Chapter 2

Foundations of Functional Analysis

We start with the Riemannian integral - and their Riemann integrable func-
tions - and construct a considerably larger class of integrable functions via
an extension procedure. Then we obtain Lebesgue’s integral, which is distin-
guished by general convergence theorems for pointwise convergent sequences
of functions. This extension procedure - from the Riemannian integral to
Lebesgue’s integral - will be provided by the Daniell integral. The measure
theory for Lebesgue measurable sets will appear in this context as the theory
of integration for characteristic functions. We shall present classical results
from the theory of measure and integration in this chapter, e.g. the theorems
of Egorov and Lusin.

Then we treat the Lebesgue spaces LP with the exponents 1 < p < 400 as
classical Banach spaces. We investigate orthogonal systems of functions in the
Hilbert space L?. With ideas of J. von Neumann we determine the dual spaces
(LP)* = L9 and show the weak compactness of the Lebesgue spaces.

1 Daniell’s Integral with Examples

Our point of departure is the following

Definition 1.1. We consider an arbitrary set X, and by M = M(X) we
denote a space of functions f: X — R which have the following properties:

- M is a linear space, which means
forall f,g € M and all a, B € R we have of + g € M. (1)
— M s closed with respect to the modulus operation, which means
for all f € M we have |f| € M. (2)

Furthermore, the symbol I : M — R denotes a functional on M satisfying the
following conditions:
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I is linear, which means

for all fyg € M and all o, 8 € R we have I(af + Bg) = al(f)+ 8I(g).
(3)
I is nonnegative, which says

for all f € M with f >0 we have I(f) > 0. 4)

Here the relation f > 0 indicates that f(x) > 0 for all x € X is correct.
I is continuous with respect to monotone convergence in M, which means

for each sequence{fn}n=12,. CM with f, 10

: o (5)
we have lim,_,o I(fy) = 1(0) =0.

Here we comprehend by fn, | 0 that the sequence {fn(2)}n=12.. C R is

weakly monotonically decreasing for oll x € X and lim f,(x) = 0 holds
n—oo

true.

Then this functional I is named Daniell’s integral defined on M.

Remarks:

1.

From the linearity (1) and the lattice property (2) we infer

1
max (f.9) = 5 (f+9+1f —gl) €M
as well as 1
min(f,9) = 5(f+9-1f—g) €M
for two elements f,g € M. In particular, with each element f € M we
have

1

J* (@) = max (f(2),0) = 5 (£@) + [/@)]) €M

as well as
f(x) = max(—f(x),()) =(=f)T(x) € M.

We address f1 as the positive part of f and f~ as the negative part of f.
The definitions of fT and f~ imply the identities

f=r"=f" and |fl=f"+f" ="+
Consequently, the lattice condition (2) is equivalent to
feM = ftelM. (2"

More generally, we see that finitely many functions f1,..., f,, € M with
m € N imply the inclusion

max (f1,...,fm) €M and min(f1,...,[fm) € M.
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2. The condition (4) is equivalent to the monotonicity of the integral, namely

I(f) > I(g) forall f,ge M with f > g. (4
3. The condition (5) is equivalent to the following property:

All sequences {fn}tn=12.. C M with f, T fand f,g e M
with g < f fulfill (5)
I(g) < lim I(f,).
n—roo

Proof: At first, we show the direction ‘(5') = (5)’. Let the sequence of
functions {fy, }n=1,2,.. C M with f,, | 0 be given. Then we infer (—f,) 1 0.
We set f(z) =0 = g(z). The linearity of I implies I(g) = 0 immediately.
The combination of (5') and (4) reveals the relation
0=1I(g) < lim I(—f,)=— lim I(f,) <0.
N—>00 Naa =’

n—oo
>0

This yields lim I(f,) = I(0)=0.
n—oo

Now we show the implication ‘(5) = (5').
The sequence {fy}n=102,.. may satisfy f, T f with an element f €
M, which immediately implies (f — f,) | 0. From (5) we infer 0 =
lim, o0 I(f — frn), and the linearity of I yields

0=I(f)— lim I(f,).

n—r oo

With g < f and (4’) we obtain

lim I(f,) =1(f) > I(g),

n—oo

and the proof is complete. q.e.d.

Now we provide examples of Daniell integrals, where we need the following

Theorem 1.2. (U. Dini)

Let the continuous functions fi, f2,... and f € C°(K,R) be defined on the
compact set K C R™. We have the relation f; 1 f, which means that the
sequence {fi(z)} C R is weakly monotonically increasing for all x € K and
furthermore

lim fi(w) = f(2).

Then the sequence {fi}i=12,.. converges uniformly on the set K towards the
function f.

Remark: The transition to functions g; := f — f; implies that the statement
above is equivalent to the following:

A sequence of functions {gi}1=1.2... C CO(K,R) with g; | 0 has necessarily the

yeun
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property that {gi}i1=1,2,... converges uniformly on K towards 0.

Proof of Theorem 1.2: Let {g; }i1=1,2,... C C°(K,R) denote a sequence satisfying
g1 1 0. We have to show that

sup |gi(z)] — 0
reEK

is correct. If this property was not valid, then we could find indices {l;} with
l; < l;41 and points & € K such that

g,(E)>e>0 forall ieN

hold true with a fixed quantity € > 0. According to the Weierstrafl compact-
ness theorem, we can assume - without loss of generality - that the relation
& — & for i — oo is valid, with the limit point £ € K. For the fixed index
l., we now choose an index i, = i(l,) € N such that I; > l.holds true for all
1 > i,. Now the monotonicity of the sequence of functions {g;} implies

g (&) > g (&) >e  forall i>i,.

Since the function g;, is assumed to be continuous, we infer

g1, (&) = lim g (&) > ¢ for all [, € N.

1—> 00

Therefore, {g;(§)} does not constitute a null-sequence, which gives an obvious

contradiction to the assumption.
q.e.d.

Main example 1: Let us consider X = (2 with the open set 2 C R™ and
the linear space

My = My(X) = { f(z) € CO(2,R) : /\f(x)|dx < 400
(9]

Here the symbol
[1r@ds
Q

means the improper Riemannian integral over the open set 2. Then our space
M, satisfies the conditions (1) and (2). Now we choose the functional

L(f):= [ flx)dz,  fe M,
/

where the improper Riemannian integral over {2 appears again on the right-
hand side. Because the Riemannian integral is linear and nonnegative, the
conditions (3) and (4) are evident. We still have to establish the continuity



1 Daniell’s Integral with Examples 95

of our functional with respect to monotone convergence, namely (5). Let us
consider with {f,}n=12.. C M a sequence of functions satisfying f, | 0. If
K C £ denotes a compact subset, Dini’s theorem tells us that {f,,} converges
uniformly on K towards 0. When we observe the properties 0 < f,,(z) < f1(z)
for all n € N and = € 2 as well as f |fi(z)|dz < 400, the fundamental

convergence theorem for improper Rlemannlan integrals implies

n—0o0

lim 13(f,) = lim /fn )da = /( lim fn(x)> da = 0.
n—oo
—_———
=0
Therefore, I represents a Daniell integral on the space Mj.

Remark: The set M7 does not contain all functions whose improper Rieman-
nian integral exists. The concept of Daniell’s integral additionally necessitates
the function space being closed with respect to the modulus operation, namely
the lattice property (2). For instance, the integral

/ smx for all powers « € (0,1)
1

does not converge absolutely, although it exists as an improper Riemannian
integral.

Main example 2: As we described in Section4 of Chapter 1, let M C R"
denote a bounded m-dimensional manifold of the class C' with the regular
boundary M. Then we can cover M by finitely many charts, and we define
the Riemannian integral over M via partition of unity, namely

f) = / f@)dmo(z),  fe My

for all functions of the class
My = {f(x) :M — R : fis continuous on ﬂ}

Here the symbol d"*c means the m-dimensional surface element on M. This
integral I gives us a further interesting Daniell integral: The linear space M
is closed with respect to the modulus operation. The properties (1) and (2)
are consequently fulfilled. The existence of the integral above follows from the
continuity - and therefore the boundedness - of f on the compact manifold M.
The linearity and the positive-semidefinite character of I are evident. The
continuity of I, with respect to monotone convergence follows from Dini’s
theorem again.
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2 Extension of Daniell’s Integral to Lebesgue’s Integral

In our main examples from Section 1, we already have an integral which allows,
at least, to integrate the continuous functions with compact support. Now we
consider an arbitrary Daniell integral I : M — R due to Definition1.1 in
Section 1. We intend to extend this integral onto the larger linear space

L(X) > M(X),

in order to study convergence properties of the created integral on the space
L(X). This extension procedure is essentially based on the monotonicity prop-
erty (4) and the associate continuity property (5) of this integral.

Developing our theory of integration simultaneously for characteristic func-

tions
l,ze A

xa() ::{O,IEX\A

of the subsets A C X, we obtain a measure theory which depends on our
Daniell integral I for the subsets of X.

The extension procedure presented here was initiated by Carathéodory, later
Daniell considered these particular functionals I, and Stone established the
connection to measure theory. The consideration of minimal surfaces gave
H. Lebesgue the impetus to study thoroughly the concept of surface area.

We prepare our considerations and introduce the function

0,t<0
SZB(t)::{t t>0

which is continuous and weakly monotonically increasing. Furthermore, we

define
f(x) == &(f(2)) = max (f(2),0), ze€X

and study the following properties of the prescription f — fT:

i.) f(z) < f(z) for all x € X;

) f(
i.) fi(z) < fo(@) = (@) < fy(z) forall z € X;
iii.) fn(z) = f(2) = fiH(z) = fH(z) forall z € X
iv.) fo(x) | f(z) = @)L ff(z) forallz e X
v.) fulz) T f(x) = fH@) 1 fr(z) forallze X
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Proposition 2.1. Let {g,} C M and {g,} C M, n = 1,2,... denote two
sequences satisfying gn(x) 1 g(x) and g, (z) 1 ¢'(z) defined on X. Here g,g" :
X — RU{+o0} represent two functions with the property ¢'(x) > g(x).
Then we infer the inequality

lim I(g;) > Tim_I(gy).

n— oo

Proof: Since {I(gn)}n=12,.. and {I(g},)}n=1,2,... represent monotonically non-
decreasing sequences, their limits exist for n — oo in RU {4o0c}. In the case

lim I(g)) = +o0, the inequality above evidently holds true. Therefore, we

n—oo

can assume lim I(g),) < 4oo without loss of generality. With the index m
n—0o0

being fixed, we observe
(g —g)T L (gm—9¢)T=0 for n — oo.

Then we invoke the properties of Daniell’s integral I as follows:

I(gm) — lim I(g.) = lim (I(gm)—f(g;)) = lim I(gn —g.,)

n—oo n—oo n— oo

< lim I((gm —g;)+) = 0.

n—oo

Now we see
I(gm) < lim I(g.,) for all m €N,

n—oo

and we arrive at the relation

lim I(gm) < lim I(g),).
n—oo

m—0o0
q.e.d.

When we assume g = ¢’ on X in Proposition 2.1, we obtain equality for the
two limits above. This justifies the following

Definition 2.2. Let the symbol V(X)) denote the set of all functions f: X —
R U {400}, which can be approrimated weakly monotonically increasing from
M(X) as follows: Each such element f possesses a sequence {fn}n=12,. in
M(X) with the property

fulx) 1 f(x) for n— oo and forall zelX.

For the element f € V, we then define

I(f) == lim I(fn),

n— oo

and we observe I(f) € RU {+oo}.
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Definition 2.3. We set

—Vi={f: X 5RU{-oc} : -feV}

and define

I(f) =—I(—f) e RU{—o0} forall fe—-V.

Remarks:

1.

The set —V represents the set of all functions f which can be approxi-
mated weakly monotonically decreasing from M as follows: There exists
a sequence { fp,}n=12,.. C M satisfying f,, | f. Then we obtain

I(f) = lim I(fn).

n—oo

. If f € VN(—V) holds true, we find sequences { f), } =12, and { f}/ }n=12, .

in M which fulfill the approximative relations f/ 1 f and f/ | f, respec-
tively. Now we see f/ — f/ | 0, and the property (5) implies
RT "o__pry 7 AT /
0= Tim I(f, = fp) = lim I(fy)— lim I(f;)

n—oo

as well as
. mo_ 1 /

Jim I(f;) = lim I(fy,).
Consequently, the functional I is uniquely defined on the set V.U (=V) D
VNn(-V)> M.
The set V contains the element f(r) = +oo as the monotonically in-
creasing limit of f,(z) = n; however, it does not contain the element
g(z) = —oo. Therefore, the set V' does not represent a linear space.

According to Proposition 2.1, the functional I is monotonic on V' as fol-
lows: Each two elements f,g € V with f < g fulfill I(f) < I(g). Fur-
thermore, the linear combination af + g of two elements f,g € V with
nonnegative scalars o > 0 and 8 > 0 belongs to V' as well, and we have

I{af + Bg) = al(f) + BI(g)-

Proposition 2.4. The function f : X — [0, 400] satisfies the equivalence

feEV = f@)=>) eala),

where @, € M(X) and ¢, >0 for all n € N hold true.



2 Extension of Daniell’s Integral to Lebesgue’s Integral 99

Proof: The direction ‘<=’ is evident from the definition of the space V: The
element f is constructed monotonically by the functions ¢,, € M, and this
implies the conclusion.

Now we show the opposite direction ‘=" as follows: Taking f € V, we find
a sequence {fn}n=12.. C M such that f, 1 f, and we infer f,;7 * f+ = f.
When we define

fox)=0 and  on(@) = £, (x) = £ 1 (@),

we observe
k

@) =>enlx) 1 f(z)

n=1

and consequently
> enla) = flx).
n=1

Obviously, the functions fulfill ¢, (z) € M and ¢, (x) > 0 for all n € N.
q.e.d.

Proposition 2.5. Let the elements f; € V with f; > 0 fori = 1,2,... be

given. Then the function

belongs to the set V, and we have
I(f) =Y I(f)-
i=1

Proof: 'The double sequence ¢;; € R with ¢;; > 0 satisfies the following
equation:

oo oo o0 n

Cii = ci; | = lim Cii. 1
E:zy E,E,w nHOOE:w (1)
i,j=1 i=1 \j=1 ij=1

This equation holds true for convergent as well as for definitely divergent
double series. On account of f; € V, we have functions ¢;; € M satisfying
@i = 0 such that

filz) = Zcpij(a:) forall ze€X andall ieN
j=1

is correct. From Definition 2.2 we infer
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(fz) - n11—>120 I Z Pij = hm ZI L)Ozj = ;I(QDZJ)

Jj=1

Furthermore, we have the following representation for all x € X:

z) =Y filz) = Z Z%g =Y wijle)= lim | Y ()
=1 =1 3,7=1 7,7=1

Consequently, f € V holds true and Definition 2.2 yields

I(f) Jim 1 Z pij | = lim Z I(piz)

i,7=1 i,j=1

Z (piz) Z ZI(S%) :Zj(fi)'

i,j=1 i=1 \j=1
q.e.d.

Definition 2.6. We consider an arbitrary function f : X — R = RU {00}
and define

IH(f) = inf{f(h) heV, hzf}, I7(f) = sup{[(g) Lge-V, g< f}.

We name I (f) the upper and I~ (f) the lower Daniell integral of f.

Proposition 2.7. Let f : X — R denote an arbitrary function and (g,h) a
pair of functions satisfying g € =V and h € V as well as g(x) < f(x) < h(z)
for all x € X. Then we infer

I(g) < I"(f) < IT(f) < I(h).

Proof: Definition 2.6 implies I(h) > I*T(f) and I(g) < I~ (f). Furthermore,
we find sequences {gn}n=1,2,.. C =V and {h,}n=12.. CV satisfying

yoen

gn < f<h, forall neN,

such that
lim I(g,) =17(f) and lim I(h,) = I*(f)

n— oo n—oo

holds true. On account of 0 < h,, + (—gy,) € V for arbitrary n € N, we see

0 < I (hu+(=ga)) = L(ha) +1(=g0)
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and consequently
1(gn) < I(hn)
and finally

I(f) = lim T(ga) < lim I(hy) = I*(f).
n— 00 n— o0 qed

In the sequel, we consider functions with values in the extended real number
system R = R U {—oo} U {+o0}. Within the set R we need the following
calculus rules:

— Addition:
a+ (+o00) = (+00)+a =+ooforallaeRU{+oo}

a+(—o00)= (—o0)4+a =-—-ooforallaecRU{-oc0}

—  Multiplication:
a(4+00) = (+o0)a = + o0 }
forall0 < a < +o0
a(—00) = (—0)a = — o0
0(+00) = (+00)0 = +00
0(—00) = (—00)0 = —©
a(+0) = (+o0)a = —o0

forall —co<a<0
a(—00) = (—0)a = + 00
—  Subtraction: For a,b € R we define
a—b:=a+ (-b),
where we set
—(4+00) = —oc0 and — (—o0) = +00.
—  Ordering: We have

-0 <a< 400 for all a €R.

