
Chapter 1

Differentiation and Integration on Manifolds

In this chapter we lay the foundations for our treatise on partial differential
equations. A detailed description for the contents of Chapter 1 is given in the
Introduction to Volume 1 above. At first, we fix some familiar notations used
throughout the two volumes of our textbook.

By the symbol Rn we denote the n-dimensional Euclidean space with the
points x = (x1, . . . , xn) where xi ∈ R, and we define their modulus

|x| =
( n∑

i=1

x2i

) 1
2

.

In general, we denote open subsets in R
n by the symbol Ω. By the symbol M

we indicate the topological closure and by
◦
M the open kernel of a setM ⊂ R

n.
In the sequel, we shall use the following linear spaces of functions:

C0(Ω) . . . . . . continuous functions on Ω
Ck(Ω) . . . . . . k-times continuously differentiable functions on Ω
Ck

0 (Ω) . . . . . . k-times continuously differentiable functions f on Ω with the
compact support supp f = {x ∈ Ω : f(x) �= 0} ⊂ Ω

Ck(Ω) . . . . . . k-times continuously differentiable functions on Ω, whose
derivatives up to the order k can be continuously extended
onto the closure Ω

Ck
0 (Ω ∪Θ). . k-times continuously differentiable functions f on Ω, whose

derivatives up to the order k can be extended onto the closure
Ω continuously with the property supp f ⊂ Ω ∪Θ

C∗
∗ (∗ ,K) . . . space of functions as above with values in K = R

n or K = C.

Finally, we utilize the notations

∇u . . . . . . . . . gradient (ux1 , . . . , uxn) of a function u = u(x1, . . . , xn) ∈
C1(Rn)
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2 Chapter 1 Differentiation and Integration on Manifolds

Δu . . . . . . . . . Laplace operator
n∑

i=1

uxixi of a function u ∈ C2(Rn)

Jf . . . . . . . . . . functional determinant or Jacobian of a function f : Rn →
R

n ∈ C1(Rn,Rn).

1 The Weierstraß Approximation Theorem

Let Ω ⊂ R
n with n ∈ N denote an open set and f(x) ∈ Ck(Ω) with k ∈

N ∪ {0} =: N0 a k-times continuously differentiable function. We intend to
prove the following statement:
There exists a sequence of polynomials pm(x), x ∈ R

n for m = 1, 2, . . . which
converges on each compact subset C ⊂ Ω uniformly towards the function f(x).
Furthermore, all partial derivatives up to the order k of the polynomials pm
converge uniformly on C towards the corresponding derivatives of the function
f . The coefficients of the polynomials pm depend on the approximation, in
general. If this were not the case, the function

f(x) =

⎧⎪⎨
⎪⎩

exp

(
− 1

x2

)
, x > 0

0 , x ≤ 0

could be expanded into a power series. However, this leads to the evident
contradiction:

0 ≡
∞∑
k=0

f (k)(0)

k!
xk.

In the following Proposition, we introduce a mollifier which enables us to
smooth systematically integrable functions.

Proposition 1.1. We consider the following function to each ε > 0, namely

Kε(z) :=
1√
πε

n exp

(
−|z|2
ε

)

=
1√
πε

n exp

(
−1

ε
(z21 + . . .+ z2n)

)
, z ∈ R

n.

Then this function Kε = Kε(z) possesses the following properties:

1. We have Kε(z) > 0 for all z ∈ R
n;

2. The condition

∫
Rn

Kε(z) dz = 1 holds true;

3. For each δ > 0 we observe: lim
ε→0+

∫
|z|≥δ

Kε(z) dz = 0.
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Proof:

1. The exponential function is positive, and the statement is obvious.
2. We substitute z =

√
εx with dz =

√
ε
n
dx and calculate∫

Rn

Kε(z) dz =
1√
πε

n

∫
Rn

exp

(
−|z|2
ε

)
dz

=
1√
π

n

∫
Rn

exp
(
− |x|2

)
dx =

⎛
⎝ 1√

π

+∞∫
−∞

exp
(
− t2
)
dt

⎞
⎠
n

= 1.

3. We utilize the substitution from part 2 of our proof and obtain∫
|z|≥δ

Kε(z) dz =
1√
π

n

∫
|x|≥δ/

√
ε

exp
(
− |x|2

)
dx −→ 0 for ε→ 0 + .

q.e.d.

Proposition 1.2. Let us consider f(x) ∈ C0
0 (R

n) and additionally the func-
tion

fε(x) :=

∫
Rn

Kε(y − x)f(y) dy, x ∈ R
n

for ε > 0. Then we infer

sup
x∈Rn

|fε(x)− f(x)| −→ 0 for ε→ 0+,

and consequently the functions fε(x) converge uniformly on the space R
n to-

wards the function f(x).

Proof: On account of its compact support, the function f(x) is uniformly
continuous on the space Rn. The number η > 0 being given, we find a number
δ = δ(η) > 0 such that

x, y ∈ R
n, |x− y| ≤ δ =⇒ |f(x)− f(y)| ≤ η.

Since f is bounded, we find a quantity ε0 = ε0(η) > 0 satisfying

2 sup
y∈Rn

|f(y)|
∫

|y−x|≥δ

Kε(y − x) dy ≤ η for all 0 < ε < ε0.

We note that

|fε(x)− f(x)| =
∣∣∣
∫
Rn

Kε(y − x) f(y) dy − f(x)
∫
Rn

Kε(y − x) dy
∣∣∣

≤
∣∣∣
∫

|y−x|≤δ

Kε(y − x) {f(y)− f(x)} dy
∣∣∣

+
∣∣∣
∫

|y−x|≥δ

Kε(y − x) {f(y)− f(x)} dy
∣∣∣,
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and we arrive at the following estimate for all points x ∈ R
n and all numbers

0 < ε < ε0, namely

|fε(x)− f(x)| ≤
∫

|y−x|≤δ

Kε(y − x) |f(y)− f(x)| dy

+

∫
|y−x|≥δ

Kε(y − x) {|f(y)|+ |f(x)|} dy

≤ η + 2 sup
y∈Rn

|f(y)|
∫

|y−x|≥δ

Kε(y − x) dy ≤ 2η.

We summarize our considerations to

sup
x∈Rn

|fε(x)− f(x)| −→ 0 for ε→ 0 + .

q.e.d.

In the sequel, we need

Proposition 1.3. (Partial integration in R
n)

When the functions f(x) ∈ C1
0 (R

n) and g(x) ∈ C1(Rn) are given, we infer

∫
Rn

g(x)
∂

∂xi
f(x) dx = −

∫
Rn

f(x)
∂

∂xi
g(x) dx for i = 1, . . . , n.

Proof: On account of the property f(x) ∈ C1
0 (R

n), we find a radius r > 0 such
that f(x) = 0 and f(x)g(x) = 0 is correct for all points x ∈ R

n with |xj | ≥ r
for one index j ∈ {1, . . . , n} at least. The fundamental theorem of differential-
and integral-calculus yields

∫
Rn

∂

∂xi

{
f(x)g(x)

}
dx

=

+r∫
−r

. . .

+r∫
−r

⎛
⎝

+r∫
−r

∂

∂xi

{
f(x)g(x)

}
dxi

⎞
⎠ dx1 . . . dxi−1dxi+1 . . . dxn = 0.

This implies

0 =

∫
Rn

∂

∂xi

{
f(x)g(x)

}
dx =

∫
Rn

g(x)
∂

∂xi
f(x) dx+

∫
Rn

f(x)
∂

∂xi
g(x) dx.

q.e.d.

Proposition 1.4. Let the function f(x) ∈ Ck
0 (R

n,C) with k ∈ N0 be given.
Then we have a sequence of polynomials with complex coefficients
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pm(x) =

N(m)∑
j1,...,jn=0

c
(m)
j1...jn

xj11 . . . x
jn
n for m = 1, 2, . . .

such that the limit relations

Dαpm(x) −→ Dαf(x) for m→ ∞, |α| ≤ k

are satisfied uniformly in each ball BR := {x ∈ R
n : |x| ≤ R} with the

radius 0 < R < +∞. Here we define the differential operator Dα with α =
(α1, . . . , αn) by

Dα :=
∂|α|

∂xα1
1 . . . ∂xαn

n
, |α| := α1 + . . .+ αn,

where α1, . . . , αn ≥ 0 represent nonnegative integers.

Proof: We differentiate the function fε(x) with respect to the variables xi,
and together with Proposition 1.3 we see

∂

∂xi
fε(x) =

∫
Rn

{
∂

∂xi
Kε(y − x)

}
f(y) dy

= −
∫
Rn

{
∂

∂yi
Kε(y − x)

}
f(y) dy

=

∫
Rn

Kε(y − x)
∂

∂yi
f(y) dy

for i = 1, . . . , n. By repeated application of this device, we arrive at

Dαfε(x) =

∫
Rn

Kε(y − x)Dαf(y) dy, |α| ≤ k.

Here we note that Dαf(y) ∈ C0
0 (R

n) holds true. Due to Proposition 1.2, the
family of functions Dαfε(x) converges uniformly on the space R

n towards
Dαf(x) - for all |α| ≤ k - when ε→ 0+ holds true. Now we choose the radius
R > 0 such that supp f ⊂ BR is valid. Taking the number ε > 0 as fixed, we
consider the power series

Kε(z) =
1√
πε

n exp

(
−|z|2
ε

)
=

1√
πε

n

∞∑
j=0

1

j!

(
−|z|2
ε

)j

,

which converges uniformly in B2R. Therefore, each number ε > 0 possesses
an index N0 = N0(ε,R) such that the polynomial

Pε,R(z) :=
1√
πε

n

N0(ε,R)∑
j=0

1

j!

(
−z

2
1 + . . .+ z2n

ε

)j
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is subject to the following estimate:

sup
|z|≤2R

|Kε(z)− Pε,R(z)| ≤ ε.

With the expression

f̃ε,R(x) :=

∫
Rn

Pε,R(y − x)f(y) dy

we obtain a polynomial in the variables x1, . . . , xn - for each ε > 0. Further-
more, we deduce

Dαf̃ε,R(x) =

∫
Rn

Pε,R(y − x)Dαf(y) dy for all x ∈ R
n, |α| ≤ k.

Now we arrive at the subsequent estimate for all |α| ≤ k and |x| ≤ R, namely

|Dαfε(x)−Dαf̃ε,R(x)| =
∣∣∣
∫

|y|≤R

{
Kε(y − x)− Pε,R(y − x)

}
Dαf(y) dy

∣∣∣

≤
∫

|y|≤R

|Kε(y − x)− Pε,R(y − x)||Dαf(y)| dy

≤ ε
∫

|y|≤R

|Dαf(y)| dy.

Therefore, the polynomials Dαf̃ε,R(x) converge uniformly on BR towards the
derivatives Dαf(x). Choosing the null-sequence ε = 1

m with m = 1, 2, . . .,

we obtain an approximating sequence of polynomials pm,R(x) := f̃ 1
m ,R(x) in

BR, which is still dependent on the radius R. We take r = 1, 2, . . . and find
polynomials pr = pmr,r satisfying

sup
x∈Br

|Dαpr(x)−Dαf(x)| ≤ 1

r
for all |α| ≤ k.

The sequence pr satisfies all the properties stated above. q.e.d.

We are now prepared to prove the fundamental

Theorem 1.5. (The Weierstraß approximation theorem)
Let Ω ⊂ R

n denote an open set and f(x) ∈ Ck(Ω,C) a function with the
degree of regularity k ∈ N0. Then we have a sequence of polynomials with
complex coefficients of the degree N(m) ∈ N0, namely

fm(x) =

N(m)∑
j1,...,jn=0

c
(m)
j1...jn

xj11 · . . . · xjnn , x ∈ R
n, m = 1, 2, . . . ,
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such that the limit relations

Dαfm(x) −→ Dαf(x) for m→ ∞, |α| ≤ k

are satisfied uniformly on each compact set C ⊂ Ω.

Proof: We consider a sequence Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ω of bounded open sets
exhausting Ω. Here we have Ωj ⊂ Ωj+1 for all indices j. Via the partition of
unity (compare Theorem 1.8), we construct a sequence of functions φj(x) ∈
C∞

0 (Ω) satisfying 0 ≤ φj(x) ≤ 1, x ∈ Ω and φj(x) = 1 on Ωj for j = 1, 2, . . ..
Then we observe the sequence of functions

fj(x) :=

{
f(x)φj(x), x ∈ Ω

0, x ∈ R
n \Ω

with the following properties:

fj(x) ∈ Ck
0 (R

n) and Dαfj(x) = D
αf(x), x ∈ Ωj , |α| ≤ k.

Due to Proposition 1.4, we find a polynomial pj(x) to each function fj(x)
satisfying

sup
x∈Ωj

|Dαpj(x)−Dαfj(x)| = sup
x∈Ωj

|Dαpj(x)−Dαf(x)| ≤ 1

j
, |α| ≤ k,

since Ωj is bounded. For a compact set C ⊂ Ω being given arbitrarily, we find
an index j0 = j0(C) ∈ N such that the inclusion C ⊂ Ωj for all j ≥ j0(C) is
correct. This implies

sup
x∈C

|Dαpj(x)−Dαf(x)| ≤ 1

j
, j ≥ j0(C), |α| ≤ k.

When we consider the transition to the limit j → ∞, we arrive at the state-
ment

sup
x∈C

|Dαpj(x)−Dαf(x)| −→ 0

for all |α| ≤ k and all compact subsets C ⊂ Ω. q.e.d.

Theorem 1.5 above provides a uniform approximation by polynomials in the
interior of the domain for the respective function. Continuous functions de-
fined on compact sets can be uniformly approximated up to the boundary of
the domain. Here we need the following

Theorem 1.6. (Tietze’s extension theorem)
Let C ⊂ R

n denote a compact set and f(x) ∈ C0(C,C) a continuous function
defined on C. Then we have a continuous extension of f onto the whole space
R

n which means: There exists a function g(x) ∈ C0(Rn,C) satisfying

f(x) = g(x) for all points x ∈ C.
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Proof:

1. We take x ∈ R
n and define the function

d(x) := min
y∈C

|y − x|,

which measures the distance of the point x to the set C. Since C is com-
pact, we find to each point x ∈ R

n a point y ∈ C satisfying |y−x| = d(x).
When x1, x2 ∈ R

n are chosen, we infer the following inequality for y2 ∈ C
with |y2 − x2| = d(x2), namely

d(x1)− d(x2) = inf
y∈C

(
|x1 − y|)− |x2 − y2|

)

≤ |x1 − y2| − |x2 − y2|

≤ |x1 − x2|.

Interchanging the points x1 and x2, we obtain an analogous inequality
and infer

|d(x1)− d(x2)| ≤ |x1 − x2| for all points x1, x2 ∈ R
n.

In particular, the distance d : Rn → R represents a continuous function.
2. For x /∈ C and a ∈ R

n, we consider the function

�(x, a) := max

{
2− |x− a|

d(x)
, 0

}
.

The point a being fixed, the arguments above tell us that the function
�(x, a) is continuous in R

n \ C. Furthermore, we observe 0 ≤ �(x, a) ≤ 2
as well as

�(x, a) = 0 for |a− x| ≥ 2d(x),

�(x, a) ≥ 1

2
for |a− x| ≤ 3

2
d(x).

3. With
{
a(k)
}
⊂ C let us choose a sequence of points which is dense in C.

Since the function f(x) : C → C is bounded, the series below

∞∑
k=1

2−k�
(
x, a(k)

)
f
(
a(k)
)

and

∞∑
k=1

2−k�
(
x, a(k)

)

converge uniformly for all x ∈ R
n \C, and represent continuous functions

in the variable x there. Furthermore, we observe

∞∑
k=1

2−k�
(
x, a(k)

)
> 0 for x ∈ R

n \ C,
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since each point x ∈ R
n\C possesses at least one index k with �(x, a(k)) >

0. Therefore, the function

h(x) :=

∞∑
k=1

2−k�
(
x, a(k)

)
f
(
a(k)
)

∞∑
k=1

2−k�
(
x, a(k)

) =

∞∑
k=1

�k(x)f
(
a(k)
)
, x ∈ R

n \ C,

is continuous. Here we have set

�k(x) :=
2−k�

(
x, a(k)

)
∞∑
k=1

2−k�
(
x, a(k)

) for x ∈ R
n \ C.

We have the identity

∞∑
k=1

�k(x) ≡ 1, x ∈ R
n \ C.

4. Now we define the function

g(x) :=

{
f(x), x ∈ C

h(x), x ∈ R
n \ C

.

We have still to show the continuity of g on ∂C. We have the following
estimate for z ∈ C and x /∈ C:

|h(x)− f(z)| =
∣∣∣

∞∑
k=1

�k(x)
{
f
(
a(k)
)
− f(z)

} ∣∣∣

≤
∑

k:|a(k)−x|≤2d(x)

�k(x)
∣∣∣f(a(k))− f(z)

∣∣∣

≤ sup
a∈C : |a−x|≤2d(x)

|f(a)− f(z)|

≤ sup
a∈C : |a−z|≤2d(x)+|x−z|

|f(a)− f(z)|

≤ sup
a∈C : |a−z|≤3|x−z|

|f(a)− f(z)|.

Since the function f : C → C is uniformly continuous, we infer

lim
x→z
x 
∈C

h(x) = f(z) for z ∈ ∂C and x /∈ C.
q.e.d.
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The assumption of compactness for the subset C is decisive in the theorem
above. The function f(x) = sin(1/x), x ∈ (0,∞) namely cannot be continu-
ously extended into the origin 0.

Theorem 1.5 and Theorem 1.6 together yield

Theorem 1.7. Let f(x) ∈ C0(C,C) denote a continuous function on the com-
pact set C ⊂ R

n. To each quantity ε > 0, we then find a polynomial pε(x)
with the property

|pε(x)− f(x)| ≤ ε for all points x ∈ C.

We shall construct smoothing functions which turn out to be extremely valu-
able in the sequel. At first, we easily show that the function

ψ(t) :=

{
exp
(
− 1

t

)
, if t > 0

0, if t ≤ 0
(1)

belongs to the regularity class C∞(R). We take R > 0 arbitrarily and consider
the function

ϕR(x) := ψ
(
|x|2 −R2

)
, x ∈ R

n. (2)

Then we observe ϕR ∈ C∞(Rn,R). We have ϕR(x) > 0 if |x| > R holds true,
ϕR(x) = 0 if |x| ≤ R holds true, and therefore

supp(ϕR) =
{
x ∈ R

n : |x| ≥ R
}
.

Furthermore, we develop the following function out of ψ(t), namely

� = �(t) : R → R ∈ C∞(R) via t �→ �(t) := ψ(1− t)ψ(1 + t). (3)

This function is symmetric, which means �(−t) = �(t) for all t ∈ R. Further-
more, we see �(t) > 0 for all t ∈ (−1, 1), �(t) = 0 for all else, and consequently

supp(�) = [−1, 1].

Finally, we define the following ball for ξ ∈ R
n and ε > 0, namely

Bε(ξ) :=
{
x ∈ R

n : |x− ξ| ≤ ε
}

(4)

as well as the functions

ϕξ,ε(x) := �

(
|x− ξ|2
ε2

)
, x ∈ R

n. (5)

Then the regularity property ϕξ,ε ∈ C∞(Rn,R) is valid, and we deduce

ϕξ,ε(x) > 0 for all x ∈
◦
Bε(ξ) as well as ϕξ,ε(x) = 0 if |x − ξ| ≥ ε holds

true. This implies
supp(ϕξ,ε) = Bε(ξ).

A fundamental principle of proof is presented in the next
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Theorem 1.8. (Partition of unity)
Let K ⊂ R

n denote a compact set, and to each point x ∈ K the symbol
Ox ⊂ R

n indicates an open set with x ∈ Ox. Then we can select finitely many
points x(1), x(2), . . . , x(m) ∈ K with the associate number m ∈ N such that the
covering

K ⊂
m⋃

μ=1

Ox(μ)

holds true. Furthermore, we find functions χμ = χμ(x) : Ox(μ) → [0,+∞)
satisfying χμ ∈ C∞

0 (Ox(μ)) for μ = 1, . . . ,m such that the function

χ(x) :=

m∑
μ=1

χμ(x), x ∈ R
n (6)

has the following properties:

(a) The regularity χ ∈ C∞
0 (Rn) holds true.

(b) We have χ(x) = 1 for all x ∈ K.
(c) The inequality 0 ≤ χ(x) ≤ 1 is valid for all x ∈ R

n.

