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Preface – Volume 1

Partial differential equations appear in both physics and geometry. Within
mathematics they unite the areas of complex analysis, differential geometry
and calculus of variations. The investigation of partial differential equations
has contributed substantially to the development of functional analysis. Al-
though a relatively uniform treatment of ordinary differential equations is
possible, multiple and quite diverse methods are available for partial differ-
ential equations. With this two-volume textbook we intend to present the
entire domain Partial Differential Equations – so rich in theories and
applications – to students on the intermediate level.

We presuppose a basic knowledge of the analysis, as it is conveyed in the
beautiful lectures [Hi1] and [Hi2] by S.Hildebrandt or in our lecture notes [S1]
and [S2] or in W.Rudin’s influential textbook [Ru]. For the convenience of the
reader we further develop foundations from the analysis in a form adequate
to the theory of partial differential equations. Therefore, this textbook can
be used for a course extending over several semesters. We have intended to
present the theory in the same form we know from books on complex analysis
or differential geometry. In our opinion, gaining a deep understanding of the
subject replaces the need for exercises, which are implicitly present in our
text and may be supplemented from other books. By excluding exercises, we
instead focus on presenting a complete and self-contained theory.

A survey of all the topics is provided by the table of contents, which nat-
urally reflects the interests of the author. For advanced readers, each chap-
ter may be studied independently from the others. In selecting the topics of
our lectures and consequently for our textbooks, I tried to follow the advice
of one of the first great scientists at the University of Göttingen, namely
G.C. Lichtenberg:Teach the students h o w to think and not always w h a t
to think! When I was a student at Göttingen, I admired the commemorative
plaques throughout the city in honor of many great physicists and mathemati-
cians. In this spirit, I attribute the results and theorems in our compendium
to the persons who – to the best of my knowledge – created them.
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The original version of this textbook, Friedrich Sauvigny: Partielle Differ-
entialgleichungen der Geometrie und der Physik – Grundlagen und Integral-
darstellungen – Unter Berücksichtigung der Vorlesungen von E. Heinz, was
first published in 2004 by Springer-Verlag. A translated and expanded version
of this monograph followed in 2006 as Springer-Universitext, namely Friedrich
Sauvigny: Partial Differential Equations 1, and we are now presenting a sec-
ond edition of this textbook.

In Chapter 1 we treat the Differentiation and Integration on Manifolds, where
we use the improper Riemannian integral. After the Weierstraß approximation
theorem in Section 1, we introduce differential forms in Section 2 as function-
als on surfaces – parallel to [Ru]. The calculus rules for differential forms
are immediately derived from the determinant laws and the transformation
formula for multiple integrals. With the partition of unity and an adequate
approximation we prove the Stokes integral theorem for manifolds in Sec-
tion 4, which may possess singular boundaries of capacity zero besides their
regular boundaries. In Section 5 we especially obtain the Gaussian integral
theorem for singular domains as in [H1], which is indispensable for the theory
of partial differential equations. After the discussion of contour integrals in
Section 6, we shall follow [GL] in Section 7 and represent A.Weil’s proof of the
Poincaré lemma. In Section 8 we shall explicitly construct the ∗-operator for
certain differential forms in order to define the Beltrami operators. Finally,
we represent the Laplace operator in n-dimensional spherical coordinates.

In Chapter 2 we shall constructively supply the Foundations of Functional
Analysis. Having presented Daniell’s integral in Section 1, we shall continue
the Riemannian integral to the Lebesgue integral in Section 2. The latter is
distinguished by convergence theorems for pointwise convergent sequences of
functions. We deduce the theories of Lebesgue measurable sets and functions
in a natural way; see the Sections 3 and 4. In Section 5 we compare Lebesgue’s
with Riemann’s integral. Then we consider Banach and Hilbert spaces in Sec-
tion 6, and in Section 7 we present the Lebesgue spaces Lp(X) as classical
Banach spaces. Especially important are the selection theorems with respect
to almost everywhere convergence due to H. Lebesgue and with respect to
weak convergence due to D.Hilbert. Following ideas of J. v. Neumann we in-
vestigate bounded linear functionals on Lp(X) in Section 8. For this Chapter
1 have profited from a seminar on functional analysis, offered to us as students
by Professor Dr. E.Heinz in Göttingen.

In Chapter 3 we shall study topological properties of mappings in R
n and solve

nonlinear systems of equations. In this context we utilize Brouwer’s degree of
mapping, for which E.Heinz has given an ingenious integral representation
(compare [H8]). Besides the fundamental properties of the degree of map-
ping, we obtain the classical results of topology. For instance, the theorems
of Poincaré on spherical vector-fields and of Jordan-Brouwer on topological
spheres in R

n appear. The case n = 2 reduces to the theory of the winding
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number. In this chapter we essentially follow the first part of the lecture on
fixed point theorems [H4] by E.Heinz.

In Chapter 4 we develop the theory of holomorphic functions in one and
several complex variables. Since we utilize the Stokes integral theorem, we
easily attain the well-known theorems from the classical theory of functions
in the Sections 2 and 3. In the subsequent paragraphs we also study solutions
of the inhomogeneous Cauchy-Riemann differential equation, which has been
completely investigated by L. Bers and I. N.Vekua (see [V]). In Section 6 we
assemble statements on pseudoholomorphic functions, which are similar to
holomorphic functions as far as the behavior at their zeroes is concerned.
In Section 7 we prove the Riemannian mapping theorem with an extremal
method due to Koebe and investigate in Section 8 the boundary behavior of
conformal mappings. Furthermore, we consider the discontinuous behavior
of Cauchy’s integral across the boundary in Section 9 and solve a Dirichlet
problem for plane harmonic mappings. In this chapter we have profited from
the beautiful lecture [Gr] on complex analysis by H.Grauert.

Chapter 5 is devoted to the Potential Theory in R
n. With the aid of the Gaus-

sian integral theorem we investigate Poisson’s differential equation in Section 1
and Section 2, and we establish an analyticity theorem. With Perron’s method
we solve the Dirichlet problem for Laplace’s equation in Section 3. Starting
with Poisson’s integral representation, we develop the theory of spherical har-
monic functions in R

n; see Section 4 and Section 5. This theory was founded
by Legendre, and we owe this elegant representation to G. Herglotz. In this
chapter as well, I was able to profit decisively from the lecture [H2] on par-
tial differential equations by my academic teacher, Professor Dr. E.Heinz in
Göttingen.

In Chapter 6 we consider Linear Partial Differential Equations in R
n. We

prove the maximum principle for elliptic differential equations in Section 1
and apply this central tool on quasilinear, elliptic differential equations in
Section 2 (compare the lecture [H6]). In Section 3 we turn to the heat equation
and present the parabolic maximum-minimum principle. Then in Section 4,
we study characteristic surfaces and establish an energy estimate for the wave
equation. In Section 5 we solve the Cauchy initial value problem of the wave
equation in R

n for the dimensions n = 1, 3, 2. With the aid of Abel’s integral
equation we solve this problem for all n ≥ 2 in Section 6 (compare the lecture
[H5]). Then we consider the inhomogeneous wave equation and an initial-
boundary-value problem in Section 7. For parabolic and hyperbolic equations
we recommend the textbooks [GuLe] and [J]. Finally, we classify the linear
partial differential equations of second order in Section 8. We discover the
Lorentz transformations as invariant transformations for the wave equation
(compare [G]).
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With Chapters 5 and 6, we intend to give a geometrically oriented introduc-
tion into the theory of partial differential equations, without assuming prior
functional analytic knowledge.

In this second edition of our monograph Partial Differential Equations 1, we
have carefully revised Volume 1 and added Section 9 on the Boundary Behavior
of Cauchy’s Integral in Chapter 4. We shall present a revised version of our
book Partial Differential Equations 2 as well, where we shall add a new chapter
on Boundary Value Problems from Differential Geometry. The topics of the
new Chapter 13 are listed in the table of contents for our enlarged second
edition of Volume 2.

We follow the Total Order Code of the Universitext series, however, adapt
this to the present extensive contents. Since we see our books as an entity,
we count the chapters throughout our two volumes from 1-13. In each section
individually, we count the equations and refer to them by a single number;
when we refer to an equation in another section of the same chapter, say the
m-th section, we have to add Section m; when we refer to an equation in the
m-th section of another chapter, say the l-th chapter, we have to add Section
m in Chapter l.

We assemble definitions, theorems, propositions, examples to the expression
environment, which is borrowed from the underlying TEX-file. Individually in
each section, we count these environments consecutively by the number n, and
denote the n-th environment within the m-th section by Environment m.n.
Thus we have attributed a pair of integers m.n to all definitions, theorems,
propositions, and examples, which is unique within each chapter and easy to
find. Referring to these environments throughout both books, we proceed as
described above for the equations.

We add Figure 1.1 – Figure 1.9 to our Volume 1 and Figure 2.1 – Figure 2.11
to our Volume 2, which mostly represent portraits of mathematicians. This
small photo collection of some scientists, who have contributed to the theory
of Partial Differential Equations, already shows that our area is situated in
the center of modern mathematics and possesses profound interrelations with
geometry and physics.

This textbook Partial Differential Equations has been developed from
lectures that I have been giving in the Brandenburgische Technische Univer-
sität at Cottbus from the winter semester 1992/93 to the present semester. The
monograph, in part, builds upon the lectures (see [H1] – [H6]) of Professor Dr.
Dr.h.c. E. Heinz, whom I was fortunate to know as his student in Göttingen
from 1971 to 1978 and as postdoctoral researcher in hisOberseminar from 1983
to 1989. As an assistant in Aachen from 1978 to 1983, I very much appreci-
ated the elegant lecture cycles of Professor Dr.G. Hellwig (see [He1] – [He3]).
Since my research fellowship at the University of Bonn in 1989/90, an inten-
sive scientific collaboration with Professor Dr. Dr.h.c.mult. S. Hildebrandt has
developed, which continues to this day (see [DHS] and [DHT2] with the list of
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references therein). All three of these excellent representatives of mathematics
will forever have my sincere gratitude and my deep respect!

Here I gratefully acknowledge the valuable and profound advice of Priv.-Doz.
Dr. Frank Müller (Universität Duisburg-Essen) for the original edition Par-
tielle Differentialgleichungen as well as the indispensable and excellent assis-
tance of Dipl.-Math. Michael Hilschenz (BTU Cottbus) for the present edition
Partial Differential Equations 1. Furthermore, my sincere thanks are devoted
to Mrs. C. Prescott (Berlin) improving the English style of this second edition.
Moreover, I would like to thank cordially Herr Clemens Heine (Heidelberg)
and Mr. Jörg Sixt (London) as well as Mrs. Lauren Stoney (London) and
all the other members of Springer for their helpful collaboration and great
confidence.

Cottbus, February 2012 Friedrich Sauvigny
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7 The Lemma of Poincaré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8 Co-derivatives and the Laplace-Beltrami Operator . . . . . . . . . . 72
9 Some Historical Notices to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 2 Foundations of Functional Analysis . . . . . . . . . . . 91

1 Daniell’s Integral with Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2 Extension of Daniell’s Integral to Lebesgue’s Integral . . . . . . . . 96
3 Measurable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4 Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5 Riemann’s and Lebesgue’s Integral on Rectangles . . . . . . . . . . . 134
6 Banach and Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7 The Lebesgue Spaces Lp(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8 Bounded Linear Functionals on Lp(X) and Weak Convergence 161
9 Some Historical Notices to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . 172

Chapter 3 Brouwer’s Degree of Mapping . . . . . . . . . . . . . . . . 175

1 The Winding Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
2 The Degree of Mapping in R

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
3 Topological Existence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4 The Index of a Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5 The Product Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6 Theorems of Jordan-Brouwer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211



xii Contents – Volume 1

Chapter 4 Generalized Analytic Functions . . . . . . . . . . . . . . . 215

1 The Cauchy-Riemann Differential Equation . . . . . . . . . . . . . . . . 215
2 Holomorphic Functions in C

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
3 Geometric Behavior of Holomorphic Functions in C . . . . . . . . . 233
4 Isolated Singularities and the General Residue Theorem . . . . . 242
5 The Inhomogeneous Cauchy-Riemann Differential Equation . . 255
6 Pseudoholomorphic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7 Conformal Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
8 Boundary Behavior of Conformal Mappings . . . . . . . . . . . . . . . . 286
9 Behavior of Cauchy’s Integral across the Boundary . . . . . . . . . . 296
10 Some Historical Notices to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . 303

Chapter 5 Potential Theory and Spherical Harmonics . . . 305
1 Poisson’s Differential Equation in R

n . . . . . . . . . . . . . . . . . . . . . . 305
2 Poisson’s Integral Formula with Applications . . . . . . . . . . . . . . . 317
3 Dirichlet’s Problem for the Laplace Equation in R

n . . . . . . . . . 329
4 Theory of Spherical Harmonics in 2 Variables: Fourier Series . 342
5 Theory of Spherical Harmonics in n Variables . . . . . . . . . . . . . . 347

Chapter 6 Linear Partial Differential Equations in R
n . . . . 363

1 The Maximum Principle for Elliptic Differential Equations . . . 363
2 Quasilinear Elliptic Differential Equations . . . . . . . . . . . . . . . . . . 373
3 The Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
4 Characteristic Surfaces and an Energy Estimate . . . . . . . . . . . . 392
5 The Wave Equation in R

n for n = 1, 3, 2 . . . . . . . . . . . . . . . . . . . 403
6 The Wave Equation in R

n for n ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . 411
7 The Inhomogeneous Wave Equation and an Initial-boundary-

value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
8 Classification, Transformation and Reduction of Partial

Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
9 Some Historical Notices to the Chapters 5 and 6 . . . . . . . . . . . . 436

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443



Contents – Volume 2:
Functional Analytic Methods and Differential
Geometric Applications

Chapter 7 Operators in Banach Spaces

1 Fixed Point Theorems
2 The Leray-Schauder Degree of Mapping
3 Fundamental Properties for the Degree of Mapping
4 Linear Operators in Banach Spaces
5 Some Historical Notices to the Chapters 3 and 7

Chapter 8 Linear Operators in Hilbert Spaces

1 Various Eigenvalue Problems
2 Singular Integral Equations
3 The Abstract Hilbert Space
4 Bounded Linear Operators in Hilbert Spaces
5 Unitary Operators
6 Completely Continuous Operators in Hilbert spaces
7 Spectral Theory for Completely Continuous Hermitian

Operators
8 The Sturm-Liouville Eigenvalue Problem
9 Weyl’s Eigenvalue Problem for the Laplace Operator
10 Some Historical Notices to Chapter 8

Chapter 9 Linear Elliptic Differential Equations

1 The Differential Equation
Δφ(x, y) + p(x, y)φx(x, y) + q(x, y)φy(x, y) = r(x, y)

2 The Schwarzian Integral Formula
3 The Riemann-Hilbert Boundary Value Problem
4 Potential-theoretic Estimates
5 Schauder’s Continuity Method
6 Existence and Regularity Theorems
7 The Schauder Estimates
8 Some Historical Notices to Chapter 9



xiv Contents – Volume 2

Chapter 10 Weak Solutions of Elliptic Differential
Equations

1 Sobolev Spaces
2 Embedding and Compactness
3 Existence of Weak Solutions
4 Boundedness of Weak Solutions
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Chapter 1

Differentiation and Integration on Manifolds

In this chapter we lay the foundations for our treatise on partial differential
equations. A detailed description for the contents of Chapter 1 is given in the
Introduction to Volume 1 above. At first, we fix some familiar notations used
throughout the two volumes of our textbook.

By the symbol Rn we denote the n-dimensional Euclidean space with the
points x = (x1, . . . , xn) where xi ∈ R, and we define their modulus

|x| =
( n∑

i=1

x2i

) 1
2

.

In general, we denote open subsets in R
n by the symbol Ω. By the symbol M

we indicate the topological closure and by
◦
M the open kernel of a setM ⊂ R

n.
In the sequel, we shall use the following linear spaces of functions:

C0(Ω) . . . . . . continuous functions on Ω
Ck(Ω) . . . . . . k-times continuously differentiable functions on Ω
Ck

0 (Ω) . . . . . . k-times continuously differentiable functions f on Ω with the
compact support supp f = {x ∈ Ω : f(x) �= 0} ⊂ Ω

Ck(Ω) . . . . . . k-times continuously differentiable functions on Ω, whose
derivatives up to the order k can be continuously extended
onto the closure Ω

Ck
0 (Ω ∪Θ). . k-times continuously differentiable functions f on Ω, whose

derivatives up to the order k can be extended onto the closure
Ω continuously with the property supp f ⊂ Ω ∪Θ

C∗
∗ (∗ ,K) . . . space of functions as above with values in K = R

n or K = C.

Finally, we utilize the notations

∇u . . . . . . . . . gradient (ux1 , . . . , uxn) of a function u = u(x1, . . . , xn) ∈
C1(Rn)

F. Sauvigny, Partial Differential Equations 1, Universitext,
DOI 10.1007/978-1-4471-2981-3 1, © Springer-Verlag London 2012
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2 Chapter 1 Differentiation and Integration on Manifolds

Δu . . . . . . . . . Laplace operator
n∑

i=1

uxixi of a function u ∈ C2(Rn)

Jf . . . . . . . . . . functional determinant or Jacobian of a function f : Rn →
R

n ∈ C1(Rn,Rn).

1 The Weierstraß Approximation Theorem

Let Ω ⊂ R
n with n ∈ N denote an open set and f(x) ∈ Ck(Ω) with k ∈

N ∪ {0} =: N0 a k-times continuously differentiable function. We intend to
prove the following statement:
There exists a sequence of polynomials pm(x), x ∈ R

n for m = 1, 2, . . . which
converges on each compact subset C ⊂ Ω uniformly towards the function f(x).
Furthermore, all partial derivatives up to the order k of the polynomials pm
converge uniformly on C towards the corresponding derivatives of the function
f . The coefficients of the polynomials pm depend on the approximation, in
general. If this were not the case, the function

f(x) =

⎧⎪⎨
⎪⎩

exp

(
− 1

x2

)
, x > 0

0 , x ≤ 0

could be expanded into a power series. However, this leads to the evident
contradiction:

0 ≡
∞∑
k=0

f (k)(0)

k!
xk.

In the following Proposition, we introduce a mollifier which enables us to
smooth systematically integrable functions.

Proposition 1.1. We consider the following function to each ε > 0, namely

Kε(z) :=
1√
πε

n exp

(
−|z|2
ε

)

=
1√
πε

n exp

(
−1

ε
(z21 + . . .+ z2n)

)
, z ∈ R

n.

Then this function Kε = Kε(z) possesses the following properties:

1. We have Kε(z) > 0 for all z ∈ R
n;

2. The condition

∫
Rn

Kε(z) dz = 1 holds true;

3. For each δ > 0 we observe: lim
ε→0+

∫
|z|≥δ

Kε(z) dz = 0.
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Proof:

1. The exponential function is positive, and the statement is obvious.
2. We substitute z =

√
εx with dz =

√
ε
n
dx and calculate∫

Rn

Kε(z) dz =
1√
πε

n

∫
Rn

exp

(
−|z|2
ε

)
dz

=
1√
π

n

∫
Rn

exp
(
− |x|2

)
dx =

⎛
⎝ 1√

π

+∞∫
−∞

exp
(
− t2
)
dt

⎞
⎠
n

= 1.

3. We utilize the substitution from part 2 of our proof and obtain∫
|z|≥δ

Kε(z) dz =
1√
π

n

∫
|x|≥δ/

√
ε

exp
(
− |x|2

)
dx −→ 0 for ε→ 0 + .

q.e.d.

Proposition 1.2. Let us consider f(x) ∈ C0
0 (R

n) and additionally the func-
tion

fε(x) :=

∫
Rn

Kε(y − x)f(y) dy, x ∈ R
n

for ε > 0. Then we infer

sup
x∈Rn

|fε(x)− f(x)| −→ 0 for ε→ 0+,

and consequently the functions fε(x) converge uniformly on the space R
n to-

wards the function f(x).

Proof: On account of its compact support, the function f(x) is uniformly
continuous on the space Rn. The number η > 0 being given, we find a number
δ = δ(η) > 0 such that

x, y ∈ R
n, |x− y| ≤ δ =⇒ |f(x)− f(y)| ≤ η.

Since f is bounded, we find a quantity ε0 = ε0(η) > 0 satisfying

2 sup
y∈Rn

|f(y)|
∫

|y−x|≥δ

Kε(y − x) dy ≤ η for all 0 < ε < ε0.

We note that

|fε(x)− f(x)| =
∣∣∣
∫
Rn

Kε(y − x) f(y) dy − f(x)
∫
Rn

Kε(y − x) dy
∣∣∣

≤
∣∣∣
∫

|y−x|≤δ

Kε(y − x) {f(y)− f(x)} dy
∣∣∣

+
∣∣∣
∫

|y−x|≥δ

Kε(y − x) {f(y)− f(x)} dy
∣∣∣,
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and we arrive at the following estimate for all points x ∈ R
n and all numbers

0 < ε < ε0, namely

|fε(x)− f(x)| ≤
∫

|y−x|≤δ

Kε(y − x) |f(y)− f(x)| dy

+

∫
|y−x|≥δ

Kε(y − x) {|f(y)|+ |f(x)|} dy

≤ η + 2 sup
y∈Rn

|f(y)|
∫

|y−x|≥δ

Kε(y − x) dy ≤ 2η.

We summarize our considerations to

sup
x∈Rn

|fε(x)− f(x)| −→ 0 for ε→ 0 + .

q.e.d.

In the sequel, we need

Proposition 1.3. (Partial integration in R
n)

When the functions f(x) ∈ C1
0 (R

n) and g(x) ∈ C1(Rn) are given, we infer

∫
Rn

g(x)
∂

∂xi
f(x) dx = −

∫
Rn

f(x)
∂

∂xi
g(x) dx for i = 1, . . . , n.

Proof: On account of the property f(x) ∈ C1
0 (R

n), we find a radius r > 0 such
that f(x) = 0 and f(x)g(x) = 0 is correct for all points x ∈ R

n with |xj | ≥ r
for one index j ∈ {1, . . . , n} at least. The fundamental theorem of differential-
and integral-calculus yields

∫
Rn

∂

∂xi

{
f(x)g(x)

}
dx

=

+r∫
−r

. . .

+r∫
−r

⎛
⎝

+r∫
−r

∂

∂xi

{
f(x)g(x)

}
dxi

⎞
⎠ dx1 . . . dxi−1dxi+1 . . . dxn = 0.

This implies

0 =

∫
Rn

∂

∂xi

{
f(x)g(x)

}
dx =

∫
Rn

g(x)
∂

∂xi
f(x) dx+

∫
Rn

f(x)
∂

∂xi
g(x) dx.

q.e.d.

Proposition 1.4. Let the function f(x) ∈ Ck
0 (R

n,C) with k ∈ N0 be given.
Then we have a sequence of polynomials with complex coefficients
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pm(x) =

N(m)∑
j1,...,jn=0

c
(m)
j1...jn

xj11 . . . x
jn
n for m = 1, 2, . . .

such that the limit relations

Dαpm(x) −→ Dαf(x) for m→ ∞, |α| ≤ k

are satisfied uniformly in each ball BR := {x ∈ R
n : |x| ≤ R} with the

radius 0 < R < +∞. Here we define the differential operator Dα with α =
(α1, . . . , αn) by

Dα :=
∂|α|

∂xα1
1 . . . ∂xαn

n
, |α| := α1 + . . .+ αn,

where α1, . . . , αn ≥ 0 represent nonnegative integers.

Proof: We differentiate the function fε(x) with respect to the variables xi,
and together with Proposition 1.3 we see

∂

∂xi
fε(x) =

∫
Rn

{
∂

∂xi
Kε(y − x)

}
f(y) dy

= −
∫
Rn

{
∂

∂yi
Kε(y − x)

}
f(y) dy

=

∫
Rn

Kε(y − x)
∂

∂yi
f(y) dy

for i = 1, . . . , n. By repeated application of this device, we arrive at

Dαfε(x) =

∫
Rn

Kε(y − x)Dαf(y) dy, |α| ≤ k.

Here we note that Dαf(y) ∈ C0
0 (R

n) holds true. Due to Proposition 1.2, the
family of functions Dαfε(x) converges uniformly on the space R

n towards
Dαf(x) - for all |α| ≤ k - when ε→ 0+ holds true. Now we choose the radius
R > 0 such that supp f ⊂ BR is valid. Taking the number ε > 0 as fixed, we
consider the power series

Kε(z) =
1√
πε

n exp

(
−|z|2
ε

)
=

1√
πε

n

∞∑
j=0

1

j!

(
−|z|2
ε

)j

,

which converges uniformly in B2R. Therefore, each number ε > 0 possesses
an index N0 = N0(ε,R) such that the polynomial

Pε,R(z) :=
1√
πε

n

N0(ε,R)∑
j=0

1

j!

(
−z

2
1 + . . .+ z2n

ε

)j
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is subject to the following estimate:

sup
|z|≤2R

|Kε(z)− Pε,R(z)| ≤ ε.

With the expression

f̃ε,R(x) :=

∫
Rn

Pε,R(y − x)f(y) dy

we obtain a polynomial in the variables x1, . . . , xn - for each ε > 0. Further-
more, we deduce

Dαf̃ε,R(x) =

∫
Rn

Pε,R(y − x)Dαf(y) dy for all x ∈ R
n, |α| ≤ k.

Now we arrive at the subsequent estimate for all |α| ≤ k and |x| ≤ R, namely

|Dαfε(x)−Dαf̃ε,R(x)| =
∣∣∣
∫

|y|≤R

{
Kε(y − x)− Pε,R(y − x)

}
Dαf(y) dy

∣∣∣

≤
∫

|y|≤R

|Kε(y − x)− Pε,R(y − x)||Dαf(y)| dy

≤ ε
∫

|y|≤R

|Dαf(y)| dy.

Therefore, the polynomials Dαf̃ε,R(x) converge uniformly on BR towards the
derivatives Dαf(x). Choosing the null-sequence ε = 1

m with m = 1, 2, . . .,

we obtain an approximating sequence of polynomials pm,R(x) := f̃ 1
m ,R(x) in

BR, which is still dependent on the radius R. We take r = 1, 2, . . . and find
polynomials pr = pmr,r satisfying

sup
x∈Br

|Dαpr(x)−Dαf(x)| ≤ 1

r
for all |α| ≤ k.

The sequence pr satisfies all the properties stated above. q.e.d.

We are now prepared to prove the fundamental

Theorem 1.5. (The Weierstraß approximation theorem)
Let Ω ⊂ R

n denote an open set and f(x) ∈ Ck(Ω,C) a function with the
degree of regularity k ∈ N0. Then we have a sequence of polynomials with
complex coefficients of the degree N(m) ∈ N0, namely

fm(x) =

N(m)∑
j1,...,jn=0

c
(m)
j1...jn

xj11 · . . . · xjnn , x ∈ R
n, m = 1, 2, . . . ,
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such that the limit relations

Dαfm(x) −→ Dαf(x) for m→ ∞, |α| ≤ k

are satisfied uniformly on each compact set C ⊂ Ω.

Proof: We consider a sequence Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ω of bounded open sets
exhausting Ω. Here we have Ωj ⊂ Ωj+1 for all indices j. Via the partition of
unity (compare Theorem 1.8), we construct a sequence of functions φj(x) ∈
C∞

0 (Ω) satisfying 0 ≤ φj(x) ≤ 1, x ∈ Ω and φj(x) = 1 on Ωj for j = 1, 2, . . ..
Then we observe the sequence of functions

fj(x) :=

{
f(x)φj(x), x ∈ Ω

0, x ∈ R
n \Ω

with the following properties:

fj(x) ∈ Ck
0 (R

n) and Dαfj(x) = D
αf(x), x ∈ Ωj , |α| ≤ k.

Due to Proposition 1.4, we find a polynomial pj(x) to each function fj(x)
satisfying

sup
x∈Ωj

|Dαpj(x)−Dαfj(x)| = sup
x∈Ωj

|Dαpj(x)−Dαf(x)| ≤ 1

j
, |α| ≤ k,

since Ωj is bounded. For a compact set C ⊂ Ω being given arbitrarily, we find
an index j0 = j0(C) ∈ N such that the inclusion C ⊂ Ωj for all j ≥ j0(C) is
correct. This implies

sup
x∈C

|Dαpj(x)−Dαf(x)| ≤ 1

j
, j ≥ j0(C), |α| ≤ k.

When we consider the transition to the limit j → ∞, we arrive at the state-
ment

sup
x∈C

|Dαpj(x)−Dαf(x)| −→ 0

for all |α| ≤ k and all compact subsets C ⊂ Ω. q.e.d.

Theorem 1.5 above provides a uniform approximation by polynomials in the
interior of the domain for the respective function. Continuous functions de-
fined on compact sets can be uniformly approximated up to the boundary of
the domain. Here we need the following

Theorem 1.6. (Tietze’s extension theorem)
Let C ⊂ R

n denote a compact set and f(x) ∈ C0(C,C) a continuous function
defined on C. Then we have a continuous extension of f onto the whole space
R

n which means: There exists a function g(x) ∈ C0(Rn,C) satisfying

f(x) = g(x) for all points x ∈ C.
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Proof:

1. We take x ∈ R
n and define the function

d(x) := min
y∈C

|y − x|,

which measures the distance of the point x to the set C. Since C is com-
pact, we find to each point x ∈ R

n a point y ∈ C satisfying |y−x| = d(x).
When x1, x2 ∈ R

n are chosen, we infer the following inequality for y2 ∈ C
with |y2 − x2| = d(x2), namely

d(x1)− d(x2) = inf
y∈C

(
|x1 − y|)− |x2 − y2|

)

≤ |x1 − y2| − |x2 − y2|

≤ |x1 − x2|.

Interchanging the points x1 and x2, we obtain an analogous inequality
and infer

|d(x1)− d(x2)| ≤ |x1 − x2| for all points x1, x2 ∈ R
n.

In particular, the distance d : Rn → R represents a continuous function.
2. For x /∈ C and a ∈ R

n, we consider the function

�(x, a) := max

{
2− |x− a|

d(x)
, 0

}
.

The point a being fixed, the arguments above tell us that the function
�(x, a) is continuous in R

n \ C. Furthermore, we observe 0 ≤ �(x, a) ≤ 2
as well as

�(x, a) = 0 for |a− x| ≥ 2d(x),

�(x, a) ≥ 1

2
for |a− x| ≤ 3

2
d(x).

3. With
{
a(k)
}
⊂ C let us choose a sequence of points which is dense in C.

Since the function f(x) : C → C is bounded, the series below

∞∑
k=1

2−k�
(
x, a(k)

)
f
(
a(k)
)

and

∞∑
k=1

2−k�
(
x, a(k)

)

converge uniformly for all x ∈ R
n \C, and represent continuous functions

in the variable x there. Furthermore, we observe

∞∑
k=1

2−k�
(
x, a(k)

)
> 0 for x ∈ R

n \ C,
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since each point x ∈ R
n\C possesses at least one index k with �(x, a(k)) >

0. Therefore, the function

h(x) :=

∞∑
k=1

2−k�
(
x, a(k)

)
f
(
a(k)
)

∞∑
k=1

2−k�
(
x, a(k)

) =

∞∑
k=1

�k(x)f
(
a(k)
)
, x ∈ R

n \ C,

is continuous. Here we have set

�k(x) :=
2−k�

(
x, a(k)

)
∞∑
k=1

2−k�
(
x, a(k)

) for x ∈ R
n \ C.

We have the identity

∞∑
k=1

�k(x) ≡ 1, x ∈ R
n \ C.

4. Now we define the function

g(x) :=

{
f(x), x ∈ C

h(x), x ∈ R
n \ C

.

We have still to show the continuity of g on ∂C. We have the following
estimate for z ∈ C and x /∈ C:

|h(x)− f(z)| =
∣∣∣

∞∑
k=1

�k(x)
{
f
(
a(k)
)
− f(z)

} ∣∣∣

≤
∑

k:|a(k)−x|≤2d(x)

�k(x)
∣∣∣f(a(k))− f(z)

∣∣∣

≤ sup
a∈C : |a−x|≤2d(x)

|f(a)− f(z)|

≤ sup
a∈C : |a−z|≤2d(x)+|x−z|

|f(a)− f(z)|

≤ sup
a∈C : |a−z|≤3|x−z|

|f(a)− f(z)|.

Since the function f : C → C is uniformly continuous, we infer

lim
x→z
x 
∈C

h(x) = f(z) for z ∈ ∂C and x /∈ C.
q.e.d.
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The assumption of compactness for the subset C is decisive in the theorem
above. The function f(x) = sin(1/x), x ∈ (0,∞) namely cannot be continu-
ously extended into the origin 0.

Theorem 1.5 and Theorem 1.6 together yield

Theorem 1.7. Let f(x) ∈ C0(C,C) denote a continuous function on the com-
pact set C ⊂ R

n. To each quantity ε > 0, we then find a polynomial pε(x)
with the property

|pε(x)− f(x)| ≤ ε for all points x ∈ C.

We shall construct smoothing functions which turn out to be extremely valu-
able in the sequel. At first, we easily show that the function

ψ(t) :=

{
exp
(
− 1

t

)
, if t > 0

0, if t ≤ 0
(1)

belongs to the regularity class C∞(R). We take R > 0 arbitrarily and consider
the function

ϕR(x) := ψ
(
|x|2 −R2

)
, x ∈ R

n. (2)

Then we observe ϕR ∈ C∞(Rn,R). We have ϕR(x) > 0 if |x| > R holds true,
ϕR(x) = 0 if |x| ≤ R holds true, and therefore

supp(ϕR) =
{
x ∈ R

n : |x| ≥ R
}
.

Furthermore, we develop the following function out of ψ(t), namely

� = �(t) : R → R ∈ C∞(R) via t �→ �(t) := ψ(1− t)ψ(1 + t). (3)

This function is symmetric, which means �(−t) = �(t) for all t ∈ R. Further-
more, we see �(t) > 0 for all t ∈ (−1, 1), �(t) = 0 for all else, and consequently

supp(�) = [−1, 1].

Finally, we define the following ball for ξ ∈ R
n and ε > 0, namely

Bε(ξ) :=
{
x ∈ R

n : |x− ξ| ≤ ε
}

(4)

as well as the functions

ϕξ,ε(x) := �

(
|x− ξ|2
ε2

)
, x ∈ R

n. (5)

Then the regularity property ϕξ,ε ∈ C∞(Rn,R) is valid, and we deduce

ϕξ,ε(x) > 0 for all x ∈
◦
Bε(ξ) as well as ϕξ,ε(x) = 0 if |x − ξ| ≥ ε holds

true. This implies
supp(ϕξ,ε) = Bε(ξ).

A fundamental principle of proof is presented in the next
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Theorem 1.8. (Partition of unity)
Let K ⊂ R

n denote a compact set, and to each point x ∈ K the symbol
Ox ⊂ R

n indicates an open set with x ∈ Ox. Then we can select finitely many
points x(1), x(2), . . . , x(m) ∈ K with the associate number m ∈ N such that the
covering

K ⊂
m⋃

μ=1

Ox(μ)

holds true. Furthermore, we find functions χμ = χμ(x) : Ox(μ) → [0,+∞)
satisfying χμ ∈ C∞

0 (Ox(μ)) for μ = 1, . . . ,m such that the function

χ(x) :=

m∑
μ=1

χμ(x), x ∈ R
n (6)

has the following properties:

(a) The regularity χ ∈ C∞
0 (Rn) holds true.

(b) We have χ(x) = 1 for all x ∈ K.
(c) The inequality 0 ≤ χ(x) ≤ 1 is valid for all x ∈ R

n.

Proof:

1. Since the set K ⊂ R
n is compact, we find a radius R > 0 such that

K ⊂ B := BR(0) holds true. To each point x ∈ B we now choose an

open ball
◦
Bεx(x) of radius εx > 0 such that Bεx(x) ⊂ Ox for x ∈ K

and Bεx(x) ⊂ R
n \ K for x ∈ B \ K is satisfied. The system of sets{ ◦

Bεx(x)
}
x∈B

yields an open covering of the compact set B. According to

the Heine-Borel covering theorem, finitely many open sets suffice to cover
B, let us say

◦
Bε1(x

(1)),
◦
Bε2(x

(2)), . . . ,
◦
Bεm(x(m)),

◦
Bεm+1(x

(m+1)), . . .
◦
Bεm+M

(x(m+M)) .

Here we observe x(μ) ∈ K for μ = 1, 2, . . . ,m and x(μ) ∈ B \ K for
μ = m+ 1, . . . ,m+M , defining εμ := εx(μ) for μ = 1, . . . ,m+M .
With the aid of the function from (5), we now consider the nonneg-
ative functions ϕμ(x) := ϕx(μ),εμ(x). We note that the following reg-
ularity properties hold true: ϕμ ∈ C∞

0 (Ox(μ)) for μ = 1, . . . ,m and
ϕμ ∈ C∞

0 (Rn \K) for μ = m+ 1, . . . ,m+M , respectively. Furthermore,
we define ϕm+M+1(x) := ϕR(x), where we introduced ϕR already in (2).
Obviously, we arrive at the statement

m+M+1∑
μ=1

ϕμ(x) > 0 for all x ∈ R
n.
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2. Now we define the functions χμ due to

χμ(x) :=

[m+M+1∑
μ=1

ϕμ(x)

]−1

ϕμ(x), x ∈ R
n

for μ = 1, . . . ,m +M + 1. The functions χμ and ϕμ belong to the same
classes of regularity, and we observe additionally

m+M+1∑
μ=1

χμ(x) =

[m+M+1∑
μ=1

ϕμ(x)

]−1 m+M+1∑
μ=1

ϕμ(x) ≡ 1 for all x ∈ R
n.

The properties (a), (b), and (c) of the function χ(x) =
m∑

μ=1
χμ(x) are

directly inferred from the construction above. q.e.d.

Definition 1.9. We name the functions χ1, χ2, . . . , χm from Theorem 1.8 a
partition of unity subordinate to the open covering {Ox}x∈K of the compact
set K.

2 Parameter-invariant Integrals and Differential Forms

In the basic lectures of analysis the following fundamental result is established.

Theorem 2.1. (Transformation formula for multiple integrals)
Let Ω,Θ ⊂ R

n denote two open sets, where we take n ∈ N. Furthermore, let
y = (y1(x1, . . . , xn), . . . , yn(x1, . . . , xn)) : Ω → Θ denote a bijective mapping
of the class C1(Ω,Rn) satisfying

Jy(x) := det
(∂yi(x)
∂xj

)
i,j=1,...,n

�= 0 for all x ∈ Ω.

Let the function f = f(y) : Θ → R ∈ C0(Θ) be given with the property

∫
Θ

|f(y)| dy < +∞

for the improper Riemannian integral of |f |. Then we have the transformation
formula ∫

Θ

f(y) dy =

∫
Ω

f(y(x)) |Jy(x)| dx.

In the sequel, we shall integrate differential forms over m-dimensional surfaces
in R

n.
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Definition 2.2. Let the open set T ⊂ R
m with m ∈ N constitute the param-

eter domain. Furthermore, the symbol

X(t) =

⎛
⎜⎝
x1(t1, . . . , tm)

...
xn(t1, . . . , tm)

⎞
⎟⎠ : T −→ R

n ∈ Ck(T,Rn)

represents a mapping - with k, n ∈ N and m ≤ n - whose functional matrix

∂X(t) =
(
Xt1(t), . . . , Xtm(t)

)
, t ∈ T

has the rank m for all t ∈ T . Then we call X a parametrized regular surface
with the parametric representation X(t) : T → R

n.

When X : T → R
n and X̃ : T̃ → R

n are two parametric representations, we
call them equivalent if there exists a topological mapping

t = t(s) =
(
t1(s1, . . . , sm), . . . , tm(s1, . . . , sm)

)
: T̃ −→ T ∈ Ck(T̃ , T )

with the following properties:

1. J(s) :=
∂(t1, . . . , tm)

∂(s1, . . . , sm)
(s) =

∣∣∣∣∣∣∣

∂t1
∂s1

(s) . . . ∂t1
∂sm

(s)
...

...
∂tm
∂s1

(s) . . . ∂tm
∂sm

(s)

∣∣∣∣∣∣∣
> 0 for all s ∈ T̃ ;

2. X̃(s) = X
(
t(s)
)
for all s ∈ T̃ .

We say that X̃ originates from X by an orientation-preserving reparametriza-
tion. The equivalence class [X] consisting of all those parametric representa-
tions which are equivalent to X is named an open, oriented, m-dimensional,
regular surface of the class Ck in R

n. We name a surface embedded in the
space R

n if additionally the mapping X : T → R
n is injective.

Example 2.3. (Curves in R
n)

On the interval T = (a, b) ⊂ R we consider the mapping

X = X(t) =
(
x1(t), . . . , xn(t)

)
∈ C1(T,Rn), t ∈ T

satisfying

|X ′(t)| =
√
{x′1(t)}2 + . . .+ {x′n(t)}2 > 0 for all t ∈ T.

Then the integral

L(X) =

b∫
a

|X ′(t)| dt

determines the arc length of the curve X = X(t) .
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Example 2.4. (Classical surfaces in R
3)

When T ⊂ R
2 denotes an open parameter domain, we consider the Gaussian

surface representation

X(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
: T −→ R

3 ∈ C1(T,R3).

The vector in the direction of the normal to the surface is given by

Xu ∧Xv =

(
∂(y, z)

∂(u, v)
,
∂(z, x)

∂(u, v)
,
∂(x, y)

∂(u, v)

)

= (yuzv − zuyv, zuxv − xuzv, xuyv − xvyu).

The unit normal vector to the surface X is defined by the formula

N(u, v) :=
Xu ∧Xv

|Xu ∧Xv|
,

and we note that

|N(u, v)| = 1, N(u, v)·Xu(u, v) = N(u, v)·Xv(u, v) = 0 for all (u, v) ∈ T.

Via the integral

A(X) :=

∫∫
T

|Xu ∧Xv| dudv

we determine the area of the surface X = X(u, v). We evaluate

|Xu ∧Xv|2 = (Xu ∧Xv) · (Xu ∧Xv) = |Xu|2|Xv|2 − (Xu ·Xv)
2

such that

A(X) =

∫∫
T

√
|Xu|2|Xv|2 − (Xu ·Xv)2 dudv

follows.

Example 2.5. (Hypersurfaces in R
n)

Let X : T → R
n denote a regular surface - defined on the parameter domain

T ⊂ R
n−1. The (n− 1) vectors Xt1 , . . . , Xtn−1 are linearly independent for all

t ∈ T ; and they span the tangential space to the surface at the point X(t) ∈
R

n. Now we shall construct the unit normal vector ν(t) ∈ R
n. Therefore, we

require

|ν(t)| = 1 and ν(t) ·Xtk(t) = 0 for all k = 1, . . . , n− 1

as well as

det
(
Xt1(t), . . . , Xtn−1(t), ν(t)

)
> 0 for all t ∈ T.
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Consequently, the vectors Xt1 , . . . , Xtn−1 and ν constitute a positive-oriented
n-frame. In this context we define the functions

Di(t) := (−1)n+i ∂(x1, x2, . . . , xi−1, xi+1, . . . , xn)

∂(t1, . . . , tn−1)
, i = 1, . . . , n.

Then we obtain the identity

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂t1
· · · ∂xn

∂t1

...
...

∂x1

∂tn−1
· · · ∂xn

∂tn−1

λ1 · · · λn

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n∑

i=1

λiDi for all λ1, . . . , λn ∈ R.

Now we introduce the unit normal vector

ν(t) =
(
ν1(t), . . . , νn(t)

)
=

1√√√√ n∑
j=1

(Dj(t))
2

(
D1(t), . . . , Dn(t)

)
, t ∈ T.

Evidently, the equation |ν(t)| = 1 holds true and we calculate

n∑
i=1

Di
∂xi
∂tj

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂t1
· · · ∂xn

∂t1

...
...

∂x1

∂tn−1
· · · ∂xn

∂tn−1

∂x1

∂tj
· · · ∂xn

∂tj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 , 1 ≤ j ≤ n− 1.

This implies the orthogonality relation Xtj (t) · ν(t) = 0 for all t ∈ T and
j = 1, . . . , n− 1. The surface element of the hypersurface in R

n is given by

dσ :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂t1
· · · ∂xn

∂t1

...
...

∂x1

∂tn−1
· · · ∂xn

∂tn−1

ν1 · · · νn

∣∣∣∣∣∣∣∣∣∣∣∣∣

dt1 . . . dtn−1

=

n∑
j=1

νjDj dt1 . . . dtn−1

=

√√√√ n∑
j=1

(Dj(t))2 dt1 . . . dtn−1.
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Consequently, the surface area of X is determined by the improper integral

A(X) :=

∫
T

√√√√ n∑
j=1

(Dj(t))2 dt.

Example 2.6. An open set Ω ⊂ R
n can be seen as a surface in R

n - via the
mapping

X(t) := t, with t ∈ T and T := Ω ⊂ R
n.

Example 2.7. (An m-dimensional surface in R
n)

Let X(t) : T → R
n denote a surface with T ⊂ R

m as its parameter domain
and the dimensions 1 ≤ m ≤ n. By the symbols

gij(t) := Xti ·Xtj for i, j = 1, . . . ,m

we define the metric tensor of the surface X. Furthermore, we call

g(t) := det
(
gij(t)

)
i,j=1,...,m

its Gramian determinant. We complete the system {Xti}i=1,...,m in R
n at each

point X(t) by the vectors ξj with j = 1, . . . , n − m such that the following
properties are valid:

(a) We have ξj · ξk = δjk for all j, k = 1, . . . , n−m;
(b)The relations Xti · ξj = 0 for i = 1, . . . ,m and j = 1, . . . , n−m hold true;

(c) The condition det
(
Xt1 , . . . , Xtm , ξ1, . . . , ξn−m

)
> 0 is correct.

Then we determine the surface element as follows:

dσ(t) = det
(
Xt1 , . . . , Xtm , ξ1, . . . , ξn−m

)
dt1 . . . dtm

=

√
det
{
(Xt1 , . . . , ξn−m)t ◦ (Xt1 , . . . , ξn−m)

}
dt1 . . . dtm

=

√
det
(
gij(t)

)
i,j=1,...,m

dt1 . . . dtm

=
√
g(t) dt1 . . . dtm.

In order to evaluate our surface element via the Jacobi matrix ∂X(t), we need
the following

Proposition 2.8. Let A and B denote two n × m-matrices, where m ≤ n
holds true. For the numbers 1 ≤ i1 < . . . < im ≤ n, let Ai1...im define the
matrix consisting of those rows with the indices i1, . . . , im from the matrix A.
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Correspondingly, we define the submatrices of the matrix B. Then we have
the identity

det (At ◦B) =
∑

1≤i1<...<im≤n

detAi1...im detBi1...im .

Proof: We fix A and show that the identity above holds true for all matrices
B.

1. When we consider the unit vectors e1, . . . , en as columns in R
n, the formula

above holds true for all B = (ej1 , . . . , ejm) with j1, . . . , jm ∈ {1, . . . , n},
at first.

2. When the formula above holds true for the matrix B = (b1, . . . , bm), this
remains true for the matrix B′ = (b1, . . . , λbi, . . . , bm).

3. When we have our formula for the matrices B′ = (b1, . . . , b
′
i, . . . , bm)

and B′′ = (b1, . . . , b
′′
i , . . . , bm), this remains true for the matrix B =

(b1, . . . , b
′
i + b

′′
i , . . . , bm).

q.e.d.

Corollary: Given the n×m-matrix A, we have the identity

det (At ◦A) =
∑

1≤i1<...<im≤n

(detAi1...im)2.

We write the metric tensor in the form(
gij(t)

)
i,j=1,...,m

= ∂X(t)t ◦ ∂X(t)

with the functional matrix ∂X(t) =
(
Xt1(t), . . . , Xtm(t)

)
, and we deduce

g(t) = det
(
gij(t)

)
i,j=1,...,m

=
∑

1≤i1<...<im≤n

(
∂(xi1 , . . . , xim)

∂(t1, . . . , tm)
(t)

)2

.

Therefore, the surface element satisfies

dσ(t) =
√
g(t) dt1 . . . dtm

=

√√√√ ∑
1≤i1<...<im≤n

(
∂(xi1 , . . . , xim)

∂(t1, . . . , tm)
(t)

)2

dt1 . . . dtm.

Definition 2.9. The surface area of an open, oriented, m-dimensional, reg-
ular C1-surface in R

n with the parametric representation X(t) : T → R
n is

given by the improper Riemannian integral
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A(X) :=

∫
T

√√√√ ∑
1≤i1<...<im≤n

(
∂(xi1 , . . . , xim)

∂(t1, . . . , tm)

)2

dt1 . . . dtm.

Here the parameter domain T ⊂ R
m is open and the dimensions 1 ≤ m ≤ n

are prescribed. If A(X) < +∞ is valid, the surface [X] possesses finite area.

Remarks:

1. With the aid of the transformation formula for multiple integrals, we im-
mediately verify that the value of our surface area is independent of the
parametric representation.

2. In the casem = 1, we obtain by A(X) the arc length of the curveX : T →
R

n. The case m = 2 and n = 3 reduces to the classical area of a surface
X in R

3. In the case m = n− 1 we evaluate the area of hypersurfaces in
R

n.

In physics and geometry, we often meet with integrals which only depend
on the m-dimensional surface and which are independent of their parametric
representation. In this way, we are invited to consider integrals over so-called
differential forms.

Definition 2.10. On the open set O ⊂ R
n, let the functions ai1...im ∈ Ck(O)

with i1, . . . , im ∈ {1, . . . , n} and 1 ≤ m ≤ n be given; where k ∈ N0 holds true.
Now we define the set

F :=
{
X | X : T → R

n is a regular, oriented, m-dimensional

surface with finite area such that X(T ) ⊂⊂ O
}
.

By a differential form of the degree m in the class Ck(O), namely

ω :=

n∑
i1,...,im=1

ai1...im(x) dxi1 ∧ . . . ∧ dxim ,

or briefly an m-form of the class Ck(O), we comprehend the function ω :
F → R defined as follows:

ω(X) :=

∫
T

n∑
i1,...,im=1

ai1...im(X(t))
∂(xi1 , . . . , xim)

∂(t1, . . . , tm)
dt1 . . . dtm, X ∈ F .

Remark:

1. We abbreviate A ⊂⊂ O, if the set A ⊂ R
n is compact and A ⊂ O holds

true.
2. Since the coefficient functions ai1...im(X(t)), t ∈ T are bounded and the

surface has finite area, the integral above converges absolutely.
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3. When two differential symbols

ω =

n∑
i1,...,im=1

ai1...im(x) dxi1 ∧ . . . ∧ dxim

and

ω̃ =

n∑
i1,...,im=1

ãi1...im(x) dxi1 ∧ . . . ∧ dxim

are given, we introduce an equivalence relation between them as follows:

ω ∼ ω̃ ⇐⇒ ω(X) = ω̃(X) for all X ∈ F .

Therefore, we comprehend a differential form as an equivalence class of
differential symbols, where we choose a representative to characterize this
differential form.

4. When X, X̃ ∈ F are two equivalent representations of the surface [X], we
observe

ω(X̃) =

∫
˜T

n∑
i1,...,im=1

ai1...im

(
X̃(s)

)∂(x̃i1 , . . . , x̃im)

∂(s1, . . . , sm)
ds1 . . . dsm

=

∫
˜T

n∑
i1,...,im=1

ai1...im

(
X(t(s))

)∂(xi1 , . . . , xim)

∂(t1, . . . , tm)

∂(t1, . . . , tm)

∂(s1, . . . , sm)
ds1 . . . dsm

=

∫
T

n∑
i1,...,im=1

ai1...im

(
X(t)
)∂(xi1 , . . . , xim)

∂(t1, . . . , tm)
dt1 . . . dtm

= ω(X).

Therefore, ω is a mapping which is defined on the equivalence classes of
the oriented surfaces [X] with X ∈ F .

5. An orientation-reversing parametric transformation t = t(s) with J(s) <

0, s ∈ T̃ induces the change of sign: ω(X̃) = −ω(X).

Definition 2.11. A 0-form of the class Ck(O) is simply a function f(x) ∈
Ck(O) and more precisely

ω = f(x), x ∈ O.

When 1 ≤ m ≤ n is fixed, we name

βm := dxi1 ∧ . . . ∧ dxim , 1 ≤ i1, . . . , im ≤ n

a basic m-form.
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Definition 2.12. Let ω, ω1, ω2 represent three m-forms of the class C0(O)
and choose c ∈ R. Then we define the differential forms cω and ω1 + ω2 by
the prescription

(cω)(X) := cω(X) for all X ∈ F

and
(ω1 + ω2)(X) := ω1(X) + ω2(X) for all X ∈ F

respectively.

The m-dimensional differential forms constitute a vector space with the null-
element

o(X) = 0 for all X ∈ F .

Definition 2.13. (Exterior product of differential forms)
Let the differential forms

ω1 =
∑

1≤i1,...,il≤n

ai1...il(x) dxi1 ∧ . . . ∧ dxil

of degree l and

ω2 =
∑

1≤j1,...,jm≤n

bj1...jm(x) dxj1 ∧ . . . ∧ dxjm

of degree m in the class Ck(O) with k ∈ N0 be given. Then we define the
exterior product of ω1 and ω2 as the (l +m)-form

ω = ω1∧ω2 :=
∑

1≤i1,...,il,j1,...,jm≤n

ai1...il(x)bj1...jm(x) dxi1∧. . .∧dxil∧dxj1∧. . .∧dxjm

of the class Ck(O).

Remarks:

1. Arbitrary differential forms ω1, ω2, ω3 are subject to the associative law

(ω1 ∧ ω2) ∧ ω3 = ω1 ∧ (ω2 ∧ ω3).

2. When two l-forms ω1, ω2 and one m-form ω3 are given, we have the dis-
tributive law

(ω1 + ω2) ∧ ω3 = ω1 ∧ ω3 + ω2 ∧ ω3.
3. The alternating character of the determinant reveals

dxi1 ∧ . . . ∧ dxil = sign (π) dxiπ(1)
∧ . . . ∧ dxiπ(l)

.

Here the symbol π : {1, . . . , l} → {1, . . . , l} denotes a permutation with
sign (π) as its sign.
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4. In particular, when the two indices ij1 and ij2 coincide, we deduce

dxi1 ∧ . . . ∧ dxil = 0.

Therefore, each m-form in R
n with the degree m > n vanishes identically.

5. An l-form ω1 and an m-form ω2 are subject to the commutator relation

ω1 ∧ ω2 = (−1)lmω2 ∧ ω1.

Therefore, the exterior product is not commutative.
6. We can represent each m-form in the following way:

ω =
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim .

The basic m-forms dxi1 ∧ . . . ∧ dxim , 1 ≤ i1 < . . . < im ≤ n constitute
a basis for the space of all differential forms, with coefficient functions in
the class Ck(O), where k ∈ N0 holds true.

Definition 2.14. Let the symbol

ω =
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim , x ∈ O

denote a continuous differential form on the open set O ⊂ R
n, with 1 ≤

m ≤ n being fixed. Then we define the improper Riemannian integral of the
differential form ω over the surface [X] ⊂ O via

∫
[X]

ω :=

∫
T

∑
1≤i1<...<im≤n

ai1...im

(
X(t)
) ∂(xi1 , . . . , xim)

∂(t1, . . . , tm)
dt1 . . . dtm,

if ω is absolutely integrable over X and consequently

∫
[X]

|ω| :=
∫
T

∣∣∣ ∑
1≤i1<...<im≤n

ai1...im

(
X(t)
) ∂(xi1 , . . . , xim)

∂(t1, . . . , tm)

∣∣∣ dt1 . . . dtm

< +∞

is satisfied.

Remark: With the aid of the transformation formula, we show that these
integrals are independent of the choice of the representatives for the surface.
Therefore, we are allowed to write

∫
[X]

|ω| =
∫
X

|ω|,
∫
[X]

ω =

∫
X

ω.
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Example 2.15. (Curvilinear integrals)

Let a(x) =
(
a1(x1, . . . , xn), . . . , an(x1, . . . , xn)

)
denote a continuous vector-

field and

ω =

n∑
i=1

ai(x) dxi

the associate 1-form or Pfaffian form. Furthermore, let

X(t) =
(
x1(t), . . . , xn(t)

)
: T → R

n ∈ C1(T )

represent a regular C1-curve defined on the parameter interval T = (a, b).
Then we observe

∫
X

ω =

∫ b

a

(
n∑

i=1

ai

(
X(t)
)
x′i(t)

)
dt.

We shall investigate curvilinear integrals in Section 6 more intensively.

Example 2.16. (Surface integrals)

Let the continuous vector-field a(x) =
(
a1(x1, . . . , xn), . . . , an(x1, . . . , xn)

)
with the associate (n− 1)-form

ω =

n∑
i=1

ai(x)(−1)n+i dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn

be given. Furthermore, let X(t1, . . . , tn−1) : T → R
n represent a regular

C1-surface. Then we observe

∫
X

ω =

∫
T

n∑
i=1

ai

(
X(t)
)
(−1)n+i ∂(x1, . . . , xi−1, xi+1, . . . , xn)

∂(t1, . . . , tn−1)
dt1 . . . dtn−1

=

∫
T

(
n∑

i=1

ai

(
X(t)
)
Di(t)

)
dt1 . . . dtn−1

=

∫
T

{a(X(t)) · ν(t)} dσ(t).

This surface integral will be studied more intensively in Section 5, when we
prove the Gaussian integral theorem.

Example 2.17. (Domain integrals)
Let us consider the continuous function f = f(x1, . . . , xn) with the associate
n-form

ω = f(x) dx1 ∧ . . . ∧ dxn.
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Furthermore, X = X(t) : T → R
n represents a regular C1-surface. Then we

infer the identity

∫
X

ω =

∫
T

f
(
X(t)
) ∂(x1, . . . , xn)
∂(t1, . . . , tn)

dt1 . . . dtn.

This parameter-invariant integral is well-suited for transformations of the do-
main.

3 The Exterior Derivative of Differential Forms

We begin with the fundamental

Definition 3.1. For a 0-form f(x) of the class C1(O), we define the exterior
derivative as its differential

df(x) =

n∑
i=1

fxi(x) dxi, x ∈ O.

When
ω =

∑
1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim

represents an m-form of the class C1(O), we define its exterior derivative as
the (m+ 1)-form

dω :=
∑

1≤i1<...<im≤n

(
dai1...im(x)

)
∧ dxi1 ∧ . . . ∧ dxim .

Remarks:

1. When ω1 and ω2 are two m-forms in R
n and α1, α2 ∈ R are given, we

have the identity

d(α1ω1 + α2ω2) = α1dω1 + α2dω2.

Therefore, the differential operator d constitutes a linear operator.
2. When λ denotes an l-form and ω an m-form of the class C1(O), we infer

the product rule

d(ω ∧ λ) = (dω) ∧ λ+ (−1)mω ∧ dλ.

We shall prove only the last statement. Here it suffices to consider the situation

ω = f(x)βm, λ = g(x)βl,

where βm and βl are basic forms of the order m and l, respectively. Now we
deduce
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ω ∧ λ = f(x)g(x)βm ∧ βl

and, moreover,

d(ω ∧ λ) = d
(
f(x)g(x)

)
∧ βm ∧ βl

=
(
g(x)df(x) + f(x)dg(x)

)
∧ βm ∧ βl

= dω ∧ λ+ (−1)mω ∧ dλ.

Example 3.2. Taking the function f(x) ∈ C1(O), we can integrate immedi-
ately the differential form df over curves. With the curve

X(t) =
(
x1(t), . . . , xn(t)

)
∈ C1([a, b],Rn)

being given, we calculate

∫
X

df =

b∫
a

n∑
i=1

fxi

(
X(t)
)
ẋi(t) dt

=

b∫
a

d

dt
f
(
X(t)
)
dt

= f
(
X(b)

)
− f
(
X(a)

)
.

Example 3.3. We consider the Pfaffian form

ω =

n∑
i=1

ai(x) dxi

of the class C1(O) and determine its exterior derivative as follows:

dω =

n∑
j=1

daj(x) ∧ dxj =
n∑

i,j=1

∂aj
∂xi

dxi ∧ dxj

=
∑

1≤i<j≤n

(
∂aj
∂xi

− ∂ai
∂xj

)
dxi ∧ dxj .

Obviously, the identity dω = 0 holds true if and only if the functional matrix(
∂ai
∂xj

)
i,j=1,...,n

is symmetric. In the case n = 3, we evaluate



3 The Exterior Derivative of Differential Forms 25

dω =

(
∂a2
∂x1

− ∂a1
∂x2

)
dx1 ∧ dx2 +

(
∂a3
∂x1

− ∂a1
∂x3

)
dx1 ∧ dx3

+

(
∂a3
∂x2

− ∂a2
∂x3

)
dx2 ∧ dx3

= b1(x) dx2 ∧ dx3 + b2(x) dx3 ∧ dx1 + b3(x) dx1 ∧ dx2.

Here we have defined the vector-field

(
b1(x), b2(x), b3(x)

)
=

(
∂a3
∂x2

− ∂a2
∂x3

,
∂a1
∂x3

− ∂a3
∂x1

,
∂a2
∂x1

− ∂a1
∂x2

)

= ∇∧ (a1, a2, a3)(x) =: rot a(x),

where ∇ :=
(

∂
∂x1
, ∂
∂x2
, ∂
∂x3

)
denotes the nabla-operator. Integration of this

differential form dω over surfaces in R
3 will be possible by the classical Stokes

integral theorem.

Definition 3.4. We name

rot a(x) =

(
∂a3
∂x2

− ∂a2
∂x3

,
∂a1
∂x3

− ∂a3
∂x1

,
∂a2
∂x1

− ∂a1
∂x2

)

the rotation of the vector-field a(x) =
(
a1(x), a2(x), a3(x)

)
∈ C1(O,R3).

Example 3.5. Now we consider a specific (n− 1)-form in R
n, namely

ω =

n∑
i=1

ai(x)(−1)i+1 dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn,

whose exterior derivative takes on the following form:

dω =

n∑
i=1

(−1)i+1
(
dai(x)

)
∧ dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn

=

n∑
i,j=1

(−1)i+1 ∂ai
∂xj

(x) dxj ∧ dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn

=

n∑
i=1

(−1)i+1 ∂ai
∂xi

(x) dxi ∧ dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn

=

(
n∑

i=1

∂ai
∂xi

(x)

)
dx1 ∧ . . . ∧ dxn

=
(
div a(x)

)
dx1 ∧ . . . ∧ dxn.
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Definition 3.6. The vector-field a(x) =
(
a1(x), . . . , an(x)

)
∈ C1(O,Rn) on

the open set O ⊂ R
n possesses the divergence

div a(x) :=

n∑
i=1

∂ai
∂xi

(x), x ∈ O.

Example 3.7. We can integrate the n-form

dω = (div a(x)) dx1 ∧ . . . ∧ dxn

over an n-dimensional rectangle. This differential form can also be integrated
over a substantially larger class of domains in R

n - bounded by finitely many
hypersurfaces - with the aid of the Gaussian integral theorem, one of the most
important theorems in the higher-dimensional analysis.
At first, we integrate dω over the following standard domain: For r > 0 we
define the semidisc

H :=
{
x = (x1, . . . , xn) ∈ R

n | x1 ∈ (−r, 0), xi ∈ (−r,+r), i = 2, . . . , n
}

with the upper bounding side

S :=
{
x = (0, x2, . . . , xn) | |xi| < r, i = 2, . . . , n

}
.

The exterior normal vector to the surface S is given by e1 = (1, 0, . . . , 0) ∈ R
n

explicitly. Then we comprehend H and S as surfaces in R
n via the represen-

tations
H : X(t1, . . . , tn) = (t1, . . . , tn), (t1, . . . , tn) ∈ H

and

S : Y (t̃1, . . . , t̃n−1) = (0, t̃1, . . . , t̃n−1), |t̃i| < r, i = 1, . . . , n− 1,

respectively. With the assumption ω ∈ C1
0 (H ∪ S), we obtain

∫
H

dω =

∫
X

dω =

0∫
−r

+r∫
−r

. . .

+r∫
−r

(
∂a1
∂x1

+ . . .+
∂an
∂xn

)
dx1 . . . dxn

=

+r∫
−r

. . .

+r∫
−r

a1(0, x2, . . . , xn) dx2 . . . dxn =

∫
S

ω.

In the sequel, we shall investigate the behavior of differential forms with re-
spect to transformations of the ambient space.

Definition 3.8. (Transformed differential form)
Let the symbol
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ω =
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim

denote a continuous m-form in an open set O ⊂ R
n. Furthermore, let T ⊂ R

l

with l ∈ N describe an open set such that

x = (x1, . . . , xn) = Φ(y)

= (ϕ1(y1, . . . , yl), . . . , ϕn(y1, . . . , yl)) : T → O

defines a mapping of the class C1(T,Rn). With

dϕi =
l∑

j=1

∂ϕi

∂yj
(y) dyj , i = 1, . . . , n

and
ωΦ :=

∑
1≤i1<...<im≤n

ai1...im

(
Φ(y)
)
dϕi1 ∧ . . . ∧ dϕim ,

we obtain the transformed m-form ωΦ with respect to the mapping Φ.

Remarks:

1. When ω1, ω2 are two m-forms and α1, α2 ∈ R are given, we infer the
identity

(α1ω1 + α2ω2)Φ = α1(ω1)Φ + α2(ω2)Φ.

2. When λ represents an l-form and ω an m-form, we have the rule

(ω ∧ λ)Φ = ωΦ ∧ λΦ.

The following result is important for the evaluation of integrals for differential
forms over surfaces.

Theorem 3.9. (Pull-back of differential forms)
Let ω denote a continuous m-form in the open set O ⊂ R

n. On the open set
T ⊂ R

m we define a surface X by the parametric representation

x = Φ(y) : T −→ O ∈ C1(T )

with Φ(T ) ⊂⊂ O. Finally, we define the surface

Y (t) = (t1, . . . , tm), t ∈ T

and note that
X(t) = Φ ◦ Y (t), t ∈ T.

Then the following identity holds true:∫
X

ω =

∫
Y

ωΦ.
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Proof: We calculate

dϕi1 ∧ . . . ∧ dϕim =

⎛
⎝ m∑

j1=1

∂ϕi1

∂yj1
dyj1

⎞
⎠ ∧ . . . ∧

⎛
⎝ m∑

jm=1

∂ϕim

∂yjm
dyjm

⎞
⎠

=
∂(ϕi1 , . . . , ϕim)

∂(y1, . . . , ym)
dy1 ∧ . . . ∧ dym,

as well as

ωΦ =
∑

1≤i1<...<im≤n

ai1...im(Φ(y))
∂(ϕi1 , . . . , ϕim)

∂(y1, . . . , ym)
dy1 ∧ . . . ∧ dym.

This implies

∫
Y

ωΦ =

∫
T

∑
1≤i1<...<im≤n

ai1...im(X(t))
∂(xi1 , . . . , xim)

∂(t1, . . . , tm)
dt1 . . . dtm

=

∫
X

ω,

and our theorem is proved. q.e.d.

Theorem 3.10. Let ω denote an m-form in the open set O ⊂ R
n of the

regularity class C1(O). Furthermore, let the mapping

x = Φ(y) : T −→ O ∈ C2(T )

be given on the open set T ⊂ R
l, where l ∈ N holds true. Then we have the

calculus rule
d(ωΦ) = (dω)Φ.

Proof: At first, an arbitrary function Ψ(y) ∈ C2(O) satisfies the identity

d2Ψ = d(dΨ) = d

(
n∑

i=1

Ψyi dyi

)
=

n∑
i,j=1

Ψyiyj dyj ∧ dyi = 0.

Now we note that

ωΦ =
∑

1≤i1<...<im≤n

ai1...im

(
Φ(y)
)
dϕi1 ∧ . . . ∧ dϕim ,

and we arrive at
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dωΦ =
∑

1≤i1<...<im≤n

dai1...im

(
Φ(y)
)
∧ dϕi1 ∧ . . . ∧ dϕim

=
∑

1≤i1<...<im≤n

n∑
j=1

l∑
k=1

∂ai1...im
∂xj

(
Φ(y)
)∂ϕj

∂yk
dyk ∧ dϕi1 ∧ . . . ∧ dϕim

=
∑

1≤i1<...<im≤n

n∑
j=1

∂ai1...im
∂xj

(
Φ(y)
)
dϕj ∧ dϕi1 ∧ . . . ∧ dϕim ,

and consequently
dωΦ = (dω)Φ.

q.e.d.

Theorem 3.11. (Chain rule for differential forms)
Let ω denote a continuous m-form in an open set O ⊂ R

n. Furthermore, we
consider the open sets T ′ ⊂ R

l′ and T ′′ ⊂ R
l′′ - with l′, l′′ ∈ N - where the

C1-functions Φ, Ψ are defined due to

Ψ : T ′′ → T ′, Φ : T ′ → O with z
Ψ�−→ y

Φ�−→ x.

Then the following identity holds true:

(ωΦ)Ψ = ωΦ◦Ψ .

Proof: We calculate

ωΦ◦Ψ =
∑

i1,...,im

ai1...im

(
Φ ◦ Ψ(z)

)
d(ϕi1 ◦ Ψ) ∧ . . . ∧ d(ϕim ◦ Ψ)

=
∑

i1,...,im
j1,...,jm
k1,...,km

ai1...im

(
Φ ◦ Ψ(z)

)(∂ϕi1

∂yj1

∂ψj1

∂zk1

dzk1

)
∧ . . . ∧

(
∂ϕim

∂yjm

∂ψjm

∂zkm

dzkm

)

=
∑

i1,...,im
j1,...,jm

ai1...im

(
Φ ◦ Ψ(z)

)(∂ϕi1

∂yj1
dψj1

)
∧ . . . ∧

(
∂ϕim

∂yjm
dψjm

)

=

⎛
⎝ ∑

i1,...,im

ai1...im

(
Φ(y)
)
dϕi1 ∧ . . . ∧ dϕim

⎞
⎠

y=Ψ(z)

,

and consequently
ωΦ◦Ψ = (ωΦ)Ψ .

Here we perform our summation over the indices i1, . . . , im ∈ {1, . . . , n},
j1, . . . , jm ∈ {1, . . . , l′}, and k1, . . . , km ∈ {1, . . . , l′′}. q.e.d.
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4 The Stokes Integral Theorem for Manifolds

We choose m ∈ N and consider the m-dimensional plane

E
m :=

{
(0, y1, . . . , ym) ∈ R

m+1 : (y1, . . . , ym) ∈ R
m
}
.

Parallel to the Example 3.7 from Section 3, we take the data η ∈ R
m+1 and

r > 0 in order to define the semicube

Hr(η) :=
{
y ∈ R

m+1 : y1 ∈ (η1−r, η1), yj ∈ (ηj−r, ηj+r) for j = 2, . . . ,m+1
}

with the lateral lengths 2r. This object has the upper bounding side

Sr(η) :=
{
y ∈ R

m+1 : y1 = η1, yj ∈ (ηj − r, ηj + r) for j = 2, . . . ,m+ 1
}
.

We comprehend Hr(η) and Sr(η) as surfaces in R
m+1:

Hr(η) : Y (t1, . . . , tm+1) = (η1 + t1, . . . , ηm+1 + tm+1)

with − r < t1 < 0, |tj | < r, j = 2, . . . ,m+ 1

as well as

Sr(η) : Y (t1, . . . , tm) := (η1, η2 + t1, . . . , ηm+1 + tm)

with |tj | < r, j = 1, . . . ,m.

When η ∈ E
m and r > 0 are fixed, we define H := Hr(η) and S := Sr(η),

respectively. With n > m given, we denote by

Φ = Φ(y1, . . . , ym+1) : H −→ R
n ∈ C1(H,Rn)

a surface, which can be continued onto an open set containing H in R
m+1.

When we set

X(t1, . . . , tm+1) := Φ(t1, . . . , tm+1), (t1, . . . , tm+1) ∈ H,

we obtain the following (m+ 1)-dimensional surface in R
n, namely

F :=
{
X(t) ∈ R

n : t ∈ H
}
,

whose boundary contains the m-dimensional surface

S :=
{
X(t) ∈ R

n : t ∈ S
}
.

Let the m-form be given on the set F = Φ(H) by the symbol
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ω =

n∑
i1,...,im=1

ai1...im(x) dxi1 ∧ . . . ∧ dxim , x ∈ F

of the class C0
0 (F ∪ S) ∩ C1(F). Here the symbol ω ∈ C1(F) means that we

have an open set O ⊂ R
n with F ⊂ O satisfying ω ∈ C1(O). Finally, let dω

be absolutely integrable over F in the following sense:

∫
F

|dω| :=
∫
H

∣∣∣
n∑

i1,...,im+1=1

∂ai1...im
∂xim+1

(
X(t)
)∂(xi1 , . . . , xim+1)

∂(t1, . . . , tm+1)

∣∣∣ dt1 . . . dtm+1

< +∞.

Now we prove the basic

Proposition 4.1. (Local Stokes theorem)
Let the surface F with the boundary part S be given as above, and furthermore
the symbol ω may denote an m-dimensional differential form of the class

C0
0 (F ∪ S) ∩ C1(F)

satisfying ∫
F

|dω| < +∞.

Then we have the identity ∫
F

dω =

∫
S

ω.

Proof:

1. At first, we prove this formula under the stronger assumptions Φ ∈ C2(H)
and ω ∈ C1

0 (F ∪ S). Utilizing Theorem 3.10 and Example 3.7 from Sec-
tion 3, we infer the identity

∫
F

dω =

∫
X

dω =

∫
H

(dω)Φ =

∫
H

d(ωΦ) =

∫
S

ωΦ =

∫
S

ω.

2. When Φ ∈ C1(H) and ω ∈ C1(F)∩C0
0 (F∪S) hold true, we approximate Φ

uniformly in H up to the first derivatives by the functions Φ(k)(y) ∈ C∞,
due to the Weierstraß approximation theorem. Now we exhaust H by
rectangles

H(l) := Hr− 2
l

(
η1 −

1

l
, η2, . . . , ηm+1

)
⊂ H

with the upper bounding sides

S(l) := Sr− 2
l

(
η1 −

1

l
, η2, . . . , ηm+1

)
.
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The considerations in part 1.) reveal

∫
H(l)

(dω)Φ(k) =

∫
S(l)

ωΦ(k) for all k, l ≥ N ∈ N.

The transition to the limit k → ∞ implies

∫
H(l)

(dω)Φ =

∫
S(l)

ωΦ.

On account of
∫
F |dω| < +∞, the limit procedure l→ ∞ yields

∫
F

dω =

∫
H

(dω)Φ =

∫
S

ωΦ =

∫
S

ω.

This is exactly the identity stated above. q.e.d.

Now we introduce the fundamental notion of a differentiable manifold.

Definition 4.2. Let us fix the dimensions 1 ≤ m ≤ n as well as the set
M ⊂ R

n. We name M an m-dimensional Ck-manifold, if each point ξ ∈ M
possesses an element η ∈ R

m and open neighborhoods U ⊂ R
n of ξ ∈ U and

V ⊂ R
m of η ∈ V as well as an embedded regular surface

x = Φ(y) : V −→ U ∈ Ck(V )

such that
ξ = Φ(η) and Φ(V ) = M∩ U

is correct; here we have chosen k ∈ N adequately. We call (Φ, V ) a chart of
the manifold. All charts together

A :=
{
(Φι, Vι) : ι ∈ J

}

constitute an atlas of the manifold. When Φj : Vj → Uj ∩ M with j = 1, 2
represent two charts of the atlas A such that

W1,2 := M∩ U1 ∩ U2 �= ∅

is correct, then we consider the parameter transformation Φ2,1 := Φ−1
2 ◦ Φ1.

If the functional determinant satisfies JΦ2,1 > 0 on Φ−1
1 (W1,2) for such ar-
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bitrarily chosen charts from the atlas, the manifold is oriented by the atlas.

Definition 4.3. Let M denote a bounded, (m+1)-dimensional, oriented C1-
manifold in R

n with n > m. We indicate the topological closure of the point
set M by the symbol M and the set of boundary points by the symbol Ṁ :=
M\M. We name ξ ∈ Ṁ a regular boundary point of the manifold M if the
following holds true:

We have a semicube Hr(η) in R
m+1

with η ∈ E
m and r > 0, a regular

embedded surface

Φ(y) : Hr(η) → R
n ∈ C1(Hr(η))

such that Φ|Hr(η) belongs to the ori-
ented atlas A of M,
and an open neighborhood U ⊂ R

n of ξ ∈ U with the following properties:

Φ(η) = ξ, Φ
(
Sr(η)

)
= Ṁ ∩ U, Φ

(
Hr(η)

)
= M∩ U.

The set of regular boundary points will be denoted by the symbol ∂M.

Definition 4.4. For the bounded manifold M from Definition 4.3, we define
the set of singular boundary points �M according to

�M := Ṁ \ ∂M.

In the case �M = ∅, we obtain a compact manifold with regular boundary. If
the condition ∂M = ∅ is fulfilled additionally, we speak of a closed manifold.
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Proposition 4.5. (Induced orientation on ∂M)
Let M and ∂M from Definition 4.3 with the charts Φ : Hr(η) → R

nbe given.
Then the mappings

{
Φ
∣∣
Sr(η)

: Φ
∣∣
Hr(η)

belongs to the oriented atlas A of M
}
=: ∂A

constitute an oriented atlas of ∂M. Consequently, ∂M represents an oriented
C1-manifold.

Proof: We consider Φ(η) = ξ = Φ̃(η̃). The vectors Φy2(η), . . . , Φym+1(η) and

Φ̃y2(η̃), . . . , Φ̃ym+1(η̃) span the m-dimensional tangential space T∂M(ξ) to ∂M
at the point ξ. When we add the vectors Φy1(η) and Φ̃y1(η̃), respectively, the
tangential space TM(ξ) to M is generated.
Now we construct an orthonormal system
N1, . . . , Nn−m ∈ R

n which is orthogonal to
T∂M(ξ). We choose the vector N1 ∈ TM(ξ),
directed out of the surface at the point ξ, and
obtain

Φy1(η) ·N1 > 0, Φ̃y1(η̃) ·N1 > 0.

With the parameter 0 ≤ τ ≤ 1, we consider the matrices

M(τ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1− τ)Φy1(η) + τN
1

Φy2(η)

...

Φym+1(η)

N2

...

Nn−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M̃(τ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1− τ)Φ̃y1(η̃) + τN
1

Φ̃y2(η̃)

...

Φ̃ym+1(η̃)

N2

...

Nn−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Furthermore, we define Ψ := Φ
∣∣
Sr(η)

and Ψ̃ := Φ̃
∣∣
Sr(η̃)

. Now the func-

tions detM(τ) and det M̃(τ) in [0,1] are continuous with detM(τ) �= 0 and

det M̃(τ) �= 0 for all 0 ≤ τ ≤ 1. Consequently, the following function is con-
tinuous in [0, 1], and we have

det
(
M̃(τ)−1 ◦M(τ)

)
�= 0, 0 ≤ τ ≤ 1.

By assumption we note that



4 The Stokes Integral Theorem for Manifolds 35

det
(
M̃(0)−1 ◦M(0)

)
= det ∂(Φ̃−1 ◦ Φ)

∣∣
η
> 0,

and a continuity argument implies

det ∂(Ψ̃−1 ◦ Ψ)
∣∣
η
= det

(
M̃(1)−1 ◦M(1)

)
> 0.

Therefore, ∂A constitutes an oriented atlas of ∂M. q.e.d.

We now intend to prove the Stokes integral theorem for manifolds M with the
regular boundary ∂M and the singular boundary �M, namely the identity

∫
M

dω =

∫
∂M

ω,

under weak assumptions. The transition from the local Stokes theorem to the
global result is achieved by the partition of unity.

Let M denote an (m+ 1)-dimensional, bounded, oriented C1-manifold in R
n

with the regular boundary ∂M. Furthermore, let the symbol

λ =
∑

1≤i1<...<im+1≤n

bi1...im+1(x) dxi1 ∧ . . . ∧ dxim+1 , x ∈ M

represent a continuous differential form on M.

We shall investigate which conditions for λ allow us to define the improper
integral ∫

M

λ

of the differential form λ over the manifold M.

1. At first, let the set

suppλ := {x ∈ M : λ(x) �= 0} ⊂ M∪ ∂M

be compact. Then we have open sets Vι ⊂ R
m+1 and Uι ⊂ R

n \�M with
ι ∈ J and, moreover, charts Φι : Vι → Uι ∩ M such that the open sets
{Uι}ι∈J cover the compact set suppλ. Now we choose a partition of unity
in R

n subordinate to the sets {Uι} and obtain

αk(x) : M −→ [0, 1] ∈ C1 with suppαk ⊂ Uιk for k = 1, . . . , k0

as well as
k0∑
k=1

αk(x) = 1 for all x ∈ suppλ.

We define
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∫
M

λ :=

k0∑
k=1

∫
M

αkλ =

k0∑
k=1

∫
Vk

(αkλ)Φk
, (1)

if ∫
M

αk|λ| < +∞ for k = 1, . . . , k0

is correct.

We still have to show that the integral, given in equation (1), is indepen-
dent of the covering for the support of λ and of the partition of unity
used.

When Φ̃ι : Ṽι → Ũι ∩ M with ι ∈ J̃ represents an alternative system of
charts covering suppλ, we choose again a partition of unity for suppλ
subordinate to the system {Ũι}ι. We obtain

α̃l : M → [0, 1] ∈ C1, supp α̃l ⊂ Ũιl , l = 1, . . . , l0

as well as
l0∑
l=1

α̃l(x) = 1 for all x ∈ suppλ.

We note that supp (αkα̃l) ⊂ Uk ∩ Ul ∩M holds true. Under the mapping

Φ−1
k ◦ Φ̃l for all indices k = 1, . . . , k0 and l = 1, . . . , l0 we transform the

integrals ∫
Vk

(αkα̃lλ)Φk
=

∫
˜Vl

(αkα̃lλ)˜Φl
. (2)

The summation yields

k0∑
k=1

∫
Vk

(αkλ)Φk
=

k0∑
k=1

l0∑
l=1

∫
Vk

(αkα̃lλ)Φk

=

k0∑
k=1

l0∑
l=1

∫
˜Vl

(αkα̃lλ)˜Φl
=

l0∑
l=1

∫
˜Vl

(α̃lλ)˜Φl
.

Consequently, the integral given in (1) is independent of the choice of
charts and the partition of unity. Correspondingly, we define

∫
M |λ| and∫

∂M λ.
2. The differential form λ ∈ C0(M) is absolutely integrable over M, symbol-

ically ∫
M

|λ| < +∞,
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if we have a constant M ∈ [0,+∞) such that the inequality

∫
M

|βλ| ≤M for all β ∈ C0
0 (M∪ ∂M, [0, 1])

is correct. We say that the sequence of functions βk ∈ C0
0 (M∪∂M, [0, 1])

is exhausting the manifold, when each compact setK ⊂ M∪∂M possesses
an index k0 = k0(K) ∈ N such that

βk(x) = 1 for all x ∈ K, k ≥ k0.

When
∫
M |λ| < +∞ holds true, we show as in the theory of improper

integrals that for each exhausting sequence of functions {βk}k=1,2,... the
following expression

lim
k→∞

∫
M

βkλ

exists and has the same value. We set∫
M

λ := lim
k→∞

∫
M

βkλ. (3)

In this sense, we comprehend all improper integrals appearing in the se-
quel.

Definition 4.6. The singular boundary �M of the manifold M has capacity
zero if we can find a function

χ ∈ C1
0 (M∪ ∂M, [0, 1])

for each ε > 0 and each compact set K ⊂ M∪ ∂M with the following prop-
erties:

1. We have χ(x) = 1 for all x ∈ K;
2. The following condition holds true:

∫
M

√
∇(χ, χ) dm+1σ ≤ ε.

Here dm+1σ denotes the (m+ 1)-dimensional surface element on M, and we
set

|∇(χ)|2
∣∣∣
x
= ∇(χ, χ)

∣∣∣
x
:= sup

{
|∇χ · ξ|2 : ξ ∈ TM(x), |ξ| = 1

}
.

Now we arrive at our central result, namely



38 Chapter 1 Differentiation and Integration on Manifolds

Theorem 4.7. (The Stokes integral theorem for manifolds)
Assumptions:

1. Let M represent a bounded, oriented, (m+1)-dimensional C1-manifold in
R

n - where n > m is correct - with the atlas A. Via the induced atlas ∂A,
the regular boundary ∂M becomes a bounded, oriented, m-dimensional
C1-manifold. We assume that the regular boundary possesses finite surface
area as follows: ∫

∂M

dmσ < +∞.

Furthermore, the singular boundary �M has capacity zero.
2. Let the symbol

ω =
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim , x ∈ M

denote an m-dimensional differential form of the class C1(M) ∩C0(M),
such that its exterior derivative dω is absolutely integrable in the following
sense: ∫

M

|dω| < +∞.

Statement: Then we have the identity

∫
M

dω =

∫
∂M

ω.

Proof:

1. At first, let the condition ω ∈ C1(M) ∩ C0
0 (M ∪ ∂M) be fulfilled. As

above we choose a partition of unity {αk} with k = 1, . . . , k0 on the set
suppω ⊂ M∪ ∂M subordinate to the covering system of the charts. We
utilize Proposition 4.1 and deduce

∫
∂M

ω =

k0∑
k=1

∫
∂M

αkω =

k0∑
k=1

∫
M

d(αkω) =

∫
M

dω.

2. Let the differential form ω be arbitrary now. Then we choose a sequence
{βk}k=1,2,... of functions exhausting the manifold M with the property

∫
M

√
∇(βk, βk) d

m+1σ → 0 for k → ∞.

According to part 1, we obtain the following identities for k = 1, 2, . . .,
namely
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∫
∂M

βkω =

∫
M

d(βkω) =

∫
M

βk dω +

∫
M

dβk ∧ ω. (4)

At first, we see

∣∣∣
∫
M

dβk ∧ ω
∣∣∣ ≤ c

∫
M

√
∇(βk, βk) d

m+1σ → 0 for k → ∞.

Furthermore, we estimate

∫
∂M

|βkω| ≤
∫

∂M

|ω| ≤ c
∫

∂M

dm+1σ < +∞ for k = 1, 2, . . .

Therefore, we comprehend

lim
k→∞

∫
∂M

βkω =:

∫
∂M

ω < +∞.

On account of
∫
M |dω| < +∞, we infer

lim
k→∞

∫
M

βk dω =:

∫
M

dω < +∞.

The transition to the limit k → ∞ in (4) reveals the identity

∫
∂M

ω =

∫
M

dω,

which corresponds to the statement above. q.e.d.

5 The Integral Theorems of Gauß and Stokes

We endow the bounded open set Ω ⊂ R
n with the chart X(t) = t, t ∈ Ω gen-

erating an atlas A. In this way, we obtain a bounded oriented n-dimensional
manifold M = Ω in R

n. When

f(x) =
(
f1(x), . . . , fn(x)

)
: Ω −→ R

n ∈ C1(Ω,Rn)

denotes an n-dimensional vector-field in R
n with its divergence

div f(x) =
∂

∂x1
f1(x) + . . .+

∂

∂xn
fn(x), x ∈ Ω,

we consider the (n− 1)-form
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ω =

n∑
i=1

fi(x)(−1)i+1 dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn.

The set of regular points ∂Ω, endowed by the induced atlas ∂A, becomes an
(n − 1)-dimensional bounded oriented manifold in R

n. We show the identity∫
∂Ω

ω =

∫
∂Ω

(
f(x) · ξ(x)

)
dn−1σ

later, where ξ(x) denotes the exterior normal to the domain Ω at the point
x. When we take the relation

dω =
(
div f(x)

)
dx1 ∧ . . . ∧ dxn

into account, Theorem 4.7 from Section 4 reveals the fundamental identity of
Gauß: ∫

Ω

div f(x) dnx =

∫
∂Ω

(
f(x) · ξ(x)

)
dn−1σ. (1)

With the aid of Theorem 4.7 from Section 4, we shall derive the identity (1)
under very general conditions to Ω and f which are relevant for the applica-
tions in this textbook. Thus we shall obtain the Gaussian integral theorem.

Assumption (A):

Let Ω ⊂ R
n denote a bounded open set, with the topological boundary

Ω̇ = Ω \ Ω. For each boundary point x ∈ Ω̇, we can find a sequence of
points {

x(p)
}
⊂ R

n \Ω, p = 1, 2, . . .

satisfying x(p) → x for p → ∞; this means each boundary point is attainable
from outside.

Assumption (B):

We choose N ∈ N bounded domains Ti ⊂ R
n−1 with i = 1, 2, . . . , N as

our parameter domains. Then we consider N regular hypersurfaces in R
n as

follows:

Fi : X(i)(t) =
(
x
(i)
1 (t1, . . . , tn−1), . . . , x

(i)
n (t1, . . . , tn−1)

)
: T i → R

n.

Here the mapping X(i)(t) ∈ C1(Ti) ∩ C0(T i) is injective, and the rank of
its functional matrix satisfies the condition rg ∂X(i)(t) = n − 1 for all points
t ∈ Ti and the indices i = 1, . . . , N . Furthermore, their surface areas fulfill

A(Fi) :=

∫
Ti

dn−1σ(i)(t) < +∞ for i = 1, . . . , N.
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We define

Fi := X
(i)(Ti), F i := X

(i)(T i), Ḟi := X
(i)(Ṫi)

with i = 1, . . . , N . Let the union of these finitely many hypersurfaces Fi

constitute the boundary of Ω; more precisely

Ω̇ = F 1 ∪ . . . ∪ FN .

Furthermore, we require the condition

F i ∩ F j = Ḟi ∩ Ḟj for all i, j ∈ {1, . . . , N} with i �= j.

Therefore, two different hypersurfaces possess common boundary points at
most.

We need the following two auxiliary lemmas:

Proposition 5.1. The point set Ω ⊂ R
n may satisfy the assumptions (A)

and (B). Furthermore, let x0 ∈ Fl denote an arbitrary point of the surface Fl

with l ∈ {1, . . . , N}. Then we find an index k = k(x0) ∈ {1, . . . , n} as well as
two positive numbers � = �(x0) and σ = σ(x0), such that the rectangle

Q(x0, �, σ) :=
{
x ∈ R

n : |xi−x0i | < �, i = 1, . . . , n with i �= k; |xk−x0k| < σ
}

is subject to the following conditions:

Ω̇∩Q =
{
x ∈ R

n : |xi−x0i | < �, i �= k; xk = Φ(x1, . . . , xk−1, xk+1, . . . , xn)
}
.

Here Φ denotes a C1-function on the domain of definition being given, such
that |Φ− x0k| < 1

2σ holds true. Furthermore, we have the alternative

Ω ∩Q =
{
x ∈ R

n : |xi − x0i | < � for i �= k,

|xk − x0k| < σ, xk < Φ(x1, . . . , xk−1, xk+1, . . . , xn)
}

or

Ω ∩Q =
{
x ∈ R

n : |xi − x0i | < � for i �= k,

|xk − x0k| < σ, xk > Φ(x1, . . . , xk−1, xk+1, . . . , xn)
} .

The adjacent diagram illustrates the
statement of our proposition.

Proof:
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1. With the open set T ⊂ R
n−1, let us represent our surface F = Fl by the

mapping

X(t) =
(
x1(t1, . . . , tn−1), . . . , xn(t1, . . . , tn−1)

)
: T −→ R

n.

On account of rg ∂X(t) = n − 1 for all points t ∈ T , we find an index
k = k(x0) ∈ {1, . . . , n} with x0 = X(t0), such that

∂(x1, . . . , xk−1, xk+1, . . . , xn)

∂(t1, . . . , tn−1)

∣∣∣∣
t=t0

�= 0

is correct. Now the theorem of the inverse mapping provides an open set
U ⊂ R

n−1 and a rectangle

R := (x01 − �, x01 + �)× . . .× (x0k−1 − �, x0k−1 + �)

×(x0k+1 − �, x0k+1 + �)× . . . . . .× (x0n − �, x0n + �)

with a sufficiently small quantity � = �(x0) > 0, such that

f(t1, . . . , tn−1) :=
(
x1(t), . . . , xk−1(t), xk+1(t), . . . , xn(t)

)
: U −→ R

constitutes a C1-diffeomorphism. This means that f is bijective, f as well
as f−1 are continuously differentiable, and we have the condition Jf (t) �= 0
for all t ∈ U . We define

k∨
x:= (x1, . . . , xk−1, xk+1, . . . , xn) ∈ R ⊂ R

n−1

and introduce the function

Φ(
k∨
x) := xk

(
f−1(

k∨
x)
)
,

k∨
x∈ R.

Then we observe

Φ ∈ C1(R,R), X(U) =
{
(x1, . . . , xn) :

k∨
x∈ R, xk = Φ(

k∨
x)
}
.

Now we see

x0 ∈ Ω̇ \
N⋃

m=1
m 
=l

Fm,

and consequently

dist (x0,

N⋃
m=1
m 
=l

Fm) > 0.

We choose the quantities � > 0 and σ > 0 sufficiently small, such that
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Q(x0, �, σ) ∩ Ω̇ = Q(x0, �, σ) ∩ Fl as well as |Φ(
k∨
x)− x0k| <

1

2
σ

holds true for all
k∨
x∈ R. We summarize our considerations and obtain

Ω̇ ∩Q(x0, �, σ) =
{
x ∈ R

n :
k∨
x∈ R, xk = Φ(

k∨
x)
}
.

2. Now we define the point sets

P+ :=
{
x ∈ Q(x0, �, σ) : xk > Φ(

k∨
x)
}
,

P 0 :=
{
x ∈ Q(x0, �, σ) : xk = Φ(

k∨
x)
}
,

P− :=
{
x ∈ Q(x0, �, σ) : xk < Φ(

k∨
x)
}
.

These sets above decompose the set Q(x0, �, σ) according to the prescrip-
tion

Q(x0, �, σ) = P− ∪ P 0 ∪ P+. (2)

From the first part of our proof we infer

Ω̇ ∩Q(x0, �, σ) = P 0. (3)

On account of x0 ∈ Ω̇ and the assumption (A), we can find the two points
y ∈ Ω ∩ Q and z ∈ (Rn \ Ω) ∩ Q. We distinguish between two possible
cases, namely the case 1: y ∈ P− and the case 2: y ∈ P+.

Case 1. When we consider with ỹ ∈ P− an arbitrary further point, we
find a continuous curve Γ ⊂ P− from y to ỹ, which does not intersect the
surface P 0. Since y ∈ Ω holds true and the curve Γ does not intersect the
set Ω̇ due to (3), we infer ỹ ∈ Ω. We finally obtain the inclusion

P− ⊂ Ω ∩Q. (4)

Now we arrive at z ∈ P+. Each further point z̃ ∈ P+ can be connected
by a curve Γ in P+ with the point z. Since this curve does not intersect
Ω̇, the condition z ∈ R

n \Ω implies z̃ ∈ R
n \Ω as well. We conclude

P+ ⊂ (Rn \Ω) ∩Q. (5)

Furthermore, we observe

Q(x0, �, σ) = (Ω ∩Q) ∪ (Ω̇ ∩Q) ∪
(
(Rn \Ω) ∩Q

)
. (6)

We deduce P− = Ω ∩ Q and P+ = (Rn \ Ω) ∩ Q from the equations (2)
to (6).
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Case 2. In the same way as in the first case, we show P+ = Ω ∩ Q and
P− = (Rn \Ω) ∩Q.

q.e.d.

Remark: In the neighborhood of a regular boundary point

x0 ∈
N⋃
i=1

Fi

we choose the function

Ψ(x) := ±
(
xk − Φ(x1, . . . , xk−1, xk+1, . . . , xn)

)

due to Proposition 5.1. Thus we can characterize the set Ω in this neighbor-
hood by the inequality Ψ(x) < 0.

Proposition 5.2. The set Ω ⊂ R
n may satisfy the assumptions (A) and (B);

let x0 ∈ Fl with l ∈ {1, . . . , N} denote a point of the surface Fl. Furthermore,
we have an open set U = U(x0) ⊂ R

n containing the point x0 and a function
Ψ(x) ∈ C1(U) with |∇Ψ(x)| > 0 for all points x ∈ U , such that

Ω ∩ U = {x ∈ U : Ψ(x) < 0}.

Then the vector

ξ(x) := |∇Ψ(x)|−1∇Ψ(x), x ∈ Ω̇ ∩ U

has the following properties:

1. We have ξ
(
X(t)
)
·Xti(t) = 0 for i = 1, . . . , n− 1 near t = t0;

2. The condition |ξ| = 1 on Ω̇ ∩ U holds true;
3. For each point x ∈ Ω̇ ∩ U , we can find a number �0(x) > 0 such that

x+ �ξ ∈
{

Ω for − �0 < � < 0

R
n \Ω for 0 < � < +�0

.

The vector ξ is uniquely determined by these conditions.

Definition 5.3. The function ξ = ξ(x), defined in Proposition 5.2 for all
points x ∈ F1 ∪ . . . ∪ FN , is named the exterior normal of Ω̇ at the point x.

Proof of Proposition 5.2: The uniqueness of ξ follows from the properties 1 to
3 above. Now we shall prove the properties given for the function ξ. At first,
Ψ = 0 on Ω̇ ∩ U holds true, and we infer

0 = Ψ
(
x1(t), . . . , xn(t)

)
, t = (t1, . . . , tn−1) ∈ V (t01, . . . , t0n−1) ⊂ R

n−1 open,

and consequently
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0 =

n∑
i=1

Ψxi

(
X(t)
) ∂xi
∂tj

, j = 1, . . . , n− 1.

This implies ξ ·Xtj = 0 in V for j = 1, . . . , n−1 and the property 1. Evidently,

the condition |ξ| = 1 is valid on Ω̇ ∩ U . Therefore, it remains to show the
property 3. When 0 < |�| < �0 holds true, we infer the inequality

Ψ(x+ �ξ) = Ψ(x+ �ξ)− Ψ(x) = �
n∑

i=1

Ψxi(x+ κ�ξ)ξi

= �
1

|∇Ψ(x)|

n∑
i=1

Ψxi(x+ κ�ξ)Ψxi(x)

{
< 0 if − �0 < � < 0

> 0 if 0 < � < �0

for all points x ∈ Ω̇ ∩ U ; with a number κ = κ(�) ∈ (0, 1). This implies

x+ �ξ ∈
{

Ω if − �0 < � < 0

R
n \Ω if 0 < � < �0

.

q.e.d.

Remark: Let the surface patch F = Fl bounding Ω be given by the parametric
representation

X(t) = X(t1, . . . , tn−1) : T −→ R
n on the domain T ⊂ R

n−1

with the normal

ν(t) = |Xt1 ∧ . . . ∧Xtn−1 |−1Xt1 ∧ . . . ∧Xtn−1(t)

=

[
n∑

j=1

(
Dj(t)

)2]− 1
2

(D1(t), . . . , Dn(t)), t ∈ T.

With a fixed ε ∈ {±1}, we observe

ξ
(
X(t)
)
= εν(t) for all t ∈ T.

Proof: At first, we see ξ
(
X(t)
)
= ε(t)ν(t), t ∈ T with the orientation factor

ε(t) ∈ {±1}. Now the function

ε(t) = ξ
(
X(t)
)
· ν(t), t ∈ T

is continuous on the domain T , and we obtain ε(t) ≡ +1 or ε(t) ≡ −1 on T .
q.e.d.

Definition 5.4. The set Ω ⊂ R
n may satisfy the assumptions (A) and (B).

Then we define
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∂Ω :=
N⋃
j=1

Fj

as the regular boundary of Ω. Furthermore, let g(x) : ∂Ω → R denote a
continuous bounded function on ∂Ω. We define the surface integral of g over
the regular boundary ∂Ω by the expression

∫
∂Ω

g(x) dn−1σ :=
N∑
j=1

∫
Fj

g(x) dn−1σj .

Now we formulate the assumption for our vector-fields to be integrated.

Assumption (C):

The function f(x) = (f1(x), . . . , fn(x)), x ∈ Ω belongs to the regularity class
C1(Ω,Rn) ∩ C0(Ω,Rn), and we require

∫
Ω

|div f(x)| dx < +∞.

We present a condition on the singular boundary Ḟ1 ∪ . . . ∪ ḞN , which guar-
antees the validity of the Gaussian identity (1):

Assumption (D):

The set Ḟ1 ∪ . . . ∪ ḞN has the (n − 1)-dimensional Hausdorff content zero
or equivalently represents an (n − 1)-dimensional Hausdorff null-set. More
precisely, for each quantity ε > 0 we have finitely many balls

Kj :=
{
x ∈ R

n : |x− x(j)| ≤ �j
}

for j = 1, . . . , J

with the centers x(j) ∈ R
n and radii �j > 0, such that the following conditions

hold true:

1. Ḟ1 ∪ . . . ∪ ḞN ⊂
J⋃

j=1

Kj (Covering property);

2.
J∑

j=1

�n−1
j ≤ ε (Smallness of the total area).

Remark: The condition (D) is valid, if all surface patches Fl with l = 1, . . . , N
fulfill the subsequent assumptions: When Fl is parametrized by the represen-
tation X = X(t) : T l → F l, we require the following:

1. The set T l constitutes a Jordan domain in R
n−1, which means that Tl is

compact and its boundary Ṫl represents a Jordan null-set in R
n−1;
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2. The mapping X(t) satisfies a Lipschitz condition on T l, namely

|X(t′)−X(t′′)| ≤ L|t′ − t′′| for all t′, t′′ ∈ T l,

with the Lipschitz constant L > 0.

We now arrive at the central theorem of the n-dimensional integral-calculus.

Theorem 5.5. (Gaussian integral theorem)
Let Ω ⊂ R

n denote a bounded open set satisfying the assumptions (A), (B),
and (D). Furthermore, the vector-valued function f(x) fulfills the assumption
(C). Then we have the identity

∫
Ω

div f(x) dx =

∫
∂Ω

f(x) · ξ(x) dn−1σ.

Proof: (E.Heinz)
We shall prove this statement by referring to Theorem 4.7 from Section 4.

1. We comprehend M = Ω ⊂ R
n as an n-dimensional manifold in R

n with
the atlas A : X(t) = t, t ∈ Ω. For each point

x0 ∈
N⋃
l=1

Fl ⊂ Ω̇

we now find a rectangle Q(x0, �, σ) due to Proposition 5.1, such that

Ω ∩Q =
{
x ∈ R

n : |xi − x0i | < � (i �= k),

xk <> Φ(x1, . . . , xk−1, xk+1, . . . , xn), |xk − x0k| < σ
}
.

On the semicube

H :=
{
t ∈ R

n : t1 ∈ (−�, 0), |ti| < �, i = 2, . . . , n
}

with the upper bounding side

S :=
{
t ∈ R

n : t1 = 0, |ti| < �, i = 2, . . . , n}

in the direction of e1, we consider the transformation

Y (t) =
(
x01 + ε2t2, . . . , x

0
k−1 + εktk, Φ(x

0
1 + ε2t2, . . . , x

0
k−1 + εktk,

x0k+1 + εk+1tk+1, . . . , x
0
n + εntn) + ε1t1, x

0
k+1 + εk+1tk+1, . . . , x

0
n + εntn

)

where εk ∈ {±1} for k = 1, . . . , n holds true. Choosing the sign factors
ε1, . . . , εn suitably, we attain the conditions
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Y (H) ⊂ Ω ∩Q, Y (S) = Ω̇ ∩Q, and JY (0) = +1

for the functional determinant of Y . Therefore, the mapping Y is com-
patible with the chart X from above, and we endow ∂M = ∂Ω with the
induced atlas. On account of the condition JY (0) > 0, the normal ν(t)
to a surface patch oriented by ∂Ω points in the direction of the exterior
normal ξ to ∂Ω.

We now consider the (n− 1)-form

ω =

n∑
i=1

(−1)i+1fi(x) dx1∧. . .∧dxi−1∧dxi+1∧. . .∧dxn ∈ C1(M)∩C0(M).

From our considerations above we infer∫
∂Ω

ω =

∫
∂Ω

f(x) · ξ(x) dn−1σ.

2. Due to the assumption (D), we have finitely many balls to each quantity
ε > 0, namely

Kj :=
{
x ∈ R

n : |x− x(j)| ≤ �j
}

for j = 1, . . . , J,

satisfying

Ḟ1 ∪ . . . ∪ ḞN ⊂
J⋃

j=1

Kj and

J∑
j=1

ρn−1
j ≤ ε.

Now we show that the capacity of the singular boundary vanishes. In this
context we construct a function Ψ(r) : [0,+∞) → [0, 1] ∈ C1 with

Ψ(r) =

{
0, 0 ≤ r ≤ 2

1, 3 ≤ r
and M := sup

r≥0
|Ψ ′(r)| < +∞.

For the indices j = 1, . . . , J we consider the functions

χj(x) := Ψ
(
|x− x(j)| /�j

)
, x ∈ R

n,

satisfying χj ∈ C1(Rn) and

χj(x) =

{
1, |x− x(j)| ≥ 3�j

0, |x− x(j)| ≤ 2�j
.

When En denotes the volume of the n-dimensional unit ball, we evaluate
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∫
Rn

|∇χj(x)| dx =

∫
2j≤|x−x(j)|≤3j

∣∣∣∣Ψ ′
( 1

�j
|x− x(j)|

)∣∣∣∣ 1�j dx

≤ M

�j
En(3

n�nj − 2n�nj )

= MEn(3
n − 2n)�n−1

j

for j = 1, . . . , J . We obtain a function

χ(x) := χ1(x) · . . . · χJ (x) ∈ C1
0

(
Ω \ (Ḟ1 ∪ . . . ∪ ḞN )

)

with ∫
Ω

|∇χ(x)| dx ≤
J∑

j=1

∫
Rn

|∇χj(x)| dx

≤ MEn(3
n − 2n)

J∑
j=1

�n−1
j

≤ MEn(3
n − 2n)ε.

Therefore, the set Ḟ1 ∪ . . . ∪ Ḟn ⊂ Ω̇ has capacity zero.
3. The Stokes integral theorem for manifolds finally reveals∫

∂Ω

f(x) · ξ(x) dn−1σ =

∫
∂M

ω =

∫
M

dω =

∫
Ω

div f(x) dx.

This corresponds to the statement above. q.e.d.