Remark: Algebraically the set R does not constitute a field, because the ad-
dition is not associative; consider for instance:

(—o0) + ((+oo) + (+oo)) = (—00) + (+00) = 0,

((—oo) + (+oo)) + (400) = 04 (+00) = +00.
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With these calculus operations in R, we can uniquely define the functions f+g,
f —g, cf for two functions f: X — R and g : X — R and arbitrary scalars
¢ € R. Furthermore, we have the inequality f < g if and only if g — f > 0 is
correct.

Definition 2.8. The function f : X — R belongs to the class L = L(X) =
L(X,I) if and only if

—co < I (f)=T7(f) < +o0

holds true. Then we define

and we say that f is Lebesgue integrable with respect to 1.

Remark: In our main example 1 from Section 1, we consider the open subset
£2 C R™ and obtain the class L(X) =: L(§2) of Lebesgue integrable functions
in §2. In our main example 2, we get the class of Lebesgue integrable functions
on the manifold M with L(X) =: L(M).

Proposition 2.9. The function f : X — R belongs to the class L(X) if and
only if each quantity € > 0 admits two functions g € =V and h € V satisfying

g(z) < f(x) <h(z), ze€X and I(h)—I(g) <e.
In particular, I(g) and I(h) are finite.

Proof:

‘=" We consider f € L(X) and note that I~ (f) = I""(f) € R. According to
Definition 2.6, we find functions g € —V and h € V with ¢ < f < h and
I(h) —I(g) < e.

‘=" For each quantity ¢ > 0, we have functions g € —V and h € V with
g < f < hand I(h)—1(g9) < e. On account of I(h) € (—o0,+0o0] and
I(g) € [—00,+00), we infer I(h),I(g) € R. Now Proposition 2.7 implies
the estimate

0<IT(f)—I(f) <I(h)—1I(g) <e¢

for arbitrary € > 0. Consequently, IT(f) = I~ (f) € R holds true and
finally f € L(X). q.e.d.

Theorem 2.10. (Calculus rules for Lebesgue integrable functions)
The set L(X) of Lebesgue integrable functions has the following properties:
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a) The statement
fe LX) for each feV(X) with I(f)<4oo

is correct, and the integrals from Definition 2.2 and Definition 2.8 coin-
cide. Consequently, the functional I : M(X) — R has been extended onto
L(X) D M(X). Furthermore, we have

I(f)>0  forall feL(X) with f>0.
b) The space L(X) is linear, which means
c1f1 + cafa € L(X) forall fi1,fo € L(X) and c1,c0 €R.

Furthermore, I : L(X) — R represents a linear functional. Therefore, we
have the calculus rule

I(cifi +cafe) = cil(f1) + c2I(f2) forall fi1,fo € L(X), c1,c2 €R.

c) When f € L(X) is given, then |f| € L(X) holds true and the estimate
[I(f)] < I(|f]) is valid.

Proof:
a) Consider f € V(X) with I(f) < 4o00. Then we find a sequence

{fn}n:1,2,... C M(X)

such that f, 7 f holds true. When we define g,, := f,, and h,, := f for all
n € N, we infer g, < f < h,, with g, € =V and h,, € V, and we observe
I(hy,) —I(gn) = I(f)—I(fn) — 0. Proposition 2.9 tells us that f € L(X),
and Definition 2.8 implies
o0 <I(f) == I*(f) = I(f) = lim_I(f,) < +oc.

We consider 0 < f € L(X), and we infer from 0 € —V the statement
0< I-(f) = I(f).

b) At first, we show: If f € L(X) is chosen, we have —f € L(X) as well as
1(~f) = —1(}).

With f € L(X) given, each quantity & > 0 admits a pair of functions
g € =V and h € V satistying g < f < h as well as I(h) — I(g) < e.
This implies —h < —f < —g with —h € =V and —g € V. We note that
I(—g) = —I(g) and I(—h) = —I(h) hold true, and we obtain

I(—g) —I(—h) = —I(g)+ I(h) <e forall e>0.

Finally, we arrive at —f € L(X) and I(—f) = —I(f).
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Now we show: With f € L(X) and ¢ > 0, we have ¢f € L(X) and
I(cf) = cl(f).

Therefore, we consider f € L(X),c > 0, and each € > 0 admits functions
ge—Vand heV withg < f <haswell as I(h)—I(g) < €. This implies
cg <cf <ch,cge -V, ch eV and finally

I(ch) —I(cg) =c (I(h) - I(g)) < ce.
We have thus proved cf € L(X) and I(cf) = cI(f).

Finally, we deduce the calculus rule: From fi,fo € L(X) we infer
fi+ f2 € L(X) and I(f1 + f2) = I(f1) + I(f2)-

The elements fi, fo € L(X) being given, we find to each ¢ > 0 the
functions ¢1,92 € —V and hi,hy € V satisfying ¢g; < f; < h; and
I(h;) — I(g;) < € for i = 1,2. This immediately implies hy + he € V,
g1+92€ =V, g1+92 < fi+ fo < hi+he and I(hy+he) —1(g1+92) < 2e.
We conclude f; + fo € L(X) and obtain the calculus rule I(f; + f2) =
I(f1) +1(f2)-

Therefore, I : L(X) — R represents a linear functional on the linear space
L(X) of Lebesgue integrable functions.

With f € L(X), we find functions g € —V and h € V satisfying g <
f < hand I(h)—I(g) < € to each € > 0, and we see g7 < fT < ht.
Furthermore, we have sequences g, | g and h,, T h in M (X)), which give us
the approximations g;” | g% and h;l 1 h™, respectively. Therefore, h™ € V/
and g™ € —V holds true as well as h™ — g7 € V. From h > g we infer
h*t — gt < h— g and see

I(h") = 1(g") = I(h") + I(=g") = I(h" —g")
<I(h—g) = I(h) = I(g) < e
Consequently, the statements f* € L(X) and |f| = fT + (—f)" € L(X)
are established. With f € L(X), the elements —f and |f| belong to L(X)

as well, and the inequalities f < |f|, —f < |f| imply I(f) < I(|f]),

—I(f) =1(=f) < I(|f]) and finally [I(f)] < I(|f]). qe.d.

Now we deduce convergence theorems for Lebesgue’s integral: Fundamental
is the following

Proposition 2.11. Let the sequence {fi }r=1,2.... C L(X) with f >0, k€ N

and Y I(fi) < +oo be given. Then the property
k=1

fl@)=>" fulx) € L(X)
k=1
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is fulfilled, and we have
= I(fr):
k=1

Proof: Given the quantity € > 0, we find functions g, € —V and hy € V with
0 < gr < fr < hgand I(hg) — I(gr) < €27 for all k € N, on account of
frx € L(X). Therefore, we have the inequalities

1(gr) > I(hy) — (fk)**k and I(hk)<f(gk)+*§1(fk)

oo
Now we choose n so large that > I(fx) < € is correct. When we set
k=n-+1

=Y gk, hi=) M,
k=1 k=1

we observe g € —V and h € V, due to Proposition 2.5, as well as g < f < h.
Furthermore, we see

Ig) = Y1) > Y (1) = 57) = Do 1(fi) —2¢

k=1 k=1 k=1

and . .
thk <> (100 k):ZI(fk)Jrg

= k=1 —

Consequently, we obtain I(h) — I(g) < 3¢ and additionally f € L(X). Finally,
our estimates yield the identity

= I(fx)
k=1
q.e.d.

Theorem 2.12. (B.Levi’s theorem on monotone convergence)
Let {fu}n=1,2,.. C L(X) denote a sequence satisfying

fn(x) # £00 forall z€X andall neN
Furthermore, let the conditions

fa@) 1 f(x), 2z€X, and I(f,)<C, neN
be valid, with a constant C € R. Then we have f € L(X) and

lim I(fn) =I(f).

n—oo



106 Chapter 2 Foundations of Functional Analysis
Proof: On account of fi(x) € R, the addition is associative there. Setting
or(r) = (fi(z) = fima(z)) € LX),  k=23,...,

we infer p > 0 as well as

Z@k (x) — fi(z), xeX.

Now we observe

n

_I(fl)Zf(fn)—f(ﬁ):ZI((pk) for all n > 2.

k=2

Proposition 2.11 implies
f=f=> ¢r € LX)
k=2

and furthermore

o
lim I(fa) = 1(f1) =) Ipw) =1 (Z%) =I(f = f1) = I1(f) = I(fr)-
k=2 k=2
Therefore, we obtain f € L(X) and the following limit relation:

lim I(f,)=I(f).

n—oo

q.e.d.

Remark: The restrictive assumption f,(z) # +oo will be eliminated in the
next section.

Theorem 2.13. (Fatou’s convergence theorem)
Let {fn}n=12... C L(X) denote a sequence of functions such that

0 < fo(z) < 40 forall xe€X andall neN
holds true. Furthermore, we assume

liminf I(f,) < +o0.

n—oo

Then the function g(x) := lin_l)inf fn(x) belongs to the space L(X), and we
n oo

observe the lower semicontinuity

I(g) < liminf I(f,).

n—oo
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Proof: We note that

g(z) = liminf f,(z) = lim < inf fm(x)> = lim (kliﬂrrgognyk(xo

n—00 n—oo \ m>n n—00

holds true with
gni(@) = min (fu(@), Fusr(@),- - furn(@)) € LX),

When we define
gn(x) = nlgfn fm(l')v

we infer the relations g, | g and —gn x T —gn for £ — oo. Furthermore,
we obtain I(—gp ) < 0 due to f,(z) > 0. From Theorem 2.12 we infer
—gn € L(X) and consequently g,, € L(X) for all n € N.

Furthermore, we see g (z) < fm(x), x € X for all m > n. Therefore, the
inequality

Ign) < inf I(fn) < Tim ( inf I(f)) = liminf I(f,) < +o0

n—oo \ m>n

is correct for all n € N. We utilize g, T ¢g as well as Theorem 2.12, and we
obtain g € L(X) and, moreover,

o i .
I(g) = lim I(g,) < liminf I(f,)

q.e.d.

Theorem 2.14. Let {fp}n=12,.. C L(X) denote a sequence with
| fn(2)] < F(z) < 400, neN, zelX,
where F(x) € L(X) is correct. Furthermore, let us define

g(x) :=liminf f,,(z) and h(z):=limsup f,(z).

n—o0 n—00

Then the elements g and h belong to L(X), and we have the inequalities

I(g) <liminf I(f,), I(h) > limsupI(fy).

n—00 n—o0

Proof: We apply Theorem 2.13 on both sequences {F + f,,} and {F — f,} of
nonnegative finite-valued functions from L(X). We observe the inequality

I(F+f,) <I(F+F)<2I(F) <+ forall neN.
Thus we obtain

L(X) 3 liminf(F + fp) = F +liminf f,, = F +g
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as well as g € L(X). Now Theorem 2.13 yields
I(F) + I(g) = I(F 4 g) < liminf I(F + f,) = I(F) + liminf I(f,)
n—oo

n—oo
and
I(g) < liminf I(f,).

n—oo

In the same way we deduce

L(X) 3 liminf(F — f,) = F —limsup f, = F — h
n—oo

n—oo

and consequently h € L(X). This implies
I(F) — I(h) = I(F — h) <liminf I(F — f,,) = I(F) — limsup I(f,)

n—00 n—o00

and finally
I(h) > limsup I(f,).

n—00

q.e.d.

Theorem 2.15. (H.Lebesgue’s theorem on dominated convergence)
Let {fn}n=1,2,... C L(X) denote a sequence with

fu(x) = f(x) for n—o0, z€X.
Furthermore, we assume
|fn(z)| < F(z) < +00, neN, zeX
where F' € L(X) is valid. Then we infer f € L(X) as well as
Tim I(f,) = 1(f).
Proof: The limit relation

lim fo(z) = f(z), reX

n— o0
implies
liminf f,,(z) = f(z) = limsup f,(z).

n—0o0 n—00

According to Theorem 2.14, we have f € L(X) and

limsup I(f,) < I(f) <liminf I(f,).

n—oo

Therefore, the subsequent limit exists
lim I(fn),
n—oo

and we deduce

I(f) = lim I(fn).

n—oo q.e.d.



3 Measurable Sets 109
3 Measurable Sets

Beginning with this section, we have to require the following

Additional assumptions for the sets X and M(X):

e We assume X C R” with the dimension n € N. Then X becomes a topo-
logical space as follows: A subset A C X is open (closed) if and only if we
have an open (closed) subset A C R™ such that A = X N A holds true.

e Furthermore, we assume that the inclusion Cf (X, R) ¢ M(X) C C°(X,R)
is fulfilled. Here CP(X,RR) describes the set of bounded continuous func-
tions. This is valid for our main example 2. In our main example 1, this is
fulfilled as well if the open set {2 C R™ is subject to the following condition:

/1dx < 4o00.
o

We see immediately that the function fo =1, £ € X then belongs to the
class M (X).

Now we specialize our theory of integration from Section2 to characteristic
functions and obtain a measure theory. For an arbitrary set A C X we define
its characteristic function by

(2) l,ze A
Xalt) = 0,z X\A

Definition 3.1. A subset A C X is called finitely measurable (or alternatively
integrable) if its characteristic function satisfies x4 € L(X). We name

1(A) == I(xa)

the measure of the set A with respect to the integral I. The set of all finitely
measurable sets in X is denoted by S(X).

From the additional assumptions above, namely fo = 1 € M(X), we infer
xx € M(X) C L(X) and consequently X € S(X). Therefore, we speak
equivalently of finitely measurable and measurable sets.

Proposition 3.2. (o-Additivity)
Let {A;}iz1,2,.. C S(X) denote a sequence of mutually disjoint sets. Then the

set -
A= U A;
i=1

belongs to S(X) as well, and we have
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Proof: We consider the sequence of functions

k

fri= xa, Txa<xx € LX)
=1

and note that f, € L(X) for all £ € N holds true. Now Lebesgue’s convergence
theorem yields x4 € L(X) and consequently A € S(X). Finally, we evaluate

w(A) =I(xa) = lim I(fx) = lim I(xa, +...+xa,)
k—o00 k—o00

= lim (p(A0) . pu(Ag)) = D (A,
=1

k— o0
q.e.d.

We show that with A, B € S(X) their intersection AN B belongs to S(X) as
well. On account of x anp = XaXx B, We have to verify that with x4, x5 € L(X)
their product satisfies xaxp € L(X) as well. In general, the product of two
functions in L(X) need not lie in L(X) as demonstrated by the following

Ezample 8.3. With X = (0,1), we define the space

M(X) = f:(O,l)—)RECO((O,l),R) :/|f(a:)\dx<—|—oo
0

and the improper Riemannian integral I(f) := [ f(z) dz. Then we observe

Ot

f(z) = % € L(X); however, f*(x):= i ¢ L(X).

Now we establish the following

Theorem 3.4. (Continuous combination of bounded L-functions)
Let fr(xz) € L(X) for k = 1,...,k denote finitely many bounded functions,
such that the estimate

|fe(z)| <c for all points = € X and all indices ke {l,...,k}

is wvalid, with a constant ¢ € (0,400). Furthermore, let the function & =
D(y1,...,ye) : R = R € C°(R",R) be given. Then the composition

9(z) ;:qs(fl(x),...,fn(x)), reX

belongs to the class L(X) and is bounded.
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Proof:

1. With f: X - R € L(X) let us consider a bounded function. At first, we
show that its square satisfies f? € L(X). We observe

) = {f(x) = A} + 20 f(z) — N2

and infer
fA(x) > 20 f(x) —A*  forall \€R,

where equality is attained only for A = f(z). Therefore, we can rewrite
the square-function as follows:

f2(z) = sup (2)\f(x) - /\2).
AER

Since the function A — (2Af(z) — A?) is continuous with respect to A for

each fixed x € X, it is sufficient to evaluate this supremum only over the

set of rational numbers. Furthermore, we have Q = {)\;};=12,... and see

2/ N _ a2) = 2
f(z) = sup (2/\zf (x) Az) im ( R (2>\zf () = A )> :
With the aid of

(@) 1= max (%f (z) - A?)

we obtain
@) = lim g (x) = lim @f (2),

m—r o0 m— o0

where the last equality is inferred from the positivity of f2(x). Since f €
L(X) holds true, the linearity and the closedness with respect to the
maximum operation of L(X) imply: The elements ¢, and consequently
@~ belong to the space L(X). Furthermore, for all points z € X and all
m € N we have the estimate

0<oh(z) < fi ) <c

with a constant ¢ € (0, +00). From the property fo(z) =1 € L(X) we infer
fe(z) = ¢ € L(X), and the functions ;. have an integrable dominating
function. Now Lebesgue’s convergence theorem yields

(@) = lim gh(2) € L(X).

m—0o0

2. When f,g € L(X) represent bounded functions, its product f - g is
bounded as well. On account of part 1 of our proof and the identity

fg=1(f+9P ~ (7~ 9"

we deduce fg € L(X).
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3. On the rectangle

Q= {y: (y1,.-,ys) ER™ ¢ Jy| < e, kzl,...,n}
we can approximate the continuous function @ uniformly by polynomials
@12451(2;17--.7%), l:172,....

