
Chapter 6
Dynamic Analysis

Abstract In the previous chapters we have examined static extraction of program
features for the purpose of birthmark construction. Dynamic analysis is examined
in this chapter. It is an alternative approach to static analysis that can be used for
birthmark construction. Dynamic analysis concerns itself with analysing a running
program. The program being run is typically isolated in an environment which
allows its behaviour to be inspected. Typical behaviours that are extracted are the
API call sequence. Instruction sequences, basic block sequences and control flow
are amongst other behaviours that can also be identified.

Keywords Dynamic analysis � Hooking � Dynamic binary instrumentation �
Virtualization � Application level emulation � Whole system emulation

6.1 Relationship to Static Analysis

There are roughly two approaches to extract program features from software. In
the static approach, the software is never executed and the features are extracted
from a static view of the program. In dynamic analysis the software is executed,
possibly in a virtual machine, and its run-time behaviour examined. The run-time
behaviours exhibit the properties or features being extracted.

Static analysis is effective because it is able to examine to represent the set of all
possible execution paths by approximating program behaviour. This is important
because behaviours of specific programs may be hard to trigger dynamically. It is
often difficult to trigger corner cases in programs and as a result a number of dynamic
analysis testing methodologies exist to address this such as the use of analysing code
coverage during execution. In the case of malicious code, malware authors actively
change the behaviour of the code when under analysis.

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_6,
� The Author(s) 2012

51



The main advantage of dynamic analysis is that the semantics of the program
are exhibited, and obfuscations applied to the program have less effect on these
exhibited semantics. Attempting to identify run-time behaviour properties for
multiple paths of execution has been researched [1]. It is still a new area, but using
symbolic execution to trigger different behaviours has had some success. The
results of exploring these multiple paths can be accumulated into a final report to
infer the intent or potential behaviour of a piece of software.

6.2 Environments

Dynamic analysis requires an environment in which to run and isolate the program
being analysed. The environment in which to run a program can be categorized in
the following list:

• Hooking
• Dynamic Binary Instrumentation
• Virtualization
• Application Level Emulation
• Whole System Emulation

6.3 Debugging

An operating system typically provides an API to debug processes. Debugging can
allow for operations including single stepping through execution an instruction at a
time, or setting a breakpoint at a particular code address. Debugging can be useful
to monitor non malicious programs, however, most malware today implements
anti-debugging functionality which can detect the presence of a debugger.

6.4 Hooking

Hooking is the process of intercepting API calls allowing for possible instru-
mentation. Hooks can be placed in user space or kernel space. Hooking is com-
monly used by commercial Antivirus software to monitor process behaviour and
detect possible misuse. Detours [2] is an implementation of hooking for the
Windows operating system. The basic mode of operation is to overwrite the
function in memory with a trampoline to the intercept handling code. The intercept
handling code performs any instrumentation or monitoring as necessary then
restores control back to the original function. Another method of hooking is
overwriting dispatch tables such as system call tables or import addresses. It is also

52 6 Dynamic Analysis



possible in Linux to natively intercept API calls to dynamic libraries by preloading
another library. Malware today often can detect the presence of hooking by
implementing checksums over their executable code.

6.5 Dynamic Binary Instrumentation

Dynamic binary instrumentation is an approach that instruments native code on the
fly. The binary being executed is controlled from a dispatcher which analyses the
code, instruments it, and then rewrites it for execution. Some examples of dynamic
binary instrumentation include PIN [3], DynamoRIO [4], and Valgrind [5].
Dynamic binary instrumentation based on PIN has been used for malware
unpacking and analysis in [6, 7].

6.6 Virtualization

Virtualization is a technique that supports native execution of a guest operating
system by exploiting separation and isolation mechanisms implemented by the
native hardware architecture or software. A number of methods are available to
implement virtualization including paravirtualization which must be supported by
both the host and the guest operating systems. The most important type of virtu-
alization for providing an environment to perform feature extractions is hardware
assisted virtualization. In the x86 architecture, hardware assisted virtualization was
not always supported and detection of the virtualized environment was imple-
mented by many strains of malware [6]. Hardware assisted virtualization has been
used for malware analysis [8]. This type of analysis is harder to detect but attacks
still exist to detect virtualization from a guest [9]. For example, it is known that
memory caching between guests and hosts are different in the virtualized envi-
ronment. However, as virtualization becomes a standard tool on the desktop,
malware authors might no longer be able to associate virtualization with threat
analysis.

6.7 Application Level Emulation

Application level emulation emulates the operating system and instruction set
architecture for specific applications. This approach has been predominantly
employed in Antivirus systems to perform real-time analysis of malware and
automated unpacking [10]. Its main disadvantage is its inability to faithfully
emulate the desired system which makes it susceptible to detection as has been the
case with modern malware.

6.4 Hooking 53



The typical features emulated in an application level emulator on the x86
Windows platform for the purposes of malware detection include:

• Instruction Set Architecture (ISA).
• Virtual Memory.
• Windows API emulation.
• Linking and Loading.
• Thread and Process Management.
• OS Specific Structures.

The instruction set architecture (ISA) must be faithfully emulated. In practice,
most deployed emulators only simulate part of the complete x86 ISA. Malware
authors have responded by using uncommon instructions such as those associated
with MMX and FPU to detect and thwart the emulation process.

