Chapter 1

Differentiation and Integration on Manifolds

In this chapter we lay the foundations for our treatise on partial differential
equations. A detailed description for the contents of Chapter 1 is given in the
Introduction to Volume 1 above. At first, we fix some familiar notations used
throughout the two volumes of our textbook.

By the symbol R™ we denote the n-dimensional Euclidean space with the

points © = (x1,...,x,) where ; € R, and we define their modulus
n 3
2
|z| = (Zmz) .
i=1

In general, we denote open subsets in R” by the symbol (2. By the symbol M

we indicate the topological closure and by ]\04 the open kernel of a set M C R™.
In the sequel, we shall use the following linear spaces of functions:

co()...... continuous functions on {2

CF)...... k-times continuously differentiable functions on (2

Ck(2)...... k-times continuously differentiable functions f on 2 with the
compact support supp f = {z € £2: f(x) #0} C 2

Ck()...... k-times continuously differentiable functions on {2, whose

derivatives up to the order k£ can be continuously extended
onto the closure 2

CE(2UO).. k-times continuously differentiable functions f on {2, whose
derivatives up to the order k£ can be extended onto the closure
2 continuously with the property supp f C 2U O

C¥(+,K) ... space of functions as above with values in K =R" or K = C.

Finally, we utilize the notations

V.o, gradient (ug,,...,us,) of a function u = wu(z1,...,x,) €
Cl(r")
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2 Chapter 1 Differentiation and Integration on Manifolds

n
Au..oooo... Laplace operator Y ug,,, of a function u € C*(R™)

i=1
Jpoooo functional determinant or Jacobian of a function f : R™ —
R" € CH(R™,R").

1 The Weierstrafl Approximation Theorem

Let 2 ¢ R" with n € N denote an open set and f(z) € C*(£2) with k €
N U {0} =: Ny a k-times continuously differentiable function. We intend to
prove the following statement:

There exists a sequence of polynomials p,,(x), x € R™ for m = 1,2,... which
converges on each compact subset C' C (2 uniformly towards the function f(z).
Furthermore, all partial derivatives up to the order k of the polynomials p,,
converge uniformly on C' towards the corresponding derivatives of the function
f- The coefficients of the polynomials p,, depend on the approximation, in
general. If this were not the case, the function

exp (—%) ;x>0
flx) = .

0, <0

could be expanded into a power series. However, this leads to the evident
contradiction:

_ v fM(0)
0= ;}Tfl}k

In the following Proposition, we introduce a mollifier which enables us to
smooth systematically integrable functions.

Proposition 1.1. We consider the following function to each € > 0, namely

Ko = hor e (L)

1 1 .
:Wexp (—g(zf—l——kzi)), z € R".

Then this function K. = K.(z) possesses the following properties:
1. We have K.(z) > 0 for all z € R™;
2. The condition /Kg(z) dz =1 holds true;

]Rn
3. For each § > 0 we observe: lim K.(z)dz=0.
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Proof:

1. The exponential function is positive, and the statement is obvious.
2. We substitute z = /zz with dz = \/¢" dz and calculate

/K (2)dz ! /e ( z|2) dz
= n X -0
: e P €
R’VL R’!L
+oo n

:#/exp(—bﬁ)dx: %/exp(—tz)dt =1

— 00

3. We utilize the substitution from part 2 of our proof and obtain

/K dsz / eXp \m|>dz*>0 for &—0+.
|z]|>6 || >6/+/E q.e.d.

Proposition 1.2. Let us consider f(z) € CJ(R™) and additionally the func-
tion
)= [ Ky -af@dy. werr

for e > 0. Then we infer

sup |fe(z) — f(z)] — 0 for & — 0+,
rzER™

and consequently the functions f-(x) converge uniformly on the space R™ to-
wards the function f(x).

Proof: On account of its compact support, the function f(x) is uniformly
continuous on the space R™. The number 1 > 0 being given, we find a number
d = 6(n) > 0 such that

,y R, |z —y| <6 = [f(2) = fy)l <n
Since f is bounded, we find a quantity €9 = £9(n) > 0 satisfying

2 sup |f(y)] / K.(y—xz)dy<n forall 0<e¢< e

yER™
ly—z|>d

We note that

Jae \—\/K ~ ) f(y) dy  fo /K y—z)dy|

/K y— ) (f() ~ 1)} dy |

ly—z|<8

H [ Kw-o U - @),

ly—=z|>d
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and we arrive at the following estimate for all points x € R™ and all numbers
0 < € < g9, namely

o) — f(z)] < / K.(y— ) |f(y) — f(x)|dy

ly—z|<d
+ / K.y — ) {|f )] + |/ ()]} dy
ly—z|>d
<n+2sup |fly / Ke(y —x)dy < 2n.
yEeR™

ly—z|>68
We summarize our considerations to

sup |f-(z) — f(z)| — 0 for e—=>0+.

wER™ q.e.d.

In the sequel, we need

Proposition 1.3. (Partial integration in R"™)
When the functions f(x) € C3(R™) and g(z) € C1(R™) are given, we infer

[ o5 1) ds = - /f

Rn

x)dr for i=1,...,n.

Proof: On account of the property f(z) € C3(R™), we find a radius r > 0 such
that f(z) =0 and f(x)g(z) = 0 is correct for all points z € R™ with |z;| > r
for one index j € {1,...,n} at least. The fundamental theorem of differential-
and integral-calculus yields

axz } dx

+r +r / +r
/ / /ax }dfl?z d.fl...dl‘i_ldjji_,rl.”dxn =0.

This implies

0= / &ii {f(m)g(:r)} dx = /9(33) aii f(z)dz —l—/f(:v)aii g(x)dz.
R~ e

q.e.d.

Rn

Proposition 1.4. Let the function f(z) € CE(R™,C) with k € Ny be given.
Then we have a sequence of polynomials with complex coefficients
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(m) J1 j
Pm(x) = E Ciy gy alr for o m=1,2,...
J1yeeesJn=0

such that the limit relations
Dp(z) — D*f(z)  for m o0, |a] <k

are satisfied uniformly in each ball Br := {x € R™ : |z| < R} with the
radius 0 < R < +oo. Here we define the differential operator D with o =
(a1,...,a) by

N olel
DU ey et

where ay,...,a, > 0 represent nonnegative integers.

Proof: We differentiate the function f.(z) with respect to the variables x;,
and together with Proposition 1.3 we see

0 0
gt = [{ o Kty =) | 1)

R’!L

ff/ D Ky} s

= Bv; e\Y y)ay

= [ K(
/ ~ ) ) dy
R!L

for i =1,...,n. By repeated application of this device, we arrive at

D f (x /K (y—2)D*f(y)dy, |af <k.

Here we note that D®f(y) € C§(R™) holds true. Due to Proposition 1.2, the
family of functions D f.(x) converges uniformly on the space R"™ towards
D? f(x) - for all |a| < k - when ¢ — 0+ holds true. Now we choose the radius
R > 0 such that supp f C Bp is valid. Taking the number £ > 0 as fixed, we
consider the power series

1 2|2 1 X1 |z|2)j
KE == n _—— = — — _ ,
(2) — exp ( 6 ) = ;)]! ( -

which converges uniformly in Bsp. Therefore, each number € > 0 possesses
an index Ny = Ny(e, R) such that the polynomial

No(e, R)

Pat) = an 3 3 LAy
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is subject to the following estimate:

sup |K(z) — P r(2)| <e.
|2|<2R

With the expression
Fonl@) i= [ Ponly = 2)1w)dy
R’H,

we obtain a polynomial in the variables z1,...,z, - for each € > 0. Further-
more, we deduce

D"]F‘;’R(gc) = /PE’R(y —z)D“f(y)dy forall zeR" |of<k.
RTL

Now we arrive at the subsequent estimate for all || < k and |z| < R, namely

D fule) = Do)l = | [ {Kelw =) = Ponty =)} D" f0) dy|

ly|[<R
< / K.(y — ) — Pep(y — 2)||D*f ()] dy
[y|I<R
<e / D° £ ()] dy.

ly|<R

Therefore, the polynomials DO‘J?E, r(x) converge uniformly on Bg towards the
derivatives D® f(z). Choosing the null-sequence ¢ = % with m = 1,2,...,
we obtain an approximating sequence of polynomials p,, g(z) := f; ’ r(x) in
Bpg, which is still dependent on the radius R. We take r = 1,2,.. "and find

polynomials p, = py,, » satisfying

1
sup |D(z) — Df(x)] < = forall |o| <k.
rE€ B, T
The sequence p, satisfies all the properties stated above. q.e.d.

We are now prepared to prove the fundamental

Theorem 1.5. (The Weierstrafl approximation theorem)

Let 2 C R™ denote an open set and f(x) € C*(2,C) a function with the
degree of reqularity k € Ng. Then we have a sequence of polynomials with
complex coefficients of the degree N(m) € Ny, namely

N(m)
fm(x) = Z cgzn)jnx]llxﬁl, z€R”, m=12,...,
J1seesJn=0
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such that the limit relations
D f(x) — D f(x) for m— o0, |af<k

are satisfied uniformly on each compact set C' C 2.

Proof: We consider a sequence 21 C {2 C ... C {2 of bounded open sets
exhausting (2. Here we have £2; C 2,11 for all indices j. Via the partition of
unity (compare Theorem 1.8), we construct a sequence of functions ¢,(x) €
C§°(02) satisfying 0 < ¢;(z) <1,z € 2 and ¢j(x) =1 on 2; for j =1,2,....
Then we observe the sequence of functions

_ J [@)¢i(x), € 2
fj(w) _{ 0, ZEER”\Q

with the following properties:
fi(z) € CE(R™) and D®f;(x) = D* f(x), z e, o<k

Due to Proposition 1.4, we find a polynomial p;(x) to each function f;(x)
satisfying

| =

su(pz) |D%j(z) — D% f;(z)] = sug |D%j(z) — D*f(x)] < =, lo| <k,
fASEO] ref2;

<

since {2; is bounded. For a compact set C' C (2 being given arbitrarily, we find
an index jo = jo(C) € N such that the inclusion C' C £2; for all j > jo(C) is
correct. This implies
1 L
sup |[D%j(z) — D f(z)| < =, Jj>30(C), |af <k.
zeC J
When we consider the transition to the limit j — oo, we arrive at the state-

ment
Sug |D%p;j(z) — D*f(z)] — 0
S

for all |a] < k and all compact subsets C' C {2. q.e.d.

Theorem 1.5 above provides a uniform approximation by polynomials in the
interior of the domain for the respective function. Continuous functions de-
fined on compact sets can be uniformly approximated up to the boundary of
the domain. Here we need the following

Theorem 1.6. (Tietze’s extension theorem)

Let C C R™ denote a compact set and f(x) € C°(C,C) a continuous function
defined on C. Then we have a continuous extension of f onto the whole space
R™ which means: There exists a function g(z) € C°(R™, C) satisfying

f(z) =g(x) for all points x € C.
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Proof:
1. We take x € R™ and define the function

d(x) ;= mi —
() = min |y — x|,
which measures the distance of the point x to the set C'. Since C' is com-
pact, we find to each point € R™ a point § € C satisfying |y — z| = d(z).
When z1, 22 € R™ are chosen, we infer the following inequality for 7, € C
with |[gy — 22| = d(x2), namely

d(er) — d(z) = inf (Jan —y]) — |z~ o))

IN

|21 = Yo| — 72 — Ty

< |1 — 2.

Interchanging the points x; and x5, we obtain an analogous inequality
and infer

|[d(z1) — d(z2)] < |1 — 2| for all points 1, x2 € R".

In particular, the distance d : R™ — R represents a continuous function.
2. For ¢ C and a € R", we consider the function

o(z, a) := max {2 - |Z($>a ,0} .

The point a being fixed, the arguments above tell us that the function
o(z,a) is continuous in R™ \ C. Furthermore, we observe 0 < p(x,a) < 2
as well as

o(z,a) =0 for |a— x| > 2d(z),

for |a—2x| < gd(x)

N~

o(x,a) >

3. With {a(k)} C C let us choose a sequence of points which is dense in C.

Since the function f(z) : C — C is bounded, the series below

22_]“9(%(1(’“))]“((1(@) and éQ‘kg(x,a(k))

converge uniformly for all z € R™\ C, and represent continuous functions
in the variable x there. Furthermore, we observe

i2_kg(x7a(k)) >0 for zeR"\C,
k=1
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since each point z € R™\ C possesses at least one index k with o(x,a®)) >
0. Therefore, the function

iZ_kQ(x,a(k))f<a(k)) -
h(z) = = = Z gk(x)f(a(k)), zeR"\C,

oo
Z 2—kg<x, a(k)) k=1
k=1

is continuous. Here we have set

2 efna)
RS —k (m a(k)>
;2 oz,

We have the identity

for zeR"\C.

ok ()

ng(x) =1, zeR"\C.
k=1
. Now we define the function

flx),zeC
g(x) ::{ .
h(z), z € R*\ C

We have still to show the continuity of g on dC. We have the following
estimate for z € C' and = ¢ C:

o)~ 1)1 = | 3 e { £(a®) - 1)} |
k=1

IN

S a@]f(e®) - 1)

k:|a(®) —z|<2d(z)

IN

sup [f(a) = f(2)]
a€C': la—z|<2d(x)

< sup f(a) = f(2)]

a€C : |a—z|<L2d(x)+|z—2|

< sup |f(a) = f(2)]-

a€C':|a—z|<3|z—z|
Since the function f : C' — C is uniformly continuous, we infer

lim h(z) = f(z) for 2€0C and x¢C.
zgC
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The assumption of compactness for the subset C' is decisive in the theorem
above. The function f(z) = sin(1/z), € (0,00) namely cannot be continu-
ously extended into the origin 0.

Theorem 1.5 and Theorem 1.6 together yield

Theorem 1.7. Let f(z) € C°(C,C) denote a continuous function on the com-
pact set C C R™. To each quantity € > 0, we then find a polynomial p.(x)
with the property

lp(z) — f(x)| <e for all points x € C.

We shall construct smoothing functions which turn out to be extremely valu-
able in the sequel. At first, we easily show that the function

1y .
W(t) ::{GXP(‘Z)”“” (1)
0, ift<0

belongs to the regularity class C*°(R). We take R > 0 arbitrarily and consider
the function

vr(z) ::z/J(|:E|2 —R2>7 xz € R™ (2)

Then we observe pr € C°(R",R). We have ¢gr(z) > 0 if || > R holds true,
wr(z) =0if |z| < R holds true, and therefore

supp(pr) = {x eR™ : |z| > R}.
Furthermore, we develop the following function out of ¢ (t), namely
o=0):R—-R € C*(R) via to(t) =1 -1 +1t). (3)

This function is symmetric, which means p(—t) = p(t) for all ¢t € R. Further-
more, we see g(t) > 0 for all t € (—1,1), o(t) = 0 for all else, and consequently

supp(o) = [-1,1].
Finally, we define the following ball for £ € R™ and € > 0, namely

B.(€) == {x ER" : |z —¢| < g} (4)
as well as the functions
z — &2 "
e () ::g<| = | >7 r € R". (5)

Then the regularity property ¢¢. € C®(R™ R) is valid, and we deduce
o

pee(x) > 0 for all & € B.(§) as well as e (x) = 0 if |z — & > ¢ holds
true. This implies

supp(pe,c) = B:(&).