From part 2 we infer that the functions

a(@) =0 (fi(2)..... ful@)),  weX
are bounded and belong to the class L(X). We have the estimate
lai(z)| < C forall ze€X andall [e€N

with a fixed constant C' € (0,400). Since the function satisfies p(z) =
C € L(X), Lebesgue’s convergence theorem yields

9(0) = 2(fi(@), o fule)) = i () € LX)

Corollary from Theorem 3.4: If f(x) € L(X) represents a bounded function,
its power |f|P belongs to the class L(X) for all exponents p > 0.

Proposition 3.5. With the sets A, B € S(X) the following sets ANB, AUB,
A\ B, A°:= X \ A belong to S(X) as well.

Proof: Let us take A, B € S(X), and the associate characteristic functions
X4, xB are bounded and belong to the class L(X). Via Proposition 3.4, we
deduce

XanB = XaxB € L(X) and consequently AN B e S(X).

Now we see AUB € S(X) due to xaus = xa+ X5 — xanB € L(X). Further-
more, we observe

XA\B = XA\(AnB) = XA — XanB € L(X) and consequently A\ B € L(X).
On account of X € S(X), we finally infer A° = (X \ A) € S(X). q.e.d.

Proposition 3.6. (c-Subadditivity)
Let {A;}iz1,2,... C S(X) denote a sequence of sets. Then their denumerable

union
o0
A= U A;
i=1

belongs to S(X) as well, and we have the following estimate:

yeus

u(A) < p(Ai) € [0, +od].
i=1
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Proof: We make the transition from the sequence {A4;}i=1 2
{B;}i=12,.. of mutually disjoint sets:

to the sequence

yeus

By := Ay, By:=A3\By,..., By := A\ (B1U---UBg_1),...
Now Proposition 3.5 yields {B;}i=1,2,... C S(X). Furthermore, we note that
B; C A; holds true for all i € N and, moreover, A = G B;. Then Propo-
sition 3.2 implies A € S(X) as well as p(4) = >.°, /j:Bll-) < 32 u(A).
q.e.d.

Definition 3.7. A system A of subsets of a set X is called o-algebra if we
have the following properties :

1. X e A
2. With B € A, its complement satisfies B¢ = (X \ B) € A as well.

3. For each sequence of sets {B;}i=12

yeen

o)
in A, their denumerable union |J B;
i=1
belongs to A as well.

Remark: We infer ) € A immediately from these conditions. Furthermore,
o0

with the sets {B; };=1,2,... C A their denumerable intersection satisfies [\ B; €
i=1

A as well. .

Definition 3.8. We name the function p: A — [0,+00] on a o-algebra A a
measure if the following conditions are fulfilled:

1. p(0) = 0.
2. u( U Bi> = > w(B;) for all mutually disjoint sets {B;}i=1,2,... C A.
i=1 i=1

We call this measure finite if 1(X) < 400 holds true.

Remark: Property 2 is called the o-additivity of the measure. If we only have
finite additivity - that means u (Uf\il Bl-) = Zf\]:l w(B;) for all mutually
disjoint sets {B;}i=1,2,...8 C A - we speak of a content.
From our Propositions 3.2 to 3.6, we immediately infer

Theorem 3.9. The set S(X) of the finitely measurable subsets of X consti-
tutes a o-algebra. The prescription

n(A)=1(xa), AeSX)
defines a finite measure on the o-algebra S(X).

Remark: Carathéodory developed axiomatically the measure theory, on which
the integration theory can be based. We have presented the inverse approach
here. The axiomatic measure theory begins with Definitions 3.7 and 3.8 above.
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Definition 3.10. A set A C X is named null-set if A € S(X) and p(A) =0
hold true.

Remark: The measure u from Definition 3.1 has the property that each subset
of a null-set is a null-set again. For B C A and A € S(X) with u(A) =0 we

namely deduce
0=1I%(xa) 2 I"(x5) 21 (x5) 20,

and consequently
I"(xp) =1 (x5)=0.
Therefore, we obtain xp € L(X) and finally B € S(X) with u(B) = 0.

Proposition 3.6 immediately implies

Theorem 3.11. The denumerable union of null-sets is a null-set again.

Now we show the following
Theorem 3.12. Each open and each closed set A C X belongs to S(X).
Proof:

1. At first, let the set A be closed in X and bounded in R" O X. Then
we have a compact set Ain R? satisfying A = AN X. For the set A
we construct - with the aid of Tietze’s extension theorem - a sequence of
functions f; : R™ — R € C§(R") such that

1, zeA

—_

file) = 0, x€R"with dist (z, A) > 7
€ [0,1], elsewhere

holds true for I = 1,2,.... We observe fi(z) — xz(x), set gi = fi |X,
and obtain
g €CY(X)c M(X) C L(X)

as well as
0<gi(z) <1 and g(x) = xa(z), r e X.

On account of fo(x) =1 € M(X), we can apply Lebesgue’s convergence
theorem and see
xa(z) = llinologl(x) € L(X).

Therefore, A € S(X) is satisfied.
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2. For an arbitrary closed set A C X we consider the sequence
A ::Aﬁ{a:e]R” sz §l}.

Due to part 1 of our proof, the sets A; belong to the system S(X) and
consequently A = U A; as well. Finally, the open sets belong to S(X) as

complements of closed sets. q.e.d.

Proposition 3.13. Let us consider f € V(X). Then the level set

O(f,a) = {:13 eX : f(z) > a} cX
is open for all a € R.
Proof: We note that f € V(X) holds true and find a sequence
{fatn=12,. C M(X)C C°(X,R)

satisfying f,, 1 f on X. Let us consider a point £ € O(f,a) which means
(&) > a. Then we have an index ng € N with f,,(£) > a. Since the function
fno © X — R is continuous, there exists an open neighborhood U C X of ¢
such that f,,(x) > a for all z € U holds true. Due to f,, < f on X, we infer
f(z) > afor all z € U, which implies U C O(f, a). Consequently, the level set

O(f,a) is open. qed.
The following criterion illustrates the connection between open and measur-
able sets.

Theorem 3.14. A set B C X belongs to the system S(X) if and only if the
following condition is valid: For all § > 0 we can find a closed set A C X and
an open set O C X, such that the properties A C B C O and u(O\ A) < 0
hold true.

Proof:

‘—>" When we take B € S(X), we infer xp € L(X) and Proposition 2.9
in Section?2 gives us a function f € V(X) satisfying 0 < x5 < f and
I(f)—u(B) < ¢ for all € > 0. According to Proposition 3.13, the level sets

O.={zeX| f(zr)>1—-€e} DB

with € > 0 are open in X. Now we deduce

1 1
1- <
1_6( £)xo. <

XB < X0, = 1
—€

and we see
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p(O2) ~ W(B) = I(xo,) ~ n(B) < 11—

I(f) — u(B)

for all € > 0. For the quantity 6 > 0 being given, we now choose a
sufficiently small € > 0 such that the set O := O, D B satisfies the
estimate 5

#(0) — u(B) < 3.

Furthermore, we attribute to each measurable set B¢ = X \ B an open set

O = A° such that A° = O D B¢ and (O N B) < ¢ hold true. Therefore,
the closed set A C X fulfills the inclusion A C B C O and the estimate

#(O\ A) = u(0) — u(A) = (#(0) = u(B)) + (u(B) - u(4))

§ § ~
<§+M(B\A) = §+M(Bm0)<6.

‘=" The quantity § > 0 being given, we find an open set O O B and a closed

set A C B - they are measurable due to Proposition 3.13 - such that the
estimate I(xo — xa) < ¢ is fulfilled. Since x4,x0 € L(X) is fulfilled,
Proposition 2.9 in Section 2 provides functions g € =V (X) and h € V(X)
satisfying

g<xa<xs<xo<h in X and I(h—g) <34

Using Proposition 2.9 in Section 2 again, we deduce xp € L(X) and con-
sequently B € S(X). q.e.d.

In the sequel, we shall intensively study the null-sets. These appear as sets
of exemption for Lebesgue integrable functions and can be neglected in the
Lebesgue integration. We start our investigations with the following

Proposition 3.15. A set N C X is a null-set if and only if we have a function
h € V(X) satisfying h(x) > 0 for all x € X, h(z) = 400 for allx € N, and
I(h) < 4o0.

Proof:
‘=" Let N C X denote a null-set. Then xny € L(X) and I(xn) = 0 hold

true. For each index k € N we obtain a function hy € V(X) satisfying
0 < xn < hgin X and I(ht) < 27F, due to Proposition 2.9 in Section 2.
According to Proposition 2.5 in Section 2, the element

h(z) := Z hi(x)
k=1
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belongs to the space V(X)) and fulfills

I(h) = I(h) < 1.
k=1
On the other hand, the estimates hi(x) > 1in N for all k¥ € N imply that
the relation h(z) = +oo for all x € N is correct. We note that hx(xz) >0
in X holds true, and we deduce h(z) > 0 for all z € X.
‘=" Let the conditions h € V(X), h(z) > 0 for all x € X, h(z) = o0 for
all z € N, and I(h) < 400 be fulfilled. When we define

he(x) = —

we immediately deduce h. € V(X), he(z) > Oforallz € X, and I(h:) < ¢
for all € > 0. On account of h(z) = 400 for all x € N, we infer

0 < xn(z) < he(z) in X forall £>0.

Proposition 2.9 in Section?2 yields I(xy) = 0, which means that N is a
null-set. q.e.d.

Definition 3.16. A property holds true almost everywhere in X (symboli-
cally: a.e.), if there exists a null-set N C X such that this property is valid
for all points x € X \ N.

Theorem 3.17. (a.e.-Finiteness of L-functions)
Let the function f € L(X) be given. Then the set

N = {xeX : |f(x)|=—|—oo}

constitutes a null-set.

Proof: With f € L(X) being given, we obtain |f| € L(X) and find a function
h € V(X) satisfying 0 < |f(z)] < h(z) in X as well as I(h) < +oo. Fur-
thermore, h(x) = 400 in N holds true and Proposition 3.15 tells us that N
represents a null-set.

q.e.d.

Theorem 3.18. Let the function f € L(X) be given such that I(|f|) = 0 is
correct. Then the set

N::{xEX:f(:E)#O}

constitutes a null-set.
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Proof: With f € L(X) being given, we infer |f| € L(X). Setting
fi(@) =[f)], kel

we observe

> 1) =0.
k=1

According to Proposition 2.11 in Section 2, the function
(@)= fu(x)
k=1

is Lebesgue integrable as well. Now we see N = {z € X : g(x) = 400}, and
Theorem 3.17 implies that IV is a null-set. q.e.d.

Now we want to show that an L-function can be arbitrarily modified on a null-
set, without the value of the integral being changed! In this way we can confine
ourselves to consider finite-valued functions f € L(X), which are functions f
with f(z) € R for all x € X, more precisely. A bounded function is finite-
valued; however, a finite-valued function is not necessarily bounded. In this
context, we mention the function f(z) =1,z € (0,1).

Proposition 3.19. Let N C X denote a null-set. Furthermore, the function
f: X = R may satisfy f(x) =0 for allx € X \ N. Then we infer f € L(X)
as well as I(f) = 0.

Proof: Due to Proposition 3.15, we find a function h € V(X)) satisfying h(z) >
0 for all x € X, h(z) = +o0 for all z € N, and I(h) < +oo. For all numbers
€>0,weseeech eV and —ch € —V as well as

—ch(z) < f(x) < eh(x) forall ze X.
Furthermore, the identity
I(eh) — I(—¢eh) = 2eI(h) forall >0

is correct. We infer f € L(X) and, moreover, I(f) = 0 from Proposition 2.9
in Section 2.
q.e.d.

Theorem 3.20. Consider the function f € L(X) and the null-set N C X.

Furthermore, let the function f : X — R with the property f(z) = f(x) for

all z € X \ N be given. Then we infer f € L(X) as well as I(|f — f|) = 0,
and consequently I(f) = I(f).
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Proof: Since f € L(X) holds true, the following set
Ny = {x eX :|f(x)= +oo}

constitutes a null-set, due to Theorem 3.17. Now we find a function ¢(x) :
X — R such that

fx) = f(z) +

(
Evidently, we have the identity ¢(x) = 0 outside the null-set N U N;. Propo-

sition 3.19 yields ¢ € L(X) and I(¢) = 0. Consequently, f € L(X) is correct
and we see

x) for all z e X.

1N =1(f +9) = 1) +1(p) = I(]).
When we apply these arguments on the function
(@)= If(x) = flx)], wEX,

Proposition 3.19 shows us ¢ € L(X) and finally

0 =I() = I(f - f])
q.e.d.

Remark: When a function f coincides a.e. with an L-function f, then f €
L(X) holds true and their integrals are identical.

We are now prepared to provide general convergence theorems of the Lebesgue
integration theory.

Theorem 3.21. (General convergence theorem of B.Levi)

Let {fx}r=1,2,.. C L(X) denote a sequence of functions satisfying fi 1 f a.e.
in X. Furthermore, let I(f) < c for all k € N be valid - with the constant
c € R. Then we infer f € L(X) and

lim I(f) =1(f)-

k—o0

Proof: We consider the null-sets
Ny, = {xeX: |fk(:c)\=—|—oo} for keN

as well as
Ny = {x € X : fr(x) 1 f(x) is not Valid}.

We define the null-set

o0

N = U Ng,
k=0
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and modify f, fr on N to 0. Then we obtain the functions fk € L(X) with
I(f)=1(fs) <c forall keN

and f with ﬂ T f According to Theorem 2.12 from Section 2, we deduce
f € L(X) as well as

lim I(fx) = I(f)-

k—o0
Now Theorem 3.20 yields f € L(X) and

I(f) = I(f) = lim I(fy) = lim I(fy).
k—oc0 k—o0
q.e.d.

Modifying the functions to 0 on the relevant null-sets as above, we easily prove
the following Theorems 3.22 and 3.23 with the aid of Theorem 2.13 and 2.15
from Section 2, respectively.

Theorem 3.22. (General convergence theorem of Fatou)

Let {frx}r=1,2,... C L(X) denote a sequence of functions with fi(x) > 0 a.e.
i X for all k € N, and we assume

liminf I(f}) < +o0.
k—o0

Then the function
g(x) := likm inf fr(z)
— 00

belongs to the class L(X) as well, and we have lower semicontinuity as follows:

I(g) < lim inf I(fy).

Theorem 3.23. (General convergence theorem of Lebesgue)

Let {fr}tr=1,2... C L(X) denote a sequence with fr — f a.e. on X and
|fi(z)| < F(z) a.e. in X for all k € N, where F € L(X) holds true. Then we
infer f € L(X) and the identity

Tim I(i) = I(f).

We conclude this section with the following

Theorem 3.24. Lebesgue’s integral I : L(X) — R constitutes a Daniell inte-
gral.

Proof: We invoke Theorem 2.10 in Section2 and obtain the following: The
space L(X) is linear and closed with respect to the modulus operation. Fur-
thermore, L(X) satisfies the properties (1) and (2) in Section 1. The Lebesgue
integral I is nonnegative, linear, and closed with respect to monotone conver-
gence - due to Theorem 3.21. Therefore, the functional I fulfills the conditions
(3)-(5) in Section 1. Consequently, Lebesgue’s integral I : L(X) — R repre-
sents a Daniell integral as described in Definition 1.1 from Section 1.

q.e.d.
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4 Measurable Functions

Fundamental is the following

Definition 4.1. The function f : X — R is named measurable if the level set
- above the level a -

O(f,a) := {xeX 2 f(x) >a}

is measurable for all a € R.

Remark: Each continuous function f : X — R € C°X,R) is measurable.
Then O(f,a) C X is an open set for all a € R, which is measurable due to
Section 3, Theorem 3.12. Furthermore, Proposition 3.13 in Section 3 shows us
that each function f € V(X) is measurable as well.

