
Chapter 2
Taxonomy of Program Features

Abstract All programs have common features and abstractions which are used to
create birthmarks. Features can be divided into syntactic and semantic groups.
Syntactic features concern themselves with program structure and program form.
Semantic features examine the meaning of the program. In this chapter we
examine those syntactic and semantic features of programs. Syntactic Features
include: (1) Raw Code, (2) Abstract Syntax Trees, (3) Variables, (4) Pointers,
(5) Instructions, (6) Basic Blocks, (7) Procedures, (8) Control Flow Graphs,
(9) Call Graphs, and (10) Object Inheritances and Dependencies. Semantic
features include: (1) API Calls, (2) Data Flow, (3) Procedure Dependence Graphs,
and (4) System Dependence Graphs.

Keywords Program features � Raw code � Abstract syntax tree � Variables �
Pointer � Instruction � Basic block � Procedure � Control flow graph � Call graph �
Object inheritance � Object dependence � API call � Data flow � Procedure
dependence graph � System dependence graph

2.1 Syntactic Features

2.1.1 Raw Code

The raw code of the program can be analysed directly. For source code this is the
textual stream, possibly normalized by removing comments and whitespace. For
binaries, the raw code is the byte sequences (Fig. 2.1).

Definition 2.1 Let
P

be an alphabet of symbols. The raw code of program p is
defined by the function r that evaluates to a string over the alphabet.

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_2,
� The Author(s) 2012

7



r : P! S

p! s; s 2
X
�

2.1.2 Abstract Syntax Trees

Abstract syntax trees (AST) examine the syntax of source code and construct a tree
representing the syntactical structure. For binaries, decompilation is required to
reconstruct an abstract syntax tree (Fig. 2.2).

2.1.3 Variables

Variables represent the state of data. Programs typically maintain separate regions
of memory for different classes of data handled by the run time environment. Run
times may separate the stack from the heap to store data. The stack is used for local
variables in a procedure and survives for the scope of that procedure or activation
record. The run time creates a stack segment to achieve this outcome. In contrast,
the heap is used for dynamically generated memory. Global variables conceptually
belong to a different region than the heap, but for practical purposes are normally
grouped together at run time in a data segment (Fig. 2.2).

Fig. 2.1 Raw code for a binary (left) and source code (right)

if

== return =

x 0 x 1

condition then else

Fig. 2.2 An abstract syntax
tree (AST)

8 2 Taxonomy of Program Features



2.1.4 Pointers

Pointers are a type of variable that contain links or pointers to other variables.
Pointers can be dereferenced, which allows for referencing the data the pointer is
pointing to. Pointers may allow pointer arithmetic to be performed which allows
for such operations as incrementing the value of a pointer. Some languages allow
seemingly arbitrary pointer arithmetic, while other languages heavily restrict their
use. Restricting pointer arithmetic allows for easier automated analysis (Fig. 2.3).

2.1.5 Instructions

Instructions capture the basic unit of computation. Computations can include such
things as unary and binary operations, procedure or library calls. An instruction is
defined by its operand and opcodes.

Definition 2.2 Let I be set of all instructions such that I = {(opcode,
operand1,…,operandn)}

Definition 2.3 Let InstrSequence be a string of instructions such that
InstrSequence 2

P
�;
P
¼ I

2.1.5.1 Assembly

Assembly is a low level instruction format that can be executed on the native
processing unit. It consists of opcodes which describe the type of operation to
perform, and operands which are the arguments or parameters. Assembly language
can be roughly divided into Complex Instruction Set Computing (CISC) archi-
tectures, or Reduced Instruction Set Architectures (RISC). RISC architectures
favour simplified and small instruction sets while CISC architectures favour a rich
and large instruction set. 986 is the dominant architecture for personal computing
and is a CISC based architecture (Fig. 2.4).

2.1.5.2 Intermediate Representations

Instructions can be abstracted into intermediate representations. A common rep-
resentation is Three-Address-Code which consists of three operands and one op-
code. Typically, two fixed operands are inputs and the remaining operand is the

p = malloc
*p = q
p = *q
p = &q
p = q

Fig. 2.3 Typical pointer
operations

2.1 Syntactic Features 9



output. For unary operations, the extra operands are ignored. Using intermediate
representation has the advantage of normalizing a complex instruction set into a
series of simpler standardized operations.

