

SpringerBriefs in Computer Science

Series Editors

Stan Zdonik
Peng Ning
Shashi Shekhar
Jonathan Katz
Xindong Wu
Lakhmi C. Jain
David Padua
Xuemin Shen
Borko Furht
V. S. Subrahmanian

For further volumes:
http://www.springer.com/series/10028

http://www.springer.com/series/10028

Silvio Cesare • Yang Xiang

Software Similarity
and Classification

123

Silvio Cesare
School of Information Technology
Deakin University
221 Burwood Highway
Burwood
VIC 3125
Australia

Yang Xiang
School of Information Technology
Deakin University
221 Burwood Highway
Burwood
VIC 3125
Australia

ISSN 2191-5768 e-ISSN 2191-5776
ISBN 978-1-4471-2908-0 e-ISBN 978-1-4471-2909-7
DOI 10.1007/978-1-4471-2909-7
Springer London Heidelberg New York Dordrecht

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2012933433

� The Author(s) 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be
obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book is a unique analysis of four seemingly disparate fields of study. Those
fields are malware classification, software theft detection, plagiarism detection and
code clone detection. These areas of study are all closely intertwined and share
much of the same underlying theory. However, this was not always apparent to us.
Before writing this book, our research goals were in malware classification.
However, this grew outwards as we began to see that those other fields of study
gave an applicable theory and analysis techniques that could be useful in our own
work. The final result is a merging of these fields and a demonstration that a
unified theory can be created and shared equally between them.

The target audiences of this book are researchers looking at performing new
investigation who are seeking a summary of the discipline and software engineers
who are looking to implement a solution for their own particular application.
Researchers will benefit from understanding the base theory that enables new
techniques to be critically analysed. Software engineers will benefit from selecting
the appropriate components from the whole theory and applying them in their own
software.

We hope that the reader will enjoy this book and see it as filling a gap which
currently exists in constructing a theory to describe the problems in software
similarity and classification.

v

Acknowledgments

We would like to acknowledge with gratitude some support from research grants
that we have received, in particular, Australian Research Council (ARC) Dis-
covery Project DP1095498, ARC Linkage Project LP100100208, Deakin Uni-
versity Central Research Grant Scheme (CRGS) Projects RM22414 and RM24147.
Although the research grants were not directly used to support the writing of the
book, some interesting research results presented in the book were from our papers
which are partially supported through these grants.

We would like to thank Prof. Wanlei Zhou, the Head of School of Information
Technology, Deakin University, for his encouragement and support of the research
environment, where we spent productive time working on this book.

We are grateful to the family of each of ours for their consistent and persistent
love and support. Silvio would like to present the book to Maxine and Paloma.
Yang would like to present the book to Abby, David, Julia, and Ella.

December 2011 Silvio and Yang

vii

Contents

1 Introduction . 1
1.1 Background . 1
1.2 Applications of Software Similarity and Classification 2
1.3 Motivation . 2
1.4 Problem Formulization . 3
1.5 Problem Overview . 4
1.6 Aims and Scope . 5
1.7 Book Organization . 5
References . 6

2 Taxonomy of Program Features . 7
2.1 Syntactic Features. 7

2.1.1 Raw Code . 7
2.1.2 Abstract Syntax Trees . 8
2.1.3 Variables . 8
2.1.4 Pointers . 9
2.1.5 Instructions . 9
2.1.6 Basic Blocks . 10
2.1.7 Procedures . 10
2.1.8 Control Flow Graphs . 11
2.1.9 Call Graphs . 12
2.1.10 Object Inheritances and Dependencies 12

2.2 Semantic Features. 12
2.2.1 API Calls. 12
2.2.2 Data Flow . 12
2.2.3 Procedure Dependence Graphs 13
2.2.4 System Dependence Graph 13

2.3 Taxonomy of Features in Program Binaries 13
2.3.1 Object File Formats . 13
2.3.2 Headers . 13

ix

http://dx.doi.org/10.1007/978-1-4471-2909-7_1
http://dx.doi.org/10.1007/978-1-4471-2909-7_1
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_1#Bib1
http://dx.doi.org/10.1007/978-1-4471-2909-7_2
http://dx.doi.org/10.1007/978-1-4471-2909-7_2
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec11
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec11
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec12
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec12
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec13
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec13
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec14
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec14
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec15
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec15
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec16
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec16
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec17
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec17
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec18
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec18
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec19
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec19
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec20
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec20
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec21
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec21

2.3.3 Object Code. 14
2.3.4 Symbols . 14
2.3.5 Debugging Information . 14
2.3.6 Relocations . 14
2.3.7 Dynamic Linking Information 14