Proposition 4.2. Let f : X — R denote a measurable function. Furthermore,
let us consider the numbers a,b € R with a < b and the interval I = [a,b];
for a < b we consider the intervals I = (a,b], I = [a,b), I = (a,b) as well.
Then the following sets

A= {xGX : f(x)e]}
are measurable.

Proof: Definition 4.1 implies that the level sets

O(f,¢) == O(f, ¢) = {xeX . f(x) >c}

are measurable for all ¢ € R. For a given ¢ € R, we now choose a sequence
{en}n=1,2,.. satistying c, 1 ¢, and we obtain again a measurable set via

Os(f, ) := {xGX : f(x)zc}: Fj {xeX : f(x)>cn}.

The measurable sets S(X) namely constitute a o-algebra due to Section 3,
Definition 3.7 and Theorem 3.9. Furthermore, we have the relations

(@

OQ(fa +OO) = m OZ(fa Tl), Ol(fa 700) = Ol(f? 7”);

n=1

and these sets are measurable as well. The transition to their complements
shows that

Os(f,c) == {xeX : f(x)gc} and Ou(f,c) == {xeX : f(x)<c}

are measurable for all ¢ € R. Here
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A::{xGX:f(x)GI}

can be generated by an intersection of the sets O1—-O,4, when we replace ¢ by
a or b, respectively. This proves the measurability of the sets A. q.e.d.

For a,b € R with a < b, we define the function

a,—00<t<a
¢a1b(t) = t7 a Stib
b, b <t <too

as a cut-off function. Given the function f: X — R, we set

a, —oo< f(x)<a
fa,b(x) = (Zsa,b(f(x)) = f(x)a a < f(il') <b
b, b< f(x) <too

Evidently, we have the estimate
| fap(x)| < max (] al,|b]) < +o00 forall z€X, abeR.

Furthermore, we note that

fH(x) = fo4oo(x) and f7(z) = foooo(x), r e X.

Theorem 4.3. A function f : X — R is measurable if and only if the function
fap belongs to L(X) for all a,b € R with a < b.

Proof:

‘= Let f: X — R be measurable and —co < a < b < 400 hold true. We
define the intervals

b—a b—a
Iy :==[—o0,a); 1) = [a—&-(kz—l) , a+k — ); It := [ b, +00]
with k = 1,...,m for arbitrary m € N. Furthermore, we choose the inter-
mediate values
h—
m=a+(—-1) a, [=0,...,m+ 1.
m

We infer from Proposition 4.2 that the sets
A= {{E e X : f(:L’) GI[}

are measurable. The function
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m+1

Jm = Z XA,
=0

is Lebesgue integrable, and we observe
| fro(2)| < max(|2a —b|,|b|) forall z€ X andall meN.

Since constant functions are integrable, Lebesgue’s convergence theorem
yields
Jap(z) = lim f,,(z) € L(X).
m—0o0

‘=" We have to show that the set O(f,a) is measurable for all a € R. Here
we prove: The set {x € X : f(x) > b} is measurable for all b € R. Then
we obtain the measurability of

U{xeXf )za+%}

via Proposition 3.6 from Section 3. Choosing b € R arbitrarily, we take
a = b — 1 and consider the function

g(x) := fap(x) —a € L(X).
Evidently, g : X — [0,1] holds true and, moreover,
gx)=1 <<= f(z) =0

The corollary from Theorem 3.4 in Section 3 yields g'(x) € L(X) for all
[ € N. Now Lebesgue’s convergence theorem implies

X(z) := lim g'(z) = € L(X),

l—o0

1, z € X with f(z) > b
0, z€ X with f(z) <b

and consequently {z € X : f(x) > b} is measurable for all b € R. q.e.d.
Corollary: Each function f € L(X) is measurable.
Proof: We take f € L(X), and see that N := {x € X : |f(z)] = 400} is a
null-set. Then we define
~ _{f(a:),a:EX\N

f(z) = 0. zeN e L(X).

According to Definition 4.1, the function f is measurable if and only if fis
measurable. We now apply the criterion of Theorem 4.3 on f. When —oco <
a < b < 400 is arbitrary, we immediately infer

Focalw) =min (F),5) = 2 (Fw) +b) = 21 Fle) ~b] € LX),
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because f € L(X). Analogously, we deduce Ja,+00 € L(X) for g € L(X).
Taking the following relation

fa,b = (f—oo,b)a’Jroo

into account, we infer fa)b e L(X). q.e.d.

In the next theorem there will appear an adequate notion of convergence for
measurable functions.

Theorem 4.4. (a.e.-Convergence)
Let {fr}r=12.. denote a sequence of measurable functions with the property
fe(xz) = f(z) a.e. in X. Then f is measurable.

Proof: Let us take a,b € R with a < b. Then the functions (fx),,» belong to
L(X) for all k € N, and we have

[(f)ap(@)] < max(fal,[0]) and  (fi)ap = fap ae in X.

The general convergence theorem of Lebesgue yields f,, € L(X). Due to
Theorem 4.3, the function f is measurable.
q.e.d.

Theorem 4.5. (Combination of measurable functions)
We have the following statements:

a) Linear Combination: When f, g are measurable and o, 3 € R are chosen,
the four functions af + Bg, max(f,g), min(f,g), | f| are measurable as

well.
b) Nonlinear Combination: Let the k € N finite-valued measurable func-
tions f1,..., fx be given, and furthermore the continuous function ¢ =

d(y1,---,Yx) € CO(R®,R). Then the composed function

g(x) :== ¢(f1(x), . -,f,i(x)), reX
is measurable.

Proof:

a) According to Theorem 4.3, we have f_, ,,9-p, € L(X) for all p € R.
When we note that f = lim f_,, holds true, Theorem 4.4 combined
p—00

with the linearity of the space L(X) imply that the function
af +Bg = pEI_POO(O‘ffp,p + B9—pp)

is measurable for all o, 8 € R. In the same way, we see the measurability
of the functions
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max(f,g) = pEToo max(f_pp, J—p,p)

and

min(f, g) = pEI_POO min(f—p,ps 9—p.p),

as well as | f] - due to |f| = max(f,—f).
b) The functions (fx)—pp € L(X) are bounded forallp > 0and k= 1,..., k.
According to Theorem 3.4 in Section 3 and Theorem 4.3 in Section 4, the

function ¢((f1),p)p(33), cee (fﬁ),p,p(x)) belongs to the class L(X). Fur-
thermore, we have the limit relation

9@) = tim_ 6((f)-pp@)s.- - (f)-ps(@))

p——+oo

for all x € X, and Theorem 4.4 finally yields the measurablity of g.q.e.d.

Now we define improper Lebesgue integrals.

Definition 4.6. We set for a nonnegative measurable function f the integral

I(f) = (fo.n) €[0,+o<].

lim I
N—~+oco

Theorem 4.7. A measurable function f belongs to the class L(X) if and only
if the following limit
lim I(f.;) €R
a——00
b——+oo

exists. In this case we have the identity

() = lim I(fup) = I(/) ~1(F).

b—+o00

Therefore, a measurable function f belongs to L(X) if and only if I(fT) < 400
as well as I(f~) < 400 are valid.

Proof: On account of fop = (f1)op—(f)o,—a forall —oo < a <0 <b< +o00
we see

lim I(f,p) existsin R <« lim I((fi)O,N) exist in R.
N N

Consequently, it suffices to show:

feLlX) < NEIEOOI((fi)OJV) exist in  R.

‘=" Let us take f € L(X). Then we infer f* € L(X), and B.Levi’s theorem
on monotone convergence yields
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i 1{(0x) = 104 <=
‘=" If

i ()0

N—+o0

in R exist, the theorem of B.Levi implies f* € L(X), and together with the

identity f = fT — f~ the property f € L(X) is deduced. qed

Theorem 4.8. Let f : X — R denote a measurable function satisfying
f@) < F@), weX,
with a dominating function F' € L(X). Then we have
ferLX) and I(f]) <I(F).

Proof: According to Theorem 4.5, the functions f™ and f~ are measurable,
and we see 0 < f* < F. Consequently, the estimates 0 < (fi)o,N < F and
(fF)o.n € L(X) are correct. Furthermore, we have

I((fi)O,N) <I(F)< 400 forall N >0.

B.Levi’s theorem now yields I(f*) < +oo and f* € L(X), which implies
f € L(X). On account of the monotonicity of Lebesgue’s integral, the estimate
I(] f|) < I(F) follows from the inequality | f(x)| < F(x).

q.e.d.

Theorem 4.9. Let {f1}1=1,2,... denote a sequence of nonnegative measurable
functions satisfying fi(z) T f(x), x € X. Then the function f is measurable,
and we have

1(f) = lim T(f).

Proof: From Theorem 4.4 we infer the measurability of f. According to
Definition 4.6, two measurable functions 0 < g < h satisfy the inequality
I(g) < I(h). Therefore, {I(f)}i=12,.. € [0,+00] represents a monotonically
nondecreasing sequence, such that I(f) > I(f;) for all I € N holds true. We
distinguish between the following two cases:

a) Let us consider
llim I(f1) < ¢ < +o0.
—00

Then we have I(f;) < ¢, which implies f; € L(X) due to Theorem 4.7.
B.Levi’s theorem now yields f € L(X) and

1) = Jim 1(f).
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b) Let us consider
llim I(f;) = 4o0.
—00

Then we note that I(f) > I(f;) for all I € N holds true, and we obtain
immediately

1(f) = +o0 = lim I(f)).

q.e.d.

Definition 4.10. We name a function g : X — R simple if there exist finitely
many mutually disjoint sets Ay, ..., An» € S(X) and numbersny,...,n,« € R
with n* € N, such that the following representation holds true in X :

n*
g= Z e XAy -
k=1

Remark: Evidently, we then have g € L(X) and

I(g) = Z Mk 1(Ap).
k=1

Let us take an arbitrary decomposition Z : —co < yg < y1 < ... < Yp+ < +00
in the real line R, with the intervals Iy := [yr—1,yx) for k = 1,...,n*. Fur-
thermore, we consider an arbitrary measurable function f : X — R and select
arbitrary intermediate values n, € Iy, for k =1,...,n*. Now we attribute the
following simple function to the data f, Z and 7, namely

FEM = Z M XA,
k=1

with Ay :=={x € X : f(z) € It} for k =1,...,n*. Then we observe

I(f(z’")> = iflk 1(Ag).
k=1

We denote by a canonical sequence of decompositions such a sequence of de-
compositions, whose start- and end-points tend towards —oo and 400, respec-
tively, and whose maximal interval-lengths tend to O.

Theorem 4.11. When we consider f : X — R € L(X), each canonical se-
quence of decompositions {Z(p) tp=1,2,... in R and each choice of intermediate
values {n(p) tp=1,2,... gives us the asymptotic identity

yeen

n(®)

. (r) ,(P) .
1) = Jim (7)< lim Y 0 u(A).
k=1

p—r o0
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Remark: Therefore, Lebesgue’s integral can be approximated by the Lebesgue
sums as above, and the notation

1(f) = / £() dy(z)
X

is justified. However, the Riemannian intermediate sums can be evaluated nu-
merically much better than the Lebesgue sums.

Proof of Theorem 4.11: Let us consider the function f € L(X), a decompo-
sition Z with its fineness 6(Z) = max{(yx — yx—1) : kK = 1,...,n*}, and
arbitrary intermediate values {ng}x=1,. n+. Then we infer the estimate

IfED (@) < 6(2) + |f(z)] forall zeX.

When {Z(p)}pzl,l___ describes a canonical sequence of decompositions and
{n(p) tp=1,2,... denote arbitrary intermediate values, we observe the limit rela-
tion )

FETMT) () 5 f(x) ae. for p— oo,

which is valid for all € X with |f(z)| # 4+o00. Now Lebesgue’s convergence
theorem yields

n(®)

. ®) @) T )
1() = Jim 1(FE770) = lim ;m@um?).

p—0o0

q.e.d.

Now we shall present a selection theorem related to a.e.-convergence.

Theorem 4.12. (Lebesgue’s selection theorem)
Let { fx}k=1,2,... denote a sequence in L(X) satisfying

lim I(] fr — fil) =0.
k,l—oc0

Then a null-set N C X as well as a monotonically increasing subsequence
{km }m=12.... exist, such that the sequence of functions {fr,, (z)}m=12,. con-
verges for all points x € X \ N and their limit fulfills

lim fi, (x) = f(z) € L(X).

m—r 00

Therefore, we can select an a.e. convergent subsequence from a Cauchy se-
quence with respect to the integral I.

Proof: On the null-set

Ny = G {xEX D fr(x)] = +oo}
k=1
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we modify the functions f; and obtain
~ fk(CC),(EEX\Nl
fe(x) = )
0, xeN;

Without loss of generality, we can assume the functions {f;}r=12,. to be
finite-valued. On account of

lim I(] f, = fil) = 0,

p,l—o0

we find a subsequence k1 < ko < --- with the property
1
I(| fp = fil) < om forall p,l>kn, m=12....

In particular, we infer the following estimates:
1

I(|fkm+17fkm,|)§2—m’ m=12...
and -
Z I(‘ fkm+1 = Jkm ) <1
m=1

B.Levi’s theorem tells us that the function
o0
9(@) =Y | frpr (@) = fr, (@), zeX
m=1

belongs to L(X), and Ny := {z € X \ N1 : |g(x)] = 400} represents a
null-set. Therefore, the series

o0

> | frpir (@) = fr, (z)| forall z€ X\ N with N:=N UN,
m=1
converges, as well as the series

o0

(@) = o, (@)).

m=1
Consequently, the limit
lim (fo,, (@) = fiu (@) = F(@) = fio (@)

m—»o0
exists for all points x € X \ N, and the sequence {fg,, }m=1,2,.. converges on
X \ N towards f. We note that g € L(X) and | fx, (v) — fu, (z)] < |g(2)|
are valid, and Lebesgue’s convergence theorem is applicable. Finally, we infer
f € L(X) and the relation

I(f) = lim I(f,,).

m— oo
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Proposition 4.13. (Approximation in the integral)
Let the function f € L(X) be given. To each quantity ¢ > 0, we then find a
function f. € M(X) satisfying

I(f = fl) <e

Proof: Since f € L(X) holds true, Proposition 2.9 from Section 2 provides two
functions g € —V and h € V such that

9(@) < f(@) S h(z), weX, and I(h)-1I(g) <.

Recalling the definition of the space V(X), we find a function h'(z) € M(X)
satisfying

B (z) <h(z), z€X, and I(h)—Ik)<

DO ™

This implies
[f=WI<[f=hl+h=N]<(h—g)+ (h—1N),

and the monotonicity and linearity of the integral yield

e

I(|f=W|) < (I(h) = I(g)) + (I(h) = I(W)) < = + % —e.

[\V]

With f. := h' we obtain the desired function. q.e.d.

Theorem 4.14. (a.e.-Approximation)

Let f denote a measurable function satisfying | f(z)| < ¢, x € X with the con-
stant ¢ € (0,400). Then we have a sequence {fi}r=12,.. C M(X) satisfying
| fr(@)] <c¢, z€ X forall k€N, such that fr(x) — f(z) a.e. in X holds
true.

Proof: Since f is measurable and dominated by the constant function ¢ €
L(X), we infer f € L(X) from Theorem 4.8. Now Proposition 4.13 allows
us to find a sequence {gx(x)}r=12,.. C M(X) satisfying I(| f — gx|) — 0 for
k — oo. We set

hi(x) 2= (g)—c,c(2)

and observe hy, € M(X) as well as | hi(z)| < c for all x € X and all k € N.
We note that

|hk - f‘ = | (gk)fc,c - ffc#:

=|(gr — [-ce

<lgr— fl

is correct and see

lim I(| hx — f]) < lim I(]gx — f|) = 0.
k—o0 k—»o0
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On account of the relation
(b= hal) < (b — f)+ I f —hal) — 0 for k1 oo,

Lebesgue’s selection theorem yields a null-set N; C X and a monotonically
increasing subsequence {ky, }m=1,2,... such that the following limit exists:

h(z) := lim hg, (z) forall ze X\ Nj.

We extend h onto the null-set by the prescription h(z) := 0 for all x € Ny.
Now we conclude

lim | Ay, (2) = f(2)| = [h(z) = f(z)] o X\ Ny

m— o0

The theorem of Fatou yields

1= f) < Y (A, - f1) = 0.
Consequently, we find a null-set Ny C X such that

f(z) = h(x) forall x€ X\ Ny

holds true. When we define N := Ny U Ny and f,,(x) := hy,, (z), we obviously
infer f,(z) € M(X), |fm(z)] < c for all x € X and all m € N, and the
following limit relation:

lim f,(x)= lm hy, e h(x) el fz) forall ze€ X\ N.
m—r o0 m—r o0
Consequently, we obtain fp,(z) — f(z) for all z € X \ N. q.e.d.