A fundamental principle of proof is presented in the next
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Theorem 1.8. (Partition of unity)

Let K C R™ denote a compact set, and to each point x € K the symbol
O, C R" indicates an open set with x € O,. Then we can select finitely many
points (D, 22 .. 2(M) e K with the associate number m € N such that the
covering

K C U Ox(“)

p=1

holds true. Furthermore, we find functions x,, = Xu(z) : Oy — [0,400)
satisfying x, € C3°(Opw) for p=1,...,m such that the function

X@) =Y xu@),  weRr? (6)
p=1

has the following properties:

(a) The regularity x € C§°(R™) holds true.
(b) We have x(x) =1 for all z € K.
(¢) The inequality 0 < x(z) < 1 is valid for all x € R™.

Proof:

1. Since the set K C R"™ is compact, we find a radius R > 0 such that
K C B := Bg(0) holds true. To each point x € B we now choose an

open ball B, (z) of radius ¢, > 0 such that B, (z) C O, for x € K
and B (z) € R"\ K for x € B\ K is satisfied. The system of sets

{Bgm (x)}meB yields an open covering of the compact set B. According to

the Heine-Borel covering theorem, finitely many open sets suffice to cover
B, let us say

o ] o [e] o

Be, (zW), B, (z®),...,B., (™), B, ., (2™*Y),... B

m 7 Em+M (x(m-&-M)) N

Here we observe z") € K for p = 1,2,...,m and 2 € B \ K for
p=m+1,...,m+ M, defining €, := e, for p=1,...,m+ M.

With the aid of the function from (5), we now consider the nonneg-
ative functions ¢, (z) = @, ., (z). We note that the following reg-
ularity properties hold true: ¢, € C§°(O,u) for p = 1,...,m and
o € CPR™\ K) for p =m+1,...,m+ M, respectively. Furthermore,
we define @4 p+1(2) = pr(x), where we introduced g already in (2).
Obviously, we arrive at the statement

m+M+1
Z ou(x) >0 for all z € R".
p=1
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2. Now we define the functions x, due to

Xu(2) = r+MH

> o) pua), cemr

pn=1

for p =1,...,m+ M + 1. The functions x, and ¢, belong to the same
classes of regularity, and we observe additionally

m+M+1 m+M+1 —1 m+M+1
Z Xu(z) = [ Z gpu(x)] Z pu(x)=1 forall zeR"™
p=1 p=1 pn=1

The properties (a), (b), and (c) of the function x(z) = > xu(x) are
pn=1
directly inferred from the construction above. q.e.d.

Definition 1.9. We name the functions x1,X2,---,Xm from Theorem 1.8 a
partition of unity subordinate to the open covering {O,},cx of the compact
set K.

2 Parameter-invariant Integrals and Differential Forms

In the basic lectures of analysis the following fundamental result is established.

Theorem 2.1. (Transformation formula for multiple integrals)

Let 2,0 C R™ denote two open sets, where we take n € N. Furthermore, let
y=(yi(x1,.- -, Zn)y. oy Yn(T1,...,2,)) : £2 = O denote a bijective mapping
of the class C1(£2,R™) satisfying

Oy, ()
81‘]‘

Jy(z) = det( )MZl . #0 forall ze (2

Let the function f = f(y) : © — R € C°(O) be given with the property

/\f(y)ldy< oo
€]

for the improper Riemannian integral of |f|. Then we have the transformation
formula

/ fly) dy = / F(@)) 1y ()] da.
o e}

In the sequel, we shall integrate differential forms over m-dimensional surfaces
in R™.
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Definition 2.2. Let the open set T' C R™ with m € N constitute the param-
eter domain. Furthermore, the symbol

.”L'l(tl, e ,tm)
X(t) = : . T — R™ € C*(T,R")
.’En(tl, e ,tm)

represents a mapping - with k,n € N and m < n - whose functional matriz
dX(t) = (th(t),...,Xtm(t)>, teT

has the rank m for all t € T. Then we call X a parametrized regular surface
with the parametric representation X (t) : T — R™.

When X : T — R" and X : T — R™ are two parametric representations, we
call them equivalent if there exists a topological mapping

t=1(s) = (tl(sl,...,sm),...,tm(sl,...,sm)> T — T e CK(T,T)

with the following properties:

ot ) I (g) ... %(s)
1. J(s):zu(s)z >0  foral seT;

A(S1y- -y 8m)
821 (s) ... aim (s)

2. X(s) = X(t(s)) forallseT.

We say that X originates from X by an orientation-preserving reparametriza-
tion. The equivalence class [X| consisting of all those parametric representa-
tions which are equivalent to X is named an open, oriented, m-dimensional,
regular surface of the class C* in R". We name a surface embedded in the
space R™ if additionally the mapping X : T — R" is injective.

Ezample 2.3. (Curves in R™)

On the interval T' = (a,b) C R we consider the mapping

X =X(t) = (J;l(t), o ,xn(t)> e CNT,RY), teT

satisfying

X(1)] = Ak O + ..+ {2, (D)2 > 0 forall teT.

Then the integral
b
L) = [ o) de

determines the arc length of the curve X = X(t) .
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Ezample 2.4. (Classical surfaces in R?)

When T C R? denotes an open parameter domain, we consider the Gaussian
surface representation

X (u,v) = (x(u,v),y(u,v)w(u,v)) : T — R € CHT,R?).

The vector in the direction of the normal to the surface is given by

Ay, z) 0(z 1) 3(%?/))
A(u,v)’ d(u,v)’ d(u,v)

Xu/\XU:(

= (YuZo — Zulor ZuTo — TuZos Tuly — Tolu)-
The unit normal vector to the surface X is defined by the formula

Xu N X,
Nuwv) = =50

and we note that
IN(u,v)| =1, N(u,v)-X,(u,v) =N(u,v)-X,(u,v) =0 forall (u,v)eT.

Via the integral

A(X) = //|Xu/\X1,|dudv
T

we determine the area of the surface X = X (u,v). We evaluate
[ Xu A X)? = (Xu A Xy) - (Xu A Xy) = [ X[ X)* — (X - Xy)?

such that

A(X) ://\/|Xu|2|XU|2 — (Xy - X,)2 dudv
T

follows.

Ezample 2.5. (Hypersurfaces in R™)

Let X : T'— R”™ denote a regular surface - defined on the parameter domain
T C R"!. The (n—1) vectors Xy,,..., Xy, , are linearly independent for all
t € T; and they span the tangential space to the surface at the point X (t) €
R™. Now we shall construct the unit normal vector v(t) € R™. Therefore, we
require

lv() =1 and v(t) -X; (t)=0 forall k=1,...,n—1
as well as

det (th(t), N .,thfl(t),z/(t)) >0 forall teT.



Consequently, the vectors X, ...
n-frame. In this context we define the functions

D;(t) ==

(-1

7Xt

n—1
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and v constitute a positive-oriented

Then we obtain the identity

8901
oty

Oz

A1

T ‘e

Now we introduce the unit normal vector

v(t) = (1), on(t)) =

)nJr,L- 3(x1,172,...,xi_l,x,;+1,...,zn) z:l n
Aty tn-1) ’ o
Oz
ot
n
=> AND;  forall Ap,... A\, €R.
Oxp i—
Ot:,l i=1
An
teT

Evidently, the equation |v(t)| = 1 holds true and we calculate

Oz

- NN

811
ot

0Ty,

otq

Oxn

6tn—1

oz,
ot ;

:O’

1<j<n-—1.

This implies the orthogonality relation X, (¢) - v(t) = 0 for all ¢ € T and
7 =1,...,n— 1. The surface element of the hypersurface in R™ is given by

do =

Oxq

141

- NN

oz,

oty

Oz,
6tn—l

Un

dty...dt,—1

= Z Vij dtl . dtn,1
J=1
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Consequently, the surface area of X is determined by the improper integral

Example 2.6. An open set {2 C R™ can be seen as a surface in R” - via the
mapping
X(t):=t, with teT and T:= CR"

Ezample 2.7. (An m-dimensional surface in R™)

Let X(t) : T — R™ denote a surface with T C R™ as its parameter domain
and the dimensions 1 < m < n. By the symbols

gij(t) = Xy, - Xy, for d,5=1,...,m

we define the metric tensor of the surface X. Furthermore, we call

g(t) = det (g5 (1))

ij=1,....m

its Gramian determinant. We complete the system { Xy, };i=1... m in R™ at each
point X (t) by the vectors §; with j = 1,...,n —m such that the following
properties are valid:

(a) We have &; - & = 9, for all j,k=1,...,n—m;
(b) The relations X, -§; =0fori=1,...,mand j =1,...,n —m hold true;

(c¢) The condition det (th, R, O S P ,§n,m> > 0 is correct.

Then we determine the surface element as follows:

do(t) = det (th, o X Er ,gn_m) dty ... dt,,

- \/det{(XtU...,fnm)t o (th,...,gn,m)}dtl...dtm

_ \/det (gij(t))ivj:h“’m dty ... dty,

= \/g(t) dt ...dtn.

In order to evaluate our surface element via the Jacobi matrix 0X (¢), we need
the following

Proposition 2.8. Let A and B denote two n X m-matrices, where m < n
holds true. For the numbers 1 < i1 < ... < iy < n, let A;,. 4, define the
matriz consisting of those rows with the indices i1, ..., 1, from the matriz A.
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Correspondingly, we define the submatrices of the matriz B. Then we have
the identity
det Bil.

lim B

det(A' o B) = Z det A4;,.

1<y <...<im<n

Proof: We fix A and show that the identity above holds true for all matrices
B.

1. When we consider the unit vectors ey, . . ., e, as columns in R", the formula
above holds true for all B = (ej,,...,€;,,) with ji,...,jm € {1,...,n},
at first.

2. When the formula above holds true for the matrix B = (b1, ..., by, ), this

remains true for the matrix B’ = (by,..., Ab;, ..., by).
3. When we have our formula for the matrices B = (by,...,0,...,bn)
and B” = (b1,..., b/,...,by,), this remains true for the matrix B =

/ /1
(b1, 0+ 07, o). q.e.d.

Corollary: Given the n X m-matrix A, we have the identity

det (A' o A) = > (det Ay, 4, )%

1<i1 <...<im<n

We write the metric tensor in the form

(gij(t)> — OX(1)t 0 DX (1)
ij=1,m
with the functional matrix 0X(t) = (th t),..., X, (t)), and we deduce

g(t) = det (gq(t))i’j:l """" .
= Z (M (t)>2
1<i1<... <im<n Ot1, - ytm)

Therefore, the surface element satisfies

do(t) = +/g(t)dty ... dtn,

_ 3 (M(t))thl...dtm.

1<i1 <. <im<n

Definition 2.9. The surface area of an open, oriented, m-dimensional, reg-
ular C*-surface in R™ with the parametric representation X (t) : T — R™ is
given by the improper Riemannian integral
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A(X) ::T/ 3 (H)zdtl...dtm.

1<iy <...<im<n

Here the parameter domain T C R™ is open and the dimensions 1 < m < n
are prescribed. If A(X) < 400 is valid, the surface [X] possesses finite area.

Remarks:

1. With the aid of the transformation formula for multiple integrals, we im-
mediately verify that the value of our surface area is independent of the
parametric representation.

2. In the case m = 1, we obtain by A(X) the arc length of the curve X : T —
R™. The case m = 2 and n = 3 reduces to the classical area of a surface
X in R3. In the case m = n — 1 we evaluate the area of hypersurfaces in
R™.

In physics and geometry, we often meet with integrals which only depend
on the m-dimensional surface and which are independent of their parametric
representation. In this way, we are invited to consider integrals over so-called
differential forms.

Definition 2.10. On the open set O C R™, let the functions a;,. ;, € C*(O)
with iy, ..., im € {1,...,n} and 1 < m < n be given; where k € Ny holds true.
Now we define the set

F = {X | X : T — R" is a regular, oriented, m-dimensional

surface with finite area such that X(T) cC O }

By a differential form of the degree m in the class C*(Q), namely

n

wi= Z ai, i (x)dz, AL ANdx,

i1,eeeybm=1

or briefly an m-form of the class C*(O), we comprehend the function w :
F — R defined as follows:

w(X) ::/ Y ha (X(2) @iy in) oy x e F.

T D10y bm =1

Remark:

1. We abbreviate A CC O, if the set A € R” is compact and A C O holds
true.

2. Since the coefficient functions a;, .., (X(t)), t € T" are bounded and the
surface has finite area, the integral above converges absolutely.
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3. When two differential symbols

n
w = E aiy. i, (@) dzy, Ao N dx,,
U1 yeeyim =1

and
n

w = Z Eiil.‘.im (ac) dﬂ?il VAR d.’lﬁim

i1,enyim=1

are given, we introduce an equivalence relation between them as follows:
wr~w = wX)=w(X) forall X eF.

Therefore, we comprehend a differential form as an equivalence class of
differential symbols, where we choose a representative to characterize this
differential form.

4. When X, X € F are two equivalent representations of the surface [X], we
observe

w()N() = ' zn: iy iy ()N((s)> H dsy...dsm

1.y tm=1
T

= - . . 8(xi17"'axim) 8(t1,,tm)
= . Z azl...lm <X(t(5))> 8<t17 - ,tm) 8(81, o Sm) d51 . dSm

& Nwiys ... i,
=/ Zail..‘im<X(t))Hdtl...dtm

Tilwnxi?n:l
= w(X).

Therefore, w is a mapping which is defined on the equivalence classes of
the oriented surfaces [X] with X € F.

5. An orientation-reversing parametric transformation ¢t = ¢(s) with J(s) <
0, s € T induces the change of sign: w(X) = —w(X).

Definition 2.11. A 0-form of the class C*(O) is simply a function f(z) €
C*(O) and more precisely

w= f(x), zeO.
When 1 < m <n is fized, we name
ﬂmizd.’bil/\.../\diﬂim, 1§11,,zm§n

a basic m-form.
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Definition 2.12. Let w,w;,ws represent three m-forms of the class C°(O)
and choose ¢ € R. Then we define the differential forms cw and wy + we by
the prescription

(aw)(X) = cw(X) forall X eF

and
(w1 + w2)(X) := w1 (X) + wa(X) forall X eF

respectively.

The m-dimensional differential forms constitute a vector space with the null-
element

o(X)=0 forall X e F.

Definition 2.13. (Exterior product of differential forms)
Let the differential forms

w1 = Z gy .4 (fE) dl’il VAR dl’il
1<iy,....,51<n
of degree | and
W2 = Z bjl"'j'rn (-T) dzj, N...Ndx;,,

1<g1,0dm<n

of degree m in the class C*(O) with k € Ny be given. Then we define the
exterior product of wy and ws as the (I + m)-form

W= wiAws 1= g @iy i (@)bj, g, () dag, A Adag, Adxj, A. . Adxj,,
1<is, iy jm <n

of the class C*(0).
Remarks:
1. Arbitrary differential forms wy,ws, w3 are subject to the associative law
(w1 Awa) Awz = wy A (w2 Aws).

2. When two [-forms wy,ws and one m-form w3 are given, we have the dis-
tributive law
(w1 +LU2) /\CU3 = w1 /\W3+WQ/\W3.

3. The alternating character of the determinant reveals
dzi, A ... Ndz, =sign (m)dz; A ANdxi .

Here the symbol 7 : {1,...,l} — {1,...,1} denotes a permutation with
sign (7) as its sign.
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4. In particular, when the two indices ¢;, and i, coincide, we deduce
dl’il /\/\dl'” =0.

Therefore, each m-form in R™ with the degree m > n vanishes identically.
5. An [-form w; and an m-form wy are subject to the commutator relation

w1 N\ wg = (—1)lmw2 A wy.

Therefore, the exterior product is not commutative.
6. We can represent each m-form in the following way:

w = Z aiy . i, (@) dx;, Ao Ndx,,

1<i1<...<im<n

The basic m-forms dz;;, A ... ANdz;,, 1 <141 < ... < i, < n constitute
a basis for the space of all differential forms, with coefficient functions in
the class C*(0), where k € Ny holds true.