2.4 Case Studies . 14
2.4.1 Portable Executable . 14
2.4.2 Executable and Linking Format 15
2.4.3 Java Class File . 16

References . 16

3 Program Transformations and Obfuscations 17
3.1 Compiler Optimisation and Recompilation. 17

3.1.1 Instruction Reordering. 18
3.1.2 Loop Invariant Code Motion 18
3.1.3 Code Fusion . 18
3.1.4 Function Inlining . 18
3.1.5 Loop Unrolling . 18
3.1.6 Branch/Loop Inversion . 18
3.1.7 Strength Reduction . 19
3.1.8 Algebraic Identities. 19
3.1.9 Register Reassignment . 19

3.2 Program Obfuscation . 19
3.3 Plagiarism, Software Theft, and Derivative Works 19

3.3.1 Semantic Changes . 20
3.3.2 Code Insertion . 20
3.3.3 Code Deletion . 20
3.3.4 Code Substitution . 20
3.3.5 Code Transposition . 21

3.4 Malware Packing, Polymorphism, and Metamorphism 21
3.4.1 Dead Code Insertion . 21
3.4.2 Instruction Substitution . 22
3.4.3 Variable Renaming . 22
3.4.4 Code Reordering . 22
3.4.5 Branch Obfuscation . 23
3.4.6 Branch Inversion and Flipping 23
3.4.7 Opaque Predicate Insertion 24
3.4.8 Malware Obfuscation Using Code Packing 24
3.4.9 Traditional Code Packing . 25
3.4.10 Shifting Decode Frame . 25
3.4.11 Instruction Virtualization and Malware Emulators . . . 26

3.5 Features under Program Transformations. 27
References . 27

x Contents

http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec22
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec22
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec23
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec23
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec24
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec24
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec25
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec25
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec26
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec26
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec27
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec27
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec28
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec28
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec29
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec29
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec30
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Sec30
http://dx.doi.org/10.1007/978-1-4471-2909-7_2#Bib1
http://dx.doi.org/10.1007/978-1-4471-2909-7_3
http://dx.doi.org/10.1007/978-1-4471-2909-7_3
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec11
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec11
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec12
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec12
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec13
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec13
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec14
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec14
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec15
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec15
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec16
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec16
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec17
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec17
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec18
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec18
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec19
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec19
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec20
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec20
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec21
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec21
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec22
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec22
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec23
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec23
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec24
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec24
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec25
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec25
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec26
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec26
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec27
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec27
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec28
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec28
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec29
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec29
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec30
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Sec30
http://dx.doi.org/10.1007/978-1-4471-2909-7_3#Bib1

4 Formal Methods of Program Analysis . 29
4.1 Static Feature Extraction . 29
4.2 Formal Syntax and Lexical Analysis. 30
4.3 Parsing . 30
4.4 Intermediate Representations . 31

4.4.1 Intermediate Code Generation 31
4.4.2 Abstract Machines . 31
4.4.3 Basic Blocks . 32
4.4.4 Control Flow Graph . 32
4.4.5 Call Graph. 32

4.5 Formal Semantics of Programming Languages 32
4.5.1 Operational Semantics. 33
4.5.2 Denotational Semantics . 33
4.5.3 Axiomatic Semantics . 33

4.6 Theorem Proving . 33
4.6.1 Hoare Logic. 33
4.6.2 Predicate Transformer Semantics 34
4.6.3 Symbolic Execution . 34

4.7 Model Checking . 34
4.8 Data Flow Analysis . 34

4.8.1 Partially Ordered Sets . 35
4.8.2 Lattices . 35
4.8.3 Monotone Functions and Fixed Points. 35
4.8.4 Fixed Point Solutions to Monotone Functions 36
4.8.5 Dataflow Equations. 36
4.8.6 Dataflow Analysis Examples 36
4.8.7 Reaching Definitions. 37
4.8.8 Live Variables . 37
4.8.9 Available Expressions . 37
4.8.10 Very Busy Expressions . 38
4.8.11 Classification of Dataflow Analyses 38

4.9 Abstract Interpretation. 38
4.9.1 Widening and Narrowing. 38

4.10 Intermediate Code Optimisation . 38
4.11 Research Opportunities . 39
References . 39

5 Static Analysis of Binaries . 41
5.1 Disassembly. 41
5.2 Intermediate Code Generation . 42
5.3 Procedure Identification. 43
5.4 Procedure Disassembly . 44
5.5 Control Flow Analysis, Deobfuscation and Reconstruction . . . 44
5.6 Pointer Analysis . 44

