
Chapter 2

Foundations of Functional Analysis

We start with the Riemannian integral - and their Riemann integrable func-
tions - and construct a considerably larger class of integrable functions via
an extension procedure. Then we obtain Lebesgue’s integral, which is distin-
guished by general convergence theorems for pointwise convergent sequences
of functions. This extension procedure - from the Riemannian integral to
Lebesgue’s integral - will be provided by the Daniell integral. The measure
theory for Lebesgue measurable sets will appear in this context as the theory
of integration for characteristic functions. We shall present classical results
from the theory of measure and integration in this chapter, e.g. the theorems
of Egorov and Lusin.

Then we treat the Lebesgue spaces Lp with the exponents 1 ≤ p ≤ +∞ as
classical Banach spaces. We investigate orthogonal systems of functions in the
Hilbert space L2. With ideas of J. von Neumann we determine the dual spaces
(Lp)∗ = Lq and show the weak compactness of the Lebesgue spaces.

1 Daniell’s Integral with Examples

Our point of departure is the following

Definition 1.1. We consider an arbitrary set X, and by M = M(X) we
denote a space of functions f : X → R which have the following properties:

– M is a linear space, which means

for all f, g ∈ M and all α, β ∈ R we have αf + βg ∈ M. (1)

– M is closed with respect to the modulus operation, which means

for all f ∈ M we have |f | ∈ M. (2)

Furthermore, the symbol I : M → R denotes a functional on M satisfying the
following conditions:
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– I is linear, which means

for all f, g ∈ M and all α, β ∈ R we have I(αf + βg) = αI(f) + βI(g).
(3)

– I is nonnegative, which says

for all f ∈ M with f ≥ 0 we have I(f) ≥ 0. (4)

Here the relation f ≥ 0 indicates that f(x) ≥ 0 for all x ∈ X is correct.
– I is continuous with respect to monotone convergence in M , which means

for each sequence{fn}n=1,2,... ⊂ M with fn ↓ 0

we have limn→∞ I(fn) = I(0) = 0.
(5)

Here we comprehend by fn ↓ 0 that the sequence {fn(x)}n=1,2,... ⊂ R is
weakly monotonically decreasing for all x ∈ X and lim

n→∞
fn(x) = 0 holds

true.

Then this functional I is named Daniell’s integral defined on M .

Remarks:

1. From the linearity (1) and the lattice property (2) we infer

max (f, g) =
1

2

(
f + g + |f − g|

)
∈ M

as well as

min (f, g) =
1

2

(
f + g − |f − g|

)
∈ M

for two elements f, g ∈ M . In particular, with each element f ∈ M we
have

f+(x) := max
(
f(x), 0

)
=

1

2

(
f(x) + |f(x)|

)
∈ M

as well as

f−(x) := max
(
− f(x), 0

)
= (−f)+(x) ∈ M.

We address f+ as the positive part of f and f− as the negative part of f .
The definitions of f+ and f− imply the identities

f = f+ − f− and |f | = f+ + f− = f+ + (−f)+.

Consequently, the lattice condition (2) is equivalent to

f ∈ M =⇒ f+ ∈ M. (2′)

More generally, we see that finitely many functions f1, . . . , fm ∈ M with
m ∈ N imply the inclusion

max (f1, . . . , fm) ∈ M and min (f1, . . . , fm) ∈ M.
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2. The condition (4) is equivalent to the monotonicity of the integral, namely

I(f) ≥ I(g) for all f, g ∈ M with f ≥ g. (4′)

3. The condition (5) is equivalent to the following property:

All sequences {fn}n=1,2,... ⊂ M with fn ↑ f and f, g ∈ M
with g ≤ f fulfill

I(g) ≤ lim
n→∞

I(fn).
(5′)

Proof: At first, we show the direction ‘(5′) ⇒ (5)’. Let the sequence of
functions {fn}n=1,2,... ⊂ M with fn ↓ 0 be given. Then we infer (−fn) ↑ 0.
We set f(x) ≡ 0 ≡ g(x). The linearity of I implies I(g) = 0 immediately.
The combination of (5′) and (4) reveals the relation

0 = I(g) ≤ lim
n→∞

I(−fn) = − lim
n→∞

I(fn)︸ ︷︷ ︸
≥0

≤ 0.

This yields lim
n→∞

I(fn) = I(0) = 0.

Now we show the implication ‘(5) ⇒ (5′)’.
The sequence {fn}n=1,2,... may satisfy fn ↑ f with an element f ∈
M , which immediately implies (f − fn) ↓ 0. From (5) we infer 0 =
limn→∞ I(f − fn), and the linearity of I yields

0 = I(f)− lim
n→∞

I(fn).

With g ≤ f and (4′) we obtain

lim
n→∞

I(fn) = I(f) ≥ I(g),

and the proof is complete. q.e.d.

Now we provide examples of Daniell integrals, where we need the following

Theorem 1.2. (U.Dini)
Let the continuous functions f1, f2, . . . and f ∈ C0(K,R) be defined on the
compact set K ⊂ R

n. We have the relation fl ↑ f , which means that the
sequence {fl(x)} ⊂ R is weakly monotonically increasing for all x ∈ K and
furthermore

lim
l→∞

fl(x) = f(x).

Then the sequence {fl}l=1,2,... converges uniformly on the set K towards the
function f .

Remark: The transition to functions gl := f − fl implies that the statement
above is equivalent to the following:

A sequence of functions {gl}l=1,2,... ⊂ C0(K,R) with gl ↓ 0 has necessarily the
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property that {gl}l=1,2,... converges uniformly on K towards 0.

Proof of Theorem 1.2: Let {gl}l=1,2,... ⊂ C0(K,R) denote a sequence satisfying
gl ↓ 0. We have to show that

sup
x∈K

|gl(x)| −→ 0

is correct. If this property was not valid, then we could find indices {li} with
li < li+1 and points ξi ∈ K such that

gli(ξi) ≥ ε > 0 for all i ∈ N

hold true with a fixed quantity ε > 0. According to the Weierstraß compact-
ness theorem, we can assume - without loss of generality - that the relation
ξi → ξ for i → ∞ is valid, with the limit point ξ ∈ K. For the fixed index
l∗, we now choose an index i∗ = i(l∗) ∈ N such that li ≥ l∗holds true for all
i ≥ i∗. Now the monotonicity of the sequence of functions {gl} implies

gl∗(ξi) ≥ gli(ξi) ≥ ε for all i ≥ i∗.

Since the function gl∗ is assumed to be continuous, we infer

gl∗(ξ) = lim
i→∞

gl∗(ξi) ≥ ε for all l∗ ∈ N.

Therefore, {gl(ξ)} does not constitute a null-sequence, which gives an obvious
contradiction to the assumption.

q.e.d.

Main example 1: Let us consider X = Ω with the open set Ω ⊂ R
n and

the linear space

M1 = M1(X) :=

⎧
⎨
⎩f(x) ∈ C0(Ω,R) :

∫

Ω

|f(x)| dx < +∞

⎫
⎬
⎭ .

Here the symbol ∫

Ω

|f(x)| dx

means the improper Riemannian integral over the open set Ω. Then our space
M1 satisfies the conditions (1) and (2). Now we choose the functional

I1(f) :=

∫

Ω

f(x) dx, f ∈ M1,

where the improper Riemannian integral over Ω appears again on the right-
hand side. Because the Riemannian integral is linear and nonnegative, the
conditions (3) and (4) are evident. We still have to establish the continuity
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of our functional with respect to monotone convergence, namely (5). Let us
consider with {fn}n=1,2,... ⊂ M1 a sequence of functions satisfying fn ↓ 0. If
K ⊂ Ω denotes a compact subset, Dini’s theorem tells us that {fn} converges
uniformly on K towards 0. When we observe the properties 0 ≤ fn(x) ≤ f1(x)
for all n ∈ N and x ∈ Ω as well as

∫
Ω

|f1(x)| dx < +∞, the fundamental

convergence theorem for improper Riemannian integrals implies

lim
n→∞

I1(fn) = lim
n→∞

∫

Ω

fn(x) dx =

∫

Ω

(
lim
n→∞

fn(x)
︸ ︷︷ ︸

=0

)
dx = 0.

Therefore, I1 represents a Daniell integral on the space M1.

Remark: The set M1 does not contain all functions whose improper Rieman-
nian integral exists. The concept of Daniell’s integral additionally necessitates
the function space being closed with respect to the modulus operation, namely
the lattice property (2). For instance, the integral

∞∫

1

sinx

xα
dx for all powers α ∈ (0, 1)

does not converge absolutely, although it exists as an improper Riemannian
integral.

Main example 2: As we described in Section 4 of Chapter 1, let M ⊂ R
n

denote a bounded m-dimensional manifold of the class C1 with the regular
boundary ∂M. Then we can cover M by finitely many charts, and we define
the Riemannian integral over M via partition of unity, namely

I2(f) :=

∫

M

f(x) dmσ(x), f ∈ M2

for all functions of the class

M2 :=
{
f(x) : M → R : f is continuous on M

}
.

Here the symbol dmσ means the m-dimensional surface element on M. This
integral I2 gives us a further interesting Daniell integral: The linear space M2

is closed with respect to the modulus operation. The properties (1) and (2)
are consequently fulfilled. The existence of the integral above follows from the
continuity - and therefore the boundedness - of f on the compact manifold M.
The linearity and the positive-semidefinite character of I2 are evident. The
continuity of I2 with respect to monotone convergence follows from Dini’s
theorem again.
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2 Extension of Daniell’s Integral to Lebesgue’s Integral

In our main examples from Section 1, we already have an integral which allows,
at least, to integrate the continuous functions with compact support. Now we
consider an arbitrary Daniell integral I : M → R due to Definition 1.1 in
Section 1. We intend to extend this integral onto the larger linear space

L(X) ⊃ M(X),

in order to study convergence properties of the created integral on the space
L(X). This extension procedure is essentially based on the monotonicity prop-
erty (4) and the associate continuity property (5) of this integral.

Developing our theory of integration simultaneously for characteristic func-
tions

χA(x) :=

{
1, x ∈ A
0, x ∈ X \A

of the subsets A ⊂ X, we obtain a measure theory which depends on our
Daniell integral I for the subsets of X.

The extension procedure presented here was initiated by Carathéodory, later
Daniell considered these particular functionals I, and Stone established the
connection to measure theory. The consideration of minimal surfaces gave
H. Lebesgue the impetus to study thoroughly the concept of surface area.

We prepare our considerations and introduce the function

Φ(t) :=

{
0, t ≤ 0
t, t ≥ 0

which is continuous and weakly monotonically increasing. Furthermore, we
define

f+(x) := Φ(f(x)) = max (f(x), 0), x ∈ X

and study the following properties of the prescription f 
→ f+:

i.) f(x) ≤ f+(x) for all x ∈ X;

ii.) f1(x) ≤ f2(x) =⇒ f+
1 (x) ≤ f+

2 (x) for all x ∈ X;

iii.) fn(x) → f(x) =⇒ f+
n (x) → f+(x) for all x ∈ X;

iv.) fn(x) ↓ f(x) =⇒ f+
n (x) ↓ f+(x) for all x ∈ X;

v.) fn(x) ↑ f(x) =⇒ f+
n (x) ↑ f+(x) for all x ∈ X.
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Proposition 2.1. Let {gn} ⊂ M and {g′n} ⊂ M, n = 1, 2, . . . denote two
sequences satisfying gn(x) ↑ g(x) and g′n(x) ↑ g′(x) defined on X. Here g, g′ :
X −→ R ∪ {+∞} represent two functions with the property g′(x) ≥ g(x).
Then we infer the inequality

lim
n→∞

I(g′n) ≥ lim
n→∞

I(gn).

Proof: Since {I(gn)}n=1,2,... and {I(g′n)}n=1,2,... represent monotonically non-
decreasing sequences, their limits exist for n → ∞ in R ∪ {+∞}. In the case
lim

n→∞
I(g′n) = +∞, the inequality above evidently holds true. Therefore, we

can assume lim
n→∞

I(g′n) < +∞ without loss of generality. With the index m

being fixed, we observe

(gm − g′n)
+ ↓ (gm − g′)+= 0 for n → ∞.

Then we invoke the properties of Daniell’s integral I as follows:

I(gm)− lim
n→∞

I(g′n) = lim
n→∞

(
I(gm)− I(g′n)

)
= lim

n→∞
I(gm − g′n)

≤ lim
n→∞

I
(
(gm − g′n)

+
)

= 0.

Now we see
I(gm) ≤ lim

n→∞
I(g′n) for all m ∈ N,

and we arrive at the relation

lim
m→∞

I(gm) ≤ lim
n→∞

I(g′n).

q.e.d.

When we assume g = g′ on X in Proposition 2.1, we obtain equality for the
two limits above. This justifies the following

Definition 2.2. Let the symbol V (X) denote the set of all functions f : X →
R ∪ {+∞}, which can be approximated weakly monotonically increasing from
M(X) as follows: Each such element f possesses a sequence {fn}n=1,2,... in
M(X) with the property

fn(x) ↑ f(x) for n → ∞ and for all x ∈ X.

For the element f ∈ V , we then define

I(f) := lim
n→∞

I(fn),

and we observe I(f) ∈ R ∪ {+∞}.
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Definition 2.3. We set

−V :=
{
f : X → R ∪ {−∞} : −f ∈ V

}

and define

I(f) := −I(−f) ∈ R ∪ {−∞} for all f ∈ −V.

Remarks:

1. The set −V represents the set of all functions f which can be approxi-
mated weakly monotonically decreasing from M as follows: There exists
a sequence {fn}n=1,2,... ⊂ M satisfying fn ↓ f . Then we obtain

I(f) = lim
n→∞

I(fn).

2. If f ∈ V ∩(−V ) holds true, we find sequences {f ′
n}n=1,2,... and {f ′′

n}n=1,2,...

in M which fulfill the approximative relations f ′
n ↑ f and f ′′

n ↓ f , respec-
tively. Now we see f ′′

n − f ′
n ↓ 0, and the property (5) implies

0 = lim
n→∞

I(f ′′
n − f ′

n) = lim
n→∞

I(f ′′
n )− lim

n→∞
I(f ′

n)

as well as
lim

n→∞
I(f ′′

n ) = lim
n→∞

I(f ′
n).

Consequently, the functional I is uniquely defined on the set V ∪ (−V ) ⊃
V ∩ (−V ) ⊃ M .

3. The set V contains the element f(x) ≡ +∞ as the monotonically in-
creasing limit of fn(x) = n; however, it does not contain the element
g(x) ≡ −∞. Therefore, the set V does not represent a linear space.

According to Proposition 2.1, the functional I is monotonic on V as fol-
lows: Each two elements f, g ∈ V with f ≤ g fulfill I(f) ≤ I(g). Fur-
thermore, the linear combination αf + βg of two elements f, g ∈ V with
nonnegative scalars α ≥ 0 and β ≥ 0 belongs to V as well, and we have

I(αf + βg) = αI(f) + βI(g).

Proposition 2.4. The function f : X → [0,+∞] satisfies the equivalence

f ∈ V ⇐⇒ f(x) =
∞∑

n=1

ϕn(x),

where ϕn ∈ M(X) and ϕn ≥ 0 for all n ∈ N hold true.
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Proof: The direction ‘⇐=’ is evident from the definition of the space V : The
element f is constructed monotonically by the functions ϕn ∈ M , and this
implies the conclusion.

Now we show the opposite direction ‘=⇒’ as follows: Taking f ∈ V , we find
a sequence {fn}n=1,2,... ⊂ M such that fn ↑ f , and we infer f+

n ↑ f+ = f .
When we define

f0(x) ≡ 0 and ϕn(x) := f+
n (x)− f+

n−1(x),

we observe

f+
k (x) =

k∑
n=1

ϕn(x) ↑ f(x)

and consequently
∞∑

n=1

ϕn(x) = f(x).

Obviously, the functions fulfill ϕn(x) ∈ M and ϕn(x) ≥ 0 for all n ∈ N.
q.e.d.

Proposition 2.5. Let the elements fi ∈ V with fi ≥ 0 for i = 1, 2, . . . be
given. Then the function

f(x) :=

∞∑
i=1

fi(x)

belongs to the set V , and we have

I(f) =

∞∑
i=1

I(fi).

Proof: The double sequence cij ∈ R with cij ≥ 0 satisfies the following
equation:

∞∑
i,j=1

cij =

∞∑
i=1

⎛
⎝

∞∑
j=1

cij

⎞
⎠ = lim

n→∞

n∑
i,j=1

cij . (1)

This equation holds true for convergent as well as for definitely divergent
double series. On account of fi ∈ V , we have functions ϕij ∈ M satisfying
ϕij ≥ 0 such that

fi(x) =
∞∑
j=1

ϕij(x) for all x ∈ X and all i ∈ N

is correct. From Definition 2.2 we infer
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I(fi) = lim
n→∞

I

⎛
⎝

n∑
j=1

ϕij

⎞
⎠ = lim

n→∞

⎧
⎨
⎩

n∑
j=1

I(ϕij)

⎫
⎬
⎭ =

∞∑
j=1

I(ϕij).

Furthermore, we have the following representation for all x ∈ X:

f(x) =

∞∑
i=1

fi(x) =

∞∑
i=1

⎛
⎝

∞∑
j=1

ϕij(x)

⎞
⎠ =

∞∑
i,j=1

ϕij(x) = lim
n→∞

⎛
⎝

n∑
i,j=1

ϕij(x)

⎞
⎠ .

Consequently, f ∈ V holds true and Definition 2.2 yields

I(f) = lim
n→∞

I

⎛
⎝

n∑
i,j=1

ϕij

⎞
⎠ = lim

n→∞

n∑
i,j=1

I(ϕij)

=

∞∑
i,j=1

I(ϕij) =

∞∑
i=1

⎛
⎝

∞∑
j=1

I(ϕij)

⎞
⎠ =

∞∑
i=1

I(fi).

q.e.d.

Definition 2.6. We consider an arbitrary function f : X → R = R ∪ {±∞}
and define

I+(f) := inf
{
I(h) : h ∈ V, h ≥ f

}
, I−(f) := sup

{
I(g) : g ∈ −V, g ≤ f

}
.

We name I+(f) the upper and I−(f) the lower Daniell integral of f .

Proposition 2.7. Let f : X → R denote an arbitrary function and (g, h) a
pair of functions satisfying g ∈ −V and h ∈ V as well as g(x) ≤ f(x) ≤ h(x)
for all x ∈ X. Then we infer

I(g) ≤ I−(f) ≤ I+(f) ≤ I(h).

Proof: Definition 2.6 implies I(h) ≥ I+(f) and I(g) ≤ I−(f). Furthermore,
we find sequences {gn}n=1,2,... ⊂ −V and {hn}n=1,2,... ⊂ V satisfying

gn ≤ f ≤ hn for all n ∈ N,

such that
lim
n→∞

I(gn) = I−(f) and lim
n→∞

I(hn) = I+(f)

holds true. On account of 0 ≤ hn + (−gn) ∈ V for arbitrary n ∈ N, we see

0 ≤ I
(
hn + (−gn)

)
= I(hn) + I(−gn)



2 Extension of Daniell’s Integral to Lebesgue’s Integral 101

and consequently
I(gn) ≤ I(hn)

and finally
I−(f) = lim

n→∞
I(gn) ≤ lim

n→∞
I(hn) = I+(f).

q.e.d.

In the sequel, we consider functions with values in the extended real number
system R = R ∪ {−∞} ∪ {+∞}. Within the set R we need the following
calculus rules:

– Addition:

a+ (+∞) = (+∞) + a = +∞ for all a ∈ R ∪ {+∞}

a+ (−∞) = (−∞) + a = −∞ for all a ∈ R ∪ {−∞}

(−∞) + (+∞) = (+∞) + (−∞) = 0

– Multiplication:
a (+∞) = (+∞) a = +∞

a (−∞) = (−∞) a = −∞

}
for all 0 < a ≤ +∞

0 (+∞) = (+∞) 0 = +∞

0 (−∞) = (−∞) 0 = −∞

a (+∞) = (+∞) a = −∞

a (−∞) = (−∞) a = +∞

}
for all −∞ ≤ a < 0

– Subtraction: For a, b ∈ R we define

a− b := a+ (−b),

where we set

−(+∞) = −∞ and − (−∞) = +∞.