Definition 2.14. Let the symbol

w = Z ai, . i, ()dx;, N...Ndx;,, €O

1<i1<...<im<n

denote a continuous differential form on the open set O C R", with 1 <
m < n being fired. Then we define the improper Riemannian integral of the
differential form w over the surface [X] C O via

/‘” _/ Do Giin (X(f)> Hdtl...dtm

1<i1<...<im<n

if w is absolutely integrable over X and consequently
- . Xt)# dty ... dt,
/M /‘ > al"""( *) Atr,. . tm) |01
[X] 1<i1<...<im<n
< 400
is satisfied.

Remark: With the aid of the transformation formula, we show that these
integrals are independent of the choice of the representatives for the surface.
Therefore, we are allowed to write

p[]|w|=!|w|, [o=[e

(X] X
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FEzample 2.15. (Curvilinear integrals)
Let a(z) = (al(xl, ey Ty ey (T, ,xn)) denote a continuous vector-
field and

the associate 1-form or Pfaffian form. Furthermore, let
X(t) = (xl(t),...,xn(t)) . T = R" € CY(T)

represent a regular C'-curve defined on the parameter interval T = (a,b).

Then we observe
b n
/X w = / (;ai<X(t))x;(t)> dt.

We shall investigate curvilinear integrals in Section 6 more intensively.

Ezample 2.16. (Surface integrals)
Let the continuous vector-field a(x) = (al(:cl, ces )y ey (T, ,zn))

with the associate (n — 1)-form
W—Zal "'Hd:lc Ao oANdri_g ANdxiga A . AN doy,

be given. Furthermore, let X (t1,...,t,—1) : T — R™ represent a regular
C'-surface. Then we observe

O(T1, .y i1, Tig 1y - - Tn)
n+1i 9 [ a2 sy L 9 y4n
/w—/g (77 ) 8(t17...,tn,1) dtl...dtn_l

:/(iai(X(tD ()) dty .. dty

i=1

/ {a(X(0) - v(0)} o)

This surface integral will be studied more intensively in Section 5, when we
prove the Gaussian integral theorem.

Ezample 2.17. (Domain integrals)
Let us consider the continuous function f = f(x1,...,z,) with the associate
n-form

w=f(z)dxy A...Ndzy.
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Furthermore, X = X (t) : T — R" represents a regular C'-surface. Then we
infer the identity

/w/f@ﬁogaixjgﬁynﬁw
X T

This parameter-invariant integral is well-suited for transformations of the do-
main.

3 The Exterior Derivative of Differential Forms

We begin with the fundamental

Definition 3.1. For a 0-form f(x) of the class C*(O), we define the exterior
derivative as its differential

df (x) =Y fo,(@)dzi,  z€0.
=1

When
w = Z iy i, (I‘) dl‘il A A d.’ﬂim

1<i1 <...<im<n
represents an m-form of the class C1(O), we define its exterior derivative as
the (m + 1)-form
dw := Z (dail___im (a:)) ANdzi Ao Ndx;,
1<i1 <. <im<n
Remarks:

1. When w; and wy are two m-forms in R™ and a3, € R are given, we
have the identity

d(alwl + OZQCUQ) = aldwl + O[dedg.

Therefore, the differential operator d constitutes a linear operator.
2. When ) denotes an I-form and w an m-form of the class C1(O), we infer
the product rule

dwAX) = (dw) AX+ (=1)"w A dA.
We shall prove only the last statement. Here it suffices to consider the situation
w=f(x)8", A=g()8,

where ™ and B! are basic forms of the order m and [, respectively. Now we
deduce
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wAX= f(z)g(z)B™ A B

and, moreover,
dw A ) = d(f(@)g(x) AB™ A B
= (9@)dr(@) + F2)dg(x)) A 8™ A B

=dw AX+ (=1)"wAdA.

Ezample 3.2. Taking the function f(x) € C*(O), we can integrate immedi-
ately the differential form df over curves. With the curve

X@z(mwwwmﬁDeC%@%Rﬂ

being given, we calculate

= F(x®) - 1 (x(@).

Ezample 3.3. We consider the Pfaffian form
w= Z a;(z) dz;
i=1

of the class C1(O) and determine its exterior derivative as follows:

dw = Zda]—(w) ANdx; = Z 8(31:{ dx; N dx;
i=1 i

,j=1

- 8aj 8(11-
= Z (8% — 8xj> dx; N\ dx;.

1<i<j<n

Obviously, the identity dw = 0 holds true if and only if the functional matrix

Oa; . .
( L is symmetric. In the case n = 3, we evaluate
i,j=1,...,n

3mj
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dw = (% — aal) dry Ndxo + (8&3 aal) dxi N dzs

6351 8%2 3331 6x3
8a3 aag
+ <8—x2 — 8—x3> dxo N drs

= by (z) dxgy A dxs + ba(x) deg A dxy + bs(x) dxy A das.

Here we have defined the vector-field

(’)ag 8&2 8a1 8a3 (’)ag 8a1
(o)1) = (G2~ G Gt~ e e~ )

=V A (a1,a2,a3)(x) =: rota(x),

where V = (62 , 68 ) Bar ) denotes the nabla-operator. Integration of this
1 xro xr3

differential form dw over surfaces in R? will be possible by the classical Stokes
integral theorem.

Definition 3.4. We name

rota(z) = (203 _ 092 Oa_ dag daz Dy
o 8$2 8.1‘37 8.1’3 6331 ’ 81‘1 (’)332

the rotation of the vector-field a(z) = (al(m),ag(x),ag(x)) € CYO,R?).

Ezample 3.5. Now we consider a specific (n — 1)-form in R™, namely
w= Zal DFrday Ao ANdxi_y Adzigq A A day,,

whose exterior derivative takes on the following form:

dw = Z(—l)i—H (daz(a:)) ANdxi A...ANdx;—1 A d-Ti+1 A ... ANdxy,
=1

= Z( 1)Z+1 g{jl( )d.i?] ANdxi A . /\dl‘i_1/\dl‘i+1 A...ANdx,
ij=1 J

:Z( ]_)1+1 8;( )dxi/\d:rl/\/\dxi,l/\dxlﬂ/\/\dxn

Q

az

Q

(o

) drxi N ... Ndxy,
=1

= (dlva ) drxi A ... Ndxy,.
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Definition 3.6. The vector-field a(z) = (al(:zr), e ,an(x)> € CY(O,R") on

the open set O C R™ possesses the divergence

diva(z Z gzz rz e 0.

Example 3.7. We can integrate the n-form
dw = (diva(x))dzy A ... Ndzy,

over an n-dimensional rectangle. This differential form can also be integrated
over a substantially larger class of domains in R™ - bounded by finitely many
hypersurfaces - with the aid of the Gaussian integral theorem, one of the most
important theorems in the higher-dimensional analysis.

At first, we integrate dw over the following standard domain: For » > 0 we
define the semidisc

H = {x: (:L‘1,...,£En) eR"™ | T € (—7‘70), T; € (—7‘7—1—7“)7 i:27_._’n}
with the upper bounding side
S = {x:(O,xQ,...,xn) | |zi] <, 7;:2’_._’71}_

The exterior normal vector to the surface S is given by e; = (1,0,...,0) € R®
explicitly. Then we comprehend H and S as surfaces in R™ via the represen-
tations

HZX(th...,tn):(tl,...,tn), (tl,...,tn)GH

and
S:Y(E,...,?n_l)z(0,?1,...,%;1_1), Ei|<7”, i1=1,....,n—1,

respectively. With the assumption w € C}(H U S), we obtain

0 +r +7r P P
ai G,
/dw—/dw—// /(&cl 830") dxq...dz,

+7r “+r
:/.../al(O,xQ,...,xn)dxg...dxn = /w.
—r —r S

In the sequel, we shall investigate the behavior of differential forms with re-
spect to transformations of the ambient space.

Definition 3.8. (Transformed differential form)
Let the symbol
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w = Z iy i, (I‘) dl‘il A A d.’Bim

1<i1 <...<im<n

denote a continuous m-form in an open set O C R™. Furthermore, let T C R
with | € N describe an open set such that

T = ($17"'axn) :@(y)
= (e1(yrs- - w)s - ony, - m) T = O
defines a mapping of the class C*(T,R™). With

l
i .
d(plzzay(y)dy]? Zzla"'an
j=1 %

and

We = Z Qi ip, (Q(y)) dpi, A .. Nde,,,

1<i1 <. <tm<n

we obtain the transformed m-form wg with respect to the mapping &.
Remarks:

1. When wy,ws are two m-forms and aj,as € R are given, we infer the
identity
(a1w1 + agws)e = a1(wr)e + ao(w2)s.

2. When A represents an [-form and w an m-form, we have the rule

(w/\>\)¢. = we A Ao

The following result is important for the evaluation of integrals for differential
forms over surfaces.

Theorem 3.9. (Pull-back of differential forms)
Let w denote a continuous m-form in the open set O C R™. On the open set
T C R™ we define a surface X by the parametric representation

r=30(y) : T — O c CYT)
with @(T) CC O. Finally, we define the surface
Y(t)=(t1,.- - tm), teT

and note that
X(@t)=PoY(t), teT.

Then the following identity holds true:

o[

X Y
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Proof: We calculate

D¢ 9,
d(pil /\.../\d(pim = Z ) 41 dyj1 VANPIAN Z 0 dyjm
j1=1 Y, Yijm

Jm=1

_ 8(¢i1’-..7¢i7n)dy1/\ /\dy
= =" my

a(yla s 7ym)

as well as

a il,..., i,"L
we = Z i ..in (D(y)) H dyi1 A ... Ndym.

1<iy <...<im<n

This implies

/w:/ S (X(0) DT gy

3 1< <. <im<n Atr, - tm)
= /w’
X
and our theorem is proved. q.e.d.

Theorem 3.10. Let w denote an m-form in the open set O C R"™ of the
reqularity class C1(O). Furthermore, let the mapping

r=>&(y) : T — O C*T)

be given on the open set T C R!, where | € N holds true. Then we have the
calculus rule

d(w.gs) = (dw)¢>.
Proof: At first, an arbitrary function ¥(y) € C?(0) satisfies the identity
PV = d(dv) = d (Z 7, dyl-> =Y Wy, dy; Ady; = 0.
i=1 ij=1

Now we note that

We = Z iy i, (@(y)) dpi, Ao Ndy;,

1<i1<...<im<n

and we arrive at
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Z dail._im (@(y)) A d<P21 A A dgﬁim

1<i1 < . <im<n

SOy M (00) 2 g i,

1<i1<..<im<n j=1 k=1

> S (o) dey nde - A

1< <...<im<n j=1

dqu

and consequently
des = (dw)qs.

q.e.d.

Theorem 3.11. (Chain rule for differential forms)

Let w denote a continuous m-form in an open set O C R™. Furthermore, we
consider the open sets T' C RY and T” C R - with I,1"” € N - where the
C'-functions ,¥ are defined due to

UT' ST, &:T -0 with 22—y
Then the following identity holds true:

(We)w = Waow.

Proof: We calculate

Wpow = Z @iy i, (43 o J/(Z)) d(pi, o¥) A ... Nd(pi,, o W)

Tlgeeey im
i, OV 9pi,, OYj,
= a; ,,gm(éou'/z)(—l—hdzk AN | S dy,
le; et (2) oyj, Oz, oy, Oz,
J1seeesdm
1 -7k7n
Op; 0p;
= Y anin(P00(2)) ( L dy A2 dyy,
Zlgm e oy;, 0y;,. "
Jir-dm
= Z all Tm (é(y)> dgp’bl A A d@lm ’
B15eesm y:gl'/(z)
and consequently
Waow = (We)w-
Here we perform our summation over the indices i1,...,i, € {1,...,n},

Jiseedm €41, U}, and kq, ...k € {1,017 q.e.d.
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4 The Stokes Integral Theorem for Manifolds

We choose m € N and consider the m-dimensional plane

E™ .= {(O,yl,...,ym) S Rm+1 : (yla"'aym) € Rm}

Parallel to the Example 3.7 from Section 3, we take the data n € R™*! and
r > 0 in order to define the semicube

H.(n):= {y eR™: y € (m—r,m), yj € (nj—r,n;+r) for j = 2,...,m+1}
with the lateral lengths 2r. This object has the upper bounding side
S.(n) := {y eER™ Ly =my,y; € (; —rym; +7) for j = 2,...,m+1}.
We comprehend H,.(n) and S,.(n) as surfaces in R™*1:
He(m) « Y(ty, - tmgr) = (11, gt + tngn)

with —r <t <0, |t|<r, j=2,....m+1

as well as

Se(m) : Y(t1, oo ytm) = (1,2 + 1, oy Dmg1 + Em)
with |t;|<r, j=1,...,m.

When n € E™ and r > 0 are fixed, we define H := H,(n) and S := S.(n),
respectively. With n > m given, we denote by

& =P(y1, .., Yymt1) : H — R" € C'(H,R")

a surface, which can be continued onto an open set containing H in Rt
When we set

X(tlv s 7t'rn+1) = Q)(tl, v at7n+1)a (t17 ce 7t'm+1) € F)

we obtain the following (m + 1)-dimensional surface in R™, namely
Fi= {X(t) ER" : te H}

whose boundary contains the m-dimensional surface
S = {X(t) ER™ : te S}.

Let the m-form be given on the set F = &(H) by the symbol
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n
w= Z aiy. i (@)dziy Ao Ndzy,, T E€EF

0150y tm =1

of the class C§(F US) N CL(F). Here the symbol w € C(F) means that we
have an open set O C R" with F C O satisfying w € C*(0O). Finally, let dw
be absolutely integrable over F in the following sense:

[ f| 5 o ()i
F H

or Lt

i1,y bmy1=1 tmet1 ’ m+1)
< +o0.

Now we prove the basic

Proposition 4.1. (Local Stokes theorem)
Let the surface F with the boundary part S be given as above, and furthermore
the symbol w may denote an m-dimensional differential form of the class

CHFUS)NCHF)

satisfying
/|dw\ < +00.
F

Then we have the identity
/dw = / w.
F S

Proof:

1. At first, we prove this formula under the stronger assumptions ¢ € C?(H)
and w € C}(F US). Utilizing Theorem 3.10 and Example 3.7 from Sec-
tion 3, we infer the identity

form fau= fwrn fasi= [ [

S

2. When @ € C'(H) and w € C*(F)NCY(FUS) hold true, we approximate
uniformly in H up to the first derivatives by the functions &) (y) € C*°,
due to the Weierstral approximation theorem. Now we exhaust H by
rectangles

1
H(l) = Hrff(’r/l 17772,... anerl) CH

with the upper bounding sides

1
S(l) = Sr—% (7’]1 — 7,7’]2, e 777m+1>~
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The considerations in part 1.) reveal

/(dw)dsm = /W@(k) forall k,l > N eN.
H® SO

The transition to the limit £ — oo implies
/ (dw)¢ = / We.
H® s

On account of [ |dw| < 400, the limit procedure [ — oo yields

[ar- o= feo=
F H S S

This is exactly the identity stated above. q.e.d.

Now we introduce the fundamental notion of a differentiable manifold.