Contents xi

http://dx.doi.org/10.1007/978-1-4471-2909-7_4
http://dx.doi.org/10.1007/978-1-4471-2909-7_4
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec11
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec11
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec12
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec12
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec13
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec13
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec14
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec14
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec15
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec15
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec16
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec16
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec17
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec17
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec18
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec18
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec19
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec19
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec20
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec20
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec21
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec21
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec22
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec22
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec23
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec23
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec24
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec24
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec25
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec25
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec26
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec26
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec27
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec27
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec28
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec28
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec29
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec29
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec30
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec30
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec31
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec31
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec32
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec32
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec33
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec33
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec34
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Sec34
http://dx.doi.org/10.1007/978-1-4471-2909-7_4#Bib1
http://dx.doi.org/10.1007/978-1-4471-2909-7_5
http://dx.doi.org/10.1007/978-1-4471-2909-7_5
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec6

5.7 Decompilation of Binaries . 45
5.7.1 Condition Code Elimination. 45
5.7.2 Stack Variable Reconstruction 45
5.7.3 Preserved Register Detection 46
5.7.4 Procedure Parameter Reconstruction 46
5.7.5 Reconstruction of Structured Control Flow 47
5.7.6 Type Reconstruction . 48

5.8 Obfuscation and Limits to Static Analysis 48
5.9 Research Opportunities . 48
References . 48

6 Dynamic Analysis . 51
6.1 Relationship to Static Analysis . 51
6.2 Environments . 52
6.3 Debugging . 52
6.4 Hooking . 52
6.5 Dynamic Binary Instrumentation . 53
6.6 Virtualization . 53
6.7 Application Level Emulation . 53
6.8 Whole System Emulation . 54
References . 55

7 Feature Extraction . 57
7.1 Processing Program Features . 57
7.2 Strings . 58
7.3 Vectors . 58
7.4 Sets. 58
7.5 Sets of Vectors. 58
7.6 Trees. 59
7.7 Graphs . 59
7.8 Embeddings . 59
7.9 Kernels . 61
7.10 Research Opportunities . 61
References . 61

8 Software Birthmark Similarity . 63
8.1 Distance Metrics. 63
8.2 String Similarity . 64

8.2.1 Levenshtein Distance . 64
8.2.2 Smith-Waterman Algorithm 64
8.2.3 Longest Common Subsequence (LCS) 65
8.2.4 Normalized Compression Distance 65

xii Contents

http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec11
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec11
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec12
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec12
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec13
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec13
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec14
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec14
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec15
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Sec15
http://dx.doi.org/10.1007/978-1-4471-2909-7_5#Bib1
http://dx.doi.org/10.1007/978-1-4471-2909-7_6
http://dx.doi.org/10.1007/978-1-4471-2909-7_6
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_6#Bib1
http://dx.doi.org/10.1007/978-1-4471-2909-7_7
http://dx.doi.org/10.1007/978-1-4471-2909-7_7
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_7#Bib1
http://dx.doi.org/10.1007/978-1-4471-2909-7_8
http://dx.doi.org/10.1007/978-1-4471-2909-7_8
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec6

8.3 Vector Similarity . 66
8.3.1 Euclidean Distance . 66
8.3.2 Manhattan Distance . 66
8.3.3 Cosine Similarity . 66

8.4 Set Similarity . 67
8.4.1 Dice Coefficient . 67
8.4.2 Jaccard Index . 67
8.4.3 Jaccard Distance. 67
8.4.4 Containment . 68
8.4.5 Overlap Coefficient . 68
8.4.6 Tversky Index . 68

8.5 Set of Vectors Similarity . 68
8.6 Tree Similarity . 69
8.7 Graph Similarity. 69

8.7.1 Graph Isomorphism . 69
8.7.2 Graph Edit Distance . 69
8.7.3 Maximum Common Subgraph 70

References . 70

9 Software Similarity Searching and Classification 71
9.1 Instance-Based Learning and Nearest Neighbour 71

9.1.1 k Nearest Neighbours Query 71
9.1.2 Range Query . 72
9.1.3 Metric Trees . 72
9.1.4 Locality Sensitive Hashing 72
9.1.5 Distributed Similarity Search 73

9.2 Statistical Machine Learning . 73
9.2.1 Vector Space Models . 73
9.2.2 Kernel Methods . 74

9.3 Research Opportunities . 74
References . 74

10 Applications . 77
10.1 Malware Classification . 77

10.1.1 Raw Code . 77
10.1.2 Instructions . 78
10.1.3 Basic Blocks . 78
10.1.4 API Calls. 79
10.1.5 Control Flow and Data Flow 79
10.1.6 Data Flow . 79
10.1.7 Call Graph. 79
10.1.8 Control Flow Graphs . 80