Proof:

1. Since the set K ⊂ R
n is compact, we find a radius R > 0 such that

K ⊂ B := BR(0) holds true. To each point x ∈ B we now choose an

open ball
◦
Bεx(x) of radius εx > 0 such that Bεx(x) ⊂ Ox for x ∈ K

and Bεx(x) ⊂ R
n \ K for x ∈ B \ K is satisfied. The system of sets{ ◦

Bεx(x)
}
x∈B

yields an open covering of the compact set B. According to

the Heine-Borel covering theorem, finitely many open sets suffice to cover
B, let us say

◦
Bε1(x

(1)),
◦
Bε2(x

(2)), . . . ,
◦
Bεm(x(m)),

◦
Bεm+1(x

(m+1)), . . .
◦
Bεm+M

(x(m+M)) .

Here we observe x(μ) ∈ K for μ = 1, 2, . . . ,m and x(μ) ∈ B \ K for
μ = m+ 1, . . . ,m+M , defining εμ := εx(μ) for μ = 1, . . . ,m+M .
With the aid of the function from (5), we now consider the nonneg-
ative functions ϕμ(x) := ϕx(μ),εμ(x). We note that the following reg-
ularity properties hold true: ϕμ ∈ C∞

0 (Ox(μ)) for μ = 1, . . . ,m and
ϕμ ∈ C∞

0 (Rn \K) for μ = m+ 1, . . . ,m+M , respectively. Furthermore,
we define ϕm+M+1(x) := ϕR(x), where we introduced ϕR already in (2).
Obviously, we arrive at the statement

m+M+1∑
μ=1

ϕμ(x) > 0 for all x ∈ R
n.
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2. Now we define the functions χμ due to

χμ(x) :=

[m+M+1∑
μ=1

ϕμ(x)

]−1

ϕμ(x), x ∈ R
n

for μ = 1, . . . ,m +M + 1. The functions χμ and ϕμ belong to the same
classes of regularity, and we observe additionally

m+M+1∑
μ=1

χμ(x) =

[m+M+1∑
μ=1

ϕμ(x)

]−1 m+M+1∑
μ=1

ϕμ(x) ≡ 1 for all x ∈ R
n.

The properties (a), (b), and (c) of the function χ(x) =
m∑

μ=1
χμ(x) are

directly inferred from the construction above. q.e.d.

Definition 1.9. We name the functions χ1, χ2, . . . , χm from Theorem 1.8 a
partition of unity subordinate to the open covering {Ox}x∈K of the compact
set K.

2 Parameter-invariant Integrals and Differential Forms

In the basic lectures of analysis the following fundamental result is established.

Theorem 2.1. (Transformation formula for multiple integrals)
Let Ω,Θ ⊂ R

n denote two open sets, where we take n ∈ N. Furthermore, let
y = (y1(x1, . . . , xn), . . . , yn(x1, . . . , xn)) : Ω → Θ denote a bijective mapping
of the class C1(Ω,Rn) satisfying

Jy(x) := det
(∂yi(x)
∂xj

)
i,j=1,...,n

�= 0 for all x ∈ Ω.

Let the function f = f(y) : Θ → R ∈ C0(Θ) be given with the property

∫
Θ

|f(y)| dy < +∞

for the improper Riemannian integral of |f |. Then we have the transformation
formula ∫

Θ

f(y) dy =

∫
Ω

f(y(x)) |Jy(x)| dx.

In the sequel, we shall integrate differential forms over m-dimensional surfaces
in R

n.
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Definition 2.2. Let the open set T ⊂ R
m with m ∈ N constitute the param-

eter domain. Furthermore, the symbol

X(t) =

⎛
⎜⎝
x1(t1, . . . , tm)

...
xn(t1, . . . , tm)

⎞
⎟⎠ : T −→ R

n ∈ Ck(T,Rn)

represents a mapping - with k, n ∈ N and m ≤ n - whose functional matrix

∂X(t) =
(
Xt1(t), . . . , Xtm(t)

)
, t ∈ T

has the rank m for all t ∈ T . Then we call X a parametrized regular surface
with the parametric representation X(t) : T → R

n.

When X : T → R
n and X̃ : T̃ → R

n are two parametric representations, we
call them equivalent if there exists a topological mapping

t = t(s) =
(
t1(s1, . . . , sm), . . . , tm(s1, . . . , sm)

)
: T̃ −→ T ∈ Ck(T̃ , T )

with the following properties:

1. J(s) :=
∂(t1, . . . , tm)

∂(s1, . . . , sm)
(s) =

∣∣∣∣∣∣∣

∂t1
∂s1

(s) . . . ∂t1
∂sm

(s)
...

...
∂tm
∂s1

(s) . . . ∂tm
∂sm

(s)

∣∣∣∣∣∣∣
> 0 for all s ∈ T̃ ;

2. X̃(s) = X
(
t(s)
)
for all s ∈ T̃ .

We say that X̃ originates from X by an orientation-preserving reparametriza-
tion. The equivalence class [X] consisting of all those parametric representa-
tions which are equivalent to X is named an open, oriented, m-dimensional,
regular surface of the class Ck in R

n. We name a surface embedded in the
space R

n if additionally the mapping X : T → R
n is injective.

Example 2.3. (Curves in R
n)

On the interval T = (a, b) ⊂ R we consider the mapping

X = X(t) =
(
x1(t), . . . , xn(t)

)
∈ C1(T,Rn), t ∈ T

satisfying

|X ′(t)| =
√
{x′1(t)}2 + . . .+ {x′n(t)}2 > 0 for all t ∈ T.

Then the integral

L(X) =

b∫
a

|X ′(t)| dt

determines the arc length of the curve X = X(t) .
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Example 2.4. (Classical surfaces in R
3)

When T ⊂ R
2 denotes an open parameter domain, we consider the Gaussian

surface representation

X(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
: T −→ R

3 ∈ C1(T,R3).

The vector in the direction of the normal to the surface is given by

Xu ∧Xv =

(
∂(y, z)

∂(u, v)
,
∂(z, x)

∂(u, v)
,
∂(x, y)

∂(u, v)

)

= (yuzv − zuyv, zuxv − xuzv, xuyv − xvyu).

The unit normal vector to the surface X is defined by the formula

N(u, v) :=
Xu ∧Xv

|Xu ∧Xv|
,

and we note that

|N(u, v)| = 1, N(u, v)·Xu(u, v) = N(u, v)·Xv(u, v) = 0 for all (u, v) ∈ T.

Via the integral

A(X) :=

∫∫
T

|Xu ∧Xv| dudv

we determine the area of the surface X = X(u, v). We evaluate

|Xu ∧Xv|2 = (Xu ∧Xv) · (Xu ∧Xv) = |Xu|2|Xv|2 − (Xu ·Xv)
2

such that

A(X) =

∫∫
T

√
|Xu|2|Xv|2 − (Xu ·Xv)2 dudv

follows.

Example 2.5. (Hypersurfaces in R
n)

Let X : T → R
n denote a regular surface - defined on the parameter domain

T ⊂ R
n−1. The (n− 1) vectors Xt1 , . . . , Xtn−1 are linearly independent for all

t ∈ T ; and they span the tangential space to the surface at the point X(t) ∈
R

n. Now we shall construct the unit normal vector ν(t) ∈ R
n. Therefore, we

require

|ν(t)| = 1 and ν(t) ·Xtk(t) = 0 for all k = 1, . . . , n− 1

as well as

det
(
Xt1(t), . . . , Xtn−1(t), ν(t)

)
> 0 for all t ∈ T.
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Consequently, the vectors Xt1 , . . . , Xtn−1 and ν constitute a positive-oriented
n-frame. In this context we define the functions

Di(t) := (−1)n+i ∂(x1, x2, . . . , xi−1, xi+1, . . . , xn)

∂(t1, . . . , tn−1)
, i = 1, . . . , n.

Then we obtain the identity

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂t1
· · · ∂xn

∂t1

...
...

∂x1

∂tn−1
· · · ∂xn

∂tn−1

λ1 · · · λn

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

i=1

λiDi for all λ1, . . . , λn ∈ R.

Now we introduce the unit normal vector

ν(t) =
(
ν1(t), . . . , νn(t)

)
=

1√√√√ n∑
j=1

(Dj(t))
2

(
D1(t), . . . , Dn(t)

)
, t ∈ T.

Evidently, the equation |ν(t)| = 1 holds true and we calculate

n∑
i=1

Di
∂xi
∂tj

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂t1
· · · ∂xn

∂t1

...
...

∂x1

∂tn−1
· · · ∂xn

∂tn−1

∂x1

∂tj
· · · ∂xn

∂tj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 , 1 ≤ j ≤ n− 1.

This implies the orthogonality relation Xtj (t) · ν(t) = 0 for all t ∈ T and
j = 1, . . . , n− 1. The surface element of the hypersurface in R

n is given by

dσ :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂t1
· · · ∂xn

∂t1

...
...

∂x1

∂tn−1
· · · ∂xn

∂tn−1

ν1 · · · νn

∣∣∣∣∣∣∣∣∣∣∣∣∣

dt1 . . . dtn−1

=

n∑
j=1

νjDj dt1 . . . dtn−1

=

√√√√ n∑
j=1

(Dj(t))2 dt1 . . . dtn−1.
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Consequently, the surface area of X is determined by the improper integral

A(X) :=

∫
T

√√√√ n∑
j=1

(Dj(t))2 dt.

Example 2.6. An open set Ω ⊂ R
n can be seen as a surface in R

n - via the
mapping

X(t) := t, with t ∈ T and T := Ω ⊂ R
n.

Example 2.7. (An m-dimensional surface in R
n)

Let X(t) : T → R
n denote a surface with T ⊂ R

m as its parameter domain
and the dimensions 1 ≤ m ≤ n. By the symbols

gij(t) := Xti ·Xtj for i, j = 1, . . . ,m

we define the metric tensor of the surface X. Furthermore, we call

g(t) := det
(
gij(t)

)
i,j=1,...,m

its Gramian determinant. We complete the system {Xti}i=1,...,m in R
n at each

point X(t) by the vectors ξj with j = 1, . . . , n − m such that the following
properties are valid:

(a) We have ξj · ξk = δjk for all j, k = 1, . . . , n−m;
(b)The relations Xti · ξj = 0 for i = 1, . . . ,m and j = 1, . . . , n−m hold true;

(c) The condition det
(
Xt1 , . . . , Xtm , ξ1, . . . , ξn−m

)
> 0 is correct.

Then we determine the surface element as follows:

dσ(t) = det
(
Xt1 , . . . , Xtm , ξ1, . . . , ξn−m

)
dt1 . . . dtm

=

√
det
{
(Xt1 , . . . , ξn−m)t ◦ (Xt1 , . . . , ξn−m)

}
dt1 . . . dtm

=

√
det
(
gij(t)

)
i,j=1,...,m

dt1 . . . dtm

=
√
g(t) dt1 . . . dtm.

In order to evaluate our surface element via the Jacobi matrix ∂X(t), we need
the following

Proposition 2.8. Let A and B denote two n × m-matrices, where m ≤ n
holds true. For the numbers 1 ≤ i1 < . . . < im ≤ n, let Ai1...im define the
matrix consisting of those rows with the indices i1, . . . , im from the matrix A.
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Correspondingly, we define the submatrices of the matrix B. Then we have
the identity

det (At ◦B) =
∑

1≤i1<...<im≤n

detAi1...im detBi1...im .

Proof: We fix A and show that the identity above holds true for all matrices
B.

1. When we consider the unit vectors e1, . . . , en as columns in R
n, the formula

above holds true for all B = (ej1 , . . . , ejm) with j1, . . . , jm ∈ {1, . . . , n},
at first.

2. When the formula above holds true for the matrix B = (b1, . . . , bm), this
remains true for the matrix B′ = (b1, . . . , λbi, . . . , bm).

3. When we have our formula for the matrices B′ = (b1, . . . , b
′
i, . . . , bm)

and B′′ = (b1, . . . , b
′′
i , . . . , bm), this remains true for the matrix B =

(b1, . . . , b
′
i + b

′′
i , . . . , bm).

q.e.d.

Corollary: Given the n×m-matrix A, we have the identity

det (At ◦A) =
∑

1≤i1<...<im≤n

(detAi1...im)2.

We write the metric tensor in the form(
gij(t)

)
i,j=1,...,m

= ∂X(t)t ◦ ∂X(t)

with the functional matrix ∂X(t) =
(
Xt1(t), . . . , Xtm(t)

)
, and we deduce

g(t) = det
(
gij(t)

)
i,j=1,...,m

=
∑

1≤i1<...<im≤n

(
∂(xi1 , . . . , xim)

∂(t1, . . . , tm)
(t)

)2

.

Therefore, the surface element satisfies

dσ(t) =
√
g(t) dt1 . . . dtm

=

√√√√ ∑
1≤i1<...<im≤n

(
∂(xi1 , . . . , xim)

∂(t1, . . . , tm)
(t)

)2

dt1 . . . dtm.

Definition 2.9. The surface area of an open, oriented, m-dimensional, reg-
ular C1-surface in R

n with the parametric representation X(t) : T → R
n is

given by the improper Riemannian integral



18 Chapter 1 Differentiation and Integration on Manifolds

A(X) :=

∫
T

√√√√ ∑
1≤i1<...<im≤n

(
∂(xi1 , . . . , xim)

∂(t1, . . . , tm)

)2

dt1 . . . dtm.

Here the parameter domain T ⊂ R
m is open and the dimensions 1 ≤ m ≤ n

are prescribed. If A(X) < +∞ is valid, the surface [X] possesses finite area.

Remarks:

1. With the aid of the transformation formula for multiple integrals, we im-
mediately verify that the value of our surface area is independent of the
parametric representation.

2. In the casem = 1, we obtain by A(X) the arc length of the curveX : T →
R

n. The case m = 2 and n = 3 reduces to the classical area of a surface
X in R

3. In the case m = n− 1 we evaluate the area of hypersurfaces in
R

n.

In physics and geometry, we often meet with integrals which only depend
on the m-dimensional surface and which are independent of their parametric
representation. In this way, we are invited to consider integrals over so-called
differential forms.

Definition 2.10. On the open set O ⊂ R
n, let the functions ai1...im ∈ Ck(O)

with i1, . . . , im ∈ {1, . . . , n} and 1 ≤ m ≤ n be given; where k ∈ N0 holds true.
Now we define the set

F :=
{
X | X : T → R

n is a regular, oriented, m-dimensional

surface with finite area such that X(T ) ⊂⊂ O
}
.

By a differential form of the degree m in the class Ck(O), namely

ω :=

n∑
i1,...,im=1

ai1...im(x) dxi1 ∧ . . . ∧ dxim ,

or briefly an m-form of the class Ck(O), we comprehend the function ω :
F → R defined as follows:

ω(X) :=

∫
T

n∑
i1,...,im=1

ai1...im(X(t))
∂(xi1 , . . . , xim)

∂(t1, . . . , tm)
dt1 . . . dtm, X ∈ F .

Remark:

1. We abbreviate A ⊂⊂ O, if the set A ⊂ R
n is compact and A ⊂ O holds

true.
2. Since the coefficient functions ai1...im(X(t)), t ∈ T are bounded and the

surface has finite area, the integral above converges absolutely.
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3. When two differential symbols

ω =

n∑
i1,...,im=1

ai1...im(x) dxi1 ∧ . . . ∧ dxim

and

ω̃ =

n∑
i1,...,im=1

ãi1...im(x) dxi1 ∧ . . . ∧ dxim

are given, we introduce an equivalence relation between them as follows:

ω ∼ ω̃ ⇐⇒ ω(X) = ω̃(X) for all X ∈ F .

Therefore, we comprehend a differential form as an equivalence class of
differential symbols, where we choose a representative to characterize this
differential form.

4. When X, X̃ ∈ F are two equivalent representations of the surface [X], we
observe

ω(X̃) =

∫
˜T

n∑
i1,...,im=1

ai1...im

(
X̃(s)

)∂(x̃i1 , . . . , x̃im)

∂(s1, . . . , sm)
ds1 . . . dsm

=

∫
˜T

n∑
i1,...,im=1

ai1...im

(
X(t(s))

)∂(xi1 , . . . , xim)

∂(t1, . . . , tm)

∂(t1, . . . , tm)

∂(s1, . . . , sm)
ds1 . . . dsm

=

∫
T

n∑
i1,...,im=1

ai1...im

(
X(t)
)∂(xi1 , . . . , xim)

∂(t1, . . . , tm)
dt1 . . . dtm

= ω(X).

Therefore, ω is a mapping which is defined on the equivalence classes of
the oriented surfaces [X] with X ∈ F .

5. An orientation-reversing parametric transformation t = t(s) with J(s) <

0, s ∈ T̃ induces the change of sign: ω(X̃) = −ω(X).

Definition 2.11. A 0-form of the class Ck(O) is simply a function f(x) ∈
Ck(O) and more precisely

ω = f(x), x ∈ O.

When 1 ≤ m ≤ n is fixed, we name

βm := dxi1 ∧ . . . ∧ dxim , 1 ≤ i1, . . . , im ≤ n

a basic m-form.
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Definition 2.12. Let ω, ω1, ω2 represent three m-forms of the class C0(O)
and choose c ∈ R. Then we define the differential forms cω and ω1 + ω2 by
the prescription

(cω)(X) := cω(X) for all X ∈ F

and
(ω1 + ω2)(X) := ω1(X) + ω2(X) for all X ∈ F

respectively.

The m-dimensional differential forms constitute a vector space with the null-
element

o(X) = 0 for all X ∈ F .

Definition 2.13. (Exterior product of differential forms)
Let the differential forms

ω1 =
∑

1≤i1,...,il≤n

ai1...il(x) dxi1 ∧ . . . ∧ dxil

of degree l and

ω2 =
∑

1≤j1,...,jm≤n

bj1...jm(x) dxj1 ∧ . . . ∧ dxjm

of degree m in the class Ck(O) with k ∈ N0 be given. Then we define the
exterior product of ω1 and ω2 as the (l +m)-form

ω = ω1∧ω2 :=
∑

1≤i1,...,il,j1,...,jm≤n

ai1...il(x)bj1...jm(x) dxi1∧. . .∧dxil∧dxj1∧. . .∧dxjm

of the class Ck(O).

Remarks:

1. Arbitrary differential forms ω1, ω2, ω3 are subject to the associative law

(ω1 ∧ ω2) ∧ ω3 = ω1 ∧ (ω2 ∧ ω3).

2. When two l-forms ω1, ω2 and one m-form ω3 are given, we have the dis-
tributive law

(ω1 + ω2) ∧ ω3 = ω1 ∧ ω3 + ω2 ∧ ω3.
3. The alternating character of the determinant reveals

dxi1 ∧ . . . ∧ dxil = sign (π) dxiπ(1)
∧ . . . ∧ dxiπ(l)

.

Here the symbol π : {1, . . . , l} → {1, . . . , l} denotes a permutation with
sign (π) as its sign.
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4. In particular, when the two indices ij1 and ij2 coincide, we deduce

dxi1 ∧ . . . ∧ dxil = 0.

Therefore, each m-form in R
n with the degree m > n vanishes identically.

5. An l-form ω1 and an m-form ω2 are subject to the commutator relation

ω1 ∧ ω2 = (−1)lmω2 ∧ ω1.

Therefore, the exterior product is not commutative.
6. We can represent each m-form in the following way:

ω =
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim .

The basic m-forms dxi1 ∧ . . . ∧ dxim , 1 ≤ i1 < . . . < im ≤ n constitute
a basis for the space of all differential forms, with coefficient functions in
the class Ck(O), where k ∈ N0 holds true.

Definition 2.14. Let the symbol

ω =
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim , x ∈ O

denote a continuous differential form on the open set O ⊂ R
n, with 1 ≤

m ≤ n being fixed. Then we define the improper Riemannian integral of the
differential form ω over the surface [X] ⊂ O via

∫
[X]

ω :=

∫
T

∑
1≤i1<...<im≤n

ai1...im

(
X(t)
) ∂(xi1 , . . . , xim)

∂(t1, . . . , tm)
dt1 . . . dtm,

if ω is absolutely integrable over X and consequently

∫
[X]

|ω| :=
∫
T

∣∣∣ ∑
1≤i1<...<im≤n

ai1...im

(
X(t)
) ∂(xi1 , . . . , xim)

∂(t1, . . . , tm)

∣∣∣ dt1 . . . dtm

< +∞

is satisfied.

Remark: With the aid of the transformation formula, we show that these
integrals are independent of the choice of the representatives for the surface.
Therefore, we are allowed to write

∫
[X]

|ω| =
∫
X

|ω|,
∫
[X]

ω =

∫
X

ω.
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Example 2.15. (Curvilinear integrals)

Let a(x) =
(
a1(x1, . . . , xn), . . . , an(x1, . . . , xn)

)
denote a continuous vector-

field and

ω =

n∑
i=1

ai(x) dxi

the associate 1-form or Pfaffian form. Furthermore, let

X(t) =
(
x1(t), . . . , xn(t)

)
: T → R

n ∈ C1(T )

represent a regular C1-curve defined on the parameter interval T = (a, b).
Then we observe

∫
X

ω =

∫ b

a

(
n∑

i=1

ai

(
X(t)
)
x′i(t)

)
dt.