Definition 4.2. Let us fix the dimensions 1 < m < n as well as the set
M C R*. We name M an m-dimensional C*-manifold, if each point & € M
possesses an element n € R™ and open neighborhoods U C R™ of € € U and
VCR™ of n €V as well as an embedded regular surface

r=>&(y) : V—UecCFV)

such that
E=d(n) and S(V)=MnNU

is correct; here we have chosen k € N adequately. We call (?,V) a chart of
the manifold. All charts together

A= {(@L,VL) : LEJ}

constitute an atlas of the manifold. When @; : V; — U; N M with j = 1,2
represent two charts of the atlas A such that

leg::MﬂUlﬂUg#@

is correct, then we consider the parameter transformation @1 = @2_1 o P.
If the functional determinant satisfies Jg,, > 0 on &7 (Wh2) for such ar-
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bitrarily chosen charts from the atlas, the manifold is oriented by the atlas.

Us
U, M
W1,2
@1 gzj2
@2_1 0@1
"/,/'*-\\\
il () () "

(W) @y (Wr )

Definition 4.3. Let M denote a bounded, (m + 1)-dimensional, oriented C-
manifold in R™ with n > m. We indicate the topological closure of the point
set M by the symbol M and the set of boundary points by the symbol M =
M\ M. We name € € M a regular boundary point of the manifold M if the
following holds true:

We have a semicube H,(n) in R™T!
with n € E™ and r > 0, a regular E™
embedded surface -

B(y) : H(n) — R" € C'(H,(n)) o @ ¢

such that (P|HT(,]) belongs to the ori- e;
ented atlas A of M, e
and an open neighborhood U C R™ of £ € U with the following properties:

o) =¢, #(S(n) = MU, @(H(n) =MNU.

The set of regular boundary points will be denoted by the symbol OM.

Definition 4.4. For the bounded manifold M from Definition 4.3, we define
the set of singular boundary points AM according to

AM = M\ OM.

In the case AM = 0, we obtain a compact manifold with regular boundary. If
the condition OM = 0 is fulfilled additionally, we speak of a closed manifold.

X AM =10
)\QM__,,,....AM ~AM =10

)M — O

oM =10
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Proposition 4.5. (Induced orientation on dM)
Let M and OM from Definition 4.3 with the charts & : H.(n) — R™be given.
Then the mappings

{qs
constitute an oriented atlas of OM. Consequently, OM represents an oriented
C'-manifold.

belongs to the oriented atlas A of./\/l} =:0A

S,(m) ¢|Hr(77)

Proof: We consider &(n)) = ¢ = &(7j). The vectors @, (1), . .. Dy, (n) and

Dy, (M), ..., Py,... (1) span the m-dimensional tangential space Tyr((§) to M

at the point £&. When we add the vectors &, () and 5y1 (1), respectively, the

tangential space Th(€) to M is generated.
Now we construct an orthonormal system
N',...,N"™™ ¢ R" which is orthogonal to

Tom(€). We choose the vector N1 € Ty (&), @
directed out of the surface at the point &, and H “7\‘
obtain M
1 = 1 /qg' ¢
By, () N' >0, B, (7) N' >0, ;;
With the parameter 0 < 7 < 1, we consider the matrices
(1= 7)Py, (n) + TN* (1= 7)By, (i) + TN?
@y, () y, (77)
M(T) = gpmerl (77) 9 M(T) = éymﬂ (ﬁ)
N2 N2
Nn—m Nn—m

()" Now the func-

tions det M(7) and det M(7) in [0,1] are continuous with det M(7) # 0 and

det M (1) # 0 for all 0 < 7 < 1. Consequently, the following function is con-
tinuous in [0, 1], and we have

Furthermore, we define ¥ := ¢|S<(n) and ¥ = &

det (M(T)—l o M(T)) £0, 0<7<L.

By assumption we note that
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det (1\7(0)*1 o M(O)) = detd(@ o )| >0,
and a continuity argument implies
det O o )| = det (M(n*l o M(l)) > 0.

Therefore, A constitutes an oriented atlas of OM. q.e.d.

We now intend to prove the Stokes integral theorem for manifolds M with the
regular boundary OM and the singular boundary AM, namely the identity

/dw: /w,
M oM

under weak assumptions. The transition from the local Stokes theorem to the
global result is achieved by the partition of unity.

Let M denote an (m + 1)-dimensional, bounded, oriented C!'-manifold in R™
with the regular boundary 0 M. Furthermore, let the symbol

A= > biy i n (@) dogy Ao Nday, ., €M

1<i1<.o.<imy1<n
represent a continuous differential form on M.

We shall investigate which conditions for A allow us to define the improper

integral
/ A

M
of the differential form X\ over the manifold M.

1. At first, let the set

supp A :={x e M : A(z) #0} C MUOM

be compact. Then we have open sets V, C R™*! and U, C R\ AM with
¢ € J and, moreover, charts @, : V, — U, N M such that the open sets
{U,}.e cover the compact set supp A. Now we choose a partition of unity
in R™ subordinate to the sets {U,} and obtain

ar(z) : M —[0,1] € C' with suppay, C U, for k=1,...,ko

as well as

Zak(a:) =1 for all x € supp A.
k=1

We define
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/ :Z/ak)\ Z/ (N, s (1)
k= 1./\/1 k= 1Vk
if
/akw <400 for k=1,...,ko
M
is correct.

We still have to show that the integral, given in equation (1), is indepen-
dent of the covering for the support of A and of the partition of unity
used.

When i : XN/L — Tj'L N M with ¢ € J represents an alternative system of
charts covering supp A, we choose again a partition of unity for supp A
subordinate to the system {U,},. We obtain

1 M —[0,1] € CH, supp&lcﬁ”, l=1,...,1l

as well as

a(x) =1 for all =z € supp \.
1=1

We note that supp (axa;) C Up NU; N M holds true. Under the mapping
@7 o Qil for all indices £k = 1,...,kg and [ = 1,...,ly we transform the

mtegralb
/(Otkal)\)qsk :/ (Otkal)\)gl. (2)

Vi \
The summation yields

ko o

Z / ak)\ = Z Z /(ak&l)\)qsk
k= le k=1 =1 Vi
ko o lo
= Z Z/ akal)\ Z /(&l)\)"fl
k=1 l:l =1 v

Consequently, the integral given in (1) is independent of the choice of
charts and the partition of unity. Correspondingly, we define [ M 1Al and

Jom

. The dlfferentlal form \ € CY(M) is absolutely integrable over M, symbol-

ically

/|/\\ < 400,
M
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if we have a constant M € [0, +00) such that the inequality

/|B)\\ <M forall Be€CHMUIM,I0,1])
M

is correct. We say that the sequence of functions g, € C§(M UM, [0,1])
is exhausting the manifold, when each compact set K C MUOM possesses
an index kg = ko(K) € N such that

Br(x) =1 forall ze K, k> k.

When fM |A| < +o0 holds true, we show as in the theory of improper
integrals that for each exhausting sequence of functions {8y }x=12,.. the
following expression

lim BrA
k— o0
M

exists and has the same value. We set
/ T 3)
k—o0
M M

In this sense, we comprehend all improper integrals appearing in the se-
quel.

Definition 4.6. The singular boundary AM of the manifold M has capacity
zero if we can find a function

X € C5(MUOM,|0,1])

for each € > 0 and each compact set K C M U IM with the following prop-
erties:

1. We have x(z) =1 for all z € K;
2. The following condition holds true:

/\/V(X,X) d" o <e.
M

Here d™ 1o denotes the (m + 1)-dimensional surface element on M, and we
set

VO] = V06| = sup{IVx-¢ : € € Tla), I8l =1},

T

Now we arrive at our central result, namely



38 Chapter 1 Differentiation and Integration on Manifolds

Theorem 4.7. (The Stokes integral theorem for manifolds)
Assumptions:

1. Let M represent a bounded, oriented, (m+1)-dimensional Ct-manifold in
R™ - where n > m is correct - with the atlas A. Via the induced atlas 0A,
the regular boundary OM becomes a bounded, oriented, m-dimensional
C'-manifold. We assume that the regular boundary possesses finite surface
area as follows:

/ d™o < +o0.
oM

Furthermore, the singular boundary AM has capacity zero.
2. Let the symbol

w= Z ai, i, (x)dzy Ao ANdz;,, TEM

1<i1 <o < <n

denote an m-dimensional differential form of the class C*(M) N C°(M),
such that its exterior derivative dw is absolutely integrable in the following

sense:
/|dw| < 400.

M
Statement: Then we have the identity

o[-

M oM
Proof:
1. At first, let the condition w € C*(M) N CY(M U OM) be fulfilled. As
above we choose a partition of unity {ax} with K = 1,... kg on the set

suppw C M U IM subordinate to the covering system of the charts. We
utilize Proposition 4.1 and deduce

[o=% [m = [
M k=1 M M

oM k=1g

2. Let the differential form w be arbitrary now. Then we choose a sequence
{Bk}k=1,2,.. of functions exhausting the manifold M with the property

/\/V(ﬁk,ﬁk) d" e >0 for k — oo.
M

According to part 1, we obtain the following identities for k = 1,2, ...,
namely
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[ b= [ d(prs) = A[ By o + A[ 05 A w. (4)

oM M

At first, we see

’/dﬁk/\w‘ §c/\/V(ﬂk,5k)dm+10%O for k — oo.
M M

Furthermore, we estimate

/ |Brw| < / lw| < ¢ / d™ o < +oo for k=1,2,...
oM oM oM
Therefore, we comprehend

lim /Bkw:: /w<+oo.
k—o0
oM

15}

<

On account of [, |dw| < 400, we infer

lim /Bkdw =: /dw < 400.
k—o0
M M
The transition to the limit & — oo in (4) reveals the identity
/ w= / dw,
oM M

which corresponds to the statement above. q.e.d.

5 The Integral Theorems of Gauf3 and Stokes

We endow the bounded open set {2 C R™ with the chart X (¢) = ¢, t € {2 gen-
erating an atlas A. In this way, we obtain a bounded oriented n-dimensional
manifold M = 2 in R". When

@) = (@) ful@) : 2 —R" € CHQRY)

denotes an n-dimensional vector-field in R™ with its divergence

0

T%fn(f), I’GQ,

div f(x) = aixlfl(x)+...+

we consider the (n — 1)-form
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W = Zfz l+1 dl‘l A /\dlL’i_l /\dSUH_l A /\d.’ﬂn

The set of regular points 92, endowed by the induced atlas d.A, becomes an
(n — 1)-dimensional bounded oriented manifold in R™. We show the identity

[ e

later, where £(x) denotes the exterior normal to the domain Q at the point
x. When we take the relation

dw = (div f(:c)) dry A ... ANdzy,

into account, Theorem 4.7 from Section 4 reveals the fundamental identity of

Gauf:
/divf(x)d”xz/(f(x)~f(x)> "o (1)

(e} o8

With the aid of Theorem 4.7 from Section4, we shall derive the identity (1)
under very general conditions to {2 and f which are relevant for the applica-
tions in this textbook. Thus we shall obtain the Gaussian integral theorem.

Assumption (A):
Let 2 C R™ denote a bounded open set, with the topological boundary

=0 \ £2. For each boundary point z € 2, we can find a sequence of
points

{x(p)}CR"\ﬁ, p=12,...

satisfying () — z for p — oo; this means each boundary point is attainable
from outside.

Assumption (B):
We choose N € N bounded domains 7; ¢ R* ! with i = 1,2,...,N as

our parameter domains. Then we consider N regular hypersurfaces in R™ as
follows:

Fi XO) = (:cgi)(th...,tn,l),...,xﬁj)(th...,tn,l)) . Ty — R™.

Here the mapping X (t) € CY(T;) N C%(T;) is injective, and the rank of
its functional matrix satisfies the condition rgdX (¥ (t) = n — 1 for all points
t € T; and the indices i = 1,..., N. Furthermore, their surface areas fulfill

A(F;) = /dn*la(i)(t) < +4oo for i=1,...,N.

T;



5 The Integral Theorems of Gaufl and Stokes 41

We define
F:=X(T)), F;:=XO(Ty), F, :=X9T)

with ¢ = 1,...,N. Let the union of these finitely many hypersurfaces F;
constitute the boundary of {2; more precisely

Q=F,U...UFy.
Furthermore, we require the condition
FiNnF;=FNF; forall 4,j€{l,...,N} with i#j.

Therefore, two different hypersurfaces possess common boundary points at
most.

We need the following two auxiliary lemmas:

Proposition 5.1. The point set 2 C R™ may satisfy the assumptions (A)
and (B). Furthermore, let z° € Fy denote an arbitrary point of the surface Iy
with 1 € {1,...,N}. Then we find an index k = k(z°) € {1,...,n} as well as
two positive numbers o = o(x°) and o = a(2°), such that the rectangle

QY 0,0) := {:17 ER™ : |z;—al| <o, i=1,...,nwithi#k; |xp—2xp| < a}
is subject to the following conditions:
02NQ = {x ER™ : |z —a¥ <o, i #k; 2 = D(x1,. .., Tho1, Thits - ,xn)}

Here & denotes a Cl-function on the domain of definition being given, such
that | — 29| < %0 holds true. Furthermore, we have the alternative

QHQ:{xER" Doy — 2% <o fori#k,

‘xk - $2| <o, T < @(1}1, sy Th—1, Lh+15- - - 7$n)}
or
nNNE = {:cER” Doy — 2% <o fori#k,
|xg — a:g| <o, x> D1, The1, Tt 1,y - - - ,xn)}
A Q
0
x
xg ,'/
The adjacent diagram illustrates the Q ne

statement of our proposition. |

Proof:
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. With the open set T C R™ !, let us represent our surface F' = Fj by the

mapping
X(t) = (xl(tly-~-atn—1)7~-~7xn(t1a-~-7tn—1)> : T — R™.

On account of rgdX (t) = n — 1 for all points ¢t € T, we find an index
k=k(z") € {1,...,n} with 2° = X (%), such that

01, . 1, Ty 1, - - Tp)

A(t1, - tn1)

is correct. Now the theorem of the inverse mapping provides an open set
U c R* ! and a rectangle

t=t0

Ry:i=(2) — 0,20 +0) x ... x (2_, — 0,20 | +0)
X(2) g — 0 xp g +0) X x (x5, — 0,2, + 0)

with a sufficiently small quantity ¢ = o(z") > 0, such that
Ft1ye o tn) i= (xl(t),...,xk_l(t),xk+1(t),...,xn(t)) LU — R,

constitutes a C'-diffeomorphism. This means that f is bijective, f as well
as f~1 are continuously differentiable, and we have the condition .J¢(¢) # 0
for all t € U. We define

k
v -1
= (T1,...,Th—1,Th+41,---,Tpn) € R, CR"

and introduce the function

K<

o) =, (f7'@), 2R,
Then we observe
o€ CH(RyR), X(U)={(01,...7n) re R,, xx = a(2)}.

Now we see

and consequently

dist (22, U Fp) > 0.

m=1
m#l

We choose the quantities ¢ > 0 and o > 0 sufficiently small, such that
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k

. 1
Q(zo, 0,0)N 2= Q(xo7 0,0)NF; as well as |€I>(§1/:) — 9:2| < 3 o

k
Vv . . . .
holds true for all z€ R,. We summarize our considerations and obtain

k

.
2NQ°, 0,0) = {a: eR" : 1€ R,, = = @(:\é)}

2. Now we define the point sets
%

Pt .= {x € Q(2°,0,0) : xp > @(m)},

PO .= {m €Q(z% 0,0) : 2 = D( )},

P = {x € Q2% 0,0) : 11, < @(%)}

These sets above decompose the set Q(x°, 9, o) according to the prescrip-
tion
Q2% 0,0) =P UP U PT. (2)

From the first part of our proof we infer
2NnQ0,0) = P. (3)

On account of z° € §2 and the assumption (A), we can find the two points
y € 2NQ and z € (R™\ £2) N Q. We distinguish between two possible
cases, namely the case 1: y € P~ and the case 2: y € PT.