– Ordering: We have

−∞ ≤ a ≤ +∞ for all a ∈ R.

Remark: Algebraically the set R does not constitute a field, because the ad-
dition is not associative; consider for instance:

(−∞) +
(
(+∞) + (+∞)

)
= (−∞) + (+∞) = 0,

(
(−∞) + (+∞)

)
+ (+∞) = 0 + (+∞) = +∞.
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With these calculus operations in R, we can uniquely define the functions f+g,
f − g, cf for two functions f : X → R and g : X → R and arbitrary scalars
c ∈ R. Furthermore, we have the inequality f ≤ g if and only if g − f ≥ 0 is
correct.

Definition 2.8. The function f : X → R belongs to the class L = L(X) =
L(X, I) if and only if

−∞ < I−(f) = I+(f) < +∞

holds true. Then we define

I(f) := I−(f) = I+(f),

and we say that f is Lebesgue integrable with respect to I.

Remark: In our main example 1 from Section 1, we consider the open subset
Ω ⊂ R

n and obtain the class L(X) =: L(Ω) of Lebesgue integrable functions
in Ω. In our main example 2, we get the class of Lebesgue integrable functions
on the manifold M with L(X) =: L(M).

Proposition 2.9. The function f : X → R belongs to the class L(X) if and
only if each quantity ε > 0 admits two functions g ∈ −V and h ∈ V satisfying

g(x) ≤ f(x) ≤ h(x), x ∈ X and I(h)− I(g) < ε.

In particular, I(g) and I(h) are finite.

Proof:

‘=⇒’ We consider f ∈ L(X) and note that I−(f) = I+(f) ∈ R. According to
Definition 2.6, we find functions g ∈ −V and h ∈ V with g ≤ f ≤ h and
I(h)− I(g) < ε.

‘⇐=’ For each quantity ε > 0, we have functions g ∈ −V and h ∈ V with
g ≤ f ≤ h and I(h) − I(g) < ε. On account of I(h) ∈ (−∞,+∞] and
I(g) ∈ [−∞,+∞), we infer I(h), I(g) ∈ R. Now Proposition 2.7 implies
the estimate

0 ≤ I+(f)− I−(f) ≤ I(h)− I(g) < ε

for arbitrary ε > 0. Consequently, I+(f) = I−(f) ∈ R holds true and
finally f ∈ L(X). q.e.d.

Theorem 2.10. (Calculus rules for Lebesgue integrable functions)
The set L(X) of Lebesgue integrable functions has the following properties:
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a) The statement

f ∈ L(X) for each f ∈ V (X) with I(f) < +∞

is correct, and the integrals from Definition 2.2 and Definition 2.8 coin-
cide. Consequently, the functional I : M(X) → R has been extended onto
L(X) ⊃ M(X). Furthermore, we have

I(f) ≥ 0 for all f ∈ L(X) with f ≥ 0.

b) The space L(X) is linear, which means

c1f1 + c2f2 ∈ L(X) for all f1, f2 ∈ L(X) and c1, c2 ∈ R.

Furthermore, I : L(X) → R represents a linear functional. Therefore, we
have the calculus rule

I(c1f1 + c2f2) = c1I(f1) + c2I(f2) for all f1, f2 ∈ L(X), c1, c2 ∈ R.

c) When f ∈ L(X) is given, then |f | ∈ L(X) holds true and the estimate∣∣I(f)∣∣ ≤ I
(
|f |
)
is valid.

Proof:

a) Consider f ∈ V (X) with I(f) < +∞. Then we find a sequence

{fn}n=1,2,... ⊂ M(X)

such that fn ↑ f holds true. When we define gn := fn and hn := f for all
n ∈ N, we infer gn ≤ f ≤ hn with gn ∈ −V and hn ∈ V , and we observe
I(hn)− I(gn) = I(f)− I(fn) → 0. Proposition 2.9 tells us that f ∈ L(X),
and Definition 2.8 implies

−∞ < I(f) := I+(f) = I−(f) = lim
n→∞

I(fn) < +∞.

We consider 0 ≤ f ∈ L(X), and we infer from 0 ∈ −V the statement
0 ≤ I−(f) = I(f).

b) At first, we show: If f ∈ L(X) is chosen, we have −f ∈ L(X) as well as
I(−f) = −I(f).

With f ∈ L(X) given, each quantity ε > 0 admits a pair of functions
g ∈ −V and h ∈ V satisfying g ≤ f ≤ h as well as I(h) − I(g) < ε.
This implies −h ≤ −f ≤ −g with −h ∈ −V and −g ∈ V . We note that
I(−g) = −I(g) and I(−h) = −I(h) hold true, and we obtain

I(−g)− I(−h) = −I(g) + I(h) < ε for all ε > 0.

Finally, we arrive at −f ∈ L(X) and I(−f) = −I(f).
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Now we show: With f ∈ L(X) and c > 0, we have cf ∈ L(X) and
I(cf) = cI(f).

Therefore, we consider f ∈ L(X), c > 0, and each ε > 0 admits functions
g ∈ −V and h ∈ V with g ≤ f ≤ h as well as I(h)−I(g) < ε. This implies
cg ≤ cf ≤ ch, cg ∈ −V , ch ∈ V and finally

I(ch)− I(cg) = c
(
I(h)− I(g)

)
< cε.

We have thus proved cf ∈ L(X) and I(cf) = cI(f).

Finally, we deduce the calculus rule: From f1, f2 ∈ L(X) we infer
f1 + f2 ∈ L(X) and I(f1 + f2) = I(f1) + I(f2).

The elements f1, f2 ∈ L(X) being given, we find to each ε > 0 the
functions g1, g2 ∈ −V and h1, h2 ∈ V satisfying gi ≤ fi ≤ hi and
I(hi) − I(gi) < ε for i = 1, 2. This immediately implies h1 + h2 ∈ V ,
g1+g2 ∈ −V , g1+g2 ≤ f1+f2 ≤ h1+h2 and I(h1+h2)−I(g1+g2) < 2ε.
We conclude f1 + f2 ∈ L(X) and obtain the calculus rule I(f1 + f2) =
I(f1) + I(f2).

Therefore, I : L(X) → R represents a linear functional on the linear space
L(X) of Lebesgue integrable functions.

c) With f ∈ L(X), we find functions g ∈ −V and h ∈ V satisfying g ≤
f ≤ h and I(h) − I(g) < ε to each ε > 0, and we see g+ ≤ f+ ≤ h+.
Furthermore, we have sequences gn ↓ g and hn ↑ h in M(X), which give us
the approximations g+n ↓ g+ and h+

n ↑ h+, respectively. Therefore, h+ ∈ V
and g+ ∈ −V holds true as well as h+ − g+ ∈ V . From h ≥ g we infer
h+ − g+ ≤ h− g and see

I(h+)− I(g+) = I(h+) + I(−g+) = I(h+ − g+)

≤ I(h− g) = I(h)− I(g) < ε.

Consequently, the statements f+ ∈ L(X) and |f | = f+ + (−f)+ ∈ L(X)
are established. With f ∈ L(X), the elements −f and |f | belong to L(X)
as well, and the inequalities f ≤ |f |, −f ≤ |f | imply I(f) ≤ I(|f |),
−I(f) = I(−f) ≤ I(|f |) and finally |I(f)| ≤ I(|f |).

q.e.d.

Now we deduce convergence theorems for Lebesgue’s integral: Fundamental
is the following

Proposition 2.11. Let the sequence {fk}k=1,2,... ⊂ L(X) with fk ≥ 0, k ∈ N

and
∞∑
k=1

I(fk) < +∞ be given. Then the property

f(x) :=

∞∑
k=1

fk(x) ∈ L(X)
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is fulfilled, and we have

I(f) =

∞∑
k=1

I(fk).

Proof: Given the quantity ε > 0, we find functions gk ∈ −V and hk ∈ V with
0 ≤ gk ≤ fk ≤ hk and I(hk) − I(gk) < ε 2−k for all k ∈ N, on account of
fk ∈ L(X). Therefore, we have the inequalities

I(gk) > I(hk)−
ε

2k
≥ I(fk)−

ε

2k
and I(hk) < I(gk) +

ε

2k
≤ I(fk) +

ε

2k
.

Now we choose n so large that
∞∑

k=n+1

I(fk) ≤ ε is correct. When we set

g :=

n∑
k=1

gk, h :=

∞∑
k=1

hk,

we observe g ∈ −V and h ∈ V , due to Proposition 2.5, as well as g ≤ f ≤ h.
Furthermore, we see

I(g) =

n∑
k=1

I(gk) >

n∑
k=1

(
I(fk)−

ε

2k

)
≥

∞∑
k=1

I(fk)− 2ε

and

I(h) =

∞∑
k=1

I(hk) <

∞∑
k=1

(
I(fk) +

ε

2k

)
=

∞∑
k=1

I(fk) + ε.

Consequently, we obtain I(h)− I(g) < 3ε and additionally f ∈ L(X). Finally,
our estimates yield the identity

I(f) =

∞∑
k=1

I(fk).

q.e.d.

Theorem 2.12. (B.Levi’s theorem on monotone convergence)
Let {fn}n=1,2,... ⊂ L(X) denote a sequence satisfying

fn(x) �= ±∞ for all x ∈ X and all n ∈ N.

Furthermore, let the conditions

fn(x) ↑ f(x), x ∈ X, and I(fn) ≤ C, n ∈ N

be valid, with a constant C ∈ R. Then we have f ∈ L(X) and

lim
n→∞

I(fn) = I(f).
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Proof: On account of fk(x) ∈ R, the addition is associative there. Setting

ϕk(x) := (fk(x)− fk−1(x)) ∈ L(X), k = 2, 3, . . . ,

we infer ϕk ≥ 0 as well as

n∑
k=2

ϕk(x) = fn(x)− f1(x), x ∈ X.

Now we observe

C − I(f1) ≥ I(fn)− I(f1) =

n∑
k=2

I(ϕk) for all n ≥ 2.

Proposition 2.11 implies

f − f1 =

∞∑
k=2

ϕk ∈ L(X)

and furthermore

lim
n→∞

I(fn)− I(f1) =

∞∑
k=2

I(ϕk) = I

( ∞∑
k=2

ϕk

)
= I(f − f1) = I(f)− I(f1).

Therefore, we obtain f ∈ L(X) and the following limit relation:

lim
n→∞

I(fn) = I(f).
q.e.d.

Remark: The restrictive assumption fn(x) �= ±∞ will be eliminated in the
next section.

Theorem 2.13. (Fatou’s convergence theorem)
Let {fn}n=1,2,... ⊂ L(X) denote a sequence of functions such that

0 ≤ fn(x) < +∞ for all x ∈ X and all n ∈ N

holds true. Furthermore, we assume

lim inf
n→∞

I(fn) < +∞.

Then the function g(x) := lim inf
n→∞

fn(x) belongs to the space L(X), and we

observe the lower semicontinuity

I(g) ≤ lim inf
n→∞

I(fn).
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Proof: We note that

g(x) = lim inf
n→∞

fn(x) = lim
n→∞

(
inf
m≥n

fm(x)
)
= lim

n→∞

(
lim
k→∞

gn,k(x)
)

holds true with

gn,k(x) := min
(
fn(x), fn+1(x), . . . , fn+k(x)

)
∈ L(X).

When we define
gn(x) := inf

m≥n
fm(x),

we infer the relations gn,k ↓ gn and −gn,k ↑ −gn for k → ∞. Furthermore,
we obtain I(−gn,k) ≤ 0 due to fn(x) ≥ 0. From Theorem 2.12 we infer
−gn ∈ L(X) and consequently gn ∈ L(X) for all n ∈ N.

Furthermore, we see gn(x) ≤ fm(x), x ∈ X for all m ≥ n. Therefore, the
inequality

I(gn) ≤ inf
m≥n

I(fm) ≤ lim
n→∞

(
inf
m≥n

I(fm)
)
= lim inf

n→∞
I(fn) < +∞

is correct for all n ∈ N. We utilize gn ↑ g as well as Theorem 2.12, and we
obtain g ∈ L(X) and, moreover,

I(g) = lim
n→∞

I(gn) ≤ lim inf
n→∞

I(fn).
q.e.d.

Theorem 2.14. Let {fn}n=1,2,... ⊂ L(X) denote a sequence with

|fn(x)| ≤ F (x) < +∞, n ∈ N, x ∈ X,

where F (x) ∈ L(X) is correct. Furthermore, let us define

g(x) := lim inf
n→∞

fn(x) and h(x) := lim sup
n→∞

fn(x).

Then the elements g and h belong to L(X), and we have the inequalities

I(g) ≤ lim inf
n→∞

I(fn), I(h) ≥ lim sup
n→∞

I(fn).

Proof: We apply Theorem 2.13 on both sequences {F + fn} and {F − fn} of
nonnegative finite-valued functions from L(X). We observe the inequality

I(F ± fn) ≤ I(F + F ) ≤ 2I(F ) < +∞ for all n ∈ N.

Thus we obtain

L(X) � lim inf
n→∞

(F + fn) = F + lim inf
n→∞

fn = F + g
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as well as g ∈ L(X). Now Theorem 2.13 yields

I(F ) + I(g) = I(F + g) ≤ lim inf
n→∞

I(F + fn) = I(F ) + lim inf
n→∞

I(fn)

and
I(g) ≤ lim inf

n→∞
I(fn).

In the same way we deduce

L(X) � lim inf
n→∞

(F − fn) = F − lim sup
n→∞

fn = F − h

and consequently h ∈ L(X). This implies

I(F )− I(h) = I(F − h) ≤ lim inf
n→∞

I(F − fn) = I(F )− lim sup
n→∞

I(fn)

and finally
I(h) ≥ lim sup

n→∞
I(fn). q.e.d.

Theorem 2.15. (H.Lebesgue’s theorem on dominated convergence)
Let {fn}n=1,2,... ⊂ L(X) denote a sequence with

fn(x) → f(x) for n → ∞, x ∈ X.

Furthermore, we assume

|fn(x)| ≤ F (x) < +∞, n ∈ N, x ∈ X

where F ∈ L(X) is valid. Then we infer f ∈ L(X) as well as

lim
n→∞

I(fn) = I(f).

Proof: The limit relation

lim
n→∞

fn(x) = f(x), x ∈ X

implies
lim inf
n→∞

fn(x) = f(x) = lim sup
n→∞

fn(x).

According to Theorem 2.14, we have f ∈ L(X) and

lim sup
n→∞

I(fn) ≤ I(f) ≤ lim inf
n→∞

I(fn).

Therefore, the subsequent limit exists

lim
n→∞

I(fn),

and we deduce
I(f) = lim

n→∞
I(fn).

q.e.d.
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3 Measurable Sets

Beginning with this section, we have to require the following

Additional assumptions for the sets X and M(X):

• We assume X ⊂ R
n with the dimension n ∈ N. Then X becomes a topo-

logical space as follows: A subset A ⊂ X is open (closed) if and only if we

have an open (closed) subset Â ⊂ R
n such that A = X ∩ Â holds true.

• Furthermore, we assume that the inclusion C0
b (X,R) ⊂ M(X) ⊂ C0(X,R)

is fulfilled. Here C0
b (X,R) describes the set of bounded continuous func-

tions. This is valid for our main example 2. In our main example 1, this is
fulfilled as well if the open set Ω ⊂ R

n is subject to the following condition:
∫

Ω

1 dx < +∞.

We see immediately that the function f0 ≡ 1, x ∈ X then belongs to the
class M(X).

Now we specialize our theory of integration from Section 2 to characteristic
functions and obtain a measure theory. For an arbitrary set A ⊂ X we define
its characteristic function by

χA(x) :=

{
1, x ∈ A

0, x ∈ X \A
.

Definition 3.1. A subset A ⊂ X is called finitely measurable (or alternatively
integrable) if its characteristic function satisfies χA ∈ L(X). We name

μ(A) := I(χA)

the measure of the set A with respect to the integral I. The set of all finitely
measurable sets in X is denoted by S(X).

From the additional assumptions above, namely f0 ≡ 1 ∈ M(X), we infer
χX ∈ M(X) ⊂ L(X) and consequently X ∈ S(X). Therefore, we speak
equivalently of finitely measurable and measurable sets.

Proposition 3.2. (σ-Additivity)
Let {Ai}i=1,2,... ⊂ S(X) denote a sequence of mutually disjoint sets. Then the
set

A :=

∞⋃
i=1

Ai

belongs to S(X) as well, and we have

μ(A) =

∞∑
i=1

μ(Ai).
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Proof: We consider the sequence of functions

fk :=

k∑
l=1

χAl
↑ χA ≤ χX ∈ L(X)

and note that fk ∈ L(X) for all k ∈ N holds true. Now Lebesgue’s convergence
theorem yields χA ∈ L(X) and consequently A ∈ S(X). Finally, we evaluate

μ(A) = I(χA) = lim
k→∞

I(fk) = lim
k→∞

I(χA1 + . . .+ χAk
)

= lim
k→∞

(
μ(A1) + . . .+ μ(Ak)

)
=

∞∑
l=1

μ(Al).

q.e.d.

We show that with A,B ∈ S(X) their intersection A ∩B belongs to S(X) as
well. On account of χA∩B = χAχB , we have to verify that with χA, χB ∈ L(X)
their product satisfies χAχB ∈ L(X) as well. In general, the product of two
functions in L(X) need not lie in L(X) as demonstrated by the following

Example 3.3. With X = (0, 1), we define the space

M(X) =

⎧
⎨
⎩f : (0, 1) → R ∈ C0

(
(0, 1),R

)
:

1∫

0

|f(x)| dx < +∞

⎫
⎬
⎭

and the improper Riemannian integral I(f) :=
1∫
0

f(x) dx. Then we observe

f(x) :=
1√
x
∈ L(X); however, f2(x) :=

1

x
�∈ L(X).

Now we establish the following

Theorem 3.4. (Continuous combination of bounded L-functions)
Let fk(x) ∈ L(X) for k = 1, . . . , κ denote finitely many bounded functions,
such that the estimate

|fk(x)| ≤ c for all points x ∈ X and all indices k ∈ {1, . . . , κ}

is valid, with a constant c ∈ (0,+∞). Furthermore, let the function Φ =
Φ(y1, . . . , yκ) : R

κ → R ∈ C0(Rκ,R) be given. Then the composition

g(x) := Φ
(
f1(x), . . . , fκ(x)

)
, x ∈ X

belongs to the class L(X) and is bounded.
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Proof:

1. With f : X → R ∈ L(X) let us consider a bounded function. At first, we
show that its square satisfies f2 ∈ L(X). We observe

f2(x) = {f(x)− λ}2 + 2λf(x)− λ2

and infer
f2(x) ≥ 2λf(x)− λ2 for all λ ∈ R,

where equality is attained only for λ = f(x). Therefore, we can rewrite
the square-function as follows:

f2(x) = sup
λ∈R

(
2λf(x)− λ2

)
.

Since the function λ 
→ (2λf(x)− λ2) is continuous with respect to λ for
each fixed x ∈ X, it is sufficient to evaluate this supremum only over the
set of rational numbers. Furthermore, we have Q = {λl}l=1,2,... and see

f2(x) = sup
l∈N

(
2λlf(x)− λ2

l

)
= lim

m→∞

(
max

1≤l≤m

(
2λlf(x)− λ2

l

))
.

With the aid of
ϕm(x) := max

1≤l≤m

(
2λlf(x)− λ2

l

)

we obtain
f2(x) = lim

m→∞
ϕm(x) = lim

m→∞
ϕ+
m(x),

where the last equality is inferred from the positivity of f2(x). Since f ∈
L(X) holds true, the linearity and the closedness with respect to the
maximum operation of L(X) imply: The elements ϕm and consequently
ϕ+
m belong to the space L(X). Furthermore, for all points x ∈ X and all

m ∈ N we have the estimate

0 ≤ ϕ+
m(x) ≤ f2(x) ≤ c

with a constant c ∈ (0,+∞). From the property f0(x) ≡ 1 ∈ L(X) we infer
fc(x) ≡ c ∈ L(X), and the functions ϕ+

m have an integrable dominating
function. Now Lebesgue’s convergence theorem yields

f2(x) = lim
m→∞

ϕ+
m(x) ∈ L(X).