We shall investigate curvilinear integrals in Section 6 more intensively.

Example 2.16. (Surface integrals)

Let the continuous vector-field a(x) =
(
a1(x1, . . . , xn), . . . , an(x1, . . . , xn)

)
with the associate (n− 1)-form

ω =

n∑
i=1

ai(x)(−1)n+i dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn

be given. Furthermore, let X(t1, . . . , tn−1) : T → R
n represent a regular

C1-surface. Then we observe

∫
X

ω =

∫
T

n∑
i=1

ai

(
X(t)
)
(−1)n+i ∂(x1, . . . , xi−1, xi+1, . . . , xn)

∂(t1, . . . , tn−1)
dt1 . . . dtn−1

=

∫
T

(
n∑

i=1

ai

(
X(t)
)
Di(t)

)
dt1 . . . dtn−1

=

∫
T

{a(X(t)) · ν(t)} dσ(t).

This surface integral will be studied more intensively in Section 5, when we
prove the Gaussian integral theorem.

Example 2.17. (Domain integrals)
Let us consider the continuous function f = f(x1, . . . , xn) with the associate
n-form

ω = f(x) dx1 ∧ . . . ∧ dxn.
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Furthermore, X = X(t) : T → R
n represents a regular C1-surface. Then we

infer the identity

∫
X

ω =

∫
T

f
(
X(t)
) ∂(x1, . . . , xn)
∂(t1, . . . , tn)

dt1 . . . dtn.

This parameter-invariant integral is well-suited for transformations of the do-
main.

3 The Exterior Derivative of Differential Forms

We begin with the fundamental

Definition 3.1. For a 0-form f(x) of the class C1(O), we define the exterior
derivative as its differential

df(x) =

n∑
i=1

fxi(x) dxi, x ∈ O.

When
ω =

∑
1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim

represents an m-form of the class C1(O), we define its exterior derivative as
the (m+ 1)-form

dω :=
∑

1≤i1<...<im≤n

(
dai1...im(x)

)
∧ dxi1 ∧ . . . ∧ dxim .

Remarks:

1. When ω1 and ω2 are two m-forms in R
n and α1, α2 ∈ R are given, we

have the identity

d(α1ω1 + α2ω2) = α1dω1 + α2dω2.

Therefore, the differential operator d constitutes a linear operator.
2. When λ denotes an l-form and ω an m-form of the class C1(O), we infer

the product rule

d(ω ∧ λ) = (dω) ∧ λ+ (−1)mω ∧ dλ.

We shall prove only the last statement. Here it suffices to consider the situation

ω = f(x)βm, λ = g(x)βl,

where βm and βl are basic forms of the order m and l, respectively. Now we
deduce
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ω ∧ λ = f(x)g(x)βm ∧ βl

and, moreover,

d(ω ∧ λ) = d
(
f(x)g(x)

)
∧ βm ∧ βl

=
(
g(x)df(x) + f(x)dg(x)

)
∧ βm ∧ βl

= dω ∧ λ+ (−1)mω ∧ dλ.

Example 3.2. Taking the function f(x) ∈ C1(O), we can integrate immedi-
ately the differential form df over curves. With the curve

X(t) =
(
x1(t), . . . , xn(t)

)
∈ C1([a, b],Rn)

being given, we calculate

∫
X

df =

b∫
a

n∑
i=1

fxi

(
X(t)
)
ẋi(t) dt

=

b∫
a

d

dt
f
(
X(t)
)
dt

= f
(
X(b)

)
− f
(
X(a)

)
.

Example 3.3. We consider the Pfaffian form

ω =

n∑
i=1

ai(x) dxi

of the class C1(O) and determine its exterior derivative as follows:

dω =

n∑
j=1

daj(x) ∧ dxj =
n∑

i,j=1

∂aj
∂xi

dxi ∧ dxj

=
∑

1≤i<j≤n

(
∂aj
∂xi

− ∂ai
∂xj

)
dxi ∧ dxj .

Obviously, the identity dω = 0 holds true if and only if the functional matrix(
∂ai
∂xj

)
i,j=1,...,n

is symmetric. In the case n = 3, we evaluate
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dω =

(
∂a2
∂x1

− ∂a1
∂x2

)
dx1 ∧ dx2 +

(
∂a3
∂x1

− ∂a1
∂x3

)
dx1 ∧ dx3

+

(
∂a3
∂x2

− ∂a2
∂x3

)
dx2 ∧ dx3

= b1(x) dx2 ∧ dx3 + b2(x) dx3 ∧ dx1 + b3(x) dx1 ∧ dx2.

Here we have defined the vector-field

(
b1(x), b2(x), b3(x)

)
=

(
∂a3
∂x2

− ∂a2
∂x3

,
∂a1
∂x3

− ∂a3
∂x1

,
∂a2
∂x1

− ∂a1
∂x2

)

= ∇∧ (a1, a2, a3)(x) =: rot a(x),

where ∇ :=
(

∂
∂x1
, ∂
∂x2
, ∂
∂x3

)
denotes the nabla-operator. Integration of this

differential form dω over surfaces in R
3 will be possible by the classical Stokes

integral theorem.

Definition 3.4. We name

rot a(x) =

(
∂a3
∂x2

− ∂a2
∂x3

,
∂a1
∂x3

− ∂a3
∂x1

,
∂a2
∂x1

− ∂a1
∂x2

)

the rotation of the vector-field a(x) =
(
a1(x), a2(x), a3(x)

)
∈ C1(O,R3).

Example 3.5. Now we consider a specific (n− 1)-form in R
n, namely

ω =

n∑
i=1

ai(x)(−1)i+1 dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn,

whose exterior derivative takes on the following form:

dω =

n∑
i=1

(−1)i+1
(
dai(x)

)
∧ dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn

=

n∑
i,j=1

(−1)i+1 ∂ai
∂xj

(x) dxj ∧ dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn

=

n∑
i=1

(−1)i+1 ∂ai
∂xi

(x) dxi ∧ dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn

=

(
n∑

i=1

∂ai
∂xi

(x)

)
dx1 ∧ . . . ∧ dxn

=
(
div a(x)

)
dx1 ∧ . . . ∧ dxn.
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Definition 3.6. The vector-field a(x) =
(
a1(x), . . . , an(x)

)
∈ C1(O,Rn) on

the open set O ⊂ R
n possesses the divergence

div a(x) :=

n∑
i=1

∂ai
∂xi

(x), x ∈ O.

Example 3.7. We can integrate the n-form

dω = (div a(x)) dx1 ∧ . . . ∧ dxn

over an n-dimensional rectangle. This differential form can also be integrated
over a substantially larger class of domains in R

n - bounded by finitely many
hypersurfaces - with the aid of the Gaussian integral theorem, one of the most
important theorems in the higher-dimensional analysis.
At first, we integrate dω over the following standard domain: For r > 0 we
define the semidisc

H :=
{
x = (x1, . . . , xn) ∈ R

n | x1 ∈ (−r, 0), xi ∈ (−r,+r), i = 2, . . . , n
}

with the upper bounding side

S :=
{
x = (0, x2, . . . , xn) | |xi| < r, i = 2, . . . , n

}
.

The exterior normal vector to the surface S is given by e1 = (1, 0, . . . , 0) ∈ R
n

explicitly. Then we comprehend H and S as surfaces in R
n via the represen-

tations
H : X(t1, . . . , tn) = (t1, . . . , tn), (t1, . . . , tn) ∈ H

and

S : Y (t̃1, . . . , t̃n−1) = (0, t̃1, . . . , t̃n−1), |t̃i| < r, i = 1, . . . , n− 1,

respectively. With the assumption ω ∈ C1
0 (H ∪ S), we obtain

∫
H

dω =

∫
X

dω =

0∫
−r

+r∫
−r

. . .

+r∫
−r

(
∂a1
∂x1

+ . . .+
∂an
∂xn

)
dx1 . . . dxn

=

+r∫
−r

. . .

+r∫
−r

a1(0, x2, . . . , xn) dx2 . . . dxn =

∫
S

ω.

In the sequel, we shall investigate the behavior of differential forms with re-
spect to transformations of the ambient space.

Definition 3.8. (Transformed differential form)
Let the symbol
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ω =
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim

denote a continuous m-form in an open set O ⊂ R
n. Furthermore, let T ⊂ R

l

with l ∈ N describe an open set such that

x = (x1, . . . , xn) = Φ(y)

= (ϕ1(y1, . . . , yl), . . . , ϕn(y1, . . . , yl)) : T → O

defines a mapping of the class C1(T,Rn). With

dϕi =
l∑

j=1

∂ϕi

∂yj
(y) dyj , i = 1, . . . , n

and
ωΦ :=

∑
1≤i1<...<im≤n

ai1...im

(
Φ(y)
)
dϕi1 ∧ . . . ∧ dϕim ,

we obtain the transformed m-form ωΦ with respect to the mapping Φ.

Remarks:

1. When ω1, ω2 are two m-forms and α1, α2 ∈ R are given, we infer the
identity

(α1ω1 + α2ω2)Φ = α1(ω1)Φ + α2(ω2)Φ.

2. When λ represents an l-form and ω an m-form, we have the rule

(ω ∧ λ)Φ = ωΦ ∧ λΦ.

The following result is important for the evaluation of integrals for differential
forms over surfaces.

Theorem 3.9. (Pull-back of differential forms)
Let ω denote a continuous m-form in the open set O ⊂ R

n. On the open set
T ⊂ R

m we define a surface X by the parametric representation

x = Φ(y) : T −→ O ∈ C1(T )

with Φ(T ) ⊂⊂ O. Finally, we define the surface

Y (t) = (t1, . . . , tm), t ∈ T

and note that
X(t) = Φ ◦ Y (t), t ∈ T.

Then the following identity holds true:∫
X

ω =

∫
Y

ωΦ.
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Proof: We calculate

dϕi1 ∧ . . . ∧ dϕim =

⎛
⎝ m∑

j1=1

∂ϕi1

∂yj1
dyj1

⎞
⎠ ∧ . . . ∧

⎛
⎝ m∑

jm=1

∂ϕim

∂yjm
dyjm

⎞
⎠

=
∂(ϕi1 , . . . , ϕim)

∂(y1, . . . , ym)
dy1 ∧ . . . ∧ dym,

as well as

ωΦ =
∑

1≤i1<...<im≤n

ai1...im(Φ(y))
∂(ϕi1 , . . . , ϕim)

∂(y1, . . . , ym)
dy1 ∧ . . . ∧ dym.

This implies

∫
Y

ωΦ =

∫
T

∑
1≤i1<...<im≤n

ai1...im(X(t))
∂(xi1 , . . . , xim)

∂(t1, . . . , tm)
dt1 . . . dtm

=

∫
X

ω,

and our theorem is proved. q.e.d.

Theorem 3.10. Let ω denote an m-form in the open set O ⊂ R
n of the

regularity class C1(O). Furthermore, let the mapping

x = Φ(y) : T −→ O ∈ C2(T )

be given on the open set T ⊂ R
l, where l ∈ N holds true. Then we have the

calculus rule
d(ωΦ) = (dω)Φ.

Proof: At first, an arbitrary function Ψ(y) ∈ C2(O) satisfies the identity

d2Ψ = d(dΨ) = d

(
n∑

i=1

Ψyi dyi

)
=

n∑
i,j=1

Ψyiyj dyj ∧ dyi = 0.

Now we note that

ωΦ =
∑

1≤i1<...<im≤n

ai1...im

(
Φ(y)
)
dϕi1 ∧ . . . ∧ dϕim ,

and we arrive at
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dωΦ =
∑

1≤i1<...<im≤n

dai1...im

(
Φ(y)
)
∧ dϕi1 ∧ . . . ∧ dϕim

=
∑

1≤i1<...<im≤n

n∑
j=1

l∑
k=1

∂ai1...im
∂xj

(
Φ(y)
)∂ϕj

∂yk
dyk ∧ dϕi1 ∧ . . . ∧ dϕim

=
∑

1≤i1<...<im≤n

n∑
j=1

∂ai1...im
∂xj

(
Φ(y)
)
dϕj ∧ dϕi1 ∧ . . . ∧ dϕim ,

and consequently
dωΦ = (dω)Φ.

q.e.d.

Theorem 3.11. (Chain rule for differential forms)
Let ω denote a continuous m-form in an open set O ⊂ R

n. Furthermore, we
consider the open sets T ′ ⊂ R

l′ and T ′′ ⊂ R
l′′ - with l′, l′′ ∈ N - where the

C1-functions Φ, Ψ are defined due to

Ψ : T ′′ → T ′, Φ : T ′ → O with z
Ψ�−→ y

Φ�−→ x.

Then the following identity holds true:

(ωΦ)Ψ = ωΦ◦Ψ .

Proof: We calculate

ωΦ◦Ψ =
∑

i1,...,im

ai1...im

(
Φ ◦ Ψ(z)

)
d(ϕi1 ◦ Ψ) ∧ . . . ∧ d(ϕim ◦ Ψ)

=
∑

i1,...,im
j1,...,jm
k1,...,km

ai1...im

(
Φ ◦ Ψ(z)

)(∂ϕi1

∂yj1

∂ψj1

∂zk1

dzk1

)
∧ . . . ∧

(
∂ϕim

∂yjm

∂ψjm

∂zkm

dzkm

)

=
∑

i1,...,im
j1,...,jm

ai1...im

(
Φ ◦ Ψ(z)

)(∂ϕi1

∂yj1
dψj1

)
∧ . . . ∧

(
∂ϕim

∂yjm
dψjm

)

=

⎛
⎝ ∑

i1,...,im

ai1...im

(
Φ(y)
)
dϕi1 ∧ . . . ∧ dϕim

⎞
⎠

y=Ψ(z)

,

and consequently
ωΦ◦Ψ = (ωΦ)Ψ .

Here we perform our summation over the indices i1, . . . , im ∈ {1, . . . , n},
j1, . . . , jm ∈ {1, . . . , l′}, and k1, . . . , km ∈ {1, . . . , l′′}. q.e.d.
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4 The Stokes Integral Theorem for Manifolds

We choose m ∈ N and consider the m-dimensional plane

E
m :=

{
(0, y1, . . . , ym) ∈ R

m+1 : (y1, . . . , ym) ∈ R
m
}
.

Parallel to the Example 3.7 from Section 3, we take the data η ∈ R
m+1 and

r > 0 in order to define the semicube

Hr(η) :=
{
y ∈ R

m+1 : y1 ∈ (η1−r, η1), yj ∈ (ηj−r, ηj+r) for j = 2, . . . ,m+1
}

with the lateral lengths 2r. This object has the upper bounding side

Sr(η) :=
{
y ∈ R

m+1 : y1 = η1, yj ∈ (ηj − r, ηj + r) for j = 2, . . . ,m+ 1
}
.

We comprehend Hr(η) and Sr(η) as surfaces in R
m+1:

Hr(η) : Y (t1, . . . , tm+1) = (η1 + t1, . . . , ηm+1 + tm+1)

with − r < t1 < 0, |tj | < r, j = 2, . . . ,m+ 1

as well as

Sr(η) : Y (t1, . . . , tm) := (η1, η2 + t1, . . . , ηm+1 + tm)

with |tj | < r, j = 1, . . . ,m.

When η ∈ E
m and r > 0 are fixed, we define H := Hr(η) and S := Sr(η),

respectively. With n > m given, we denote by

Φ = Φ(y1, . . . , ym+1) : H −→ R
n ∈ C1(H,Rn)

a surface, which can be continued onto an open set containing H in R
m+1.

When we set

X(t1, . . . , tm+1) := Φ(t1, . . . , tm+1), (t1, . . . , tm+1) ∈ H,

we obtain the following (m+ 1)-dimensional surface in R
n, namely

F :=
{
X(t) ∈ R

n : t ∈ H
}
,

whose boundary contains the m-dimensional surface

S :=
{
X(t) ∈ R

n : t ∈ S
}
.

Let the m-form be given on the set F = Φ(H) by the symbol
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ω =

n∑
i1,...,im=1

ai1...im(x) dxi1 ∧ . . . ∧ dxim , x ∈ F

of the class C0
0 (F ∪ S) ∩ C1(F). Here the symbol ω ∈ C1(F) means that we

have an open set O ⊂ R
n with F ⊂ O satisfying ω ∈ C1(O). Finally, let dω

be absolutely integrable over F in the following sense:

∫
F

|dω| :=
∫
H

∣∣∣
n∑

i1,...,im+1=1

∂ai1...im
∂xim+1

(
X(t)
)∂(xi1 , . . . , xim+1)

∂(t1, . . . , tm+1)

∣∣∣ dt1 . . . dtm+1

< +∞.

Now we prove the basic

Proposition 4.1. (Local Stokes theorem)
Let the surface F with the boundary part S be given as above, and furthermore
the symbol ω may denote an m-dimensional differential form of the class

C0
0 (F ∪ S) ∩ C1(F)

satisfying ∫
F

|dω| < +∞.

Then we have the identity ∫
F

dω =

∫
S

ω.

Proof:

1. At first, we prove this formula under the stronger assumptions Φ ∈ C2(H)
and ω ∈ C1

0 (F ∪ S). Utilizing Theorem 3.10 and Example 3.7 from Sec-
tion 3, we infer the identity

∫
F

dω =

∫
X

dω =

∫
H

(dω)Φ =

∫
H

d(ωΦ) =

∫
S

ωΦ =

∫
S

ω.

2. When Φ ∈ C1(H) and ω ∈ C1(F)∩C0
0 (F∪S) hold true, we approximate Φ

uniformly in H up to the first derivatives by the functions Φ(k)(y) ∈ C∞,
due to the Weierstraß approximation theorem. Now we exhaust H by
rectangles

H(l) := Hr− 2
l

(
η1 −

1

l
, η2, . . . , ηm+1

)
⊂ H

with the upper bounding sides

S(l) := Sr− 2
l

(
η1 −

1

l
, η2, . . . , ηm+1

)
.
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The considerations in part 1.) reveal

∫
H(l)

(dω)Φ(k) =

∫
S(l)

ωΦ(k) for all k, l ≥ N ∈ N.

The transition to the limit k → ∞ implies

∫
H(l)

(dω)Φ =

∫
S(l)

ωΦ.

On account of
∫
F |dω| < +∞, the limit procedure l→ ∞ yields

∫
F

dω =

∫
H

(dω)Φ =

∫
S

ωΦ =

∫
S

ω.

This is exactly the identity stated above. q.e.d.

Now we introduce the fundamental notion of a differentiable manifold.

Definition 4.2. Let us fix the dimensions 1 ≤ m ≤ n as well as the set
M ⊂ R

n. We name M an m-dimensional Ck-manifold, if each point ξ ∈ M
possesses an element η ∈ R

m and open neighborhoods U ⊂ R
n of ξ ∈ U and

V ⊂ R
m of η ∈ V as well as an embedded regular surface

x = Φ(y) : V −→ U ∈ Ck(V )

such that
ξ = Φ(η) and Φ(V ) = M∩ U

is correct; here we have chosen k ∈ N adequately. We call (Φ, V ) a chart of
the manifold. All charts together

A :=
{
(Φι, Vι) : ι ∈ J

}

constitute an atlas of the manifold. When Φj : Vj → Uj ∩ M with j = 1, 2
represent two charts of the atlas A such that

W1,2 := M∩ U1 ∩ U2 �= ∅

is correct, then we consider the parameter transformation Φ2,1 := Φ−1
2 ◦ Φ1.

If the functional determinant satisfies JΦ2,1 > 0 on Φ−1
1 (W1,2) for such ar-
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bitrarily chosen charts from the atlas, the manifold is oriented by the atlas.

Definition 4.3. Let M denote a bounded, (m+1)-dimensional, oriented C1-
manifold in R

n with n > m. We indicate the topological closure of the point
set M by the symbol M and the set of boundary points by the symbol Ṁ :=
M\M. We name ξ ∈ Ṁ a regular boundary point of the manifold M if the
following holds true:

We have a semicube Hr(η) in R
m+1

with η ∈ E
m and r > 0, a regular

embedded surface

Φ(y) : Hr(η) → R
n ∈ C1(Hr(η))

such that Φ|Hr(η) belongs to the ori-
ented atlas A of M,
and an open neighborhood U ⊂ R

n of ξ ∈ U with the following properties:

Φ(η) = ξ, Φ
(
Sr(η)

)
= Ṁ ∩ U, Φ

(
Hr(η)

)
= M∩ U.

The set of regular boundary points will be denoted by the symbol ∂M.

Definition 4.4. For the bounded manifold M from Definition 4.3, we define
the set of singular boundary points �M according to

�M := Ṁ \ ∂M.

