider the following function
r>ly—z|>1r
yea

: 29 (y)
o(y) ::{mln<17 — ),yeGﬁBr(m)
1, y € G\ B.(z)

which is superharmonic in G.

Theorem 3.9. (Dirichlet problem for the Laplacian)
Let G C R™ denote a bounded domain with n > 2. Then the Dirichlet problem

u=u(z) € C*G)NC°G),
Au(z) =0 in G, (17)
u(z) = f(x) on O0G

can be solved for all continuous boundary functions f : 0G — R if and only if
G is a Dirichlet domain in the sense of Definition 3.8.

Proof:

‘=’ Let the Dirichlet problem be solvable for all continuous boundary
functions f : 0G — R. Taking an arbitrary point £ € OG we define the
function f(y) := |y — &|, vy € OG, and we solve Dirichlet’s problem (17) for
these boundary values. We apply the minimum principle to the harmonic
function v = u(z) : G — R and obtain

u(z) >0 forall =€ G\ {¢}.

Therefore, the boundary point ¢ is regular.

‘=" Let G be a Dirichlet domain and « € G an arbitrary regular boundary
point. Then we have an associate superharmonic function @(y) = &(y;x) :
G — R due to Definition 3.8. Since the function f : G — R is continuous,
we can prescribe € > 0 and obtain a quantity § = §(¢) > 0 satisfying

[fly) — f(x)]| <e forall yedG with |y—z|<4.

We now define

= inf [} .
n(e) Jnf (y) >0
ly—=|>6(e)

1. Let the upper barrier function

St

v*(y):=f(w>+8+(M—m)%> yed
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be given. Evidently, the function v* is superharmonic in G. Furthermore,
an arbitrary sequence {y*)}1—1 2 C G with y*) — y* € 9G for k — o
satisfies

liminf o™ (y®) > f(y™).

k—o0

Consequently, v+ € M holds true.
. Now we consider the lower barrier function

St

v (y) = f(x)—a—(M—m)%, y e G.

We choose v € M arbitrarily. Considering a sequence {y(k)}k;:m,.,. cG
with y*) — 4y~ € G for k — oo, we can estimate

lim inf (U(y<k>) - f(y<’<>))

k—o0

> liminf (v(y®) — f(y7)) +liminf (£(57) v~ (s 1))

k— o0

> 0.

Furthermore, the function v — v~ is superharmonic in G, and Theorem
2.10 from Section 2 yields v — v~ > 0 in G. This implies

v(y) > v~ (y), yeG forall ve M.
. The harmonic function

u(y) = inf vy), yeG

constructed in Proposition 3.7 now attains the prescribed boundary values
f continuously. On account of 1. and 2. the estimate

v (y) < uly) <ot (y) forall yeG

is fulfilled, which means

Fa)—e— M -m) P cu) < f@)+e+ 0 -mZY yea

n(e) n(e)
Using the relation liné P(y) = 0 we obtain
Y

B

Yy—x

S

@) = ulp)l <=+ O ~m) T < 2
for all y € G with |y — 2| < 6*(g). This implies
lim uly) = /(2).

Yy—x

Therefore, the function u solves Dirichlet’s problem (17) for the boundary
values f. q.e.d.
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Figure 1.6 POINCARE’S CONDITION OF EXTERIOR SUPPORT BALLS
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Q%

) 4
~———

O%CD

Theorem 3.10. (Poincaré’s condition)

A boundary point x € 0G is regular, if we have a ball B,(a) with the center
a € R" and the radius v € (0,+00) satisfying G N B,.(a) = {x}. Especially,
bounded domains with a reqular C?-boundary are Dirichlet domains.

Proof: For n = 2 we consider in G the harmonic function

?(y) = log <|yra|) y €@,
and for n > 3 we consider the harmonic function
d(y) = - ly — a|2_", y €G.

Then we immediately obtain the statements above. q.e.d.

Theorem 3.11. Let Bg := {x € R" : |z| < R} denote the ball about the
origin of radius R > 0 and consider the pointed ball By := Bg \ {0}. The
function u = u(x) € C*(Br) N C°(Bg) is assumed to be harmonic in Bg.
Then the function u is harmonic in Bg.

Proof: We restrict our considerations to the case n > 3 and set

1 R? — |z)?
Rw,, ly — x|
K

v(z) = u(y) do(y), x € Bg.

This function v is harmonic in Br and continuous in Bg with the boundary
values
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v(x) = u(z), x € OBp.