2. When f, g ∈ L(X) represent bounded functions, its product f · g is
bounded as well. On account of part 1 of our proof and the identity

fg =
1

4
(f + g)2 − 1

4
(f − g)2,

we deduce fg ∈ L(X).
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3. On the rectangle

Q :=
{
y = (y1, . . . , yκ) ∈ R

κ : |yk| ≤ c, k = 1, . . . , κ
}

we can approximate the continuous function Φ uniformly by polynomials

Φl = Φl(y1, . . . , yκ), l = 1, 2, . . . .

From part 2 we infer that the functions

gl(x) := Φl

(
f1(x), . . . , fκ(x)

)
, x ∈ X

are bounded and belong to the class L(X). We have the estimate

|gl(x)| ≤ C for all x ∈ X and all l ∈ N

with a fixed constant C ∈ (0,+∞). Since the function satisfies ϕ(x) ≡
C ∈ L(X), Lebesgue’s convergence theorem yields

g(x) = Φ
(
f1(x), . . . , fκ(x)

)
= lim

l→∞
gl(x) ∈ L(X).

q.e.d.

Corollary from Theorem 3.4: If f(x) ∈ L(X) represents a bounded function,
its power |f |p belongs to the class L(X) for all exponents p > 0.

Proposition 3.5. With the sets A,B ∈ S(X) the following sets A∩B, A∪B,
A \B, Ac := X \A belong to S(X) as well.

Proof: Let us take A,B ∈ S(X), and the associate characteristic functions
χA, χB are bounded and belong to the class L(X). Via Proposition 3.4, we
deduce

χA∩B = χAχB ∈ L(X) and consequently A ∩B ∈ S(X).

Now we see A∪B ∈ S(X) due to χA∪B = χA +χB −χA∩B ∈ L(X). Further-
more, we observe

χA\B = χA\(A∩B) = χA − χA∩B ∈ L(X) and consequently A \B ∈ L(X).

On account of X ∈ S(X), we finally infer Ac = (X \A) ∈ S(X). q.e.d.

Proposition 3.6. (σ-Subadditivity)
Let {Ai}i=1,2,... ⊂ S(X) denote a sequence of sets. Then their denumerable
union

A :=

∞⋃
i=1

Ai

belongs to S(X) as well, and we have the following estimate:

μ(A) ≤
∞∑
i=1

μ(Ai) ∈ [ 0,+∞].
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Proof: We make the transition from the sequence {Ai}i=1,2,... to the sequence
{Bi}i=1,2,... of mutually disjoint sets:

B1 := A1, B2 := A2 \B1, . . . , Bk := Ak \ (B1 ∪ · · · ∪Bk−1), . . .

Now Proposition 3.5 yields {Bi}i=1,2,... ⊂ S(X). Furthermore, we note that

Bi ⊂ Ai holds true for all i ∈ N and, moreover, A =
∞⋃
i=1

Bi. Then Propo-

sition 3.2 implies A ∈ S(X) as well as μ(A) =
∑∞

i=1 μ(Bi) ≤
∑∞

i=1 μ(Ai).
q.e.d.

Definition 3.7. A system A of subsets of a set X is called σ-algebra if we
have the following properties :

1. X ∈ A.
2. With B ∈ A, its complement satisfies Bc = (X \B) ∈ A as well.

3. For each sequence of sets {Bi}i=1,2,... in A, their denumerable union
∞⋃
i=1

Bi

belongs to A as well.

Remark: We infer ∅ ∈ A immediately from these conditions. Furthermore,

with the sets {Bi}i=1,2,... ⊂ A their denumerable intersection satisfies
∞⋂
i=1

Bi ∈
A as well.

Definition 3.8. We name the function μ : A → [0,+∞] on a σ-algebra A a
measure if the following conditions are fulfilled:

1. μ(∅) = 0.

2. μ
( ∞⋃

i=1

Bi

)
=

∞∑
i=1

μ(Bi) for all mutually disjoint sets {Bi}i=1,2,... ⊂ A.

We call this measure finite if μ(X) < +∞ holds true.

Remark: Property 2 is called the σ-additivity of the measure. If we only have

finite additivity - that means μ
(⋃N

i=1 Bi

)
=
∑N

i=1 μ(Bi) for all mutually

disjoint sets {Bi}i=1,2,...,N ⊂ A - we speak of a content.

From our Propositions 3.2 to 3.6, we immediately infer

Theorem 3.9. The set S(X) of the finitely measurable subsets of X consti-
tutes a σ-algebra. The prescription

μ(A) := I(χA), A ∈ S(X)

defines a finite measure on the σ-algebra S(X).

Remark: Carathéodory developed axiomatically the measure theory, on which
the integration theory can be based. We have presented the inverse approach
here. The axiomatic measure theory begins with Definitions 3.7 and 3.8 above.
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Definition 3.10. A set A ⊂ X is named null-set if A ∈ S(X) and μ(A) = 0
hold true.

Remark: The measure μ from Definition 3.1 has the property that each subset
of a null-set is a null-set again. For B ⊂ A and A ∈ S(X) with μ(A) = 0 we
namely deduce

0 = I+(χA) ≥ I+(χB) ≥ I−(χB) ≥ 0,

and consequently
I+(χB) = I−(χB) = 0.

Therefore, we obtain χB ∈ L(X) and finally B ∈ S(X) with μ(B) = 0.

Proposition 3.6 immediately implies

Theorem 3.11. The denumerable union of null-sets is a null-set again.

Now we show the following

Theorem 3.12. Each open and each closed set A ⊂ X belongs to S(X).

Proof:

1. At first, let the set A be closed in X and bounded in R
n ⊃ X. Then

we have a compact set Â in R
n satisfying A = Â ∩ X. For the set Â

we construct - with the aid of Tietze’s extension theorem - a sequence of
functions fl : R

n → R ∈ C0
0 (R

n) such that

fl(x) =

⎧
⎪⎪⎨
⎪⎪⎩

1 , x ∈ Â

0 , x ∈ R
n with dist (x, Â) ≥ 1

l
∈
[
0, 1
]
, elsewhere

holds true for l = 1, 2, . . .. We observe fl(x) → χ
̂A(x), set gl = fl

∣∣
X
,

and obtain
gl ∈ C0

b (X) ⊂ M(X) ⊂ L(X)

as well as

0 ≤ gl(x) ≤ 1 and gl(x) → χA(x), x ∈ X.

On account of f0(x) ≡ 1 ∈ M(X), we can apply Lebesgue’s convergence
theorem and see

χA(x) = lim
l→∞

gl(x) ∈ L(X).

Therefore, A ∈ S(X) is satisfied.
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2. For an arbitrary closed set A ⊂ X we consider the sequence

Al := A ∩
{
x ∈ R

n : |x| ≤ l
}
.

Due to part 1 of our proof, the sets Al belong to the system S(X) and

consequently A =
∞⋃
l=1

Al as well. Finally, the open sets belong to S(X) as

complements of closed sets. q.e.d.

Proposition 3.13. Let us consider f ∈ V (X). Then the level set

O(f, a) :=
{
x ∈ X : f(x) > a

}
⊂ X

is open for all a ∈ R.

Proof: We note that f ∈ V (X) holds true and find a sequence

{fn}n=1,2,... ⊂ M(X) ⊂ C0(X,R)

satisfying fn ↑ f on X. Let us consider a point ξ ∈ O(f, a) which means
f(ξ) > a. Then we have an index n0 ∈ N with fn0(ξ) > a. Since the function
fn0 : X → R is continuous, there exists an open neighborhood U ⊂ X of ξ
such that fn0(x) > a for all x ∈ U holds true. Due to fn0 ≤ f on X, we infer
f(x) > a for all x ∈ U , which implies U ⊂ O(f, a). Consequently, the level set
O(f, a) is open.

q.e.d.

The following criterion illustrates the connection between open and measur-
able sets.

Theorem 3.14. A set B ⊂ X belongs to the system S(X) if and only if the
following condition is valid: For all δ > 0 we can find a closed set A ⊂ X and
an open set O ⊂ X, such that the properties A ⊂ B ⊂ O and μ(O \ A) < δ
hold true.

Proof:

‘=⇒’ When we take B ∈ S(X), we infer χB ∈ L(X) and Proposition 2.9
in Section 2 gives us a function f ∈ V (X) satisfying 0 ≤ χB ≤ f and
I(f)−μ(B) < ε for all ε > 0. According to Proposition 3.13, the level sets

Oε := {x ∈ X | f(x) > 1− ε} ⊃ B

with ε > 0 are open in X. Now we deduce

χB ≤ χOε =
1

1− ε
(1− ε)χOε ≤ 1

1− ε
f in X,

and we see
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μ(Oε)− μ(B) = I(χOε)− μ(B) ≤ 1

1− ε
I(f)− μ(B)

=
1

1− ε

(
I(f)− μ(B)

)
+

ε

1− ε
μ(B) <

ε

1− ε

(
1 + μ(B)

)

for all ε > 0. For the quantity δ > 0 being given, we now choose a
sufficiently small ε > 0 such that the set O := Oε ⊃ B satisfies the
estimate

μ(O)− μ(B) <
δ

2
.

Furthermore, we attribute to each measurable set Bc = X \B an open set

Õ = Ac such that Ac = Õ ⊃ Bc and μ(Õ ∩ B) < δ
2 hold true. Therefore,

the closed set A ⊂ X fulfills the inclusion A ⊂ B ⊂ O and the estimate

μ(O \A) = μ(O)− μ(A) =
(
μ(O)− μ(B)

)
+
(
μ(B)− μ(A)

)

<
δ

2
+ μ(B \A) =

δ

2
+ μ(B ∩ Õ) < δ.

‘⇐=’ The quantity δ > 0 being given, we find an open set O ⊃ B and a closed
set A ⊂ B - they are measurable due to Proposition 3.13 - such that the
estimate I(χO − χA) < δ is fulfilled. Since χA, χO ∈ L(X) is fulfilled,
Proposition 2.9 in Section 2 provides functions g ∈ −V (X) and h ∈ V (X)
satisfying

g ≤ χA ≤ χB ≤ χO ≤ h in X and I(h− g) < 3δ.

Using Proposition 2.9 in Section 2 again, we deduce χB ∈ L(X) and con-
sequently B ∈ S(X). q.e.d.

In the sequel, we shall intensively study the null-sets. These appear as sets
of exemption for Lebesgue integrable functions and can be neglected in the
Lebesgue integration. We start our investigations with the following

Proposition 3.15. A set N ⊂ X is a null-set if and only if we have a function
h ∈ V (X) satisfying h(x) ≥ 0 for all x ∈ X, h(x) = +∞ for all x ∈ N , and
I(h) < +∞.

Proof:

‘=⇒’ Let N ⊂ X denote a null-set. Then χN ∈ L(X) and I(χN ) = 0 hold
true. For each index k ∈ N we obtain a function hk ∈ V (X) satisfying
0 ≤ χN ≤ hk in X and I(hk) ≤ 2−k, due to Proposition 2.9 in Section 2.
According to Proposition 2.5 in Section 2, the element

h(x) :=

∞∑
k=1

hk(x)
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belongs to the space V (X) and fulfills

I(h) =

∞∑
k=1

I(hk) ≤ 1.

On the other hand, the estimates hk(x) ≥ 1 in N for all k ∈ N imply that
the relation h(x) = +∞ for all x ∈ N is correct. We note that hk(x) ≥ 0
in X holds true, and we deduce h(x) ≥ 0 for all x ∈ X.

‘⇐=’ Let the conditions h ∈ V (X), h(x) ≥ 0 for all x ∈ X, h(x) = +∞ for
all x ∈ N , and I(h) < +∞ be fulfilled. When we define

hε(x) :=
ε

1 + I(h)
h(x),

we immediately deduce hε ∈ V (X), hε(x) ≥ 0 for all x ∈ X, and I(hε) < ε
for all ε > 0. On account of h(x) = +∞ for all x ∈ N , we infer

0 ≤ χN (x) ≤ hε(x) in X for all ε > 0.

Proposition 2.9 in Section 2 yields I(χN ) = 0, which means that N is a
null-set. q.e.d.

Definition 3.16. A property holds true almost everywhere in X ( symboli-
cally: a.e. ), if there exists a null-set N ⊂ X such that this property is valid
for all points x ∈ X \N .

Theorem 3.17. (a.e.-Finiteness of L-functions)
Let the function f ∈ L(X) be given. Then the set

N :=
{
x ∈ X : |f(x)| = +∞

}

constitutes a null-set.

Proof: With f ∈ L(X) being given, we obtain |f | ∈ L(X) and find a function
h ∈ V (X) satisfying 0 ≤ |f(x)| ≤ h(x) in X as well as I(h) < +∞. Fur-
thermore, h(x) = +∞ in N holds true and Proposition 3.15 tells us that N
represents a null-set.

q.e.d.

Theorem 3.18. Let the function f ∈ L(X) be given such that I(|f |) = 0 is
correct. Then the set

N :=
{
x ∈ X : f(x) �= 0

}

constitutes a null-set.
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Proof: With f ∈ L(X) being given, we infer |f | ∈ L(X). Setting

fk(x) := |f(x)|, k ∈ N,

we observe
∞∑
k=1

I(fk) = 0.

According to Proposition 2.11 in Section 2, the function

g(x) :=

∞∑
k=1

fk(x)

is Lebesgue integrable as well. Now we see N = {x ∈ X : g(x) = +∞}, and
Theorem 3.17 implies that N is a null-set. q.e.d.

Now we want to show that an L-function can be arbitrarily modified on a null-
set, without the value of the integral being changed! In this way we can confine
ourselves to consider finite-valued functions f ∈ L(X), which are functions f
with f(x) ∈ R for all x ∈ X, more precisely. A bounded function is finite-
valued; however, a finite-valued function is not necessarily bounded. In this
context, we mention the function f(x) = 1

x , x ∈ (0, 1).

Proposition 3.19. Let N ⊂ X denote a null-set. Furthermore, the function
f : X → R may satisfy f(x) = 0 for all x ∈ X \N . Then we infer f ∈ L(X)
as well as I(f) = 0.

Proof: Due to Proposition 3.15, we find a function h ∈ V (X) satisfying h(x) ≥
0 for all x ∈ X, h(x) = +∞ for all x ∈ N , and I(h) < +∞. For all numbers
ε > 0, we see εh ∈ V and −εh ∈ −V as well as

−εh(x) ≤ f(x) ≤ εh(x) for all x ∈ X.

Furthermore, the identity

I(εh)− I(−εh) = 2εI(h) for all ε > 0

is correct. We infer f ∈ L(X) and, moreover, I(f) = 0 from Proposition 2.9
in Section 2.

q.e.d.

Theorem 3.20. Consider the function f ∈ L(X) and the null-set N ⊂ X.

Furthermore, let the function f̃ : X → R with the property f̃(x) = f(x) for

all x ∈ X \ N be given. Then we infer f̃ ∈ L(X) as well as I(|f − f̃ |) = 0,

and consequently I(f) = I(f̃).
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Proof: Since f ∈ L(X) holds true, the following set

N1 :=
{
x ∈ X : |f(x)| = +∞

}

constitutes a null-set, due to Theorem 3.17. Now we find a function ϕ(x) :
X → R such that

f̃(x) = f(x) + ϕ(x) for all x ∈ X.

Evidently, we have the identity ϕ(x) = 0 outside the null-set N ∪N1. Propo-

sition 3.19 yields ϕ ∈ L(X) and I(ϕ) = 0. Consequently, f̃ ∈ L(X) is correct
and we see

I(f̃) = I(f + ϕ) = I(f) + I(ϕ) = I(f).

When we apply these arguments on the function

ψ(x) := |f(x)− f̃(x)|, x ∈ X,

Proposition 3.19 shows us ψ ∈ L(X) and finally

0 = I(ψ) = I(|f − f̃ |).

q.e.d.

Remark: When a function f̃ coincides a.e. with an L-function f , then f̃ ∈
L(X) holds true and their integrals are identical.

We are now prepared to provide general convergence theorems of the Lebesgue
integration theory.

Theorem 3.21. (General convergence theorem of B.Levi)
Let {fk}k=1,2,... ⊂ L(X) denote a sequence of functions satisfying fk ↑ f a.e.
in X. Furthermore, let I(fk) ≤ c for all k ∈ N be valid - with the constant
c ∈ R. Then we infer f ∈ L(X) and

lim
k→∞

I(fk) = I(f).

Proof: We consider the null-sets

Nk :=
{
x ∈ X : |fk(x)| = +∞

}
for k ∈ N

as well as
N0 :=

{
x ∈ X : fk(x) ↑ f(x) is not valid

}
.

We define the null-set

N :=

∞⋃
k=0

Nk,
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and modify f, fk on N to 0. Then we obtain the functions f̃k ∈ L(X) with

I(f̃k) = I(fk) ≤ c for all k ∈ N

and f̃ with f̃k ↑ f̃ . According to Theorem 2.12 from Section 2, we deduce
f̃ ∈ L(X) as well as

lim
k→∞

I(f̃k) = I(f̃).

Now Theorem 3.20 yields f ∈ L(X) and

I(f) = I(f̃) = lim
k→∞

I(f̃k) = lim
k→∞

I(fk).

q.e.d.

Modifying the functions to 0 on the relevant null-sets as above, we easily prove
the following Theorems 3.22 and 3.23 with the aid of Theorem 2.13 and 2.15
from Section 2, respectively.

Theorem 3.22. (General convergence theorem of Fatou)
Let {fk}k=1,2,... ⊂ L(X) denote a sequence of functions with fk(x) ≥ 0 a.e.
in X for all k ∈ N, and we assume

lim inf
k→∞

I(fk) < +∞.

Then the function
g(x) := lim inf

k→∞
fk(x)

belongs to the class L(X) as well, and we have lower semicontinuity as follows:

I(g) ≤ lim inf
k→∞

I(fk).

Theorem 3.23. (General convergence theorem of Lebesgue)
Let {fk}k=1,2,... ⊂ L(X) denote a sequence with fk → f a.e. on X and
|fk(x)| ≤ F (x) a.e. in X for all k ∈ N, where F ∈ L(X) holds true. Then we
infer f ∈ L(X) and the identity

lim
k→∞

I(fk) = I(f).

We conclude this section with the following

Theorem 3.24. Lebesgue’s integral I : L(X) → R constitutes a Daniell inte-
gral.

Proof: We invoke Theorem 2.10 in Section 2 and obtain the following: The
space L(X) is linear and closed with respect to the modulus operation. Fur-
thermore, L(X) satisfies the properties (1) and (2) in Section 1. The Lebesgue
integral I is nonnegative, linear, and closed with respect to monotone conver-
gence - due to Theorem 3.21. Therefore, the functional I fulfills the conditions
(3)–(5) in Section 1. Consequently, Lebesgue’s integral I : L(X) → R repre-
sents a Daniell integral as described in Definition 1.1 from Section 1.

q.e.d.
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4 Measurable Functions

Fundamental is the following

Definition 4.1. The function f : X → R is named measurable if the level set
- above the level a -

O(f, a) :=
{
x ∈ X : f(x) > a

}

is measurable for all a ∈ R.

Remark: Each continuous function f : X → R ∈ C0(X,R) is measurable.
Then O(f, a) ⊂ X is an open set for all a ∈ R, which is measurable due to
Section 3, Theorem 3.12. Furthermore, Proposition 3.13 in Section 3 shows us
that each function f ∈ V (X) is measurable as well.

Proposition 4.2. Let f : X → R denote a measurable function. Furthermore,
let us consider the numbers a, b ∈ R with a ≤ b and the interval I = [ a, b ];
for a < b we consider the intervals I = (a, b ], I = [ a, b), I = (a, b) as well.
Then the following sets

A :=
{
x ∈ X : f(x) ∈ I

}

are measurable.

Proof: Definition 4.1 implies that the level sets

O1(f, c) := O(f, c) =
{
x ∈ X : f(x) > c

}

are measurable for all c ∈ R. For a given c ∈ R, we now choose a sequence
{cn}n=1,2,... satisfying cn ↑ c, and we obtain again a measurable set via

O2(f, c) :=
{
x ∈ X : f(x) ≥ c

}
=

∞⋂
n=1

{
x ∈ X : f(x) > cn

}
.