Case 1. When we consider with § € P~ an arbitrary further point, we
find a continuous curve I' C P~ from y to g, which does not intersect the
surface P°. Since y € {2 holds true and the curve I" does not intersect the
set 2 due to (3), we infer § € £2. We finally obtain the inclusion

P~ CQNQ. (4)

Now we arrive at z € PT. Each further point 2 € P¥ can be connected
by a curve [" in PT with the point z. Since this curve does not intersect
{2, the condition z € R™\ {2 implies zZ € R™ \ 2 as well. We conclude

P C(R"\ 2)NQ. (5)
Furthermore, we observe
Q" 0,0) = (2N QU2NQ) U (R"\2)NQ). (6)

We deduce P~ = 2N Q and PT = (R \ ) N Q from the equations (2)
to (6).
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Case 2. In the same way as in the first case, we show Pt =02nNQ and
P =R"\2)NQ. qed.

Remark: In the neighborhood of a regular boundary point

N
Jfo € U F;
i=1

we choose the function
U(z) = j:(a:k —P(T1, ey Thoe1, Tht 1y - - - ,xn)>

due to Proposition 5.1. Thus we can characterize the set {2 in this neighbor-
hood by the inequality ¥(z) < 0.

Proposition 5.2. The set 2 C R™ may satisfy the assumptions (A) and (B);
let 2° € F, with 1 € {1,..., N} denote a point of the surface F;. Furthermore,
we have an open set U = U(z°) C R™ containing the point ° and a function
¥(x) € CY(U) with |V¥(x)| > 0 for all points v € U, such that

2NU={xeU : ¥(z) <0}
Then the vector
£(z) == V()" 'V¥(z), ze€2nU
has the following properties:

1. We have{(X(t)) Xy, (t)=0 fori=1,...,n—1 neart =1t

2. The condition [§] =1 on QNU holds true;
3. For each point x € 2 NU, we can find a number go(x) > 0 such that

2 for —pg<p<O0
T+ o€ € _ )
R™\ 2 for 0< o< +go

The vector & is uniquely determined by these conditions.

Definition 5.3. The function § = &(x), defined in Proposition 5.2 for all
points x € Fy U ... U Fy, is named the exterior normal of {2 at the point x.

Proof of Proposition 5.2: The uniqueness of £ follows from the properties 1 to
3 above. Now we shall prove the properties given for the function £. At first,
¥ =0 on 2NU holds true, and we infer

0= w(xl(t), . ,mn(t)), t=(tr, ... tar) € V(... ,1°_) C R""! open,

and consequently
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ofz%( )8% j=1,...,n—1

This implies §- Xy, =0in V for j = 1,...,n—1 and the property 1. Evidently,

the condition |¢| = 1 is valid on £ N U. Therefore, it remains to show the
property 3. When 0 < |g| < go holds true, we infer the inequality

W(x+ 0f) = ¥(x + 0f) — —QZ% (x + k0€)E

1 n
—_— v, v,
o VU ()] ; i (7 + KO§)Wy, (2) {
for all points = € 2N U; with a number x = k() € (0,1). This implies

Lot e 2 if —go<g<0
T
¢ R\ if 0< o< oo

<0if —pg<o0<0
>0if0< o< 0o

q.e.d.

Remark: Let the surface patch F' = F; bounding {2 be given by the parametric
representation

X(t)=X(t1,...,tn—1) : T — R™ on the domain T C R !
with the normal
I/(t) = |AX’t1 A A th—l ‘71Xt1 A A th_l(t)

n

Z(Dj(t))zl (Di(t),...,Du(t)), teT.

Jj=1

With a fixed € € {£1}, we observe

f(X(t)) =cv(t) forall teT.

Proof: At first, we see E(X(t)) = e(t)v(t), t € T with the orientation factor
g(t) € {£1}. Now the function

is continuous on the domain T', and we obtain €(t) = +1 or £(t) = —1 on T.
q.e.d.

Definition 5.4. The set 2 C R™ may satisfy the assumptions (A) and (B).
Then we define
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N
80 = U Fj
j=1

as the regular boundary of (2. Furthermore, let g(x) : 92 — R denote a
continuous bounded function on 0f2. We define the surface integral of g over
the regular boundary 0f2 by the expression

Now we formulate the assumption for our vector-fields to be integrated.

Assumption (C):
The function f(z)

= (f1(z),..., fu(z)), € 2 belongs to the regularity class
CH0,R")NC°(N,R"

, and we require

/|div f(z)|dz < +oo.
Q

We present a condition on the singular boundary FyU...UFy, which guar-
antees the validity of the Gaussian identity (1):

Assumption (D):

The set F} U ... U Fy has the (n — 1)-dimensional Hausdorff content zero
or equivalently represents an (n — 1)-dimensional Hausdorff null-set. More
precisely, for each quantity ¢ > 0 we have finitely many balls

K; ::{mER" : |x—ac(j)\§gj} for j=1,...,J

with the centers (/) € R” and radii 0; > 0, such that the following conditions
hold true:
J
1. FU...UEyC U K; (Covering property);
j=1

J
2. Z g}“l <e (Smallness of the total area).
Jj=1

Remark: The condition (D) is valid, if all surface patches F; withl=1,..., N
fulfill the subsequent assumptions: When £ is parametrized by the represen-
tation X = X (¢) : T; — F, we require the following:

1. The set T; constitutes a Jopdan domain in R"~!, which means that 7} is
compact and its boundary 7} represents a Jordan null-set in R*~!;
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2. The mapping X (t) satisfies a Lipschitz condition on T;, namely
IX#)- Xt <Lt —t"| forall ¢, €Ty,

with the Lipschitz constant L > 0.

We now arrive at the central theorem of the n-dimensional integral-calculus.

Theorem 5.5. (Gaussian integral theorem)

Let 2 C R™ denote a bounded open set satisfying the assumptions (A), (B),
and (D). Furthermore, the vector-valued function f(x) fulfills the assumption
(C). Then we have the identity

/divf(x)d:z:: /f(x)-f(a:) "o

0 o

Proof: (E.Heinz)
We shall prove this statement by referring to Theorem 4.7 from Section 4.

1. We comprehend M = (2 C R™ as an n-dimensional manifold in R™ with
the atlas A : X(t) =t, ¢t € 2. For each point

N
20 e U Fc
1=1
we now find a rectangle Q(z°, o, 0) due to Proposition 5.1, such that
NN = {xER" Cle — 2% < o(i # k),
TS P(T1,. .., Th1, Tht1, - - -, Tp), | — 2} < 0 }
On the semicube
H:= {teR" Lt € (—0,0), [ti] < o, i:2,...,n}
with the upper bounding side
S = {teR” Ct =0, |t <o i=2...,n}
in the direction of e1, we consider the transformation
Y(t) = (gc? + eata, ... ,x271 + epty, @(x(l) + eata, ... ,x271 + epty,
:c2+1 + epr1that,--- ,x% + entn) +e1ty, x%H + epr1that,--- ,x?L + 5ntn)

where €, € {£1} for kK = 1,...,n holds true. Choosing the sign factors
€1,...,Ep suitably, we attain the conditions
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Y(H)Cc2nQ, Y(S)=02nQ, and Jy(0)=+1

for the functional determinant of Y. Therefore, the mapping Y is com-
patible with the chart X from above, and we endow OM = 9f2 with the
induced atlas. On account of the condition Jy(0) > 0, the normal v(t)
to a surface patch oriented by 02 points in the direction of the exterior
normal & to 0f2.

We now consider the (n — 1)-form

W= Z(—l)”lfi(x) driA. . Adzi_iAdzi 1 A. . Adx, € CH(M)NCO(M).

i=1

From our considerations above we infer

. Due to the assumption (D), we have finitely many balls to each quantity

€ > 0, namely
K, = {:cER” : |x—z(j)|§gj} for j=1,...,J,

satisfying
J J
Flu...UFNCUKj and Zp?_lge.
j=1 j=1
Now we show that the capacity of the singular boundary vanishes. In this

context we construct a function ¥(r) : [0, +o0) — [0,1] € C* with

0,0<r<2 ,
U(r) = and M :=sup |¥'(r)] < +o0.
1, 3<r >0

For the indices j = 1,...,J we consider the functions
X; (@) ::W(|x—x(j)|/gj), x € R",

satisfying x; € C'(R™) and

() 1, |J;—a:(j)\23gj
X 0, |z — 2| < 20,

When E,, denotes the volume of the n-dimensional unit ball, we evaluate
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1 . 1
Vx;(x)| de = / ‘LT/' —|z -z ’—dx
[ 9y (5-le =29

Rm 20;<|z—a()|<30;

M n . n n . n
< — En(3"0f —2"0})
Qj

= ME,(3" —2")g} "
for j =1,...,J. We obtain a function
x(@) = x1(x) - ... xs(x) 605(5\(F1U...UFN))
with

/|VX |d:v<Z/|VXJ )| dx

J= 1Rn
J

< ME,(3" —2")) ol
Jj=1

< ME, (3" — 2")e.

Therefore, the set F; U...UF, C {2 has capacity zero.
3. The Stokes integral theorem for manifolds finally reveals

/f x)d" 10—/w—/dw—/d1vf

This corresponds to the statement above.

49

q.e.d.

We obtain immediately Green’s formula from Theorem 5.5, which is funda-

mental for the potential theory presented in Chapter 5.

Theorem 5.6. (Green’s formula)

Let 2 C R™ denote an open bounded set in R™ satisfying the assumptions (A),
(B), and (D). Furthermore, let the functions f(x) and g(z) belong to the class

CL(02) N C?(N2) subject to the integrability condition

/ (|Af($)| + IAg(x)|) dx < +o0.

9]

Here the symbol A\ denotes the Laplace operator due to

Z axzaxz

Then we have the identity
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!(ng—gAf)dat:aé( g—g—g%) "o

using the notations

of _

9 99 _ Vy(z) - &(x), x € 0f2.

Vi) €@, 5=

Proof: We apply the Gaussian integral theorem to the vector-field

hz) = f(z)Vg(z) — g(x)V f(2).

Now we deduce

div i(z) = Vh(z) = f(x)Ag(z) — g(z)Af(2),

and we obtain

/ (f(x)Ag(x) - g(m)Af(@) de — /h(x) E(x)do

o) an
B dg af 1
- [ (105w - s 5@ ) o
an
which implies the statement above. q.e.d.

We specialize the Stokes integral theorem for manifolds onto 2-dimensional
surfaces in the Euclidean space R3. Since we even prove this theorem for sur-
faces with singular boundaries, we need the following result which is important
to construct conformal mappings (in Chapter 4) and central within the theory
of Nonlinear Elliptic Systems (in Chapter 12).

Theorem 5.7. (Oscillation lemma of R. Courant and H. Lebesgue)
Let
B:= {w:u—i-iv:(u,v)e(C%RQ s wl <1}
denote the open unit disc and
X(u,v) = (xl(u,v)7...,117n,(u,v)) : B R" e CYB)

a vector-valued function with finite Dirichlet integral D(X); more precisely

D(X) := // (|Xu(u,v)|2 + \Xv(u7v)|2) dudv < N < +o0.
B

For each point wy = ug + ivg € B and each quantity 6 € (0,1), we then find
a number §* € [6,\/], such that the estimate
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TN
log %

L= / do(w) < 2

|w—wo|=6"
weB

is valid for the length L of the curve X (w), |w —wo| = 6*, w € B.

For the proof of this theorem we add the elementary

Proposition 5.8. Let the numbers a < b be given and the function f(z) :
[a,b] = R be continuous. Then we have the estimate

b

/blf(x)lda:<\/m /\f(x)de.

a

Proof: Let Z : a = x9 < 1 < ... < xny = b represent an equidistant
decomposition of the interval [a, b] - with the partitioning points x; := a+j b*T“
for j=0,1,...,N. When {; € [z}, x;41] denote arbitrary intermediate points,

the Cauchy-Schwarz inequality reveals

N-1

N— N-1
FENN @ —25) < (| D FENP (g —z5) (| D (@i — )
i—0 =0

j=0

=Vb—a i\f(fj)lQ(ij—xj)'

Jj=0

The transition to the limit N — oo yields the inequality

/b @)z < Vb—a / @) e,

which has been stated above. q.e.d.

Proof of Theorem 5.7: We introduce polar coordinates about the point wy =
ug + ivg as follows:

u=ug+ocosp, v=uvo+osing, 0<0<VE, @i(0) < < pa(0)
Furthermore, we define the function
P (0, ) == X(ug + ocos p, vy + osinp)

and calculate
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¥, = X, cosp+ X, sinp,
U, =—X,osinp+ X,0cosp

as well as .
|Wg|2 + ? |&p<p|2 = ‘Xu|2 + |Xv‘2~

Using the intermediate value theorem of the integral-calculus in combination
with Proposition 5.8, we obtain

V3 »2(0) )
N2 = ([P 41Xy dudo> [ [ (10 + 5 0)edods
B 5 »1(0)
\/31 w2(0) p2(8") \/Sd
* Q
2/5 / Wy |* dp | do = / W, (5%, )| dep /?
g w1(0) p1(6%) g
) ) 1 02(8") 2
>lfgty — 1 / (5%, ) d
N 2( g5) ©2(0%) — @1(0%) (0%, @)l de
p1(0*)
2(5%) 2
> Liog (1 / 7,(5%, )| d
< In g 5 pl0,@)lap
@1(6%)

for a number 6* € [, v/d]. Finally, we infer the inequality

©2(8") N ~
. T 0
L= / %o (0%, )l dp < [ 11 =2 I
0g 5 log 5
©1(6%)
and arrive at the statement above. q.e.d.

Remark: When we choose wy € B in Theorem 5.7, we have only to require
the regularity X € C*(B\ {wo}).

We are now prepared to prove the interesting

Theorem 5.9. (Classical Stokes integral theorem with singular
boundary)

1. On the boundary of the closed unit disc B we have given ko € N U {0}
points wy, = exp (ipg) for k = 1,... ko with their associate angles 0 <
o1 < ... < g, < 2m. When we exempt the points wy for k =1,... ko
from the sets B and OB, we obtain the sets B' and OB', respectively.
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2. Furthermore, let the injective mapping
X(u,v) = (xl(u,v),xg(u,v),xg(u,v)) : B—R*cCYB')nCB)

with the property X, A X, # 0 for all (u,v) € B’ and finite Dirichlet inte-
gral D(X) < +o0 be given. Let the surface be conformally parametrized,
which means the conformality relations

| Xul =X, Xu-X,=0 for all (u,v) € B
are satisfied. Denoting by
X(p) = X(ei‘p), 0<p<2or
the restriction of X onto OB, we obtain the line element

—
d'o(p) =X (p)ldp, 0<p<2m, o & {o1,.. 00}
We require finite length for the curve X (p); and more precisely

ko—1 Pki1

LX)=Y_ [ do(p) < +ox,

k=0 Pk

where we defined g := p, — 2.
3. By the symbol

v(u,v) = | Xy A Xy TP X0 A Xy, (u,v) € B’
we denote the unit normal vector and by

d?o(u,v) := | Xy A X, | dudv

the surface element of the surface X (u,v). The tangential vector to the
boundary curve is abbreviated by

_ X'y
T =X

4. Let © D X(B) =: M constitute an open set in R, and let the vector-field

a(z) = (al(I1,$2,$3)7a2($1,IQ,.’L‘g),CLg,(.Tl,{L'Q,(E:;)) € CH(O)NnC' (M)
be prescribed with the integrability property

/ [rot a(X (u,v))| d*o(u,v) < +oo.
B
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Then we have the Stokes identity

2m

// {rota(X(u, v)) ~V(U,U)} d?o(u,v) = / {a(Y(apD -T(go)} d'o(p). (7)
B 0

Remarks: Since the surface is conformally parametrized, our condition D(X) <
400 is equivalent to the finiteness of the surface area of X, on account of the
relation

D(X) = 2//d20(u,v) = 2A(X).
B

The introduction of isothermal parameters in the large is treated in Section 8
of Chapter 12.