We obtain immediately Green’s formula from Theorem 5.5, which is funda-
mental for the potential theory presented in Chapter 5.

Theorem 5.6. (Green’s formula)
Let Ω ⊂ R

n denote an open bounded set in R
n satisfying the assumptions (A),

(B), and (D). Furthermore, let the functions f(x) and g(x) belong to the class
C1(Ω) ∩ C2(Ω) subject to the integrability condition

∫
Ω

(
|Δf(x)|+ |Δg(x)|

)
dx < +∞.

Here the symbol � denotes the Laplace operator due to

�f(x) :=
n∑

i=1

∂2f

∂xi∂xi
(x).

Then we have the identity
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∫
Ω

(
fΔg − gΔf

)
dx =

∫
∂Ω

(
f
∂g

∂ξ
− g ∂f

∂ξ

)
dn−1σ

using the notations

∂f

∂ξ
:= ∇f(x) · ξ(x), ∂g

∂ξ
:= ∇g(x) · ξ(x), x ∈ ∂Ω.

Proof: We apply the Gaussian integral theorem to the vector-field

h(x) := f(x)∇g(x)− g(x)∇f(x).

Now we deduce

divh(x) = ∇h(x) = f(x)Δg(x)− g(x)Δf(x),

and we obtain∫
Ω

(
f(x)Δg(x)− g(x)Δf(x)

)
dx =

∫
∂Ω

h(x) · ξ(x) dn−1σ

=

∫
∂Ω

(
f(x)

∂g

∂ξ
(x)− g(x)∂f

∂ξ
(x)

)
dn−1σ,

which implies the statement above. q.e.d.

We specialize the Stokes integral theorem for manifolds onto 2-dimensional
surfaces in the Euclidean space R

3. Since we even prove this theorem for sur-
faces with singular boundaries, we need the following result which is important
to construct conformal mappings (in Chapter 4) and central within the theory
of Nonlinear Elliptic Systems (in Chapter 12).

Theorem 5.7. (Oscillation lemma of R.Courant and H. Lebesgue)
Let

B :=
{
w = u+ iv = (u, v) ∈ C ∼= R

2 : |w| < 1
}

denote the open unit disc and

X(u, v) =
(
x1(u, v), . . . , xn(u, v)

)
: B → R

n ∈ C1(B)

a vector-valued function with finite Dirichlet integral D(X); more precisely

D(X) :=

∫∫
B

(
|Xu(u, v)|2 + |Xv(u, v)|2

)
dudv ≤ N < +∞.

For each point w0 = u0 + iv0 ∈ B and each quantity δ ∈ (0, 1), we then find
a number δ∗ ∈ [δ,

√
δ], such that the estimate
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L :=

∫

|w−w0|=δ∗

w∈B

dσ(w) ≤ 2

√
πN

log 1
δ

is valid for the length L of the curve X(w), |w − w0| = δ∗, w ∈ B.

For the proof of this theorem we add the elementary

Proposition 5.8. Let the numbers a < b be given and the function f(x) :
[a, b] → R be continuous. Then we have the estimate

b∫
a

|f(x)| dx ≤
√
b− a

√√√√√
b∫

a

|f(x)|2 dx.

Proof: Let Z : a = x0 < x1 < . . . < xN = b represent an equidistant
decomposition of the interval [a, b] - with the partitioning points xj := a+j

b−a
N

for j = 0, 1, . . . , N . When ξj ∈ [xj , xj+1] denote arbitrary intermediate points,
the Cauchy-Schwarz inequality reveals

N−1∑
j=0

|f(ξj)|(xj+1 − xj) ≤

√√√√N−1∑
j=0

|f(ξj)|2(xj+1 − xj)

√√√√N−1∑
j=0

(xj+1 − xj)

=
√
b− a

√√√√N−1∑
j=0

|f(ξj)|2(xj+1 − xj).

The transition to the limit N → ∞ yields the inequality

b∫
a

|f(x)| dx ≤
√
b− a

√∫ b

a

|f(x)|2 dx,

which has been stated above. q.e.d.

Proof of Theorem 5.7: We introduce polar coordinates about the point w0 =
u0 + iv0 as follows:

u = u0 + � cosϕ, v = v0 + � sinϕ, 0 ≤ � ≤
√
δ, ϕ1(�) ≤ ϕ ≤ ϕ2(�).

Furthermore, we define the function

Ψ(�, ϕ) := X(u0 + � cosϕ, v0 + � sinϕ)

and calculate
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Ψ = Xu cosϕ+Xv sinϕ,

Ψϕ = −Xu� sinϕ+Xv� cosϕ

as well as

|Ψ|2 +
1

�2
|Ψϕ|2 = |Xu|2 + |Xv|2.

Using the intermediate value theorem of the integral-calculus in combination
with Proposition 5.8, we obtain

N ≥ D(X) =

∫∫
B

(|Xu|2 + |Xv|2) dudv ≥

√
δ∫

δ

ϕ2()∫
ϕ1()

(
|Ψ|2 +

1

�2
|Ψϕ|2

)
� d�dϕ

≥

√
δ∫

δ

1

�

⎛
⎜⎝

ϕ2()∫
ϕ1()

|Ψϕ|2 dϕ

⎞
⎟⎠ d� =

⎛
⎜⎝

ϕ2(δ
∗)∫

ϕ1(δ∗)

|Ψϕ(δ∗, ϕ)|2 dϕ

⎞
⎟⎠

√
δ∫

δ

d�

�

≥ 1

2

(
log

1

δ

)
1

ϕ2(δ∗)− ϕ1(δ∗)

⎛
⎜⎝

ϕ2(δ
∗)∫

ϕ1(δ∗)

|Ψϕ(δ∗, ϕ)| dϕ

⎞
⎟⎠

2

≥ 1

4π
log

(
1

δ

)⎛⎜⎝
ϕ2(δ

∗)∫
ϕ1(δ∗)

|Ψϕ(δ∗, ϕ)| dϕ

⎞
⎟⎠

2

for a number δ∗ ∈ [δ,
√
δ]. Finally, we infer the inequality

L =

ϕ2(δ
∗)∫

ϕ1(δ∗)

|Ψϕ(δ∗, ϕ)| dϕ ≤
√

4πN

log 1
δ

= 2

√
πN

log 1
δ

and arrive at the statement above. q.e.d.

Remark: When we choose w0 ∈ B in Theorem 5.7, we have only to require
the regularity X ∈ C1(B \ {w0}).

We are now prepared to prove the interesting

Theorem 5.9. (Classical Stokes integral theorem with singular
boundary)

1. On the boundary of the closed unit disc B we have given k0 ∈ N ∪ {0}
points wk = exp (iϕk) for k = 1, . . . , k0 with their associate angles 0 ≤
ϕ1 < . . . < ϕk0 < 2π. When we exempt the points wk for k = 1, . . . , k0
from the sets B and ∂B, we obtain the sets B ′ and ∂B′, respectively.
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2. Furthermore, let the injective mapping

X(u, v) =
(
x1(u, v), x2(u, v), x3(u, v)

)
: B −→ R

3 ∈ C1(B ′) ∩ C0(B)

with the property Xu∧Xv �= 0 for all (u, v) ∈ B ′ and finite Dirichlet inte-
gral D(X) < +∞ be given. Let the surface be conformally parametrized,
which means the conformality relations

|Xu| = |Xv|, Xu ·Xv = 0 for all (u, v) ∈ B

are satisfied. Denoting by

X(ϕ) := X
(
eiϕ
)
, 0 ≤ ϕ ≤ 2π

the restriction of X onto ∂B, we obtain the line element

d1σ(ϕ) = |X ′
(ϕ)| dϕ, 0 ≤ ϕ ≤ 2π, ϕ /∈ {ϕ1, . . . , ϕk0}.

We require finite length for the curve X(ϕ); and more precisely

L(X) =

k0−1∑
k=0

ϕk+1∫
ϕk

d1σ(ϕ) < +∞,

where we defined ϕ0 := ϕk0 − 2π.
3. By the symbol

ν(u, v) := |Xu ∧Xv|−1Xu ∧Xv , (u, v) ∈ B ′

we denote the unit normal vector and by

d2σ(u, v) := |Xu ∧Xv| dudv

the surface element of the surface X(u, v). The tangential vector to the
boundary curve is abbreviated by

T (ϕ) :=
X ′(ϕ)

|X ′(ϕ)|
.

4. Let O ⊃ X(B) =: M constitute an open set in R
3, and let the vector-field

a(x) =
(
a1(x1, x2, x3), a2(x1, x2, x3), a3(x1, x2, x3)

)
∈ C1(O) ∩ C0(M)

be prescribed with the integrability property
∫∫
B

|rot a(X(u, v))| d2σ(u, v) < +∞.
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Then we have the Stokes identity

∫∫
B

{
rot a
(
X(u, v)

)
· ν(u, v)

}
d2σ(u, v) =

2π∫
0

{
a
(
X(ϕ)

)
·T (ϕ)

}
d1σ(ϕ). (7)

Remarks: Since the surface is conformally parametrized, our conditionD(X) <
+∞ is equivalent to the finiteness of the surface area of X, on account of the
relation

D(X) = 2

∫∫
B

d2σ(u, v) =: 2A(X).

The introduction of isothermal parameters in the large is treated in Section 8
of Chapter 12.

Proof of Theorem 5.9:

1. We intend to apply the Stokes integral theorem for manifolds: The set
M := X(B) constitutes a bounded oriented 2-dimensional C1-manifold
in R

3 with the chart X(u, v) : B → M. The regular boundary ∂M :=
X(∂B′) inherits its orientation by the mapping X(ϕ), 0 ≤ ϕ ≤ 2π and
possesses finite length L(X) < +∞. At first, we show that the singular
boundary ΔM := X({w1, . . . , wk0}) ⊂ Ṁ ⊂ R

3 has capacity zero.
2. When w∗ ∈ ∂B is a singular point of the surface, we introduce polar

coordinates in a neighborhood of w∗ as follows:

w = w∗ + �eiϕ , 0 < � < �∗, ϕ1(�) < ϕ < ϕ2(�).

For the quantity η > 0 being given, the Courant-Lebesgue oscillation
lemma provides a number δ ∈ (0, ρ∗) with the following property: Defining
the function Y (�, ϕ) := X(w∗ + �eiϕ), 0 < ρ < ρ∗, ϕ1(ρ) < ϕ < ϕ2(ρ), we
have the inequality

ϕ2(δ
∗)∫

ϕ1(δ∗)

|Yϕ(δ∗, ϕ)| dϕ ≤ 2

√
πD(X)

log 1
δ

≤ η (8)

for one number δ∗ ∈ [δ,
√
δ] at least. Consequently, we find two numbers

0 < �1 < δ
∗ < �2 < �

∗ with the property

ϕ2()∫
ϕ1()

|Yϕ(�, ϕ)| dϕ ≤ 2η for all � ∈ [�1, �2].

Now we consider the weakly monotonic function

Ψ(�) : [0, �∗] −→ [0, 1] ∈ C1



5 The Integral Theorems of Gauß and Stokes 55

with the properties

Ψ(�) =

{
0, 0 ≤ � ≤ �1
1, �2 ≤ � ≤ �∗

.

In a neighborhood of the surface M, we now construct a function

χ = χ(x1, x2, x3) ∈ C1(M)

satisfying

Ψ(�) = χ ◦ Y (�, ϕ), 0 < � < �∗, ϕ1(�) < ϕ < ϕ2(�).

This implies

Ψ ′(�) = ∇χ
∣∣
Y (,ϕ)

· Y(�, ϕ) = |∇χ(Y (�, ϕ))||Y(�, ϕ)|.

We conclude∫ ∫
w∈B∩B�∗ (w∗)

|∇χ| d2σ(u, v)

≤
∗∫
0

⎛
⎜⎝

ϕ2()∫
ϕ1()

|∇χ(Y (�, ϕ))||Y||Yϕ| dϕ

⎞
⎟⎠ d�

=

∗∫
0

Ψ ′(�)

⎛
⎜⎝

ϕ2()∫
ϕ1()

|Yϕ(�, ϕ)| dϕ

⎞
⎟⎠ d�

=

2∫
1

Ψ ′(�)

⎛
⎜⎝

ϕ2()∫
ϕ1()

|Yϕ(�, ϕ)| dϕ

⎞
⎟⎠ d� ≤ 2η

2∫
1

Ψ ′(�) d� = 2η

for all η > 0. In this way, we see that the boundary point X(w∗) ∈ Ṁ has
capacity zero, and the finitely many boundary points X({w1, . . . , wk0})
share this property.

3. Now we consider the Pfaffian form

ω = a1(x) dx1 + a2(x) dx2 + a3(x) dx3 ∈ C1(M) ∩ C0(M)

satisfying

∫
M

|dω| ≤
∫∫
B

|rot a
(
X(u, v)

)
| d2σ(u, v) < +∞.
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Theorem 4.7 from Section 4 yields the identity

∫∫
B

{
rot a
(
X(u, v)

)
· ν
}
d2σ

=

∫
M

dω =

∫
∂M

ω =

2π∫
0

{
a
(
X(ϕ)

)
· T (ϕ)

}
d1σ(ϕ),

and our theorem is proved. q.e.d.

6 Curvilinear Integrals

We begin with the fundamental

Example 6.1. (Gravitational potentials)
Let the solid of the mass M > 0 and another solid of the mass m > 0 with
m � M be given (imagine the system Sun - Earth). Based on the theory
of gravitation by I. Newton, the movement in the arising force-field can be
described by the Newtonian potential

F (x) = γ
mM

r
, r = r(x) =

√
x21 + x

2
2 + x

2
3, x ∈ R

3 \ {0};

here γ > 0 denotes the gravitational constant. We determine the work being
performed during the movement from a given point P to another point Q in
the Euclidean space by the formula W = F (Q) − F (P ). We can deduce the
force-field by differentiation from the potential as follows:

f(x) =
(
f1(x), f2(x), f3(x)

)
= ∇F (x)

= −γ mM
r3

(x1, x2, x3) = −γ mM
r3

x.

Now we associate the Pfaffian form

ω = f1(x) dx1 + f2(x) dx2 + f3(x) dx3

= −γ mM
r3

(x1 dx1 + x2 dx2 + x3 dx3).

When
X(t) : [a, b] −→ R

3 \ {0} ∈ C1([a, b])

denotes an arbitrary path satisfying X(a) = P and X(b) = Q, we infer
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∫
X

ω =

b∫
a

(
Fx1x

′
1(t) + Fx2x

′
2(t) + Fx3x

′
3(t)
)
dt

=

b∫
a

d

dt

(
F (X(t))

)
dt

= F
(
X(b)

)
− F
(
X(a)

)
.

Consequently, this integral depends only on the end-points - and does not
depend on the path chosen. Then we speak of a conservative force-field; move-
ments along closed curves do not require energy.

We intend to present the theory of curvilinear integrals in the sequel.

Definition 6.2. Let Ω ⊂ R
n - with n ≥ 2 - denote a domain and P,Q ∈

Ω two points. Then we define the class C(Ω,P,Q) of piecewise continuously
differentiable paths (or synonymously, curves) in Ω from P to Q as follows:

C(Ω,P,Q) :=
{
X(t) : [a, b] −→ Ω ∈ C0([a, b]) :

−∞ < a < b < +∞, X(a) = P, X(b) = Q;

We have a = t0 < t1 < . . . < tN = b such that

X
∣∣
[ti,ti+1]

∈ C1([ti, ti+1], Ω) for i = 0, . . . , N − 1 holds true
}
.

With the set
C(Ω) :=

⋃
P∈Ω

C(Ω,P, P ),

we obtain the class of closed paths (or synonymously, closed curves) in Ω.
When X(t) ≡ P , a ≤ t ≤ b holds true, we speak of a point-curve.

Remark: In particular, the polygonal paths from P to Q are contained in
C(Ω,P,Q).

Definition 6.3. Let

ω =

n∑
i=1

fi(x) dxi , x ∈ Ω

denote a continuous Pfaffian form in the domain Ω and X ∈ C(Ω,P,Q) a
piecewise continuously differentiable path between the two points P,Q ∈ Ω.
Introducing

X(j) := X
∣∣
[tj ,tj+1]

∈ C1([tj , tj+1]) for j = 0, . . . , N − 1,
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we define by

∫
X

ω :=

N−1∑
j=0

∫
X(j)

ω =

N−1∑
j=0

tj+1∫
tj

n∑
i=1

fi

(
X(t)
)
x′i(t) dt

the curvilinear integral of ω over X.

Definition 6.4. Let

ω =

n∑
i=1

fi(x) dxi, x ∈ Ω

represent a continuous Pfaffian form in the domain Ω ⊂ R
n. Then we call

F (x) ∈ C1(Ω) a primitive of ω, if the identity

dF = ω in Ω

or equivalently the equations

Fxi(x) = fi(x) for x ∈ Ω and i = 1, . . . , n

hold true. When ω possesses a primitive, we speak of an exact Pfaffian form.

Theorem 6.5. (Curvilinear integrals)
Let Ω ⊂ R

n denote a domain and ω a continuous Pfaffian form in Ω. Then
ω possesses a primitive F in Ω if and only if we have the identity

∫
X

ω = 0

for each closed curve X ∈ C(Ω,P, P ) - with a point P ∈ Ω. In the latter case,
we obtain a primitive as follows: We take a fixed point P ∈ Ω and have the
following representation for all arbitrary points Q ∈ Ω, namely

F (Q) := γ +

∫
Y

ω with Y ∈ C(Ω,P,Q),

where γ ∈ R is a constant.

Proof:

1. When ω possesses a primitive F , we infer

ω =

n∑
i=1

fi(x) dxi =

n∑
i=1

Fxi(x) dxi, x ∈ Ω.

Let us consider X ∈ C(Ω,P, P ) with P ∈ Ω and

X(j) := X
∣∣
[tj ,tj+1]

∈ C1([tj , tj+1]) for j = 0, . . . , N − 1.
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This implies

∫
X

ω =
N−1∑
j=0

∫
X(j)

ω =
N−1∑
j=0

tj+1∫
tj

(
n∑

i=1

Fxi

(
X(t)
)
x′i(t) dt

)

=

N−1∑
j=0

tj+1∫
tj

d

dt
F
(
X(t)
)
dt =

N−1∑
j=0

{
F
(
X(tj+1)

)
− F
(
X(tj)

)}

= F
(
X(tN )

)
− F
(
X(t0)

)
= F (P )− F (P ) = 0.

2. Now we start with the assumption∫
X

ω = 0 for all curves X ∈ C(Ω,P, P ) with P ∈ Ω.

The point P ∈ Ω being fixed, we choose a path X ∈ C(Ω,P,Q) for
an arbitrary Q ∈ Ω and define F (Q) :=

∫
X

ω. Then we have to show

the independence of this definition from the choice of the curve X: When
Y ∈ C(Ω,P,Q) represents another curve, we have to establish the identity

∫
X

ω =

∫
Y

ω.

We associate the following closed curve to the curves X : [a, b] → R
n and

Y : [c, d] → R
n, namely

Z(t) :=

{
X(t), t ∈ [a, b]

Y (b+ d− t), t ∈ [b, b+ d− c]
.

Evidently, Z ∈ C(Ω,P, P ) holds true and

0 =

∫
Z

ω =

∫
X

ω −
∫
Y

ω

follows, which implies ∫
X

ω =

∫
Y

ω.

3. Finally, we have to deduce the formulas

Fxi(Q) = fi(Q) for i = 1, . . . , n.

Here we proceed from Q to the point
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Qε := Q+ εei, ei := (0, . . . , 1︸︷︷︸
i−th

, . . . , 0)

along the path

Y (t) : [0, ε] → R
n, Y (t) = Q+ tei

for a fixed index i ∈ {1, . . . , n}. Now we evaluate

F (Qε) = F (Q) + F (Qε)− F (Q) = F (Q) +
∫
Y

ω

= F (Q) +

ε∫
0

n∑
j=1

fj

(
Y (t)
)
y′j(t) dt

= F (Q) +

ε∫
0

fi(Q+ tei) dt.

Finally, we obtain

d

dxi
F
∣∣
Q
=
d

dε
F (Qε)

∣∣
ε=0

= fi(Q), i = 1, . . . , n

proving the statement above. q.e.d

Let

ω =

n∑
i=1

fi(x) dxi

represent an exact differential form of the class C1(Ω) in a domain Ω ⊂ R
n.

Then we have a function F (x) : Ω −→ R ∈ C2(Ω) with the property

dF = ω or equivalently fi(x) = Fxi(x).

Furthermore, we infer the identity

dω = d2F = d

n∑
i=1

Fxi dxi =

n∑
i,j=1

Fxixj dxj ∧ dxi = 0,

since the Hessian matrix (Fxixj )i,j=1,...,n is symmetric.

Definition 6.6. We name an m-form ω ∈ C1(Ω) in a domain Ω ⊂ R
n as

being closed, if the identity dω = 0 in Ω holds true.

Remark: The Pfaffian form ω =
∑n

i=1 fi(x) dxi, x ∈ Ω is closed if and only

if the matrix
(

∂fi(x)
∂xj

)
is symmetric.

The considerations above show that an exact Pfaffian form is always closed.
We shall now answer the question, which conditions guarantee that a closed
Pfaffian form is necessarily exact - and consequently has a primitive.
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Example 6.7. In the pointed plane R2 \ {(0, 0)}, we consider the Pfaffian form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy, x2 + y2 > 0.

This 1-form is closed, since we have

∂

∂y

(
−y

x2 + y2

)
=

−(x2 + y2)− (−y)2y
(x2 + y2)2

=
−x2 + y2
(x2 + y2)2

as well as
∂

∂x

(
x

x2 + y2

)
=
x2 + y2 − x(2x)

(x2 + y2)2
=

y2 − x2
(x2 + y2)2

,

and consequently

dω =
∂

∂y

(
−y

x2 + y2

)
dy ∧ dx+ ∂

∂x

(
x

x2 + y2

)
dx ∧ dy = 0.

We observe the closed curve

X(t) := (cos t, sin t), 0 ≤ t ≤ 2π

and evaluate

∫
X

ω =

2π∫
0

(
− sin t(− sin t) + cos t cos t

)
dt = 2π.

According to Theorem 6.5, a primitive to ω in R
2 \ {0, 0} does not exist - and

the differential form is not exact there.

The nonvanishing of this curvilinear integral is caused by the fact that the
curve X in R

2 \ {(0, 0)} cannot be contracted to a point-curve.

Definition 6.8. Let Ω ⊂ R
n denote a domain. Two closed curves

X(t) : [a, b] −→ Ω and Y (t) : [a, b] −→ Ω, X, Y ∈ C(Ω)

are named homotopic in Ω, if we have a mapping

Z(t, s) : [a, b]× [0, 1] −→ Ω ∈ C0([a, b]× [0, 1],Rn)

with the properties

Z(a, s) = Z(b, s) for all s ∈ [0, 1]

as well as

Z(t, 0) = X(t), Z(t, 1) = Y (t) for all t ∈ [a, b].
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Now we establish the profound

Theorem 6.9. (Curvilinear integrals)
Let Ω ⊂ R

n constitute a domain, where the two closed curves X,Y ∈ C(Ω)
are homotopic to each other. Finally, let

ω =

n∑
i=1

fi(x) dxi, x ∈ Ω

represent a closed Pfaffian form of the class C1(Ω). Then we have the identity

∫
X

ω =

∫
Y

ω.

For our proof we need the following

Proposition 6.10. (Smoothing of a closed curve)
Let

X(t) : [a, b] −→ R
n ∈ C(Ω)

represent a closed curve, which is continued periodically via

X
(
t+ k(b− a)

)
= X(t), t ∈ R, k ∈ Z

onto the entire real line R with the period (b−a). Furthermore, let the function

χ(t) ∈ C∞
0 ((−1,+1), [0,∞))

give us a mollifier with the properties

χ(−t) = χ(t) for all ∈ (−1, 1)

and
+1∫

−1

χ(t) dt = 1.

When we define

χt,ε(τ) :=
1

ε
χ

(
τ − t
ε

)
, τ ∈ R,

we obtain the smoothed function

Xε(t) :=

+∞∫
−∞

X(τ)χt,ε(τ) dτ =

+∞∫
−∞

X(τ)
1

ε
χ

(
τ − t
ε

)
dτ,

which has the period (b− a) again. Then we observe
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lim
ε→0+

Xε(t) = X(t) uniformly on [a, b].

Furthermore, the function Xε(t) belongs to the class C∞(R), and we obtain
the estimate ∣∣∣∣ ddtXε(t)

∣∣∣∣ ≤ C for all t ∈ [a, b], 0 < ε < ε0,

with a constant C > 0 and a sufficiently small ε0. For all compact subsets

T ⊂ (t0, t1) ∪ (t1, t2) ∪ . . . ∪ (tN−1, tN ) ⊂ (a, b)

we infer

d

dt
Xε(t) −→ X ′(t) for ε→ 0 + uniformly in T.

Proof: We show parallel to Proposition 1.2 in Section 1 that

Xε(t) −→ X(t) for all t ∈ [a, b] uniformly, where ε→ 0 + holds true.

Since X is piecewise differentiable and continuous, a partial integration yields

d

dt
Xε(t) =

+∞∫
−∞

X(τ)
d

dt
χt,ε(τ) dτ =

+∞∫
−∞

X(τ)

(
− d

dτ
χt,ε(τ)

)
dτ

=

+∞∫
−∞

X ′(τ)χt,ε(τ) dτ.

Therefore, we obtain

∣∣∣∣ ddtXε(t)

∣∣∣∣ ≤
+∞∫

−∞

|X ′(τ)|χt,ε(τ) dτ ≤ C
+∞∫

−∞

χt,ε(τ) dτ = C for all t ∈ R,

using the estimate |X ′(τ)| ≤ C on R. Finally, we show - parallel to Proposition
1.2 in Section 1 again - the relation

lim
ε→0+

d

dt
Xε(t) = X ′(t) uniformly in T ⊂ (t0, t1) ∪ . . . ∪ (tN−1, tN ),

which had to be proved. q.e.d.

Proof of Theorem 6.9:

1. Let X,Y ∈ C(Ω) represent two homotopic closed curves. Then we have a
continuous function

Z(t, s) : [a, b]× [0, 1] −→ Ω ∈ C0([a, b]× [0, 1],Rn)
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with the properties

Z(a, s) = Z(b, s) for all s ∈ [0, 1]

and
Z(t, 0) = X(t), Z(t, 1) = Y (t) for all t ∈ [a, b].

We continue Z onto the rectangle [a, b] ×
[−2, 3] to the function

Φ(t, s) :=

⎧⎪⎨
⎪⎩

X(t), (t, s) ∈ [a, b]× [−2, 0]

Z(t, s), (t, s) ∈ [a, b]× [0, 1]

Y (t), (t, s) ∈ [a, b]× [1, 3]

.

Via the prescription

Φ
(
t+ k(b− a), s

)
= Φ(t, s) for t ∈ R, s ∈ [−2, 3] and k ∈ Z,

we extend the function onto the stripe R×[−2, 3] to a continuous function,
which is periodic in the first variable with the period (b− a).

2. On the rectangle Q := [a, b]× [−1, 2] we consider the function

Φε(u, v) :=

+∞∫
−∞

+∞∫
−∞

Φ(ξ, η)χu,ε(ξ)χv,ε(η) dξdη for all 0 < ε < 1.

Now the regularity Φε ∈ C∞(Q) is fulfilled, and we have the limit relation

Φε(u, v) −→ Φ(u, v) for ε→ 0 uniformly in [a, b]× [−1, 2].

This implies the property Φε(Q) ⊂ Ω, 0 < ε < ε0 and the periodicity

Φε
(
u+ k(b− a), v

)
= Φε(u, v) for all (u, v) ∈ R× [−1, 2], k ∈ Z.

For all parameters a ≤ u ≤ b we have

Φε(u,−1) =

+∞∫
−∞

+∞∫
−∞

Φ(ξ, η)χu,ε(ξ)χ−1,ε(η) dξdη

=

+∞∫
−∞

+∞∫
−∞

X(ξ)χu,ε(ξ)χ−1,ε(η) dξdη

=

+∞∫
−∞

X(ξ)χu,ε(ξ) dξ = Xε(u)

and additionally
Φε(u, 2) = Y ε(u).
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3. By the Stokes integral theorem on the rectangle Q, we obtain the following
identity for all 0 < ε < ε0, namely

∫
Xε

ω −
∫
Y ε

ω =

∮
∂Q

ωΦε =

∫
Q

d(ωΦε) =

∫
Q

(dω)Φε = 0.

We observe ε→ 0+, and Proposition 6.10 yields

0 = lim
ε→0+

⎛
⎝∫

Xε

ω −
∫
Y ε

ω

⎞
⎠ =

∫
X

ω −
∫
Y

ω

and therefore our statement above. q.e.d

Definition 6.11. Let the domain Ω ⊂ R
n as well as the points P,Q ∈ Ω be

given. We name two curves

X(t), Y (t) : [a, b] −→ Ω ∈ C(Ω,P,Q)

as being homotopic in Ω with the fixed start-point P and end-point Q, if we
have a continuous mapping

Z(t, s) : [a, b]× [0, 1] −→ Ω

with the following properties:

Z(a, s) = P, Z(b, s) = Q for all s ∈ [0, 1]

as well as

Z(t, 0) = X(t), Z(t, 1) = Y (t) for all t ∈ [a, b].

We deduce immediately the following result from Theorem 6.9.

Theorem 6.12. (Monodromy)
Let Ω ⊂ R

n denote a domain and P,Q ∈ Ω two arbitrary points. Furthermore,
let the two curves X(t), Y (t) ∈ C(Ω,P,Q) be homotopic to each other with
fixed start- and end-point. Finally, let

ω =

n∑
i=1

fi(x) dxi, x ∈ Ω

represent a closed Pfaffian form of the class C1(Ω). Then we have the identity

∫
X

ω =

∫
Y

ω.
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Proof: We consider the following homotopy of closed curves in Ω, namely

Φ(t, s) : [a, 2b− a]× [0, 1] −→ Ω

with

Φ(t, s) =

{
X(t), a ≤ t ≤ b

Z(2b− t, s), b ≤ t ≤ 2b− a
.

Now we note that

Φ(t, 0) =

{
X(t), a ≤ t ≤ b

X(2b− t), b ≤ t ≤ 2b− a
.

Here the curve X is run through from P to Q and then backwards from Q to
P . Therefore, we infer ∫

Φ(·,0)

ω = 0.

Furthermore, we deduce

Φ(t, 1) =

{
X(t), a ≤ t ≤ b

Y (2b− t), b ≤ t ≤ 2b− a
.

Here the curve X is run through from P to Q at first, and the curve Y is run
through from Q to P afterwards. Finally, Theorem 6.9 reveals the identity

0 =

∫
Φ(·,0)

ω =

∫
Φ(·,1)

ω =

∫
X

ω −
∫
Y

ω.

q.e.d.
The study of curvilinear integrals becomes very simple in the following do-
mains.

Definition 6.13. A domain Ω ⊂ R
n is named simply connected, if each

closed curve X(t) ∈ C(Ω) is homotopic to a point-curve in Ω. This means
geometrically that each closed curve is contractible to one point.

Theorem 6.14. (Curvilinear integrals in simply connected domains)
Let Ω ⊂ R

n constitute a simply connected domain and

ω =

n∑
i=1

fi(x) dxi, x ∈ Ω

a Pfaffian form of the class C1(Ω). Then the following statements are equiv-
alent:
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1. The Pfaffian form ω is exact, and therefore possesses a primitive F .
2. For all curves X ∈ C(Ω,P, P ) - with a point P ∈ Ω - we have the identity∫

X

ω = 0.

3. The Pfaffian form ω is closed, which means

dω = 0 in Ω

or equivalently that the matrix
(

∂fi
∂xj

(x)
)
i,j=1,...,n

is symmetric for all

points x ∈ Ω.

Proof: From the first theorem on curvilinear integrals we infer the equivalence
‘1.⇔ 2.’. The statement ‘1.⇒ 3.’ is revealed by the considerations preceding
Definition 6.6. We only have to show the direction ‘3. ⇒ 2.’: Here we choose
an arbitrary closed curve X(t) ∈ C(Ω,P, P ), which is homotopic to the closed
curve Y (t) ≡ P, a ≤ t ≤ b, due to the assumption on the domain Ω. The
application of Theorem 6.9 yields

∫
X

ω =

∫
Y

ω =

b∫
a

n∑
i=1

fi

(
Y (t)
)
y′i(t) dt = 0,

which implies our theorem. q.e.d.

Remark: In the Euclidean space R
3, our condition 3 from Theorem 6.14 im-

plies that the vector-field f(x) =
(
f1(x), f2(x), f3(x)

)
, x ∈ Ω is irrotational,

which means
rot f(x) = 0 in Ω.

In simply connected domains Ω ⊂ R
3, Theorem 6.14 guarantees the existence

of a primitive F : Ω → R ∈ C2(Ω) with the property ∇F (x) = f(x), x ∈ Ω.

7 The Lemma of Poincaré

The theory of curvilinear integrals was transferred to the higher-dimensional
situation of surface-integrals especially by de Rham (compare G. de Rham:
Varietés differentiables, Hermann, Paris 1955). In this context we refer the
reader to Paragraph 20 in the textbook by H.Holmann and H.Rummler: Al-
ternierende Differentialformen, BI-Wissenschaftsverlag, 2.Auflage, 1981.

We shall construct primitives for arbitrary m-forms, which correspond to
vector-potentials - however, in ‘contractible domains’ only. Here we do not
need the Stokes integral theorem!

Definition 7.1. A continuous m-form with 1 ≤ m ≤ n in an open set Ω ⊂ R
n

with n ∈ N, namely
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ω =
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim , x ∈ Ω,

is named exact if we have an (m− 1)-form

λ =
∑

1≤i1<...<im−1≤n

bi1...im−1(x) dxi1 ∧ . . . ∧ dxim−1 , x ∈ Ω

of the class C1(Ω) with the property

dλ = ω in Ω.

We begin with the easy

Theorem 7.2. An exact differential form ω ∈ C1(Ω) is closed.

Proof: We calculate

dω = d(dλ) = d
∑

1≤i1<...<im−1≤n

dbi1...im−1(x) ∧ dxi1 ∧ . . . ∧ dxim−1

=
∑

1≤i1<...<im−1≤n

(
d dbi1...im−1(x)

)
∧ dxi1 ∧ . . . ∧ dxim−1 = 0,

which implies the statement above. q.e.d.

We now provide a condition on the domain Ω, which guarantees that a closed
differential form is necessarily exact.

Definition 7.3. Let Ω ⊂ R
n denote a domain with the associate cylinder

Ω̂ := Ω × [0, 1] ⊂ R
n+1.

Furthermore, we have a point x0 ∈ Ω and a mapping

F = F (x, t) =
(
f1(x1, . . . , xn, t), . . . , fn(x1, . . . , xn, t)

)
: Ω̂ −→ Ω

of the class C2(Ω̂,Rn) as follows:

F (x, 0) = x0 , F (x, 1) = x for all x ∈ Ω.

Then we name the domain Ω contractible (onto the point x0).

Remarks:

1. Let the domain Ω be star-shaped with respect to the point x0 ∈ Ω, which
means

(tx+ (1− t)x0) ∈ Ω for all t ∈ [0, 1], x ∈ Ω.
Then Ω is contractible with the contraction-mapping

F (x, t) := tx+ (1− t)x0 , x ∈ Ω, t ∈ [0, 1].
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2. Each contractible domain Ω ⊂ R
n is simply connected as well. When

X(s), 0 ≤ s ≤ 1 with X(0) = X(1) represents a closed curve in Ω, it is
contractible onto the point x0 via

Y (s, t) := F
(
X(s), t

)
, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.

In a contractible domain, we can perform the contraction of an arbitrary
curve X(s) by the joint mapping F . Therefore, the contraction is inde-
pendent from the choice of the curve X.

3. The following chain of implications for domains in R
n holds true:

convex =⇒ star-shaped

=⇒ contractible

=⇒ simply connected.

On the cylinder Ω̂ we consider the l-form

γ(x, t) :=
∑

1≤i1<...<il≤n

ci1...il(x, t) dxi1 ∧ . . . ∧ dxil

of the class C1(Ω̂). We use the abbreviation d
dt := ˙ for the time-derivative

and define

γ̇(x, t) :=
∑

1≤i1<...<il≤n

ċi1...il(x, t) dxi1 ∧ . . . ∧ dxil .

Furthermore, we set

1∫
0

γ(x, t) dt :=
∑

1≤i1<...<il≤n

⎛
⎝

1∫
0

ci1...il(x, t) dt

⎞
⎠ dxi1 ∧ . . . ∧ dxil .

The fundamental theorem of the differential- and integral-calculus reveals

1∫
0

γ̇(x, t) dt = γ(x, 1)− γ(x, 0). (1)

The function g(x, t) : Ω̂ → R ∈ C1(Ω̂) being given, we determine its exterior
derivative

dg =
n∑

k=1

∂g

∂xk
dxk + ġ(x, t) dt =: dxg + ġ dt.

Consequently, we obtain
dγ = dxγ + dt ∧ γ̇

abbreviating
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dxγ :=
∑

1≤i1<...<il≤n

(
dxci1...il(x, t)

)
∧ dxi1 ∧ . . . ∧ dxil .

Finally, we deduce the identity

d

⎛
⎝

1∫
0

γ(x, t) dt

⎞
⎠ =

1∫
0

(
dxγ(x, t)

)
dt. (2)

Therefore, we calculate

d

⎛
⎝

1∫
0

γ(x, t) dt

⎞
⎠

=
∑

1≤i1<...<il≤n

n∑
i=1

∂

∂xi

⎛
⎝

1∫
0

ci1...il(x, t) dt

⎞
⎠ dxi ∧ dxi1 ∧ . . . ∧ dxil

=
∑

1≤i1<...<il≤n

n∑
i=1

⎛
⎝

1∫
0

∂

∂xi
ci1...il(x, t) dt

⎞
⎠ dxi ∧ dxi1 ∧ . . . ∧ dxil

=

1∫
0

⎧⎨
⎩

∑
1≤i1<...<il≤n

(
n∑

i=1

∂

∂xi
ci1...il(x, t) dxi

)
∧ dxi1 ∧ . . . ∧ dxil

⎫⎬
⎭ dt

=

1∫
0

(
dxγ(x, t)

)
dt.

We are now prepared to prove the central result of this section.

Theorem 7.4. (Lemma of Poincaré)
Let Ω ⊂ R

n denote a contractible domain, and choose a dimension 1 ≤ m ≤ n.
Then each closed m-form ω in Ω is exact.

Proof (A.Weil):

1. Since Ω is contractible, we have a mapping

F = F (x, t) : Ω̂ −→ Ω ∈ C2(Ω̂)

satisfying

F (x, 0) = x0, F (x, 1) = x for all x ∈ Ω.

On the set Ω̂ = Ω × [0, 1], we consider the transformed differential form
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ω̂(x, t) := ω ◦ F (x, t)

=
∑

1≤i1<...<im≤n

ai1...im(F (x, t)) dfi1 ∧ . . . ∧ dfim

=
∑

1≤i1<...<im≤n

ai1...im(F (x, t)) dxfi1 ∧ . . . ∧ dxfim + dt ∧ ω2(x, t)

= ω1 + dt ∧ ω2.

Here we used the identities

dfik = dxfik + ḟik dt for k = 1, . . . ,m.

The differential forms ω1(x, t) and ω2(x, t) are independent of dt and have
the degrees m and (m− 1), respectively. Furthermore, we note that

ω1(x, 0) = 0 and ω1(x, 1) = ω(x).

2. We evaluate

0 = (dω) ◦ F = d(ω ◦ F ) = dω̂

= dω1 + d(dt ∧ ω2) = dxω1 + dt ∧ ω̇1 − dt ∧ dω2

= dxω1 + dt ∧ ω̇1 − dt ∧ (dxω2 + dt ∧ ω̇2)

= dxω1 + dt ∧ (ω̇1 − dxω2).

This implies
ω̇1 = dxω2. (3)

3. Now we define the (m− 1)-form

λ :=

1∫
0

ω2(x, t) dt.

With the aid of the identities (1), (2), and (3) we calculate

dλ =

1∫
0

(
dxω2(x, t)

)
dt =

1∫
0

ω̇1(x, t) dt = ω1(x, 1)− ω1(x, 0) = ω(x),

which completes the proof. q.e.d.

Example 7.5. In a star-shaped domain Ω ⊂ R
3, let the source-free vector-field

b(x) =
(
b1(x), b2(x), b3(x)

)
: Ω −→ R

3 ∈ C1(Ω,R3)
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with
div b(x) = 0

be given. Then its associate 2-form

ω = b1(x) dx2 ∧ dx3 + b2(x) dx3 ∧ dx1 + b3(x) dx1 ∧ dx2

is closed. Theorem 7.4 gives us a Pfaffian form

λ = a1(x) dx1 + a2(x) dx2 + a3(x) dx3 ∈ C2(Ω)

satisfying dλ = ω. The calculations in Section 3 imply the following identity
for the vector-field a(x) = (a1(x), a2(x), a3(x)), namely

rot a(x) = b(x) for all x ∈ Ω.

Therefore, we have constructed a vector-potential a(x) for the source-free
vector-field b(x).

8 Co-derivatives and the Laplace-Beltrami Operator

In this section we introduce an inner product for differential forms. We con-
sider the space

R
n :=

{
x = (x1, . . . , xn) : xi ∈ R, i = 1, . . . , n

}

with the subset Θ ⊂ R
n. Furthermore, we have given two continuous m-forms

on Θ, namely

α :=
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim , x ∈ Θ,

as well as

β :=
∑

1≤i1<...<im≤n

bi1...im(x) dxi1 ∧ . . . ∧ dxim , x ∈ Θ.

We define an inner product between the m-forms α and β as follows:

(α, β)m :=
∑

1≤i1<...<im≤n

ai1...im(x) bi1...im(x), m = 0, 1, . . . , n. (1)

Consequently, the inner product attributes a 0-form to a pair of m-forms. It
represents a symmetric bilinear form on the vector space of m-forms.

Now we consider the parameter transformation

x = Φ(x) =
(
Φ1(x1, . . . , xn), . . . , Φn(x1, . . . , xn)

)
: Ω −→ Θ ∈ C2(Ω)
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on the open set Ω ⊂ R
n. The mapping Φ satisfies

JΦ(x) = det
(
∂Φ(x)

)
�= 0 for all x ∈ Ω. (2)

We set

g(x) :=
(
JΦ(x)

)2
= det

(
∂Φ(x)t ◦ ∂Φ(x)

)
, x ∈ Ω.

The volume form

ω =
√
g(x) dx1 ∧ . . . ∧ dxn, x ∈ Ω (3)

is associated with the transformation x = Φ(x) in a natural way. The m-forms
α and β are transformed into the m-forms

α := αΦ =
∑

1≤i1<...<im≤n

ai1...im

(
Φ(x)
)
dΦi1(x) ∧ . . . ∧ dΦim(x)

=:
∑

1≤i1<...<im≤n

ai1...im(x) dxi1 ∧ . . . ∧ dxim

and

β := βΦ =
∑

1≤i1<...<im≤n

bi1...im

(
Φ(x)
)
dΦi1(x) ∧ . . . ∧ dΦim(x)

=:
∑

1≤i1<...<im≤n

bi1...im(x) dxi1 ∧ . . . ∧ dxim ,

respectively. We shall define an inner product (α, β)m between the trans-
formed m-forms α and β such that it is parameter-invariant:

(α, β)m(x) = (α, β)m

(
Φ(x)
)
, x ∈ Ω. (4)

We shall explicitly represent this inner product for differential forms of the
orders 0, 1, n− 1, n in the sequel.

1. Let m = 0 hold true. We consider the 0-forms

α = a(x), β = b(x).

Then we see

α = αΦ = a
(
Φ(x)
)
, β = βΦ = b

(
Φ(x)
)
.

Setting
(α, β)0(x) := a(x)b(x),

we obtain

(α, β)0(x) = a(x)b(x) = a
(
Φ(x)
)
b
(
Φ(x)
)

= (α, β)0

(
Φ(x)
)
, x ∈ Ω.



74 Chapter 1 Differentiation and Integration on Manifolds

2. Let m = n hold true. We consider the n-forms

α = a(x) dx1 ∧ . . . ∧ dxn, β = b(x) dx1 ∧ . . . ∧ dxn.

We calculate

α = αΦ = a
(
Φ(x)
)
dΦ1 ∧ . . . ∧ dΦn

= a
(
Φ(x)
) ( n∑

i1=1

∂Φ1

∂xi1
dxi1

)
∧ . . . ∧

(
n∑

in=1

∂Φn

∂xin
dxin

)

= a
(
Φ(x)
)
JΦ(x) dx1 ∧ . . . ∧ dxn.

Therefore, we have

a(x) = a
(
Φ(x)
)
JΦ(x), b(x) = b

(
Φ(x)
)
JΦ(x), x ∈ Ω.

Now we set

(α, β)n(x) :=
1

g(x)
a(x)b(x), x ∈ Ω,

observe g(x) =
(
JΦ(x)

)2
, and infer

(α, β)n(x) =
1(

JΦ(x)
)2 a
(
Φ(x)
)
JΦ(x) b

(
Φ(x)
)
JΦ(x)

= a
(
Φ(x)
)
b
(
Φ(x)
)
= (α, β)n

(
Φ(x)
)
.

3. Let m = 1 hold true. We consider the Pfaffian forms

α =

n∑
i=1

ai(x) dxi, β =

n∑
i=1

bi(x) dxi

and calculate

α = αΦ =

n∑
i=1

ai

(
Φ(x)
)
dΦi

=

n∑
i=1

ai

(
Φ(x)
)⎛⎝ n∑

j=1

∂Φi

∂xj
dxj

⎞
⎠

=
n∑

j=1

(
n∑

i=1

ai

(
Φ(x)
)∂Φi

∂xj

)
dxj .
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Thus we obtain

α = αΦ =

n∑
j=1

aj(x) dxj with aj(x) =

n∑
i=1

ai

(
Φ(x)
)∂Φi

∂xj
,

β = βΦ =
n∑

j=1

bj(x) dxj with bj(x) =
n∑

i=1

bi

(
Φ(x)
)∂Φi

∂xj
,

where j = 1, . . . , n is valid. We introduce the following abbreviation for
the functional matrix

F (x) :=

(
∂Φi

∂xj
(x)

)
i,j=1,...,n

, x ∈ Ω.

The vectors

a(x) =
(
a1(x), . . . , an(x)

)
, a(x) =

(
a1(x), . . . , an(x)

)

and
b(x) =

(
b1(x), . . . , bn(x)

)
, b(x) =

(
b1(x), . . . , bn(x)

)

are subject to the transformation laws

a(x) = a
(
Φ(x)
)
◦ F (x), b(x) = b

(
Φ(x)
)
◦ F (x),

and
a(x) ◦ F−1(x) = a

(
Φ(x)
)
, b(x) ◦ F−1(x) = b

(
Φ(x)
)
,

respectively. We define the transformation matrix

G(x) =
(
gij(x)

)
i,j=1,...,n

:= F (x)t ◦ F (x)

with the inverse matrix

G−1(x) =
(
gij(x)

)
i,j=1,...,n

= F−1(x) ◦
(
F−1(x)

)t
.

Evidently, we have

n∑
j=1

gij(x)gjk(x) = δ
i
k, i, k = 1, . . . , n

and

g(x) =
(
JΦ(x)

)2
= detG(x).

Now we define
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(α, β)1(x) :=

n∑
i,j=1

gij(x)ai(x)bj(x).

Then we infer

(α, β)1(x) = a(x) ◦G−1(x) ◦
(
b(x)
)t

= a
(
Φ(x)
)
◦ F (x) ◦ F−1(x) ◦

(
F−1(x)

)t
◦
(
F (x)

)t
◦
(
b(Φ(x))

)t

= a
(
Φ(x)
)
◦
(
b(Φ(x))

)t

= (α, β)1

(
Φ(x)
)
.

4. Let m = n− 1 hold true. We define the (n− 1)-forms

θi := (−1)i−1 dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn
for 1 ≤ i ≤ n and consider the (n− 1)-forms

α =

n∑
i=1

ai(x)θi, β =

n∑
i=1

bi(x)θi.

We use the symbol ˇ to indicate that we omit this factor. Defining

θj := (−1)j−1 dx1 ∧ . . . ∧ dxj−1 ∧ dxj+1 ∧ . . . ∧ dxn
for j = 1, . . . , n, we calculate

α = αΦ =

n∑
i=1

ai

(
Φ(x)
)
(−1)i−1 dΦ1 ∧ . . . ∧ dΦi−1 ∧ dΦi+1 ∧ . . . ∧ dΦn

=

n∑
i=1

ai

(
Φ(x)
)
(−1)i−1

⎛
⎝ n∑

j1=1

∂Φ1

∂xj1
dxj1

⎞
⎠ ∧ . . . ∧

⎛
⎝ n∑

ji−1=1

∂Φi−1

∂xji−1

dxji−1

⎞
⎠

∧

⎛
⎝ n∑

ji+1=1

∂Φi+1

∂xji+1

dxji+1

⎞
⎠ ∧ . . . ∧

⎛
⎝ n∑

jn=1

∂Φn

∂xjn
dxjn

⎞
⎠

=

n∑
i=1

ai

(
Φ(x)
)
(−1)i−1

n∑
j=1

∂(Φ1, . . . , Φ̌i, . . . , Φn)

∂(x1, . . . , x̌j , . . . , xn)
·

· dx1 ∧ . . . ∧ dx̌j ∧ . . . ∧ dxn

=
n∑

j=1

(
n∑

i=1

ai

(
Φ(x)
)
(−1)i+j ∂(Φ1, . . . , Φ̌i, . . . , Φn)

∂(x1, . . . , x̌j , . . . , xn)

)
θj =:

n∑
j=1

aj(x)θj .
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Correspondingly, we define bj(x) for j = 1, . . . , n. The matrix of adjoints
for F (x), namely

E(x) :=

(
(−1)i+j ∂(Φ1, . . . , Φ̌i, . . . , Φn)

∂(x1, . . . , x̌j , . . . , xn)

)
i,j=1,...,n

,

satisfies the identity

(
F (x)t

)−1

=

((
∂Φj

∂xi
(x)

)
i,j=1,...,n

)−1

=
1

JΦ(x)
E(x),

and equivalently

E(x) = JΦ(x)
(
F (x)t

)−1

. (5)

When

αΦ = α =

n∑
j=1

aj(x)θj , βΦ = β =

n∑
j=1

bj(x)θj

denote the transformed (n− 1)-forms, their coefficient vectors

a(x) =
(
a1(x), . . . , an(x)

)
, a(x) =

(
a1(x), . . . , an(x)

)

and
b(x) =

(
b1(x), . . . , bn(x)

)
, b(x) =

(
b1(x), . . . , bn(x)

)

are subject to the transformation laws

a(x) = a
(
Φ(x)
)
◦ E(x) = JΦ(x)a

(
Φ(x)
)
◦
(
F (x)t

)−1

,

b(x) = b
(
Φ(x)
)
◦ E(x) = JΦ(x)b

(
Φ(x)
)
◦
(
F (x)t

)−1

.

Now we define as the inner product

(α, β)n−1(x) :=
1

g(x)

n∑
i,j=1

gij(x)ai(x)bj(x).

Finally, we infer

(α, β)n−1(x) =
1(

JΦ(x)
)2 a(x) ◦G(x) ◦

(
b(x)
)t

= a
(
Φ(x)
)
◦
(
F (x)t

)−1

◦ F (x)t ◦ F (x) ◦
(
F (x)

)−1

◦
(
b(Φ(x))

)t

= a
(
Φ(x)
)
◦
(
b(Φ(x))

)t
= (α, β)n−1

(
Φ(x)
)
.
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Now we introduce another operation in the set of differential forms.

Definition 8.1. When k ∈ K := {0, 1, n − 1, n} holds true, we attribute to
each k-form α its dual (n− k)-form ∗α as follows:

1. Let k = 0 and α = a(x) be given. Then we define

∗α := a(x)ω,

where
ω =
√
g(x) dx1 ∧ . . . ∧ dxn

denotes the volume form (compare (3)).
2. Let k = 1 and

α =

n∑
i=1

ai(x) dxi

be given. Then we define

∗α :=
√
g(x)

n∑
i=1

⎛
⎝ n∑

j=1

gij(x)aj(x)

⎞
⎠ θi.

3. Let k = n− 1 and

α =

n∑
i=1

ai(x)θi

be given. Then we define

∗α :=
(−1)n−1√
g(x)

n∑
i=1

⎛
⎝ n∑

j=1

gij(x)aj(x)

⎞
⎠ dxi.

4. Let k = n and α = a(x)ω be given. Then we define

∗α := a(x).

We collect some properties of the ∗-operator.

1. The ∗-operator represents a linear operator from the vector space of k-
forms into the vector space of (n − k)-forms. It gives us an involution,
which means

∗ ∗ α = (−1)k(n−k)α

for all k-forms α with k ∈ K.
2. The k-form α and the (n− k)-form β fulfill the identity

(α, ∗β)k = (∗α, β)n−k(−1)k(n−k), k ∈ K.

We prove this statement for all k ∈ K:
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a) Let k = 0, α = a(x), β = b(x)ω, ∗β = b(x), ∗α = a(x)ω be given.
Then we obtain

(α, ∗β)0 = a(x)b(x) = a(x)b(x)(ω, ω)n = (a(x)ω, b(x)ω)n = (∗α, β)n.

b) Let k = n, α an n-form, β a 0-form be given. We calculate with the
aid of property 1 and (a) as follows:

(α, ∗β)n = (∗(∗α), ∗β)n = (∗α, ∗(∗β))0 = (∗α, β)0.

c) Let k = 1 be given. We consider the forms

α =

n∑
i=1

ai(x) dxi, β =

n∑
i=1

bi(x)θi.

Then we obtain

(α, ∗β)1 =
(−1)n−1√
g(x)

n∑
i,j=1

gij(x)ai(x)

(
n∑

k=1

gjk(x)bk(x)

)

=
(−1)n−1√
g(x)

n∑
i,j=1

ai(x)

(
n∑

k=1

gij(x)gjk(x)bk(x)

)

=
(−1)n−1√
g(x)

n∑
i=1

ai(x)

(
n∑

k=1

δikbk(x)

)

=
(−1)n−1√
g(x)

n∑
i=1

ai(x)bi(x),

as well as

(∗α, β)n−1 =

√
g(x)

g(x)

n∑
i,j=1

gij(x)

(
n∑

k=1

gik(x)ak(x)

)
bj(x)

=
1√
g(x)

n∑
i,j=1

bj(x)

(
n∑

k=1

gij(x)g
ik(x)ak(x)

)

=
1√
g(x)

n∑
j,k=1

bj(x)
(
δkj ak(x)

)

=
1√
g(x)

n∑
i=1

ai(x)bi(x).

This implies (α, ∗β)1 = (−1)n−1(∗α, β)n−1.
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d) The case k = n − 1 remains. With the aid of property 1 and (c), we
deduce for the (n− 1)-form α and the 1-form β as follows:

(α, ∗β)n−1 = (−1)n−1(∗(∗α), ∗β)n−1

= (∗α, ∗(∗β))1 = (−1)n−1(∗α, β)1.

3. Taking the two k-forms α and β with k ∈ K, we infer

(∗α, ∗β)n−k = (−1)k(n−k)(∗(∗α), β)k

=
(
(−1)k(n−k)

)2
(α, β)k = (α, β)k.

Consequently, the ∗-operator represents an isometry.
4. Two k-forms α and β satisfy the identity

α ∧ (∗β) = (−1)k(n−k)(∗α) ∧ β = (α, β)kω, k ∈ K.

For the proof, we show the relation

α ∧ (∗β) = (α, β)kω. (6)

Then the (n− k)-form ∗α and the k-form β satisfy

(−1)k(n−k)(∗α) ∧ β = β ∧ (∗α) = (β, α)kω = (α, β)kω = α ∧ (∗β).

a) Let k = 0, α = a(x), β = b(x), ∗β = b(x)ω be given. Then we see

α ∧ (∗β) = a(x)b(x)ω = (α, β)0ω.

b) Let k = 1 as well as

α =

n∑
i=1

ai(x) dxi, β =

n∑
i=1

bi(x) dxi

and

∗β =
√
g(x)

n∑
i=1

⎛
⎝ n∑

j=1

gij(x)bj(x)

⎞
⎠ θi

be given. Now we evaluate

α∧(∗β) =
√
g(x)

⎛
⎝ n∑

i,j=1

gij(x)ai(x)bj(x)

⎞
⎠ dx1∧ . . .∧dxn = (α, β)1ω.

c) For k = n− 1 and

α =

n∑
i=1

ai(x)θi, β =

n∑
i=1

bi(x)θi
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as well as

∗β =
(−1)n−1√
g(x)

n∑
i=1

⎛
⎝ n∑

j=1

gij(x)bj(x)

⎞
⎠ dxi,

we infer

α ∧ (∗β) =
(

n∑
i=1

ai(x)θi

)
∧

⎛
⎝ (−1)n−1√

g(x)

n∑
i=1

⎛
⎝ n∑

j=1

gij(x)bj(x)

⎞
⎠ dxi

⎞
⎠

=

⎛
⎝ 1√

g(x)

n∑
i,j=1

gij(x)ai(x)bj(x)

⎞
⎠ dx1 ∧ . . . ∧ dxn

= (α, β)n−1

√
g(x) dx1 ∧ . . . ∧ dxn = (α, β)n−1ω.

d) Finally, let k = n, α = a(x)ω, and β = b(x)ω be given. This implies

α ∧ (∗β) = a(x)ωb(x) = a(x)b(x)ω = (α, β)nω.

5. Let

α =

n∑
i=1

ai(x)dxi

denote a Pfaffian form and

x = Φ(x) =
(
Φ1(x1, . . . , xn), . . . , Φn(x1, . . . , xn)

)

a parameter transformation. Then we observe (∗α)Φ = ∗(αΦ).

We use the invariance of the inner product as well as the property 4: For
an arbitrary 1-form

β =

n∑
i=1

bi(x) dxi

with the transformed 1-form βΦ, we infer the identity

βΦ ∧ ∗(αΦ) = (βΦ, αΦ)1ωΦ = {(β, α)1}ΦωΦ

= {(β, α)1ω}Φ = {β ∧ (∗α)}Φ = βΦ ∧ (∗α)Φ.

Then we obtain

βΦ ∧ (∗(αΦ)− (∗α)Φ) = 0 for all β,

and consequently
∗(αΦ) = (∗α)Φ.



82 Chapter 1 Differentiation and Integration on Manifolds

Definition 8.2. Given a 1-form

α =

n∑
i=1

ai(x) dxi , x ∈ Ω

of the class C1(Ω), we define the co-derivative δα due to

δα := ∗d ∗ α.

Remark: Now δ represents a parameter-invariant differential operator of first
order - and attributes a 0-form to each 1-form. We determine the operator δ
in arbitrary coordinates. Let us consider

α =
n∑

i=1

ai(x) dxi, ∗α =
√
g(x)

n∑
i=1

⎛
⎝ n∑

j=1

gij(x)aj(x)

⎞
⎠ θi.

Then we evaluate

d ∗ α =

n∑
i=1

∂

∂xi

⎛
⎝√g(x)

n∑
j=1

gij(x)aj(x)

⎞
⎠ dx1 ∧ . . . ∧ dxn

=
1√
g(x)

n∑
i=1

∂

∂xi

⎛
⎝√g(x)

n∑
j=1

gij(x)aj(x)

⎞
⎠ω.

The application of the ∗-operator on d ∗ α yields

δα = ∗d ∗ α =
1√
g(x)

n∑
i=1

∂

∂xi

⎛
⎝√g(x)

n∑
j=1

gij(x)aj(x)

⎞
⎠ . (7)

Theorem 8.3. (Partial integration in arbitrary parameters)
Let Ω ⊂ R

n denote a domain satisfying the assumptions (A), (B), and (D)
for the Gaussian integral theorem. The parameter transformation

x = Φ(x) : Ω −→ Θ ∈ C1(Ω)

may be bijective and subject to the condition

JΦ(x) ≥ η > 0 for all points x ∈ Ω.

Furthermore, let a 1-form

α =

n∑
i=1

ai(x) dxi, x ∈ Ω
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and a 0-form β = b(x), x ∈ Ω of the class C1(Ω) be given. Then we have the
identity ∫

Ω

(α, dβ)1ω +

∫
Ω

(δα, β)0ω =

∫
∂Ω

(∗α) ∧ β.

Here the boundary ∂Ω is endowed with the induced canonical orientation of
R

n.

Proof: The assumptions on the parameter transformation Φ guarantee that
all functions appearing belong to the regularity class C1(Ω). We apply the
Stokes integral theorem and obtain - with the aid of (6) - our statement as
follows: ∫

Ω

(α, dβ)1ω =

∫
Ω

α ∧ (∗dβ) = (−1)n−1

∫
Ω

(∗α) ∧ dβ

=

∫
Ω

d
(
(∗α) ∧ β

)
−
∫
Ω

(d ∗ α) ∧ β

=

∫
∂Ω

(∗α) ∧ β −
∫
Ω

(d ∗ α) ∧ (∗ ∗ β)

=

∫
∂Ω

(∗α) ∧ β −
∫
Ω

(d ∗ α, ∗β)nω

=

∫
∂Ω

(∗α) ∧ β −
∫
Ω

(∗d ∗ α, β)0ω

=

∫
∂Ω

(∗α) ∧ β −
∫
Ω

(δα, β)0ω.

q.e.d.

Corollary: When we require zero-boundary-values in Theorem 8.3 for the func-
tion β, or more precisely β ∈ C1

0 (Ω), we deduce the identity∫
Ω

(α, dβ)1ω +

∫
Ω

(δα, β)0ω = 0.

Therefore, we name δ the adjoint derivative to the exterior derivative d.

Definition 8.4. The two functions ψ(x) and χ(x) of the class C1(Ω) with
their associate differentials

dψ =

n∑
i=1

ψxi dxi, dχ =

n∑
i=1

χxi dxi
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being given, we define the Beltrami operator of first order via

∇(ψ, χ) := (dψ, dχ)1(x) =

n∑
i,j=1

gij(x)ψxi(x)χxj (x).

Remark: Evidently, the property

∇(ψ, χ)(x) = ∇(ψ, χ)
(
Φ(x)
)

holds true, where we note that

ψ
(
Φ(x)
)
= ψ(x), χ

(
Φ(x)
)
= χ(x).

Consequently, ∇ represents a parameter-invariant differential operator of first
order.

Definition 8.5. We define the Laplace-Beltrami operator

Δψ(x) := δdψ(x), x ∈ Ω

for functions ψ(x) ∈ C2(Ω).

Remark: Since the operators d and δ are parameter-invariant, the operator Δ
is parameter-invariant as well:

Δψ(x) = Δψ
(
Φ(x)
)
, x ∈ Ω.

Using (7), we now describe Δ in coordinates:

Δψ = δdψ = δ

⎛
⎝ n∑

j=1

ψxj dxj

⎞
⎠

=
1√
g(x)

n∑
i=1

∂

∂xi

⎛
⎝√g(x)

n∑
j=1

gij(x)ψxj

⎞
⎠ .

(8)

Theorem 8.6. Let Ω ⊂ R
n denote a domain satisfying the assumptions (A),

(B), and (D) of the Gaussian integral theorem. Furthermore, the parameter
transformation

x = Φ(x) : Ω −→ Θ

belongs to the class C2(Ω) and is bijective subject to the condition

JΦ(x) ≥ η > 0 for all points x ∈ Ω.

Finally, let the functions ψ(x) ∈ C2(Ω) as well as χ(x) ∈ C1(Ω) be given.
Then we have the identity∫

Ω

∇(ψ, χ)ω +

∫
Ω

(Δψ, χ)0ω =

∫
∂Ω

(∗dψ)χ.
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Proof: We apply Theorem 8.3 and insert

α = dψ ∈ C1(Ω), β = χ(x) ∈ C1(Ω).

At first, we obtain∫
Ω

(dψ, dχ)1ω +

∫
Ω

(δdψ, β)0ω =

∫
∂Ω

(∗dψ)χ.

Using the Definitions 8.4 and 8.5, we infer the identity∫
Ω

∇(ψ, χ)ω +

∫
Ω

(Δψ, χ)0ω =

∫
∂Ω

(∗dψ)χ

stated above. q.e.d.

Remark:

1. We evaluate the Laplace operator in cylindrical coordinates,

x = r cosϕ, y = r sinϕ, z = h,

where 0 < r < +∞, 0 ≤ ϕ < 2π, −∞ < h < +∞ hold true. Therefore,
we consider the case n = 3 and choose

x1 = r, x2 = ϕ, x3 = h.

The fundamental tensor appears in the following form:

(gij) =

⎛
⎝1 0 0

0 r2 0
0 0 1

⎞
⎠ , (gij) =

⎛
⎝1 0 0

0 1
r2 0

0 0 1

⎞
⎠ .

This implies
g(x) = det (gij) = r

2.

In our calculations we have to respect only those elements on the principal
diagonal. With the aid of (7), we then obtain

Δ =
1

r

{
∂

∂r

(
r
∂

∂r

)
+
∂

∂ϕ

(
1

r

∂

∂ϕ

)
+
∂

∂h

(
r
∂

∂h

)}

=
1

r

(
∂

∂r
+ r

∂2

∂r2
+

1

r

∂2

∂ϕ2
+ r

∂2

∂h2

)

=
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
+
∂2

∂h2
.

For plane polar coordinates we set z ≡ 0, and the expression above is
reduced to
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Δ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
.

Defining

Λ :=
∂2

∂ϕ2

for the angular expression, we rewrite Δ into the form

Δ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
Λ.

(compare the Laplace operator in spherical coordinates).
2. We introduce spherical coordinates

x = r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ

with 0 < r < +∞, 0 ≤ ϕ < 2π, and 0 < θ < π. Calculations parallel to
Remark 1 yield

Δ =
1

r2

{
∂

∂r

(
r2
∂

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

}

=
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

{
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

}

=:
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
Λ.

Here the operator Λ does not depend on r again. However, it is only
dependent on the angles ϕ, θ.

When we investigate spherical harmonic functions in Chapter 5, we need the
Laplace operator for spherical coordinates in n dimensions. Now we treat this
general case.

Let the unit sphere in R
n, namely

Σ =
{
ξ = (ξ1, . . . , ξn) ∈ R

n : |ξ| = 1
}
,

by parametrized by

ξ = ξ(t) =
(
ξ1(t1, . . . , tn−1), . . . , ξn(t1, . . . , tn−1)

)t
: T −→ Σ ∈ C2(T ),

with the open set T ⊂ R
n−1. Via the mapping

X(r, t) := rξ(t1, . . . , tn−1), r ∈ (0,+∞), t ∈ T,

we obtain polar coordinates in R
n. Furthermore, the functional matrix appears

in the form
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∂X(r, t) = (Xr, Xt1 , . . . , Xtn−1) = (ξ, rξt1 , . . . , rξtn−1).

We determine the metric tensor as follows:

G(r, t) =
(
gij(r, t)

)
i,j

=

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0 r2h11 · · · r2h1,n−1

... · · ·
...

0 r2hn−1,1 · · · r2hn−1,n−1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0

... r2H(t)

0

⎞
⎟⎟⎟⎟⎠ ,

where we abbreviate

H(t) =
(
hij(t)

)
i,j=1,...,n−1

:=
(
ξti(t) · ξtj (t)

)
i,j=1,...,n−1

.

Using the convention

H−1(t) =
(
hij(t)

)
i,j=1,...,n−1

, G−1(r, t) =
(
gij(r, t)

)
i,j=1,...,n

,

we infer

G−1(r, t) =
(
gij(r, t)

)
i,j

=

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0

...
H−1(t)
r2

0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 h11

r2 · · · h1,n−1

r2

... · · ·
...

0 hn−1,1

r2 · · · hn−1,n−1

r2

⎞
⎟⎟⎟⎟⎟⎠
.

Furthermore, we define

g(r, t) := detG(r, t), h(t) := detH(t)

and obtain
g(r, t) = r2(n−1)h(t).

When u = u(r, t) and v = v(r, t) are two functions, we determine the Beltrami
differential operator of first order due to

∇(u, v) =

n∑
i,j=1

gij(x)uxivxj

=
∂u

∂r

∂v

∂r
+

1

r2

n−1∑
i,j=1

hij(t)
∂u

∂ti

∂v

∂tj
.

We express the invariant Beltrami operator of first order on the sphere Σ via

Γ (u, v) :=
n−1∑
i,j=1

hij(t)
∂u

∂ti

∂v

∂tj
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and deduce

∇(u, v) =
∂u

∂r

∂v

∂r
+

1

r2
Γ (u, v) for all u = u(r, t), v = v(r, t). (9)

Now we represent the Laplace-Beltrami operator in spherical coordinates: We
take the function

u = u(r, t) = u(r, t1, . . . , tn−1),

utilize the identity
√
g(r, t) = rn−1

√
h(t) as well as formula (8), and obtain

Δu =
1√
g(r, t)

div(r,t)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
√
g(r, t) G−1(r, t) ◦

⎛
⎜⎜⎜⎝

ur
ut1
...

utn−1

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
1√
g(r, t)

∂

∂r

(√
g(r, t)

∂u

∂r

)

+
1√
g(r, t)

divt

⎧⎪⎨
⎪⎩r

n−1
√
h(t)

1

r2
H−1(t) ◦

⎛
⎜⎝
ut1
...

utn−1

⎞
⎟⎠
⎫⎪⎬
⎪⎭

=
∂2u

∂r2
+
n− 1

r

∂u

∂r
+

1

r2
1√
h(t)

divt

⎧⎪⎨
⎪⎩
√
h(t) H−1(t) ◦

⎛
⎜⎝
ut1
...

utn−1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

Defining the Laplace-Beltrami operator on the sphere Σ by

Λu :=
1√
h(t)

n−1∑
i=1

∂

∂ti

⎛
⎝√h(t)

n−1∑
j=1

hij(t)
∂u

∂tj

⎞
⎠ , t ∈ T,

we obtain the following identity

Δu =
∂2u

∂r2
+
n− 1

r

∂u

∂r
+

1

r2
Λu for all u = u(r, t) ∈ C2((0,+∞)× T ).

(10)
We still show the symmetry of the Laplace-Beltrami operator on the sphere
for later use.

Theorem 8.7. Taking the functions f, g ∈ C2(Σ), we have the relation
∫
Σ

f(ξ)
(
Λg(ξ)

)
dσ(ξ) = −

∫
Σ

Γ (f, g) dσ(ξ) =

∫
Σ

(
Λf(ξ)

)
g(ξ) dσ(ξ).

Here dσ denotes the surface element on Σ.
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Proof: Let 0 < ε < 1 be given, and we consider the domain

Ωε :=
{
x ∈ R

n : 1− ε < |x| < 1 + ε
}
.

Furthermore, we have

u(r, ξ) := f(ξ), v(r, ξ) := g(ξ), r ∈ (1− ε, 1 + ε), ξ ∈ Σ.

Theorem 8.6 yields

∫
Ωε

∇(u, v)ω +

∫
Ωε

(Δu, v)0 ω =

∫
∂Ωε

(∗du)v =
∫

∂Ωε

v
∂u

∂ν
dσ,

where ν denotes the exterior normal to ∂Ωε. These parameter-invariant inte-
grals are evaluated in (r, ξ)-coordinates: Via the identities (9) as well as (10)
and noting that

∂u

∂ν
= ±∂u

∂r
≡ 0 on ∂Ωε,

we arrive at the relation

0 =

1+ε∫
1−ε

⎛
⎝∫

Σ

1

r2
Γ (f, g) dσ(ξ) rn−1

⎞
⎠ dr +

1+ε∫
1−ε

⎛
⎝∫

Σ

1

r2
Λ(f) g dσ(ξ) rn−1

⎞
⎠ dr

=

⎛
⎝

1+ε∫
1−ε

rn−3 dr

⎞
⎠ ∫

Σ

(
Γ (f, g) +Λ(f) g

)
dσ(ξ).

This implies

∫
Σ

(
Λf(ξ)

)
g(ξ) dσ(ξ) = −

∫
Σ

Γ (f, g) dσ(ξ).

Correspondingly, we deduce the second identity stated above. q.e.d.

9 Some Historical Notices to Chapter 1

The theory of partial differential equations in the classical sense is treated
within the framework of the continuously differentiable functions. The pro-
found integral theorem of Gauß constitutes the center for the classical investi-
gations of partial differential equations. This might explain the title Princeps
Mathematicorum attributed to him. His tomb in Göttingen and the monument
for him, together with the physicist W.Weber, express the great respect, which
is given to C.F.Gauß.
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Our treatment within the framework of differential forms, created by E.Cartan
(1869–1961), simplifies the various integral theorems and classifies them geo-
metrically. Though differential forms are systematically used, with great suc-
cess, in differential geometry, analysts mostly refrain from their application in
the theory of partial differential equations. We owe the introduction of invari-
ant differential operators to E.Beltrami (1835–1900) – the first representative
of a great differential-geometric tradition in Italy.

Figure 1.1 Portrait of Carl Friedrich Gauß (1777–1855)

Lithography by Siegried Detlef Bendixen published in Schumacher’s As-
tronomische Nachrichten in 1828; taken from the inner titel-page of the biog-
raphy by Horst Michling: Carl Friedrich Gauß – Aus dem Leben des Princeps
Mathematicorum, Verlag Göttinger Tageblatt, Göttingen (1976).



Chapter 2

Foundations of Functional Analysis

We start with the Riemannian integral - and their Riemann integrable func-
tions - and construct a considerably larger class of integrable functions via
an extension procedure. Then we obtain Lebesgue’s integral, which is distin-
guished by general convergence theorems for pointwise convergent sequences
of functions. This extension procedure - from the Riemannian integral to
Lebesgue’s integral - will be provided by the Daniell integral. The measure
theory for Lebesgue measurable sets will appear in this context as the theory
of integration for characteristic functions. We shall present classical results
from the theory of measure and integration in this chapter, e.g. the theorems
of Egorov and Lusin.

Then we treat the Lebesgue spaces Lp with the exponents 1 ≤ p ≤ +∞ as
classical Banach spaces. We investigate orthogonal systems of functions in the
Hilbert space L2. With ideas of J. von Neumann we determine the dual spaces
(Lp)∗ = Lq and show the weak compactness of the Lebesgue spaces.

1 Daniell’s Integral with Examples

Our point of departure is the following

Definition 1.1. We consider an arbitrary set X, and by M = M(X) we
denote a space of functions f : X → R which have the following properties:

– M is a linear space, which means

for all f, g ∈M and all α, β ∈ R we have αf + βg ∈M. (1)

– M is closed with respect to the modulus operation, which means

for all f ∈M we have |f | ∈M. (2)

Furthermore, the symbol I :M → R denotes a functional on M satisfying the
following conditions:

F. Sauvigny, Partial Differential Equations 1, Universitext,
DOI 10.1007/978-1-4471-2981-3 2, © Springer-Verlag London 2012
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– I is linear, which means

for all f, g ∈M and all α, β ∈ R we have I(αf + βg) = αI(f) + βI(g).
(3)

– I is nonnegative, which says

for all f ∈M with f ≥ 0 we have I(f) ≥ 0. (4)

Here the relation f ≥ 0 indicates that f(x) ≥ 0 for all x ∈ X is correct.
– I is continuous with respect to monotone convergence in M , which means

for each sequence{fn}n=1,2,... ⊂M with fn ↓ 0

we have limn→∞ I(fn) = I(0) = 0.
(5)

Here we comprehend by fn ↓ 0 that the sequence {fn(x)}n=1,2,... ⊂ R is
weakly monotonically decreasing for all x ∈ X and lim

n→∞
fn(x) = 0 holds

true.

Then this functional I is named Daniell’s integral defined on M .

Remarks:

1. From the linearity (1) and the lattice property (2) we infer

max (f, g) =
1

2

(
f + g + |f − g|

)
∈M

as well as

min (f, g) =
1

2

(
f + g − |f − g|

)
∈M

for two elements f, g ∈ M . In particular, with each element f ∈ M we
have

f+(x) := max
(
f(x), 0

)
=

1

2

(
f(x) + |f(x)|

)
∈M

as well as

f−(x) := max
(
− f(x), 0

)
= (−f)+(x) ∈M.

We address f+ as the positive part of f and f− as the negative part of f .
The definitions of f+ and f− imply the identities

f = f+ − f− and |f | = f+ + f− = f+ + (−f)+.

Consequently, the lattice condition (2) is equivalent to

f ∈M =⇒ f+ ∈M. (2′)

More generally, we see that finitely many functions f1, . . . , fm ∈ M with
m ∈ N imply the inclusion

max (f1, . . . , fm) ∈M and min (f1, . . . , fm) ∈M.
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2. The condition (4) is equivalent to the monotonicity of the integral, namely

I(f) ≥ I(g) for all f, g ∈M with f ≥ g. (4′)

3. The condition (5) is equivalent to the following property:

All sequences {fn}n=1,2,... ⊂ M with fn ↑ f and f, g ∈ M
with g ≤ f fulfill

I(g) ≤ lim
n→∞

I(fn).
(5′)

Proof: At first, we show the direction ‘(5′) ⇒ (5)’. Let the sequence of
functions {fn}n=1,2,... ⊂M with fn ↓ 0 be given. Then we infer (−fn) ↑ 0.
We set f(x) ≡ 0 ≡ g(x). The linearity of I implies I(g) = 0 immediately.
The combination of (5′) and (4) reveals the relation

0 = I(g) ≤ lim
n→∞

I(−fn) = − lim
n→∞

I(fn)︸ ︷︷ ︸
≥0

≤ 0.

This yields lim
n→∞

I(fn) = I(0) = 0.

Now we show the implication ‘(5) ⇒ (5′)’.
The sequence {fn}n=1,2,... may satisfy fn ↑ f with an element f ∈
M , which immediately implies (f − fn) ↓ 0. From (5) we infer 0 =
limn→∞ I(f − fn), and the linearity of I yields

0 = I(f)− lim
n→∞

I(fn).

With g ≤ f and (4′) we obtain

lim
n→∞

I(fn) = I(f) ≥ I(g),

and the proof is complete. q.e.d.

Now we provide examples of Daniell integrals, where we need the following

Theorem 1.2. (U.Dini)
Let the continuous functions f1, f2, . . . and f ∈ C0(K,R) be defined on the
compact set K ⊂ R

n. We have the relation fl ↑ f , which means that the
sequence {fl(x)} ⊂ R is weakly monotonically increasing for all x ∈ K and
furthermore

lim
l→∞

fl(x) = f(x).

Then the sequence {fl}l=1,2,... converges uniformly on the set K towards the
function f .

Remark: The transition to functions gl := f − fl implies that the statement
above is equivalent to the following:

A sequence of functions {gl}l=1,2,... ⊂ C0(K,R) with gl ↓ 0 has necessarily the
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property that {gl}l=1,2,... converges uniformly on K towards 0.

Proof of Theorem 1.2: Let {gl}l=1,2,... ⊂ C0(K,R) denote a sequence satisfying
gl ↓ 0. We have to show that

sup
x∈K

|gl(x)| −→ 0

is correct. If this property was not valid, then we could find indices {li} with
li < li+1 and points ξi ∈ K such that

gli(ξi) ≥ ε > 0 for all i ∈ N

hold true with a fixed quantity ε > 0. According to the Weierstraß compact-
ness theorem, we can assume - without loss of generality - that the relation
ξi → ξ for i → ∞ is valid, with the limit point ξ ∈ K. For the fixed index
l∗, we now choose an index i∗ = i(l∗) ∈ N such that li ≥ l∗holds true for all
i ≥ i∗. Now the monotonicity of the sequence of functions {gl} implies

gl∗(ξi) ≥ gli(ξi) ≥ ε for all i ≥ i∗.

Since the function gl∗ is assumed to be continuous, we infer

gl∗(ξ) = lim
i→∞

gl∗(ξi) ≥ ε for all l∗ ∈ N.

Therefore, {gl(ξ)} does not constitute a null-sequence, which gives an obvious
contradiction to the assumption.

q.e.d.

Main example 1: Let us consider X = Ω with the open set Ω ⊂ R
n and

the linear space

M1 =M1(X) :=

⎧⎨
⎩f(x) ∈ C0(Ω,R) :

∫
Ω

|f(x)| dx < +∞

⎫⎬
⎭ .

Here the symbol ∫
Ω

|f(x)| dx

means the improper Riemannian integral over the open set Ω. Then our space
M1 satisfies the conditions (1) and (2). Now we choose the functional

I1(f) :=

∫
Ω

f(x) dx, f ∈M1,

where the improper Riemannian integral over Ω appears again on the right-
hand side. Because the Riemannian integral is linear and nonnegative, the
conditions (3) and (4) are evident. We still have to establish the continuity
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of our functional with respect to monotone convergence, namely (5). Let us
consider with {fn}n=1,2,... ⊂ M1 a sequence of functions satisfying fn ↓ 0. If
K ⊂ Ω denotes a compact subset, Dini’s theorem tells us that {fn} converges
uniformly on K towards 0. When we observe the properties 0 ≤ fn(x) ≤ f1(x)
for all n ∈ N and x ∈ Ω as well as

∫
Ω

|f1(x)| dx < +∞, the fundamental

convergence theorem for improper Riemannian integrals implies

lim
n→∞

I1(fn) = lim
n→∞

∫
Ω

fn(x) dx =

∫
Ω

(
lim
n→∞

fn(x)︸ ︷︷ ︸
=0

)
dx = 0.

Therefore, I1 represents a Daniell integral on the space M1.

Remark: The set M1 does not contain all functions whose improper Rieman-
nian integral exists. The concept of Daniell’s integral additionally necessitates
the function space being closed with respect to the modulus operation, namely
the lattice property (2). For instance, the integral

∞∫
1

sinx

xα
dx for all powers α ∈ (0, 1)

does not converge absolutely, although it exists as an improper Riemannian
integral.

Main example 2: As we described in Section 4 of Chapter 1, let M ⊂ R
n

denote a bounded m-dimensional manifold of the class C1 with the regular
boundary ∂M. Then we can cover M by finitely many charts, and we define
the Riemannian integral over M via partition of unity, namely

I2(f) :=

∫

M

f(x) dmσ(x), f ∈M2

for all functions of the class

M2 :=
{
f(x) : M → R : f is continuous on M

}
.

Here the symbol dmσ means the m-dimensional surface element on M. This
integral I2 gives us a further interesting Daniell integral: The linear space M2

is closed with respect to the modulus operation. The properties (1) and (2)
are consequently fulfilled. The existence of the integral above follows from the
continuity - and therefore the boundedness - of f on the compact manifold M.
The linearity and the positive-semidefinite character of I2 are evident. The
continuity of I2 with respect to monotone convergence follows from Dini’s
theorem again.
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2 Extension of Daniell’s Integral to Lebesgue’s Integral

In our main examples from Section 1, we already have an integral which allows,
at least, to integrate the continuous functions with compact support. Now we
consider an arbitrary Daniell integral I : M → R due to Definition 1.1 in
Section 1. We intend to extend this integral onto the larger linear space

L(X) ⊃M(X),

in order to study convergence properties of the created integral on the space
L(X). This extension procedure is essentially based on the monotonicity prop-
erty (4) and the associate continuity property (5) of this integral.

Developing our theory of integration simultaneously for characteristic func-
tions

χA(x) :=

{
1, x ∈ A
0, x ∈ X \A

of the subsets A ⊂ X, we obtain a measure theory which depends on our
Daniell integral I for the subsets of X.

The extension procedure presented here was initiated by Carathéodory, later
Daniell considered these particular functionals I, and Stone established the
connection to measure theory. The consideration of minimal surfaces gave
H. Lebesgue the impetus to study thoroughly the concept of surface area.

We prepare our considerations and introduce the function

Φ(t) :=

{
0, t ≤ 0
t, t ≥ 0

which is continuous and weakly monotonically increasing. Furthermore, we
define

f+(x) := Φ(f(x)) = max (f(x), 0), x ∈ X

and study the following properties of the prescription f �→ f+:

i.) f(x) ≤ f+(x) for all x ∈ X;

ii.) f1(x) ≤ f2(x) =⇒ f+1 (x) ≤ f+2 (x) for all x ∈ X;

iii.) fn(x) → f(x) =⇒ f+n (x) → f+(x) for all x ∈ X;

iv.) fn(x) ↓ f(x) =⇒ f+n (x) ↓ f+(x) for all x ∈ X;

v.) fn(x) ↑ f(x) =⇒ f+n (x) ↑ f+(x) for all x ∈ X.
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Proposition 2.1. Let {gn} ⊂ M and {g′n} ⊂ M, n = 1, 2, . . . denote two
sequences satisfying gn(x) ↑ g(x) and g′n(x) ↑ g′(x) defined on X. Here g, g′ :
X −→ R ∪ {+∞} represent two functions with the property g′(x) ≥ g(x).
Then we infer the inequality

lim
n→∞

I(g′n) ≥ lim
n→∞

I(gn).

Proof: Since {I(gn)}n=1,2,... and {I(g′n)}n=1,2,... represent monotonically non-
decreasing sequences, their limits exist for n → ∞ in R ∪ {+∞}. In the case
lim

n→∞
I(g′n) = +∞, the inequality above evidently holds true. Therefore, we

can assume lim
n→∞

I(g′n) < +∞ without loss of generality. With the index m

being fixed, we observe

(gm − g′n)+ ↓ (gm − g′)+= 0 for n→ ∞.

Then we invoke the properties of Daniell’s integral I as follows:

I(gm)− lim
n→∞

I(g′n) = lim
n→∞

(
I(gm)− I(g′n)

)
= lim

n→∞
I(gm − g′n)

≤ lim
n→∞

I
(
(gm − g′n)+

)
= 0.

Now we see
I(gm) ≤ lim

n→∞
I(g′n) for all m ∈ N,

and we arrive at the relation

lim
m→∞

I(gm) ≤ lim
n→∞

I(g′n).

q.e.d.

When we assume g = g′ on X in Proposition 2.1, we obtain equality for the
two limits above. This justifies the following

Definition 2.2. Let the symbol V (X) denote the set of all functions f : X →
R ∪ {+∞}, which can be approximated weakly monotonically increasing from
M(X) as follows: Each such element f possesses a sequence {fn}n=1,2,... in
M(X) with the property

fn(x) ↑ f(x) for n→ ∞ and for all x ∈ X.

For the element f ∈ V , we then define

I(f) := lim
n→∞

I(fn),

and we observe I(f) ∈ R ∪ {+∞}.
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Definition 2.3. We set

−V :=
{
f : X → R ∪ {−∞} : −f ∈ V

}

and define

I(f) := −I(−f) ∈ R ∪ {−∞} for all f ∈ −V.

Remarks:

1. The set −V represents the set of all functions f which can be approxi-
mated weakly monotonically decreasing from M as follows: There exists
a sequence {fn}n=1,2,... ⊂M satisfying fn ↓ f . Then we obtain

I(f) = lim
n→∞

I(fn).

2. If f ∈ V ∩(−V ) holds true, we find sequences {f ′n}n=1,2,... and {f ′′n}n=1,2,...

in M which fulfill the approximative relations f ′n ↑ f and f ′′n ↓ f , respec-
tively. Now we see f ′′n − f ′n ↓ 0, and the property (5) implies

0 = lim
n→∞

I(f ′′n − f ′n) = lim
n→∞

I(f ′′n )− lim
n→∞

I(f ′n)

as well as
lim

n→∞
I(f ′′n ) = lim

n→∞
I(f ′n).

Consequently, the functional I is uniquely defined on the set V ∪ (−V ) ⊃
V ∩ (−V ) ⊃M .

3. The set V contains the element f(x) ≡ +∞ as the monotonically in-
creasing limit of fn(x) = n; however, it does not contain the element
g(x) ≡ −∞. Therefore, the set V does not represent a linear space.

According to Proposition 2.1, the functional I is monotonic on V as fol-
lows: Each two elements f, g ∈ V with f ≤ g fulfill I(f) ≤ I(g). Fur-
thermore, the linear combination αf + βg of two elements f, g ∈ V with
nonnegative scalars α ≥ 0 and β ≥ 0 belongs to V as well, and we have

I(αf + βg) = αI(f) + βI(g).

Proposition 2.4. The function f : X → [0,+∞] satisfies the equivalence

f ∈ V ⇐⇒ f(x) =
∞∑

n=1

ϕn(x),

where ϕn ∈M(X) and ϕn ≥ 0 for all n ∈ N hold true.
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Proof: The direction ‘⇐=’ is evident from the definition of the space V : The
element f is constructed monotonically by the functions ϕn ∈ M , and this
implies the conclusion.

Now we show the opposite direction ‘=⇒’ as follows: Taking f ∈ V , we find
a sequence {fn}n=1,2,... ⊂ M such that fn ↑ f , and we infer f+n ↑ f+ = f .
When we define

f0(x) ≡ 0 and ϕn(x) := f
+
n (x)− f+n−1(x),

we observe

f+k (x) =

k∑
n=1

ϕn(x) ↑ f(x)

and consequently
∞∑

n=1

ϕn(x) = f(x).

Obviously, the functions fulfill ϕn(x) ∈M and ϕn(x) ≥ 0 for all n ∈ N.
q.e.d.

Proposition 2.5. Let the elements fi ∈ V with fi ≥ 0 for i = 1, 2, . . . be
given. Then the function

f(x) :=

∞∑
i=1

fi(x)

belongs to the set V , and we have

I(f) =

∞∑
i=1

I(fi).

Proof: The double sequence cij ∈ R with cij ≥ 0 satisfies the following
equation:

∞∑
i,j=1

cij =

∞∑
i=1

⎛
⎝ ∞∑

j=1

cij

⎞
⎠ = lim

n→∞

n∑
i,j=1

cij . (1)

This equation holds true for convergent as well as for definitely divergent
double series. On account of fi ∈ V , we have functions ϕij ∈ M satisfying
ϕij ≥ 0 such that

fi(x) =
∞∑
j=1

ϕij(x) for all x ∈ X and all i ∈ N

is correct. From Definition 2.2 we infer
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I(fi) = lim
n→∞

I

⎛
⎝ n∑

j=1

ϕij

⎞
⎠ = lim

n→∞

⎧⎨
⎩

n∑
j=1

I(ϕij)

⎫⎬
⎭ =

∞∑
j=1

I(ϕij).

Furthermore, we have the following representation for all x ∈ X:

f(x) =

∞∑
i=1

fi(x) =

∞∑
i=1

⎛
⎝ ∞∑

j=1

ϕij(x)

⎞
⎠ =

∞∑
i,j=1

ϕij(x) = lim
n→∞

⎛
⎝ n∑

i,j=1

ϕij(x)

⎞
⎠ .

Consequently, f ∈ V holds true and Definition 2.2 yields

I(f) = lim
n→∞

I

⎛
⎝ n∑

i,j=1

ϕij

⎞
⎠ = lim

n→∞

n∑
i,j=1

I(ϕij)

=

∞∑
i,j=1

I(ϕij) =

∞∑
i=1

⎛
⎝ ∞∑

j=1

I(ϕij)

⎞
⎠ =

∞∑
i=1

I(fi).

q.e.d.

Definition 2.6. We consider an arbitrary function f : X → R = R ∪ {±∞}
and define

I+(f) := inf
{
I(h) : h ∈ V, h ≥ f

}
, I−(f) := sup

{
I(g) : g ∈ −V, g ≤ f

}
.

We name I+(f) the upper and I−(f) the lower Daniell integral of f .

Proposition 2.7. Let f : X → R denote an arbitrary function and (g, h) a
pair of functions satisfying g ∈ −V and h ∈ V as well as g(x) ≤ f(x) ≤ h(x)
for all x ∈ X. Then we infer

I(g) ≤ I−(f) ≤ I+(f) ≤ I(h).

Proof: Definition 2.6 implies I(h) ≥ I+(f) and I(g) ≤ I−(f). Furthermore,
we find sequences {gn}n=1,2,... ⊂ −V and {hn}n=1,2,... ⊂ V satisfying

gn ≤ f ≤ hn for all n ∈ N,

such that
lim
n→∞

I(gn) = I
−(f) and lim

n→∞
I(hn) = I

+(f)

holds true. On account of 0 ≤ hn + (−gn) ∈ V for arbitrary n ∈ N, we see

0 ≤ I
(
hn + (−gn)

)
= I(hn) + I(−gn)
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and consequently
I(gn) ≤ I(hn)

and finally
I−(f) = lim

n→∞
I(gn) ≤ lim

n→∞
I(hn) = I

+(f).
q.e.d.

In the sequel, we consider functions with values in the extended real number
system R = R ∪ {−∞} ∪ {+∞}. Within the set R we need the following
calculus rules:

– Addition:

a+ (+∞) = (+∞) + a = +∞ for all a ∈ R ∪ {+∞}

a+ (−∞) = (−∞) + a = −∞ for all a ∈ R ∪ {−∞}

(−∞) + (+∞) = (+∞) + (−∞) = 0

– Multiplication:
a (+∞) = (+∞) a = +∞

a (−∞) = (−∞) a = −∞

}
for all 0 < a ≤ +∞

0 (+∞) = (+∞) 0 = +∞

0 (−∞) = (−∞) 0 = −∞

a (+∞) = (+∞) a = −∞

a (−∞) = (−∞) a = +∞

}
for all −∞ ≤ a < 0

– Subtraction: For a, b ∈ R we define

a− b := a+ (−b),

where we set

−(+∞) = −∞ and − (−∞) = +∞.

– Ordering: We have

−∞ ≤ a ≤ +∞ for all a ∈ R.

Remark: Algebraically the set R does not constitute a field, because the ad-
dition is not associative; consider for instance:

(−∞) +
(
(+∞) + (+∞)

)
= (−∞) + (+∞) = 0,

(
(−∞) + (+∞)

)
+ (+∞) = 0 + (+∞) = +∞.
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With these calculus operations in R, we can uniquely define the functions f+g,
f − g, cf for two functions f : X → R and g : X → R and arbitrary scalars
c ∈ R. Furthermore, we have the inequality f ≤ g if and only if g − f ≥ 0 is
correct.

Definition 2.8. The function f : X → R belongs to the class L = L(X) =
L(X, I) if and only if

−∞ < I−(f) = I+(f) < +∞

holds true. Then we define

I(f) := I−(f) = I+(f),

and we say that f is Lebesgue integrable with respect to I.

Remark: In our main example 1 from Section 1, we consider the open subset
Ω ⊂ R

n and obtain the class L(X) =: L(Ω) of Lebesgue integrable functions
in Ω. In our main example 2, we get the class of Lebesgue integrable functions
on the manifold M with L(X) =: L(M).

Proposition 2.9. The function f : X → R belongs to the class L(X) if and
only if each quantity ε > 0 admits two functions g ∈ −V and h ∈ V satisfying

g(x) ≤ f(x) ≤ h(x), x ∈ X and I(h)− I(g) < ε.

In particular, I(g) and I(h) are finite.

Proof:

‘=⇒’ We consider f ∈ L(X) and note that I−(f) = I+(f) ∈ R. According to
Definition 2.6, we find functions g ∈ −V and h ∈ V with g ≤ f ≤ h and
I(h)− I(g) < ε.

‘⇐=’ For each quantity ε > 0, we have functions g ∈ −V and h ∈ V with
g ≤ f ≤ h and I(h) − I(g) < ε. On account of I(h) ∈ (−∞,+∞] and
I(g) ∈ [−∞,+∞), we infer I(h), I(g) ∈ R. Now Proposition 2.7 implies
the estimate

0 ≤ I+(f)− I−(f) ≤ I(h)− I(g) < ε

for arbitrary ε > 0. Consequently, I+(f) = I−(f) ∈ R holds true and
finally f ∈ L(X). q.e.d.

Theorem 2.10. (Calculus rules for Lebesgue integrable functions)
The set L(X) of Lebesgue integrable functions has the following properties:
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a) The statement

f ∈ L(X) for each f ∈ V (X) with I(f) < +∞

is correct, and the integrals from Definition 2.2 and Definition 2.8 coin-
cide. Consequently, the functional I :M(X) → R has been extended onto
L(X) ⊃M(X). Furthermore, we have

I(f) ≥ 0 for all f ∈ L(X) with f ≥ 0.

b) The space L(X) is linear, which means

c1f1 + c2f2 ∈ L(X) for all f1, f2 ∈ L(X) and c1, c2 ∈ R.

Furthermore, I : L(X) → R represents a linear functional. Therefore, we
have the calculus rule

I(c1f1 + c2f2) = c1I(f1) + c2I(f2) for all f1, f2 ∈ L(X), c1, c2 ∈ R.

c) When f ∈ L(X) is given, then |f | ∈ L(X) holds true and the estimate∣∣I(f)∣∣ ≤ I
(
|f |
)
is valid.

Proof:

a) Consider f ∈ V (X) with I(f) < +∞. Then we find a sequence

{fn}n=1,2,... ⊂M(X)

such that fn ↑ f holds true. When we define gn := fn and hn := f for all
n ∈ N, we infer gn ≤ f ≤ hn with gn ∈ −V and hn ∈ V , and we observe
I(hn)− I(gn) = I(f)− I(fn) → 0. Proposition 2.9 tells us that f ∈ L(X),
and Definition 2.8 implies

−∞ < I(f) := I+(f) = I−(f) = lim
n→∞

I(fn) < +∞.

We consider 0 ≤ f ∈ L(X), and we infer from 0 ∈ −V the statement
0 ≤ I−(f) = I(f).

b) At first, we show: If f ∈ L(X) is chosen, we have −f ∈ L(X) as well as
I(−f) = −I(f).

With f ∈ L(X) given, each quantity ε > 0 admits a pair of functions
g ∈ −V and h ∈ V satisfying g ≤ f ≤ h as well as I(h) − I(g) < ε.
This implies −h ≤ −f ≤ −g with −h ∈ −V and −g ∈ V . We note that
I(−g) = −I(g) and I(−h) = −I(h) hold true, and we obtain

I(−g)− I(−h) = −I(g) + I(h) < ε for all ε > 0.

Finally, we arrive at −f ∈ L(X) and I(−f) = −I(f).
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Now we show: With f ∈ L(X) and c > 0, we have cf ∈ L(X) and
I(cf) = cI(f).

Therefore, we consider f ∈ L(X), c > 0, and each ε > 0 admits functions
g ∈ −V and h ∈ V with g ≤ f ≤ h as well as I(h)−I(g) < ε. This implies
cg ≤ cf ≤ ch, cg ∈ −V , ch ∈ V and finally

I(ch)− I(cg) = c
(
I(h)− I(g)

)
< cε.

We have thus proved cf ∈ L(X) and I(cf) = cI(f).

Finally, we deduce the calculus rule: From f1, f2 ∈ L(X) we infer
f1 + f2 ∈ L(X) and I(f1 + f2) = I(f1) + I(f2).

The elements f1, f2 ∈ L(X) being given, we find to each ε > 0 the
functions g1, g2 ∈ −V and h1, h2 ∈ V satisfying gi ≤ fi ≤ hi and
I(hi) − I(gi) < ε for i = 1, 2. This immediately implies h1 + h2 ∈ V ,
g1+g2 ∈ −V , g1+g2 ≤ f1+f2 ≤ h1+h2 and I(h1+h2)−I(g1+g2) < 2ε.
We conclude f1 + f2 ∈ L(X) and obtain the calculus rule I(f1 + f2) =
I(f1) + I(f2).

Therefore, I : L(X) → R represents a linear functional on the linear space
L(X) of Lebesgue integrable functions.

c) With f ∈ L(X), we find functions g ∈ −V and h ∈ V satisfying g ≤
f ≤ h and I(h) − I(g) < ε to each ε > 0, and we see g+ ≤ f+ ≤ h+.
Furthermore, we have sequences gn ↓ g and hn ↑ h inM(X), which give us
the approximations g+n ↓ g+ and h+n ↑ h+, respectively. Therefore, h+ ∈ V
and g+ ∈ −V holds true as well as h+ − g+ ∈ V . From h ≥ g we infer
h+ − g+ ≤ h− g and see

I(h+)− I(g+) = I(h+) + I(−g+) = I(h+ − g+)
≤ I(h− g) = I(h)− I(g) < ε.

Consequently, the statements f+ ∈ L(X) and |f | = f+ + (−f)+ ∈ L(X)
are established. With f ∈ L(X), the elements −f and |f | belong to L(X)
as well, and the inequalities f ≤ |f |, −f ≤ |f | imply I(f) ≤ I(|f |),
−I(f) = I(−f) ≤ I(|f |) and finally |I(f)| ≤ I(|f |).

q.e.d.

Now we deduce convergence theorems for Lebesgue’s integral: Fundamental
is the following

Proposition 2.11. Let the sequence {fk}k=1,2,... ⊂ L(X) with fk ≥ 0, k ∈ N

and
∞∑
k=1

I(fk) < +∞ be given. Then the property

f(x) :=

∞∑
k=1

fk(x) ∈ L(X)
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is fulfilled, and we have

I(f) =

∞∑
k=1

I(fk).

Proof: Given the quantity ε > 0, we find functions gk ∈ −V and hk ∈ V with
0 ≤ gk ≤ fk ≤ hk and I(hk) − I(gk) < ε 2−k for all k ∈ N, on account of
fk ∈ L(X). Therefore, we have the inequalities

I(gk) > I(hk)−
ε

2k
≥ I(fk)−

ε

2k
and I(hk) < I(gk) +

ε

2k
≤ I(fk) +

ε

2k
.

Now we choose n so large that
∞∑

k=n+1

I(fk) ≤ ε is correct. When we set

g :=

n∑
k=1

gk, h :=

∞∑
k=1

hk,

we observe g ∈ −V and h ∈ V , due to Proposition 2.5, as well as g ≤ f ≤ h.
Furthermore, we see

I(g) =

n∑
k=1

I(gk) >

n∑
k=1

(
I(fk)−

ε

2k

)
≥

∞∑
k=1

I(fk)− 2ε

and

I(h) =

∞∑
k=1

I(hk) <

∞∑
k=1

(
I(fk) +

ε

2k

)
=

∞∑
k=1

I(fk) + ε.

Consequently, we obtain I(h)− I(g) < 3ε and additionally f ∈ L(X). Finally,
our estimates yield the identity

I(f) =

∞∑
k=1

I(fk).

q.e.d.

Theorem 2.12. (B.Levi’s theorem on monotone convergence)
Let {fn}n=1,2,... ⊂ L(X) denote a sequence satisfying

fn(x) �= ±∞ for all x ∈ X and all n ∈ N.

Furthermore, let the conditions

fn(x) ↑ f(x), x ∈ X, and I(fn) ≤ C, n ∈ N

be valid, with a constant C ∈ R. Then we have f ∈ L(X) and

lim
n→∞

I(fn) = I(f).
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Proof: On account of fk(x) ∈ R, the addition is associative there. Setting

ϕk(x) := (fk(x)− fk−1(x)) ∈ L(X), k = 2, 3, . . . ,

we infer ϕk ≥ 0 as well as

n∑
k=2

ϕk(x) = fn(x)− f1(x), x ∈ X.

Now we observe

C − I(f1) ≥ I(fn)− I(f1) =
n∑

k=2

I(ϕk) for all n ≥ 2.

Proposition 2.11 implies

f − f1 =

∞∑
k=2

ϕk ∈ L(X)

and furthermore

lim
n→∞

I(fn)− I(f1) =
∞∑
k=2

I(ϕk) = I

( ∞∑
k=2

ϕk

)
= I(f − f1) = I(f)− I(f1).

Therefore, we obtain f ∈ L(X) and the following limit relation:

lim
n→∞

I(fn) = I(f).
q.e.d.

Remark: The restrictive assumption fn(x) �= ±∞ will be eliminated in the
next section.

Theorem 2.13. (Fatou’s convergence theorem)
Let {fn}n=1,2,... ⊂ L(X) denote a sequence of functions such that

0 ≤ fn(x) < +∞ for all x ∈ X and all n ∈ N

holds true. Furthermore, we assume

lim inf
n→∞

I(fn) < +∞.

Then the function g(x) := lim inf
n→∞

fn(x) belongs to the space L(X), and we

observe the lower semicontinuity

I(g) ≤ lim inf
n→∞

I(fn).
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Proof: We note that

g(x) = lim inf
n→∞

fn(x) = lim
n→∞

(
inf
m≥n

fm(x)
)
= lim

n→∞

(
lim
k→∞

gn,k(x)
)

holds true with

gn,k(x) := min
(
fn(x), fn+1(x), . . . , fn+k(x)

)
∈ L(X).

When we define
gn(x) := inf

m≥n
fm(x),

we infer the relations gn,k ↓ gn and −gn,k ↑ −gn for k → ∞. Furthermore,
we obtain I(−gn,k) ≤ 0 due to fn(x) ≥ 0. From Theorem 2.12 we infer
−gn ∈ L(X) and consequently gn ∈ L(X) for all n ∈ N.

Furthermore, we see gn(x) ≤ fm(x), x ∈ X for all m ≥ n. Therefore, the
inequality

I(gn) ≤ inf
m≥n

I(fm) ≤ lim
n→∞

(
inf
m≥n

I(fm)
)
= lim inf

n→∞
I(fn) < +∞

is correct for all n ∈ N. We utilize gn ↑ g as well as Theorem 2.12, and we
obtain g ∈ L(X) and, moreover,

I(g) = lim
n→∞

I(gn) ≤ lim inf
n→∞

I(fn).
q.e.d.

Theorem 2.14. Let {fn}n=1,2,... ⊂ L(X) denote a sequence with

|fn(x)| ≤ F (x) < +∞, n ∈ N, x ∈ X,

where F (x) ∈ L(X) is correct. Furthermore, let us define

g(x) := lim inf
n→∞

fn(x) and h(x) := lim sup
n→∞

fn(x).

Then the elements g and h belong to L(X), and we have the inequalities

I(g) ≤ lim inf
n→∞

I(fn), I(h) ≥ lim sup
n→∞

I(fn).

Proof: We apply Theorem 2.13 on both sequences {F + fn} and {F − fn} of
nonnegative finite-valued functions from L(X). We observe the inequality

I(F ± fn) ≤ I(F + F ) ≤ 2I(F ) < +∞ for all n ∈ N.