Since the functions u and v are continuous in Bg, we have a constant M > 0
such that

sup [u(z) —v(z)| <M
zEBR

holds true. Given the quantity € > 0, we now can choose a sufficiently small
number 6 = §(e) € (0, R) such that

M < 5(|x|2*” - szn) forall zeR"™ with |z|=0d(e).
We consider the spherical shell K, := {x € R" : §(¢) < |z| < R} and see
u(z) — v(@)] < E(|a:|2_" - RH) for all = € OK..
The maximum principle for harmonic functions now yields
lu(z) — v(z)] < 5(|x|2_” - RQ‘") forall z € K..

Since the number € > 0 has been chosen arbitrarily and the behavior d(¢) | 0
for € | 0 can be achieved, we obtain

u(z) = v(z), = € Bp.
Now the functions u and v are continuous in Bg, and we infer
u(z) = v(z), T € Bpg.
Therefore, the function « is harmonic in Bg. q.e.d.

Remarks:

1. When we consider the Riemannian theorem on removable singularities
for holomorphic functions, it suffices to assume the boundedness of the
functions in the neighborhood of a singular point in order to continue
them holomorphically into this point.

2. There are bounded domains, where the Dirichlet problem cannot be solved
for arbitrary boundary values. For example, we consider the domain

G:=Bg,  0G=08BrU{0}.

On account of Theorem 3.11, there does not exist a harmonic function for
the boundary values f(z) =1, |z| = R and f(0) = 0.
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4 Theory of Spherical Harmonics in 2 Variables:
Fourier Series

The theory of spherical harmonics has been founded by Laplace and Legendre
and is applied in quantum mechanics to the investigation of the spectrum for
the hydrogen atom. We owe the theory in arbitrary spatial dimensions n > 2 to
G.Herglotz. In the next two paragraphs we utilize Banach and Hilbert spaces
introduced in Chapter 2, Section 6. At first, we consider the case n = 2.

On the unit circle line S* := {z € R? : |z| = 1} we consider the functions
u = u(z) € C°(ST, R). They are identified with the 2m-periodic continuous
functions

C? (R,R) := {v ‘R—>ReCR,R) : v(p +27k) = v(p) }

forallp e R, k€ Z
via 4(p) := u(e¥), 0 < ¢ < 2m. We endow the space C°(S1, R) with the norm

lullo == maxfu(z)],  weC(S,R) (1)
zeS?t

and get a Banach space with the topology of uniform convergence. By the
inner product

() = / W () do,  ww e CO(S,R) (2)
0

the set C°(S!,R) becomes a pre-Hilbert-space. We complete this space with
respect to the L?-norm induced by the inner product (2), namely

Il ==+ (u,w), u € C°(SHR), (3)

and obtain the Lebesgue space L?(S!, R) of the square integrable, measurable
functions on S'. Furthermore, we note the inequality

lu|] < vV2r||ullo for all ue C°(S',R). (4)
If a sequence converges with respect to the Banach-space-norm || - ||o, this is
as well the case with respect to the Hilbert-space-norm | - ||. However, the

opposite direction is not true, since the Hilbert space L?(S!,R) also contains
discontinuous functions.

Theorem 4.1. (Fourier series)
The system of functions

1 1 1

——, —=coskyp, ——sinkyp, e|0,2n], k=1,2,...

o Jeske msinke, o [0, 2]

represents a complete orthonormal system - briefly c.o.n.s. - in the pre-Hilbert-
space H = C°(S! R) endowed with the inner product from (2).
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Proof:

1. We easily verify that the system of functions S given is orthonormal,
which means |ju|| = 1 for all u € § and (u,v) = 0 for all u,v € S with
u # v. It remains for us to comprehend that this orthonormal system of
functions is complete in the pre-Hilbert-space H. According to Theorem
6.19 from Chapter 2, Section6 we have to show that the Fourier series
for each element u € H approximates this element with respect to the
Hilbert-space-norm || - || from (3).

2. Let the function

u=u(zr) € H=CS",R)

be given arbitrarily. We then continue u harmonically onto the disc
B={zcR?: |z|<1}
via

1—r2
e)d <1 5
T om / et — z|2 ) di, 2l <1; (5)

here we have set z = re’’. We now expand Poisson’s kernel as follows:

1—r2 _ 1—1r2
\eiﬂ" _ z|2 - |€w _ Tem‘Q
1—7r2

- [1 — rei@=¢)|2

_ 1—72
(1 = rei@=9))(1 — reile=")
. ) (6)

1 — reile=9) + 1 — re—ile=7)

oo 00
=1+ Z ,,,keik(gofﬁ) + Z Tkefik(tpfﬁ)
k=0 k=0

= 1+22rkcosk(<p—19).
k=1

Here the series converges locally uniformly for 0 < r < 1 and ¢,9 € R.
Now we have

cos k(p — 9) = cos kg cos kv + sin ke sin k9,

and we obtain the following identity with g(¢) := u(e®), ¢ € [0,27):