Contents xiii

http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec11
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec11
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec12
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec12
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec13
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec13
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec14
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec14
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec15
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec15
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec16
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec16
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec17
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec17
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec18
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec18
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec19
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec19
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec20
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec20
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec21
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec21
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec22
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec22
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec23
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Sec23
http://dx.doi.org/10.1007/978-1-4471-2909-7_8#Bib1
http://dx.doi.org/10.1007/978-1-4471-2909-7_9
http://dx.doi.org/10.1007/978-1-4471-2909-7_9
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_9#Bib1
http://dx.doi.org/10.1007/978-1-4471-2909-7_10
http://dx.doi.org/10.1007/978-1-4471-2909-7_10
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec3
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec4
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec5
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec6
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec7
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec8
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec9
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec9

10.2 Software Theft Detection (Static Approaches) 80
10.2.1 Instructions . 80
10.2.2 Control Flow . 80
10.2.3 API Calls. 81
10.2.4 Object Dependencies. 81

10.3 Software Theft Detection (Dynamic Approaches) 81
10.3.1 Instructions . 81
10.3.2 Control Flow . 81
10.3.3 API Calls. 81
10.3.4 Dependence Graphs . 82

10.4 Plagiarism Detection . 82
10.4.1 Raw Code and Tokens . 82
10.4.2 Parse Trees . 82
10.4.3 Program Dependency Graph 83

10.5 Code Clone Detection . 83
10.5.1 Raw Code and Tokens . 83
10.5.2 Abstract Syntax Tree . 83
10.5.3 Program Dependency Graph 83

10.6 Critical Analysis. 83
References . 84

11 Future Trends and Conclusion . 87
11.1 Future Trends. 87
11.2 Conclusion. 88

xiv Contents

http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec10
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec11
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec11
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec12
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec12
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec13
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec13
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec14
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec14
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec15
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec15
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec16
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec16
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec17
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec17
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec18
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec18
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec19
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec19
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec20
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec20
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec21
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec21
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec22
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec22
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec23
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec23
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec24
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec24
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec25
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec25
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec26
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec26
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec27
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec27
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec28
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Sec28
http://dx.doi.org/10.1007/978-1-4471-2909-7_10#Bib1
http://dx.doi.org/10.1007/978-1-4471-2909-7_11
http://dx.doi.org/10.1007/978-1-4471-2909-7_11
http://dx.doi.org/10.1007/978-1-4471-2909-7_11#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_11#Sec1
http://dx.doi.org/10.1007/978-1-4471-2909-7_11#Sec2
http://dx.doi.org/10.1007/978-1-4471-2909-7_11#Sec2

Chapter 1
Introduction

Abstract This chapter introduces the major applications related to software sim-
ilarity and classification. The applications include malware classification, software
theft detection, plagiarism detection and code clone detection. The motivations for
these applications are examined and an underlying theory is formalized. This theory
is based on extracting signatures from programs, known as birthmarks, that are
amenable to approximate matching that tells us how similar those programs are.

Keywords Software similarity � Software classification �Malware classification �
Software theft detection � Plagiarism detection � Code clone detection

1.1 Background

The software similarity problem is to determine the similarity between two pieces
of software. Software that is similar has a common origin. This allows for rela-
tionships between software to be inferred such as when used in evolutionary trees
to identify a software’s ancestry and derivatives. The software classification
problem is to assign classes to software. For example, software may be labelled as
belonging to the class of malicious programs, or the class of non malicious
programs. Software similarity and software classification are closely related and
based on the problem of feature extraction. Feature extraction concerns itself with
identifying invariant properties of a program.

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_1,
� The Author(s) 2012

1

1.2 Applications of Software Similarity and Classification

A number of applications make use of identifying program features including
malware classification, software theft detection, plagiarism detection, and code
clone detection.

Malware classification is the process of determining if a program is malicious.
One approach to perform classification is to obtain a fingerprint of the malware
based on program feature extraction. This fingerprint creates an invariant signature
that can be used to identify evolutionary malware variants. For detection of
completely novel malware, program features can be extracted to create feature
vectors which can be subsequently used in machine learning algorithms and
statistical classification.

Software theft detection identifies unauthorized copying of a program in binary
form. An example of this is if a software library is illegally being used with regards
to its license. One approach to detect software theft is to identify birthmarks in the
software. A birthmark is a program feature or feature set that is invariant when the
software is illegally copied.