In the case �M = ∅, we obtain a compact manifold with regular boundary. If
the condition ∂M = ∅ is fulfilled additionally, we speak of a closed manifold.
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Proposition 4.5. (Induced orientation on ∂M)
Let M and ∂M from Definition 4.3 with the charts Φ : Hr(η) → R

nbe given.
Then the mappings

{
Φ
∣∣
Sr(η)

: Φ
∣∣
Hr(η)

belongs to the oriented atlas A of M
}
=: ∂A

constitute an oriented atlas of ∂M. Consequently, ∂M represents an oriented
C1-manifold.

Proof: We consider Φ(η) = ξ = Φ̃(η̃). The vectors Φy2(η), . . . , Φym+1(η) and

Φ̃y2(η̃), . . . , Φ̃ym+1(η̃) span the m-dimensional tangential space T∂M(ξ) to ∂M
at the point ξ. When we add the vectors Φy1(η) and Φ̃y1(η̃), respectively, the
tangential space TM(ξ) to M is generated.
Now we construct an orthonormal system
N1, . . . , Nn−m ∈ R

n which is orthogonal to
T∂M(ξ). We choose the vector N1 ∈ TM(ξ),
directed out of the surface at the point ξ, and
obtain

Φy1(η) ·N1 > 0, Φ̃y1(η̃) ·N1 > 0.

With the parameter 0 ≤ τ ≤ 1, we consider the matrices

M(τ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1− τ)Φy1(η) + τN
1

Φy2(η)

...

Φym+1(η)

N2

...

Nn−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M̃(τ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1− τ)Φ̃y1(η̃) + τN
1

Φ̃y2(η̃)

...

Φ̃ym+1(η̃)

N2

...

Nn−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Furthermore, we define Ψ := Φ
∣∣
Sr(η)

and Ψ̃ := Φ̃
∣∣
Sr(η̃)

. Now the func-

tions detM(τ) and det M̃(τ) in [0,1] are continuous with detM(τ) �= 0 and

det M̃(τ) �= 0 for all 0 ≤ τ ≤ 1. Consequently, the following function is con-
tinuous in [0, 1], and we have

det
(
M̃(τ)−1 ◦M(τ)

)
�= 0, 0 ≤ τ ≤ 1.

By assumption we note that
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det
(
M̃(0)−1 ◦M(0)

)
= det ∂(Φ̃−1 ◦ Φ)

∣∣
η
> 0,

and a continuity argument implies

det ∂(Ψ̃−1 ◦ Ψ)
∣∣
η
= det

(
M̃(1)−1 ◦M(1)

)
> 0.

Therefore, ∂A constitutes an oriented atlas of ∂M. q.e.d.

We now intend to prove the Stokes integral theorem for manifolds M with the
regular boundary ∂M and the singular boundary �M, namely the identity

∫
M

dω =

∫
∂M

ω,

under weak assumptions. The transition from the local Stokes theorem to the
global result is achieved by the partition of unity.

Let M denote an (m+ 1)-dimensional, bounded, oriented C1-manifold in R
n

with the regular boundary ∂M. Furthermore, let the symbol

λ =
∑

1≤i1<...<im+1≤n

bi1...im+1(x) dxi1 ∧ . . . ∧ dxim+1 , x ∈ M

represent a continuous differential form on M.

We shall investigate which conditions for λ allow us to define the improper
integral ∫

M

λ

of the differential form λ over the manifold M.

1. At first, let the set

suppλ := {x ∈ M : λ(x) �= 0} ⊂ M∪ ∂M

be compact. Then we have open sets Vι ⊂ R
m+1 and Uι ⊂ R

n \�M with
ι ∈ J and, moreover, charts Φι : Vι → Uι ∩ M such that the open sets
{Uι}ι∈J cover the compact set suppλ. Now we choose a partition of unity
in R

n subordinate to the sets {Uι} and obtain

αk(x) : M −→ [0, 1] ∈ C1 with suppαk ⊂ Uιk for k = 1, . . . , k0

as well as
k0∑
k=1

αk(x) = 1 for all x ∈ suppλ.

We define
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∫
M

λ :=

k0∑
k=1

∫
M

αkλ =

k0∑
k=1

∫
Vk

(αkλ)Φk
, (1)

if ∫
M

αk|λ| < +∞ for k = 1, . . . , k0

is correct.

We still have to show that the integral, given in equation (1), is indepen-
dent of the covering for the support of λ and of the partition of unity
used.

When Φ̃ι : Ṽι → Ũι ∩ M with ι ∈ J̃ represents an alternative system of
charts covering suppλ, we choose again a partition of unity for suppλ
subordinate to the system {Ũι}ι. We obtain

α̃l : M → [0, 1] ∈ C1, supp α̃l ⊂ Ũιl , l = 1, . . . , l0

as well as
l0∑
l=1

α̃l(x) = 1 for all x ∈ suppλ.

We note that supp (αkα̃l) ⊂ Uk ∩ Ul ∩M holds true. Under the mapping

Φ−1
k ◦ Φ̃l for all indices k = 1, . . . , k0 and l = 1, . . . , l0 we transform the

integrals ∫
Vk

(αkα̃lλ)Φk
=

∫
˜Vl

(αkα̃lλ)˜Φl
. (2)

The summation yields

k0∑
k=1

∫
Vk

(αkλ)Φk
=

k0∑
k=1

l0∑
l=1

∫
Vk

(αkα̃lλ)Φk

=

k0∑
k=1

l0∑
l=1

∫
˜Vl

(αkα̃lλ)˜Φl
=

l0∑
l=1

∫
˜Vl

(α̃lλ)˜Φl
.

Consequently, the integral given in (1) is independent of the choice of
charts and the partition of unity. Correspondingly, we define

∫
M |λ| and∫

∂M λ.
2. The differential form λ ∈ C0(M) is absolutely integrable over M, symbol-

ically ∫
M

|λ| < +∞,
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if we have a constant M ∈ [0,+∞) such that the inequality

∫
M

|βλ| ≤M for all β ∈ C0
0 (M∪ ∂M, [0, 1])

is correct. We say that the sequence of functions βk ∈ C0
0 (M∪∂M, [0, 1])

is exhausting the manifold, when each compact setK ⊂ M∪∂M possesses
an index k0 = k0(K) ∈ N such that

βk(x) = 1 for all x ∈ K, k ≥ k0.

When
∫
M |λ| < +∞ holds true, we show as in the theory of improper

integrals that for each exhausting sequence of functions {βk}k=1,2,... the
following expression

lim
k→∞

∫
M

βkλ

exists and has the same value. We set∫
M

λ := lim
k→∞

∫
M

βkλ. (3)

In this sense, we comprehend all improper integrals appearing in the se-
quel.

Definition 4.6. The singular boundary �M of the manifold M has capacity
zero if we can find a function

χ ∈ C1
0 (M∪ ∂M, [0, 1])

for each ε > 0 and each compact set K ⊂ M∪ ∂M with the following prop-
erties:

1. We have χ(x) = 1 for all x ∈ K;
2. The following condition holds true:

∫
M

√
∇(χ, χ) dm+1σ ≤ ε.

Here dm+1σ denotes the (m+ 1)-dimensional surface element on M, and we
set

|∇(χ)|2
∣∣∣
x
= ∇(χ, χ)

∣∣∣
x
:= sup

{
|∇χ · ξ|2 : ξ ∈ TM(x), |ξ| = 1

}
.

Now we arrive at our central result, namely
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Theorem 4.7. (The Stokes integral theorem for manifolds)
Assumptions:

1. Let M represent a bounded, oriented, (m+1)-dimensional C1-manifold in
R

n - where n > m is correct - with the atlas A. Via the induced atlas ∂A,
the regular boundary ∂M becomes a bounded, oriented, m-dimensional
C1-manifold. We assume that the regular boundary possesses finite surface
area as follows: ∫

∂M

dmσ < +∞.

Furthermore, the singular boundary �M has capacity zero.
2. Let the symbol

ω =
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim , x ∈ M

denote an m-dimensional differential form of the class C1(M) ∩C0(M),
such that its exterior derivative dω is absolutely integrable in the following
sense: ∫

M

|dω| < +∞.

Statement: Then we have the identity

∫
M

dω =

∫
∂M

ω.

Proof:

1. At first, let the condition ω ∈ C1(M) ∩ C0
0 (M ∪ ∂M) be fulfilled. As

above we choose a partition of unity {αk} with k = 1, . . . , k0 on the set
suppω ⊂ M∪ ∂M subordinate to the covering system of the charts. We
utilize Proposition 4.1 and deduce

∫
∂M

ω =

k0∑
k=1

∫
∂M

αkω =

k0∑
k=1

∫
M

d(αkω) =

∫
M

dω.

2. Let the differential form ω be arbitrary now. Then we choose a sequence
{βk}k=1,2,... of functions exhausting the manifold M with the property

∫
M

√
∇(βk, βk) d

m+1σ → 0 for k → ∞.

According to part 1, we obtain the following identities for k = 1, 2, . . .,
namely
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∫
∂M

βkω =

∫
M

d(βkω) =

∫
M

βk dω +

∫
M

dβk ∧ ω. (4)

At first, we see

∣∣∣
∫
M

dβk ∧ ω
∣∣∣ ≤ c

∫
M

√
∇(βk, βk) d

m+1σ → 0 for k → ∞.

Furthermore, we estimate

∫
∂M

|βkω| ≤
∫

∂M

|ω| ≤ c
∫

∂M

dm+1σ < +∞ for k = 1, 2, . . .

Therefore, we comprehend

lim
k→∞

∫
∂M

βkω =:

∫
∂M

ω < +∞.

On account of
∫
M |dω| < +∞, we infer

lim
k→∞

∫
M

βk dω =:

∫
M

dω < +∞.

The transition to the limit k → ∞ in (4) reveals the identity

∫
∂M

ω =

∫
M

dω,

which corresponds to the statement above. q.e.d.

5 The Integral Theorems of Gauß and Stokes

We endow the bounded open set Ω ⊂ R
n with the chart X(t) = t, t ∈ Ω gen-

erating an atlas A. In this way, we obtain a bounded oriented n-dimensional
manifold M = Ω in R

n. When

f(x) =
(
f1(x), . . . , fn(x)

)
: Ω −→ R

n ∈ C1(Ω,Rn)

denotes an n-dimensional vector-field in R
n with its divergence

div f(x) =
∂

∂x1
f1(x) + . . .+

∂

∂xn
fn(x), x ∈ Ω,

we consider the (n− 1)-form
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ω =

n∑
i=1

fi(x)(−1)i+1 dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn.

The set of regular points ∂Ω, endowed by the induced atlas ∂A, becomes an
(n − 1)-dimensional bounded oriented manifold in R

n. We show the identity∫
∂Ω

ω =

∫
∂Ω

(
f(x) · ξ(x)

)
dn−1σ

later, where ξ(x) denotes the exterior normal to the domain Ω at the point
x. When we take the relation

dω =
(
div f(x)

)
dx1 ∧ . . . ∧ dxn

into account, Theorem 4.7 from Section 4 reveals the fundamental identity of
Gauß: ∫

Ω

div f(x) dnx =

∫
∂Ω

(
f(x) · ξ(x)

)
dn−1σ. (1)

With the aid of Theorem 4.7 from Section 4, we shall derive the identity (1)
under very general conditions to Ω and f which are relevant for the applica-
tions in this textbook. Thus we shall obtain the Gaussian integral theorem.

Assumption (A):

Let Ω ⊂ R
n denote a bounded open set, with the topological boundary

Ω̇ = Ω \ Ω. For each boundary point x ∈ Ω̇, we can find a sequence of
points {

x(p)
}
⊂ R

n \Ω, p = 1, 2, . . .

satisfying x(p) → x for p → ∞; this means each boundary point is attainable
from outside.

Assumption (B):

We choose N ∈ N bounded domains Ti ⊂ R
n−1 with i = 1, 2, . . . , N as

our parameter domains. Then we consider N regular hypersurfaces in R
n as

follows:

Fi : X(i)(t) =
(
x
(i)
1 (t1, . . . , tn−1), . . . , x

(i)
n (t1, . . . , tn−1)

)
: T i → R

n.

Here the mapping X(i)(t) ∈ C1(Ti) ∩ C0(T i) is injective, and the rank of
its functional matrix satisfies the condition rg ∂X(i)(t) = n − 1 for all points
t ∈ Ti and the indices i = 1, . . . , N . Furthermore, their surface areas fulfill

A(Fi) :=

∫
Ti

dn−1σ(i)(t) < +∞ for i = 1, . . . , N.
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We define

Fi := X
(i)(Ti), F i := X

(i)(T i), Ḟi := X
(i)(Ṫi)

with i = 1, . . . , N . Let the union of these finitely many hypersurfaces Fi

constitute the boundary of Ω; more precisely

Ω̇ = F 1 ∪ . . . ∪ FN .

Furthermore, we require the condition

F i ∩ F j = Ḟi ∩ Ḟj for all i, j ∈ {1, . . . , N} with i �= j.

Therefore, two different hypersurfaces possess common boundary points at
most.

We need the following two auxiliary lemmas:

Proposition 5.1. The point set Ω ⊂ R
n may satisfy the assumptions (A)

and (B). Furthermore, let x0 ∈ Fl denote an arbitrary point of the surface Fl

with l ∈ {1, . . . , N}. Then we find an index k = k(x0) ∈ {1, . . . , n} as well as
two positive numbers � = �(x0) and σ = σ(x0), such that the rectangle

Q(x0, �, σ) :=
{
x ∈ R

n : |xi−x0i | < �, i = 1, . . . , n with i �= k; |xk−x0k| < σ
}

is subject to the following conditions:

Ω̇∩Q =
{
x ∈ R

n : |xi−x0i | < �, i �= k; xk = Φ(x1, . . . , xk−1, xk+1, . . . , xn)
}
.

Here Φ denotes a C1-function on the domain of definition being given, such
that |Φ− x0k| < 1

2σ holds true. Furthermore, we have the alternative

Ω ∩Q =
{
x ∈ R

n : |xi − x0i | < � for i �= k,

|xk − x0k| < σ, xk < Φ(x1, . . . , xk−1, xk+1, . . . , xn)
}

or

Ω ∩Q =
{
x ∈ R

n : |xi − x0i | < � for i �= k,

|xk − x0k| < σ, xk > Φ(x1, . . . , xk−1, xk+1, . . . , xn)
} .

The adjacent diagram illustrates the
statement of our proposition.

Proof:
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1. With the open set T ⊂ R
n−1, let us represent our surface F = Fl by the

mapping

X(t) =
(
x1(t1, . . . , tn−1), . . . , xn(t1, . . . , tn−1)

)
: T −→ R

n.

On account of rg ∂X(t) = n − 1 for all points t ∈ T , we find an index
k = k(x0) ∈ {1, . . . , n} with x0 = X(t0), such that

∂(x1, . . . , xk−1, xk+1, . . . , xn)

∂(t1, . . . , tn−1)

∣∣∣∣
t=t0

�= 0

is correct. Now the theorem of the inverse mapping provides an open set
U ⊂ R

n−1 and a rectangle

R := (x01 − �, x01 + �)× . . .× (x0k−1 − �, x0k−1 + �)

×(x0k+1 − �, x0k+1 + �)× . . . . . .× (x0n − �, x0n + �)

with a sufficiently small quantity � = �(x0) > 0, such that

f(t1, . . . , tn−1) :=
(
x1(t), . . . , xk−1(t), xk+1(t), . . . , xn(t)

)
: U −→ R

constitutes a C1-diffeomorphism. This means that f is bijective, f as well
as f−1 are continuously differentiable, and we have the condition Jf (t) �= 0
for all t ∈ U . We define

k∨
x:= (x1, . . . , xk−1, xk+1, . . . , xn) ∈ R ⊂ R

n−1

and introduce the function

Φ(
k∨
x) := xk

(
f−1(

k∨
x)
)
,

k∨
x∈ R.

Then we observe

Φ ∈ C1(R,R), X(U) =
{
(x1, . . . , xn) :

k∨
x∈ R, xk = Φ(

k∨
x)
}
.

Now we see

x0 ∈ Ω̇ \
N⋃

m=1
m 
=l

Fm,

and consequently

dist (x0,

N⋃
m=1
m 
=l

Fm) > 0.

We choose the quantities � > 0 and σ > 0 sufficiently small, such that
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Q(x0, �, σ) ∩ Ω̇ = Q(x0, �, σ) ∩ Fl as well as |Φ(
k∨
x)− x0k| <

1

2
σ

holds true for all
k∨
x∈ R. We summarize our considerations and obtain

Ω̇ ∩Q(x0, �, σ) =
{
x ∈ R

n :
k∨
x∈ R, xk = Φ(

k∨
x)
}
.

2. Now we define the point sets

P+ :=
{
x ∈ Q(x0, �, σ) : xk > Φ(

k∨
x)
}
,

P 0 :=
{
x ∈ Q(x0, �, σ) : xk = Φ(

k∨
x)
}
,

P− :=
{
x ∈ Q(x0, �, σ) : xk < Φ(

k∨
x)
}
.

These sets above decompose the set Q(x0, �, σ) according to the prescrip-
tion

Q(x0, �, σ) = P− ∪ P 0 ∪ P+. (2)

From the first part of our proof we infer

Ω̇ ∩Q(x0, �, σ) = P 0. (3)

On account of x0 ∈ Ω̇ and the assumption (A), we can find the two points
y ∈ Ω ∩ Q and z ∈ (Rn \ Ω) ∩ Q. We distinguish between two possible
cases, namely the case 1: y ∈ P− and the case 2: y ∈ P+.

Case 1. When we consider with ỹ ∈ P− an arbitrary further point, we
find a continuous curve Γ ⊂ P− from y to ỹ, which does not intersect the
surface P 0. Since y ∈ Ω holds true and the curve Γ does not intersect the
set Ω̇ due to (3), we infer ỹ ∈ Ω. We finally obtain the inclusion

P− ⊂ Ω ∩Q. (4)

Now we arrive at z ∈ P+. Each further point z̃ ∈ P+ can be connected
by a curve Γ in P+ with the point z. Since this curve does not intersect
Ω̇, the condition z ∈ R

n \Ω implies z̃ ∈ R
n \Ω as well. We conclude

P+ ⊂ (Rn \Ω) ∩Q. (5)

Furthermore, we observe

Q(x0, �, σ) = (Ω ∩Q) ∪ (Ω̇ ∩Q) ∪
(
(Rn \Ω) ∩Q

)
. (6)

We deduce P− = Ω ∩ Q and P+ = (Rn \ Ω) ∩ Q from the equations (2)
to (6).
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Case 2. In the same way as in the first case, we show P+ = Ω ∩ Q and
P− = (Rn \Ω) ∩Q.

q.e.d.

Remark: In the neighborhood of a regular boundary point

x0 ∈
N⋃
i=1

Fi

we choose the function

Ψ(x) := ±
(
xk − Φ(x1, . . . , xk−1, xk+1, . . . , xn)

)

due to Proposition 5.1. Thus we can characterize the set Ω in this neighbor-
hood by the inequality Ψ(x) < 0.

Proposition 5.2. The set Ω ⊂ R
n may satisfy the assumptions (A) and (B);

let x0 ∈ Fl with l ∈ {1, . . . , N} denote a point of the surface Fl. Furthermore,
we have an open set U = U(x0) ⊂ R

n containing the point x0 and a function
Ψ(x) ∈ C1(U) with |∇Ψ(x)| > 0 for all points x ∈ U , such that

Ω ∩ U = {x ∈ U : Ψ(x) < 0}.

Then the vector

ξ(x) := |∇Ψ(x)|−1∇Ψ(x), x ∈ Ω̇ ∩ U

has the following properties:

1. We have ξ
(
X(t)
)
·Xti(t) = 0 for i = 1, . . . , n− 1 near t = t0;

2. The condition |ξ| = 1 on Ω̇ ∩ U holds true;
3. For each point x ∈ Ω̇ ∩ U , we can find a number �0(x) > 0 such that

x+ �ξ ∈
{

Ω for − �0 < � < 0

R
n \Ω for 0 < � < +�0

.

The vector ξ is uniquely determined by these conditions.

Definition 5.3. The function ξ = ξ(x), defined in Proposition 5.2 for all
points x ∈ F1 ∪ . . . ∪ FN , is named the exterior normal of Ω̇ at the point x.

Proof of Proposition 5.2: The uniqueness of ξ follows from the properties 1 to
3 above. Now we shall prove the properties given for the function ξ. At first,
Ψ = 0 on Ω̇ ∩ U holds true, and we infer

0 = Ψ
(
x1(t), . . . , xn(t)

)
, t = (t1, . . . , tn−1) ∈ V (t01, . . . , t0n−1) ⊂ R

n−1 open,

and consequently
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0 =

n∑
i=1

Ψxi

(
X(t)
) ∂xi
∂tj

, j = 1, . . . , n− 1.