The measurable sets S(X) namely constitute a σ-algebra due to Section 3,
Definition 3.7 and Theorem 3.9. Furthermore, we have the relations

O2(f,+∞) =

∞⋂
n=1

O2(f, n), O1(f,−∞) =

∞⋃
n=1

O1(f,−n),

and these sets are measurable as well. The transition to their complements
shows that

O3(f, c) :=
{
x ∈ X : f(x) ≤ c

}
and O4(f, c) :=

{
x ∈ X : f(x) < c

}

are measurable for all c ∈ R. Here



122 Chapter 2 Foundations of Functional Analysis

A :=
{
x ∈ X : f(x) ∈ I

}

can be generated by an intersection of the sets O1–O4, when we replace c by
a or b, respectively. This proves the measurability of the sets A. q.e.d.

For a, b ∈ R with a < b, we define the function

φa,b(t) :=

⎧
⎪⎨
⎪⎩

a , −∞ ≤ t ≤a
t , a ≤ t ≤b
b , b ≤ t ≤+∞

as a cut-off function. Given the function f : X → R, we set

fa,b(x) := φa,b(f(x)) :=

⎧
⎪⎨
⎪⎩

a , −∞ ≤ f(x) ≤a
f(x) , a ≤ f(x) ≤b
b , b ≤ f(x) ≤+∞

.

Evidently, we have the estimate

| fa,b(x)| ≤ max (| a|, | b|) < +∞ for all x ∈ X, a, b ∈ R.

Furthermore, we note that

f+(x) = f0,+∞(x) and f−(x) = f−∞,0(x), x ∈ X.

Theorem 4.3. A function f : X → R is measurable if and only if the function
fa,b belongs to L(X) for all a, b ∈ R with a < b.

Proof:

‘ =⇒’ Let f : X → R be measurable and −∞ < a < b < +∞ hold true. We
define the intervals

I0 := [−∞, a); Ik :=
[
a+ (k − 1)

b− a

m
, a+ k

b− a

m

)
; Im+1 := [ b,+∞]

with k = 1, . . . ,m for arbitrary m ∈ N. Furthermore, we choose the inter-
mediate values

ηl = a+ (l − 1)
b− a

m
, l = 0, . . . ,m+ 1.

We infer from Proposition 4.2 that the sets

Al :=
{
x ∈ X : f(x) ∈ Il

}

are measurable. The function
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fm :=
m+1∑
l=0

ηl χAl

is Lebesgue integrable, and we observe

| fm(x)| ≤ max (| 2a− b|, | b|) for all x ∈ X and all m ∈ N.

Since constant functions are integrable, Lebesgue’s convergence theorem
yields

fa,b(x) = lim
m→∞

fm(x) ∈ L(X).

‘⇐=’ We have to show that the set O(f, ã) is measurable for all ã ∈ R. Here
we prove: The set {x ∈ X : f(x) ≥ b} is measurable for all b ∈ R. Then
we obtain the measurability of

O(f, ã) =

∞⋃
l=1

{
x ∈ X | f(x) ≥ ã+

1

l

}

via Proposition 3.6 from Section 3. Choosing b ∈ R arbitrarily, we take
a = b− 1 and consider the function

g(x) := fa,b(x)− a ∈ L(X).

Evidently, g : X → [ 0, 1 ] holds true and, moreover,

g(x) = 1 ⇐⇒ f(x) ≥ b.

The corollary from Theorem 3.4 in Section 3 yields gl(x) ∈ L(X) for all
l ∈ N. Now Lebesgue’s convergence theorem implies

χ(x) := lim
l→∞

gl(x) =

{
1 , x ∈ X with f(x) ≥ b

0 , x ∈ X with f(x) < b
∈ L(X),

and consequently {x ∈ X : f(x) ≥ b} is measurable for all b ∈ R. q.e.d.

Corollary: Each function f ∈ L(X) is measurable.

Proof: We take f ∈ L(X), and see that N := {x ∈ X : |f(x)| = +∞} is a
null-set. Then we define

f̃(x) :=

{
f(x) , x ∈ X \N
0 , x ∈ N

∈ L(X).

According to Definition 4.1, the function f is measurable if and only if f̃ is
measurable. We now apply the criterion of Theorem 4.3 on f̃ . When −∞ <
a < b < +∞ is arbitrary, we immediately infer

f̃−∞,b(x) = min
(
f̃(x), b

)
=

1

2

(
f̃(x) + b

)
− 1

2
| f̃(x)− b| ∈ L(X),
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because f̃ ∈ L(X). Analogously, we deduce ga,+∞ ∈ L(X) for g ∈ L(X).
Taking the following relation

f̃a,b =
(
f̃−∞,b

)
a,+∞

into account, we infer f̃a,b ∈ L(X). q.e.d.

In the next theorem there will appear an adequate notion of convergence for
measurable functions.

Theorem 4.4. (a.e.-Convergence)
Let {fk}k=1,2,... denote a sequence of measurable functions with the property
fk(x) → f(x) a.e. in X. Then f is measurable.

Proof: Let us take a, b ∈ R with a < b. Then the functions (fk)a,b belong to
L(X) for all k ∈ N, and we have

|(fk)a,b(x)| ≤ max(| a|, | b|) and (fk)a,b → fa,b a.e. in X.

The general convergence theorem of Lebesgue yields fa,b ∈ L(X). Due to
Theorem 4.3, the function f is measurable.

q.e.d.

Theorem 4.5. (Combination of measurable functions)
We have the following statements:

a) Linear Combination: When f , g are measurable and α, β ∈ R are chosen,
the four functions αf + βg, max(f, g), min(f, g), | f | are measurable as
well.

b) Nonlinear Combination: Let the κ ∈ N finite-valued measurable func-
tions f1, . . . , fκ be given, and furthermore the continuous function φ =
φ(y1, . . . , yκ) ∈ C0(Rκ,R). Then the composed function

g(x) := φ
(
f1(x), . . . , fκ(x)

)
, x ∈ X

is measurable.

Proof:

a) According to Theorem 4.3, we have f−p,p , g−p,p ∈ L(X) for all p ∈ R.
When we note that f = lim

p→∞
f−p,p holds true, Theorem 4.4 combined

with the linearity of the space L(X) imply that the function

αf + βg = lim
p→+∞

(αf−p,p + βg−p,p)

is measurable for all α, β ∈ R. In the same way, we see the measurability
of the functions
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max(f, g) = lim
p→+∞

max(f−p,p, g−p,p)

and
min(f, g) = lim

p→+∞
min(f−p,p, g−p,p),

as well as |f | - due to |f | = max(f,−f).
b) The functions (fk)−p,p ∈ L(X) are bounded for all p > 0 and k = 1, . . . , κ.

According to Theorem 3.4 in Section 3 and Theorem 4.3 in Section 4, the

function φ
(
(f1)−p,p(x), . . . , (fκ)−p,p(x)

)
belongs to the class L(X). Fur-

thermore, we have the limit relation

g(x) = lim
p→+∞

φ
(
(f1)−p,p(x), . . . , (fκ)−p,p(x)

)

for all x ∈ X, and Theorem 4.4 finally yields the measurablity of g.q.e.d.

Now we define improper Lebesgue integrals.

Definition 4.6. We set for a nonnegative measurable function f the integral

I(f) := lim
N→+∞

I(f0,N ) ∈ [ 0,+∞].

Theorem 4.7. A measurable function f belongs to the class L(X) if and only
if the following limit

lim
a→−∞
b→+∞

I(fa,b) ∈ R

exists. In this case we have the identity

I(f) = lim
a→−∞
b→+∞

I(fa,b) = I(f+)− I(f−).

Therefore, a measurable function f belongs to L(X) if and only if I(f+) < +∞
as well as I(f−) < +∞ are valid.

Proof: On account of fa,b = (f+)0,b−(f−)0,−a for all −∞ < a < 0 < b < +∞
we see

lim
a→−∞
b→+∞

I(fa,b) exists in R ⇐⇒ lim
N→+∞

I
(
(f±)0,N

)
exist in R.

Consequently, it suffices to show:

f ∈ L(X) ⇐⇒ lim
N→+∞

I
(
(f±)0,N

)
exist in R.

‘=⇒’ : Let us take f ∈ L(X). Then we infer f± ∈ L(X), and B.Levi’s theorem
on monotone convergence yields
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lim
N→+∞

I
(
(f±)0,N

)
= I(f±) ∈ R.

‘⇐=’ : If
lim

N→+∞
I
(
(f±)0,N

)

in R exist, the theorem of B.Levi implies f± ∈ L(X), and together with the
identity f = f+ − f− the property f ∈ L(X) is deduced.

q.e.d.

Theorem 4.8. Let f : X → R denote a measurable function satisfying

| f(x)| ≤ F (x), x ∈ X,

with a dominating function F ∈ L(X). Then we have

f ∈ L(X) and I(| f |) ≤ I(F ).

Proof: According to Theorem 4.5, the functions f+ and f− are measurable,
and we see 0 ≤ f± ≤ F . Consequently, the estimates 0 ≤ (f±)0,N ≤ F and
(f±)0,N ∈ L(X) are correct. Furthermore, we have

I
(
(f±)0,N

)
≤ I(F ) < +∞ for all N > 0.

B.Levi’s theorem now yields I(f±) < +∞ and f± ∈ L(X), which implies
f ∈ L(X). On account of the monotonicity of Lebesgue’s integral, the estimate
I(| f |) ≤ I(F ) follows from the inequality | f(x)| ≤ F (x).

q.e.d.

Theorem 4.9. Let {fl}l=1,2,... denote a sequence of nonnegative measurable
functions satisfying fl(x) ↑ f(x), x ∈ X. Then the function f is measurable,
and we have

I(f) = lim
l→∞

I(fl).

Proof: From Theorem 4.4 we infer the measurability of f . According to
Definition 4.6, two measurable functions 0 ≤ g ≤ h satisfy the inequality
I(g) ≤ I(h). Therefore, {I(fl)}l=1,2,... ∈ [ 0,+∞] represents a monotonically
nondecreasing sequence, such that I(f) ≥ I(fl) for all l ∈ N holds true. We
distinguish between the following two cases:

a) Let us consider
lim
l→∞

I(fl) ≤ c < +∞.

Then we have I(fl) ≤ c, which implies fl ∈ L(X) due to Theorem 4.7.
B.Levi’s theorem now yields f ∈ L(X) and

I(f) = lim
l→∞

I(fl).
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b) Let us consider
lim
l→∞

I(fl) = +∞.

Then we note that I(f) ≥ I(fl) for all l ∈ N holds true, and we obtain
immediately

I(f) = +∞ = lim
l→∞

I(fl).

q.e.d.

Definition 4.10. We name a function g : X → R simple if there exist finitely
many mutually disjoint sets A1, . . . , An∗ ∈ S(X) and numbers η1, . . . , ηn∗ ∈ R

with n∗ ∈ N, such that the following representation holds true in X:

g =

n∗∑
k=1

ηk χAk
.

Remark: Evidently, we then have g ∈ L(X) and

I(g) =

n∗∑
k=1

ηk μ(Ak).

Let us take an arbitrary decomposition Z : −∞ < y0 < y1 < . . . < yn∗ < +∞
in the real line R, with the intervals Ik := [ yk−1, yk) for k = 1, . . . , n∗. Fur-
thermore, we consider an arbitrary measurable function f : X → R and select
arbitrary intermediate values ηk ∈ Ik for k = 1, . . . , n∗. Now we attribute the
following simple function to the data f,Z and η, namely

f (Z,η) :=

n∗∑
k=1

ηk χAk

with Ak := {x ∈ X : f(x) ∈ Ik} for k = 1, . . . , n∗. Then we observe

I
(
f (Z,η)

)
=

n∗∑
k=1

ηk μ(Ak).

We denote by a canonical sequence of decompositions such a sequence of de-
compositions, whose start- and end-points tend towards −∞ and +∞, respec-
tively, and whose maximal interval-lengths tend to 0.

Theorem 4.11. When we consider f : X → R ∈ L(X), each canonical se-
quence of decompositions {Z(p)}p=1,2,... in R and each choice of intermediate
values {η(p)}p=1,2,... gives us the asymptotic identity

I(f) = lim
p→∞

I
(
f (Z(p),η(p))

)
= lim

p→∞

n(p)∑
k=1

η
(p)
k μ(A

(p)
k ).
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Remark: Therefore, Lebesgue’s integral can be approximated by the Lebesgue
sums as above, and the notation

I(f) =

∫

X

f(x) dμ(x)

is justified. However, the Riemannian intermediate sums can be evaluated nu-
merically much better than the Lebesgue sums.

Proof of Theorem 4.11: Let us consider the function f ∈ L(X), a decompo-
sition Z with its fineness δ(Z) = max{(yk − yk−1) : k = 1, . . . , n∗}, and
arbitrary intermediate values {ηk}k=1,...,n∗ . Then we infer the estimate

|f (Z,η)(x)| ≤ δ(Z) + |f(x)| for all x ∈ X.

When {Z(p)}p=1,2,... describes a canonical sequence of decompositions and
{η(p)}p=1,2,... denote arbitrary intermediate values, we observe the limit rela-
tion

f (Z(p),η(p))(x) → f(x) a.e. for p → ∞,

which is valid for all x ∈ X with |f(x)| �= +∞. Now Lebesgue’s convergence
theorem yields

I(f) = lim
p→∞

I
(
f (Z(p),η(p))

)
= lim

p→∞

n(p)∑
k=1

η
(p)
k μ(A

(p)
k ).

q.e.d.

Now we shall present a selection theorem related to a.e.-convergence.

Theorem 4.12. (Lebesgue’s selection theorem)
Let {fk}k=1,2,... denote a sequence in L(X) satisfying

lim
k,l→∞

I(| fk − fl|) = 0.

Then a null-set N ⊂ X as well as a monotonically increasing subsequence
{km}m=1,2,... exist, such that the sequence of functions {fkm(x)}m=1,2,... con-
verges for all points x ∈ X \N and their limit fulfills

lim
m→∞

fkm(x) =: f(x) ∈ L(X).

Therefore, we can select an a.e. convergent subsequence from a Cauchy se-
quence with respect to the integral I.

Proof: On the null-set

N1 :=

∞⋃
k=1

{
x ∈ X : |fk(x)| = +∞

}
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we modify the functions fk and obtain

f̃k(x) :=

{
fk(x) , x ∈ X \N1

0 , x ∈ N1

.

Without loss of generality, we can assume the functions {fk}k=1,2,... to be
finite-valued. On account of

lim
p,l→∞

I(| fp − fl|) = 0,

we find a subsequence k1 < k2 < · · · with the property

I(| fp − fl|) ≤
1

2m
for all p, l ≥ km, m = 1, 2, . . . .

In particular, we infer the following estimates:

I(| fkm+1 − fkm |) ≤ 1

2m
, m = 1, 2, . . .

and
∞∑

m=1

I(| fkm+1 − fkm |) ≤ 1.

B.Levi’s theorem tells us that the function

g(x) :=

∞∑
m=1

| fkm+1(x)− fkm(x)|, x ∈ X

belongs to L(X), and N2 := {x ∈ X \ N1 : | g(x)| = +∞} represents a
null-set. Therefore, the series

∞∑
m=1

| fkm+1(x)− fkm(x)| for all x ∈ X \N with N := N1 ∪N2

converges, as well as the series

∞∑
m=1

(
fkm+1(x)− fkm(x)

)
.

Consequently, the limit

lim
m→∞

(
fkm(x)− fk1(x)

)
=: f(x)− fk1(x)

exists for all points x ∈ X \N , and the sequence {fkm}m=1,2,... converges on
X \ N towards f . We note that g ∈ L(X) and | fkm(x) − fk1(x)| ≤ | g(x)|
are valid, and Lebesgue’s convergence theorem is applicable. Finally, we infer
f ∈ L(X) and the relation

I(f) = lim
m→∞

I(fkm).

q.e.d.
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Proposition 4.13. (Approximation in the integral)
Let the function f ∈ L(X) be given. To each quantity ε > 0, we then find a
function fε ∈ M(X) satisfying

I(| f − fε|) < ε.

Proof: Since f ∈ L(X) holds true, Proposition 2.9 from Section 2 provides two
functions g ∈ −V and h ∈ V such that

g(x) ≤ f(x) ≤ h(x), x ∈ X, and I(h)− I(g) <
ε

2
.

Recalling the definition of the space V (X), we find a function h′(x) ∈ M(X)
satisfying

h′(x) ≤ h(x), x ∈ X, and I(h)− I(h′) <
ε

2
.

This implies

| f − h′| ≤ | f − h|+ |h− h′| ≤ (h− g) + (h− h′),

and the monotonicity and linearity of the integral yield

I(| f − h′|) ≤ (I(h)− I(g)) + (I(h)− I(h′)) <
ε

2
+

ε

2
= ε.

With fε := h′ we obtain the desired function. q.e.d.

Theorem 4.14. (a.e.-Approximation)
Let f denote a measurable function satisfying | f(x)| ≤ c, x ∈ X with the con-
stant c ∈ (0,+∞). Then we have a sequence {fk}k=1,2,... ⊂ M(X) satisfying
| fk(x)| ≤ c, x ∈ X for all k ∈ N, such that fk(x) → f(x) a.e. in X holds
true.

Proof: Since f is measurable and dominated by the constant function c ∈
L(X), we infer f ∈ L(X) from Theorem 4.8. Now Proposition 4.13 allows
us to find a sequence {gk(x)}k=1,2,... ⊂ M(X) satisfying I(| f − gk|) → 0 for
k → ∞. We set

hk(x) := (gk)−c,c(x)

and observe hk ∈ M(X) as well as |hk(x)| ≤ c for all x ∈ X and all k ∈ N.
We note that

|hk − f | = | (gk)−c,c − f−c,c| = | (gk − f)−c,c| ≤ | gk − f |

is correct and see

lim
k→∞

I(|hk − f |) ≤ lim
k→∞

I(| gk − f |) = 0.
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On account of the relation

I(|hk − hl|) ≤ I(|hk − f |) + I(| f − hl|) −→ 0 for k, l → ∞,

Lebesgue’s selection theorem yields a null-set N1 ⊂ X and a monotonically
increasing subsequence {km}m=1,2,... such that the following limit exists:

h(x) := lim
m→∞

hkm(x) for all x ∈ X \N1.

We extend h onto the null-set by the prescription h(x) := 0 for all x ∈ N1.
Now we conclude

lim
m→∞

|hkm(x)− f(x)| = |h(x)− f(x)| in X \N1.

The theorem of Fatou yields

I(|h− f |) ≤ lim
m→∞

I(|hkm − f |) = 0.

Consequently, we find a null-set N2 ⊂ X such that

f(x) = h(x) for all x ∈ X \N2

holds true. When we define N := N1∪N2 and fm(x) := hkm(x), we obviously
infer fm(x) ∈ M(X), |fm(x)| ≤ c for all x ∈ X and all m ∈ N, and the
following limit relation:

lim
m→∞

fm(x) = lim
m→∞

hkm

x �∈N1
= h(x)

x �∈N2
= f(x) for all x ∈ X \N.

Consequently, we obtain fm(x) → f(x) for all x ∈ X \N . q.e.d.

Uniform convergence and a.e.-convergence are connected by the following re-
sult.

Theorem 4.15. (Egorov)
Let the measurable set B ⊂ X as well as the measurable a.e.-finite-valued
functions f : B → R and fk : B → R for all k ∈ N be given, with the
convergence property fk(x) → f(x) a.e. in B. To each quantity δ > 0, we
then find a closed set A ⊂ B satisfying μ(B \ A) < δ such that the limit
relation, fk(x) → f(x) uniformly on A, holds true.

Proof: We consider the null-set

N :=
{
x ∈ B : fk(x) → f(x) is not satisfied

}

=

⎧
⎨
⎩x ∈ B :

To m ∈ N and for all l ∈ N exists

an index k ≥ l with | fk(x)− f(x)| > 1

m

⎫
⎬
⎭

=

∞⋃
m=1

∞⋂
l=1

⋃
k≥l

{
x ∈ B : |fk(x)− f(x)| > 1

m

}
=

∞⋃
m=1

Bm,
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where

Bm :=

∞⋂
l=1

⋃
k≥l

{
x ∈ B : |fk(x)− f(x)| > 1

m

}

has been defined. We observe Bm ⊂ N and consequently μ(Bm) = 0 for all
m ∈ N. We note that

Bm,l :=
⋃
k≥l

{
x ∈ B : |fk(x)− f(x)| > 1

m

}

holds true and infer Bm,l ⊃ Bm,l+1 for all m, l ∈ N. From the relation

Bm =

∞⋂
l=1

Bm,l

we then obtain
0 = μ(Bm) = lim

l→∞
μ(Bm,l).