344

Chapter 5 Potential Theory and Spherical Harmonics

27
) 1 >
u(re'?) = 7 / {1 + ZZrk(cos kg cos k¥ + sin kg sin kl?) }g((p) dy
™
0

k=1
1 2m ) 1 27
= %/9(90)61@4-/;{(;/g(ga)cosl«pdap>rkcos]m9
0 = 0

2
1
+ <— /g(g@) sin ke d<p> r* sin lm?}.
™
0

Finally, we set

27
1
ayp = ;/g(cp) cos ko do, k=0,1,2,... (7)
0
and
1 2m
b, ::;/g(cp)sinkwdgp, k=1,2,.... (8)
0

With the representation
. 1 >
u(re'’) = 5(10—1—2 (ak cos k¥ + by, sinkﬁ)rk, 0<r<1,0<d <27 (9)
k=1

we obtain the Fourier expansion of a harmonic function within the unit
disc.

Since the function u(2) is continuous in B, we find a radius r € (0,1) to
each given € > 0, such that

lu(re’?) — g(9)] < e for all ¥ € [0,2m). (10)

Furthermore, we can choose an integer N = N(¢) € N so large that

<e forall ¢€]l0,2m)

(11)
is satisfied. For the quantity € > 0 given, we therefore find real coefficients
Ag,..., Ay and By, ..., By, such that the trigonometric polynomial

N
ao k . i
5 + kg_l r (ak cos ki + by sin kﬁ) —u(re')

N
EF.(9) := Ao—l—Z(Aksinkﬁ—&—Bkcoskﬁ), 0<dv<2r
k=1

fulfills the following inequality
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|F.(9) — g(v)] < 2¢ for all o € [0,2m). (12)
From the relation (4) we infer

IF. - gl < 2v2re. (13)

On account of the minimal property for the Fourier coefficients due to
Chapter 2, Section 6, Proposition 6.17, the Fourier series belonging to the
system of functions above approximates the given function with respect
to the Hilbert-space-norm. From Theorem 6.19 in Chapter 2, Section 6
we infer that this system of functions represents a complete orthonormal
system in H.

q.e.d.

Remark: We leave the following question unanswered: Which functions g =
g(19) satisfy the identity (9) pointwise even for the radius » = 1, which concerns
the validity of the pointwise equation

. 1 >0
u(em) = §a0 + g (a;.C cos k9 + by, sinkn?), 0 << 2m.
k=1

We have shown only the convergence in the square mean. For continuous
functions the identity above is mot satisfied, in general. The investigations
on the convergence of Fourier series gave an important motivation for the
development of the analysis.

We now present the relationship of trigonometric functions to the Laplace
operator. At first, we remind the reader of the decomposition for the Laplacian
in polar coordinates:

92 19 1 02

A= —— 4+ -4+ =—.
or? +r8r+r2 Op?

(14)
For an arbitrary C?-function f = f(r) we therefore have the identity

]{32
(SO G ) = (77004 270 = ) ) S = (Lt ) o,

Here we abbreviate
k2

r2

1
Lif(r) = f"(r) + ;f'(?“) (r), r>0.
We note that
Lp(r®) = k(k — 1)rF=2 4 krh=2 — k2rF72 = 0, k=0,1,2,...

and obtain

A(r* coskp) = 0 = A(rFsin ko), k=0,1,2,... (15)
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Proposition 4.2. Let the function u = u(z1,r2) € C*(BR) be given on the
disc Br = {(z1,72) € R? : 2% + 23 < R%*}. By the symbols

27 2m

ag(r) = %/u(rew) cos ko do, b(r) = %/u(rew) sinkpde  (16)
0 0

we denote the Fourier coefficients of the function u and by

27 27
1 . - 1 .
ag(r) = ;/Au(r@“") cos ko dp, b(r) = ;/Au(rew)sin kodp (17)
0 0

we mean the Fourier coefficients of the function Au for 0 < r < R. Now we
have the equation

ag(r) = Lrag(r), bi(r) = Liby(r), 0<r<R. (18)

Remark: The Fourier coefficients of Au are consequently obtained by formal
differentiation of the Fourier series

u(re®) = %ao(r) + i (ak(r) cos ki + by (r) sin lﬂ?).
k=1

Proof of Proposition 4.2: We evaluate as follows:

27

1 )
ag(r) = - /Au(rew) cos ke dop,
0

27
1 2 10 1 02 ,
_ = Y Y, 29 ip
W/{<8r2+r8r+r2&p2>u(re )}coskgpdgp
0

2 o0
0? 10 1 ) k2 )
= | — - _ e _ 1P
(8r2 + 8r>{7r /u(re ) cos kg d@} pv /u(re ) cos ko do
0 0

= Liag(r), 0O<r<R, k=0,1,2,...