This implies ξ ·Xtj = 0 in V for j = 1, . . . , n−1 and the property 1. Evidently,

the condition |ξ| = 1 is valid on Ω̇ ∩ U . Therefore, it remains to show the
property 3. When 0 < |�| < �0 holds true, we infer the inequality

Ψ(x+ �ξ) = Ψ(x+ �ξ)− Ψ(x) = �
n∑

i=1

Ψxi(x+ κ�ξ)ξi

= �
1

|∇Ψ(x)|

n∑
i=1

Ψxi(x+ κ�ξ)Ψxi(x)

{
< 0 if − �0 < � < 0

> 0 if 0 < � < �0

for all points x ∈ Ω̇ ∩ U ; with a number κ = κ(�) ∈ (0, 1). This implies

x+ �ξ ∈
{

Ω if − �0 < � < 0

R
n \Ω if 0 < � < �0

.

q.e.d.

Remark: Let the surface patch F = Fl bounding Ω be given by the parametric
representation

X(t) = X(t1, . . . , tn−1) : T −→ R
n on the domain T ⊂ R

n−1

with the normal

ν(t) = |Xt1 ∧ . . . ∧Xtn−1 |−1Xt1 ∧ . . . ∧Xtn−1(t)

=

[
n∑

j=1

(
Dj(t)

)2]− 1
2

(D1(t), . . . , Dn(t)), t ∈ T.

With a fixed ε ∈ {±1}, we observe

ξ
(
X(t)
)
= εν(t) for all t ∈ T.

Proof: At first, we see ξ
(
X(t)
)
= ε(t)ν(t), t ∈ T with the orientation factor

ε(t) ∈ {±1}. Now the function

ε(t) = ξ
(
X(t)
)
· ν(t), t ∈ T

is continuous on the domain T , and we obtain ε(t) ≡ +1 or ε(t) ≡ −1 on T .
q.e.d.

Definition 5.4. The set Ω ⊂ R
n may satisfy the assumptions (A) and (B).

Then we define
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∂Ω :=
N⋃
j=1

Fj

as the regular boundary of Ω. Furthermore, let g(x) : ∂Ω → R denote a
continuous bounded function on ∂Ω. We define the surface integral of g over
the regular boundary ∂Ω by the expression

∫
∂Ω

g(x) dn−1σ :=
N∑
j=1

∫
Fj

g(x) dn−1σj .

Now we formulate the assumption for our vector-fields to be integrated.

Assumption (C):

The function f(x) = (f1(x), . . . , fn(x)), x ∈ Ω belongs to the regularity class
C1(Ω,Rn) ∩ C0(Ω,Rn), and we require

∫
Ω

|div f(x)| dx < +∞.

We present a condition on the singular boundary Ḟ1 ∪ . . . ∪ ḞN , which guar-
antees the validity of the Gaussian identity (1):

Assumption (D):

The set Ḟ1 ∪ . . . ∪ ḞN has the (n − 1)-dimensional Hausdorff content zero
or equivalently represents an (n − 1)-dimensional Hausdorff null-set. More
precisely, for each quantity ε > 0 we have finitely many balls

Kj :=
{
x ∈ R

n : |x− x(j)| ≤ �j
}

for j = 1, . . . , J

with the centers x(j) ∈ R
n and radii �j > 0, such that the following conditions

hold true:

1. Ḟ1 ∪ . . . ∪ ḞN ⊂
J⋃

j=1

Kj (Covering property);

2.
J∑

j=1

�n−1
j ≤ ε (Smallness of the total area).

Remark: The condition (D) is valid, if all surface patches Fl with l = 1, . . . , N
fulfill the subsequent assumptions: When Fl is parametrized by the represen-
tation X = X(t) : T l → F l, we require the following:

1. The set T l constitutes a Jordan domain in R
n−1, which means that Tl is

compact and its boundary Ṫl represents a Jordan null-set in R
n−1;
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2. The mapping X(t) satisfies a Lipschitz condition on T l, namely

|X(t′)−X(t′′)| ≤ L|t′ − t′′| for all t′, t′′ ∈ T l,

with the Lipschitz constant L > 0.

We now arrive at the central theorem of the n-dimensional integral-calculus.

Theorem 5.5. (Gaussian integral theorem)
Let Ω ⊂ R

n denote a bounded open set satisfying the assumptions (A), (B),
and (D). Furthermore, the vector-valued function f(x) fulfills the assumption
(C). Then we have the identity

∫
Ω

div f(x) dx =

∫
∂Ω

f(x) · ξ(x) dn−1σ.

Proof: (E.Heinz)
We shall prove this statement by referring to Theorem 4.7 from Section 4.

1. We comprehend M = Ω ⊂ R
n as an n-dimensional manifold in R

n with
the atlas A : X(t) = t, t ∈ Ω. For each point

x0 ∈
N⋃
l=1

Fl ⊂ Ω̇

we now find a rectangle Q(x0, �, σ) due to Proposition 5.1, such that

Ω ∩Q =
{
x ∈ R

n : |xi − x0i | < � (i �= k),

xk <> Φ(x1, . . . , xk−1, xk+1, . . . , xn), |xk − x0k| < σ
}
.

On the semicube

H :=
{
t ∈ R

n : t1 ∈ (−�, 0), |ti| < �, i = 2, . . . , n
}

with the upper bounding side

S :=
{
t ∈ R

n : t1 = 0, |ti| < �, i = 2, . . . , n}

in the direction of e1, we consider the transformation

Y (t) =
(
x01 + ε2t2, . . . , x

0
k−1 + εktk, Φ(x

0
1 + ε2t2, . . . , x

0
k−1 + εktk,

x0k+1 + εk+1tk+1, . . . , x
0
n + εntn) + ε1t1, x

0
k+1 + εk+1tk+1, . . . , x

0
n + εntn

)

where εk ∈ {±1} for k = 1, . . . , n holds true. Choosing the sign factors
ε1, . . . , εn suitably, we attain the conditions
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Y (H) ⊂ Ω ∩Q, Y (S) = Ω̇ ∩Q, and JY (0) = +1

for the functional determinant of Y . Therefore, the mapping Y is com-
patible with the chart X from above, and we endow ∂M = ∂Ω with the
induced atlas. On account of the condition JY (0) > 0, the normal ν(t)
to a surface patch oriented by ∂Ω points in the direction of the exterior
normal ξ to ∂Ω.

We now consider the (n− 1)-form

ω =

n∑
i=1

(−1)i+1fi(x) dx1∧. . .∧dxi−1∧dxi+1∧. . .∧dxn ∈ C1(M)∩C0(M).

From our considerations above we infer∫
∂Ω

ω =

∫
∂Ω

f(x) · ξ(x) dn−1σ.

2. Due to the assumption (D), we have finitely many balls to each quantity
ε > 0, namely

Kj :=
{
x ∈ R

n : |x− x(j)| ≤ �j
}

for j = 1, . . . , J,

satisfying

Ḟ1 ∪ . . . ∪ ḞN ⊂
J⋃

j=1

Kj and

J∑
j=1

ρn−1
j ≤ ε.

Now we show that the capacity of the singular boundary vanishes. In this
context we construct a function Ψ(r) : [0,+∞) → [0, 1] ∈ C1 with

Ψ(r) =

{
0, 0 ≤ r ≤ 2

1, 3 ≤ r
and M := sup

r≥0
|Ψ ′(r)| < +∞.

For the indices j = 1, . . . , J we consider the functions

χj(x) := Ψ
(
|x− x(j)| /�j

)
, x ∈ R

n,

satisfying χj ∈ C1(Rn) and

χj(x) =

{
1, |x− x(j)| ≥ 3�j

0, |x− x(j)| ≤ 2�j
.

When En denotes the volume of the n-dimensional unit ball, we evaluate
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∫
Rn

|∇χj(x)| dx =

∫
2j≤|x−x(j)|≤3j

∣∣∣∣Ψ ′
( 1

�j
|x− x(j)|

)∣∣∣∣ 1�j dx

≤ M

�j
En(3

n�nj − 2n�nj )

= MEn(3
n − 2n)�n−1

j

for j = 1, . . . , J . We obtain a function

χ(x) := χ1(x) · . . . · χJ (x) ∈ C1
0

(
Ω \ (Ḟ1 ∪ . . . ∪ ḞN )

)

with ∫
Ω

|∇χ(x)| dx ≤
J∑

j=1

∫
Rn

|∇χj(x)| dx

≤ MEn(3
n − 2n)

J∑
j=1

�n−1
j

≤ MEn(3
n − 2n)ε.

Therefore, the set Ḟ1 ∪ . . . ∪ Ḟn ⊂ Ω̇ has capacity zero.
3. The Stokes integral theorem for manifolds finally reveals∫

∂Ω

f(x) · ξ(x) dn−1σ =

∫
∂M

ω =

∫
M

dω =

∫
Ω

div f(x) dx.

This corresponds to the statement above. q.e.d.

We obtain immediately Green’s formula from Theorem 5.5, which is funda-
mental for the potential theory presented in Chapter 5.

Theorem 5.6. (Green’s formula)
Let Ω ⊂ R

n denote an open bounded set in R
n satisfying the assumptions (A),

(B), and (D). Furthermore, let the functions f(x) and g(x) belong to the class
C1(Ω) ∩ C2(Ω) subject to the integrability condition

∫
Ω

(
|Δf(x)|+ |Δg(x)|

)
dx < +∞.

Here the symbol � denotes the Laplace operator due to

�f(x) :=
n∑

i=1

∂2f

∂xi∂xi
(x).

Then we have the identity



50 Chapter 1 Differentiation and Integration on Manifolds

∫
Ω

(
fΔg − gΔf

)
dx =

∫
∂Ω

(
f
∂g

∂ξ
− g ∂f

∂ξ

)
dn−1σ

using the notations

∂f

∂ξ
:= ∇f(x) · ξ(x), ∂g

∂ξ
:= ∇g(x) · ξ(x), x ∈ ∂Ω.

Proof: We apply the Gaussian integral theorem to the vector-field

h(x) := f(x)∇g(x)− g(x)∇f(x).

Now we deduce

divh(x) = ∇h(x) = f(x)Δg(x)− g(x)Δf(x),

and we obtain∫
Ω

(
f(x)Δg(x)− g(x)Δf(x)

)
dx =

∫
∂Ω

h(x) · ξ(x) dn−1σ

=

∫
∂Ω

(
f(x)

∂g

∂ξ
(x)− g(x)∂f

∂ξ
(x)

)
dn−1σ,

which implies the statement above. q.e.d.

We specialize the Stokes integral theorem for manifolds onto 2-dimensional
surfaces in the Euclidean space R

3. Since we even prove this theorem for sur-
faces with singular boundaries, we need the following result which is important
to construct conformal mappings (in Chapter 4) and central within the theory
of Nonlinear Elliptic Systems (in Chapter 12).

Theorem 5.7. (Oscillation lemma of R.Courant and H. Lebesgue)
Let

B :=
{
w = u+ iv = (u, v) ∈ C ∼= R

2 : |w| < 1
}

denote the open unit disc and

X(u, v) =
(
x1(u, v), . . . , xn(u, v)

)
: B → R

n ∈ C1(B)

a vector-valued function with finite Dirichlet integral D(X); more precisely

D(X) :=

∫∫
B

(
|Xu(u, v)|2 + |Xv(u, v)|2

)
dudv ≤ N < +∞.

For each point w0 = u0 + iv0 ∈ B and each quantity δ ∈ (0, 1), we then find
a number δ∗ ∈ [δ,

√
δ], such that the estimate
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L :=

∫

|w−w0|=δ∗

w∈B

dσ(w) ≤ 2

√
πN

log 1
δ

is valid for the length L of the curve X(w), |w − w0| = δ∗, w ∈ B.

For the proof of this theorem we add the elementary

Proposition 5.8. Let the numbers a < b be given and the function f(x) :
[a, b] → R be continuous. Then we have the estimate

b∫
a

|f(x)| dx ≤
√
b− a

√√√√√
b∫

a

|f(x)|2 dx.

Proof: Let Z : a = x0 < x1 < . . . < xN = b represent an equidistant
decomposition of the interval [a, b] - with the partitioning points xj := a+j

b−a
N

for j = 0, 1, . . . , N . When ξj ∈ [xj , xj+1] denote arbitrary intermediate points,
the Cauchy-Schwarz inequality reveals

N−1∑
j=0

|f(ξj)|(xj+1 − xj) ≤

√√√√N−1∑
j=0

|f(ξj)|2(xj+1 − xj)

√√√√N−1∑
j=0

(xj+1 − xj)

=
√
b− a

√√√√N−1∑
j=0

|f(ξj)|2(xj+1 − xj).

The transition to the limit N → ∞ yields the inequality

b∫
a

|f(x)| dx ≤
√
b− a

√∫ b

a

|f(x)|2 dx,

which has been stated above. q.e.d.

Proof of Theorem 5.7: We introduce polar coordinates about the point w0 =
u0 + iv0 as follows:

u = u0 + � cosϕ, v = v0 + � sinϕ, 0 ≤ � ≤
√
δ, ϕ1(�) ≤ ϕ ≤ ϕ2(�).

Furthermore, we define the function

Ψ(�, ϕ) := X(u0 + � cosϕ, v0 + � sinϕ)

and calculate
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Ψ = Xu cosϕ+Xv sinϕ,

Ψϕ = −Xu� sinϕ+Xv� cosϕ

as well as

|Ψ|2 +
1

�2
|Ψϕ|2 = |Xu|2 + |Xv|2.

Using the intermediate value theorem of the integral-calculus in combination
with Proposition 5.8, we obtain

N ≥ D(X) =

∫∫
B

(|Xu|2 + |Xv|2) dudv ≥

√
δ∫

δ

ϕ2()∫
ϕ1()

(
|Ψ|2 +

1

�2
|Ψϕ|2

)
� d�dϕ

≥

√
δ∫

δ

1

�

⎛
⎜⎝

ϕ2()∫
ϕ1()

|Ψϕ|2 dϕ

⎞
⎟⎠ d� =

⎛
⎜⎝

ϕ2(δ
∗)∫

ϕ1(δ∗)

|Ψϕ(δ∗, ϕ)|2 dϕ

⎞
⎟⎠

√
δ∫

δ

d�

�

≥ 1

2

(
log

1

δ

)
1

ϕ2(δ∗)− ϕ1(δ∗)

⎛
⎜⎝

ϕ2(δ
∗)∫

ϕ1(δ∗)

|Ψϕ(δ∗, ϕ)| dϕ

⎞
⎟⎠

2

≥ 1

4π
log

(
1

δ

)⎛⎜⎝
ϕ2(δ

∗)∫
ϕ1(δ∗)

|Ψϕ(δ∗, ϕ)| dϕ

⎞
⎟⎠

2

for a number δ∗ ∈ [δ,
√
δ]. Finally, we infer the inequality

L =

ϕ2(δ
∗)∫

ϕ1(δ∗)

|Ψϕ(δ∗, ϕ)| dϕ ≤
√

4πN

log 1
δ

= 2

√
πN

log 1
δ

and arrive at the statement above. q.e.d.

Remark: When we choose w0 ∈ B in Theorem 5.7, we have only to require
the regularity X ∈ C1(B \ {w0}).

We are now prepared to prove the interesting

Theorem 5.9. (Classical Stokes integral theorem with singular
boundary)

1. On the boundary of the closed unit disc B we have given k0 ∈ N ∪ {0}
points wk = exp (iϕk) for k = 1, . . . , k0 with their associate angles 0 ≤
ϕ1 < . . . < ϕk0 < 2π. When we exempt the points wk for k = 1, . . . , k0
from the sets B and ∂B, we obtain the sets B ′ and ∂B′, respectively.
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2. Furthermore, let the injective mapping

X(u, v) =
(
x1(u, v), x2(u, v), x3(u, v)

)
: B −→ R

3 ∈ C1(B ′) ∩ C0(B)

with the property Xu∧Xv �= 0 for all (u, v) ∈ B ′ and finite Dirichlet inte-
gral D(X) < +∞ be given. Let the surface be conformally parametrized,
which means the conformality relations

|Xu| = |Xv|, Xu ·Xv = 0 for all (u, v) ∈ B

are satisfied. Denoting by

X(ϕ) := X
(
eiϕ
)
, 0 ≤ ϕ ≤ 2π

the restriction of X onto ∂B, we obtain the line element

d1σ(ϕ) = |X ′
(ϕ)| dϕ, 0 ≤ ϕ ≤ 2π, ϕ /∈ {ϕ1, . . . , ϕk0}.

We require finite length for the curve X(ϕ); and more precisely

L(X) =

k0−1∑
k=0

ϕk+1∫
ϕk

d1σ(ϕ) < +∞,

where we defined ϕ0 := ϕk0 − 2π.
3. By the symbol

ν(u, v) := |Xu ∧Xv|−1Xu ∧Xv , (u, v) ∈ B ′

we denote the unit normal vector and by

d2σ(u, v) := |Xu ∧Xv| dudv

the surface element of the surface X(u, v). The tangential vector to the
boundary curve is abbreviated by

T (ϕ) :=
X ′(ϕ)

|X ′(ϕ)|
.

4. Let O ⊃ X(B) =: M constitute an open set in R
3, and let the vector-field

a(x) =
(
a1(x1, x2, x3), a2(x1, x2, x3), a3(x1, x2, x3)

)
∈ C1(O) ∩ C0(M)

be prescribed with the integrability property
∫∫
B

|rot a(X(u, v))| d2σ(u, v) < +∞.



54 Chapter 1 Differentiation and Integration on Manifolds

Then we have the Stokes identity

∫∫
B

{
rot a
(
X(u, v)

)
· ν(u, v)

}
d2σ(u, v) =

2π∫
0

{
a
(
X(ϕ)

)
·T (ϕ)

}
d1σ(ϕ). (7)

Remarks: Since the surface is conformally parametrized, our conditionD(X) <
+∞ is equivalent to the finiteness of the surface area of X, on account of the
relation

D(X) = 2

∫∫
B

d2σ(u, v) =: 2A(X).

The introduction of isothermal parameters in the large is treated in Section 8
of Chapter 12.

Proof of Theorem 5.9:

1. We intend to apply the Stokes integral theorem for manifolds: The set
M := X(B) constitutes a bounded oriented 2-dimensional C1-manifold
in R

3 with the chart X(u, v) : B → M. The regular boundary ∂M :=
X(∂B′) inherits its orientation by the mapping X(ϕ), 0 ≤ ϕ ≤ 2π and
possesses finite length L(X) < +∞. At first, we show that the singular
boundary ΔM := X({w1, . . . , wk0}) ⊂ Ṁ ⊂ R

3 has capacity zero.
2. When w∗ ∈ ∂B is a singular point of the surface, we introduce polar

coordinates in a neighborhood of w∗ as follows:

w = w∗ + �eiϕ , 0 < � < �∗, ϕ1(�) < ϕ < ϕ2(�).

For the quantity η > 0 being given, the Courant-Lebesgue oscillation
lemma provides a number δ ∈ (0, ρ∗) with the following property: Defining
the function Y (�, ϕ) := X(w∗ + �eiϕ), 0 < ρ < ρ∗, ϕ1(ρ) < ϕ < ϕ2(ρ), we
have the inequality

ϕ2(δ
∗)∫

ϕ1(δ∗)

|Yϕ(δ∗, ϕ)| dϕ ≤ 2

√
πD(X)

log 1
δ

≤ η (8)

for one number δ∗ ∈ [δ,
√
δ] at least. Consequently, we find two numbers

0 < �1 < δ
∗ < �2 < �

∗ with the property

ϕ2()∫
ϕ1()

|Yϕ(�, ϕ)| dϕ ≤ 2η for all � ∈ [�1, �2].

Now we consider the weakly monotonic function

Ψ(�) : [0, �∗] −→ [0, 1] ∈ C1
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with the properties

Ψ(�) =

{
0, 0 ≤ � ≤ �1
1, �2 ≤ � ≤ �∗

.

In a neighborhood of the surface M, we now construct a function

χ = χ(x1, x2, x3) ∈ C1(M)

satisfying

Ψ(�) = χ ◦ Y (�, ϕ), 0 < � < �∗, ϕ1(�) < ϕ < ϕ2(�).

This implies

Ψ ′(�) = ∇χ
∣∣
Y (,ϕ)

· Y(�, ϕ) = |∇χ(Y (�, ϕ))||Y(�, ϕ)|.