Thus we obtain

L(X) � lim inf
n→∞

(F + fn) = F + lim inf
n→∞

fn = F + g



108 Chapter 2 Foundations of Functional Analysis

as well as g ∈ L(X). Now Theorem 2.13 yields

I(F ) + I(g) = I(F + g) ≤ lim inf
n→∞

I(F + fn) = I(F ) + lim inf
n→∞

I(fn)

and
I(g) ≤ lim inf

n→∞
I(fn).

In the same way we deduce

L(X) � lim inf
n→∞

(F − fn) = F − lim sup
n→∞

fn = F − h

and consequently h ∈ L(X). This implies

I(F )− I(h) = I(F − h) ≤ lim inf
n→∞

I(F − fn) = I(F )− lim sup
n→∞

I(fn)

and finally
I(h) ≥ lim sup

n→∞
I(fn). q.e.d.

Theorem 2.15. (H.Lebesgue’s theorem on dominated convergence)
Let {fn}n=1,2,... ⊂ L(X) denote a sequence with

fn(x) → f(x) for n→ ∞, x ∈ X.

Furthermore, we assume

|fn(x)| ≤ F (x) < +∞, n ∈ N, x ∈ X

where F ∈ L(X) is valid. Then we infer f ∈ L(X) as well as

lim
n→∞

I(fn) = I(f).

Proof: The limit relation

lim
n→∞

fn(x) = f(x), x ∈ X

implies
lim inf
n→∞

fn(x) = f(x) = lim sup
n→∞

fn(x).

According to Theorem 2.14, we have f ∈ L(X) and

lim sup
n→∞

I(fn) ≤ I(f) ≤ lim inf
n→∞

I(fn).

Therefore, the subsequent limit exists

lim
n→∞

I(fn),

and we deduce
I(f) = lim

n→∞
I(fn).

q.e.d.
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3 Measurable Sets

Beginning with this section, we have to require the following

Additional assumptions for the sets X and M(X):

• We assume X ⊂ R
n with the dimension n ∈ N. Then X becomes a topo-

logical space as follows: A subset A ⊂ X is open (closed) if and only if we

have an open (closed) subset Â ⊂ R
n such that A = X ∩ Â holds true.

• Furthermore, we assume that the inclusion C0
b (X,R) ⊂M(X) ⊂ C0(X,R)

is fulfilled. Here C0
b (X,R) describes the set of bounded continuous func-

tions. This is valid for our main example 2. In our main example 1, this is
fulfilled as well if the open set Ω ⊂ R

n is subject to the following condition:∫
Ω

1 dx < +∞.

We see immediately that the function f0 ≡ 1, x ∈ X then belongs to the
class M(X).

Now we specialize our theory of integration from Section 2 to characteristic
functions and obtain a measure theory. For an arbitrary set A ⊂ X we define
its characteristic function by

χA(x) :=

{
1, x ∈ A
0, x ∈ X \A

.

Definition 3.1. A subset A ⊂ X is called finitely measurable (or alternatively
integrable) if its characteristic function satisfies χA ∈ L(X). We name

μ(A) := I(χA)

the measure of the set A with respect to the integral I. The set of all finitely
measurable sets in X is denoted by S(X).

From the additional assumptions above, namely f0 ≡ 1 ∈ M(X), we infer
χX ∈ M(X) ⊂ L(X) and consequently X ∈ S(X). Therefore, we speak
equivalently of finitely measurable and measurable sets.

Proposition 3.2. (σ-Additivity)
Let {Ai}i=1,2,... ⊂ S(X) denote a sequence of mutually disjoint sets. Then the
set

A :=

∞⋃
i=1

Ai

belongs to S(X) as well, and we have

μ(A) =

∞∑
i=1

μ(Ai).



110 Chapter 2 Foundations of Functional Analysis

Proof: We consider the sequence of functions

fk :=

k∑
l=1

χAl
↑ χA ≤ χX ∈ L(X)

and note that fk ∈ L(X) for all k ∈ N holds true. Now Lebesgue’s convergence
theorem yields χA ∈ L(X) and consequently A ∈ S(X). Finally, we evaluate

μ(A) = I(χA) = lim
k→∞

I(fk) = lim
k→∞

I(χA1 + . . .+ χAk
)

= lim
k→∞

(
μ(A1) + . . .+ μ(Ak)

)
=

∞∑
l=1

μ(Al).

q.e.d.

We show that with A,B ∈ S(X) their intersection A ∩B belongs to S(X) as
well. On account of χA∩B = χAχB , we have to verify that with χA, χB ∈ L(X)
their product satisfies χAχB ∈ L(X) as well. In general, the product of two
functions in L(X) need not lie in L(X) as demonstrated by the following

Example 3.3. With X = (0, 1), we define the space

M(X) =

⎧⎨
⎩f : (0, 1) → R ∈ C0

(
(0, 1),R

)
:

1∫
0

|f(x)| dx < +∞

⎫⎬
⎭

and the improper Riemannian integral I(f) :=
1∫
0

f(x) dx. Then we observe

f(x) :=
1√
x
∈ L(X); however, f2(x) :=

1

x
�∈ L(X).

Now we establish the following

Theorem 3.4. (Continuous combination of bounded L-functions)
Let fk(x) ∈ L(X) for k = 1, . . . , κ denote finitely many bounded functions,
such that the estimate

|fk(x)| ≤ c for all points x ∈ X and all indices k ∈ {1, . . . , κ}

is valid, with a constant c ∈ (0,+∞). Furthermore, let the function Φ =
Φ(y1, . . . , yκ) : R

κ → R ∈ C0(Rκ,R) be given. Then the composition

g(x) := Φ
(
f1(x), . . . , fκ(x)

)
, x ∈ X

belongs to the class L(X) and is bounded.
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Proof:

1. With f : X → R ∈ L(X) let us consider a bounded function. At first, we
show that its square satisfies f2 ∈ L(X). We observe

f2(x) = {f(x)− λ}2 + 2λf(x)− λ2

and infer
f2(x) ≥ 2λf(x)− λ2 for all λ ∈ R,

where equality is attained only for λ = f(x). Therefore, we can rewrite
the square-function as follows:

f2(x) = sup
λ∈R

(
2λf(x)− λ2

)
.

Since the function λ �→ (2λf(x)− λ2) is continuous with respect to λ for
each fixed x ∈ X, it is sufficient to evaluate this supremum only over the
set of rational numbers. Furthermore, we have Q = {λl}l=1,2,... and see

f2(x) = sup
l∈N

(
2λlf(x)− λ2l

)
= lim

m→∞

(
max

1≤l≤m

(
2λlf(x)− λ2l

))
.

With the aid of
ϕm(x) := max

1≤l≤m

(
2λlf(x)− λ2l

)

we obtain
f2(x) = lim

m→∞
ϕm(x) = lim

m→∞
ϕ+
m(x),

where the last equality is inferred from the positivity of f2(x). Since f ∈
L(X) holds true, the linearity and the closedness with respect to the
maximum operation of L(X) imply: The elements ϕm and consequently
ϕ+
m belong to the space L(X). Furthermore, for all points x ∈ X and all
m ∈ N we have the estimate

0 ≤ ϕ+
m(x) ≤ f2(x) ≤ c

with a constant c ∈ (0,+∞). From the property f0(x) ≡ 1 ∈ L(X) we infer
fc(x) ≡ c ∈ L(X), and the functions ϕ+

m have an integrable dominating
function. Now Lebesgue’s convergence theorem yields

f2(x) = lim
m→∞

ϕ+
m(x) ∈ L(X).

2. When f, g ∈ L(X) represent bounded functions, its product f · g is
bounded as well. On account of part 1 of our proof and the identity

fg =
1

4
(f + g)2 − 1

4
(f − g)2,

we deduce fg ∈ L(X).
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3. On the rectangle

Q :=
{
y = (y1, . . . , yκ) ∈ R

κ : |yk| ≤ c, k = 1, . . . , κ
}

we can approximate the continuous function Φ uniformly by polynomials

Φl = Φl(y1, . . . , yκ), l = 1, 2, . . . .

From part 2 we infer that the functions

gl(x) := Φl

(
f1(x), . . . , fκ(x)

)
, x ∈ X

are bounded and belong to the class L(X). We have the estimate

|gl(x)| ≤ C for all x ∈ X and all l ∈ N

with a fixed constant C ∈ (0,+∞). Since the function satisfies ϕ(x) ≡
C ∈ L(X), Lebesgue’s convergence theorem yields

g(x) = Φ
(
f1(x), . . . , fκ(x)

)
= lim

l→∞
gl(x) ∈ L(X).

q.e.d.

Corollary from Theorem 3.4: If f(x) ∈ L(X) represents a bounded function,
its power |f |p belongs to the class L(X) for all exponents p > 0.

Proposition 3.5. With the sets A,B ∈ S(X) the following sets A∩B, A∪B,
A \B, Ac := X \A belong to S(X) as well.

Proof: Let us take A,B ∈ S(X), and the associate characteristic functions
χA, χB are bounded and belong to the class L(X). Via Proposition 3.4, we
deduce

χA∩B = χAχB ∈ L(X) and consequently A ∩B ∈ S(X).

Now we see A∪B ∈ S(X) due to χA∪B = χA +χB −χA∩B ∈ L(X). Further-
more, we observe

χA\B = χA\(A∩B) = χA − χA∩B ∈ L(X) and consequently A \B ∈ L(X).

On account of X ∈ S(X), we finally infer Ac = (X \A) ∈ S(X). q.e.d.

Proposition 3.6. (σ-Subadditivity)
Let {Ai}i=1,2,... ⊂ S(X) denote a sequence of sets. Then their denumerable
union

A :=

∞⋃
i=1

Ai

belongs to S(X) as well, and we have the following estimate:

μ(A) ≤
∞∑
i=1

μ(Ai) ∈ [ 0,+∞].
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Proof: We make the transition from the sequence {Ai}i=1,2,... to the sequence
{Bi}i=1,2,... of mutually disjoint sets:

B1 := A1, B2 := A2 \B1, . . . , Bk := Ak \ (B1 ∪ · · · ∪Bk−1), . . .

Now Proposition 3.5 yields {Bi}i=1,2,... ⊂ S(X). Furthermore, we note that

Bi ⊂ Ai holds true for all i ∈ N and, moreover, A =
∞⋃
i=1

Bi. Then Propo-

sition 3.2 implies A ∈ S(X) as well as μ(A) =
∑∞

i=1 μ(Bi) ≤
∑∞

i=1 μ(Ai).
q.e.d.

Definition 3.7. A system A of subsets of a set X is called σ-algebra if we
have the following properties :

1. X ∈ A.
2. With B ∈ A, its complement satisfies Bc = (X \B) ∈ A as well.

3. For each sequence of sets {Bi}i=1,2,... in A, their denumerable union
∞⋃
i=1

Bi

belongs to A as well.

Remark: We infer ∅ ∈ A immediately from these conditions. Furthermore,

with the sets {Bi}i=1,2,... ⊂ A their denumerable intersection satisfies
∞⋂
i=1

Bi ∈
A as well.

Definition 3.8. We name the function μ : A → [0,+∞] on a σ-algebra A a
measure if the following conditions are fulfilled:

1. μ(∅) = 0.

2. μ
( ∞⋃

i=1

Bi

)
=

∞∑
i=1

μ(Bi) for all mutually disjoint sets {Bi}i=1,2,... ⊂ A.

We call this measure finite if μ(X) < +∞ holds true.

Remark: Property 2 is called the σ-additivity of the measure. If we only have

finite additivity - that means μ
(⋃N

i=1Bi

)
=
∑N

i=1 μ(Bi) for all mutually

disjoint sets {Bi}i=1,2,...,N ⊂ A - we speak of a content.

From our Propositions 3.2 to 3.6, we immediately infer

Theorem 3.9. The set S(X) of the finitely measurable subsets of X consti-
tutes a σ-algebra. The prescription

μ(A) := I(χA), A ∈ S(X)

defines a finite measure on the σ-algebra S(X).

Remark: Carathéodory developed axiomatically the measure theory, on which
the integration theory can be based. We have presented the inverse approach
here. The axiomatic measure theory begins with Definitions 3.7 and 3.8 above.
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Definition 3.10. A set A ⊂ X is named null-set if A ∈ S(X) and μ(A) = 0
hold true.

Remark: The measure μ from Definition 3.1 has the property that each subset
of a null-set is a null-set again. For B ⊂ A and A ∈ S(X) with μ(A) = 0 we
namely deduce

0 = I+(χA) ≥ I+(χB) ≥ I−(χB) ≥ 0,

and consequently
I+(χB) = I

−(χB) = 0.

Therefore, we obtain χB ∈ L(X) and finally B ∈ S(X) with μ(B) = 0.

Proposition 3.6 immediately implies

Theorem 3.11. The denumerable union of null-sets is a null-set again.

Now we show the following

Theorem 3.12. Each open and each closed set A ⊂ X belongs to S(X).

Proof:

1. At first, let the set A be closed in X and bounded in R
n ⊃ X. Then

we have a compact set Â in R
n satisfying A = Â ∩ X. For the set Â

we construct - with the aid of Tietze’s extension theorem - a sequence of
functions fl : R

n → R ∈ C0
0 (R

n) such that

fl(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 , x ∈ Â

0 , x ∈ R
n with dist (x, Â) ≥ 1

l
∈
[
0, 1
]
, elsewhere

holds true for l = 1, 2, . . .. We observe fl(x) → χ
̂A(x), set gl = fl

∣∣
X
,

and obtain
gl ∈ C0

b (X) ⊂M(X) ⊂ L(X)

as well as

0 ≤ gl(x) ≤ 1 and gl(x) → χA(x), x ∈ X.

On account of f0(x) ≡ 1 ∈ M(X), we can apply Lebesgue’s convergence
theorem and see

χA(x) = lim
l→∞

gl(x) ∈ L(X).

Therefore, A ∈ S(X) is satisfied.



3 Measurable Sets 115

2. For an arbitrary closed set A ⊂ X we consider the sequence

Al := A ∩
{
x ∈ R

n : |x| ≤ l
}
.

Due to part 1 of our proof, the sets Al belong to the system S(X) and

consequently A =
∞⋃
l=1

Al as well. Finally, the open sets belong to S(X) as

complements of closed sets. q.e.d.

Proposition 3.13. Let us consider f ∈ V (X). Then the level set

O(f, a) :=
{
x ∈ X : f(x) > a

}
⊂ X

is open for all a ∈ R.

Proof: We note that f ∈ V (X) holds true and find a sequence

{fn}n=1,2,... ⊂M(X) ⊂ C0(X,R)

satisfying fn ↑ f on X. Let us consider a point ξ ∈ O(f, a) which means
f(ξ) > a. Then we have an index n0 ∈ N with fn0(ξ) > a. Since the function
fn0 : X → R is continuous, there exists an open neighborhood U ⊂ X of ξ
such that fn0(x) > a for all x ∈ U holds true. Due to fn0 ≤ f on X, we infer
f(x) > a for all x ∈ U , which implies U ⊂ O(f, a). Consequently, the level set
O(f, a) is open.

q.e.d.

The following criterion illustrates the connection between open and measur-
able sets.

Theorem 3.14. A set B ⊂ X belongs to the system S(X) if and only if the
following condition is valid: For all δ > 0 we can find a closed set A ⊂ X and
an open set O ⊂ X, such that the properties A ⊂ B ⊂ O and μ(O \ A) < δ
hold true.

Proof:

‘=⇒’ When we take B ∈ S(X), we infer χB ∈ L(X) and Proposition 2.9
in Section 2 gives us a function f ∈ V (X) satisfying 0 ≤ χB ≤ f and
I(f)−μ(B) < ε for all ε > 0. According to Proposition 3.13, the level sets

Oε := {x ∈ X | f(x) > 1− ε} ⊃ B

with ε > 0 are open in X. Now we deduce

χB ≤ χOε =
1

1− ε (1− ε)χOε ≤ 1

1− ε f in X,

and we see



116 Chapter 2 Foundations of Functional Analysis

μ(Oε)− μ(B) = I(χOε)− μ(B) ≤ 1

1− ε I(f)− μ(B)

=
1

1− ε

(
I(f)− μ(B)

)
+

ε

1− εμ(B) <
ε

1− ε

(
1 + μ(B)

)

for all ε > 0. For the quantity δ > 0 being given, we now choose a
sufficiently small ε > 0 such that the set O := Oε ⊃ B satisfies the
estimate

μ(O)− μ(B) < δ

2
.

Furthermore, we attribute to each measurable set Bc = X \B an open set

Õ = Ac such that Ac = Õ ⊃ Bc and μ(Õ ∩ B) < δ
2 hold true. Therefore,

the closed set A ⊂ X fulfills the inclusion A ⊂ B ⊂ O and the estimate

μ(O \A) = μ(O)− μ(A) =
(
μ(O)− μ(B)

)
+
(
μ(B)− μ(A)

)

<
δ

2
+ μ(B \A) =

δ

2
+ μ(B ∩ Õ) < δ.

‘⇐=’ The quantity δ > 0 being given, we find an open set O ⊃ B and a closed
set A ⊂ B - they are measurable due to Proposition 3.13 - such that the
estimate I(χO − χA) < δ is fulfilled. Since χA, χO ∈ L(X) is fulfilled,
Proposition 2.9 in Section 2 provides functions g ∈ −V (X) and h ∈ V (X)
satisfying

g ≤ χA ≤ χB ≤ χO ≤ h in X and I(h− g) < 3δ.

Using Proposition 2.9 in Section 2 again, we deduce χB ∈ L(X) and con-
sequently B ∈ S(X). q.e.d.

In the sequel, we shall intensively study the null-sets. These appear as sets
of exemption for Lebesgue integrable functions and can be neglected in the
Lebesgue integration. We start our investigations with the following

Proposition 3.15. A set N ⊂ X is a null-set if and only if we have a function
h ∈ V (X) satisfying h(x) ≥ 0 for all x ∈ X, h(x) = +∞ for all x ∈ N , and
I(h) < +∞.

Proof:

‘=⇒’ Let N ⊂ X denote a null-set. Then χN ∈ L(X) and I(χN ) = 0 hold
true. For each index k ∈ N we obtain a function hk ∈ V (X) satisfying
0 ≤ χN ≤ hk in X and I(hk) ≤ 2−k, due to Proposition 2.9 in Section 2.
According to Proposition 2.5 in Section 2, the element

h(x) :=

∞∑
k=1

hk(x)
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belongs to the space V (X) and fulfills

I(h) =

∞∑
k=1

I(hk) ≤ 1.

On the other hand, the estimates hk(x) ≥ 1 in N for all k ∈ N imply that
the relation h(x) = +∞ for all x ∈ N is correct. We note that hk(x) ≥ 0
in X holds true, and we deduce h(x) ≥ 0 for all x ∈ X.

‘⇐=’ Let the conditions h ∈ V (X), h(x) ≥ 0 for all x ∈ X, h(x) = +∞ for
all x ∈ N , and I(h) < +∞ be fulfilled. When we define

hε(x) :=
ε

1 + I(h)
h(x),

we immediately deduce hε ∈ V (X), hε(x) ≥ 0 for all x ∈ X, and I(hε) < ε
for all ε > 0. On account of h(x) = +∞ for all x ∈ N , we infer

0 ≤ χN (x) ≤ hε(x) in X for all ε > 0.

Proposition 2.9 in Section 2 yields I(χN ) = 0, which means that N is a
null-set. q.e.d.

Definition 3.16. A property holds true almost everywhere in X ( symboli-
cally: a.e. ), if there exists a null-set N ⊂ X such that this property is valid
for all points x ∈ X \N .

Theorem 3.17. (a.e.-Finiteness of L-functions)
Let the function f ∈ L(X) be given. Then the set

N :=
{
x ∈ X : |f(x)| = +∞

}

constitutes a null-set.

Proof: With f ∈ L(X) being given, we obtain |f | ∈ L(X) and find a function
h ∈ V (X) satisfying 0 ≤ |f(x)| ≤ h(x) in X as well as I(h) < +∞. Fur-
thermore, h(x) = +∞ in N holds true and Proposition 3.15 tells us that N
represents a null-set.

q.e.d.

Theorem 3.18. Let the function f ∈ L(X) be given such that I(|f |) = 0 is
correct. Then the set

N :=
{
x ∈ X : f(x) �= 0

}

constitutes a null-set.
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Proof: With f ∈ L(X) being given, we infer |f | ∈ L(X). Setting

fk(x) := |f(x)|, k ∈ N,

we observe
∞∑
k=1

I(fk) = 0.

According to Proposition 2.11 in Section 2, the function

g(x) :=

∞∑
k=1

fk(x)

is Lebesgue integrable as well. Now we see N = {x ∈ X : g(x) = +∞}, and
Theorem 3.17 implies that N is a null-set. q.e.d.

Now we want to show that an L-function can be arbitrarily modified on a null-
set, without the value of the integral being changed! In this way we can confine
ourselves to consider finite-valued functions f ∈ L(X), which are functions f
with f(x) ∈ R for all x ∈ X, more precisely. A bounded function is finite-
valued; however, a finite-valued function is not necessarily bounded. In this
context, we mention the function f(x) = 1

x , x ∈ (0, 1).

Proposition 3.19. Let N ⊂ X denote a null-set. Furthermore, the function
f : X → R may satisfy f(x) = 0 for all x ∈ X \N . Then we infer f ∈ L(X)
as well as I(f) = 0.

Proof: Due to Proposition 3.15, we find a function h ∈ V (X) satisfying h(x) ≥
0 for all x ∈ X, h(x) = +∞ for all x ∈ N , and I(h) < +∞. For all numbers
ε > 0, we see εh ∈ V and −εh ∈ −V as well as

−εh(x) ≤ f(x) ≤ εh(x) for all x ∈ X.

Furthermore, the identity

I(εh)− I(−εh) = 2εI(h) for all ε > 0

is correct. We infer f ∈ L(X) and, moreover, I(f) = 0 from Proposition 2.9
in Section 2.

q.e.d.

Theorem 3.20. Consider the function f ∈ L(X) and the null-set N ⊂ X.

Furthermore, let the function f̃ : X → R with the property f̃(x) = f(x) for

all x ∈ X \ N be given. Then we infer f̃ ∈ L(X) as well as I(|f − f̃ |) = 0,

and consequently I(f) = I(f̃).
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Proof: Since f ∈ L(X) holds true, the following set

N1 :=
{
x ∈ X : |f(x)| = +∞

}

constitutes a null-set, due to Theorem 3.17. Now we find a function ϕ(x) :
X → R such that

f̃(x) = f(x) + ϕ(x) for all x ∈ X.

Evidently, we have the identity ϕ(x) = 0 outside the null-set N ∪N1. Propo-

sition 3.19 yields ϕ ∈ L(X) and I(ϕ) = 0. Consequently, f̃ ∈ L(X) is correct
and we see

I(f̃) = I(f + ϕ) = I(f) + I(ϕ) = I(f).

When we apply these arguments on the function

ψ(x) := |f(x)− f̃(x)|, x ∈ X,

Proposition 3.19 shows us ψ ∈ L(X) and finally

0 = I(ψ) = I(|f − f̃ |).

q.e.d.

Remark: When a function f̃ coincides a.e. with an L-function f , then f̃ ∈
L(X) holds true and their integrals are identical.

We are now prepared to provide general convergence theorems of the Lebesgue
integration theory.

Theorem 3.21. (General convergence theorem of B.Levi)
Let {fk}k=1,2,... ⊂ L(X) denote a sequence of functions satisfying fk ↑ f a.e.
in X. Furthermore, let I(fk) ≤ c for all k ∈ N be valid - with the constant
c ∈ R. Then we infer f ∈ L(X) and

lim
k→∞

I(fk) = I(f).

Proof: We consider the null-sets

Nk :=
{
x ∈ X : |fk(x)| = +∞

}
for k ∈ N

as well as
N0 :=

{
x ∈ X : fk(x) ↑ f(x) is not valid

}
.

We define the null-set

N :=

∞⋃
k=0

Nk,
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and modify f, fk on N to 0. Then we obtain the functions f̃k ∈ L(X) with

I(f̃k) = I(fk) ≤ c for all k ∈ N

and f̃ with f̃k ↑ f̃ . According to Theorem 2.12 from Section 2, we deduce
f̃ ∈ L(X) as well as

lim
k→∞

I(f̃k) = I(f̃).

Now Theorem 3.20 yields f ∈ L(X) and

I(f) = I(f̃) = lim
k→∞

I(f̃k) = lim
k→∞

I(fk).

q.e.d.

Modifying the functions to 0 on the relevant null-sets as above, we easily prove
the following Theorems 3.22 and 3.23 with the aid of Theorem 2.13 and 2.15
from Section 2, respectively.

Theorem 3.22. (General convergence theorem of Fatou)
Let {fk}k=1,2,... ⊂ L(X) denote a sequence of functions with fk(x) ≥ 0 a.e.
in X for all k ∈ N, and we assume

lim inf
k→∞

I(fk) < +∞.

Then the function
g(x) := lim inf

k→∞
fk(x)

belongs to the class L(X) as well, and we have lower semicontinuity as follows:

I(g) ≤ lim inf
k→∞

I(fk).

Theorem 3.23. (General convergence theorem of Lebesgue)
Let {fk}k=1,2,... ⊂ L(X) denote a sequence with fk → f a.e. on X and
|fk(x)| ≤ F (x) a.e. in X for all k ∈ N, where F ∈ L(X) holds true. Then we
infer f ∈ L(X) and the identity

lim
k→∞

I(fk) = I(f).

We conclude this section with the following

Theorem 3.24. Lebesgue’s integral I : L(X) → R constitutes a Daniell inte-
gral.

Proof: We invoke Theorem 2.10 in Section 2 and obtain the following: The
space L(X) is linear and closed with respect to the modulus operation. Fur-
thermore, L(X) satisfies the properties (1) and (2) in Section 1. The Lebesgue
integral I is nonnegative, linear, and closed with respect to monotone conver-
gence - due to Theorem 3.21. Therefore, the functional I fulfills the conditions
(3)–(5) in Section 1. Consequently, Lebesgue’s integral I : L(X) → R repre-
sents a Daniell integral as described in Definition 1.1 from Section 1.

q.e.d.
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4 Measurable Functions

Fundamental is the following

Definition 4.1. The function f : X → R is named measurable if the level set
- above the level a -

O(f, a) :=
{
x ∈ X : f(x) > a

}

is measurable for all a ∈ R.

Remark: Each continuous function f : X → R ∈ C0(X,R) is measurable.
Then O(f, a) ⊂ X is an open set for all a ∈ R, which is measurable due to
Section 3, Theorem 3.12. Furthermore, Proposition 3.13 in Section 3 shows us
that each function f ∈ V (X) is measurable as well.

Proposition 4.2. Let f : X → R denote a measurable function. Furthermore,
let us consider the numbers a, b ∈ R with a ≤ b and the interval I = [ a, b ];
for a < b we consider the intervals I = (a, b ], I = [ a, b), I = (a, b) as well.
Then the following sets

A :=
{
x ∈ X : f(x) ∈ I

}

are measurable.

Proof: Definition 4.1 implies that the level sets

O1(f, c) := O(f, c) =
{
x ∈ X : f(x) > c

}

are measurable for all c ∈ R. For a given c ∈ R, we now choose a sequence
{cn}n=1,2,... satisfying cn ↑ c, and we obtain again a measurable set via

O2(f, c) :=
{
x ∈ X : f(x) ≥ c

}
=

∞⋂
n=1

{
x ∈ X : f(x) > cn

}
.

The measurable sets S(X) namely constitute a σ-algebra due to Section 3,
Definition 3.7 and Theorem 3.9. Furthermore, we have the relations

O2(f,+∞) =

∞⋂
n=1

O2(f, n), O1(f,−∞) =

∞⋃
n=1

O1(f,−n),

and these sets are measurable as well. The transition to their complements
shows that

O3(f, c) :=
{
x ∈ X : f(x) ≤ c

}
and O4(f, c) :=

{
x ∈ X : f(x) < c

}

are measurable for all c ∈ R. Here
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A :=
{
x ∈ X : f(x) ∈ I

}

can be generated by an intersection of the sets O1–O4, when we replace c by
a or b, respectively. This proves the measurability of the sets A. q.e.d.

For a, b ∈ R with a < b, we define the function

φa,b(t) :=

⎧⎪⎨
⎪⎩
a , −∞ ≤ t ≤a
t , a ≤ t ≤b
b , b ≤ t ≤+∞

as a cut-off function. Given the function f : X → R, we set

fa,b(x) := φa,b(f(x)) :=

⎧⎪⎨
⎪⎩

a , −∞ ≤ f(x) ≤a
f(x) , a ≤ f(x) ≤b
b , b ≤ f(x) ≤+∞

.

Evidently, we have the estimate

| fa,b(x)| ≤ max (| a|, | b|) < +∞ for all x ∈ X, a, b ∈ R.

Furthermore, we note that

f+(x) = f0,+∞(x) and f−(x) = f−∞,0(x), x ∈ X.

Theorem 4.3. A function f : X → R is measurable if and only if the function
fa,b belongs to L(X) for all a, b ∈ R with a < b.

Proof:

‘ =⇒’ Let f : X → R be measurable and −∞ < a < b < +∞ hold true. We
define the intervals

I0 := [−∞, a); Ik :=
[
a+ (k − 1)

b− a
m

, a+ k
b− a
m

)
; Im+1 := [ b,+∞]

with k = 1, . . . ,m for arbitrary m ∈ N. Furthermore, we choose the inter-
mediate values

ηl = a+ (l − 1)
b− a
m

, l = 0, . . . ,m+ 1.

We infer from Proposition 4.2 that the sets

Al :=
{
x ∈ X : f(x) ∈ Il

}

are measurable. The function
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fm :=
m+1∑
l=0

ηl χAl

is Lebesgue integrable, and we observe

| fm(x)| ≤ max (| 2a− b|, | b|) for all x ∈ X and all m ∈ N.

Since constant functions are integrable, Lebesgue’s convergence theorem
yields

fa,b(x) = lim
m→∞

fm(x) ∈ L(X).

‘⇐=’ We have to show that the set O(f, ã) is measurable for all ã ∈ R. Here
we prove: The set {x ∈ X : f(x) ≥ b} is measurable for all b ∈ R. Then
we obtain the measurability of

O(f, ã) =

∞⋃
l=1

{
x ∈ X | f(x) ≥ ã+ 1

l

}

via Proposition 3.6 from Section 3. Choosing b ∈ R arbitrarily, we take
a = b− 1 and consider the function

g(x) := fa,b(x)− a ∈ L(X).

Evidently, g : X → [ 0, 1 ] holds true and, moreover,

g(x) = 1 ⇐⇒ f(x) ≥ b.

The corollary from Theorem 3.4 in Section 3 yields gl(x) ∈ L(X) for all
l ∈ N. Now Lebesgue’s convergence theorem implies

χ(x) := lim
l→∞

gl(x) =

{
1 , x ∈ X with f(x) ≥ b
0 , x ∈ X with f(x) < b

∈ L(X),

and consequently {x ∈ X : f(x) ≥ b} is measurable for all b ∈ R. q.e.d.

Corollary: Each function f ∈ L(X) is measurable.

Proof: We take f ∈ L(X), and see that N := {x ∈ X : |f(x)| = +∞} is a
null-set. Then we define

f̃(x) :=

{
f(x) , x ∈ X \N
0 , x ∈ N

∈ L(X).

According to Definition 4.1, the function f is measurable if and only if f̃ is
measurable. We now apply the criterion of Theorem 4.3 on f̃ . When −∞ <
a < b < +∞ is arbitrary, we immediately infer

f̃−∞,b(x) = min
(
f̃(x), b

)
=

1

2

(
f̃(x) + b

)
− 1

2
| f̃(x)− b| ∈ L(X),
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because f̃ ∈ L(X). Analogously, we deduce ga,+∞ ∈ L(X) for g ∈ L(X).
Taking the following relation

f̃a,b =
(
f̃−∞,b

)
a,+∞

into account, we infer f̃a,b ∈ L(X). q.e.d.

In the next theorem there will appear an adequate notion of convergence for
measurable functions.

Theorem 4.4. (a.e.-Convergence)
Let {fk}k=1,2,... denote a sequence of measurable functions with the property
fk(x) → f(x) a.e. in X. Then f is measurable.

Proof: Let us take a, b ∈ R with a < b. Then the functions (fk)a,b belong to
L(X) for all k ∈ N, and we have

|(fk)a,b(x)| ≤ max(| a|, | b|) and (fk)a,b → fa,b a.e. in X.

The general convergence theorem of Lebesgue yields fa,b ∈ L(X). Due to
Theorem 4.3, the function f is measurable.

q.e.d.

Theorem 4.5. (Combination of measurable functions)
We have the following statements:

a) Linear Combination: When f , g are measurable and α, β ∈ R are chosen,
the four functions αf + βg, max(f, g), min(f, g), | f | are measurable as
well.

b) Nonlinear Combination: Let the κ ∈ N finite-valued measurable func-
tions f1, . . . , fκ be given, and furthermore the continuous function φ =
φ(y1, . . . , yκ) ∈ C0(Rκ,R). Then the composed function

g(x) := φ
(
f1(x), . . . , fκ(x)

)
, x ∈ X

is measurable.

Proof:

a) According to Theorem 4.3, we have f−p,p , g−p,p ∈ L(X) for all p ∈ R.
When we note that f = lim

p→∞
f−p,p holds true, Theorem 4.4 combined

with the linearity of the space L(X) imply that the function

αf + βg = lim
p→+∞

(αf−p,p + βg−p,p)

is measurable for all α, β ∈ R. In the same way, we see the measurability
of the functions
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max(f, g) = lim
p→+∞

max(f−p,p, g−p,p)

and
min(f, g) = lim

p→+∞
min(f−p,p, g−p,p),

as well as |f | - due to |f | = max(f,−f).
b) The functions (fk)−p,p ∈ L(X) are bounded for all p > 0 and k = 1, . . . , κ.

According to Theorem 3.4 in Section 3 and Theorem 4.3 in Section 4, the

function φ
(
(f1)−p,p(x), . . . , (fκ)−p,p(x)

)
belongs to the class L(X). Fur-

thermore, we have the limit relation

g(x) = lim
p→+∞

φ
(
(f1)−p,p(x), . . . , (fκ)−p,p(x)

)

for all x ∈ X, and Theorem 4.4 finally yields the measurablity of g.q.e.d.

Now we define improper Lebesgue integrals.

Definition 4.6. We set for a nonnegative measurable function f the integral

I(f) := lim
N→+∞

I(f0,N ) ∈ [ 0,+∞].

Theorem 4.7. A measurable function f belongs to the class L(X) if and only
if the following limit

lim
a→−∞
b→+∞

I(fa,b) ∈ R

exists. In this case we have the identity

I(f) = lim
a→−∞
b→+∞

I(fa,b) = I(f+)− I(f−).

Therefore, a measurable function f belongs to L(X) if and only if I(f+) < +∞
as well as I(f−) < +∞ are valid.

Proof: On account of fa,b = (f+)0,b−(f−)0,−a for all −∞ < a < 0 < b < +∞
we see

lim
a→−∞
b→+∞

I(fa,b) exists in R ⇐⇒ lim
N→+∞

I
(
(f±)0,N

)
exist in R.

Consequently, it suffices to show:

f ∈ L(X) ⇐⇒ lim
N→+∞

I
(
(f±)0,N

)
exist in R.

‘=⇒’ : Let us take f ∈ L(X). Then we infer f± ∈ L(X), and B.Levi’s theorem
on monotone convergence yields
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lim
N→+∞

I
(
(f±)0,N

)
= I(f±) ∈ R.

‘⇐=’ : If
lim

N→+∞
I
(
(f±)0,N

)

in R exist, the theorem of B.Levi implies f± ∈ L(X), and together with the
identity f = f+ − f− the property f ∈ L(X) is deduced.

q.e.d.

Theorem 4.8. Let f : X → R denote a measurable function satisfying

| f(x)| ≤ F (x), x ∈ X,

with a dominating function F ∈ L(X). Then we have

f ∈ L(X) and I(| f |) ≤ I(F ).

Proof: According to Theorem 4.5, the functions f+ and f− are measurable,
and we see 0 ≤ f± ≤ F . Consequently, the estimates 0 ≤ (f±)0,N ≤ F and
(f±)0,N ∈ L(X) are correct. Furthermore, we have

I
(
(f±)0,N

)
≤ I(F ) < +∞ for all N > 0.

B.Levi’s theorem now yields I(f±) < +∞ and f± ∈ L(X), which implies
f ∈ L(X). On account of the monotonicity of Lebesgue’s integral, the estimate
I(| f |) ≤ I(F ) follows from the inequality | f(x)| ≤ F (x).

q.e.d.

Theorem 4.9. Let {fl}l=1,2,... denote a sequence of nonnegative measurable
functions satisfying fl(x) ↑ f(x), x ∈ X. Then the function f is measurable,
and we have

I(f) = lim
l→∞

I(fl).

Proof: From Theorem 4.4 we infer the measurability of f . According to
Definition 4.6, two measurable functions 0 ≤ g ≤ h satisfy the inequality
I(g) ≤ I(h). Therefore, {I(fl)}l=1,2,... ∈ [ 0,+∞] represents a monotonically
nondecreasing sequence, such that I(f) ≥ I(fl) for all l ∈ N holds true. We
distinguish between the following two cases:

a) Let us consider
lim
l→∞

I(fl) ≤ c < +∞.

Then we have I(fl) ≤ c, which implies fl ∈ L(X) due to Theorem 4.7.
B.Levi’s theorem now yields f ∈ L(X) and

I(f) = lim
l→∞

I(fl).
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b) Let us consider
lim
l→∞

I(fl) = +∞.

Then we note that I(f) ≥ I(fl) for all l ∈ N holds true, and we obtain
immediately

I(f) = +∞ = lim
l→∞

I(fl).

q.e.d.

Definition 4.10. We name a function g : X → R simple if there exist finitely
many mutually disjoint sets A1, . . . , An∗ ∈ S(X) and numbers η1, . . . , ηn∗ ∈ R

with n∗ ∈ N, such that the following representation holds true in X:

g =

n∗∑
k=1

ηk χAk
.

Remark: Evidently, we then have g ∈ L(X) and

I(g) =

n∗∑
k=1

ηk μ(Ak).

Let us take an arbitrary decomposition Z : −∞ < y0 < y1 < . . . < yn∗ < +∞
in the real line R, with the intervals Ik := [ yk−1, yk) for k = 1, . . . , n∗. Fur-
thermore, we consider an arbitrary measurable function f : X → R and select
arbitrary intermediate values ηk ∈ Ik for k = 1, . . . , n∗. Now we attribute the
following simple function to the data f,Z and η, namely

f (Z,η) :=

n∗∑
k=1

ηk χAk

with Ak := {x ∈ X : f(x) ∈ Ik} for k = 1, . . . , n∗. Then we observe

I
(
f (Z,η)

)
=

n∗∑
k=1

ηk μ(Ak).

We denote by a canonical sequence of decompositions such a sequence of de-
compositions, whose start- and end-points tend towards −∞ and +∞, respec-
tively, and whose maximal interval-lengths tend to 0.

Theorem 4.11. When we consider f : X → R ∈ L(X), each canonical se-
quence of decompositions {Z(p)}p=1,2,... in R and each choice of intermediate
values {η(p)}p=1,2,... gives us the asymptotic identity

I(f) = lim
p→∞

I
(
f (Z

(p),η(p))
)
= lim

p→∞

n(p)∑
k=1

η
(p)
k μ(A

(p)
k ).
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Remark: Therefore, Lebesgue’s integral can be approximated by the Lebesgue
sums as above, and the notation

I(f) =

∫
X

f(x) dμ(x)

is justified. However, the Riemannian intermediate sums can be evaluated nu-
merically much better than the Lebesgue sums.

Proof of Theorem 4.11: Let us consider the function f ∈ L(X), a decompo-
sition Z with its fineness δ(Z) = max{(yk − yk−1) : k = 1, . . . , n∗}, and
arbitrary intermediate values {ηk}k=1,...,n∗ . Then we infer the estimate

|f (Z,η)(x)| ≤ δ(Z) + |f(x)| for all x ∈ X.

When {Z(p)}p=1,2,... describes a canonical sequence of decompositions and
{η(p)}p=1,2,... denote arbitrary intermediate values, we observe the limit rela-
tion

f (Z
(p),η(p))(x) → f(x) a.e. for p→ ∞,

which is valid for all x ∈ X with |f(x)| �= +∞. Now Lebesgue’s convergence
theorem yields

I(f) = lim
p→∞

I
(
f (Z

(p),η(p))
)
= lim

p→∞

n(p)∑
k=1

η
(p)
k μ(A

(p)
k ).

q.e.d.

Now we shall present a selection theorem related to a.e.-convergence.

Theorem 4.12. (Lebesgue’s selection theorem)
Let {fk}k=1,2,... denote a sequence in L(X) satisfying

lim
k,l→∞

I(| fk − fl|) = 0.

Then a null-set N ⊂ X as well as a monotonically increasing subsequence
{km}m=1,2,... exist, such that the sequence of functions {fkm(x)}m=1,2,... con-
verges for all points x ∈ X \N and their limit fulfills

lim
m→∞

fkm(x) =: f(x) ∈ L(X).

Therefore, we can select an a.e. convergent subsequence from a Cauchy se-
quence with respect to the integral I.

Proof: On the null-set

N1 :=

∞⋃
k=1

{
x ∈ X : |fk(x)| = +∞

}
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we modify the functions fk and obtain

f̃k(x) :=

{
fk(x) , x ∈ X \N1

0 , x ∈ N1

.

Without loss of generality, we can assume the functions {fk}k=1,2,... to be
finite-valued. On account of

lim
p,l→∞

I(| fp − fl|) = 0,

we find a subsequence k1 < k2 < · · · with the property

I(| fp − fl|) ≤
1

2m
for all p, l ≥ km, m = 1, 2, . . . .

In particular, we infer the following estimates:

I(| fkm+1 − fkm |) ≤ 1

2m
, m = 1, 2, . . .

and
∞∑

m=1

I(| fkm+1 − fkm |) ≤ 1.

B.Levi’s theorem tells us that the function

g(x) :=

∞∑
m=1

| fkm+1(x)− fkm(x)|, x ∈ X

belongs to L(X), and N2 := {x ∈ X \ N1 : | g(x)| = +∞} represents a
null-set. Therefore, the series

∞∑
m=1

| fkm+1(x)− fkm(x)| for all x ∈ X \N with N := N1 ∪N2

converges, as well as the series

∞∑
m=1

(
fkm+1(x)− fkm(x)

)
.

Consequently, the limit

lim
m→∞

(
fkm(x)− fk1(x)

)
=: f(x)− fk1(x)

exists for all points x ∈ X \N , and the sequence {fkm}m=1,2,... converges on
X \ N towards f . We note that g ∈ L(X) and | fkm(x) − fk1(x)| ≤ | g(x)|
are valid, and Lebesgue’s convergence theorem is applicable. Finally, we infer
f ∈ L(X) and the relation

I(f) = lim
m→∞

I(fkm).

q.e.d.
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Proposition 4.13. (Approximation in the integral)
Let the function f ∈ L(X) be given. To each quantity ε > 0, we then find a
function fε ∈M(X) satisfying

I(| f − fε|) < ε.

Proof: Since f ∈ L(X) holds true, Proposition 2.9 from Section 2 provides two
functions g ∈ −V and h ∈ V such that

g(x) ≤ f(x) ≤ h(x), x ∈ X, and I(h)− I(g) < ε

2
.

Recalling the definition of the space V (X), we find a function h′(x) ∈M(X)
satisfying

h′(x) ≤ h(x), x ∈ X, and I(h)− I(h′) < ε

2
.

This implies

| f − h′| ≤ | f − h|+ |h− h′| ≤ (h− g) + (h− h′),

and the monotonicity and linearity of the integral yield

I(| f − h′|) ≤ (I(h)− I(g)) + (I(h)− I(h′)) < ε

2
+
ε

2
= ε.

With fε := h
′ we obtain the desired function. q.e.d.

Theorem 4.14. (a.e.-Approximation)
Let f denote a measurable function satisfying | f(x)| ≤ c, x ∈ X with the con-
stant c ∈ (0,+∞). Then we have a sequence {fk}k=1,2,... ⊂ M(X) satisfying
| fk(x)| ≤ c, x ∈ X for all k ∈ N, such that fk(x) → f(x) a.e. in X holds
true.

Proof: Since f is measurable and dominated by the constant function c ∈
L(X), we infer f ∈ L(X) from Theorem 4.8. Now Proposition 4.13 allows
us to find a sequence {gk(x)}k=1,2,... ⊂ M(X) satisfying I(| f − gk|) → 0 for
k → ∞. We set

hk(x) := (gk)−c,c(x)

and observe hk ∈ M(X) as well as |hk(x)| ≤ c for all x ∈ X and all k ∈ N.
We note that

|hk − f | = | (gk)−c,c − f−c,c| = | (gk − f)−c,c| ≤ | gk − f |

is correct and see

lim
k→∞

I(|hk − f |) ≤ lim
k→∞

I(| gk − f |) = 0.
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On account of the relation

I(|hk − hl|) ≤ I(|hk − f |) + I(| f − hl|) −→ 0 for k, l → ∞,

Lebesgue’s selection theorem yields a null-set N1 ⊂ X and a monotonically
increasing subsequence {km}m=1,2,... such that the following limit exists:

h(x) := lim
m→∞

hkm(x) for all x ∈ X \N1.

We extend h onto the null-set by the prescription h(x) := 0 for all x ∈ N1.
Now we conclude

lim
m→∞

|hkm(x)− f(x)| = |h(x)− f(x)| in X \N1.

The theorem of Fatou yields

I(|h− f |) ≤ lim
m→∞

I(|hkm − f |) = 0.

Consequently, we find a null-set N2 ⊂ X such that

f(x) = h(x) for all x ∈ X \N2

holds true. When we define N := N1∪N2 and fm(x) := hkm(x), we obviously
infer fm(x) ∈ M(X), |fm(x)| ≤ c for all x ∈ X and all m ∈ N, and the
following limit relation:

lim
m→∞

fm(x) = lim
m→∞

hkm

x 
∈N1
= h(x)

x 
∈N2
= f(x) for all x ∈ X \N.

Consequently, we obtain fm(x) → f(x) for all x ∈ X \N . q.e.d.

Uniform convergence and a.e.-convergence are connected by the following re-
sult.

Theorem 4.15. (Egorov)
Let the measurable set B ⊂ X as well as the measurable a.e.-finite-valued
functions f : B → R and fk : B → R for all k ∈ N be given, with the
convergence property fk(x) → f(x) a.e. in B. To each quantity δ > 0, we
then find a closed set A ⊂ B satisfying μ(B \ A) < δ such that the limit
relation, fk(x) → f(x) uniformly on A, holds true.

Proof: We consider the null-set

N :=
{
x ∈ B : fk(x) → f(x) is not satisfied

}

=

⎧⎨
⎩x ∈ B :

To m ∈ N and for all l ∈ N exists

an index k ≥ l with | fk(x)− f(x)| >
1

m

⎫⎬
⎭

=

∞⋃
m=1

∞⋂
l=1

⋃
k≥l

{
x ∈ B : |fk(x)− f(x)| >

1

m

}
=

∞⋃
m=1

Bm,
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where

Bm :=

∞⋂
l=1

⋃
k≥l

{
x ∈ B : |fk(x)− f(x)| >

1

m

}

has been defined. We observe Bm ⊂ N and consequently μ(Bm) = 0 for all
m ∈ N. We note that

Bm,l :=
⋃
k≥l

{
x ∈ B : |fk(x)− f(x)| >

1

m

}

holds true and infer Bm,l ⊃ Bm,l+1 for all m, l ∈ N. From the relation

Bm =

∞⋂
l=1

Bm,l

we then obtain
0 = μ(Bm) = lim

l→∞
μ(Bm,l).

Consequently, to each index m ∈ N we find an index lm ∈ N with lm < lm+1

such that

μ

⎛
⎝ ⋃

k≥lm

{
x ∈ B : |fk(x)− f(x)| >

1

m

}⎞
⎠ = μ(Bm,lm) <

δ

2m+1

holds true. We define

B̂m := Bm,lm and B̂ :=
∞⋃

m=1

B̂m.

Evidently, the set B̂ is measurable and the estimate

μ(B̂) ≤
∞∑

m=1

μ(B̂m) ≤ δ

2

is fulfilled. When we still define Â := B \ B̂, we comprehend

Â = B ∩
( ∞⋃

m=1

B̂m

)c

= B ∩
( ∞⋂

m=1

B̂c
m

)

=

∞⋂
m=1

{
x ∈ B : |fk(x)− f(x)| ≤

1

m
for all k ≥ lm

}
.

For all points x ∈ Â, we find an index lm ∈ N to a given m ∈ N such that

| fk(x)− f(x)| ≤
1

m
for all k ≥ lm
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holds true. Consequently, the sequence {fk| ̂A}k=1,2,... converges uniformly to-
wards f |

̂A. According to Theorem 3.14 in Section 3, we now choose a closed

set A ⊂ Â with

μ(Â \A) < δ

2
.

We note that A ⊂ Â holds true, and the sequence of functions {fk |A }k=1,2,...

converges uniformly towards f |A . When we additionally observe B \ Â = B̂,
we finally see

μ(B \A) = μ(B \ Â) + μ(Â \A) < δ

2
+
δ

2
= δ.

q.e.d.

The interrelation between measurable and continuous functions is revealed by
the following result.

Theorem 4.16. (Lusin)
Let f : B → R denote a measurable function on the measurable set B ⊂ X.
To each quantity δ > 0, we then find a closed set A ⊂ X with the property
μ(B \A) < δ such that the restriction f |A : A→ R is continuous.

Proof: For j = 1, 2, . . . we consider the truncated functions

fj(x) :=

⎧⎪⎨
⎪⎩

−j , f(x) ∈ [−∞,−j]
f(x) , f(x) ∈ [−j,+j]
+j , f(x) ∈ [+j,+∞]

.

All functions fj : B → R are measurable, and we infer

| fj(x)| ≤ j for all x ∈ B.

We utilize Theorem 4.14 and the property M(X) ⊂ C0(X): For each index
j ∈ N, there exists a sequence of continuous functions fj,k : B → R satisfying

lim
k→∞

fj,k(x) = fj(x) a.e. in B.

Via Egorov’s theorem, we find a closed set Aj ⊂ B to each j = 1, 2, . . .
satisfying

μ(B \Aj) <
δ

2j+1
,

such that the sequence of functions {fj,k|Aj}k=1,2,... converges uniformly to-
wards the function fj |Aj . The Weierstraß convergence theorem reveals conti-
nuity of the functions fj |Aj for all j ∈ N. The set

Â :=
∞⋂
j=1

Aj ⊂ B
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is closed, and we arrive at the estimate

μ(B \ Â) ≤
∞∑
j=1

μ(B \Aj) <

∞∑
j=1

δ

2j+1
=
δ

2
.

Now the functions fj : Â→ R are continuous for all j ∈ N, and we recall

f(x) = lim
j→∞

fj(x) in Â.

Egorov’s theorem supplies a closed set A ⊂ Â with

μ(Â \A) < δ

2
,

such that fj converges uniformly on A towards f . Consequently, the function
f |A is continuous, and we estimate as follows:

μ(B \A) = μ(B \ Â) + μ(Â \A) < δ

2
+
δ

2
= δ.

q.e.d.

Remark: We have learned the Three principles of Littlewood in Lebesgue’s the-
ory of measure and integration. J.E.Littlewood: “There are three principles
roughly expressible in the following terms: Every measurable set is nearly a
finite union of intervals; every measurable function is nearly continuous; every
a.e. convergent sequence of measurable functions is nearly uniformly conver-
gent.”

5 Riemann’s and Lebesgue’s Integral on Rectangles

With d ∈ (0,+∞) being given, we consider the rectangle

Q :=
{
x = (x1, . . . , xn) ∈ R

n : |xj | ≤ d , j = 1, . . . , n
}
, where n ∈ N.

In our main example from Section 1, we choose X = Ω :=
◦
Q and extend the

improper Riemannian integral

I : M(X) −→ R, with f �→ I(f) :=

∫
Ω

f(x) dx

from the space

M(X) :=

⎧⎨
⎩f ∈ C0(Ω) :

∫
Ω

| f(x)| dx < +∞

⎫⎬
⎭

onto the space L(X) ⊃M(X) and obtain Lebesgue’s integral I : L(X) → R.
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Theorem 5.1. For the set E ⊂ Ω being given, the following statements are
equivalent:

(1) E is a null-set.
(2) To each quantity ε > 0, we find with {Qk}k=1,2,... ⊂ Ω denumerably many

rectangles satisfying E ⊂
∞⋃
k=1

Qk and

∞∑
k=1

|Qk| < ε.

Proof:

(1)=⇒(2): Since E represents a null-set, Proposition 3.15 from Section 3
provides a function h ∈ V (X) with h ≥ 0 on X, h = +∞ on E, and
I(h) < +∞. With the constant c ∈ [1,+∞) chosen arbitrarily, we con-
sider the open - and consequently measurable - set

Ec :=
{
x ∈ Ω : h(x) > c

}
⊃ E.

Then we observe

μ(Ec) = I(χEc) =
1

c
I(c χEc) ≤

1

c
I(h) < ε

for c > I(h)
ε . The open set Ec can be represented as a denumerable union of

closed rectangles Qk which intersect, at most, in boundary points. There-
fore, we deduce

E ⊂ Ec =
∞⋃
k=1

Qk.

We note that the boundary points of a rectangle constitute a null-set and
see

∞∑
k=1

|Qk| = μ(Ec) < ε.

(2)=⇒(1): For each index k ∈ N we find a function hk ∈ C0
0 (Ω) satisfying

hk(x) =

{
1 , x ∈ Qk

∈ [0, 1] , x ∈ R
n \Qk

and I(hk) ≤ 2|Qk|.

The sequence {gl(x)}l=1,2,..., defined by gl(x) :=
∑l

k=1 hk(x), converges
monotonically and belongs to M(X). This implies

h(x) :=
∞∑
k=1

hk(x) ∈ V (X).

Furthermore, we have χE(x) ≤ h(x), x ∈ R
n and estimate

0 ≤ I−(χE) ≤ I+(χE) ≤ I(h) =
∞∑
k=1

I(hk) ≤ 2

∞∑
k=1

|Qk| < 2ε

for all ε > 0. Therefore, E is a null-set. q.e.d.
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Riemann’s and Lebesgue’s integral are compared as follows:

Theorem 5.2. A bounded function f : Ω → R is Riemann integrable if and
only if the set K, containing all points of discontinuities, constitutes a null-
set. In this case the function f belongs to the class L(Ω), and we have the
identity

I(f) =

∫
Ω

f(x) dx =

∫
Q

f(x) dx;

this means that Riemann’s integral of f coincides with Lebesgue’s integral.
Here we have to extend f to 0 onto the whole space R

n.

Proof: We consider the functions

m+(x) := lim
ε→0+

sup
|y−x|<ε

f(y) and m−(x) := lim
ε→0+

inf
|y−x|<ε

f(y) , x ∈ R
n.

We have the identity m+(x) = m−(x) if and only if f is continuous at the
point x. Let

Z : Q =

N⋃
k=1

Qk

denote a canonical decomposition of Q into N closed rectangles Qk. We define
the simple functions

m+
k := sup

Qk

f(y), m−
k := inf

Qk

f(y) and f±Z (x) :=

N∑
k=1

m±
k χQk

(x) ∈ L(X).

We observe the identity

I(f±Z ) =

N∑
k=1

m±
k |Qk|.

Therefore, Lebesgue’s integral of the functions f±Z coincides with the Rieman-
nian upper and lower sums, respectively, of the function f - associated with
the decomposition Z. When we denote by

∂Z :=

N⋃
k=1

∂Qk

the set of the boundary points for the decomposition Z, then ∂Z constitutes
a null-set in R

n. Now we observe an arbitrary canonical sequence of decom-
positions {Zp}p=1,2,... for the rectangle Q, such that its fineness tends to 0.
We obtain the limit relation

lim
p→∞

f±Zp
(x) = m±(x) for all x ∈ Ω \N,
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where

N =

∞⋃
p=1

∂Zp ⊂ Q

is a null-set. Now we select an adequate canonical sequence of decompositions
such that

∫
Q

f(x) dx = lim
p→∞

I(f−Zp
) and

∫
Q

f(x) dx = lim
p→∞

I(f+Zp
).

Lebesgue’s convergence theorem implies

∫
Q

f(x) dx = I(m−) and

∫
Q

f(x) dx = I(m+).

Now we note that the function f : Ω → R is Riemann integrable if and only
if

I(m+) =

∫
Q

f(x) dx =

∫
Q

f(x) dx = I(m−) or equivalently I(m+−m−) = 0

holds true. Due to m+ ≥ m−, this is exactly the case if m+ = m− a.e. in Q
holds true, or equivalently if f is continuous a.e. on Q.

q.e.d.

We intend to prove Fubini’s theorem interchanging the order of integration for
Lebesgue integrable functions. Here we consider two open bounded rectangles
Q ⊂ R

p and R ⊂ R
q and begin with the following

Proposition 5.3. Let f = f(x, y) : Q × R → R ∈ V (Q × R) be given. Then
the function f(x, y) , y ∈ R belongs to the class V (R) for each x ∈ Q, and the
function

ϕ(x) :=

∫
R

f(x, y) dy

belongs to the class V (Q). Furthermore, we have

∫∫
Q×R

f(x, y) dxdy =

∫
Q

ϕ(x) dx.

Proof: Since f ∈ V (Q×R) holds true, we find a sequence {fn(x, y)}n=1,2,... ⊂
C0

0 (Q × R) satisfying fn(x, y) ↑ f(x, y). For each x ∈ Q, the functions
fn(x, y), y ∈ R belong to the class C0

0 (R) and consequently f(x, y) to V (R).
When we define

ϕn(x) :=

∫
R

fn(x, y) dy, x ∈ Q,
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we infer ϕn ∈ C0
0 (Q) and ϕn(x) ↑ ϕ(x) in Q. This implies

∫∫
Q×R

f(x, y) dxdy := lim
n→∞

∫∫
Q×R

fn(x, y) dxdy = lim
n→∞

∫
Q

ϕn(x) dx =

∫
Q

ϕ(x) dx.

q.e.d.

Proposition 5.4. Let N denote a null-set in Q×R and define

Nx :=
{
y ∈ R : (x, y) ∈ N

}
.

Then we have a null-set E ⊂ Q, such that Nx constitutes a null-set in R for
all points x ∈ Q \ E.

Proof: Since N is a null-set, we find a function h(x, y) ∈ V (Q×R) with h ≥ 0
on Q×R and h(x, y) = +∞ for all (x, y) ∈ N , such that the property

+∞ >

∫∫
Q×R

h(x, y) dxdy =

∫
Q

ϕ(x) dx with ϕ(x) :=

∫
R

h(x, y) dy ≥ 0

holds true - due to Proposition 5.3. We note that ϕ ∈ V (Q) and
∫
Q

ϕ(x) dx < +∞

is satisfied and deduce ϕ ∈ L(Q). Furthermore, we find a null-set E ⊂ Q with
ϕ(x) < +∞ for all x ∈ Q \ E. On account of h = +∞ on N , the set Nx is a
null-set for all x ∈ Q \ E.

q.e.d.

Theorem 5.5. (Fubini) Let f(x, y) : Q× R → [0,+∞] represent a measur-
able function. Then we have a null-set E ⊂ Q, such that the function f(x, y),
y ∈ R is measurable for all points x ∈ Q \ E. When we define

ϕ(x) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
R

f(x, y) dy , x ∈ Q \ E

0 , x ∈ E

,

the function ϕ is nonnegative and measurable. Furthermore, we have Fubini’s
identity ∫∫

Q×R

f(x, y) dxdy =

∫
Q

ϕ(x) dx.
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Proof: For n = 1, 2, . . . we consider the functions

fn(x, y) :=

{
f(x, y), if f(x, y) ∈ [0, n]

n, otherwise

with fn ∈ L(Q×R). Applying Theorem 4.14 from Section 4, we find for each
number n ∈ N a null-set Nn ⊂ Q×R and a sequence of functions

fn,m(x, y) ∈ C0
0 (Q×R) with | fn,m| ≤ n on Q×R,

such that

lim
m→∞

fn,m(x, y) = fn(x, y) for all (x, y) ∈ (Q×R) \Nn.

Each fixed number n ∈ N admits a null-set En ⊂ Q, such that

{y ∈ R : (x, y) ∈ Nn} ⊂ R
represents a null-set for all points x ∈ Q \ En. Now Lebesgue’s convergence
theorem yields ∫∫

Q×R

fn(x, y) dxdy

= lim
m→∞

∫∫
Q×R

fn,m(x, y) dxdy = lim
m→∞

∫
Q

⎛
⎝∫

R

fn,m(x, y) dy

⎞
⎠ dx

= lim
m→∞

∫
Q\En

⎛
⎝∫

R

fn,m(x, y) dy

⎞
⎠ dx =

∫
Q\En

⎛
⎜⎝
∫
R

fn(x, y)︸ ︷︷ ︸
∈L(R)

dy

⎞
⎟⎠ dx.

In addition,

E :=

∞⋃
n=1

En ⊂ Q

constitutes a null-set, and we see

∫∫
Q×R

fn(x, y) dxdy =

∫
Q\E

⎛
⎝∫

R

fn(x, y) dy

⎞
⎠ dx.

Finally, Theorem 4.9 from Section 4 yields

∫∫
Q×R

f(x, y) dxdy = lim
n→∞

⎛
⎝ ∫∫

Q×R

fn(x, y) dxdy

⎞
⎠

= lim
n→∞

∫
Q\E

⎛
⎝∫

R

fn(x, y) dy

⎞
⎠ dx =

∫
Q\E

⎛
⎝∫

R

f(x, y) dy

⎞
⎠ dx =

∫
Q

ϕ(x) dx.

q.e.d.
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6 Banach and Hilbert Spaces

We owe the basic concepts for linear spaces, which appear in the next sections,
to the mathematicians D.Hilbert and S. Banach. Here we can equally consider
real and complex vector spaces.

Definition 6.1. Let M denote a real (or complex) linear space, which means

f, g ∈ M, α, β ∈ R (orC) =⇒ αf + βg ∈ M.

Then we name M a normed real (or complex) linear space and equivalently
a normed vector space if we have a function

‖ · ‖ : M −→ [0,+∞)

with the following properties:

(N1) ‖f‖ = 0 ⇐⇒ f = 0;
(N2) Triangle inequality: ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ M;
(N3) Homogeneity: ‖λf‖ = |λ|‖f‖ for all f ∈ M, λ ∈ R (orC).

The function ‖ · ‖ is called the norm on M.

Remark: From the axioms (N1), (N2), and (N3) we immediately infer the
inequality

‖f − g‖ ≥
∣∣∣ ‖f‖ − ‖g‖

∣∣∣ for all f, g ∈ M,

because we have

‖f‖ − ‖g‖ = ‖f − g + g‖ − ‖g‖ ≤ ‖f − g‖+ ‖g‖ − ‖g‖ = ‖f − g‖,

which yields our statement by interchanging f and g.

Definition 6.2. The normed vector space M is named complete, if each
Cauchy sequence in M converges. This means, to each sequence {fn} ⊂
M satisfying limk,l→∞ ‖fk − fl‖ = 0 we find an element f ∈ M with
limk→∞ ‖f − fk‖ = 0.

Definition 6.3. A complete normed vector space is named a Banach space.

Example 6.4. Choosing the compact set K ⊂ R
n, we endow the space B :=

C0(K,R) with the norm

‖f‖ := sup
x∈K

|f(x)| = max
x∈K

|f(x)|, f ∈ B,

and thus obtain a Banach space. This norm generates the uniform convergence
- a concept already introduced by Weierstraß.
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Definition 6.5. A complex linear space H′ is named pre-Hilbert-space if an
inner product is defined in H′; more precisely, we have a function

(·, ·) : H′ ×H′ −→ C

with the following properties:

(H1) (f + g, h) = (f, h) + (g, h) for all f, g, h ∈ H′;
(H2) (f, λg) = λ(f, g) for all f, g ∈ H′, λ ∈ C;
(H3) Hermitian character: (f, g) = (g, f) for all f, g ∈ H′;
(H4) Positive-definite character: (f, f) > 0, if f �= 0.

Remarks:

1. We infer the following calculus rule from the axioms (H1) - (H4) immedi-
ately:
(H5) For all f, g, h ∈ H′ we have

(f, g + h) = (g + h, f) = (g, f) + (h, f) = (f, g) + (f, h).

(H6) Furthermore, the relation

(λf, g) = λ(f, g) for all f, g ∈ H′, λ ∈ C

is satisfied.
Therefore, the inner product is antilinear in its first and linear in its second
argument.

2. In a real linear space H′, an inner product is characterized by the prop-
erties (H1) - (H4) as well, where (H3) then reduces to the symmetry
condition

(f, g) = (g, f) for all f, g ∈ H′.

Example 6.6. Let us consider the numbers −∞ < a < b < +∞ and the space
H′ := C0([a, b],C) of continuous functions. Via the inner product

(f, g) :=

b∫
a

f(x)g(x) dx,

the set H′ becomes a pre-Hilbert-space.

Theorem 6.7. Let H′ represent a pre-Hilbert-space. With the aid of the norm

‖f‖ :=
√
(f, f),

the set H′ becomes a normed vector space.

Proof:
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1. At first, we show that the following inequality is valid in H′ , namely

|(g, f)| = |(f, g)| ≤ ‖f‖‖g‖ for all f, g ∈ H′.

With f, g ∈ H′, we associate a quadratic form in λ, μ ∈ C as follows:

0 ≤ Q(λ, μ) := (λf − μg, λf − μg)

= |λ|2(f, f)− λμ(g, f)− λμ(f, g) + |μ|2(g, g).

When (g, f) = (f, g) = 0 - in particular f = 0 or g = 0 - holds true, this
inequality is evident. In the other case, we choose

λ = 1, μ =
‖f‖2
(g, f)

.

The nonnegative character of Q - easily seen from the property (H4) -
implies the inequality

0 ≤ −‖f‖2 + ‖f‖4‖g‖2
|(f, g)|2

and finally by rearrangement

|(f, g)| ≤ ‖f‖ ‖g‖ for all f, g ∈ H′.

2. Now we show that ‖f‖ :=
√

(f, f) satisfies the norm conditions (N1)
- (N3). We infer for all elements f, g ∈ H′ and λ ∈ C the following
properties:
i.) ‖f‖ ≥ 0, and (H4) tells us that ‖f‖ = 0 is fulfilled if and only if f = 0

is correct;

ii.) ‖λf‖ =
√
(λf, λf) =

√
λλ(f, f) = |λ| ‖f‖;

iii.)
‖f + g‖2 = (f + g, f + g) = (f, f) + 2Re(f, g) + (g, g)

≤ ‖f‖2 + 2|(f, g)|+ ‖g‖2

≤ ‖f‖2 + 2‖f‖ ‖g‖+ ‖g‖2

= (‖f‖+ ‖g‖)2,
and consequently

‖f + g‖ ≤ ‖f‖+ ‖g‖.
Therefore, ‖ · ‖ gives us a norm on H′. q.e.d.

Definition 6.8. A pre-Hilbert-space H is named Hilbert space, if H endowed
with the norm

‖f‖ :=
√
(f, f), f ∈ H

is complete and consequently a Banach space.
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Remarks:

1. We prove that the inner product (f, g) is continuous in H. Here we note
the following estimate for the elements f, g, fn, gn ∈ H:

|(fn, gn)− (f, g)| = |(fn, gn)− (fn, g) + (fn, g)− (f, g)|

≤ |(fn, gn)− (fn, g)|+ |(fn, g)− (f, g)|

≤ |(fn, gn − g)|+ |(fn − f, g)|

≤ ‖fn‖ ‖gn − g‖+ ‖fn − f‖ ‖g‖.

Therefore, when the limit relations fn → f and gn → g for n → ∞ in H
hold true, we infer

lim
n→∞

(fn, gn) = (f, g).

We observe that the completeness of the space H is not needed for the
proof of the continuity of the inner product.

2. The pre-Hilbert-space from Example 6.6 is not complete and consequently
does not represent a Hilbert space.

3. In Section 3 from Chapter 8, we shall embed - parallel to the transition
from rational numbers to real numbers - each pre-Hilbert-space H′ into a
Hilbert space H. This means H′ ⊂ H and H′ is dense in H.

4. Hilbert spaces represent particular Banach spaces. The existence of an
inner product in H allows us to introduce the notion of orthogonality:
Two elements f, g ∈ H are named orthogonal to each other if (f, g) = 0
holds true.

Let M ⊂ H denote an arbitrary linear subspace. We define the orthogonal
space to M via

M⊥ :=
{
g ∈ H : (g, f) = 0 for all f ∈ M

}
.

We see immediately that M⊥ is a linear subspace of H, and the continuity of
the inner product justifies the following

Remark: For an arbitrary linear subspace M ⊂ H, its associate orthogonal
space M⊥ is closed. More precisely, each sequence

{fn} ⊂ M⊥ in M⊥ satisfying fn → f for n→ ∞

fulfills f ∈ M⊥.

Proof: Since {fn} ⊂ M⊥ holds true, we infer (fn, g) = 0 for all n ∈ N and
g ∈ M. This implies

0 = lim
n→∞

(fn, g) = (f, g) for all g ∈ M.
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q.e.d.

Fundamentally important is the following

Theorem 6.9. (Orthogonal projection)
Let M ⊂ H denote a closed linear subspace of the Hilbert space H. Then each
element f ∈ H possesses the following representation:

f = g + h with g ∈ M and h ∈ M⊥.

Here the elements g and h are uniquely determined.

This theorem says that the Hilbert space H can be decomposed into two
orthogonal subspaces M and M⊥ such that H = M⊕M⊥ holds true.
Proof:

1. At first, we show the uniqueness. Let us consider an element f ∈ H with

f = g1 + h1 = g2 + h2, gj ∈ M, hj ∈ M⊥.

Then we deduce

0 = f − f = (g1 − g2) + (h1 − h2).

The uniqueness follows from the identity

0 = ‖(g1 − g2) + (h1 − h2)‖2

= ((g1 − g2) + (h1 − h2), (g1 − g2) + (h1 − h2))

= ‖g1 − g2‖2 + ‖h1 − h2‖2.

2. Now we have to establish the existence of the desired representation. The
element f ∈ H being given, we solve the subsequent variational problem:
Find an element g ∈ M such that

‖f − g‖ = inf
g̃∈M

‖f − g̃‖ =: d

holds true. We choose a sequence {gk} ⊂ M with the property

lim
k→∞

‖f − gk‖ = d.

Then we prove that this sequence converges towards an element g ∈ M.
Here we utilize the parallelogram identity

∥∥∥∥ϕ+ ψ

2

∥∥∥∥
2

+

∥∥∥∥ϕ− ψ
2

∥∥∥∥
2

=
1

2

(
‖ϕ‖2 + ‖ψ‖2

)
for all ϕ, ψ ∈ H,

which we easily check by evaluating the inner products on both sides. Now
we apply this identity to the elements
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ϕ = f − gk, ψ = f − gl, k, l ∈ N

and obtain∥∥∥∥f − gk + gl
2

∥∥∥∥
2

+

∥∥∥∥gk − gl
2

∥∥∥∥
2

=
1

2

(
‖f − gk‖2 + ‖f − gl‖2

)
.

Rearrangement of these equations implies

0 ≤
∥∥∥∥gk − gl

2

∥∥∥∥
2

=
1

2

(
‖f − gk‖2 + ‖f − gl‖2

)
−
∥∥∥∥f − gk + gl

2

∥∥∥∥
2

≤ 1

2

(
‖f − gk‖2 + ‖f − gl‖2

)
− d2.

The passage to the limit k, l → ∞ reveals that {gk} represents a Cauchy
sequence. Since the linear subspace M is closed, we infer the existence of
the limit g ∈ M for the sequence {gk}.
Finally, we prove h = (f−g) ∈ M⊥ and obtain the desired representation
f = g + (f − g) = g + h.
When ϕ ∈ M is chosen arbitrarily as well as the number ε ∈ (−ε0, ε0),
we infer the inequality

‖(f − g) + εϕ‖2 ≥ d2 = ‖f − g‖2.

We note that

‖f − g‖2 + 2εRe (f − g, ϕ) + ε2‖ϕ‖2 ≥ ‖f − g‖2,

and deduce
2εRe (f − g, ϕ) + ε2‖ϕ‖2 ≥ 0

for all ϕ ∈ M and all ε ∈ (−ε0, ε0). Therefore, the identity

Re (f − g, ϕ) = 0 for all ϕ ∈ M

must be valid. When we replace ϕ by iϕ, we obtain (f − g, ϕ) = 0. Since
the element ϕ has been chosen arbitrarily within M, the property

(f − g) ∈ M⊥

is shown. q.e.d.

The subsequent concepts on the continuity of linear operators in infinite-
dimensional vector spaces have been created by S. Banach.

Definition 6.10. Let {M1, ‖ · ‖1} and {M2, ‖ · ‖2} denote two normed linear
spaces and A : M1 → M2 a linear mapping. Then A is called continuous at
the point f ∈ M1, if we can find a quantity δ = δ(ε, f) > 0 for all ε > 0 such
that

g ∈ M1, ‖g − f‖1 < δ =⇒ ‖A(g)−A(f)‖2 < ε.
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Theorem 6.11. Consider the linear functional A : M → C on the linear
normed space M, which means

A(αf + βg) = αA(f) + βA(g) for all f, g ∈ M, α, β ∈ C.

Then the following statements are equivalent:

(i) A is continuous at all points f ∈ M;
(ii) A is continuous at one point f ∈ M;
(iii) A is bounded in the following sense: There exists a constant α ∈ [0,+∞)

such that
|A(f)| ≤ α‖f‖ for all f ∈ M

holds true.

Proof:

(i) ⇒ (iii) : Let A be continuous in M, then this holds true at the origin
0 ∈ M in particular. For ε = 1 we find a quantity δ(ε) > 0 such that
‖f‖ ≤ δ implies |A(f)| ≤ 1. We obtain

|A(f)| ≤ 1

δ
‖f‖ for all f ∈ M.

(iii) ⇒ (ii) : We immediately infer the continuity of A at the origin 0 from
the boundedness of A.

(ii) ⇒ (i) : Let A be be continuous at one point f0 ∈ M. For a number ε > 0
being given, we find a quantity δ > 0 satisfying

ϕ ∈ M, ‖ϕ‖ ≤ δ =⇒ |A(f0 + ϕ)−A(f0)| ≤ ε.

The linearity of our functional A gives us the following estimate for all
f ∈ M:

ϕ ∈ M, ‖ϕ‖ ≤ δ =⇒ |A(f + ϕ)−A(f)| ≤ ε.

Therefore, A is continuous for all f ∈ M. q.e.d.

Remark: This theorem remains true for linear mappings A : M1 → M2

between the normed vector spaces {M1, ‖ · ‖1} and {M2, ‖ · ‖2}. Here we
mean by the notion ’A is bounded’ that we can find a number α ∈ [0,+∞)
such that

‖A(f)‖2 ≤ α‖f‖1 for all f ∈ M1

holds true.

Definition 6.12. When we consider a bounded linear functional A : M → C

on the normed linear space M, we introduce the norm of the functional A as
follows:

‖A‖ := sup
f∈M, ‖f‖≤1

|A(f)|.
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Definition 6.13. By the symbol

M∗ :=
{
A : M → C : A is bounded on M

}
,

we denote the dual space of the normed linear space M.

Remarks:

1. We easily show that M∗, endowed with the norm from Definition 6.12,
constitutes a Banach space.

2. Let H denote a Hilbert space. Then its dual space H∗ is isomorphic to H,
as we shall show now.

Theorem 6.14. (Representation theorem of Fréchet and Riesz)
Each bounded linear functional A : H → C, defined on a Hilbert space H, can
be represented in the form

A(f) = (g, f) for all f ∈ H,

with a generating element g ∈ H which is uniquely determined.

Proof:

1. At first, we show the uniqueness. Let f ∈ H and g1, g2 ∈ H denote two
generating elements. Then we see

A(f) = (g1, f) = (g2, f) for all f ∈ H.

We subtract these equations and obtain

(g1, f)− (g2, f) = (g1 − g2, f) = 0 for all f ∈ H.

When we choose f = g1 − g2, we infer g1 = g2 on account of

0 = (g1 − g2, g1 − g2) = ‖g1 − g2‖2.

2. In order to prove the existence of g, we consider

M :=
{
f ∈ H : A(f) = 0

}
⊂ H

representing a closed linear subspace of H.
i.) Let M = H be satisfied. Then we set g = 0 ∈ H and obtain the

identity
A(f) = (g, f) = 0 for all f ∈ H.
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ii.) Let M⊂

=H be satisfied. We invoke the theorem of the orthogonal pro-

jection and see H = M⊕M⊥ with {0} �= M⊥. Consequently, there
exists an element h ∈ M⊥ with h �= 0. We now determine a number
α ∈ C, such that the identity A(h) = (g, h) for g = αh is correct. This
is equivalent to

A(h) = (g, h) = (αh, h) = α (h, h) = α ‖h‖2

and

g =
A(h)

‖h‖2 h.

Now the identity A(f) = (g, f) is valid for all f ∈ M and for f = h.

When f ∈ H is arbitrary, we define c := A(f)
A(h) . With f̃ := f − ch, we

obtain

A(f̃) = A(f)− cA(h) = A(f)− A(f)

A(h)
A(h) = 0

and consequently f̃ ∈ M. Therefore, we have the representation

f = f̃ + ch for f ∈ H, where f̃ ∈ M and ch ∈ M⊥.

This implies

A(f) = A(f̃) + cA(h) = (g, f̃) + c(g, h) = (g, f̃ + ch) = (g, f)

for all f ∈ H. q.e.d.

Definition 6.15. We name a Banach space separable if a sequence {fk} ⊂ B
exists, which lies densely in B. More precisely, we find an index k ∈ N to each
element f ∈ B and every ε > 0 such that ‖f − fk‖ < ε holds true.

Definition 6.16. In a pre-Hilbert-space H′, we name the denumerably infinite
many elements {ϕ1, ϕ2, . . .} ⊂ H′ orthonormal if

(ϕi, ϕj) = δij for all i, j ∈ N

is valid.

Remark: When we have the system of denumerably many linearly independent
elements in H′, we can apply the orthonormalization procedure of E. Schmidt
in order to transfer this into an orthonormal system.

Here we start with the linearly independent elements {f1, . . . , fN} ⊂ H′ of
the pre-Hilbert-space H′. Then we define inductively

ϕ1 :=
1

‖f1‖
f1, ϕ2 :=

f2 − (ϕ1, f2)ϕ1

‖f2 − (ϕ1, f2)ϕ1‖
, . . . ϕN :=

fN −
N−1∑
j=1

(ϕj , fN )ϕj

∥∥∥∥∥fN −
N−1∑
j=1

(ϕj , fN )ϕj

∥∥∥∥∥
.
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The vector spaces spanned by {f1, . . . , fN} and {ϕ1, . . . , ϕN} coincide, and
we note that

(ϕi, ϕj) = δij for i, j = 1, . . . , N.

Proposition 6.17. Let {ϕk} with k = 1, . . . , N represent a system of or-
thonormal elements in the pre-Hilbert-space H′ and assume f ∈ H′. Then we
have the identity

∥∥∥f −
N∑

k=1

ckϕk

∥∥∥2 =
∥∥∥f −

N∑
k=1

(ϕk, f)ϕk

∥∥∥2 +
N∑

k=1

|ck − (ϕk, f)|2

for all numbers c1, . . . , cN ∈ C.

Proof: At first, we define

g := f −
N∑

k=1

(ϕk, f)ϕk, h :=

N∑
k=1

(
(ϕk, f)− ck

)
ϕk.

Then we deduce the equation

f −
N∑

k=1

ckϕk = f −
N∑

k=1

(ϕk, f)ϕk +

N∑
k=1

(
(ϕk, f)− ck

)
ϕk = g + h.

Now we evaluate

(g, h) =

(
f −

N∑
k=1

(ϕk, f)ϕk ,

N∑
l=1

(
(ϕl, f)− cl

)
ϕl

)

=

N∑
l=1

(
(ϕl, f)− cl

)
(ϕl, f)−

N∑
k,l=1

(ϕk, f)
(
(ϕl, f)− cl

)
(ϕk, ϕl).

We note that (ϕk, ϕl) = δkl and obtain (g, h) = 0. This implies

∥∥∥f −
N∑

k=1

ckϕk

∥∥∥2 = (g + h, g + h) = ‖g‖2 + ‖h‖2

=
∥∥∥f −

N∑
k=1

(ϕk, f)ϕk

∥∥∥2 +
N∑

k,l=1

(
(ϕk, f)− ck

)(
(ϕl, f)− cl

)
(ϕk, ϕl)

=
∥∥∥f −

N∑
k=1

(ϕk, f)ϕk

∥∥∥2 +
N∑

k=1

|(ϕk, f)− ck|2.
q.e.d.

Corollary: For all numbers c1, . . . , cN ∈ C we have
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∥∥∥f −
N∑

k=1

ckϕk

∥∥∥2 ≥
∥∥∥f −

N∑
k=1

(ϕk, f)ϕk

∥∥∥2,
and equality is attained only if ck = (ϕk, f) for k = 1, . . . , N holds true.
We name these numbers ck the Fourier coefficients of f (with respect to the
system (ϕk)).

When we set c1 = . . . = cN = 0, we obtain

Proposition 6.18. The following relation

∥∥∥f −
N∑

k=1

(ϕk, f)ϕk

∥∥∥2 = ‖f‖2 −
N∑

k=1

|(ϕk, f)|2 ≥ 0

holds true.

From the last proposition we immediately infer

Theorem 6.19. Let {ϕk}, k = 1, 2, . . . represent an orthonormal system in
the pre-Hilbert-space H′. For all elements f ∈ H′, Bessel’s inequality

∞∑
k=1

|(ϕk, f)|2 ≤ ‖f‖2

holds true. An element f ∈ H′ satisfies the equation

∞∑
k=1

|(ϕk, f)|2 = ‖f‖2

if and only if the limit relation

lim
N→∞

∥∥∥f −
N∑

k=1

(ϕk, f)ϕk

∥∥∥ = 0

is valid.

Remark: The last statement means that f ∈ H′ can be represented by its
Fourier series

∞∑
k=1

(ϕk, f)ϕk

with respect to the Hilbert-space-norm ‖ · ‖.
Definition 6.20. We say that an orthonormal system {ϕk} is complete - we
abbreviate this as c.o.n.s - if each element f ∈ H′ of the pre-Hilbert-space H′

satisfies the completeness relation

‖f‖2 =
∞∑
k=1

|(ϕk, f)|2.
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Remarks:

1. In Section 4 and Section 5 of Chapter 5, we shall present explicit c.o.n.s.
with the classical Fourier series and the spherical harmonic functions.
More profound results are contained in Chapter 8 about Linear Operators
in Hilbert Spaces.

2. With the aid of E. Schmidt’s orthonormalization procedure, we can con-
struct a complete orthonormal system in each separable Hilbert space.

3. When we have a complete orthonormal system {ϕk} ⊂ H′ with k =
1, 2, . . . in the pre-Hilbert-space H′, the representation via the Fourier
series

f =

∞∑
k=1

(ϕk, f)ϕk

holds true with respect to convergence in the Hilbert-space-norm. The in-
teresting question remains open, whether a Fourier series converges point-
wise or even uniformly (see e.g. H.Heuser: Analysis II. B.G.Teubner-
Verlag, Stuttgart, 1992).

7 The Lebesgue Spaces Lp(X)

Now we continue our considerations from Section 1 to Section 4. We assume
n ∈ N as usual, and we consider subsets X ⊂ R

n which we endow with the
relative topology of the Euclidean space R

n as follows:

A ⊂ X is

{
open
closed

}

⇐⇒ There exists B ⊂ R
n

{
open
closed

}
with A = B ∩X.

By the symbol M(X) we denote a linear space of continuous functions f :
X → R = R ∪ {±∞} with the following properties:

(M1) Linearity: With f, g ∈M(X) and α, β ∈ R we have αf + βg ∈M(X).
(M2) Lattice property: From f ∈M(X) we infer |f | ∈M(X).
(M3) Global property: The function f(x) ≡ 1, x ∈ X belongs to M(X).

We name a linear functional I : M → R, which is defined on M = M(X),
Daniell’s integral if the following properties are valid:

(D1) Linearity: I(αf + βg) = αI(f) + βI(g) for all f, g ∈M and α, β ∈ R;
(D2) Nonnegativity: I(f) ≥ 0 for all f ∈M with f ≥ 0;
(D3) Monotone continuity: For all {fk} ⊂M(X) with fk(x) ↓ 0 (k → ∞) on

X we infer I(fk) → 0 (k → ∞).
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Example 7.1. Let X = Ω ⊂ R
n denote an open bounded set, and we define

the linear space

M =M(X) :=

⎧⎨
⎩f : X → R ∈ C0(X) :

∫
Ω

|f(x)| dx < +∞

⎫⎬
⎭ .

We utilize the improper Riemannian integral on the set X, namely

I(f) :=

∫
Ω

f(x) dx, f ∈M

as our linear functional.

Example 7.2. On the sphere X = Sn−1 :=
{
x ∈ R

n : |x| = 1
}
, we con-

sider the linear space of all continuous functions M(X) = C0(Sn−1), and we
introduce the Daniell integral

I(f) :=

∫
Sn−1

f(x) dσn−1(x), f ∈M.

In Section 2 we have extended the functional I from M(X) onto the space
L(X) of the Lebesgue integrable functions. In Section 3 we investigated sets
which are Lebesgue measurable, more precisely those sets A whose character-
istic functions χA are Lebesgue integrable.

Definition 7.3. Let the exponent satisfy 1 ≤ p < +∞. We name a measurable
function f : X → R p-times integrable if |f |p ∈ L(X) is correct. In this case
we write f ∈ Lp(X). With

‖f‖p := ‖f‖Lp(X) :=

⎛
⎝∫

X

|f(x)|p dμ(x)

⎞
⎠

1
p

=
(
I(|f |p)

) 1
p

we obtain the Lp-norm of the function f ∈ Lp(X); here the symbol μ denotes
the Lebesgue measure on X.

Remark: Evidently, we have the identity L1(X) = L(X).

The central tool, when dealing with Lebesgue spaces, is provided by the sub-
sequent result.

Theorem 7.4. (Hölder’s inequality)
Let the exponents p, q ∈ (1,+∞) be conjugate, which means p−1 + q−1 = 1
holds true. Furthermore, we assume f ∈ Lp(X) and g ∈ Lq(X) being given.
Then we infer the property fg ∈ L1(X) and the inequality

‖fg‖L1(X) ≤ ‖f‖Lp(X)‖g‖Lq(X).
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Proof: We have to investigate only the case ‖f‖p > 0 and ‖g‖q > 0. Alterna-
tively, we had ‖f‖p = 0, and consequently f = 0 a.e. as well as f · g = 0 a.e.
would hold. Analogously, we treat the case ‖g‖q = 0. Then we apply Young’s
inequality

ab ≤ ap

p
+
bq

q

to the functions

ϕ(x) =
1

‖f‖p
|f(x)|, ψ(x) =

1

‖g‖q
|g(x)|, x ∈ X,

and we obtain

1

‖f‖p‖g‖q
|f(x)g(x)| = ϕ(x)ψ(x) ≤ 1

p

|f(x)|p
‖f‖pp

+
1

q

|g(x)|q
‖g‖qq

for all points x ∈ X. Theorem 4.8 from Section 4 implies fg ∈ L(X) = L1(X).
Now integration yields the inequality

1

‖f‖p‖g‖q
I(|fg|) ≤ 1

p

1

‖f‖pp
I(|f |p) + 1

q

1

‖g‖qq
I(|g|q) = 1,

and finally
I(|fg|) ≤ ‖f‖p‖g‖q.

q.e.d.

Theorem 7.5. (Minkowski’s inequality)
With the exponent p ∈ [1,+∞), let us consider the functions f, g ∈ Lp(X).
Then we infer f + g ∈ Lp(X) and we have

‖f + g‖Lp(X) ≤ ‖f‖Lp(X) + ‖g‖Lp(X).

Proof: The case p = 1 can be easily derived by application of the triangle
inequality on the integrand |f + g|. Therefore, we assume p, q ∈ (1,+∞) with
p−1 + q−1 = 1. At first, convexity arguments yield

|f(x) + g(x)|p ≤ 2p−1 (|f(x)|p + |g(x)|p)

and consequently f + g ∈ Lp or equivalently I(|f + g|p) < +∞. Now we have

|f(x) + g(x)|p = |f(x) + g(x)|p−1|f(x) + g(x)|

≤ |f(x) + g(x)|p−1|f(x)|+ |f(x) + g(x)|p−1|g(x)|

= |f(x) + g(x)|
p
q |f(x)|+ |f(x) + g(x)|

p
q |g(x)|.

The factors of the summands on the right-hand side are Lq- and Lp-functions,
respectively. Therefore, we obtain
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I(|f + g|p) ≤ I(|f + g|p)
1
q (‖f‖p + ‖g‖p).

Finally, we see

(I(|f + g|p)
1
p ≤ ‖f‖p + ‖g‖p

and the desired inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p.
q.e.d.

Remark: Minkowski’s inequality represents the triangle inequality for the ‖·‖p-
norm in the space Lp.

The following result guarantees the completeness of Lp-spaces, which means:
Each Cauchy sequence converges towards a function in the respective space.

Theorem 7.6. (Fischer, Riesz)
Let us consider the exponent p ∈ [1,+∞) and a sequence {fk}k=1,2,... ⊂ Lp(X)
satisfying

lim
k,l→∞

‖fk − fl‖Lp(X) = 0.

Then we have a function f ∈ Lp(X) with the property

lim
k→∞

‖fk − f‖Lp(X) = 0.

Proof: With the aid of Hölder’s inequality we show the identity

lim
k,l→∞

I(|fk − fl|) = 0.

Here we estimate in the case p > 1 as follows:

I(|fk − fl|) = I(|fk − fl| · 1) ≤ ‖fk − fl‖p‖1‖q −→ 0.

The Lebesgue selection theorem gives us a subsequence k1 < k2 < k3 < . . .
and a null-set N ⊂ X, such that

lim
m→∞

fkm(x) = f(x), x ∈ X \N

holds true. We observe that the function f is measurable. Now we choose
l ≥ N(ε) and km ≥ N(ε), where ‖fk − fl‖p ≤ ε for all k, l ≥ N(ε) is valid,
and we infer

I(|fkm − fl|p) = ‖fkm − fl‖pLp(X) ≤ ε
p.

For m→ ∞, Fatou’s theorem implies the inequality

I(|f − fl|p) ≤ εp for all l ≥ N(ε)

and consequently
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‖f − fl‖Lp(X) ≤ ε for all l ≥ N(ε).

Since Lp(X) is linear and fl as well as (f − fl) belong to this space, we infer
f ∈ Lp(X). Furthermore, we observe

lim
l→∞

‖f − fl‖p = 0.
q.e.d.

Definition 7.7. A measurable function f : X → R belongs to the class
L∞(X) if we have a null-set N ⊂ X and a constant c ∈ [0,+∞) with the
property

|f(x)| ≤ c for all x ∈ X \N.

We name

‖f‖∞ = ‖f‖L∞(X) = ess sup
x∈X

|f(x)|

= inf

{
c ≥ 0 :

There exists a null-set N ⊂ X
with |f(x)| ≤ c for all x ∈ X \N

}

the L∞-norm or equivalently the essential supremum of the function f .

Remark: Evidently, we have the inclusion

L∞(X) ⊂
⋂

p∈[1,+∞)

Lp(X).

Theorem 7.8. A function f ∈
⋂
p≥1

Lp(X) belongs to the class L∞(X), if the

condition
lim sup
p→∞

‖f‖Lp(X) < +∞

is correct. In this case we have

‖f‖L∞(X) = lim
p→∞

‖f‖Lp(X) < +∞,

where the limit on the right-hand side exists.

Proof: Let f ∈
⋂
p≥1

Lp(X) hold true. When we assume f ∈ L∞(X), we infer

0 ≤ ‖f‖∞ < +∞ as well as

|f |p = |f |q|f |p−q ≤ |f |q‖f‖p−q
∞ a.e. on X.

Therefore, we obtain

‖f‖p ≤ ‖f‖1−
q
p

∞ ‖f‖
q
p
q

and finally
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lim sup
p→∞

‖f‖p ≤ ‖f‖∞ < +∞. (1)

In order to show the inverse direction, we consider the set

Aa :=
{
x ∈ X : |f(x)| > a

}

for an arbitrary number a < ‖f‖∞. Therefore, Aa does not constitute a null-
set. We obtain the estimate

+∞ > lim sup
p→∞

‖f‖p ≥ lim inf
p→∞

‖f‖p

= lim inf
p→∞

(
I(|f |p)

) 1
p ≥ a lim inf

p→∞

(
μ(Aa)

) 1
p

= a.

Now we infer
+∞ > lim inf

p→∞
‖f‖p ≥ ‖f‖∞ (2)

and consequently f ∈ L∞(X). These inequalities immediately imply the ex-
istence of

lim
p→∞

‖f‖p = ‖f‖∞.
q.e.d.

Corollary: Hölder’s inequality remains valid for the case p = 1 and q = ∞.
Furthermore, Minkowski’s inequality holds true in the case p = ∞ as well.

Definition 7.9. Let 1 ≤ p ≤ +∞ be satisfied. Then we introduce an equiva-
lence relation on the space Lp(X) as follows:

f ∼ g ⇐⇒ f(x) = g(x) a.e. in X.

By the symbol [f ] we denote the equivalence class belonging to the element
f ∈ Lp(X). We name

Lp(X) :=
{
[f ] : f ∈ Lp(X)

}

the Lebesgue space of order 1 ≤ p ≤ +∞.

We summarize our considerations to the subsequent

Theorem 7.10. For each fixed p with 1 ≤ p ≤ +∞, the Lebesgue space Lp(X)
constitutes a real Banach space with the given Lp-norm. Furthermore, we have
the inclusion

Lr(X) ⊃ Ls(X)

for all 1 ≤ r < s ≤ +∞. Moreover, the estimate

‖f‖Lr(X) ≤ C(r, s)‖f‖Ls(X) for all f ∈ Ls(X)
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holds true with a constant C(r, s) ∈ [0,+∞). This means, the mapping for the
embedding

Φ : Ls(X) −→ Lr(X), f �→ Φ(f) = f

is continuous. Therefore, a sequence converging in the space Ls(X) is conver-
gent in the space Lr(X) as well.

Proof:

1. At first, we show that Lp(X) constitute normed spaces. Let us consider
[f ] ∈ Lp(X): We have ‖[f ]‖p = 0 if and only if ‖f‖p = 0 and consequently
f = 0 a.e. in X is fulfilled. This implies [f ] = 0 and gives us the norm
property (N1). Minkowski’s inequality from Theorem 7.5 ascertains the
norm property (N2), where Theorem 7.8 provides the triangle inequality
in the space L∞(X). The norm property (N3), namely the homogeneity,
is obvious.

2. The Fischer-Riesz theorem implies completeness of the spaces Lp for 1 ≤
p < +∞. Therefore, only completeness of the space L∞ has to be shown.
Here we consider a Cauchy sequence {fk} ⊂ L∞ satisfying

‖fk − fl‖∞ → 0 for k, l → ∞.

We infer the inequality ‖fk‖∞ ≤ c for all k ∈ N, with a constant c ∈
(0,+∞). Then we find a null-set N0 ⊂ X with |fk(x)| ≤ c for all points
x ∈ X \ N0 and all indices k ∈ N. Furthermore, we have null-sets Nk,l

with
|fk(x)− fl(x)| ≤ ‖fk − fl‖∞ for x ∈ X \Nk,l.

We define
N := N0 ∪

⋃
k,l

Nk,l

and observe
lim

k,l→∞
sup

x∈X\N
|fk(x)− fl(x)| = 0.

When we introduce the function

f(x) :=

{
lim
k→∞

fk(x) , x ∈ X \N
0 , x ∈ N

∈ L∞(X)

we infer
lim
k→∞

sup
x∈X\N

|fk(x)− f(x)| = 0

and finally
lim
k→∞

‖fk − f‖L∞(X) = 0.
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3. Let us assume 1 ≤ r < s ≤ +∞. The function f ∈ Ls(X) satisfies

‖f‖r =
(
I(|f |r · 1)

) 1
r ≤
{(
I(|f |s)

) r
s
(
μ(X)

) s−r
s

} 1
r

=
(
μ(X)

) s−r
rs ‖f‖s

for all elements f ∈ Ls(X). q.e.d.

Definition 7.11. Let B1 and B2 denote two Banach spaces with B1 ⊂ B2.
Then we say B1 is continuously embedded into B2 if the mapping

I1 : B1 −→ B2, f �→ I1(f) = f

is continuous. This means, the inequality

‖f‖B2 ≤ c ‖f‖B1 for all f ∈ B1

holds true with a constant c ∈ [0,+∞). Then we use the notation B1 ↪→ B2.

Remarks:

1. The transition to equivalence classes will be made tacitly - such that we
can identify Lp(X) and Lp(X).

2. We have the embedding Ls(X) ↪→ Lr(X) for all 1 ≤ r ≤ s ≤ +∞.
3. On the space C0(X), we obtain with

‖f‖0 := sup
x∈X

|f(x)|, f ∈ C0(X)

the supremum-norm which induces uniform convergence. With the Lp-
norms ‖ · ‖p for 1 ≤ p ≤ +∞, we have constructed a family of norms
which constitute a continuum beginning with the weakest norm, namely
the L1-norm, and ending with the strongest norm, namely the L∞-norm
or the C0-norm, respectively. Exactly in the centrum for p = 2, we find
the Hilbert space H = L2(X).

Example 7.12. Let the space

H = L2(X,C) :=
{
f = g + ih : g, h ∈ L2(X,R)

}

be endowed with the inner product

(f1, f2)H := I(f1f2) for fj = gj + ihj ∈ H and j = 1, 2.

Here we define I(f) = I(g+ ih) := I(g) + i I(h). Then H represents a Hilbert
space.

In the sequel, we use the space of functions

M∞(X) :=

{
f ∈M(X) : sup

x∈X
|f(x)| < +∞

}
=M(X) ∩ L∞(X).
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Theorem 7.13. (Approximation of Lp-functions)
Given the exponent p ∈ [1,+∞), the space M∞(X) lies densely in Lp(X),
which means: For each function f ∈ Lp(X) and each ε > 0, we have a function
fε ∈M∞(X) satisfying

‖f − fε‖Lp(X) < ε.

Proof: Let ε > 0 be given. We choose K > 0 and consider the truncated
function

f−K,+K(x) :=

⎧⎪⎨
⎪⎩
f(x), x ∈ X with |f(x)| ≤ K
−K, x ∈ X with f(x) ≤ −K
+K, x ∈ X with f(x) ≥ +K

subject to the inequality

|f(x)− f−K,+K(x)|p ≤ |f(x)|p.

Furthermore, we have

lim
K→∞

|f(x)− f−K,+K(x)|p = 0

almost everywhere in X. Lebesgue’s convergence theorem implies

lim
K→∞

I(|f − f−K,+K |p) = 0,

and we find a number K = K(ε) > 0 with

‖f(x)− f−K,+K(x)‖p ≤ ε

2
.

According to Theorem 4.14 in Section 4, the function f−K,+K possesses a
sequence {ϕk}k=1,2,... ⊂M(X) with |ϕk(x)| ≤ K satisfying

ϕk(x) −→ f−K,+K(x) a.e. in X.

The Lebesgue convergence theorem yields

‖f−K,+K − ϕk‖pp = I(|f−K,+K − ϕk|p) −→ 0

for k → ∞. Consequently, we find an index k = k(ε) with

‖f−K,+K − ϕk‖p ≤ ε

2
.

The function fε := ϕk(ε) ∈ M(X), which is uniformly bounded by K(ε) on
X, satisfies

‖f − fε‖p ≤ ‖f − f−K,+K‖p + ‖f−K,+K − ϕk(ε)‖p ≤ ε

2
+
ε

2
= ε.

q.e.d.
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Theorem 7.14. (Separability of Lp-spaces)
Let X ⊂ R

n be an open bounded set and p ∈ [1,+∞) the exponent given. Then
the Banach space Lp(X) is separable: More precisely, there exists a sequence
of functions {ϕk(x)}k=1,2,... ⊂ C∞

0 (X) ⊂ Lp(X) which lies densely in Lp(X).

Proof: Let us consider the set

R :=

⎧⎨
⎩g(x) =

N∑
i1,...,in=0

ai1...inx
i1
1 . . . x

in
n : ai1...in ∈ Q, N ∈ N ∪ {0}

⎫⎬
⎭

of polynomials in R
n with rational coefficients. Furthermore, let

χj(x) : X −→ R ∈ C∞
0 (X), j = 1, 2, . . .

denote an exhausting sequence for the set X, which means

χj(x) ≤ χj+1(x), lim
j→∞

χj(x) = 1 for all x ∈ X.

Now we show that the denumerable set

D(X) :=
{
h(x) = χj(x)g(x) : j ∈ N, g ∈ R

}

lies densely in Lp(X). Here we take the function f ∈ Lp(X) and the quantity
ε > 0 arbitrarily. Then we find a function g ∈ M∞(X) with ‖f − g‖p ≤ ε.
Now we infer

‖g − χjg‖pp =

∫
X

|g(x)− χj(x)g(x)|p dμ(x)

=

∫
X

(
1− χj(x)

)p
|g(x)|p dμ(x) −→ 0,

and consequently we find an index j ∈ N satisfying ‖g − χjg‖p ≤ ε. Now the
function χjg has compact support in X. Via the Weierstraß approximation
theorem, there exists a polynomial h(x) ∈ R such that supx∈X χj |g−h| ≤ δ(ε)
is correct - with a quantity δ(ε) > 0 given. Consequently, we find a polynomial
h(x) ∈ R with the property

‖χjg − χjh‖p ≤ ε.

This implies

‖f − χjh‖p ≤ ‖f − g‖p + ‖g − χjg‖p + ‖χjg − χjh‖p ≤ 3ε.

Consequently, D(X) lies densely in Lp(X). q.e.d.
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8 Bounded Linear Functionals on Lp(X) and Weak
Convergence

We begin with

Theorem 8.1. (Extension of linear functionals)
Take p ∈ [1,+∞) and let A : M∞(X) → R denote a linear functional with
the following property: We have a constant α ∈ [0,+∞) such that

|A(f)| ≤ α‖f‖Lp(X) for all f ∈M∞(X)

holds true. Then there exists exactly one bounded linear functional Â :
Lp(X) → R satisfying

‖Â‖ ≤ α and Â(f) = A(f) for all f ∈M∞(X).

Consequently, the functional Â can be uniquely continued from M∞(X) onto
Lp(X).

Proof: The linear functional A is bounded on {M∞(X), ‖ · ‖Lp(X)} and there-
fore continuous. According to Theorem 7.13 from Section 7, each element
f ∈ Lp(X) possesses a sequence {fk}k=1,2,... ⊂M∞(X) satisfying

‖fk − f‖Lp(X) → 0 for k → ∞.

Now we define
Â(f) := lim

k→∞
A(fk).

We immediately verify that Â has been defined independently of the sequence
{fk}k=1,2,... chosen, and that the mapping Â : Lp(X) → R is linear. Further-
more, we have

‖Â‖ = sup
f∈Lp, ‖f‖p≤1

|Â(f)| = sup
f∈M∞, ‖f‖p≤1

|A(f)| ≤ α.

When we consider with Â and B̂ two extensions of A onto Lp(X), we infer Â =

B̂ on M∞(X). Since the functionals Â and B̂ are continuous, and M∞(X)

lies densely in Lp(X), we obtain the identity Â = B̂ on Lp(X).
q.e.d.

Now we consider multiplication functionals Ag as follows:

Theorem 8.2. Let us choose the exponent 1 ≤ p ≤ +∞ and with q ∈ [1,+∞]
its conjugate exponent satisfying

1

p
+

1

q
= 1.

For each function g ∈ Lq(X) being given, the symbol Ag : Lp(X) → R with

Ag(f) := I(fg), f ∈ Lp(X)

represents a bounded linear functional such that ‖Ag‖ = ‖g‖q holds true.
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Proof: Obviously, Ag : Lp(X) → R constitutes a linear functional. Hölder’s
inequality yields the estimate

|Ag(f)| = |I(fg)| ≤ I(|f ||g|) ≤ ‖f‖p‖g‖q for all f ∈ Lp(X),

and we see
‖Ag‖ ≤ ‖g‖q.

In the case 1 < p < +∞, we choose the function

f(x) = |g(x)|
q
p sign g(x)

and calculate

Ag(f) = I(fg) = I
(
|g|

q
p+1
)
= I(|g|q)

= ‖g‖qq = ‖g‖q‖g‖
q
p
q = ‖g‖q

(
I
(
|f |p
)) 1

p

= ‖g‖q‖f‖p.

This implies

Ag(f)

‖f‖p
= ‖g‖q and therefore ‖Ag‖ ≥ ‖g‖q (1)

and consequently ‖Ag‖ = ‖g‖q for all 1 < p < +∞. In the case p = +∞, we
choose

f(x) = sign g(x)

and we obtain

Ag(f) = I(g sign g) = I(|g|) = ‖g‖1 ‖f‖∞.

This implies

Ag(f)

‖f‖∞
= ‖g‖1 and therefore ‖Ag‖ = ‖g‖1.

In the case p = 1, we choose the following function to the element g ∈ Lq(X) =
L∞(X) and for all quantities ε > 0, namely

fε(x) :=

⎧⎪⎨
⎪⎩

1, x ∈ X with g(x) ≥ ‖g‖∞ − ε
0, x ∈ X with |g(x)| < ‖g‖∞ − ε
−1, x ∈ X with g(x) ≤ −‖g‖∞ + ε

.

Therefore, we have

Ag(fε) = I(gfε) ≥ (‖g‖∞ − ε)‖fε‖1 for all ε > 0,

which reveals
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Ag(fε)

‖fε‖1
≥ ‖g‖∞ − ε.

Consequently, ‖Ag‖ ≥ ‖g‖∞ − ε is correct and finally ‖Ag‖ = ‖g‖∞. q.e.d.