Uniform convergence and a.e.-convergence are connected by the following re-
sult.

Theorem 4.15. (Egorov)

Let the measurable set B C X as well as the measurable a.e.-finite-valued
functions f : B — R and fi : B — R for all k € N be given, with the
convergence property fr(x) — f(x) a.e. in B. To each quantity § > 0, we
then find a closed set A C B satisfying u(B \ A) < ¢ such that the limit
relation, fr(x) — f(x) uniformly on A, holds true.

Proof: We consider the null-set
N = {:E € B : fi(z) — f(x) is not Satisﬁed}
To m € N and for all [ € N exists

=<zxzeB:
an index k > [ with | fx(z) —

-Un {xeB:|fk(m) f(x |>— = {J Bm,
k>l

m=1 [=1

83|~
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where

DX

B, =

U{een: tne-ron- 1}

has been defined. We observe B, C N and consequently u(B,,) = 0 for all
m € N. We note that

Buii=J{z e B ) - 1@ > -}

k>l

l

1

holds true and infer By, ; D By, ;41 for all m,l € N. From the relation
Bm = n Bm,l
1=1
we then obtain

0=p(Bm) = Hm pu(Bp,)-

Consequently, to each index m € N we find an index [,,, € N with l,,, < l,11
such that

iU feen s tne-r@i> 2} = nBnn) < 5o

k>l

holds true. We define

By
1

Em = DBy,1,, and B =

SR

Evidently, the set B is measurable and the estimate

N

wB) <> p(Bm) <

m=1

is fulfilled. When we still define A := B \ B , we comprehend

E:Bm<6§m> =Bﬂ<ﬁ§fn>
m=1 m=1

Il
D)

{xEB S fe(x) = fz)] < % for allkZlm}.

m=1

For all points = € j’ we find an index [,, € N to a given m € N such that

forall k>1,,

| fr(z) = f(2)] <

1
m
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holds true. Consequently, the sequence { fx|5}x=1,2,... converges uniformly to-

wards f|z. According to Theorem 3.14 in Section 3, we now choose a closed
set A C A with 5

N(A\A)<§.

We note that A C A holds true, and the sequence of functions {fx |4 }x=1,2,...

converges uniformly towards f|4. When we additionally observe B\ A = B,
we finally see

p(B\A) = p(B\A) 4 u(A\4) < 310 =6

q.e.d.

The interrelation between measurable and continuous functions is revealed by
the following result.

Theorem 4.16. (Lusin)

Let f : B — R denote a measurable function on the measurable set B C X.
To each quantity § > 0, we then find a closed set A C X with the property
w(B\ A) < 0 such that the restriction f|a : A — R is continuous.

Proof: For j =1,2,... we consider the truncated functions
—Jj» f(x) € [-00, —j]
fj(x) = f(.’l?),f(ﬁ?)E[—],—‘r]]
+7, f(x) € [+, +od]
All functions f; : B — R are measurable, and we infer

| fi(x)| <j for all z € B.

We utilize Theorem 4.14 and the property M(X) C CY(X): For each index
j € N, there exists a sequence of continuous functions f; : B — R satisfying

klim fix(x) = fi(x) a.e. in  B.

Via Egorov’s theorem, we find a closed set A; C B to each j = 1,2,...
satisfying
)
u(B\ 4;) < BYESE
such that the sequence of functions {f j,k|A]‘}k:1A’2’m converges uniformly to-
wards the function f;]4;. The Weierstrafl convergence theorem reveals conti-
nuity of the functions f;|4, for all j € N. The set

A\Z: ﬁA]CB
j=1
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is closed, and we arrive at the estimate

p(BAA) < BV A) <Y o0 = o
j=1

Jj=1

Now the functions f; : A — R are continuous for all j € N, and we recall

f(z) = lim fj(z) in A.

Jj—o00
Egorov’s theorem supplies a closed set A C A with

WA\ 4) < 3.

such that f; converges uniformly on A towards f. Consequently, the function
fla is continuous, and we estimate as follows:

w(B\A) = u(B\A) +u(A\A) < S+ 2 =5
q.e.d.

Remark: We have learned the Three principles of Littlewood in Lebesgue’s the-
ory of measure and integration. J.E.LITTLEWOOD: “There are three principles
roughly expressible in the following terms: Every measurable set is nearly a
finite union of intervals; every measurable function is nearly continuous; every
a.e. convergent sequence of measurable functions is nearly uniformly conver-
gent.”

5 Riemann’s and Lebesgue’s Integral on Rectangles
With d € (0, +00) being given, we consider the rectangle

Q:= {x:(:cl,...,xn)eR” s xy] < d, jzl,...,n}, where n € N.

o
In our main example from Section 1, we choose X = (2 :=Q and extend the
improper Riemannian integral

I:MX)—R, with  f— I(f) ::/f(:c)dx
7}
from the space
M(X) = fec@) : /|f(a:)|da:< oo
Q

onto the space L(X) D M(X) and obtain Lebesgue’s integral I : L(X) — R.
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Theorem 5.1. For the set E C {2 being given, the following statements are

equivalent:

(1) E is a null-set.

(2) To each quantity € > 0, we find with {Qk }x=1,2,... C 2 denumeradbly many
oo oo

rectangles satisfying E C U Qr and Z | Q| <e.
k=1 k=1

Proof:

(1)=(2): Since E represents a null-set, Proposition 3.15 from Section 3
provides a function h € V(X) with h > 0 on X, h = +o0 on E, and
I(h) < +o0o0. With the constant ¢ € [1,+00) chosen arbitrarily, we con-
sider the open - and consequently measurable - set

EC::{xEQ:h(m)>c}DE.

Then we observe

—_

1
WE:) = I(xe.) = EI(CXEC) < Ef(h) <e
for ¢ > I(h) . The open set E,. can be represented as a denumerable union of
closed rectangles @, which intersect, at most, in boundary points. There-
fore, we deduce

(o]
ECE.= Qs
k=1
We note that the boundary points of a rectangle constitute a null-set and

see o
D IQk = (B <&
k=1

(2)==(1): For each index k € N we find a function hj, € CJ({2) satisfying

() =4 - T @ and  I(hy) < 2|Qul.
(= [0,1} , CCER”\Qk

The sequence {g;(x)}i=12,.., defined by g;(z) := 22:1 hi(x), converges
monotonically and belongs to M (X). This implies

Furthermore, we have xg(x) < h(z), € R™ and estimate

0<TI (xp) <I"(xp) <I(h ZI (h) <22|Qk|<25

for all € > 0. Therefore, E is a null-set. q.e.d.
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Riemann’s and Lebesgue’s integral are compared as follows:

Theorem 5.2. A bounded function f : 2 — R is Riemann integrable if and
only if the set K, containing all points of discontinuities, constitutes a null-
set. In this case the function f belongs to the class L({2), and we have the
identity

Im=/ﬂwM=4ﬂmm
2

this means that Riemann’s integral of f coincides with Lebesgue’s integral.
Here we have to extend f to 0 onto the whole space R™.

Proof: We consider the functions

i) o= T —(r) = i : n
m™(z) = lim \yililﬂsf(y) and m”(z) = lim lyﬁg‘fgf(y), z € R

We have the identity m™*(z) = m™(z) if and only if f is continuous at the
point x. Let

N
z:Q= e
k=1

denote a canonical decomposition of () into IV closed rectangles Q.. We define
the simple functions

N
m;y =sup f(y), my = glkff(y) and fzi(x) = me)(@k(x) € L(X).
k=1

Qk

We observe the identity
N
I(F2) =) mi| Qxl.
k=1

Therefore, Lebesgue’s integral of the functions f g coincides with the Rieman-
nian upper and lower sums, respectively, of the function f - associated with
the decomposition Z. When we denote by

N
0z = J 0Qx
k=1

the set of the boundary points for the decomposition Z, then 0Z constitutes
a null-set in R™. Now we observe an arbitrary canonical sequence of decom-
positions {Z,},=1,2,.. for the rectangle @), such that its fineness tends to 0.
We obtain the limit relation

lim f;p () =m*(z) forall ze2\N,

pP—r 00
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where -
N=Joz,cQ
p=1

is a null-set. Now we select an adequate canonical sequence of decompositions
such that

/f(z)dx:plln;ol(fgp) and /f(x)dz:plingol(fgp).
Q

Lebesgue’s convergence theorem implies

/f(:z:)dx:[(mf) and /f(x)d:cz[(m+).
Q Q

Now we note that the function f : 2 — R is Riemann integrable if and only
if

I(m*) = /f(x) dx = /f(x) dr = I(m™) or equivalently I(m*t—m~)=0
Q

holds true. Due to m™ > m™, this is exactly the case if m™ = m™ a.e. in Q
holds true, or equivalently if f is continuous a.e. on Q. qed
We intend to prove Fubini’s theorem interchanging the order of integration for

Lebesgue integrable functions. Here we consider two open bounded rectangles
@ C RP and R C R? and begin with the following

Proposition 5.3. Let f = f(2,9) : Q x R — R € V(Q x R) be given. Then
the function f(x,y), y € R belongs to the class V(R) for each x € Q, and the

function
z) :/f(x,y)dy

belongs to the class V(Q). Furthermore, we have

/fmydxdy—/ (z) da.

QXR

Proof: Since f € V(Q x R) holds true, we find a sequence {f,(z,y)}n=12.. C
C(Q x R) satisfying f,(z,y) 1 f(z,y). For each z € Q, the functions
fn(x,y), vy € R belong to the class C§(R) and consequently f(z,y) to V(R).

When we define
T) = / folz,y)dy,  ©e€Q,
R
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we infer ¢,, € CJ(Q) and ¢, (z) T () in Q. This implies

//f r.y) drdy = lim //fn £.y) dedy = lim /% _/<p(x)dx,
Q

@xR QXR q.e.d.

Proposition 5.4. Let N denote a null-set in Q X R and define

N, = {yGR : (x,y)EN}.

Then we have a null-set E C Q, such that N, constitutes a null-set in R for
all points x € Q \ E.

Proof: Since N is a null-set, we find a function h(z,y) € V(Q x R) with A > 0
on @ X R and h(z,y) = +oo for all (z,y) € N, such that the property

+oo>// (z,y dmdy—/ () dx with () ::/h(m,y)dyZO

QxR R

holds true - due to Proposition 5.3. We note that ¢ € V(Q) and

/go(ac) dx < 400

Q

is satisfied and deduce ¢ € L(Q). Furthermore, we find a null-set £ C @ with
p(x) < 400 for all z € @ \ E. On account of h = 400 on N, the set N, is a

null-set for all z € @\ E.
q.e.d.

Theorem 5.5. (Fubini) Let f(z,y) : Q@ x R — [0, 4+00] represent a measur-
able function. Then we have a null-set E C @Q, such that the function f(x,y),
y € R is measurable for all points x € Q \ E. When we define

/f(x,y)d% reQ\E
plz) = { # ,
0, re bk

the function ¢ is nonnegative and measurable. Furthermore, we have Fubini’s

identity
/fmydwdy—/ (z) da.

QXR
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Proof: For n =1,2,... we consider the functions

f(@,y), if f(z,y) €[0,n]
otherwise

fn(x7y) = {

with f, € L(Q X R). Applying Theorem 4.14 from Section 4, we find for each
number n € N a null-set N,, C @ x R and a sequence of functions

fmm(x,y)ECg(QxR) with |fn,m|§n on QXR,

n,

such that
Jim fom(z,y) = fo(z,y)  forall (z,y) € (@ x R)\ Ny
Each fixed number n € N admits a null-set F,, C @, such that
{yeR: (z,y) e N,} CR

represents a null-set for all points z € Q \ E,,. Now Lebesgue’s convergence

theorem yields
// fn(z,y) dedy

QXR
= lim //fnym(x,y)d:cdy: lim / /fn,m(z,y)dy dx
m— 00 m— 00
QxR Q R
~ lim [fum@ydy| ae= [ | [ faev) dy | a.
m—00 H/—/
Q\E, R Q\E. R €L(R)
In addition,
E:=|JE,cQ

n=1

constitutes a null-set, and we see

//fn(xvy)dxdy: / /fn(x,y)dy dz.

QxR Q\E \R

Finally, Theorem 4.9 from Section 4 yields

[ 1wy =t (] 1uwp) dody

Q%R QXR
= lim /fn(x,y)dy dz = / /f(wvy)dy dm:/s@(x) dx.
n—oo
Q\E \R Q\E \R Q

q.e.d.
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6 Banach and Hilbert Spaces

We owe the basic concepts for linear spaces, which appear in the next sections,
to the mathematicians D. Hilbert and S. Banach. Here we can equally consider
real and complex vector spaces.

Definition 6.1. Let M denote a real (or complex) linear space, which means
frgeM, a,BeR (orC) = af +Pge M.

Then we name M a normed real (or complex) linear space and equivalently
a normed vector space if we have a function

-1 M — [0, 400)

with the following properties:

(ND[fII =0 <= f=0;
(N2) Triangle inequality: ||f + gl < | fIl+llgll ~ for all f,g € M;
(N3) Homogeneity: ||Af|l = |M|fll  for all f e M, A€ R (orC).

The function || - || is called the norm on M.

Remark: From the axioms (N1), (N2), and (N3) we immediately infer the
inequality

1F =gl = |IF1 = llgl | forall f.ge M,

because we have

=Ml = [1f =g+ gll = llgll < If = gl + llgll = llgll = 1If = gll;

which yields our statement by interchanging f and g.

Definition 6.2. The normed vector space M is named complete, if each
Cauchy sequence in M converges. This means, to each sequence {f,} C
M satisfying limpg oo || fx — fill = 0 we find an element f € M with
limg o0 Hf - ka =0.

Definition 6.3. A complete normed vector space is named a Banach space.

Example 6.4. Choosing the compact set K C R™, we endow the space B :=
CY(K,R) with the norm

/1] 1=jg}g\f(m)|=g1€a;§|f(x)l, feB,

and thus obtain a Banach space. This norm generates the uniform convergence
- a concept already introduced by Weierstraf.
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Definition 6.5. A complex linear space H' is named pre-Hilbert-space if an
inner product is defined in H'; more precisely, we have a function

(,): H' xH —C
with the following properties:

(H1) (f +g,h) = (f.h) + (g,h) forall f,g,h € H

(H2) (f,Ag) = A(f,g) forall f,ge N \eC;

(H3) Hermitian character: (f,qg) = (g,f) forall f,g € H';
(H4) Positive-definite character: (f, f) >0, if f #0.

Remarks:

1. We infer the following calculus rule from the axioms (H1) - (H4) immedi-
ately:
(H5) For all f,g,h € H' we have

(fag+h):(g+h’f):(g’f)+(h7f):(fvg)+(f’h)

(H6) Furthermore, the relation

(A, 9) = M(f,9) forall f,geH, XeC

is satisfied.
Therefore, the inner product is antilinear in its first and linear in its second
argument.
2. In a real linear space H', an inner product is characterized by the prop-

erties (H1) - (H4) as well, where (H3) then reduces to the symmetry
condition

(f,9)=1(g,f) forall fgeH.

Ezxample 6.6. Let us consider the numbers —oco < a < b < +00 and the space
H' := C°([a, b],C) of continuous functions. Via the inner product

b
(frg) = / F@)g(x) dr,

the set H' becomes a pre-Hilbert-space.

Theorem 6.7. Let H' represent a pre-Hilbert-space. With the aid of the norm

IFIF:= v/ (S, ),

the set H' becomes a normed vector space.

Proof:
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1. At first, we show that the following inequality is valid in H’ , namely

(@, DI =19l < IfIlllgll for all f,g €H'.

With f,g € H', we associate a quadratic form in A\, u € C as follows:
0 < QA p) = (A — ng, Af — pg)

= [AP(f, ) = Nalg, £) = Ml f.9) + |1l* (g, 9)-

When (g, f) = (f,¢9) = 0 - in particular f = 0 or g = 0 - holds true, this
inequality is evident. In the other case, we choose

I (Vi
A=boE= (9, 1)

The nonnegative character of @ - easily seen from the property (H4) -
implies the inequality

£ 111191

2
0= =i+ Sege

and finally by rearrangement

[(F 9l < IfIHgll forall  f.g €.