Similarly we show the relation (18) for the functions by (r). qed
Theorem 4.3. We choose k € R and define R? := R?\ {0}. Furthermore, the
symbol Hy, = Hi (&) : S* — R denotes a function defined on the unit circle S*
with the properties

|| * H, (i) e CXR?) and A{|x|ka <i>} =0, z € R?

] ||
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Then we infer k € Z, and we have the identity
Hy, (") = Ay, cos kY + By, sin kv
with the real constants Ay, By.

Proof: At first, we calculate

o= sfeen ()
2]
0 10 1N\,
= (W*W*an—@z) [P H(e)]
82

= [k(k —1)rk=2 ¢ krkfz} Hy (") + 72—

02 Hy, (ew)'

Therefore, the functions Hy(e¥) satisfy the linear ordinary differential equa-

tion
2

d ) )
d—goQHk(ew) + kQHk(ew) =0, 0 < <2m.
This means that

Hy (') = Ay cos ko + By sin ko, Ap,Br €R

holds true if k # 0 is correct. Since the function Hy is periodic in [0, 27|, we
infer k € Z. In the case k = 0 we obtain the solution

Ho(eiw) = Ao + Bo(p, Ao, By € R.

Therefore, By = 0 holds true, and the theorem is proved. q.e.d.

5 Theory of Spherical Harmonics in n Variables

Theorem 4.3 from Section 4 suggests the following definition of the spherical
harmonics in R™:

Definition 5.1. Let Hy, = Hg(z1,...,2,) € C2(R™) denote a harmonic func-
tion on the set R™ := R™\{0} which is homogeneous of degree k, more precisely

Hy(txy,. .. te,) =t H(zy, ..., z,) forall zeR™, te(0,400).

Then we name
Hy = Hk(flu?fn) : Sn_l - R

an n-dimensional spherical harmonic (or spherically harmonic function) of
degree k; here the symbol

Shi={g=(&,... &) ER" : G4+ & =1}

denotes the (n — 1)-dimensional unit sphere in the Fuclidean space R™.
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In this paragraph we answer the following questions for n > 2:

1. Are there spherical harmonics in all spatial dimensions, and for which

degrees of homogeneity k do they exist?

Is the system of spherically harmonic functions complete?

3. In which relationship do the spherical harmonics appear with respect to
the Laplace operator?

o

In Chapter 1, Section 8 we have represented the Laplace operator in R™ with
respect to spherical coordinates. We utilize r € (0, +o0) and & = (&1,...,&,) €
S7=1 and the function u = u(r¢) satisfies the identity

2 n —
Au(re) = utre) + "1 L ugre) + L Aure); (1)

here the symbol A denotes the invariant Laplace-Beltrami operator on the
sphere S"~!. We now endow the space of functions C°(S"~! R) with the
inner product

we)i= [ uw©u©do(e),  wve s LR )
Sn—l
and we obtain a pre-Hilbert-space H = C°(S"~ 1, R). Setting
[ull := v/ (u, u)

the set H becomes a normed space.

Theorem 5.2. The function
Hy = Hg(&1,...,6,):S" P =R

is an n-dimensional spherical harmonic of the degree k € R if and only if the
following differential equation

AH(E) + k{k+ (0= 2) bHy(€) =0, ge s (3)

is satisfied. If Hy and H; are two spherical harmonics with different degrees
k # 1 satisfying k + 1 # 2 — n, we then have the orthogonality relation

(Hy, H;) = 0. (4)
Proof:
1. On account of (1) we have the identity

0= AH(r€) = A{rka(f)}

- {k(k 1)k 4 (- 1)rk-2}Hk(§) R 2 AH(€)
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and equivalently
AH(E) + {k? + (n— Dk} H(E) =0, e s,

2. The symmetry of the operator A from Theorem 8.7 in Chapter 1, Section 8
yields

(K + -2k} / Hiy(€)Hy(€) dor(€)
s

_ / (AH()) Hi(€) do(€)

Sn—1

_ / Hy() (AH(8) ) dor(€)

Sn—1

{2+ -2} / Hy () Hi(€) do(©).
s

This implies that
0= {k:2 — 2+ (n—2)(k - z)}(Hk,Hl) = (k= {k+1+n—2}(Hy, H)

and therefore (Hy, H;) = 0if k #1 and k + 1 # 2 — n is fulfilled. qed
Remarks: The spherical harmonics of the degree k are consequently eigenfunc-
tions of the Laplace-Beltrami operator A on the sphere S™~! to the eigenvalue
—k{k + (n —2)}. The orthogonality condition (4) is especially satisfied in the
case k> 0,1>0and k # .