We want to show that each bounded linear functional on Lp(X) with 1 ≤
p <∞ can be represented as a multiplication functional Ag via a generating
element g ∈ Lq(X), where p−1 + q−1 = 1 holds true.

Theorem 8.3. (Regularity in Lp(X))
Let us consider 1 ≤ p < +∞ and g ∈ L1(X). Furthermore, we have a constant
α ∈ [0,+∞) such that

|Ag(f)| = |I(fg)| ≤ α‖f‖p for all f ∈M∞(X) (2)

holds true. Then we infer the property g ∈ Lq(X) and the estimate ‖g‖q ≤ α.

Proof:

1. At first, we deduce the following inequality from (2), namely

|I(fg)| ≤ α‖f‖p for all f measurable and bounded. (3)

According to Theorem 4.14 from Section 4, the bounded measurable func-
tion f : X → R possesses a sequence of functions {fk}k=1,2,... ⊂ M∞(X)
with

fk(x) → f(x) a.e. in X

and
sup
X

|fk(x)| ≤ sup
X

|f(x)| =: c ∈ [0,+∞).

Now Lebesgue’s convergence theorem yields

|I(fg)| = lim
k→∞

|I(fkg)| ≤ lim
k→∞

α‖fk‖p = α‖f‖p.

2. Let us assume 1 < p < +∞, at first. Then we consider the functions

gk(x) :=

{
g(x) , x ∈ X with |g(x)| ≤ k
0 , x ∈ X with |g(x)| > k

.

Now the functions

fk(x) = |gk(x)|
q
p sign gk(x), x ∈ X,

are measurable and bounded. Consequently, we are allowed to insert fk(x)
into (3) and obtain

I(fkg) = I
(
|gk|

q
p+1
)
= I(|gk|q) = ‖gk‖qq .

Then (3) implies



164 Chapter 2 Foundations of Functional Analysis

I(fkg) ≤ α‖fk‖p = α(I(|gk|q))
1
p = α‖gk‖

q
p
q .

For k = 1, 2, . . . we have the estimate

α ≥ ‖gk‖
q− q

p
q = ‖gk‖q , αq ≥ I(|gk|q).

We invoke Fatou’s theorem and obtain

|g(x)|q a.e.
= lim inf

k→∞
|gk(x)|q ∈ L(X)

as well as
αq ≥ I(|g|q) and consequently ‖g‖q ≤ α.

3. Now we assume p = 1. The quantity ε > 0 being given, we consider the
set

E :=
{
x ∈ X : |g(x)| ≥ α+ ε

}
.

We insert the function f = χE sign g into (3) and obtain

αμ(E) = α‖f‖1 ≥ |I(fg)| ≥ (α+ ε)μ(E).

This implies μ(E) = 0 for all ε > 0 and finally ‖g‖∞ ≤ α. q.e.d.

Until now, we considered only one Daniell integral I :M∞(X) → R as fixed,
which we could extend onto the Lebesgue space L1(X). When a statement
refers to this functional, we do not mention this functional I explicitly: We
simplify Lp(X) = Lp(X, I), for instance, or f(x) = 0 almost everywhere in
X if and only if we have an I-null-set N ⊂ X such that f(x) = 0 for all
x ∈ X \N holds true. We already know that

M∞(X) ⊂ L∞(X) ⊂ Lp(X), 1 ≤ p ≤ +∞

is correct. Additionally, we consider the Daniell integral J .

Definition 8.4. We name a Daniell integral

J : M∞(X) −→ R,

which satisfies the conditions (M1) to (M3) as well as (D1) to (D3) from
Section 7 and is extendable onto L1(X, J) ⊃ L∞(X), as absolutely continuous
with respect to I if the following property is valid:

(D4) Each I-null-set is a J-null-set.

With the aid of ideas of John v. Neumann (see L.H. Loomis: Abstract har-
monic analysis), we prove the profound

Theorem 8.5. (Radon, Nikodym)
Let the Daniell integral J be absolutely continuous with respect to I. Then a
uniquely determined function g ∈ L1(X) exists such that

J(f) = I(fg) for all f ∈M∞(X)

holds true.
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Proof:

1. Let f ∈ L∞(X) be given, then we have a null-set N ⊂ X and a constant
c ∈ [0,+∞) such that

|f(x)| ≤ c for all x ∈ X\N

is valid. We recall the property (D4), and see that N is a J-null-set as
well, which implies f ∈ L∞(X, J). A sequence {fk}k=1,2,... ⊂ L∞(X) with
fk ↓ 0 (k → ∞) a.e. on X fulfills the limit relation

fk ↓ 0 J-a.e. on X for k → ∞

due to (D4). Now B.Levi’s theorem on the space L1(X, J) yields

lim
k→∞

J(fk) = 0.

Consequently, J : L∞(X) → R represents a Daniell integral. Then we
introduce the Daniell integral

K(f) := I(f) + J(f), f ∈ L∞(X). (4)

As in Section 2 we extend this functional onto the space L1(X,K); here
the a.e.-properties are sufficient. We consider the inclusion L1(X,K) ⊃
Lp(X,K) for all p ∈ [1,+∞].

2. We take the exponents p, q ∈ [1,+∞] with p−1 + q−1 = 1 and obtain the
following estimate for all f ∈M∞(X), namely

|J(f)| ≤ J(|f |) ≤ K(|f |)

≤ ‖f‖Lp(X,K) ‖1‖Lq(X,K)

=
(
I(1) + J(1)

) 1
q ‖f‖Lp(X,K).

Therefore, J represents a bounded linear functional on the space Lp(X,K)
for an arbitrary exponent p ∈ [1,+∞). In the Hilbert space L2(X,K) we
can apply the representation theorem of Fréchet-Riesz and obtain

J(f) = K(fh) for all f ∈M∞(X) (5)

with an element h ∈ L2(X,K). Now Theorem 8.3 - in the case p = 1 - is
utilized and we see the regularity improvement h ∈ L∞(X,K). Since J is
nonnegative, we infer h(x) ≥ 0 K-a.e. on X. Furthermore, the relation (4)
together with the assumption (D4) tell us that the K-null-sets coincide
with the I-null-sets, and we arrive at

h(x) ≥ 0 a.e. in X.
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3. Taking f ∈M∞(X), we can iterate (5) and (4) as follows

J(f) = K(fh) = I(fh) + J(fh)

= I(fh) +K(fh2)

= I(fh) + I(fh2) + J(fh2) = . . . ,

and we obtain

J(f) = I

(
f

l∑
k=1

hk

)
+ J(fhl), l = 1, 2, . . . (6)

Let us define
A :=

{
x ∈ X : h(x) ≥ 1

}

and f = χA. Via approximation, we immediately see that this element f
can be inserted into (6). Then we observe

+∞ > J(f) ≥ I
(
f

l∑
k=1

hk

)
≥ l I(χA) for all l ∈ N

and consequently I(χA) = 0. Therefore, the inequality 0 ≤ h(x) < 1 a.e. in
X is satisfied and, moreover,

hl(x) ↓ 0 a.e. in X for l→ ∞. (7)

Via transition to the limit l→ ∞ in (6), then B.Levi’s theorem implies

J(f) = I

(
f

∞∑
k=1

hk

)
for all f ∈M∞(X),

when we note that f = f+ − f− holds true. Taking f(x) ≡ 1 on X in
particular, we infer that

g(x) =

∞∑
k=1

hk(x)
a.e.
=

h(x)

1− h(x) ∈ L1(X)

is fulfilled. q.e.d.

Theorem 8.6. (Decomposition theorem of Jordan and Hahn)
Let the bounded linear functional A : M∞(X) → R be given on the linear
normed space {M∞(X), ‖·‖p}, where 1 ≤ p < +∞ is fixed. Then we have two
nonnegative bounded linear functionals A± :M∞(X) → R with A = A+−A−;
this means, more precisely,

A(f) = A+(f)−A−(f) for all f ∈M∞(X)
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with
A±(f) ≥ 0 for all f ∈M∞(X) with f ≥ 0.

Furthermore, we have the estimates

‖A±‖ ≤ 2‖A‖, ‖A−‖ ≤ 3‖A‖.

Here we define

‖A‖ := sup
f∈M∞, ‖f‖p≤1

|A(f)|, ‖A±‖ := sup
f∈M∞, ‖f‖p≤1

|A±(f)|.

Proof:

1. We take f ∈M∞(X) with f ≥ 0 and set

A+(f) := sup
{
A(g) : g ∈M∞(X), 0 ≤ g ≤ f

}
. (8)

Evidently, we have A+(f) ≥ 0 for all f ≥ 0. Moreover, the identity

A+(cf) = sup
{
A(g) : 0 ≤ g ≤ cf

}
= sup

{
A(cg) : 0 ≤ g ≤ f

}

= c sup
{
A(g) : 0 ≤ g ≤ f

}
= cA+(f)

for all f ≥ 0 and c ≥ 0 holds true. When we take fj ∈ M∞(X) with
fj ≥ 0 - for j=1,2 - we infer

A+(f1) +A
+(f2)

= sup
{
A(g1) : 0 ≤ g1 ≤ f1

}
+ sup

{
A(g2) : 0 ≤ g2 ≤ f2

}

= sup
{
A(g1 + g2) : 0 ≤ g1 ≤ f1, 0 ≤ g2 ≤ f2

}

≤ sup
{
A(g) : 0 ≤ g ≤ f1 + f2

}
= A+(f1 + f2).

Given the function g with 0 ≤ g ≤ f1 + f2, we introduce

g1 := min (g, f1) and g2 := (g − f1)+.

Then we observe gj ≤ fj for j = 1, 2 as well as g1 + g2 = g. Consequently,
we obtain

A+(f1 + f2) ≤ A+(f1) +A
+(f2)

and finally
A+(f1 + f2) = A

+(f1) +A
+(f2).

Furthermore, the following inequality holds true for all f ∈M∞(X) with
f ≥ 0, namely
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|A+(f)| =
∣∣∣ sup{A(g) : g ∈M∞(X), 0 ≤ g ≤ f

}∣∣∣
≤ sup

{
|A(g)| : g ∈M∞(X), 0 ≤ g ≤ f

}

≤ sup
{
‖A‖ ‖g‖p : g ∈M∞(X), 0 ≤ g ≤ f

}

≤ ‖A‖ ‖f‖p.

2. Now we extend A+ :M∞(X) → R via

M∞(X) � f(x) = f+(x)− f−(x) with f±(x) ≥ 0

and define
A+(f) := A+(f+)−A+(f−).

Consequently, we obtain with A+ : M∞(X) → R a bounded linear map-
ping. More precisely, we have the following estimate for all f ∈M∞(X):

|A+(f)| ≤ |A+(f+)|+ |A+(f−)|

≤ ‖A‖
(
‖f+‖p + ‖f−‖p

)
≤ 2‖A‖ ‖f‖p.

This implies ‖A+‖ ≤ 2‖A‖.
3. Now we define

A−(f) := A+(f)−A(f) for all f ∈M∞(X).

Obviously, A− represents a bounded linear functional. Here we observe

|A−(f)| ≤ |A+(f)|+ |A(f)| ≤ 2‖A‖ · ‖f‖p + ‖A‖ ‖f‖p

and consequently ‖A−‖ ≤ 3‖A‖. Finally, the inequality

A−(f) = A+(f)−A(f) = sup
{
A(g) : 0 ≤ g ≤ f

}
−A(f) ≥ 0

for all f ∈M∞(X) with f ≥ 0 is satisfied. q.e.d.

Theorem 8.7. (The Riesz representation theorem)
Let 1 ≤ p < +∞ be fixed. For each bounded linear functional A ∈ (Lp(X))∗

being given, there exists exactly one generating element g ∈ Lq(X) with the
property

A(f) = I(fg) for all f ∈ Lp(X).

Here the identity p−1 + q−1 = 1 holds true for the conjugate exponent q ∈
(1,+∞].

Proof: We perform our proof in two steps.
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1. Uniqueness: Let the functions g1, g2 ∈ Lq(X) with

A(f) = I(fg1) = I(fg2) for all f ∈ Lp(X)

be given, and we deduce

0 = I
(
f(g1 − g2)

)
for all f ∈ Lp(X).

We recall Theorem 8.2 and obtain 0 = ‖g1 − g2‖Lq(X), which implies
g1 = g2 in Lq(X).

2. Existence: The functional A :M∞(X) → R satisfies

|A(f)| ≤ α‖f‖p for all f ∈M∞(X) (9)

with a bound α ∈ [0,+∞). The decomposition theorem of Jordan-Hahn
gives us nonnegative bounded linear functionals A± :M∞(X) → R satis-
fying

‖A±‖ ≤ 3‖A‖ ≤ 3α and A = A+ −A−.

Here the space M∞(X) is endowed with the ‖ · ‖p-norm. In particu-
lar, we observe |A±(f)| < +∞ for f(x) = 1, x ∈ X. A sequence
{fk}k=1,2,... ⊂ M∞(X) with fk ↓ 0 in X converges uniformly on each
compact set towards 0, due to Dini’s theorem. Then we arrive at the
estimate

|A±(fk)| ≤ 3α‖fk‖p −→ 0 for k → ∞.
With A± we have two Daniell integrals, which are absolutely continuous
with respect to I. When N namely is an I-null-set, we infer

|A±(χN )| ≤ 3α‖χN‖p = 0.

Therefore, N is a null-set for the Daniell integrals A± as well. The Radon-
Nikodym theorem provides elements g± ∈ L1(X) such that the represen-
tation

A±(f) = I(fg±) for all f ∈M∞(X)

holds true. This implies

A(f) = A+(f)−A−(f)

= I(fg+)− I(fg−)

= I(fg) for all f ∈M∞(X),

when we define g := g+ − g− ∈ L1(X). On account of (9) our regularity
theorem yields g ∈ Lq(X). When we extend the functional continuously
onto Lp(X), we arrive at the representation

A(f) = I(fg) for all f ∈ Lp(X)

with a generating function g ∈ Lq(X). q.e.d.
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Now we address the question of compactness in infinite-dimensional spaces of
functions.

Definition 8.8. A sequence {xk}k=1,2,... ⊂ B in a Banach space B is called
weakly convergent towards an element x ∈ B - symbolically xk ⇁ x - if the
limit relations

lim
k→∞

A(xk) = A(x)

hold true for each continuous linear functional A ∈ B∗.

Theorem 8.9. (Weak compactness of Lp(X))
Let us take the exponent 1 < p < +∞. Furthermore, let {fk}k=1,2,... ⊂ Lp(X)
denote a bounded sequence with the property

‖fk‖p ≤ c for a constant c ∈ [0,+∞) and all indices k ∈ N.

Then we have a subsequence {fkl
}l=1,2,... and a limit element f ∈ Lp(X) such

that fkl
⇁ f in Lp(X) holds true.

Proof:

1. We invoke the Riesz representation theorem and see the following: The
relation fl ⇁ f holds true if and only if I(flg) → I(fg) for all g ∈ Lq(X) is
correct; here we have p−1+q−1 = 1 as usual. Theorem 7.14 from Section 7
tells us that the space Lq(X) is separable. Therefore, we find a sequence
{gm}m=1,2,... ⊂ Lq(X) which lies densely in Lq(X). From the bounded
sequence {fk}k=1,2,... ⊂ Lp(X) satisfying ‖fk‖p ≤ c for all k ∈ N, we now
extract successively the subsequences

{fk}k=1,2,... ⊃ {f
k
(1)
l

}l=1,2,... ⊃ {f
k
(2)
l

}l=1,2,... ⊃ . . .

such that

lim
l→∞

I(f
k
(m)
l

gm) =: αm ∈ R, m = 1, 2, . . . .

Then we apply Cantor’s diagonalization procedure, and we make the tran-
sition to the diagonal sequence fkl

:= f
k
(l)
l

, l = 1, 2, . . . . Now we observe

that
lim
l→∞

I(fkl
gm) = αm, m = 1, 2, . . .

holds true.
2. By the symbol

D :=

⎧⎪⎨
⎪⎩g ∈ L

q(X) :

There exist N ∈ N and c1, . . . , cN ∈ R

and 1 ≤ i1 < . . . < iN < +∞ with g =

N∑
k=1

ckgik

⎫⎪⎬
⎪⎭
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we denote the vector space of finite linear combinations of {gm}m=1,2,....
Obviously, the limits

A(g) := lim
l→∞

I(fkl
g) for all g ∈ D

exist. The linear functional A : D → R is bounded on the space D which
lies densely in Lq(X), and we have, more precisely,

|A(g)| ≤ c‖g‖q for all g ∈ D.

As described in Theorem 8.1, we continue our functional A from D onto
the space Lq(X), and the Riesz representation theorem provides an ele-
ment f ∈ Lp(X) such that

A(g) = I(fg) for all g ∈ Lq(X).

3. Now we show that fkl
⇁ f in Lp(X) holds true. For each element g ∈

Lq(X) we find a sequence {g̃j}j=1,2,... ⊂ D satisfying

g
Lq

= lim
j→∞

g̃j ∈ Lq(X).

Then we obtain

|I(fg)− I(fkl
g)| ≤ |I(f(g − g̃j))|+ |I((f − fkl

)g̃j)|+ |I(fkl
(g̃j − g))|

≤ 2C‖g − g̃j‖q + |I((f − fkl
)g̃j)| ≤ ε

for sufficiently large - but fixed - j and the indices l ≥ l0. q.e.d.

Remarks:

1. Similarly, we can introduce the notion of weak convergence in Hilbert
spaces. Due to Hilbert’s selection theorem, we can extract a weakly con-
vergent subsequence from each bounded sequence in Hilbert spaces. How-
ever, it is not possible to extract a norm-convergent subsequence from an
arbitrary bounded sequence in infinite-dimensional Hilbert spaces. Here
we recommend the study of Section 6 in Chapter 8, in particular the first
Definition and Example as well as Hilbert’s selection theorem.

2. We assume 1 ≤ p1 ≤ p2 < +∞. Then the weak convergence fk ⇁ f in
Lp2(X) implies weak convergence fk ⇁ f in Lp1(X), which is immediately
inferred from the embedding relation Lp2(X) ↪→ Lp1(X).

Theorem 8.10. The Lp-norm is lower semicontinuous with respect to weak
convergence, which means:

fk ⇁ f in Lp(X) =⇒ ‖f‖p ≤ lim inf
k→∞

‖fk‖p.

Here we assume 1 < p < +∞ for the Hölder exponent.
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Proof: We start with fk ⇁ f in Lp(X) and deduce

I(fkg) → I(fg) for all g ∈ Lq(X).

When we choose
g(x) := |f(x)|

p
q sign f(x) ∈ Lq(X),

we infer
I
(
fk|f |

p
q sign f(x)

)
→ I(|f |p) = ‖f‖pp

with p−1 + q−1 = 1. For all quantities ε > 0, we find an index k0 = k0(ε) ∈ N

such that

‖f‖pp − ε ≤ I
(
fk|f |

p
q sign f(x)

)
≤ I
(
|fk| |f |

p
q

)

≤ ‖fk‖p
(
I(|f |p)

) 1
q

= ‖fk‖p(‖f‖p)
p
q

holds true for all indices k ≥ k0(ε). When we assume ‖f‖p > 0 - without loss
of generality - we find to each quantity ε > 0 an index k0(ε) ∈ N such that

‖fk‖p ≥ ‖f‖p − (‖f‖p)−
p
q ε for all k ≥ k0(ε)

is correct. This implies
lim inf
k→∞

‖fk‖p ≥ ‖f‖p. q.e.d.

9 Some Historical Notices to Chapter 2

The modern theory of partial differential equations requires to understand
the class of Lebesgue integrable functions – extending the classical family
of continuous functions. These more abstract concepts were only reluctantly
accepted – even by some of the mathematical heroes of their time. A beautiful
source of information, written within the golden era for mathematics in Poland
between World War I and II, is the following textbook by
Stanis�law Saks: Theory of the Integral; Warsaw 1933, Reprint by Hafner Publ.
Co., New York (1937).

We would like to present a direct quotation from the preface of this mono-
graph: “On several occasions attempts were made to generalize the old process
of integration of Cauchy-Riemann, but it was Lebesgue who first made real
progress in this matter. At the same time, Lebesgue’s merit is not only to
have created a new and more general notion of integral, nor even to have
established its intimate connection with the theory of measure: the value of
his work consists primarily in his theory of derivation which is parallel to
that of integration. This enabled his discovery to find many applications in
the most widely different branches of analysis and, from the point of view of
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method, made it possible to reunite the two fundamental conceptions of in-
tegral, namely that of definite integral and that of primitive, which appeared
to be forever separated as soon as integration went outside the domain of
continuous functions.”

The integral of Lebesgue (1875–1941) was wonderfully combined with the
abstract spaces created by D.Hilbert (1862–1943) and S. Banach (1892–1945).
When we develop the modern theory of partial differential equations in the
next volume of our textook, we shall highly appreciate the great vision of the
words above by Stanis�law Saks – written already in 1933.

Figure 1.2 Portrait of Stefan Banach (1892–1945)

taken from the Lexikon bedeutender Mathematiker edited by S. Gottwald,
H.-J. Ilgauds, and K.-H. Schlote in Bibliographisches Institut Leipzig (1988).



Chapter 3

Brouwer’s Degree of Mapping

Let the function f : [a, b] → R be continuous with the property f(a) < 0 <
f(b). Due to the intermediate value theorem, there exists a number ξ ∈ (a, b)
satisfying f(ξ) = 0. When we assume that the function f is differentiable and
each zero ξ of f is nondegenerate - this means f ′(ξ) �= 0 holds true - we name
by

i(f, ξ) := sgn f ′(ξ)

the index of f at the point ξ. We easily deduce the following index-sum formula

∑
ξ∈(a,b): f(ξ)=0

i(f, ξ) = 1,

where this sum possesses only finitely many terms. In this chapter we intend
to deduce corresponding results for functions in n variables. We start with the
case n = 2, which is usually treated in a lecture on complex analysis.

1 The Winding Number

Let us begin with the following

Definition 1.1. The number k ∈ N0 := N ∪ {0} being prescribed, we define
the set of k-times continuously differentiable (in the case k ≥ 1) or continuous
(in the case k = 0) periodic complex-valued functions by the symbol

Γk :=
{
ϕ = ϕ(t) : R → C ∈ Ck(R,C) : ϕ(t+ 2π) = ϕ(t) for all t ∈ R

}
.

Now we note the following

Definition 1.2. Let the function ϕ ∈ Γ1 with ϕ(t) �= 0 for all t ∈ R be given.
Then we define the winding number of the closed curve ϕ(t), 0 ≤ t ≤ 2π with
respect to the point z = 0 as follows:

F. Sauvigny, Partial Differential Equations 1, Universitext,
DOI 10.1007/978-1-4471-2981-3 3, © Springer-Verlag London 2012

175

http://dx.doi.org/10.1007/978-1-4471-2981-3_3


176 Chapter 3 Brouwer’s Degree of Mapping

W (ϕ) =W (ϕ, 0) :=
1

2πi

2π∫
0

ϕ′(t)

ϕ(t)
dt.

Remark: For the function ϕ ∈ Γ1 we have the identity

1

2πi

2π∫
0

ϕ′(t)

ϕ(t)
dt =

1

2πi

2π∫
0

d

dt

(
logϕ(t)

)
dt

=
1

2πi

2π∫
0

d

dt

(
log |ϕ(t))|+ i argϕ(t)

)
dt.

Therefore, we obtain

W (ϕ) =
1

2π

2π∫
0

d

dt

(
argϕ(t)

)
dt =

1

2π

(
argϕ(2π)− argϕ(0)

)
,

where we have to extend the function argϕ(t) along the curve continuously.
The integer W (ϕ) consequently describes the number of rotations (or wind-
ings) of the curve ϕ about the origin.

Theorem 1.3. Let the function ϕ ∈ Γ1 with ϕ(t) �= 0 for all t ∈ R be given.
Then we have the statement W (ϕ) ∈ Z.

Proof: We consider the function

Φ(t) := ϕ(t) exp

(
−

t∫
0

ϕ′(s)

ϕ(s)
ds

)
, 0 ≤ t ≤ 2π.

We observe

Φ′(t) = exp

(
−

t∫
0

ϕ′(s)

ϕ(s)
ds

){
ϕ′(t) + ϕ(t)

(
− ϕ′(t)

ϕ(t)

)}
= 0

for all 0 ≤ t ≤ 2π and consequently Φ(t) = const. In particular, we see

ϕ(0) = Φ(0) = Φ(2π) = ϕ(2π) exp

(
−

2π∫
0

ϕ′(s)

ϕ(s)
ds

)

and therefore

exp

( 2π∫
0

ϕ′(s)

ϕ(s)
ds

)
= 1 as well as

2π∫
0

ϕ′(s)

ϕ(s)
ds = 2πik, k ∈ Z.
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This implies W (ϕ) = k ∈ Z.

q.e.d.

Proposition 1.4. For the functions ϕ0, ϕ1 ∈ Γ1 we assume |ϕ0(t)| > ε and
|ϕ0(t)− ϕ1(t)| < ε, t ∈ R with a number ε > 0. Then we have the identity

W (ϕ0) =W (ϕ1).

Proof: With t ∈ R, 0 ≤ τ ≤ 1 we consider the family of functions

Φτ (t) = ϕ(t, τ) := (1− τ)ϕ0(t) + τϕ1(t) = ϕ0(t) + τ(ϕ1(t)− ϕ0(t)).

These have the properties

|ϕ(t, τ)| ≥ |ϕ0(t)| − τ |ϕ1(t)− ϕ0(t)| > ε− τε ≥ 0

as well as

ϕ(t, 0) = ϕ0(t), ϕ(t, 1) = ϕ1(t) for all t ∈ R.

Furthermore, we note that

W (Φτ ) =
1

2πi

2π∫
0

Φ′
τ (t)

Φτ (t)
dt =

1

2πi

2π∫
0

(1− τ)ϕ′
0(t) + τϕ

′
1(t)

(1− τ)ϕ0(t) + τϕ1(t)
dt,

with an integrand which is continuous in the variables (t, τ) ∈ [0, 2π]× [0, 1].
Therefore, the winding number W (Φτ ) is continuous in the parameter τ ∈
[0, 1] and gives an integer due to Theorem 1.3. Consequently, the identity
W (ϕτ ) = const holds true, and we arrive at the statement W (ϕ0) = W (ϕ1)
from above.

q.e.d.

We shall now define the winding number for continuous, closed curves as well.
From Proposition 1.4 we immediately infer the subsequent

Proposition 1.5. Let {ϕk}k=1,2,... ⊂ Γ1 denote a sequence of curves with
ϕk(t) �= 0 for all t ∈ R and k ∈ N, which converge uniformly on the inter-
val [0, 2π] towards the continuous function ϕ ∈ Γ0. Furthermore, we assume
ϕ(t) �= 0 for all t ∈ R. Then we have a number k0 ∈ N such that

W (ϕk) =W (ϕl) for all k, l ≥ k0

holds true.

Definition 1.6. Let us consider the function ϕ ∈ Γ0 with ϕ(t) �= 0 for all
t ∈ R. Furthermore, let the sequence of functions {ϕk}k=1,2,... ⊂ Γ1 with
ϕk(t) �= 0 for all t ∈ R and k ∈ N be given, which converges uniformly on the
interval [0, 2π] towards the function ϕ as follows:



178 Chapter 3 Brouwer’s Degree of Mapping

lim
k→∞

ϕk(t) = ϕ(t) for all t ∈ [0, 2π].

Then we define
W (ϕ) := lim

k→∞
W (ϕk).

Remark: The existence of such a sequence for each continuous function ϕ ∈ Γ0
can be ascertained by the usual mollification process. We still have to show
that the limit is independent of the choice of an approximating sequence
{ϕk}k=1,2,... ⊂ Γ1. Taking two approximating sequences {ϕk}k=1,2,... and
{ϕ̃k}k=1,2,..., we make the transition to the mixed sequence

ϕ1, ϕ̃1, ϕ2, ϕ̃2, . . . =: {ψk}k=1,2,...

and Proposition 1.5 yields

lim
k→∞

W (ϕ̃k) = lim
k→∞

W (ψk) = lim
k→∞

W (ϕk).

From Theorem 1.3 and Proposition 1.5 we infer the inclusion W (ϕ) ∈ Z for
ϕ ∈ Γ0.

Theorem 1.7. (Homotopy lemma)
Let the family of continuous curves Φτ (t) = ϕ(t, τ) ∈ Γ0 for τ− ≤ τ ≤ τ+ be
given. Furthermore, we have ϕ(t, τ) ∈ C0([0, 2π]× [τ−, τ+],R2) and

ϕ(t, τ) �= 0 for all (t, τ) ∈ [0, 2π]× [τ−, τ+].

Then the winding numbers W (Φτ ) in [τ−, τ+] are constant.

Remark: The family of curves described in the theorem above is named a
homotopy. Therefore, the winding number is homotopy-invariant.

Proof of Theorem 1.7: On account of the property ϕ(t, τ) �= 0 and the com-
pactness of the set [0, 2π] × [τ−, τ+], we have a number ε > 0 such that the
inequality |ϕ(t, τ)| > ε for all (t, τ) ∈ [0, 2π] × [τ−, τ+] holds true. Since the
function ϕ is uniformly continuous on the interval [0, 2π]× [τ−, τ+], we have
a number δ(ε) > 0 with the property

|ϕ(t, τ∗)− ϕ(t, τ∗∗)| < ε for all t ∈ [0, 2π], if |τ∗ − τ∗∗| < δ(ε).

With the symbols {ϕ∗
k}k=1,2,... ⊂ Γ1 and {ϕ∗∗

k }k=1,2,... ⊂ Γ1, we consider two
approximating sequences such that

lim
k→∞

ϕ∗
k(t) = ϕ(t, τ

∗) and lim
k→∞

ϕ∗∗
k (t) = ϕ(t, τ∗∗) for all t ∈ [0, 2π]

hold true. Then we have an index k0 ∈ N such that the following estimates
are valid for all k ≥ k0:
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|ϕ∗
k(t)| > ε, |ϕ∗∗

k (t)| > ε, |ϕ∗
k(t)− ϕ∗∗

k (t)| < ε for all t ∈ [0, 2π].

Proposition 1.4 now yields W (ϕ∗
k) = W (ϕ∗∗

k ) for all indices k ≥ k0, and we
infer

W (Φτ∗) =W (Φτ∗∗) for all τ∗, τ∗∗ ∈ [τ−, τ+] with |τ∗ − τ∗∗| < δ(ε).

Since the quantity δ(ε) does not depend on τ∗, τ∗∗ and the interval [τ−, τ+]
is compact, a continuation argument gives us the identity W (Φτ ) = const for
all parameters τ ∈ [τ−, τ+].

q.e.d.

Theorem 1.8. Let the disc

BR :=
{
z ∈ C : |z| ≤ R

}

and the continuous function f : BR → C be given for a fixed radius R > 0.
The boundary function ϕ(t) := f(Reit) may fulfill the condition

ϕ(t) �= 0 for 0 ≤ t ≤ 2π,

and the winding number of ϕ satisfies W (ϕ) �= 0. Then we have a point

z∗ ∈
◦
BR with f(z∗) = 0.

Proof: We assume that f did not have any zero in BR. Then we consider the
following homotopy:

Φτ (t) := f(τe
it), 0 ≤ t ≤ 2π, 0 ≤ τ ≤ R.

With the aid of Theorem 1.7 and the identity Φ0(t) = f(0) = const, we infer

0 =W (Φ0) =W (ΦR)

in contradiction to the assumption W (ΦR) =W (ϕ) �= 0. q.e.d.

Theorem 1.9. (Rouché)
The radius R > 0 being fixed, let f0, f1 : BR → C denote two continuous
functions with the property

|f1(z)− f0(z)| < |f0(z)| for all z ∈ ∂BR.

The curve ϕ0(t) := f0(Re
it) satisfies the condition

ϕ0(t) �= 0 for 0 ≤ t ≤ 2π as well as W (ϕ0) �= 0.

Then we have a point z∗ ∈
◦
BR with f1(z∗) = 0.
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Proof: We set ϕ1(t) := f1(Re
it), 0 ≤ t ≤ 2π, and consider the homotopy

Φτ (t) = ϕ(t, τ) := (1− τ)ϕ0(t) + τϕ1(t), 0 ≤ t ≤ 2π.

Note that

|ϕ(t, τ)| = |ϕ0(t) + τ(ϕ1(t)− ϕ0(t))|
≥ |ϕ0(t)| − |ϕ1(t)− ϕ0(t)| > 0

for all (t, τ) ∈ [0, 2π] × [0, 1] holds true, and the homotopy lemma yields

W (ϕ1) =W (ϕ0) �= 0. According to Theorem 1.8, there exists a point z∗ ∈
◦
BR

with f1(z∗) = 0.

q.e.d.

Theorem 1.10. (Fundamental theorem of Algebra)
Each nonconstant complex polynomial

f(z) = zn + an−1z
n−1 + . . .+ a0

of the degree n ∈ N possesses at least one complex zero.

Proof: (C.F.Gauß)
We set f0(z) := zn, z ∈ C and consider the following function for a fixed
R > 0, namely

ϕ0(t) := f(Re
it) = Rneint, 0 ≤ t ≤ 2π.

We calculate

W (ϕ0) =
1

2πi

2π∫
0

ϕ′
0(t)

ϕ0(t)
dt =

1

2πi

2π∫
0

inRneint

Rneint
dt = n ∈ N.

We choose the radius R > 0 so large that all points z ∈ C with |z| = R fulfill
the subsequent inequality:

|f0(z)| = Rn > |f(z)− f0(z)| = |an−1z
n−1 + . . .+ a0|.

Using the theorem of Rouché, we then find a point z∗ ∈ C with |z∗| < R such
that f(z∗) = 0 is satisfied.

q.e.d.

Theorem 1.11. (Brouwer’s fixed point theorem)
Let f(z) : BR → BR denote a continuous mapping. Then the function f
possesses at least one fixed point: This means that we have a point z∗ ∈ BR

satisfying f(z∗) = z∗.
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Proof: We consider the family of mappings

g(z, τ) := z − τf(z), z ∈ BR , τ ∈ [0, 1).

For all points z ∈ ∂BR we have

|g(z, τ)| ≥ |z| − τ |f(z)| ≥ R(1− τ) > 0.

Now we apply Rouché’s theorem on the function f0(z) := z, with the bound-
ary function ϕ0(t) = Reit, and on the function f1(z) := g(z, τ), for a fixed

parameter τ ∈ [0, 1). Then we find a point zτ ∈
◦
BR - for each parameter

τ ∈ [0, 1) - with the following property:

0 = f1(zτ ) = zτ − τf(zτ ).

For the parameters τn = 1− 1
n with n = 1, 2, . . ., we obtain the relation

(
1− 1

n

)
f(zn) = zn, n = 1, 2, . . .

abbreviating zn := zτn . Selecting a subsequence which converges in BR, the
continuity of the function f gives us the limit relation

z∗ := lim
k→∞

znk
= lim

k→∞
τnk
f(znk

)

= lim
k→∞

f(znk
) = f(z∗).

q.e.d.

Definition 1.12. Let z ∈ C denote an arbitrary point, and the function ϕ(t) ∈
Γ0 may satisfy the condition ϕ(t) �= z for all t ∈ R. Then we name

W (ϕ, z) :=W (ϕ(t)− z)

the winding number of the curve ϕ about the point z.

Theorem 1.13. Let the function ϕ ∈ Γ0 with the associate curve

γ := {ϕ(t) ∈ C : 0 ≤ t ≤ 2π}

be prescribed. Furthermore, let the domain G ⊂ C \ γ be given. Then the
following function

ψ(z) :=W (ϕ, z), z ∈ G

is constant. If the domain G contains a point z0 with |z0| > max{|ϕ(t)| : 0 ≤
t ≤ 2π}, then we have the identity

ψ(z) ≡ 0, z ∈ G.
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Proof:

1. Let z0 and z1 denote two points in G, which are connected by the contin-
uous path

z = z(τ) : [0, 1] → G with z(0) = z0, z(1) = z1.

We consider the family of curves

ϕτ (t) := ϕ(t)− z(τ) �= 0, t ∈ [0, 2π], τ ∈ [0, 1].

The homotopy lemma implies

const =W (ϕτ ) =W (ϕ− z(τ)) =W (ϕ, z(τ)), τ ∈ [0, 1],

and consequently W (ϕ, z0) =W (ϕ, z1) for arbitrary pairs z0, z1 ∈ G.
2. If we have a point z0 ∈ G with the property |z0| > max{|ϕ(t)| : 0 ≤ t ≤

2π}, we consider the following path

z(τ) :=
1

1− τ z0 , τ ∈ [0, 1)

satisfying the condition z(τ) �∈ γ for all τ ∈ [0, 1) . Now we comprehend the
identity W (ϕ, z(τ)) = const for τ ∈ [0, 1). With the assumption ϕ ∈ Γ1,
we deduce the relation

lim
τ→1−

W (ϕ, z(τ)) = lim
τ→1−

⎧⎨
⎩

1

2πi

2π∫
0

ϕ′(t)

ϕ(t)− z(τ) dt

⎫⎬
⎭ = 0.

The functions ϕ ∈ Γ1 consequently fulfill W (ϕ, z(τ)) = 0 for all τ ∈
[0, 1) and finallyW (ϕ, z0) = 0. Via approximation, we deduce the identity
W (ϕ, z0) = 0 for the functions ϕ ∈ Γ0 as well.

q.e.d.

Definition 1.14. Let the continuous function

f = f(z) : {z ∈ C : |z − z0| ≤ ε0} → C with z0 ∈ C and ε0 > 0

be given, which possesses an isolated zero at the origin z0 in the following
sense: We have the relations

f(z0) = 0 and f(z) �= 0 for all points 0 < |z − z0| ≤ ε0.

Then we define the index of f with respect to z = z0 as follows:

i(f, z0) :=W (ϕ) with ϕ(t) := f(z0 + εe
it), 0 ≤ t ≤ 2π, 0 < ε ≤ ε0.

Remark: On account of the homotopy lemma (Theorem 1.7), this definition
is justified because W (ϕ) does not depend on ε.
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Example 1.15. Let the function f(z) be holomorphic with an isolated zero at
the point z0. Then f admits the representation

f(z) = (z − z0)ng(z) with the integer n ∈ N,

where the function g(z) is analytic and g(z0) �= 0 holds true. This implies the
identity

i(f, z0) = i((z − z0)n, z0) = n ∈ N.

Example 1.16. An antiholomorphic function f(z) (that means f(z) is holo-
morphic) with the property f(z0) = 0 admits the representation

f(z) = (z − z0)ng(z).

Here the function g(z) is analytic and g(z0) �= 0 holds true. The index of f
with respect to z0 satisfies the identity

i(f, z0) = −n ∈ −N.

Theorem 1.17. (Index-sum formula)
The function f ∈ C2(BR,C) has the boundary function ϕ(t) := f(Reit) �= 0,

t ∈ [0, 2π]. Furthermore, this function f possesses in
◦
BR the mutually different

zeroes zk with their associate indices i(f, zk), k = 1, . . . , p and their total
number p ∈ N0. Then we have the identity

W (ϕ) =

p∑
k=1

i(f, zk).

Proof:

1. We set
F (x, y) := log f(x, y), (x, y) ∈ BR

and calculate

W (ϕ) =
1

2πi

2π∫
0

ϕ′(t)

ϕ(t)
dt =

1

2πi

2π∫
0

d
dtf(Re

it)

f(Reit)
dt

=
1

2πi

2π∫
0

fx(Re
it)(−R sin t) + fy(Re

it)(R cos t)

f(Reit)
dt

=
1

2πi

∮
∂BR

{Fx dx+ Fy dy} =
1

2πi

∮
∂BR

dF

with the Pfaffian form dF = Fx(x, y)dx+ Fy(x, y)dy. Here the boundary
∂BR is described in the mathematically positive sense.
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2. The sufficiently small quantity ε > 0 being given, we consider the domain

Ω(ε) :=
{
z ∈

◦
BR : |z − zk| > ε for k = 1, . . . , p

}
.

Setting

ϕk(t) := f(zk + εeit), 0 ≤ t ≤ 2π, k = 1, . . . , p,

we deduce

W (ϕk) =
1

2πi

∮
|z−zk|=ε

dF, k = 1, . . . , p,

similarly as in part 1 of our proof. Here the curves |z−zk| = ε are described
in the mathematically positive sense. The Stokes integral theorem yields

W (ϕ)−
p∑

k=1

i(f, zk) = W (ϕ)−
p∑

k=1

W (ϕk)

=
1

2πi

∮
∂BR

dF − 1

2πi

p∑
k=1

∮
|z−zk|=ε

dF

=
1

2πi

∫
∂Ω(ε)

dF =
1

2πi

∫
Ω(ε)

ddF

= 0. q.e.d.

2 The Degree of Mapping in R
n

J.L.E. Brouwer introduced the degree of mapping in R
n by simplicial approxi-

mation within combinatorial topology. When we intend to define the degree of
mapping analytically, we have to replace the integral of the winding number
by (n−1)-dimensional surface-integrals in R

n (compare G. de Rham: Varietés
differentiables). E.Heinz transformed the boundary integral for the winding
number into an area integral and thus created a possibility to define the de-
gree of mapping in R

n in a natural way. We present the transition from the
integral of the winding number to the area integral in R

2 in the sequel:

Let the radius R ∈ (0,+∞) and the function f = f(z) ∈ C2(BR,C) satisfying
ϕ(t) := f(Reit) �= 0, 0 ≤ t ≤ 2π be given. We choose ε > 0 so small that
ε < |ϕ(t)| for all t ∈ [0, 2π] holds true. Now we consider a function

ψ(r) =

{
0, 0 ≤ r ≤ δ
1, ε ≤ r

∈ C1([0,+∞),R)
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with 0 < δ < ε, and we investigate the integral of the winding number

2πiW (ϕ) =

∮
∂BR

{
fx
f
dx+

fy
f
dy

}
=

∮
∂BR

dF

=

∮
∂BR

ψ(|f(z)|)dF (z) =

∮
∂BR

ψ(|f(x, y)|)dF (x, y)

with
F (x, y) = log f(x, y) + 2πik, k ∈ Z.

We remark that F is only locally defined, whereas the differential dF is glob-
ally available. The 1-form

ψ(|f(x, y)|) dF (x, y), (x, y) ∈ BR

belongs to the class C1(BR), and we determine its exterior derivative. Via the
identity

d
{
ψ(|f(x, y)|)

}
= ψ′(|f(x, y)|)

{(
(f · f) 1

2

)
x
dx+

(
(f · f) 1

2

)
y
dy
}

=
ψ′(|f(x, y)|)
2|f(x, y)|

{
f(fx dx+ fy dy) + f(fx dx+ fy dy)

}

we obtain

d
{
ψ(|f |) dF

}
= d
{
ψ(|f |)

}
∧ dF

=
ψ′(|f(x, y)|)
2|f(x, y)|

{
f(fx dx+ fy dy) + f(fx dx+ fy dy)

}

∧
{
1

f
(fx dx+ fy dy)

}

=
ψ′(|f(x, y)|)
2|f(x, y)|

{
fx dx+ fy dy

}
∧
{
fx dx+ fy dy

}

=
ψ′(|f(x, y)|)
2|f(x, y)|

{
(fx dx ∧ fy dy)− (fx dx ∧ fy dy)

}

= i
ψ′(|f(x, y)|)
|f(x, y)| Im

{
fx dx ∧ fy dy

}
.

When we set f = u(x, y) + iv(x, y) as usual, we observe
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d
{
ψ(|f |) dF

}
= i

ψ′(|f(x, y)|)
|f(x, y)| Im

{
(ux − ivx) dx ∧ (uy + ivy) dy

}

= i
ψ′(|f(x, y)|)
|f(x, y)| (uxvy − vxuy) dx ∧ dy

= i
ψ′(|f(x, y)|)
|f(x, y)|

∂(u, v)

∂(x, y)
dx ∧ dy.

The Stokes integral theorem therefore yields

2πW (ϕ) =

∫
BR

∫
ψ′(|f(x, y)|)
|f(x, y)|

∂(u, v)

∂(x, y)
dxdy.

Now we define ω(t) :=
ψ′(t)

t
with t ≥ 0 and note that

ψ(t) =

t∫
0

τω(τ)dτ, t ≥ 0

holds true. Let us choose a function ω(t) ∈ C0([0,+∞),R) with the following
properties:

(a) We have ω(t) = 0 for all t ∈ [0, δ] ∪ [ε,+∞);

(b) The condition

∞∫
0

�ω(�) d� = 1 holds true.

Then we observe

W (ϕ) =
1

2π

∫
BR

∫
ω(|f(x, y)|)Jf (x, y) dxdy.

Via the transition

ω̃(t) :=
1

2π
ω(t),

we obtain the normalization

(b’)

∫
R2

∫
ω̃(|z|) dxdy = 1 with z = x+ iy,

and we see

W (ϕ) =

∫
BR

∫
ω̃(|f(x, y)|)Jf (x, y) dxdy.

These considerations propose the following definition for the degree of map-
ping in R

n, namely
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Definition 2.1. Let Ω ⊂ R
n denote a bounded open set in R

n, and let us take
the function

f = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) ∈ Ck(Ω,Rn) ∩ C0(Ω,Rn)

for k ∈ N with the property f(x) �= 0 for all points x ∈ ∂Ω. Given the inequal-
ity 0 < ε < inf {|f(x)| : x ∈ ∂Ω}, we consider a function ω ∈ C0([0,+∞),R)
with the following properties:

(a) We have ω(r) = 0 for all r ∈ [0, δ] ∪ [ε,+∞), with δ ∈ (0, ε) chosen
suitably;

(b) We require the condition
∫
Rn

ω(|y|) dy = 1.

Then we define Brouwer’s degree of mapping for f with respect to y = 0 as
follows:

d(f,Ω) = d(f,Ω, 0) :=

∫
Ω

ω
(
|f(x)|

)
Jf (x)dx.

Here we denote by

Jf (x) =
∂(f1, . . . , fn)

∂(x1, . . . , xn)
, x ∈ Ω

the Jacobian of the mapping f .

Remarks:

1. Introducing n-dimensional spherical coordinates due to

y = rη = (rη1, . . . , rηn) ∈ R
n with r > 0, |η| = 1,

we comprehend ∫
Rn

ω(|y|) dy = ω̂n
∞∫
0

rn−1ω(r) dr,

where the symbol ω̂n means the area of the (n−1)-dimensional unit sphere
in R

n.
2. We still have to establish the independence of the quantity d(f,Ω) from

the admissible test function ω chosen.

The subsequent result is fundamental.

Theorem 2.2. Let Ω ⊂ R
n denote a bounded open set - with n ∈ N - and

consider the function f ∈ C1(Ω,Rn) ∩ C0(Ω,Rn) satisfying |f(x)| > ε > 0
for all points x ∈ ∂Ω. Furthermore, let ω(r) ∈ C0

(
[0,+∞)

)
represent a test

function with the following properties:
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(a) ω(r) = 0 for all r ∈ [0, δ] ∪ [ε,+∞), 0 < δ < ε;

(b)

∞∫
0

rn−1ω(r) dr = 0.

Then we have the identity

∫
Ω

ω
(
|f(x)|

)
Jf (x) dx = 0.

Proof:

1. It is sufficient to show the identity above only for those functions f ∈
C2(Ω,Rn) ∩ C0(Ω,Rn). By approximation this relation pertains to all
functions f ∈ C1(Ω,Rn) ∩ C0(Ω,Rn).

2. Let us consider the function

f(x) = (f1(x), . . . , fn(x)) ∈ C2(Ω,Rn) ∩ C0(Ω,Rn)

and an arbitrary vector-field

a(y) = (a1(y), . . . , an(y)) ∈ C1(Rn,Rn).

Then we introduce the (n− 1)-form

λ :=

n∑
i=1

(−1)1+iai(f(x)) df1 ∧ . . . ∧ dfi−1 ∧ dfi+1 ∧ . . . ∧ dfn.

With the aid of the identity

d{ai(f(x))} =

n∑
j=1

d

dxj

(
ai(f(x))

)
dxj =

n∑
j,k=1

∂ai
∂yk

(f(x))
∂fk
∂xj

dxj

=

n∑
k=1

∂ai
∂yk

(f(x)) dfk

we determine the exterior derivative

dλ =

n∑
i=1

(−1)i+1d{ai(f(x))
}
∧ df1 ∧ . . . ∧ dfi−1 ∧ dfi+1 ∧ . . . ∧ dfn

=

n∑
i=1

∂ai
∂yi

(f(x)) df1 ∧ . . . ∧ fn = div a(f(x)) Jf (x) dx1 ∧ . . . ∧ dxn.

3. Now we choose the vector-field a(y) such that ω(|y|) = div a(y) holds true.
Via the function ψ(r) ∈ C1

0 (0,+∞), we propose the ansatz a(y) := ψ(|y|)y
and realize
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ω(|y|) = div a(y) = nψ(|y|) + ψ′(|y|)
(
y · y|y|

)
= nψ(|y|) + |y|ψ′(|y|).

Using r = |y|, we obtain the differential equation

ω(r)

r
= ψ′(r) + n

ψ(r)

r
=

(rnψ(r))′

rn

with the solution

ψ(r) = r−n

r∫
0

�n−1ω(�)d�.

We note that ψ(r) = 0 for all r ∈ [0, δ] ∪ [ε,+∞) holds true.
4. With the (n− 1)-form

λ := ψ
(
|f(x)|

) n∑
i=1

(−1)i+1fi(x) df1∧. . .∧dfi−1∧dfi+1∧. . .∧dfn ∈ C1
0 (Ω)

we consequently obtain

dλ = ω
(
|f(x)|

)
Jf (x) dx1 ∧ . . . ∧ dxn.

The Stokes integral theorem now yields∫
Ω

ω
(
|f(x)|

)
Jf (x) dx1 ∧ . . . ∧ dxn =

∫
Ω

dλ = 0.

q.e.d.

Corollary from Theorem 2.2: Definition 2.1 is independent from the choice
of the test function: Let ω1, ω2 represent two admissible test functions: The
function ω1 may satisfy the condition (a) from Definition 2.1 with δ1 ∈ (0, ε),
and the function ω2 may fulfill the condition (a) with δ2 ∈ (0, ε). Then we
have the identity

∞∫
0

rn−1(ω1(r)− ω2(r))dr = 0, (ω1 − ω2)(r) = 0 for r ∈ [0, δ] ∪ [ε,+∞)

with δ := min{δ1, δ2} ∈ (0, ε). Theorem 2.2 yields∫
Ω

(
ω1(|f(x)|)− ω2(|f(x)|)

)
Jf (x)dx = 0

and consequently∫
Ω

ω1
(
|f(x)|

)
Jf (x)dx =

∫
Ω

ω2
(
|f(x)|

)
Jf (x)dx.

q.e.d.

In order to prepare the homotopy lemma we prove
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Proposition 2.3. Let the two functions f1, f2 ∈ C1(Ω,Rn) ∩ C0(Ω,Rn) sat-
isfy |fi(x)| > 5ε with i = 1, 2 for all points x ∈ ∂Ω. Furthermore, let the
inequality

|f1(x)− f2(x)| < ε for all points x ∈ Ω
be valid. Then we have the identity

d(f1, Ω) = d(f2, Ω).

Proof: Let λ = λ(r) ∈ C1
(
[0,+∞), [0, 1]

)
denote an auxiliary function such

that

λ(r) =

{
1, 0 ≤ r ≤ 2ε

0, 3ε ≤ r
.

Then we consider the function

f3(x) :=
(
1− λ

(
|f1(x)|

))
f1(x) + λ

(
|f1(x)|

)
f2(x), x ∈ Ω.

We note that f3 ∈ C1(Ω,Rn) ∩ C0(Ω,Rn) and

|f3(x)| > 4ε for all points x ∈ ∂Ω

as well as

|f3(x)− fi(x)| ≤
(
1− λ

(
|f1(x)|

))
|f1(x)− fi(x)|

+λ
(
|f1(x)|

)
|f2(x)− fi(x)| < ε, x ∈ Ω with i = 1, 2

hold true. Now we observe

f3(x) =

{
f1(x) for all x ∈ Ω with |f1(x)| ≥ 3ε

f2(x) for all x ∈ Ω with |f2(x)| ≤ ε
.

Let the symbols ω1(r) ∈ C0
0 ((3ε, 4ε),R) and ω2 ∈ C0

0 ((0, ε),R) denote two
admissible test functions. Then we infer the identities

ω1(|f1(x)|)Jf1(x) = ω1(|f3(x)|)Jf3(x), x ∈ Ω,

and
ω2(|f2(x)|)Jf2(x) = ω2(|f3(x)|)Jf3(x), x ∈ Ω.

An integration immediately yields

d(f1, Ω) =

∫
Ω

ω1
(
|f1(x)|

)
Jf1(x) dx =

∫
Ω

ω1
(
|f3(x)|

)
Jf3(x) dx

=

∫
Ω

ω2
(
|f3(x)|

)
Jf3(x) dx =

∫
Ω

ω2
(
|f2(x)|

)
Jf2(x) dx = d(f2, Ω).

q.e.d.

Proposition 2.3 directly implies
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Proposition 2.4. Let the function f : Ω → R
n ∈ C0(Ω,Rn) be given with

the property f(x) �= 0 for all x ∈ ∂Ω. Furthermore, let

{fk}k=1,2,... ⊂ C1(Ω,Rn) ∩ C0(Ω,Rn)

denote a sequence of functions satisfying

fk(x) �= 0 for all x ∈ ∂Ω and all k ∈ N,

such that the convergence

lim
k→∞

fk(x) = f(x)

is uniform in Ω. Then we have an index k0 ∈ N such that the identities

d(fk, Ω) = d(fl, Ω) for all k, l ≥ k0

are valid.

On account of Proposition 2.4 the following definition is justified.

Definition 2.5. Let the function f(x) ∈ C0(Ω,Rn) with f(x) �= 0 for all
x ∈ ∂Ω be given. Furthermore, let the sequence of functions {fk}k=1,2,... ⊂
C1(Ω,Rn) ∩ C0(Ω,Rn) be given with the property

fk(x) �= 0 for all points x ∈ ∂Ω and all k ∈ N,

which converge uniformly in Ω as follows:

fk(x) −→ f(x) for k → ∞.

Then we define
d(f,Ω) := lim

k→∞
d(fk, Ω)

and name this quantity Brouwer’s degree of mapping for continuous functions.

Fundamental is the following result.

Theorem 2.6. (Homotopy lemma)
Let fτ (x) ∈ C0(Ω,Rn) for a ≤ τ ≤ b denote a family of continuous mappings
with the following properties:

(a) fτ (x) = f(x, τ) : Ω × [a, b] → R
n ∈ C0(Ω × [a, b],Rn),

(b) fτ (x) �= 0 for all points x ∈ ∂Ω and all parameters τ ∈ [a, b].

Then we have the identity d(fτ , Ω) = const in [a, b].
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Proof: At first, we have a quantity ε > 0 such that |fτ (x)| > 5ε for all
points x ∈ ∂Ω and all parameters τ ∈ [a, b] is correct. Furthermore, there
exists a number δ = δ(ε) > 0 such that all parameters τ∗, τ∗∗ ∈ [a, b] with
|τ∗ − τ∗∗| < δ(ε) satisfy the inequality

|f(x, τ∗)− f(x, τ∗∗)| < ε for all points x ∈ Ω.

With

{f∗k}k=1,2,... and {f∗∗k }k=1,2,... ⊂ C1(Ω,Rn) ∩ C0(Ω,Rn)

we consider admissible sequences of approximation for the functions fτ∗(x)
and fτ∗∗(x), respectively. Then we have an index k0 ∈ N, such that the in-
equalities

|f∗k (x)| > 5ε, |f∗∗k (x)| > 5ε for all x ∈ ∂Ω and all k ≥ k0

as well as

|f∗k (x)− f∗∗k (x)| < ε for all points x ∈ Ω and all indices k ≥ k0

are valid. Now Proposition 2.3 yields

d(f∗k , Ω) = d(f∗∗k , Ω) for all indices k ≥ k0,

and we observe

d(fτ∗ , Ω) = d(fτ∗∗ , Ω) for all τ∗, τ∗∗ ∈ [a, b] with |τ∗ − τ∗∗| < δ(ε).

This implies the identity d(fτ , Ω) = const for a ≤ τ ≤ b. q.e.d.

Theorem 2.7. Let the function f ∈ C0(Ω,Rn) with f(x) �= 0 for all points
x ∈ ∂Ω be given, such that d(f,Ω) �= 0 holds true. Then we have a point
ξ ∈ Ω satisfying f(ξ) = 0.

Proof: If this statement were false, we would have a quantity ε > 0 with
the property |f(x)| > ε for all points x ∈ Ω. Let us denote the sequence of
functions {fk}k=1,2,... ⊂ C1(Ω,Rn) ∩ C0(Ω,Rn), where the convergence

fk(x) −→ f(x) for k → ∞

is uniform in Ω. Now we have an index k0 ∈ N such that |fk(x)| > ε in Ω
holds true for all indices k ≥ k0. When ω = ω(r) ∈ C0

0

(
(0, ε),R) denotes an

admissible test function satisfying

∫
Rn

ω(|y|)dy = 1,
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we deduce the relation

d(fk, Ω) =

∫
Ω

ω
(
|fk(x)|

)
Jfk(x)dx = 0 for all indices k ≥ k0

and consequently
d(f,Ω) = lim

k→∞
d(fk, Ω) = 0

in contradiction to the assumption. Therefore, we have a point ξ ∈ Ω satisfying
f(ξ) = 0. q.e.d.

Theorem 2.8. Let the functions f0, f1 ∈ C0(Ω,Rn) with |f0(x) − f1(x)| <
|f1(x)| for all x ∈ ∂Ω be given. Then we have the identity

d(f0, Ω) = d(f1, Ω).

Proof: We utilize the linear homotopy

fτ (x) = τf0(x) + (1− τ)f1(x), x ∈ Ω, τ ∈ [0, 1].

On account of fτ (x) �= 0 for all x ∈ ∂Ω and all τ ∈ [0, 1], Theorem 2.6 yields
the identity

d(f0, Ω) = d(f1, Ω). q.e.d.

Definition 2.9. Let Ω ⊂ R
n denote a bounded open set, and let the func-

tion f(x) : ∂Ω → R
n \ {0} be continuous. Furthermore, let the function

f̂(x) : Rn → R
n ∈ C0(Rn,Rn) with f̂(x) = f(x) for all x ∈ ∂Ω constitute a

continuous extension of f onto the entire space R
n. Then we set

v(f, ∂Ω) := d(f̂ , Ω)

for the order of the function f with respect to the point z = 0.

Remarks:

1. Due to Tietze’s extension theorem, there always exists such a continuation
f̂ of f .

2. Theorem 2.8 tells us that v(f, ∂Ω) is independent of the extension chosen.

Using Definition 2.9, we obtain the following corollary from the homotopy
lemma:

Theorem 2.10. Let fτ (x) = f(x, τ) : ∂Ω × [a, b] → R
n \ {0} ∈ C0(∂Ω ×

[a, b]) constitute a continuous family of zero-free mappings. Then we have the
identity v(fτ , ∂Ω) = const in [a, b].
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3 Topological Existence Theorems

We begin with the fundamental

Proposition 3.1. Let Ω ⊂ R
n denote a bounded open set and define the

function f(x) = ε(x− ξ), x ∈ Ω; here we choose ε = ±1 and ξ ∈ Ω. Then we
have the identity d(f,Ω) = εn.

Proof: We take a number η > 0 such that |f(x)| > η for all points x ∈ ∂Ω
holds true. Let ω ∈ C0

0 ((0, η),R) denote an arbitrary test function satisfying

∫
Rn

ω(|x|) dx = 1.

Then we have

d(f,Ω) =

∫
Ω

ω
(
|f(x)|

)
Jf (x) dx =

∫
Ω

ω(|x− ξ|)εn dx = εn.

q.e.d.

Theorem 3.2. Let fτ (x) = f(x, τ) : Ω × [a, b] → R
n ∈ C0(Ω × [a, b],Rn)

denote a family of mappings with

fτ (x) �= 0 for all x ∈ ∂Ω and all τ ∈ [a, b].

Furthermore, we have the function

fa(x) = (x− ξ), x ∈ Ω

with a point ξ ∈ Ω. For each parameter τ ∈ [a, b] we find a point xτ ∈ Ω
satisfying f(xτ , τ) = 0.

Proof: The homotopy lemma and Proposition 3.1 yield

d(fτ , Ω) = d(fa, Ω) = 1 for all τ ∈ [a, b].

Consequently, there exists a point xτ ∈ Ω with f(xτ , τ) = 0 for each param-
eter τ ∈ [a, b], due to Theorem 2.7 in Section 2. q.e.d.

Theorem 3.3. (Brouwer’s fixed point theorem)
Each continuous mapping f(x) : B → B of the unit ball B := {x ∈ R

n :
|x| ≤ 1} into itself possesses a fixed point ξ ∈ B, which satisfies the condition
ξ = f(ξ).
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Proof: We consider the mapping

fτ (x) = x− τf(x), x ∈ B

for all parameters τ ∈ [0, 1), which fulfills the following boundary condition

|fτ (x)| ≥ |x| − τ |f(x)| ≥ 1− τ > 0 for all x ∈ ∂B and all τ ∈ [0, 1).

According to Theorem 3.2, each τ ∈ [0, 1) admits a point xτ ∈
◦
B satisfying

fτ (xτ ) = 0 and equivalently τf(xτ ) = xτ . We now choose a sequence τn ↑ 1
for n→ ∞, such that {xτn}n=1,2,... in B converges. This implies

ξ := lim
n→∞

xτn = lim
n→∞

τnf(xτn) = lim
n→∞

f(xτn) = f(ξ).
q.e.d.

Remark: Brouwer’s fixed point theorem remains true for all those sets which
are homeomorphic to the ball B.

Theorem 3.4. (H. Poincaré and L.E.J. Brouwer)
Let the dimension n ∈ N be even. By the symbol

Sn :=
{
x ∈ R

n+1 : |x| = 1
}

we denote the n-dimensional sphere in R
n+1. Then there do not exist tangen-

tial, zero-free, continuous vector-fields on the sphere Sn.

Proof: If ϕ : Sn → R
n+1 were such a vector-field, we would have the properties

|ϕ(x)| > 0 and (ϕ(x), x) = 0 for all x ∈ Sn. Given the sign factor ε = ±1, we
consider the mapping f(x) := εx, x ∈ Sn and the homotopy

fτ (x) = (1− τ)f(x) + τϕ(x), x ∈ Sn.

We observe
|fτ (x)|2 = (1− τ)2|f(x)|2 + τ2|ϕ(x)|2 > 0

for all points x ∈ Sn and all parameters τ ∈ [0, 1]. With the aid of Theorem
2.10 in Section 2 we comprehend

v(ϕ, Sn) = v(f1, S
n) = v(f0, S

n) = v(f, Sn) = εn+1

where we use Proposition 3.1. When the dimension n is even, we deduce the
relation

−1 = v(ϕ, Sn) = +1.

This reveals an evident contradiction! q.e.d.
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4 The Index of a Mapping

In this section we transfer the index-sum formula from the case n = 2 to the
situation of arbitrary dimensions. In this context we derive that the degree of
mapping gives us an integer. We begin with the easy

Proposition 4.1. Let Ωj ⊂ R
n for j = 1, 2 denote two bounded open dis-

joint sets and Ω := Ω1 ∪ Ω2 their union. Furthermore, let f(x) ∈ C0(Ω,Rn)
represent a continuous mapping with the property

f(x) �= 0 for all points x ∈ ∂Ω1 ∪ ∂Ω2.

Then we have the identity

d(f,Ω) = d(f,Ω1) + d(f,Ω2).

Proof: When we choose the quantity ε > 0 sufficiently small, we obtain
|f(x)| > ε for all points x ∈ ∂Ω1 ∪ ∂Ω2. Furthermore, we have a sequence of
functions {fk}k=1,2,... ⊂ C1(Ω,Rn) ∩ C0(Ω,Rn) satisfying fk → f uniformly
on Ω as well as |fk(x)| > ε for all points x ∈ ∂Ω1 ∪ ∂Ω2 and all indices
k ≥ k0. Now we utilize the admissible test function ω ∈ C0

0 ((0, ε),R) with the
property

∫
Rn

ω(|y|)dy = 1, and we easily see for all indices k ≥ k0 the following

equation:

d(fk, Ω) =

∫
Ω

ω
(
|fk(x)|

)
Jfk(x) dx

=

∫
Ω1

ω
(
|fk(x)|

)
Jfk(x) dx+

∫
Ω2

ω
(
|fk(x)|

)
Jfk(x) dx

= d(fk, Ω1) + d(fk, Ω2).

This implies the desired identity d(f,Ω) = d(f,Ω1) + d(f,Ω2). q.e.d.

Proposition 4.2. Let the function f ∈ C0(Ω,Rn) be defined on the bounded
open set Ω ⊂ R

n, with the associate set of zeroes

F :=
{
x ∈ Ω : f(x) = 0

}
.

Furthermore, choose an open set with Ω0 ⊂ Ω such that F ⊂ Ω0 holds true.
Then we have the conclusion

d(f,Ω) = d(f,Ω0).
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Proof: We set Ω1 :=
◦

(Ω \Ω0) and observe Ω \ ∂Ω1 = Ω0

·
∪ Ω1. On account

of the property f(x) �= 0 for all points x ∈ Ω1, Theorem 2.7 from Section 2
yields the statement d(f,Ω1) = 0. Now Proposition 4.1 implies

d(f,Ω) = d(f,Ω0) + d(f,Ω1) = d(f,Ω0).
q.e.d.

Definition 4.3. We consider the function f(x) ∈ C0(Ω,Rn). With a suffi-
ciently small quantity ε > 0, the point z ∈ Ω satisfies the conditions f(z) = 0
and f(x) �= 0 for all 0 < |x− z| ≤ ε. Then we name

i(f, z) := d(f,Bε(z))

the index of f at the point x = z. Here we abbreviate Bε(z) := {x ∈ R
n :

|x− z| < ε}.

Theorem 4.4. Consider the function f ∈ C0(Ω,Rn), and let the equation
f(x) = 0, x ∈ Ω possess p ∈ N0 mutually different solutions x(1), . . . , x(p) ∈ Ω.
Then we have the identity

d(f,Ω) =

p∑
j=1

i
(
f, x(j)

)
.

Proof: We choose a sufficiently small quantity ε > 0 such that the open sets

Ωj :=
{
x ∈ R

n : |x− x(j)| < ε
}

are mutually disjoint. Now Proposition 4.1 and 4.2 yield

d(f,Ω) = d
(
f,

p⋃
j=1

Ωj

)
=

p∑
j=1

d
(
f,Ωj

)
=

p∑
j=1

i
(
f, x(j)

)
.

q.e.d.

Proposition 4.5. With A = (aij)i,j=1,...,n let us consider a real n×n-matrix
satisfying detA �= 0. Then we have an orthogonal matrix S = (sij)i,j=1,...,n

and a symmetric positive-definite matrix P = (pij)i,j=1,...,n such that A =
S ◦ P holds true.

Proof: On account of detA �= 0 we have a positive-definite matrix P with
P 2 = AtA. The matrix AtA is namely symmetric and positive-definite, due
to

(AtAx, x) = |Ax|2 > 0 for all vectors x ∈ R
n \ {0}.

Via the principal axes transformation theorem, we find an orthogonal matrix
U and positive eigenvalues λ1, . . . , λn ∈ (0,+∞) such that
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AtA = U t ◦ Λ ◦ U with Λ =

⎛
⎜⎝
λ1 0

·
·
·

0 λn

⎞
⎟⎠ =: Diag(λ1, . . . , λn)

holds true. Setting

P := U t ◦ Λ1/2 ◦ U, Λ1/2 := Diag(
√
λ1, . . . ,

√
λn ),

we obtain a symmetric positive-definite matrix with the property

P 2 = U t ◦ Λ ◦ U = AtA.

This implies

|Px|2 = (Px, Px) = (P 2x, x) = (AtAx, x) = |Ax|2

and consequently
|Px| = |Ax| for all x ∈ R

n.

Now we introduce the matrix S := A ◦ P−1: For all vectors x ∈ R
n we infer

|Sx| = |A ◦ P−1x| = |P ◦ P−1x| = |x|.

Therefore, the matrix S is orthogonal, and we arrive at the desired represen-
tation A = S ◦ P . q.e.d.

Theorem 4.6. Let the quantity ε > 0 and the function f ∈ C1(Bε(z),R
n) be

given with f(z) = 0 as well as Jf (z) �= 0. Then we have the identity

i(f, z) = sgn Jf (z) ∈ {±1}.

Proof: There exists a real n× n-matrix A, such that the representation

f(x) = A(x− z) +R(x) for all |x− z| ≤ �0 with 0 < �0 < ε

holds true. Here the condition detA = Jf (z) �= 0 is fulfilled, and we have the
behavior

|R(x)| ≤ η(�)|x− z| for all |x− z| ≤ � ≤ �0 with lim
→0

η(�) = 0

for the remainder term. Due to Proposition 4.5, we have the decomposition
A = S ◦ P with an orthogonal matrix S and a positive-definite symmetric
matrix P . To the matrix

P = U t ◦Diag(λ1, . . . , λn) ◦ U

we associate the family of positive-definite symmetric matrices
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Pτ := U t ◦Diag
(
τ + (1− τ)λ1, . . . , τ + (1− τ)λn

)
◦ U,

which satisfies P0 = P and P1 = E; here the symbol E denotes the unit
matrix. When λmin > 0 gives us the least eigenvalue of P and

λ := min(1, λmin) > 0

is defined, we deduce

|Pτx|2 = (Pτx, Pτx) = (P 2
τ x, x)

=
(
U t ◦Diag

(
[τ + (1− τ)λ1]2, . . . , [τ + (1− τ)λn]2

)
◦ Ux, x

)

≥
(
U t ◦Diag(λ2, . . . , λ2) ◦ Ux, x

)

= λ2(x, x) = λ2|x|2,

and consequently

|Pτx| ≥ λ|x| for all x ∈ R
n and all τ ∈ [0, 1].

Now we consider the family of mappings

fτ (x) = f(x, τ) = S ◦ Pτ (x− z) + (1− τ)R(x), x ∈ Bε(z), τ ∈ [0, 1].

Evidently, we infer

f0(x) = S ◦P0(x− z)+R(x) = S ◦P (x− z)+R(x) = A(x− z)+R(x) = f(x)

as well as

f1(x) = S ◦ P1(x− z) = S(x− z) =: g(x), x ∈ Bε(z).

Furthermore, we estimate for all points x ∈ R
n with |x − z| = � ∈ (0, �0] as

follows:

|fτ (x)| ≥ |S ◦ Pτ (x− z)| − (1− τ)|R(x)|
≥ |Pτ (x− z)| − |R(x)|

≥ (λ− η(�))|x− z| ≥ λ

2
|x− z| > 0.

Here we have chosen the quantity �0 > 0 sufficiently small. The homotopy
lemma implies

d(fτ , B(z)) = const for all parameters τ ∈ [0, 1]

and finally
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i(f, z) = d(f,B(z)) = d(f0, B(z)) = d(f1, B(z)) = d(g,B(z)).

When ω ∈ C0
0 ((0, �),R) denotes an admissible test function with the property

∫
Rn

ω(|y|)dy = 1,

we infer

d(g,B(z)) =

∫
|x−z|<

ω
(
|g(x)|

)
Jg(x)dx = (detS)

∫
Rn

ω(|x− z|)dx = detS.

We summarize our considerations to the identity i(f, z) = detS = sgnJf (z).
q.e.d.

Theorem 4.7. The mapping f : Ω → R
n may be continuous and the equation

f(x) = 0, x ∈ Ω,

possesses only finitely many solutions x(1), . . . , x(N) ∈ Ω. Let the function f
be continuously differentiable in each neighborhood of the zeroes x(ν), and we
assume

Jf
(
x(ν)
)
�= 0 for ν = 1, . . . , N.

Then we have the identity

d(f,Ω) =

N∑
ν=1

sgn Jf
(
x(ν)
)
= N+ −N−.

Here the symbols N+ and N− give us the numbers of zeroes with sgn Jf = +1
and sgn Jf = −1, respectively.

Proof: Theorem 4.4 combined with Theorem 4.6 immediately provide the
statement above. q.e.d.
With the assumptions of the theorem above for the function f , we obtain that
the degree of mapping is an integer. In the sequel, the latter property will be
shown for arbitrary functions f ∈ C0(Ω,Rn) satisfying f |∂Ω �= 0.

Proposition 4.8. With a = (a1, . . . , an) ∈ R
n and h > 0, we define the cube

W :=
{
x ∈ R

n : ai ≤ xi ≤ ai + h, i = 1, . . . , n
}

and consider a function

f(x) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) :W → R
n ∈ C1(W,Rn).

The associate image-set is denoted by the symbolW ∗ := f(W ). The functional
matrix
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∂f(x) =

(
∂fi
∂xj

(x)

)
i,j=1,...,n

= (fx1(x), . . . , fxn(x)), x ∈W

possesses the following norm:

‖∂f(x)‖ :=

⎛
⎝ n∑

i,j=1

(
∂fi
∂xj

(x)

)2
⎞
⎠

1
2

=

(
n∑

i=1

|fxi(x)|2
) 1

2

, x ∈W.

Furthermore, we have a constant M ∈ [0,+∞) and a quantity ε ∈ (0,+∞),
such that the inequalities

‖∂f(x′)‖ ≤M and ‖∂f(x′)− ∂f(x′′)‖ ≤ ε for all pairs x′, x′′ ∈W

hold true. Finally, we have a point ξ ∈W satisfying Jf (ξ) = 0.

Then we have a function ϕ = ϕ(y) ∈ C0
0 (R

n, [0, 1]) with the property ϕ(y) = 1
for all y ∈W ∗, such that ∫

Rn

ϕ(y)dy ≤ K(M,n)hnε

is correct with the constant K(M,n) := 4n
√
n

n
Mn−1.

Remark: Therefore, we can estimate the exterior measure of the set W ∗ by
K(M,n)hnε.

Proof of Proposition 4.8:

1. We easily comprehend the invariance of the statement above with respect
to translations and rotations. Therefore, we can assume f(ξ) = 0 without
loss of generality. On acount of the condition Jf (ξ) = 0, we find a point
z ∈ R

n \ {0} satisfying z ◦ ∂f(ξ) = 0. Via an adequate rotation, we
can assume the condition z = en = (0, . . . , 0, 1) ∈ R

n without loss of
generality, and consequently

0 = en ◦ ∂f(ξ) = ∇fn(ξ).

2. The intermediate value theorem, applied to each component function,
yields

fi(x) = fi(x)− fi(ξ) =
n∑

j=1

∂fi
∂xj

(z(i))(xj − ξj) = ∇fi(z(i)) · (x− ξ)

with an individual point z(i) = ξ + ti(x − ξ) and ti ∈ (0, 1) for each
i ∈ {1, . . . , n}. This implies

|fi(x)| ≤
∣∣∇fi(z(i))∣∣|x− ξ| ≤ M

√
nh, i = 1, . . . , n− 1,

|fn(x)| ≤
∣∣∇fn(z(n))∣∣|x− ξ| =

∣∣∇fn(z(n))−∇fn(ξ)
∣∣|x− ξ| ≤ ε

√
nh



202 Chapter 3 Brouwer’s Degree of Mapping

for arbitrary points x ∈W . We obtain

W ∗ ⊂W ∗∗ :=
{
y ∈ R

n : |yi| ≤M
√
nh, i = 1, . . . , n− 1; |yn| ≤ ε

√
nh
}
.

3. Let the function � ∈ C0
0 (R, [0, 1]) with

�(t) =

{
1, |t| ≤ 1
0, |t| ≥ 2

be given. We set

ϕ = ϕ(y) := �

(
y1

M
√
nh

)
· . . . · �

(
yn−1

M
√
nh

)
· �
(

yn
ε
√
nh

)
, y ∈ R

n.

Then we observe ϕ ∈ C0
0 (R

n, [0, 1]) and ϕ(y) = 1 for all y ∈ W ∗∗ ⊃ W ∗.
Furthermore, we deduce
∫
Rn

ϕ(y)dy

=

+∞∫
−∞

�

(
y1

M
√
nh

)
dy1 · . . . ·

+∞∫
−∞

�

(
yn−1

M
√
nh

)
dyn−1 ·

+∞∫
−∞

�

(
yn
ε
√
nh

)
dyn

=

⎛
⎝

+∞∫
−∞

�(t)dt

⎞
⎠

n

Mn−1
√
n

n
hnε

≤
(
4nMn−1

√
n

n)
hnε = K(M,n)hnε.

q.e.d.

Theorem 4.9. (Sard’s lemma)
Let Ω ⊂ R

n denote an open set and f : Ω → R
n ∈ C1(Ω,Rn) a continuously

differentiable mapping. Furthermore, let the set F ⊂ Ω be compact and

F ∗ :=
{
y = f(x) : x ∈ F, Jf (x) = 0

}

describe the set of its critical values. Then F ∗ is an n-dimensional Lebesgue
null-set.

Proof: Without loss of generality, we can assume that F represents a cube:

F =W =
{
x ∈ R

n : ai ≤ xi ≤ ai + h, i = 1, . . . , n
}
.

Now we consider a uniform decomposition of the cube W into Nn subcubes,
with the lateral lenghts h

N and an arbitrary number N ∈ N. This is achieved
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by decomposing the axes via ai+j
h
N with i = 1, . . . , n and j = 0, 1, . . . , N and

by a subsequent Cartesian multiplication. In this way we obtain the subcubes
Wα for α = 1, . . . , Nn with the following properties:

W =
Nn⋃
α=1

Wα,
◦
Wα ∩

◦
Wβ= ∅ (α �= β).

The diameter of a subcube Wα is determined by

diam (Wα) =
√
n
h

N
.

Now we set

M := sup
x∈W

‖∂f(x)‖ and εN := sup
x′,x′′∈W

|x′−x′′|≤
√

nh
N

‖∂f(x′)− ∂f(x′′)‖.

Let N ⊂ {1, . . . , Nn} describe the index set belonging to those subcubes Wα,
which possess at least one point ξ ∈ Wα with Jf (ξ) = 0. Then we infer the
inclusion

W ∗ ⊂
⋃
α∈N

W ∗
α with W ∗

α :=
{
y = f(x) : x ∈Wα

}
.

According to Proposition 4.8, we obtain a function to each index α ∈ N as
follows:

ϕα = ϕα(y) ∈ C0
0 (R

n, [0, 1]) with ϕα(y) ≥ χW∗
α
(y), y ∈ R

n

and ∫
Rn

ϕα(y)dy ≤ K(M,n)
( h
N

)n
εN .

Here χA means the characteristic function of a set A. We infer the estimate

χW∗(y) ≤
∑
α∈N

χW∗
α
(y) ≤

∑
α∈N

ϕα(y), y ∈ R
n,

and the function
∑

α∈N

ϕα(y) ∈ C0
0 (R

n, [0,+∞)) satisfies

∫
Rn

(∑
α∈N

ϕα(y)

)
dy ≤

∑
α∈N

(
K(M,n)

(
h

N

)n

εN

)
≤ |W |K(M,n)εN

for all N ∈ N. Letting N → ∞ we observe εN ↓ 0. Therefore, W ∗ represents
an n-dimensional Lebesgue null-set.

q.e.d.
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Theorem 4.10. (Generic finiteness)
Let Ω ⊂ R

n denote a bounded open set and f ∈ C1(Ω,Rn) ∩ C0(Ω,Rn) a
function satisfying inf

x∈∂Ω
|f(x)| > ε > 0.

Then we have a point z ∈ R
n with |z| ≤ ε such that the following properties

hold true:

(1) The equation f(x) = z, x ∈ Ω possesses at most finitely many solutions
x(1), . . . , x(N) ∈ Ω.

(2) The conditions Jf
(
x(ν)
)
�= 0 are correct for the indices ν = 1, . . . , N .

Proof: Let us consider the set

F :=
{
x ∈ Ω : |f(x)| ≤ ε

}
,

and we observe that F ⊂ R
n is compact as well as F ⊂ Ω. The set

F ∗ :=
{
y = f(x) : x ∈ F, Jf (x) = 0

}

of the critical values for f is a Lebesgue null-set, due to Sard’s lemma. There-
fore, we find a point z ∈ R

n satisfying |z| ≤ ε and z �∈ F ∗. Now we show
that this point z realizes the property (1): Assuming on the contrary that
the equation f(x) = z had infinitely many solutions x1, x2, . . . ∈ Ω, we easily
achieve the convergence xν → ξ for ν → ∞. When we observe the property
f(xν) = f(ξ) = z for all ν ∈ N , the preimages of the point z with respect to
the mapping f would accumulate at the point ξ. Because ξ ∈ Ω and Jf (ξ) �= 0
are correct, the mapping f is there locally injective, and we attain an obvious
contradiction. Consequently, only finitely many solutions exist for the equa-
tion f(x) = z, x ∈ Ω and each of them has the property (2).

q.e.d.

Theorem 4.11. Let Ω ⊂ R
n denote a bounded open set and f ∈ C0(Ω,Rn)

a continuous mapping satisfying f(x) �= 0 for all points x ∈ ∂Ω. Then the
statement d(f,Ω) ∈ Z is correct.

Proof: We have only to consider mappings f ∈ C1(B,Rn)∩C0(Ω,Rn). Let us
choose a sequence of points {zν}ν=1,2,... ⊂ R

n \f(∂Ω), which do not represent
critical values of the function f and fulfill the asymptotic condition

lim
ν→∞

zν = 0.

The functions
fν(x) := f(x)− zν , x ∈ Ω, ν ∈ N

satisfy the condition d(fν , Ω) ∈ Z, due to Theorem 4.10 and Theorem 4.7.
Consequently, we have an index ν0 ∈ N such that

d(f,Ω) = d(fν , Ω) for all indices ν ≥ ν0

is correct. Therefore, the statement d(f,Ω) ∈ Z is established. q.e.d.
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5 The Product Theorem

Let the function f ∈ C1(Ω,Rn) ∩ C0(Ω,Rn) with 0 < ε < inf
x∈∂Ω

|f(x)| be
given. Furthermore, we take an admissible test function ω ∈ C0

0 ((0, ε),R)
satisfying ∫

Rn

ω(|y|) dy = 1.

Then we have the identity

∫
Ω

ω
(
|f(x)|

)
Jf (x) dx = d(f,Ω)

∫
Rn

ω(|y|) dy.

Now we shall generalize this identity to the class of arbitrary test functions
ϕ ∈ C0

0 (R
n \ f(∂Ω),R). Then we utilize this result to determine the degree

of mapping d(g ◦ f,Ω, z) for a composed function g ◦ f with the generators
f, g ∈ C0(Rn,Rn), and we obtain the so-called product theorem.

Definition 5.1. Let O ⊂ R
n denote an open set and assume x ∈ O. Then we

call the following set

Gx :=

{
y ∈ O :

There exists a path ϕ(t) : [0, 1] → O ∈ C0([0, 1])

satisfying ϕ(0) = x, ϕ(1) = y.

}

the connected component of x in O.

Remarks:

1. The connected component Gx represents the largest open connected sub-
set of O which contains the point x.

2. When we consider two connected components with Gx and Gy, only the
alternative Gx ∩Gy = ∅ or Gx = Gy is possible.

We easily establish the following

Proposition 5.2. Each open set O ⊂ R
n can be decomposed into countably

many connected components. Therefore, we have open connected sets {Gi}i∈I

- with the index-set I ⊂ N - such that Gi ∩Gj = ∅ for all i, j ∈ I with i �= j
as well as

O =

·⋃
i∈I

Gi

hold true. This decomposition is, apart from rearrangements, uniquely deter-
mined.
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Definition 5.3. When the function ϕ ∈ C0
0 (R

n) is given, we name

suppϕ =
{
x ∈ Rn : ϕ(x) �= 0

}

the support of ϕ.

Proposition 5.4. Let the open set O ⊂ R
n be decomposable into the con-

nected components {Gi}i=1,2,..., which means O =
∞⋃
i=1

Gi, and take the func-

tion ϕ ∈ C0
0 (O). Then we have the identity

∫
O

ϕ(x)dx =
∞∑
i=1

∫
Gi

ϕ(x) dx,

where the series above possesses only finitely many nonvanishing terms.

Proof: We define the following functions

ϕi(x) :=

{
ϕ(x), x ∈ Gi

0, x ∈ R
n \Gi

, i = 1, 2, . . .

Now we have an index N0 ∈ N, such that ϕi(x) ≡ 0, x ∈ R
n is correct for

all indices i ≥ N0. If this were not true, we could find points x(ij) ∈ Gij for

j = 1, 2, . . . satisfying i1 < i2 < . . . and ϕ(x
(ij)) �= 0. Since the inclusion

{x(ij)}j=1,2,... ⊂ suppϕ

holds true and suppϕ is compact, the selection of a subsequence x(ij) →
ξ(j → ∞) allows us to achieve ξ ∈ suppϕ ⊂ O. When we denote by Gi∗ = Gξ

the connected component of ξ in O, we can find an index j0 ∈ N such that
x(ij) ∈ Gi∗ for all j ≥ j0 holds true. This reveals a contradiction to the
property x(ij) ∈ Gij for j = 1, 2, . . .. Consequently, we see

∫
Rn

ϕ(x) dx =

∫
Rn

N0∑
i=1

ϕi(x) dx =

N0∑
i=1

∫
Rn

ϕi(x) dx

=

N0∑
i=1

∫
Gi

ϕ(x) dx =

∞∑
i=1

∫
Gi

ϕ(x) dx.

q.e.d.

Definition 5.5. Let us consider f ∈ C0(Ω,Rn) and z ∈ R
n \ f(∂Ω). Then

we set
d(f,Ω, z) := d(f(x)− z,Ω, 0)

for the degree of mapping for the function f with respect to the point z.
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Proposition 5.6. If G ⊂ R
n \ f(∂Ω) denotes a domain, we infer

d(f,Ω, z) = const for all points z ∈ G.

Proof: Given the two arbitrary points z0, z1 ∈ G, we consider the connecting
path

ϕ(t) : [0, 1] → G ∈ C0([0, 1], G), ϕ(0) = z0, ϕ(1) = z1.

Now the family of functions f(x)− ϕ(t) with x ∈ Ω and t ∈ [0, 1] describes a
homotopy. This implies

d(f,Ω, ϕ(t)) = d(f − ϕ(t), Ω, 0) = const, t ∈ [0, 1],

and we obtain d(f,Ω, z0) = d(f,Ω, z1), in particular. q.e.d.

Definition 5.7. When G ⊂ R
n \ f(∂Ω) represents a domain, we define

d(f,Ω,G) := d(f,Ω, z) for a point z ∈ G.

Remark: Let Ω ⊂ R
n denote an open bounded set and f ∈ C0(Ω,Rn) a con-

tinuous function. Then the set f(∂Ω) ⊂ R
n is compact. When {Gi}i=1,...,N0

with N0 ∈ {0, 1, . . . ,+∞} constitute the bounded connected components of
R

n \ f(∂Ω) and G∞ the unbounded connected component, we have the rep-
resentation

R
n \ f(∂Ω) =

N0⋃
i=1

Gi ∪ G∞.

Since we can find a point z �∈ f(Ω), we infer the identity

d(f,Ω,G∞) = d(f,Ω, z) = 0.

Theorem 5.8. Let {fk}k=1,2,... ⊂ C1(Ω,Rn) ∩ C0(Ω,Rn) denote a sequence
of functions, which converge uniformly on the set Ω towards the function
f ∈ C0(Ω,Rn). Furthermore, let

R
n \ f(∂Ω) =

N0⋃
i=1

Gi ∪ G∞, N0 ∈ {0, 1, . . . ,+∞}

describe the decomposition into their connected components. To each function
ϕ ∈ C0

0 (R
n \ f(∂Ω)) we find a number k∗ = k∗(ϕ) ∈ N, such that the identity

∫
Ω

ϕ(fk(x))Jfk(x) dx =

N0∑
i=1

d(f,Ω,Gi)

∫
Gi

ϕ(z) dz

for all indices k ≥ k∗ is correct. Here the series above possesses only finitely
many nonvanishing terms - even in the case N0 = +∞.
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Proof:

1. We observe that suppϕ∩f(∂Ω) = ∅ holds true and both sets are compact.
Therefore, we find a quantity ε0 > 0 such that the estimate

|f(x)− z| > ε0 for all x ∈ ∂Ω and all z ∈ suppϕ

is correct. Because the convergence fk → f is uniform on Ω, we find an
index k∗ = k∗(ϕ) ∈ N such that

|fk(x)− z| > ε0 for all points x ∈ ∂Ω, z ∈ suppϕ, k ≥ k∗

holds true. We then take an admissible test function ω ∈ C0
0 ((0, 1),R)

satisfying
∫
Rn

ω(|y|) dy = 1. With the number ε ∈ (0, ε0], we set

ωε(r) :=
1

εn
ω
(r
ε

)
∈ C0

0 ((0, ε),R) satisfying

∫
Rn

ωε(|y|) dy = 1.

Finally, we define the function

ϑ(z) :=

{
d(f,Ω, z), if z ∈ R

n \ f(∂Ω)

0, if z ∈ f(∂Ω)
.

2. For all points z ∈ suppϕ and all indices k ≥ k∗(ϕ) we observe

ϑ(z) = d(f,Ω, z) =

∫
Ω

ωε(|fk(x)− z|)Jfk(x) dx, 0 < ε ≤ ε0.

Now the integration of ϕ(z)ϑ(z) ∈ C0
0 (R

n \ f(∂Ω)) yields

∫
Rn

ϕ(z)ϑ(z) dz =

∫
Rn

( ∫
Ω

ϕ(z)ωε(|fk(x)− z|)Jfk(x) dx
)
dz

=

∫
Ω

( ∫
Rn

ϕ(z)ωε(|fk(x)− z|) dz
)
Jfk(x) dx.

On the other hand, Proposition 5.4 implies
∫
Rn

ϕ(z)ϑ(z) dz =

( ∫
G∞

ϕ(z) dz

)
d(f,Ω,G∞)︸ ︷︷ ︸

=0

+

N0∑
i=1

( ∫
Gi

ϕ(z) dz

)
d(f,Ω,Gi),

where the series above possesses only finitely many nonvanishing terms.
The transition ε→ 0+ to the limit gives us the identity
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N0∑
i=1

d(f,Ω,Gi)

∫
Gi

ϕ(z) dz =

∫
Ω

ϕ(fk(x))Jfk(x) dx for all k ≥ k∗(ϕ).

Here we take the convergence

lim
ε→0+

∫
Rn

ϕ(z)ωε(|fk(x)− z|) dz = ϕ(fk(x)) for x ∈ Ω uniformly

into account. q.e.d.

Theorem 5.9. (Product theorem for the degree of mapping)
Let us consider the functions f, g ∈ C0(Rn,Rn), and let the set Ω ⊂ R

n be
open and bounded. We set E := f(∂Ω). With the symbols {Di}i=1,...,N0 , where
N0 ∈ {0, 1, . . . ,+∞} holds true, we denote the bounded connected components
of the set Rn \E. Finally, we choose a point z ∈ R

n \ g(E). Then we have the
identity

d(g ◦ f,Ω, z) =
N0∑
i=1

d(f,Ω,Di) d(g,Di, z),

where this series possesses only finitely many nonvanishing terms.

Proof: (L.Bers)

1. We define
h(x) := g ◦ f(x).

According to the Weierstraß approximation theorem from Section 1 in
Chapter 1, we can choose sequences

{fl(x)}l=1,2,... ⊂ C1(Rn,Rn) and {gk(y)}k=1,2,... ⊂ C1(Rn,Rn)

which converge uniformly on each compact set towards the function f(x)
and g(y), respectively. In addition, we define the functions

hk(x) := gk ◦ f(x), hkl(x) := gk ◦ fl(x), k, l ∈ N.

This implies the uniform convergence

hk(x) −→ h(x) for k → ∞

as well as
hkl(x) −→ hk(x) for l→ ∞

on each compact set.
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2. There exists a quantity ε > 0, such that the estimate

|h(x)− z| > ε, |hk(x)− z| > ε for all x ∈ ∂Ω and all k ≥ k0(ε)

is correct. Now we choose an admissible test function ω ∈ C0
0 ((0, ε),R)

with the property
∫
Rn

ω(|u|)du = 1. Then we obtain the following identity

for all indices k ≥ k0(ε) and l ≥ l0(k), namely

d(hk, Ω, z) = d(hkl, Ω, z) =

∫
Ω

ω(|hkl(x)− z|)Jhkl
(x) dx

=

∫
Ω

ω
(
|gk(fl(x))− z|

)
Jgk(fl(x))Jfl(x) dx.

When we define

ϕk(y) := ω(|gk(y)− z|)Jgk(y) ∈ C0
0 (R

n \ E) for k ≥ k0,

Theorem 5.8 yields

d(hk, Ω, z) =

∫
Ω

ϕk(fl(x))Jfl(x) dx =

N0∑
i=1

d(f,Ω,Di)

∫
Di

ϕk(y) dy

for k ≥ k0. Here only finitely many terms of the sum are nonvanishing.
When we note that∫

Di

ϕk(y) dy =

∫
Di

ω(|gk(y)− z|)Jgk(y) dy = d(gk, Di, z), k ≥ k0,

we immediately infer

d(hk, Ω, z) =

N0∑
i=1

d(f,Ω,Di) d(gk, Di, z).

Now we have an index k1 ≥ k0 such that

d(hk, Ω, z) = d(h,Ω, z) for all k ≥ k1

holds true. Furthermore, we find an index k2 ≥ k1 such that

d(gk, Di, z) = d(g,Di, z) for all k ≥ k2 and all i = 1, . . . , N0

is valid. We summarize our results to

d(h,Ω, z) =

N0∑
i=1

d(f,Ω,Di) d(g,Di, z).

q.e.d.
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6 Theorems of Jordan-Brouwer

Let us consider the compact set F ⊂ R
n, and we denote the number of

connected components for the open set R
n \ F by the symbol N(F ) ∈

{0, 1, . . . ,+∞}.

Theorem 6.1. (C. Jordan and J.L.E. Brouwer)
Let two homeomorphic compact sets F and F ∗ in R

n be given. Then we have
the identity N(F ) = N(F ∗).

Proof: (J. Leray)
Since the sets F and F ∗ are homeomorphic, we have a topological mapping
f̂ : F → F ∗ with its inverse mapping f̂−1 : F ∗ → F . With the aid of
Tietze’s extension theorem we construct mappings f, g ∈ C0(Rn) satisfying

f(x) = f̂(x) for all points x ∈ F and g(y) = f̂−1(y) for all points y ∈ F ∗. On
the contrary, we assume that

N := N(F ) �= N(F ∗) =: N∗

was correct: Then we depart from the inequality N∗ < N , without loss of
generality. Consequently, the number N∗ is finite. We denote by the symbols
{Di}i=1,...,N and {D∗

i }i=1,...,N∗ the bounded connected components of Rn \F
and R

n \F ∗, respectively. When we take z ∈ Dk and k ∈ {1, . . . , N∗+1}, the
product theorem yields

δik = d(g ◦ f,Di, Dk) = d(g ◦ f,Di, z)

=

N∗∑
j=1

d(f,Di, D
∗
j )︸ ︷︷ ︸

:=aij

d(g,D∗
j , z)︸ ︷︷ ︸

:=bjk

=

N∗∑
j=1

aijbjk for i, k = 1, . . . , N∗ + 1.

Now we have a point ξ = (ξ1, . . . , ξN∗+1) ∈ R
N∗+1 \ {0} satisfying

N∗+1∑
k=1

bjkξk = 0 for j = 1, . . . , N∗.

We obtain with the relation

ξi =
N∗∑
j=1

N∗+1∑
k=1

aijbjkξk =
N∗∑
j=1

aij

(N∗+1∑
k=1

bjkξk

)
= 0, i = 1, . . . , N∗ + 1,

which constitutes an evident contradiction. The assumption N �= N∗ was
incorrect and equality follows.

q.e.d.
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Theorem 6.2. (C. Jordan and J.L.E. Brouwer)
Let S∗ ⊂ R

n denote a set which is homeomorphic to the unit sphere S =
{x ∈ R

n : |x| = 1} via the topological mapping f̂ : S → S∗. Then this
topological sphere S∗ decomposes the space R

n into a bounded domain G1,
which we call the inner domain, and an unbounded domain G2, which we call
the outer domain. We have the following property for the mapping f̂ , namely

v(f̂ , S, z) =

{
±1, for z ∈ G1

0, for z ∈ G2

.

Proof: As in the proof of Theorem 6.1, we extend the mappings f̂ : S → S∗

and f̂−1 : S∗ → S to continuous mappings f and g, respectively, onto the
whole space Rn. Since the sphere S decomposes Rn into an inner domain and
an outer domain, we infer the identity

N(S∗) = N(S) = 1

from Theorem 6.1. The mapping g ◦ f satisfies g ◦ f(x) = x for all x ∈ S. Now
the product theorem implies

1 = d(g ◦ f,B, 0) = d(f,B,G1) d(g,G1, 0), B := B1(0).

Since the degree of mapping gives us an integer, the point z ∈ G1 possesses
the order

v(f̂ , S, z) = d(f,B,G1) = ±1. q.e.d.

Remark: In the special case n = 2 of our theorem above, we call the topological
sphere a Jordan curve and the associate inner domain a Jordan domain. We
obtain Jordan’s curve theorem in this plane situation. However, we have proved
Brouwer’s sphere theorem in the higher-dimensional case n ∈ N with n ≥ 3.

Theorem 6.3. Let Uz denote an n-dimensional neighborhood of the point z ∈
R

n, and the mapping f : Uz → R
n may be injective and continuous satisfying

f(z) = 0. Then we have i(f, z) = ±1.

Proof: At first, we choose the quantity � > 0 so small that

B(z) := {x ∈ R
n : |x− z| < �}

is subject to the condition B(z) ⊂ Uz. Then we consider the sphere S :=
∂B(z) and the topological sphere S∗ := f(S), where G1 denotes the inner
domain of S∗. Now Theorem 6.2 implies

d(f,B(z), G1) = ±1.

When we choose the point y′ ∈ G1 with its preimage x′ ∈ B(z), we observe
f(x′) = y′. The connecting straight line
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s := {(1− t)z + tx′ : 0 ≤ t ≤ 1} ⊂ B(z)

possesses the image arc s∗ := f(s) ⊂ R
n \ S∗. Since the point y′ = f(x′) ∈ s∗

is situated within G1, we infer 0 = f(z) ∈ G1. Consequently, we obtain

i(f, z) = d(f,B(z), 0) = d(f,B(z), G1) = ±1.
q.e.d.

Theorem 6.4. (Invariance of domains in R
n)

Let G ⊂ R
n denote a domain and f : G→ R

n a continuous injective mapping.
Then the image G∗ := f(G) is a domain as well.

Proof: Since the set G is connected and the function f is continuous, we
obtain that G∗ = f(G) is connected. We now show that the set G∗ is open:
Let the point z ∈ G be arbitrary, and the quantity � > 0 may be chosen so
small that B(z) ⊂ G is fulfilled. The continuous injective mapping

g(x) := f(x)− f(z), x ∈ B(z)

satisfies i(g, z) = ±1, due to Theorem 6.3. This implies

d(f,B(z), f(z)) = d(g,B(z), 0) = ±1.

Taking the quantity ε > 0 sufficiently small, we infer the estimate

|f(x)− f(z)| > ε for all x ∈ ∂B(z).

The homotopy theorem gives us the identity

d(f,B(z), ζ) = d(f,B(z), f(z)) = ±1 for |ζ − f(z)| < ε

2
.

For all ζ ∈ R
n with |ζ−f(z)| < ε

2 we have a point x ∈ B(z) satisfying f(x) =
ζ. This means B ε

2
(f(z)) ⊂ f(G). Consequently, the function f represents an

open mapping, and the image G∗ = f(G) is a domain.
q.e.d.

We supplement the following result to Theorem 6.2.

Theorem 6.5. (Jordan, Brouwer) Each topological sphere S∗ ⊂ R
n de-

composes the space R
n into an inner domain G1 and an outer domain G2,

which means
R

n = G1

·
∪ S∗ ·

∪ G2.

Furthermore, we have the property ∂G1 = S∗ = ∂G2.

Proof: We only have to show the property ∂Gi = S
∗ for i = 1, 2. Let f : S →

S∗ represent the topological mapping, and take with x̃ ∈ S∗ an arbitrary
point. Then we define ξ := f−1(x̃) ∈ S, and we consider the following sets
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E := {x ∈ S : |x− ξ| ≤ ε} and F := {x ∈ S : |x− ξ| ≥ ε}

with S = E ∪ F . The transition to their images E∗ := f(E) and F ∗ := f(F )
yields the relation S∗ = E∗ ∪ F ∗. Since the set R

n \ F is connected, our
Theorem 6.1 tells us that R

n \ F ∗ is connected as well. Consequently, there
exists a continuous path π connecting two arbitrarily chosen points a1 ∈ G1

and a2 ∈ G2, which does not meet the set F ∗. Since the image S∗ separates
the domains G1 and G2, we see π ∩ S∗ �= ∅ and therefore π ∩ E∗ �= ∅. When
a′1 ∈ π is the first point starting from a1, which meets the set E∗, and a′2 ∈ π
is the first point starting from a2, which meets the set E∗, we select two points
a′′i ∈ Gi for i = 1, 2 on the path π satisfying |a′′i − a′i| ≤ ε. Now we observe
ε ↓ 0 and obtain two sequences of points {a′′i,j}j=1,2,... ⊂ Gi for i = 1, 2 such
that

lim
j→∞

a′′i,j = x̃ for i = 1, 2.

Thus we arrive at the conclusion ∂G1 = S∗ = ∂G2. q.e.d.

Figure 1.3 Portrait of Bernhard Riemann (1826–1866)

taken from page 848 of his Gesammelte Werke, Springer-Verlag (1990).



Chapter 4

Generalized Analytic Functions

The theory of analytic functions in one and several complex variables has been
founded by Cauchy, Riemann and Weierstraß and belongs to the most beau-
tiful mathematical creations of modern times. We recommend the textbooks
of Behnke-Sommer [BS], Grauert-Fritzsche [Gr], [GF], Hurwitz-Courant [HC]
and Vekua [V]. The investigations of analytic functions with respect to their
differentiable properties will be founded on the integral theorems from Chap-
ter 1 and with respect to their topological properties will be based on the
winding number from Chapter 3. We additionally obtain a direct approach to
the solutions of the inhomogeneous Cauchy-Riemann differential equations in
this chapter. In the last section we investigate the discontinuous behavior of
Cauchy’s integral across the boundary.

1 The Cauchy-Riemann Differential Equation

We begin with the following

Definition 1.1. Let the function f = f(z) : Ω → C be defined on the open set
Ω ⊂ C, and z0 ∈ Ω denotes an arbitrary point. Then we name the function f
complex differentiable at the point z0 if the following limit

lim
z→z0
z 
=z0

f(z)− f(z0)
z − z0

=: f ′(z0)

exists. We call f ′(z0) the complex derivative of the function f at the point z0.
When f ′(z) exists for all z ∈ Ω and the function f ′ : Ω → C is continuous,
we name the function f holomorphic in Ω.

We note the well-known

F. Sauvigny, Partial Differential Equations 1, Universitext,
DOI 10.1007/978-1-4471-2981-3 4, © Springer-Verlag London 2012
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Theorem 1.2. If the power series

f(z) =
∞∑

n=0

anz
n

converges for all points |z| < R with the radius of convergence R > 0 being
fixed, then the function f(z) is holomorphic in the disc {z ∈ C : |z| < R} and
we have

f ′(z) =

∞∑
n=1

nanz
n−1.

Proof:

1. At first, we show convergence of the series

∞∑
n=1

nanz
n−1

for all points |z| < R. According to Cauchy’s convergence criterion for
series, the given series converges if and only if the series

∞∑
n=1

nanz
n =

∞∑
n=1

bnz
n with bn := nan

converges. Now we observe

lim sup
n→∞

n
√
|bn| = lim sup

n→∞

(
n
√
n n
√
|an|
)
= lim sup

n→∞
n
√

|an|.

Consequently, this series possesses the same radius of convergence R > 0

as the series
∞∑

n=0
anz

n.

2. Choosing a fixed point z ∈ C with |z| ≤ R0 < R we take a point w �= z
satisfying |w| ≤ R0 and calculate

f(w)− f(z)
w − z =

∞∑
n=0

an
wn − zn
w − z

=

∞∑
n=1

an

(
wn−1 + wn−2z + . . .+ zn−1

)

=
∞∑

n=1

angn(w, z).

(1)

Here we have set gn(w, z) := wn−1 + wn−2z + . . . + zn−1 for n ∈ N. We
note that

|angn(w, z)| ≤ n|an|Rn−1
0 for all |w| ≤ R0, |z| ≤ R0.
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Now part 1 of our proof yields

∞∑
n=1

n|an|Rn−1
0 < +∞.

Due to the Weierstraß majorant test, the uniform convergence of the series
in (1) for |w| ≤ R0, |z| ≤ R0 follows. Performing the transition to the limit
w → z in (1), we obtain

f ′(z) =

∞∑
n=0

angn(z, z) =

∞∑
n=1

nanz
n−1.

q.e.d.

Now we shall study the relationship between complex differentiation and par-
tial differentiation.

Theorem 1.3. Let the function w = f(z) = f(x, y) = u(x, y) + iv(x, y) :
Ω → C be holomorphic in the open set Ω ⊂ C. Then we have f ∈ C1(Ω,C)
and the following two equivalent conditions are satisfied:

fx + ify = 0 in Ω, (2)

or
ux = vy, uy = −vx in Ω. (3)

The equations (3) are named the Cauchy-Riemann differential equations.

Remark: The functions u = Re f(z) : Ω → R and v = Im f(z) : Ω → R denote
the real and imaginary part of the function f , respectively.

Proof of Theorem 1.3: Since the function f is holomorphic in Ω, the complex
derivative exists:

f ′(z) = lim
|Δz|→0

Δz∈C\{0}

f(z +Δz)− f(z)
Δz

.

Setting Δz = ε > 0, we find in particular

f ′(z) = lim
ε→0

ε∈R\{0}

f(z + ε)− f(z)
ε

= lim
ε→0

ε∈R\{0}

f(x+ ε, y)− f(x, y)
ε

= fx(x, y).