We conclude∫ ∫
w∈B∩B�∗ (w∗)

|∇χ| d2σ(u, v)

≤
∗∫
0

⎛
⎜⎝

ϕ2()∫
ϕ1()

|∇χ(Y (�, ϕ))||Y||Yϕ| dϕ

⎞
⎟⎠ d�

=

∗∫
0

Ψ ′(�)

⎛
⎜⎝

ϕ2()∫
ϕ1()

|Yϕ(�, ϕ)| dϕ

⎞
⎟⎠ d�

=

2∫
1

Ψ ′(�)

⎛
⎜⎝

ϕ2()∫
ϕ1()

|Yϕ(�, ϕ)| dϕ

⎞
⎟⎠ d� ≤ 2η

2∫
1

Ψ ′(�) d� = 2η

for all η > 0. In this way, we see that the boundary point X(w∗) ∈ Ṁ has
capacity zero, and the finitely many boundary points X({w1, . . . , wk0})
share this property.

3. Now we consider the Pfaffian form

ω = a1(x) dx1 + a2(x) dx2 + a3(x) dx3 ∈ C1(M) ∩ C0(M)

satisfying

∫
M

|dω| ≤
∫∫
B

|rot a
(
X(u, v)

)
| d2σ(u, v) < +∞.



56 Chapter 1 Differentiation and Integration on Manifolds

Theorem 4.7 from Section 4 yields the identity

∫∫
B

{
rot a
(
X(u, v)

)
· ν
}
d2σ

=

∫
M

dω =

∫
∂M

ω =

2π∫
0

{
a
(
X(ϕ)

)
· T (ϕ)

}
d1σ(ϕ),

and our theorem is proved. q.e.d.

6 Curvilinear Integrals

We begin with the fundamental

Example 6.1. (Gravitational potentials)
Let the solid of the mass M > 0 and another solid of the mass m > 0 with
m � M be given (imagine the system Sun - Earth). Based on the theory
of gravitation by I. Newton, the movement in the arising force-field can be
described by the Newtonian potential

F (x) = γ
mM

r
, r = r(x) =

√
x21 + x

2
2 + x

2
3, x ∈ R

3 \ {0};

here γ > 0 denotes the gravitational constant. We determine the work being
performed during the movement from a given point P to another point Q in
the Euclidean space by the formula W = F (Q) − F (P ). We can deduce the
force-field by differentiation from the potential as follows:

f(x) =
(
f1(x), f2(x), f3(x)

)
= ∇F (x)

= −γ mM
r3

(x1, x2, x3) = −γ mM
r3

x.

Now we associate the Pfaffian form

ω = f1(x) dx1 + f2(x) dx2 + f3(x) dx3

= −γ mM
r3

(x1 dx1 + x2 dx2 + x3 dx3).

When
X(t) : [a, b] −→ R

3 \ {0} ∈ C1([a, b])

denotes an arbitrary path satisfying X(a) = P and X(b) = Q, we infer
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∫
X

ω =

b∫
a

(
Fx1x

′
1(t) + Fx2x

′
2(t) + Fx3x

′
3(t)
)
dt

=

b∫
a

d

dt

(
F (X(t))

)
dt

= F
(
X(b)

)
− F
(
X(a)

)
.

Consequently, this integral depends only on the end-points - and does not
depend on the path chosen. Then we speak of a conservative force-field; move-
ments along closed curves do not require energy.

We intend to present the theory of curvilinear integrals in the sequel.

Definition 6.2. Let Ω ⊂ R
n - with n ≥ 2 - denote a domain and P,Q ∈

Ω two points. Then we define the class C(Ω,P,Q) of piecewise continuously
differentiable paths (or synonymously, curves) in Ω from P to Q as follows:

C(Ω,P,Q) :=
{
X(t) : [a, b] −→ Ω ∈ C0([a, b]) :

−∞ < a < b < +∞, X(a) = P, X(b) = Q;

We have a = t0 < t1 < . . . < tN = b such that

X
∣∣
[ti,ti+1]

∈ C1([ti, ti+1], Ω) for i = 0, . . . , N − 1 holds true
}
.

With the set
C(Ω) :=

⋃
P∈Ω

C(Ω,P, P ),

we obtain the class of closed paths (or synonymously, closed curves) in Ω.
When X(t) ≡ P , a ≤ t ≤ b holds true, we speak of a point-curve.

Remark: In particular, the polygonal paths from P to Q are contained in
C(Ω,P,Q).

Definition 6.3. Let

ω =

n∑
i=1

fi(x) dxi , x ∈ Ω

denote a continuous Pfaffian form in the domain Ω and X ∈ C(Ω,P,Q) a
piecewise continuously differentiable path between the two points P,Q ∈ Ω.
Introducing

X(j) := X
∣∣
[tj ,tj+1]

∈ C1([tj , tj+1]) for j = 0, . . . , N − 1,
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we define by

∫
X

ω :=

N−1∑
j=0

∫
X(j)

ω =

N−1∑
j=0

tj+1∫
tj

n∑
i=1

fi

(
X(t)
)
x′i(t) dt

the curvilinear integral of ω over X.

Definition 6.4. Let

ω =

n∑
i=1

fi(x) dxi, x ∈ Ω

represent a continuous Pfaffian form in the domain Ω ⊂ R
n. Then we call

F (x) ∈ C1(Ω) a primitive of ω, if the identity

dF = ω in Ω

or equivalently the equations

Fxi(x) = fi(x) for x ∈ Ω and i = 1, . . . , n

hold true. When ω possesses a primitive, we speak of an exact Pfaffian form.

Theorem 6.5. (Curvilinear integrals)
Let Ω ⊂ R

n denote a domain and ω a continuous Pfaffian form in Ω. Then
ω possesses a primitive F in Ω if and only if we have the identity

∫
X

ω = 0

for each closed curve X ∈ C(Ω,P, P ) - with a point P ∈ Ω. In the latter case,
we obtain a primitive as follows: We take a fixed point P ∈ Ω and have the
following representation for all arbitrary points Q ∈ Ω, namely

F (Q) := γ +

∫
Y

ω with Y ∈ C(Ω,P,Q),

where γ ∈ R is a constant.

Proof:

1. When ω possesses a primitive F , we infer

ω =

n∑
i=1

fi(x) dxi =

n∑
i=1

Fxi(x) dxi, x ∈ Ω.

Let us consider X ∈ C(Ω,P, P ) with P ∈ Ω and

X(j) := X
∣∣
[tj ,tj+1]

∈ C1([tj , tj+1]) for j = 0, . . . , N − 1.
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This implies

∫
X

ω =
N−1∑
j=0

∫
X(j)

ω =
N−1∑
j=0

tj+1∫
tj

(
n∑

i=1

Fxi

(
X(t)
)
x′i(t) dt

)

=

N−1∑
j=0

tj+1∫
tj

d

dt
F
(
X(t)
)
dt =

N−1∑
j=0

{
F
(
X(tj+1)

)
− F
(
X(tj)

)}

= F
(
X(tN )

)
− F
(
X(t0)

)
= F (P )− F (P ) = 0.

2. Now we start with the assumption∫
X

ω = 0 for all curves X ∈ C(Ω,P, P ) with P ∈ Ω.

The point P ∈ Ω being fixed, we choose a path X ∈ C(Ω,P,Q) for
an arbitrary Q ∈ Ω and define F (Q) :=

∫
X

ω. Then we have to show

the independence of this definition from the choice of the curve X: When
Y ∈ C(Ω,P,Q) represents another curve, we have to establish the identity

∫
X

ω =

∫
Y

ω.

We associate the following closed curve to the curves X : [a, b] → R
n and

Y : [c, d] → R
n, namely

Z(t) :=

{
X(t), t ∈ [a, b]

Y (b+ d− t), t ∈ [b, b+ d− c]
.

Evidently, Z ∈ C(Ω,P, P ) holds true and

0 =

∫
Z

ω =

∫
X

ω −
∫
Y

ω

follows, which implies ∫
X

ω =

∫
Y

ω.

3. Finally, we have to deduce the formulas

Fxi(Q) = fi(Q) for i = 1, . . . , n.

Here we proceed from Q to the point
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Qε := Q+ εei, ei := (0, . . . , 1︸︷︷︸
i−th

, . . . , 0)

along the path

Y (t) : [0, ε] → R
n, Y (t) = Q+ tei

for a fixed index i ∈ {1, . . . , n}. Now we evaluate

F (Qε) = F (Q) + F (Qε)− F (Q) = F (Q) +
∫
Y

ω

= F (Q) +

ε∫
0

n∑
j=1

fj

(
Y (t)
)
y′j(t) dt

= F (Q) +

ε∫
0

fi(Q+ tei) dt.

Finally, we obtain

d

dxi
F
∣∣
Q
=
d

dε
F (Qε)

∣∣
ε=0

= fi(Q), i = 1, . . . , n

proving the statement above. q.e.d

Let

ω =

n∑
i=1

fi(x) dxi

represent an exact differential form of the class C1(Ω) in a domain Ω ⊂ R
n.

Then we have a function F (x) : Ω −→ R ∈ C2(Ω) with the property

dF = ω or equivalently fi(x) = Fxi(x).

Furthermore, we infer the identity

dω = d2F = d

n∑
i=1

Fxi dxi =

n∑
i,j=1

Fxixj dxj ∧ dxi = 0,

since the Hessian matrix (Fxixj )i,j=1,...,n is symmetric.

Definition 6.6. We name an m-form ω ∈ C1(Ω) in a domain Ω ⊂ R
n as

being closed, if the identity dω = 0 in Ω holds true.

Remark: The Pfaffian form ω =
∑n

i=1 fi(x) dxi, x ∈ Ω is closed if and only

if the matrix
(

∂fi(x)
∂xj

)
is symmetric.

The considerations above show that an exact Pfaffian form is always closed.
We shall now answer the question, which conditions guarantee that a closed
Pfaffian form is necessarily exact - and consequently has a primitive.
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Example 6.7. In the pointed plane R2 \ {(0, 0)}, we consider the Pfaffian form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy, x2 + y2 > 0.

This 1-form is closed, since we have

∂

∂y

(
−y

x2 + y2

)
=

−(x2 + y2)− (−y)2y
(x2 + y2)2

=
−x2 + y2
(x2 + y2)2

as well as
∂

∂x

(
x

x2 + y2

)
=
x2 + y2 − x(2x)

(x2 + y2)2
=

y2 − x2
(x2 + y2)2

,

and consequently

dω =
∂

∂y

(
−y

x2 + y2

)
dy ∧ dx+ ∂

∂x

(
x

x2 + y2

)
dx ∧ dy = 0.

We observe the closed curve

X(t) := (cos t, sin t), 0 ≤ t ≤ 2π

and evaluate

∫
X

ω =

2π∫
0

(
− sin t(− sin t) + cos t cos t

)
dt = 2π.

According to Theorem 6.5, a primitive to ω in R
2 \ {0, 0} does not exist - and

the differential form is not exact there.

The nonvanishing of this curvilinear integral is caused by the fact that the
curve X in R

2 \ {(0, 0)} cannot be contracted to a point-curve.

Definition 6.8. Let Ω ⊂ R
n denote a domain. Two closed curves

X(t) : [a, b] −→ Ω and Y (t) : [a, b] −→ Ω, X, Y ∈ C(Ω)

are named homotopic in Ω, if we have a mapping

Z(t, s) : [a, b]× [0, 1] −→ Ω ∈ C0([a, b]× [0, 1],Rn)

with the properties

Z(a, s) = Z(b, s) for all s ∈ [0, 1]

as well as

Z(t, 0) = X(t), Z(t, 1) = Y (t) for all t ∈ [a, b].
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Now we establish the profound

Theorem 6.9. (Curvilinear integrals)
Let Ω ⊂ R

n constitute a domain, where the two closed curves X,Y ∈ C(Ω)
are homotopic to each other. Finally, let

ω =

n∑
i=1

fi(x) dxi, x ∈ Ω

represent a closed Pfaffian form of the class C1(Ω). Then we have the identity

∫
X

ω =

∫
Y

ω.

For our proof we need the following

Proposition 6.10. (Smoothing of a closed curve)
Let

X(t) : [a, b] −→ R
n ∈ C(Ω)

represent a closed curve, which is continued periodically via

X
(
t+ k(b− a)

)
= X(t), t ∈ R, k ∈ Z

onto the entire real line R with the period (b−a). Furthermore, let the function

χ(t) ∈ C∞
0 ((−1,+1), [0,∞))

give us a mollifier with the properties

χ(−t) = χ(t) for all ∈ (−1, 1)

and
+1∫

−1

χ(t) dt = 1.

When we define

χt,ε(τ) :=
1

ε
χ

(
τ − t
ε

)
, τ ∈ R,

we obtain the smoothed function

Xε(t) :=

+∞∫
−∞

X(τ)χt,ε(τ) dτ =

+∞∫
−∞

X(τ)
1

ε
χ

(
τ − t
ε

)
dτ,

which has the period (b− a) again. Then we observe
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lim
ε→0+

Xε(t) = X(t) uniformly on [a, b].

Furthermore, the function Xε(t) belongs to the class C∞(R), and we obtain
the estimate ∣∣∣∣ ddtXε(t)

∣∣∣∣ ≤ C for all t ∈ [a, b], 0 < ε < ε0,

with a constant C > 0 and a sufficiently small ε0. For all compact subsets

T ⊂ (t0, t1) ∪ (t1, t2) ∪ . . . ∪ (tN−1, tN ) ⊂ (a, b)

we infer

d

dt
Xε(t) −→ X ′(t) for ε→ 0 + uniformly in T.

Proof: We show parallel to Proposition 1.2 in Section 1 that

Xε(t) −→ X(t) for all t ∈ [a, b] uniformly, where ε→ 0 + holds true.

Since X is piecewise differentiable and continuous, a partial integration yields

d

dt
Xε(t) =

+∞∫
−∞

X(τ)
d

dt
χt,ε(τ) dτ =

+∞∫
−∞

X(τ)

(
− d

dτ
χt,ε(τ)

)
dτ

=

+∞∫
−∞

X ′(τ)χt,ε(τ) dτ.

Therefore, we obtain

∣∣∣∣ ddtXε(t)

∣∣∣∣ ≤
+∞∫

−∞

|X ′(τ)|χt,ε(τ) dτ ≤ C
+∞∫

−∞

χt,ε(τ) dτ = C for all t ∈ R,

using the estimate |X ′(τ)| ≤ C on R. Finally, we show - parallel to Proposition
1.2 in Section 1 again - the relation

lim
ε→0+

d

dt
Xε(t) = X ′(t) uniformly in T ⊂ (t0, t1) ∪ . . . ∪ (tN−1, tN ),

which had to be proved. q.e.d.

Proof of Theorem 6.9:

1. Let X,Y ∈ C(Ω) represent two homotopic closed curves. Then we have a
continuous function

Z(t, s) : [a, b]× [0, 1] −→ Ω ∈ C0([a, b]× [0, 1],Rn)
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with the properties

Z(a, s) = Z(b, s) for all s ∈ [0, 1]

and
Z(t, 0) = X(t), Z(t, 1) = Y (t) for all t ∈ [a, b].

We continue Z onto the rectangle [a, b] ×
[−2, 3] to the function

Φ(t, s) :=

⎧⎪⎨
⎪⎩

X(t), (t, s) ∈ [a, b]× [−2, 0]

Z(t, s), (t, s) ∈ [a, b]× [0, 1]

Y (t), (t, s) ∈ [a, b]× [1, 3]

.

Via the prescription

Φ
(
t+ k(b− a), s

)
= Φ(t, s) for t ∈ R, s ∈ [−2, 3] and k ∈ Z,

we extend the function onto the stripe R×[−2, 3] to a continuous function,
which is periodic in the first variable with the period (b− a).

2. On the rectangle Q := [a, b]× [−1, 2] we consider the function

Φε(u, v) :=

+∞∫
−∞

+∞∫
−∞

Φ(ξ, η)χu,ε(ξ)χv,ε(η) dξdη for all 0 < ε < 1.

Now the regularity Φε ∈ C∞(Q) is fulfilled, and we have the limit relation

Φε(u, v) −→ Φ(u, v) for ε→ 0 uniformly in [a, b]× [−1, 2].

This implies the property Φε(Q) ⊂ Ω, 0 < ε < ε0 and the periodicity

Φε
(
u+ k(b− a), v

)
= Φε(u, v) for all (u, v) ∈ R× [−1, 2], k ∈ Z.

For all parameters a ≤ u ≤ b we have

Φε(u,−1) =

+∞∫
−∞

+∞∫
−∞

Φ(ξ, η)χu,ε(ξ)χ−1,ε(η) dξdη

=

+∞∫
−∞

+∞∫
−∞

X(ξ)χu,ε(ξ)χ−1,ε(η) dξdη

=

+∞∫
−∞

X(ξ)χu,ε(ξ) dξ = Xε(u)

and additionally
Φε(u, 2) = Y ε(u).
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3. By the Stokes integral theorem on the rectangle Q, we obtain the following
identity for all 0 < ε < ε0, namely

∫
Xε

ω −
∫
Y ε

ω =

∮
∂Q

ωΦε =

∫
Q

d(ωΦε) =

∫
Q

(dω)Φε = 0.

We observe ε→ 0+, and Proposition 6.10 yields

0 = lim
ε→0+

⎛
⎝∫

Xε

ω −
∫
Y ε

ω

⎞
⎠ =

∫
X

ω −
∫
Y

ω

and therefore our statement above. q.e.d

Definition 6.11. Let the domain Ω ⊂ R
n as well as the points P,Q ∈ Ω be

given. We name two curves

X(t), Y (t) : [a, b] −→ Ω ∈ C(Ω,P,Q)

as being homotopic in Ω with the fixed start-point P and end-point Q, if we
have a continuous mapping

Z(t, s) : [a, b]× [0, 1] −→ Ω

with the following properties:

Z(a, s) = P, Z(b, s) = Q for all s ∈ [0, 1]

as well as

Z(t, 0) = X(t), Z(t, 1) = Y (t) for all t ∈ [a, b].

We deduce immediately the following result from Theorem 6.9.

Theorem 6.12. (Monodromy)
Let Ω ⊂ R

n denote a domain and P,Q ∈ Ω two arbitrary points. Furthermore,
let the two curves X(t), Y (t) ∈ C(Ω,P,Q) be homotopic to each other with
fixed start- and end-point. Finally, let

ω =

n∑
i=1

fi(x) dxi, x ∈ Ω

represent a closed Pfaffian form of the class C1(Ω). Then we have the identity

∫
X

ω =

∫
Y

ω.
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Proof: We consider the following homotopy of closed curves in Ω, namely

Φ(t, s) : [a, 2b− a]× [0, 1] −→ Ω

with

Φ(t, s) =

{
X(t), a ≤ t ≤ b

Z(2b− t, s), b ≤ t ≤ 2b− a
.

Now we note that

Φ(t, 0) =

{
X(t), a ≤ t ≤ b

X(2b− t), b ≤ t ≤ 2b− a
.

Here the curve X is run through from P to Q and then backwards from Q to
P . Therefore, we infer ∫

Φ(·,0)

ω = 0.

Furthermore, we deduce

Φ(t, 1) =

{
X(t), a ≤ t ≤ b

Y (2b− t), b ≤ t ≤ 2b− a
.

Here the curve X is run through from P to Q at first, and the curve Y is run
through from Q to P afterwards. Finally, Theorem 6.9 reveals the identity

0 =

∫
Φ(·,0)

ω =

∫
Φ(·,1)

ω =

∫
X

ω −
∫
Y

ω.

q.e.d.
The study of curvilinear integrals becomes very simple in the following do-
mains.

Definition 6.13. A domain Ω ⊂ R
n is named simply connected, if each

closed curve X(t) ∈ C(Ω) is homotopic to a point-curve in Ω. This means
geometrically that each closed curve is contractible to one point.

Theorem 6.14. (Curvilinear integrals in simply connected domains)
Let Ω ⊂ R

n constitute a simply connected domain and

ω =

n∑
i=1

fi(x) dxi, x ∈ Ω

a Pfaffian form of the class C1(Ω). Then the following statements are equiv-
alent:
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1. The Pfaffian form ω is exact, and therefore possesses a primitive F .
2. For all curves X ∈ C(Ω,P, P ) - with a point P ∈ Ω - we have the identity∫

X

ω = 0.

3. The Pfaffian form ω is closed, which means

dω = 0 in Ω

or equivalently that the matrix
(

∂fi
∂xj

(x)
)
i,j=1,...,n

is symmetric for all

points x ∈ Ω.

Proof: From the first theorem on curvilinear integrals we infer the equivalence
‘1.⇔ 2.’. The statement ‘1.⇒ 3.’ is revealed by the considerations preceding
Definition 6.6. We only have to show the direction ‘3. ⇒ 2.’: Here we choose
an arbitrary closed curve X(t) ∈ C(Ω,P, P ), which is homotopic to the closed
curve Y (t) ≡ P, a ≤ t ≤ b, due to the assumption on the domain Ω. The
application of Theorem 6.9 yields

∫
X

ω =

∫
Y

ω =

b∫
a

n∑
i=1

fi

(
Y (t)
)
y′i(t) dt = 0,

which implies our theorem. q.e.d.