At this moment we do not yet know for which degrees k¥ € R (nonvanish-
ing) spherical harmonics of the degree k exist. This will be investigated now:
Given the continuous boundary function, we shall construct a harmonic func-
tion with the aid of Poisson’s integral and shall decompose this function into
homogeneous harmonic functions of the degrees k = 0,1,2,.... Here we have
to expand Poisson’s kernel suitably with the aid of power series.

We take v > 0 as fixed and choose h = cos¥ € [—1,+1] with ¢ € [0, 7]; then
we consider the following expression in ¢ € (—1,+1):
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(1 —2ht +t3)7" = (1 — 2(cos V)t + %)~

=(1—e"t) (1 —e W)~
{2 (el G e}
Ax [l 2 o)

Here we set

{y] _ <_y>(_1)m e ) PO o et U YR

m

g

Defining the real coefficients

=3 1]

I
DN =
.MS
EIAN

|: v :| {ei(m—2k)19 + e—i(m—Zk)ﬂ}
m—k

_y m [m”_ k} cos(m — 2k)D,

we obtain the following identity for ¢ € (—1,+1):

(1 —2ht +t3)7" = i WM™, te (—1,+1). (5)

m=0

On account of the Binomial Theorem, we have the following expansion for
pE L
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cospl = %(ei’”9 + eii”ﬁ) = %{(em)p + (e*w)p}

= %{(cosﬁ+isin19)p+ (cosﬂ—isinﬁ)p}

= (cos V)P — (12’ ) (cos ¥)P~2(sin )2 + (Z ) (cos 0P (sin¥)* —

Due to the formula sin® = 1 — cos® 9, Gegenbaur’s polynomials c( )(h) are
polynomials in h = cos® of the degree m. Furthermore, we utilize the relation

o0

W (=h)(—=t)™ = (1 — 2ht + t2)~ Z W (h

m=0

and comparison of the coefficients yields

D (=h) = (-)™(h), m=0,1,2,... (6)
Therefore, Gegenbaur’s polynomials can be represented in the form
e (h) = AS0R" 4 hE (7)
with the real constants ’y,(n), 77(: ) 9, . . Furthermore, we have the estimate

(c;?(h)‘gzmj{zn v }:cgpu) forall hel-1,+1]. (8

m—k
k=0

With v = % we obtain the Legendre polynomials by c% )(h). We now choose
n € N\ {1}. With the aid of (5) we expand as follows for ¢t € (—1,+1) and

hel-1,+1]:

1t 9 >,
Ao o)F = Zcm Y1 =)™ =Y Pr(h; (9)

m=0

For the case n = 2 we have derived the following expansion in the proof of
Theorem 4.1 from Section4 (compare the formula (6)):

1—¢2

T TE =12 > (cosmi)t™,  te(—1,+41). (10)

m=1

Therefore, we have Py(h;2) = 1 and P,,(h;2) = 2cosmd, m = 1,2,.... For
the case n > 3 we calculate

2% O 1 1—2ht + 2 4+ 252 2L (—2h 4 2t)
( +n—2§>(1—2ht+t2)%—1_ (1—2ht+t2)%
1—t2

T (1—2ht+ )%
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Therefore, we have the identity

1—¢ 2t 0 1
1oz — 1 P —,  te(=1,41). (11
(1—2ht +2)% <+n—28t)(12ht+t2)5—1 (—=1,+1). (11)

Together with (9) we infer

> . 1 —t? 2t 0N = (2-1),;\um
2 Prllint —m—(”n_za)i% (e,

m=0 m=0

and comparision of the coefficients yields the formula

n_ 2
Po(hin) = ¢ ”(h)(nin2+1), m=0,12,... (12)

The relations (8) and (12) imply the estimate
| P (hsm)| < P (15m), hel[-1,+1], me{0,1,2,...}. (13)
This inequality holds true for n = 2,3, ...

We now can expand the Poisson kernel: We choose n € S"~! as fixed and
x =r¢ with r € [0,1) and € € S"~! to be variable. We utilize the parameter
of homogeneity 7 € R with |7r| < 1, and obtain the following relation with
the aid of the expansion (9):

P ~Ira? _ 1 (P
KR (TSI
1— (rr)?