Consequently, to each index m ∈ N we find an index lm ∈ N with lm < lm+1

such that

μ

⎛
⎝ ⋃

k≥lm

{
x ∈ B : |fk(x)− f(x)| > 1

m

}⎞
⎠ = μ(Bm,lm) <

δ

2m+1

holds true. We define

B̂m := Bm,lm and B̂ :=
∞⋃

m=1

B̂m.

Evidently, the set B̂ is measurable and the estimate

μ(B̂) ≤
∞∑

m=1

μ(B̂m) ≤ δ

2

is fulfilled. When we still define Â := B \ B̂, we comprehend

Â = B ∩
( ∞⋃

m=1

B̂m

)c

= B ∩
( ∞⋂

m=1

B̂c
m

)

=

∞⋂
m=1

{
x ∈ B : |fk(x)− f(x)| ≤ 1

m
for all k ≥ lm

}
.

For all points x ∈ Â, we find an index lm ∈ N to a given m ∈ N such that

| fk(x)− f(x)| ≤ 1

m
for all k ≥ lm
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holds true. Consequently, the sequence {fk| ̂A}k=1,2,... converges uniformly to-
wards f |

̂A. According to Theorem 3.14 in Section 3, we now choose a closed

set A ⊂ Â with

μ(Â \A) < δ

2
.

We note that A ⊂ Â holds true, and the sequence of functions {fk |A }k=1,2,...

converges uniformly towards f |A . When we additionally observe B \ Â = B̂,
we finally see

μ(B \A) = μ(B \ Â) + μ(Â \A) < δ

2
+

δ

2
= δ.

q.e.d.

The interrelation between measurable and continuous functions is revealed by
the following result.

Theorem 4.16. (Lusin)
Let f : B → R denote a measurable function on the measurable set B ⊂ X.
To each quantity δ > 0, we then find a closed set A ⊂ X with the property
μ(B \A) < δ such that the restriction f |A : A → R is continuous.

Proof: For j = 1, 2, . . . we consider the truncated functions

fj(x) :=

⎧
⎪⎨
⎪⎩

−j , f(x) ∈ [−∞,−j]

f(x) , f(x) ∈ [−j,+j]

+j , f(x) ∈ [+j,+∞]

.

All functions fj : B → R are measurable, and we infer

| fj(x)| ≤ j for all x ∈ B.

We utilize Theorem 4.14 and the property M(X) ⊂ C0(X): For each index
j ∈ N, there exists a sequence of continuous functions fj,k : B → R satisfying

lim
k→∞

fj,k(x) = fj(x) a.e. in B.

Via Egorov’s theorem, we find a closed set Aj ⊂ B to each j = 1, 2, . . .
satisfying

μ(B \Aj) <
δ

2j+1
,

such that the sequence of functions {fj,k|Aj}k=1,2,... converges uniformly to-
wards the function fj |Aj . The Weierstraß convergence theorem reveals conti-
nuity of the functions fj |Aj for all j ∈ N. The set

Â :=
∞⋂
j=1

Aj ⊂ B
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is closed, and we arrive at the estimate

μ(B \ Â) ≤
∞∑
j=1

μ(B \Aj) <

∞∑
j=1

δ

2j+1
=

δ

2
.

Now the functions fj : Â → R are continuous for all j ∈ N, and we recall

f(x) = lim
j→∞

fj(x) in Â.

Egorov’s theorem supplies a closed set A ⊂ Â with

μ(Â \A) < δ

2
,

such that fj converges uniformly on A towards f . Consequently, the function
f |A is continuous, and we estimate as follows:

μ(B \A) = μ(B \ Â) + μ(Â \A) < δ

2
+

δ

2
= δ.

q.e.d.

Remark: We have learned the Three principles of Littlewood in Lebesgue’s the-
ory of measure and integration. J.E.Littlewood: “There are three principles
roughly expressible in the following terms: Every measurable set is nearly a
finite union of intervals; every measurable function is nearly continuous; every
a.e. convergent sequence of measurable functions is nearly uniformly conver-
gent.”

5 Riemann’s and Lebesgue’s Integral on Rectangles

With d ∈ (0,+∞) being given, we consider the rectangle

Q :=
{
x = (x1, . . . , xn) ∈ R

n : |xj | ≤ d , j = 1, . . . , n
}
, where n ∈ N.

In our main example from Section 1, we choose X = Ω :=
◦
Q and extend the

improper Riemannian integral

I : M(X) −→ R, with f 
→ I(f) :=

∫

Ω

f(x) dx

from the space

M(X) :=

⎧
⎨
⎩f ∈ C0(Ω) :

∫

Ω

| f(x)| dx < +∞

⎫
⎬
⎭

onto the space L(X) ⊃ M(X) and obtain Lebesgue’s integral I : L(X) → R.
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Theorem 5.1. For the set E ⊂ Ω being given, the following statements are
equivalent:

(1) E is a null-set.
(2) To each quantity ε > 0, we find with {Qk}k=1,2,... ⊂ Ω denumerably many

rectangles satisfying E ⊂
∞⋃
k=1

Qk and

∞∑
k=1

|Qk| < ε.

Proof:

(1)=⇒(2): Since E represents a null-set, Proposition 3.15 from Section 3
provides a function h ∈ V (X) with h ≥ 0 on X, h = +∞ on E, and
I(h) < +∞. With the constant c ∈ [1,+∞) chosen arbitrarily, we con-
sider the open - and consequently measurable - set

Ec :=
{
x ∈ Ω : h(x) > c

}
⊃ E.

Then we observe

μ(Ec) = I(χEc) =
1

c
I(c χEc) ≤

1

c
I(h) < ε

for c > I(h)
ε . The open set Ec can be represented as a denumerable union of

closed rectangles Qk which intersect, at most, in boundary points. There-
fore, we deduce

E ⊂ Ec =
∞⋃
k=1

Qk.

We note that the boundary points of a rectangle constitute a null-set and
see

∞∑
k=1

|Qk| = μ(Ec) < ε.

(2)=⇒(1): For each index k ∈ N we find a function hk ∈ C0
0 (Ω) satisfying

hk(x) =

{
1 , x ∈ Qk

∈ [0, 1] , x ∈ R
n \Qk

and I(hk) ≤ 2|Qk|.

The sequence {gl(x)}l=1,2,..., defined by gl(x) :=
∑l

k=1 hk(x), converges
monotonically and belongs to M(X). This implies

h(x) :=
∞∑
k=1

hk(x) ∈ V (X).

Furthermore, we have χE(x) ≤ h(x), x ∈ R
n and estimate

0 ≤ I−(χE) ≤ I+(χE) ≤ I(h) =

∞∑
k=1

I(hk) ≤ 2

∞∑
k=1

|Qk| < 2ε

for all ε > 0. Therefore, E is a null-set. q.e.d.
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Riemann’s and Lebesgue’s integral are compared as follows:

Theorem 5.2. A bounded function f : Ω → R is Riemann integrable if and
only if the set K, containing all points of discontinuities, constitutes a null-
set. In this case the function f belongs to the class L(Ω), and we have the
identity

I(f) =

∫

Ω

f(x) dx =

∫

Q

f(x) dx;

this means that Riemann’s integral of f coincides with Lebesgue’s integral.
Here we have to extend f to 0 onto the whole space R

n.

Proof: We consider the functions

m+(x) := lim
ε→0+

sup
|y−x|<ε

f(y) and m−(x) := lim
ε→0+

inf
|y−x|<ε

f(y) , x ∈ R
n.

We have the identity m+(x) = m−(x) if and only if f is continuous at the
point x. Let

Z : Q =

N⋃
k=1

Qk

denote a canonical decomposition of Q into N closed rectangles Qk. We define
the simple functions

m+
k := sup

Qk

f(y), m−
k := inf

Qk

f(y) and f±
Z (x) :=

N∑
k=1

m±
k χQk

(x) ∈ L(X).

We observe the identity

I(f±
Z ) =

N∑
k=1

m±
k |Qk|.

Therefore, Lebesgue’s integral of the functions f±
Z coincides with the Rieman-

nian upper and lower sums, respectively, of the function f - associated with
the decomposition Z. When we denote by

∂Z :=

N⋃
k=1

∂Qk

the set of the boundary points for the decomposition Z, then ∂Z constitutes
a null-set in R

n. Now we observe an arbitrary canonical sequence of decom-
positions {Zp}p=1,2,... for the rectangle Q, such that its fineness tends to 0.
We obtain the limit relation

lim
p→∞

f±
Zp

(x) = m±(x) for all x ∈ Ω \N,
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where

N =

∞⋃
p=1

∂Zp ⊂ Q

is a null-set. Now we select an adequate canonical sequence of decompositions
such that

∫

Q

f(x) dx = lim
p→∞

I(f−
Zp

) and

∫

Q

f(x) dx = lim
p→∞

I(f+
Zp

).

Lebesgue’s convergence theorem implies

∫

Q

f(x) dx = I(m−) and

∫

Q

f(x) dx = I(m+).

Now we note that the function f : Ω → R is Riemann integrable if and only
if

I(m+) =

∫

Q

f(x) dx =

∫

Q

f(x) dx = I(m−) or equivalently I(m+−m−) = 0

holds true. Due to m+ ≥ m−, this is exactly the case if m+ = m− a.e. in Q
holds true, or equivalently if f is continuous a.e. on Q.

q.e.d.

We intend to prove Fubini’s theorem interchanging the order of integration for
Lebesgue integrable functions. Here we consider two open bounded rectangles
Q ⊂ R

p and R ⊂ R
q and begin with the following

Proposition 5.3. Let f = f(x, y) : Q × R → R ∈ V (Q × R) be given. Then
the function f(x, y) , y ∈ R belongs to the class V (R) for each x ∈ Q, and the
function

ϕ(x) :=

∫

R

f(x, y) dy

belongs to the class V (Q). Furthermore, we have

∫∫

Q×R

f(x, y) dxdy =

∫

Q

ϕ(x) dx.

Proof: Since f ∈ V (Q×R) holds true, we find a sequence {fn(x, y)}n=1,2,... ⊂
C0

0 (Q × R) satisfying fn(x, y) ↑ f(x, y). For each x ∈ Q, the functions
fn(x, y), y ∈ R belong to the class C0

0 (R) and consequently f(x, y) to V (R).
When we define

ϕn(x) :=

∫

R

fn(x, y) dy, x ∈ Q,
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we infer ϕn ∈ C0
0 (Q) and ϕn(x) ↑ ϕ(x) in Q. This implies

∫∫

Q×R

f(x, y) dxdy := lim
n→∞

∫∫

Q×R

fn(x, y) dxdy = lim
n→∞

∫

Q

ϕn(x) dx =

∫

Q

ϕ(x) dx.

q.e.d.

Proposition 5.4. Let N denote a null-set in Q×R and define

Nx :=
{
y ∈ R : (x, y) ∈ N

}
.

Then we have a null-set E ⊂ Q, such that Nx constitutes a null-set in R for
all points x ∈ Q \ E.

Proof: Since N is a null-set, we find a function h(x, y) ∈ V (Q×R) with h ≥ 0
on Q×R and h(x, y) = +∞ for all (x, y) ∈ N , such that the property

+∞ >

∫∫

Q×R

h(x, y) dxdy =

∫

Q

ϕ(x) dx with ϕ(x) :=

∫

R

h(x, y) dy ≥ 0

holds true - due to Proposition 5.3. We note that ϕ ∈ V (Q) and

∫

Q

ϕ(x) dx < +∞

is satisfied and deduce ϕ ∈ L(Q). Furthermore, we find a null-set E ⊂ Q with
ϕ(x) < +∞ for all x ∈ Q \ E. On account of h = +∞ on N , the set Nx is a
null-set for all x ∈ Q \ E.

q.e.d.

Theorem 5.5. (Fubini) Let f(x, y) : Q× R → [0,+∞] represent a measur-
able function. Then we have a null-set E ⊂ Q, such that the function f(x, y),
y ∈ R is measurable for all points x ∈ Q \ E. When we define

ϕ(x) :=

⎧
⎪⎪⎨
⎪⎪⎩

∫

R

f(x, y) dy , x ∈ Q \ E

0 , x ∈ E

,

the function ϕ is nonnegative and measurable. Furthermore, we have Fubini’s
identity ∫∫

Q×R

f(x, y) dxdy =

∫

Q

ϕ(x) dx.
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Proof: For n = 1, 2, . . . we consider the functions

fn(x, y) :=

{
f(x, y), if f(x, y) ∈ [0, n]

n, otherwise

with fn ∈ L(Q×R). Applying Theorem 4.14 from Section 4, we find for each
number n ∈ N a null-set Nn ⊂ Q×R and a sequence of functions

fn,m(x, y) ∈ C0
0 (Q×R) with | fn,m| ≤ n on Q×R,

such that

lim
m→∞

fn,m(x, y) = fn(x, y) for all (x, y) ∈ (Q×R) \Nn.

Each fixed number n ∈ N admits a null-set En ⊂ Q, such that

{y ∈ R : (x, y) ∈ Nn} ⊂ R

represents a null-set for all points x ∈ Q \ En. Now Lebesgue’s convergence
theorem yields ∫∫

Q×R

fn(x, y) dxdy

= lim
m→∞

∫∫

Q×R

fn,m(x, y) dxdy = lim
m→∞

∫

Q

⎛
⎝
∫

R

fn,m(x, y) dy

⎞
⎠ dx

= lim
m→∞

∫

Q\En

⎛
⎝
∫

R

fn,m(x, y) dy

⎞
⎠ dx =

∫

Q\En

⎛
⎜⎝
∫

R

fn(x, y)︸ ︷︷ ︸
∈L(R)

dy

⎞
⎟⎠ dx.

In addition,

E :=

∞⋃
n=1

En ⊂ Q

constitutes a null-set, and we see

∫∫

Q×R

fn(x, y) dxdy =

∫

Q\E

⎛
⎝
∫

R

fn(x, y) dy

⎞
⎠ dx.

Finally, Theorem 4.9 from Section 4 yields

∫∫

Q×R

f(x, y) dxdy = lim
n→∞

⎛
⎝
∫∫

Q×R

fn(x, y) dxdy

⎞
⎠

= lim
n→∞

∫

Q\E

⎛
⎝
∫

R

fn(x, y) dy

⎞
⎠ dx =

∫

Q\E

⎛
⎝
∫

R

f(x, y) dy

⎞
⎠ dx =

∫

Q

ϕ(x) dx.

q.e.d.
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6 Banach and Hilbert Spaces

We owe the basic concepts for linear spaces, which appear in the next sections,
to the mathematicians D.Hilbert and S. Banach. Here we can equally consider
real and complex vector spaces.

Definition 6.1. Let M denote a real (or complex) linear space, which means

f, g ∈ M, α, β ∈ R (orC) =⇒ αf + βg ∈ M.

Then we name M a normed real (or complex) linear space and equivalently
a normed vector space if we have a function

‖ · ‖ : M −→ [0,+∞)

with the following properties:

(N1) ‖f‖ = 0 ⇐⇒ f = 0;
(N2) Triangle inequality: ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ M;
(N3) Homogeneity: ‖λf‖ = |λ|‖f‖ for all f ∈ M, λ ∈ R (orC).

The function ‖ · ‖ is called the norm on M.

Remark: From the axioms (N1), (N2), and (N3) we immediately infer the
inequality

‖f − g‖ ≥
∣∣∣ ‖f‖ − ‖g‖

∣∣∣ for all f, g ∈ M,

because we have

‖f‖ − ‖g‖ = ‖f − g + g‖ − ‖g‖ ≤ ‖f − g‖+ ‖g‖ − ‖g‖ = ‖f − g‖,

which yields our statement by interchanging f and g.

Definition 6.2. The normed vector space M is named complete, if each
Cauchy sequence in M converges. This means, to each sequence {fn} ⊂
M satisfying limk,l→∞ ‖fk − fl‖ = 0 we find an element f ∈ M with
limk→∞ ‖f − fk‖ = 0.

Definition 6.3. A complete normed vector space is named a Banach space.

Example 6.4. Choosing the compact set K ⊂ R
n, we endow the space B :=

C0(K,R) with the norm

‖f‖ := sup
x∈K

|f(x)| = max
x∈K

|f(x)|, f ∈ B,

and thus obtain a Banach space. This norm generates the uniform convergence
- a concept already introduced by Weierstraß.
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Definition 6.5. A complex linear space H′ is named pre-Hilbert-space if an
inner product is defined in H′; more precisely, we have a function

(·, ·) : H′ ×H′ −→ C

with the following properties:

(H1) (f + g, h) = (f, h) + (g, h) for all f, g, h ∈ H′;
(H2) (f, λg) = λ(f, g) for all f, g ∈ H′, λ ∈ C;
(H3) Hermitian character: (f, g) = (g, f) for all f, g ∈ H′;
(H4) Positive-definite character: (f, f) > 0, if f �= 0.

Remarks:

1. We infer the following calculus rule from the axioms (H1) - (H4) immedi-
ately:
(H5) For all f, g, h ∈ H′ we have

(f, g + h) = (g + h, f) = (g, f) + (h, f) = (f, g) + (f, h).

(H6) Furthermore, the relation

(λf, g) = λ(f, g) for all f, g ∈ H′, λ ∈ C

is satisfied.
Therefore, the inner product is antilinear in its first and linear in its second
argument.

2. In a real linear space H′, an inner product is characterized by the prop-
erties (H1) - (H4) as well, where (H3) then reduces to the symmetry
condition

(f, g) = (g, f) for all f, g ∈ H′.

Example 6.6. Let us consider the numbers −∞ < a < b < +∞ and the space
H′ := C0([a, b],C) of continuous functions. Via the inner product

(f, g) :=

b∫

a

f(x)g(x) dx,

the set H′ becomes a pre-Hilbert-space.

Theorem 6.7. Let H′ represent a pre-Hilbert-space. With the aid of the norm

‖f‖ :=
√
(f, f),

the set H′ becomes a normed vector space.

Proof:
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1. At first, we show that the following inequality is valid in H′ , namely

|(g, f)| = |(f, g)| ≤ ‖f‖‖g‖ for all f, g ∈ H′.

With f, g ∈ H′, we associate a quadratic form in λ, μ ∈ C as follows:

0 ≤ Q(λ, μ) := (λf − μg, λf − μg)

= |λ|2(f, f)− λμ(g, f)− λμ(f, g) + |μ|2(g, g).

When (g, f) = (f, g) = 0 - in particular f = 0 or g = 0 - holds true, this
inequality is evident. In the other case, we choose

λ = 1, μ =
‖f‖2
(g, f)

.

The nonnegative character of Q - easily seen from the property (H4) -
implies the inequality

0 ≤ −‖f‖2 + ‖f‖4‖g‖2
|(f, g)|2

and finally by rearrangement

|(f, g)| ≤ ‖f‖ ‖g‖ for all f, g ∈ H′.

2. Now we show that ‖f‖ :=
√

(f, f) satisfies the norm conditions (N1)
- (N3). We infer for all elements f, g ∈ H′ and λ ∈ C the following
properties:
i.) ‖f‖ ≥ 0, and (H4) tells us that ‖f‖ = 0 is fulfilled if and only if f = 0

is correct;

ii.) ‖λf‖ =
√
(λf, λf) =

√
λλ(f, f) = |λ| ‖f‖;

iii.)
‖f + g‖2 = (f + g, f + g) = (f, f) + 2Re(f, g) + (g, g)

≤ ‖f‖2 + 2|(f, g)|+ ‖g‖2

≤ ‖f‖2 + 2‖f‖ ‖g‖+ ‖g‖2

= (‖f‖+ ‖g‖)2,
and consequently

‖f + g‖ ≤ ‖f‖+ ‖g‖.
Therefore, ‖ · ‖ gives us a norm on H′. q.e.d.