Plagiarism detection identifies similar or identical copying of source code. An
example of its use would be to detect student cheating in programming assign-
ments. Plagiarism detection works by extracting program features that are
invariant when plagiarised. The program features are then detected in plagiarised
copies.

Code clone detection [1] seeks to identify duplicate fragments of code in a
source tree. The value in detecting code clones is that it is often bad software
development practice to have redundant or duplicate code fragments. By refac-
toring the code to eliminate clones, the software becomes easier to maintain and is
less likely to have bugs. Code clone detection works by identifying program
features for code fragments and identifying those features in other locations.

1.3 Motivation

Malware classification helps fight the threat of malicious software. Such malicious
software presents a significant challenge to modern desktop computing. According
to the Symantec Internet Threat Report [2], 499,811 new malware samples were
received in the second half of 2007. F-Secure additionally reported, ‘‘As much
malware [was] produced in 2007 as in the previous 20 years altogether’’ [3].
Detection of malware before it adversely affects computer systems is highly
desirable. Static detection of malware is still the dominant technique to secure
computer networks and systems against untrusted executable content.

Detecting malware variants improves signature based detection methods. The
size of signature databases is growing exponentially, and detecting entire families
of related malicious software can prevent the blowout in the number of stored

2 1 Introduction

malware signatures. Detecting entire families of malware by using similarity
measures instead of exact matching makes malware detection less fragile and more
robust in the face of malware evolution and change.

Software theft detection is an important problem with serious consequences. In
2005, a federal court determined that the independent software vendor Compu-
serve be paid $140 million by IBM to license its software or $260 million to
purchase its services because it was discovered that IBM products had illegiti-
mately used code from Compuware without authorization [4]. The software theft
problem is growing as the internet and software companies become more ubiq-
uitous. For example, in SourceForge.net there were over 230,000 registered open
source projects as of February 2009 [4]. Clearly, an automated approach to
detecting software theft is the only way to scale with the problem.

Plagiarism detection is an important task to ensure that students do not cheat
when submitting assignments. Without plagiarism detection systems, teachers rely
on their own memory when marking. If the number of assignments is high, or the
cheating occurs from previous years, or the assignments are divided between
markers, plagiarism may go undetected. An automated approach to detecting
plagiarism is therefore an important component in a teacher’s arsenal against
student cheating.

Code clone detection helps improve the maintainability of large software
systems. Several studies have shown this that duplicated copy and paste fragments
of code make code harder to maintain [5, 6]. This increases the cost of developing
and maintaining software. Therefore, an effort to detect clones and refactor
solutions leads to less cost in the software life cycle.

1.4 Problem Formulization

The static feature extraction problem is related to identifying invariant properties
or approximations of the program.

Definition 1.1 Let r be a property for program p if for all possible executions r is
true.

The software similarity problem is to determine if program p is a copy or
derivative of program q. We use an extended definition based on software theft
detection [7] (Fig. 1.1).

Definition 1.2 A program q is a copy of program p if it is exactly the same as p or
it is the result of a semantic preserving transformation (e.g., obfuscation, recom-
pilation, or optimisation) over p.

Definition 1.3 Programs p and q are similar if they are derived from the same
works.

1.3 Motivation 3

Definition 1.4 Let p, q be programs. Let f be a method for extracting a set of
characteristics extracted from p. We say f(p) is a birthmark of p, only if both of the
following conditions hold.

• f(p) is obtained only from p itself
• Program q is a copy of p ? f(p) = f(q)

Definition 1.5 Let p, q be programs or program components. Let f(p) ? a and
f(q) ? b be the birthmarks extracted from p and q. Let s(a, b) ? [0,1] be a
similarity function and a value e \ 1. The birthmarking system is resilient if p and
q are similar and 1-s(a, b) \ e.

Definition 1.6 Let p and q be independently written programs. The software
birthmarking system is credible if the system can discriminate between the two
programs; that is s(f(p), f(q)) \ 1-e.

The software classification problem uses the birthmark feature to identify class
membership of software.

Definition 1.7 Given a set of programs and their classes {(p1, c1),…(pn, cn)}, the
software classification function c’ = h(f(p)) will yield a similar classification as
close as possible to the true data set.

1.5 Problem Overview

The problem of software similarity and classification is approached by con-
structing a software birthmark for a program and then using a similarity function
on that birthmark for comparisons. Program features are used to construct a
birthmark. Different program features enable different birthmarks, so taxonomy of
program features is useful. Different features have different properties which are
better or worse at different qualities. A simple breakdown is to divide the features

Program p

Program q

Birthmark

Birthmark

Similar?