2. Now we show that ||f|| := +/(f, f) satisfies the norm conditions (N1)
- (N3). We infer for all elements f,g € H' and A € C the following
properties:

i.) || f]l = 0, and (H4) tells us that || f|| = 0 is fulfilled if and only if f =0
is correct;

i.) [AfIl = VO AS) = AN F) = ALl
iii.)
If + 9> = (f +9.f +9) = (f. /) + 2Re(f,9) + (9.9)
< £ + 21, 9)l + llgl?
< A%+ 20 £ gl + llgll?
= (I£1I+ llgl)?,
and consequently
1+ gl < 171 + llgll-

Therefore, || - || gives us a norm on H’. q.e.d.

Definition 6.8. A pre-Hilbert-space H is named Hilbert space, if H endowed
with the norm

Il =1,  feH

is complete and consequently a Banach space.
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Remarks:

1. We prove that the inner product (f,g) is continuous in H. Here we note
the following estimate for the elements f, g, fn, gn € H:

|(frs gn) = (f, 9| = |(fas gn) = (fns9) + (fns9) — (f, 9)l
< |(fnvgn) - (fnvg)| + |(fnag) - (fvg)|
< |<fnagn_g)‘+|(fn_f7g)|

< A fall llgn = gl + 1fn = fIHIgll-

Therefore, when the limit relations f, — f and g, — g for n — oo in H
hold true, we infer

lim (fn, 9n) = (£, 9)-

We observe that the completeness of the space H is not needed for the
proof of the continuity of the inner product.

2. The pre-Hilbert-space from Example 6.6 is not complete and consequently
does not represent a Hilbert space.

3. In Section 3 from Chapter 8, we shall embed - parallel to the transition
from rational numbers to real numbers - each pre-Hilbert-space H' into a
Hilbert space H. This means H' C H and H' is dense in H.

4. Hilbert spaces represent particular Banach spaces. The existence of an
inner product in H allows us to introduce the notion of orthogonality:
Two elements f,g € H are named orthogonal to each other if (f,g) =0
holds true.

Let M C H denote an arbitrary linear subspace. We define the orthogonal
space to M via

Ml::{geH : (g,f):OforallfeM}.

We see immediately that M~ is a linear subspace of 7, and the continuity of
the inner product justifies the following

Remark: For an arbitrary linear subspace M C H, its associate orthogonal
space M= is closed. More precisely, each sequence

{fa} M+ in Mt satisfying f, = f for n— o0
fulfills f € M*.

Proof: Since {f,} C M* holds true, we infer (f,,g) = 0 for all n € N and
g € M. This implies

0= lim (fn,9) = (f,9) forall geM.



144 Chapter 2 Foundations of Functional Analysis
q.e.d.

Fundamentally important is the following

Theorem 6.9. (Orthogonal projection)
Let M C H denote a closed linear subspace of the Hilbert space H. Then each
element f € H possesses the following representation:

f=g9+h with ge M and he M=

Here the elements g and h are uniquely determined.

This theorem says that the Hilbert space H can be decomposed into two
orthogonal subspaces M and M+ such that H = M @© M+ holds true.
Proof:

1. At first, we show the uniqueness. Let us consider an element f € H with
f=gi+hi=g2+hy, g €M, h;jeM"
Then we deduce
0=f—f=(g1—g2) + (h1—ha).
The uniqueness follows from the identity
0= l(g1 — g2) + (h1 — ha)|]?
= ((91 = 92) + (h1 = h2), (91 — g2) + (h1 — h2))
= llgr = g211* + 1 — ha .

2. Now we have to establish the existence of the desired representation. The
element f € H being given, we solve the subsequent variational problem:
Find an element g € M such that

—g||=inf ||f—gl|l=:d
If = gll g@ﬂf gl
holds true. We choose a sequence {gr} C M with the property
Tim [1f — gi| = d.
—00

Then we prove that this sequence converges towards an element g € M.
Here we utilize the parallelogram identity

2 2
e+ p—|I” _1 2 2
22+ |25 =5 e re) o pwen

which we easily check by evaluating the inner products on both sides. Now
we apply this identity to the elements
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@:f_gkv 'l;[):f_glv k,l€N

and obtain
2
9k + gi gk — g1 1
f- " = (I =l 4117 = al?).
2 2
Rearrangement of these equations implies
2
9k — i 1 Ik + i
o< 252 = 3 (17— out? + 1 - al?) - |-

1
<5 (IF = gul? + 11 = aul?) -

The passage to the limit &k, — oo reveals that {gy} represents a Cauchy
sequence. Since the linear subspace M is closed, we infer the existence of
the limit g € M for the sequence {g}.

Finally, we prove h = (f —g) € M= and obtain the desired representation
f=9+(f-9)=g+h

When ¢ € M is chosen arbitrarily as well as the number € € (—&g, g),
we infer the inequality

I(f = 9) +epl?>d* = f - gl*
We note that
If —gl* +2eRe(f —g,0) + 2@l > |If — glI?,

and deduce
2eRe (f —g,0) + &[] >0

for all ¢ € M and all € € (—¢eg,&p). Therefore, the identity
Re(f—g,9)=0 for all e M

must be valid. When we replace ¢ by ip, we obtain (f — g,¢) = 0. Since
the element ¢ has been chosen arbitrarily within M, the property

(f —g) e M*

is shown. q.e.d.

The subsequent concepts on the continuity of linear operators in infinite-
dimensional vector spaces have been created by S. Banach.

Definition 6.10. Let {M, |- |l1} and {Ma,| - |2} denote two normed linear
spaces and A : My — My a linear mapping. Then A is called continuous at
the point f € My, if we can find a quantity 6 = §(g, f) > 0 for all e > 0 such
that

geMy, lg—flh<é = |Alg) —A(f)l2 <e.
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Theorem 6.11. Consider the linear functional A : M — C on the linear
normed space M, which means

Alaf + Bg) = «A(f) + BA(g) forall f,ge M, «,p5€C.

Then the following statements are equivalent:

(i) A is continuous at all points f € M;
(i1) A is continuous at one point f € M;
(iii) A is bounded in the following sense: There exists a constant « € [0, +00)
such that
A <allfl forall feM

holds true.

Proof:

(1) = (i4i) : Let A be continuous in M, then this holds true at the origin
0 € M in particular. For ¢ = 1 we find a quantity §(¢) > 0 such that
IfIl <6 implies |A(f)| < 1. We obtain

AW <31 forall feM.

(#i1) = (1) : We immediately infer the continuity of A at the origin 0 from
the boundedness of A.

(ii) = (i) : Let A be be continuous at one point fy € M. For a number € > 0
being given, we find a quantity § > 0 satisfying

peM, ol < = [Alfo+¢) - A(fo)l <e.

The linearity of our functional A gives us the following estimate for all

feM:
peM, o< = JA(f+¢)—A(f)l<e

Therefore, A is continuous for all f € M. q.e.d.

Remark: This theorem remains true for linear mappings A : M; — My
between the normed vector spaces {M, | - |1} and {Moy,|| - ||2}. Here we
mean by the notion ’A is bounded’ that we can find a number a € [0, +00)
such that

[ANl2 < aflflly forall feM

holds true.

Definition 6.12. When we consider a bounded linear functional A : M — C
on the normed linear space M, we introduce the norm of the functional A as

follows:
[Al:==  sup  |A(f)].
feMm, |ifli<1
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Definition 6.13. By the symbol
M* = {A : M — C : A is bounded on M},

we denote the dual space of the normed linear space M.

Remarks:

1. We easily show that M*, endowed with the norm from Definition 6.12,
constitutes a Banach space.

2. Let H denote a Hilbert space. Then its dual space H* is isomorphic to H,
as we shall show now.

Theorem 6.14. (Representation theorem of Fréchet and Riesz)
Each bounded linear functional A : H — C, defined on a Hilbert space H, can
be represented in the form

A(f)=(9,f)  forall feH,
with a generating element g € H which is uniquely determined.
Proof:

1. At first, we show the uniqueness. Let f € ‘H and g1,g2 € H denote two
generating elements. Then we see

A(f) = (91, f) = (g2, f)  forall feH.
We subtract these equations and obtain
(91, f) — (92, f) = (91 — g2, f) =0 for all f e H.
When we choose f = g1 — g2, we infer g; = go on account of
0= (g1 — 92,91 — g2) = [lg1 — ga*.
2. In order to prove the existence of g, we consider
M= {fe?—l : A(f):O}CH

representing a closed linear subspace of H.
i.) Let M = H be satisfied. Then we set ¢ = 0 € H and obtain the
identity
A(f)=(g9,f)=0 for all feH.
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ii.) Let M;'H be satisfied. We invoke the theorem of the orthogonal pro-
jection and see H = M & M+ with {0} # M. Consequently, there
exists an element h € M with h # 0. We now determine a number
a € C, such that the identity A(h) = (g, h) for g = ah is correct. This
is equivalent to

A(h) = (g,h) = (ah,h) =@ (h,h) =@ ||h|*

and
A(h)
g=—
[[72]|>
Now the identity A(f) = (g, f) is valid for all f € M and for f = h.
When f € H is arbitrary, we define ¢ := %. With f := f — ch, we

obtain )
A(F) = A(f) — cA(h) = A(f) - % A(h) =0

and consequently fe M. Therefore, we have the representation
fZJ?-i-ch for feH, where fEM and ch € M* .
This implies
A(f) = A(f) + cA(h) = (g, f) + c(g,h) = (g, f + ch) = (g, f)
for all f € H. q.e.d.

Definition 6.15. We name a Banach space separable if a sequence {fr} C B
exists, which lies densely in B. More precisely, we find an index k € N to each
element f € B and every € > 0 such that ||f — fi|| < e holds true.

Definition 6.16. In a pre-Hilbert-space H', we name the denumerably infinite
many elements {¢1, p2,...} C H' orthonormal if

(pir ;) =06;; forall i,j €N
s valid.

Remark: When we have the system of denumerably many linearly independent
elements in H’', we can apply the orthonormalization procedure of E. Schmidt
in order to transfer this into an orthonormal system.

Here we start with the linearly independent elements {f1,...,fn} C H' of
the pre-Hilbert-space H'. Then we define inductively

N-1
01 = L fl Qg 1= f2 - (@17‘](‘2)801 o fN - J;l (@]7fN)§0]
. ”le ’ ’ ||f2_(<p1af2)<,01”7.“ : o

Iv = > (95, In)p;

Jj=1




6 Banach and Hilbert Spaces 149

The vector spaces spanned by {f1,...,fn} and {¢1,...,pn} coincide, and
we note that
(¢irpj) =0;; for i,j=1,...,N.

Proposition 6.17. Let {¢y} with k = 1,...,N represent a system of or-
thonormal elements in the pre-Hilbert-space H' and assume f € H'. Then we
have the identity

N
Hf— CksﬁkH = Hf (@k, QﬁkH +Z|Ck_ (on, HI?
k=1 k=

k=1

for all numbers cq,...,cy € C.

Proof: At first, we define

N

N
=f- (eks f)ers Z(@k, —Ck)<Pk~

k=1 k=1

Then we deduce the equation

N N N
F=Y ewpe=F= (o6 o+ ((s%f) - Ck)SDk =g+h
k=1 k=1 k=1

Now we evaluate

(f g:lwk, ,XN:(% _Cl)¢l>

=1

N N
Z(sﬁl, *Cl) ei, f Z @k, f (901, )*Cl) (e, @)

=1 k=1

We note that (g, ¢;) = g and obtain (g, h) = 0. This implies

|£- cmH (9+h.g+ 1) = gl + 0]
=1

= Hf Z (or, f <PkH + ( (or, f) —Ck) ((s%f) _Cl) (er, @)
k,l=

1
N
*Hf (Pka SDkH +Z|90k, f)— el
q.e.d.

Corollary: For all numbers cq,...,cy € C we have
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(TS STV S P e
k=1 k=1

and equality is attained only if ¢, = (¢x, f) for K = 1,..., N holds true.
We name these numbers ¢ the Fourier coefficients of f (with respect to the

system (¢)).

2

)

When we set ¢; = ... =cy =0, we obtain

Proposition 6.18. The following relation

N 2 N
£ =X ten D] = 1712 =D w, £ = 0
k=1 k=1
holds true.

From the last proposition we immediately infer

Theorem 6.19. Let {¢i}, k = 1,2,... represent an orthonormal system in
the pre-Hilbert-space H'. For all elements f € H’, Bessel’s inequality

Yol HE<IIFIP
k=1

holds true. An element f € H' satisfies the equation

> 1w HIF = 11£1
k=1

if and only if the limit relation

N
Jim_ Hf -~ ];(sok, f)sDkH =0

is valid.

Remark: The last statement means that f € H’' can be represented by its

Fourier series
oo

jg:(@kﬂf)wk

k=1
with respect to the Hilbert-space-norm || - ||.

Definition 6.20. We say that an orthonormal system {py} is complete - we
abbreviate this as c.o.n.s - if each element f € H' of the pre-Hilbert-space H'
satisfies the completeness relation

17 =D ICens NI
k=1



7 The Lebesgue Spaces LP(X) 151

Remarks:

1. In Section4 and Section 5 of Chapter 5, we shall present explicit c.o.n.s.
with the classical Fourier series and the spherical harmonic functions.
More profound results are contained in Chapter 8 about Linear Operators
in Hilbert Spaces.

2. With the aid of E.Schmidt’s orthonormalization procedure, we can con-
struct a complete orthonormal system in each separable Hilbert space.

3. When we have a complete orthonormal system {pr} C H' with k =
1,2,... in the pre-Hilbert-space H’, the representation via the Fourier
series

F=> (er: Nen

k=1
holds true with respect to convergence in the Hilbert-space-norm. The in-
teresting question remains open, whether a Fourier series converges point-
wise or even uniformly (see e.g. H.Heuser: Analysis II. B. G. Teubner-
Verlag, Stuttgart, 1992).

7 The Lebesgue Spaces LP(X)

Now we continue our considerations from Section 1 to Section4. We assume
n € N as usual, and we consider subsets X C R"™ which we endow with the
relative topology of the Euclidean space R™ as follows:

. open
ACXis { closed }
open

<=  There exists B C R"
closed

}WithA:BﬂX.

By the symbol M (X) we denote a linear space of continuous functions f :
X — R =R U {£oo} with the following properties:

(M1) Linearity: With f,g € M(X) and «, 8 € R we have af + g € M(X).
(M2) Lattice property: From f € M(X) we infer |f| € M(X).
(M3) Global property: The function f(z) =1, x € X belongs to M (X).

We name a linear functional I : M — R, which is defined on M = M(X),
Daniell’s integral if the following properties are valid:

(D1) Linearity: I(af + Bg) = aI(f) + BI(g) for all f,g € M and «a, 8 € R;

(D2) Nonnegativity: I(f) > 0 for all f € M with f > 0;

(D3) Monotone continuity: For all {fi} C M(X) with fr(z) } 0 (k — o0) on
X we infer I(f) — 0 (k — 0).
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Example 7.1. Let X = 2 C R™ denote an open bounded set, and we define
the linear space

M=MX)=df: X 5Re(X) /|f(x)|dx<+oo
(9]

We utilize the improper Riemannian integral on the set X, namely
1= [ fa)dn,  feu
2

as our linear functional.

Ezample 7.2. On the sphere X = S»~! .= {x e R : |z| = 1} we con-

sider the linear space of all continuous functions M (X) = C°(S"~1), and we
introduce the Daniell integral

17)= [ f@ydo @), fen
Sgn—1

In Section2 we have extended the functional I from M(X) onto the space
L(X) of the Lebesgue integrable functions. In Section3 we investigated sets
which are Lebesgue measurable, more precisely those sets A whose character-
istic functions x4 are Lebesgue integrable.

Definition 7.3. Let the exponent satisfy 1 < p < +o0o0. We name a measurable
function f : X — R p-times integrable if |f|P € L(X) is correct. In this case
we write f € LP(X). With

1
P

11 = 1o o= | [ 1f@P duta) | = (2071))"
X

we obtain the LP-norm of the function f € LP(X); here the symbol pu denotes
the Lebesgue measure on X.

Remark: Evidently, we have the identity L'(X) = L(X).

The central tool, when dealing with Lebesgue spaces, is provided by the sub-
sequent result.