: {1 = 2(rr)(&,m) + (Tr)2} (14)

= 3 {Pu(Emin)rm e

For each z € R"™ with || < 1 and each 7 € R with |7z| < 1 we have the
identity

w3

n|* — |ra[? -
)= 2 =3 ARl ) e
S 2 APl (Emim)ryT
Taking n € S"~! fixed, the comparison of coefficients yields

Aw{Pm((f,n);n)r’"} =0, |zl<1, m=012... (15

On account of (7) and (12) we have the representation



5 Theory of Spherical Harmonics in n Variables 353

P ((ém); n)rm = (wﬁl’”)(g,n)m +alm o4 )rm

= 7™ (@, )™ + w2, )™ 2+

with the real constants 71'7(nm),71'£nm_)2, .... Therefore, P,,((&,n);n)r™ is a ho-
mogeneous polynomial of the degree m in the variables z1,...,2,. On ac-
count of (15), we obtain an n-dimensional spherical harmonic of the degree
m € {0,1,2,...} with P,,((£,n); n) for each fixed n € S"~1. Given the function

f=fn):8""1—=ReCS" 1 R), then the integral

f© == [ Pa(Enmin)fdo), ees

Wn
[n|=1

represents an n-dimensional spherical harmonic of the degree m. Here f(&)r™
means a homogeneous polynomial in the variables x1, ..., x,.

Theorem 5.3. Let the function f = f(x) : S" ! — R € C°(S" L, R) be
prescribed, and the function u = u(z) : B :={x € R" : [z] < 1} = R of the
class C?(B) N C°(B) solves the Dirichlet problem

Au(z) =0 forall x € B,
u(z) = f(x) forall x€dB=5"""1.
For each R € (0,1) we then have the representation

u(zx) = Z

0

{wln / Pm(&?h+-~~+€n77n;”>f(77)d0(77)}7'm (16)

Inl=1

with x = r€, € € "1 and 0 < r < R. The series on the right-hand side
converges uniformly.

Proof: The unique solution of the Dirichlet problem above is given by Poisson’s
integral. With the aid of the expansion (14) for 7 = 1 we infer

2 _ (2
ue) = [ =12 4 don)

Wn |77 - xln
[n|=1
1 o0
- [{Z () rmastn.  wen
Tzt =0

For all £, € S" ! and 0 <r < R < 1 we obtain the inequality
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i Pm((&n);n)r’"’ < i

m=0 m=0

P,n((f,n);n>‘rm < iPm(l;n)Rm
m=0

1— R? 1+R

(1-2R+R?:  (1-R)»!

respecting (9) and (13). Due to the Weierstrafl majorant test, the following

series -
> P ((67 n); n) '
m=0

converges uniformly on S"~! x "~ x [0, R] for all R € (0,1). This implies

u@):i{wi / Pm(sml+...+fnnn;n)f<n>do<n>}rm, o] < B,

m=0 n
[nl=1

where the given series converges uniformly for all R € (0,1).
q.e.d.

We choose kK =0,1,2,... and denote by
My = { f:8" 1 5 R : fis n-dimensional spherical harmonic of degree k}

the linear space of the n-dimensional spherical harmonics of the order k. We
already know dim My > 1 for £k = 0,1,2,... and intend to show dim M, <
+00 in the sequel. For the function f = f(n) € H = C°(S" 1, R) we define
the projector on My, by

PO = 1O = [ P&+ .+ Gamin) S don),

[n|=1

Theorem 5.4. For each integer k = 0,1,2,... the linear operator Py : H —
H has the following properties:

a) (Pyf,g) = (f, Prg) for all f,g € H;
b) Pk(H) = Mk;
C) Pk (@) Pk = Pk.

Proof:

a) Let the functions f,g € H be chosen arbitrarily. Then we have
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(Puf,g) = / Py /()g(€) do(€)
[El=1

- / / PelEams + . . + £amn) f(n)g(€) do(n) dor(€)

[€]=1 [n|=1
= (f, Prg).

b) and ¢) In our considerations preceding Theorem 5.3 we already have seen
that

f€)=Pirf(&) € M,  forall feH.

Therefore, we have Py(H) C My. Choosing f € M;, arbitrarily we infer
AL(f(©rk) = 0 in R™ with z = r¢. Now our Theorem 5.3 yields the
representation

FOrt =3 (Puf@)r, ces™™, relo.
m=0
Comparison of the coefficients implies
f&) =Pif(e), €es™h

Consequently, we obtain My C Py(H) and Py o Py, = Py. q.e.d.

We now show that dim My € N for k =0,1,2,...is correct. For a fixed index
k€ {0,1,2,...} we choose an orthonormal system {¢, }o=1,.. v of dimension
N € N in the linear subspace Mj C H. Then we have

(Pa,8) = dap forall «o,p€{l,...,N}

and
Proo(§) = 0al(), a=1,...,N.

For each ¢ € S"~! we infer

| 2 p(emn)eatndot =gale) a=1....N.