Proof of Theorem 5.9:

1. We intend to apply the Stokes integral theorem for manifolds: The set
M := X(B) constitutes a bounded oriented 2-dimensional C*-manifold
in R3 with the chart X (u,v) : B — M. The regular boundary M :=
X (0B') inherits its orientation by the mapping X (), 0 < ¢ < 27 and
possesses finite length L(X) < +oo. At first, we show that the singular
boundary AM := X ({wy, ..., wk,}) € M C R? has capacity zero.

2. When w* € 0B is a singular point of the surface, we introduce polar
coordinates in a neighborhood of w* as follows:

w=w"+ pe'?, 0<o<0" vi(0) <p < wao).

For the quantity n > 0 being given, the Courant-Lebesgue oscillation
lemma provides a number ¢ € (0, p*) with the following property: Defining
the function Y (g, ¢) 1= X (w* + 0e™?), 0 < p < p*, p1(p) < » < 2(p), we
have the inequality

2(87)

1Y, (5%, )] dp < 2, | T2

log 5

<1 (8)
p1(6%)

for one number §* € [4, \/5] at least. Consequently, we find two numbers
0 < g1 < 0" < g9 < p* with the property

»2(0)
[Yo(0,¢)|dp <2n  forall g€ [o1,00]

v1(0)

Now we consider the weakly monotonic function

¥(o) : [0,0"] — [0,1] € C*



5 The Integral Theorems of Gaufl and Stokes

with the properties

0,0<0< 01
V(o) = Y
1,02<0<0

In a neighborhood of the surface M, we now construct a function
X = x(x1,22,23) € C*(M)
satisfying
V(o) =xoY(0,¢), 0<o0<0", pi(0) <¢ <¢2(0)
This implies

V'(0) = VX|y (.« Yelos9) = [VX(Y (2,0))l[Yo(0,9)]-

%)

‘We conclude

[] oo

wEBNB ,x (w*)

0" w2(0)
<[| [ oxveenmiiviae | d
0 w1(0)
0" w2(0)
~ v | [ Waewldo| a
0 »1(0)
02 @2(2) 02
Z/W'(Q) / Y, (0,0)|de | do < 2n/¥7’(g) do =
o1 »1(0) 01

55

for all n > 0. In this way, we see that the boundary point X (w*) € M has
capacity zero, and the finitely many boundary points X ({w1, ..., wk,})

share this property.
. Now we consider the Pfaffian form

w = ay(x) dry + as(z) dzs + as(z) dzs € CH(M) N CO(M)

satisfying

/\dw| < //|rota(X(u,v))|d20(u,v) < 400,
M B
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Theorem 4.7 from Section 4 yields the identity

{/ {rota(X(u,v)) .u}d%

27
= /dw = / w= / {Q(Y(w)) -T(w)} d'o(p),
M oM 0
and our theorem is proved. q.e.d.

6 Curvilinear Integrals

We begin with the fundamental

Ezample 6.1. (Gravitational potentials)

Let the solid of the mass M > 0 and another solid of the mass m > 0 with
m < M be given (imagine the system Sun - Farth). Based on the theory
of gravitation by I. Newton, the movement in the arising force-field can be
described by the Newtonian potential

M
F(:c):'ymr , r=r(z)=1/2? +23+23, xR\ {0}

here v > 0 denotes the gravitational constant. We determine the work being
performed during the movement from a given point P to another point @ in
the Euclidean space by the formula W = F(Q) — F(P). We can deduce the
force-field by differentiation from the potential as follows:

@) = (A@). L) S) = VF(@)

mM mM
=7 3 (T1,72,73) = —’Yr—gfﬂ-

Now we associate the Pfaffian form
w= fi(x)dzry + fo(x) dze + f3(v) dxs
M
=7 %(131 dz1 + xo dzo + x3 dxs).

When
X(t) : [a,b] — R3\ {0} € C'([a,D])

denotes an arbitrary path satisfying X (a) = P and X (b) = @, we infer
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(P2 (1) + Fuyah(t) + Fuh(t) ) dt

ST
&
I
D\w

- F(X(b)) - F(X(a)).

Consequently, this integral depends only on the end-points - and does not
depend on the path chosen. Then we speak of a conservative force-field; move-
ments along closed curves do not require energy.

We intend to present the theory of curvilinear integrals in the sequel.

Definition 6.2. Let {2 C R™ - with n > 2 - denote a domain and P,Q €
2 two points. Then we define the class C(£2, P, Q) of piecewise continuously
differentiable paths (or synonymously, curves) in 2 from P to Q as follows:

C(2,P,Q) = {X(t) :Ja,b] — 2 € C%([a,b]) -
—o<a<b<+4oo, X(a)=P, X(b)=0Q;
We have a =ty <t;1 < ... <ty =b such that
X | € C ([ti,tis1], 2) fori=0,...,N —1 holds true}.

[tirtita

With the set
c() = Jcw,pp),
Pe

we obtain the class of closed paths (or synonymously, closed curves) in (2.
When X (t) = P, a <t < b holds true, we speak of a point-curve.

Remark: In particular, the polygonal paths from P to () are contained in

C(£2,P,Q).

Definition 6.3. Let

denote a continuous Pfaffian form in the domain 2 and X € C(£2, P,Q) a
piecewise continuously differentiable path between the two points P,Q € (2.
Introducing

X(]) = X‘{t]‘,t]‘_'_l] € Cl([tj7tj+1]) fO’f’ j: 05"'7N_ 1a
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we define by

/w;: b= /Zn:fi(X(t))x’i(t)dt

the curvilinear integral of w over X.

Definition 6.4. Let
w:Zfi(a:)dasi, x e N

i=1
represent a continuous Pfaffian form in the domain 2 C R™. Then we call
F(x) € CY(2) a primitive of w, if the identity

dF =w mn {2
or equivalently the equations

Fy,(z) = fi(x) for ze€ 2 and i=1,...,n

hold true. When w possesses a primitive, we speak of an exact Pfaffian form.

Theorem 6.5. (Curvilinear integrals)
Let 2 C R™ denote a domain and w a continuous Pfaffian form in (2. Then

w possesses a primitive F in 2 if and only if we have the identity [w = 0
X
for each closed curve X € C(£2, P, P) - with a point P € (2. In the latter case,

we obtain a primitive as follows: We take a fixed point P € 2 and have the
following representation for all arbitrary points Q € 2, namely

F(Q) := fy—&—/w with 'Y € C(£2,P,Q),
Y
where v € R is a constant.
Proof:

1. When w possesses a primitive F', we infer
n n
w:Zfi(x)dxi:Zin(x)dxi, x € (2.
i=1 i=1

Let us consider X € C({2, P, P) with P € {2 and

X0 .= Xl 0 € CY([tj,tj41]) for j=0,....,N —1.
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This implies

X =0 X6 =0 ¢ \i=1
N-1 tHld N1
:ZwtjaF@wgﬂ:ﬁﬂFg%ﬂo F(x(t))

- F(X(tN)) - F(X(to)) = F(P)— F(P) =0.
2. Now we start with the assumption

/w =0 forall curves X €C(2,P,P) with P e {2
X

The point P € {2 being fixed, we choose a path X € C(£2,P,Q) for
an arbitrary @ € (2 and define F(Q) := [w. Then we have to show

X
the independence of this definition from the choice of the curve X: When
Y € C(£2, P, Q) represents another curve, we have to establish the identity

)

We associate the following closed curve to the curves X : [a,b] — R™ and
Y : [¢,d] = R™, namely

B X(t), t € [a,b]
Z“%_{Y®+dﬂiewﬁ+dd.

Evidently, Z € C(£2, P, P) holds true and

Lol f
o [

X Y

follows, which implies

3. Finally, we have to deduce the formulas

Fo(Q) = fi(Q) for i=1,....n.

Here we proceed from () to the point
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Q: =Q+ce;, e :=(0,..., 1 ,...,0)

along the path
Y(t):[0,e] = R?, Y(t) =Q + te;

for a fixed index i € {1,...,n}. Now we evaluate

F(Q.) = F(Q) + F(Q.) — F(Q) = F(Q) + / w
Y

= F(Q) + / fjfj(m))y;(t)dt
o J=1

=F(Q)+ /fi(Q + te;) dt.
0

Finally, we obtain

d d -
d—xiF’Q:d_gF(Qa)‘E:O:fi(Q), i=1,....n

proving the statement above. q.ed

Let .
w= Z fi(z) dz;

i=1
represent an exact differential form of the class C1({2) in a domain £ C R™.
Then we have a function F(z) : 2 — R € C?(£2) with the property

dF =w or equivalently f;(z) = F,,(x).
Furthermore, we infer the identity
do=dF=dYy Fy dv;= Y F,, dvj Adz; =0,
i=1 ij=1

since the Hessian matrix (Fwﬂj)i7j:17,,_,n is symmetric.

Definition 6.6. We name an m-form w € C*(£2) in a domain 2 C R™ as
being closed, if the identity dw = 0 in {2 holds true.

Remark: The Pfaffian form w =" | fi(z)dz;, x € §2is closed if and only

if the matrix (%ﬁ(@) is symmetric.
J

The considerations above show that an exact Pfaffian form is always closed.
We shall now answer the question, which conditions guarantee that a closed
Pfaffian form is necessarily exact - and consequently has a primitive.



6 Curvilinear Integrals 61
Ezample 6.7. In the pointed plane R?\ {(0,0)}, we consider the Pfaffian form

—Y € 2 2
w= dzx d x > 0.
ZrE Ot W v

This 1-form is closed, since we have

D ( —y \_—@+y) (92 -2+’
oy \z24+y2)

(% +4?) (@2 +y?)?

as well as

0 T ity —a(2e) oy —a?
oz x2+y2 - (:c2 +y2)2 - (IQ +y2)27

and consequently

0 —y 0 x
do=— | —=—>"=) dy/Nd — | ———= ) de ANdy =0.
v Ay (a:2+y2> 4 x+8a: (x2+y2> vy

We observe the closed curve
X(t) := (cost,sint), 0<t<2rm

and evaluate

2m
/w:/(—sint(—sint)+costcost) dt = 2.
X 0

According to Theorem 6.5, a primitive to w in R?\ {0,0} does not exist - and
the differential form is not exact there.

The nonvanishing of this curvilinear integral is caused by the fact that the
curve X in R?\ {(0,0)} cannot be contracted to a point-curve.

Definition 6.8. Let 2 C R" denote a domain. Two closed curves
X(t) : [a,b] — 2 and Y (t) : [a,b] — (2, X, Y €eC(2)
are named homotopic in §2, if we have a mapping
Z(t,s) : [a,b] x [0,1] — 2 € C%[a,b] x [0,1],R™)
with the properties
Z(a,s) = Z(b,s) for all s €[0,1]
as well as

Z(t,0)=X(t), Z(t1)=Y(¢) for all t € [a,b].
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Now we establish the profound

Theorem 6.9. (Curvilinear integrals)
Let 2 C R™ constitute a domain, where the two closed curves X,Y € C(£2)
are homotopic to each other. Finally, let

w:Zfi(x)dxi, x €2
i=1

represent a closed Pfaffian form of the class C*(£2). Then we have the identity
/ w= / w.
X Y

For our proof we need the following

Proposition 6.10. (Smoothing of a closed curve)
Let
X() : [a,b) — R" € C(22)

represent a closed curve, which is continued periodically via
X@+kw—@)=xw, teR, kel
onto the entire real line R with the period (b—a). Furthermore, let the function
x(t) € Cg°((=1,41), [0, 00))
give us a mollifier with the properties

x(—t) = x(t) forall € (-1,1)

and
+1
/X(t) dt =1
-1
When we define
1 T—1
xmﬁ%=—x< >, T €R,
€ €

we obtain the smoothed function

Xo(t) = +/oox<r>xt,5<r> dr = +/Ooxmé X ( - t) dr,

3

which has the period (b — a) again. Then we observe
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lim X°(¢) = X(¢) uniformly on [a,b].
e—0+

Furthermore, the function X*(t) belongs to the class C*°(R), and we obtain
the estimate

d
EXE(t)‘SC forall te€la,b], 0<e<eq,

with a constant C > 0 and a sufficiently small eg. For all compact subsets
T C (to,tl) U (tl,tg) U...uU (tN—latN) C (a, b)

we infer

d
EXE()—>X’(t) for =04+ uniformly in T.

Proof: We show parallel to Proposition 1.2 in Section 1 that

Xe(t) — X(t) forall te€][a,b] uniformly, where e — 0+ holds true.

Since X is piecewise differentiable and continuous, a partial integration yields

%X%wz/fx 5 Xe(T dT—/ZX (——m&))m
- / X/(r)xee(r) dr

Therefore, we obtain

_XE ‘ /|X/ )Xt e (T T<C/Xt5 = for all teR,

using the estimate | X’ (7)| < C on R. Finally, we show - parallel to Proposition
1.2 in Section 1 again - the relation

d . .
8£%1+ pn X(t) = X'(t) uniformly in T C (to,t1) U... U (tn—1,tN),

which had to be proved. q.e.d.
Proof of Theorem 6.9:

1. Let X, Y € C(£2) represent two homotopic closed curves. Then we have a
continuous function

Z(t,s) : [a,b] x [0,1] — 2 € C°([a,b] x [0, 1], R™)
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with the properties
Z(a,s) = Z(b,s)  forall se]l0,1]
and
Z(t,0)=X(), Z(t1)=Y() for all ¢ € [a,b].

We continue Z onto the rectangle [a,b] x
[—2, 3] to the function

X(t ) t,S) € [aa b] [72,0] ,,,,,,,,, Q
B(t,s) =4 Z(t,s), (t,s) € [a,b] x [0,1] . 1 Z}?t(tl)
Y (t), (t,8) € [a,b] x [1, 0 aL,,Xfﬂ,,,bAt

Via the prescription
@(t R — a),s) —&(t,s) for teR, se[-23] and keZ,

we extend the function onto the stripe R x [—2, 3] to a continuous function,
which is periodic in the first variable with the period (b — a).

. On the rectangle Q := [a,b] x [—1, 2] we consider the function
+o0o +oo
w0 [ [ e @nctden  oral 0<e<t

Now the regularity #¢ € C*°(Q) is fulfilled, and we have the limit relation
& (u,v) — P(u,v) for e —0 uniformly in [a,b] x [-1,2].
This implies the property &¢(Q) C 2, 0 < € < g9 and the periodicity
&° (u + k(b — a),v) =& (u,v) forall (u,v)eRx[-1,2], keZ.

For all parameters a < u < b we have
+oo +oo
-0 = [ [ SE€nn©rrendedy

—00 —00

400 400
_ / / X (€)Xue ()X 1.2 () dédn

“+o0
_ / X(E)xue(€)dE = X(u)

and additionally
P (u,2) =Y (u).
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3. By the Stokes integral theorem on the rectangle @), we obtain the following
identity for all 0 < € < g9, namely

/w—/w:quse:/d(w(ps):/(dw)g;szo.
Xe ye aQ Q Q
We observe ¢ — 04, and Proposition 6.10 yields
0= lim /w—/w :/w—/w
e—0+
Xe ve X Y
and therefore our statement above. q.e.d

Definition 6.11. Let the domain 2 C R™ as well as the points P,Q) € {2 be
giwen. We name two curves

X(@),Y(t) : [a,b] — 2€C(2,P,Q)

as being homotopic in {2 with the fixed start-point P and end-point Q, if we
have a continuous mapping

Z(t,s) : [a,b] x [0,1] — 2
with the following properties:
Z(a,s) =P, Z(b,s)=0Q for all s € [0,1]
as well as

Z(t,0)=X(t), Z(t,1)=Y(t) for all t € [a,b)].