Passing to the limit with Δz = iε, we deduce

f ′(z) = lim
ε→0

ε∈R\{0}

f(z + iε)− f(z)
iε

= lim
ε→0

ε∈R\{0}

f(x, y + ε)− f(x, y)
iε

=
1

i
fy(x, y).
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Consequently, f ∈ C1(Ω,C) holds true, and (2) is immediately inferred from
fx = f ′ = 1

i fy in Ω. On account of the identity

fx + ify = (u+ iv)x + i(u+ iv)y = (ux − vy) + i(vx + uy)

the relation (2) is satisfied if and only if (3) is correct. q.e.d.

Remark: The property (2) for holomorphic functions implies that the oriented
angles are preserved with respect to the mapping w = f(z) at all points z ∈ Ω
with f ′(z) �= 0. Mercator has already discovered this property conformal - so
important for geography - proposing his well-known stereographic projection
of the sphere onto the plane.

Theorem 1.4. Let the function f(z) = u(x, y) + iv(x, y) ∈ C1(Ω,C) be de-
fined on the open set Ω ⊂ R

2 ∼= C, and we assume (2) or alternatively (3).
Then the function f is holomorphic in Ω.

Proof: We apply the mean value theorem separately on the functions u = Re f
and v = Im f . Utilizing z = x+iy ∈ Ω and Δz = Δx+iΔy ∈ C with |Δz| < ε,
we obtain the identities

u(z +Δz)− u(z) = u(x+Δx, y +Δy)− u(x, y)

= ux(ξ1, η1)Δx+ uy(ξ1, η1)Δy

= ux(ξ1, η1)Δx− vx(ξ1, η1)Δy

and

v(z +Δz)− v(z) = v(x+Δx, y +Δy)− v(x, y)

= vx(ξ2, η2)Δx+ vy(ξ2, η2)Δy

= vx(ξ2, η2)Δx+ ux(ξ2, η2)Δy

at the intermediate points (ξ1, η1), (ξ2, η2) ∈ Ω satisfying |z − (ξk + iηk)| < ε
for k = 1, 2. We now compose

f(z +Δz)− f(z)

=
{
u(x+Δx, y +Δy)− u(x, y)

}
+ i
{
v(x+Δx, y +Δy)− v(x, y)

}

=
{
ux(ξ1, η1) + ivx(ξ2, η2)

}
Δx+ i

{
ux(ξ2, η2) + ivx(ξ1, η1)

}
Δy

=
{
ux(ξ1, η1) + ivx(ξ2, η2)

}
(Δx+ iΔy)

+i
{[
ux(ξ2, η2)− ux(ξ1, η1)

]
+ i
[
vx(ξ1, η1)− vx(ξ2, η2)

]}
Δy.
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Abbreviating

g(z,Δz) :=
[
ux(ξ2, η2)− ux(ξ1, η1)

]
+ i
[
vx(ξ1, η1)− vx(ξ2, η2)

]

we find

f(z +Δz)− f(z)
Δz

= ux(ξ1, η1) + ivx(ξ2, η2) + ig(z,Δz)
Δy

Δz
.

The transition to the limit |Δz| → 0 yields

lim
|Δz|→0

Δz∈C\{0}

f(z +Δz)− f(z)
Δz

= fx(z) + lim
|Δz|→0

Δz∈C\{0}

{
ig(z,Δz)

Δy

Δz

}
= fx(z)

utilizing f ∈ C1(Ω,C). Therefore, the function f : Ω → C is holomophic in
Ω due to Definition 1.1.

q.e.d.

2 Holomorphic Functions in C
n

Our present considerations are based on the theory of curvilinear integrals
from Section 6 in Chapter 1.

We choose the domain Ω ⊂ C and denote by

w = f(z) = u(x, y) + iv(x, y), (x, y) ∈ Ω

a complex-valued function with u, v ∈ C1(Ω,R). Let the points P,Q ∈ Ω and
the curve X ∈ C(Ω,P,Q) be given. Then we consider the curvilinear integral

∫
X

f(z) dz =

∫
X

{
u(x, y) + iv(x, y)

}
(dx+ idy)

=

∫
X

(u dx− v dy) + i
∫
X

(v dx+ u dy)

=

∫
X

ω1 + i

∫
X

ω2

with the real differential forms

ω1 := u dx− v dy, ω2 := v dx+ u dy.

Now the differential forms ω1 and ω2 are closed if and only if the identities
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0 = dω1 = −
(
∂u

∂y
+
∂v

∂x

)
dx ∧ dy,

0 = dω2 =

(
∂u

∂x
− ∂v

∂y

)
dx ∧ dy

hold true in Ω. We infer the following equations:

∂u(x, y)

∂x
=
∂v(x, y)

∂y
,

∂u(x, y)

∂y
= −∂v(x, y)

∂x
in Ω. (1)

This Cauchy-Riemann system of differential equations is equivalent to the
property that the function f : Ω → C is holomorphic, and therefore possesses
a complex derivative at each point z ∈ Ω which represents a continuous
function.

Theorem 2.1. (Cauchy, Riemann)
Let Ω ⊂ C denote a simply connected domain, and let f ∈ C1(Ω,C) be a
continuously differentiable function. Then the following four statements are
equivalent:

(a) The function f is holomorphic in Ω;
(b) The real part and the imaginary part of f(x, y) = u(x, y)+ iv(x, y) satisfy

the Cauchy-Riemann system of differential equations (1);
(c) For each closed curve X ∈ C(Ω,P, P ) with P ∈ Ω we have the identity

∫
X

f(z) dz = 0;

(d) There exists a holomorphic function F : Ω → C satisfying

F ′(z) = f(z), z ∈ Ω,

which represents a primitive function F of f.

Proof:

1. The equivalence of (a) ⇔ (b) has been shown in Section 1.
2. Now we prove (b) ⇔ (c): Evidently, the condition

∫
X

f(z) dz = 0 for all X ∈ C(Ω)

is fulfilled if and only if

∫
X

ω1 = 0,

∫
X

ω2 = 0 for all X ∈ C(Ω)
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holds true. This is equivalent to

dω1 = 0, dω2 = 0 in Ω

and finally to (1).
3. We now prove (c) ⇒ (d): Here we apply Theorem 6.5 from Section 6

in Chapter 1. The statement (c) then is equivalent to the existence of
functions U, V ∈ C1(Ω,R) with the properties

dU(x, y) = ω1(x, y) , dV (x, y) = ω2(x, y) in Ω

giving us the conditions

Ux(x, y) = u(x, y), Uy(x, y) = −v(x, y),

Vx(x, y) = v(x, y), Vy(x, y) = u(x, y).
(2)

Now the equations (2) are equivalent to

∂

∂x

(
U(x, y) + iV (x, y)

)
= u(x, y) + iv(x, y) = f(x, y),

1

i

∂

∂y

(
U(x, y) + iV (x, y)

)
= u(x, y) + iv(x, y) = f(x, y).

(3)

By the definition F = U + iV we obtain a holomorphic function in Ω
satisfying

F ′(z) =
∂

∂x
F (x, y) = f(z), z ∈ Ω.

4. Finally, we show the direction (d) ⇒ (c): When the curve X ∈ C(Ω) is
given, we deduce

∫
X

f(z) dz =

b∫
a

f
(
X(t)
)
X ′(t) dt =

b∫
a

d

dt
F
(
X(t)
)
dt

= F
(
X(b)

)
− F
(
X(a)

)
= 0

on account of X(a) = X(b). q.e.d.

Remark: The statement in the direction (a) ⇒ (c) is known as Cauchy’s
integral theorem.

The subsequent statements, which can be taken from Theorems 6.9 and 6.12
in Section 6 of Chapter 1, are valid for arbitrary domains Ω ⊂ C.

Theorem 2.2. Let Ω ⊂ C denote a domain where the two closed curves
X,Y ∈ C(Ω) are homotopic to each other. Furthermore, let w = f(z), z ∈ Ω,
represent a holomorphic function in Ω. Then we have the identity∫

X

f(z) dz =

∫
Y

f(z) dz.
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When we fix the end points of our curve we obtain the following

Theorem 2.3. (Monodromy)
Let Ω ⊂ C be a domain where we choose two arbitrary points P,Q ∈ Ω.
Furthermore, we consider two curves X,Y ∈ C(Ω,P,Q) homotopic to each
other, which both have the start-point P ∈ Ω and the end-point Q ∈ Ω. If the
function f : Ω → C is holomorphic, we then have the identity

∫
X

f(z) dz =

∫
Y

f(z) dz.

A set Θ ⊂ R
n is denoted as compactly contained in a set Ω ⊂ R

n - symbolically
Θ ⊂⊂ Ω - if the set Θ is compact and Θ ⊂ Ω holds true.

Theorem 2.4. (Cauchy, Weierstraß)
Let Ω ⊂ C denote a domain, and let the center z0 ∈ Ω and the radius r > 0
be prescribed such that the open disc

K = Kr(z0) :=
{
z ∈ C : |z − z0| < r

}

realizes the inclusion K ⊂⊂ Ω. Furthermore, let us consider the function
f ∈ C1(Ω,C). Then the following statements are equivalent:

(a) The function f(z) is holomorphic in K;
(b) We have the validity of Cauchy’s integral formula

f(z) =
1

2πi

∮
∂K

f(ζ)

ζ − z dζ

for all points z ∈ K - with ζ = ξ + iη - where the curvilinear integral is
evaluated over the positive-oriented circumference;

(c) The series expansion

f(z) =

∞∑
k=0

ak(z − z0)k , z ∈ K

with the coefficients

ak :=
1

k !
f (k)(z0), k = 0, 1, 2, . . .

holds true.

Proof:
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1. At first, we show the direction (a) ⇒ (b). We observe that the function

g(ζ) :=
f(ζ)

ζ − z , ζ ∈ K \ {z}

is holomorphic on its domain of definition. For all sufficiently small quan-
tities ε > 0, the curves

X(t) := z + ε eit , 0 ≤ t ≤ 2π

and
Y (t) := z0 + r e

iϕ , 0 ≤ ϕ ≤ 2π

are homotopic to each other in the set K \ {z}. This implies

∮
∂K

f(ζ)

ζ − z dζ =
∫
Y

g(ζ) dζ =

∫
X

g(ζ) dζ

=

2π∫
0

f(z + ε eit)

ε eit
iε eit dt

= i

2π∫
0

f(z + ε eit) dt.

Via transition to the limit ε→ 0+ we obtain
∮
∂K

f(ζ)

ζ − z dζ = 2πif(z)

and

f(z) =
1

2πi

∮
∂K

f(ζ)

ζ − z dζ for all z ∈ K.

2. We secondly deduce the direction (b) ⇒ (c): For all points z ∈ K, ζ ∈ ∂K
we have the identity

1

ζ − z =
1

(ζ − z0)− (z − z0)
=

1

ζ − z0
1

1− z − z0
ζ − z0

.

Now we observe ∣∣∣∣z − z0ζ − z0

∣∣∣∣ < 1,

such that we can expand this fraction into the uniformly convergent geo-
metric series
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1

ζ − z0

∞∑
k=0

(
z − z0
ζ − z0

)k

=

∞∑
k=0

1

(ζ − z0)k+1
(z − z0)k.

This implies

f(z) =
1

2πi

∮
∂K

f(ζ)

ζ − z dζ

=
1

2πi

∞∑
k=0

⎛
⎝ ∮

∂K

f(ζ)

(ζ − z0)k+1
dζ

⎞
⎠ (z − z0)k

=

∞∑
k=0

ak(z − z0)k

with the coefficients

ak :=
1

2πi

∮
∂K

f(ζ)

(ζ − z0)k+1
dζ =

f (k)(z0)

k !
, k = 0, 1, 2, . . .

3. The direction (c) ⇒ (a) has already been shown in Section 1. q.e.d.

Remark: In the sequel, we tacitly mean uniform convergence of power series
in the interior of their domain of convergence.

Theorem 2.5. (Identity theorem for holomorphic functions)
Let two holomorphic functions f, g : Ω → C be given on the domain Ω ⊂ C.
Furthermore, let {zk}k=1,2,... ⊂ Ω \ {z0} denote a convergent sequence with
the limit

lim
k→∞

zk = z0 ∈ Ω.

Finally, the coincidence

f(zk) = g(zk), k = 1, 2, . . .

may hold true. Then we have the identity

f(z) ≡ g(z) in Ω.

Proof: On the contrary, we assume that the holomorphic function h(z) :=
f(z) − g(z) did not vanish identically. At the point z0 ∈ Ω we expand the
function h = h(z) into the following power series

h(z) =

∞∑
k=0

ak(z − z0)k , z ∈ K(z0), � := dist (z0, ∂Ω).
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On account of h(z0) = 0 we have a positive integer n ∈ N with an �= 0, such
that

h(z) = an(z − z0)n
{
1 + α(z)

}
with lim

z→z0
α(z) = 0

holds true. Taking the quantity � > 0 sufficiently small we obtain

|h(z)| ≥ |an||z − z0|n
(
1− 1

2

)
=

|an|
2

|z − z0|n, z ∈ K(z0).

This implies the relation

h(z) �= 0 for all z ∈ K(z0) \ {z0}

contradicting the assumption

h(zk) = f(zk)− g(zk) = 0, k = 1, 2, 3, . . .
q.e.d.

We now define Wirtinger’s differential operators

∂

∂z
:=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

The function f(z) = u(x, y) + iv(x, y) fulfills the Cauchy-Riemann system of
differential equations if the identity

∂

∂z
f(z) =

1

2
(fx + ify) =

1

2

(
ux + ivx + i(uy + ivy)

)

=
1

2
(ux − vy) +

i

2
(vx + uy) = 0

holds true. Therefore, holomorphic functions satisfy the partial differential
equation

∂

∂z
f(z) = 0 in Ω. (4)

We can comprehend the function f(z) = u(x, y) + iv(x, y) : Ω → C ∈
C1(Ω,C) alternatively as a function depending on the variables z and z; then
we see ∂

∂z and ∂
∂z as partial derivatives. These differentiators are C-linear and

the product as well as the quotient rule are valid. Furthermore, we have the
following complex version of the

Chain rule: Let the symbols Ω,Θ ⊂ C denote two domains with the asso-
ciate C1-functions w = f(z) : Ω → Θ and α = g(w) : Θ → C. Then the
composition

h(z) := g
(
f(z)
)
, z ∈ Ω

represents a C1-function as well, and we have the differentiation rules
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hz(z) = gw(f(z))fz(z) + gw(f(z))fz(z),

hz(z) = gw(f(z))fz(z) + gw(f(z))fz(z) in Ω.
(5)

Furthermore, we have the following

Calculus rules: For a C1-function f(z) : Ω → C the identities

(fz(z)) = fz(z), (fz(z)) = fz(z)

and

Jf (z) =

∣∣∣∣∣
ux uy

vx vy

∣∣∣∣∣ =
∣∣∣∣∣
fz fz

fz fz

∣∣∣∣∣ = |fz|2 − |fz|2

are correct. In particular, a holomorphic function f : Ω → C satisfies the
condition

Jf (z) = |f ′(z)|2 ≥ 0 for all z ∈ Ω.
When we take (4) into account, holomorphic functions are exactly those which
are independent of the variable z. These statements are proved in Chapter 1
of the book [GF] by H.Grauert and K. Fritsche or in the monograph by [Re]
by R.Remmert on pp. 52-56.

When we finally consider a function f : Ω → C ∈ C2(Ω,C), we infer

∂

∂z

∂

∂z
f(z) =

∂

∂z

∂

∂z
f(z) =

1

4
�f(z), z ∈ Ω.

Now we investigate holomorphic functions in several complex variables.

Definition 2.6. We name the function

w = f(z) = f(z1, . . . , zn) : Ω −→ C, (z1, . . . , zn) ∈ Ω

- defined on the domain Ω ⊂ C
n with n ∈ N - holomorphic if the following

conditions are satisfied:

(a) We have the regularity f ∈ C0(Ω,C);
(b) For each fixed vector (z1, . . . , zn) ∈ Ω and index k ∈ {1, . . . , n} being

given, the function

Φ(t) := f(z1, . . . , zk−1, t, zk+1, . . . , zn), t ∈ Kεk(zk)

is holomorphic in the disc

Kεk(zk) :=
{
t ∈ C : |t− zk| < εk

}

with a sufficiently small radius εk = εk(z) > 0.
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Theorem 2.7. (Cauchy’s integral formula in C
n)

Let the function f = f(z1, . . . , zn) : Ω → C be holomorphic in the domain
Ω ⊂ C

n. With the data z0 = (z01 , . . . , z
0
n) ∈ Ω and R1 > 0, . . . , Rn > 0 let the

polycylinder

P :=
{
z = (z1, . . . , zn) : |zk − z0k| < Rk, k = 1, . . . , n

}

be compactly contained in Ω, which means P ⊂ Ω. Then we have the following
integral representation for all points z = (z1, . . . , zn) ∈ P , namely

f(z1, . . . , zn)

=
1

(2πi)n

∮
|ζ1−z0

1 |=R1

· · ·
∮

|ζn−z0
n|=Rn

f(ζ1, . . . , ζn)

(ζ1 − z1) · . . . · (ζn − zn)
dζ1 . . . dζn

=
1

(2πi)n

2π∫
0

· · ·
2π∫
0

f(z01 +R1e
it1 , . . . , z0n +Rne

itn)

(z01 +R1eit1 − z1) · . . . · (z0n +Rneitn − zn)
·

·(iR1e
it1) · . . . · (iRne

itn) dt1 . . . dtn.

Proof: The function f = f(z) is holomorphic with respect to the variables
z1, . . . , zn. Therefore, we deduce

f(z1, . . . , zn)

=
1

2πi

∮
|ζ1−z0

1 |=R1

f(ζ1, z2, . . . , zn)

ζ1 − z1
dζ1

=
1

(2πi)2

∮
|ζ1−z0

1 |=R1

dζ1
ζ1 − z1

∮
|ζ2−z0

2 |=R2

f(ζ1, ζ2, z3, . . . , zn)

ζ2 − z2
dζ2

...

=
1

(2πi)n

∮
|ζ1−z0

1 |=R1

· · ·
∮

|ζn−z0
n|=Rn

f(ζ1, . . . , ζn)

(ζ1 − z1) · . . . · (ζn − zn)
dζ1 . . . dζn.

The second representation is revealed via introduction of polar coordinates.
q.e.d.

Theorem 2.8. Let the sequence of holomorphic functions fk(z1, . . . , zn) :
Ω → C, k = 1, 2, . . . , be given on the domain Ω ⊂ C

n, which converges
uniformly on each compact subset of Ω ⊂ C

n. Then the limit function

f(z1, . . . , zn) := lim
k→∞

fk(z1, . . . , zn), z = (z1, . . . , zn) ∈ Ω

is holomorphic in Ω ⊂ C
n.
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Proof: We apply Cauchy’s integral formula in C
n. Here we choose the poly-

cylinder P as in Theorem 2.7 and infer the following representation for all
points z ∈ P :

f(z1, . . . , zn) = lim
k→∞

fk(z1, . . . , zn)

= lim
k→∞

1

(2πi)n

∮
|ζ1−z0

1 |=R1

· · ·
∮

|ζn−z0
n|=Rn

fk(ζ1, . . . , ζn)

(ζ1 − z1) · . . . · (ζn − zn)
dζ1 . . . dζn

=
1

(2πi)n

∮
|ζ1−z0

1 |=R1

· · ·
∮

|ζn−z0
n|=Rn

f(ζ1, . . . , ζn)

(ζ1 − z1) · . . . · (ζn − zn)
dζ1 . . . dζn.

Therefore, the limit function f = f(z) is holomorphic in P. q.e.d.

Theorem 2.9. With the assumptions of Theorem 2.7, we have the following
power-series-expansion for all points z = (z1, . . . , zn) satisfying |zk−z0k| < Rk

with k = 1, . . . , n, namely

f(z1, . . . , zn) =

∞∑
k1,...,kn=0

ak1...kn(z1 − z01)k1 · . . . · (zn − z0n)kn .

Here the coefficients fulfill

ak1...kn =
1

(2πi)n

∮
|ζ1−z0

1 |=R1

· · ·
∮

|ζn−z0
n|=Rn

f(ζ1, . . . , ζn)

(ζ1 − z01)k1+1 · . . . · (ζn − z0n)kn+1
dζ1 . . . dζn

=
1

k1 ! · . . . · kn !

{(
∂

∂ζ1

)k1

· · ·
(
∂

∂ζn

)kn

f(ζ1, . . . , ζn)

}

ζ=z0

for k1, . . . , kn = 0, 1, 2, . . . . Setting

M := max
|ζk−z0

k|=Rk

k=1,...,n

|f(ζ1, . . . , ζn)|

we have Cauchy’s estimates

|ak1...kn | ≤
M

Rk1
1 · . . . ·Rkn

n

, k1, . . . kn = 0, 1, 2, . . .

Proof: As in the proof of Theorem2.4 we deduce

1

ζk − zk
=

∞∑
l=0

(zk − z0k)l
(ζk − z0k)l+1
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for k = 1, . . . , n. The absolute convergence of this series yields

1

(ζ1 − z1) · . . . · (ζn − zn)
=

∞∑
k1,...,kn=0

(z1 − z01)k1

(ζ1 − z01)k1+1
· . . . · (zn − z0n)kn

(ζn − z0n)kn+1
.

Now Theorem 2.7 implies the following identity for all points z = (z1, . . . , zn)
satisfying |zk − z0k| < Rk with k = 1, . . . , n, namely

f(z1, . . . , zn) =

∞∑
k1,...,kn=0

ak1...kn(z1 − z01)k1 · . . . · (zn − z0n)kn .

The further statements are evident. q.e.d.

Theorem 2.10. (Liouville)
Let the entire holomorphic function f(z1, . . . , zn) : C

n → C be given. Further-
more, we have a constant M ∈ [0,+∞) such that the estimate

|f(z1, . . . , zn)| ≤M for all (z1, . . . , zn) ∈ C
n

holds true. Then we have a constant c ∈ C such that

f(z1, . . . , zn) ≡ c on the space C
n

is correct. Therefore, each bounded entire holomorphic function is constant.

Proof: We can expand the function f = f(z) into the power series

f(z1, . . . , zn) =

∞∑
k1,...,kn=0

ak1...knz
k1
1 · . . . · zkn

n

on the whole space C
n about the origin z1 = 0, . . . , zn = 0. Choosing the

polycylinder

P :=
{
(z1, . . . , zn) ∈ C

n : |zj | < R for j = 1, . . . , n
}
⊂ C

n,

the Cauchy estimates yield

|ak1...kn | ≤
M

Rk1+...+kn
−→ 0 for R→ ∞

for all (k1, . . . , kn) ∈ N
n with k1 + . . .+ kn > 0. This implies

f(z1, . . . , zn) = a0...0 =: c ∈ C for all points (z1, . . . , zn) ∈ C
n.

q.e.d.
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Theorem 2.11. (Identity theorem in C
n)

Let the functions f(z) : Ω → C and g(z) : Ω → C be holomorphic on the
domain Ω ⊂ C

n. Furthermore, let the point z0 = (z01 , . . . , z
0
n) ∈ Ω be fixed

where the coincidence(
∂

∂ζ1

)k1

· · ·
(
∂

∂ζn

)kn

f(ζ1, . . . , ζn)
∣∣∣
ζ=z0

=

(
∂

∂ζ1

)k1

· · ·
(
∂

∂ζn

)kn

g(ζ1, . . . , ζn)
∣∣∣
ζ=z0

for all indices k1, . . . , kn = 0, 1, 2, . . . is valid. Then we infer the identity

f(z) ≡ g(z) for all z ∈ Ω.

Proof: We consider the function

h(z) := f(z)− g(z), z ∈ Ω

and the nonvoid set

Θ :=

⎧⎪⎨
⎪⎩z ∈ Ω :

(
∂

∂ζ1

)k1

· · ·
(
∂

∂ζn

)kn

h(ζ)
∣∣∣
ζ=z

= 0

for k1, . . . , kn = 0, 1, 2, . . .

⎫⎪⎬
⎪⎭ .

Evidently, this set is closed and open as well - because the function h = h(z)
can be expanded into a vanishing power series at each point z ∈ Θ. When
we connect an arbitrary point z1 ∈ Ω with the point z0 ∈ Θ by a continuous
path ϕ : [0, 1] → Ω ∈ C0([0, 1], Ω) satisfying ϕ(0) = z0 and ϕ(1) = z1, then a
continuation argument yields the inclusion ϕ([0, 1]) ⊂ Θ. The set Θ is namely
simultaneously open and closed. This implies z1 = ϕ(1) ∈ Θ and consequently
Θ = Ω. Therefore, we obtain h(z) ≡ 0 in Ω and finally f(z) ≡ g(z) in Ω.

q.e.d.

Remarks:

1. When two functions f = f(z) and g = g(z) coincide on an open set, they
are identical on the whole domain of definition due to Theorem 2.11.

2. If two functions f = f(z) and g = g(z) coincide only on a sequence
of points which converges in the domain of holomorphy, they are not
necessarily identical! For instance, we consider the holomorphic function

f(z1, . . . , zn) = z1 · . . . · zn , z = (z1, . . . , zn) ∈ C
n

vanishing on the coordinate axes.

The following result provides a powerful tool (see Theorem 1.9 in Chapter 5,
Section 1) for the investigation of analyticity for solutions of partial differential
equations.
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Theorem 2.12. (Holomorphic parameter integrals)
Assumptions: Let Θ ⊂ R

m and Ω ⊂ C
n denote domains in the respective

spaces of dimensions m,n ∈ N. Furthermore, let

f = f(t, z) = f(t1, . . . , tm, z1, . . . , zn) : Θ ×Ω −→ C ∈ C0(Θ ×Ω,C)

represent a continuous function with the following properties:

(a) For each fixed vector t ∈ Θ the function

Φ(z) := f(t, z), z ∈ Ω

is holomorphic.
(b) We have a continuous integrable function F (t) : Θ −→ [0,+∞) ∈

C0(Θ,R) satisfying ∫
Θ

F (t) dt < +∞,

which represents a uniform majorant to our function f = f(t, z) - that
means

|f(t, z)| ≤ F (t) for all (t, z) ∈ Θ ×Ω.

Statement: Then the function

ϕ(z) :=

∫
Θ

f(t, z) dt, z ∈ Ω

is holomorphic in Ω.

Proof:

1. We consider a closed n-dimensional rectangle Q satisfying Q ⊂ Θ, and we
show that the function

Ψ(z) :=

∫
Q

f(t, z) dt, z ∈ Ω

is holomorphic. Here we decompose the rectangle Q via the formula

Zk : Q =

Nk⋃
l=1

Ql

into subrectangles whose measure of fineness satisfies: δ(Zk) → 0 for k →
∞. Then we consider an arbitrary compact set K ⊂ Ω: For each ε > 0 we
have an index k0 = k0(ε) ∈ N such that the following estimate holds true
for all k ≥ k0, namely
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∣∣∣∣∣Ψ(z)−
Nk∑
l=1

f
(
t(l), z

)
|Ql|
∣∣∣∣∣ =
∣∣∣∣∣∣
∫
Q

f(t, z) dt−
Nk∑
l=1

f
(
t(l), z

)
|Ql|

∣∣∣∣∣∣ ≤ ε

for all z ∈ K with t(l) ∈ Ql. On a compact set the continuous function
f = f(t, z) is namely uniformly continuous! The sequence of holomorphic
functions

Ψk(z) :=

Nk∑
l=1

f
(
t(l), z

)
|Ql|, z ∈ Ω, k = 1, 2, 3, . . .

converges uniformly on each compact set K ⊂ Ω towards the holomorphic
function

Ψ(z) :=

∫
Q

f(t, z) dt, z ∈ Ω

due to Theorem 2.8.
2. Now we exhaust the open set Θ by a sequence of compact sets

R1 ⊂ R2 ⊂ R3 ⊂ . . . ⊂ Θ

where each set Rk is a union of finitely many closed rectangles in Θ. From
the first part of our proof we infer that the function

ϕk(z) :=

∫
Rk

f(t, z) dt, z ∈ Ω

is holomorphic for each index k ∈ N. With an arbitrarily given quantity
ε > 0, we have the relation

∫
Θ\Rk

F (t) dt ≤ ε for all k ≥ k0(ε).

This implies the following inequality for all z ∈ Ω, namely

|ϕ(z)− ϕk(z)| =
∣∣∣
∫

Θ\Rk

f(t, z) dt
∣∣∣ ≤

∫
Θ\Rk

F (t) dt ≤ ε

with the index k ≥ k0(ε). Therefore, the sequence of holomorphic func-
tions ϕk = ϕk(z) with k = 1, 2, 3, . . . converges uniformly towards the
holomorphic function

ϕ(z) =

∫
Θ

f(t, z) dt, z ∈ Ω.

This completes the proof. q.e.d.
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Remarks:

1. The transition from the equation fz(z) = 0 to the system

∂

∂zi
f(z1, . . . , zn) = 0, i = 1, . . . , n

is easy, since the latter constitutes a linear system.
2. We refer the reader to the excellent book [GF] by Grauert and Fritzsche

for further studies in the theory of holomorphic functions with several
complex variables.

3 Geometric Behavior of Holomorphic Functions in C

We begin with the surprising

Theorem 3.1. Let the function f : G → C be holomorphic on the domain
G ⊂ C, and take a point z0 ∈ G. Then the following statements are equivalent:

(a) The function f is locally injective about the point z0;
(b) The function f is locally bijective about the point z0;
(c) We have the condition Jf (z0) > 0.

Proof:

1. The direction (a) ⇒ (b) is contained in the Theorems of Jordan-Brouwer
in R

n for the special case n = 2.
2. We now show the direction (b) ⇒ (c): Here we consider the disc

K :=
{
z ∈ C : |z − z0| < �

}
⊂⊂ G

with a sufficiently small radius � > 0. Then we define

F (z) := f(z)− f(z0), z ∈ K

and
ϕ(t) := F (�eit) �= 0, 0 ≤ t ≤ 2π.

Now the index-sum formula yields

±1 =W (ϕ) = i(F, z0) = n

if the expansion

F (z) = an(z − z0)n + o(|z − z0|n), z → z0

with an �= 0 and n ∈ N holds true. Here the function

ψ(z) := o(|z − z0|n)
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satisfies

lim
z→z0
z 
=z0

ψ(z)

|z − z0|n
= 0.

Then we infer the statements n = 1 and F ′(z0) �= 0. Finally, we arrive at
the condition

Jf (z0) = JF (z0) = |F ′(z0)|2 > 0.

3. From the fundamental theorem on the inverse mapping we infer the im-
plication (c) ⇒ (a).

q.e.d.

Example 3.2. Theorem 3.1 becomes false for functions which are only real-
differentiable. In this context, we consider the bijective function

f(x) = x3 , x ∈ R,

whose derivative Jf (x) = 2x2 possesses a zero at the origin x = 0.

Problem: Generalize the results of Theorem 3.1 to holomorphic functions with
n complex variables

f =
(
f1(z1, . . . , zn), . . . , fn(z1, . . . , zn)

)
: G −→ C

n

in the domain G ⊂ C
n (compare [GF] Chapter 1)!

Even for holomorphic mappings, which are not necessarily injective, we have
the following

Theorem 3.3. (Invariance of domains in C)
Let us consider a domain G ⊂ C, where a nonconstant holomorphic function
w = f(z) : G→ C, z ∈ G is defined. Then the image

G∗ := f(G) =
{
w = f(z) : z ∈ G

}

is a domain in C as well.

Proof: We transfer the proof from Theorem 6.4 in Chapter 3, Section 6 to the
plane situation, and we note that the function f = f(z) locally possesses the
expansion

f(z) = f(z0) + an(z − z0)n + o(|z − z0|n) with an ∈ C \ {0}

at an arbitrary point z0 ∈ G. Consequently, the function

g(z) := f(z)− f(z0), |z − z0| ≤ �

satisfies the conditions

i(g, z0) = n �= 0 and g(z) �= 0
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for all points z ∈ C with |z − z0| = �; here we have chosen the radius � > 0
sufficiently small. The arguments of the proof quoted above yield the state-
ment of our theorem.

q.e.d.

Theorem 3.4. (Maximum principle for holomorphic functions)
Let the nonconstant holomorphic function f : G→ C be given on the domain
G ⊂ C. Then we have the following inequality for all points z ∈ G, namely

|f(z)| < sup
ζ∈G

|f(ζ)| =:M.

Proof: IfM = +∞ holds true, nothing has to be shown. Therefore, we assume
the condition M < +∞. Choosing the point z ∈ G arbitrarily, we find a
quantity δ = δ(z) > 0 such that the disc

Bδ(f(z)) :=
{
w ∈ C : |w − f(z)| < δ

}

fulfills the inclusion
Bδ(f(z)) ⊂ G∗

according to Theorem 3.3. Consequently, we infer the statement above from
the following inequality:

M := sup
ζ∈G

|f(ζ)| ≥ sup
w∈Bδ(f(z))

|w| = |f(z)|+ δ > |f(z)|.

q.e.d.

Remarks:

1. When we additionally assume that the domain G is bounded and the
function f : G → C is continuous, we find a point z0 ∈ ∂G with the
property

sup
ζ∈G

|f(ζ)| = |f(z0)| > |f(z)| for all z ∈ G.

2. The transition from f to 1
f reveals the

Minimum principle for holomorphic functions: The nonconstant holomor-
phic function f : G→ C \ {0} on the domain G ⊂ C satisfies the estimate

|f(z)| > inf
ζ∈G

|f(ζ)| for all z ∈ G.

3. In the minimum principle we cannot renounce the assumption f �= 0, as
demonstrated by the subsequent
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Example 3.5. On the domain

G :=
{
z ∈ C : |z| < 1

}

we consider the holomorphic function

f(z) := z, z ∈ G.

Here the function |f(z)| attains its minimum at the interior point z = 0.

4. Let the function f(z1, . . . , zn) : G → C be holomorphic on the domain
G ⊂ C

n. Then we infer the identities

fzj
(z) = 0 in G for j = 1, . . . , n.

We consider the square of the modulus for this function, namely

Φ = Φ(z) = Φ(z1, . . . , zn) := |f(z)|2 = f(z)f(z), z ∈ G.

For the indices j = 1, . . . , n we evaluate its derivatives

Φzj = fzjf + ffzj = fzjf + f(fzj ) = fzjf in G

and
Φzjzj = fzjzjf + fzjfzj

= |fzj |2 in G.

Therefore, we arrive at the inequality

�Φ(z) = 4

n∑
j=1

Φzjzj (z) = 4

n∑
j=1

|fzj (z)|2 ≥ 0, z ∈ G. (1)

Those functions are subharmonic and consequently subject to the maxi-
mum principle, as we shall show in Chapter 5.

Now we consider the reflection at the real axis

τ(z) := z, z ∈ C. (2)

This function is continuous on the complex plane C, and we observe

τ(z) = z ⇐⇒ z ∈ R. (3)

Denoting the upper and lower half-plane in C by

H
± :=

{
z = x+ iy ∈ C : ±y > 0

}
,

respectively, we obtain the topological mappings

τ : H+ → H
− , τ : R → R, τ : H− → H

+.

The function τ = τ(z) is antiholomorphic in the following sense.
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Definition 3.6. On the open set Ω ⊂ C we call the function f : Ω → C

antiholomorphic if the associate function

g(z) := f(z), z ∈ Ω

is holomorphic in Ω.

Theorem 3.7. Each holomorphic function f : Ω → C is orientation-
preserving, which means

Jf (z) ≥ 0 for all z ∈ Ω.

Each antiholomorphic function f : Ω → C is orientation-reversing, which
means

Jf (z) ≤ 0 for all z ∈ Ω.
Proof: If the function f = f(z) is holomorphic, we infer

Jf (z) =

∣∣∣∣∣
fz fz

fz fz

∣∣∣∣∣ = |fz|2 ≥ 0 in Ω.

When the function f = f(z) is antiholomorphic, we consider the holomorphic
function g(z) := f(z) with z ∈ Ω and calculate

Jf (z) =

∣∣∣∣∣
fz fz

fz fz

∣∣∣∣∣ =
∣∣∣∣∣
gz gz

gz gz

∣∣∣∣∣ = −gzgz = −|gz|2 ≤ 0 in Ω.

Consequently, all statements are proved. q.e.d.

The basic tool for the investigation of the boundary behavior for solutions of
two-dimensional partial differential equations is provided by the following

Theorem 3.8. (Schwarzian reflection principle)
In the upper half-plane we consider the open set Ω+ ⊂ H

+ such that

Γ := ∂Ω+ ∩ R ⊂ R

represents a nonvoid open set. Furthermore, we define the open set

Ω− :=
{
z ∈ C : z ∈ Ω+

}
⊂ H

−

and consider the disjoint union

Ω := Ω+ ∪̇Γ ∪̇Ω−.

Finally, let the function f : Ω+ ∪ Γ → C ∈ C1(Ω+) ∩ C0(Ω+ ∪ Γ ) be holo-
morphic in Ω+ and satisfy f(Γ ) ⊂ R. Then the function

F (z) :=

{
f(z), z ∈ Ω+ ∪ Γ

f(z), z ∈ Ω−
(4)

is holomorphic in the set Ω.
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Proof:

1. Obviously, we have the regularity F ∈ C1(Ω+ ∪ Ω−). We consider all
points z ∈ Ω− and derive as follows:

Fz(z) =
∂

∂z
{τ ◦ f ◦ τ}(z)

= (τ ◦ f)w
∣∣∣
τ(z)
τz + (τ ◦ f)w

∣∣∣
τ(z)
τz

= (τ ◦ f)w
∣∣∣
τ(z)

= τζ

∣∣∣
f◦τ(z)

fw

∣∣∣
τ(z)

+ τζ

∣∣∣
f◦τ(z)

fw

∣∣∣
τ(z)

= 0.

Consequently, the function F = F (z) is holomorphic in Ω+ ∪Ω−.
2. Furthermore, the function F = F (z) is continuous in Ω and, in particular,

on the real line in Γ . We choose the limit point z0 ∈ Γ arbitrarily and
consider a sequence of points {zk}k=1,2,... ⊂ Ω− with the property

lim
k→∞

zk = z0.

We infer the relation

lim
k→∞

F (zk) = lim
k→∞

f(zk) = f(z0) = f(z0)

= f(z0) = F (z0),

where we note that f = f(z) is continuous in Ω+ ∪ Γ .
3. We still have to show the holomorphy of the function F = F (z) on the

set Ω: Let z0 ∈ Γ be an arbitrary point, and we consider the semidiscs

H±
ε :=

{
z ∈ C : |z − z0| < �, ±Im z > ε

}
⊂ Ω±

with a sufficiently small radius � > 0 being fixed and the parameter ε→
0+. With the aid of Cauchy’s integral theorem and the Cauchy integral
formula we deduce: For each point z ∈ C \ R with |z − z0| < � we have a
sufficiently small quantity ε = ε(z) > 0 with the property

F (z) =
1

2πi

∮

∂H+
ε

F (ζ)

ζ − z dζ +
1

2πi

∮

∂H−
ε

F (ζ)

ζ − z dζ. (5)

In the transition to the limit ε→ 0+ the integrals on the real axis cancel
out, and we obtain

F (z) =
1

2πi

∮
|ζ−z0|=

F (ζ)

ζ − z dζ, |z − z0| < �. (6)
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This representation formula reveals the holomorphy of the function F =
F (z) about the point z0 ∈ Γ.

q.e.d.

The reflection at the unit circle is important:

σ(z) :=
1

z
, z ∈ C \ {0}. (7)

This function is holomorphic with the complex derivative

σ′(z) = − 1

z2
, z ∈ C \ {0}.

Combined with the reflection at the real axis, the function

f(z) := τ ◦ σ(z) = 1

z
, z ∈ C \ {0}

in polar coordinates satisfies the identity

f(reiϕ) =
1

r
eiϕ , 0 < r < +∞, 0 ≤ ϕ < 2π. (8)

Obviously, the unit circle line |z| = 1 remains fixed with respect to the map-
ping f = f(z).

We add a further element to the Gaussian plane C, namely the infinitely
distant point ∞ �∈ C, and we obtain Riemann’s sphere

C := C ∪ {∞}.

Now we define the ε-disc about the point ∞ by

Kε(∞) :=

{
z ∈ C : |z| > 1

ε

}
∪ {∞}, 0 < ε < +∞. (9)

When we use the familiar discs

Kε(0) :=
{
z ∈ C : |z| < ε

}
,

we obtain the topological mapping

σ : Kε(0) \ {0} −→ Kε(∞) \ {∞} (10)

for all 0 < ε < +∞.

Definition 3.9. We call a set O ⊂ C open - in Riemann’s sphere - if each
point z0 ∈ O possesses a disc Kε(z0), with a sufficiently small radius ε > 0
about the respective center, such that

Kε(z0) ⊂ O

is fulfilled. Here we mean, as usual,

Kε(z0) :=
{
z ∈ C : |z − z0| < ε

}

for all points z0 ∈ C and radii ε > 0.
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Theorem 3.10. The system of open sets

T (C) :=
{
O ⊂ C : O is open

}

constitutes a topological space.

Proof: Exercise.

The limit point z0 ∈ C being given, we define the notion limit for a sequence
of points {zk}k=1,2,... ⊂ C tending to z0 as follows:

lim
k→∞

zk = z0 ⇐⇒
{
For all ε > 0 we have an index k0 = k0(ε) ∈ N

such that zk ∈ Kε(z0) for all k ≥ k0(ε) holds true.
(11)

We obtain the usual notion of convergence for the points z0 ∈ C, however, the
infinitely distant point z0 = ∞ as limit point means:

lim
k→∞

zk = z0 ⇐⇒

⎧⎨
⎩

For all ε > 0 we have an index k0 = k0(ε) ∈ N

such that |zk| >
1

ε
for all k ≥ k0(ε) holds true

.

(12)

As an exercise one proves the subsequent

Theorem 3.11. Riemann’s sphere {C, T (C)} is compact in the following
sense:

(a) To each sequence of points {zk}k=1,2,... ⊂ C there exists a convergent
subsequence {zkl

}l=1,2,... ⊂ {zk}k=1,2,... with the property

z0 := lim
l→∞

zkl
∈ C.

(b) Each open covering {Oι}ι∈J of Riemann’s sphere C contains a finite sub-
covering.

Definition 3.12. Let Ω ⊂ C denote an open set, where f : Ω → C may be
defined. Then the function f = f(z) is called continuous at the point z0 ∈ Ω,
if each quantity ε > 0 admits a number δ = δ(ε, z0) > 0 such that the inclusion

f
(
Kδ(z0)

)
⊂ Kε

(
f(z0)

)

holds true. When the function f = f(z) is continuous at each point z0 ∈ Ω,
we call the function continuous in Ω.
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Theorem 3.13. The reflection at the unit circle

σ(z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞, z = 0

1

z
, z ∈ C \ {0}

0, z = ∞

gives us a continuous bijective mapping σ : C → C. This function is holomor-
phic in C \ {0} with the derivative

σ′(z) = − 1

z2
, z ∈ C \ {0}.

Proof: Exercise.

We define the stereographic projection from the unit sphere

S2 :=
{
x = (x1, x2, x3) ∈ R

3 : |x| = 1
}

=
{
(sinϑ cosϕ, sinϑ sinϕ, cosϑ) : 0 ≤ ϑ ≤ π, 0 ≤ ϕ < 2π

}

onto the plane R
2 = C according to

π : S2 −→ R
2 ∪ {∞}, S2 � (x1, x2, x3) �→ (p1, p2) ∈ R

2 ∪ {∞} (13)

with
x1 = sinϑ cosϕ, x2 = sinϑ sinϕ, x3 = cosϑ,

p1 =
sinϑ cosϕ

1− cosϑ
, p2 =

sinϑ sinϕ

1− cosϑ
.

This mapping ist bijective, and its restriction to the sphere without north-pole
S2 \ {(0, 0, 1)} is conformal in the following sense: Oriented angles between
two intersecting curves are preserved with respect to the mapping

π : S2 \ {(0, 0, 1)} → R
2.

Here we refer the reader to the brilliant Grundlehren [BL] by W.Blaschke and
K. Leichtweiß.
We observe the following behavior for a sequence of points

{x(k)}k=1,2,3,... ⊂ S2 \ {(0, 0, 1)}

satisfying x(k) → (0, 0, 1) with k → ∞, namely

π
(
x(k)
)
−→ ∞ for k → ∞.

Therefore, the definition π((0, 0, 1)) := ∞ makes sense, in order to extend the
mapping π continuously onto the whole sphere S2.
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4 Isolated Singularities and the General Residue
Theorem

On the basis of the Gaussian integral theorem in the plane, we establish the
fundamental

Theorem 4.1. (General residue theorem)
Assumptions:

I. Let G ⊂ C denote a bounded domain whose boundary points Ġ are ac-
cessible from the exterior as follows: For all points z0 ∈ Ġ there exists a
sequence {zk}k=1,2,... ⊂ C \ G satisfying limk→∞ zk = z0. Furthermore,
we have J ∈ N regular C1-curves

X(j)(t) : [aj , bj ] −→ C ∈ C1([aj , bj ],C), j = 1, . . . , J

with the following properties:

X(j)
(
(aj , bj)

)
∩X(k)

(
(ak, bk)

)
= ∅, j, k ∈ {1, . . . , J}, j �= k

and

Ġ =
J⋃

j=1

X(j)
(
[aj , bj ]

)
.

Finally, the domain G is situated at the left-hand side of the respective
curves: More precisely, the function

−i
∣∣∣∣ ddt X(j)(t)

∣∣∣∣
−1
d

dt
X(j)(t), t ∈ (aj , bj)

represents the exterior normal vector to the domain G for j = 1, . . . , J .
The entire curvilinear integral - over these J oriented curves - will be
addressed by the symbol

∫
∂G

· · · .

II. Furthermore, let N ∈ N∪{0} singular points - where N = 0 describes the
case that no singular point exists - be given, which are denoted by ζj ∈ G
for j = 1, . . . , N . Now we define the punctured domain

G′ := G \ {ζ1, . . . , ζN} and G
′
:= G \ {ζ1, . . . , ζN}.

III. Let the function f = f(z) : G
′ → C ∈ C1(G′,C) ∩ C0(G

′
,C) satisfy the

inhomogeneous Cauchy-Riemann equation

∂

∂z
f(z) = g(z) for all z ∈ G′. (1)
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IV. Finally, let the right-hand side of our differential equation (1) fulfill the
following integrability condition:

∫∫
G′

|g(z)| dxdy < +∞.

Statement: Then the limits

Res (f, ζk) := lim
ε→0+

⎧⎨
⎩
ε

2π

2π∫
0

f(ζk + εeiϕ)eiϕ dϕ

⎫⎬
⎭ (2)

exist for k = 1, . . . , N , and we have the identity

∫
∂G

f(z) dz − 2i

∫∫
G′

g(z) dxdy = 2πi
N∑

k=1

Res (f, ζk). (3)

Proof: We apply the Gaussian integral theorem to the domain

Gε :=
{
z ∈ G : |z − ζk| > εk for k = 1, . . . , N

}
.

Here the vector ε = (ε1, . . . , εN ) consists of the entries ε1 > 0, . . . , εN > 0.

Figure 1.4 Illustration of the Residue Theorem

With the notations f(z) = u(x, y) + iv(x, y) and

∂Gε : z(t) = x(t) + iy(t), t ∈ [ak, bk], k = 1, . . . ,K = J +N

we obtain
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∫
∂Gε

f(z) dz =

∫
∂Gε

(u+ iv) (dx+ idy)

=

∫
∂Gε

(u dx− v dy) + i
∫

∂Gε

(v dx+ u dy)

=

K∑
k=1

bk∫
ak

(ux′ − vy′) dt+ i
K∑

k=1

bk∫
ak

(vx′ + uy′) dt.

The exterior normal to the domain Gε satisfies

ξ(z(t)) = −i
{
x′(t)2 + y′(t)2

}− 1
2
{
x′(t) + iy′(t)

}

=
{
x′(t)2 + y′(t)2

}− 1
2
(
y′(t),−x′(t)

)

with t ∈ (ak, bk) for k = 1, . . . ,K. Consequently, the Gaussian integral theo-
rem implies

∫
∂Gε

f(z) dz =

K∑
k=1

bk∫
ak

{
(−v,−u) · ξ

}∣∣∣
z(t)
dσ(t) + i

K∑
k=1

bk∫
ak

{
(u,−v) · ξ

}∣∣∣
z(t)
dσ(t)

=

∫∫
Gε

(−vx − uy + iux − ivy) dxdy

with the line element

dσ(t) =
√
x′(t)2 + y′(t)2 dt.

We observe

2ifz = i(fx + ify) = −fy + ifx = −uy − ivy + iux − vx

and infer the identity

∫
∂G

f(z) dz − 2i

∫∫
Gε

fz(z) dxdy =

N∑
k=1

∮
|z−ζk|=εk

f(z) dz. (4)

Here we integrate over the positive-oriented circular lines on the right-hand
side. On the left-hand side in (4) we can implement the transition to the limit
εk → 0+ for each k ∈ {1, . . . , N} separately, and therefore the limit on the
right-hand side exists:

lim
εk→0+

∮
|z−ζk|=εk

f(z) dz ∈ C.
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In particular, we can evaluate

lim
εk→0+

∮
|z−ζk|=εk

f(z) dz = lim
εk→0+

⎧⎨
⎩εk

2π∫
0

f(ζk + εke
iϕ)ieiϕ dϕ

⎫⎬
⎭

= 2πi lim
εk→0+

⎧⎨
⎩
εk
2π

2π∫
0

f(ζk + εke
iϕ)eiϕ dϕ

⎫⎬
⎭

= 2πiRes (f, ζk)

for k = 1, . . . , N . The transition to the limit ε→ 0 in (4) implies

∫
∂G

f(z) dz − 2i

∫∫
G′

g(z) dxdy = 2πi

N∑
k=1

Res (f, ζk),

and finally the statement above follows. q.e.d.

Definition 4.2. We name Res (f, ζk) from (2) the residue of f at the point
ζk.

Definition 4.3. We denote those domains G ⊂ C, which satisfy Assumption
I. in Theorem 4.1, as normal domains.

Remarks to Theorem 4.1:

1. In the case N = 0 - without interior singular points - we obtain the
Gaussian integral theorem in the complex form

∫∫
G

∂

∂z
f(z) dxdy =

1

2i

∫
∂G

f(z) dz. (5)

2. In the case that g(z) ≡ 0 in G′ holds true, the function f = f(z) is holo-
morphic in G′, and we infer the classical residue theorem due to Liouville:

∫
∂G

f(z) dz = 2πi

N∑
k=1

Res (f, ζk). (6)

3. If the function f = f(z) remains bounded about the point ζk, which means

sup
0<|z−ζk|<εk

|f(z)| < +∞,

we infer Res (f, ζk) = 0.
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4. Let the following representation

f(z) =
Φ(z)

z − ζk
, 0 < |z − ζk| < εk, (7)

with a continuous function Φ = Φ(z) at the point ζk, hold true. Then we
have the following identity

Res (f, ζk) = lim
ε→0+

⎧⎨
⎩
ε

2π

2π∫
0

Φ(ζk + εeiϕ)

εeiϕ
eiϕ dϕ

⎫⎬
⎭

= lim
ε→0+

⎧⎨
⎩

1

2π

2π∫
0

Φ(ζk + εeiϕ) dϕ

⎫⎬
⎭

for the residue, and consequently

Res (f, ζk) = Φ(ζk).

Theorem 4.4. (Integral representation)
Let the assumptions I. to IV. of Theorem 4.1 be fulfilled. Additionally, the func-
tion f = f(z) satisfies the condition

sup
z∈G′

|f(z)| < +∞. (8)

Then we have the integral representation

f(z) =
1

2πi

∫
∂G

f(ζ)

ζ − z dζ −
1

π

∫∫
G′′

g(ζ)

ζ − z dξdη, z ∈ G′, (9)

where we abbreviate G′′ := G′ \ {z} and ζ = ξ + iη.

Proof: Choosing the point z ∈ G′ as fixed, we apply Theorem 4.1 to the
following function

h(ζ) :=
f(ζ)

ζ − z , ζ ∈ G′′.

Now we calculate

∫
∂G

h(ζ) dζ − 2i

∫∫
G′′

hζ(ζ) dξdη = 2πi

N∑
k=1

Res (h, ζk) + 2πiRes (h, z)

= 2πif(z).

This implies
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f(z) =
1

2πi

∫
∂G

f(ζ)

ζ − z dζ −
1

π

∫∫
G′′

g(ζ)

ζ − z dξdη, z ∈ G′

which corresponds to the statement above. q.e.d.

As a corollary we obtain the following

Theorem 4.5. (Riemann’s theorem on removable singularities)
In the punctured disc

Ω :=
{
z ∈ C : 0 < |z − z0| ≤ r

}

with the center z0 ∈ C and the radius r ∈ (0,+∞), let the function f : Ω → C

be holomorphic and bounded, which means

sup
z∈Ω

|f(z)| < +∞.

Then f = f(z) can be continued onto the full disc

Ω̂ :=
{
z ∈ C : |z − z0| ≤ r

}

as a holomorphic function.

Proof: We apply Theorem 4.4 to the set Ω and the holomorphic function
f = f(z). Now we infer the statement above from the following integral rep-
resentation:

f(z) =
1

2πi

∮
|ζ−z0|=r

f(ζ)

ζ − z dζ, z ∈ Ω. (10)

q.e.d.

In the sequel, we investigate holomorphic functions in the neighborhood of
singular points.

Theorem 4.6. (Laurent expansion)
Let the function f = f(z) be holomorphic in the punctured disc

Ω :=
{
z ∈ C : 0 < |z − z0| < r

}
,

where z0 ∈ C and r ∈ (0,+∞) holds true. Then we have the representation

f(z) =

+∞∑
n=−∞

an(z − z0)n for all z ∈ Ω (11)

with the coefficients
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an :=
1

2πi

∮
|ζ−z0|=

f(ζ)

(ζ − z0)n+1
dζ for n ∈ Z,

where the radius � ∈ (0, r) has been chosen arbitrarily. The convergence of
this so-called Laurent series, with its principal part

g(z) :=
−∞∑

n=−1

an(z − z0)n , z ∈ Ω

and its subordinate part

h(z) :=

+∞∑
n=0

an(z − z0)n , z ∈ Ω,

is uniform on each compact set contained in Ω. Finally, we have the identity

Res (f, z0) = a−1. (12)

Remark: The determination of the Laurent series gives us the residue as its
coefficient a−1, and then we can evaluate integrals by the residue theorem.
The coefficients of the Laurent series are uniquely determined.

Proof of the theorem: Without loss of generality, we can assume z0 = 0. We
consider the point z ∈ Ω, fix the numbers 0 < ε < |z| < δ < r, and apply
Theorem 4.4 to the domain

G :=
{
z ∈ C : ε < |z| < δ

}
.

Now we obtain

f(z) =
1

2πi

∮
|ζ|=δ

f(ζ)

ζ − z dζ −
1

2πi

∮
|ζ|=ε

f(ζ)

ζ − z dζ for all points z ∈ G.

The expansion of the power series as usual, namely

1

2πi

∮
|ζ|=δ

f(ζ)

ζ − z dζ =
∞∑

n=0

anz
n for all |z| < δ,

gives us the subordinate part of the Laurent series. Now we expand the ex-
pression below for all |ζ| = ε and |z| > ε as follows:

− 1

ζ − z =
1

z

1

1− ζ
z

=
1

z

∞∑
n=0

ζn

zn
=

∞∑
n=0

ζnz−n−1.

Here the convergence of the series is uniform on each compact set. For all
points satisfying |z| > ε we obtain the following expansion



4 Isolated Singularities and the General Residue Theorem 249

− 1

2πi

∮
|ζ|=ε

f(ζ)

ζ − z dζ =
∞∑

n=0

⎛
⎜⎝ 1

2πi

∮
|ζ|=ε

f(ζ)

ζ−n
dζ

⎞
⎟⎠ z−n−1

=

∞∑
n=0

a−n−1z
−n−1

=

−∞∑
n=−1

anz
n.

This gives us the principal part of our Laurent series. Therefore, we have
shown the uniform convergence of the series

f(z) =

+∞∑
n=−∞

anz
n for ε < |z| < δ,

where 0 < ε < δ < r has been chosen arbitrarily. q.e.d.

Definition 4.7. Let the holomorphic function f = f(z) be represented by its
Laurent series (11), in the neighborhood of the point z0 ∈ C, due to Theorem
4.6.

i) When we find a nonvanishing coefficient an �= 0 with its index n ≤ N
for each integer N ∈ Z, we say that the function f possesses an essential
singularity at the point z0.

ii) When we have a negative integer N ∈ Z with N < 0, such that an = 0 for
all indices n < N holds true and aN �= 0, we say that f possesses a pole
of the order (−N) ∈ N at the point z0.

iii) When the condition an = 0 for all n ∈ Z with n < 0 is correct, we say
that f possesses a removable singularity at the point z0.

Theorem 4.8. (Casorati, Weierstraß)
Let the assumptions and notations of Theorem 4.6 be valid. Additionally, let
the function f : Ω → C be continuous. Then this function f = f(z) does not
possess an essential singularity at the point z0. It has a pole at this point if
and only if f(z0) = ∞ is correct; and it has a removable singularity at the
point z0 if and only if f(z0) ∈ C holds true.

Proof: Since f : Ω → C is extendable into the point z0 as a continuous
function, we have a constant c ∈ C and a quantity ε > 0 such that

f(z) �= c for all z ∈ Kε(z0)

holds true. Now we consider the holomorphic function
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g(z) :=
1

f(z)− c , z ∈ Kε(z0) \ {z0}.

On account of the condition

sup
0<|z−z0|<ε

|g(z)| < +∞,

we can continue g = g(z) as a holomorphic function into the point z0, due to
Riemann’s theorem on removable singularities. Consequently, we have a holo-
morphic function h = h(z), z ∈ Kε(z0) satisfying h(z0) �= 0 and a nonnegative
integer n ∈ N0 such that

1

f(z)− c = g(z) = (z − z0)nh(z), z ∈ Kε(z0) \ {z0}

holds true. This implies the representation

f(z) = c+ (z − z0)−nh(z)−1 =

+∞∑
k=−n

bk(z − z0)k = (z − z0)Nψ(z)

for all points z ∈ Kε(z0) \ {z0}. Here we have used the integer N ∈ Z and the
holomorphic function

ψ = ψ(z), z ∈ Kε(z0)

satisfying ψ(z0) �= 0.
Now the function f = f(z) possesses a pole at the point z0 if and only if the
relation

lim
z→z0
z 
=z0

|f(z)| = lim
z→z0
z 
=z0

{
|z − z0|N |ψ(z)|

}
= |ψ(z0)| lim

z→z0
z 
=z0

|z − z0|N = +∞

or equivalently
f(z0) = ∞

holds true.
Correspondingly, the function possesses a removable singularity at the point
z0 if and only if

lim
z→z0
z 
=z0

|f(z)| = lim
z→z0
z 
=z0

{
|z − z0|N |ψ(z)|

}
= |ψ(z0)| lim

z→z0
z 
=z0

|z − z0|N < +∞

or equivalently
f(z0) ∈ C

holds true. Thus the statement above is established. q.e.d.
Remark: We could show by the method described that a function with an
essential singularity z0 approaches each value in C as closely as possible in
each neighborhood of this singular point.



4 Isolated Singularities and the General Residue Theorem 251

We consider the holomorphic function f : Ω → C defined on the punctured
disc

Ω :=
{
z ∈ C : 0 < |z − z0| < r

}
,

with no essential singularity at the point z0. Then we have the representation

f(z) = (z − z0)nϕ(z), z ∈ Ω, n ∈ Z, (13)

with the holomorphic function ϕ : Ω ∪ {z0} → C satisfying ϕ(z0) �= 0.

Definition 4.9. We name the integer n ∈ Z from the representation (13) the
order of the zero z0.

Remark: If n ∈ N holds true, we infer f(z0) = 0. In the case n = 0, the
condition f(z0) �= 0 is fulfilled. If n ∈ −N holds true, the function f = f(z)
possesses a pole of the order N = −n ∈ N at the point z0, and we note that
f(z0) = ∞.

Theorem 4.10. (Principle of the argument)
Let the assumptions I. and II. of Theorem 4.1 be fulfilled. The function

f = f(z) : G
′ → C \ {0}

may be holomorphic in G
′
and extendable into the singular points as a contin-

uous function f : G → C. We denote the order of the zeroes for the singular
points ζk by the symbols nk = nk(ζk) ∈ Z for k = 1, . . . , N . Then we have the
index-sum formula

N∑
k=1

nk =
1

2πi

∫
∂G

1

f(ζ)

{
fξ(ζ) dξ + fη(ζ) dη

}
. (14)

Proof: We apply the residue theorem on the holomorphic function

F (z) :=
f ′(z)

f(z)
, z ∈ G′

.

Here we consider the expansions

f(z) = (z − ζk)nkϕk(z), z ∈ G \ {ζk}, z → ζk, (15)

with the holomorphic functions ϕk = ϕk(z) satisfying ϕk(ζk) �= 0. These
imply the representations

F (z) =
nk(z − ζk)nk−1ϕk(z) + (z − ζk)nkϕ′

k(z)

(z − ζk)nkϕk(z)

=
nk

z − ζk
+
ϕ′
k(z)

ϕk(z)
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for
z ∈ G \ {ζk}, z → ζk,

and we obtain
Res (F, ζk) = nk , k = 1, . . . , N. (16)

The residue theorem yields

N∑
k=1

nk =

N∑
k=1

Res (F, ζk) =
1

2πi

∫
∂G

F (ζ) dζ

=
1

2πi

∫
∂G

f ′(ζ)

f(ζ)
dζ =

1

2πi

∫
∂G

fξ dξ + ifξ dη

f

=
1

2πi

∫
∂G

fξ dξ + fη dη

f
,

and the statement above is proved. q.e.d.
Remark: We refer the reader to Section 1 in Chapter 3, presenting the winding
number, in order to comprehend the notation principle of the argument.

Now we shall investigate properties of the singular double integral from rep-
resentation (9).

Definition 4.11. Let Ω ⊂ C denote a bounded open set, and the bounded
continuous function

g ∈ L∞(Ω,C) ∩ C0(Ω,C)

may be given. Then we name

TΩ [g](z) := − 1

π

∫∫
Ω

g(ζ)

ζ − z dξdη, z ∈ Ω, (17)

the Hadamard integral operator; here we use ζ = ξ + iη again.

The following result is fundamental for the two-dimensional potential theory.

Theorem 4.12. (Hadamard’s estimate)
Let Ω ⊂ C denote a bounded open set, and let g ∈ C0(Ω,C) be a continuous
function with the property

‖g‖∞ := sup
ζ∈Ω

|g(ζ)| < +∞.

Then we have a constant γ ∈ (0,+∞) such that the function

ψ(z) := TΩ [g](z), z ∈ C
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satisfies the inequality

|ψ(z1)− ψ(z2)| ≤ 2γ‖g‖∞|z1 − z2| log
ϑ(z1)

|z1 − z2|

for all points z1, z2 ∈ C with |z1 − z2| ≤
1

2
ϑ(z1).

(18)

Here we have defined the quantity

ϑ(z1) := sup
z∈Ω

|z − z1|.

Proof: We take the points z1, z2 ∈ C with z1 �= z2 and observe

ψ(z1)− ψ(z2) =
1

π

∫∫
Ω

(
g(ζ)

ζ − z2
− g(ζ)

ζ − z1

)
dξdη

=
1

π

∫∫
Ω

z2 − z1
(ζ − z2)(ζ − z1)

g(ζ) dξdη.

(19)

We utilize the transformation

ζ = z1 + z(z2 − z1), z ∈ C,

which satisfies 0 �→ z1 and 1 �→ z2 and has the Jacobian |z2 − z1|2. Then we
estimate as follows:

|ψ(z1)− ψ(z2)|

≤ 1

π
|z2 − z1|‖g‖∞

∫∫
Ω

1

|ζ − z1||ζ − z2|
dξdη

≤ 1

π
|z2 − z1|‖g‖∞

∫∫
ζ : |ζ−z1|≤ϑ(z1)

1

|ζ − z1||ζ − z2|
dξdη

=
1

π
|z2 − z1|‖g‖∞

∫∫

z : |z|≤ ϑ(z1)

|z2−z1|

1

|z(z2 − z1)||(z − 1)(z2 − z1)|
|z2 − z1|2 dxdy

=
1

π
|z2 − z1|‖g‖∞

∫∫

z : |z|≤ ϑ(z1)

|z1−z2|

1

|z||z − 1| dxdy.

Now we have a constant γ ∈ (0,+∞) such that

∫∫
|z|≤R

1

|z||z − 1| dxdy ≤ γ
∫∫

1≤|z|≤R

1

|z|2 dxdy for all R ∈ [2,+∞) (20)
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holds true. For the points z1, z2 ∈ C with 0 < |z1 − z2| ≤ 1
2 ϑ(z1) we have

2 ≤ ϑ(z1)

|z1 − z2|
.

Therefore, the following estimate

|ψ(z1)− ψ(z2)| ≤
γ

π
|z2 − z1|‖g‖∞

∫∫

1≤|z|≤ ϑ(z1)

|z2−z1|

1

|z|2 dxdy

=
γ

π
‖g‖∞|z2 − z1| 2π

ϑ(z1)

|z1−z2|∫
1

1

r2
r dr

= 2γ‖g‖∞|z1 − z2| log
ϑ(z1)

|z1 − z2|

yields the statement above. q.e.d.

Definition 4.13. We consider the function f : Ω → R
m on the set Ω ⊂

R
n, where m,n ∈ N holds true. Furthermore, let ω : [0,+∞) → [0,+∞)

denote a continuous function - with ω(0) = 0 - which prescribes a modulus of
continuity. Then the function f is named Dini continuous if the estimate

|f(x)− f(y)| ≤ ω(|x− y|) for all points x, y ∈ Ω (21)

holds true.
In the special case

ω(t) = Lt, t ∈ [0,+∞),

the function f is called Lipschitz continuous with the Lipschitz constant L ∈
[0,+∞).
In the special case

ω(t) = Htα , t ∈ [0,+∞),

we name f Hölder continuous with the Hölder constant H ∈ [0,+∞) and the
Hölder exponent α ∈ (0, 1).

Corollary of Theorem 4.12: The function ψ(z) = TΩ [g](z), z ∈ Ω is Dini
continuous with the following modulus of continuity

ω(t) = 2γ‖g‖∞t log
ϑ

t
, t ∈ [0,+∞), ϑ := diamΩ. (22)

Therefore, the function ψ = ψ(z) is Hölder continuous in Ω with each Hölder
exponent α ∈ (0, 1).
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Theorem 4.14. (Removable singularities)
Let the assumptions I. to IV. of Theorem 4.1 be satisfied. Furthermore, the
function f = f(z) may be subject to the condition

sup
z∈G′

|f(z)| < +∞.

Finally, let the right-hand side g = g(z) of the inhomogeneous Cauchy-
Riemann differential equation (1) fulfill

sup
z∈G′

|g(z)| < +∞.

Then the function f = f(z) is extendable into the singular points ζ1, . . . , ζN ∈
G as a Hölder continuous function, with an arbitrary Hölder exponent α ∈
(0, 1).

Proof: We use Theorem 4.4 and Theorem 4.12. q.e.d.

5 The Inhomogeneous Cauchy-Riemann Differential
Equation

We recommend the study of the excellent monograph [V] of I.N.Vekua and,
moreover, the interesting treatise by

I. N.Vekua: Systeme von Differentialgleichungen erster Ordnung vom ellip-
tischen Typus und Randwertaufgaben. Deutscher Verlag der Wissenschaften,
Berlin, 1956.

Definition 5.1. Let the continuous function Φ : Ω → C be given on the open
set Ω ⊂ C, and choose a point z0 ∈ Ω as fixed. We consider the normal
domains Gk for k = 1, 2, . . . of the topological type of the disc - with area |Gk|
and length |∂Gk| of their boundary curves - which satisfy the inclusions

z0 ∈ Gk ⊂ Ω, k ∈ N (1)

and the asymptotic condition

lim
k→∞

|∂Gk| = 0. (2)

When all these sequences of domains {Gk}k=1,2,... possess the uniquely deter-
mined limit

lim
k→∞

1

2i|Gk|

∫
∂Gk

Φ(z) dz =:
d

dz
Φ(z0), (3)

we call the function Φ = Φ(z) (weakly) differentiable at the point z0 in the
sense of Pompeiu.
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Remark: The Gaussian integral theorem in the complex form yields the iden-
tity

d

dz
Φ(z0) = Φz(z0) for all points z0 ∈ Ω (4)

for all functions Φ ∈ C1(Ω,C); here we used Wirtinger’s derivative on the
right-hand side and Pompeiu’s derivative on the left-hand side.

Definition 5.2. We take the open set Ω ⊂ C and define Vekua’s class of
functions as follows:

Cz(Ω) :=

{
Φ ∈ C0(Ω,C) :

There exists
d

dz
Φ(z) =: g(z)

for all z ∈ Ω with g ∈ C0(Ω,C)

}
.

Proposition 5.3. The rules of differentiation for the class C1(Ω) remain
valid even in the class Cz(Ω) - if the formula contains only the functions
Φ and Φz.

Proof: Consider the unit disc

B :=
{
ζ = ξ + iη ∈ C : |ζ| < 1

}

and the mollifier χ = χ(ζ) ∈ C∞
0 (B, [0,+∞)) with the property

∫∫
B

χ(ξ, η) dξdη = 1.

With an arbitrary function Φ = Φ(z) ∈ Cz(Ω), we associate the mollified
function

Φε(z) :=

∫∫
Ω

1

ε2
χ

(
ζ − z
ε

)
Φ(ζ) dξdη, z ∈ Ω with dist (z,C \Ω) ≥ ε,

(5)
where 0 < ε < ε0 is valid. One easily shows that the Pompeiu derivation
commutes with the mollification process (compare the Friedrichs theorems in
Section 1 of Chapter 10 of Volume 2 for Sobolev spaces). Thus the statements

Φε(z) −→ Φ(z) for ε→ 0 + uniformly in Θ (6)

and

Φε
z(z) −→

d

dz
Φ(z) for ε→ 0 + uniformly in Θ (7)

for each compact set Θ ⊂ Ω hold true. Therefore, we can transfer the rules of
differentiation into the class Cz(Ω).

q.e.d.
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Proposition 5.4. Let Ω ⊂ C denote a bounded open set and g ∈ C0(Ω,C) ∩
L∞(Ω,C) a function. Then the integral

Ψ(z) := TΩ [g](z), z ∈ Ω

is differentiable - in the sense of Pompeiu - with respect to z at each point
z0 ∈ Ω, and we have

d

dz
Ψ(z0) = g(z0), z0 ∈ Ω. (8)

Proof: As described in Definition 5.1, let us consider a sequence {Gk}k=1,2,...

of domains contracting to the point z0 ∈ Ω. We utilize the characteristic
function

χGk
(z) :=

{
1, z ∈ Gk

0, z ∈ C \Gk

.

Now we deduce

1

2i|Gk|

∫
∂Gk

Ψ(z) dz =
1

2i|Gk|

∫
∂Gk

⎛
⎝− 1

π

∫∫
Ω

g(ζ)

ζ − z dξdη

⎞
⎠ dz

=
1

2πi|Gk|

∫∫
Ω

⎛
⎝g(ζ)

∫
∂Gk

1

z − ζ dz

⎞
⎠ dξdη

=
1

2πi|Gk|

∫∫
Ω

(
g(ζ)2πiχGk

(ζ)
)
dξdη

=
1

|Gk|

∫∫
Gk

g(ζ) dξdη

for k = 1, 2, 3, . . .. Finally, we obtain the identity

d

dz
Ψ(z0) = lim

k→∞

⎧⎨
⎩

1

2i|Gk|

∫
∂Gk

Ψ(z) dz

⎫⎬
⎭ = g(z0)

for all points z0 ∈ Ω. q.e.d.

Remark: In general, the function Ψ = Ψ(z) does not belong to the class C1(Ω);
however, Ψ lies only in the class Cz(Ω).

Theorem 5.5. (Pompeiu, Vekua)
On the open set Ω ⊂ C we consider the continuous function g ∈ C0(Ω,C).
Then the following statements are equivalent:
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(a) The element f = f(z) belongs to Vekua’s class of functions Cz(Ω) and
satisfies the partial differential equation

d

dz
f(z) = g(z), z ∈ Ω (9)

in the sense of Pompeiu;
(b) The element f = f(z) belongs to the class C0(Ω,C), and we have the

following integral representation for each normal domain G ⊂⊂ Ω:

f(z) =
1

2πi

∫
∂G

f(ζ)

ζ − z dζ −
1

π

∫∫
G

g(ζ)

ζ − z dξdη, z ∈ G. (10)

Proof: We show the direction (a) ⇒ (b): Let us consider the element f ∈ Cz(Ω)
with

d

dz
f(z) = g(z), z ∈ Ω.

Then we have a sequence of functions fk(z) ∈ C1(Ω,C) for k = 1, 2, . . .
satisfying ⎧⎨

⎩
fk(z) −→ f(z), z ∈ Θ

fkz
(z) −→ d

dz
f(z), z ∈ Θ

uniformly for k → ∞ (11)

in each compact set Θ ⊂ Ω. Based on Theorem 4.4 from Section 4, we com-
prehend the following identity for each normal domain G ⊂⊂ Ω:

fk(z) =
1

2πi

∫
∂G

fk(ζ)

ζ − z dζ −
1

π

∫∫
G

∂
∂ζ
fk(ζ)

ζ − z dξdη, z ∈ G, k ∈ N.

Therefore, we obtain the integral representation (10) via transition k → ∞ to
the limit.

We now show the direction (b) ⇒ (a): The curvilinear integral in (10) rep-
resents an analytic function in the domain G. Furthermore, the parameter
integral TG[g] is continuous in G and weakly differentiable with respect to z
in Pompeiu’s sense. Therefore, we obtain

d

dz
f(z) = g(z), z ∈ G,

according to Proposition 5.4. q.e.d.

Definition 5.6. We name a function g : Ω → C, defined on the open set
Ω ⊂ C, Hölder continuous if each compact set Θ ⊂ Ω admits a constant
H = H(Θ) ∈ [0,+∞) and an exponent α = α(Θ) ∈ (0, 1] such that the
estimate

|g(z1)− g(z2)| ≤ H(Θ)|z1 − z2|α(Θ) for all points z1, z2 ∈ Θ (12)

holds true.



5 The Inhomogeneous Cauchy-Riemann Differential Equation 259

Definition 5.7. Let G ⊂ C be a normal domain, take the point z ∈ G as
fixed, and let

f : G \ {z} → C ∈ C0(G \ {z})

denote a continuous function. We consider the domains

Gε(z) :=
{
ζ ∈ G : |ζ − z| > ε

}

for all numbers 0 ≤ ε < dist {z,C \G}. Then we call the expression

∫∫
G0(z)

© f(ζ) dξdη := lim
ε→0+

∫∫
Gε(z)

f(ζ) dξdη (13)

Cauchy’s principal value of the integral

∫∫
G0(z)

f(ζ) dξdη

if the limit (13) exists.

Remark: When the improper Riemannian integral
∫∫

G0(z)

f(ζ) dξdη exists, we

infer ∫∫
G0(z)

© f(ζ) dξdη =

∫∫
G0(z)

f(ζ) dξdη. (14)

Example 5.8. We consider the function

Λ(z) := ΛG(z) := TG[1](z) = − 1

π

∫∫
G

1

ζ − z dξdη = − 1

π

∫∫
G0(z)

© 1

ζ − z dξdη

for all z ∈ G. The Gaussian integral theorem in the complex form yields

Λ(z) = − 1

π
lim

ε→0+

∫∫
Gε(z)

1

ζ − z dξdη

= − 1

π
lim

ε→0+

∫∫
Gε(z)

d

dζ

ζ

ζ − z dξdη

= − 1

π
lim

ε→0+

1

2i

∫
∂Gε(z)

ζ

ζ − z dζ

= − 1

2πi

∫
∂G

ζ

ζ − z dζ +
1

2πi
lim

ε→0+

∮
|ζ−z|=ε

ζ

ζ − z dζ
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for all z ∈ G. With the aid of the transformation ζ = z + εeiϕ and dζ =
iεeiϕ dϕ, let us calculate as follows:

lim
ε→0+

∮
|ζ−z|=ε

ζ

ζ − z dζ = lim
ε→0+

2π∫
0

(z + εeiϕ)

εeiϕ
iεeiϕ dϕ

= i lim
ε→0+

2π∫
0

(z + εeiϕ) dϕ

= i lim
ε→0+

⎛
⎝2πz + ε

2π∫
0

e−iϕ dϕ

⎞
⎠

= 2πiz.

This implies

Λ(z) = z − 1

2πi

∫
∂G

ζ

ζ − z dζ, z ∈ G. (15)

The function Λ = Λ(z) belongs to the class C∞(G), and we observe

Λz(z) = 1, z ∈ G, (16)

as well as

Λz(z) = − 1

2πi

∫
∂G

ζ

(ζ − z)2 dζ, z ∈ G. (17)

Now we deduce the identity

lim
ε→0+

∮
|ζ−z|=ε

ζ

(ζ − z)2 dζ = lim
ε→0+

2π∫
0

z + εe−iϕ

ε2e2iϕ
iεeiϕ dϕ

= i lim
ε→0+

⎧⎨
⎩
z

ε

2π∫
0

e−iϕ dϕ+

2π∫
0

e−2iϕ dϕ

⎫⎬
⎭ ,

where we utilize the substitution ζ = z+εeiϕ again. Both integrals in the last
line vanish, which implies

lim
ε→0+

∮
|ζ−z|=ε

ζ

(ζ − z)2 dζ = 0.

Therefore, we obtain
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Λz(z) = − 1

2πi

∫
∂G

ζ

(ζ − z)2 dζ + lim
ε→0+

1

2πi

∮
|ζ−z|=ε

ζ

(ζ − z)2 dζ

= − 1

2πi
lim

ε→0+

∫
∂Gε(z)

ζ

(ζ − z)2 dζ,

and the Gaussian integral theorem yields

Λz(z) = − 1

π
lim

ε→0+

∫∫
Gε(z)

d

dζ

ζ

(ζ − z)2 dξdη

= − 1

π

∫∫
G0(z)

© 1

(ζ − z)2 dξdη.

Finally, we arrive at the formula

Λz(z) = − 1

π

∫∫
G0(z)

© 1

(ζ − z)2 dξdη, z ∈ G. (18)

Here we have presented Cauchy’s principal value of an integral which does
not converge absolutely.

Proposition 5.9. On the normal domain G ⊂ C, let the function g : G →
C ∈ C0(G,C) be Hölder continuous. Then Cauchy’s principal value of the
following integral exists for all points z ∈ G, namely

χ(z) = ΠG[g](z) := − 1

π

∫∫
G0(z)

© g(ζ)

(ζ − z)2 dξdη

= lim
ε→0+

⎧⎪⎨
⎪⎩− 1

π

∫∫
Gε(z)

g(ζ)

(ζ − z)2 dξdη

⎫⎪⎬
⎪⎭ .

(19)

The function χ : G→ C is continuous in G.

Definition 5.10. We call ΠG from (19) the Vekua integral operator.

Proof of Proposition 5.9: For all points z ∈ G and all numbers
0 < ε < dist (z,C \G) we observe

− 1

π

∫∫
Gε(z)

g(ζ)

(ζ − z)2 dξdη = − 1

π

∫∫
Gε(z)

g(ζ)− g(z)
(ζ − z)2 dξdη− g(z)

π

∫∫
Gε(z)

1

(ζ − z)2 dξdη.

(20)
Now the integral
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Φ(z) := − 1

π

∫∫
G0(z)

g(ζ)− g(z)
(ζ − z)2 dξdη, z ∈ G

converges absolutely, and the function Φ : G → C is continuous. We utilize
the function Λ = Λ(z), z ∈ G from Example 5.8, and we infer from (20) the
following identity for ε→ 0+, namely

χ(z) = Φ(z) + g(z)Λz(z), z ∈ G. (21)

Furthermore, the function χ = χ(z) is continuous in G. q.e.d.

Proposition 5.11. Let G ⊂ C denote a normal domain, and let the function
g ∈ C0(G,C) be Hölder continuous in G. Then the function

Ψ(z) := TG[g](z) = − 1

π

∫∫
G

g(ζ)

ζ − z dξdη, z ∈ G

belongs to the regularity class C1(G,C), and we have the identities

Ψz(z) = g(z), Ψz(z) = ΠG[g](z) for all points z ∈ G. (22)

Proof:

1. Let the point z0 ∈ G be fixed and g(z0) = 0 hold true. With the aid of
formula (19) from the proof of Theorem 4.12 in Section 4, we determine
the difference quotient for the points z ∈ G \ {z0} as follows:

Ψ(z)− Ψ(z0)
z − z0

= − 1

π

∫∫
G

g(ζ)− g(z0)
(ζ − z0)(ζ − z)

dξdη.

This implies

lim
z→z0
z 
=z0

Ψ(z)− Ψ(z0)
z − z0

= − 1

π

∫∫
G

g(ζ)− g(z0)
(ζ − z0)2

dξdη = ΠG[g − g(z0)](z0).

(23)
Choosing the arguments z = z0 + δ and z = z0 + iδ, respectively, with
δ → 0 and δ �= 0, the limit (23) reveals the relation

Ψx(z0) = ΠG[g − g(z0)](z0) = −iΨy(z0), (24)

and consequently

Ψz(z0) = 0, Ψz(z0) = ΠG[g − g(z0)](z0). (25)

2. If the point z0 ∈ G is fixed, we consider the function

g(z) =
{
g(z)− g(z0)

}
+ g(z0) =: g̃(z) + g(z0).
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With the aid of Example 5.8, we obtain the identity

Ψ(z) = TG[g](z) = TG[g̃ + g(z0)](z)

= TG[g̃](z) + g(z0)TG[1](z)

= TG[g̃](z) + g(z0)Λ(z)

for all points z ∈ G. Due to part 1 of our proof, we can differentiate the
first summand at the point z0 with respect to z and z using the result
(25); the second summand is infinitely often differentiable in G according
to the results (16) and (18). Therefore, we obtain

Ψz(z0) = 0 + g(z0) · 1

and
Ψz(z0) = ΠG[g̃](z0) + g(z0)ΠG[1](z0) = ΠG[g](z0).

This implies the identities

Ψz(z0) = ΠG[g](z0), Ψz(z0) = g(z0) for all z0 ∈ G. (26)

Since the right-hand sides are continuous in G, the function Ψ = Ψ(z)
belongs to the class C1(G,C).

q.e.d.

Proposition 5.12. Let the function g : G→ C of the class C1(G,C) be given
on the normal domain G ⊂ C. Then we have the identity

ΠG[g](z) = TG

[
∂

∂ζ
g

]
(z)− 1

2πi

∫
∂G

g(ζ)

ζ − z dζ (27)

for all z ∈ G.
Proof: We observe

ΠG[g](z) = lim
ε→0+

⎧⎪⎨
⎪⎩− 1

π

∫∫
Gε(z)

g(ζ)

(ζ − z)2 dξdη

⎫⎪⎬
⎪⎭ , z ∈ G.

Let us calculate with the aid of the Gaussian theorem in the complex form as
follows:

lim
ε→0+

∫∫
Gε(z)

g(ζ)

(ζ − z)2
dξdη = − lim

ε→0+

∫∫
Gε(z)

∂

∂ζ

(
g(ζ)

ζ − z

)
dξdη

+ lim
ε→0+

∫∫
Gε(z)

1

ζ − z
∂

∂ζ
g(ζ) dξdη

= − lim
ε→0+

1

2i

∫
∂Gε(z)

g(ζ)

ζ − z
dζ +

∫∫
G0(z)

∂
∂ζ
g(ζ)

ζ − z
dξdη.
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We set ζ = z + εeiϕ again and obtain

lim
ε→0+

∮
|ζ−z|=ε

g(ζ)

ζ − z
dζ = lim

ε→0+

2π∫
0

g(z + εeiϕ)

εe−iϕ
iεeiϕ dϕ

= i lim
ε→0+

⎧⎨
⎩

2π∫
0

g(z + εeiϕ)e2iϕ dϕ

⎫⎬
⎭

and consequently

lim
ε→0+

∮
|ζ−z|=ε

g(ζ)

ζ − z
dζ = 0.

This implies

lim
ε→0+

∫∫
Gε(z)

g(ζ)

(ζ − z)2
dξdη = − 1

2i

∫
∂G

g(ζ)

ζ − z
dζ +

∫∫
G0(z)

∂
∂ζ
g(ζ)

ζ − z
dξdη

for all z ∈ G. Therefore, we deduce the following identity for all points z ∈ G:

ΠG[g](z) = lim
ε→0+

⎧⎪⎨
⎪⎩− 1

π

∫∫
Gε(z)

g(ζ)

(ζ − z)2 dξdη

⎫⎪⎬
⎪⎭

= − 1

π

⎧⎪⎨
⎪⎩ lim

ε→0+

∫∫
Gε(z)

g(ζ)

(ζ − z)2
dξdη

⎫⎪⎬
⎪⎭

= − 1

π

⎛
⎜⎝ 1

2i

∫
∂G

g(ζ)

ζ − z dζ +
∫∫

G0(z)

gζ(ζ)

ζ − z dξdη

⎞
⎟⎠

= TG

[
∂

∂ζ
g

]
(z)− 1

2πi

∫
∂G

g(ζ)

ζ − z dζ.

This corresponds to the statement above. q.e.d.

We summarize our considerations to the important

Theorem 5.13. (Regularity for the inhomogeneous Cauchy-Riemann
equation)
Let the set Ω ⊂ C be open, where the function g ∈ Ck(Ω,C) with k ∈ N∪ {0}
is defined. Furthermore, the element f = f(z) belongs to Vekua’s class of
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functions Cz(Ω) and satisfies the inhomogeneous Cauchy-Riemann differential
equation

d

dz
f(z) = g(z), z ∈ Ω (28)

in the sense of Pompeiu. Then the function f is contained in the regularity
class Ck(Ω,C), and its derivatives of the order k are Dini continuous - with
the modulus of continuity described in Section 4, Theorem 4.12. If additionally
all k-th derivatives of the right-hand side g = g(z) are Hölder continuous
functions in Ω, the regularity f ∈ Ck+1(Ω,C) follows.

Proof:

1. According to Theorem 5.5, the differential equation (28) is equivalent to
the integral equation

f(z) =
1

2πi

∫
∂G

f(ζ)

ζ − z dζ + TG[g](z), z ∈ G,

in arbitrary normal domains G ⊂⊂ Ω. The first summand on the right-
hand side represents a holomorphic function in G and the regularity of
f = f(z) is consequently determined by the Hadamard integral operator

Ψ(z) := TG[g](z), z ∈ G.

In the basic situation k = 0, Theorem 4.12 from Section 4 reveals that the
function Ψ = Ψ(z), and f = f(z) as well, is Dini continuous in G - with
the modulus of continuity described there. If the right-hand side g = g(z)
is additionally Hölder continuous in Ω, Propositions 5.9 and 5.11 yield

Ψ ∈ C1(G); Ψz(z) = g(z), Ψz(z) = ΠG[g](z), z ∈ G. (29)

2. In the case k = 1 we have g ∈ C1(Ω), and the relation (29) implies
Ψz ∈ C1(Ω). Furthermore, Proposition 5.12 yields

Ψz(z) = ΠG[g](z) = TG

[
∂

∂ζ
g

]
(z)− 1

2πi

∫
∂G

g(ζ)

ζ − z dζ, z ∈ G ⊂⊂ Ω.

(30)
Here the second summand on the right-hand side is again holomorphic in
G, and the function

Φ(z) := TG

[
∂

∂ζ
g

]
(z), z ∈ G

is Dini continuous. If gz and gz or equivalently gx and gy are additionally
Hölder continuous in Ω, the relation (30) combined with Proposition 5.11
imply the regularity Ψz ∈ C1(Ω) and the identity
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Ψzz =
∂

∂z

⎧⎨
⎩TG

[
∂

∂ζ
g

]
(z)− 1

2πi

∫
∂G

g(ζ)

ζ − z dζ

⎫⎬
⎭

= ΠG

[
∂

∂ζ
g

]
(z)− 1

2πi

∫
∂G

g(ζ)

(ζ − z)2 dζ

(31)

for all points z ∈ G. Furthermore, we have

Ψzz(z) = gz(z) = Ψzz(z) in G, (32)

and
Ψzz(z) = gz(z) in G. (33)

Therefore, the regularity Ψ ∈ C2(Ω) is proved, and the derivatives are
determined by the formulas above.

3. In the cases k = 2, 3, . . . one continues the procedure in the way described.
Here one essentially utilizes the formula

ΠG

[
∂k−1

∂ζk−1
g

]
(z) = TG

[
∂k

∂ζk
g

]
(z)− 1

2πi

∫
∂G

dk−1

dζk−1 g(ζ)

ζ − z dζ

for all z ∈ G. q.e.d.

6 Pseudoholomorphic Functions

Let Ω ⊂ C denote an open set, and let us define the linear space of complex
potentials

B(Ω) :=
{
a : Ω → C : There exists a bounded open set Θ ⊂ Ω such that

a ∈ C0(Θ,C) ∩ L∞(Θ,C) and a(z) = 0 for all z ∈ Ω \Θ

holds true
}
.

Definition 6.1. The function f = f(z) = u(x, y) + iv(x, y), (x, y) ∈ Ω of
the class C0(Ω,C) ∩ Cz(Ω) is called pseudoholomorphic in Ω, if we have a
complex potential a ∈ B(Ω) such that the differential equation

d

dz
f(z) = a(z)f(z), z ∈ Ω (1)

is satisfied in the Pompeiu sense.

Example 6.2. Let the function f ∈ Cz(Ω) satisfy the differential inequality

|fz(z)| ≤M |f(z)|, z ∈ Ω (2)
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in the bounded open set Ω ⊂ C, with the constant M ∈ [0,+∞). Now we
define the open set

Θ :=
{
z ∈ Ω : f(z) �= 0

}

and choose the potential

a(z) :=

⎧⎪⎨
⎪⎩
fz(z)

f(z)
, z ∈ Θ

0, z ∈ Ω \Θ
(3)

satisfying ‖a‖∞ ≤ M . Consequently, the inequality (1) is fulfilled and the
function f = f(z) is pseudoholomorphic in Ω.

If the potential

a(z) :=
1

2

{
α(x, y) + iβ(x, y)

}

is Hölder continuous in Ω, the solution of (1) belongs to the class C1(Ω)
according to the regularity theorem from Section 5. Then we can transform
(1) into a real system of differential equations. At first, we note

2fz = fx + ify = (ux − vy) + i(vx + uy)

and simultaneously

2af = (α+ iβ)(u+ iv) = (αu− βv) + i(αv + βu).

Therefore, the equation (1) is equivalent to the system

ux − vy = αu− βv
vx + uy = αv + βu

in Ω (4)

and finally to

⎛
⎜⎜⎝
∂

∂x
− ∂

∂y
∂

∂y

∂

∂x

⎞
⎟⎟⎠
(
u(x, y)

v(x, y)

)
=

(
α(x, y) −β(x, y)

β(x, y) α(x, y)

)(
u(x, y)

v(x, y)

)
in Ω. (5)

Theorem 6.3. (Similarity principle of Bers and Vekua)
On the open set Ω ⊂ C we consider the pseudoholomorphic function f = f(z),
with the associate potential a ∈ B(Ω) and the associate open set Θ ⊂ Ω being
given. Furthermore, we introduce the parameter integral

Ψ(z) := − 1

π

∫∫
Θ

a(ζ)

ζ − z dξdη, z ∈ Ω, (6)



268 Chapter 4 Generalized Analytic Functions

representing a Dini continuous function - according to Theorem 4.12 from
Section 4. Then the following function

Φ(z) := f(z) e−Ψ(z) , z ∈ Ω,

is holomorphic in Ω, and we have Vekua’s representation formula

f(z) = eΨ(z) Φ(z), z ∈ Ω. (7)

Proof: Let the symbols χn ∈ C∞
0 (Θ, [0, 1]), n = 1, 2, . . . denote a sequence of

functions such that

lim
n→∞

χn(z) = χ(z) :=

{
1, z ∈ Θ
0, z ∈ C \Θ

.

Then we consider the functions

Ψn(z) := TC[aχn](z) = − 1

π

∫∫
C

a(ζ)χn(ζ)

ζ − z dξdη, z ∈ C, (8)

for n = 1, 2, . . . of the class Cz(C) satisfying

d

dz
Ψn(z) = a(z)χn(z), z ∈ C with n ∈ N. (9)

We now investigate the sequence

Φn(z) := f(z) e
−Ψn(z) , z ∈ Ω for n = 1, 2, 3, . . . (10)

of the class Cz(Ω). With the aid of (1), we calculate

d

dz
Φn(z) = e

−Ψn(z)

{
d

dz
f(z)− f(z) d

dz
Ψn(z)

}

= e−Ψn(z)
{
a(z)f(z)− f(z)a(z)χn(z)

}

= e−Ψn(z) a(z)f(z)
{
1− χn(z)

}
(11)

for all points z ∈ Ω and the indices n = 1, 2, . . .. We apply Theorem 5.5 from
Section 5 and obtain the following identity for each normal domain G ⊂⊂ Ω,
namely

Φn(z) =
1

2πi

∫
∂G

Φn(ζ)

ζ − z dζ −
1

π

∫∫
G

e−Ψn(ζ)a(ζ)f(ζ){1− χn(ζ)}
ζ − z dξdη (12)

for all z ∈ G and n = 1, 2, . . .. Via Lebesgue’s convergence theorem we easily
verify
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lim
n→∞

Φn(z) = lim
n→∞

⎧⎨
⎩f(z) exp

⎛
⎝ 1

π

∫∫
C

a(ζ)χn(ζ)

ζ − z dξdη

⎞
⎠
⎫⎬
⎭

= f(z) exp

⎧⎨
⎩

1

π

∫∫
Θ

a(ζ)

ζ − z dξdη

⎫⎬
⎭

= f(z) exp
{
− Ψ(z)

}

= Φ(z)

(13)

for the point z ∈ Ω being fixed. The transition to the limit in (12) yields the
identity

Φ(z) =
1

2πi

∫
∂G

Φ(ζ)

ζ − z dζ, z ∈ G, (14)

for each normal domain G ⊂⊂ Ω. Consequently, the function Φ = Φ(z) is
holomophic in Ω.

q.e.d.

On the basis of Vekua’s representation formula, we can immediately transfer
various properties of holomorphic functions to the class of pseudoholomorphic
functions.

Theorem 6.4. (Carleman)
We have given the pseudoholomorphic function f : Ω → C on the open set
Ω ⊂ C. Furthermore, let us consider the limit point z0 ∈ Ω and the sequence
of points {zk}k=1,2,... ⊂ Ω \ {z0} with the following properties

lim
k→∞

zk = z0 and f(zk) = 0 for all k ∈ N.

Then we infer the identity

f(z) ≡ 0 in Ω.

Proof: Combine the identity theorem for holomorphic functions with Theorem
6.3 from above.

q.e.d.

In the same way we transfer the principle of the argument to pseudoholomor-
phic functions.

Theorem 6.5. (Uniqueness theorem of Vekua)
Let the function f : C → C be pseudoholomorphic with the asymptotic property

lim
ε→0+

sup
|z|≥ 1

ε

|f(z)| = 0. (15)
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Then we have the identity

f(z) ≡ 0 in C.

Proof: We denote the complex potential belonging to the function f = f(z) by
a ∈ B(C), and we mean by Θ ⊂ C the associate bounded open set. According
to Theorem 6.3 we have the representation

f(z) = eΨ(z) Φ(z), z ∈ C,

with a holomorphic function Φ = Φ(z), z ∈ C. Furthermore, the function

Ψ(z) := − 1

π

∫∫
Θ

a(ζ)

ζ − z dξdη, z ∈ C

is bounded: We have a fixed constant C ∈ (0,+∞) such that the estimate

|Ψ(z)| ≤ 1

π
‖a‖∞

∫∫
Θ

1

|ζ − z| dξdη ≤
1

π
‖a‖∞ C, z ∈ C

is valid. Consequently, the holomorphic function

Φ(z) = f(z) e−Ψ(z) , z ∈ Ω

is bounded and finally constant - due to Liouville’s theorem. We take (15)
into account, and we infer

lim
ε→0+

sup
|z|≥ 1

ε

|Φ(z)| = 0

and consequently

f(z) e−Ψ(z) = Φ(z) ≡ 0 in C.

Finally, we obtain
f(z) ≡ 0 in C,

and the statement above is established. q.e.d.

Remark: An entire pseudoholomorphic function, vanishing at the infinitely
distant point, is identically zero.

7 Conformal Mappings

We begin with the central

Definition 7.1. Let Ωj ⊂ C for j = 1, 2 denote two domains, and we call
the mapping w = f(z) : Ω1 → Ω2 conformal if the following properties are
fulfilled:
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(a) The function f : Ω1 → Ω2 is bijective;
(b) The function f : Ω1 → Ω2 is holomorphic;
(c) The Jacobian satisfies Jf (z) = |f ′(z)|2 > 0 for all points z ⊂ Ω1.

Remark: On account of Theorem 3.1 in Section 3, we can deduce the condition
(c) from the properties (a) and (b).

Remark: A conformal mapping preserves the oriented angles between two
intersecting arcs.

Definition 7.2. Two domains Ω1 and Ω2 in the complex plane C are called
conformally equivalent, if there exists a conformal mapping f : Ω1 → Ω2

between them.

Definition 7.3. For a domain Ω ⊂ C we name the set

Aut (Ω) :=
{
f : Ω → Ω : f is conformal

}

the automorphism group of the domain Ω.

Remark: An easy exercise reveals that Aut (Ω) represents a group with respect
to the composition

f1, f2 ∈ Aut (Ω), then f := f2 ◦ f1 ∈ Aut (Ω)

with the unit element f = idΩ .

Definition 7.4. Let the complex parameters a, b, c, d ∈ C be given such that

det

(
a b
c d

)
= ad− bc �= 0

holds true, and we define

C
∗ :=
{
z ∈ C : cz + d �= 0

}
.

Then we name the mapping

w = f(z) :=
az + b

cz + d
, z ∈ C

∗

a Möbius transformation or alternatively a fractional linear transformation.

With the coefficient matrix (
1 b
0 1

)

we obtain the translation

f(z) = z + b, z ∈ C
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by the vector b ∈ C. The coefficient matrix

(
a 0
0 1

)

yields a rotational dilation

f(z) = az, z ∈ C

- using a complex parameter a ∈ C \ {0} - about the angle ϕ = arg a with
the modulus |a|. Both mappings are conformal on the complex plane C, they
can be continued onto the closure C = C ∪ {∞}, and we have the fixed point
f(∞) = ∞.

With the coefficient matrix (
0 1
1 0

)

we obtain the reflection at the unit circle

f(z) =
1

z
, z ∈ C \ {0}

which is conformal on the set C \ {0}; this mapping can be continued onto
the extended complex plane C = C ∪ {∞} setting f(0) = ∞.

We speak of an elementary mapping when we jointly refer to a translation, a
rotational dilation, or a reflection at the unit circle.

Theorem 7.5. Each Möbius transformation

f(z) =
az + b

cz + d
, z ∈ C

∗

possesses finitely many elementary mappings f1(z), . . . , fn(z) - with n ∈ N -
such that the representation

f(z) = fn ◦ . . . ◦ f2 ◦ f1(z), z ∈ C
∗

is valid. The domain C
∗ is conformally mapped onto the image f(C∗) by the

function f = f(z). Each circle in C is transformed into a circle or a straight
line by the mapping f = f(z); this function additionally transfers each straight
line in C into a straight line or a circle in C.

Remark: When we comprehend a straight line as a circle extending to the
infinitely distant point, then the Möbius transformations are circle-preserving.

Proof of Theorem 7.5:
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1. Given the linear transformation f(z) = az + b, z ∈ C with the complex
parameters a ∈ C \ {0} and b ∈ C, we choose the elementary mappings

f1(z) := az, f2(z) := z + b

and obtain
f2 ◦ f1(z) = az + b = f(z), z ∈ C.

2. With an arbitrary fractional linear transformation

f(z) =
az + b

cz + d
, z ∈ C

∗

- for the parameter c �= 0 - we choose the following mappings

f1(z) := cz + d, f2(z) :=
1

z
, f3(z) :=

bc− ad
c

z +
a

c

and obtain

f3 ◦ f2 ◦ f1(z) = f3
(

1

cz + d

)
=
bc− ad
c

1

cz + d
+
a

c

=
bc− ad+ acz + ad

c(cz + d)
=
az + b

cz + d
= f(z)

for all points z ∈ C
∗. Observing part 1. of our proof, the mappings f1, f2

and f3 can be represented as a composition of elementary mappings, and
this remains true for the mapping f = f(z) as well.

3. Since the elementary mappings transform the extended complex plane C

topologically onto itself, the mapping f : C → C is topological as well.
Furthermore, the function f : C∗ → f(C∗) is analytic, and the mapping

f(z) =
az + b

cz + d
, z ∈ C

∗

satisfies the identity

f ′(z) =
acz + ad− caz − cb

(cz + d)2
=

ad− bc
(cz + d)2

�= 0 for all points z ∈ C
∗.

Consequently, the mapping f : C∗ → f(C∗) is conformal.
4. Evidently, linear transformations transfer circles into circles - and straight

lines into straight lines. In order to show the circle-preserving property of
the Möbius transformations, we establish this feature only for the reflec-
tion at the unit circle:

Circles and straight lines in the z = x + iy - plane are described by the
following equation:

0 = α(x2 + y2) + βx+ γy + δ (1)
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with suitable real numbers α, β, γ, δ ∈ R. We now define the number

a :=
1

2
(β − iγ) ∈ C

and transform (1) into the complex equation

0 = αzz + 2Re (az) + δ = αzz + az + az + δ. (2)

On the set C \ {0} we multiply (2) by 1
z

1
z and obtain

0 = α+ a
1

z
+ a

1

z
+ δ

1

z

1

z
, z ∈ C \ {0}.

Setting w = 1
z and w = 1

z , we arrive at the joint equation for circles and
straight lines:

0 = α+ aw + aw + δww = δww + 2Re (aw) + α. (3)

Therefore, the function z → 1
z maps circles/lines into circles/lines.

q.e.d.

Remarks:

1. Given the two Möbius transformations

f(z) =
az + b

cz + d
and ϕ(z) =

αz + β

γz + δ
,

their composition
F (z) = f ◦ ϕ(z)

represents the following Möbius transformation

F (z) =
Az +B

Cz +D

with the coefficient matrix(
A B
C D

)
=

(
a b
c d

)
◦
(
α β
γ δ

)
. (4)

2. The Möbius transformation

f(z) =
az + b

cz + d

possesses the following inverse Möbius transformation

g(z) =
−dz + b
cz − a .

We leave the proof of these statements as an exercise to the reader.
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Example 7.6. Let us denote the unit disc by

B :=
{
z = x+ iy ∈ C : |z| < 1

}

and the upper half-plane by the symbol

H+ :=
{
w = u+ iv ∈ C : v > 0

}
.

We then consider the Möbius transformation

f(z) =
z + i

iz + 1
, z ∈ C \ {i}, (5)

and evaluate

f(0) = i, f(i) = lim
z→i

f(z) = ∞, f(1) =
1 + i

i+ 1
= 1

as well as

f(−i) = 0, f(−1) =
−1 + i

−i+ 1
= −1.

Therefore, the domains H+ and B are conformally equivalent via the mapping
f : B → H+.

Example 7.7. Let the point z0 ∈ B be chosen as fixed. We now consider the
Möbius transformation

w = f(z) =
z − z0
z0z − 1

, z ∈ B, (6)

with the coefficient matrix (
1 −z0
z0 −1

)
.

Here, we observe

det

(
1 −z0
z0 −1

)
= −1 + |z0|2 < 0

as well as f(z0) = 0. We calculate as follows:

|f(1)| =
∣∣∣∣1− z0z0 − 1

∣∣∣∣ =

∣∣∣∣1− z01− z0

∣∣∣∣ = 1,

|f(−1)| =
∣∣∣∣−1− z0
−1− z0

∣∣∣∣ =

∣∣∣∣−1− z0
−1− z0

∣∣∣∣ = 1,

|f(i)| =
∣∣∣∣ i− z0iz0 − 1

∣∣∣∣ =

∣∣∣∣ i− z0−z0 − i

∣∣∣∣ =

∣∣∣∣ i− z0z0 + i

∣∣∣∣ =

∣∣∣∣ i− z0z0 − i

∣∣∣∣ = 1.

Therefore, we have the mapping properties f : ∂B → ∂B and f(z0) = 0.
Consequently, the function f = f(z) represents a conformal mapping from
the unit disc B onto itself.
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Definition 7.8. Let us consider a continuous mapping f : Ω → Ω of the
domain Ω ⊂ C into itself. We call z0 ∈ Ω a fixed point of the mapping
f = f(z) if the identity f(z0) = z0 holds true. When the property 0 ∈ Ω
is valid, and 0 provides a fixed point of the mapping, we name this function
origin-preserving.

The automorphism group Aut (B) can be explicitly determined with the aid
of the following

Theorem 7.9. (Schwarzian lemma)
Let w = f(z) : B → B denote a holomorphic, origin-preserving function.
Then we have the estimate

|f(z)| ≤ |z| for all points z ∈ B.

If there exists a point z0 ∈ B \ {0} satisfying |f(z0)| = |z0|, the function
f = f(z) admits the representation

f(z) = eiϑz, z ∈ B

with a certain angle ϑ ∈ [0, 2π).

Proof: The function

g(z) :=
f(z)

z
, z ∈ B \ {0}

can be holomorphically continued onto the disc B, and we have the boundary
behavior

lim sup
z→∂B

|g(z)| ≤ 1.

From Theorem 3.4 in Section 3 we infer

sup
z∈B

|g(z)| ≤ lim sup
z→∂B

|g(z)| ≤ 1

and therefore
|f(z)| ≤ |z| for all points z ∈ B.