Definition 6.8. A pre-Hilbert-space H is named Hilbert space, if H endowed
with the norm

‖f‖ :=
√
(f, f), f ∈ H

is complete and consequently a Banach space.
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Remarks:

1. We prove that the inner product (f, g) is continuous in H. Here we note
the following estimate for the elements f, g, fn, gn ∈ H:

|(fn, gn)− (f, g)| = |(fn, gn)− (fn, g) + (fn, g)− (f, g)|

≤ |(fn, gn)− (fn, g)|+ |(fn, g)− (f, g)|

≤ |(fn, gn − g)|+ |(fn − f, g)|

≤ ‖fn‖ ‖gn − g‖+ ‖fn − f‖ ‖g‖.

Therefore, when the limit relations fn → f and gn → g for n → ∞ in H
hold true, we infer

lim
n→∞

(fn, gn) = (f, g).

We observe that the completeness of the space H is not needed for the
proof of the continuity of the inner product.

2. The pre-Hilbert-space from Example 6.6 is not complete and consequently
does not represent a Hilbert space.

3. In Section 3 from Chapter 8, we shall embed - parallel to the transition
from rational numbers to real numbers - each pre-Hilbert-space H′ into a
Hilbert space H. This means H′ ⊂ H and H′ is dense in H.

4. Hilbert spaces represent particular Banach spaces. The existence of an
inner product in H allows us to introduce the notion of orthogonality:
Two elements f, g ∈ H are named orthogonal to each other if (f, g) = 0
holds true.

Let M ⊂ H denote an arbitrary linear subspace. We define the orthogonal
space to M via

M⊥ :=
{
g ∈ H : (g, f) = 0 for all f ∈ M

}
.

We see immediately that M⊥ is a linear subspace of H, and the continuity of
the inner product justifies the following

Remark: For an arbitrary linear subspace M ⊂ H, its associate orthogonal
space M⊥ is closed. More precisely, each sequence

{fn} ⊂ M⊥ in M⊥ satisfying fn → f for n → ∞

fulfills f ∈ M⊥.

Proof: Since {fn} ⊂ M⊥ holds true, we infer (fn, g) = 0 for all n ∈ N and
g ∈ M. This implies

0 = lim
n→∞

(fn, g) = (f, g) for all g ∈ M.
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q.e.d.

Fundamentally important is the following

Theorem 6.9. (Orthogonal projection)
Let M ⊂ H denote a closed linear subspace of the Hilbert space H. Then each
element f ∈ H possesses the following representation:

f = g + h with g ∈ M and h ∈ M⊥.

Here the elements g and h are uniquely determined.

This theorem says that the Hilbert space H can be decomposed into two
orthogonal subspaces M and M⊥ such that H = M⊕M⊥ holds true.
Proof:

1. At first, we show the uniqueness. Let us consider an element f ∈ H with

f = g1 + h1 = g2 + h2, gj ∈ M, hj ∈ M⊥.

Then we deduce

0 = f − f = (g1 − g2) + (h1 − h2).

The uniqueness follows from the identity

0 = ‖(g1 − g2) + (h1 − h2)‖2

= ((g1 − g2) + (h1 − h2), (g1 − g2) + (h1 − h2))

= ‖g1 − g2‖2 + ‖h1 − h2‖2.

2. Now we have to establish the existence of the desired representation. The
element f ∈ H being given, we solve the subsequent variational problem:
Find an element g ∈ M such that

‖f − g‖ = inf
g̃∈M

‖f − g̃‖ =: d

holds true. We choose a sequence {gk} ⊂ M with the property

lim
k→∞

‖f − gk‖ = d.

Then we prove that this sequence converges towards an element g ∈ M.
Here we utilize the parallelogram identity

∥∥∥∥
ϕ+ ψ

2

∥∥∥∥
2

+

∥∥∥∥
ϕ− ψ

2

∥∥∥∥
2

=
1

2

(
‖ϕ‖2 + ‖ψ‖2

)
for all ϕ, ψ ∈ H,

which we easily check by evaluating the inner products on both sides. Now
we apply this identity to the elements
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ϕ = f − gk, ψ = f − gl, k, l ∈ N

and obtain
∥∥∥∥f − gk + gl

2

∥∥∥∥
2

+

∥∥∥∥
gk − gl

2

∥∥∥∥
2

=
1

2

(
‖f − gk‖2 + ‖f − gl‖2

)
.

Rearrangement of these equations implies

0 ≤
∥∥∥∥
gk − gl

2

∥∥∥∥
2

=
1

2

(
‖f − gk‖2 + ‖f − gl‖2

)
−
∥∥∥∥f − gk + gl

2

∥∥∥∥
2

≤ 1

2

(
‖f − gk‖2 + ‖f − gl‖2

)
− d2.

The passage to the limit k, l → ∞ reveals that {gk} represents a Cauchy
sequence. Since the linear subspace M is closed, we infer the existence of
the limit g ∈ M for the sequence {gk}.
Finally, we prove h = (f−g) ∈ M⊥ and obtain the desired representation
f = g + (f − g) = g + h.
When ϕ ∈ M is chosen arbitrarily as well as the number ε ∈ (−ε0, ε0),
we infer the inequality

‖(f − g) + εϕ‖2 ≥ d2 = ‖f − g‖2.

We note that

‖f − g‖2 + 2εRe (f − g, ϕ) + ε2‖ϕ‖2 ≥ ‖f − g‖2,

and deduce
2εRe (f − g, ϕ) + ε2‖ϕ‖2 ≥ 0

for all ϕ ∈ M and all ε ∈ (−ε0, ε0). Therefore, the identity

Re (f − g, ϕ) = 0 for all ϕ ∈ M

must be valid. When we replace ϕ by iϕ, we obtain (f − g, ϕ) = 0. Since
the element ϕ has been chosen arbitrarily within M, the property

(f − g) ∈ M⊥

is shown. q.e.d.

The subsequent concepts on the continuity of linear operators in infinite-
dimensional vector spaces have been created by S. Banach.

Definition 6.10. Let {M1, ‖ · ‖1} and {M2, ‖ · ‖2} denote two normed linear
spaces and A : M1 → M2 a linear mapping. Then A is called continuous at
the point f ∈ M1, if we can find a quantity δ = δ(ε, f) > 0 for all ε > 0 such
that

g ∈ M1, ‖g − f‖1 < δ =⇒ ‖A(g)−A(f)‖2 < ε.
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Theorem 6.11. Consider the linear functional A : M → C on the linear
normed space M, which means

A(αf + βg) = αA(f) + βA(g) for all f, g ∈ M, α, β ∈ C.

Then the following statements are equivalent:

(i) A is continuous at all points f ∈ M;
(ii) A is continuous at one point f ∈ M;
(iii) A is bounded in the following sense: There exists a constant α ∈ [0,+∞)

such that
|A(f)| ≤ α‖f‖ for all f ∈ M

holds true.

Proof:

(i) ⇒ (iii) : Let A be continuous in M, then this holds true at the origin
0 ∈ M in particular. For ε = 1 we find a quantity δ(ε) > 0 such that
‖f‖ ≤ δ implies |A(f)| ≤ 1. We obtain

|A(f)| ≤ 1

δ
‖f‖ for all f ∈ M.

(iii) ⇒ (ii) : We immediately infer the continuity of A at the origin 0 from
the boundedness of A.

(ii) ⇒ (i) : Let A be be continuous at one point f0 ∈ M. For a number ε > 0
being given, we find a quantity δ > 0 satisfying

ϕ ∈ M, ‖ϕ‖ ≤ δ =⇒ |A(f0 + ϕ)−A(f0)| ≤ ε.

The linearity of our functional A gives us the following estimate for all
f ∈ M:

ϕ ∈ M, ‖ϕ‖ ≤ δ =⇒ |A(f + ϕ)−A(f)| ≤ ε.

Therefore, A is continuous for all f ∈ M. q.e.d.

Remark: This theorem remains true for linear mappings A : M1 → M2

between the normed vector spaces {M1, ‖ · ‖1} and {M2, ‖ · ‖2}. Here we
mean by the notion ’A is bounded’ that we can find a number α ∈ [0,+∞)
such that

‖A(f)‖2 ≤ α‖f‖1 for all f ∈ M1

holds true.

Definition 6.12. When we consider a bounded linear functional A : M → C

on the normed linear space M, we introduce the norm of the functional A as
follows:

‖A‖ := sup
f∈M, ‖f‖≤1

|A(f)|.
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Definition 6.13. By the symbol

M∗ :=
{
A : M → C : A is bounded on M

}
,

we denote the dual space of the normed linear space M.

Remarks:

1. We easily show that M∗, endowed with the norm from Definition 6.12,
constitutes a Banach space.

2. Let H denote a Hilbert space. Then its dual space H∗ is isomorphic to H,
as we shall show now.

Theorem 6.14. (Representation theorem of Fréchet and Riesz)
Each bounded linear functional A : H → C, defined on a Hilbert space H, can
be represented in the form

A(f) = (g, f) for all f ∈ H,

with a generating element g ∈ H which is uniquely determined.

Proof:

1. At first, we show the uniqueness. Let f ∈ H and g1, g2 ∈ H denote two
generating elements. Then we see

A(f) = (g1, f) = (g2, f) for all f ∈ H.

We subtract these equations and obtain

(g1, f)− (g2, f) = (g1 − g2, f) = 0 for all f ∈ H.

When we choose f = g1 − g2, we infer g1 = g2 on account of

0 = (g1 − g2, g1 − g2) = ‖g1 − g2‖2.

2. In order to prove the existence of g, we consider

M :=
{
f ∈ H : A(f) = 0

}
⊂ H

representing a closed linear subspace of H.
i.) Let M = H be satisfied. Then we set g = 0 ∈ H and obtain the

identity
A(f) = (g, f) = 0 for all f ∈ H.
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ii.) Let M⊂
�=H be satisfied. We invoke the theorem of the orthogonal pro-

jection and see H = M⊕M⊥ with {0} �= M⊥. Consequently, there
exists an element h ∈ M⊥ with h �= 0. We now determine a number
α ∈ C, such that the identity A(h) = (g, h) for g = αh is correct. This
is equivalent to

A(h) = (g, h) = (αh, h) = α (h, h) = α ‖h‖2

and

g =
A(h)

‖h‖2 h.

Now the identity A(f) = (g, f) is valid for all f ∈ M and for f = h.

When f ∈ H is arbitrary, we define c := A(f)
A(h) . With f̃ := f − ch, we

obtain

A(f̃) = A(f)− cA(h) = A(f)− A(f)

A(h)
A(h) = 0

and consequently f̃ ∈ M. Therefore, we have the representation

f = f̃ + ch for f ∈ H, where f̃ ∈ M and ch ∈ M⊥.

This implies

A(f) = A(f̃) + cA(h) = (g, f̃) + c(g, h) = (g, f̃ + ch) = (g, f)

for all f ∈ H. q.e.d.

Definition 6.15. We name a Banach space separable if a sequence {fk} ⊂ B
exists, which lies densely in B. More precisely, we find an index k ∈ N to each
element f ∈ B and every ε > 0 such that ‖f − fk‖ < ε holds true.

Definition 6.16. In a pre-Hilbert-space H′, we name the denumerably infinite
many elements {ϕ1, ϕ2, . . .} ⊂ H′ orthonormal if

(ϕi, ϕj) = δij for all i, j ∈ N

is valid.

Remark: When we have the system of denumerably many linearly independent
elements in H′, we can apply the orthonormalization procedure of E. Schmidt
in order to transfer this into an orthonormal system.

Here we start with the linearly independent elements {f1, . . . , fN} ⊂ H′ of
the pre-Hilbert-space H′. Then we define inductively

ϕ1 :=
1

‖f1‖
f1, ϕ2 :=

f2 − (ϕ1, f2)ϕ1

‖f2 − (ϕ1, f2)ϕ1‖
, . . . ϕN :=

fN −
N−1∑
j=1

(ϕj , fN )ϕj

∥∥∥∥∥fN −
N−1∑
j=1

(ϕj , fN )ϕj

∥∥∥∥∥

.
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The vector spaces spanned by {f1, . . . , fN} and {ϕ1, . . . , ϕN} coincide, and
we note that

(ϕi, ϕj) = δij for i, j = 1, . . . , N.

Proposition 6.17. Let {ϕk} with k = 1, . . . , N represent a system of or-
thonormal elements in the pre-Hilbert-space H′ and assume f ∈ H′. Then we
have the identity

∥∥∥f −
N∑

k=1

ckϕk

∥∥∥
2

=
∥∥∥f −

N∑
k=1

(ϕk, f)ϕk

∥∥∥
2

+

N∑
k=1

|ck − (ϕk, f)|2

for all numbers c1, . . . , cN ∈ C.

Proof: At first, we define

g := f −
N∑

k=1

(ϕk, f)ϕk, h :=

N∑
k=1

(
(ϕk, f)− ck

)
ϕk.

Then we deduce the equation

f −
N∑

k=1

ckϕk = f −
N∑

k=1

(ϕk, f)ϕk +

N∑
k=1

(
(ϕk, f)− ck

)
ϕk = g + h.

Now we evaluate

(g, h) =

(
f −

N∑
k=1

(ϕk, f)ϕk ,

N∑
l=1

(
(ϕl, f)− cl

)
ϕl

)

=

N∑
l=1

(
(ϕl, f)− cl

)
(ϕl, f)−

N∑
k,l=1

(ϕk, f)
(
(ϕl, f)− cl

)
(ϕk, ϕl).

We note that (ϕk, ϕl) = δkl and obtain (g, h) = 0. This implies

∥∥∥f −
N∑

k=1

ckϕk

∥∥∥
2

= (g + h, g + h) = ‖g‖2 + ‖h‖2

=
∥∥∥f −

N∑
k=1

(ϕk, f)ϕk

∥∥∥
2

+

N∑
k,l=1

(
(ϕk, f)− ck

)(
(ϕl, f)− cl

)
(ϕk, ϕl)

=
∥∥∥f −

N∑
k=1

(ϕk, f)ϕk

∥∥∥
2

+

N∑
k=1

|(ϕk, f)− ck|2.
q.e.d.

Corollary: For all numbers c1, . . . , cN ∈ C we have
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∥∥∥f −
N∑

k=1

ckϕk

∥∥∥
2

≥
∥∥∥f −

N∑
k=1

(ϕk, f)ϕk

∥∥∥
2

,

and equality is attained only if ck = (ϕk, f) for k = 1, . . . , N holds true.
We name these numbers ck the Fourier coefficients of f (with respect to the
system (ϕk)).

When we set c1 = . . . = cN = 0, we obtain

Proposition 6.18. The following relation

∥∥∥f −
N∑

k=1

(ϕk, f)ϕk

∥∥∥
2

= ‖f‖2 −
N∑

k=1

|(ϕk, f)|2 ≥ 0

holds true.

From the last proposition we immediately infer

Theorem 6.19. Let {ϕk}, k = 1, 2, . . . represent an orthonormal system in
the pre-Hilbert-space H′. For all elements f ∈ H′, Bessel’s inequality

∞∑
k=1

|(ϕk, f)|2 ≤ ‖f‖2

holds true. An element f ∈ H′ satisfies the equation

∞∑
k=1

|(ϕk, f)|2 = ‖f‖2

if and only if the limit relation

lim
N→∞

∥∥∥f −
N∑

k=1

(ϕk, f)ϕk

∥∥∥ = 0

is valid.

Remark: The last statement means that f ∈ H′ can be represented by its
Fourier series

∞∑
k=1

(ϕk, f)ϕk

with respect to the Hilbert-space-norm ‖ · ‖.
Definition 6.20. We say that an orthonormal system {ϕk} is complete - we
abbreviate this as c.o.n.s - if each element f ∈ H′ of the pre-Hilbert-space H′

satisfies the completeness relation

‖f‖2 =
∞∑
k=1

|(ϕk, f)|2.
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Remarks:

1. In Section 4 and Section 5 of Chapter 5, we shall present explicit c.o.n.s.
with the classical Fourier series and the spherical harmonic functions.
More profound results are contained in Chapter 8 about Linear Operators
in Hilbert Spaces.

2. With the aid of E. Schmidt’s orthonormalization procedure, we can con-
struct a complete orthonormal system in each separable Hilbert space.

3. When we have a complete orthonormal system {ϕk} ⊂ H′ with k =
1, 2, . . . in the pre-Hilbert-space H′, the representation via the Fourier
series

f =

∞∑
k=1

(ϕk, f)ϕk

holds true with respect to convergence in the Hilbert-space-norm. The in-
teresting question remains open, whether a Fourier series converges point-
wise or even uniformly (see e.g. H.Heuser: Analysis II. B.G.Teubner-
Verlag, Stuttgart, 1992).

7 The Lebesgue Spaces Lp(X)

Now we continue our considerations from Section 1 to Section 4. We assume
n ∈ N as usual, and we consider subsets X ⊂ R

n which we endow with the
relative topology of the Euclidean space R

n as follows:

A ⊂ X is

{
open
closed

}

⇐⇒ There exists B ⊂ R
n

{
open
closed

}
with A = B ∩X.

By the symbol M(X) we denote a linear space of continuous functions f :
X → R = R ∪ {±∞} with the following properties:

(M1) Linearity: With f, g ∈ M(X) and α, β ∈ R we have αf + βg ∈ M(X).
(M2) Lattice property: From f ∈ M(X) we infer |f | ∈ M(X).
(M3) Global property: The function f(x) ≡ 1, x ∈ X belongs to M(X).

We name a linear functional I : M → R, which is defined on M = M(X),
Daniell’s integral if the following properties are valid:

(D1) Linearity: I(αf + βg) = αI(f) + βI(g) for all f, g ∈ M and α, β ∈ R;
(D2) Nonnegativity: I(f) ≥ 0 for all f ∈ M with f ≥ 0;
(D3) Monotone continuity: For all {fk} ⊂ M(X) with fk(x) ↓ 0 (k → ∞) on

X we infer I(fk) → 0 (k → ∞).
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Example 7.1. Let X = Ω ⊂ R
n denote an open bounded set, and we define

the linear space

M = M(X) :=

⎧
⎨
⎩f : X → R ∈ C0(X) :

∫

Ω

|f(x)| dx < +∞

⎫
⎬
⎭ .

We utilize the improper Riemannian integral on the set X, namely

I(f) :=

∫

Ω

f(x) dx, f ∈ M

as our linear functional.

Example 7.2. On the sphere X = Sn−1 :=
{
x ∈ R

n : |x| = 1
}
, we con-

sider the linear space of all continuous functions M(X) = C0(Sn−1), and we
introduce the Daniell integral

I(f) :=

∫

Sn−1

f(x) dσn−1(x), f ∈ M.

In Section 2 we have extended the functional I from M(X) onto the space
L(X) of the Lebesgue integrable functions. In Section 3 we investigated sets
which are Lebesgue measurable, more precisely those sets A whose character-
istic functions χA are Lebesgue integrable.

Definition 7.3. Let the exponent satisfy 1 ≤ p < +∞. We name a measurable
function f : X → R p-times integrable if |f |p ∈ L(X) is correct. In this case
we write f ∈ Lp(X). With

‖f‖p := ‖f‖Lp(X) :=

⎛
⎝
∫

X

|f(x)|p dμ(x)

⎞
⎠

1
p

=
(
I(|f |p)

) 1
p

we obtain the Lp-norm of the function f ∈ Lp(X); here the symbol μ denotes
the Lebesgue measure on X.

Remark: Evidently, we have the identity L1(X) = L(X).

The central tool, when dealing with Lebesgue spaces, is provided by the sub-
sequent result.

Theorem 7.4. (Hölder’s inequality)
Let the exponents p, q ∈ (1,+∞) be conjugate, which means p−1 + q−1 = 1
holds true. Furthermore, we assume f ∈ Lp(X) and g ∈ Lq(X) being given.
Then we infer the property fg ∈ L1(X) and the inequality

‖fg‖L1(X) ≤ ‖f‖Lp(X)‖g‖Lq(X).
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Proof: We have to investigate only the case ‖f‖p > 0 and ‖g‖q > 0. Alterna-
tively, we had ‖f‖p = 0, and consequently f = 0 a.e. as well as f · g = 0 a.e.
would hold. Analogously, we treat the case ‖g‖q = 0. Then we apply Young’s
inequality

ab ≤ ap

p
+

bq

q

to the functions

ϕ(x) =
1

‖f‖p
|f(x)|, ψ(x) =

1

‖g‖q
|g(x)|, x ∈ X,

and we obtain

1

‖f‖p‖g‖q
|f(x)g(x)| = ϕ(x)ψ(x) ≤ 1

p

|f(x)|p
‖f‖pp

+
1

q

|g(x)|q
‖g‖qq

for all points x ∈ X. Theorem 4.8 from Section 4 implies fg ∈ L(X) = L1(X).
Now integration yields the inequality

1

‖f‖p‖g‖q
I(|fg|) ≤ 1

p

1

‖f‖pp
I(|f |p) + 1

q

1

‖g‖qq
I(|g|q) = 1,

and finally
I(|fg|) ≤ ‖f‖p‖g‖q.

q.e.d.