Remark: In the Euclidean space R
3, our condition 3 from Theorem 6.14 im-

plies that the vector-field f(x) =
(
f1(x), f2(x), f3(x)

)
, x ∈ Ω is irrotational,

which means
rot f(x) = 0 in Ω.

In simply connected domains Ω ⊂ R
3, Theorem 6.14 guarantees the existence

of a primitive F : Ω → R ∈ C2(Ω) with the property ∇F (x) = f(x), x ∈ Ω.

7 The Lemma of Poincaré

The theory of curvilinear integrals was transferred to the higher-dimensional
situation of surface-integrals especially by de Rham (compare G. de Rham:
Varietés differentiables, Hermann, Paris 1955). In this context we refer the
reader to Paragraph 20 in the textbook by H.Holmann and H.Rummler: Al-
ternierende Differentialformen, BI-Wissenschaftsverlag, 2.Auflage, 1981.

We shall construct primitives for arbitrary m-forms, which correspond to
vector-potentials - however, in ‘contractible domains’ only. Here we do not
need the Stokes integral theorem!

Definition 7.1. A continuous m-form with 1 ≤ m ≤ n in an open set Ω ⊂ R
n

with n ∈ N, namely
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ω =
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim , x ∈ Ω,

is named exact if we have an (m− 1)-form

λ =
∑

1≤i1<...<im−1≤n

bi1...im−1(x) dxi1 ∧ . . . ∧ dxim−1 , x ∈ Ω

of the class C1(Ω) with the property

dλ = ω in Ω.

We begin with the easy

Theorem 7.2. An exact differential form ω ∈ C1(Ω) is closed.

Proof: We calculate

dω = d(dλ) = d
∑

1≤i1<...<im−1≤n

dbi1...im−1(x) ∧ dxi1 ∧ . . . ∧ dxim−1

=
∑

1≤i1<...<im−1≤n

(
d dbi1...im−1(x)

)
∧ dxi1 ∧ . . . ∧ dxim−1 = 0,

which implies the statement above. q.e.d.

We now provide a condition on the domain Ω, which guarantees that a closed
differential form is necessarily exact.

Definition 7.3. Let Ω ⊂ R
n denote a domain with the associate cylinder

Ω̂ := Ω × [0, 1] ⊂ R
n+1.

Furthermore, we have a point x0 ∈ Ω and a mapping

F = F (x, t) =
(
f1(x1, . . . , xn, t), . . . , fn(x1, . . . , xn, t)

)
: Ω̂ −→ Ω

of the class C2(Ω̂,Rn) as follows:

F (x, 0) = x0 , F (x, 1) = x for all x ∈ Ω.

Then we name the domain Ω contractible (onto the point x0).

Remarks:

1. Let the domain Ω be star-shaped with respect to the point x0 ∈ Ω, which
means

(tx+ (1− t)x0) ∈ Ω for all t ∈ [0, 1], x ∈ Ω.
Then Ω is contractible with the contraction-mapping

F (x, t) := tx+ (1− t)x0 , x ∈ Ω, t ∈ [0, 1].
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2. Each contractible domain Ω ⊂ R
n is simply connected as well. When

X(s), 0 ≤ s ≤ 1 with X(0) = X(1) represents a closed curve in Ω, it is
contractible onto the point x0 via

Y (s, t) := F
(
X(s), t

)
, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.

In a contractible domain, we can perform the contraction of an arbitrary
curve X(s) by the joint mapping F . Therefore, the contraction is inde-
pendent from the choice of the curve X.

3. The following chain of implications for domains in R
n holds true:

convex =⇒ star-shaped

=⇒ contractible

=⇒ simply connected.

On the cylinder Ω̂ we consider the l-form

γ(x, t) :=
∑

1≤i1<...<il≤n

ci1...il(x, t) dxi1 ∧ . . . ∧ dxil

of the class C1(Ω̂). We use the abbreviation d
dt := ˙ for the time-derivative

and define

γ̇(x, t) :=
∑

1≤i1<...<il≤n

ċi1...il(x, t) dxi1 ∧ . . . ∧ dxil .

Furthermore, we set

1∫
0

γ(x, t) dt :=
∑

1≤i1<...<il≤n

⎛
⎝

1∫
0

ci1...il(x, t) dt

⎞
⎠ dxi1 ∧ . . . ∧ dxil .

The fundamental theorem of the differential- and integral-calculus reveals

1∫
0

γ̇(x, t) dt = γ(x, 1)− γ(x, 0). (1)

The function g(x, t) : Ω̂ → R ∈ C1(Ω̂) being given, we determine its exterior
derivative

dg =
n∑

k=1

∂g

∂xk
dxk + ġ(x, t) dt =: dxg + ġ dt.

Consequently, we obtain
dγ = dxγ + dt ∧ γ̇

abbreviating
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dxγ :=
∑

1≤i1<...<il≤n

(
dxci1...il(x, t)

)
∧ dxi1 ∧ . . . ∧ dxil .

Finally, we deduce the identity

d

⎛
⎝

1∫
0

γ(x, t) dt

⎞
⎠ =

1∫
0

(
dxγ(x, t)

)
dt. (2)

Therefore, we calculate

d

⎛
⎝

1∫
0

γ(x, t) dt

⎞
⎠

=
∑

1≤i1<...<il≤n

n∑
i=1

∂

∂xi

⎛
⎝

1∫
0

ci1...il(x, t) dt

⎞
⎠ dxi ∧ dxi1 ∧ . . . ∧ dxil

=
∑

1≤i1<...<il≤n

n∑
i=1

⎛
⎝

1∫
0

∂

∂xi
ci1...il(x, t) dt

⎞
⎠ dxi ∧ dxi1 ∧ . . . ∧ dxil

=

1∫
0

⎧⎨
⎩

∑
1≤i1<...<il≤n

(
n∑

i=1

∂

∂xi
ci1...il(x, t) dxi

)
∧ dxi1 ∧ . . . ∧ dxil

⎫⎬
⎭ dt

=

1∫
0

(
dxγ(x, t)

)
dt.

We are now prepared to prove the central result of this section.

Theorem 7.4. (Lemma of Poincaré)
Let Ω ⊂ R

n denote a contractible domain, and choose a dimension 1 ≤ m ≤ n.
Then each closed m-form ω in Ω is exact.

Proof (A.Weil):

1. Since Ω is contractible, we have a mapping

F = F (x, t) : Ω̂ −→ Ω ∈ C2(Ω̂)

satisfying

F (x, 0) = x0, F (x, 1) = x for all x ∈ Ω.

On the set Ω̂ = Ω × [0, 1], we consider the transformed differential form
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ω̂(x, t) := ω ◦ F (x, t)

=
∑

1≤i1<...<im≤n

ai1...im(F (x, t)) dfi1 ∧ . . . ∧ dfim

=
∑

1≤i1<...<im≤n

ai1...im(F (x, t)) dxfi1 ∧ . . . ∧ dxfim + dt ∧ ω2(x, t)

= ω1 + dt ∧ ω2.

Here we used the identities

dfik = dxfik + ḟik dt for k = 1, . . . ,m.

The differential forms ω1(x, t) and ω2(x, t) are independent of dt and have
the degrees m and (m− 1), respectively. Furthermore, we note that

ω1(x, 0) = 0 and ω1(x, 1) = ω(x).

2. We evaluate

0 = (dω) ◦ F = d(ω ◦ F ) = dω̂

= dω1 + d(dt ∧ ω2) = dxω1 + dt ∧ ω̇1 − dt ∧ dω2

= dxω1 + dt ∧ ω̇1 − dt ∧ (dxω2 + dt ∧ ω̇2)

= dxω1 + dt ∧ (ω̇1 − dxω2).

This implies
ω̇1 = dxω2. (3)

3. Now we define the (m− 1)-form

λ :=

1∫
0

ω2(x, t) dt.

With the aid of the identities (1), (2), and (3) we calculate

dλ =

1∫
0

(
dxω2(x, t)

)
dt =

1∫
0

ω̇1(x, t) dt = ω1(x, 1)− ω1(x, 0) = ω(x),

which completes the proof. q.e.d.

Example 7.5. In a star-shaped domain Ω ⊂ R
3, let the source-free vector-field

b(x) =
(
b1(x), b2(x), b3(x)

)
: Ω −→ R

3 ∈ C1(Ω,R3)
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with
div b(x) = 0

be given. Then its associate 2-form

ω = b1(x) dx2 ∧ dx3 + b2(x) dx3 ∧ dx1 + b3(x) dx1 ∧ dx2

is closed. Theorem 7.4 gives us a Pfaffian form

λ = a1(x) dx1 + a2(x) dx2 + a3(x) dx3 ∈ C2(Ω)

satisfying dλ = ω. The calculations in Section 3 imply the following identity
for the vector-field a(x) = (a1(x), a2(x), a3(x)), namely

rot a(x) = b(x) for all x ∈ Ω.

Therefore, we have constructed a vector-potential a(x) for the source-free
vector-field b(x).

8 Co-derivatives and the Laplace-Beltrami Operator

In this section we introduce an inner product for differential forms. We con-
sider the space

R
n :=

{
x = (x1, . . . , xn) : xi ∈ R, i = 1, . . . , n

}

with the subset Θ ⊂ R
n. Furthermore, we have given two continuous m-forms

on Θ, namely

α :=
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim , x ∈ Θ,

as well as

β :=
∑

1≤i1<...<im≤n

bi1...im(x) dxi1 ∧ . . . ∧ dxim , x ∈ Θ.

We define an inner product between the m-forms α and β as follows:

(α, β)m :=
∑

1≤i1<...<im≤n

ai1...im(x) bi1...im(x), m = 0, 1, . . . , n. (1)

Consequently, the inner product attributes a 0-form to a pair of m-forms. It
represents a symmetric bilinear form on the vector space of m-forms.

Now we consider the parameter transformation

x = Φ(x) =
(
Φ1(x1, . . . , xn), . . . , Φn(x1, . . . , xn)

)
: Ω −→ Θ ∈ C2(Ω)
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on the open set Ω ⊂ R
n. The mapping Φ satisfies

JΦ(x) = det
(
∂Φ(x)

)
�= 0 for all x ∈ Ω. (2)

We set

g(x) :=
(
JΦ(x)

)2
= det

(
∂Φ(x)t ◦ ∂Φ(x)

)
, x ∈ Ω.

The volume form

ω =
√
g(x) dx1 ∧ . . . ∧ dxn, x ∈ Ω (3)

is associated with the transformation x = Φ(x) in a natural way. The m-forms
α and β are transformed into the m-forms

α := αΦ =
∑

1≤i1<...<im≤n

ai1...im

(
Φ(x)
)
dΦi1(x) ∧ . . . ∧ dΦim(x)

=:
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim

and

β := βΦ =
∑

1≤i1<...<im≤n

bi1...im

(
Φ(x)
)
dΦi1(x) ∧ . . . ∧ dΦim(x)

=:
∑

1≤i1<...<im≤n

bi1...im(x) dxi1 ∧ . . . ∧ dxim ,

respectively. We shall define an inner product (α, β)m between the trans-
formed m-forms α and β such that it is parameter-invariant:

(α, β)m(x) = (α, β)m

(
Φ(x)
)
, x ∈ Ω. (4)

We shall explicitly represent this inner product for differential forms of the
orders 0, 1, n− 1, n in the sequel.

1. Let m = 0 hold true. We consider the 0-forms

α = a(x), β = b(x).

Then we see

α = αΦ = a
(
Φ(x)
)
, β = βΦ = b

(
Φ(x)
)
.

Setting
(α, β)0(x) := a(x)b(x),

we obtain

(α, β)0(x) = a(x)b(x) = a
(
Φ(x)
)
b
(
Φ(x)
)

= (α, β)0

(
Φ(x)
)
, x ∈ Ω.
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2. Let m = n hold true. We consider the n-forms

α = a(x) dx1 ∧ . . . ∧ dxn, β = b(x) dx1 ∧ . . . ∧ dxn.

We calculate

α = αΦ = a
(
Φ(x)
)
dΦ1 ∧ . . . ∧ dΦn

= a
(
Φ(x)
) ( n∑

i1=1

∂Φ1

∂xi1
dxi1

)
∧ . . . ∧

(
n∑

in=1

∂Φn

∂xin
dxin

)

= a
(
Φ(x)
)
JΦ(x) dx1 ∧ . . . ∧ dxn.

Therefore, we have

a(x) = a
(
Φ(x)
)
JΦ(x), b(x) = b

(
Φ(x)
)
JΦ(x), x ∈ Ω.

Now we set

(α, β)n(x) :=
1

g(x)
a(x)b(x), x ∈ Ω,

observe g(x) =
(
JΦ(x)

)2
, and infer

(α, β)n(x) =
1(

JΦ(x)
)2 a
(
Φ(x)
)
JΦ(x) b

(
Φ(x)
)
JΦ(x)

= a
(
Φ(x)
)
b
(
Φ(x)
)
= (α, β)n

(
Φ(x)
)
.

3. Let m = 1 hold true. We consider the Pfaffian forms

α =

n∑
i=1

ai(x) dxi, β =

n∑
i=1

bi(x) dxi

and calculate

α = αΦ =

n∑
i=1

ai

(
Φ(x)
)
dΦi

=

n∑
i=1

ai

(
Φ(x)
)⎛⎝ n∑

j=1

∂Φi

∂xj
dxj

⎞
⎠

=
n∑

j=1

(
n∑

i=1

ai

(
Φ(x)
)∂Φi

∂xj

)
dxj .
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Thus we obtain

α = αΦ =

n∑
j=1

aj(x) dxj with aj(x) =

n∑
i=1

ai

(
Φ(x)
)∂Φi

∂xj
,

β = βΦ =
n∑

j=1

bj(x) dxj with bj(x) =
n∑

i=1

bi

(
Φ(x)
)∂Φi

∂xj
,

where j = 1, . . . , n is valid. We introduce the following abbreviation for
the functional matrix

F (x) :=

(
∂Φi

∂xj
(x)

)
i,j=1,...,n

, x ∈ Ω.

The vectors

a(x) =
(
a1(x), . . . , an(x)

)
, a(x) =

(
a1(x), . . . , an(x)

)

and
b(x) =

(
b1(x), . . . , bn(x)

)
, b(x) =

(
b1(x), . . . , bn(x)

)

are subject to the transformation laws

a(x) = a
(
Φ(x)
)
◦ F (x), b(x) = b

(
Φ(x)
)
◦ F (x),

and
a(x) ◦ F−1(x) = a

(
Φ(x)
)
, b(x) ◦ F−1(x) = b

(
Φ(x)
)
,

respectively. We define the transformation matrix

G(x) =
(
gij(x)

)
i,j=1,...,n

:= F (x)t ◦ F (x)

with the inverse matrix

G−1(x) =
(
gij(x)

)
i,j=1,...,n

= F−1(x) ◦
(
F−1(x)

)t
.

Evidently, we have

n∑
j=1

gij(x)gjk(x) = δ
i
k, i, k = 1, . . . , n

and

g(x) =
(
JΦ(x)

)2
= detG(x).

Now we define
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(α, β)1(x) :=

n∑
i,j=1

gij(x)ai(x)bj(x).

Then we infer

(α, β)1(x) = a(x) ◦G−1(x) ◦
(
b(x)
)t

= a
(
Φ(x)
)
◦ F (x) ◦ F−1(x) ◦

(
F−1(x)

)t
◦
(
F (x)

)t
◦
(
b(Φ(x))

)t

= a
(
Φ(x)
)
◦
(
b(Φ(x))

)t

= (α, β)1

(
Φ(x)
)
.

4. Let m = n− 1 hold true. We define the (n− 1)-forms

θi := (−1)i−1 dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn
for 1 ≤ i ≤ n and consider the (n− 1)-forms

α =

n∑
i=1

ai(x)θi, β =

n∑
i=1

bi(x)θi.

We use the symbol ˇ to indicate that we omit this factor. Defining

θj := (−1)j−1 dx1 ∧ . . . ∧ dxj−1 ∧ dxj+1 ∧ . . . ∧ dxn
for j = 1, . . . , n, we calculate

α = αΦ =

n∑
i=1

ai

(
Φ(x)
)
(−1)i−1 dΦ1 ∧ . . . ∧ dΦi−1 ∧ dΦi+1 ∧ . . . ∧ dΦn

=

n∑
i=1

ai

(
Φ(x)
)
(−1)i−1

⎛
⎝ n∑

j1=1

∂Φ1

∂xj1
dxj1

⎞
⎠ ∧ . . . ∧

⎛
⎝ n∑

ji−1=1

∂Φi−1

∂xji−1

dxji−1

⎞
⎠

∧

⎛
⎝ n∑

ji+1=1

∂Φi+1

∂xji+1

dxji+1

⎞
⎠ ∧ . . . ∧

⎛
⎝ n∑

jn=1

∂Φn

∂xjn
dxjn

⎞
⎠

=

n∑
i=1

ai

(
Φ(x)
)
(−1)i−1

n∑
j=1

∂(Φ1, . . . , Φ̌i, . . . , Φn)

∂(x1, . . . , x̌j , . . . , xn)
·

· dx1 ∧ . . . ∧ dx̌j ∧ . . . ∧ dxn

=
n∑

j=1

(
n∑

i=1

ai

(
Φ(x)
)
(−1)i+j ∂(Φ1, . . . , Φ̌i, . . . , Φn)

∂(x1, . . . , x̌j , . . . , xn)

)
θj =:

n∑
j=1

aj(x)θj .
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Correspondingly, we define bj(x) for j = 1, . . . , n. The matrix of adjoints
for F (x), namely

E(x) :=

(
(−1)i+j ∂(Φ1, . . . , Φ̌i, . . . , Φn)

∂(x1, . . . , x̌j , . . . , xn)

)
i,j=1,...,n

,

satisfies the identity

(
F (x)t

)−1

=

((
∂Φj

∂xi
(x)

)
i,j=1,...,n

)−1

=
1

JΦ(x)
E(x),

and equivalently

E(x) = JΦ(x)
(
F (x)t

)−1

. (5)

When

αΦ = α =

n∑
j=1

aj(x)θj , βΦ = β =

n∑
j=1

bj(x)θj

denote the transformed (n− 1)-forms, their coefficient vectors

a(x) =
(
a1(x), . . . , an(x)

)
, a(x) =

(
a1(x), . . . , an(x)

)

and
b(x) =

(
b1(x), . . . , bn(x)

)
, b(x) =

(
b1(x), . . . , bn(x)

)

are subject to the transformation laws

a(x) = a
(
Φ(x)
)
◦ E(x) = JΦ(x)a

(
Φ(x)
)
◦
(
F (x)t

)−1

,

b(x) = b
(
Φ(x)
)
◦ E(x) = JΦ(x)b

(
Φ(x)
)
◦
(
F (x)t

)−1

.

Now we define as the inner product

(α, β)n−1(x) :=
1

g(x)

n∑
i,j=1

gij(x)ai(x)bj(x).

Finally, we infer

(α, β)n−1(x) =
1(

JΦ(x)
)2 a(x) ◦G(x) ◦

(
b(x)
)t

= a
(
Φ(x)
)
◦
(
F (x)t

)−1

◦ F (x)t ◦ F (x) ◦
(
F (x)

)−1

◦
(
b(Φ(x))

)t

= a
(
Φ(x)
)
◦
(
b(Φ(x))

)t
= (α, β)n−1

(
Φ(x)
)
.
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Now we introduce another operation in the set of differential forms.

Definition 8.1. When k ∈ K := {0, 1, n − 1, n} holds true, we attribute to
each k-form α its dual (n− k)-form ∗α as follows:

1. Let k = 0 and α = a(x) be given. Then we define

∗α := a(x)ω,

where
ω =
√
g(x) dx1 ∧ . . . ∧ dxn

denotes the volume form (compare (3)).
2. Let k = 1 and

α =

n∑
i=1

ai(x) dxi

be given. Then we define

∗α :=
√
g(x)

n∑
i=1

⎛
⎝ n∑

j=1

gij(x)aj(x)

⎞
⎠ θi.

3. Let k = n− 1 and

α =

n∑
i=1

ai(x)θi

be given. Then we define

∗α :=
(−1)n−1√
g(x)

n∑
i=1

⎛
⎝ n∑

j=1

gij(x)aj(x)

⎞
⎠ dxi.

4. Let k = n and α = a(x)ω be given. Then we define

∗α := a(x).

We collect some properties of the ∗-operator.

1. The ∗-operator represents a linear operator from the vector space of k-
forms into the vector space of (n − k)-forms. It gives us an involution,
which means

∗ ∗ α = (−1)k(n−k)α

for all k-forms α with k ∈ K.
2. The k-form α and the (n− k)-form β fulfill the identity

(α, ∗β)k = (∗α, β)n−k(−1)k(n−k), k ∈ K.