Definition 2.4 Let TAC = (opcode, operand1, operand2, operand3)

2.1.6 Basic Blocks

A basic block is a sequence of instructions that satisfy the following conditions:

• Execution flow can only enter the basic block through the first instruction.
• Execution flow can only exit the block at the last instruction.

A basic block can also be represented as s directed cyclic graph showing the
data dependencies between instructions.

Definition 2.5 Let InstrSequence(b) be a string of instructions such that
InstrSequence 2

P
�;
P
¼ I for basic block b

2.1.7 Procedures

Procedures and functions are found in structured programming which allows for
making modular maintainable code. A program uses a set of procedures
F ¼ procedures ðpÞ ¼ ff1; . . .; fng:

Fig. 2.4 Assembly instructions and basic blocks

10 2 Taxonomy of Program Features



2.1.8 Control Flow Graphs

The control flow graph is a directed graph representing the possible flow of exe-
cution within a procedure. The nodes in the graph represent basic blocks (Fig. 2.5).

Definition 2.6 The control flow graph of procedure f is the directed graph
C = (B,E) such that B is the set of basic blocks and E is the set of edges between them

Alternative representations of control flow are possible using graphs such as
dominator trees or control dependency graphs.

Definition 2.7 d dom n or node d dominates a node n if every path from the start
node to n must go through d

Definition 2.8 A node d strictly dominates a node n if d dominates n and d does
not equal n

Definition 2.9 The immediate dominator or idom of a node n is the node that
strictly dominates n but does not strictly dominate any other node that strictly
dominate n

Definition 2.10 A dominator tree is a tree where each node’s children are those
nodes it immediately dominates

Proc_0

Proc_2

Proc_1

Proc_4

Proc_3

Fig. 2.5 A control flow graph (left) and a call graph (right)

2.1 Syntactic Features 11



2.1.9 Call Graphs

The call graph represents the control flow between procedures and is again rep-
resented by a directed graph. If the program does not have recursive procedures,
then the graph is acyclic. Like the control flow graph, dominator trees can be
equally representative of the call graph (Fig. 2.5).

Definition 2.11 The call graph of a program is the directed graph Call-
Graph = (F,E) such that F is the set of procedures and E is the set of edges between them

The interprocedural control flow graph combines the control flow graphs with
the call graph. It is defined as ICFG = (B’,E):

• The set of control flow graphs.
• Each control flow graph is given an additional exit node, which is successor to

the set of return nodes in the cfg.
• For all basic blocks, a call instruction divides the block into two parts. The first

part is connected to a call_return node, and that in turn is connected to the
remaining basic block part.

• For each basic block that now ends with a call instruction, the block’s successor
is additionally the control flow graph of the call target. The successor of the exit
node of the target control flow graph is additionally the call_return node.

2.1.10 Object Inheritances and Dependencies

Objects come from object oriented languages which group procedures (known as
methods) and data into modular units. Objects are related to other objects via
inheritance of their functionality.

2.2 Semantic Features

2.2.1 API Calls

API calls represent calls to libraries and other imports.

2.2.2 Data Flow

Data flow statically represents the data at run time entering and leaving each basic
block. Many types of data flow analyses [1] are possible including reaching def-
initions, liveness, available expressions, and very busy expressions.

12 2 Taxonomy of Program Features



2.2.3 Procedure Dependence Graphs

The control dependencies and data dependencies of a procedure can be represented
in a single graph using a procedure dependence graph [2].

2.2.4 System Dependence Graph

The system dependence graph combines the set of procedure dependency graphs
of each procedure into a unified representation.

2.3 Taxonomy of Features in Program Binaries

Programs may begin as source code, but are typically compiled into a target binary
for execution on the native platform or in another run time environment. The target
binary is a container for all the information necessary for its execution in the target
environment. This container is known as the object file format [3].

2.3.1 Object File Formats

Object File Formats contain five types of data:

• Headers.
• Object Code.
• Symbols.
• Debugging Information.
• Relocations.

Most modern object files also contain:

• Dynamic Linking Information.

2.3.2 Headers

The object file format is often described by a variety of headers. Headers may be
used to define where the object code, symbols, debugging information, etc., is
present in the binary.