We deduce immediately the following result from Theorem 6.9.

Theorem 6.12. (Monodromy)

Let £2 C R™ denote a domain and P, Q € {2 two arbitrary points. Furthermore,
let the two curves X (t),Y (t) € C(£2,P,Q) be homotopic to each other with
fized start- and end-point. Finally, let

w = Zfl(x) dx;, T e
i=1

represent a closed Pfaffian form of the class C1(£2). Then we have the identity

)
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Proof: We consider the following homotopy of closed curves in (2, namely
P(t,s) : [a,2b —a] x [0,1] — 2

with

5(t,5) = X(t),a<t<b
TNz —ts), b<t<2W—a’

Now we note that
X(t),a<t<b
B(t,0) = () asts .
X(@2b—1),b<t<2b—a

Here the curve X is run through from P to @ and then backwards from @ to
P. Therefore, we infer
/ w = 0.

@(70)

Furthermore, we deduce
X@),a<t<b
B(t,1) = (), ast< .
Y(2b—1t),b<t<2b—a

Here the curve X is run through from P to @ at first, and the curve Y is run
through from @ to P afterwards. Finally, Theorem 6.9 reveals the identity

0= /w:/w:/w—/w.
¢(1O) é('vl)

X Y

q.e.d.
The study of curvilinear integrals becomes very simple in the following do-
mains.

Definition 6.13. A domain 2 C R™ is named simply connected, if each
closed curve X (t) € C(§2) is homotopic to a point-curve in 2. This means
geometrically that each closed curve is contractible to one point.

Theorem 6.14. (Curvilinear integrals in simply connected domains)
Let 2 C R™ constitute a simply connected domain and

w:Zfi(a:)dasi, T e

a Pfaffian form of the class C1(§2). Then the following statements are equiv-
alent:
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1. The Pfaffian form w is exact, and therefore possesses a primitive F'.
2. For all curves X € C(§2, P, P) - with a point P € {2 - we have the identity
Jw=0.

X
3. The Pfaffian form w is closed, which means

dw=0 1in {2
or equivalently that the matrix (gi (x)) is symmetric for all
i ij=1,n

points x € (2.

Proof: From the first theorem on curvilinear integrals we infer the equivalence
‘1. & 2.7, The statement ‘1. = 3.” is revealed by the considerations preceding
Definition 6.6. We only have to show the direction ‘3. = 2.”: Here we choose
an arbitrary closed curve X (¢t) € C(£2, P, P), which is homotopic to the closed
curve Y(t) = P, a <t <0b, due to the assumption on the domain 2. The
application of Theorem 6.9 yields

/w/w/b _ 5(Y )y at = o,

X Y v
which implies our theorem. q.e.d.

Remark: In the Euclidean space R3, our condition 3 from Theorem 6.14 im-
plies that the vector-field f(x) = (f1 (), fa(z), fg(l‘)), T € {2is irrotational,

which means
rot f(x) =0 in 2.

In simply connected domains 2 C R3, Theorem 6.14 guarantees the existence
of a primitive F' : 2 — R € C?(£2) with the property VF(z) = f(z), x € (2.

7 The Lemma of Poincaré

The theory of curvilinear integrals was transferred to the higher-dimensional
situation of surface-integrals especially by de Rham (compare G. de Rham:
Varietés differentiables, Hermann, Paris 1955). In this context we refer the
reader to Paragraph 20 in the textbook by H.Holmann and H. Rummler: Al-
ternierende Differentialformen, BI-Wissenschaftsverlag, 2. Auflage, 1981.

We shall construct primitives for arbitrary m-forms, which correspond to
vector-potentials - however, in ‘contractible domains’ only. Here we do not
need the Stokes integral theorem!

Definition 7.1. A continuous m-form with 1 < m < n in an open set {2 C R™
with n € N, namely
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w = Z alvl,__im(:c)dx“ /\.../\d{Eim, x € .Q,
1<i1 <. <im<n

is named exact if we have an (m — 1)-form

A= Z biy..iny (@) dxiyy N NdEy, x e

1<i1 <<l —1<n
of the class C1(£2) with the property
dA=uw i 2.

We begin with the easy
Theorem 7.2. An ezact differential form w € C1(£2) is closed.
Proof: We calculate
dw = d(d)\) = d > dbi, s, (x) Adxzy, A ... Ndzg,,

1<i1 < .. <bm_1<n

— 3 (ddbil___im_l(z)> Ndzi, A...ANdzi, = 0,

1<i1 <...<im_1<n

which implies the statement above. q.e.d.

We now provide a condition on the domain (2, which guarantees that a closed
differential form is necessarily exact.

Definition 7.3. Let 2 C R™ denote a domain with the associate cylinder
Q:=02x[0,1] c R™.

Furthermore, we have a point xog € {2 and a mapping

~

F=F(x,t) = (fl(xh...,xn,t),...7fn(9c1,...,xn,t)) 02— 0

of the class C2(2,R") as follows:
F(z,0) =9, F(z,1)=x forall x € (2.
Then we name the domain {2 contractible (onto the point x¢ ).

Remarks:

1. Let the domain {2 be star-shaped with respect to the point xy € (2, which
means
(tx+ (1 —t)xo) € 2 forall tel0,1], ze€ .

Then {2 is contractible with the contraction-mapping

F(z,t) ==tz + (1 —t)zo, x €, tel0,1].
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2. Fach contractible domain {2 C R™ is simply connected as well. When
X(s), 0 < s <1 with X(0) = X(1) represents a closed curve in 2, it is
contractible onto the point xg via

Y (s, 1) :zF(X(s),t), 0<s<l, 0<t<l.

In a contractible domain, we can perform the contraction of an arbitrary
curve X(s) by the joint mapping F'. Therefore, the contraction is inde-
pendent from the choice of the curve X.

3. The following chain of implications for domains in R™ holds true:

convex — star-shaped
= contractible
— simply connected.

On the cylinder 2 we consider the I-form

y(z,t) = Z Ciy (T t) dzgy, Ao N dxy,
1<iri<..<i<n
of the class C(£2). We use the abbreviation % := " for the time-derivative
and define
A(z,t) == Z Ciy iy (T t) dzgy, Ao AN dxy, .

1<i1<...<i1<n
Furthermore, we set

1 1

/’y(x,t) dt = Z /Cil...iz (x,t)dt | dziy A... Adxy,.

) 1<ii<..<ia<n \}

The fundamental theorem of the differential- and integral-calculus reveals

1

/ Sty dt = ~(x, 1) — (. 0). (1)

0

The function g(z,t) : Q-Re C’l(fZ) being given, we determine its exterior
derivative

Za—gdxk—f—gx t)dt =: dyg + g dt.
k=1

Consequently, we obtain
dy=dzy+dt Ny

abbreviating
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dyry = Z (dsz'l...il (:z:,t)) Adxi, A...Ndx;,.

1<i1<...<i1<n

Finally, we deduce the identity

d /’y(x,t)dt z/(dx’y(a:,t)) dt. (2)
0 0

Therefore, we calculate

1

d /’y(x, t)dt

0
1

Z Z 8Iz /Cil.“il (LL', t) dt dl’z A\ d.’Eil VANPAN dxl-,

1<i1<...<yy<n =1 0
1

t) dt | dx; A d:cil VANPIAN d:cil
1<’Ll< <y <n i= 1 0
1

/ (Z Ciy . (2, 1) da:z> Adziy A ... Ndx;, p dt
1<21< <ii<n Oz;

1

/ 3th

0

We are now prepared to prove the central result of this section.

Theorem 7.4. (Lemma of Poincaré)
Let £2 C R™ denote a contractible domain, and choose a dimension1 < m < n.
Then each closed m-form w in {2 is exact.

Proof (A.Weil):

1. Since {2 is contractible, we have a mapping
F=F(zt): 2 — 2eC*N)
satisfying
F(z,0) =9, F(z,1)=z forall z e (2.

On the set £2 = £2 x [0, 1], we consider the transformed differential form
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W(x,t) == wo F(x,t)
= Z (73 . (F(l‘, t)) dfil VAN dfzm

1<i1 <...<im<n

= Z iy i, (F(.’E, t)) dwfil VANPIAN dg;fim +dt A OJQ(JJ, t)

1<i1 < . <im<n

= w1 + dt A\ wa.
Here we used the identities
dfi, = dofi, + fi dt  for k=1,...,m.

The differential forms wq(x,t) and we(x,t) are independent of dt and have
the degrees m and (m — 1), respectively. Furthermore, we note that

wi(z,0)=0 and wi(z,1)=w(x).
2. We evaluate
0= (dw)oF =d(woF)=dw
= dwy + d(dt Nwe) = dywr + dt Awy — dt A dws
= dywi +dt Awy — dt A (dgws + dt A ws)
= dywi + dt A (w1 — dypws).

This implies
@1 = deQ. (3)

3. Now we define the (m — 1)-form

1
A= /wg(ac,t) dt.
0

With the aid of the identities (1), (2), and (3) we calculate

1

) = / (dsione, 1) dt = /wl(x,t) dt = w1 (2, 1) — wn (x,0) = w(x),
0

0
which completes the proof. q.e.d.

Ezample 7.5. In a star-shaped domain 2 C R3, let the source-free vector-field

b(z) = (bl(x),bg(x),bg(x)> . 2 — R% e CL(Q2,R?)
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with
divb(z) =0

be given. Then its associate 2-form
w = by(x) dxo Adxs + ba(x) des A dry + bs(x) dxy A dxs
is closed. Theorem 7.4 gives us a Pfaffian form
A = a1 () dzy + az(z) doa + az(x) drs € C*(0)

satisfying d\ = w. The calculations in Section 3 imply the following identity
for the vector-field a(x) = (a1(x), az(z), as(z)), namely

rot a(x) = b(x) forall € 2.

Therefore, we have constructed a vector-potential a(x) for the source-free
vector-field b(x).

8 Co-derivatives and the Laplace-Beltrami Operator

In this section we introduce an inner product for differential forms. We con-
sider the space

R" := {f:(fl,...,fn) 1 T; €R, i:l,...,n}

with the subset @ C R"™. Furthermore, we have given two continuous m-forms
on O, namely

a = > @i, i, (T)dTi, A...NdT;,,, TEO,
1<y <...<ign <0,
as well as
B = > biyi, (@) AT AL AdT,, T EO.

1<i1<...<im<n

We define an inner product between the m-forms @ and 3 as follows:

@Bm= Y. i@ by, (@, m=0,1...n (1)

1<i1 < . <im<n

Consequently, the inner product attributes a 0-form to a pair of m-forms. It
represents a symmetric bilinear form on the vector space of m-forms.

Now we consider the parameter transformation

T =dx)= (451(301,...,xn)7...,d5n(x1,...,xn)> : N — 0 C*N)
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on the open set 2 C R™. The mapping ¢ satisfies
Jo(z) = det (aqs(x)) £0  forall ze. 2)
We set
2
g(x) == (Jqs(x)) = det (8@(m)t o 3@5(m)), x € L.
The volume form
w=+/g(x)drs A...Ndx,, z €2 (3)

is associated with the transformation T = @(x) in a natural way. The m-forms
@ and 3 are transformed into the m-forms

a=de = Y @y (@(az)) dd; () A ... A\ dD; ()

1<i1<...<im<n

Z ai, . (x)dzy, Ao Ndxy,

1§i1<-~~<im§n

and

Bi=Bo= D b (P@)dPi,(2) A A D, ()

1<i1<...<im<n
=: E bil...im ((ﬂ) dl’il VANAN dl’im,
1§i1<-~<im§n

respectively. We shall define an inner product (a,f),, between the trans-
formed m-forms « and 8 such that it is parameter-invariant:

(@ B)m(x) = @ B)m(2(),  we (4)

We shall explicitly represent this inner product for differential forms of the
orders 0,1,n — 1,n in the sequel.

1. Let m = 0 hold true. We consider the 0-forms
a=a@), B=i@).
Then we see

Setting

we obtain
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2. Let m = n hold true. We consider the n-forms
a=a(T)dz, A...NdT,, B =0bT)dT1A...NdZ,.
We calculate

o= Ts :E<45(x)) ddy A ... A dD,

— 6(45(33)) <Z %dml) A A (z > azn dazin>

i1=1

= 6(915(36)) Jo(x)dxy A ... ANdxy,.
Therefore, we have

a(z) = E(@(x)>J¢(x), b(z) = E(@(m))Jq;(x), z €.

Now we set

a=> a@dr, B= ZEi(f) dz;
i=1 i=1
and calculate
a=0ag =y al|P(z))dP;
> a(2()
=Y ai(2@) (Z - dmj)
i=1 j=1 "7
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Thus we obtain

oa=ap = Z aj(xz)dz; with aj(x)=) @ (@(x)) e
Jj=1 =1 J
2 .\ : o 0%,
B=DFp=> bie)de; with biz)=3 b (@(:c)) .
j=1 i=1 Ty
where j = 1,...,n is valid. We introduce the following abbreviation for

the functional matriz

0P;
F(z):= (8xj (a:))i}j_l"."n, x € .

The vectors
a(z) = (al(x),...,an(x)>, a(z) = (al(z),...,an(f))

and

b(w) = (b1(@), - bu(@), B(a) = (Bi(@),.. Bal(@))
are subject to the transformation laws
a(z) = E(@(w)) o F(z), b(z)= E(@(z)) o F(a),

and

aw) o F~' (@) =a(9(2)), b@)o F(2) =b(o()),

respectively. We define the transformation matriz

G(x) = (9:()) = F(a)' o F(a)

6J=1,..,n

with the inverse matrix
t
-1 _ (i _ 1 —1
)= ("), =F @ (F )

Evidently, we have

and

Now we define
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n

(@, B(@) = Y g7 (@)ai(@)b; ().

Then we infer

4. Let m = n — 1 hold true. We define the (n — 1)-forms
0; = (=1)"tdzy A ANdT;_y ANdTia A .. N dT,
for 1 <4 < n and consider the (n — 1)-forms
a=>Y @@, B=> b0
i=1 i=1
We use the symbol ~ to indicate that we omit this factor. Defining

Qj = (—l)j_l dei N... A da:j_l A de_H A...ANdxy,

for j =1,...,n, we calculate

a=0p= Y (@(@) (=) Yddy AL AdB; 1 NdDiq A ... A dD,
=1

P 16‘%]11 .77,1

'dﬂ?l/\.../\di‘j/\.../\dl‘n
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Correspondingly, we define b;(x) for j =1,..., n. The matrix of adjoints
for F(z), namely

=1,...,

E(z) = Jg() (F(x)t>_1 (5)
When n n
@:a:Zaj(x)Hj, 3452,6’:253‘(%)9]‘

denote the transformed (n — 1)-forms, their coefficient vectors

a(ac)z(al(x) ..... an(x)), E(x)z(al(f) ..... En(f))

and

<

b(z) = (bl(z) ..... b, (x)),

are subject to the transformation laws

(z) = (Bl @), ..., bn (z))

-1

a(z) = a(@(x)) o BE(z) = Jgs(x)ﬁ(@(z)) o (F(x)t) :
b(z) = B(qﬁ(m)) o B(z) = Jq§(x)l_)<§5(x)> o (F(x)t)_l.