Theorem 7.5. (Minkowski’s inequality)
With the exponent p ∈ [1,+∞), let us consider the functions f, g ∈ Lp(X).
Then we infer f + g ∈ Lp(X) and we have

‖f + g‖Lp(X) ≤ ‖f‖Lp(X) + ‖g‖Lp(X).

Proof: The case p = 1 can be easily derived by application of the triangle
inequality on the integrand |f + g|. Therefore, we assume p, q ∈ (1,+∞) with
p−1 + q−1 = 1. At first, convexity arguments yield

|f(x) + g(x)|p ≤ 2p−1 (|f(x)|p + |g(x)|p)

and consequently f + g ∈ Lp or equivalently I(|f + g|p) < +∞. Now we have

|f(x) + g(x)|p = |f(x) + g(x)|p−1|f(x) + g(x)|

≤ |f(x) + g(x)|p−1|f(x)|+ |f(x) + g(x)|p−1|g(x)|

= |f(x) + g(x)|
p
q |f(x)|+ |f(x) + g(x)|

p
q |g(x)|.

The factors of the summands on the right-hand side are Lq- and Lp-functions,
respectively. Therefore, we obtain
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I(|f + g|p) ≤ I(|f + g|p)
1
q (‖f‖p + ‖g‖p).

Finally, we see

(I(|f + g|p)
1
p ≤ ‖f‖p + ‖g‖p

and the desired inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p.
q.e.d.

Remark: Minkowski’s inequality represents the triangle inequality for the ‖·‖p-
norm in the space Lp.

The following result guarantees the completeness of Lp-spaces, which means:
Each Cauchy sequence converges towards a function in the respective space.

Theorem 7.6. (Fischer, Riesz)
Let us consider the exponent p ∈ [1,+∞) and a sequence {fk}k=1,2,... ⊂ Lp(X)
satisfying

lim
k,l→∞

‖fk − fl‖Lp(X) = 0.

Then we have a function f ∈ Lp(X) with the property

lim
k→∞

‖fk − f‖Lp(X) = 0.

Proof: With the aid of Hölder’s inequality we show the identity

lim
k,l→∞

I(|fk − fl|) = 0.

Here we estimate in the case p > 1 as follows:

I(|fk − fl|) = I(|fk − fl| · 1) ≤ ‖fk − fl‖p‖1‖q −→ 0.

The Lebesgue selection theorem gives us a subsequence k1 < k2 < k3 < . . .
and a null-set N ⊂ X, such that

lim
m→∞

fkm(x) = f(x), x ∈ X \N

holds true. We observe that the function f is measurable. Now we choose
l ≥ N(ε) and km ≥ N(ε), where ‖fk − fl‖p ≤ ε for all k, l ≥ N(ε) is valid,
and we infer

I(|fkm − fl|p) = ‖fkm − fl‖pLp(X) ≤ εp.

For m → ∞, Fatou’s theorem implies the inequality

I(|f − fl|p) ≤ εp for all l ≥ N(ε)

and consequently
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‖f − fl‖Lp(X) ≤ ε for all l ≥ N(ε).

Since Lp(X) is linear and fl as well as (f − fl) belong to this space, we infer
f ∈ Lp(X). Furthermore, we observe

lim
l→∞

‖f − fl‖p = 0.
q.e.d.

Definition 7.7. A measurable function f : X → R belongs to the class
L∞(X) if we have a null-set N ⊂ X and a constant c ∈ [0,+∞) with the
property

|f(x)| ≤ c for all x ∈ X \N.

We name

‖f‖∞ = ‖f‖L∞(X) = ess sup
x∈X

|f(x)|

= inf

{
c ≥ 0 :

There exists a null-set N ⊂ X
with |f(x)| ≤ c for all x ∈ X \N

}

the L∞-norm or equivalently the essential supremum of the function f .

Remark: Evidently, we have the inclusion

L∞(X) ⊂
⋂

p∈[1,+∞)

Lp(X).

Theorem 7.8. A function f ∈
⋂
p≥1

Lp(X) belongs to the class L∞(X), if the

condition
lim sup
p→∞

‖f‖Lp(X) < +∞

is correct. In this case we have

‖f‖L∞(X) = lim
p→∞

‖f‖Lp(X) < +∞,

where the limit on the right-hand side exists.

Proof: Let f ∈
⋂
p≥1

Lp(X) hold true. When we assume f ∈ L∞(X), we infer

0 ≤ ‖f‖∞ < +∞ as well as

|f |p = |f |q|f |p−q ≤ |f |q‖f‖p−q
∞ a.e. on X.

Therefore, we obtain

‖f‖p ≤ ‖f‖1−
q
p

∞ ‖f‖
q
p
q

and finally
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lim sup
p→∞

‖f‖p ≤ ‖f‖∞ < +∞. (1)

In order to show the inverse direction, we consider the set

Aa :=
{
x ∈ X : |f(x)| > a

}

for an arbitrary number a < ‖f‖∞. Therefore, Aa does not constitute a null-
set. We obtain the estimate

+∞ > lim sup
p→∞

‖f‖p ≥ lim inf
p→∞

‖f‖p

= lim inf
p→∞

(
I(|f |p)

) 1
p ≥ a lim inf

p→∞

(
μ(Aa)

) 1
p

= a.

Now we infer
+∞ > lim inf

p→∞
‖f‖p ≥ ‖f‖∞ (2)

and consequently f ∈ L∞(X). These inequalities immediately imply the ex-
istence of

lim
p→∞

‖f‖p = ‖f‖∞.
q.e.d.

Corollary: Hölder’s inequality remains valid for the case p = 1 and q = ∞.
Furthermore, Minkowski’s inequality holds true in the case p = ∞ as well.

Definition 7.9. Let 1 ≤ p ≤ +∞ be satisfied. Then we introduce an equiva-
lence relation on the space Lp(X) as follows:

f ∼ g ⇐⇒ f(x) = g(x) a.e. in X.

By the symbol [f ] we denote the equivalence class belonging to the element
f ∈ Lp(X). We name

Lp(X) :=
{
[f ] : f ∈ Lp(X)

}

the Lebesgue space of order 1 ≤ p ≤ +∞.

We summarize our considerations to the subsequent

Theorem 7.10. For each fixed p with 1 ≤ p ≤ +∞, the Lebesgue space Lp(X)
constitutes a real Banach space with the given Lp-norm. Furthermore, we have
the inclusion

Lr(X) ⊃ Ls(X)

for all 1 ≤ r < s ≤ +∞. Moreover, the estimate

‖f‖Lr(X) ≤ C(r, s)‖f‖Ls(X) for all f ∈ Ls(X)



7 The Lebesgue Spaces Lp(X) 157

holds true with a constant C(r, s) ∈ [0,+∞). This means, the mapping for the
embedding

Φ : Ls(X) −→ Lr(X), f 
→ Φ(f) = f

is continuous. Therefore, a sequence converging in the space Ls(X) is conver-
gent in the space Lr(X) as well.

Proof:

1. At first, we show that Lp(X) constitute normed spaces. Let us consider
[f ] ∈ Lp(X): We have ‖[f ]‖p = 0 if and only if ‖f‖p = 0 and consequently
f = 0 a.e. in X is fulfilled. This implies [f ] = 0 and gives us the norm
property (N1). Minkowski’s inequality from Theorem 7.5 ascertains the
norm property (N2), where Theorem 7.8 provides the triangle inequality
in the space L∞(X). The norm property (N3), namely the homogeneity,
is obvious.

2. The Fischer-Riesz theorem implies completeness of the spaces Lp for 1 ≤
p < +∞. Therefore, only completeness of the space L∞ has to be shown.
Here we consider a Cauchy sequence {fk} ⊂ L∞ satisfying

‖fk − fl‖∞ → 0 for k, l → ∞.

We infer the inequality ‖fk‖∞ ≤ c for all k ∈ N, with a constant c ∈
(0,+∞). Then we find a null-set N0 ⊂ X with |fk(x)| ≤ c for all points
x ∈ X \ N0 and all indices k ∈ N. Furthermore, we have null-sets Nk,l

with
|fk(x)− fl(x)| ≤ ‖fk − fl‖∞ for x ∈ X \Nk,l.

We define
N := N0 ∪

⋃
k,l

Nk,l

and observe
lim

k,l→∞
sup

x∈X\N
|fk(x)− fl(x)| = 0.

When we introduce the function

f(x) :=

{
lim
k→∞

fk(x) , x ∈ X \N
0 , x ∈ N

∈ L∞(X)

we infer
lim
k→∞

sup
x∈X\N

|fk(x)− f(x)| = 0

and finally
lim
k→∞

‖fk − f‖L∞(X) = 0.
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3. Let us assume 1 ≤ r < s ≤ +∞. The function f ∈ Ls(X) satisfies

‖f‖r =
(
I(|f |r · 1)

) 1
r ≤

{(
I(|f |s)

) r
s
(
μ(X)

) s−r
s

} 1
r

=
(
μ(X)

) s−r
rs ‖f‖s

for all elements f ∈ Ls(X). q.e.d.

Definition 7.11. Let B1 and B2 denote two Banach spaces with B1 ⊂ B2.
Then we say B1 is continuously embedded into B2 if the mapping

I1 : B1 −→ B2, f 
→ I1(f) = f

is continuous. This means, the inequality

‖f‖B2 ≤ c ‖f‖B1 for all f ∈ B1

holds true with a constant c ∈ [0,+∞). Then we use the notation B1 ↪→ B2.

Remarks:

1. The transition to equivalence classes will be made tacitly - such that we
can identify Lp(X) and Lp(X).

2. We have the embedding Ls(X) ↪→ Lr(X) for all 1 ≤ r ≤ s ≤ +∞.
3. On the space C0(X), we obtain with

‖f‖0 := sup
x∈X

|f(x)|, f ∈ C0(X)

the supremum-norm which induces uniform convergence. With the Lp-
norms ‖ · ‖p for 1 ≤ p ≤ +∞, we have constructed a family of norms
which constitute a continuum beginning with the weakest norm, namely
the L1-norm, and ending with the strongest norm, namely the L∞-norm
or the C0-norm, respectively. Exactly in the centrum for p = 2, we find
the Hilbert space H = L2(X).

Example 7.12. Let the space

H = L2(X,C) :=
{
f = g + ih : g, h ∈ L2(X,R)

}

be endowed with the inner product

(f1, f2)H := I(f1f2) for fj = gj + ihj ∈ H and j = 1, 2.

Here we define I(f) = I(g+ ih) := I(g) + i I(h). Then H represents a Hilbert
space.

In the sequel, we use the space of functions

M∞(X) :=

{
f ∈ M(X) : sup

x∈X
|f(x)| < +∞

}
= M(X) ∩ L∞(X).
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Theorem 7.13. (Approximation of Lp-functions)
Given the exponent p ∈ [1,+∞), the space M∞(X) lies densely in Lp(X),
which means: For each function f ∈ Lp(X) and each ε > 0, we have a function
fε ∈ M∞(X) satisfying

‖f − fε‖Lp(X) < ε.

Proof: Let ε > 0 be given. We choose K > 0 and consider the truncated
function

f−K,+K(x) :=

⎧
⎪⎨
⎪⎩

f(x), x ∈ X with |f(x)| ≤ K

−K, x ∈ X with f(x) ≤ −K

+K, x ∈ X with f(x) ≥ +K

subject to the inequality

|f(x)− f−K,+K(x)|p ≤ |f(x)|p.

Furthermore, we have

lim
K→∞

|f(x)− f−K,+K(x)|p = 0

almost everywhere in X. Lebesgue’s convergence theorem implies

lim
K→∞

I(|f − f−K,+K |p) = 0,

and we find a number K = K(ε) > 0 with

‖f(x)− f−K,+K(x)‖p ≤ ε

2
.

According to Theorem 4.14 in Section 4, the function f−K,+K possesses a
sequence {ϕk}k=1,2,... ⊂ M(X) with |ϕk(x)| ≤ K satisfying

ϕk(x) −→ f−K,+K(x) a.e. in X.

The Lebesgue convergence theorem yields

‖f−K,+K − ϕk‖pp = I(|f−K,+K − ϕk|p) −→ 0

for k → ∞. Consequently, we find an index k = k(ε) with

‖f−K,+K − ϕk‖p ≤ ε

2
.

The function fε := ϕk(ε) ∈ M(X), which is uniformly bounded by K(ε) on
X, satisfies

‖f − fε‖p ≤ ‖f − f−K,+K‖p + ‖f−K,+K − ϕk(ε)‖p ≤ ε

2
+

ε

2
= ε.

q.e.d.



160 Chapter 2 Foundations of Functional Analysis

Theorem 7.14. (Separability of Lp-spaces)
Let X ⊂ R

n be an open bounded set and p ∈ [1,+∞) the exponent given. Then
the Banach space Lp(X) is separable: More precisely, there exists a sequence
of functions {ϕk(x)}k=1,2,... ⊂ C∞

0 (X) ⊂ Lp(X) which lies densely in Lp(X).

Proof: Let us consider the set

R :=

⎧
⎨
⎩g(x) =

N∑
i1,...,in=0

ai1...inx
i1
1 . . . xin

n : ai1...in ∈ Q, N ∈ N ∪ {0}

⎫
⎬
⎭

of polynomials in R
n with rational coefficients. Furthermore, let

χj(x) : X −→ R ∈ C∞
0 (X), j = 1, 2, . . .

denote an exhausting sequence for the set X, which means

χj(x) ≤ χj+1(x), lim
j→∞

χj(x) = 1 for all x ∈ X.

Now we show that the denumerable set

D(X) :=
{
h(x) = χj(x)g(x) : j ∈ N, g ∈ R

}

lies densely in Lp(X). Here we take the function f ∈ Lp(X) and the quantity
ε > 0 arbitrarily. Then we find a function g ∈ M∞(X) with ‖f − g‖p ≤ ε.
Now we infer

‖g − χjg‖pp =

∫

X

|g(x)− χj(x)g(x)|p dμ(x)

=

∫

X

(
1− χj(x)

)p
|g(x)|p dμ(x) −→ 0,

and consequently we find an index j ∈ N satisfying ‖g − χjg‖p ≤ ε. Now the
function χjg has compact support in X. Via the Weierstraß approximation
theorem, there exists a polynomial h(x) ∈ R such that supx∈X χj |g−h| ≤ δ(ε)
is correct - with a quantity δ(ε) > 0 given. Consequently, we find a polynomial
h(x) ∈ R with the property

‖χjg − χjh‖p ≤ ε.

This implies

‖f − χjh‖p ≤ ‖f − g‖p + ‖g − χjg‖p + ‖χjg − χjh‖p ≤ 3ε.

Consequently, D(X) lies densely in Lp(X). q.e.d.
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8 Bounded Linear Functionals on Lp(X) and Weak
Convergence

We begin with

Theorem 8.1. (Extension of linear functionals)
Take p ∈ [1,+∞) and let A : M∞(X) → R denote a linear functional with
the following property: We have a constant α ∈ [0,+∞) such that

|A(f)| ≤ α‖f‖Lp(X) for all f ∈ M∞(X)

holds true. Then there exists exactly one bounded linear functional Â :
Lp(X) → R satisfying

‖Â‖ ≤ α and Â(f) = A(f) for all f ∈ M∞(X).

Consequently, the functional Â can be uniquely continued from M∞(X) onto
Lp(X).

Proof: The linear functional A is bounded on {M∞(X), ‖ · ‖Lp(X)} and there-
fore continuous. According to Theorem 7.13 from Section 7, each element
f ∈ Lp(X) possesses a sequence {fk}k=1,2,... ⊂ M∞(X) satisfying

‖fk − f‖Lp(X) → 0 for k → ∞.

Now we define
Â(f) := lim

k→∞
A(fk).

We immediately verify that Â has been defined independently of the sequence
{fk}k=1,2,... chosen, and that the mapping Â : Lp(X) → R is linear. Further-
more, we have

‖Â‖ = sup
f∈Lp, ‖f‖p≤1

|Â(f)| = sup
f∈M∞, ‖f‖p≤1

|A(f)| ≤ α.

When we consider with Â and B̂ two extensions of A onto Lp(X), we infer Â =

B̂ on M∞(X). Since the functionals Â and B̂ are continuous, and M∞(X)

lies densely in Lp(X), we obtain the identity Â = B̂ on Lp(X).
q.e.d.

Now we consider multiplication functionals Ag as follows:

Theorem 8.2. Let us choose the exponent 1 ≤ p ≤ +∞ and with q ∈ [1,+∞]
its conjugate exponent satisfying

1

p
+

1

q
= 1.

For each function g ∈ Lq(X) being given, the symbol Ag : Lp(X) → R with

Ag(f) := I(fg), f ∈ Lp(X)

represents a bounded linear functional such that ‖Ag‖ = ‖g‖q holds true.
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Proof: Obviously, Ag : Lp(X) → R constitutes a linear functional. Hölder’s
inequality yields the estimate

|Ag(f)| = |I(fg)| ≤ I(|f ||g|) ≤ ‖f‖p‖g‖q for all f ∈ Lp(X),

and we see
‖Ag‖ ≤ ‖g‖q.

In the case 1 < p < +∞, we choose the function

f(x) = |g(x)|
q
p sign g(x)

and calculate

Ag(f) = I(fg) = I
(
|g|

q
p+1
)
= I(|g|q)

= ‖g‖qq = ‖g‖q‖g‖
q
p
q = ‖g‖q

(
I
(
|f |p

)) 1
p

= ‖g‖q‖f‖p.

This implies

Ag(f)

‖f‖p
= ‖g‖q and therefore ‖Ag‖ ≥ ‖g‖q (1)

and consequently ‖Ag‖ = ‖g‖q for all 1 < p < +∞. In the case p = +∞, we
choose

f(x) = sign g(x)

and we obtain

Ag(f) = I(g sign g) = I(|g|) = ‖g‖1 ‖f‖∞.

This implies

Ag(f)

‖f‖∞
= ‖g‖1 and therefore ‖Ag‖ = ‖g‖1.

In the case p = 1, we choose the following function to the element g ∈ Lq(X) =
L∞(X) and for all quantities ε > 0, namely

fε(x) :=

⎧
⎪⎨
⎪⎩

1, x ∈ X with g(x) ≥ ‖g‖∞ − ε

0, x ∈ X with |g(x)| < ‖g‖∞ − ε

−1, x ∈ X with g(x) ≤ −‖g‖∞ + ε

.

Therefore, we have

Ag(fε) = I(gfε) ≥ (‖g‖∞ − ε)‖fε‖1 for all ε > 0,

which reveals
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Ag(fε)

‖fε‖1
≥ ‖g‖∞ − ε.

Consequently, ‖Ag‖ ≥ ‖g‖∞ − ε is correct and finally ‖Ag‖ = ‖g‖∞. q.e.d.

We want to show that each bounded linear functional on Lp(X) with 1 ≤
p < ∞ can be represented as a multiplication functional Ag via a generating
element g ∈ Lq(X), where p−1 + q−1 = 1 holds true.

Theorem 8.3. (Regularity in Lp(X))
Let us consider 1 ≤ p < +∞ and g ∈ L1(X). Furthermore, we have a constant
α ∈ [0,+∞) such that

|Ag(f)| = |I(fg)| ≤ α‖f‖p for all f ∈ M∞(X) (2)

holds true. Then we infer the property g ∈ Lq(X) and the estimate ‖g‖q ≤ α.

Proof:

1. At first, we deduce the following inequality from (2), namely

|I(fg)| ≤ α‖f‖p for all f measurable and bounded. (3)

According to Theorem 4.14 from Section 4, the bounded measurable func-
tion f : X → R possesses a sequence of functions {fk}k=1,2,... ⊂ M∞(X)
with

fk(x) → f(x) a.e. in X

and
sup
X

|fk(x)| ≤ sup
X

|f(x)| =: c ∈ [0,+∞).