Virtual memory must be emulated. 32-bit x86 employs a segmented memory
architecture. In Windows the segment registers are utilised to reference thread specific
data. This data is additionally used by Windows Structured Exception Handling
(SEH). SEH is used to gracefully handle abnormal conditions such as division by zero
and is routinely used by packers and malware to obfuscate control flow.

The Windows API is the official system call interface provided by Windows.
There are too many Windows API functions to full emulate in a typical envi-
ronment so only the most common APIs are implemented. This also presents a
method for malware to detect and thwart an emulator using uncommon API calls.

Linking and loading must be implemented by an emulator. Program loading
entails allocating the appropriate virtual memory, loading the program text, data and
dynamic libraries. Relocations must be performed and run-time linking performed.

Threads and process management must be performed. Malware can sometimes
try to detect and thwart a debugger or emulator by being multi-process or multi-
threaded.

OS specific structures must also be simulated. Windows has a number of these
including the Process Environment Block, the Thread Environment Block and the
Loader Module. These structures are visible to applications and can be used by
malware.

6.8 Whole System Emulation

A whole system emulator emulates the hardware of a PC. This allows an operating
system to be installed as a guest. There are roughly two approaches to implement a
whole system emulator or any emulator in general:

• Interpretation
• Dynamic Binary Instrumentation

An example of whole system emulators includes QEMU [11] which is based on
dynamic binary translation. Bochs is another whole system emulator that uses

54 6 Dynamic Analysis



interpretation instead of dynamic binary translation. Bochs has been used for
malware unpacking and analysis [12]. Interpretation is slower than dynamic binary
translation which makes QEMU a popular choice.

Interpretation works by implementing a fetch, decode and execute loop inside
the emulator. Dynamic binary translation translates sequences of code from the
guest into native code on the host. It can perform optimisations on these blocks of
code which improves efficiency. The blocks are also cached reducing the costs of
translation. In general, dynamic binary translation offers significant performance
improvements over an interpretation based emulator.

It is possible to modify a whole system emulator to monitor or instrument guest
execution [13]. The BitBlaze project [14] is a project for binary analysis that
makes heavy use of whole system emulation to perform tasks including malware
analysis. Whole system emulation is effective for behavioural analysis of code but
attacks exist to detect its presence from the guest [9].

References

1. Brumley D, Hartwig C, Kang MG, Liang Z, Newsome J, Song D, Yin H (2007) BitScope:
automatically dissecting malicious binaries. Technical report CMU-CS-07-133, School of
Computer Science, Carnegie Mellon University

2. Hunt G, Brubacher D (1999) Detours: binary interception of win32 functions. Paper
presented at the proceedings of the 3rd conference on USENIX Windows NT symposium, vol
3. Seattle, Washington

3. Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ, Hazelwood
K (2005) Pin: building customized program analysis tools with dynamic instrumentation.
Paper presented at the proceedings of the 2005 ACM SIGPLAN conference on programming
language design and implementation

4. Bala V, Duesterwald E, Banerjia S (2000) Dynamo: a transparent dynamic optimization
system. Paper presented at the proceedings of the ACM SIGPLAN 2000 conference on
programming language design and implementation

5. Nethercote N, Seward J (2003) Valgrind a program supervision framework. Electron Notes
Theor Comput Sci 89(2):44–66

6. Guizani W, Marion JY, Reynaud-Plantey D (2009) Server-side dynamic code analysis. In:
Malicious and unwanted software (MALWARE), 2009 4th international conference on, 2009,
pp 55–62

7. Quist D (2007) Valsmith covert debugging circumventing software armoring techniques. In:
Black hat briefings USA

8. Dinaburg A, Royal P, Sharif M, Lee W Ether (2008) Malware analysis via hardware
virtualization extensions. In: Proceedings of the 15th ACM conference on computer and
communications security 2008. ACM, New York, USA, pp 51–62

9. Raffetseder T, Kruegel C, Kirda E (2007) Detecting system emulators. In: Lecture notes in
computer science, vol 4779, p 1

10. Cesare S, Xiang Y (2010) Classification of malware using structured control flow. In: 8th
Australasian symposium on parallel and distributed computing (AusPDC 2010

11. Bellard F (2005) QEMU, a fast and portable dynamic translator. In: USENIX annual
technical conference 2005, pp 41–46

12. Boehne L (2008) Pandora’s bochs: automatic unpacking of malware. University of
Mannheim

6.8 Whole System Emulation 55



13. Bayer U, Kruegel C, Kirda E (2006) TTAnalyze: a tool for analyzing malware. In: European
Institute for Computer Antivirus Research (EICAR), 2006

14. Song D, Brumley D, Yin H, Caballero J, Jager I, Kang M, Liang Z, Newsome J, Poosankam
P, Saxena P (2008) BitBlaze: a new approach to computer security via binary analysis. In:
Information systems security

56 6 Dynamic Analysis


	6 Dynamic Analysis
	Abstract
	6.1…Relationship to Static Analysis
	6.2…Environments
	6.3…Debugging
	6.4…Hooking
	6.5…Dynamic Binary Instrumentation
	6.6…Virtualization
	6.7…Application Level Emulation
	6.8…Whole System Emulation
	References