Now we define as the inner product
(@ Blamrl@) =~ 3 gi@las(alby(a)
a, fB)p-1(x) i= —— ii(2)aq ()b, (x).
1 9(@) m':ng J

Finally, we infer

(0, B)n1 () = s al(2) 0 G(z) o (b(x))
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Now we introduce another operation in the set of differential forms.

Definition 8.1. When k € K := {0,1,n — 1,n} holds true, we attribute to
each k-form « its dual (n — k)-form xa as follows:

1. Let k =0 and o = a(x) be given. Then we define

where
w=+/g(x)dxy A... Ndz,

denotes the volume form (compare (3)).
2. Let k=1 and

a= ai(x) dz;

i=1
be given. Then we define
xa = /g(x) 9" (x)a;(x) | 0;
i=1 \j=1
3. Letk=n—1 and

a=Y a;(x)b;

=1

We collect some properties of the x-operator.

1. The *-operator represents a linear operator from the vector space of k-
forms into the vector space of (n — k)-forms. It gives us an involution,
which means

wxa = (=1)kF=Fgy

for all k-forms a with k € K.
2. The k-form « and the (n — k)-form § fulfill the identity

(o, Bk = (*a,ﬁ)n_k(—l)k("_k), ke K.

We prove this statement for all k € K:
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a) Let £ =0, @ = a(x), f = b(z)w, *8 = b(x), *a = a(z)w be given.
Then we obtain

(a0, %8)0 = a(x)b(z) = a(x)b(x)(w,w), = (a(x)w, b(z)w), = (xa, B)p.

b) Let k = n, a an n-form, 8 a 0-form be given. We calculate with the
aid of property 1 and (a) as follows:

(Oé,*ﬁ)n = (*(*a)a *B)n = (*0‘7 *(*6))0 = (*O‘,ﬂ)ﬂ
¢) Let k =1 be given. We consider the forms

n

a= Zai(x) dz;,, B = sz(x)ez

i=1

Then we obtain

(@) = T S gii@)aa) (Z gjk<x>bk<x>>
9(33) Q=1 k=1

as well as

(vt, B g(”;) S gis() (z gi%)ak(x)) bi(x)

= \/ﬁ Z ai(z)bi(x).

This implies (o, *8); = (—=1)" " (xa, B)pn_1.
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d) The case k = n — 1 remains. With the aid of property 1 and (c), we
deduce for the (n — 1)-form « and the 1-form S as follows:

(Oz, *B)n—l = (_l)nil(*(*a)a *5)n—1
= (v, ()1 = (=1)" "} (xa, )1
3. Taking the two k-forms « and § with k& € K, we infer

(0, %¥B8)n—k = (—1)F"=F) (x(xa), B)k
- (Y

Consequently, the x-operator represents an isometry.
4. Two k-forms « and [ satisfy the identity

AB) = (D) B (ka) A B = (a, Blrw, K EK.
For the proof, we show the relation
a A (+B) = (o, B)xw. (6)

Then the (n — k)-form *a and the k-form § satisfy

(=D B (xa) A B = B A (va) = (B, @)rw = (@, B)rw = a A (xB).
a) Let k=0, a = a(z), B = b(x), *8 = b(x)w be given. Then we see

a A (+8) = a(@)b(z)w = (a, B)ow.

b) Let k = 1 as well as

afzjal Jdri, = Zb ) dz;

and
n

8=/ 3 [ g @) ) o)

Jj=1

be given. Now we evaluate

A(xB) = Z g" bj(x) | driA.. . Adzy, = (o, B)1w.

1,j=1

¢) For k=n—1 and

a= iai(aﬁ)@, 8= ibi(x)é'
i=1 i=1
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as well as

we infer

a A (x8) = (Z ai(x)9i> A i Z Zgij(:c)bj(a:) dx;

! Z gij(x)ai(z)bj(z) | dey A... Adzy,

V g(x) i,j=1

= (a, B)n—1Vyg(@)dzs A ... Ndzy, = (o, B)p—1w.
d) Finally, let &k = n, a = a(x)w, and § = b(z)w be given. This implies

a A (x0) = a(x)wb(x) = a(z)b(z)w = (o, B)nw.
. Let .
a= Z a;(z)dx;
i=1
denote a Pfaffian form and
v =&(F) = (@1@1,...,@),...,qsn(fl,...jn))
a parameter transformation. Then we observe (xa)g = *(ag).

We use the invariance of the inner product as well as the property 4: For
an arbitrary 1-form

n
B=> bi(x)dr;
i=1
with the transformed 1-form S, we infer the identity
Ba N *(ae) = (Be, ao)1we = {(B, @)1 tows

={(B,1w}te ={BA (xa)}o = Ba A (x)s.
Then we obtain
Bao A (x(ag) — (xa)e) =0  for all j,

and consequently
*(ap) = (*a)s.
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Definition 8.2. Given a 1-form
o= Z a;(z) dx; x €S

of the class C1(£2), we define the co-derivative da due to
da:= xd * a.

Remark: Now § represents a parameter-invariant differential operator of first
order - and attributes a O-form to each 1-form. We determine the operator &
in arbitrary coordinates. Let us consider

a—Zal Ydz;, *a=+/g Z Z x)a;(x) | 0;.

7j=1

Then we evaluate

dx o = a \/g(il,’) g”(.’t)(lj(l') dri A ...Ndxy,

Theorem 8.3. (Partial integration in arbitrary parameters)
Let £2 C R™ denote a domain satisfying the assumptions (A), (B), and (D)
for the Gaussian integral theorem. The parameter transformation

T=0(z): 2 — O cCHR)
may be bijective and subject to the condition
Jo(x) >n>0 for all points x € 12.

Furthermore, let a 1-form

3

Z a;(z) dx;, z e
=1
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and a 0-form B = b(z), x € 2 of the class C1(2) be given. Then we have the
identity

/ (0, dB)ro + / (60, B)ow = / (v) A B.

Q 0 a0
Here the boundary 082 is endowed with the induced canonical orientation of
R™.
Proof: The assumptions on the parameter transformation @ guarantee that
all functions appearing belong to the regularity class C1(£2). We apply the
Stokes integral theorem and obtain - with the aid of (6) - our statement as
follows:

[t = [ands) =1t [a)nas

o) 2 2
~ () n5) - [@rarns
A o)
:/(m)m_/(d*a)A(**B)
a2 0
:/(*a)/\ﬁ—/(d*a,*ﬁ)nw
982 1)
:/(*a)/\ﬁ—/(*d*mﬁ)ow
an 1]
~ [taynp- [Ga, o
an 1]

q.e.d.

Corollary: When we require zero-boundary-values in Theorem 8.3 for the func-
tion 3, or more precisely 3 € C§(£2), we deduce the identity

[ [Gap o

0 0

Therefore, we name ¢ the adjoint derivative to the exterior derivative d.

Definition 8.4. The two functions v (z) and x(z) of the class C1(£2) with
their associate differentials

dy = il Ve, dx;, dx = il Xz, dT;
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being given, we define the Beltrami operator of first order via

V (1, x) = (dp, dx)1( Zg 2y, () Xa, ().

3,5=1

Remark: Evidently, the property

V() (@) = V@.%) (2(2))

holds true, where we note that

B(2(@) = @), x(2(2) = x(@).

Consequently, V represents a parameter-invariant differential operator of first
order.

Definition 8.5. We define the Laplace-Beltrami operator
A(x) == ddyp(x), x €2
for functions ¢ (x) € C*(02).

Remark: Since the operators d and § are parameter-invariant, the operator A
is parameter-invariant as well:

A(z) = AE(@@)), ze .
Using (7), we now describe A in coordinates:

n

Adp = bdip =6 (> s, da

Jj=1

Ve P

Vil Z 9" (),

Theorem 8.6. Let §2 C R™ denote a domain satisfying the assumptions (A),
(B), and (D) of the Gaussian integral theorem. Furthermore, the parameter
transformation

T=®(z): 2 —06

belongs to the class C%(£2) and is bijective subject to the condition
Jo(x) >n >0 for all points x € 0.

Finally, let the functions ¥(x) € C?(2) as well as x(z) € C1(2) be given.
Then we have the identity

/V v+ [(Avuw = [ (v

9] o
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Proof: We apply Theorem 8.3 and insert
a=dpeC' (), B=x(x)eC ().
At first, we obtain

v+ [Gaw.pw = [ o

0 [0} a1

Using the Definitions 8.4 and 8.5, we infer the identity
[vwoow+ [(av00 = [ eaon
0 0 o9

stated above. q.e.d.

Remark:

1. We evaluate the Laplace operator in cylindrical coordinates,
r=rcosp, y=rsing, z=h,

where 0 < 7 < 400, 0 < ¢ < 2w, —00 < h < 400 hold true. Therefore,
we consider the case n = 3 and choose

=71, T2=¢, x3=h

The fundamental tensor appears in the following form:

100 . 100
(gi)={0r20 |, (47)=[0%0
001 001

This implies

g(x) = det (gij) = r*.
In our calculations we have to respect only those elements on the principal
diagonal. With the aid of (7), we then obtain

AN AN )
or \_ or Op \ r dp oh \' Oh

0, * 1R P
ar o r D2 " on2

A:

S|

S|

_82+18+1 82+82

COr2  ror  r20p?  Oh?’

For plane polar coordinates we set z = 0, and the expression above is
reduced to
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P10 1
SO ror  r20p?

Defining
2
A= 8—
Op?
for the angular expression, we rewrite A into the form
2 10 1
A=—+

o i e
(compare the Laplace operator in spherical coordinates).
2. We introduce spherical coordinates

x=rcospsing, y=rsinpsind, z=rcosf

with 0 < 7 < 400, 0 < ¢ < 27, and 0 < 0 < 7. Calculations parallel to
Remark 1 yield

A—i 2 7«22 +L2 Sinag +L6_2
- r2 | 0r or sin 6 90 a0 sin? 0 92

_8_2+2g+i Lg 1 92 +L8_2
T o2 ror 12 \sineoa \™" o0 sin? 6 02

Here the operator A does not depend on r again. However, it is only
dependent on the angles ¢, 6.

When we investigate spherical harmonic functions in Chapter 5, we need the
Laplace operator for spherical coordinates in n dimensions. Now we treat this

general case.

Let the unit sphere in R, namely
T={e=(a,..&) eR" : I =1},
by parametrized by
E=£(t) = (51(151, et ,5n(t1,...,tn_1))t T — ¥ e CHT),
with the open set T'C R"~!. Via the mapping

X(rt) :=r&(t1, ..oy ta1), re (0,400), teT,

we obtain polar coordinates in R™. Furthermore, the functional matrix appears
in the form
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aX(Tv t) = (XT, thv cee 7th_1) = (gvrgtu s 7r£tn_1)‘
We determine the metric tensor as follows:
1 0 0 10 --- 0
0 r2hy, --- rzhlyn,l 0
(1) = (9:5(r). = o= :
b : © r?H(t)
0 T2hn71,1 e ’rghn—l,n*l O

where we abbreviate

H(t) = (hij(t))i,j:17...,n71 = (5ti(t) &b (t)>i,j:1,...7n71.

Using the convention
H7 (1) = (7 (1)) G = (970n) ,
i,j=1,...,n—1 ij=1,...,n

we infer
10 0 1 0 0
plit plin—1
G 1(Ta t) = <gij(7,’ t)) = O Hﬁl(t) = ’ - 7,,2
1,9 : . :
0 r 0 thT;l,l hnf’;?,nfl

Furthermore, we define

g(r,t) :==det G(r,t), h(t) :=det H(t)

and obtain
g(r,t) = r*"Dh(t).

When u = u(r,t) and v = v(r,t) are two functions, we determine the Beltrami

differential operator of first order due to

V(u,v) = Z gij(x)uzivz]-

3,7=1

oudv 1 L Gu dv
= — I ) -

aror 2 igz:l ) ot; ot;

We express the invariant Beltrami operator of first order on the sphere X via

n—1 %@

I'(u,v) = Z h (t) %, 7%,

i,j=1
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and deduce

oudv 1
or or = 12
Now we represent the Laplace-Beltrami operator in spherical coordinates: We
take the function

V(u,v) = I'(u,v) for all w=w(rt), v=o(rt). (9)

w=u(r,t) =u(r,ty,...,th—1),
utilize the identity /g(r,t) = 7" ~1\/h(t) as well as formula (8), and obtain

Uy
1 3 _1 Uty
Au = diviesy § Vg(rt) G (r,t) o
g(r,t)
’U/t”71
B 1 0 ( ) 8u>
Vorn or Vg
1 h
+ dive { v /Rt = H ) o :
Tl Wt
’U,tn71
u 1
LN e L UNE N B N OLa L :
o2 r Or 12 h(t) vt
Ut,,

Defining the Laplace-Beltrami operator on the sphere X by

we obtain the following identity

2 -1 1
%JrnT%JrﬁAu for all u = u(r,t) € C*((0,+o0) x T).
(10)
We still show the symmetry of the Laplace-Beltrami operator on the sphere
for later use.

Au =

Theorem 8.7. Taking the functions f,g € C%(X), we have the relation

[ 1©(49©) dote) = - [ ris.90a06) = [ (47(6))ste) doto)
P P

X

Here do denotes the surface element on X.
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Proof: Let 0 < & < 1 be given, and we consider the domain
02, := {xER" : 1—6<|x|<1+5}.
Furthermore, we have

u(r,ﬁ) = f(§)7 U(’/’,ﬁ) = g(f)’ T€(1_651+€)7 §e .
Theorem 8.6 yields

/V(u,v)er/(Au,v)ow: /(*du)v: /v%dcr,
£

0. 902, 0.

where v denotes the exterior normal to 0f2.. These parameter-invariant inte-
grals are evaluated in (r, )-coordinates: Via the identities (9) as well as (10)

and noting that
ou ou
— =4+—=0 on 0f2,
Ov or c
we arrive at the relation
1+ 1+

o= [ | [ mrtoa@emt )i [ | [ Sa0gdee ) ar
1—e X € X

1—

1+4e€
| [rcar) [(rto+amg)ate
1—e b))

This implies

/2 (Af(ﬁ))g(é“) do(€) = _/Ep(ﬁ g) do(£).

Correspondingly, we deduce the second identity stated above. q.e.d.

9 Some Historical Notices to Chapter 1

The theory of partial differential equations in the classical sense is treated
within the framework of the continuously differentiable functions. The pro-
found integral theorem of Gauf constitutes the center for the classical investi-
gations of partial differential equations. This might explain the title Princeps
Mathematicorum attributed to him. His tomb in Gottingen and the monument
for him, together with the physicist W. Weber, express the great respect, which
is given to C.F. Gau8.
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Our treatment within the framework of differential forms, created by E. Cartan
(1869-1961), simplifies the various integral theorems and classifies them geo-
metrically. Though differential forms are systematically used, with great suc-
cess, in differential geometry, analysts mostly refrain from their application in
the theory of partial differential equations. We owe the introduction of invari-
ant differential operators to E. Beltrami (1835-1900) — the first representative
of a great differential-geometric tradition in Italy.

Figure 1.1 PORTRAIT OF CARL FRIEDRICH GAUSS (1777-1855)
Lithography by Siegried Detlef Bendixen published in Schumacher’s As-
tronomische Nachrichten in 1828; taken from the inner titel-page of the biog-
raphy by Horst Michling: Carl Friedrich Gaufl — Aus dem Leben des Princeps
Mathematicorum, Verlag Gottinger Tageblatt, Gottingen (1976).
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