Now Lebesgue’s convergence theorem yields

|I(fg)| = lim
k→∞

|I(fkg)| ≤ lim
k→∞

α‖fk‖p = α‖f‖p.

2. Let us assume 1 < p < +∞, at first. Then we consider the functions

gk(x) :=

{
g(x) , x ∈ X with |g(x)| ≤ k

0 , x ∈ X with |g(x)| > k
.

Now the functions

fk(x) = |gk(x)|
q
p sign gk(x), x ∈ X,

are measurable and bounded. Consequently, we are allowed to insert fk(x)
into (3) and obtain

I(fkg) = I
(
|gk|

q
p+1
)
= I(|gk|q) = ‖gk‖qq .

Then (3) implies
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I(fkg) ≤ α‖fk‖p = α(I(|gk|q))
1
p = α‖gk‖

q
p
q .

For k = 1, 2, . . . we have the estimate

α ≥ ‖gk‖
q− q

p
q = ‖gk‖q , αq ≥ I(|gk|q).

We invoke Fatou’s theorem and obtain

|g(x)|q a.e.
= lim inf

k→∞
|gk(x)|q ∈ L(X)

as well as
αq ≥ I(|g|q) and consequently ‖g‖q ≤ α.

3. Now we assume p = 1. The quantity ε > 0 being given, we consider the
set

E :=
{
x ∈ X : |g(x)| ≥ α+ ε

}
.

We insert the function f = χE sign g into (3) and obtain

αμ(E) = α‖f‖1 ≥ |I(fg)| ≥ (α+ ε)μ(E).

This implies μ(E) = 0 for all ε > 0 and finally ‖g‖∞ ≤ α. q.e.d.

Until now, we considered only one Daniell integral I : M∞(X) → R as fixed,
which we could extend onto the Lebesgue space L1(X). When a statement
refers to this functional, we do not mention this functional I explicitly: We
simplify Lp(X) = Lp(X, I), for instance, or f(x) = 0 almost everywhere in
X if and only if we have an I-null-set N ⊂ X such that f(x) = 0 for all
x ∈ X \N holds true. We already know that

M∞(X) ⊂ L∞(X) ⊂ Lp(X), 1 ≤ p ≤ +∞

is correct. Additionally, we consider the Daniell integral J .

Definition 8.4. We name a Daniell integral

J : M∞(X) −→ R,

which satisfies the conditions (M1) to (M3) as well as (D1) to (D3) from
Section 7 and is extendable onto L1(X, J) ⊃ L∞(X), as absolutely continuous
with respect to I if the following property is valid:

(D4) Each I-null-set is a J-null-set.

With the aid of ideas of John v. Neumann (see L.H. Loomis: Abstract har-
monic analysis), we prove the profound

Theorem 8.5. (Radon, Nikodym)
Let the Daniell integral J be absolutely continuous with respect to I. Then a
uniquely determined function g ∈ L1(X) exists such that

J(f) = I(fg) for all f ∈ M∞(X)

holds true.
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Proof:

1. Let f ∈ L∞(X) be given, then we have a null-set N ⊂ X and a constant
c ∈ [0,+∞) such that

|f(x)| ≤ c for all x ∈ X\N

is valid. We recall the property (D4), and see that N is a J-null-set as
well, which implies f ∈ L∞(X, J). A sequence {fk}k=1,2,... ⊂ L∞(X) with
fk ↓ 0 (k → ∞) a.e. on X fulfills the limit relation

fk ↓ 0 J-a.e. on X for k → ∞

due to (D4). Now B.Levi’s theorem on the space L1(X, J) yields

lim
k→∞

J(fk) = 0.

Consequently, J : L∞(X) → R represents a Daniell integral. Then we
introduce the Daniell integral

K(f) := I(f) + J(f), f ∈ L∞(X). (4)

As in Section 2 we extend this functional onto the space L1(X,K); here
the a.e.-properties are sufficient. We consider the inclusion L1(X,K) ⊃
Lp(X,K) for all p ∈ [1,+∞].

2. We take the exponents p, q ∈ [1,+∞] with p−1 + q−1 = 1 and obtain the
following estimate for all f ∈ M∞(X), namely

|J(f)| ≤ J(|f |) ≤ K(|f |)

≤ ‖f‖Lp(X,K) ‖1‖Lq(X,K)

=
(
I(1) + J(1)

) 1
q ‖f‖Lp(X,K).

Therefore, J represents a bounded linear functional on the space Lp(X,K)
for an arbitrary exponent p ∈ [1,+∞). In the Hilbert space L2(X,K) we
can apply the representation theorem of Fréchet-Riesz and obtain

J(f) = K(fh) for all f ∈ M∞(X) (5)

with an element h ∈ L2(X,K). Now Theorem 8.3 - in the case p = 1 - is
utilized and we see the regularity improvement h ∈ L∞(X,K). Since J is
nonnegative, we infer h(x) ≥ 0 K-a.e. on X. Furthermore, the relation (4)
together with the assumption (D4) tell us that the K-null-sets coincide
with the I-null-sets, and we arrive at

h(x) ≥ 0 a.e. in X.
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3. Taking f ∈ M∞(X), we can iterate (5) and (4) as follows

J(f) = K(fh) = I(fh) + J(fh)

= I(fh) +K(fh2)

= I(fh) + I(fh2) + J(fh2) = . . . ,

and we obtain

J(f) = I

(
f

l∑
k=1

hk

)
+ J(fhl), l = 1, 2, . . . (6)

Let us define
A :=

{
x ∈ X : h(x) ≥ 1

}

and f = χA. Via approximation, we immediately see that this element f
can be inserted into (6). Then we observe

+∞ > J(f) ≥ I

(
f

l∑
k=1

hk

)
≥ l I(χA) for all l ∈ N

and consequently I(χA) = 0. Therefore, the inequality 0 ≤ h(x) < 1 a.e. in
X is satisfied and, moreover,

hl(x) ↓ 0 a.e. in X for l → ∞. (7)

Via transition to the limit l → ∞ in (6), then B.Levi’s theorem implies

J(f) = I

(
f

∞∑
k=1

hk

)
for all f ∈ M∞(X),

when we note that f = f+ − f− holds true. Taking f(x) ≡ 1 on X in
particular, we infer that

g(x) =

∞∑
k=1

hk(x)
a.e.
=

h(x)

1− h(x)
∈ L1(X)

is fulfilled. q.e.d.

Theorem 8.6. (Decomposition theorem of Jordan and Hahn)
Let the bounded linear functional A : M∞(X) → R be given on the linear
normed space {M∞(X), ‖·‖p}, where 1 ≤ p < +∞ is fixed. Then we have two
nonnegative bounded linear functionals A± : M∞(X) → R with A = A+−A−;
this means, more precisely,

A(f) = A+(f)−A−(f) for all f ∈ M∞(X)
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with
A±(f) ≥ 0 for all f ∈ M∞(X) with f ≥ 0.

Furthermore, we have the estimates

‖A±‖ ≤ 2‖A‖, ‖A−‖ ≤ 3‖A‖.

Here we define

‖A‖ := sup
f∈M∞, ‖f‖p≤1

|A(f)|, ‖A±‖ := sup
f∈M∞, ‖f‖p≤1

|A±(f)|.

Proof:

1. We take f ∈ M∞(X) with f ≥ 0 and set

A+(f) := sup
{
A(g) : g ∈ M∞(X), 0 ≤ g ≤ f

}
. (8)

Evidently, we have A+(f) ≥ 0 for all f ≥ 0. Moreover, the identity

A+(cf) = sup
{
A(g) : 0 ≤ g ≤ cf

}
= sup

{
A(cg) : 0 ≤ g ≤ f

}

= c sup
{
A(g) : 0 ≤ g ≤ f

}
= cA+(f)

for all f ≥ 0 and c ≥ 0 holds true. When we take fj ∈ M∞(X) with
fj ≥ 0 - for j=1,2 - we infer

A+(f1) +A+(f2)

= sup
{
A(g1) : 0 ≤ g1 ≤ f1

}
+ sup

{
A(g2) : 0 ≤ g2 ≤ f2

}

= sup
{
A(g1 + g2) : 0 ≤ g1 ≤ f1, 0 ≤ g2 ≤ f2

}

≤ sup
{
A(g) : 0 ≤ g ≤ f1 + f2

}
= A+(f1 + f2).

Given the function g with 0 ≤ g ≤ f1 + f2, we introduce

g1 := min (g, f1) and g2 := (g − f1)
+.

Then we observe gj ≤ fj for j = 1, 2 as well as g1 + g2 = g. Consequently,
we obtain

A+(f1 + f2) ≤ A+(f1) +A+(f2)

and finally
A+(f1 + f2) = A+(f1) +A+(f2).

Furthermore, the following inequality holds true for all f ∈ M∞(X) with
f ≥ 0, namely
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|A+(f)| =
∣∣∣ sup

{
A(g) : g ∈ M∞(X), 0 ≤ g ≤ f

}∣∣∣

≤ sup
{
|A(g)| : g ∈ M∞(X), 0 ≤ g ≤ f

}

≤ sup
{
‖A‖ ‖g‖p : g ∈ M∞(X), 0 ≤ g ≤ f

}

≤ ‖A‖ ‖f‖p.

2. Now we extend A+ : M∞(X) → R via

M∞(X) � f(x) = f+(x)− f−(x) with f±(x) ≥ 0

and define
A+(f) := A+(f+)−A+(f−).

Consequently, we obtain with A+ : M∞(X) → R a bounded linear map-
ping. More precisely, we have the following estimate for all f ∈ M∞(X):

|A+(f)| ≤ |A+(f+)|+ |A+(f−)|

≤ ‖A‖
(
‖f+‖p + ‖f−‖p

)
≤ 2‖A‖ ‖f‖p.

This implies ‖A+‖ ≤ 2‖A‖.
3. Now we define

A−(f) := A+(f)−A(f) for all f ∈ M∞(X).

Obviously, A− represents a bounded linear functional. Here we observe

|A−(f)| ≤ |A+(f)|+ |A(f)| ≤ 2‖A‖ · ‖f‖p + ‖A‖ ‖f‖p

and consequently ‖A−‖ ≤ 3‖A‖. Finally, the inequality

A−(f) = A+(f)−A(f) = sup
{
A(g) : 0 ≤ g ≤ f

}
−A(f) ≥ 0

for all f ∈ M∞(X) with f ≥ 0 is satisfied. q.e.d.

Theorem 8.7. (The Riesz representation theorem)
Let 1 ≤ p < +∞ be fixed. For each bounded linear functional A ∈ (Lp(X))∗

being given, there exists exactly one generating element g ∈ Lq(X) with the
property

A(f) = I(fg) for all f ∈ Lp(X).

Here the identity p−1 + q−1 = 1 holds true for the conjugate exponent q ∈
(1,+∞].

Proof: We perform our proof in two steps.
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1. Uniqueness: Let the functions g1, g2 ∈ Lq(X) with

A(f) = I(fg1) = I(fg2) for all f ∈ Lp(X)

be given, and we deduce

0 = I
(
f(g1 − g2)

)
for all f ∈ Lp(X).

We recall Theorem 8.2 and obtain 0 = ‖g1 − g2‖Lq(X), which implies
g1 = g2 in Lq(X).

2. Existence: The functional A : M∞(X) → R satisfies

|A(f)| ≤ α‖f‖p for all f ∈ M∞(X) (9)

with a bound α ∈ [0,+∞). The decomposition theorem of Jordan-Hahn
gives us nonnegative bounded linear functionals A± : M∞(X) → R satis-
fying

‖A±‖ ≤ 3‖A‖ ≤ 3α and A = A+ −A−.

Here the space M∞(X) is endowed with the ‖ · ‖p-norm. In particu-
lar, we observe |A±(f)| < +∞ for f(x) = 1, x ∈ X. A sequence
{fk}k=1,2,... ⊂ M∞(X) with fk ↓ 0 in X converges uniformly on each
compact set towards 0, due to Dini’s theorem. Then we arrive at the
estimate

|A±(fk)| ≤ 3α‖fk‖p −→ 0 for k → ∞.

With A± we have two Daniell integrals, which are absolutely continuous
with respect to I. When N namely is an I-null-set, we infer

|A±(χN )| ≤ 3α‖χN‖p = 0.

Therefore, N is a null-set for the Daniell integrals A± as well. The Radon-
Nikodym theorem provides elements g± ∈ L1(X) such that the represen-
tation

A±(f) = I(fg±) for all f ∈ M∞(X)

holds true. This implies

A(f) = A+(f)−A−(f)

= I(fg+)− I(fg−)

= I(fg) for all f ∈ M∞(X),

when we define g := g+ − g− ∈ L1(X). On account of (9) our regularity
theorem yields g ∈ Lq(X). When we extend the functional continuously
onto Lp(X), we arrive at the representation

A(f) = I(fg) for all f ∈ Lp(X)

with a generating function g ∈ Lq(X). q.e.d.
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Now we address the question of compactness in infinite-dimensional spaces of
functions.

Definition 8.8. A sequence {xk}k=1,2,... ⊂ B in a Banach space B is called
weakly convergent towards an element x ∈ B - symbolically xk ⇁ x - if the
limit relations

lim
k→∞

A(xk) = A(x)

hold true for each continuous linear functional A ∈ B∗.

Theorem 8.9. (Weak compactness of Lp(X))
Let us take the exponent 1 < p < +∞. Furthermore, let {fk}k=1,2,... ⊂ Lp(X)
denote a bounded sequence with the property

‖fk‖p ≤ c for a constant c ∈ [0,+∞) and all indices k ∈ N.

Then we have a subsequence {fkl
}l=1,2,... and a limit element f ∈ Lp(X) such

that fkl
⇁ f in Lp(X) holds true.

Proof:

1. We invoke the Riesz representation theorem and see the following: The
relation fl ⇁ f holds true if and only if I(flg) → I(fg) for all g ∈ Lq(X) is
correct; here we have p−1+q−1 = 1 as usual. Theorem 7.14 from Section 7
tells us that the space Lq(X) is separable. Therefore, we find a sequence
{gm}m=1,2,... ⊂ Lq(X) which lies densely in Lq(X). From the bounded
sequence {fk}k=1,2,... ⊂ Lp(X) satisfying ‖fk‖p ≤ c for all k ∈ N, we now
extract successively the subsequences

{fk}k=1,2,... ⊃ {f
k
(1)
l

}l=1,2,... ⊃ {f
k
(2)
l

}l=1,2,... ⊃ . . .

such that

lim
l→∞

I(f
k
(m)
l

gm) =: αm ∈ R, m = 1, 2, . . . .

Then we apply Cantor’s diagonalization procedure, and we make the tran-
sition to the diagonal sequence fkl

:= f
k
(l)
l

, l = 1, 2, . . . . Now we observe

that
lim
l→∞

I(fkl
gm) = αm, m = 1, 2, . . .

holds true.
2. By the symbol

D :=

⎧
⎪⎨
⎪⎩
g ∈ Lq(X) :

There exist N ∈ N and c1, . . . , cN ∈ R

and 1 ≤ i1 < . . . < iN < +∞ with g =

N∑
k=1

ckgik

⎫
⎪⎬
⎪⎭
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we denote the vector space of finite linear combinations of {gm}m=1,2,....
Obviously, the limits

A(g) := lim
l→∞

I(fkl
g) for all g ∈ D

exist. The linear functional A : D → R is bounded on the space D which
lies densely in Lq(X), and we have, more precisely,

|A(g)| ≤ c‖g‖q for all g ∈ D.

As described in Theorem 8.1, we continue our functional A from D onto
the space Lq(X), and the Riesz representation theorem provides an ele-
ment f ∈ Lp(X) such that

A(g) = I(fg) for all g ∈ Lq(X).

3. Now we show that fkl
⇁ f in Lp(X) holds true. For each element g ∈

Lq(X) we find a sequence {g̃j}j=1,2,... ⊂ D satisfying

g
Lq

= lim
j→∞

g̃j ∈ Lq(X).

Then we obtain

|I(fg)− I(fkl
g)| ≤ |I(f(g − g̃j))|+ |I((f − fkl

)g̃j)|+ |I(fkl
(g̃j − g))|

≤ 2C‖g − g̃j‖q + |I((f − fkl
)g̃j)| ≤ ε

for sufficiently large - but fixed - j and the indices l ≥ l0. q.e.d.

Remarks:

1. Similarly, we can introduce the notion of weak convergence in Hilbert
spaces. Due to Hilbert’s selection theorem, we can extract a weakly con-
vergent subsequence from each bounded sequence in Hilbert spaces. How-
ever, it is not possible to extract a norm-convergent subsequence from an
arbitrary bounded sequence in infinite-dimensional Hilbert spaces. Here
we recommend the study of Section 6 in Chapter 8, in particular the first
Definition and Example as well as Hilbert’s selection theorem.

2. We assume 1 ≤ p1 ≤ p2 < +∞. Then the weak convergence fk ⇁ f in
Lp2(X) implies weak convergence fk ⇁ f in Lp1(X), which is immediately
inferred from the embedding relation Lp2(X) ↪→ Lp1(X).

Theorem 8.10. The Lp-norm is lower semicontinuous with respect to weak
convergence, which means:

fk ⇁ f in Lp(X) =⇒ ‖f‖p ≤ lim inf
k→∞

‖fk‖p.

Here we assume 1 < p < +∞ for the Hölder exponent.
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Proof: We start with fk ⇁ f in Lp(X) and deduce

I(fkg) → I(fg) for all g ∈ Lq(X).

When we choose
g(x) := |f(x)|

p
q sign f(x) ∈ Lq(X),

we infer
I
(
fk|f |

p
q sign f(x)

)
→ I(|f |p) = ‖f‖pp

with p−1 + q−1 = 1. For all quantities ε > 0, we find an index k0 = k0(ε) ∈ N

such that

‖f‖pp − ε ≤ I
(
fk|f |

p
q sign f(x)

)
≤ I
(
|fk| |f |

p
q

)

≤ ‖fk‖p
(
I(|f |p)

) 1
q

= ‖fk‖p(‖f‖p)
p
q

holds true for all indices k ≥ k0(ε). When we assume ‖f‖p > 0 - without loss
of generality - we find to each quantity ε > 0 an index k0(ε) ∈ N such that

‖fk‖p ≥ ‖f‖p − (‖f‖p)−
p
q ε for all k ≥ k0(ε)

is correct. This implies
lim inf
k→∞

‖fk‖p ≥ ‖f‖p. q.e.d.

9 Some Historical Notices to Chapter 2

The modern theory of partial differential equations requires to understand
the class of Lebesgue integrable functions – extending the classical family
of continuous functions. These more abstract concepts were only reluctantly
accepted – even by some of the mathematical heroes of their time. A beautiful
source of information, written within the golden era for mathematics in Poland
between World War I and II, is the following textbook by
Stanis�law Saks: Theory of the Integral; Warsaw 1933, Reprint by Hafner Publ.
Co., New York (1937).

We would like to present a direct quotation from the preface of this mono-
graph: “On several occasions attempts were made to generalize the old process
of integration of Cauchy-Riemann, but it was Lebesgue who first made real
progress in this matter. At the same time, Lebesgue’s merit is not only to
have created a new and more general notion of integral, nor even to have
established its intimate connection with the theory of measure: the value of
his work consists primarily in his theory of derivation which is parallel to
that of integration. This enabled his discovery to find many applications in
the most widely different branches of analysis and, from the point of view of
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method, made it possible to reunite the two fundamental conceptions of in-
tegral, namely that of definite integral and that of primitive, which appeared
to be forever separated as soon as integration went outside the domain of
continuous functions.”

The integral of Lebesgue (1875–1941) was wonderfully combined with the
abstract spaces created by D.Hilbert (1862–1943) and S. Banach (1892–1945).
When we develop the modern theory of partial differential equations in the
next volume of our textook, we shall highly appreciate the great vision of the
words above by Stanis�law Saks – written already in 1933.

Figure 1.2 Portrait of Stefan Banach (1892–1945)

taken from the Lexikon bedeutender Mathematiker edited by S. Gottwald,
H.-J. Ilgauds, and K.-H. Schlote in Bibliographisches Institut Leipzig (1988).
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