If there exists a point z0 ∈ B \ {0} with |f(z0)| = |z0|, we observe |g(z0)| = 1.
Consequently, the mapping g = g(z) is constant - due to the theorem quoted
above. This implies

g(z) = eiϑ , z ∈ B

or equivalently
f(z) = eiϑz, z ∈ B,

with an angle ϑ ∈ [0, 2π). q.e.d.



7 Conformal Mappings 277

Theorem 7.10. (Automorphism group of the unit disc)
An automorphism w = f(z) : B → B of the unit disc is necessarily of the
following form:

w = f(z) = eiϑ
z − z0
z0z − 1

, z ∈ B, (7)

with z0 := f−1(0) ∈ B and ϑ ∈ [0, 2π). On the other hand, each mapping of
the form (7) - with z0 ∈ B and ϑ ∈ [0, 2π) - represents an automorphism of
the unit disc B. In particular, the origin-preserving automorphisms of B are
of the form

f(z) = eiϑz, z ∈ B, (8)

with an angle ϑ ∈ [0, 2π).

Proof:

1. From Example 7.7 we see that all Möbius transformations of the form (7)
represent automorphisms of the unit disc.

2. When the function w = f(z), z ∈ B gives us an origin-preserving auto-
morphism of B, Theorem 7.9 yields the estimate

|w| = |f(z)| ≤ |z| for all z ∈ B.

Now the inverse mapping z = g(w), w ∈ B represents an origin-preserving
automorphism of B as well, and we deduce

|z| = |g(w)| ≤ |w| for all w ∈ B.

We combine our estimates to

|z| ≤ |w| = |f(z)| ≤ |z|, z ∈ B

and obtain
|f(z)| = |z|, z ∈ B.

Our Theorem 7.9 provides an angle ϑ ∈ [0, 2π) such that

f(z) = eiϑz, z ∈ B

holds true.
3. If w = f(z) : B → B represents an arbitrary automorphism of B, we set
z0 := f−1(0). Then we consider the Möbius transformation

w = g(z) :=
z − z0
z0z − 1

, z ∈ B,

and we obtain the following origin-preserving automorphism of B, namely

h(w) := f ◦ g−1(w), w ∈ B.

Recalling the second part of our proof, we infer
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f ◦ g−1(w) = eiϑw, w ∈ B,

with an angle ϑ ∈ [0, 2π). The mapping w = g(z) then satisfies

f(z) = eiϑg(z) = eiϑ
z − z0
z0z − 1

, z ∈ B,

and the statement above is proved. q.e.d.

Remarks:

1. With the aid of Theorem 7.10 we can investigate Poincaré’s half-plane,
which provides a model for the non-Euclidean geometry.

2. As an exercise, we show the subsequent representation:

Aut(B) =

{
f(z) = eiϑ

z − z0
zoz − 1

: z0 ∈ B, ϑ ∈ [0, 2π)

}

=

{
f =

az + b

bz + a
: a, b ∈ C, aa− bb = 1

}
.

3. With the aid of Example 7.7, one then deduces the following statement:

Aut (H+) =

{
f(z) =

αz + β

γz + δ
: α, β, γ, δ ∈ R mit αδ − βγ = 1

}
.

When two domains are given in the complex plane, which are bounded by a
circle or a straight line, we then can map them conformally onto each other
via a Möbius transformation. This fact is contained in the following

Theorem 7.11. Let the points zν ∈ C and wν ∈ C for ν = 1, 2, 3 with zν �=
zμ and wν �= wμ for ν �= μ be arbitrarily given. Then we have a uniquely
determined Möbius transformation

f(z) =
az + b

cz + d
satisfying f(zν) = wν with ν = 1, 2, 3.

Remark: In particular, each Möbius transformation with at least three fixed
points reduces to the identical mapping.
Proof of Theorem 7.11:

1. We establish the existence of our mapping: If the inclusion z1, z2, z3 ∈ C

is correct, we consider the transformation

f(z) :=
z − z1
z − z3

:
z2 − z1
z2 − z3

, z ∈ C \ {z3}

and observe
f(z1) = 0, f(z2) = 1, f(z3) = ∞.
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If one of the points z1, z2, z3 coincides with the infinitely distant point ∞,
i.e. z3 = ∞ without loss of generality, we define

f(z) =
z − z1
z2 − z1

, z ∈ C

and obtain
f(z1) = 0, f(z2) = 1, f(z3) = ∞.

Correspondingly, we construct a mapping g = g(w) with the property

g(w1) = 0, g(w2) = 1, g(w3) = ∞.

With the function h(z) := g−1◦f(z), we then get a Möbius transformation
satisfying

h(z1) = g
−1(f(z1)) = g

−1(0) = w1, h(z2) = w2, h(z3) = w3.

2. We now show the uniqueness: With fj(z) for j = 1, 2 let us consider two
Möbius transformations satisfying

fj(zν) = wν , ν = 1, 2, 3 for j = 1, 2.

Then the Möbius transformation f−1
2 ◦f1(z) : C → C possesses three fixed

points zν with ν = 1, 2, 3. Choosing a Möbius transformation g = g(z)
with

g(0) = z1, g(1) = z2, g(∞) = z3,

the resulting mapping

h(z) := g−1 ◦ f−1
2 ◦ f1 ◦ g(z), z ∈ C

possesses the fixed points 0, 1, and ∞. When we observe

h(z) =
az + b

cz + d
, z ∈ C,

we deduce

0 = h(0) =
b

d

and therefore b = 0. Furthermore, we have

∞ = lim
z→∞

h(z) = lim
z→∞

az

cz + d

and consequently c = 0. Finally, we note that

1 = h(1) =
a

d
· 1

and infer a
d = 1. This implies
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h(z) = z for all points z ∈ C

and, moreover,

g−1 ◦ f−1
2 ◦ f1 ◦ g(z) = z, z ∈ C.

This is equivalent to the statement

f−1
2 ◦ f1(z) = z, z ∈ C,

and we arrive at the identity

f1(z) = f2(z) for all points z ∈ C.

q.e.d.

We shall now determine those domains Ω ⊂ C, which are conformally equiv-
alent to the unit disc B. Since the extended complex plane C is compact in
contrast to the unit disc B, these two domains cannot be conformally equiv-
alent. A conformal mapping being topological in particular, the topological
properties of conformally equivalent domains have to coincide! Now the func-
tion

f(z) :=
z

1 + |z| , z ∈ C

represents a topological mapping of C onto B. Such a conformal mapping
- between those domains - cannot exist, since this function has to be con-
stant due to Liouville’s theorem! Consequently, the domains C and B are not
conformally equivalent. However, we provide the fundamental

Theorem 7.12. (Riemannian mapping theorem)
Let Ω ⊂ C with Ω �= C denote a simply connected domain. Then there exists
a conformal mapping f : Ω → B.

Remark: The whole class of conformal mappings from Ω onto the unit disc B
is given in the form g ◦ f with g ∈ Aut (B).

Before we provide a proof of our theorem, we need the following preparatory
lemmas.

Proposition 7.13. (Arzelà, Ascoli)
Let the numbers m,n ∈ N and the compact set K ⊂ R

n be chosen; and let the
set of functions

F :=
{
fι : K → R

m : ι ∈ J
}

be given - with the index set J - satisfying the following properties:

(1) The set F is uniformly bounded: Consequently, we have a constant μ > 0
such that

|fι(x)| ≤ μ for all points x ∈ K and all indices ι ∈ J.
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(2) The set F is equicontinuous: Therefore, each quantity ε > 0 admits a
number δ = δ(ε) > 0 such that all points x′, x′′ ∈ K with |x′ − x′′| < δ
and all indices ι ∈ J satisfy the inequality

|fι(x′)− fι(x′′)| < ε.

Statement: Then the set F contains a uniformly convergent subsequence in
K, namely g(k) ∈ F for k = 1, 2, 3, . . ., which converges uniformly towards a
continuous function g ∈ C0(K,Rm).

Usually this result is proved in connection with Peano’s existence theorem in
the theory of ordinary differential equations.

Proposition 7.14. (Root lemma)
Let G ⊂ C \ {0} denote a simply connected domain such that z1 = r1e

iϕ1 ∈ G
with r1 ∈ (0,+∞) and ϕ1 ∈ [0, 2π) holds true, and define w1 =

√
r1e

i
2ϕ1 .

Then we have exactly one conformal mapping

f(z) =
√
z, z ∈ G

onto the simply connected domain G̃ := f(G) ⊂ C \ {0} with the following
properties:

f2(z) = z, f ′(z) =
1

2f(z)
for all points z ∈ G, (9)

f(z1) = w1, (10)

and
G̃ ∩ (−G̃) = ∅. (11)

Proof: We consider the holomorphic function in G, namely

g(z) :=

z∫
z1

1

ζ
dζ = log z − log z1 , z ∈ G.

Here the curvilinear integral has to be evaluated along an arbitrary curve from
z1 to z - within G - and the logarithm function has to be continued along this
path. Then the function

f(z) := w1 exp

{
1

2
g(z)

}
, z ∈ G

is holomorphic and satisfies the conditions

f(z1) = w1 exp 0 = w1

as well as
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f2(z) = w2
1 exp g(z) = r1e

iϕ1elog ze− log z1

=
z1z

z1
= z for all points z ∈ G.

The property (11) follows from the construction. q.e.d.

Proposition 7.15. (Hurwitz)
Given the domain Ω ⊂ C, let the holomorphic functions fk : Ω → C for
k = 1, 2, 3, . . . converge uniformly on each compact set in Ω towards the non-
constant holomorphic function f : Ω → C. Furthermore, let the functions
fk = fk(z) be injective for all indices k ∈ N. Then the limit function f = f(z)
is injective as well.

Proof: If the function f = f(z) were not injective, we would have two different
points z1, z2 ∈ Ω with the property

f(z1) = w1 = f(z2).

We then consider the function

g(z) := f(z)− w1

which possesses the two zeroes z1 and z2. At these points we determine their
topological indices i(g, zj) = nj ∈ N for j = 1, 2. We now consider the func-
tions

gk(z) := fk(z)− w1 , z ∈ Kj :=
{
z ∈ C : |z − zj | ≤ εj

}
,

with a sufficiently small number εj > 0 for j = 1, 2 and k = 1, 2, 3, . . .. Then
their winding numbers fulfill

W (gk,Kj) = i(g, zj) = nj ∈ N with j = 1, 2 for all k ≥ k0 ; (12)

here the index k0 ∈ N has to be chosen sufficiently large. On account of (12),
the functions gk = gk(z) possess at least two zeroes for all indices k ≥ k0 - in
contradiction to the injectivity of fk = fk(z) assumed above.

q.e.d.

We are now prepared to establish the Proof of Theorem 7.12:

1. Let Ω ⊂ C with the property Ω �= C denote a simply connected domain.
At first, we find a point z0 ∈ C \Ω. Via the conformal mapping

f(z) := z − z0 , z ∈ Ω

we make the transition to the conformally equivalent domain

Ω ⊂ C \ {0}. (13)
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With the aid of the conformal mapping

f(z) =
√
z , z ∈ Ω

from Proposition 7.14, we construct a conformally equivalent domain such
that

Ω ∩ (−Ω) = ∅. (14)

2. We now start from a simply connected domain with the property (13) as
well as (14), and choose a point z0 ∈ Ω as fixed. We consider the following
set of admissible functions

F :=
{
f : Ω → B : f is holomorphic and injective in Ω, f(z0) = 0

}
.

With the aid of the extremal principle by P.Koebe, we are looking for
those mappings f ∈ F which realize the following condition:

|f ′(z0)| = sup
Φ∈F

|Φ′(z0)|. (15)

At first, we verify that the class F is nonvoid. On account of (14) we find
a point z1 ∈ C and a radius � > 0, such that the statement z /∈ Ω is
satisfied for all z ∈ C with |z − z1| ≤ �. The function

f1(z) :=
1

z − z1
, z ∈ Ω

is bounded according to

|f1(z)| ≤
1

�
, z ∈ Ω.

Application of the conformal mapping

f2(w) := r{w − f1(z0)}, w ∈ C

- with a sufficiently small radius r > 0 - finally gives us the admissible
function

f := f2 ◦ f1 ∈ F .

3. Let us consider an arbitrary function with f ∈ F and observe its Dirichlet
integral

D(f) :=

∫∫
Ω

{
|fx|2 + |fy|2

}
dxdy = 2

∫∫
Ω

|fx ∧ fy| dxdy ≤ 2π.

Let z1 ∈ Ω denote an arbitrary point, and δ > 0 may be chosen so small
that the disc

Bδ(z1) :=
{
z ∈ C : |z − z1| < δ

}
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fulfills the inclusion B√
δ (z1) ⊂⊂ Ω. Then the oscillation lemma of

Courant and Lebesgue provides a number δ∗ ∈ [δ,
√
δ] with the follow-

ing property: ∫
z : |z−z1|=δ∗

|df(z)| ≤ 2
√
2π√

− log δ
. (16)

When we observe the injectivity of the mapping f = f(z), the diameter
of the corresponding domains is estimated as follows:

diam f
(
Bδ(z1)

)
≤ diam f

(
Bδ∗(z1)

)
≤

√
2π√

− log δ
. (17)

For each compact set K ⊂ Ω, the class of functions

FK :=
{
f : K → C : f ∈ F

}

is consequently equicontinuous and uniformly bounded. With the aid of
Proposition 7.13, we can select a subsequence - converging uniformly on
each compact set K ⊂ Ω - from all sequences of functions {fk}k=1,2,... ⊂
F .

4. Invoking Proposition 7.15 we obtain compactness of the class of functions
F in the following sense: From each sequence {fk}k=1,2,... ⊂ F satisfying

0 < |f ′k(z0)| ≤ |f ′k+1(z0)| for k ∈ N,

we can select a subsequence {fkl
}l=1,2,... converging uniformly on each

compact set K ⊂ Ω towards a function f ∈ F . In this way, we find a
function f ∈ F with the extremal property (15).

Finally, we have to show the surjectivity

f(Ω) = B. (18)

5. If the statement G �= B for the image G := f(Ω) ⊂ B was correct on the
contrary, we could find a point z1 ∈ B \G. The mapping

w = ψ1(z) :=
z − z1
z1z − 1

, z ∈ B

belongs to the class Aut (B) and fulfills

ψ1(z1) = 0, ψ1(0) = z1.

On the simply connected domain

G1 := ψ1(G) ⊂ B \ {0}

we consider the conformal root-function from Proposition 7.14, namely
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w = ψ2(z) :=
√
z , z ∈ G1

with z2 :=
√
z1. We then obtain the simply connected domain

G2 := ψ2(G1) ⊂ B \ {0}

with z2 ∈ G2. Finally, we utilize the automorphism

w = ψ3(z) =
z − z2
z2z − 1

, z ∈ B

with the property
ψ3(z2) = 0

and define the domain

G3 := ψ3(G2) ⊂ B.

The composition
ψ := ψ3 ◦ ψ2 ◦ ψ1 : G −→ G3

is conformal, and we note that

ψ(0) = ψ3 ◦ ψ2 ◦ ψ1(0) = ψ3 ◦ ψ2(z1) = ψ3(z2) = 0.

Then we observe ψ ◦ f ∈ F on account of

ψ ◦ f(z0) = ψ(0) = 0.

We now evaluate as follows:

(ψ ◦ f)′(z0) = ψ′(0)f ′(z0)

= ψ′
3(z2)ψ

′
2(z1)ψ

′
1(0)f

′(z0)

=
1

z2z2 − 1

1

2
√
z1

(z1z1 − 1)f ′(z0)

=
1

z2z2 − 1

1

2z2

{
(z2z2)

2 − 1
}
f ′(z0)

=
|z2|2 + 1

2z2
f ′(z0).

Here we take z2 =
√
z1 into account. From 0 < |z2| < 1 we infer

(1− |z2|)2 > 0 as well as |z2|2 − 2|z2|+ 1 > 0

and consequently
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|z2|2 + 1

2|z2|
> 1.

With the subsequent inequality

|(ψ ◦ f)′(z0)| =
|z2|2 + 1

2|z2|
|f ′(z0)| > |f ′(z0)| = sup

Φ∈F
|Φ′(z0)|

we arrive at a contradiction. Therefore, the proof is complete. q.e.d.

8 Boundary Behavior of Conformal Mappings

We begin with the fundamental

Definition 8.1. A bounded domain Ω ⊂ C is called Jordan domain, if its
boundary ∂Ω = Γ represents a Jordan curve with the topological positive-
oriented representation γ : ∂B → Γ and the parametrization

β(t) := γ(eit), t ∈ R.

The number k ∈ N being given, we name Γ k-times continuously differentiable
and regular at the point z1 = β(t1) ∈ Γ with t1 ∈ [0, 2π), if we have a quantity
ε = ε(t1) > 0 such that

β ∈ Ck((t1 − ε, t1 + ε),C)

as well as
β′(t) �= 0 for all t ∈ (t1 − ε, t1 + ε)

holds true. If we have additionally an expansion into the power series

β(t) =

∞∑
k=0

1

k !
β(k)(t1)(t− t1)k for all t1 − ε < t < t1 + ε, (1)

we call z1 = β(t1) a regular analytic boundary point. We speak of a Ck-
Jordan curve (and an analytic Jordan curve) Γ , if each boundary point z1 ∈ Γ
is regular and k-times continuously differentiable (or analytic, respectively).

Theorem 8.2. (Carathéodory, Courant)
Let Ω ⊂ C denote a Jordan domain. Then the conformal mapping f : Ω → B
can be continuously extended onto the closure Ω as a topological mapping
f : Ω → B.

Proof:
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1. We take the point z1 = β(t1) ∈ Γ as fixed, and for all numbers 0 < δ < δ0
we consider that connected component Gδ(z1) of the open set {z ∈ Ω :
|z − z1| < δ} satisfying z1 ∈ ∂Gδ(z1). With the parameters t2 < t3 we
denote by

β[t2, t3] :=
{
β(t) : t2 ≤ t ≤ t3

}

the oriented Jordan arc on the curve Γ from the point z2 = β(t2) to the
point z3 = β(t3). The boundary of the set Gδ(z1) consists of the circular
arc Sδ(z1) ⊂ Ω and the Jordan arc

Γδ(z1) := β[t2, t3] with t2 < t1 < t3.

This implies
∂Gδ(z1) = Γδ(z1) ∪̇Sδ(z1).

The Courant-Lebesgue oscillation lemma from Section 5 in Chapter 1 can
be transferred to the present situation. To each quantity δ > 0 prescribed,
this gives us a number δ∗ ∈ [δ,

√
δ] with the following property:

∫
z∈Sδ∗ (z1)

|df(z)| ≤ 2
√
2π√

− log δ
. (2)

Now the image f(Sδ∗(z1)) ⊂ B represents a Jordan arc of finite length,
whose end points - being continuously extended - are situated on ∂B.
Since the mapping f : Ω → B is injective, we infer

diam f(Gδ(z1)) ≤ diam f(Gδ∗(z1)) ≤
2
√
2π√

− log δ
. (3)

Therefore, the function f = f(z) is uniformly continuous on Ω and can
be continuously extended onto the closure Ω.

2. In the same way we prove the continuous extendability of the inverse
function

g(w) := f−1(w), w ∈ B,
onto the closure B. Here we utilize the modulus of continuity for the
Jordan curve Γ in the following sense: For each quantity ε > 0 we have
a number δ = δ(ε) > 0, such that each pair of consecutive points zj =
β(tj) ∈ Γ for j = 1, 2 with t1 < t2 and |z1−z2| ≤ δ(ε) fulfills the following
estimate:

diamβ[t1, t2] := sup
t1≤τ1<τ2≤t2

|β(τ1)− β(τ2)| ≤ ε. (4)

3. Since the function f = f(z) is continuously extendable onto Ω and the
function g = g(w) onto B as well, the mapping f : Ω → B is topological.

q.e.d.
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Theorem 8.3. (Analytic boundary behavior)
Let z = g(w) : B → Ω denote a conformal mapping onto the Jordan domain
Ω ⊂ C, which is - via the prescription g : B → Ω - topologically extendable.
Let the boundary Γ be regular and analytic at the point z1 = g(w1) ∈ Γ = ∂Ω
with w1 ∈ ∂B. Then we have a convergent power series

∞∑
k=0

ak(w − w1)
k for all points w ∈ C satisfying |w − w1| < ε

- with the coefficients ak ∈ C for k ∈ N0 and a1 �= 0 - choosing ε > 0
sufficiently small, such that the following representation holds true:

g(w) =

∞∑
k=0

ak(w−w1)
k for all points w ∈ B with |w−w1| < ε. (5)

Therefore, the function g = g(w) can be analytically extended across the
boundary ∂B at the point w1 ∈ ∂B.

Proof:

1. Since z1 = g(w1) = β(t1) ∈ Γ represents a regular analytic boundary
point of the curve Γ , we observe

β(t) =
∞∑
k=0

1

k !
β(k)(t1)(t− t1)k for all t1 − ε < t < t1 + ε, (6)

with β′(t1) �= 0. We now can extend the convergent power series into a
complex neighborhood using the variable r = (t+ is) ∈ C, and we obtain
the following function:

h(r) :=

∞∑
k=0

1

k !
β(k)(t1)(r − t1)k for all r ∈ C with |r − t1| < ε.

(7)
On account of the condition β′(t1) �= 0, the holomorphic inverse mapping
h−1 exists in a neighborhood of the point z1 = h(t1).

2. We now use the following Möbius transformation:

' : H+ −→ B is conformal and satisfies '(0) = w1.

To the holomorphic mapping

Ψ(ζ) := h−1 ◦ g ◦ '(ζ), ζ ∈ H+ with |ζ| < ε (8)

we can apply the Schwarzian reflection principle and obtain the holomor-
phic function

Ψ(ζ), |ζ| < ε (9)
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on the full disc about the origin. Now the function

h ◦ Ψ ◦ '−1(w) =
∞∑
k=0

ak(w − w1)
k for all |w − w1| < ε (10)

is holomorphic as well; and we consider their expansion about the point
w1 ∈ ∂B into a convergent power series. From (8) and (10), we finally
infer

g(w) =

∞∑
k=0

ak(w − w1)
k for all points w ∈ B with |w − w1| < ε.

(11)
Since the mapping g : B → Ω is topological, the coefficient a1 in the
expansion (11) satisfies the condition a1 �= 0.

q.e.d.

Remark: If the boundary Γ denotes a polygon, we can represent the conformal
mapping g : B → Ω with Γ = ∂Ω via the Schwarz-Christoffel formulas by a
curvilinear integral in a nearly explicit way.

Theorem 8.4. (Boundary point lemma in C)
On the disc

B(z1) :=
{
z ∈ C : |z − z1| < �

}
with z1 ∈ C and � > 0

let the holomorphic function

w = f(z) : B(z1) −→ B ∈ C1(B(z1), B) (12)

be given, such that the condition

|f(z1)| ≤ 1− ε with a quantity ε > 0

is satisfied. Furthermore, let z2 ∈ ∂B(z1) denote a boundary point with
|f(z2)| = 1. Then we have the inequality

|f ′(z2)| ≥
ε2

�
. (13)

Proof: We consider the function

'(w) := z1 + (z2 − z1)w, w ∈ B

satisfying

'(0) = z1 , '(1) = z2 , |'′(w)| = |z2 − z1| = � for all w ∈ B. (14)
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We set w1 = f(z1) ∈ B as well as w2 = f(z2) ∈ ∂B and use the Möbius
transformation

h(w) := eiϑ
w − w1

w1w − 1
, w ∈ B,

with a suitable angle ϑ ∈ [0, 2π). Then we obtain

h(w1) = 0, h(w2) = 1 (15)

and calculate

|h′(w2)| =
|(w1w2 − 1)− w1(w2 − w1)|

|w1w2 − 1|2 =
|1− |w1|2|
|1− w1w2|2

≤ 1

(1− |w1w2|)2
=

1

(1− |w1|)2

≤ 1

(1− (1− ε))2 =
1

ε2
.

(16)

We now consider the origin-preserving holomorphic mapping

Φ(w) := h ◦ f ◦ '(w), w ∈ B

of the class C1(B,B). The Schwarzian lemma yields

|Φ(w)| ≤ |w|, w ∈ B. (17)

Therefore, we arrive at the inequality

∣∣∣∣Φ(r)− Φ(1)r − 1

∣∣∣∣ ≥ |Φ(1)| − |Φ(r)|
1− r ≥ 1− r

1− r = 1

for all r ∈ (0, 1), and we infer

|Φ′(1)| ≥ 1. (18)

The combination of (14), (16), and (18) yields

1 ≤ |Φ′(1)| = |h′(w2)f
′(z2)'

′(1)| ≤ 1

ε2
|f ′(z2)|�

and consequently

|f ′(z2)| ≥
ε2

�
,

which implies the statement above. q.e.d.

Theorem 8.5. (Lipschitz estimate)
The C2-Jordan-domain Ω ⊂ C is conformally transformed by the mapping
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f : Ω → B onto the unit disc with the inverse mapping z = g(w) : B → Ω.
Then we have the estimate

sup
w∈B

|g′(w)| < +∞, (19)

and consequently the mapping g = g(w) is Lipschitz continuous on the closure
B.

Proof: According to the Weierstraß approximation theorem, we can approxi-
mate the domain Ω by the Jordan domains Ωn - with n ∈ N - such that their
bounding analytic Jordan curves Γn = ∂Ωn converge for n→ ∞ towards the
C2-Jordan-curve Γ = ∂Ω inclusive of their derivatives up to the second order.
Based on Theorem 8.3, we now consider the conformal mappings

gn : B −→ Ωn ∈ C1(B,Ωn)

with their inverse mappings

fn : Ωn −→ B ∈ C1(Ωn, B)

for all indices n ∈ N: They converge for n→ ∞ uniformly - and in the interior
together with their derivatives - towards the function g ∈ C0(B,Ω) and its
inverse function f ∈ C0(Ω,B), respectively. Now we have a fixed radius � > 0
independent of n ∈ N, such that each domain Ωn possesses a support circle

B(z1) ⊂ Ωn with z1 ∈ Ωn, z2 ∈ ∂B(z1) ∩ Γn

at each boundary point z2 ∈ Γn = ∂Ωn given. Observing the relation fn → f
for n → ∞, we find a quantity ε > 0 independent of n ∈ N such that the
following estimate holds true:

|fn(z1)| ≤ |f(z1)|+ |fn(z1)− f(z1)| ≤ 1− ε for all indices n ≥ n0(ε).
(20)

Here we have chosen the index n0(ε) so large that the inequalities

|f(z1)| ≤ 1− 2ε, |fn(z1)− f(z1)| ≤ ε

are satisfied. From Theorem 8.4 we infer the estimate

|f ′n(z2)| ≥
ε2

�
, n ≥ n0(ε).

Setting w2 = fn(z2), we obtain the following statements for the inverse map-
pings:

|g′n(w2)| ≤
�

ε2
for all w2 ∈ ∂B and n ≥ n0(ε). (21)

The maximum principle for holomorphic functions yields the estimate
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sup
B

|g′n(w)| ≤
�

ε2
, n ≥ n0(ε). (22)

For n→ ∞, we finally obtain the statement above with the following inequal-
ity:

sup
B

|g′(w)| < +∞. (23)

q.e.d.

Remarks to the reflection of the mapping over the differentiable boundary:

For an arbitrary boundary point z1 = β(t1) ∈ Γ we consider the plane C1-
mapping

h(r) = h(t+ is) = h(t, s) := β(t) + isβ′(t), r = t+ is, |r − t1| < ε

and evaluate

∂

∂r
h(r) =

1

2

{
ht(r) + ihs(r)

}

=
1

2

{
β′(t) + isβ′′(t) + i2β′(t)

}

=
i

2
sβ′′(t) =

i

2
β′′(Re r)Imr, |r − t1| < ε.

For a sufficiently small ε > 0 the Jacobian satisfies

Jh(r) = det

(
β′(t) + isβ′′(t)

iβ′(t)

)
=

∣∣∣∣∣
hr(r) hr(r)

hr(r) hr(r)

∣∣∣∣∣ ≥ λ, |r − t1| < ε (24)

with a constant λ > 0. Now we make the transition from the function z = h(r)
to its inverse mapping r = h−1(z), |z−z1| < ε∗ with a sufficiently small ε∗ > 0.
We differentiate the identity

h−1 ◦ h(r) = r, |r − t1| < ε

with respect to r and r and obtain in

h−1
z (h(r))hr(r) + h

−1
z (h(r))hr(r) = 1

h−1
z (h(r))hr(r) + h

−1
z (h(r))hr(r) = 0

a nonsingular linear system of equations for the unknowns h−1
z (h(r)) and

h−1
z (h(r)). Via Cramer’s rule we determine

h−1
z (h(r)) =

−hr(r)
Jh(r)

=
−iβ′′(Re r)

2Jh(r)
Imr, |r − t1| < ε.

Inserting r = h−1(z) we obtain the equation
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∂

∂z
h−1(z) =

−iβ′′(Reh−1(z))

2Jh(h−1(z))
Imh−1(z), |z − z1| < ε∗. (25)

On account of (24) and since the function |β′′(t)|, |t− t1| < ε is bounded, we
obtain the pseudoholomorphic function∣∣∣∣ ∂∂z h−1(z)

∣∣∣∣ ≤ c1
∣∣Imh−1(z)

∣∣ , |z − z1| < ε∗ (26)

with a constant c1 > 0. As in the proof of Theorem 8.3, we now insert the
holomorphic function g ◦ '(ζ) with ζ ∈ H+ and |ζ| < ε into the function
h−1 = h−1(z). Then we obtain a pseudoholomorphic function with

Ψ(ζ) := h−1 ◦ g ◦ '(ζ), ζ ∈ H+ , |ζ| < ε.

Due to Theorem 8.5, we obtain further constants c2 > 0 and c3 > 0 such that
the estimate

|Ψζ(ζ)| =
∣∣∣∣ ∂∂z h−1

∣∣∣
g◦�(ζ)

(g ◦ ')ζ +
∂

∂z
h−1
∣∣∣
g◦�(ζ)

(g ◦ ')ζ
∣∣∣∣

=

∣∣∣∣ ∂∂z h−1
(
g ◦ '(ζ)

)∣∣∣∣
∣∣∣g′('(ζ))∣∣∣

∣∣∣'′(ζ)∣∣∣
≤ c1c2c3

∣∣∣Imh−1 ◦ g ◦ '(ζ)
∣∣∣

= c1c2c3 |ImΨ(ζ)|

for all points ζ ∈ H+ with |ζ| < ε holds true. With the aid of an integral
representation from Theorem 5.5 in Section 5, we can immediately derive a
reflection principle for the pseudoholomorphic function Ψ = Ψ(ζ), which pos-
sesses real values and a vanishing Pompeiu derivative on the interval (−ε,+ε).
Then we obtain the pseudoholomorphic function∣∣∣∣ ddζ Ψ(ζ)

∣∣∣∣ ≤ c |Ψ(ζ)|, |ζ| < ε (27)

with the constant c := c1c2c3. We now apply the similarity principle of Bers
und Vekua to the function Ψ and obtain asymptotic expansions for our original
function g on the boundary ∂B. The functions, which appear in this context,
do not belong to the regularity class C1, in general.

Now we shall prove that the regularity property g ∈ C1(B,C) holds true and
that its derivative g′(w) : B → C\{0} is subject to a Hölder condition for each
exponent α ∈ (0, 1). Here we need the following statement which is shown via
the theory of harmonic functions presented in Chapter 5.

Proposition 8.6. (Hardy, Littlewood)
The holomorphic function G(w) = x(w) + iy(w) ∈ C1(B) may satisfy the
condition
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∣∣∣∣ ddty(eit)
∣∣∣∣ ≤ l < +∞ for all parameters t ∈ R. (28)

Then we have a constant L = L(l) ∈ (0,+∞) such that the estimate

|G′(w)| ≤ L for all points w ∈ B (29)

is correct.

Proof: We consider the Jordan curve

Γ :=
{
(cos t, sin t, y(eit)) ∈ R

3 : 0 ≤ t ≤ 2π
}
.

According to (28), each point of this curve

(u0, v0, y0) = (u0, v0, y(u0, v0)) ∈ Γ

admits a lower and an upper support plane

y±(u, v) := y0 + α
±(u− u0) + β±(v − v0), (u, v) ∈ R

2, (30)

which are both situated entirely at one side of the curve Γ . For their measure
of ascent we have a constant L = L(l) ∈ (0,+∞) such that the real coefficients
α±, β± satisfy the following conditions

√
(α±)2 + (β±)2 ≤ L. (31)

On account of the maximum principle for harmonic functions, we derive

y−(u, v) ≤ y(u, v) ≤ y+(u, v) for all points (u, v) ∈ B,

y−(u0, v0) = y0 = y+(u0, v0).
(32)

This implies ∣∣∣∣ ∂∂ry(reit)
∣∣∣∣
r=1

≤ L for all t ∈ R, (33)

and together with (28) we infer the inequality

|yw(w)| ≤ L for all points w ∈ ∂B. (34)

The maximum principle for the holomorphic function yw yields

|yw(w)| ≤ L for all points w ∈ B. (35)

Now we invoke the Cauchy-Riemann differential equations for the function
G(w) = x(w) + iy(w) with w ∈ B, and we arrive at the estimate (29).

q.e.d.
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Theorem 8.7. (C1,1-regularity)
Let g : B → Ω denote a conformal mapping onto the C2-Jordan-domain Ω ⊂
C with the bounding C2-Jordan-curve Γ = ∂Ω. Then we have the regularity
g ∈ C1(B,Ω) and the condition

g′(w) �= 0 for all points w ∈ B.

Furthermore, we have a Lipschitz constant L = L(g) ∈ (0,+∞) such that the
estimate

|g′(w1)− g′(w2)| ≤ L|w1 − w2| for all points w1, w2 ∈ B

is satisfied.

Proof: As in the proof of Theorem 8.5, we approximate the function g : B → Ω
uniformly in B by conformal mappings gn : B → Ωn for n = 1, 2, . . . such
that

sup
B

|g′n(w)| ≤ c1, n ∈ N.

When we define the functions

Gn(w) := log g′n(w) = log |g′n(w)|+ i arg g′n(w), w ∈ B for n ∈ N,
(36)

we observe
lim

n→∞
Gn(0) = lim

n→∞
log g′n(0) = log g′(0) ∈ C. (37)

We still have to verify the estimate

sup
w∈B

|G′
n(w)| ≤ c2, n ∈ N. (38)

Now we associate the subsequent Gaussian metric with the mapping gn =
gn(w), namely

ds2n = En(w) (du
2 + dv2) = |g′n(w)|2(du2 + dv2). (39)

We invoke the following formula by F.Minding from a lecture of differential
geometry for the geodesic curvature κn of the boundary curve Γn = ∂Ωn:

∂

∂r
log
√
En(r cos t, r sin t)

∣∣∣
r=1

= κn
√
En(cos t, sin t)− 1, t ∈ R. (40)

Here we recommend the first volume in the Grundlehren der mathematischen
Wissenschaften [BL] by W.Blaschke and K. Leichtweiss, where especially § 77,
§ 78, and § 92 are relevant. Minding’s formula is explicitly derived in the trea-
tise on Minimal Surfaces [DHS] by U. Dierkes, S. Hildebrandt, and F. Sauvi-
gny with the identity (48) of Section 1.3.
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On account of (40) and Theorem 8.5, the mapping

Gn(w) = xn(w) + iyn(w), w ∈ B

from (36) then satisfies the following estimate:

∣∣∣∣ ∂∂rxn(reit)
∣∣∣∣
r=1

≤ c̃2 for all t ∈ R and n ∈ N (41)

with a constant c̃2. The Cauchy-Riemann differential equations yield
∣∣∣∣ ddtyn(eit)

∣∣∣∣ ≤ c̃2 for all t ∈ R and n ∈ N. (42)

Via Proposition 8.6 we arrive at the estimate (38).

Therefore, the sequence of functions {Gn}n=1,2,... is equicontinuous and uni-
formly bounded. Via the theorem of Arzelà-Ascoli, we achieve the transition to
a uniformly convergent subsequence on B with {Gnk

}k=1,2,..., and we obtain
the continuous function

G(w) := lim
k→∞

Gnk
(w), w ∈ B.

Now we observe

G(w) = lim
k→∞

Gnk
(w) = lim

k→∞
log g′nk

(w) = log g′(w), w ∈ B.

Consequently, the function

Φ(w) := log g′(w), w ∈ B

can be continuously extended on the closure B, and we deduce the continuity
of the derivative g′(w) : B → C \ {0}. Since the functions {Gn}n=1,2,... satisfy
a joint Lipschitz condition in B, this remains true for the limit function G =
G(w) and consequently for g = g(w), w ∈ B.

q.e.d.

Remark: In order to obtain the statement g ∈ C2(B), we have to assume
higher regularity for the boundary curve Γ = ∂Ω.

9 Behavior of Cauchy’s Integral across the Boundary

Let G ⊂ C denote a bounded regular C2-domain, such that its boundary
Γ = ∂G represents a regular C2-Jordan-curve. When the length of the curve
Γ is given by L = |∂G| = |Γ | ∈ (0,+∞), we imagine this contour being
parametrized with unit-velocity – such that the domain lies to the left – by
the following function:
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ζ = ζ(t) : R → Γ ∈ C2(R,C), (1)

ζ(t+kL) = ζ(t) for all t ∈ R and k ∈ Z (periodicity with the period L), (2)

|ζ ′(t)| = 1 for all t ∈ R (unit− velocity), (3)

ν(t) := −iζ ′(t), t ∈ R is the exterior unit normal to G. (4)

For a sufficiently small s0 > 0, the 2-dimensional vector-field

Z(t, s) := ζ(t) + sν(t), t ∈ R, s ∈ (−s0,+s0) (5)

yields a C1-diffeomorphism of

the stripe R× (−s0,+s0) onto the tube G−
0 ∪ Γ ∪G+

0 ,

which is periodic in the variable t with the period L. Here we have chosen the
domains

G±
0 := {z = Z(t, s) ∈ C : t ∈ R,±s ∈ (0,+s0)},

which are not simply connected.

Example:
For the unit disc G = B := {z ∈ C : |z| < 1} we take the parametrization
ζ(t) = eit, t ∈ R and the exterior unit normal ν(t) = −iζ ′(t), t ∈ R. When
we set Γ := {z ∈ C : |z| = 1} and G−

1 := {z ∈ G : 0 < |z| < 1} as well as
G+

1 := {z ∈ G : 1 < |z| < 2}, the vector-field

Z(t, s) := eit + seit, t ∈ R, s ∈ (−1,+1) (6)

yields the diffeomorphism

Z : R× (−1,+1) → G−
1 ∪ Γ ∪G+

1 , (7)

which is periodic in the variable t with the period 2π.

We remark that G−
0 ⊂ G lies within the domain G with Γ as its exterior

boundary, while G+
0 ⊂ C \ G lies in the the exterior domain of G with Γ as

its interior boundary. For each point z = Z(t, s) ∈ G±
0 ∪ Γ with the uniquely

determined parameters t ∈ [0, L) and ±s ∈ [0, so) respectively, we have the
unique projection point ẑ = Z(t, 0) ∈ Γ onto the curve Γ ; we observe that the
correspondence G−

0 ∪ Γ ∪G+
0 � z → ẑ ∈ Γ is continuous!

For each point z = Z(t, s) ∈ G−
0 ∪Γ ∪G+

0 , we consider the complex logarithm
function

logz(ζ) := logt(ζ − z) = ln |ζ − z|+ i argν(t)(ζ − z), ζ ∈ C \ {z}, (8)

on the leaf C \ {z} sliced along the semi-line z+Rt. Here we have introduced
the ray
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Rt := {sν(t) ∈ C : s > 0}

where the argument function argν(t) is discontinuous, with a jump of the size
2π > 0 for an approach in the clockwise to the counter-clockwise direction +
or −, respectively.

Finally, we define the characteristic function

χ(z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 , z ∈ G
1
2 , z ∈ ∂G

0, z ∈ C \G

(9)

Now we prescribe a boundary function

f = f(ζ) : Γ → C ∈ Ck(Γ ) (10)

for k = 1 or k = 2, meaning that the function

F (t) := f(ζ(t)), t ∈ R belongs to the class Ck
L(R,C) (11)

of those Ck(R,C)-functions, which are periodic in R with the period L > 0.

We shall study the behavior of Cauchy’s integral

Φ(z) :=
1

2πi

∮
∂G

f(ζ)

ζ − z dζ, z ∈ C \ Γ (12)

near the boundary contour Γ . To achieve this aim, we perform real partial
integrations of Cauchy’s integral in the subsequent Propositions 9.1 and 9.2.

Proposition 9.1. For boundary functions f ∈ C1(Γ ), Cauchy’s integral ap-
pears in the form

Φ(z) = χ(z)f(ẑ)− 1

2πi

∫ L

0

F ′(τ) logz(ζ(τ)− z) dτ, z ∈ G−
0 ∪G+

0 (13)

with the complex logarithmic kernel (8) above.

Proof: For all z = Z(t, s) ∈ G−
0 ∪ G+

0 with t ∈ [0, L) and ±s ∈ (0, s0) we
calculate as follows:
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Φ(z) =
1

2πi

∮
∂G

f(ζ)

ζ − z dζ =
1

2πi

∫ L

0

F (τ)

ζ(τ)− z ζ
′(τ) dτ

=
1

2πi

∫ t+L

t

(
logz(ζ(τ)− z)

)′
F (τ) dτ

=
1

2πi

[
F (τ) logz(ζ(τ)− z)

](t+L)−

t+
− 1

2πi

∫ t+L

t

F ′(τ) logz(ζ(τ)− z) dτ

= χ(z)f(ẑ)− 1

2πi

∫ L

0

F ′(τ) logz(ζ(τ)− z) dτ.

q.e.d.

In order to study the behavior of the complex derivative for the holomorphic
Cauchy integral, we provide

Proposition 9.2. For boundary functions f ∈ C1(Γ ), the complex derivative
of Cauchy’s integral appears in the form

d

dz
Φ(z) =

1

2πi

∮
∂G

ḟ(ζ)

ζ − z dζ, z ∈ G−
0 ∪G+

0 (14)

as Cauchy integral for the directional derivative

ḟ(ζ) :=
F ′(t)

ζ ′(t)
for ζ = ζ(t) ∈ Γ and t ∈ [0, L). (15)

Proof: For all z ∈ G−
0 ∪G+

0 let us calculate:

d

dz
Φ(z) =

1

2πi

∮
∂G

f(ζ)

(ζ − z)2 dζ =
1

2πi

∫ L

0

F (τ)

(ζ(τ)− z)2 ζ
′(τ) dτ

=
1

2πi

∫ L

0

( −1

ζ(τ)− z

)′
F (τ) dτ

=
1

2πi

[
F (τ) · −1

ζ(τ)− z

]L
0
+

1

2πi

∫ L

0

F ′(τ)

ζ(τ)− z dτ

=
1

2πi

∫ L

0

F ′(τ)

ζ ′(τ)
· ζ ′(τ)

ζ(τ)− z dτ =
1

2πi

∮
∂G

ḟ(ζ)

ζ − z dζ.

q.e.d.

We are now prepared to establish the interesting
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Theorem 9.3. (Cauchy’s integral across the boundary)
For Cauchy’s integral Φ(z) from (12) with the boundary function f ∈ Ck(Γ )
from (10) with k = 1 or k = 2, we have the following statements:

(a) If k = 1 is assumed, Cauchy’s integral Φ(z) can be extended to a continuous
function onto the set G−

0 ∪Γ from the interior and to a continuous function
onto the set Γ∪G+

0 from the exterior. Along the curve Γ , Cauchy’s integral
Φ(z) possesses a jump of the size f(ẑ) due to the representation (13) above.
Here the parametric integral of (13) with the complex logarithmic kernel is
continuous on G−

0 ∪ Γ ∪G+
0 .

(b) If k = 2 is assumed, the complex derivative
d

dz
Φ(z), z ∈ C \ Γ can be

extended continuously onto G−
0 ∪ Γ from the interior and onto Γ ∪ G+

0

from the exterior. Furthermore, we have the jump relation

d

dz
Φ(z) = χ(z)ḟ(ẑ)− 1

2πi

∫ L

0

(F ′(τ)

ζ ′(τ)

)′
logz(ζ(τ)− z) dτ , z ∈ G−

0 ∪G+
0

(16)
for the complex derivative of Cauchy’s integral.

Proof:

(a) Since
∫ 1
0
− ln r dr <∞ is correct, the parametric integral with the complex

logarithmic kernel

1

2πi

∫ L

0

F ′(τ) logz(ζ(τ)− z) dτ, z ∈ G−
0 ∪ Γ ∪G+

0 (17)

possesses an integrable majorant. With the aid of the convergence theorem
for – absolutely convergent – improper Riemannian integrals, we compre-
hend the continuity of the parametric integral (17) in dependence of the
variable z on the domain G−

0 ∪Γ∪G+
0 . Now the identity (13) of Proposition

9.1 reveals the statement (a).
(b)We integrate via Proposition 9.2 and Proposition 9.1. The identity in (16)

is derived for all z ∈ G−
0 ∪G+

0 as follows:

d

dz
Φ(z) =

1

2πi

∮
∂G

ḟ(ζ)

ζ − z dζ

= χ(z)ḟ(ẑ)− 1

2πi

∫ L

0

d

dτ

{
ḟ(ζ(τ))

}
logz(ζ(τ)− z) dτ

= χ(z)ḟ(ẑ)− 1

2πi

∫ L

0

(F ′(τ)

ζ ′(τ)

)′
logz(ζ(τ)− z) dτ.

As in (a) above, we observe the continuity of the parametric integral on
G−

0 ∪ Γ ∪G+
0 , and the proof of statement (b) is complete.

q.e.d.
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Remarks:

1. In order to establish Hölder-continuity for the relevant functions, one has
to derive an inequality parallel to Hadamard’s estimate from Theorem 4.12
in Section 4 for the parametric integral (17) with the complex logarithmic
kernel.

2. On the boundary curve Γ = ∂G, we can interpret Cauchy’s integral only
as a Cauchy principal value

Φ̂(z0) := lim
ε→0+

{ 1

2πi

∮
ζ∈∂G: |ζ−z0|≥ε

f(ζ)

ζ − z0
dζ
}
, z0 ∈ Γ. (18)

A real partial integration yields

Φ̂(z0) =
1

2
f(z0)−

1

2πi

∫ L

0

F ′(τ) logz0(ζ(τ)− z0) dτ, z0 ∈ Γ. (19)

Thus we obtain from (13) the jump relation

lim
z→z0, z∈G∓

0

Φ(z) = ±1

2
f(z0) + Φ̂(z0), z0 ∈ Γ. (20)

for all boundary functions f ∈ C1(Γ ).

We shall utilize Cauchy’s integral to solve a boundary value problem for har-
monic functions on the unit disc in

Theorem 9.4. (Harmonic extension)
On the boundary Γ = ∂B of the open unit disc B := {z = x+iy ∈ C : |z| < 1}
we prescribe the boundary values

f = f(z) : Γ → C ∈ Ck(Γ )

for k=1,2. Then we have a function

Ψ = Ψ(z) = Ψ(x, y) : B → C ∈ C∞(B) ∩ Ck−1(B), (21)

which satisfies the Laplace equation

ΔΨ(x, y) =
(
Ψxx + Ψyy

)∣∣∣
(x,y)

= 4
∂

∂z

∂

∂z
Ψ(z) = 0 for all z = x+ iy ∈ B

(22)
and assumes continuously the boundary values

lim
(x,y)→(x0,y0), (x,y)∈B

Ψ(x, y) = f(x0, y0) for all z0 = (x0, y0) ∈ Γ. (23)

This function has the integral representation (28) with (24)–(26) below.
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Proof: We consider the holomorphic Cauchy integral

Φ(z) :=
1

2πi

∮
∂B

f(ζ)

ζ − z dζ, z ∈ C \ Γ. (24)

Furthermore, the function

Φ∗(z) := Φ
(1
z

)
, z ∈ B \ {0} (25)

is holomorphic on its domain of definition, and for z → 0, z �= 0 it remains
bounded. Riemann’s removability theorem yields a holomorphic extension of
Φ∗ into the origin 0, which we shall use without renaming this function. Now

Φ∗∗(z) := Φ∗(z) = Φ
(1
z

)
, z ∈ B (26)

gives us an antiholomorphic function due to

Φ∗∗
z (z) = Φ∗

w(z)(z)z + Φ
∗
w(z)(z)z = Φ∗

w(z) = 0, z ∈ B. (27)

Then we inherit the regularity of Φ and Φ∗∗ on B from our Theorem 9.3, and
we define the harmonic function

Ψ(z) := Φ(z)− Φ∗∗(z), z ∈ B. (28)

This means that

Ψzz(z) = Φzz(z)− Φ∗∗
zz(z) = 0 , z ∈ B

holds true. Furthermore, we have the boundary behavior

lim
z→z0, z∈B

Ψ(z) = lim
z→z0, z∈B

(
Φ(z)− Φ∗∗(z)

)

= lim
z→z0, z∈B

(
Φ(z)− Φ

(1
z

))

= f(z0) for all z0 ∈ Γ,

due to Proposition 9.1. q.e.d.

Remarks: When we want to prescribe complex boundary values, we can solve
this problem only in the class of harmonic functions; here we leave open the
question, for which boundary functions this harmonic mapping provides a dif-
feomorphism. A conformal mapping searches for its boundary representation
within the given boundary contour. For boundary value problems with holo-
morphic functions, we can only prescribe the real part on the boundary; here
we refer the reader to Theorem 2.2 (Schwarzian integral formula) in Section 2
of Chapter 9.
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10 Some Historical Notices to Chapter 4

C.F.Gauß created the complex number field with his inaugural dissertation
on the Fundamental Theorem of Algebra in 1801. Furthermore, he character-
ized differential-geometrically the conformal mappings – already known from
the stereographic projection. It was the eminent task of Cauchy (1789–1857),
Weierstraß (1815–1897), and Riemann (1826–1866) to develop the theory of
holomorphic functions – via the alternative concepts of contour integrals,
power series, and complex differentiability, respectively. Obviously, Riemann’s
ideas proved being most profound and constructive for the theory of partial
differential equations and for the geometry in general.

Astonishingly late in the 1950s, the inhomogeneous Cauchy-Riemann equa-
tion was studied by L.Bers and I.N.Vekua – independently in New York and
Moscow. This was performed in the natural desire, to extract the square root
out of a second-order elliptic equation. In this context, the discovery by Car-
leman, in 1930, of the isolated character for the zeroes in pseudoholomorphic
functions cannot be estimated highly enough!

The complete proof of Riemann’s mapping theorem posed a great challenge
for Dirichlet, Weierstraß, Koebe, Hilbert, Courant. . . The analytic boundary
behavior was already solved by H.A. Schwarz via his reflection principle, the
continuous boundary behavior was investigated by Carathéodory in 1913 and
simplified by R.Courant (1888–1972) via his well-known lemma together with
H. Lebesgue (1875–1941). However, the differentiable boundary behavior had
to wait for S. Warschawski, in 1961/68, to be fully understood. The behav-
ior of Cauchy’s integral across the boundary has originally been studied by
Plemelj.
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Figure 1.5 Portrait of Hermann Amandus Schwarz (1843–1921)

Niedersächsische Staats- und Universitätsbibliothek Göttingen; taken from
the book by S.Hildebrandt, A. Tromba: Panoptimum – Mathematische Grund-
muster des Vollkommenen, Spektrum-Verlag Heidelberg (1986).



Chapter 5

Potential Theory and Spherical Harmonics

In this chapter we investigate solutions of the potential equation due to
Laplace in the homogeneous case and due to Poisson in the inhomogeneous
case. Parallel to the theory of holomorphic functions we develop the theory of
harmonic functions annihilating the Laplace equation. By the ingenious Per-
ron method we shall solve Dirichlet’s problem for harmonic functions. Then
we present the theory of spherical harmonics initiated by Legendre and elab-
orated by Herglotz to the present form. This system of functions constitutes
an explicit basis for the standard Hilbert space and simultaneously provides
a model for the ground states of atoms.

1 Poisson’s Differential Equation in R
n

The solutions of 2-dimensional differential equations can often be obtained
via integral representations over the circle S1. As an example we remind the
reader of Cauchy’s integral formula. For n-dimensional differential equations
will appear integrals over the (n− 1)-dimensional sphere

Sn−1 :=
{
ξ = (ξ1, . . . , ξn) ∈ R

n : ξ21 + . . .+ ξ2n = 1
}
, n ≥ 2. (1)

At first, we shall determine the area of this sphere Sn−1. Given the function
f = f(ξ) : Sn−1 → R ∈ C0(Sn−1,R) we set

∫
Sn−1

f(ξ) dωξ =

∫
|ξ|=1

f(ξ) dωξ :=

N∑
i=1

∫
Σi

f(ξ) dωξ. (2)

By the symbols Σ1, . . . , ΣN we denote the N ∈ N regular surface parts with
their surface elements dωξ satisfying

Sn−1 =

N⋃
i=1

Σi, Σi ∩Σj = ∂Σi ∩ ∂Σj , i �= j.

F. Sauvigny, Partial Differential Equations 1, Universitext,
DOI 10.1007/978-1-4471-2981-3 5, © Springer-Verlag London 2012
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We now consider a continuous function

f :
{
x = rξ ∈ R

n : a < r < b, ξ ∈ Sn−1
}
→ R

with 0 ≤ a < b ≤ +∞, and we define the open sets

Oi :=
{
x = rξ : ξ ∈ Σi, r ∈ (a, b)

}
, i = 1, . . . , N.

We require the integrability
∫

a<|x|<b

|f(x)| dx < +∞ and set

∫
a<|x|<b

f(x) dx =

N∑
i=1

∫
Oi

f(x) dx. (3)

The surface parts Σi are parametrized as follows

Σi : ξ = ξ(t) = ξ(t1, . . . , tn−1) : Ti → Σi ∈ C1(Ti, Σi), i = 1, . . . , N

with the parameter domains Ti ⊂ R
n−1. By the representation

x = x(t, r) = x(t1, . . . , tn−1, r) = rξ(t1, . . . , tn−1), t ∈ Ti, r ∈ (a, b)
(4)

we obtain a parametrization of the sets Oi for i = 1, . . . , N . The Jacobian of
this mapping is evaluated as follows:

Jx(t, r) =

∣∣∣∣∣∣∣∣∣

rξt1(t)
...

rξtn−1(t)

ξ(t)

∣∣∣∣∣∣∣∣∣
= rn−1

∣∣∣∣∣∣∣∣∣

ξt1(t)
...

ξtn−1(t)

ξ(t)

∣∣∣∣∣∣∣∣∣
= rn−1

(
ξ(t) · ξt1 ∧ . . . ∧ ξtn−1

)
.

Here the symbol ∧ denotes the exterior vector product in R
n. We have

ξt1 ∧ . . . ∧ ξtn−1 = (D1(t), . . . , Dn(t))

with

Dj(t) := (−1)n+j ∂(ξ1, . . . , ξj−1, ξj+1, . . . , ξn)

∂(t1, . . . , tn−1)
, j = 1, . . . , n.

We note |ξ(t)| = 1 and infer ξ(t) · ξti(t) = 0 for all i = 1, . . . , n− 1. Therefore,
the vectors ξ(t) and ξt1 ∧ . . . ∧ ξtn−1 are parallel to each other and we deduce

Jx(t, r) = r
n−1

√√√√ n∑
j=1

Dj(t)2. (5)
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Setting dωξ =

√
n∑

j=1

Dj(t)2 dt1 . . . dtn−1, t ∈ Ti we obtain

∫
Oi

f(x) dx =

∫
Ti×(a,b)

f(rξ(t))rn−1

√√√√ n∑
j=1

Dj(t)2 dt1 . . . dtn−1 dr

=

b∫
a

rn−1 dr

∫
Σi

f(rξ) dωξ, i = 1, . . . , N.

Summation over i = 1, . . . , N finally yields

∫
a<|x|<b

f(x) dx =

b∫
a

rn−1 dr

∫
Sn−1

f(rξ) dωξ. (6)

Especially the functions f ∈ C0(Rn,R) with
∫
Rn

|f(x)|dx < +∞ fulfill the

identity ∫
Rn

f(x) dx =

+∞∫
0

rn−1 dr

∫
Sn−1

f(rξ) dωξ. (7)

Before we continue to evaluate the area of the sphere Sn−1, we shall explicitly
provide a calculus rule for the integral defined in (2). In this context we
consider the following special parametrization of Sn−1:

Σ± : ξi = ti, i = 1, . . . , n− 1, ξn = ±
√

1− t21 − . . .− t2n−1,

t = (t1, . . . , tn−1) ∈ T :=
{
t ∈ R

n−1 : |t| < 1
}
.

We calculate

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ξ1
∂t1

· · · ∂ξn−1

∂t1

∂ξn
∂t1

...
...

...

∂ξ1
∂tn−1

· · · ∂ξn−1

∂tn−1

∂ξn
∂tn−1

λ1 · · · λn−1 λn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 − ξ1
ξn

...
. . .

...
...

0 · · · 1 −ξn−1

ξn

λ1 · · · λn−1 λn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n−1∑
j=1

λj
ξj
ξn

+ λn.

The surface element of Σ± consequently fulfills
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dωξ =

√√√√ n∑
j=1

Dj(t)2 dt1 . . . dtn−1 =

√√√√√
n∑

j=1

ξj(t)2

ξn(t)2
dt1 . . . dtn−1

=
dt1 . . . dtn−1√

1− t21 − . . .− t2n−1

, t ∈ T.

Therefore, the relation (2) implies∫
|ξ|=1

f(ξ) dωξ

=

∫
|t|<1

f(t1, . . . , tn−1,+
√
. . .) + f(t1, . . . , tn−1,−√

. . .)√
1− t21 − . . .− t2n−1

dt1 . . . dtn−1

(8)

setting
√
. . . =

√
1− t21 − . . .− t2n−1.

We now return to evaluate the area for the (n− 1)-dimensional sphere Sn−1

ωn :=

∫
Sn−1

dωξ.

We take a continuous function g = g(r) : (0,+∞) → R, and require the
function f(x) = g(|x|) to fulfill∫

Rn

|f(x)| dx < +∞.

Then the relation (7) yields

∫
Rn

g(|x|) dx =

( +∞∫
0

rn−1g(r) dr

)( ∫
Sn−1

dωξ

)

= ωn

+∞∫
0

rn−1g(r) dr.

(9)

We insert the function g(r) = e−r2 , r ∈ (0,+∞) and obtain

ωn

+∞∫
0

rn−1e−r2 dr =

∫
Rn

e−|x|2 dx =

∫
Rn

e−x2
1−...−x2

n dx1 . . . dxn

=

( +∞∫
−∞

e−t2 dt

)n

=
√
π
n
.

(10)
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Here we observe

+∞∫
−∞

e−t2 dt =

√√√√
∫
R2

∫
e−|x|2 dx dy =

√√√√√2π

+∞∫
0

e−r2r dr

=
√
π

√[
− e−r2

]+∞

0
=

√
π.

Definition 1.1. By the symbol

Γ (z) :=

+∞∫
0

tz−1e−t dt, z ∈ C with Re z > 0

we denote the Gamma-function.

Remark: We have

Γ (z + 1) = zΓ (z) for all z ∈ C with Re z > 0.

Therefore, we inductively obtain

Γ (n) = (n− 1)! for n = 1, 2, . . .

With the aid of the substitution t = �2 and dt = 2� d� we calculate

Γ
(1
2

)
=

+∞∫
0

t−
1
2 e−t dt =

+∞∫
0

1

�
e−2

2� d�

= 2

+∞∫
0

e−2

d� =

+∞∫
−∞

e−2

d� =
√
π.

Substituting t = r2 and dt = 2r dr, we finally deduce

Γ
(n
2

)
=

+∞∫
0

t
n−2
2 e−t dt =

+∞∫
0

rn−2e−r22r dr = 2

+∞∫
0

rn−1e−r2 dr.

From the relation (10) we get the following identity for the area of the sphere
Sn−1, namely

ωn =
2
(
Γ ( 12 )

)n
Γ (n2 )

. (11)

We now become acquainted with a class of functions which have similar prop-
erties as the class of holomorphic functions.
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Definition 1.2. On the open set Ω ⊂ R
n with n ≥ 2 we name the function

ϕ = ϕ(x) ∈ C2(Ω,R) harmonic in Ω, if ϕ satisfies the Laplacian differential
equation

Δϕ(x) = ϕx1x1(x) + . . .+ ϕxnxn(x) = 0 for all x ∈ Ω. (12)

At first, we shall find the radially symmetric harmonic functions in R
n \ {0}.

Here we begin with the ansatz

ϕ(x) = f(|x|), x ∈ R
n \ {0}, (13)

using the function f = f(r) : (0,+∞) → R ∈ C2((0,+∞),R). According
to Chapter 1, Section 8 we decompose the Laplace operator with respect to
n-dimensional polar coordinates (ξ, r) ∈ Sn−1 × (0,+∞) as follows:

Δ =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
Λ. (14)

Here the operator Λ is independent of the radius r . Therefore, the function
ϕ is harmonic in R

n \ {0} if and only if the function f satisfies the following
ordinary differential equation

∂2f

∂r2
(r) +

n− 1

r

∂f

∂r
(r) = 0, r ∈ (0,+∞). (15)

The linear solution space of this ordinary differential equation is 2-dimensional,
and we easily verify: The general solution of (15) is given by

f(r) = a+ b log r, r ∈ (0,+∞), a, b ∈ R, if n = 2,

f(r) = a+ br2−n, r ∈ (0,+∞), a, b ∈ R, if n ≥ 3.

We observe that the solutions f �≡ const of (15) behave at the origin like

lim
r→0+

|f(r)| = +∞.

Therefore, the radially symmetric solutions ϕ(x) = f(|x|), x ∈ R
n \ {0} of the

Laplacian differential equation possess a singularity at the point x = 0. This
phenomenon enables us to derive an integral representation for the solutions
of Poisson’s differential equation. We meet with a comparable situation in
Cauchy’s integral.

Definition 1.3. A domain G ⊂ R
n satisfying the assumptions of the Gaus-

sian integral theorem from Chapter 1, Section 5 is named a normal domain in
R

n.

Definition 1.4. On the normal domain G ⊂ R
n we define the function

ϕ(y;x) :=
1

2π
log |y−x|+ψ(y;x), x, y ∈ G with x �= y, n = 2, (16)
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and alternatively

ϕ(y;x) :=
1

(2− n)ωn
|y−x|2−n+ψ(y;x), x, y ∈ G with x �= y, n ≥ 3.

(17)
Here the function ψ(·;x) - defined by y �→ ψ(y;x) - is harmonic in G and
belongs to the class C1(G) for each fixed x ∈ G. Furthermore, we observe
the regularity property ψ ∈ C0(G×G). Then we name ϕ(y;x) a fundamental
solution of the Laplace equation in G.

Of central significance for the potential theory is the following

Theorem 1.5. On the normal domain G ⊂ R
n with n ≥ 2, we consider a

solution u = u(x) ∈ C2(G) ∩ C1(G) of Poisson’s differential equation

Δu(x) = f(x), x ∈ G (18)

prescribing the function f = f(x) ∈ C0(G) as its right-hand side. Then we
have the integral representation

u(x) =

∫
∂G

(
u(y)

∂ϕ

∂ν
(y;x)− ϕ(y;x)∂u

∂ν
(y)
)
dσ(y)

+

∫
G

ϕ(y;x)f(y) dy

(19)

for all x ∈ G. Here the symbol ν : ∂G→ R
n denotes the exterior unit normal

for the domain ∂G, dσ(y) means the surface element on the boundary ∂G,
and ϕ(y;x) indicates a fundamental solution.

Proof:

1. We present our proof only for the case n ≥ 3. Take a fixed point x ∈ G
and choose ε0 > 0 so small that the condition

Bε(x) :=
{
y ∈ R

n : |y − x| < ε
}
⊂⊂ G

is satisfied for all 0 < ε < ε0. We introduce the polar coordinates

y = x+ rξ, ξ ∈ R
n with |ξ| = 1

about the point x, and denote the radial derivative by ∂
∂r . On the domain

Gε := G \Bε(x) we apply Green’s formula and obtain
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∫
Gε

f(y)ϕ(y;x) dy

=

∫
Gε

(
Δu(y)ϕ(y;x)− u(y)Δyϕ(y;x)

)
dy

=

∫
∂Gε

(
ϕ(y;x)

∂u

∂ν
(y)− u(y)∂ϕ

∂ν
(y;x)

)
dσ(y)

=

∫
∂G

(
ϕ(y;x)

∂u

∂ν
(y)− u(y)∂ϕ

∂ν
(y;x)

)
dσ(y)

−
∫

∂Bε(x)

(
ϕ(y;x)

∂u

∂r
(y)− u(y)∂ϕ

∂r
(y;x)

)
dσ(y)

(20)

for all ε ∈ (0, ε0).
2. Observing (17), we now see

lim
ε→0+

∫
∂Bε(x)

ϕ(y;x)
∂u

∂r
(y) dσ(y) = 0. (21)

Furthermore, we calculate

lim
ε→0+

∫
∂Bε(x)

u(y)
∂ϕ

∂r
(y;x) dσ(y)

= lim
ε→0+

∫
∂Bε(x)

u(y)
1

ωn
|y − x|1−n dσ(y)

+ lim
ε→0+

∫
∂Bε(x)

u(y)
∂

∂r
ψ(y;x) dσ(y)

= lim
ε→0+

∫
∂Bε(x)

(
u(y)− u(x)

) 1

ωn
|y − x|1−n dσ(y)

+u(x) lim
ε→0+

∫
∂Bε(x)

1

ωn
ε1−n dσ(y)

= u(x).

(22)

3. From (20), (21), and (22) together with the passage to the limit ε → 0+
we now infer the stated identity
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∫
G

f(y)ϕ(y;x) dy +

∫
∂G

(
u(y)

∂ϕ

∂ν
(y;x)− ϕ(y;x)∂u

∂ν
(y)
)
dσ(y) = u(x)

for arbitrary points x ∈ G. q.e.d.

Theorem 1.6. Given the point
◦
x= (

◦
x1, . . . ,

◦
xn) ∈ R

n and the radius R ∈
(0,+∞), we consider the ball BR(

◦
x) := {x ∈ R

n : |x− ◦
x | < R}. Let the

function

u = u(x1, . . . , xn) ∈ C2(BR(
◦
x)) ∩ C1(BR(

◦
x))

solve the Laplace equation Δu(x1, . . . , xn) = 0 in BR(
◦
x). Then we have a

power series

P(x1, . . . , xn) =

∞∑
k1,...,kn=0

ak1...knx
k1
1 · . . . · xkn

n

for xj ∈ C with |xj | ≤
R

4n
, j = 1, . . . , n

with the real coefficients ak1...kn ∈ R for k1, . . . , kn = 0, 1, 2, . . ., converging
absolutely in the designated complex polycylinder such that

u(x) = P(x1−
◦
x1, . . . , xn−

◦
xn) for x ∈ R

n with |xj−
◦
xj | ≤

R

4n
.

(23)

Proof:

1. It suffices only to prove the statement above in the case
◦
x= 0 and R = 1,

which can easily be verified with the aid of the transformation

Ty :=
◦
x +Ry, y ∈ B1(0) satisfying T : B1(0) → BR(

◦
x).

Furthermore, we only consider the situation n ≥ 3. With the function

ϕ(y;x) :=
1

(2− n)ωn
|y − x|2−n, y ∈ B := B1(0)

we obtain a fundamental solution of the Laplace equation in B for each
fixed x ∈ B. Theorem 1.5 yields the representation formula

u(x) =

∫
∂B

(
u(y)

∂ϕ

∂ν
(y;x)− ϕ(y;x)∂u

∂ν
(y)
)
dσ(y), x ∈ B. (24)

The points x ∈ B being fixed and y ∈ ∂B arbitrary, we comprehend

∂
∂νϕ(y;x) = y · ∇yϕ(y;x) =

1

ωn
y ·
(
|y − x|1−n∇y|y − x|

)

=
1

ωn
y ·
(
|y − x|−n(y − x)

)
=

1

ωn|y − x|n
y · (y − x).

(25)
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2. We take arbitrary λ ∈ R, y ∈ ∂B and x = (x1, . . . , xn) ∈ C
n satisfying

|xj | ≤ 1
4n for j = 1, . . . , n and consider the composite quantity

|y − x|λ :=

( n∑
j=1

(yj − xj)2
)λ

2

=

(
1− 2

n∑
j=1

yjxj +
n∑

j=1

x2j

)λ
2

.

Abbreviating

� := −2
n∑

j=1

yjxj +
n∑

j=1

x2j ∈ C

we see

|y − x|λ = (1 + �)
λ
2 =

∞∑
l=0

(λ
2

l

)
�l =

∞∑
l=0

(λ
2

l

)(
− 2

n∑
j=1

yjxj +
n∑

j=1

x2j

)l

.

Here we observe

|�| =
∣∣∣− 2

n∑
j=1

yjxj +

n∑
j=1

x2j

∣∣∣ ≤ 2

n∑
j=1

|yj | |xj |+
n∑

j=1

|xj |2

≤ 2
1

4n
n+

1

16n2
n ≤ 3

4
< 1.

3. The function

ψ(x) := |y − x|λ, xk ∈ C with |xj | ≤
1

4n
, j = 1, . . . , n

is consequently holomorphic for each fixed point y ∈ ∂B. On account of
the relation (25), the function

F (x, y) := u(y)
∂ϕ

∂ν
(y;x)− ϕ(y;x)∂u

∂ν
(y), |xj | ≤

1

4n

is holomorphic on the given polycylinder for each fixed y ∈ ∂B and
bounded. Now Theorem 2.12 from Chapter 4, Section 2 about holomorphic
parameter integrals, together with (24), now yields that the function u(x)
is holomorphic on the given polycylinder. Therefore, the function u can
be expanded into the power series specified above. Since the function u(x)
is real-valued, the coefficients ak1...kn are real as well. They are namely
the coefficients of the associate Taylor series.

q.e.d.

Of central interest is the following

Theorem 1.7. Let us take the point
◦
x∈ R

n, the radius R ∈ (0,+∞), and the
number λ ∈ R with λ < n. Furthermore, let the function f = f(y1, . . . , yn) be
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holomorphic in an open neighborhood U ⊂ C
n satisfying U ⊃⊃ BR(

◦
x). Then

the function

F (x1, . . . , xn) :=

∫

BR(
◦
x)

f(y)

|y − x|λ dy, x ∈ BR(
◦
x) (26)

can be locally expanded into a convergent power series about the point
◦
x.

Proof: Applying the transformation Ty :=
◦
x +Ry, y ∈ B1(0) we can concen-

trate our considerations on the case
◦
x= 0 and R = 1. We therefore investigate

the singular integral

F (x1, . . . , xn) :=

∫
|y|<1

f(y)

|y − x|λ dy, x ∈ B := B1(0).

The point x ∈ B being fixed, we consider the transformation of variables due
to E.E. Levi, namely

y = x+ �(ξ − x) = (1− �)x+ �ξ, 0 < � ≤ 1, |ξ| = 1;

ξn = ξn(ξ1, . . . , ξn−1) = ±

√√√√1−
n−1∑
i=1

ξ2i .

The so-defined mapping (ξ1, . . . , ξn−1, �) �→ y is bijective, and we have

∂(y1, . . . , yn)

∂(ξ1, . . . , ξn−1, �)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y1
∂ξ1

· · · ∂yn
∂ξ1

...
...

∂y1
∂ξn−1

· · · ∂yn
∂ξn−1

∂y1
∂�

· · · ∂yn
∂�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� · · · 0 −� ξ1
ξn

...
. . .

...
...

0 · · · � −�ξn−1

ξn
ξ1 − x1 · · · ξn−1 − xn−1 ξn − xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



316 Chapter 5 Potential Theory and Spherical Harmonics

= �n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 − ξ1
ξn

...
. . .

...
...

0 · · · 1 −ξn−1

ξn
ξ1 − x1 · · · ξn−1 − xn−1 ξn − xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
�n−1

ξn

( n−1∑
i=1

ξi(ξi − xi) + ξn(ξn − xn)
)

=
�n−1

ξn

(
1−

n∑
i=1

ξixi

)
�= 0 for |ξ| = 1, |x| < 1.

The transformation formula for multiple integrals now yields

F (x) =

∫
|y|<1

f(y)

|y − x|λ dy

=

1∫
0

∫

ξ21+...+ξ2n−1<1

ξn(ξ1,...,ξn−1)>0

f(x+ �(ξ − x))
�λ|ξ − x|λ

�n−1

|ξn|

(
1−

n∑
k=1

ξkxk

)
dξ1 . . . dξn−1 d�

+

1∫
0

∫

ξ21+...+ξ2n−1<1

ξn(ξ1,...,ξn−1)<0

f(x+ �(ξ − x))
�λ|ξ − x|λ

�n−1

|ξn|

(
1−

n∑
k=1

ξkxk

)
dξ1 . . . dξn−1 d�

=

1∫
0

�n−1−λ

( ∫
|ξ|=1

f(x+ �(ξ − x))
|ξ − x|λ (1− ξ · x) dωξ

)
d�.

As in the proof of Theorem 1.6 we expand the function |ξ−x|λ into a conver-
gent power series. With the aid of Theorem 2.12 from Chapter 4, Section 2 we
infer that the function F (x) can be expanded into a convergent power series
in a neighborhood of the point x = 0.

q.e.d.

Definition 1.8. A function ϕ = ϕ(x1, . . . , xn) : Ω → R defined on the open
set Ω ⊂ R

n is named real-analytic in Ω if the following condition holds true:

For each point
◦
x= (

◦
x1, . . . ,

◦
xn) ∈ Ω there exists a sufficiently small number

ε = ε(
◦
x) > 0 and a convergent power series
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P(z1, . . . , zn) =

∞∑
k1,...,kn=0

ak1...knz
k1
1 · . . . · zkn

n

for zj ∈ C with |zj | ≤ ε, j = 1, . . . , n

with the real coefficients

ak1...kn ∈ R for k1, . . . , kn = 0, 1, 2, . . .

such that the identity

ϕ(x1, . . . , xn) = P(x1−
◦
x1, . . . , xn−

◦
xn), |xj−

◦
xj | ≤ ε, j = 1, . . . , n

is satisfied.

Theorem 1.9. (Analyticity theorem for Poisson’s equation)
The real-analytic function f = f(x1, . . . , xn) : Ω → R is defined on the open
set Ω ⊂ R

n with n ≥ 2. Furthermore, let the function u = u(x1, . . . , xn) ∈
C2(Ω) represent a solution of Poisson’s differential equation

Δu(x1, . . . , xn) = f(x1, . . . , xn), (x1, . . . , xn) ∈ Ω.

Then this function u(x) is real-analytic in the set Ω.

Proof: Taking
◦
x∈ Ω and BR(

◦
x) ⊂⊂ Ω, Theorem 1.5 allows us to represent

the solution u(x) by the fundamental solution ϕ in the following form

u(x) =

∫

∂BR(
◦
x)

(
u(y)

∂ϕ

∂ν
(y;x)− ϕ(y;x)∂u

∂ν
(y)
)
dσ(y) +

∫

BR(
◦
x)

ϕ(y;x)f(y) dy

with x ∈ BR(
◦
x). According to Theorem 1.6, the first integral on the right-hand

side represents a real-analytic function about the point
◦
x. From Theorem 1.7

we infer that the second integral yields a real-analytic function about the

point
◦
x as well.

q.e.d.

2 Poisson’s Integral Formula with Applications

In Theorem 1.5 from Section 1 we have constructed an integral representa-
tion for the solutions of Poisson’s equation in normal domains G with the
aid of the fundamental solution ϕ(y;x). The representation formula becomes
particularly simple if the function ϕ(.;x) vanishes on the boundary ∂G. This
motivates the following



318 Chapter 5 Potential Theory and Spherical Harmonics

Definition 2.1. On a normal domain G ⊂ R
n we have the fundamental solu-

tion ϕ = ϕ(y;x) given. We call this function a Green’s function of the domain
G, if the boundary condition

ϕ(y;x) = 0 for all y ∈ ∂G (1)

is satisfied for all x ∈ G.

Theorem 2.2. Given the ball BR := {y ∈ R
n : |y| < R} with R ∈ (0,+∞)

and n ≥ 2, we have the following Green’s function:

ϕ(y;x) =
1

2π
log

∣∣∣∣R(y − x)R2 − xy

∣∣∣∣, y ∈ BR, x ∈ BR, (2)

in the case n = 2 and

ϕ(y;x) =
1

(2− n)ωn

(
1

|y − x|n−2
−

(
R
|x|

)n−2

∣∣∣y − R2

|x|2 x
∣∣∣n−2

)

=
1

(2− n)ωn

(
1

|y − x|n−2
− Rn−2

(R4 − 2R2(x · y) + |x|2|y|2)n−2
2

) (3)

for y ∈ BR, x ∈ BR in the case n ≥ 3.

Proof:

1. At first, we consider the case n = 2. Taking the point x ∈ BR as fixed,
the expression

f(y) :=
R(y − x)
R2 − xy =

Ry −Rx
−xy +R2

, y ∈ C

is a Möbius transformation with the nonsingular coefficient matrix(
R −Rx

−x R2

)
, det

(
R −Rx

−x R2

)
= R(R2 − |x|2) > 0.

Furthermore, we have

|f(R)| =
∣∣∣∣ R

2 −Rx
−xR+R2

∣∣∣∣ =

∣∣∣∣R
2 −Rx
R2 −Rx

∣∣∣∣ = 1,

|f(−R)| =
∣∣∣∣−R

2 −Rx
Rx+R2

∣∣∣∣ =

∣∣∣∣R
2 +Rx

R2 +Rx

∣∣∣∣ = 1,

|f(iR)| =
∣∣∣∣ iR

2 −Rx
−iRx+R2

∣∣∣∣ =

∣∣∣∣ iR
2 −Rx

R2 + iRx

∣∣∣∣ =

∣∣∣∣R
2 + iRx

R2 + iRx

∣∣∣∣ = 1,

f(0) = − x
R

∈ B1.
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This implies
|f(y)| = 1 for all y ∈ ∂BR

and then

ϕ(y;x) =
1

2π
log

∣∣∣∣R(y − x)R2 − xy

∣∣∣∣ = 0

for all y ∈ ∂BR and all x ∈ BR. Finally, we note that

ϕ(y;x) =
1

2π
log

∣∣∣∣ y − xR− x
Ry

∣∣∣∣ =
1

2π
log |y − x| − 1

2π
log

∣∣∣∣R− x

R
y

∣∣∣∣

=
1

2π
log |y − x| − 1

2π
log

∣∣∣∣− x

R

(
y − R2

x

)∣∣∣∣

=
1

2π
log |y − x| − 1

2π
log

∣∣∣∣y − R2

|x|2x
∣∣∣∣− 1

2π
log

∣∣∣∣ xR
∣∣∣∣

=:
1

2π
log |y − x|+ ψ(y;x), y ∈ BR, x ∈ BR \ {0}.

The function ψ(·;x) is harmonic in BR as the real part of a holomorphic
function.

2. We now consider the case n ≥ 3, and begin with the following ansatz:

ϕ(y;x) =
1

(2− n)ωn

(
1

|y − x|n−2
− K

|y − λx|n−2

)
, y ∈ BR.

Here the point x ∈ BR is fixed; the constants K and λ have still to be
chosen adequately. At first, we see that the function

ψ(y;x) := − 1

(2− n)ωn
K

|y − λx|n−2

is harmonic in y ∈ BR if λx �∈ BR holds true. The condition ϕ(y;x) = 0
for all y ∈ ∂BR is satisfied if and only if

1

|y − x|n−2
=

K

|y − λx|n−2

or equivalently

K
2

n−2 |y − x|2 = |y − λx|2 for all y ∈ ∂BR

is correct. On account of |y| = R we can transform this identity into

K
2

n−2 (R2 − 2(y · x) + |x|2) = R2 − 2λ(y · x) + λ2|x|2

and finally into
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R2
(
K

2
n−2 − 1

)
− 2(x · y)

(
K

2
n−2 − λ

)
+ |x|2

(
K

2
n−2 − λ2

)
= 0.

Setting λ := K
2

n−2 we obtain

0 = R2(λ− 1) + |x|2(λ− λ2) = (λ− 1){R2 − λ|x|2}.

Since the case λ = 1, K = 1 and consequently ϕ ≡ 0 has to be excluded as

the trivial one, we choose λ :=
(

R
|x|

)2
and K = λ

n−2
2 =

(
R
|x|

)n−2

. Now we

obtain Green’s function of the domain BR with the following expression

ϕ(y;x) =
1

(2− n)ωn

(
1

|y − x|n−2
−

(
R
|x|

)n−2

∣∣∣y − ( R
|x|

)2
x
∣∣∣n−2

)
, y ∈ BR,

for x ∈ BR \ {0}. We note

R
|x|∣∣∣y − R2

|x|2 x
∣∣∣ =

R∣∣∣|x|y −R2 x
|x|

∣∣∣ =
(

R2

|x|2|y|2 − 2R2(x · y) +R4

) 1
2

,

and Green’s function satisfies

ϕ(y;x) =
1

(2− n)ωn

(
1

|y − x|n−2
− Rn−2

(|x|2|y|2 − 2R2(x · y) +R4)
n−2
2

)

for all y ∈ BR and x ∈ BR. q.e.d.

Theorem 2.3. (Poisson’s integral formula)
In the ball BR := {y ∈ R

n : |y| < R} of radius R ∈ (0,+∞) in the Euclidean
space R

n with n ≥ 2, let the function u = u(x) = u(x1, . . . , xn) ∈ C2(BR) ∩
C0(BR) solve Poisson’s differential equation

Δu(x) = f(x), x ∈ BR

for the right-hand side f = f(x) ∈ C0(BR). Then we have the Poisson integral
representation

u(x) =
1

Rωn

∫
|y|=R

|y|2 − |x|2
|y − x|n u(y) dσ(y) +

∫
|y|≤R

ϕ(y;x)f(y) dy (4)

for all x ∈ BR. Here the symbol ϕ = ϕ(y;x) denotes Green’s function given
in Theorem 2.2.

Proof:
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1. At first, we assume the regularity u ∈ C2(BR). Theorem 1.5 from Section 1
yields the identity

u(x) =

∫
|y|=R

u(y)
∂ϕ

∂ν
(y;x) dσ(y) +

∫
|y|≤R

ϕ(y;x)f(y) dy, x ∈ BR.

We confine ourselves to the case n ≥ 3. According to Theorem 2.2 we have
Green’s function

ϕ(y;x) =
1

(2− n)ωn

(
|y − x|2−n −K|y − λx|2−n

)
, y ∈ BR, x ∈ BR,

with λ :=

(
R

|x|

)2

and K =

(
R

|x|

)n−2

= λ
n−2
2 .

Taking x ∈ BR as fixed and y ∈ ∂BR arbitrarily, we calculate

∂

∂ν
ϕ(y;x) =

y

R
· ∇yϕ(y;x)

=
1

Rωn
y ·
(
|y − x|1−n y − x

|y − x| −K|y − λx|1−n y − λx
|y − λx|

)

=
1

Rωn
y ·
(
y − x

|y − x|n −K y − λx
|y − λx|n

)
.

This formula remains true for n = 2 as well, where K = 1 is fulfilled in
this case. We additionally note that

|y − λx|2 = R2 − 2λ(x · y) + λ2|x|2

= R2 − 2
R2

|x|2 (x · y) +
R4

|x|2

=
R2

|x|2
(
|x|2 − 2(x · y) +R2

)
= λ|y − x|2

and consequently
|y − λx|n = λ

n
2 |y − x|n.

Finally, we obtain

∂

∂ν
ϕ(y;x) =

1

Rωn|y − x|n
y ·
(
y − x−Kλ−n

2 (y − λx)
)

=
1

Rωn|y − x|n
y ·
(
(1− λ−n

2K)y − (1−Kλ
−n+2

2 )x
)

=
|y|2

Rωn|y − x|n
(
1− 1

λ

)
=

|y|2
Rωn|y − x|n

(
1− |x|2

R2

)

=
|y|2 − |x|2
Rωn|y − x|n

for all y ∈ ∂BR and x ∈ BR.
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Therefore, we get the Poisson integral representation

u(x) =
1

Rωn

∫
|y|=R

|y|2 − |x|2
|y − x|n u(y) dσ(y)+

∫
|y|≤R

ϕ(y;x)f(y) dy, x ∈ BR.

2. Now assuming u ∈ C2(BR) ∩ C0(BR), part 1 of our proof yields the
following identity for all � ∈ (0, R):

u(x) =
1

�ωn

∫
|y|=

|y|2 − |x|2
|y − x|n u(y) dσ(y) +

∫
|y|≤

ϕ(y;x, �)f(y) dy.

Here ϕ(y;x, �) denotes Green’s function for the ball B. We observe the
transition to the limit �→ R− and obtain

u(x) =
1

Rωn

∫
|y|=R

|y|2 − |x|2
|y − x|n u(y) dσ(y) +

∫
|y|≤R

ϕ(y;x,R)f(y) dy

for all x ∈ BR. q.e.d.

Remarks:

1. In the special case n = 2 and f = 0 we obtain for 0 ≤ � < R and
0 ≤ ϑ < 2π:

u(� cosϑ, � sinϑ) =
1

2π

2π∫
0

R2 − �2
R2 − 2�R cos(λ− ϑ) + �2 u(R cosλ,R sinλ) dλ.

2. We name

P (x, y,R) :=
1

Rωn

|y|2 − |x|2
|y − x|n , y ∈ BR, x ∈ BR

the Poisson kernel.
3. Later in Chapter 9 we shall investigate the boundary behavior of Poisson’s

integral.

Theorem 2.4. We consider a solution u = u(x) ∈ C2(G) of Poisson’s differ-
ential equation Δu(x) = f(x), x ∈ G in the domain G ⊂ R

n. For each ball
BR(a) ⊂⊂ G we then have the identity

u(a) =
1

2πR

∫
|x−a|=R

u(x) dσ(x)− 1

2π

∫
|x−a|≤R

∫
log
( R

|x− a|

)
f(x) dx (5)

in the case n = 2, and alternatively



2 Poisson’s Integral Formula with Applications 323

u(a) =
1

Rn−1ωn

∫
|x−a|=R

u(x) dσ(x)

− 1

(n− 2)ωn

∫
|x−a|≤R

(
|x− a|2−n −R2−n

)
f(x) dx

(6)

in the case n ≥ 3.

Proof: Via an adequate translation we can achieve a = 0. We then consider
Green’s function

ϕ(y; 0) =
1

2π
log
∣∣∣ y
R

∣∣∣ = − 1

2π
log

R

|y| , y ∈ BR, n = 2,

and alternatively

ϕ(y; 0) = − 1

(n− 2)ωn

(
1

|y|n−2
− 1

Rn−2

)
, y ∈ BR, n ≥ 3.

Poisson’s integral formula now yields

u(0) =
1

2πR

∫
|y|=R

u(y) dσ(y)− 1

2π

∫
|y|≤R

∫
log
( R
|y|

)
f(y) dy

in the case n = 2 and

u(0) =
1

Rn−1ωn

∫
|y|=R

u(y) dσ(y)− 1

(n− 2)ωn

∫
|y|≤R

(
1

|y|n−2
− 1

Rn−2

)
f(y) dy

in the case n ≥ 3. q.e.d.

Corollary: Harmonic functions u have the mean value property

u(a) =
1

Rn−1ωn

∫
|y−a|=R

u(y) dσ(y), (7)

if BR(a) ⊂⊂ G is satisfied.

Theorem 2.5. (Harnack’s inequality)
Let the function u(x) ∈ C2(BR) be harmonic in the ball BR = {y ∈ R

n :
|y| < R} of radius R ∈ (0,+∞), and we assume u(x) ≥ 0 for all x ∈ BR.
Then we have the estimate

1− |x|
R(

1 + |x|
R

)n−1 u(0) ≤ u(x) ≤
1 + |x|

R(
1− |x|

R

)n−1 u(0) for all x ∈ BR. (8)



324 Chapter 5 Potential Theory and Spherical Harmonics

Proof: At first we assume u ∈ C2(BR), and later we establish the inequality
above for functions u ∈ C2(BR) by a passage to the limit. From Theorem 2.3
we infer

u(x) =

∫
|y|=R

P (x, y,R)u(y) dσ(y), x ∈ BR.

For arbitrary points y ∈ R
n with |y| = R and x ∈ BR we have the following

inequality:
|y|2 − |x|2
(R+ |x|)n ≤ |y|2 − |x|2

|y − x|n ≤ |y|2 − |x|2
(R− |x|)n .

We multiply this inequality by 1
Rωn

u(y) and then integrate over the boundary
∂BR:

1

Rωn

R2 − |x|2
(R+ |x|)n

∫
|y|=R

u(y) dσ(y) ≤ u(x) ≤ 1

Rωn

R2 − |x|2
(R− |x|)n

∫
|y|=R

u(y) dσ(y).

Using the mean value property of harmonic functions we obtain

Rn−2 R
2 − |x|2

(R+ |x|)n u(0) ≤ u(x) ≤ R
n−2 R

2 − |x|2
(R− |x|)n u(0)

and consequently

1− |x|2
R2(

1 + |x|
R

)n u(0) ≤ u(x) ≤ 1− |x|2
R2(

1− |x|
R

)n u(0), x ∈ BR.

Finally, this implies

1− |x|
R(

1 + |x|
R

)n−1 u(0) ≤ u(x) ≤
1 + |x|

R(
1− |x|

R

)n−1 u(0), x ∈ BR.

q.e.d.

Theorem 2.6. (Liouville’s theorem for harmonic functions)
Let u(x) : Rn → R denote a harmonic function satisfying u(x) ≤ M for all
x ∈ R

n, with a constant M ∈ R. Then we have u(x) ≡ const, x ∈ R
n.

Proof: We consider the harmonic function v(x) :=M −u(x), x ∈ R
n and note

that v(x) ≥ 0 for all x ∈ R
n. Harnack’s inequality now yields

1− |x|
R(

1 + |x|
R

)n−1 v(0) ≤ v(x) ≤
1 + |x|

R(
1− |x|

R

)n−1 v(0), x ∈ BR, R > 0.

We observe R → +∞ and obtain v(x) = v(0) for all x ∈ R
n and finally

u(x) ≡ const, x ∈ R
n.

q.e.d.

Fundamentally important in the sequel is
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Definition 2.7. Let G ⊂ R
n denote a domain and u = u(x) = u(x1, . . . , xn) :

G → R ∈ C0(G) a continuous function. We name u weakharmonic (super-
harmonic, subharmonic), if

u(a) = ( ≥, ≤ )
1

rn−1ωn

∫
|x−a|=r

u(x) dσ(x) =
1

ωn

∫
|ξ|=1

u(a+ rξ) dσ(ξ)

for all a ∈ G and r ∈ (0, ϑ(a)) with a certain ϑ(a) ∈ (0, dist(a,Rn \ G)] is
correct.

Remarks:

1. The function u : G → R ∈ C0(G) is superharmonic if and only if the
function −u is subharmonic.

2. A function is weakharmonic if and only if this function is simultaneously
superharmonic and subharmonic.

3. A weakharmonic function is characterized by the mean value property -
and should be carefully distinguished from certain weak solutions of the
Laplace equation in Sobolev spaces, which are not necessarily continuous
functions in general.

4. If the functions u, v : G → R are superharmonic and the constant α ∈
[0,+∞) is given, then the following continuous functions

w1(x) := αu(x),

w2(x) := u(x) + v(x),

w3(x) := min{u(x), v(x)}, x ∈ G,

are superharmonic as well. For w1 and w2 this statement is evident, and
we investigate the function w3. Taking the point a ∈ G and the radius
r ∈ (0, ϑ(a)) we infer

1

ωn

∫
|ξ|=1

w3(a+ rξ) dσ(ξ) =
1

ωn

∫
|ξ|=1

min{u(a+ rξ), v(a+ rξ)} dσ(ξ)

≤ min

{
1

ωn

∫
|ξ|=1

u(a+ rξ) dσ(ξ),
1

ωn

∫
|ξ|=1

v(a+ rξ) dσ(ξ)

}

≤ min{u(a), v(a)} = w3(a).

5. If the functions u, v : G → R are subharmonic and the constant α ∈
[0,+∞) is given, then the following functions

w1(x) := αu(x),

w2(x) := u(x) + v(x),

w3(x) := max{u(x), v(x)}, x ∈ G,
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are subharmonic functions in G as well.

Theorem 2.8. Let the function u = u(x) ∈ C2(G) be defined on the domain
G ⊂ R

n. Then this twice continuously differentiable function u is weakhar-
monic (superharmonic, subharmonic) in G if and only if the relation

Δu(x) = 0 (≤ 0, ≥ 0) for all x ∈ G

is correct.

Proof: We present our proof only in the case n ≥ 3. We define f(x) := Δu(x),
x ∈ G and see f ∈ C0(G). Theorem 2.4 yields the following identity for all
points a ∈ G and radii r ∈ (0, ϑ(a)):

u(a) =
1

rn−1ωn

∫
|x−a|=r

u(x) dσ(x)

− 1

(n− 2)ωn

∫
|x−a|≤r

(|x− a|2−n − r2−n)f(x) dx.

Setting

χ(a, r) := − 1

(n− 2)ωn

∫
|x−a|≤r

(|x− a|2−n − r2−n)f(x) dx

we easily see: The function u is weakharmonic (superharmonic, subharmonic)
if and only if

χ(a, r) = 0 (≥ 0, ≤ 0) for all a ∈ G, r ∈ (0, ϑ(a))

holds true. We finally note the inequality |x− a|2−n − r2−n ≥ 0 for all x ∈ G
with |x− a| ≤ r, and we obtain the statement above.

q.e.d.

Theorem 2.9. (Maximum and minimum principle)
The superharmonic (subharmonic) function u = u(x) : G → R - defined on
the domain G ⊂ R

n - may attain its global minimum (maximum) at a point
◦
x∈ G; this means

u(x) ≥ u(◦x)
(
u(x) ≤ u(◦x)

)
for all x ∈ G.

Then we have
u(x) ≡ const in G.
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Proof: Since the reflection u → −u transfers subharmonic functions into su-
perharmonic ones, the statement has only to be shown for superharmonic
functions. Now the superharmonic function u : G → R ∈ C0(G) may attain

its global minimum at the point
◦
x∈ G. We then consider the nonvoid set

G∗ :=
{
x ∈ G : u(x) = inf

y∈G
u(y) = u(

◦
x)
}

which is closed in the domain G. We now show that this set G∗ is open as
well. If namely a ∈ G∗ is an arbitrary point, we observe

inf
y∈G

u(y) = u(a) ≥ 1

ωn

∫
|ξ|=1

u(a+ rξ) dσ(ξ) for all r ∈ (0, ϑ(a)). (9)

This implies u(x) = u(a) for all points x ∈ R
n with |x − a| < ϑ(a). Conse-

quently, the set G∗ is open. Since G is a domain and especially connected, we

easily see by continuation along paths: u(x) ≡ u(◦x) for all x ∈ G. We finally
obtain u(x) ≡ const, x ∈ G.

q.e.d.

Theorem 2.10. Let the function u : G → R ∈ C0(G) be superharmonic
(subharmonic) in the bounded domain G ⊂ R

n. Furthermore, all sequences of
points {x(k)}k=1,2,... ⊂ G satisfying lim

k→∞
x(k) = x ∈ ∂G have the property

lim inf
k→∞

u(x(k)) ≥M
(
lim sup
k→∞

u(x(k)) ≤M
)

with a constant M ∈ R. Then we have the behavior

u(x) ≥M
(
u(x) ≤M

)
for all x ∈ G.

Proof: It suffices to consider superharmonic functions u : G → R. If the
statement u(x) ≥ M for all x ∈ G were false, we have a point ξ ∈ G with
μ := u(ξ) < M . We now construct a sequence of connected compact subsets
of G exhausting the set G; this means Θj ↑ G for j → ∞ satisfying

ξ ∈ Θ1 ⊂ Θ2 ⊂ . . . .

Due to Theorem 2.9, the superharmonic function u attains its minimum at a
boundary point y(j) ∈ ∂Θj of each compact set Θj . Therefore, we have the
inequalities

u(y(j)) ≤ u(ξ) = μ for j = 1, 2, . . .

From the sequence {y(j)}j=1,2,... ⊂ G we now select a convergent subsequence
{x(k)}k=1,2,... ⊂ {y(j)}j=1,2,.... We then obtain a sequence {x(k)}k=1,2,... ⊂ G
satisfying
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lim
k→∞

x(k) = x ∈ ∂G and lim inf
k→∞

u(x(k)) ≤ μ < M.

However, this contradicts the assumption

lim inf
k→∞

u(x(k)) ≥M for all {x(k)}k=1,2,... ⊂ G with lim
k→∞

x(k) ∈ ∂G.

q.e.d.

Theorem 2.11. Let G ⊂ R
n denote a bounded domain. Furthermore, we

consider two functions u = u(x), v = v(x) : G → R ∈ C0(G), which are
weakharmonic in G. Then we have the estimate

sup
x∈G

|u(x)− v(x)| ≤ sup
x∈∂G

|u(x)− v(x)|.

Proof: The function w(x) := u(x) − v(x), x ∈ G is continuous in G and
weakharmonic in G. SettingM := sup

x∈∂G
|u(x)−v(x)|, Theorem 2.10 yields the

inequality
−M ≤ w(x) ≤M for all x ∈ G.

This implies the stated estimate. q.e.d.

Theorem 2.12. Let G ⊂ R
n denote a bounded domain. Then the Green func-

tion ϕG(y;x) for this domain is uniquely determined, and we have

ϕG(y;x) < 0 for all y ∈ G and fixed x ∈ G. (10)

Proof: (Only for n ≥ 3.)

1. Let the two Green functions

ϕj(y;x) =
1

(2− n)ωn
|y − x|2−n + ψj(y;x), y ∈ G, x ∈ G; j = 1, 2

be given. Then we infer 0 = ϕ1(y;x) = ϕ2(y;x) for y ∈ ∂G, x ∈ G and
therefore

ψ1(y;x) = ψ2(y;x), y ∈ ∂G, x ∈ G.
Theorem 2.11 now implies ψ1(y;x) ≡ ψ2(y;x), and finally

ϕ1 ≡ ϕ2, y ∈ G, x ∈ G.

2. We take the point x ∈ G as fixed and consider Green’s function

ϕG(y;x) =
1

(2− n)ωn
|y − x|2−n + ψ(y;x), y ∈ G

for the domain G. Then the function χ(y) := ϕ(y;x) : G \ {x} → R

is harmonic. Arbitrary sequences {y(k)}k=1,2,... ⊂ G′ := G \ {x} with
lim
k→∞

y(k) ∈ ∂G′ = ∂G ∪ {x} now satisfy
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lim sup
k→∞

χ(y(k)) ≤ 0.

Therefore, Theorem 2.10 yields χ(y) ≤ 0 for all y ∈ G′ and Theorem 2.9
implies the inequality (10).

q.e.d.

Remark: The existence question for Green’s function on Dirichlet domains G
will be answered affirmatively in the next section.

3 Dirichlet’s Problem for the Laplace Equation in R
n

In this paragraph the symbol G ⊂ R
n always means a bounded domain, and

f = f(x) : ∂G→ R ∈ C0(∂G) denotes a continuous function on its boundary
∂G. Our interest is devoted to the following Dirichlet’s boundary value problem
for the Laplace equation

u = u(x) ∈ C2(G) ∩ C0(G),

Δu(x) = 0 for all x ∈ G,
u(x) = f(x) for all x ∈ ∂G.

(1)

Theorem 3.1. (Uniqueness theorem)
Consider two solutions u(x), v(x) of the Dirichlet problem (1) for the data G
and f . Then we have

u(x) ≡ v(x) in G.

Proof: The function w(x) := v(x)−u(x), x ∈ G belonging to the class C2(G)∩
C0(G) is especially weakharmonic in G and has the boundary values

w(x) = v(x)− u(x)

= f(x)− f(x) = 0 for all x ∈ ∂G.

Theorem 2.11 from Section 2 implies w(x) ≡ 0 in G and therefore

v(x) ≡ u(x), x ∈ G.
q.e.d.

With the aid of Poisson’s integral formula we can explicitly solve the Dirichlet
problem on balls.

Theorem 3.2. On the ball BR(a) := {y ∈ R
n : |y − a| < R} with the center

a ∈ R
n and the radius R ∈ (0,+∞) we consider Poisson’s integral

u(x) :=
1

Rωn

∫
|y−a|=R

|y − a|2 − |x− a|2
|y − x|n f(y) dσ(y), x ∈ BR(a). (2)
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Then the function u belongs to the regularity class C2(BR(a)) ∩ C0(BR(a))
and is harmonic in BR(a). Furthermore, we have the boundary behavior

lim
x→◦

x
x∈BR(a)

u(x) = f(
◦
x) for all

◦
x∈ ∂BR(a). (3)

Consequently, the given function u solves Dirichlet’s problem (1) on the ball
G = BR(a) for the continuous boundary function f : ∂BR(a) → R being
prescribed.

Proof:

1. At first, we consider the situation a = 0, R = 1 and set B := B1(0) ⊂ R
n.

Then we obtain the function

u(x) =
1

ωn

∫
|y|=1

|y|2 − |x|2
|y − x|n f(y) dσ(y) =

∫
|y|=1

P (y;x)f(y) dσ(y), x ∈ B

(4)
with Poisson’s kernel

P (y;x) :=
1

ωn

|y|2 − |x|2
|y − x|n , y ∈ ∂B, x ∈ B.

2. Formula (4) immediately implies the regularity u ∈ C2(B). According to
part 1 in the proof of Theorem 2.3 from Section 2 the following identity is
satisfied:

P (y;x) =
1

ωn

|y|2 − |x|2
|y − x|n =

∂

∂ν
ϕ(y;x)

= y · ∇yϕ(y;x), y ∈ ∂B, x ∈ B.
(5)

Here the symbol ϕ(y;x) denotes Green’s function for the unit ball B
described in Section 2, Theorem 2.2. We note that ϕ is symmetric, more
precisely

ϕ(x; y) = ϕ(y;x) for all x, y ∈ B with x �= y. (6)

Furthermore, we have

ΔxP (y;x) = y · ∇y

(
Δxϕ(y;x)

)
= 0, x ∈ B, y ∈ ∂B. (7)

Consequently, we obtain

Δu(x) =

∫
|y|=1

ΔxP (y;x)f(y) dσ(y) = 0 for all x ∈ B. (8)



3 Dirichlet’s Problem for the Laplace Equation in R
n 331

3. Applying Theorem 2.3 from Section 2 to the harmonic function v(x) ≡ 1,
x ∈ B we deduce

1 =
1

ωn

∫
|y|=1

|y|2 − |x|2
|y − x|n 1 dσ(y) =

∫
|y|=1

P (y;x) dσ(y) for allx ∈ B. (9)

Furthermore, P (y;x) > 0 for all y ∈ ∂B and all x ∈ B is satisfied.
4. We now show that the relation

lim
x→◦

x
x∈B

u(x) = f(
◦
x)

is correct for all boundary points
◦
x∈ ∂B. We take an arbitrary point

x ∈ B and see

u(x)− f(◦x) = 1

ωn

∫
|y|=1

|y|2 − |x|2
|y − x|n

(
f(y)− f(◦x)

)
dσ(y)

=
1

ωn

∫
y∈∂B

|y−◦
x|≥2δ

|y|2 − |x|2
|y − x|n

(
f(y)− f(◦x)

)
dσ(y)

+
1

ωn

∫
y∈∂B

|y−◦
x|≤2δ

|y|2 − |x|2
|y − x|n

(
f(y)− f(◦x)

)
dσ(y).

(10)

The function f is continuous at the point
◦
x. Given the quantity ε > 0 we

therefore have a number δ = δ(ε) > 0 such that |f(y) − f(◦x)| ≤ ε holds

true for all points y ∈ ∂B with |y− ◦
x | ≤ 2δ. This implies

∣∣∣∣∣
1

ωn

∫
y∈∂B

|y−◦
x|≤2δ

|y|2 − |x|2
|y − x|n

(
f(y)− f(◦x)

)
dσ(y)

∣∣∣∣∣

≤ 1

ωn

∫
y∈∂B

|y−◦
x|≤2δ

|y|2 − |x|2
|y − x|n

∣∣∣f(y)− f(◦x)
∣∣∣ dσ(y)

≤ ε for all x ∈ B.

(11)

Choosing a point x ∈ B with |x− ◦
x | ≤ δ we infer the following estimate

for all y ∈ ∂B with |y− ◦
x | ≥ 2δ, namely

|y − x| ≥ |y− ◦
x | − | ◦x−x| ≥ 2δ − δ = δ.
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Consequently, for all y ∈ ∂B with |y− ◦
x | ≥ 2δ and x ∈ B with |x− ◦

x | ≤
η < δ we have

|y|2 − |x|2
|y − x|n ≤ (|y|+ |x|)(|y| − |x|)

δn

≤ 2

δn
(| ◦x | − |x|) ≤ 2

δn
| ◦x −x|

≤ 2η

δn
.

Setting M := sup
y∈∂B

|f(y)| we now can estimate as follows:

∣∣∣∣∣
1

ωn

∫
y∈∂B

|y−◦
x|≥2δ

|y|2 − |x|2
|y − x|n

(
f(y)− f(◦x)

)
dσ(y)

∣∣∣∣∣

≤ 1

ωn

∫
y∈∂B

|y−◦
x|≥2δ

|y|2 − |x|2
|y − x|n

∣∣∣f(y)− f(◦x)
∣∣∣ dσ(y)

≤ 2M

ωn

∫
y∈∂B

|y−◦
x|≥2δ

|y|2 − |x|2
|y − x|n dσ(y)

≤ 2M

ωnδn
2ηωn ≤ ε,

(12)

if we choose η ∈ (0, δ) sufficiently small. With the aid of (10), (11), and
(12) we deduce

|u(x)− f(◦x)| ≤ 2ε for all x ∈ B with |x− ◦
x | ≤ η. (13)

This implies

lim
x→◦

x
x∈B

u(x) = f(
◦
x) for all

◦
x∈ ∂B.