We prove this statement for all k ∈ K:
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a) Let k = 0, α = a(x), β = b(x)ω, ∗β = b(x), ∗α = a(x)ω be given.
Then we obtain

(α, ∗β)0 = a(x)b(x) = a(x)b(x)(ω, ω)n = (a(x)ω, b(x)ω)n = (∗α, β)n.

b) Let k = n, α an n-form, β a 0-form be given. We calculate with the
aid of property 1 and (a) as follows:

(α, ∗β)n = (∗(∗α), ∗β)n = (∗α, ∗(∗β))0 = (∗α, β)0.

c) Let k = 1 be given. We consider the forms

α =

n∑
i=1

ai(x) dxi, β =

n∑
i=1

bi(x)θi.

Then we obtain

(α, ∗β)1 =
(−1)n−1√
g(x)

n∑
i,j=1

gij(x)ai(x)

(
n∑

k=1

gjk(x)bk(x)

)

=
(−1)n−1√
g(x)

n∑
i,j=1

ai(x)

(
n∑

k=1

gij(x)gjk(x)bk(x)

)

=
(−1)n−1√
g(x)

n∑
i=1

ai(x)

(
n∑

k=1

δikbk(x)

)

=
(−1)n−1√
g(x)

n∑
i=1

ai(x)bi(x),

as well as

(∗α, β)n−1 =

√
g(x)

g(x)

n∑
i,j=1

gij(x)

(
n∑

k=1

gik(x)ak(x)

)
bj(x)

=
1√
g(x)

n∑
i,j=1

bj(x)

(
n∑

k=1

gij(x)g
ik(x)ak(x)

)

=
1√
g(x)

n∑
j,k=1

bj(x)
(
δkj ak(x)

)

=
1√
g(x)

n∑
i=1

ai(x)bi(x).

This implies (α, ∗β)1 = (−1)n−1(∗α, β)n−1.
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d) The case k = n − 1 remains. With the aid of property 1 and (c), we
deduce for the (n− 1)-form α and the 1-form β as follows:

(α, ∗β)n−1 = (−1)n−1(∗(∗α), ∗β)n−1

= (∗α, ∗(∗β))1 = (−1)n−1(∗α, β)1.

3. Taking the two k-forms α and β with k ∈ K, we infer

(∗α, ∗β)n−k = (−1)k(n−k)(∗(∗α), β)k

=
(
(−1)k(n−k)

)2
(α, β)k = (α, β)k.

Consequently, the ∗-operator represents an isometry.
4. Two k-forms α and β satisfy the identity

α ∧ (∗β) = (−1)k(n−k)(∗α) ∧ β = (α, β)kω, k ∈ K.

For the proof, we show the relation

α ∧ (∗β) = (α, β)kω. (6)

Then the (n− k)-form ∗α and the k-form β satisfy

(−1)k(n−k)(∗α) ∧ β = β ∧ (∗α) = (β, α)kω = (α, β)kω = α ∧ (∗β).

a) Let k = 0, α = a(x), β = b(x), ∗β = b(x)ω be given. Then we see

α ∧ (∗β) = a(x)b(x)ω = (α, β)0ω.

b) Let k = 1 as well as

α =

n∑
i=1

ai(x) dxi, β =

n∑
i=1

bi(x) dxi

and

∗β =
√
g(x)

n∑
i=1

⎛
⎝ n∑

j=1

gij(x)bj(x)

⎞
⎠ θi

be given. Now we evaluate

α∧(∗β) =
√
g(x)

⎛
⎝ n∑

i,j=1

gij(x)ai(x)bj(x)

⎞
⎠ dx1∧ . . .∧dxn = (α, β)1ω.

c) For k = n− 1 and

α =

n∑
i=1

ai(x)θi, β =

n∑
i=1

bi(x)θi
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as well as

∗β =
(−1)n−1√
g(x)

n∑
i=1

⎛
⎝ n∑

j=1

gij(x)bj(x)

⎞
⎠ dxi,

we infer

α ∧ (∗β) =
(

n∑
i=1

ai(x)θi

)
∧

⎛
⎝ (−1)n−1√

g(x)

n∑
i=1

⎛
⎝ n∑

j=1

gij(x)bj(x)

⎞
⎠ dxi

⎞
⎠

=

⎛
⎝ 1√

g(x)

n∑
i,j=1

gij(x)ai(x)bj(x)

⎞
⎠ dx1 ∧ . . . ∧ dxn

= (α, β)n−1

√
g(x) dx1 ∧ . . . ∧ dxn = (α, β)n−1ω.

d) Finally, let k = n, α = a(x)ω, and β = b(x)ω be given. This implies

α ∧ (∗β) = a(x)ωb(x) = a(x)b(x)ω = (α, β)nω.

5. Let

α =

n∑
i=1

ai(x)dxi

denote a Pfaffian form and

x = Φ(x) =
(
Φ1(x1, . . . , xn), . . . , Φn(x1, . . . , xn)

)

a parameter transformation. Then we observe (∗α)Φ = ∗(αΦ).

We use the invariance of the inner product as well as the property 4: For
an arbitrary 1-form

β =

n∑
i=1

bi(x) dxi

with the transformed 1-form βΦ, we infer the identity

βΦ ∧ ∗(αΦ) = (βΦ, αΦ)1ωΦ = {(β, α)1}ΦωΦ

= {(β, α)1ω}Φ = {β ∧ (∗α)}Φ = βΦ ∧ (∗α)Φ.

Then we obtain

βΦ ∧ (∗(αΦ)− (∗α)Φ) = 0 for all β,

and consequently
∗(αΦ) = (∗α)Φ.



82 Chapter 1 Differentiation and Integration on Manifolds

Definition 8.2. Given a 1-form

α =

n∑
i=1

ai(x) dxi , x ∈ Ω

of the class C1(Ω), we define the co-derivative δα due to

δα := ∗d ∗ α.

Remark: Now δ represents a parameter-invariant differential operator of first
order - and attributes a 0-form to each 1-form. We determine the operator δ
in arbitrary coordinates. Let us consider

α =
n∑

i=1

ai(x) dxi, ∗α =
√
g(x)

n∑
i=1

⎛
⎝ n∑

j=1

gij(x)aj(x)

⎞
⎠ θi.

Then we evaluate

d ∗ α =

n∑
i=1

∂

∂xi

⎛
⎝√g(x)

n∑
j=1

gij(x)aj(x)

⎞
⎠ dx1 ∧ . . . ∧ dxn

=
1√
g(x)

n∑
i=1

∂

∂xi

⎛
⎝√g(x)

n∑
j=1

gij(x)aj(x)

⎞
⎠ω.

The application of the ∗-operator on d ∗ α yields

δα = ∗d ∗ α =
1√
g(x)

n∑
i=1

∂

∂xi

⎛
⎝√g(x)

n∑
j=1

gij(x)aj(x)

⎞
⎠ . (7)

Theorem 8.3. (Partial integration in arbitrary parameters)
Let Ω ⊂ R

n denote a domain satisfying the assumptions (A), (B), and (D)
for the Gaussian integral theorem. The parameter transformation

x = Φ(x) : Ω −→ Θ ∈ C1(Ω)

may be bijective and subject to the condition

JΦ(x) ≥ η > 0 for all points x ∈ Ω.

Furthermore, let a 1-form

α =

n∑
i=1

ai(x) dxi, x ∈ Ω
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and a 0-form β = b(x), x ∈ Ω of the class C1(Ω) be given. Then we have the
identity ∫

Ω

(α, dβ)1ω +

∫
Ω

(δα, β)0ω =

∫
∂Ω

(∗α) ∧ β.

Here the boundary ∂Ω is endowed with the induced canonical orientation of
R

n.

Proof: The assumptions on the parameter transformation Φ guarantee that
all functions appearing belong to the regularity class C1(Ω). We apply the
Stokes integral theorem and obtain - with the aid of (6) - our statement as
follows: ∫

Ω

(α, dβ)1ω =

∫
Ω

α ∧ (∗dβ) = (−1)n−1

∫
Ω

(∗α) ∧ dβ

=

∫
Ω

d
(
(∗α) ∧ β

)
−
∫
Ω

(d ∗ α) ∧ β

=

∫
∂Ω

(∗α) ∧ β −
∫
Ω

(d ∗ α) ∧ (∗ ∗ β)

=

∫
∂Ω

(∗α) ∧ β −
∫
Ω

(d ∗ α, ∗β)nω

=

∫
∂Ω

(∗α) ∧ β −
∫
Ω

(∗d ∗ α, β)0ω

=

∫
∂Ω

(∗α) ∧ β −
∫
Ω

(δα, β)0ω.

q.e.d.

Corollary: When we require zero-boundary-values in Theorem 8.3 for the func-
tion β, or more precisely β ∈ C1

0 (Ω), we deduce the identity∫
Ω

(α, dβ)1ω +

∫
Ω

(δα, β)0ω = 0.

Therefore, we name δ the adjoint derivative to the exterior derivative d.

Definition 8.4. The two functions ψ(x) and χ(x) of the class C1(Ω) with
their associate differentials

dψ =

n∑
i=1

ψxi dxi, dχ =

n∑
i=1

χxi dxi
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being given, we define the Beltrami operator of first order via

∇(ψ, χ) := (dψ, dχ)1(x) =

n∑
i,j=1

gij(x)ψxi(x)χxj (x).

Remark: Evidently, the property

∇(ψ, χ)(x) = ∇(ψ, χ)
(
Φ(x)
)

holds true, where we note that

ψ
(
Φ(x)
)
= ψ(x), χ

(
Φ(x)
)
= χ(x).

Consequently, ∇ represents a parameter-invariant differential operator of first
order.

Definition 8.5. We define the Laplace-Beltrami operator

Δψ(x) := δdψ(x), x ∈ Ω

for functions ψ(x) ∈ C2(Ω).

Remark: Since the operators d and δ are parameter-invariant, the operator Δ
is parameter-invariant as well:

Δψ(x) = Δψ
(
Φ(x)
)
, x ∈ Ω.

Using (7), we now describe Δ in coordinates:

Δψ = δdψ = δ

⎛
⎝ n∑

j=1

ψxj dxj

⎞
⎠

=
1√
g(x)

n∑
i=1

∂

∂xi

⎛
⎝√g(x)

n∑
j=1

gij(x)ψxj

⎞
⎠ .

(8)

Theorem 8.6. Let Ω ⊂ R
n denote a domain satisfying the assumptions (A),

(B), and (D) of the Gaussian integral theorem. Furthermore, the parameter
transformation

x = Φ(x) : Ω −→ Θ

belongs to the class C2(Ω) and is bijective subject to the condition

JΦ(x) ≥ η > 0 for all points x ∈ Ω.

Finally, let the functions ψ(x) ∈ C2(Ω) as well as χ(x) ∈ C1(Ω) be given.
Then we have the identity∫

Ω

∇(ψ, χ)ω +

∫
Ω

(Δψ, χ)0ω =

∫
∂Ω

(∗dψ)χ.
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Proof: We apply Theorem 8.3 and insert

α = dψ ∈ C1(Ω), β = χ(x) ∈ C1(Ω).

At first, we obtain∫
Ω

(dψ, dχ)1ω +

∫
Ω

(δdψ, β)0ω =

∫
∂Ω

(∗dψ)χ.

Using the Definitions 8.4 and 8.5, we infer the identity∫
Ω

∇(ψ, χ)ω +

∫
Ω

(Δψ, χ)0ω =

∫
∂Ω

(∗dψ)χ

stated above. q.e.d.

Remark:

1. We evaluate the Laplace operator in cylindrical coordinates,

x = r cosϕ, y = r sinϕ, z = h,

where 0 < r < +∞, 0 ≤ ϕ < 2π, −∞ < h < +∞ hold true. Therefore,
we consider the case n = 3 and choose

x1 = r, x2 = ϕ, x3 = h.

The fundamental tensor appears in the following form:

(gij) =

⎛
⎝1 0 0

0 r2 0
0 0 1

⎞
⎠ , (gij) =

⎛
⎝1 0 0

0 1
r2 0

0 0 1

⎞
⎠ .

This implies
g(x) = det (gij) = r

2.

In our calculations we have to respect only those elements on the principal
diagonal. With the aid of (7), we then obtain

Δ =
1

r

{
∂

∂r

(
r
∂

∂r

)
+
∂

∂ϕ

(
1

r

∂

∂ϕ

)
+
∂

∂h

(
r
∂

∂h

)}

=
1

r

(
∂

∂r
+ r

∂2

∂r2
+

1

r

∂2

∂ϕ2
+ r

∂2

∂h2

)

=
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
+
∂2

∂h2
.

For plane polar coordinates we set z ≡ 0, and the expression above is
reduced to
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Δ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
.

Defining

Λ :=
∂2

∂ϕ2

for the angular expression, we rewrite Δ into the form

Δ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
Λ.

(compare the Laplace operator in spherical coordinates).
2. We introduce spherical coordinates

x = r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ

with 0 < r < +∞, 0 ≤ ϕ < 2π, and 0 < θ < π. Calculations parallel to
Remark 1 yield

Δ =
1

r2

{
∂

∂r

(
r2
∂

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

}

=
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

{
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

}

=:
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
Λ.

Here the operator Λ does not depend on r again. However, it is only
dependent on the angles ϕ, θ.

When we investigate spherical harmonic functions in Chapter 5, we need the
Laplace operator for spherical coordinates in n dimensions. Now we treat this
general case.

Let the unit sphere in R
n, namely

Σ =
{
ξ = (ξ1, . . . , ξn) ∈ R

n : |ξ| = 1
}
,

by parametrized by

ξ = ξ(t) =
(
ξ1(t1, . . . , tn−1), . . . , ξn(t1, . . . , tn−1)

)t
: T −→ Σ ∈ C2(T ),

with the open set T ⊂ R
n−1. Via the mapping

X(r, t) := rξ(t1, . . . , tn−1), r ∈ (0,+∞), t ∈ T,

we obtain polar coordinates in R
n. Furthermore, the functional matrix appears

in the form
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∂X(r, t) = (Xr, Xt1 , . . . , Xtn−1) = (ξ, rξt1 , . . . , rξtn−1).

We determine the metric tensor as follows:

G(r, t) =
(
gij(r, t)

)
i,j

=

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0 r2h11 · · · r2h1,n−1

... · · ·
...

0 r2hn−1,1 · · · r2hn−1,n−1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0

... r2H(t)

0

⎞
⎟⎟⎟⎟⎠ ,

where we abbreviate

H(t) =
(
hij(t)

)
i,j=1,...,n−1

:=
(
ξti(t) · ξtj (t)

)
i,j=1,...,n−1

.

Using the convention

H−1(t) =
(
hij(t)

)
i,j=1,...,n−1

, G−1(r, t) =
(
gij(r, t)

)
i,j=1,...,n

,

we infer

G−1(r, t) =
(
gij(r, t)

)
i,j

=

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0

...
H−1(t)
r2

0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 h11

r2 · · · h1,n−1

r2

... · · ·
...

0 hn−1,1

r2 · · · hn−1,n−1

r2

⎞
⎟⎟⎟⎟⎟⎠
.

Furthermore, we define

g(r, t) := detG(r, t), h(t) := detH(t)

and obtain
g(r, t) = r2(n−1)h(t).

When u = u(r, t) and v = v(r, t) are two functions, we determine the Beltrami
differential operator of first order due to

∇(u, v) =

n∑
i,j=1

gij(x)uxivxj

=
∂u

∂r

∂v

∂r
+

1

r2

n−1∑
i,j=1

hij(t)
∂u

∂ti

∂v

∂tj
.

We express the invariant Beltrami operator of first order on the sphere Σ via

Γ (u, v) :=
n−1∑
i,j=1

hij(t)
∂u

∂ti

∂v

∂tj
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and deduce

∇(u, v) =
∂u

∂r

∂v

∂r
+

1

r2
Γ (u, v) for all u = u(r, t), v = v(r, t). (9)

Now we represent the Laplace-Beltrami operator in spherical coordinates: We
take the function

u = u(r, t) = u(r, t1, . . . , tn−1),

utilize the identity
√
g(r, t) = rn−1

√
h(t) as well as formula (8), and obtain

Δu =
1√
g(r, t)

div(r,t)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
√
g(r, t) G−1(r, t) ◦

⎛
⎜⎜⎜⎝

ur
ut1
...

utn−1

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
1√
g(r, t)

∂

∂r

(√
g(r, t)

∂u

∂r

)

+
1√
g(r, t)

divt

⎧⎪⎨
⎪⎩r

n−1
√
h(t)

1

r2
H−1(t) ◦

⎛
⎜⎝
ut1
...

utn−1

⎞
⎟⎠
⎫⎪⎬
⎪⎭

=
∂2u

∂r2
+
n− 1

r

∂u

∂r
+

1

r2
1√
h(t)

divt

⎧⎪⎨
⎪⎩
√
h(t) H−1(t) ◦

⎛
⎜⎝
ut1
...

utn−1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

Defining the Laplace-Beltrami operator on the sphere Σ by

Λu :=
1√
h(t)

n−1∑
i=1

∂

∂ti

⎛
⎝√h(t)

n−1∑
j=1

hij(t)
∂u

∂tj

⎞
⎠ , t ∈ T,

we obtain the following identity

Δu =
∂2u

∂r2
+
n− 1

r

∂u

∂r
+

1

r2
Λu for all u = u(r, t) ∈ C2((0,+∞)× T ).

(10)
We still show the symmetry of the Laplace-Beltrami operator on the sphere
for later use.

Theorem 8.7. Taking the functions f, g ∈ C2(Σ), we have the relation
∫
Σ

f(ξ)
(
Λg(ξ)

)
dσ(ξ) = −

∫
Σ

Γ (f, g) dσ(ξ) =

∫
Σ

(
Λf(ξ)

)
g(ξ) dσ(ξ).

Here dσ denotes the surface element on Σ.
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Proof: Let 0 < ε < 1 be given, and we consider the domain

Ωε :=
{
x ∈ R

n : 1− ε < |x| < 1 + ε
}
.

Furthermore, we have

u(r, ξ) := f(ξ), v(r, ξ) := g(ξ), r ∈ (1− ε, 1 + ε), ξ ∈ Σ.

Theorem 8.6 yields

∫
Ωε

∇(u, v)ω +

∫
Ωε

(Δu, v)0 ω =

∫
∂Ωε

(∗du)v =
∫

∂Ωε

v
∂u

∂ν
dσ,

where ν denotes the exterior normal to ∂Ωε. These parameter-invariant inte-
grals are evaluated in (r, ξ)-coordinates: Via the identities (9) as well as (10)
and noting that

∂u

∂ν
= ±∂u

∂r
≡ 0 on ∂Ωε,

we arrive at the relation

0 =

1+ε∫
1−ε

⎛
⎝∫

Σ

1

r2
Γ (f, g) dσ(ξ) rn−1

⎞
⎠ dr +

1+ε∫
1−ε

⎛
⎝∫

Σ

1

r2
Λ(f) g dσ(ξ) rn−1

⎞
⎠ dr

=

⎛
⎝

1+ε∫
1−ε

rn−3 dr

⎞
⎠ ∫

Σ

(
Γ (f, g) +Λ(f) g

)
dσ(ξ).

This implies

∫
Σ

(
Λf(ξ)

)
g(ξ) dσ(ξ) = −

∫
Σ

Γ (f, g) dσ(ξ).

Correspondingly, we deduce the second identity stated above. q.e.d.

9 Some Historical Notices to Chapter 1

The theory of partial differential equations in the classical sense is treated
within the framework of the continuously differentiable functions. The pro-
found integral theorem of Gauß constitutes the center for the classical investi-
gations of partial differential equations. This might explain the title Princeps
Mathematicorum attributed to him. His tomb in Göttingen and the monument
for him, together with the physicist W.Weber, express the great respect, which
is given to C.F.Gauß.
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Our treatment within the framework of differential forms, created by E.Cartan
(1869–1961), simplifies the various integral theorems and classifies them geo-
metrically. Though differential forms are systematically used, with great suc-
cess, in differential geometry, analysts mostly refrain from their application in
the theory of partial differential equations. We owe the introduction of invari-
ant differential operators to E.Beltrami (1835–1900) – the first representative
of a great differential-geometric tradition in Italy.

Figure 1.1 Portrait of Carl Friedrich Gauß (1777–1855)

Lithography by Siegried Detlef Bendixen published in Schumacher’s As-
tronomische Nachrichten in 1828; taken from the inner titel-page of the biog-
raphy by Horst Michling: Carl Friedrich Gauß – Aus dem Leben des Princeps
Mathematicorum, Verlag Göttinger Tageblatt, Göttingen (1976).
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