MATCH!

Different

Fig. 1.1 The software similarity problem

4 1 Introduction

into syntactic and semantic properties. Syntax describes the structure or form of a
program whereas the semantics describe the meaning of a program’s instructions.
Semantics are sometimes more useful than syntax when constructing birthmarks
due to the fact that obfuscations and transformations applied to programs can
modify that syntax while maintaining equivalent semantics. There are different
approaches in extracting features such as extracting properties from execution of
the program or extracting properties statically. For static analysis, program anal-
ysis techniques offer benefit. Decompilation is a specific program analysis tech-
nique that recovers high level source-like information from a binary.
Decompilation offers some benefits to birthmark construction that we examine in
this book. If program features are used to construct birthmarks, they must be
represented in mathematical form. Different features are naturally represented
using different structures. Once a birthmark is constructed, they can be compared
using mathematical measures and metrics. The final result is a measure of simi-
larity, or classification of birthmarks into classes using statistical machine learning.

1.6 Aims and Scope

The aim of this book is to survey software feature extraction, similarity and
classification by investigating the principal concepts that constitute the construc-
tion of algorithms that tackle these problems. The intended purpose is to
provide an opportunity for researchers and software engineers to understand the
state-of-the-art and lay foundation for the creation of extended works to extract
software features, determine software similarity, and perform software classification.

The scope of this book is limited to the theory of software feature extraction,
similarity, and classification. It has significant applications and four of those
examined by this book are:

• Malware Classification
• Software Theft Detection
• Plagiarism Detection
• Software Clone Detection

For applications that fall outside of this scope, readers are advised to find other
relevant sources and references.

1.7 Book Organization

The structure of this book is as follows:

• Chapter 2 gives taxonomy of program features.

1.5 Problem Overview 5

http://dx.doi.org/10.1007/978-1-4471-2909-7_2

• Chapter 3 examines program obfuscations and transformations that may affect
the quality of fingerprinting software and extracting features.

• Chapter 4 examines formal methods and static techniques to extract features
whether it is from parsing source code or performing static analysis.

• Chapter 5 provides a review of the static technique of analysing binaries and
performing decompilation, which both can be used also to extract software
features.

• Chapter 6 provides an alternative to static feature extraction by using dynamic
analysis.

• Chapter 7 provides an analysis of feature extraction.
• Chapter 8 covers how software birthmarks are compared to result in similarity

and distance measures.
• Chapter 9 covers software similarity searching and classification.
• Chapter 10 evaluates literature in malware classification, software theft detec-

tion, plagiarism detection, and code clone detection. The evaluation identifies
the techniques used in the context of the framework presented in this survey.

• Chapter 11 examines future trends and concludes the book.

References

1. Roy CK, Cordy JR (2007) A survey on software clone detection research. Queen’s School of
Computing TR 541:115

2. Symantec (2008) Symantec internet security threat report: Volume XII. Symantec
3. F-Secure (2007) F-Secure reports amount of malware grew by 100% during 2007
4. Wang X, Jhi Y-C, Zhu S, Liu P (2009) Behavior based software theft detection. Paper

presented at the proceedings of the 16th ACM conference on computer and communications
security, Chicago

5. Baker BS (1995) On finding duplication and near-duplication in large software systems. In:
Proceedings of the second working conference on reverse engineering (WCRE ‘95). Published
by the IEEE Computer Society, p 86

6. Johnson JH (1993) Identifying redundancy in source code using fingerprints. In: Proceedings of
the 1993 conference of the centre for advanced studies on collaborative research (CASCON ‘93).
IBM Press, pp 171–183

7. Tamada H, Okamoto K, Nakamura M, Monden A, Matsumoto K (2004) Dynamic software
birthmarks to detect the theft of windows applications. In: International symposium on future
software technology (ISFST 2004)

6 1 Introduction

http://dx.doi.org/10.1007/978-1-4471-2909-7_3
http://dx.doi.org/10.1007/978-1-4471-2909-7_4
http://dx.doi.org/10.1007/978-1-4471-2909-7_5
http://dx.doi.org/10.1007/978-1-4471-2909-7_6
http://dx.doi.org/10.1007/978-1-4471-2909-7_7
http://dx.doi.org/10.1007/978-1-4471-2909-7_8
http://dx.doi.org/10.1007/978-1-4471-2909-7_9
http://dx.doi.org/10.1007/978-1-4471-2909-7_10
http://dx.doi.org/10.1007/978-1-4471-2909-7_11

Chapter 2
Taxonomy of Program Features

Abstract All programs have common features and abstractions which are used to
create birthmarks. Features can be divided into syntactic and semantic groups.
Syntactic features concern themselves with program structure and program form.
Semantic features examine the meaning of the program. In this chapter we
examine those syntactic and semantic features of programs. Syntactic Features
include: (1) Raw Code, (2) Abstract Syntax Trees, (3) Variables, (4) Pointers,
(5) Instructions, (6) Basic Blocks, (7) Procedures, (8) Control Flow Graphs,
(9) Call Graphs, and (10) Object Inheritances and Dependencies. Semantic
features include: (1) API Calls, (2) Data Flow, (3) Procedure Dependence Graphs,
and (4) System Dependence Graphs.

