
Chapter 7
Feature Extraction

Abstract In the previous chapters we have examined static and dynamic methods
of program analysis. These features must be translated into mathematical repre-
sentations and birthmarks to be useful. Furthermore, mathematical representations
may be embedded in other mathematical types to make birthmarks more amenable
to similarity comparisons and for use in classification algorithms. Another
approach is to represent features using kernels. This allows for the use of classi-
fication algorithms including the support vector machine for complex data types.
This chapter examines the mathematical representations that we use to describe
program features.
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7.1 Processing Program Features

Program features are the basis of software similarity and classification, but must be
transformed or into a meaningful representation that allows for similarity com-
parisons and indexing. Different representations are possible ranging from highly
efficient but least expressive, to highly expressive but least efficient. For example,
representing birthmarks as vectors allows for very efficient comparisons, but tends
to lose structural information that is present in graph based representations.

Combining features into a unified form may result in the establishment of
software metrics. Attribute counting is one approach. Attributes that can be tallied
might include the number of specific keywords, the number of conditionals, the
number of loops and so forth. The final metric is the set of counted attributes.
Processing might be done on these counted attributes to result in other measures.
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The Halstead complexity measures [1] are a set of software metrics that uses
attribute counting at its core to give a measure on a programs complexity. Its initial
use was for the purpose of software maintenance metrics but it has also been
applied to software similarity.

Another approach to combine the expressiveness of complex objects, such as
graphs, is to transform or embed one representation into another. For example,
a graph can be transformed into a vector based representation. Information is lost,
but in many cases this is still useful as a birthmark.

7.2 Strings

A string describes a sequence of tokens or characters. An example of a string could
be a sequence of instruction opcodes making up a program path.

Definition 7.1 Let
P

be an alphabet of symbols. Let s be a string over the
alphabet where s 2

P �:

7.3 Vectors

Vectors are one of the simplest representations and are efficient to work with.
A vector is an ordered list or tuple of a fixed number of elements or dimensions.
A feature vector describes the frequency of particular features occurring. If the
number of features is very large then dimensionality reduction can be used to filter
unimportant features, or combine features together such as when using Principle
Component Analysis (PCA).

Examples of using vectors include describing features based on the occurrence
of a specific n characters or n-grams.

7.4 Sets

A set is a collection of unique objects. A set of features is sometimes a useful
representation. It ignores ordering of those features. An example use of sets is to
describe the set of API calls a program makes.

7.5 Sets of Vectors

A set of vectors may sometimes be useful. If we consider that a procedure can be
represented as a vector, then the set of procedures can be represented as a set of
vectors.
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7.6 Trees

Trees capture the structure of data, but are not as general as graphs. A tree is a
connected undirected graph without cycles. Abstract syntax trees and parse trees
are naturally represented by trees. Structured control flow can also be represented
by trees. Trees can have a defined ordering of child nodes or be unordered.

7.7 Graphs

Graphs model structure in the data. Many program features are naturally repre-
sented as graphs include control flow graphs, call graphs, and dependency graphs.

Definition 7.2 A graph is g = (V, E) where V is a set of vertices.
E ¼ fðu; vÞ j u; v 2 Vg � V � V

Definition 7.3 A labelled graph g ¼ ðV ; a; bÞ where V is a set of vertices a :
V ! L is the node labelling function, and b : V � V ! L is the edge labelling
function.

7.8 Embeddings

Strings may be embedded in vectors. To reduce the string problem into an n-gram
vector problem, a string may be divided into n-grams where the specific n-grams
represent features.

Definition 7.4 Given a set of strings L, and a set of vectors V there is a function f
such that f : L! V

Strings may be embedded in sets. To reduce the string problem into a set
problem, a string may be divided into n-grams or shingles where the unique
n-grams represent set elements.

Definition 7.5 Given a set of strings L, and a set of sets S there is a function f such
that f : L! S

Trees may be embedded in vectors. A tree may be decomposed into fixed sized
subtrees. These subtrees can represent features in a feature vector.

Definition 7.6 Given a set of trees T, and a set of vectors V there is a function f
such that f : T ! V

Trees may be embedded in sets. Similar to a tree to vector problem, decom-
posing the tree into unique features can be represented by sets.

Definition 7.7 Given a set of trees T, and a set of sets S there is a function f such
that f : T ! S
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A graph may be embedded in a vector. A graph can be decomposed into fixed
sized k-subgraphs. One approach is to construct a spanning tree and then extract
the subgraphs. These subgraphs can be canonized into strings and used to represent
features in a feature vector. Another approach to embedding a set of control flow
graphs into a vector is by embedding the graphs into strings using decompilation
and then embedding the strings into vectors using k-grams [2] (Fig. 7.1).

Definition 7.8 Given a set of graphs G, and a set of vectors V there is a function f
such that f : G! V

A graph may be embedded in a set. Transforming a graph into a set is analogous
to a graph to vector problem.

Definition 7.9 Given a set of graphs G, and a set of sets S there is a function f such
that f : G! S

A graph may be embedded in a tree. A graph can be represented by tree by
constructing a spanning tree.

Definition 7.10 Given a set of graphs G, and a set of trees T there is a function f
such that f : G! T
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Fig. 7.1 The k-subgraph feature for a graph embedding in a vector
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7.9 Kernels

Kernels are most used in kernel based statistical machine learning classifiers.
A kernel function operates in feature space which is typically of much higher
dimensionality. A string kernel based on the subsequences in the string known as a
subsequence kernels was proposed in [3]. A kernel for sets of features was pro-
posed in [4]. A kernel for vector sets was proposed in [5]. A kernel for trees was
proposed in [6]. A kernel based on random walks in a graph was proposed in [7].
Subtree kernels have been proposed. A kernel based the set of all paths in a graph
has also been proposed. A kernel based on the shortest paths in a graph was
proposed in [8].

7.10 Research Opportunities

Embeddings and kernels present a significant opportunity for researchers.
Embeddings have been investigated somewhat, but a comprehensive treatment of
different embeddings for different structures has not been performed in the context
of software similarity. Kernel methods are effectively unused in software similarity
and this presents many opportunities for researchers to apply kernel methods to so
the software similarity and classification problem. Graph kernels could be used to
perform software classification in applications such as malware classification.
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