5. The function

u(x) :=
1

ωn

∫
|y|=1

|y|2 − |x|2
|y − x|n f(y) dσ(y), x ∈ B

solves Dirichlet’s problem on the unit ball B. We now utilize the trans-
formation

x = Tξ =
1

R
(ξ − a), ξ ∈ BR(a).
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Then the function v(ξ) := u(Tξ), ξ ∈ BR(a) gives us a solution of Dirich-
let’s problem

v = v(ξ) ∈ C2(BR(a)) ∩ C0(BR(a)),

Δv(ξ) = 0 for all ξ ∈ BR(a),

v(ξ) = g(ξ) for all ξ ∈ ∂BR(a),

(14)

where we have set g(ξ) := f(Tξ), ξ ∈ ∂BR(a). Taking

η := T−1y = Ry + a, y ∈ ∂B

we see η ∈ ∂BR(a) and dσ(η) = R
n−1 dσ(y). On this basis we calculate

v(ξ) = u(Tξ) =
1

ωn

∫
|y|=1

|y|2 − |Tξ|2
|y − Tξ|n f(y) dσ(y)

=
1

ωn

∫
|η−a|=R

|Tη|2 − |Tξ|2
|Tη − Tξ|n f(Tη)

1

Rn−1
dσ(η)

=
1

Rn−1ωn

∫
|η−a|=R

1
R2

(
|η − a|2 − |ξ − a|2

)
1
Rn |η − ξ|n

g(η) dσ(η)

=
1

Rωn

∫
|η−a|=R

|η − a|2 − |ξ − a|2
|η − ξ|n g(η) dσ(η), ξ ∈ BR(a).

q.e.d.

Theorem 3.3. (Regularity theorem for weakharmonic functions)
Let the weakharmonic function u = u(x) : G → R ∈ C0(G) be given on the
domain G ⊂ R

n. Then the function u is real-analytic in G and satisfies the
Laplace equation Δu(x) = 0 for all x ∈ G.

Proof: Let the point a ∈ G be chosen arbitrarily. For a suitable radius R ∈
(0,+∞) we then consider the ball BR(a) ⊂⊂ G, where we solve Dirichlet’s
problem with the aid of Theorem 3.2, namely

v = v(x) ∈ C2(BR(a)) ∩ C0(BR(a)),

Δv(x) = 0 for all x ∈ BR(a),

v(x) = u(x) for all x ∈ ∂BR(a).

(15)

Theorem 2.11 from Section 2 now yields u(x) ≡ v(x) in BR(a). Consequently,
we have u ∈ C2(G) and Δu(x) = 0 for all x ∈ G. According to Theorem 1.9
in Section 1, the function u is real-analytic in G.

q.e.d.
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We now intend to solve Dirichlet’s problem (1) for a large class of domains G.
In this context we use an ingenious method proposed by O.Perron.

Definition 3.4. Let G ⊂ R
n denote a bounded domain on which the con-

tinuous function u = u(x) : G → R ∈ C0(G) is given. Then we define the
harmonically modified function

v(x) := [u]a,R(x)

:=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x), x ∈ G with |x− a| ≥ R

1

Rωn

∫
|y−a|=R

|y − a|2 − |x− a|2
|y − x|n u(y) dσ(y), x ∈ G with |x− a| < R

for all a ∈ G and R ∈ (0, dist(a,Rn \G)).

Remark: The function v = v(x) : G → R ∈ C0(G) is harmonic in BR(a) and
coincides with the original function on the complement of this ball G\BR(a).

In the sequel we need the important

Proposition 3.5. Let the point a ∈ G and the radius R ∈ (0, dist(a,Rn \G))
be chosen as fixed, whereas u = u(x) denotes a superharmonic function in G.
Then the harmonically modified function

v(x) := [u]a,R(x), x ∈ G

is superharmonic in G as well, and we have

v(x) ≤ u(x) for all x ∈ G.

Proof:

1. At first, we show the inequality v(x) ≤ u(x) for all x ∈ G. In this context
we only have to verify v(x) ≤ u(x) for all x ∈ BR(a). The function

w(x) := u(x)− v(x), x ∈ BR(a)

is superharmonic in the ball BR(a). Each sequence of points

{x(k)}k=1,2,··· ⊂ BR(a)

with lim
k→∞

x(k) =
◦
x∈ ∂BR(a) satisfies

lim inf
k→∞

w(x(k)) = w(
◦
x) = 0.

From Section 2, Theorem 2.10 we infer w(x) ≥ 0, x ∈ BR(a) and conse-
quently

v(x) ≤ u(x) for all x ∈ BR(a).
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2. We now show that v is superharmonic in G. Choose an arbitrary point
ξ ∈ ∂BR(a) and a quantity ϑ(ξ) ∈ (0, dist(ξ,Rn \G)]. Using part 1 of our
proof, we then obtain

1

�n−1ωn

∫
|x−ξ|=

v(x) dσ(x) ≤ 1

�n−1ωn

∫
|x−ξ|=

u(x) dσ(x) ≤ u(ξ) = v(ξ)

for all � ∈ (0, ϑ(ξ)). Consequently, the function v is superharmonic in G:
In the ball BR(a) the function v is harmonic anyway, and in G \ BR(a)
this function v is superharmonic.

q.e.d.

We additionally need the following

Proposition 3.6. (Harnack’s lemma)
We consider a sequence wk(x) : G → R, k = 1, 2, . . . of harmonic functions
in G, which are descending in the following way:

w1(x) ≥ w2(x) ≥ w3(x) ≥ . . . for all x ∈ G.

Furthermore, let the sequence converge at one point
◦
x∈ G which means

lim
k→∞

wk(
◦
x) > −∞.

Then the sequence of functions {wk(x)}k=1,2, uniformly converges in each
compact set Θ ⊂ G towards a function harmonic in G, namely

w(x) := lim
k→∞

wk(x), x ∈ G.

Proof:Without loss of generality we assume
◦
x= 0 and for the ball the inclusion

BR ⊂ G with a radius R ∈ (0,+∞). For the indices k, l ∈ N with k ≤ l we
define the nonnegative functions vkl(x) := wk(x) − wl(x) ≥ 0, x ∈ BR. We
apply Harnack’s inequality and obtain

0 ≤ vkl(x) ≤
1 + |x|

R(
1− |x|

R

)n−1 vkl(0) ≤
1 + 1

2(
1− 1

2

)n−1 vkl(0), x ∈ BR
2
.

Setting K := 3
2 · ( 12 )1−n = 3 · 2n−2 we infer

|wk(x)− wl(x)| ≤ K|wk(0)− wl(0)|

for all x ∈ BR
2

and all k, l ∈ N.
(16)

Since the limit lim
k→∞

wk(0) exists, the sequence {wk(x)}k=1,2,... converges uni-

formly in BR
2

towards the function w(x). When we cover a compact set
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Θ ⊂ G by finitely many balls we comprehend that the sequence of func-
tions {wk(x)}k=1,2,... converges uniformly in Θ towards the function w(x).
The transition to the limit in Poisson’s integral formula shows that the limit
function w(x) is harmonic in G.

q.e.d.

In order to solve Dirichlet’s problem we utilize the following set of admissible
functions

M :=
{
v : G→ R ∈ C0(G) : v is in G superharmonic, and

for all sequences {x(k)}k=1,2,... ⊂ G with lim
k→∞

x(k) = x∗ ∈ ∂G

we have lim inf
k→∞

v(x(k)) ≥ f(x∗)
}
.

Here the symbol f : ∂G→ R denotes a continuous boundary function. Since

v(x) :=M := max
x∈∂G

f(x) ∈ M

holds true, we have M �= ∅.
Proposition 3.7. Let us define the function

u(x) := inf
v∈M

v(x), x ∈ G.

Then u is harmonic in G and we have

m ≤ u(x) ≤M for all x ∈ G.

Here we abbreviate m := inf
x∈∂G

f(x) and M := sup
x∈∂G

f(x).

Proof:

1. We take a sequence of points {xi}i=1,2,3,... ⊂ G which are dense in G. For
each index i ∈ N, there exists a sequence of functions {vij}j=1,2,... ⊂ M
satisfying

lim
j→∞

vij(x
i) = u(xi).

The minimum principle implies the estimate vij(x) ≥ m for all x ∈ G and
all i, j ∈ N. We now define the functions

vk(x) := min
1≤i,j≤k

vij(x), x ∈ G

for each index k ∈ N. Evidently, we have vk(x) ≥ vk+1(x), x ∈ G for
all k ∈ N. The minimum of finitely many superharmonic functions is
superharmonic again according to a previous remark, and we infer

vk ∈ M, k = 1, 2, . . .

We observe u(xi) ≤ vk(xi) ≤ vik(xi) for 1 ≤ i ≤ k, and we obtain

lim
k→∞

vk(x
i) = u(xi) for all i = 1, 2, . . .
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2. In the disc BR(a) ⊂⊂ G we harmonically modify the function vk to the
following function

wk(x) := [vk]a,R(x), x ∈ G.

With the aid of Proposition 3.5 we see {wk}k=1,2,... ⊂ M. Furthermore,
we have wk(x) ≥ wk+1(x) in BR(a) for all k ∈ N and

u(xi) ≤ wk(x
i) ≤ vk(xi) for all i, k ∈ N.

Therefore, we obtain

lim
k→∞

wk(x
i) = u(xi) for all i ∈ N.

According to Harnack’s lemma the sequence {wk(x)}k=1,2,... converges
uniformly in BR(a) towards a harmonic function w(x), and we compre-
hend

w(xi) = u(xi) for all xi ∈ BR(a), i = 1, 2, . . .

Since w and u are continuous functions, we infer the identity u(x) = w(x),
x ∈ BR(a). Consequently, the function u has to be harmonic in G, because
the ball BR(a) ⊂⊂ G has been chosen arbitrarily.

3. The inclusion M ∈ M implies the estimate u(x) ≤M for all x ∈ G. Since
the inequality vij(x) ≥ m for all x ∈ G and all i, j ∈ N holds true and
consequently vk(x) ≥ m in G for all k ∈ N is valid, we finally obtain

u(x) = lim
k→∞

vk(x) ≥ m for all x ∈ G.
q.e.d.

Definition 3.8. Let us consider the bounded domain G ⊂ R
n. We name a

boundary point x ∈ ∂G regular if we have a superharmonic function

Φ(y) = Φ(y;x) : G→ R with lim
y→x
y∈G

Φ(y) = 0

and
�(ε) := inf

y∈G
|y−x|≥ε

Φ(y) > 0 for all ε > 0.

If each boundary point of the domain G is regular, we speak of a Dirichlet
domain.

Remark: A point x ∈ ∂G is regular if and only if we have a number r > 0 and
a superharmonic function Ψ = Ψ(y) : G ∩Br(x) → R satisfying

lim
y→x

y∈G∩Br(x)

Ψ(y) = 0 and inf
r>|y−x|≥ε

y∈G

Ψ(y) > 0, 0 < ε < r.
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Here we set m := inf
r>|y−x|≥ 1

2 r
y∈G

Ψ(y) > 0 and consider the following function

Φ(y) :=

{
min
(
1, 2Ψ(y)

m

)
, y ∈ G ∩Br(x)

1, y ∈ G \Br(x)

which is superharmonic in G.

Theorem 3.9. (Dirichlet problem for the Laplacian)
Let G ⊂ R

n denote a bounded domain with n ≥ 2. Then the Dirichlet problem

u = u(x) ∈ C2(G) ∩ C0(G),

Δu(x) = 0 in G,

u(x) = f(x) on ∂G

(17)

can be solved for all continuous boundary functions f : ∂G→ R if and only if
G is a Dirichlet domain in the sense of Definition 3.8.

Proof:

‘=⇒’ Let the Dirichlet problem be solvable for all continuous boundary
functions f : ∂G → R. Taking an arbitrary point ξ ∈ ∂G we define the
function f(y) := |y − ξ|, y ∈ ∂G, and we solve Dirichlet’s problem (17) for
these boundary values. We apply the minimum principle to the harmonic
function u = u(x) : G→ R and obtain

u(x) > 0 for all x ∈ G \ {ξ}.

Therefore, the boundary point ξ is regular.

‘⇐=’ LetG be a Dirichlet domain and x ∈ ∂G an arbitrary regular boundary
point. Then we have an associate superharmonic function Φ(y) = Φ(y;x) :
G → R due to Definition 3.8. Since the function f : ∂G → R is continuous,
we can prescribe ε > 0 and obtain a quantity δ = δ(ε) > 0 satisfying

|f(y)− f(x)| ≤ ε for all y ∈ ∂G with |y − x| ≤ δ.

We now define
η(ε) := inf

y∈G
|y−x|≥δ(ε)

Φ(y) > 0.

1. Let the upper barrier function

v+(y) := f(x) + ε+ (M −m)
Φ(y)

η(ε)
, y ∈ G
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be given. Evidently, the function v+ is superharmonic in G. Furthermore,
an arbitrary sequence {y(k)}k=1,2,... ⊂ G with y(k) → y+ ∈ ∂G for k → ∞
satisfies

lim inf
k→∞

v+(y(k)) ≥ f(y+).

Consequently, v+ ∈ M holds true.
2. Now we consider the lower barrier function

v−(y) := f(x)− ε− (M −m)
Φ(y)

η(ε)
, y ∈ G.

We choose v ∈ M arbitrarily. Considering a sequence {y(k)}k=1,2,... ⊂ G
with y(k) → y− ∈ ∂G for k → ∞, we can estimate

lim inf
k→∞

(
v(y(k))− v−(y(k))

)

≥ lim inf
k→∞

(
v(y(k))− f(y−)

)
+ lim inf

k→∞

(
f(y−)− v−(y(k))

)

≥ 0.

Furthermore, the function v − v− is superharmonic in G, and Theorem
2.10 from Section 2 yields v − v− ≥ 0 in G. This implies

v(y) ≥ v−(y), y ∈ G for all v ∈ M.

3. The harmonic function

u(y) := inf
v∈M

v(y), y ∈ G

constructed in Proposition 3.7 now attains the prescribed boundary values
f continuously. On account of 1. and 2. the estimate

v−(y) ≤ u(y) ≤ v+(y) for all y ∈ G

is fulfilled, which means

f(x)− ε− (M −m)
Φ(y)

η(ε)
≤ u(y) ≤ f(x) + ε+ (M −m)

Φ(y)

η(ε)
, y ∈ G.

Using the relation lim
y∈G
y→x

Φ(y) = 0 we obtain

|f(x)− u(y)| ≤ ε+ (M −m)
Φ(y)

η(ε)
≤ 2ε

for all y ∈ G with |y − x| ≤ δ∗(ε). This implies

lim
y∈G
y→x

u(y) = f(x).

Therefore, the function u solves Dirichlet’s problem (17) for the boundary
values f . q.e.d.
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Figure 1.6 Poincaré’s condition of exterior support balls

Theorem 3.10. (Poincaré’s condition)
A boundary point x ∈ ∂G is regular, if we have a ball Br(a) with the center
a ∈ R

n and the radius r ∈ (0,+∞) satisfying G ∩ Br(a) = {x}. Especially,
bounded domains with a regular C2-boundary are Dirichlet domains.

Proof: For n = 2 we consider in G the harmonic function

Φ(y) := log

(
|y − a|
r

)
, y ∈ G,

and for n ≥ 3 we consider the harmonic function

Φ(y) := r2−n − |y − a|2−n, y ∈ G.

Then we immediately obtain the statements above. q.e.d.

Theorem 3.11. Let BR := {x ∈ R
n : |x| < R} denote the ball about the

origin of radius R > 0 and consider the pointed ball ḂR := BR \ {0}. The
function u = u(x) ∈ C2(ḂR) ∩ C0(BR) is assumed to be harmonic in ḂR.
Then the function u is harmonic in BR.

Proof: We restrict our considerations to the case n ≥ 3 and set

v(x) :=
1

Rωn

∫
|y|=R

R2 − |x|2
|y − x|n u(y) dσ(y), x ∈ BR.

This function v is harmonic in BR and continuous in BR with the boundary
values
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v(x) = u(x), x ∈ ∂BR.

Since the functions u and v are continuous in BR, we have a constant M > 0
such that

sup
x∈BR

|u(x)− v(x)| ≤M

holds true. Given the quantity ε > 0, we now can choose a sufficiently small
number δ = δ(ε) ∈ (0, R) such that

M ≤ ε
(
|x|2−n −R2−n

)
for all x ∈ R

n with |x| = δ(ε).

We consider the spherical shell Kε := {x ∈ R
n : δ(ε) ≤ |x| ≤ R} and see

|u(x)− v(x)| ≤ ε
(
|x|2−n −R2−n

)
for all x ∈ ∂Kε.

The maximum principle for harmonic functions now yields

|u(x)− v(x)| ≤ ε
(
|x|2−n −R2−n

)
for all x ∈ Kε.

Since the number ε > 0 has been chosen arbitrarily and the behavior δ(ε) ↓ 0
for ε ↓ 0 can be achieved, we obtain

u(x) ≡ v(x), x ∈ ḂR.

Now the functions u and v are continuous in BR, and we infer

u(x) ≡ v(x), x ∈ BR.

Therefore, the function u is harmonic in BR. q.e.d.

Remarks:

1. When we consider the Riemannian theorem on removable singularities
for holomorphic functions, it suffices to assume the boundedness of the
functions in the neighborhood of a singular point in order to continue
them holomorphically into this point.

2. There are bounded domains, where the Dirichlet problem cannot be solved
for arbitrary boundary values. For example, we consider the domain

G := ḂR, ∂G = ∂BR ∪ {0}.

On account of Theorem 3.11, there does not exist a harmonic function for
the boundary values f(x) = 1, |x| = R and f(0) = 0.



342 Chapter 5 Potential Theory and Spherical Harmonics

4 Theory of Spherical Harmonics in 2 Variables:
Fourier Series

The theory of spherical harmonics has been founded by Laplace and Legendre
and is applied in quantum mechanics to the investigation of the spectrum for
the hydrogen atom. We owe the theory in arbitrary spatial dimensions n ≥ 2 to
G.Herglotz. In the next two paragraphs we utilize Banach and Hilbert spaces
introduced in Chapter 2, Section 6. At first, we consider the case n = 2.

On the unit circle line S1 := {x ∈ R
2 : |x| = 1} we consider the functions

u = u(x) ∈ C0(S1,R). They are identified with the 2π-periodic continuous
functions

C0
2π(R,R) :=

{
v : R → R ∈ C0(R,R) :

v(ϕ+ 2πk) = v(ϕ)

for all ϕ ∈ R, k ∈ Z

}

via û(ϕ) := u(eiϕ), 0 ≤ ϕ ≤ 2π. We endow the space C0(S1,R) with the norm

‖u‖0 := max
x∈S1

|u(x)|, u ∈ C0(S1,R) (1)

and get a Banach space with the topology of uniform convergence. By the
inner product

(u, v) :=

2π∫
0

u(eiϕ)v(eiϕ) dϕ, u, v ∈ C0(S1,R) (2)

the set C0(S1,R) becomes a pre-Hilbert-space. We complete this space with
respect to the L2-norm induced by the inner product (2), namely

‖u‖ :=
√

(u, u), u ∈ C0(S1,R), (3)

and obtain the Lebesgue space L2(S1,R) of the square integrable, measurable
functions on S1. Furthermore, we note the inequality

‖u‖ ≤
√
2π‖u‖0 for all u ∈ C0(S1,R). (4)

If a sequence converges with respect to the Banach-space-norm ‖ · ‖0, this is
as well the case with respect to the Hilbert-space-norm ‖ · ‖. However, the
opposite direction is not true, since the Hilbert space L2(S1,R) also contains
discontinuous functions.

Theorem 4.1. (Fourier series)
The system of functions

1√
2π
,

1√
π
cos kϕ,

1√
π
sin kϕ, ϕ ∈ [0, 2π], k = 1, 2, . . .

represents a complete orthonormal system - briefly c.o.n.s. - in the pre-Hilbert-
space H := C0(S1, R) endowed with the inner product from (2).
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Proof:

1. We easily verify that the system of functions S given is orthonormal,
which means ‖u‖ = 1 for all u ∈ S and (u, v) = 0 for all u, v ∈ S with
u �= v. It remains for us to comprehend that this orthonormal system of
functions is complete in the pre-Hilbert-space H. According to Theorem
6.19 from Chapter 2, Section 6 we have to show that the Fourier series
for each element u ∈ H approximates this element with respect to the
Hilbert-space-norm ‖ · ‖ from (3).

2. Let the function
u = u(x) ∈ H = C0(S1,R)

be given arbitrarily. We then continue u harmonically onto the disc

B = {x ∈ R
2 : |x| < 1}

via

u(z) =
1

2π

2π∫
0

1− r2
|eiϕ − z|2u(e

iϕ) dϕ, |z| < 1; (5)

here we have set z = reiϑ. We now expand Poisson’s kernel as follows:

1− r2
|eiϕ − z|2 =

1− r2
|eiϕ − reiϑ|2

=
1− r2

|1− rei(ϑ−ϕ)|2

=
1− r2

(1− rei(ϑ−ϕ))(1− rei(ϕ−ϑ))

= −1 +
1

1− rei(ϕ−ϑ)
+

1

1− re−i(ϕ−ϑ)

= −1 +

∞∑
k=0

rkeik(ϕ−ϑ) +

∞∑
k=0

rke−ik(ϕ−ϑ)

= 1 + 2

∞∑
k=1

rk cos k(ϕ− ϑ).

(6)

Here the series converges locally uniformly for 0 ≤ r < 1 and ϕ, ϑ ∈ R.
Now we have

cos k(ϕ− ϑ) = cos kϕ cos kϑ+ sin kϕ sin kϑ,

and we obtain the following identity with g(ϕ) := u(eiϕ), ϕ ∈ [0, 2π):
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u(reiϑ) =
1

2π

2π∫
0

{
1 + 2

∞∑
k=1

rk
(
cos kϕ cos kϑ+ sin kϕ sin kϑ

)}
g(ϕ) dϕ

=
1

2π

2π∫
0

g(ϕ) dϕ+

∞∑
k=1

{(
1

π

2π∫
0

g(ϕ) cos kϕ dϕ

)
rk cos kϑ

+

(
1

π

2π∫
0

g(ϕ) sin kϕ dϕ

)
rk sin kϑ

}
.

Finally, we set

ak :=
1

π

2π∫
0

g(ϕ) cos kϕ dϕ, k = 0, 1, 2, . . . (7)

and

bk :=
1

π

2π∫
0

g(ϕ) sin kϕ dϕ, k = 1, 2, . . . . (8)

With the representation

u(reiϑ) =
1

2
a0+

∞∑
k=1

(
ak cos kϑ+bk sin kϑ

)
rk, 0 ≤ r < 1, 0 ≤ ϑ < 2π (9)

we obtain the Fourier expansion of a harmonic function within the unit
disc.

3. Since the function u(z) is continuous in B, we find a radius r ∈ (0, 1) to
each given ε > 0, such that

|u(reiϑ)− g(ϑ)| ≤ ε for all ϑ ∈ [0, 2π). (10)

Furthermore, we can choose an integer N = N(ε) ∈ N so large that

∣∣∣∣a02 +

N∑
k=1

rk
(
ak cos kϑ+ bk sin kϑ

)
− u(reiϑ)

∣∣∣∣ ≤ ε for all ϑ ∈ [0, 2π)

(11)
is satisfied. For the quantity ε > 0 given, we therefore find real coefficients
A0, . . . , AN and B1, . . . , BN , such that the trigonometric polynomial

Fε(ϑ) := A0 +

N∑
k=1

(
Ak sin kϑ+Bk cos kϑ

)
, 0 ≤ ϑ < 2π

fulfills the following inequality
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|Fε(ϑ)− g(ϑ)| ≤ 2ε for all ϑ ∈ [0, 2π). (12)

From the relation (4) we infer

‖Fε − g‖ ≤ 2
√
2π ε. (13)

On account of the minimal property for the Fourier coefficients due to
Chapter 2, Section 6, Proposition 6.17, the Fourier series belonging to the
system of functions above approximates the given function with respect
to the Hilbert-space-norm. From Theorem 6.19 in Chapter 2, Section 6
we infer that this system of functions represents a complete orthonormal
system in H.

q.e.d.

Remark: We leave the following question unanswered: Which functions g =
g(ϑ) satisfy the identity (9) pointwise even for the radius r = 1, which concerns
the validity of the pointwise equation

u(eiϑ) =
1

2
a0 +

∞∑
k=1

(
ak cos kϑ+ bk sin kϑ

)
, 0 ≤ ϑ < 2π.

We have shown only the convergence in the square mean. For continuous
functions the identity above is not satisfied, in general. The investigations
on the convergence of Fourier series gave an important motivation for the
development of the analysis.

We now present the relationship of trigonometric functions to the Laplace
operator. At first, we remind the reader of the decomposition for the Laplacian
in polar coordinates:

Δ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
. (14)

For an arbitrary C2-function f = f(r) we therefore have the identity

Δ

(
f(r)

cos kϕ
sin kϕ

)
=

(
f ′′(r) +

1

r
f ′(r)− k2

r2
f(r)

)
cos kϕ
sin kϕ

=
(
Lkf(r)

)
cos kϕ
sin kϕ

.

Here we abbreviate

Lkf(r) := f
′′(r) +

1

r
f ′(r)− k2

r2
f(r), r > 0.

We note that

Lk(r
k) = k(k − 1)rk−2 + krk−2 − k2rk−2 = 0, k = 0, 1, 2, . . .

and obtain

Δ(rk cos kϕ) = 0 = Δ(rk sin kϕ), k = 0, 1, 2, . . . (15)
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Proposition 4.2. Let the function u = u(x1, x2) ∈ C2(BR) be given on the
disc BR := {(x1, x2) ∈ R

2 : x21 + x
2
2 < R

2}. By the symbols

ak(r) =
1

π

2π∫
0

u(reiϕ) cos kϕ dϕ, bk(r) =
1

π

2π∫
0

u(reiϕ) sin kϕ dϕ (16)

we denote the Fourier coefficients of the function u and by

ãk(r) =
1

π

2π∫
0

Δu(reiϕ) cos kϕ dϕ, b̃k(r) =
1

π

2π∫
0

Δu(reiϕ) sin kϕ dϕ (17)

we mean the Fourier coefficients of the function Δu for 0 < r < R. Now we
have the equation

ãk(r) = Lkak(r), b̃k(r) = Lkbk(r), 0 < r < R. (18)

Remark: The Fourier coefficients of Δu are consequently obtained by formal
differentiation of the Fourier series

u(reiϑ) =
1

2
a0(r) +

∞∑
k=1

(
ak(r) cos kϑ+ bk(r) sin kϑ

)
.

Proof of Proposition 4.2: We evaluate as follows:

ãk(r) =
1

π

2π∫
0

Δu(reiϕ) cos kϕ dϕ,

=
1

π

2π∫
0

{(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2

)
u(reiϕ)

}
cos kϕ dϕ

=

(
∂2

∂r2
+

1

r

∂

∂r

){
1

π

2π∫
0

u(reiϕ) cos kϕ dϕ

}
− k2

πr2

2π∫
0

u(reiϕ) cos kϕ dϕ

= Lkak(r), 0 < r < R, k = 0, 1, 2, . . .

Similarly we show the relation (18) for the functions bk(r). q.e.d.

Theorem 4.3. We choose k ∈ R and define Ṙ
2 := R

2 \{0}. Furthermore, the
symbol Hk = Hk(ξ) : S

1 → R denotes a function defined on the unit circle S1

with the properties

|x|kHk

(
x

|x|

)
∈ C2(Ṙ2) and Δ

{
|x|kHk

(
x

|x|

)}
= 0, x ∈ Ṙ

2.



5 Theory of Spherical Harmonics in n Variables 347

Then we infer k ∈ Z, and we have the identity

Hk(e
iϑ) = Ak cos kϑ+Bk sin kϑ

with the real constants Ak, Bk.

Proof: At first, we calculate

0 = Δ

{
|x|kHk

(
x

|x|

)}

=

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2

)[
rkHk(e

iϕ)
]

=
[
k(k − 1)rk−2 + krk−2

]
Hk(e

iϕ) + rk−2 ∂
2

∂ϕ2
Hk(e

iϕ).

Therefore, the functions Hk(e
iϕ) satisfy the linear ordinary differential equa-

tion
d2

dϕ2
Hk(e

iϕ) + k2Hk(e
iϕ) = 0, 0 ≤ ϕ ≤ 2π.

This means that

Hk(e
iϕ) = Ak cos kϕ+Bk sin kϕ, Ak, Bk ∈ R

holds true if k �= 0 is correct. Since the function Hk is periodic in [0, 2π], we
infer k ∈ Z. In the case k = 0 we obtain the solution

H0(e
iϕ) = A0 +B0ϕ, A0, B0 ∈ R.

Therefore, B0 = 0 holds true, and the theorem is proved. q.e.d.

5 Theory of Spherical Harmonics in n Variables

Theorem 4.3 from Section 4 suggests the following definition of the spherical
harmonics in R

n:

Definition 5.1. Let Hk = Hk(x1, . . . , xn) ∈ C2(Ṙn) denote a harmonic func-
tion on the set Ṙn := R

n\{0} which is homogeneous of degree k, more precisely

Hk(tx1, . . . , txn) = t
kH(x1, . . . , xn) for all x ∈ Ṙ

n, t ∈ (0,+∞).

Then we name
Hk = Hk(ξ1, . . . , ξn) : S

n−1 → R

an n-dimensional spherical harmonic (or spherically harmonic function) of
degree k; here the symbol

Sn−1 := {ξ = (ξ1, . . . , ξn) ∈ R
n : ξ21 + . . .+ ξ2n = 1}

denotes the (n− 1)-dimensional unit sphere in the Euclidean space R
n.
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In this paragraph we answer the following questions for n ≥ 2:

1. Are there spherical harmonics in all spatial dimensions, and for which
degrees of homogeneity k do they exist?

2. Is the system of spherically harmonic functions complete?
3. In which relationship do the spherical harmonics appear with respect to

the Laplace operator?

In Chapter 1, Section 8 we have represented the Laplace operator in R
n with

respect to spherical coordinates. We utilize r ∈ (0,+∞) and ξ = (ξ1, . . . , ξn) ∈
Sn−1, and the function u = u(rξ) satisfies the identity

Δu(rξ) =
∂2

∂r2
u(rξ) +

n− 1

r

∂

∂r
u(rξ) +

1

r2
Λu(rξ); (1)

here the symbol Λ denotes the invariant Laplace-Beltrami operator on the
sphere Sn−1. We now endow the space of functions C0(Sn−1,R) with the
inner product

(u, v) :=

∫
Sn−1

u(ξ)v(ξ) dσ(ξ), u, v ∈ C0(Sn−1,R) (2)

and we obtain a pre-Hilbert-space H = C0(Sn−1,R). Setting

‖u‖ :=
√
(u, u)

the set H becomes a normed space.

Theorem 5.2. The function

Hk = Hk(ξ1, . . . , ξn) : S
n−1 → R

is an n-dimensional spherical harmonic of the degree k ∈ R if and only if the
following differential equation

ΛHk(ξ) + k
{
k + (n− 2)

}
Hk(ξ) = 0, ξ ∈ Sn−1 (3)

is satisfied. If Hk and Hl are two spherical harmonics with different degrees
k �= l satisfying k + l �= 2− n, we then have the orthogonality relation

(Hk, Hl) = 0. (4)

Proof:

1. On account of (1) we have the identity

0 = ΔHk(rξ) = Δ
{
rkHk(ξ)

}

=
{
k(k − 1)rk−2 + k(n− 1)rk−2

}
Hk(ξ) + r

k−2ΛHk(ξ)
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and equivalently

ΛHk(ξ) +
{
k2 + (n− 2)k

}
Hk(ξ) = 0, ξ ∈ Sn−1.

2. The symmetry of the operator Λ from Theorem 8.7 in Chapter 1, Section 8
yields

{
k2 + (n− 2)k

} ∫
Sn−1

Hk(ξ)Hl(ξ) dσ(ξ)

= −
∫

Sn−1

(
ΛHk(ξ)

)
Hl(ξ) dσ(ξ)

= −
∫

Sn−1

Hk(ξ)
(
ΛHl(ξ)

)
dσ(ξ)

=
{
l2 + (n− 2)l

} ∫
Sn−1

Hk(ξ)Hl(ξ) dσ(ξ).

This implies that

0 =
{
k2 − l2 + (n− 2)(k − l)

}
(Hk, Hl) = {k − l}{k + l + n− 2}(Hk, Hl)

and therefore (Hk, Hl) = 0 if k �= l and k + l �= 2− n is fulfilled.
q.e.d.

Remarks: The spherical harmonics of the degree k are consequently eigenfunc-
tions of the Laplace-Beltrami operator Λ on the sphere Sn−1 to the eigenvalue
−k{k+ (n− 2)}. The orthogonality condition (4) is especially satisfied in the
case k ≥ 0, l ≥ 0 and k �= l.

At this moment we do not yet know for which degrees k ∈ R (nonvanish-
ing) spherical harmonics of the degree k exist. This will be investigated now:
Given the continuous boundary function, we shall construct a harmonic func-
tion with the aid of Poisson’s integral and shall decompose this function into
homogeneous harmonic functions of the degrees k = 0, 1, 2, . . .. Here we have
to expand Poisson’s kernel suitably with the aid of power series.

We take ν > 0 as fixed and choose h = cosϑ ∈ [−1,+1] with ϑ ∈ [0, π]; then
we consider the following expression in t ∈ (−1,+1):
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(1− 2ht+ t2)−ν = (1− 2(cosϑ)t+ t2)−ν

= (1− eiϑt)−ν(1− e−iϑt)−ν

=

{ ∞∑
m=0

(
−ν
m

)
(−eiϑt)m

}{ ∞∑
m=0

(
−ν
m

)
(−e−iϑt)m

}

=

{ ∞∑
m=0

[
ν
m

]
eimϑtm

}{ ∞∑
m=0

[
ν
m

]
e−imϑtm

}
.

Here we set[
ν
m

]
:=

(
−ν
m

)
(−1)m =

−ν(−ν − 1)(−ν − 2) . . . (−ν −m+ 1)

m!
(−1)m

=
ν(ν + 1)(ν + 2) . . . (ν +m− 1)

m!
, m ∈ N,

[
ν
0

]
:= 1.

Defining the real coefficients

c(ν)m (h) :=

m∑
k=0

[
ν
k

][
ν

m− k

]
eikϑe−i(m−k)ϑ

=

m∑
k=0

[
ν
k

][
ν

m− k

]
e−i(m−2k)ϑ

=
1

2

m∑
k=0

[
ν
k

][
ν

m− k

]{
ei(m−2k)ϑ + e−i(m−2k)ϑ

}

=

m∑
k=0

[
ν
k

][
ν

m− k

]
cos(m− 2k)ϑ,

we obtain the following identity for t ∈ (−1,+1):

(1− 2ht+ t2)−ν =

∞∑
m=0

c(ν)m (h)tm, t ∈ (−1,+1). (5)

On account of the Binomial Theorem, we have the following expansion for
p ∈ Z:
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cos pϑ =
1

2

(
eipϑ + e−ipϑ

)
=

1

2

{
(eiϑ)p + (e−iϑ)p

}

=
1

2

{
(cosϑ+ i sinϑ)p + (cosϑ− i sinϑ)p

}

= (cosϑ)p −
(
p
2

)
(cosϑ)p−2(sinϑ)2 +

(
p
4

)
(cosϑ)p−4(sinϑ)4 − . . .

Due to the formula sin2 ϑ = 1 − cos2 ϑ, Gegenbaur’s polynomials c
(ν)
m (h) are

polynomials in h = cosϑ of the degree m. Furthermore, we utilize the relation

∞∑
m=0

c(ν)m (−h)(−t)m = (1− 2ht+ t2)−ν =
∞∑

m=0

c(ν)m (h)tm,

and comparison of the coefficients yields

c(ν)m (−h) = (−1)mc(ν)m (h), m = 0, 1, 2, . . . (6)

Therefore, Gegenbaur’s polynomials can be represented in the form

c(ν)m (h) = γ(ν)m hm + γ
(ν)
m−2h

m−2 + . . . (7)

with the real constants γ
(ν)
m , γ

(ν)
m−2, . . . . Furthermore, we have the estimate

∣∣∣c(ν)m (h)
∣∣∣ ≤

m∑
k=0

[
ν
k

][
ν

m− k

]
= c(ν)m (1) for all h ∈ [−1,+1]. (8)

With ν = 1
2 we obtain the Legendre polynomials by c

( 1
2 )

m (h). We now choose
n ∈ N \ {1}. With the aid of (5) we expand as follows for t ∈ (−1,+1) and
h ∈ [−1,+1]:

1− t2
(1− 2ht+ t2)

n
2
=

∞∑
m=0

c
(n
2 )

m (h)(1− t2)tm =:

∞∑
m=0

Pm(h;n)tm. (9)

For the case n = 2 we have derived the following expansion in the proof of
Theorem 4.1 from Section 4 (compare the formula (6)):

1− t2
1− 2ht+ t2

= 1 + 2

∞∑
m=1

(cosmϑ)tm, t ∈ (−1,+1). (10)

Therefore, we have P0(h; 2) = 1 and Pm(h; 2) = 2 cosmϑ, m = 1, 2, . . .. For
the case n ≥ 3 we calculate
(
1 +

2t

n− 2

∂

∂t

)
1

(1− 2ht+ t2)
n
2 −1

=
1− 2ht+ t2 + 2−n

2
2t

n−2 (−2h+ 2t)

(1− 2ht+ t2)
n
2

=
1− t2

(1− 2ht+ t2)
n
2
.
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Therefore, we have the identity

1− t2
(1− 2ht+ t2)

n
2
=

(
1+

2t

n− 2

∂

∂t

)
1

(1− 2ht+ t2)
n
2 −1

, t ∈ (−1,+1). (11)

Together with (9) we infer

∞∑
m=0

Pm(h;n)tm =
1− t2

(1− 2ht+ t2)
n
2
=

(
1 +

2t

n− 2

∂

∂t

) ∞∑
m=0

c
(n
2 −1)

m (h)tm,

and comparision of the coefficients yields the formula

Pm(h;n) = c
(n
2 −1)

m (h)
( 2m

n− 2
+ 1
)
, m = 0, 1, 2, . . . (12)

The relations (8) and (12) imply the estimate

|Pm(h;n)| ≤ Pm(1;n), h ∈ [−1,+1], m ∈ {0, 1, 2, . . .}. (13)

This inequality holds true for n = 2, 3, . . .

We now can expand the Poisson kernel: We choose η ∈ Sn−1 as fixed and
x = rξ with r ∈ [0, 1) and ξ ∈ Sn−1 to be variable. We utilize the parameter
of homogeneity τ ∈ R with |τr| < 1, and obtain the following relation with
the aid of the expansion (9):

|η|2 − |τx|2
|η − τx|n =

1− (τr)2{
|η − (τr)ξ|2

}n
2

=
1− (τr)2{

1− 2(τr)(ξ, η) + (τr)2
}n

2

=

∞∑
m=0

{
Pm

(
(ξ, η);n

)
rm
}
τm.

(14)

For each x ∈ R
n with |x| < 1 and each τ ∈ R with |τx| < 1 we have the

identity

0 = Δx

{
|η|2 − |τx|2
|η − τx|n

}
=

∞∑
m=0

Δx

{
Pm

(
(ξ, η);n

)
rm
}
τm.

Taking η ∈ Sn−1 fixed, the comparison of coefficients yields

Δx

{
Pm

(
(ξ, η);n

)
rm
}
= 0, |x| < 1, m = 0, 1, 2, . . . . (15)

On account of (7) and (12) we have the representation
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Pm

(
(ξ, η);n

)
rm =

(
π(m)
m (ξ, η)m + π

(m)
m−2(ξ, η)

m−2 + . . .
)
rm

= π(m)
m (x, η)m + π

(m)
m−2(x, η)

m−2|x|2 + . . .

with the real constants π
(m)
m , π

(m)
m−2, . . .. Therefore, Pm((ξ, η);n)rm is a ho-

mogeneous polynomial of the degree m in the variables x1, . . . , xn. On ac-
count of (15), we obtain an n-dimensional spherical harmonic of the degree
m ∈ {0, 1, 2, . . .} with Pm((ξ, η);n) for each fixed η ∈ Sn−1. Given the function
f = f(η) : Sn−1 → R ∈ C0(Sn−1,R), then the integral

f̃(ξ) :=
1

ωn

∫
|η|=1

Pm

(
(ξ, η);n

)
f(η) dσ(η), ξ ∈ Sn−1

represents an n-dimensional spherical harmonic of the degree m. Here f̃(ξ)rm

means a homogeneous polynomial in the variables x1, . . . , xn.

Theorem 5.3. Let the function f = f(x) : Sn−1 → R ∈ C0(Sn−1,R) be
prescribed, and the function u = u(x) : B := {x ∈ R

n : |x| < 1} → R of the
class C2(B) ∩ C0(B) solves the Dirichlet problem

Δu(x) = 0 for all x ∈ B,

u(x) = f(x) for all x ∈ ∂B = Sn−1.

For each R ∈ (0, 1) we then have the representation

u(x) =

∞∑
m=0

{
1

ωn

∫
|η|=1

Pm

(
ξ1η1 + . . .+ ξnηn;n

)
f(η) dσ(η)

}
rm (16)

with x = rξ, ξ ∈ Sn−1 and 0 ≤ r ≤ R. The series on the right-hand side
converges uniformly.

Proof: The unique solution of the Dirichlet problem above is given by Poisson’s
integral. With the aid of the expansion (14) for τ = 1 we infer

u(x) =
1

ωn

∫
|η|=1

|η|2 − |x|2
|η − x|n f(η) dσ(η)

=
1

ωn

∫
|η|=1

{ ∞∑
m=0

Pm

(
(ξ, η);n

)
rm
}
f(η) dσ(η), x ∈ B.

For all ξ, η ∈ Sn−1 and 0 ≤ r ≤ R < 1 we obtain the inequality
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∣∣∣∣
∞∑

m=0

Pm

(
(ξ, η);n

)
rm
∣∣∣∣ ≤

∞∑
m=0

∣∣∣Pm

(
(ξ, η);n

)∣∣∣rm ≤
∞∑

m=0

Pm(1;n)Rm

=
1−R2

(1− 2R+R2)
n
2

=
1 +R

(1−R)n−1

respecting (9) and (13). Due to the Weierstraß majorant test, the following
series

∞∑
m=0

Pm

(
(ξ, η);n

)
rm

converges uniformly on Sn−1 × Sn−1 × [0, R] for all R ∈ (0, 1). This implies

u(x) =

∞∑
m=0

{
1

ωn

∫
|η|=1

Pm

(
ξ1η1 + . . .+ ξnηn;n

)
f(η) dσ(η)

}
rm, |x| ≤ R,

where the given series converges uniformly for all R ∈ (0, 1).
q.e.d.

We choose k = 0, 1, 2, . . . and denote by

Mk :=
{
f : Sn−1 → R : f is n-dimensional spherical harmonic of degree k

}

the linear space of the n-dimensional spherical harmonics of the order k. We
already know dimMk ≥ 1 for k = 0, 1, 2, . . . and intend to show dimMk <
+∞ in the sequel. For the function f = f(η) ∈ H = C0(Sn−1,R) we define
the projector on Mk by

P kf(ξ) = f̂(ξ) :=
1

ωn

∫
|η|=1

Pk

(
ξ1η1 + . . .+ ξnηn;n

)
f(η) dσ(η).

Theorem 5.4. For each integer k = 0, 1, 2, . . . the linear operator P k : H →
H has the following properties:

a) (P kf, g) = (f,P kg) for all f, g ∈ H;
b) P k(H) = Mk;
c) P k ◦ P k = P k.

Proof:

a) Let the functions f, g ∈ H be chosen arbitrarily. Then we have
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(P kf, g) =

∫
|ξ|=1

P kf(ξ)g(ξ) dσ(ξ)

=

∫
|ξ|=1

∫
|η|=1

Pk(ξ1η1 + . . .+ ξnηn)f(η)g(ξ) dσ(η) dσ(ξ)

= (f,P kg).

b) and c) In our considerations preceding Theorem 5.3 we already have seen
that

f̂(ξ) = P kf(ξ) ∈ Mk for all f ∈ H.
Therefore, we have P k(H) ⊂ Mk. Choosing f ∈ Mk arbitrarily we infer
Δx(f(ξ)r

k) = 0 in Ṙ
n with x = rξ. Now our Theorem 5.3 yields the

representation

f(ξ)rk =
∞∑

m=0

(
Pmf(ξ)

)
rm, ξ ∈ Sn−1, r ∈ [0, 1).

Comparison of the coefficients implies

f(ξ) = P kf(ξ), ξ ∈ Sn−1.

Consequently, we obtain Mk ⊂ P k(H) and P k ◦ P k = P k. q.e.d.

We now show that dimMk ∈ N for k = 0, 1, 2, . . . is correct. For a fixed index
k ∈ {0, 1, 2, . . .} we choose an orthonormal system {ϕα}α=1,...,N of dimension
N ∈ N in the linear subspace Mk ⊂ H. Then we have

(ϕα, ϕβ) = δαβ for all α, β ∈ {1, . . . , N}

and
P kϕα(ξ) = ϕα(ξ), α = 1, . . . , N.

For each ξ ∈ Sn−1 we infer
∫

|η|=1

1

ω n
Pk

(
(ξ, η);n

)
ϕα(η) dσ(η) = ϕα(ξ), α = 1, . . . , N.

Bessel’s inequality now yields

N∑
α=1

ϕ2
α(ξ) =

N∑
α=1

{ ∫
|η|=1

1

ωn
Pk

(
(ξ, η);n

)
ϕα(η) dσ(η)

}2

≤
∫

|η|=1

{
1

ωn
Pk

(
(ξ, η);n

)}2

dσ(η) for all ξ ∈ Sn−1.
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Therefore, we have

N =

∫
|ξ|=1

N∑
α=1

ϕ2
α(ξ) dσ(ξ)

≤
∫

|ξ|=1

∫
|η|=1

{
1

ωn
Pk

(
(ξ, η);n

)}2

dσ(η) dσ(ξ).

Consequently, we get the following estimate for the dimension of Mk, namely

dimMk ≤
∫

|ξ|=1

∫
|η|=1

{
1

ωn
Pk

(
(ξ, η);n

)}2

dσ(η) dσ(ξ) < +∞, k = 0, 1, 2, . . .

(17)
We now set N = N(k, n) := dimMk and choose N orthonormal functions
Hk1(ξ), . . . , HkN (ξ) in Mk spanning the vector space Mk. Each element f ∈
Mk can be represented in the form

f(ξ) = c1Hk1(ξ) + . . .+ cNHkN (ξ), ξ ∈ Sn−1,

with the real coefficients cj = cj [f ] for j = 1, . . . , N . More generally, taking
f = f(ξ) ∈ H we have the identity

1

ωn

∫
|η|=1

Pk

(
(ξ, η);n

)
f(η) dσ(η) = c1[f ]Hk1(ξ) + . . .+ cN [f ]HkN (ξ)

with the real constants c1[f ], . . . , cN [f ]. This implies

cl[f ] =

∫
|ξ|=1

Hkl(ξ)

{
1

ωn

∫
|η|=1

Pk

(
(ξ, η);n

)
f(η) dσ(η)

}
dσ(ξ)

=

∫
|η|=1

f(η)

{
1

ωn

∫
|ξ|=1

Pk

(
(ξ, η);n

)
Hkl(ξ) dσ(ξ)

}
dσ(η)

=

∫
|η|=1

f(η)Hkl(η) dσ(η).

Therefore, we obtain

1

ωn

∫
|η|=1

Pk

(
(ξ, η);n

)
f(η) dσ(η) =

∫
|η|=1

{N(k,n)∑
l=1

Hkl(ξ)Hkl(η)

}
f(η) dσ(η)

and consequently
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∫
|η|=1

{
1

ωn
Pk

(
(ξ, η);n

)
−

N(k,n)∑
l=1

Hkl(ξ)Hkl(η)

}
f(η) dσ(η) = 0

for all ξ ∈ Sn−1 and each f = f(η) ∈ H. Since the functions Pk((ξ, η);n)
and Hkl(ξ) are continuous, we get the addition theorem for the n-dimensional
spherical harmonics

N(k,n)∑
l=1

Hkl(ξ)Hkl(η) =
1

ωn
Pk

(
ξ1η1 + . . .+ ξnηn;n

)
, ξ, η ∈ Sn−1 (18)

for k = 0, 1, 2, . . . and n = 2, 3, . . .. We insert ξ = η into (18) and integrate
over the unit sphere Sn−1. Then we obtain

N(k, n) =

∫
|ξ|=1

N(k,n)∑
l=1

(
Hkl(ξ)

)2
dσ(ξ) = Pk(1;n).

On account of (9), we finally deduce the expansion

∞∑
k=0

N(k, n)tk =

∞∑
k=0

Pk(1;n)t
k =

1− t2
(1− t)n =

1 + t

(1− t)n−1
, |t| < 1.

We summarize our results as follows:

Theorem 5.5. I. The cardinality N(k, n) of all linear independent spherical
harmonics in R

n of the order k is finite. The number N(k, n) = dimMk

is determined by the equation

1 + t

(1− t)n−1
=

∞∑
k=0

N(k, n)tk, |t| < 1. (19)

II. Let Hk1(ξ), . . . , HkN (ξ) represent the N = N(k, n) orthonormal spherical
harmonics of the order k, which means∫

|ξ|=1

Hkl(ξ)Hkl′(ξ) dσ(ξ) = δll′ for l, l′ ∈ {1, . . . , N} (20)

is satisfied. Then we have the representation

N(k,n)∑
l=1

Hkl(ξ)Hkl(η) =
1

ωn
Pk

(
ξ1η1 + . . .+ ξnηn;n

)
(21)

for all ξ, η ∈ Sn−1. Here the functions Pk(h;n) are defined by the equation

1− t2
(1− 2ht+ t2)

n
2
=

∞∑
k=0

Pk(h;n)t
k, −1 < t < +1, −1 ≤ h ≤ +1.

(22)
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III. Each solution u = u(x) ∈ C2(B) ∩ C0(B) of Dirichlet’s problem

Δu(x) = 0 in B,

u(x) = f(x) on ∂B = Sn−1

possesses the representation as uniformly convergent series

u(x) =

∞∑
k=0

{
N(k,n)∑
l=1

( ∫
|η|=1

f(η)Hkl(η) dσ(η)

)
Hkl(ξ)

}
rk (23)

with x = rξ, ξ ∈ Sn−1 and 0 ≤ r ≤ R; here R ∈ (0, 1) can be chosen
arbitrarily.

Proof: Statement III immediately follows from (18) together with Theorem
5.3. q.e.d.

Analogously to Theorem 4.1 from Section 4, we obtain the following result for
arbitrary dimensions n ≥ 2:

Theorem 5.6. (Completeness of spherical harmonics)
The n-dimensional spherical harmonics {Hkl(ξ)}k=0,1,2,...; l=1,...,N(k,n) consi-
tute a complete orthonormal system of functions in H. More precisely,

(Hkl, Hk′l′) = δkk′δll′ , k, k′ = 0, 1, 2, . . . , l, l′ = 1, . . . , N(k, n)

holds true, and for each element f ∈ H we have the relation

lim
M→∞

∥∥∥∥f(ξ)−
M∑
k=0

N(k,n)∑
l=1

fklHkl(ξ)

∥∥∥∥ = 0

or equivalently

‖f‖2 =

∞∑
k=0

N(k,n)∑
l=1

f2kl.

Here we have used the following abbreviations

fkl := (f,Hkl), k = 0, 1, 2, . . . , l = 1, . . . , N(k, n)

for the Fourier coefficients.

Proof: We have only to show the completeness for the system of the n-
dimensional spherical harmonics. To each element f ∈ H we have a function
u = u(x) with the following properties:

1. the function u is harmonic for all |x| < 1;
2. the function u is continuous for |x| ≤ 1 and satisfies the boundary condi-

tion
u(x) = f(x) for all |x| = 1.



5 Theory of Spherical Harmonics in n Variables 359

According to Theorem 5.5, Statement III we see: For each ε > 0 there exists
a radius r ∈ (0, 1) and an index M =M(ε) ∈ N, such that

∣∣∣∣f(ξ)−
M(ε)∑
k=0

rk
N(k,n)∑
l=1

fklHkl(ξ)

∣∣∣∣ ≤ ε for all ξ ∈ Sn−1.

This implies ∥∥∥∥f(ξ)−
M(ε)∑
k=0

rk
N(k,n)∑
l=1

fklHkl(ξ)

∥∥∥∥ ≤ √
ωn ε,

and the minimal property of the Fourier coefficients yields

∥∥∥∥f(ξ)−
M(ε)∑
k=0

N(k,n)∑
l=1

fklHkl(ξ)

∥∥∥∥ ≤ √
ωn ε.

From this relation we immediately infer the statement. q.e.d.
Corollaries from Theorem 5.6:

1. With f(ξ) and g(ξ) we consider two real, continuous functions on Sn−1,
and then Parseval’s equation

∫
|ξ|=1

f(ξ)g(ξ) dσ(ξ) =
∞∑
k=0

N(k,n)∑
l=1

fklgkl

holds true with

fkl =

∫
|ξ|=1

f(ξ)Hkl(ξ) dσ(ξ), gkl =

∫
|ξ|=1

g(ξ)Hkl(ξ) dσ(ξ).

2. Nontrivial spherical harmonicsHj of the order j �= 0,±1,±2, . . . do not ex-
ist. Due to Theorem 5.2 such a function would satisfy the orthogonality re-
lations (Hj , Hkl) = 0. The system of functions {Hkl}k=0,1,2,...; l=1,...,N(k,n)

being complete in H, we infer Hj = 0 for all j �= 0,±1,±2, . . .

At the end of this paragraph we shall investigate the relationship of the spher-
ical harmonics to the Laplace operator in R

n. From (1) we infer the decom-
position

Δ =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
Λ in R

n.

We note (3) and obtain the following identity for arbitrary C2-functions f =
f(r):

Δ
{
f(r)Hkl(ξ)

}
=

{
f ′′(r) +

n− 1

r
f ′(r)− k(k + (n− 2))

r2
f(r)

}
Hkl(ξ)

=
(
Lk,nf(r)

)
Hkl(ξ), l = 1, . . . , N(k, n)

(24)
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with the operator

Lk,nf(r) :=

(
∂2

∂r2
+
n− 1

r

∂

∂r
− k(k + (n− 2))

r2

)
f(r).

Evidently, we have Lk,2 = Lk with the operator Lk from Section 4.

Let the function u = u(x1, . . . , xn) ∈ C2(BR) with BR := {x ∈ R
n : |x| < R}

be chosen arbitrarily. We now expand u in H with respect to the spherical
harmonics

u = u(rξ) =

∞∑
k=0

N(k,n)∑
l=1

fkl(r)Hkl(ξ), 0 ≤ r < R, ξ ∈ Sn−1. (25)

Here we utilize the n-dimensional Fourier coefficients

fkl(r) :=

∫
|η|=1

u(rη)Hkl(η) dσ(η), k = 0, 1, 2, . . . , l = 1, . . . , N(k, n).

(26)
We then expand the function ũ(x) = Δu(x), x ∈ BR in H with respect to
spherical harmonics as well, and we obtain the n-dimensional Fourier series

Δu(x) = Δu(rξ) =

∞∑
k=0

N(k,n)∑
l=1

f̃kl(r)Hkl(ξ), 0 ≤ r < R, ξ ∈ Sn−1, (27)

with the Fourier coefficients f̃kl(r) = Lk,nfkl(r). We consequently obtain the
series for Δu in H by formal differentiation of the series for u. This is the
content of the following

Proposition 5.7. Let the function u = u(x) ∈ C2(BR) be given, and its
Fourier coefficients fkl(r) are defined due to the formula (26). Then the
Fourier coefficients f̃kl(r) of Δu, namely

f̃kl(r) :=

∫
|η|=1

Δu(rη)Hkl(η) dσ(η), k = 0, 1, 2, . . . , l = 1, . . . , N(k, n),

satisfy the identity

f̃kl(r) = Lk,nfkl(r), k = 0, 1, 2, . . . , l = 1, . . . , N(k, n), (28)

with 0 ≤ r < R.

Proof: We choose 0 ≤ r < R, and calculate with the aid of (3) as follows:
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f̃kl(r) =

∫
|ξ|=1

Δu(rξ)Hkl(ξ) dσ(ξ)

=

∫
|ξ|=1

{(
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
Λ

)
u(rξ)

}
Hkl(ξ) dσ(ξ)

=

(
∂2

∂r2
+
n− 1

r

∂

∂r

) ∫
|ξ|=1

u(rξ)Hkl(ξ) dσ(ξ)

+
1

r2

∫
|ξ|=1

u(rξ)ΛHkl(ξ) dσ(ξ)

=

(
∂2

∂r2
+
n− 1

r

∂

∂r
− k(k + (n− 2))

r2

) ∫
|ξ|=1

u(rξ)Hkl(ξ) dσ(ξ)

= Lk,nfkl(r) for k = 0, 1, 2, . . . , l = 1, . . . , N(k, n).
q.e.d.

Remark: The most important partial differential equation of the second order
in quantum mechanics, namely the Schrödinger equation, contains the Lapla-
cian as its principal part. Therefore, the investigation of eigenvalues of this
operator is of central interest. This will be presented in Chapter 8.

Figure 1.7 Portrait of Joseph A. F. Plateau (1801–1883)

Universitätsbibliothek der Rheinischen Friedrich-Wilhelms-Univerität Bonn;
taken from the book by S.Hildebrandt and A. Tromba: Panoptimum –
Mathematische Grundmuster des Vollkommenen, Spektrum-Verlag Heidel-
berg (1986).



Chapter 6

Linear Partial Differential Equations in R
n

In this chapter we become familiar with the different types of partial differen-
tial equations in R

n. We treat the maximum principle for elliptic differential
equations and prove the uniqueness of the mixed boundary value problem for
quasilinear elliptic differential equations. Then we consider the initial value
problem of the parabolic heat equation. Finally, we solve the Cauchy initial
value problem for the hyperbolic wave equation in R

n and show its invari-
ance under Lorentz transformations. The differential equations presented are
situated in the center of mathematical physics.

1 The Maximum Principle for Elliptic Differential
Equations

We shall consider a class of differential operators and equations, which con-
tains the Laplace operator and equation as its characteristic representative.

Definition 1.1. Let Ω ⊂ R
n be a domain with n ∈ N, where the continuous

coefficient functions aij(x), bi(x), c(x) : Ω → R ∈ C0(Ω) for i, j = 1, . . . , n
are defined. Furthermore, let the matrix (aij(x))i,j=1,...,n be symmetric for all
x ∈ Ω. The linear partial differential operator of the second order

L : C2(Ω) → C0(Ω) defined by

Lu(x) :=
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
u(x) +

n∑
i=1

bi(x)
∂

∂xi
u(x) + c(x)u(x), x ∈ Ω, (1)

is named elliptic (or alternatively degenerate elliptic), if and only if

n∑
i,j=1

aij(x)ξiξj > 0

(
or alternatively

n∑
i,j=1

aij(x)ξiξj ≥ 0

)

F. Sauvigny, Partial Differential Equations 1, Universitext,
DOI 10.1007/978-1-4471-2981-3 6, © Springer-Verlag London 2012
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for all ξ = (ξ1, . . . , ξn) ∈ R
n \ {0} and all x ∈ Ω is satisfied. When we have

the ellipticity constants 0 < m ≤M < +∞ such that

m|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤M |ξ|2

for all ξ = (ξ1, . . . , ξn) ∈ R
n and all x ∈ Ω holds true, the operator L is

called uniformly elliptic. In the case c(x) ≡ 0, x ∈ Ω, we use the notation
Mu(x) := Lu(x), x ∈ Ω for the reduced differential operator .

Remark: A uniformly elliptic differential operator is elliptic, and an elliptic
differential operator is degenerate elliptic. The Laplace operator appears for
aij(x) ≡ δij , bi(x) ≡ 0, c(x) ≡ 0 with i, j = 1, . . . , n and is consequently
uniformly elliptic with m =M = 1.

Proposition 1.2. Let M = Mu, u ∈ C2(Ω), be a reduced, degenerate ellip-
tic differential operator on the domain Ω ⊂ R

n. The function u attains its
maximum at the point z ∈ Ω, that means

u(x) ≤ u(z) for all x ∈ Ω.

Then we have {Mu(x)}x=z ≤ 0.

Proof: Since u(x) attains its maximum at the point z ∈ Ω , we infer uxi(z) = 0
for i = 1, . . . , n and consequently

Mu(z) =

n∑
i,j=1

aij(z)uxixj (z) +

n∑
i=1

bi(z)uxi(z) =

n∑
i,j=1

uxixj (z)aij(z).

Now the n × n-matrix A := (aij(z))i,j=1,...,n is symmetric and positive-
semidefinite. Therefore, we have an orthogonal matrix S = (sij)i,j=1,...,n and
a diagonal matrix

Λ :=

⎛
⎜⎝
λ1 0

. . .

0 λn

⎞
⎟⎠

with the entries λj ≥ 0 for j = 1, . . . , n, such that

A = S∗ ◦ Λ ◦ S (2)

holds true (Theorem on the principal axes transformation). Now we set

Λ
1
2 :=

⎛
⎜⎝

√
λ1 0

. . .

0
√
λn

⎞
⎟⎠

and see
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A = S∗ ◦ Λ ◦ S = S∗ ◦ (Λ 1
2 )∗ ◦ Λ 1

2 ◦ S

= (Λ
1
2 ◦ S)∗ ◦ Λ 1

2 ◦ S = T ∗ ◦ T
(3)

with T := Λ
1
2 ◦ S =: (tij)i,j=1,...,n. Consequently, we obtain

A = T ∗ ◦ T =

( n∑
k=1

tkitkj

)
i,j=1,...,n

. (4)

Since the Hessian (uxixj (z))i,j=1,...,n is negative-semidefinite, we conclude

Mu(z) =

n∑
i,j=1

uxixj (z)aij(z)

=

n∑
i,j,k=1

uxixj (z)tkitkj

=
n∑

k=1

( n∑
i,j=1

uxixj (z)tkitkj

)
≤ 0.

q.e.d.

Theorem 1.3. (Uniqueness and stability)

I. Let L define a degenerate elliptic differential operator on the bounded do-
main Ω ⊂ R

n with the coefficient function c(x) ≤ 0, x ∈ Ω.
II. We have the constants 0 < m ≤M < +∞, such that

m ≤ a11(x) ≤M, |b1(x)| ≤M, |c(x)| ≤M for all x ∈ Ω;

Ω ⊂ BM :=
{
x ∈ R

n : |x| < M
} (5)

is satisfied.
III. Finally, let u = u(x) ∈ C2(Ω) ∩ C0(Ω) be a solution of the Dirichlet

problem

Lu(x) = f(x) in Ω, u(x) = g(x) auf ∂Ω (6)

with the given functions f = f(x) ∈ C0(Ω) ∩ L∞(Ω) and g = g(x) ∈
C0(∂Ω).

Statement: Then we have a constant γ = γ(m,M) ∈ [0,+∞), such that

|u(x)| ≤ max
y∈∂Ω

|g(y)|+ γ(m,M) sup
y∈Ω

|f(y)|, x ∈ Ω. (7)

Proof:
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1. We consider the auxiliary function v(x) := eβx1 , x ∈ Ω, with the arbitrary
parameter β > 0. Then we calculate

Lv(x) = a11(x)β2eβx1 + b1(x)βe
βx1 + c(x)eβx1

≥ eβx1

(
mβ2 −Mβ −M

)

≥ e−β(m,M)M , x ∈ Ω,

choosing β = β(m,M) so large that mβ2 −Mβ −M ≥ 1 is satisfied.
2. The quantity � > 0 still to be fixed, we define the auxiliary function

w(x) := ±u(x) + �
(
v(x)− eβM

)
− max

y∈∂Ω
|g(y)|, x ∈ Ω.

On account of c(x) ≤ 0 in Ω, we can estimate as follows:

Lw(x) = ±Lu(x) + �Lv(x)− c(x)
(
�eβM + max

y∈∂Ω
|g(y)|

)

≥ ±f(x) + �e−βM

≥ − sup
y∈Ω

|f(y)|+ �e−βM , x ∈ Ω.

(8)

Choosing � = eβ(m,M)M (sup
y∈Ω

|f(y)| + ε) with a fixed number ε > 0, we

obtain
Lw(x) ≥ ε > 0 for all x ∈ Ω. (9)

3. We calculate

w(x) = ±u(x) + �(v(x)− eβM )− max
y∈∂Ω

|g(y)|

≤ ±g(x)− max
y∈∂Ω

|g(y)| ≤ 0

for x ∈ ∂Ω. Now w(x) ≤ 0 even holds true for all x ∈ Ω. If this were
violated, there would exist a point z ∈ Ω with w(x) ≤ w(z) for all x ∈ Ω.
Proposition 1.2 yields

Lw(z) = Mw(z) + c(z)w(z) ≤ 0

in contradiction to (9). This implies

±u(x) ≤ max
y∈∂Ω

|g(y)|+ �eβM = max
y∈∂Ω

|g(y)|+ e2βM
(
sup
y∈Ω

|f(y)|+ ε
)

for all x ∈ Ω and all ε > 0. Passing to the limit ε ↓ 0, we finally obtain

|u(x)| ≤ max
y∈∂Ω

|g(y)|+ γ(m,M) sup
y∈Ω

|f(y)|, x ∈ Ω,

with γ(m,M) := e2β(m,M)M . q.e.d.
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Remarks to Theorem 1.3:

1. The estimate (7) is already interesting for ordinary differential equations
(n = 1). This inequality is valid for uniformly elliptic differential operators
in R

n with n = 2, 3, . . ., and additionally for parabolic differential opera-
tors as

Δx − ∂

∂t
, (x, t) ∈ R

n × [0,+∞)

appearing in the heat equation (compare Section 3).
2. We cannot omit the assumption c(x) ≤ 0, x ∈ Ω in Theorem 1.3, which

is illustrated by the following example: For the function

u = u(x) = sinx1 · . . . · sinxn, x = (x1, . . . , xn) ∈ Ω := (0, π)n ⊂ R
n,

we calculate

Δu(x) =

n∑
i=1

uxixi(x) = −nu(x), x ∈ Ω.

Therefore, u satisfies the homogeneous Dirichlet problem

Δu(x) + nu(x) = 0 in Ω, u(x) = 0 on ∂Ω.

An estimate of the form (7) evidently does not hold here.
3. Let uj(x) ∈ C2(Ω) ∩ C0(Ω) be two solutions of the problems

Luj(x) = fj(x) in Ω, uj(x) = gj(x) on ∂Ω, j = 1, 2.

Applied on the function u(x) := u1(x) − u2(x), Theorem 1.3 yields the
following estimate

|u1(x)−u2(x)| ≤ max
y∈∂Ω

|g1(y)− g2(y)|+ γ(m,M) sup
y∈Ω

|f1(y)− f2(y)| (10)

for all x ∈ Ω. This implies the unique solvability of the Dirichlet problem
(6) and the continuous dependence of the solution from the boundary
values and the right-hand side of the differential equation.

4. The question of existence for a solution u = u(x) ∈ C2(Ω) ∩ C0(Ω) of
the Dirichlet problem (6) can be answered in the affirmative for uniformly
elliptic differential operators L with c(x) ≤ 0, x ∈ Ω under the following
assumptions: The functions aij(x), bi(x), c(x), f(x) are Hölder continuous
in Ω and the boundary ∂Ω of the bounded domain Ω ⊂ R

n can locally be
represented as the zero-set of a nondegenerate C2-function ϕ = ϕ(x) with
Hölder continuous second derivatives, and g : ∂Ω → R has to be contin-
uous. We shall establish this existence theorem in Chapter 9, departing
from the Poisson equation Δu(x) = f(x), x ∈ Ω and extending the result
to the class of uniformly elliptic differential operators by the continuity
method. This has been discovered by J. Leray and P. Schauder, and can
as well be studied in the monograph [GT], Chapter 4 and Chapter 6.
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Proposition 1.4. (Boundary point lemma of E.Hopf)

I. The coefficient functions aij(x), bi(x) ∈ C0(G) are given on the ball

G := Br(ξ) := {x ∈ R
n : |x− ξ| < r}

in such a way that the reduced partial differential operator

Mu(x) :=

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
u(x) +

n∑
i=1

bi(x)
∂

∂xi
u(x), x ∈ G,

is uniformly elliptic in G with the ellipticity constants 0 < m ≤M < +∞.
II. Let a solution u = u(x) ∈ C2(G) ∩ C0(G) of the differential inequality

Mu(x) ≥ 0 for all x ∈ G

be given, and for a fixed point z ∈ ∂G we have

u(x) ≤ u(z) for all x ∈ G and u(ξ) < u(z). (11)

III. Finally the derivative of u in direction of the exterior normal

ν = ν(z) := |z − ξ|−1(z − ξ) ∈ Sn−1

may exist at the point z ∈ ∂G, namely

∂u

∂ν
(z) := lim

t→0−

d

dt
u(z + tν(z)) = lim

t→0−

u(z)− u(z + tν(z))
−t .

Statement: Then we have
∂u

∂ν
(z) > 0. (12)

Proof:

1. It is sufficient to prove the theorem for the case G = B := B1(0) and
u(z) = 0. Given a function u = u(x) with the properties I, II, III, we
consider the composition

v(y) := u(ξ + ry)− u(ξ + rη), y ∈ B.

If we show (12) for v(y) at the point η ∈ ∂B, then we see (12) for u(x) at
the point z = ξ + rη ∈ ∂Br(ξ).

2. Now let the function u = u(x), x ∈ B, with the properties I, II, III be
given and u(z) = 0 hold true. For a parameter α > 0 still to be fixed, we
consider the auxiliary function

ϕ(x) := e−α|x|2 − e−α = e−α(x2
1+...+x2

n) − e−α, x = (x1, . . . , xn) ∈ B.

We remark ϕ(x) = 0 for all x ∈ ∂B and calculate
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ϕxi(x) = −2αxie
−α(x2

1+...+x2
n),

ϕxixj (x) =
(
4α2xixj − 2αδij

)
e−α(x2

1+...x2
n), x ∈ B.

Consequently, we obtain

Mϕ(x) =

{
4α2

n∑
i,j=1

aij(x)xixj − 2α

n∑
i=1

aii(x)− 2α

n∑
i=1

xibi(x)

}
e−α|x|2

≥ 4α2e−α|x|2
{
m|x|2 − 1

2α

n∑
i=1

(
aii(x) + xibi(x)

)}
, x ∈ B.

(13)
3. Now we determine numbers r1 ∈ (0, 1) and k1 ∈ (−∞, 0), such that

u(x) ≤ k1 for all x ∈ ∂Br1(0) (14)

is valid. On account of (13), we can choose α ∈ (0,+∞) so large that the
inequality

Mϕ(x) > 0 for all x ∈ Ω :=
{
x ∈ R

n : r1 < |x| < 1
}

(15)

is satisfied. Then we define the auxiliary function

v(x) := u(x) + εϕ(x), x ∈ Ω.

Here we choose ε > 0 so small that the inequality

v(x) ≤ 0 for all x ∈ ∂Ω (16)

holds true on account of (14). Furthermore, (15) and the assumption II
yield

Mv(x) = Mu(x) + εMϕ(x) > 0 for all x ∈ Ω. (17)

Due to Proposition 1.2, the function v(x) attains its maximum on ∂Ω.
Therefore, (16) implies v(x) ≤ 0, x ∈ Ω and

u(x) ≤ −εϕ(x) = ε
(
e−α − e−α|x|2

)
, x ∈ Ω. (18)

Now we define the functions

ũ(r) := u(rz), ṽ(r) := −εϕ(rz), r1 ≤ r ≤ 1.

Since ũ(r) ≤ ṽ(r) for r1 ≤ r ≤ 1 and ũ(1) = ṽ(1) = 0 hold true, we obtain

d

dr
ũ(r)
∣∣∣
r=1

≥ d

dr
ṽ(r)
∣∣∣
r=1

=
d

dr

{
ε(e−α − e−αr2)

}
r=1

= 2αεe−α > 0.

This implies the inequality (12) stated above. q.e.d.
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Theorem 1.5. (Maximum principle of E.Hopf)

I. Let M = Mu, u ∈ C2(Ω), denote a reduced elliptic differential operator
on the domain Ω ⊂ R

n, n ∈ N.
II. The function u = u(x) ∈ C2(Ω) satisfies the differential inequality

Mu(x) ≥ 0, x ∈ Ω,

and attains its maximum at a point z ∈ Ω, that means

u(z) ≥ u(x) for all x ∈ Ω.

Statement: Then we have u(x) ≡ u(z) for all x ∈ Ω.

Proof: We consider the following nonvoid set which is closed in Ω, namely

Θ :=
{
x ∈ Ω : u(x) = sup

y∈Ω
u(y) =: s

}
�= ∅.

Then we show this set being open. Since Ω is a domain, the continuation
along a path yields the identity Θ = Ω and consequently

u(x) ≡ s = u(z) for all x ∈ Ω.

We choose ξ ∈ Θ arbitrarily. For a given η ∈ Ω with

|η − ξ| < 1

2
dist(ξ,Rn \Ω)

we consider the ball G := B(η) of radius � := |η − ξ| about the center
η. Obviously, we have G ⊂⊂ Ω und ξ ∈ ∂G. Therefore, we find ellipticity
constants 0 < m ≤M < +∞ such that Mu, u ∈ C2(G), is uniformly elliptic.
If the inequality u(η) < s = u(ξ) were fulfilled, Proposition 1.4 would yield

∂u

∂ν
(ξ) = ∇u(ξ) · ν > 0

in contradiction to ∇u(ξ) = 0. This implies u(η) = s. Since this is correct for
arbitrary η ∈ Ω with |η − ξ| < 1

2 dist(ξ,R
n \Ω), we obtain Br(ξ) ⊂ Θ with a

radius 0 < r < 1
2 dist(ξ,R

n \Ω). Therefore, the set Θ is open.
q.e.d.

Theorem 1.6. (Strong maximum principle)

I. Let Ω ⊂ R
n be a domain and z ∈ ∂Ω a boundary point of Ω with the

following property: There exists a ball B(z) and a function

ϕ = ϕ(x) ∈ C2(B(z)) with ∇ϕ(z) �= 0 and ϕ(z) = 0,

such that we have

Ω ∩B(z) =
{
x ∈ B(z) : ϕ(x) < 0

}
.
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II. The coefficient functions aij(x), bi(x) ∈ C0(Ω), i, j = 1, . . . , n, are given
in such a way that the reduced partial differential operator

Mu(x) =

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
u(x) +

n∑
i=1

bi(x)
∂

∂xi
u(x), x ∈ Ω,

is uniformly elliptic on Ω.
III. The function u = u(x) ∈ C2(Ω)∩C0(Ω) may satisfy the following differ-

ential inequality
Mu(x) ≥ 0 for all x ∈ Ω.

IV. The function u attains its maximum at the point z, namely

u(x) ≤ u(z) for all x ∈ Ω.

Finally its derivative in the direction of the exterior normal ν to ∂Ω exists
there and satisfies

∂u

∂ν
(z) = 0.

Statement: Then we have u(x) ≡ u(z) for all x ∈ Ω.

Proof: On account of the assumption I, we can find a ball G = Br(ξ) with the
center ξ ∈ Ω and the radius r > 0 such that

G ⊂ Ω, G ∩ ∂Ω = {z}, ν(z) = |z − ξ|−1(z − ξ)

is valid. If the inequality u(ξ) < u(z) would be fulfilled, the Hopf boundary

point lemma implies
∂u

∂ν
(z) > 0 in contradiction to the assumption IV. Con-

sequently, the function u attains its maximum at an interior point ξ ∈ Ω.
Theorem 1.5 gives us the identity u(x) ≡ u(z) for all x ∈ Ω.

q.e.d.

Example 1.7. For n = 2, 3, . . . we consider the sector

S :=
{
x+ iy = reiϕ : r > 0, ϕ ∈

(
− π

2n
,
π

2n

)}

and the function v = v(x, y) : S → R defined by

v(x, y) := −Re((x+ iy)n) = −rn cosnϕ, x+ iy = reiϕ ∈ S.

Obviously, we have:

v ∈ C2(S), Δv(x, y) = 0 in S, v(x, y) < 0 in S,

v(x, y) = 0 on ∂S, v(0, 0) = 0, ∇v(0, 0) = 0.
(19)

The harmonic, nonconstant function v takes on its maximum at a boundary
point with vanishing gradient. Consequently, the assumption I in Theorem 1.6
cannot be deleted.
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The applicability of the maximum principle for linear elliptic differential
operators L depends decisively on the sign-condition c(x) ≤ 0, x ∈ Ω.

Definition 1.8. We denote the linear elliptic differential operator L being
stable, if there exists a function v(x) : Ω → (0,+∞) ∈ C2(Ω) satisfying

Lv(x) ≤ 0 for all x ∈ Ω.

If the sign-condition above is fulfilled, then the operator L is stable with the
function v(x) ≡ 1, x ∈ Ω. In the general situation of a stable differential
operator L, we apply the fundamental product device as follows

u(x) = w(x)v(x), x ∈ Ω, or equivalently w(x) =
u(x)

v(x)
, x ∈ Ω.

We then calculate

Lu(x) =

n∑
i,j=1

aij(x)[w(x)v(x)]xixj +

n∑
i=1

bi(x)[w(x)v(x)]xi + c(x)w(x)v(x)

=

n∑
i,j=1

aij(x)wxixjv +

n∑
i,j=1

aij(x)[wxivxj + wxjvxi ] +

n∑
i,j=1

aij(x)wvxixj

+

n∑
i=1

bi(x)wxi(x)v(x) +

n∑
i=1

bi(x)w(x)vxi(x) + c(x)w(x)v(x)

=

n∑
i,j=1

{
v(x)aij(x)

}
wxixj

+

n∑
i=1

{
v(x)bi(x) +

n∑
j=1

[aij(x) + aji(x)]vxj (x)

}
wxi +

{
Lv(x)

}
w

=:

n∑
i,j=1

ãij(x)wxixj (x) +

n∑
i=1

b̃i(x)wxi(x) + c̃(x)w(x) =: L̃v(x).

Therefore, we obtain an elliptic differential operator L̃ for w(x) satisfying
a sign-condition for the coefficient function c̃(x) := Lv(x). The differential

operator L̃ is subject to the maximum principle, and we conclude

Theorem 1.9. Let L be a stable elliptic differential operator defined on the
bounded domain Ω ⊂ R

n and the function u = u(x) ∈ C2(Ω) ∩ C0(Ω) may
solve the homogeneous Dirichlet problem

Lu(x) = 0 in Ω, u(x) = 0 on ∂Ω.

Then we have u(x) ≡ 0 in Ω.
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2 Quasilinear Elliptic Differential Equations

Now we investigate a class of elliptic differential equations, which contains the
linear ones as a special case, namely the quasilinear differential equations. Let
Ω ⊂ R

n be a bounded domain. We consider the coefficient functions

Aij = Aij(x, p) = Aij(x1, . . . , xn; p1, . . . , pn) ∈ C0(Ω × R
n,R)

for i, j = 1, . . . , n. The matrix (Aij(x, p))i,j=1,...,n is symmetric and positive-
definite for each (x, p) ∈ Ω × R

n. The partial derivatives

Aij
pk
(x, p) :=

∂

∂pk
Aij(x, p) ∈ C0(Ω × R

n,R), i, j, k = 1 . . . , n

should exist. Furthermore, we choose a function

B = B(x, z, p) = B(x1, . . . , xn; z; p1, . . . , pn) : Ω × R× R
n → R

of the regularity class C0(Ω×R
1+n), whose partial derivativesBz, Bp1 , . . . , Bpn

exist and belong to the class C0(Ω × R
1+n). Finally we abbreviate

Bp := (Bp1 , . . . , Bpn) and Aij
p := (Aij

p1
, . . . , Aij

pn
), i, j = 1, . . . , n.

We now consider the following differential operator acting on the functions
u = u(x) ∈ C2(Ω), namely

Qu(x) :=
n∑

i,j=1

Aij(x,∇u(x)) ∂2

∂xi∂xj
u(x) +B(x, u(x),∇u(x)), x ∈ Ω.

(1)
We denote by

n∑
i,j=1

Aij(x,∇u(x)) ∂2

∂xi∂xj
u(x)

the principal part of the operator Q. The term B(x, u(x),∇u(x)) of lower
order is called subordinate part of Q.

Remark: Here we investigate quasilinear operators Q whose principal parts
only have coefficient functions Aij independent of u.

Example 2.1. We consider the case n = 2 and abbreviate (x1, x2) =: (x, y).
The function

H = H(x, y, z) : Ω × R → R

is assumed to be continuous and may possess the continuous partial derivative
Hz(x, y, z) : Ω×R → R. We consider a solution z = ζ(x, y) : Ω → R ∈ C2(Ω)
of the nonparametric equation of prescribed mean curvature
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Mζ(x, y) :=
(
1 + ζ2y (x, y)

)
ζxx − 2ζxζyζxy +

(
1 + ζ2x(x, y)

)
ζyy(x, y)

= 2H(x, y, ζ(x, y))
(
1 + |∇ζ(x, y)|2

) 3
2

, (x, y) ∈ Ω.
(2)

The surface
X(x, y) := (x, y, ζ(x, y)), (x, y) ∈ Ω

represents a graph over the x, y-plane with the prescribed mean curvature
H(X(x, y)) at each point X(x, y). We name M the minimal surface operator
and

Mζ(x, y) = 0, (x, y) ∈ Ω,

is the intensively studied minimal surface equation. The operator Mζ repre-
sents the principal part of a quasilinear elliptic differential operator with the
coefficients (

A11(p) A12(p)

A21(p) A22(p)

)
:=

(
1 + p22 −p1p2
−p1p2 1 + p21

)
. (3)

Setting
B(x, y, z, p) := −2H(x, y, z)(1 + p21 + p

2
2)

3
2 , (4)

the equation (2) appears as the quasilinear elliptic differential equation

Qζ(x, y) = 0, (x, y) ∈ Ω.

Now we consider two solutions u = u(x) ∈ C2(Ω) and v = v(x) ∈ C2(Ω) of
the general quasilinear elliptic differential equation

Qu(x) :=
n∑

i,j=1

Aij(x,∇u(x)) ∂2

∂xi∂xj
u(x) +B(x, u(x),∇u(x)) = 0, x ∈ Ω

(5)
and

Qv(x) :=
n∑

i,j=1

Aij(x,∇v(x)) ∂2

∂xi∂xj
v(x) +B(x, v(x),∇v(x)) = 0, x ∈ Ω,

(6)
respectively. For the difference function

w(x) := u(x)− v(x) ∈ C2(Ω,R)

we derive a linear elliptic differential equation. The relations (5) and (6) imply
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0 = Qu(x)−Qv(x)

=

n∑
i,j=1

Aij(x,∇u(x)) ∂2

∂xi∂xj
w(x)

+

n∑
i,j=1

{
Aij(x,∇u(x))−Aij(x,∇v(x))

} ∂2

∂xi∂xj
v(x)

+
{
B(x, u(x),∇u(x))−B(x, u(x),∇v(x))

}

+
{
B(x, u(x),∇v(x))−B(x, v(x),∇v(x))

}
, x ∈ Ω.

(7)

We set

aij = aij(x) := A
ij(x,∇u(x)), x ∈ Ω for i, j = 1, . . . , n (8)

and see aij ∈ C0(Ω,R). Furthermore, we calculate

B(x, u(x),∇v(x))−B(x, v(x),∇v(x))

=

1∫
0

d

dt
B(x, v(x) + tw(x),∇v(x)) dt

= w(x)

1∫
0

Bz(x, v(x) + tw(x),∇v(x)) dt

(9)

and define the continuous function

c(x) :=

1∫
0

Bz(x, v(x) + tw(x),∇v(x)) dt, x ∈ Ω. (10)

Finally we note that

B(x, u(x),∇u(x))−B(x, u(x),∇v(x))

=

1∫
0

d

dt
B(x, u(x),∇v(x) + t∇w(x)) dt

= ∇w(x) ·
1∫

0

Bp(x, u(x),∇v(x) + t∇w(x)) dt

(11)

and
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Aij(x,∇u(x))−Aij(x,∇v(x)) =
1∫

0

d

dt
Aij(x,∇v(x) + t∇w(x)) dt

= ∇w(x) ·
1∫

0

Aij
p (x,∇v(x) + t∇w(x)) dt.

We define the coefficient functions

(b1(x), . . . , bn(x)) = b(x) :=

n∑
i,j=1

vxixj (x)

1∫
0

Aij
p (x,∇v(x) + t∇w(x)) dt

+

1∫
0

Bp(x, u(x),∇v(x) + t∇w(x)) dt, x ∈ Ω,

(12)
and observe bi = bi(x) ∈ C0(Ω) for i = 1, . . . , n. Altogether we obtain the
following linear elliptic differential equation for w = w(x), namely

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
w(x)+

n∑
i=1

bi(x)
∂

∂xi
w(x)+c(x)w(x) = 0, x ∈ Ω, (13)

with the coefficient functions from (8), (10), and (12).

Example 2.2. On the domain Ω ⊂ R
2 we consider two solutions

u = u(x, y) ∈ C2(Ω) and v = v(x, y) ∈ C2(Ω)

of the minimal surface equation

Mu(x, y) = 0 = Mv(x, y), (x, y) ∈ Ω.

Then the difference function w(x, y) := u(x, y) − v(x, y), (x, y) ∈ Ω, satisfies
the linear elliptic differential equation

a(x, y)wxx(x, y) + 2b(x, y)wxy + c(x, y)wyy(x, y)

+d(x, y)wx(x, y) + e(x, y)wy(x, y) = 0 in Ω
(14)

with the coefficient functions

a(x, y) = 1 + u2y, b(x, y) = −uxuy, c(x, y) = 1 + u2x

and

d(x, y) = −(uy+vy)vxy+(ux+vx)vyy, e(x, y) = (uy+vy)vxx−(ux+vx)vxy.
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Theorem 2.3. (Uniqueness of the mixed boundary value problem)

I. Let Ω ⊂ R
2 be a bounded domain, whose boundary ∂Ω may contain an

- eventually void - subset Γ⊂

=∂Ω with the following properties:

a) The set ∂Ω \ Γ is closed.
b) For all ξ ∈ Γ we have a number � = �(ξ) ∈ (0,+∞) and a function
ϕ = ϕ(x) ∈ C2(B(ξ)) with ϕ(ξ) = 0 and ∇ϕ(ξ) �= 0, such that

Ω ∩B(ξ) =
{
y ∈ B(ξ) : ϕ(y) < 0

}
.

II. The continuous functions f = f(x) : ∂Ω \ Γ → R and g = g(x) : Γ → R

are given.
III. The two functions u = u(x) : Ω → R and v = v(x) : Ω → R of the

regularity class C2(Ω) ∩ C0(Ω) ∩ C1(Ω ∪ Γ ) are solutions of the mixed
quasilinear elliptic boundary value problem

n∑
i,j=1

Aij(x,∇u(x)) ∂2

∂xi∂xj
u(x) +B(x, u(x),∇u(x)) = 0, x ∈ Ω, (15)

u(x) = f(x), x ∈ ∂Ω \ Γ, (16)

∂

∂ν
u(x) = g(x), x ∈ Γ. (17)

Here ν = ν(x) : Γ → Sn−1 denotes the exterior normal on Γ to the
domain Ω.

IV. Finally, we require

Bz(x, z, p) ≤ 0 for all (x, z, p) ∈ Ω × R
1+n.

Statement: Then we have u(x) ≡ v(x) for all x ∈ Ω.

Remark: The boundary condition (16) is called the Dirichlet boundary condi-
tion, whereas in the equation (17) the Neumann boundary condition appears.

Proof of Theorem 2.3: The function

w(x) := u(x)− v(x) ∈ C2(Ω) ∩ C0(Ω) ∩ C1(Ω ∪ Γ )

satisfies the linear elliptic differential equation (13), which is even uniformly el-
liptic in a neighborhood of Γ . Furthermore, w fulfills the homogeneous bound-
ary conditions

w(x) = 0, x ∈ ∂Ω \ Γ, and
∂

∂ν
w(x) = 0, x ∈ Γ. (18)

The coefficient (10) has the correct sign c(x) ≤ 0 for all x ∈ Ω, due to
the assumption IV. From Theorem 1.5 and Theorem 1.6 of Section 1 we infer
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that w(x) can neither in Ω nor on Γ attain its global maximum and global
minimum. This implies w(x) ≡ 0 and therefore

u(x) ≡ v(x) in Ω.
q.e.d.

Example 2.4. The Dirichlet problem for the nonparametric equation of pre-
scribed mean curvature

ζ = ζ(x, y) ∈ C2(Ω) ∩ C0(Ω),

Mζ(x, y) = 2H(x, y, ζ(x, y))
(
1 + |∇ζ(x, y)|2

) 3
2

in Ω,

ζ(x, y) = f(x, y) on ∂Ω

(19)

has at most one solution, if Hz ≥ 0 in Ω × R is assumed.

Remarks:

a) The existence question for a solution of the mixed boundary value problem
in Theorem 2.3 is very difficult. Already for the minimal surface equation
(this means H ≡ 0 in (19)) the Dirichlet problem (19) can only be solved
on convex domains for arbitrary continuous boundary values f : ∂Ω → R.
For a direct parametric approach of the Dirichlet problem (19) we refer
the reader to the paper by
F. Sauvigny: Flächen vorgeschriebener mittlerer Krümmung mit einein-
deutiger Projektion auf eine Ebene. Mathematische Zeitschrift, Bd. 180
(1982), S. 41-67.

b) A general theory for quasilinear elliptic differential equations is developed
in the book of D.Gilbarg and N.Trudinger [GT], Part 2 (especially in the
Chapters 14-16).

c) Finally, we emphasize that C0-stability with respect to the boundary val-
ues for quasilinear elliptic differential equations can only be achieved by
controlling the first derivatives up to the boundary.

3 The Heat Equation

We set R+ := (0,+∞) and denote the constant heat conductivity coefficient
by κ ∈ R+. We consider functions

u = u(x, t) = u(x1, . . . , xn, t) : R
n × R+ → R ∈ C2(Rn × R+) (1)

satisfying the heat equation

∂

∂t
u(x, t) = κΔxu(x, t), (x, t) ∈ R

n × R+. (2)

For n = 1 the solution of (2) models the distribution of temperature in an
insulating wire, and for n = 3 we obtain the temperature distribution in a
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heat conducting medium. The transition from the solution u = u(x, t) of (1)
and (2) to the function

v = v(x, t) := u(
√
κx1, . . . ,

√
κxn, t), (x, t) ∈ R

n × R+

yields the following differential equation

∂

∂t
v(x, t) = Δxv(x, t) in R

n × R+. (3)

The equations (2) and (3) are not invariant with respect to reflections in the
time: t→ (−t). Therefore, the heat equation describes an irreversible process
distinguishing between the past and the future. However, the heat equation
is invariant with respect to linear substitutions

ξ = ax, x ∈ R
n; τ = a2t, t ∈ R+ (4)

choosing the number a ∈ R \ {0}. The quantity |x|2/t is invariant under the
transformation (4) as well and often appears in connection with this differen-
tial equation.

We are looking for a solution of (3) by the ansatz

v = v(x, t) = exp i(λt+ ξ · x), (x, t) ∈ R
n × R+,

with λ ∈ C and ξ = (ξ1, . . . , ξn) ∈ R
n. Then the relation (3) implies

0 =
∂

∂t
v(x, t)−Δxv(x, t)

= ei(λt+ξ·x)
(
iλ+ |ξ|2

)
, (x, t) ∈ R

n × R+.

Inserting iλ = −|ξ|2 we obtain a solution of the heat equation (3) as follows:

v(x, t) = e−|ξ|2teiξ·x, (x, t) ∈ R
n × R+. (5)

For each fixed t ∈ R+, the function v(·, t) describes a plane wave which is
constant on the planes ξ · x = const. The phase plane has the unit normal
vector |ξ|−1ξ, and the length of the wave is given by L = 2π|ξ|−1. More
precisely, we have

v
(
x+

2πl

|ξ|
ξ

|ξ| , t
)
= v(x, t) for all (x, t) ∈ R

n×R+ and all l ∈ Z. (6)

The amplitude of the wave is determined by

|v(x, t)| = e−|ξ|2t = exp
(
− 4π2t

L2

)
,
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and consequently the solutions decay exponentially.

For a given function g = g(ξ) ∈ C∞
0 (Rn,R) we consider the integral

u(x, t) := (2π)−
n
2

∫
Rn

e(iξ·x−|ξ|2t)g(ξ) dξ

= (2π)−
n
2

+∞∫
−∞

. . .

+∞∫
−∞

ei(ξ1x1+...ξnxn)e−|ξ|2tg(ξ) dξ1 . . . dξn.

(7)

Now we calculate

ut(x, t) = (2π)−
n
2

∫
Rn

eiξ·xe−|ξ|2t(−|ξ|2)g(ξ) dξ

and

Δxu(x, t) = (2π)−
n
2

∫
Rn

eiξ·xe−|ξ|2t(−|ξ|2)g(ξ) dξ

for all (ξ, t) ∈ R
n × R+. Therefore, follows

Δxu(x, t)− ut(x, t) = 0, (x, t) ∈ R
n × R+. (8)

Furthermore, the function u(x, t) satisfies the initial condition

u(x, 0) = (2π)−
n
2

∫
Rn

eiξ·xg(ξ) dξ, x ∈ R
n. (9)

Now the question arises for which functions f(x) : Rn → R the initial value
problem

u(x, 0) = f(x), x ∈ R
n; u ∈ C0(Rn × [0 +∞)) (10)

of the heat equation (8) can be solved. In this context we need the following

Theorem 3.1. (Fourier-Plancherel)
The linear operator

g̃(x) := F−1(g)
∣∣∣
x
:= (2π)−

n
2

∫
Rn

eiξ·xg(ξ) dξ, g ∈ C∞
0 (Rn) (11)

has a continuous extension on the Hilbert space

H := L2(Rn) :=

⎧⎪⎨
⎪⎩ϕ : Rn → C :

ϕ is Lebesgue-measurable and

we have

∫
Rn

|ϕ(ξ)|2 dξ < +∞

⎫⎪⎬
⎪⎭
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with the inner product

(ϕ, ψ) :=

∫
Rn

ϕ(ξ)ψ(ξ) dξ, ϕ, ψ ∈ H.

The mapping F−1 : H → H has the inverse

f̂(ξ) := F(f)
∣∣∣
ξ
:= (2π)−

n
2

∫
Rn

e−iξ·xf(x) dx, f ∈ C∞
0 (Rn) (12)

which can be extended continuously on H as well. Furthermore, the operators
F and F−1 are isometric on the Hilbert space H, more precisely

(Fϕ,Fψ) = (ϕ, ψ) = (F−1ϕ,F−1ψ) for all ϕ, ψ ∈ H,

and we have

(Fϕ, ψ) = (ϕ,F−1ψ) for all ϕ, ψ ∈ H.

Proof: This Theorem 5.11 will be proved in Chapter 8, Section 5.

Definition 3.2. We name the operator F : H → H the Fourier transforma-
tion and F−1 the inverse Fourier transformation.

In (7) we choose the function

g(ξ) = F(f)
∣∣∣
ξ
= f̂(ξ) = (2π)−

n
2

∫
Rn

e−iξ·xf(x) dx, f ∈ H

such that g(ξ) ∈ C∞
0 (Rn) holds true. Now (9) implies

u(x, 0) = (2π)−
n
2

∫
Rn

eiξ·xf̂(ξ) dξ

= F−1 ◦ F(f)
∣∣∣
x
= f(x), x ∈ R

n.

(13)

Furthermore, we calculate via Fubini’s tbeorem

u(x, t) = (2π)−
n
2

∫
Rn

eiξ·xe−|ξ|2tf̂(ξ) dξ

= (2π)−n

∫
Rn

∫
Rn

eiξ·xe−|ξ|2te−iξ·yf(y) dy dξ

= (2π)−n

∫
Rn

(∫
Rn

eiξ·(x−y)−|ξ|2t dξ

)
f(y) dy.

(14)
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With the aid of the substitution

ξ =
i(x− y)

2t
+

1√
t
η, dξ = t−

n
2 dη, η ∈ R

n

we determine∫
Rn

eiξ·(x−y)−|ξ|2t dξ =

∫
Rn

e
(− |x−y|2

2t + i√
t
η·(x−y)+

|x−y|2
4t − i√

t
η·(x−y)−|η|2)

t−
n
2 dη

=

∫
Rn

e−
|x−y|2

4t e−|η|2t−
n
2 dη

= t−
n
2 e−

|x−y|2
4t

∫
Rn

e−|η|2 dη

= t−
n
2 e−

|x−y|2
4t

( +∞∫
−∞

e−2

d�

)n

,

and consequently

∫
Rn

eiξ·(x−y)−|ξ|2t dξ = π
n
2 t−

n
2 e−

|x−y|2
4t . (15)

Inserting (15) into (14) we obtain

u(x, t) = (4πt)−
n
2

∫
Rn

e−
|x−y|2

4t f(y) dy, (x, t) ∈ R
n × (0,+∞). (16)

With the integral (16) we have found a solution of the initial value problem
(10) for the heat equation (8).

Definition 3.3. The function

K(x, y, t) := (4πt)−
n
2 exp

{
− |x− y|2

4t

}
, x ∈ R

n, y ∈ R
n, t ∈ R+

represents the kernel function of the heat equation.

Proposition 3.4. We have the following statements for the kernel function
K(x, y, t) : Rn × R

n × R+ → R+ of the heat equation:

(i) K ∈ C2(Rn × R
n × R+) and

( ∂
∂t

−Δx

)
K(x, y, t) = 0 in R

n × R
n × R+.
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(ii) For all (x, t) ∈ R
n × R+ we have∫

Rn

K(x, y, t) dy = 1.

(iii) For each δ > 0 the following integral converges uniformly∫
y:|y−x|>δ

K(x, y, t) dy → 0 (t→ 0+) for all x ∈ R
n.

Proof:

(i) Formula (15) gives us

K(x, y, t) = (4πt)−
n
2 exp

{
− |x− y|2

4t

}
= (2π)−n

∫
Rn

ei(x−y)·ξ−|ξ|2t dξ.

The heat equation( ∂
∂t

−Δx

){
ei(x−y)·ξ−|ξ|2t

}
= 0 in R

n × R
n × R+

holds true, and the given integral remains absolutely convergent while
differentiating with respect to t and x. Therefore, we comprehend( ∂

∂t
−Δx

)
K(x, y, t) = (2π)−n

∫
Rn

( ∂
∂t

−Δx

){
ei(x−y)·ξ−|ξ|2t

}
dξ = 0

for all (x, y, t) ∈ R
n × R

n × R+.
(ii) We calculate for δ ≥ 0 with the aid of the substitution y = x +

√
4tη,

dy = (4t)
n
2 dη as follows:∫

y:|y−x|>δ

K(x, y, t) dy = (4πt)−
n
2

∫
y:|y−x|>δ

exp
{
− |x− y|2

4t

}
dy

= π−
n
2

∫

η:|η|> δ√
4t

e−|η|2 dη for all (x, t) ∈ R
n × R+.

(17)

Inserting δ = 0 into (17), we obtain∫
Rn

K(x, y, t) dy = π−
n
2

∫
Rn

exp(−|η|2) dη = π−n
2 π

n
2 = 1.

(iii) In the case δ > 0 the formula (17) implies∫
y:|y−x|>δ

K(x, y, t) dy = π−
n
2

∫

η:|η|> δ√
4t

e−|η|2 dη → 0 (t→ 0+)

uniformly for all x ∈ R
n. q.e.d.
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Independently of the Fourier-Plancherel integral theorem, we now prove the
following

Theorem 3.5. Let f = f(x) : Rn → R ∈ C0(Rn) be a continuous, bounded
function and we define

u(x, t) :=

∫
Rn

K(x, y, t)f(y) dy

= (4πt)−
n
2

∫
Rn

e−
|x−y|2

4t f(y) dy, (x, t) ∈ R
n × R+.

(18)

Then the following statements hold true:

(i) Setting C+ := {t = σ + iτ ∈ C : σ > 0} there exists a holomorphic
function U : Cn × C+ → C, such that

u(x, t) = U(x, t) for all (x, t) ∈ R
n × R+

is correct. This especially implies u ∈ C∞(Rn × R+).
(ii) The function u satisfies the heat equation

Δxu(x, t)−
∂

∂t
u(x, t) = 0 in R

n × R+.

(iii) We have u ∈ C0(Rn × [0,+∞)) and u fulfills the initial condition

u(x, 0) = f(x) for all x ∈ R
n.

(iv) Finally, we have the inequality

inf
y∈Rn

f(y) ≤ u(x, t) ≤ sup
y∈Rn

f(y) for all (x, t) ∈ R
n × R+, (19)

where only for constant functions f : Rn → R equality is attained.

Proof:

(i) At first, we extend the kernel K : Rn × R
n × R+ → R+ to the domain

C
n ×R

n ×C+ as follows: With the notation x = ξ+ iη ∈ C
n, y ∈ R

n and
t = σ + iτ ∈ C+ we define

K(x, y, t) := (4π)−
n
2 (t2)−

n
4 exp

{
− (x− y) · (x− y)

4t

}

for (x, y, t) ∈ C
n×R

n×C+. To each fixed y ∈ R
n the function K(x, y, t) :

C
n × C+ → C is holomorphic, and the kernel K : Cn × R

n × C+ → C is
continuous. Furthermore, we have
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|K(x, y, t)| = (4π)−
n
2 (|t|2)−n

4 exp
{
− Re

(x− y) · (x− y)
4t

}

= (4π)−
n
2 (σ2 + τ2)−

n
4 exp

{
− 1

4
Re

(ξ − y + iη) · (ξ − y + iη)
σ + iτ

}
.

(20)

Now we calculate

Re
(ξ − y + iη) · (ξ − y + iη)

σ + iτ

=
1

σ2 + τ2
Re
{
(σ − iτ)

[
(ξ − y)2 − η2 + 2iη · (ξ − y)

]}

=
1

σ2 + τ2

{
σ(ξ − y)2 − ση2 + 2τη · (ξ − y)

}

=
1

σ(σ2 + τ2)

{
|σ(ξ − y) + τη|2 − τ2|η|2 − σ2|η|2

}

=
1

σ(σ2 + τ2)
|σ(ξ − y) + τη|2 − 1

σ
|η|2.

(21)

From (20) and (21) we derive the relation

|K(x, y, t)|

= (4π)−
n
2 (σ2 + τ2)−

n
4 exp

{ 1

4σ
|η|2 − 1

4σ(σ2 + τ2)
|σ(ξ − y) + τη|2

}

=
(
1 +

τ2

σ2

)−n
4

exp
{ |η|2

4σ

}
σ−

n
2 (4π)−

n
2 exp

{
− |σ(ξ − y) + τη|2

4σ(σ2 + τ2)

}

=
(
1 +

τ2

σ2

)+n
4

exp
{ |η|2

4σ

}
K
(
ξ +

τ

σ
η, y, σ +

τ2

σ

)

=: Θx,t(y) for all (x, y, t) ∈ C
n × R

n × C+.

Consequently, the parameter integral

U(x, t) :=

∫
Rn

K(x, y, t)f(y) dy, (x, t) ∈ C
n × C+

has an integrable majorant. Due to Theorem 2.12 in Chapter 4, Section 2
the function U : Cn × C+ → C is holomorphic.

(ii) The heat equation for u(x, t) can immediately be derived from (18) and
Proposition 3.4, (i).

(iii) Now we show that the initial values are continuously attained:
For given ξ ∈ R

n and ε > 0 we have a number δ = δ(ξ, ε) > 0 such that

|f(y)− f(ξ)| < ε for all |y − ξ| < 2δ
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holds true. We set M := sup{|f(y)| : y ∈ R
n} < +∞ and obtain the

following inequality for all (x, t) ∈ R
n×R+ with |x−ξ| < δ and 0 < t < ϑ :

|u(x, t)− f(ξ)| =
∣∣∣∣
∫
Rn

K(x, y, t)(f(y)− f(ξ)) dy
∣∣∣∣

≤
∫

y:|y−x|≤δ

K(x, y, t)|f(y)− f(ξ)| dy

+

∫
y:|y−x|≥δ

K(x, y, t)|f(y)− f(ξ)| dy

≤
∫

y:|y−ξ|≤2δ

K(x, y, t)|f(y)− f(ξ)| dy

+2M

∫
y:|y−x|≥δ

K(x, y, t) dy

≤ ε+ 2Mε.

(22)

Here we have chosen ϑ > 0 sufficiently small and used Proposition 3.4,
(ii) and (iii) in the last inequality. From the estimate (22) we obtain the
desired relation

lim
t→0+

u(x, t) = f(x) for all x ∈ R
n.

(iv) The statement (19) follows directly from the integral representation (18)
combined with Proposition 3.4, (ii).

q.e.d.

Remarks:

1. Bounded continuous functions f : R
n → R being given, we obtain a

bounded solution of the initial value problem for the heat equation by the
function u(x, t) defined in (18). However, there are further (unbounded)
solutions of the same problem; see the monograph of F. John [J], Chap-
ter 7, Section 1. Later in this section, we shall prove that the initial value
problem for the heat equation is uniquely determined in the class of
bounded solutions.

2. With the aid of (18) we can also construct solutions of the problem for
initial values f : Rn → R subject to the growth condition

|f(x)| ≤Mea|x|
2

, x ∈ R
n.

However, then the solution (18) only exists for the times 0 ≤ t < 1
4a .
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Now we are going to prove a maximum principle for parabolic differential
equations: Over the bounded domain Ω ⊂ R

n, where n ∈ N is given, we
consider the parabolic cylinder

ΩT :=
{
(x, t) ∈ R

n × R+ : x ∈ Ω, t ∈ (0, T ]
}

with the given height T ∈ R+. The parabolic boundary denotes the following
set

ΔΩT :=
{
(x, t) ∈ R

n × [0,+∞) : (x, t) ∈ (∂Ω × [0, T ]) ∪ (Ω × {0})
}
.

Proposition 3.6. Let function u = u(x, t) ∈ C2(ΩT ) satisfy the differential
inequality

Δxu(x, t)−
∂

∂t
u(x, t) > 0, (x, t) ∈ ΩT .

Then u cannot attain its maximum at any point of ΩT .

Proof: We assume that u would attain its maximum at a point (ξ, τ) ∈ ΩT .