Keywords Program features � Raw code � Abstract syntax tree � Variables �
Pointer � Instruction � Basic block � Procedure � Control flow graph � Call graph �
Object inheritance � Object dependence � API call � Data flow � Procedure
dependence graph � System dependence graph

2.1 Syntactic Features

2.1.1 Raw Code

The raw code of the program can be analysed directly. For source code this is the
textual stream, possibly normalized by removing comments and whitespace. For
binaries, the raw code is the byte sequences (Fig. 2.1).

Definition 2.1 Let
P

be an alphabet of symbols. The raw code of program p is
defined by the function r that evaluates to a string over the alphabet.

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_2,
� The Author(s) 2012

7

r : P! S

p! s; s 2
X
�

2.1.2 Abstract Syntax Trees

Abstract syntax trees (AST) examine the syntax of source code and construct a tree
representing the syntactical structure. For binaries, decompilation is required to
reconstruct an abstract syntax tree (Fig. 2.2).

2.1.3 Variables

Variables represent the state of data. Programs typically maintain separate regions
of memory for different classes of data handled by the run time environment. Run
times may separate the stack from the heap to store data. The stack is used for local
variables in a procedure and survives for the scope of that procedure or activation
record. The run time creates a stack segment to achieve this outcome. In contrast,
the heap is used for dynamically generated memory. Global variables conceptually
belong to a different region than the heap, but for practical purposes are normally
grouped together at run time in a data segment (Fig. 2.2).

Fig. 2.1 Raw code for a binary (left) and source code (right)

if

== return =

x 0 x 1

condition then else

Fig. 2.2 An abstract syntax
tree (AST)

8 2 Taxonomy of Program Features

2.1.4 Pointers

Pointers are a type of variable that contain links or pointers to other variables.
Pointers can be dereferenced, which allows for referencing the data the pointer is
pointing to. Pointers may allow pointer arithmetic to be performed which allows
for such operations as incrementing the value of a pointer. Some languages allow
seemingly arbitrary pointer arithmetic, while other languages heavily restrict their
use. Restricting pointer arithmetic allows for easier automated analysis (Fig. 2.3).

2.1.5 Instructions

Instructions capture the basic unit of computation. Computations can include such
things as unary and binary operations, procedure or library calls. An instruction is
defined by its operand and opcodes.

Definition 2.2 Let I be set of all instructions such that I = {(opcode,
operand1,…,operandn)}

Definition 2.3 Let InstrSequence be a string of instructions such that
InstrSequence 2

P
�;
P
¼ I

2.1.5.1 Assembly

Assembly is a low level instruction format that can be executed on the native
processing unit. It consists of opcodes which describe the type of operation to
perform, and operands which are the arguments or parameters. Assembly language
can be roughly divided into Complex Instruction Set Computing (CISC) archi-
tectures, or Reduced Instruction Set Architectures (RISC). RISC architectures
favour simplified and small instruction sets while CISC architectures favour a rich
and large instruction set. 986 is the dominant architecture for personal computing
and is a CISC based architecture (Fig. 2.4).

2.1.5.2 Intermediate Representations

Instructions can be abstracted into intermediate representations. A common rep-
resentation is Three-Address-Code which consists of three operands and one op-
code. Typically, two fixed operands are inputs and the remaining operand is the

p = malloc
*p = q
p = *q
p = &q
p = q

Fig. 2.3 Typical pointer
operations

2.1 Syntactic Features 9

output. For unary operations, the extra operands are ignored. Using intermediate
representation has the advantage of normalizing a complex instruction set into a
series of simpler standardized operations.

Definition 2.4 Let TAC = (opcode, operand1, operand2, operand3)

2.1.6 Basic Blocks

A basic block is a sequence of instructions that satisfy the following conditions:

• Execution flow can only enter the basic block through the first instruction.
• Execution flow can only exit the block at the last instruction.

A basic block can also be represented as s directed cyclic graph showing the
data dependencies between instructions.