2.2 Semantic Features 13



2.3.3 Object Code

Object code contains the code and data of the program. For native executables the
object code can consist of assembly or machine code. For object file formats such
as Java class files, the object code contains byte code which is the instruction set
architecture of the Java Virtual Machine.

2.3.4 Symbols

Parts of the code, data and binary may be associated with symbolic names. These
associations are organized and stored in a Symbol Table.

2.3.5 Debugging Information

The binary may contain debugging information such as line numbers of source code
associated with object code, or naming of information for different codes or data.

2.3.6 Relocations

If the binary has not been associated with a specific load address at compile time,
the binary may need to be link edited at runtime. Relocations or fixups contain the
necessary information to bind the object code to a specific load address.

2.3.7 Dynamic Linking Information

If the binary requires the use of external libraries, then the names of the required
library functions must be present. Likewise, if the binary’s functions are being
exported as a library, then this information must also be present.

2.4 Case Studies

2.4.1 Portable Executable

The Portable Executable (PE) format [4] is the native object file format for the
Windows family of operating systems. It is a modern file format which can contain

14 2 Taxonomy of Program Features



all the information we have described in this section. It is identified by a series of
magic bytes in its headers. Object code is defined in PE sections and an Import
Address Table allows for dynamic linking.

2.4.2 Executable and Linking Format

The Executable and Linking Format [5] is the object file format in use on Linux
and other operating systems. It replaced the previous a.out object file format in
Linux. The a.out object file format did not natively support dynamic linking and
ELF brought a much more modern format to Linux and enabled the transition to
shared libraries using dynamic linking. An ELF binary is identified by a magic
sequence in its header. There are three types of ELF object files (Fig. 2.6).

• Executable Objects.
• Relocatable Objects.
• Dynamic Objects.

Executable objects have been linked and bound to an address. Relocatable
objects have not been bound to a load address and require linking. Dynamic
objects have both a relocatable view and an executable view—shared libraries use
this format.

Dynamic linking is slightly different to the PE format and uses a Global Offset
Table (GOT) and a stub call to the runtime linker to resolve imports.

Fig. 2.6 The output of objdump on a PE executable

2.4 Case Studies 15



2.4.3 Java Class File

Java class files [6] contain object code in sections defined in the file’s headers. The
object code is in the instruction format for execution on the Java Virtual Machine.
Like the previous object file format, a sequence of marker bytes (the magic bytes)
in the header identifies the file format.

References

1. Aho AV, Sethi R, Ullman JD (1986) Compilers: principles, techniques, and tools. Addison-
Wesley, Reading MA

2. Ferrante J, Ottenstein KJ, Warren JD (1987) The program dependence graph and its use in
optimization. ACM Trans Program Lang Syst (TOPLAS) 9(3):319–349

3. Levine JR (2000) Linkers and loaders. Morgan Kaufmann Pub, Massachusetts
4. Pietrek M (2002) Inside windows-an in-depth look into the Win32 portable executable file

format. MSDN magazine, pp 80–92
5. Standard TI (1995) Executable and linking format (ELF) specification version 1.2. In: TIS

committee, May
6. Lindholm T, Yellin F (1999) Java virtual machine specification. Addison-Wesley Longman

Publishing Co., Inc., Boston

16 2 Taxonomy of Program Features


	2 Taxonomy of Program Features
	Abstract
	2.1…Syntactic Features
	2.1.1 Raw Code
	2.1.2 Abstract Syntax Trees
	2.1.3 Variables
	2.1.4 Pointers
	2.1.5 Instructions
	2.1.5.1 Assembly
	2.1.5.2 Intermediate Representations

	2.1.6 Basic Blocks
	2.1.7 Procedures
	2.1.8 Control Flow Graphs
	2.1.9 Call Graphs
	2.1.10 Object Inheritances and Dependencies

	2.2…Semantic Features
	2.2.1 API Calls
	2.2.2 Data Flow
	2.2.3 Procedure Dependence Graphs
	2.2.4 System Dependence Graph

	2.3…Taxonomy of Features in Program Binaries
	2.3.1 Object File Formats
	2.3.2 Headers
	2.3.3 Object Code
	2.3.4 Symbols
	2.3.5 Debugging Information
	2.3.6 Relocations
	2.3.7 Dynamic Linking Information

	2.4…Case Studies
	2.4.1 Portable Executable
	2.4.2 Executable and Linking Format
	2.4.3 Java Class File

	References