[nl=1

Bessel’s inequality now yields

SIS { / wipk(@,n);n)soa(n)do(n)}

< / {wiPk((g,n);n)}Qda(n) for all € e S" L.
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Therefore, we have

N= / S G2 (€) do(€)

=1
lg]=1 %

IA

{wipk(@,n);n)}zda(n) o 6)

n
[€1=1[n]=1

Consequently, we get the following estimate for the dimension of My, namely

dikag/ /{wlnpk((g,n);n)}Qda(n)dg(g)<+oo, k=0,1,2,...

[€]=1|n|=1
(17)
We now set N = N(k,n) := dim M}, and choose N orthonormal functions
Hi1(8),...,Hin(€) in My, spanning the vector space My,. Each element f €
M}, can be represented in the form

f&) =crHu () + ... +enHpn(6),  £es™

with the real coefficients ¢; = ¢;[f] for j = 1,..., N. More generally, taking
f = f(&) € H we have the identity

— [ Pu(€min) rnydotn) = e[/ Hia(€) + -+ enlf)Hin (©)
Inl=1
with the real constants ¢1[f],...,en[f]. This implies

alfl = [ HM@){} / Pk((E,n);n)f(n)dU(n)}d0(§)
|§l=1 In|=1
-/ f<n>{wi / Pk(@,n);n)ml(s)da(s)}da(n)
Imi=1 lef=1
= [ ot doto).
In|=1

Therefore, we obtain

1 N(k,n)

= [ r(enm)smason = [ {3 mu©mon s ot

Wn,
=1
In|=1 |n|=1

and consequently
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N (k,n)
/{_ ( ) Z Hya(§) Hia( )}f(n)da(n)=0
Inl=1

for all £ € S"~1 and each f = f(n) € H. Since the functions Py((£,7);n)
and Hy;(€) are continuous, we get the addition theorem for the n-dimensional
spherical harmonics

N(k,n)
1
Z Hiy(§)Hii(n) = —Pk<€1771 +. +§n77n§n>7 g&mes !t (18)

for k =0,1,2,... and n = 2,3,.... We insert £ = 7 into (18) and integrate
over the unit sphere S”~!. Then we obtain

Nk = | N(f) (Hu(©)) do(€) = Pu(1:m)

lg=1 =1

On account of (9), we finally deduce the expansion

1—¢2 1+t
N(k, Py(1; = t 1.
Z n)t Z w(1;m)t Ta-or Q- v It <

We summarize our results as follows:

Theorem 5.5. I. The cardinality N (k,n) of all linear independent spherical
harmonics in R™ of the order k is finite. The number N(k,n) = dim My,
is determined by the equation

1+1¢

Tt ZNknk, It] < 1. (19)

II. Let Hy1(§),...,Hpn () represent the N = N(k,n) orthonormal spherical
harmonics of the order k, which means

/ Hkl(g)Hkl/(f)dO'(f) = oy fO?” l,l,E {1,...,N} (20)

l€|=1
is satisfied. Then we have the representation
N(k,n) 1
Z Hya () Hya(n) = — Py (51771 +... +€n77n;n> (21)

for all ¢&,m € S"~L. Here the functions Py(h;n) are defined by the equation

1—¢t2
S — Pu(h; l<t<4l, —1<h<+l
(1—2ht +2)% Z e(hs )t + shst

(22)
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III. Each solution u = u(z) € C*(B) N C°(B) of Dirichlet’s problem
Au(z) =0 in B,
u(z) = f(x) on OB =S""1

possesses the representation as uniformly convergent series

o N(k,n)
u(a:):Z{ > ( / f(n)sz(n)da(n)>sz(£)}Tk (23)

k=0 U i=1 \ i,
with x = r€, £ € S" Y and 0 < r < R; here R € (0,1) can be chosen
arbitrarily.

Proof: Statement IIT immediately follows from (18) together with Theorem
5.3. q.e.d.

Analogously to Theorem 4.1 from Section 4, we obtain the following result for
arbitrary dimensions n > 2:

Theorem 5.6. (Completeness of spherical harmonics)
The n-dimensional spherical harmonics { Hyi(§) }r=0,1,2,...; i=1,...,N (k,n) CONSi-
tute a complete orthonormal system of functions in H. More precisely,

(Hklka’l’):(Skk’(sll’a kvk/:07172a"'7 l,l/:].,...,N(k,n)

holds true, and for each element f € H we have the relation

M N(k,n)
li H
MILHOOHJC Z St Hra( H
or equivalently

I£1I* = Z Z fr

Here we have used the following abbrematwns
fkl::(faHkl>, k:07132a"'a lzlaaN(k7n)
for the Fourier coefficients.