Theorem 7.4. (Holder’s inequality)

Let the exponents p,q € (1,+00) be conjugate, which means p~ + ¢~ = 1
holds true. Furthermore, we assume f € LP(X) and g € L1(X) being given.
Then we infer the property fg € LY(X) and the inequality

1f9llzrxy < N fllercollgllacx)-
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Proof: We have to investigate only the case ||f|, > 0 and ||g|; > 0. Alterna-
tively, we had || f||, = 0, and consequently f =0 a.e. as well as f - g =0 a.e.
would hold. Analogously, we treat the case ||g||; = 0. Then we apply Young’s
inequality

al  b?
ab < — + —
p q
to the functions
1
p(r) = lf(@)], (@) =—rlg(@)], 2E€X,
@ ¥ = o)

and we obtain

e [f ()] = (@) < L O LR
T Tal, @9@)] = elayi (@) < .

p llFIE a lgllg
for all points x € X. Theorem 4.8 from Section 4 implies fg € L(X) = L}(X).
Now integration yields the inequality

I(|fg]) < I(|g|") =

1 p
11£15llglly I(f17) +

and finally

IIfIIp || ||q

I(1fgl) < I lIpllgllg- qe.d.

Theorem 7.5. (Minkowski’s inequality)
With the exponent p € [1,4+00), let us consider the functions f,g € LP(X).
Then we infer f + g € LP(X) and we have

If +glleecxy < 1 fllzex) + lgllzex)-

Proof: The case p = 1 can be easily derived by application of the triangle
inequality on the integrand |f 4 g|. Therefore, we assume p, g € (1, +00) with
p~t 4+ ¢~ = 1. At first, convexity arguments yield

(@) + g@)P <227 (|f (@) + |g()?)
and consequently f 4 ¢ € LP or equivalently I(|f 4 g|?) < 4+00. Now we have
(@) + g(@)[P = [ f(x) + g() P! | f(z) + g(2)]
< |f(@) + g(@)P | f(@)] + £ (2) + g(@)[" (=)
= f(@) + g(@)|7 | f@)| + | (@) + g(2)] 7 |g(x)].

The factors of the summands on the right-hand side are L9- and LP-functions,
respectively. Therefore, we obtain
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I(f +gI?) < I(f + 9P) 7 (If | + lgllp)-

Finally, we see
1
(S + 9P < fllp + lgllp

and the desired inequality

1f+gllp < 1f1lp + llgllp-
q.e.d.

Remark: Minkowski’s inequality represents the triangle inequality for the |- ||,-
norm in the space LP.

The following result guarantees the completeness of LP-spaces, which means:
Each Cauchy sequence converges towards a function in the respective space.

Theorem 7.6. (Fischer, Riesz)
Let us consider the exponent p € [1,400) and a sequence { fx}x=12,.. C L?(X)
satisfying
lim || fx — fillzr(x) = 0.
k,l—o00

Then we have a function f € LP(X) with the property
kli{l;o Ilfe — fllLe(x) = 0.
Proof: With the aid of Holder’s inequality we show the identity

im I(|fx — fil]) = 0.

k,l—o0

Here we estimate in the case p > 1 as follows:

I(|fi = fil) = I(|fi — fil - 1) < |l fi = fillpllLllg — 0.

The Lebesgue selection theorem gives us a subsequence k1 < ko < k3 < ...
and a null-set N C X, such that

lim fg, (2) = f(z), r€X\N

m—ro0

holds true. We observe that the function f is measurable. Now we choose
I > N(e) and ky,, > N(e), where || fx, — fill, < € for all k,I > N(e) is valid,
and we infer

I fr = A1) = W — Ailll i, < 2"

For m — oo, Fatou’s theorem implies the inequality
I(|f = fiP) <e”  forall 1> N(e)

and consequently
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If = fille(x) <€ forall [ > N(e).

Since LP(X) is linear and f; as well as (f — f;) belong to this space, we infer
f € LP(X). Furthermore, we observe

lim [|f = fill, = 0.
I=o0 q.e.d.

Definition 7.7. A measurable function f : X — R belongs to the class
L>®(X) if we have a null-set N C X and a constant ¢ € [0,+00) with the

property
[f(z)|<e  forall ze X\N.

We name

[flloe = [IfllL(x) = esssup |f(z)]
zeX

—inf {c >0 There exists a null-set N C X }

with |f(z)] <c forallz € X\ N
the L*°-norm or equivalently the essential supremum of the function f.
Remark: Evidently, we have the inclusion

L>X)c () rIx).
pE[l,+00)

Theorem 7.8. A function f € (| LP(X) belongs to the class L*°(X), if the
p>1

condition

limsup || f|| z»(x) < 400
p—ro0

is correct. In this case we have
I fll e (x) = plggo Ifllzexy < o0,

where the limit on the right-hand side exists.
Proof: Let f € () LP(X) hold true. When we assume f € L*°(X), we infer

p>1
0 <||flloo < 400 as well as

(1P =[PPt < AN ae on X,

Therefore, we obtain
1_4a a
1£llp < 1 fllse "1 fIlG
and finally
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lim sup [ [l < [[flloo < 400 (1)
p—00

In order to show the inverse direction, we consider the set
Ay = {:r X :|f(x) > a}

for an arbitrary number a < || f||. Therefore, A, does not constitute a null-
set. We obtain the estimate

+oo > limsup ||f|, > liminf|/f]|,
p—r00 p—roo

-

= liprgioréf (I(|f|p)> " > aliminf (M(Aa)) = a.

pP—o0

=

Now we infer
+ 00 > 11;r_1)ior<1>f|\f||p > [[flls (2)

and consequently f € L°°(X). These inequalities immediately imply the ex-

istence of

Corollary: Holder’s inequality remains valid for the case p = 1 and ¢ = oc.
Furthermore, Minkowski’s inequality holds true in the case p = co as well.

Definition 7.9. Let 1 < p < 400 be satisfied. Then we introduce an equiva-
lence relation on the space LP(X) as follows:

f~g <= f(x)=g(x) ae inX.

By the symbol [f] we denote the equivalence class belonging to the element
feLP(X). We name

£r(x) = {[f] : f e LX)}

the Lebesgue space of order 1 < p < +4oc0.

We summarize our considerations to the subsequent

Theorem 7.10. For each fixed p with 1 < p < +00, the Lebesgue space LP(X)
constitutes a real Banach space with the given LP-norm. Furthermore, we have
the inclusion

LN(X) D L(X)

for all1 <r < s < +oo. Moreover, the estimate

[fllerx) < Cry8) 1]

£5(X) forall fe LX)
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holds true with a constant C(r,s) € [0,4+00). This means, the mapping for the

embedding
P LX) — LX), fed(f)=f

is continuous. Therefore, a sequence converging in the space L°(X) is conver-
gent in the space L7(X) as well.

Proof:

1. At first, we show that £P(X) constitute normed spaces. Let us consider
[f] € LP(X): We have ||[f]]|, = 0 if and only if || f||, = 0 and consequently
f =0 ae. in X is fulfilled. This implies [f] = 0 and gives us the norm
property (N1). Minkowski’s inequality from Theorem 7.5 ascertains the
norm property (N2), where Theorem 7.8 provides the triangle inequality
in the space L*°(X). The norm property (N3), namely the homogeneity,
is obvious.

2. The Fischer-Riesz theorem implies completeness of the spaces LP for 1 <
p < 400. Therefore, only completeness of the space £>° has to be shown.
Here we consider a Cauchy sequence {f;} C L satisfying

I fx = filloo =0 for k,1— ooc.

We infer the inequality || fi|lcc < ¢ for all & € N, with a constant ¢ €
(0,400). Then we find a null-set Ny C X with |fi(z)| < ¢ for all points
z € X \ Ny and all indices k € N. Furthermore, we have null-sets Ny ;
with

e@) = (@) < i~ e for z€ X\ Ni

We define
N := Ny U U Ny
k,l
and observe

lim  sup |fx(z)— fi(z)]=0.
k,laoomeX\N

When we introduce the function

lim fp(z), z€ X\ N
f(x) =g koo € L=(X
(@) 0 , €N <
we infer
lim sup |fi(z)— f(z)|=0
k—oo gex\N
and finally

1. — oo == .
kggoﬂfk fllee(x)y =0
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3. Let us assume 1 < r < s < +00. The function f € L°(X) satisfies

151 = (205 0) < { (107) (u0) T} = (w00) 7 151

for all elements f € L*(X). q.e.d.

Definition 7.11. Let By and By denote two Banach spaces with By C Bs.
Then we say By is continuously embedded into By if the mapping

L : By — By, f=L(f)=f
is continuous. This means, the inequality

1B, < cllflls,  for all  f e By
holds true with a constant ¢ € [0,+00). Then we use the notation By — Bs.
Remarks:

1. The transition to equivalence classes will be made tacitly - such that we
can identify £P(X) and LP(X).

2. We have the embedding £5(X) < L"(X) for all 1 <r < s < 4o00.

3. On the space C°(X), we obtain with

Ifllo = sup [f(z)],  feCX)
reX

the supremum-norm which induces uniform convergence. With the LP-
norms || - ||, for 1 < p < 400, we have constructed a family of norms
which constitute a continuum beginning with the weakest norm, namely
the L'-norm, and ending with the strongest norm, namely the L>°-norm
or the C%norm, respectively. Exactly in the centrum for p = 2, we find
the Hilbert space H = L*(X).

Ezxample 7.12. Let the space
H = L*(X,C) = {f —g+ih: ghe LQ(X,R)}
be endowed with the inner product
(f1, fo)u == I(f1f2) for fj=g;+ih; €H and j=1,2.

Here we define I(f) = I(g+ih) := I(g)+iI(h). Then H represents a Hilbert
space.

In the sequel, we use the space of functions

M>(X) = {f € M(X) : sup |f(z)] < +oo} = M(X)NL®(X).
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Theorem 7.13. (Approximation of LP-functions)
Given the exponent p € [1,+00), the space M>°(X) lies densely in LP(X),
which means: For each function f € LP(X) and each e > 0, we have a function
fe € M°(X) satisfying

1f = fellr(x) <e.

Proof: Let € > 0 be given. We choose K > 0 and consider the truncated

function
f(x), z € X with |f(z)| < K

fex4r(x):=¢ —K, € X with f(z) < -K
+K, z € X with f(z) > +K
subject to the inequality
|f(@) = fok+x(@)]P < [f(2)]".

Furthermore, we have
lim |f(],‘) — f_K,+K($)‘p =0
K—o0
almost everywhere in X. Lebesgue’s convergence theorem implies

im I(|f - f-k+x[") =0,
K—oo

and we find a number K = K(g) > 0 with

I f(x) = fox4+rx(@)]p < %

According to Theorem 4.14 in Section4, the function f_jk yx possesses a
sequence {@g tr=12,.. C M(X) with |p(x)|] < K satisfying

or(r) — fox+x(x) a.e. in X.
The Lebesgue convergence theorem yields
||ffK,+K - <Pk||§ = I(|f7K.,+K —¢i’) —0

for k — co. Consequently, we find an index k = k(¢) with

g
| f-—k,+5 — Pkllp < >

The function f. := @) € M(X), which is uniformly bounded by K(c) on
X, satisfies

1f = fellp <IIf = fomarllp + 1 f-k ok = @reellp <
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Theorem 7.14. (Separability of LP-spaces)

Let X C R™ be an open bounded set and p € [1,400) the exponent given. Then
the Banach space LP(X) is separable: More precisely, there exists a sequence
of functions {¢k(x)}k=1,2,... C C§°(X) C LP(X) which lies densely in LP(X).

Proof: Let us consider the set

N
R:=(g(z)= Z Qiyi, Tl a5 € Q, N e NU{0}

1 yeenyin=0

of polynomials in R™ with rational coefficients. Furthermore, let
xj(z) : X — R e C5°(X), ji=1,2 ...

denote an exhausting sequence for the set X, which means

Xi(@) < xjp1(x), lim xj(z)=1 forall zeX.
j

— 00

Now we show that the denumerable set
D(X) = {h(z) = x;()g(a) : jEN, g€ R}

lies densely in LP(X). Here we take the function f € LP(X) and the quantity
e > 0 arbitrarily. Then we find a function g € M*°(X) with ||f — g, < e.
Now we infer

HWWﬂ%Z/M@—M@MWWM@
X

— [ (1= 5@) gte)P dut) — o

X

and consequently we find an index j € N satisfying [|g — x;9/, < €. Now the
function x;¢ has compact support in X. Via the Weierstraf§ approximation
theorem, there exists a polynomial h(z) € R such that sup,cx x;jlg—h| < d(¢)
is correct - with a quantity d(¢) > 0 given. Consequently, we find a polynomial
h(z) € R with the property

Ix;9 — x;jhll, <e.
This implies
1f = x5l < IIf —gllp + 9 = x59llp + Ix59 — x5hllp < 3e.

Consequently, D(X) lies densely in LP(X). q.e.d.
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8 Bounded Linear Functionals on LP(X) and Weak
Convergence

We begin with

Theorem 8.1. (Extension of linear functionals)
Take p € [1,+00) and let A : M>*(X) — R denote a linear functional with
the following property: We have a constant « € [0, 4+00) such that

AN < allfllerxy  foral fe M™(X)

holds true. Then there exists exactly one bounded linear functional A
LP(X) — R satisfying

|A| <a and A(f)=A(f) forall feM™(X).
Consequently, the functional A can be uniquely continued from M*°(X) onto
LP(X).

Proof: The linear functional A is bounded on {M>°(X), || | r(x)} and there-
fore continuous. According to Theorem 7.13 from Section7, each element
f € LP(X) possesses a sequence { fi }r=1,2... C M>(X) satisfying

||fk—f||Lp y =0 for k— oo

Now we define

A(f) = lim A(fi).

We immediately verify that A has been defined independently of the sequence
{fx}k=1,2,... chosen, and that the mapping A : L?(X) — R is linear. Further-
more, we have
[Alf=""sup  JA(f)l=  sup  JA(f)] <«
feLr, |Ifllp,<1 feme=, ||fllp<1
When we consider with A and B two extensions of A onto L? (X), we infer A=
Bon M *°(X). Since the functionals A and B are continuous, and M *(X)

lies densely in L?(X), we obtain the identity A=DBon LP(X).
q.e.d.

Now we consider multiplication functionals A, as follows:

Theorem 8.2. Let us choose the exponent 1 < p < +oo and with g € [1,4+00]

its conjugate exponent satisfying
1 1
-4+ -=1
p q

For each function g € LY(X) being given, the symbol Ay : LP(X) — R with
Ag(f)=1I(fg9),  feLP(X)

represents a bounded linear functional such that ||Ag|| = ||gllq holds true.
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Proof: Obviously, A, : LP(X) — R constitutes a linear functional. Hélder’s
inequality yields the estimate

[Ag(N)l = I(F)l < I([fllgD) < [ Fllpllgllq  for all - f e LP(X),

and we see
[ Agll < llgllq-

In the case 1 < p < 400, we choose the function

f(x) = g(x)|7 sign g(x)

and calculate

Ag(f) = 1(£9) = T (lg1#*1) = 1(|g|")

= lgllg = lglllglls = alla (7(71))” = lgllall /-

This implies

A
o0 gll,  and therefore 14, > gl o
£l
and consequently ||A,| = ||g||q for all 1 < p < +o0. In the case p = 400, we

choose
f(x) = signg(z)

and we obtain

Ag(f) = I(gsigng) = I(|g]) = llgllx [ [l
This implies

Ay(f)
1/ lloo

In the case p = 1, we choose the following function to the element g € LY(X) =
L>(X) and for all quantities € > 0, namely

=llgll ~ and therefore [[Ag[| = [[g][:-

1, z€ X with g(z) > ||lglle — e
fe(@) =< 0, 2 € X with |g(z)| < [lg]lc — € -
—1, 2 € X with g(z) < —[|glec + ¢

Therefore, we have

Ag(fe) = I(gfe) = (lglloe =)l felly  forall >0,

which reveals
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Ay(f)
1/l

Consequently, |Agll > ||lg]lco — € is correct and finally |44l = |g]lcc-  g-€.d.

> ||glloo — €

We want to show that each bounded linear functional on LP(X) with 1 <
p < oo can be represented as a multiplication functional A, via a generating
element g € L9(X), where p~1 4+ ¢~1 = 1 holds true.