If (ξ, τ) ∈
◦
ΩT is correct, Proposition 1.2 from Section 1 yields the inequality

(
Δx − ∂

∂t

)
u(ξ, τ) ≤ 0

in contradiction to the assumption. Consequently, we have (ξ, τ) ∈ ΩT \
◦
ΩT

and especially τ = T holds true. Furthermore, the differential inequality im-
plies

Δxu(ξ, T ) >
∂

∂t
u(ξ, T ) ≥ 0. (23)

Now also the function ũ(x) := u(x, T ), x ∈ Ω takes on its maximum at the
point ξ ∈ Ω. From Proposition 1.2 in Section 1 we infer Δũ(ξ) ≤ 0 contradict-
ing (23).

q.e.d.

Proposition 3.7. Let the function u = u(x, t) ∈ C2(ΩT )∩C0(ΩT ∪ΔΩT ) be
a solution of the differential inequality

Δxu(x, t)−
∂

∂t
u(x, t) ≥ 0, (x, t) ∈ ΩT ,

and fulfill the boundary condition

u(x, t) ≤ 0, (x, t) ∈ ΔΩT .

Then we have u(x, t) ≤ 0 in ΩT ∪ΔΩT .
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Proof: For the given ε > 0 we consider the following auxiliary function
w(x, t) := u(x, t)− εt and observe

(
Δx − ∂

∂t

)
w(x, t) =

(
Δx − ∂

∂t

)
u(x, t) + ε > 0 in ΩT .

Then we determine the boundary condition

w(x, t) = u(x, t)− εt ≤ 0 on ΔΩT .

Proposition 3.6 implies w(x, t) ≤ 0 and consequently u(x, t) ≤ εt in ΩT . The
transition to the limit ε ↓ 0 yields

u(x, t) ≤ 0 in ΩT ∪ΔΩT .
q.e.d.

Theorem 3.8. (Parabolic maximum-minimum principle)
Let u = u(x, y) ∈ C2(ΩT )∩C0(ΩT ∪ΔΩT ) be a solution of the heat equation

Δxu(x, t)−
∂

∂t
u(x, t) = 0, (x, t) ∈ ΩT .

Then we have

min
(ξ,τ)∈ΔΩT

u(ξ, τ) =: m ≤ u(x, t) ≤M := max
(ξ,τ)∈ΔΩT

u(ξ, τ), (x, t) ∈ ΩT .

Proof: Applying Proposition 3.7 to the auxiliary function

u(x, t)−M and m− u(x, t), (x, t) ∈ ΩT ∪ΔΩT ,

we obtain the statement immediately. q.e.d.

Theorem 3.9. (Uniqueness for the initial value problem of the heat
equation)
The bounded, continuous function f = f(x) : Rn → R ∈ C0(Rn) is given.
Then there is exactly one bounded solution u of the initial value problem for
the heat equation, attributed to this function f , with the following properties:

u = u(x, t) ∈ C2(Rn × R+,R) ∩ C0(Rn × [0,+∞),R),

Δxu(x, t)−
∂

∂t
u(x, t) = 0 in R

n × R+,

u(x, 0) = f(x), x ∈ R
n,

sup
(x,t)∈Rn×R+

|u(x, t)| < +∞.

(24)
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Proof: Let u = u(x, t) and v = v(x, t) be two solutions of (24), and we set

M := sup
Rn×R+

|u(x, t)|+ sup
Rn×R+

|v(x, t)| ∈ [0,+∞).

For the function

w(x, t) := u(x, t)− v(x, t) ∈ C2(Rn × R+,R) ∩ C0(Rn × [0,+∞),R)

we have

Δxw(x, t)−
∂

∂t
w(x, t) = 0 in R

n × R+,

u(x, 0) = 0, x ∈ R
n,

|w(x, t)| ≤M for all (x, t) ∈ R
n × [0,+∞).

(25)

Now we choose numbers T ∈ R+, R ∈ R+, define the ball
BR := {x ∈ R

n : |x| < R} , and attribute the parabolic cylinder

BR,T :=
{
(x, t) ∈ R

n × R+ : x ∈ BR, t ∈ (0, T ]
}

with the parabolic boundary

ΔBR,T =
{
(x, t) ∈ BR × [0, T ] : x ∈ ∂BR or t = 0

}
.

On the domain BR,T we consider both the solution w(x, t) of the problem
(25) and the function

W (x, t) :=
2nM

R2

( |x|2
2n

+ t
)
. (26)

Now the comparison function W satisfies the differential equation

(
Δx − ∂

∂t

)
W (x, t) =

2nM

R2
(1− 1) = 0, (x, t) ∈ BR,T ,

and the following inequality holds true on the parabolic boundary

|w(x, t)| ≤W (x, t), (x, t) ∈ ΔBR,T .

Application of the parabolic maximum-minimum principle yields

|w(x, t)| ≤W (x, t) =
2nM

R2

( |x|2
2n

+ t
)
, (x, t) ∈ BR,T . (27)

We observe the transition R→ +∞ in formula (27) and obtain

w(x, t) = 0, x ∈ R
n, t ∈ (0, T ],

with an arbitrary T ∈ R+. Consequently, we have w(x, t) ≡ 0 and finally
u(x, t) ≡ v(x, t) in R

n × R+. q.e.d.
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Let us consider the following

Example 3.10. (An initial-boundary-value problem for the one-dimensional
heat equation)
We are looking for a solution v = v(x, t), 0 < x < L, t > 0 of the one-
dimensional heat equation

vxx(x, t)− vt(x, t) = 0, x ∈ (0, L), t ∈ (0,+∞), (28)

with the boundary conditions

v(0, t) = 0 = v(L, t), t ∈ [0,+∞), (29)

and the initial condition

v(x, 0) = f(x), x ∈ (0, L). (30)

Here f = f(x) : [0, L] → R is a continuous function satisfying f(0) = 0 =
f(L).

The problem (28)-(30) models a temperature distribution in an insulating
wire with fixed temperature at the boundary. We shall construct a solution
of (28)-(30) by reflection methods. Therefore, we apply an uneven reflection
to the function f at the points x = 0 and x = L such that

f(−x) = −f(x), f(L+ (L− x)) = −f(x), x ∈ R (31)

is satisfied. Setting

ϕ(x) :=

{
f(x), 0 ≤ x ≤ L

0, otherwise
,

the continued function f appears in the form

f(x) =

+∞∑
n=−∞

{
ϕ(2nL+ x)− ϕ(2nL− x)

}
, x ∈ R. (32)

For this continuous and bounded initial distribution f : R → R we globally
solve the heat equation.With the aid of the substitutions

ξ = 2nL± y, dξ = ±dy, n = 0,±1,±2, . . .

we obtain
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u(x, t) =

+∞∫
−∞

K(x, y, t)f(y) dy

=

+∞∫
−∞

K(x, y, t)
+∞∑

n=−∞

{
ϕ(2nL+ y)− ϕ(2nL− y)

}
dy

=

+∞∫
−∞

ϕ(ξ)

+∞∑
n=−∞

{
K(x, ξ − 2nL, t)−K(x, 2nL− ξ, t)

}
dξ

=

L∫
0

G(x, ξ, t)f(ξ) dξ.

(33)

Here we define

G(x, ξ, t) :=

+∞∑
n=−∞

{
K(x, ξ − 2nL, t)−K(x, 2nL− ξ, t)

}

=
1√
4πt

+∞∑
n=−∞

{
e−

1
4t (x−ξ+2nL)2 − e− 1

4t (x+ξ−2nL)2
}

=
1

2L

{
ϑ
(x− ξ

2L
,
iπt

L2

)
− ϑ
(x+ ξ

2L
,
iπt

L2

)}
(34)

denoting by

ϑ(z, τ) :=
1√
−iτ

+∞∑
n=−∞

exp
(
− iπ (z + n)

2

τ

)
(35)

the Theta function.

The functions u(x, t) + u(−x, t) and u(x, t) + u(2L− x, t) are solutions of the
heat equation (28) in R× R+ with homogeneous initial conditions. Theorem
3.9 now implies

u(x, t) + u(−x, t) ≡ 0 ≡ u(x, t) + u(2L− x, t), (x, t) ∈ R× [0,+∞). (36)

Consequently, v(x, t) := u(x, t), x ∈ [0, L], t ∈ [0,+∞) solves the initial-
boundary-value problem (28)-(30) for the one-dimensional heat equation.

Finally, we refer the reader to the book [GuLe], Chapters 5 and 9 with further
results on the heat equation.
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4 Characteristic Surfaces and an Energy Estimate

On a domain Ω ⊂ R
n+1 with n ∈ N and for the functions u ∈ C2(Ω) we

consider the linear partial differential equation of second order

Lu(y) :=
n+1∑
j,k=1

ajk(y)
∂2

∂yj∂yk
u(y) +

n+1∑
j=1

bj(y)
∂

∂yj
u(y) + c(y)u(y) = h(y) (1)

for y ∈ Ω. The coefficient functions ajk(y), bj(y) and c(y) for j, k = 1, . . . , n+1
as well as the right-hand side h(y) belong to the regularity class C0(Ω,R).
Furthermore, the matrix (ajk(y))j,k=1,...,n+1 is symmetric for all y ∈ Ω.

Definition 4.1. Let ϕ = ϕ(y1, . . . , yn+1) : Ω → R ∈ C2(Ω) be a nonconstant
function which defines the following nonvoid set

F :=
{
y ∈ Ω : ϕ(y) = 0

}
.

We name F a characteristic surface for the differential equation (1), if the
adjoint quadratic form

Q[ϕ](y) :=

n+1∑
j,k=1

ajk(y)
∂ϕ

∂yj
(y)

∂ϕ

∂yk
(y), y ∈ Ω, (2)

fulfills the condition

Q[ϕ](y) = 0 for all y ∈ F .

Otherwise F is called a noncharacteristic surface, if namely

Q[ϕ](y) �= 0 for all y ∈ F .

In the case n = 1 we speak of characteristic and alternatively of noncharac-
teristic curves.

Remark: Since we do not assume∇ϕ(y) �= 0 on F , the set F may have singular
points. Therefore, F ⊂ R

n+1 is not a hypersurface in general.

Example 4.2. If L is elliptic in Ω, where the matrix (ajk(x))j,k=1,...,n+1 is
positive-definite for all x ∈ Ω, then characteristic surfaces do not exist.

Example 4.3. We consider the differential operator of the heat equation

L := Δx − ∂

∂t
in R

n × R+.

Then we obtain the quadratic form



4 Characteristic Surfaces and an Energy Estimate 393

Q[ϕ](x, t) =

n∑
j=1

(ϕxj (x, t))
2, (x, t) ∈ R

n × R+.

For fixed τ ∈ R we choose the function ϕ(x, t) := t−τ and see that the surface

F :=
{
(x, t) ∈ R

n × R : ϕ(x, t) = 0
}
= R

n × {τ}

is characteristic. Especially, the plane R
n × {0} is a characteristic surface for

the heat equation.

Definition 4.4. For the given domain Ω ⊂ R
n and the numbers

−∞ ≤ t1 < t2 ≤ +∞ we construct the box

Ωt1,t2 :=
{
(x, t) ∈ R

n × R : x ∈ Ω, t ∈ (t1, t2)
}
.

We define the d’Alembert operator � : C2(Ωt1,t2) → C0(Ωt1,t2) setting

�u(x1, . . . , xn, t) :=
∂2

∂t2
u(x1, . . . , xn, t)− c2Δxu(x1, . . . , xn, t) (3)

for (x1, . . . , xn, t) ∈ Ω × (t1, t2). Here c > 0 denotes a fixed positive constant
which represents the velocity of light in physics.

Example 4.5. For the homogeneous wave equation

�u(x1, . . . , xn, t) = 0 in R
n × R

we obtain the associate quadratic form

Q[ϕ](x, t) = (ϕt(x, t))
2 − c2|∇xϕ(x, t)|2, (x, t) ∈ R

n × R.

Given the vector (ξ, τ) = (ξ1, . . . , ξn, τ) ∈ R
n × R, we consider the function

ϕ(x, t) :=
c2

2
(t− τ)2 − 1

2
|x− ξ|2, (x, t) ∈ R

n × R, (4)

and calculate

Q[ϕ](x, t) = c4(t− τ)2 − c2|x− ξ|2

= 2c2
{c2
2
(t− τ)2 − 1

2
|x− ξ|2

}

= 2c2ϕ(x, t), (x, t) ∈ R
n × R.

The set

F(ξ, τ) :=
{
(x, t) ∈ R

n+1 : ϕ(x, t) = 0
}

=
{
(x, t) ∈ R

n+1 : |x− ξ| = c|t− τ |
} (5)

represents a characteristic surface of the wave equation for each (ξ, τ) ∈ R
n+1.

These are conical surfaces with the singular tip (ξ, τ) and the opening angle
α = arctan c.
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We now present a fundamental result for the wave equation.

Theorem 4.6. (Energy estimate for the wave equation)
Let the point (ξ, τ) = (ξ1, . . . , ξn, τ) ∈ R

n × R+ with the associate cone

K = K(ξ, τ) :=
{
(x, t) ∈ R

n × R+ : t ∈ (0, τ), |x− ξ| < c(τ − t)
}

be given. Furthermore, we have a solution u = u(x, t) ∈ C2(K) ∩ C1(K) of
the homogeneous wave equation

�u(x, t) + q(x, t) ∂
∂t
u(x, t) = 0 in K. (6)

Here q = q(x, t) ∈ C0(K, [0,+∞)) represents a nonnegative continuous
potential on K.
Then the following energy inequality holds true for all s ∈ (0, τ), namely∫

x:|x−ξ|<c(τ−s)

{
c2|∇xu(x, s)|2 + | ∂

∂t
u(x, s)|2

}
dx

≤
∫

x:|x−ξ|<cτ

{
c2|∇xu(x, 0)|2 + | ∂

∂t
u(x, 0)|2

}
dx.

(7)

Proof:

Figure 1.8 Illustration of the Energy Estimate

1. With the aid of the transformation (x, t) �→ (c(x + ξ), t) we can confine
ourselves to the case ξ = 0 and c = 1. The coefficient matrix of the
d’Alembert operator takes on the form

(ajk)j,k=1,...,n+1 =

⎛
⎜⎜⎜⎝

−1 0
. . .

−1
0 +1

⎞
⎟⎟⎟⎠ . (8)
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For s ∈ (0, τ) we consider the box

D = D(s) :=
{
(x, t) ∈ R

n × R+ : |x| < τ − t, t ∈ (0, s)
}
,

whose boundary ∂D = F0 ∪ Fs ∪ F consists of the hypersurfaces F0, Fs

and F . Here F = ∂D ∩ ∂K(0, τ) represents a characteristic surface of the
differential equation (6) with the exterior normal

ν = ν(x, t) = (ν1(x, t), . . . , νn(x, t), νn+1(x, t))

= (ν̃(x, t), νn+1(x, t)) =
( 1√

2

x

|x| ,
1√
2

)
, (x, t) ∈ F .

(9)

The surfaces

F0 :=
{
(x, t) ∈ ∂D \ ∂K(0, τ) : t = 0

}

and
Fs :=

{
(x, t) ∈ ∂D \ ∂K(0, τ) : t = s

}
possess the exterior normals

ν = ν(x, 0) = (0, . . . , 0,−1), (x, 0) ∈ F0 and

ν = ν(x, s) = (0, . . . , 0,+1), (x, s) ∈ Fs,

respectively.
2. We multiply (6) by 2ut(x, t) and calculate for all (x, t) ∈ D the identity

0 = 2ut

(
utt −Δxu(x, t)) + 2q(x, t)(ut(x, t)

)2

=
∂

∂t

[
(ut)

2
]
− 2divx(ut∇xu) + 2∇xut · ∇xu+ 2q(ut)

2

=
∂

∂t

[
|∇xu(x, t)|2 + | ∂

∂t
u(x, t)|2

]
+ divx(−2ut∇xu) + 2q(ut)

2.

(10)

Integration of (10) via the Gaussian integral theorem over the box
D = D(s) yields

0 = 2

∫
D

q(x, t)(ut(x, t))
2 dx dt+

∫
Fs

{
|∇xu(x, s)|2 + | ∂

∂t
u(x, s)|2

}
dx

−
∫
F0

{
|∇xu(x, 0)|2 + | ∂

∂t
u(x, 0)|2

}
dx

+

∫
F

{
− 2ut∇xu · ν̃ +

1√
2

(
|∇xu|2 + |ut|2

)}
dσ(x, t)

≥
∫
Fs

{
|∇xu(x, s)|2 + |ut(x, s)|2

}
dx−

∫
F0

{
|∇xu(x, 0)|2 + |ut(x, 0)|2

}
dx.



396 Chapter 6 Linear Partial Differential Equations in R
n

Here we observe that the term q(ut)
2 is nonnegative, and formula (9)

implies

|2ut∇xu · ν̃| ≤ 2|ut||∇xu||ν̃| =
2√
2
|ut||∇xu| ≤

1√
2

(
|∇xu|2 + |ut|2

)
onF .

We conclude∫
Fs

{
|∇xu(x, s)|2 + | ∂

∂t
u(x, s)|2

}
dx ≤

∫
F0

{
|∇xu(x, 0)|2 + | ∂

∂t
u(x, 0)|2

}
dx.

q.e.d.

As a corollary of Theorem 4.6 we obtain

Theorem 4.7. (Uniqueness of Cauchy’s initial value problem for the
wave equation)
Let the assumptions of Theorem 4.6 be fulfilled, and additionally u = u(x, t)
may satisfy the homogeneous Cauchy initial conditions

u(x, 0) = 0 = ut(x, 0) for all x ∈ R
n with |x− ξ| < cτ. (11)

Then we have u(x, t) ≡ 0 on K = K(ξ, τ).

Proof: From the initial conditions (11) we obtain

c2|∇xu(x, 0)|2 + | ∂
∂t
u(x, 0)|2 = 0, |x− ξ| < cτ,

and the energy estimate in Theorem 4.6 yields
∫

x:|x−ξ|<c(τ−s)

{
c2|∇xu(x, s)|2 + | ∂

∂t
u(x, s)|2

}
dx = 0 for all s ∈ (0, τ).

This implies ∇xu(x, t) ≡ 0 ≡ ut(x, t) on K and consequently u(x, t) ≡ const.
Again from (11) we obtain

u(x, t) ≡ 0 in K.
q.e.d.

In the sections Section 5 and Section 6, we shall explicitly solve Cauchy’s initial
value problem for the wave equation, with the aid of integral formulas: At
first, in the odd dimensions n = 1, 3, 5, . . . and later for the even dimensions
n = 2, 4, 6, . . ..

We now return to the general differential equation (1): For an ordinary differ-
ential equation of second order we prescribe the value of the function and its
first derivative at one point as initial values. Here we shall treat the higher-
dimensional analogue, namely Cauchy’s initial value problem for the partial
differential equation (1).
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In the domain Ω ⊂ R
n+1 the partial differential equation

Lu(y) = h(y), y ∈ Ω with u = u(y) ∈ C2(Ω) (12)

may be given due to (1). Furthermore, let the function

ϕ = ϕ(y) : Ω → R ∈ C3(Ω) with ∇ϕ(y) �= 0, y ∈ Ω

represent a hypersurface in R
n+1, namely

∅ �= F :=
{
y ∈ Ω : ϕ(y) = 0

}
⊂ Ω.

On F we prescribe the function f = f(y) : F → R ∈ C2(F) , and we require
the following initial condition of order 0 in

u(y) = f(y), y ∈ F . (13)

The derivatives of u tangential to the surface F are already prescribed by this
initial condition. Denoting the normal to the surface F by

ν(y) := |∇ϕ(y)|−1∇ϕ(y), y ∈ F

we additionally prescribe a function

g = g(y) : F → R ∈ C1(F)

and require the following initial condition of the first order:

∂

∂ν
u(y) = g(y), y ∈ F . (14)

The function ∇u(y) on F is already determined by (13) and (14).

We now recommend to introduce new coordinates as follows: Take the domain
Γ ⊂ R

n and the regular parameter representation

γ = γ(x1, . . . , xn) : Γ → F ∈ C2(Γ )

of the surface F . We denote the parametric normal to the surface F by

ν(x1, . . . , xn) := ν(γ(x1, . . . , xn)), x = (x1, . . . , xn) ∈ Γ.

Then we consider the parameter transformation

θ = θ(x1, . . . , xn, t) : Γε → Ω ∈ C2(Γε,R
n+1)

on the box Γε := Γ × (−ε, ε) ⊂ R
n+1 defined as follows:

θ(x1, . . . , xn, t) := γ(x1, . . . , xn) + tν(x1, . . . , xn),

x = (x1, . . . , xn) ∈ Γ, t ∈ (−ε, ε).
(15)
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Here ε > 0 is chosen sufficiently small, and we set Ω := θ(Γε). Now

∂θ = (θx1 , . . . , θxn , θt) : Γε → R
(n+1)×(n+1)

denotes the functional matrix of θ, and we see

∂θ(x, 0) = (γx1 , . . . , γxn , ν)
∣∣∣
x
. (16)

The symmetric matrix function

B−1(x, t) := ∂θ(x, t) ◦ (∂θ(x, t))∗, (x, t) ∈ Γε (17)

satisfies

B−1(x, 0) ◦ ν(x) = (γx1 , . . . , γxn , ν) ◦

⎛
⎜⎜⎜⎝
γ∗x1

...
γ∗xn

ν∗

⎞
⎟⎟⎟⎠ ◦ ν(x) = ν(x), x ∈ Γ. (18)

Therefore, ν(x) is an eigenvector of the matrix B−1(x, 0) to the eigenvalue 1,
and the same is correct for the matrix B(x, 0). We now consider the function

ũ(x1, . . . , xn, t) := u ◦ θ(x1, . . . , xn, t) : Γε → R. (19)

Setting
f̃(x) := f ◦ γ(x), g̃(x) := g ◦ γ(x), x ∈ Γ, (20)

we obtain the initial condition of order 0 equivalent to (13), namely

ũ(x, 0) = f̃(x), x ∈ Γ, (21)

and the initial condition of order 1 equivalent to (14), namely

∂

∂t
ũ(x, 0) = g̃(x), x ∈ Γ. (22)

We now prove the following

Theorem 4.8. Let F be a characteristic surface for the differential operator
L in (1), and the function u = u(y) ∈ C2(Ω) may satisfy the Cauchy initial
conditions (13) and (14) on F . Then the expression Lu(y) for all y ∈ F is
already determined by the initial values f ∈ C2(F) and g ∈ C1(F).

Proof:

1. With the aid of the parameter transformation θ we make the transition
to the function ũ(x, t),(x, t) ∈ Γε - due to (19) - satisfying the initial
conditions (21) and (22) on Γ . By differentiation to xj and xk we obtain
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ũxj (x, 0) = f̃xj (x), ũxjxk
(x, 0) = f̃xjxk

(x), ũxjt(x, 0) = g̃xj (x)

for all x ∈ Γ and j, k = 1, . . . , n. The relation (19) implies

∇(x,t)ũ(x, t) = ∇yu(θ(x, t)) ◦ ∂θ(x, t), (x, t) ∈ Γε. (23)

We set

∂u(y) := (∇yu(y))
∗, y ∈ Ω and ∂ũ(x, t) := (∇(x,t)ũ(x, t))

∗, (x, t) ∈ Γε,

and rewrite (23) into the form

∂ũ(x, t) = (∂θ(x, t))∗ ◦ ∂u(θ(x, t)), (x, t) ∈ Γε.

Multiplying this identity by ∂θ(x, t) from the left, we see

∂θ(x, t) ◦ ∂ũ(x, t) = ∂θ(x, t) ◦ (∂θ(x, t))∗ ◦ ∂u(θ(x, t)).

Noticing B−1 = ∂θ ◦ (∂θ)∗ , we conclude

∂u(θ(x, t)) = B(x, t) ◦ ∂θ(x, t) ◦ ∂ũ(x, t), (x, t) ∈ Γε. (24)

2. The identity (24) for t = 0 implies that∇yu(y) is determined for all y ∈ F .
Now we note for all y ∈ Ω that

Lu(y) =
n+1∑
j,k=1

ajk(y)
∂2

∂yj∂yk
u(y) +

n+1∑
j=1

bj(y)
∂

∂yj
u(y) + c(y)u(y)

= Mu(y) +

n+1∑
k=1

{
bk(y)−

n+1∑
j=1

∂ajk
∂yj

(y)

}
∂

∂yk
u(y) + c(y)u(y)

(25)

holds true, setting

Mu(y) :=

n+1∑
j=1

∂

∂yj

{ n+1∑
k=1

ajk(y)
∂

∂yk
u(y)

}
, y ∈ Ω.

Therefore, we only have to show that Mu(y) is determined by the initial
data for all y ∈ F . In this context we utilize the so called weak differential
equation as follows: Let χ = χ(y1, . . . , yn+1) ∈ C∞

0 (Ω) be an arbitrary
test function and

χ̃ = χ̃(x, t) = χ ◦ θ(x, t) : Γε → R ∈ C2
0 (Γε)

denote the transformed test function. Parallel to (24) we obtain the rela-
tion

∂χ(θ(x, t)) = B(x, t) ◦ ∂θ(x, t) ◦ ∂χ̃(x, t), (x, t) ∈ Γε. (26)
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The test function χ ∈ C∞
0 (Ω) being given arbitrarily, the Gaussian inte-

gral theorem yields the identity

∫
Ω

χ(y)Mu(y) dy =

∫
Ω

{
χ(y)

n+1∑
j=1

∂

∂yj

( n+1∑
k=1

ajk(y)
∂

∂yk
u(y)

)}
dy

= −
∫
Ω

{ n+1∑
j,k=1

ajk(y)
∂

∂yj
χ(y)

∂

∂yk
u(y)

}
dy (27)

= −
∫
Ω

{
(∂χ(y))∗ ◦A(y) ◦ ∂u(y)

}
dy

with the symmetric matrix A(y) := (ajk(y))j,k=1,...,n+1, y ∈ Ω.
3. We now apply the transformation formula for multiple integrals: For the

mapping y = θ(x, t), (x, t) ∈ Γε we denote the modulus of the functional
determinant by

Jθ(x, t) := | det ∂θ(x, t)|, (x, t) ∈ Γε.

Taking the identities (24) and (26) into account, the relation (27) implies
∫
Ω

χ(y)Mu(y) dy = −
∫
Ω

{
(∂χ(y))∗ ◦A(y) ◦ ∂u(y)

}
dy

= −
∫
Γε

(∂χ(θ(x, t)))∗ ◦A(θ(x, t)) ◦ ∂u(θ(x, t))Jθ(x, t) dx dt

= −
∫
Γε

(∂χ̃(x, t))∗ ◦ C(x, t) ◦ ∂ũ(x, t)Jθ(x, t) dx dt

with

(cjk(x, t))j,k=1,...,n+1 = C(x, t)

:= (∂θ(x, t))∗ ◦B(x, t) ◦A(θ(x, t)) ◦B(x, t) ◦ ∂θ(x, t).

Then we calculate

cn+1,n+1(x, 0) = ν(x)
∗ ◦B(x, 0) ◦A(γ(x)) ◦B(x, 0) ◦ ν(x)

= (B(x, 0) ◦ ν(x))∗ ◦A(γ(x)) ◦B(x, 0) ◦ ν(x)

= ν(x)∗ ◦A(γ(x)) ◦ ν(x) = 0, x ∈ Γ,

since F is a characteristic surface for L. Consequently, we have
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cn+1,n+1(x, 0) = 0 for all x ∈ Γ. (28)

Additionally, we observe

∫
Ω

χ(y)Mu(y) dy = −
∫
Γε

{ n∑
j,k=1

cjk(x, t)χ̃xj ũxk

}
Jθ(x, t) dx dt

−
∫
Γε

{ n∑
j=1

cj,n+1(x, t)χ̃xj ũt

}
Jθ(x, t) dx dt

−
∫
Γε

{ n∑
k=1

cn+1,k(x, t)χ̃tũxk

}
Jθ(x, t) dx dt

−
∫
Γε

cn+1,n+1(x, t)χ̃tũtJθ(x, t) dx dt

and find
∫
Ω

χ(y)Mu(y) dy =

n∑
j,k=1

∫
Γε

(
cjk(x, t)ũxk

Jθ

)
xj

χ̃(x, t) dx dt

+

n∑
j=1

∫
Γε

(
cj,n+1(x, t)ũtJθ

)
xj

χ̃(x, t) dx dt

+

n∑
k=1

∫
Γε

(
cn+1,k(x, t)ũxk

Jθ

)
t
χ̃(x, t) dx dt

+

∫
Γε

(
cn+1,n+1(x, t)Jθ

)
t
ũtχ̃(x, t) dx dt

+

∫
Γε

cn+1,n+1(x, t)ũttJθχ̃(x, t) dx dt.

(29)

4. On the ball
B := {z ∈ R

n+1 : |z| < 1}
let us take the test function

ψ = ψ(z) ∈ C∞
0 (B, [0,+∞)) satisfying

∫
B

ψ(z) dz = 1.

The point η ∈ F being fixed, we consider the sequence of test functions

χl(y) := l
n+1ψ(l(y − η)), y ∈ R

n+1 for l = 1, 2, . . .
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Now the statement

χl(y) = 0 for all |y − η| ≥ l−1

is correct, and we see∫
Rn+1

χl(y) dy = 1 for l = 1, 2, . . .

With the notation

χ̃l(x, t) := χl ◦ θ(x, t) for l = 1, 2, . . .

the formula (28) implies

lim
l→∞

∫
Γε

cn+1,n+1(x, t)ũtt(x, t)Jθ(x, t)χ̃l(x, t) dx dt = 0. (30)

Inserting the sequence of test functions {χl(y)}l=1,2,... into the identity
(29), the last term on the right-hand side disappears in the limit. Since
the other terms are uniquely determined by F , f(y) and g(y), y ∈ F
- due to part 1 of the proof - and the left-hand side satisfies

Mu(η) = lim
l→∞

∫
Ω

χl(y)Mu(y) dy, η ∈ F

in the limit, the proof of the theorem is established. q.e.d.

Remarks:

1. The Cauchy initial value problem (12), (13), (14) cannot be solved for ar-
bitrary right-hand sides h, if F represents a characteristic surface. There-
fore, one should start with noncharacteristic initial surfaces F in order to
solve the Cauchy initial value problem. For the wave equation we shall
choose the noncharacteristic basic plane of the cone from above as the
initial plane.

2. When we consider the Cauchy initial value problem (12), (13),(14) on a
noncharacteristic surface F , the condition

cn+1,n+1(x, 0) = ν(x)
∗ ◦A(γ(x)) ◦ ν(x) �= 0, x ∈ Γ,

is valid. Localizing the equation (29) as in part 4 of the proof above, we
can determine ũtt(x, 0), x ∈ Γ by the differential equation (12) and the
initial data (13), (14). Consequently, the second derivatives

(uyjyk
(y))j,k=1,...,n+1, y ∈ F

are already prescribed for the Cauchy initial value problem (12), (13),
(14) on noncharacteristic surfaces. Similar statements can be established
for the higher derivatives in case they exist.
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5 The Wave Equation in R
n for n = 1, 3, 2

We take sufficiently regular functions f = f(x1, . . . , xn), g = g(x1, . . . , xn) :
R

n → R and intend to solve the Cauchy initial value problem for the n-
dimensional wave equation:

u = u(x, t) = u(x1, . . . , xn, t) ∈ C2(Rn × [0,+∞),R), (1)

�u(x, t) = ∂2

∂t2
u(x, t)− c2Δxu(x, t) = 0, (x, t) ∈ R

n × R+, (2)

u(x, 0) = f(x),
∂

∂t
u(x, 0) = g(x), x ∈ R

n. (3)

Here c > 0 denotes a positive constant. We combine (1), (2),(3) to the problem
P(f, g, n) or briefly P(n). At first, we consider the case n=1 of the one-
dimensional wave equation

utt(x, t)− c2uxx(x, t) = 0, (x, t) ∈ R× R. (4)

In physics the function u(x, t) describes the vertical deviation of a swinging
string from the resting position x ∈ R in dependence of the time t ∈ R.
Due to Section 4, Example 4.5, we obtain the characteristic lines of the one-
dimensional wave equation

x = α± ct, t ∈ R, (5)

with arbitrary α ∈ R. We now introduce these characteristics according to

ξ = x+ ct, η = x− ct (6)

as characteristic parameters into the differential equation (4). We observe (6)
and deduce

x =
1

2
(ξ + η), t =

1

2c
(ξ − η). (7)

Then we consider the function

U(ξ, η) := u
(1
2
(ξ + η),

1

2c
(ξ − η)

)
, (ξ, η) ∈ R

2. (8)

On account of

Uξ = ux

(1
2
(ξ + η),

1

2c
(ξ − η)

)1
2
+ ut

(1
2
(ξ + η),

1

2c
(ξ − η)

) 1

2c

we obtain

Uξη =
1

4
uxx

(1
2
(ξ + η),

1

2c
(ξ − η)

)
− 1

4c
uxt(. . .) +

1

4c
utx(. . .)−

1

4c2
utt(. . .)

= − 1

4c2

{
utt

(1
2
(ξ + η),

1

2c
(ξ − η)

)
− c2uxx

(1
2
(ξ + η),

1

2c
(ξ − η)

)}

= − 1

4c2
�u
(1
2
(ξ + η),

1

2c
(ξ − η)

)
.
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Therefore, the wave equation (4) appears with characteristic parameters in
the form

∂2

∂ξ∂η
U(ξ, η) = 0, (ξ, η) ∈ R

2. (9)

On account of
∂

∂η
Uξ(ξ, η) = 0 the function Uξ = F ′(ξ) is independent of η

and we see
U(ξ, η) = F (ξ) +G(η).

Returning to the parameters (x, t) we obtain

u(x, t) = F (x+ ct) +G(x− ct), (x, t) ∈ R
2. (10)

The solution belongs to the class C2(R2) if and only if F,G ∈ C2(R) is valid.
Now the functions v(x, t) := F (x + ct) and w(x, t) := G(x − ct) satisfy the
equations

vt − cvx = 0 and wt + cwx = 0 in R
2,

respectively. Then we obtain a solution of (4) by superposition with C2(R2)-
solutions for these equations. Here we remark that the one-dimensional
d’Alembert operator can be decomposed as follows:

� =
∂2

∂t2
− c2 ∂

2

∂x2
=
( ∂
∂t

+ c
∂

∂x

)( ∂
∂t

− c ∂
∂x

)
. (11)

In the physical interpretation, the solution (10) of (4) consists of an incoming
and an outgoing wave, each moving with the same absolute velocity into
opposite directions.

We are now going to solve the initial value problem P(f, g, 1): We require

f = f(x) ∈ C2(R,R), g = g(x) ∈ C1(R,R)

and deduce the following relation for the function u(x, y) given in (10):

u(x, 0) = F (x) +G(x) = f(x),

ux(x, 0) = F
′(x) +G′(x) = f ′(x),

ut(x, 0) = cF
′(x)− cG′(x) = g(x), x ∈ R.

The last two equations yield

F ′(x) =
1

2c
{cf ′(x) + g(x)} =

1

2
f ′(x) +

1

2c
g(x),

G′(x) =
1

2c
{cf ′(x)− g(x)} =

1

2
f ′(x)− 1

2c
g(x), x ∈ R,

and integration from 0 to x gives
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F (x) =
1

2
f(x) +

1

2c

x∫
0

g(ξ) dξ + c1,

G(x) =
1

2
f(x)− 1

2c

x∫
0

g(ξ) dξ + c2

with the two constants c1, c2 ∈ R. The equation F (x) +G(x) = f(x) implies
c1 + c2 = 0, and the solution of Cauchy’s initial value problem P(f, g, 1) has
the representation

u(x, t) = F (x+ ct) +G(x− ct) = 1

2

{
f(x+ ct) + f(x− ct)

}
+

1

2c

x+ct∫
x−ct

g(ξ) dξ

for x ∈ R, t ∈ R. Utilizing Theorem 4.7 in Section 4, we finally obtain the
following

Theorem 5.1. (d’Alembert)
For the given functions f = f(x) ∈ C2(R) and g = g(x) ∈ C1(R) the expres-
sion

u(x, t) =
1

2

{
f(x+ ct) + f(x− ct)

}
+

1

2c

x+ct∫
x−ct

g(ξ) dξ, (x, t) ∈ R
2, (12)

represents the uniquely determined solution of Cauchy’s initial value problem
for the one-dimensional wave equation P(f, g, 1).

Remark: (Domain of dependence for the one-dimensional wave equation)
The value of the function u(x, t) depends only on the initial values in the
interval [x − ct, x + ct], which means only on data within the characteristic
cone with the tip (x, t). This is in accordance with the statement of Section 4,
Theorem 4.7. On the other hand, the initial value at the point ξ can only
become effective within the double cone{

(x, t) ∈ R
2 : |x− ξ| = c|t|

}
.

Therefore, the signals can propagate with the velocity c at most.

We now consider Cauchy’s initial value problem for the wave equation in R
n

and arbitrary n ∈ N. In d’Alembert’s solution formula (12) already appears
a spherical mean value, which will enable us in higher dimensions n ∈ N as
well, to solve the problems P(f, g, n) explicitly.

Definition 5.2. For f = f(x) ∈ C2(Rn) the associate function
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v = v(x, r) =M(x, r; f) :=
1

ωn

∫
|ξ|=1

f(x+ rξ) dσ(ξ), (x, r) ∈ R
n × R (13)

is denoted as the spherical integral-mean-value of f over the sphere

∂B|r|(x) :=
{
y ∈ R

n : |y − x| = |r|
}
.

Theorem 5.3. (F. John)
For f = f(x) ∈ Ck(Rn) given with k ≥ 2, the function

v = v(x, r) =M(x, r; f) : Rn × R → R

belongs to the regularity class Ck(Rn ×R), and the following statements hold
true:

a) v(x, 0) = f(x) for all x ∈ R
n (Initial value),

b) v(x,−r) = v(x, r) for all x ∈ R
n, r ∈ R (Even radial symmetry),

c)
∂

∂r
v(x, 0) = 0 for all x ∈ R

n (Radial orthogonality),

d)
∂2

∂r2
v(x, r) +

n− 1

r

∂

∂r
v(x, r)−Δxv(x, r) = 0 in R

n × (R \ {0})

(Darboux’s differential equation).

Proof:

a) From (13) we infer v ∈ Ck(Rn × R) and

v(x, 0) =
1

ωn

∫
|ξ|=1

f(x) dσ(ξ) = f(x) for all x ∈ R
n.

b) and c) Once more we refer to (13) and see v(x,−r) = v(x, r) immediately,
while differentiation yields −vr(x, 0) = vr(x, 0) for all x ∈ R

n.
d) We introduce polar coordinates on the sphere

Sn−1(x) := {y ∈ R
n : |y − x| = 1}

as follows:
y = x+ rξ, ξ ∈ Sn−1, r > 0.

We remind the reader of Section 8 in Chapter 1, and the Laplace operator
with these coordinates appears in the form

Δ =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
Λ,

denoting the Laplace-Beltrami operator on the sphere Sn−1 by Λ. In The-
orem 8.7 of Section 8 from Chapter 1, we have proved the symmetry of Λ
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on Sn−1. Consequently, we obtain the following equation for all x ∈ R
n

and r > 0:

Δxv(x, r) =
1

ωn

∫
|ξ|=1

Δxf(x+ rξ) dσ(ξ)

=
1

ωn

∫
|ξ|=1

{
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
Λ

}
f(x+ rξ) dσ(ξ)

=

{
∂2

∂r2
+
n− 1

r

∂

∂r

}
v(x, r) +

1

r2ωn

∫
|ξ|=1

1 ·Λf(x+ rξ) dσ(ξ)

=

{
∂2

∂r2
+
n− 1

r

∂

∂r

}
v(x, r) +

1

r2ωn

∫
|ξ|=1

(Λ1) · f(x+ rξ) dσ(ξ)

=

{
∂2

∂r2
+
n− 1

r

∂

∂r

}
v(x, r)

utilizing Λ1 = 0. Therefore, Darboux’s differential equation is satified for
all x ∈ R

n and r > 0. The invariance with respect to the reflection r �→ −r
implies that the Darboux equation remains valid for all x ∈ R

n and r < 0.
q.e.d.

We now consider the case n=3 of the three-dimensional wave equation. In
physics their solutions represent waves from acoustics and optics. We prove
the following

Theorem 5.4. (Kirchhoff)
Let the functions f = f(x) ∈ C3(R3) and g = g(x) ∈ C2(R3) be given.
Then Cauchy’s initial value problem P(f, g, 3) for the three-dimensional wave
equation has the unique solution

u(x, t) =
∂

∂t

{
tM(x, ct; f)

}
+ tM(x, ct; g)

=
1

4πc2t2

∫
|y−x|=ct

∫ {
tg(y) + f(y) +∇f(y) · (y − x)

}
dσ(y)

(14)

for (x, t) ∈ R
3 × R+.

Proof:

1. We specialize Theorem 5.3 to the case n = 3, and the function

v(x, r) =M(x, r; g), (x, r) ∈ R
3 × (R \ {0})
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satisfies Darboux’s differential equation

0 = vrr(x, r) +
2

r
vr(x, r)−Δxv(x, r) =

1

r
{rv(x, r)}rr −Δxv(x, r).

The multiplication with r yields

0 =
∂2

∂r2
{rv(x, r)} −Δx{rv(x, r)}, (x, r) ∈ R

3 × R.

We now consider the function

ψ(x, t) :=
1

c

{
ctv(x, ct)

}
= tv(x, ct) = t

1

4π

∫
|ξ|=1

∫
g(x+ ctξ) dσ(ξ)

with (x, t) ∈ R
3 × R. This function fulfills the wave equation

�ψ(x, t) = ∂2

∂t2
ψ(x, t)− c2Δxψ(x, t) = 0 in R

3 × R (15)

and is subject to the initial conditions

ψ(x, 0) = 0,
∂

∂t
ψ(x, 0) = v(x, 0) = g(x) for all x ∈ R

3. (16)

2. Parallel to part 1 of the proof we see that the function

χ(x, t) := tM(x, ct; f) =
t

4π

∫
|ξ|=1

∫
f(x+ ctξ) dσ(ξ), (x, t) ∈ R

3 × R,

satifies the wave equation

�χ(x, t) = 0 in R
3 × R.

Furthermore, we have χ ∈ C3(R3 × R). Then we consider the function

ϕ(x, t) :=
∂

∂t
χ(x, t) =

∂

∂t
{tM(x, ct; f)}

= M(x, ct; f) + t
∂

∂t
M(x, ct; f)

=
1

4π

∫
|ξ|=1

∫
f(x+ ctξ) dσ(ξ) +

t

4π

∂

∂t

{ ∫
|ξ|=1

∫
f(x+ ctξ) dσ(ξ)

}

=
1

4π

∫
|ξ|=1

∫ {
f(x+ ctξ) + ct∇f(x+ ctξ) · ξ

}
dσ(ξ).
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As well the function ϕ fulfills the wave equation, and we have the initial
conditions

ϕ(x, 0) =M(x, 0; f) = f(x),

∂

∂t
ϕ(x, 0) =

∂2

∂t2
χ(x, 0) = c2Δxχ(x, 0)

= c2
{
tΔxM(x, ct; f)

}
t=0

= 0 for all x ∈ R
3.

(17)

3. With the expression

u(x, t) := ϕ(x, t) + ψ(x, t) =
∂

∂t

{
tM(x, ct; f)

}
+ tM(x, ct; g)

=
1

4π

∫
|ξ|=1

∫ {
f(x+ ctξ) + ct∇f(x+ ctξ) · ξ + tg(x+ ctξ)

}
dσ(ξ)

for (x, t) ∈ R
3×R we obtain a solution of the wave equation. The relations

(16) and (17) imply the initial conditions

u(x, 0) = f(x),
∂

∂t
u(x, 0) = g(x), x ∈ R

3.

With the aid of the substitution

y = x+ ctξ, dσ(y) = c2t2dσ(ξ)

we deduce the following identity for all (x, t) ∈ R
3 × R+:

u(x, t) =
1

4πc2t2

∫
|y−x|=ct

∫ {
tg(y) + f(y) +∇f(y) · (y − x)

}
dσ(y).

q.e.d.

We now treat the case n=2 with the aid of Hadamard’s method of descent.
Solutions of the two-dimensional wave equation model the movements of sur-
faces, for instance those of water waves.

Theorem 5.5. Given the functions f = f(y) = f(y1, y2) ∈ C3(R2) and
g = g(y) = g(y1, y2) ∈ C2(R2), the unique solution of Cauchy’s initial value
problem P(f, g, 2) appears in the form

u(x, t) = u(x1, x2, t)

=
1

2πct

∫
y:|y−x|<ct

∫ {
tg(y) + f(y) +∇f(y) · (y − x)

} 1√
c2t2 − r2

dy1 dy2

for (x, t) ∈ R
2 × R+ with r := |y − x| =

√
(y1 − x1)2 + (y2 − x2)2.
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Proof: For x ∈ R
2 = R

2 × {0} and t ∈ R+ we consider the function

u(x, t) =
1

4πc2t2

∫
|η−x|=ct

∫ {
tg(η) + f(η) +∇f(η) · (η − x)

}
dσ(η)

=
1

2πc2t2

∫
|η−x|=ct

z>0

∫ {
tg(y1, y2) + f(y1, y2) +∇f(y1, y2) · (y − x)

}
dσ(η)

(18)
with η = (y1, y2, z) ∈ R

3 and f(η) := f(y1, y2), g(η) := g(y2, y2). We
parametrize the upper hemisphere |η − x| = ct, z > 0 as follows:

c2t2 = |η − x|2 = (y1 − x1)2 + (y2 − x2)2 + z2,

z = z(y) = z(y1, y2) =
√
c2t2 − (y1 − x1)2 − (y2 − x2)2 =

√
c2t2 − r2

using the parameter domain {y = (y1, y2) ∈ R
2 : |y − x| < ct}. On account

of
√

1 +
( ∂
∂r
z(r)
)2

=

√
1 +
( −r√
c2t2 − r2

)2
=

ct√
c2t2 − r2

, r < ct,

the surface element of the upper hemisphere is determined by

dσ(y1, y2) =

√
1 +
( ∂
∂r
z(r)
)2
r dr dϕ =

ct√
c2t2 − r2

dy1 dy2. (19)

Inserting (19) into (18), we deduce

u(x, t) =
1

2πct

∫
y:|y−x|<ct

∫ {
tg(y) + f(y) +∇f(y) · (y − x)

} 1√
c2t2 − r2

dy1 dy2.

q.e.d.

Remarks to Theorem 5.4 and Theorem 5.5:

1. In the case n = 1 the initial regularity f ∈ C2(R), g ∈ C1(R) being
sufficient, we have to assume the initial regularity f ∈ C3(Rn), g ∈ C2(Rn)
for n = 2, 3. Consequently, the wave equation implies a loss of regularity
in the case n = 2, 3. This phenomenon is even strengthened in higher
dimensions (compare Section 6).

2. From Theorem 5.4 we infer that the value of the solution u in the three-
dimensional wave equation at the point (x, t) depends only on the initial
values f and g on the sphere

∂Bct(x) =
{
y ∈ R

3 : |y − x| = ct
}
,

that means ∂Bct(x) is the domain of dependence for u(x, t).
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On the other hand, the initial values f and g near a point y at the time
t = 0 have an influence only on the points (x, t) near the conical surface
|x− y| = ct with the tip x ∈ R

3. The signals in the ball

B := {x ∈ R
3 : |x− y| < �}

have an effect only on u(x, t) in the domain

Ω :=
⋃

x∈B�

M(x) where M(x) :=
{
(z, t) ∈ R

3 × R+ : |z − x| = ct
}
.

Only the signals in R
3 can be sharply transmitted. This is possible, since

the domain of dependence of u(x, t) is a sphere and not an open set in R
3.

This is known as Huygens’s principle in the sharp form. Already for the
wave equation in R

2 (and many other hyperbolic equations) this principle
is violated. According to Theorem 5.5, the solution u(x, t) depends on
the initial values in an open disc for the two-dimensional wave equation.
Therefore, the perturbations especially of water waves propagate infinitely.

3. Assuming f ∈ C3
0 (B) and g ∈ C2

0 (B) with � > 0, Theorem 3 yields a
constant C ∈ (0,+∞) such that

|u(x, t)| ≤ C

t
, (x, t) ∈ R

3 × R+.

Therefore, the waves in R
3, and in R

2 as well (compare the proof of Theo-

rem 5.5), have an amplitude with the asymptotic behavior
1

t
for t→ +∞.

6 The Wave Equation in R
n for n ≥ 2

We now continue our considerations from Section 5, however, we fix the con-
stant in the wave equation to c = 1 – and leave the translation of the results
for arbitrary c > 0 to the reader. We begin with

Theorem 6.1. (Mean value theorem of Asgeirsson)
The following two statements are equivalent for a function u = u(x, y) =
u(x1, . . . , xn, y1, . . . , yn) ∈ C2(Rn × R

n) with n ≥ 2:

I. We have the ultrahyperbolic differential equation

( n∑
i=1

∂2

∂x2i
−

n∑
i=1

∂2

∂y2i

)
u(x1, . . . , xn, y1, . . . , yn) = 0 in R

n×R
n. (1)

II. For all (x, y, r) ∈ R
n × R

n × R+ we have the identity

1

ωn

∫
|ξ|=1

u(x+ rξ, y) dσ(ξ) =
1

ωn

∫
|ξ|=1

u(x, y + rξ) dσ(ξ). (2)
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Proof:

I ⇒ II: Since the relation (2) is invariant with respect to the reflection r →
−r, we can assume r ≥ 0 without loss of generality. We consider the
functions

μ = μ(x, y, r) :=
1

ωn

∫
|ξ|=1

u(x+ rξ, y) dσ(ξ)

and

ν = ν(x, y, r) :=
1

ωn

∫
|ξ|=1

u(x, y + rξ) dσ(ξ)

for (x, y, r) ∈ R
n × R

n × [0,+∞). At first, we note that

μ(x, y, 0) = u(x, y) = ν(x, y, 0) for all (x, y) ∈ R
n × R

n (3)

and

μr(x, y, 0) = 0 = νr(x, y, 0) for all (x, y) ∈ R
n × R

n. (4)

According to Theorem 5.3 in Section 5, the functions μ and ν fulfill the
Darboux differential equations

μrr(x, y, r) +
n− 1

r
μr(x, y, r)−Δxμ(x, y, r) = 0,

νrr(x, y, r) +
n− 1

r
νr(x, y, r)−Δyν(x, y, r) = 0

(5)

for (x, y, r) ∈ R
n×R

n×R+. Furthermore, the ultrahyperbolic differential
equation (1) yields the identity

Δyν(x, y, r) = Δy

{
1

ωn

∫
|ξ|=1

u(x, y + rξ) dσ(ξ)

}

=
1

ωn

∫
|ξ|=1

Δyu(x, y + rξ) dσ(ξ)

=
1

ωn

∫
|ξ|=1

Δxu(x, y + rξ) dσ(ξ)

= Δx

{
1

ωn

∫
|ξ|=1

u(x, y + rξ) dσ(ξ)

}

= Δxν(x, y, r) for all (x, y, r) ∈ R
n × R

n × R+.

On account of (3), (4), and (5) the function ϕ(x, y, r) := μ(x, y, r) −
ν(x, y, r) solves the boundary value problem
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ϕrr(x, y, r) +
n− 1

r
ϕr(x, y, r)−Δxϕ(x, y, r) = 0 inRn × R

n × R+,

ϕ(x, y, 0) = 0, ϕr(x, y, 0) = 0 inRn × R
n.

(6)

Theorem 4.7 from Section 4 implies ϕ(x, y, r) = 0 in each compact subset
of the half-space Rn×R

n×R+ and μ(x, y, r) = ν(x, y, r) in R
n×R

n×R+

or (2), respectively.
II ⇒ I: Let (x0, y0) ∈ R

n × R
n be a point, where the ultrahyperbolic differ-

ential equation (1) is not valid, which means

Δx(x0, y0) �= Δy(x0, y0).

Respecting u ∈ C2(Rn × R
n), we find a number � > 0 such that

Δxu(x
′, y′) �= Δy(x

′′, y′′) for all (x′, y′), (x′′, y′′) ∈ Z(x0, y0). (7)

Here we have set Z(x0, y0) := {(x, y) ∈ R
n×R

n : |x−x0|+ |y−y0| ≤ �}.
We now differentiate (2) with respect to r, and the Gaussian integral
theorem combined with the mean value theorem of integral calculus yield
the following relation at the point (x, y, r) = (x0, y0, �):

0 =

∫
|ξ|=1

∇xu(x0 + �ξ, y0) · ξ dσ(ξ)−
∫

|ξ|=1

∇yu(x0, y0 + �ξ) · ξ dσ(ξ)

=
1

�n−1

∫
|x−x0|≤

Δxu(x, y0) dx−
1

�n−1

∫
|y−y0|≤

Δy(x0, y) dy

=
(
Δxu(x̃, y0)−Δyu(x0, ỹ)

)
|B|�.

(8)

Here we have chosen x̃ ∈ R
n with |x̃ − x0| ≤ � as well as ỹ ∈ R

n with
|ỹ − y0| ≤ � suitably, and |B| denotes the volume of the n-dimensional
unit ball. With (8) a contradiction to (7) now appears. Consequently, the
differential equation (1) is satisfied at all points (x, y) ∈ R

n × R
n. q.e.d.

We now utilize calculations and arguments presented at the beginning of the
n-dimensional potential theory in Section 1 of Chapter 5. Furthermore, we
supply the following statement:

Proposition 6.2. For each number n ∈ N with n ≥ 3 and each continuous
function h = h(t) : [−1, 1] → R ∈ C0([−1, 1]) we have the identity

∫
ξ∈Rn : |ξ|=1

h(ξn) dσ(ξ) = ωn−1

1∫
−1

h(s)(1− s2)
n−3
2 ds.
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Proof: At first, we parametrize∫
|ξ|=1

h(ξn) dσ(ξ)

=

∫
t∈Rn−1 : |t|<1

h(
√

1− t21 − . . .− t2n−1) + h(−
√

1− t21 − . . .− t2n−1)√
1− t21 − . . .− t2n−1

dt1 . . . dtn−1.

Setting t = �τ with � ∈ (0, 1) and τ ∈ R
n−1, |τ | = 1, the formula (1) from

Chapter 5, Section 1 implies

∫
|ξ|=1

h(ξn) dσ(ξ) = ωn−1

1∫
0

h(
√
1− �2) + h(−

√
1− �2)√

1− �2
�n−2 d�.

Finally, we obtain the following identity with the aid of the transformation

s =
√
1− �2, d� = − s√

1− s2
ds as follows:

∫
|ξ|=1

h(ξn) dσ(ξ) = ωn−1

1∫
0

(h(s) + h(−s))1
s
(1− s2)

n−2
2

s√
1− s2

ds

= ωn−1

1∫
0

(h(s) + h(−s))(1− s2)
n−3
2 ds

= ωn−1

1∫
−1

h(s)(1− s2)
n−3
2 ds.

q.e.d.

Proposition 6.3. (Integral equation of Abel)
For the given function f = f(x) ∈ C2(Rn) with n ≥ 3, let u = u(x, t) ∈
C2(Rn,R) be a solution of the problem

�u(x, t) =
( ∂2
∂t2

−Δx

)
u(x, t) = 0 in R

n × R,

u(x, 0) = f(x), ut(x, 0) = 0 in R
n.

(9)

Then the function u is symmetric with respect to reflections at the plane t = 0,
which means

u(x,−t) = u(x, t) for all (x, t) ∈ R
n × R,

and satisfies the integral equation

r∫
−r

u(x, �)(r2−�2)
n−3
2 d� =

ωn
ωn−1

rn−2M(x, r; f), (x, r) ∈ R
n×R+. (10)
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Proof: At first, we note that u has to be symmetric with respect to reflections
at the plane t = 0. More precisely, if u = u(x, t), (x, t) ∈ R

n × [0,+∞) is the
given solution of �u = 0 in R

n × [0,+∞), the function ũ(x, t) := u(x,−t)
satisfies this equation in R

n × (−∞, 0]. The composition

w(x, t) :=

{
u(x, t), x ∈ R

n, t ≥ 0

ũ(x, t), x ∈ R
n, t ≤ 0

fulfills w(x, 0) = f(x), wt(x, 0) = 0 for all x ∈ R
n. Theorem 4.7 in Section 4

implies w = u in R
n×R, and we finally obtain the symmetry property stated.

We now consider the function v = v(x, y) := u(x1, . . . , xn, yn), which satisfies
the ultrahyperbolic differential equation

Δxv(x, y) = Δyv(x, y) in R
n × R

n

according to (9). Furthermore, we have v(x, 0) = f(x), x ∈ R
n and Theorem

6.1 yields

∫
|ξ|=1

v(x, rξ) dσ(ξ) =

∫
|ξ|=1

v(x+ rξ, 0) dσ(ξ)

=

∫
|ξ|=1

f(x+ rξ) dσ(ξ)

= ωnM(x, r; f), (x, r) ∈ R
n × R+.

Taking Proposition 6.2 into account and applying the transformation � = rs

with ds =
d�

r
, we conclude

ωnM(x, r; f) =

∫
|ξ|=1

v(x, rξ) dσ(ξ) =

∫
|ξ|=1

u(x, rξn) dσ(ξ)

= ωn−1

1∫
−1

u(x, rs)(1− s2)
n−3
2 ds

= ωn−1

r∫
−r

u(x, �)
(
1− �2

r2

)n−3
2 1

r
d�

=
ωn−1

rn−2

r∫
−r

u(x, �)(r2 − �2)
n−3
2 d�,

which is equivalent to (10). q.e.d.
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We are going to solve the Abel integral equation (10) for odd dimensions
n ≥ 3, at first. In this context we set m = n−3

2 ∈ {0, 1, 2, . . .} and define the
functions

ϕ(r) :=
ωn
ωn−1

rn−2M(x, r; f), ψ(r) := u(x, r), r ∈ R+

for x ∈ R
n being fixed. Then we rewrite (10) into the form

r∫
−r

ψ(�)(r2 − �2)m d� = ϕ(r), r ∈ R+. (11)

We now assume f ∈ Cm+3(Rn) = C
n+3
2 (Rn). Both sides of the identity (11)

tending to zero when r → 0+, the relation (11) is equivalent to

r∫
−r

ψ(�)(r2 − �2)m−1 d� =
1

2mr

d

dr
ϕ(r), r ∈ R+.

Again both sides tend to zero for r → 0+, and repeating this differentiation
m times we comprehend that (11) is equivalent to the identity

r∫
−r

ψ(�) d� =
1

2mm!

(1
r

d

dr

)m
ϕ(r), r ∈ R+. (12)

An additional differentiation reveals the following relation equivalent to (11),
namely

ψ(r) + ψ(−r) = 1

2mm!

d

dr

(1
r

d

dr

)m
ϕ(r), r ∈ R+. (13)

We now set n = 2k+1 with k ∈ N and obtain m = k− 1 ∈ 0, 1, 2, . . .. Due to
the formula (11) from Chapter 5, Section 1 we have the equation

ωn =
2(Γ ( 12 ))

n

Γ (n2 )
. (14)

Therefore, we determine

ωn
ωn−1

=
ω2k+1

ω2k
=

2(Γ ( 12 ))
2k+1

Γ (k + 1
2 )

:
2(Γ ( 12 ))

2k

Γ (k)

=
Γ ( 12 )Γ (k)

Γ (k + 1
2 )

=
Γ ( 12 )(k − 1)!

1
2 (

1
2 + 1) . . . ( 12 + (k − 1))Γ ( 12 )

=
2k(k − 1)!

1 · 3 · . . . · (2k − 1)
.
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This implies

1

2mm!

ωn
ωn−1

=
1

2k−1(k − 1)!

(k − 1)!2k

1 · 3 · . . . · (2k − 1)
=

2

1 · 3 · . . . · (n− 2)
. (15)

Restricting ourselves to solutions symmetric with respect to reflections at the
plane t = 0, more precisely

u(x,−t) = u(x, t) for all (x, t) ∈ R
n × R, (16)

we infer the following solution of Abel’s integral equation (10) from (13) and
(15):

u(x, t) =
1

1 · 3 · . . . · (n− 2)

∂

∂t

(1
t

∂

∂t

)n−3
2
{
tn−2M(x, t; f)

}
(17)

for (x, t) ∈ R
n × R+ and n = 3, 5, 7, . . . We now prove

Proposition 6.4. Let f ∈ C n+3
2 (Rn) for n = 3, 5, 7, . . . be given, the func-

tion u = u(x, t), (x, t) ∈ R
n × R defined in (17) and reflected due to (16)

then belongs to the regularity class C2(Rn × R) and represents the uniquely
determined solution of Cauchy’s initial value problem (9).

Proof: The function χ(x, t) := M(x, t; f) belongs to the regularity class

C
n+3
2 (Rn × R). The differential operator

1

t

∂

∂t
diminishes the order of dif-

ferentiation by 1. We reflect the function defined in (17) according to (16)
and obtain

u = u(x, t) ∈ C
n+3
2 −n−3

2 −1(Rn × R) = C2(Rn × R).

We note that (1
t

d

dt

)
tk = ktk−2, k ∈ Z

and calculate

1 · 3 · . . . · (n− 2)u(x, t)

=
∂

∂t

(1
t

∂

∂t

)n−3
2
{
tn−2χ(x, t)

}

=
∂

∂t

(1
t

∂

∂t

)n−3
2 −1{

(n− 2)tn−4χ+ tn−3χt

}

=
∂

∂t

(1
t

∂

∂t

)n−3
2 −2{

(n− 2)(n− 4)tn−6χ+ ctn−5χt + t
n−4μ

}

= . . . =
∂

∂t

{
(n− 2)(n− 4) . . . · 1 tχ+ ct2χt + t

3μ
}

= 1 · 3 · . . . · (n− 2)
[
χ(x, t) + ctχt(x, t) + t

2μ(x, t)
]
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with the constants c ∈ R and the functions μ = μ(x, t). Comparing with
Section 5, Theorem 5.3 we see

u(x, 0) = χ(x, 0) = f(x), ut(x, 0) = cχt(x, 0) = 0, x ∈ R
n.

We now show that u satisfies the wave equation: With the aid of Darboux’s
differential equation we deduce

1 · 3 · . . . · (n− 2)
{
utt(x, t)−Δxu(x, t)

}

=
( ∂
∂t

)3(1
t

∂

∂t

)n−3
2
{
tn−2χ(x, t)

}
− ∂

∂t

(1
t

∂

∂t

)n−3
2
{
tn−2Δxχ(x, t)

}

=
( ∂
∂t

)3(1
t

∂

∂t

)n−3
2
{
tn−2χ

}
− ∂

∂t

(1
t

∂

∂t

)n−3
2
{
tn−2χtt + (n− 1)tn−3χt

}
.

We consider the ordinary linear differential operator L : C
n+3
2 (R) → C0(R)

defined by

Lϕ :=
( d
dt

)3(1
t

d

dt

)n−3
2
{
tn−2ϕ

}
− d
dt

(1
t

d

dt

)n−3
2
{
tn−2 d

2

dt2
ϕ+(n−1)tn−3 d

dt
ϕ
}

for ϕ = ϕ(t) ∈ C n+3
2 (R). We show the claim L : C

n+3
2 (R) → O with O(t) ≡ 0.

This relation is proved on the dense space of polynomials, and the Weierstraß
approximation theorem gives the complete statement, which implies �u = 0
in R

n × R.

We take ϕ(t) = tk with k ∈ N ∪ {0} and calculate

Lϕ =
( d
dt

)3(1
t

d

dt

)n−3
2
{
tn+k−2

}

− d
dt

(1
t

d

dt

)n−3
2
{
k(k − 1)tk+n−4 + k(n− 1)tk+n−4

}

=
( d
dt

)3(1
t

d

dt

)n−3
2
{
tn+k−2

}
− d

dt

(1
t

d

dt

)n−3
2
{
k(k + n− 2)tk+n−4

}

=
d

dt

{( d
dt

)2[
(n+ k − 2) · . . . · (k + 3)tk+1

]

−(n+ k − 2) · . . . · (k + 1)ktk−1

}

=
d

dt

{
(n+ k − 2) · . . . · (k + 3)(k + 1)ktk−1

−(n+ k − 2) · . . . · (k + 1)ktk−1

}
= 0.
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From the linearity of L we obtain the statement for arbitrary polynomials,
and consequently the Proposition is proved. q.e.d.

With the aid of Proposition 6.4 we show

Theorem 6.5. Let the functions f = f(x), g = g(x) ∈ C n+3
2 (Rn) with odd

n ≥ 3 be given. Then Cauchy’s initial value problem P(f, g, n) for the n-
dimensional wave equation is uniquely solved by the following function

ψ(x, t) =
1

1 · 3 · . . . · (n− 2)

{
∂

∂t

(1
t

∂

∂t

)n−3
2
(
tn−2M(x, t; f)

)

+
(1
t

∂

∂t

)n−3
2
(
tn−2M(x, t; g)

)}
, (x, t) ∈ R

n × R+.

(18)

Here we abbreviate

M(x, t; f) :=
1

ωn

∫
|ξ|=1

f(x+ tξ) dσ(ξ), (x, t) ∈ R
n × R+.

Proof: According to Proposition 6.4, we consider the following function re-
flected at the plane t = 0 with the aid of (16), namely

u(x, t) :=
1

1 · 3 · . . . · (n− 2)

∂

∂t

(1
t

∂

∂t

)n−3
2
{
tn−2M(x, t; f)

}
, (x, t) ∈ R

n×R+.

Now u(x, t) solves the Cauchy initial value problem

�u(x, t) = 0 in R
n × R,

u(x, 0) = f(x), ut(x, 0) = 0 in R
n.

(19)

Analogously, the function

v(x, t) :=
1

1 · 3 · . . . · (n− 2)

∂

∂t

(1
t

∂

∂t

)n−3
2
{
tn−2M(x, t; g)

}
, (x, t) ∈ R

n × R+

- reflected due to (16) - solves the Cauchy problem

�v(x, t) = 0 in R
n × R,

v(x, 0) = g(x), vt(x, 0) = 0 in R
n.

(20)

We now define the function

w(x, t) :=

t∫
0

v(x, τ) dτ

=
1

1 · 3 · . . . · (n− 2)

t∫
0

∂

∂τ

(1
τ

∂

∂τ

)n−3
2
{
τn−2M(x, τ ; g)

}
dτ

=
1

1 · 3 · . . . · (n− 2)

(1
t

∂

∂t

)n−3
2
{
tn−2M(x, t; g)

}
, (x, t) ∈ R

n × R+,
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and easily see

w(x, 0) = 0, wt(x, 0) = v(x, 0) = g(x) in R
n. (21)

Observing (20) we deduce

wtt(x, t) =
∂

∂t
v(x, t) =

t∫
0

vττ (x, τ) dτ

=

t∫
0

Δxv(x, τ) dτ = Δx

t∫
0

v(x, τ) dτ

= Δxw(x, t),

and consequently
�w(x, t) = 0 in R

n × R+. (22)

On account of (19), (21), and (22) the composition

ψ(x, t) := u(x, t) + w(x, t), (x, t) ∈ R
n × R+

gives us the solution of P(f, g, n) defined in (18). From Theorem 4.7 in Sec-
tion 4 we infer the uniqueness of the solution.

q.e.d.

With the aid of Hadamard’s method of descent we want to solve P(f, g, n) for
even dimensions n ≥ 2:

Theorem 6.6. Let the even, positive integer n ≥ 2 and the two functions

f = f(x), g = g(x) ∈ C
n+4
2 (Rn) be given. Then Cauchy’s initial value prob-

lem P(f, g, n) for the n-dimensional wave equation is uniquely solved by the
following function

ψ(x, t) = αn

{
∂

∂t

(1
t

∂

∂t

)n−2
2

[ t∫
0

sn−1

√
t2 − s2

M(x, s; f) ds

]

+
(1
t

∂

∂t

)n−2
2

[ t∫
0

sn−1

√
t2 − s2

M(x, s; g) ds

]}
, (x, t) ∈ R

n × R+.

Here we abbreviate α2 = 1 and

αn =
1

2 · 4 · . . . · (n− 2)
for n = 4, 6, . . .

Proof:
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1. We extend the initial values onto the whole space R
n+1 as follows:

f∗(x1, . . . , xn, xn+1) := f(x1, . . . , xn),

g∗(x1, . . . , xn, xn+1) := g(x1, . . . , xn)

for (x1, . . . , xn+1) =: y ∈ R
n+1. Observing f∗, g∗ ∈ C

(n+1)+3
2 (Rn+1), we

can explicitly determine the unique solution of P(f∗, g∗, n + 1) with the
aid of Theorem 6.5 as follows:

ψ(y, t) =
1

1 · 3 · . . . · (n− 1)

{
∂

∂t

(1
t

∂

∂t

)n−2
2
(
tn−1M(y, t; f∗)

)

+
(1
t

∂

∂t

)n−2
2
(
tn−1M(y, t; g∗)

)}
, (y, t) ∈ R

n+1 × R+.

(23)
2. We evaluate the integral-mean-value

M(y, t; f∗) =M(x, t; f∗) =
1

ωn+1

∫
ξ∈Rn+1, |ξ|=1

f(x1 + tξ1, . . . , xn + tξn) dσ(ξ).

In this context we choose the parametrization

ξn+1 = ±
√

1− ξ21 − . . .− ξ2n, dσ(ξ) =
dξ1 . . . dξn√

1− ξ21 − . . .− ξ2n
for ξ21 + . . . ξ2n < 1 and obtain

M(x, t; f∗) =
2

ωn+1

∫
ξ21+...ξ2n<1

f(x1 + tξ1, . . . , xn + tξn)√
1− ξ21 − . . .− ξ2n

dξ1 . . . dξn.

We now introduce polar coordinates in R
n as follows: ξi = �ηi for i =

1, . . . , n with � = |ξ| and η = (η1, . . . , ηn) satisfying |η| = 1. Then we
obtain

M(x, t; f∗) =
2

ωn+1

1∫
0

{ �n−1√
1− �2

∫
|η|=1

f(x+ t�η) dσ(η)
}
d�

=
2ωn
ωn+1

1∫
0

�n−1√
1− �2

M(x, t�; f) d�

s=t
=

2ωn
ωn+1

t∫
0

sn−1

tn
√

1− ( st )
2
M(x, s; f) ds

=
2ωn
ωn+1

1

tn−1

t∫
0

sn−1

√
t2 − s2

M(x, s; f) ds.
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3. In the case n = 2 we have 2ωn

ωn+1
= 1. In the case n = 4, 6, . . . we utilize

(14) and calculate

2ωn
ωn+1

= 2
2(Γ ( 12 ))

n

Γ (n2 )
:
2(Γ ( 12 ))

n+1

Γ (n+1
2 )

=
2

Γ ( 12 )

Γ (n+1
2 )

Γ (n2 )

=
2

Γ ( 12 )

Γ ( 12 ) ·
1
2 (

1
2 + 1) . . . ( 12 + (n2 − 1))

1 · 2 · . . . · (n2 − 1)

=
1 · 3 · . . . · (n− 1)

2
n
2 −1 · 1 · 2 · . . . · (n2 − 1)

=
1 · 3 · . . . · (n− 1)

2 · 4 · . . . · (n− 2)
.

4. The function ψ given in (23) does not depend on xn+1. According to the
results from 2. and 3. the solution ψ(x, t) = ψ(x, xn+1, t) of the problem
P(f, g, n) can be represented in the form

ψ(x, t) =
1

2 · 4 · . . . · (n− 2)

{
∂

∂t

(1
t

∂

∂t

)n−2
2

[ t∫
0

sn−1

√
t2 − s2

M(x, s; f) ds

]

+
(1
t

∂

∂t

)n−2
2

[ t∫
0

sn−1

√
t2 − s2

M(x, s; g) ds

]}
, (x, t) ∈ R

n × R+,

for n = 4, 6, 8, . . . In the case n = 2 we obtain

ψ(x, t) =
∂

∂t

[ t∫
0

s√
t2 − s2

M(x, s; f) ds

]
+

t∫
0

s√
t2 − s2

M(x, s; g) ds

for (x, t) ∈ R
2 × R+. q.e.d.

7 The Inhomogeneous Wave Equation and an
Initial-boundary-value Problem

We prescribe the function h = h(x, t) ∈ C2(Rn × [0,+∞),R) and consider
Cauchy’s initial value problem P(f, g, h, n) for the inhomogeneous wave equa-
tion, namely

u = u(x, t) = u(x1, . . . , xn, t) ∈ C2(Rn × [0,+∞),R),

�u(x, t) = h(x, t) in R
n × R+,

u(x, 0) = f(x), ut(x, 0) = g(x) in R
n.

(1)

When we are able to solve the inhomogeneous wave equation for the initial
values f(x) ≡ 0, g(x) ≡ 0 in R

n, the superposition with a solution of the ini-
tial value problem considered in Section 5 and Section 6 for the homogeneous
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wave equation yields a solution of the problem P(f, g, h, n). Consequently, we
assume

f(x) ≡ 0, g(x) ≡ 0, x ∈ R
n (2)

in the sequel. We now construct a solution u(x, t) of P(0, 0, h, n) with the
following ansatz of Duhamel:

u(x, t) =

t∫
0

U(x, t, s) ds, (x, t) ∈ R
n × R+. (3)

Here the functions U = U(x, t, s) are solutions of the wave equation for each
fixed s ∈ [0, t]

�U(x, t, s) = ∂2

∂t2
U(x, t, s)− c2ΔxU(x, t, s) ≡ 0 in R

n × R+, (4)

satisfying the initial conditions

U(x, s, s) = 0, Ut(x, s, s) = h(x, s), x ∈ R
n. (5)

Then the function u from (3) solves the problem P(0, 0, h, n). We evidently
have u(x, 0) = 0, and the equation

ut(x, t) = U(x, t, t) +

t∫
0

Ut(x, t, s) ds =

t∫
0

Ut(x, t, s) ds

implies ut(x, 0) = 0. Furthermore, we calculate

utt(x, t) = Ut(x, t, t) +

t∫
0

Utt(x, t, s) ds

= h(x, t) + c2
t∫

0

ΔxU(x, t, s) ds

= h(x, t) + c2Δxu(x, t), (x, t) ∈ R
n × R+.

Alternatively to the problem (4) and (5), we recommend the transition to the
function

V (x, t, s) = U(x, t+ s, s), (6)

satisfying the problem

�V (x, t, s) ≡ 0, (x, t) ∈ R
n × R+,

V (x, 0, s) = 0, Vt(x, 0, s) = h(x, s), x ∈ R
n,

(7)
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for each fixed s ∈ [0, t]. Now we can explicitly solve problem (7) with the aid
of integral formulas from Section 5 and Section 6. We confine ourselves to the
important case n = 3 in physics, and obtain from Section 5, Theorem 5.4 the
formula

V (x, t, s) =
1

4πc2t

∫
|y−x|=ct

∫
h(y, s) dσ(y),

for h = h(x, t) ∈ C2(R3 × [0,+∞)). Inserting

U(x, t, s) = V (x, t− s, s) = 1

4πc2(t− s)

∫
|y−x|=c(t−s)

∫
h(y, s) dσ(y), s ∈ [0, t]

into Duhamel’s formula (3), we have proved the following

Theorem 7.1. Let h = h(x, t) ∈ C2(R3 × [0,+∞)) be given. Then Cauchy’s
initial value problem P(0, 0, h, 3) for the inhomogeneous wave equation is
uniquely solved by the function

u = u(x, t) =
1

4πc2

t∫
0

{
1

t− s

∫
|y−x|=c(t−s)

∫
h(y, s) dσ(y)

}
ds, (x, t) ∈ R

3 × R+.

(8)

Remark: The solution u(x, t) only depends on the values of h restricted to
the backward characteristic cone{

(y, s) ∈ R
3 × R : |y − x| = c(t− s), 0 < s < t

}

with the tip (x, t) ∈ R
3 × R+ and the basic surface in the plane t = 0.

So far, we only have considered solutions of the wave equation extending onto
the whole space R

n, n ∈ N. We now choose a bounded open set Ω ⊂ R
n with

smooth regular C2-boundary, and investigate the following initial-boundary-
value problem P0(f, g,Ω) for the n-dimensional wave equation: We look for a
function u = u(x, t) : Ω → R in the class

F :=

{
v(x, t) ∈ C2(Ω × [0,+∞)) :

v(·, t), vt(·, t), vtt(·, t) ∈ C0(Ω)

for all t ∈ [0,+∞)

}
,

satisfying

�u(x, t) = utt(x, t)− c2Δxu(x, t) ≡ 0 in Ω × (0,+∞),

u(x, 0) = f(x) in Ω,

ut(x, 0) = g(x) in Ω,

u(x, t) = 0 in ∂Ω × [0,+∞).

(9)
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Here f, g : Ω → R are initial data of the regularity class C1(Ω). The energy
of u at the time t is determined by

E(t) :=
1

2

∫
Ω

{
|ut(x, t)|2 + c2|∇xu(x, t)|2

}
dx, 0 ≤ t < +∞. (10)

A solution u ∈ F of (9) possesses finite energy. This can be seen by partial
integration, where we utilize Proposition 9.1 (Giesecke, E.Heinz) from Chap-
ter 8, Section 9. Let u ∈ F be a solution of the problem P0(f, g,Ω). We now
deduce

d

dt
E(t) =

∫
Ω

{
ututt + c

2∇xu · ∇xut

}
dx

=

∫
Ω

{
ututt − c2utΔxu

}
dx

=

∫
Ω

ut�u dx = 0, t ∈ [0,+∞).

This implies
E(t) = const, t ∈ [0,+∞) (11)

for the solutions u = u(x, t) ∈ F of P0(f, g,Ω). For initial data

f(x) ≡ 0, g(x) ≡ 0, x ∈ Ω

we obtain

E(0) =
1

2

∫
Ω

{
(g(x))2 + c2|∇f(x)|2

}
dx.

Consequently, the condition E(t) ≡ 0, t ∈ [0,+∞) holds true which implies

ut ≡ 0, ∇xu ≡ 0 in Ω × [0,+∞).

We get u(x, t) ≡ 0 for homogeneous initial values f ≡ 0 ≡ g. Since (9) is a
linear problem, we have established the following

Theorem 7.2. The problem P0(f, g,Ω) admits at most one solution.

With the aid of the spectral theory (compare Chapter 8, Section 9) we are
going to construct a solution of P0(f, g,Ω). There we prove the spectral theo-
rem of H. Weyl: For the domain Ω given as above, there exists a sequence of
eigenfunctions vk = vk(x) : Ω → R ∈ C2(Ω) ∩ C0(Ω) with

vk(x) = 0, x ∈ ∂Ω, and

∫
Ω

(vk(x))
2 dx = 1
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belonging to the eigenvalues 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .→ +∞ such that

Δvk(x) + λkvk(x) = 0, x ∈ Ω, (12)

for k = 1, 2, . . . is fulfilled. These functions {vk(x)}k=1,2,... represent a com-
plete orthonormal system in L2(Ω).

Example 7.3. In the case n = 1 and Ω = [0, π], we find the eigenfunctions and
solutions of (12) as follows

vk(x) =

√
2

π
sin(kx), x ∈ [0, π], k = 1, 2, . . .

We now construct a solution of P0(f, g,Ω) with the ansatz

u(x, t) =
∞∑
k=1

ak(t)vk(x), (x, t) ∈ Ω × [0,+∞). (13)

Evidently, u(x, t) = 0 on ∂Ω × [0,+∞) holds true. Furthermore, the wave
equation

0 = �u(x, t) =
∞∑
k=1

(
a′′k(t) + c

2λkak(t)
)
vk(x)

turns out being equivalent to the ordinary differential equations

a′′k(t) + c
2λkak(t) = 0, k = 1, 2, . . . (14)

Additionally, we use the initial conditions

f(x) = u(x, 0) =

∞∑
k=1

ak(0)vk(x), x ∈ Ω, (15)

and

g(x) = ut(x, 0) =

∞∑
k=1

a′k(0)vk(x), x ∈ Ω. (16)

These are equivalent to

ak(0) =

∫
Ω

f(x)vk(x) dx, a′k(0) =

∫
Ω

g(x)vk(x) dx, k = 1, 2, . . . (17)

We find the uniquely determined coefficient functions from (14) and (17) as
follows:

ak(t) =

∫
Ω

{
f(x) cos(c

√
λkt)+g(x)

sin(c
√
λkt)

c
√
λk

}
vk(x) dx, k = 1, 2, . . . (18)

Finally, we obtain

Theorem 7.4. The uniquely determined solution of P0(f, g,Ω) is given by
the series of functions (13) with the coefficients (18).
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8 Classification, Transformation and Reduction of
Partial Differential Equations

We consider the following linear partial differential equation of second order
on the domain Ω ⊂ R

n with n ≥ 2:

Lu(x) :=
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
u(x) +

n∑
i=1

bi(x)
∂

∂xi
u(x) + c(x)u(x) = d(x) (1)

with x ∈ Ω and u = u(x) ∈ C2(Ω). The coefficient functions aij(x), bi(x),
c(x) for i, j = 1, . . . , n and the right-hand side d(x) belong to the regularity
class C0(Ω), and the matrix (aij(x))i,j=1,...,n is symmetric for all x ∈ Ω. The
domain Θ ⊂ R

n being given, we consider the diffeomorphism

ξ = ξ(x) = (ξ1(x1, . . . , xn), . . . , ξn(x1, . . . , xn)) : Ω → Θ ∈ C2(Ω,Rn) (2)

with the inverse mapping

x = x(ξ) = (x1(ξ1 . . . , ξn), . . . , xn(ξ1, . . . , ξn)) : Θ → Ω ∈ C2(Θ,Rn). (3)

We define the function

v(ξ) := u(x1(ξ1, . . . , ξn), . . . , xn(ξ1, . . . , ξn)) : Θ → R ∈ C2(Θ).

Then we calculate

∂u

∂xi
=

n∑
k=1

∂v

∂ξk

∂ξk
∂xi

, i = 1, . . . , n (4)

and
∂2u

∂xi∂xj
=

n∑
k,l=1

∂2v

∂ξk∂ξl

∂ξk
∂xi

∂ξl
∂xj

+ . . . , i, j = 1, . . . , n. (5)

Here the points . . . denote terms in 1 = v0, v and ∂v
∂ξk

for k = 1, . . . , n.

Now the differential equation below is derived from (1), (4) and (5) using the
convention above:

n∑
k,l=1

Akl(ξ)
∂2

∂ξk∂ξl
v(ξ) + . . . = 0 in Θ, (6)

with the coefficients

Akl(ξ) :=

n∑
i,j=1

aij(x(ξ))
∂ξk
∂xi

∂ξl
∂xj

, ξ ∈ Θ, k, l = 1, . . . , n. (7)

We denote the Jacobi matrix by ∂ξ := (
∂ξi
∂xj

)i,j=1,...,n. For each ξ ∈ Θ the

expression
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(Akl(ξ))k,l=1,...,n = ∂ξ(x(ξ)) ◦ (aij(x(ξ))i,j=1,...,n ◦ (∂ξ(x(ξ)))∗

is a real, symmetric n× n-matrix with n
2 (n+ 1) independent coefficients. We

now intend to choose the parameter transformation (2) in such a way that
the leading coefficient matrix (Akl)(ξ))k,l=1,...,n appears as simple as possible.
Here we have n functions ξ1(x), . . . , ξn(x) at our disposal. Dividing by one
factor Akl(ξ) in the homogeneous differential equation (6), we can achieve
one coefficient being normed to 1. Therefore, we can at most fulfill (n + 1)
conditions. We distinguish between

The case n=2: We have n
2 (n+1) = n+1, and the parameter transformation

(2) can be chosen such that (Akl(ξ))k,l=1,2 appears in the neighborhood of each
point x with (aij(x))i,j=1,2 �= 0 in one of the following normal forms:

(
1 0

0 1

)
,

(
1 0

0 −1

)
,

(
1 0

0 0

)
. (8)

In principle, this transformation has been already established by C. F.Gauß.
As we shall see in Chapter 11 and 12, this possibility to locally – and some-
times even globally – reduce the equation into the normal form distinguishes
the two-dimensional theory of partial differential equations from the higher-
dimensional situation.

The case n=3: We can use the three transformation functions ξ1(x), ξ2(x),
ξ3(x) to render the coefficients in (6) being zero outside the diagonal. Thus
we achieve

A12(ξ) ≡ 0, A13(ξ) ≡ 0, A23(ξ) ≡ 0 in Θ.

If (aij(x))i,j=1,2,3 �= 0 holds true, we still normalize one of the diagonal-
elements to 1 on account of the homogeneity in the equation (6); for instance
A11(ξ) ≡ 1 in Θ. The other two diagonal-elements (in our case A22(ξ) and
A33(ξ)) remain undetermined. Therefore, a transformation into one of the
forms ⎛

⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎟⎠ ,

⎛
⎜⎝

1 0 0

0 1 0

0 0 0

⎞
⎟⎠

is impossible, in general. The matrices above correspond to the Laplace equa-
tion in R

3, to the wave equation in R
2, and to the heat equation in R

2,
respectively.

The cases n=4,5,. . . : In the case n = 4 we have six matrix-elements outside
the diagonal, which cannot be transformed into zero by the four parameter
functions ξ1(x), . . . , ξ4(x), in general. We remark that all time-dependent par-
tial differential equations in R

3 (as the wave and heat equation) are differential
equations in the space R

4. In higher dimensions these problems are even in-
creasing.
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However, it is possible in the dimensions n = 2, 3, . . . to transform the dif-
ferential equation (1) into the normal form at a fixed point x0 ∈ Ω. For the
sake of simplicity, we choose x0 = 0 ∈ Ω which can always be achieved by a
translation in R

n. We consider the homogeneously linear transformation

ξi =

n∑
j=1

fijxj , i = 1, . . . , n, ξ = ξ(x) = F ◦ x, (9)

with the real coefficient matrix F = (fij)i,j=1,...,n ∈ R
n×n. We expand

aij(x) = αij + o(1), x→ 0, i, j = 1, . . . ,

set A := (αij)i,j=1,...,n ∈ R
n×n, and transform the coefficient matrix

(aij(x))i,j=1,...,n

into
(Akl(ξ))k,l=1,...,n = F ◦A ◦ F ∗ + o(1), ξ → 0. (10)

Due to the symmetry of A, we find an orthogonal matrix F such that

Λ =

⎛
⎜⎜⎝
λ1 0

. . .

0 λn

⎞
⎟⎟⎠ := F ◦A ◦ F ∗ (11)

becomes a diagonal matrix. Choosing

G :=

⎛
⎜⎜⎝
μ1 0

. . .

0 μn

⎞
⎟⎟⎠ with μk =

⎧⎪⎨
⎪⎩

1, if λk = 0

1√
|λk|

, if λk �= 0
, k = 1, . . . , n,

we obtain

(G ◦ F ) ◦A ◦ (G ◦ F )∗ = G ◦ Λ ◦G∗ =

⎛
⎜⎜⎝
ε1 0

. . .

0 εn

⎞
⎟⎟⎠ (12)

with εk ∈ {−1, 0, 1} for k = 1, . . . , n. Setting M := G ◦F , we have proved the
following

Theorem 8.1. For each fixed point x0 ∈ Ω, we have an affine-linear trans-
formation ξ = ξ(x) =M ◦ (x− x0) with the real coefficient matrix M ∈ R

n×n

such that the differential equation (1) transformed due to (6) possesses the
following coefficient matrix
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(Akl(ξ))k,l=1,...,n =

⎛
⎜⎜⎝
ε1 0

. . .

0 εn

⎞
⎟⎟⎠+ o(1), ξ → x0,

with εk ∈ {−1, 0, 1} and k = 1, . . . , n.

Definition 8.2. The differential equation (1) is named elliptic at the point
x0 ∈ Ω, if and only if all eigenvalues of the matrix (aij(x

0))i,j=1,...,n do not
vanish and have the same sign. If (1) is elliptic for all x0 ∈ Ω, we denote the
differential equation being elliptic in Ω.

Remarks: Eventually multiplying by (−1) we achieve that (aij(x
0))i,j=1,...,n

becomes positive-definite. Pointwise transformation into the normal form gives
us the leading matrix ⎛

⎜⎜⎝
1 0

. . .

0 1

⎞
⎟⎟⎠ .

The Laplace equation
Δu(x, . . . , xn) = 0

is the easiest and most important elliptic differential equation in R
n. We have

no characteristic surfaces for elliptic differential equations (compare Section 4).

Definition 8.3. The differential equation (1) is named hyperbolic at the
point x0 ∈ Ω, if and only if all eigenvalues of the matrix (aij(x

0))i,j=1,...,n do
not vanish and exactly one eigenvalue differs in its sign from the others. This
being correct for all x0 ∈ Ω, we speak of a hyperbolic differential equation in
Ω.

Remarks: Eventually multiplying (1) by the factor (−1), the pointwise trans-
formation into the normal form yields the leading matrix

⎛
⎜⎜⎜⎜⎝

1 0

−1

. . .

0 −1

⎞
⎟⎟⎟⎟⎠ .

As the most important and easiest hyperbolic differential equation, we became
familiar with the wave equation

�u(x1, . . . , xn, t) = 0 in R
n.

For hyperbolic equations, characteristic surfaces appear reducing to cones for
the wave equation (see Section 4).
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Definition 8.4. The differential equation (8.2) is named ultrahyperbolic at
the point x0 ∈ Ω if and only if all eigenvalues of the matrix (aij(x

0))i,j=1,...,n

do not vanish, and at least two of them exist with a positive and a negative
sign, respectively. This being correct for all x0 ∈ Ω, the differential equation
(1) is called ultrahyperbolic in Ω.

Remark: For n ≥ 2 the differential equation

Δxu(x1, . . . , xn, y1, . . . , yn) = Δyu(x1, . . . , xn; y1, . . . , yn)

is ultrahyperbolic in R
2n.

Definition 8.5. The condition det (aij(x
0))i,j=1,...,n = 0 being fulfilled, we

call (1) parabolic at the point x0 ∈ Ω; we name (1) parabolic in Ω if and
only if det (aij(x))i,j=1,...,n = 0 for all x ∈ Ω holds true.

Remarks: The equation (1) is exactly parabolic in Ω if and only if one eigen-
value of the matrix (aij(x))i,j=1,...,n �= 0 vanishes for all x ∈ Ω. The heat
equation in R

n appears as the main example:

ut(x1, . . . , xn, t) = Δxu(x1, . . . , xn, t).

We shall now determine those affine-linear transformations leaving the wave
equation in R

n, n ∈ N, invariant. In this context we consider the transforma-
tion matrix

F = (fkl)k,l=1,...,n+1 ∈ R
(n+1)×(n+1)

and the translation vector

f = (f1, . . . , fn+1)
∗ ∈ R

n+1.

We define the affine-linear, nonsingular, positive-oriented transformation
ϕ : Rn+1 → R

n+1 by

(ξ, τ) = (ξ1, . . . , ξn, τ) = ϕ(x, t) = (ϕ1(x1, . . . , xn, t), . . . , ϕn+1(x1, . . . , xn, t))

with

ξk =

n∑
l=1

fklxl + fk,n+1t+ fk, k = 1, . . . , n,

τ =

n∑
l=1

fn+1,lxl + fn+1,n+1t+ fn+1

(13)

and equivalently

(ξ, τ)∗ = F ◦ (x, t)∗ + f, (x, t) ∈ R
n+1. (14)
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Definition 8.6. The transformation (13) or equivalently (14) is called Lorentz
transformation, if and only if all u = u(ξ, τ) = u(ξ1, . . . , ξn, τ) ∈ C2(Rn+1)
satisfy the invariance condition

�(x,t){u ◦ ϕ}
∣∣∣
(x,t)

= {�(ξ,τ)u(ξ, τ)} ◦ ϕ(x, t) in R
n+1. (15)

Here we have used the d’Alembert operator

�(x,t) := −c2
( ∂2
∂x21

+ . . .+
∂2

∂x2n

)
+
∂2

∂t2

with the constant c > 0.

Remarks:

1. The relation (15) reveals that the set of Lorentz transformations ϕ :
R

n+1 → R
n+1 is a group G, with the composition of mappings as group op-

eration and with the neutral element ϕ = idRn+1 . We name G the Lorentz
group.

2. The subgroup G0 := {ϕ ∈ G : ϕ(0) = 0} of the origin-preserving Lorentz
transformations consists of those mappings (14) with f = 0 satisfying the
condition (15).

On account of the calculations at the beginning of this section the invariance
condition (15) is equivalent to the matrix equation

F ◦

⎛
⎜⎜⎜⎜⎝

−c2 0

. . .

−c2

0 1

⎞
⎟⎟⎟⎟⎠ ◦ F ∗ =

⎛
⎜⎜⎜⎜⎝

−c2 0

. . .

−c2

0 1

⎞
⎟⎟⎟⎟⎠ . (16)

Definition 8.7. Those Lorentz transformations ϕ = ϕ(x1, . . . , xn, t) ∈ G al-
lowing a time-independent measurement for the position in space, that means

d

dt
ϕk(x1, . . . , xn, t) ≡ 0, k = 1, . . . , n, (17)

and the time measurement being independent of the position in space, that
means

d

dxk
ϕn+1(x1, . . . , xn, t) ≡ 0, k = 1, . . . , n, (18)

and which do not cause a time reversal, that means

d

dt
ϕn+1(x1, . . . , xn, t) > 0, (19)

are called Galilei transformations.
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Remark: The Galilei transformations G′ ⊂ G constitute a subgroup of the
group of Lorentz transformations.

If (13) represents a Galilei transformation, we obtain the conditions

fk,n+1 = 0 = fn+1,k, k = 1, . . . , n, fn+1,n+1 > 0.

Setting

F ′ :=

⎛
⎜⎜⎝
f11 . . . f1n
...

...

fn1 . . . fnn

⎞
⎟⎟⎠ ∈ R

n×n, F =

(
F ′ 0

0 fn+1,n+1

)
,

the relation (16) implies

F ′ ◦ (F ′)∗ =

⎛
⎜⎝

1 0
. . .

0 1

⎞
⎟⎠ , fn+1,n+1 = 1, detF ′ > 0.

These considerations yield the following

Theorem 8.8. In the class of Lorentz transformations (13) the Galilei trans-
formations take on the form

ξ∗ = F ′ ◦ x∗ + f ′, t = t+ fn+1 (20)

with the positive-oriented, orthogonal n× n-matrix

F ′ :=

⎛
⎜⎜⎝
f11 . . . f1n
...

...

fn1 . . . fnn

⎞
⎟⎟⎠ ,

the translation vector f ′ = (f1, . . . , fn)
∗ ∈ R

n and the time dilation fn+1 ∈ R.

Let ψ = ψ(x, t) = ψ(x1, . . . , xn, t) ∈ G be an arbitrary Lorentz transformation.
Then we compose a Galilei transformation χ = χ(x, t) ∈ G′ by a translation
in (x, t)-space and a rotation in x-space, such that the Lorentz transformation

ϕ = ϕ(ξ, τ) = χ ◦ ψ ◦ χ−1(ξ, τ) (21)

satisfies the following conditions:

ϕ ∈ G0, (22)

ϕk(ξ1, . . . , ξn, τ) = ξk for k = 2, . . . , n, (ξ, τ) ∈ R
n+1. (23)

Therefore, we only have to study the origin-preserving Lorentz transforma-
tions in the case n = 1: For the real 2× 2-matrix
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F =

(
α β

γ δ

)
∈ R

2×2

we read off the following condition from (16):

F ◦
(−c2 0

0 1

)
◦ F ∗ =

(−c2 0

0 1

)
. (24)

Defining the symmetric matrix

Λ :=

(
ic 0

0 1

)
with Λ−1 =

(− i
c 0

0 1

)
,

we rewrite (24) equivalently into the form

F ◦ Λ ◦ Λ∗ ◦ F ∗ = Λ ◦ Λ∗,

and finally
(Λ−1 ◦ F ◦ Λ) ◦ (Λ−1 ◦ F ◦ Λ)∗ = E.

Here E denotes the unit matrix in R
2. Consequently, the subsequent matrix

G := Λ−1 ◦F ◦Λ is orthogonal, and we have detG > 0. We observe G ∈ SO(2)
and obtain

G =

(
cos z sin z

− sin z cos z

)
with z ∈ C.

Respecting z = iϑ and ϑ ∈ R, we now calculate

F = Λ ◦G ◦ Λ−1 =

(
ic 0

0 1

)
◦
(

cos z sin z

− sin z cos z

)
◦
(− i

c 0

0 1

)

=

(
ic 0

0 1

)
◦
(− i

c cos z sin z
i
c sin z cos z

)
=

(
cos z ic sin z
i
c sin z cos z

)

=

(
cos(iϑ) −c 1i sin(iϑ)

−1
c
1
i sin(iϑ) cos(iϑ)

)
=

(
coshϑ −c sinhϑ

−1
c sinhϑ coshϑ

)
.

We combine our considerations to

Theorem 8.9. For each Lorentz transformation ψ ∈ G there exists a Galilei
transformation χ ∈ G′ and a special hyperbolic transformation

ϕ(x1, . . . , xn, t) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

coshϑ 0 . . . 0 −c sinhϑ
0 1 0 0

...
. . .

...

0 0 1 0

−1
c sinhϑ 0 . . . 0 coshϑ

⎞
⎟⎟⎟⎟⎟⎟⎠

◦

⎛
⎜⎜⎜⎜⎝

x1
...

xn

t

⎞
⎟⎟⎟⎟⎠ , (25)

such that the following representation holds true:

ψ = χ−1 ◦ ϕ ◦ χ. (26)
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In classical physics those reference systems (x1, x2, x3, t) and (ξ1, ξ2, ξ3, τ) are
equivalent, which refer to each other by a Galilei transformation. Due to
Theorem 8.9, the origin of the first system is translated by such a motion
from the origin of the second system, however, the time is simply transferred.
On account of (20) the time measurement coincides in both systems, that
means

dτ = dt. (27)

Additionally, the distance measurement is the same in both systems, more
precisely

dξ21 + dξ22 + dξ23 = dx21 + dx
2
2 + dx

2
3. (28)

In relativistic physics of A. Einstein, the Galilei transformations G′ are re-
placed by the larger group G of Lorentz transformations. Since they simul-
taneously transfer space and time coordinates, a separate time and space
measurement is not possible any more. In special relativity theory we assume
the speed of light having the same value c in all reference systems, if these
systems move towards each other with a velocity smaller than c. Measuring
the physical phenomena by the d’Alembert operator

1

c2
� =

1

c2
∂2

∂t2
−Δx,

the Lorentz transformations appear as those mappings referring two equivalent
reference systems to each other.

Considering the case n = 1, at first, we have the special hyperbolic transfor-
mation (

ξ

τ

)
=

(
coshϑ −c sinhϑ

−1
c sinhϑ coshϑ

)
◦
(
x

t

)
. (29)

This implies (
dξ

c dτ

)
=

(
coshϑ −c sinhϑ
− sinhϑ c coshϑ

)
◦
(
dx

dt

)

and consequently

c2 dτ2 − dξ2 = sinh2 ϑdx2 − 2c sinhϑ coshϑdx dt+ c2 cosh2 ϑdt2

−
(
cosh2 ϑdx2 − 2c coshϑ sinhϑdx dt+ c2 sinh2 ϑdt2

)

= c2 dt2 − dx2.

Combined with Theorem 8.9 and the equations (27) and (28) as well, we
obtain the invariance property

c2 dτ2 − dξ21 − dξ22 − dξ23 = c2 dt2 − dx21 − dx22 − dx23. (30)

Therefore, the Lorentz transformations leave the distance of two events
(x1, x2, x3, t) and (ξ1, ξ2, ξ3, τ) invariant with respect to the Minkowski metric
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dσ2 := c2 dτ2 − dξ21 − dξ22 − dξ23 . (31)

The quantities dτ and dξ21 + dξ
2
2 + dξ

2
3 are not preserved under Lorentz trans-

formations, in general.

We name a vector (x1, x2, x3, t) time-like (or space-like) if and only if

c2t2 > x21 + x
2
2 + x

2
3 (or c2t2 < x21 + x

2
2 + x

2
3 )

is satisfied. Two events (x′1, x
′
2, x

′
3, t

′), (x′′1 , x
′′
2 , x

′′
3 , t

′′) occur at different times
(and at different positions in space), if and only if the vector

(x′1 − x′′1 , x′2 − x′′2 , x′3 − x′′3 , t′ − t′′)

is time-like (and space-like, respectively). Then we find a Lorentz transforma-
tion such that both events occur at the same position in space (or at the same
time). Finally, the surface

ct2 = x21 + x
2
2 + x

2
3

represents the characteristic light cone, on which each two events can be trans-
ferred into each other by a Lorentz transformation.

9 Some Historical Notices to the Chapters 5 and 6

Jean d’Alembert (1717–1783) may be seen as the founder of a great school for
mathematical physics in France. We know his name from the solution of the
one-dimensional wave equation. Furthermore, the corresponding differential
operator in R

n is denoted in his honor. Directly and indirectly, he inspired
most of the following mathematicians, creating in France after the Revolution
a golden era for mathematics:
J.L. Lagrange (1736–1813), G.Monge (1746–1818), P.S. Laplace (1749–1827),
A. Legendre (1752–1833), J. Fourier (1768–1830), and S. Poisson (1781–1840).

We got aquainted to Laplace and Poisson by their investigations of the ho-
mogeneous and inhomogeneous potential-equation, respectively. The names
of Monge together with Ampère are connected with their nonlinear differ-
ential equation describing embedding problems for Riemannian metrics. In
the theory of spherical harmonics, Laplace and Legendre have given essen-
tial contributions. Fourier is, besides his series, well-known for the Théorie
de la Chaleur. Last but not least, Lagrange’s name stands aequo loco to Eu-
ler’s (1707–1783), when we are speaking of the variational equations in the
Calculus of Variations.

In those times, even the more theoretical mathematicians were confronted with
the difficult decision, wether to sympathize with the King, the Revolution,
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the Emperor, or the Republic. In the imperial times, some of the French
mathematicians even joined the Expedition to Egypt, which was scientifically
a success. Then applied mathematics enjoyed a high recognition and played a
central role for the education of the youth in the Technical Sciences. The École
Polytechnique of Paris was founded as the preimage for all modern Technical
Universities – as well as the Research University Scuola Normale Superiore at
Pisa. Simultaneously, classical Universities in the Rhine area were closed.

It was C.F.Gauss, who declined an offer for an attractive chair of mathematics
in a Parisian University – the scientific metropolis. At home, Gauß successfully
founded a tradition for mathematics in the University of Göttingen. Within
his life-time, this prestigeous institution was administrated by the Kingdoms,
then in a personal union, of Hannover and England.

The beginning of the modern theory of partial differential equations is marked
by the seminal paper of E.Hopf, from 1927, on the maximum principle for
linear elliptic differential equations. While the classical results are mostly de-
rived by integral representations, the Hopf maximum principle is independent
of these ingredients. This paved the way for J. Schauder, to start his ingenious
treatment of elliptic equations in 1932/34 by functional analytic methods.
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Figure 1.9 Schwarz-Riemann Minimal Surface

spanning a quadrilateral – taken from H.A. Schwarz: Mathematische Abhand-
lungen I, page 2, Springer-Verlag, Berlin. . . (1890).
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[D] G. Darboux: Leçons sur la théorie générale des surfaces I – IV. Première
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Riemann equation, 264
for weakharmonic functions, 333

Representation theorem of Fréchet-
Riesz, 147

Residue, 245
Residue theorem

general, 242
of Liouville, 245

Riemann’s sphere, 239
Riemann’s theorem on removable

singularities, 247
Riemannian mapping theorem, 280
Riesz’s representation theorem, 168
Root lemma, 281
Rotation of a vector-field, 25

Sard’s lemma, 202
Schwarz-Riemann minimal suface, 438
Schwarzian lemma, 276
Schwarzian reflection principle, 237
Selection theorem of Lebesgue, 128
Separability of Lp-spaces, 160
Sigma-Additivity

σ-Additivity, 109
Sigma-Algebra

σ-Algebra, 113
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Sigma-Subadditivity
σ-Subadditivity, 112

Similarity principle of Bers and Vekua,
267

Smoothing
of a closed curve, 62
of functions, 2

Spherical harmonic
n-dimensional, 347

Spherical harmonics
Addition theorem, 357
Completeness, 358

Stokes integral theorem
classical, 52
for manifolds, 38
local, 31

Support of a function, 206
Surface

characteristic, 392
m-dimensional in R

n, 16
noncharacteristic, 392
parametrized, 13
regular and oriented, 13

Surface element
of a hypersurface, 15
of an m-dimensional surface in R

n, 16
Surface integral, 22

Tangential space to a surface, 14
Theorem

about Fourier series, 342
of Arzelà-Ascoli, 280
of Carathéodory-Courant, 286
of Carleman, 269
of Casorati-Weierstraß, 249
of Cauchy-Riemann, 220
of Cauchy-Weierstraß, 222
of d’Alembert, 405
of Dini, 93
of Egorov, 131
of F. John, 406
of Fischer-Riesz, 154
of Fubini, 138
of Hurwitz, 282

of Jordan-Brouwer, 211
of Kirchhoff, 407
of Lusin, 133
of monodromy, 222
of Poincaré and Brouwer, 195
of Pompeiu-Vekua, 257
of Radon-Nikodym, 164
of Rouché, 179
on Cauchy’s integral across the

boundary, 300
on holomorphic parameter integrals,

231
on removable singularities, 255
on the harmonic extension, 301
on the invariance of domains in C,

234
on the invariance of domains in R

n,
213

Tietze’s extension theorem, 7
Transformation

fractional linear, 271
of Möbius, 271

Uniqueness theorem of Vekua, 269
Unit normal vector, 14

Vector-potential, 72
Vekua’s class of functions, 256
Volume form, 73

Wave equation
Cauchy’s initial value problem, 403
for n = 1, 403
for n = 2, 409
for n = 3, 407
for even n ≥ 2, 420
for odd n ≥ 3, 417
Uniqueness, 396

homogeneous, 393
Energy estimate, 394

inhomogeneous, 422
Initial-boundary-value problem, 424

Weak compactness of Lp(X), 170
Weierstraß approximation theorem, 6
Winding number, 175, 177, 181
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