Proof: We have only to show the completeness for the system of the n-
dimensional spherical harmonics. To each element f € H we have a function
u = u(x) with the following properties:

1. the function u is harmonic for all |z| < 1;
2. the function w is continuous for |z| < 1 and satisfies the boundary condi-
tion
u(z) = f(x) for all |z| =1.
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According to Theorem 5.5, Statement IIT we see: For each € > 0 there exists
a radius r € (0,1) and an index M = M(e) € N, such that

M(e) N(k,n)
‘f(f) -y ok flekl(g)’ <e forall £e8s™ L
k=0 =1
This implies
M(e) N(k,n)

Hf(f)— DS szHkl@)H < Ve,

k=0 1=1
and the minimal property of the Fourier coefficients yields

M(e) N(k;n)

Hf(f)Z > szHmng Wn €.
P

From this relation we immediately infer the statement. q.e.d.
Corollaries from Theorem 5.6:

1. With (&) and g(¢) we consider two real, continuous functions on S"~1,
and then Parseval’s equation

oo N(k,n)

| 1©9©dr©) =3 >~ fugn

€l k=0 =1
holds true with

fu = / FOH() do(6),  gu = / 9(6) Hua(€) do (€).
[€]=1 [€l=1

2. Nontrivial spherical harmonics H; of the order j # 0, £1, £2,... do not ex-
ist. Due to Theorem 5.2 such a function would satisfy the orthogonality re-
lations (H;, Hy;) = 0. The system of functions { Hxi }p—0,1,2,...; 1=1,....N(kn)
being complete in H, we infer H; = 0 for all j # 0,+1,42,...

At the end of this paragraph we shall investigate the relationship of the spher-
ical harmonics to the Laplace operator in R™. From (1) we infer the decom-
position
7 n-10 1
A= — 4+~ 1
or? + r or * r2
We note (3) and obtain the following identity for arbitrary C?-functions f =
fr):

A in R".

n Ly - wm}ﬂmo

A{f(?")Hkl(g)} = {f”(r) + r (24)

_ (Lk,nf(r)>Hkl(§)7 I=1,...,N(k,n)
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with the operator

Linf(r) == (82 +n—1ﬁ_w)m),

or2 r Or 72

Evidently, we have Lj 9 = Lj with the operator Lj from Section 4.

Let the function u = u(x1,...,2,) € C?(Bg) with Bg := {z € R" : |z| < R}
be chosen arbitrarily. We now expand u in H with respect to the spherical
harmonics

u(rf) ZZ Jra(r)Hi (€ 0<r<R, €£eS" L (25)

Here we utilize the n-dimensional Fourier coefficients

fr(r) == / w(rn)Hgi(n) do(n), k=0,1,2,..., l=1,...,N(k,n).

In|=1
(26)
We then expand the function @(x) = Au(z), * € Bgr in H with respect to
spherical harmonics as well, and we obtain the n-dimensional Fourier series

Au(z) = Au(re) = Z Frt (r) Her (€), 0<r<R, €teS"' (27)

with the Fourier coefficients fkl(r) = Ly o fri1(r). We consequently obtain the
series for Au in H by formal differentiation of the series for w. This is the
content of the following

Proposition 5.7. Let the function v = u(z) € C?*(Bg) be given, and its
Fourier coefficients fri(r) are defined due to the formula (26). Then the
Fourier coefficients firi(r) of Au, namely

fkl / AU’I”I])HM( )do() k:0,172,..., l:17...7N(k,n),
Inl=1
satisfy the identity
Fur(r) = Ly fr(7), k=0,1,2,..., Il=1,...,N(k,n), (28)
with 0 <r < R.

Proof: We choose 0 < r < R, and calculate with the aid of (3) as follows:
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Fulr) = / Au(r€) Hyg(€) dor(€)

lg]=1
_ / { ((5_:2 + n; 1% + T%A)u(rf)}Hkl(f) do(§)

lel=1
_ (5_; L ; ! %) / u(r§)Hy (§) do(§)

=1
by [ A doe
|€]=1

~ (g 2 ML) g dote
= Lpnfu(r) for k=0,1,2..., llgljl,...,N(kan)

q.e.d.

Remark: The most important partial differential equation of the second order
in quantum mechanics, namely the Schrédinger equation, contains the Lapla-
cian as its principal part. Therefore, the investigation of eigenvalues of this
operator is of central interest. This will be presented in Chapter 8.

Figure 1.7 PORTRAIT OF JOSEPH A. F. PLATEAU (1801-1883)
Universitatsbibliothek der Rheinischen Friedrich-Wilhelms-Univeritat Bonn;
taken from the book by S. Hildebrandt and A. Tromba: Panoptimum -
Mathematische Grundmuster des Vollkommenen, Spektrum-Verlag Heidel-
berg (1986).
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