Theorem 8.3. (Regularity in LP(X))
Let us consider 1 < p < +o0 and g € L*(X). Furthermore, we have a constant
a € [0,+00) such that

[Ag(NI =19l < alfll,  forall feM=(X) (2)
holds true. Then we infer the property g € LY(X) and the estimate ||gllq < a.
Proof:
1. At first, we deduce the following inequality from (2), namely

I(fo)l <allfllp for all f measurable and bounded. (3)

According to Theorem 4.14 from Section 4, the bounded measurable func-
tion f : X — R possesses a sequence of functions { fx}r=12,.. C M>(X)
with

fre(x) = f(x) ae.in X

and
sup | fx(z)| < sup|f(x)| =: c € [0, +00).
X X

Now Lebesgue’s convergence theorem yields
1(f9)] = Jim [1(feg)] < lim allill, = ol ],

2. Let us assume 1 < p < +00, at first. Then we consider the functions

X)) .= .
9:() 0 , z€ X with |g(z)] > &

{g(a:) , x € X with |g(z)| <k
Now the functions

fe(@) = |gu(@)|7 signge(z), =€ X,

are measurable and bounded. Consequently, we are allowed to insert fy ()
into (3) and obtain

1(frg) = 1(1gul#*1) = 1(lgnl?) = llgnl§

Then (3) implies
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1(f19) < ol filly = a(I(lgx]")7 = algulls

For £k =1,2,... we have the estimate

q_ﬂ
a>llgelly * = llgrllg, o > I(|grl|?)-
We invoke Fatou’s theorem and obtain
l9(x)|? *= liminf |g(2)|? € L(X)
k—o0
as well as

a? > I(|g|?) and consequently ||g|lq < .

3. Now we assume p = 1. The quantity € > 0 being given, we consider the
set

E:= {x eX :|g(x)] > a+5}.
We insert the function f = xgsigng into (3) and obtain

ap(E) = alflly = H(f9)] = (o + e)u(E).
This implies p(E) = 0 for all € > 0 and finally ||g||lec < a. q.e.d.

Until now, we considered only one Daniell integral I : M*°(X) — R as fixed,
which we could extend onto the Lebesgue space L'(X). When a statement
refers to this functional, we do not mention this functional I explicitly: We
simplify LP(X) = LP(X,I), for instance, or f(x) = 0 almost everywhere in
X if and only if we have an I-null-set N C X such that f(z) = 0 for all
x € X \ N holds true. We already know that

M™(X) € L®(X) € I'(X),  1<p< oo
is correct. Additionally, we consider the Daniell integral J.

Definition 8.4. We name a Daniell integral
J: M*(X) — R,

which satisfies the conditions (M1) to (M3) as well as (D1) to (D3) from
Section 7 and is extendable onto L*(X,J) D L (X), as absolutely continuous
with respect to I if the following property is valid:

(D4)  Each I-null-set is a J-null-set.

With the aid of ideas of John v. Neumann (see L.H. Loomis: Abstract har-
monic analysis), we prove the profound

Theorem 8.5. (Radon, Nikodym)
Let the Daniell integral J be absolutely continuous with respect to I. Then a
uniquely determined function g € L*(X) exists such that

J(f)=1(fg) forall feM™(X)
holds true.
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Proof:

1. Let f € L*°(X) be given, then we have a null-set N C X and a constant
¢ € [0, +00) such that

If(x)] <e forall =z e X\N

is valid. We recall the property (D4), and see that N is a J-null-set as
well, which implies f € L (X, J). A sequence { fr}r=12.. C L*(X) with
fe 40 (k— o0) ae. on X fulfills the limit relation

fitd0 J-ae.on X for k— o0

due to (D4). Now B.Levi’s theorem on the space L!(X,J) yields
lim J(fk) =0.
k—o0

Consequently, J : L*(X) — R represents a Daniell integral. Then we
introduce the Daniell integral

K(f) =15+ J(f), [el>X). (4)

As in Section 2 we extend this functional onto the space L'(X, K); here
the a.e.-properties are sufficient. We consider the inclusion L'(X, K) D
LP(X,K) for all p € [1, +00].

2. We take the exponents p, q € [1,+oc] with p~* +¢~! = 1 and obtain the
following estimate for all f € M (X), namely

[T < IS < K(1FD

< fllerex, k) 1M La(x, 1)

= (L) + @) | fll o (x)-

Therefore, J represents a bounded linear functional on the space LP(X, K)
for an arbitrary exponent p € [1,400). In the Hilbert space L?(X, K) we
can apply the representation theorem of Fréchet-Riesz and obtain

J(f) = K(fh)  forall fe M>(X) (5)

with an element h € L?(X, K). Now Theorem 8.3 - in the case p = 1 - is
utilized and we see the regularity improvement h € L*°(X, K). Since J is
nonnegative, we infer A(x) > 0 K-a.e. on X. Furthermore, the relation (4)
together with the assumption (D4) tell us that the K-null-sets coincide
with the I-null-sets, and we arrive at

h(z) >0 a.e.in  X.
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3. Taking f € M>°(X), we can iterate (5) and (4) as follows

J(f) = K(fh) =1(fh) + J(fh)
= I(fh) + K(fh?)
=I(fh) + I(fh*) + J(fh*) = ...,
and we obtain
l
J(f):I(thk>—|—J(fhl), 1=1,2,... (6)
k=1

Let us define
A= {:EEX : h(:c)Zl}

and f = xa. Via approximation, we immediately see that this element f
can be inserted into (6). Then we observe

l

+oo>J(f)2I<thk)2lI(XA) forall [ €N

k=1

and consequently I(xa) = 0. Therefore, the inequality 0 < h(x) < 1 a.e.in
X is satisfied and, moreover,

hi(z) 1 0 ae.in X for [ — oo. (7)

Via transition to the limit [ — oo in (6), then B.Levi’s theorem implies

J(f)y=1 (f ihk> for all fe€ M>(X),
k=1

when we note that f = f* — f~ holds true. Taking f(z) = 1 on X in
particular, we infer that

o) =3 W) 2 PO
k=1

is fulfilled. q.e.d.

Theorem 8.6. (Decomposition theorem of Jordan and Hahn)

Let the bounded linear functional A : M*>(X) — R be given on the linear
normed space {M>(X), |-}, where 1 <p < +00 is fized. Then we have two
nonnegative bounded linear functionals A* : M (X) — R with A = AT —A~;
this means, more precisely,

A(f)=AT(f)—A~(f)  forall feM>(X)
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with
AX(f)>0  forall feM>(X) with f>0.

Furthermore, we have the estimates
A=) < 2|4l AT < 3]1A].
Here we define

A= sup  JA(H), [IAF[I== sup  [AF(f)].
seM=, | fll,<1 FeM=, | fll,<1

Proof:
1. We take f € M>°(X) with f > 0 and set

A*(f) = sup {Alg) : g € M*(X), 0= g < [}.
Evidently, we have AT(f) > 0 for all f > 0. Moreover, the identity
A*(ef) =sup{Alg) : 0 g<cfp =sup{A(cg) : 0= g < ff

:csup{A(g) : 0§g§f}z€A+(f)
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for all f > 0 and ¢ > 0 holds true. When we take f; € M°°(X) with

fj =20 - for j=1,2 - we infer
A (fr) + AT (f2)
= sup {A(gl) :0<g1 < fl} +SUP{A(92) :0<g2 < fz}
:sup{A(g1 +92) :0< g1 < f1, 0< g2 sz}
< sup {A(Q) 0<g<fi+ f2} = AT (fi + f2).
Given the function g with 0 < g < f; + f2, we introduce

g1:=min(g, f1) and go:=(g— f1)".

Then we observe g; < f; for j = 1,2 as well as g1 + g2 = g. Consequently,

we obtain
AY(fr+ f2) S AT () + AT (f2)

and finally
AT(fu+ f2) = AT (f1) + AT (f2).

Furthermore, the following inequality holds true for all f € M*°(X) with

f >0, namely
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IN

A% ()] = |sup {A(g) : g € M=(X), 0= g

i}
)
<sup {J1Allgll, = 9 € M*(X), 0< g < £}

< AN
2. Now we extend AT : M*°(X) — R via

IA

<sup {|A(g) s g€ M™(X), 0<g

M®(X)5 f(z) = f*(2) = f~(x)  with f*(2)20

and define

AT(f) = AT(fT) = AT (f7).
Consequently, we obtain with AT : M*°(X) — R a bounded linear map-
ping. More precisely, we have the following estimate for all f € M (X):

AT < AT+ AT ()]
< ALy + 17 1) < 20 Al 1F1lp-

This implies ||AT|| < 2|A].
3. Now we define

AT(f) == AT(f) — A(f) for all fe M*>(X).
Obviously, A~ represents a bounded linear functional. Here we observe
(A < TATHOI+TAD] < 20 Al 11l + ALl

and consequently ||A~]| < 3||A||. Finally, the inequality

AT(f) = AT = A() = sup {Alg) - 0 g < f} —A(f) 20

for all f € M*°(X) with f >0 is satisfied. q.e.d.

Theorem 8.7. (The Riesz representation theorem)
Let 1 < p < 400 be fized. For each bounded linear functional A € (LP(X))*
being given, there exists exactly one generating element g € L1(X) with the
property

A(f) =I(fg) forall f € LP(X).
Here the identity p~' + ¢~' = 1 holds true for the conjugate exponent q €
(1, +o0].

Proof: We perform our proof in two steps.
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1. Uniqueness: Let the functions g1, g2 € L9(X) with

A(f) =I(fg1) = I(fg2) ~ forall fe LP(X)

be given, and we deduce
= I(f(91 - 92)) for all f e LP(X).

We recall Theorem 8.2 and obtain 0 = [|g1 — g2||ze(x), which implies
g1 = g2 in LYX).
2. FEzistence: The functional A : M*°(X) — R satisfies

AN < allfll,  forall feM=(X) (9)

with a bound « € [0,400). The decomposition theorem of Jordan-Hahn
gives us nonnegative bounded linear functionals A* : M (X) — R satis-
fying
|A%|| < 3||A|| <3a and A=At — A"

Here the space M*°(X) is endowed with the | - ||,-norm. In particu-
lar, we observe |AT(f)] < +oo for f(z) = 1, € X. A sequence
{fr}r=1,2,.. C M>(X) with fr | 0 in X converges uniformly on each
compact set towards 0, due to Dini’s theorem. Then we arrive at the

estimate
|Ai(f;c)|§3a\|f;€||p—>0 for k — oo.

With A* we have two Daniell integrals, which are absolutely continuous
with respect to I. When N namely is an [-null-set, we infer

A% (xw)| < Ballxwl, = 0.

Therefore, N is a null-set for the Daniell integrals A* as well. The Radon-
Nikodym theorem provides elements g™ € £!(X) such that the represen-

tation
AT (f) = I(fg") for all fe M*(X)

holds true. This implies
A(f) = AT(f) = A~(f)
=I(fg")—1(fg")
=1I(fg) for all fe M*(X),

when we define g := gt — g~ € £}(X). On account of (9) our regularity
theorem yields g € £9(X). When we extend the functional continuously
onto LP(X), we arrive at the representation

A(f)=1(f9g) for all f e LP(X)

with a generating function g € £L9(X). q.e.d.
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Now we address the question of compactness in infinite-dimensional spaces of
functions.

Definition 8.8. A sequence {x}r=12.. C B in a Banach space B is called
weakly convergent towards an element x € B - symbolically x;, — x - if the
limit relations

klggo Azy) = A(z)

hold true for each continuous linear functional A € B*.

Theorem 8.9. (Weak compactness of LP(X))
Let us take the exponent 1 < p < 4+o00. Furthermore, let { fx}x=12... C LP(X)
denote a bounded sequence with the property

| fellp < ¢ for a constant c € [0,+00) and all indices k € N.

Then we have a subsequence { f, }1=1,2,... and a limit element f € LP(X) such
that fr, — f in LP(X) holds true.

Proof:

1. We invoke the Riesz representation theorem and see the following: The
relation f; — f holds true if and only if I(f;g) — I(fg) for all g € L(X) is
correct; here we have p~!4+¢~! = 1 as usual. Theorem 7.14 from Section 7
tells us that the space LY(X) is separable. Therefore, we find a sequence
{gm}m=1,2,.. C LYX) which lies densely in L?(X). From the bounded
sequence {fx}r=1,2,.. C LP(X) satisfying || fx||, < c for all k € N, we now
extract successively the subsequences

{ite=12,. 2 {frohi=e.. 2 {fiohi=ie.. D
such that
im I(f,omgm) =t am € R, m=1,2,....
l—o00 i

Then we apply Cantor’s diagonalization procedure, and we make the tran-
sition to the diagonal sequence fi, := fkfl)’ [=1,2,.... Now we observe
that

llir&](fklgm) =, m=12...

holds true.
2. By the symbol

There exist N € Nand ¢1,...,cy €R
N

and 1 <1 < ... <iy <400 Withg:ZCink
k=1

D:=<ge LX) :
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yees

Obviously, the limits
A(g) == llim I(fr,9) forall geD
—00

exist. The linear functional A : D — R is bounded on the space D which
lies densely in L9(X), and we have, more precisely,

|A(g)| < cllglly forall geD.

As described in Theorem 8.1, we continue our functional A from D onto
the space L?(X), and the Riesz representation theorem provides an ele-
ment f € LP(X) such that

A(g) = I(fg) for all g € LY(X).
3. Now we show that fy, — f in LP(X) holds true. For each element g €
L9(X) we find a sequence {g;};=12,. C D satisfying
g% lim g, € LIY(X).
J—00
Then we obtain

[1(f9) = I(frg)| < I(f(g = g+ L((f = fr)g)| + [1(fr, (95 — 9))]

< 2Cg = gjillq + I((f = fr)gi)| < €
for sufficiently large - but fixed - j and the indices [ > [j. q.e.d.
Remarks:

1. Similarly, we can introduce the notion of weak convergence in Hilbert
spaces. Due to Hilbert’s selection theorem, we can extract a weakly con-
vergent subsequence from each bounded sequence in Hilbert spaces. How-
ever, it is not possible to extract a norm-convergent subsequence from an
arbitrary bounded sequence in infinite-dimensional Hilbert spaces. Here
we recommend the study of Section 6 in Chapter 8, in particular the first
Definition and Example as well as Hilbert’s selection theorem.

2. We assume 1 < p; < ps < +00. Then the weak convergence fr — f in
LP2(X) implies weak convergence fi, — f in LP*(X), which is immediately
inferred from the embedding relation LP?(X) < LP*(X).

Theorem 8.10. The LP-norm is lower semicontinuous with respect to weak
convergence, which means:

fo— fin LX) = [|Ifll, < Uminf{| fi[],.
—00

Here we assume 1 < p < +o0o for the Hélder exponent.
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Proof: We start with fr — f in LP(X) and deduce
I(frg) = 1(fg) for all g e LY(X).

When we choose .
g(x) == |f(x)[sign f(z) € LY(X),

we infer

1(filfl¥sign f(@)) = 1(£17) = |11

with p~! + ¢! = 1. For all quantities € > 0, we find an index kg = ko(¢) € N
such that

1415 — e < 1 (il Esian o)) < 1(15el 111%)

P
q

< 1l (T0S17)) " = 1fello 1)

holds true for all indices k > ko(¢). When we assume || f||, > 0 - without loss
of generality - we find to each quantity € > 0 an index ko(g) € N such that

flly = 1f1lp = (1f1,) "7 forall k> ko(e)

is correct. This implies

hkrgloréf Il fellp = 11f1lp- q.e.d.

9 Some Historical Notices to Chapter 2

The modern theory of partial differential equations requires to understand
the class of Lebesgue integrable functions — extending the classical family
of continuous functions. These more abstract concepts were only reluctantly
accepted — even by some of the mathematical heroes of their time. A beautiful
source of information, written within the golden era for mathematics in Poland
between World War I and 1I, is the following textbook by

Stanistaw Saks: Theory of the Integral;, Warsaw 1933, Reprint by Hafner Publ.
Co., New York (1937).

We would like to present a direct quotation from the preface of this mono-
graph: “On several occasions attempts were made to generalize the old process
of integration of Cauchy-Riemann, but it was Lebesgue who first made real
progress in this matter. At the same time, Lebesgue’s merit is not only to
have created a new and more general notion of integral, nor even to have
established its intimate connection with the theory of measure: the value of
his work consists primarily in his theory of derivation which is parallel to
that of integration. This enabled his discovery to find many applications in
the most widely different branches of analysis and, from the point of view of
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method, made it possible to reunite the two fundamental conceptions of in-
tegral, namely that of definite integral and that of primitive, which appeared
to be forever separated as soon as integration went outside the domain of
continuous functions.”

The integral of Lebesgue (1875-1941) was wonderfully combined with the
abstract spaces created by D. Hilbert (1862-1943) and S. Banach (1892-1945).
When we develop the modern theory of partial differential equations in the
next volume of our textook, we shall highly appreciate the great vision of the
words above by Stanistaw Saks — written already in 1933.

Figure 1.2 PORTRAIT OF STEFAN BANACH (1892-1945)
taken from the Lexikon bedeutender Mathematiker edited by S. Gottwald,
H.-J.Tlgauds, and K.-H. Schlote in Bibliographisches Institut Leipzig (1988).
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