Definition 2.5 Let InstrSequence(b) be a string of instructions such that
InstrSequence 2

P
�;
P
¼ I for basic block b

2.1.7 Procedures

Procedures and functions are found in structured programming which allows for
making modular maintainable code. A program uses a set of procedures
F ¼ procedures ðpÞ ¼ ff1; . . .; fng:

Fig. 2.4 Assembly instructions and basic blocks

10 2 Taxonomy of Program Features

2.1.8 Control Flow Graphs

The control flow graph is a directed graph representing the possible flow of exe-
cution within a procedure. The nodes in the graph represent basic blocks (Fig. 2.5).

Definition 2.6 The control flow graph of procedure f is the directed graph
C = (B,E) such that B is the set of basic blocks and E is the set of edges between them

Alternative representations of control flow are possible using graphs such as
dominator trees or control dependency graphs.

Definition 2.7 d dom n or node d dominates a node n if every path from the start
node to n must go through d

Definition 2.8 A node d strictly dominates a node n if d dominates n and d does
not equal n

Definition 2.9 The immediate dominator or idom of a node n is the node that
strictly dominates n but does not strictly dominate any other node that strictly
dominate n

Definition 2.10 A dominator tree is a tree where each node’s children are those
nodes it immediately dominates

Proc_0

Proc_2

Proc_1

Proc_4

Proc_3

Fig. 2.5 A control flow graph (left) and a call graph (right)

2.1 Syntactic Features 11

2.1.9 Call Graphs

The call graph represents the control flow between procedures and is again rep-
resented by a directed graph. If the program does not have recursive procedures,
then the graph is acyclic. Like the control flow graph, dominator trees can be
equally representative of the call graph (Fig. 2.5).

Definition 2.11 The call graph of a program is the directed graph Call-
Graph = (F,E) such that F is the set of procedures and E is the set of edges between them

The interprocedural control flow graph combines the control flow graphs with
the call graph. It is defined as ICFG = (B’,E):

• The set of control flow graphs.
• Each control flow graph is given an additional exit node, which is successor to

the set of return nodes in the cfg.
• For all basic blocks, a call instruction divides the block into two parts. The first

part is connected to a call_return node, and that in turn is connected to the
remaining basic block part.

• For each basic block that now ends with a call instruction, the block’s successor
is additionally the control flow graph of the call target. The successor of the exit
node of the target control flow graph is additionally the call_return node.

2.1.10 Object Inheritances and Dependencies

Objects come from object oriented languages which group procedures (known as
methods) and data into modular units. Objects are related to other objects via
inheritance of their functionality.

2.2 Semantic Features

2.2.1 API Calls

API calls represent calls to libraries and other imports.

2.2.2 Data Flow

Data flow statically represents the data at run time entering and leaving each basic
block. Many types of data flow analyses [1] are possible including reaching def-
initions, liveness, available expressions, and very busy expressions.

12 2 Taxonomy of Program Features

2.2.3 Procedure Dependence Graphs

The control dependencies and data dependencies of a procedure can be represented
in a single graph using a procedure dependence graph [2].

2.2.4 System Dependence Graph

The system dependence graph combines the set of procedure dependency graphs
of each procedure into a unified representation.

2.3 Taxonomy of Features in Program Binaries

Programs may begin as source code, but are typically compiled into a target binary
for execution on the native platform or in another run time environment. The target
binary is a container for all the information necessary for its execution in the target
environment. This container is known as the object file format [3].

2.3.1 Object File Formats

Object File Formats contain five types of data:

• Headers.
• Object Code.
• Symbols.
• Debugging Information.
• Relocations.

Most modern object files also contain:

• Dynamic Linking Information.

2.3.2 Headers

The object file format is often described by a variety of headers. Headers may be
used to define where the object code, symbols, debugging information, etc., is
present in the binary.

2.2 Semantic Features 13

2.3.3 Object Code

Object code contains the code and data of the program. For native executables the
object code can consist of assembly or machine code. For object file formats such
as Java class files, the object code contains byte code which is the instruction set
architecture of the Java Virtual Machine.

2.3.4 Symbols

Parts of the code, data and binary may be associated with symbolic names. These
associations are organized and stored in a Symbol Table.

2.3.5 Debugging Information

The binary may contain debugging information such as line numbers of source code
associated with object code, or naming of information for different codes or data.

2.3.6 Relocations

If the binary has not been associated with a specific load address at compile time,
the binary may need to be link edited at runtime. Relocations or fixups contain the
necessary information to bind the object code to a specific load address.

2.3.7 Dynamic Linking Information

If the binary requires the use of external libraries, then the names of the required
library functions must be present. Likewise, if the binary’s functions are being
exported as a library, then this information must also be present.

2.4 Case Studies

2.4.1 Portable Executable

The Portable Executable (PE) format [4] is the native object file format for the
Windows family of operating systems. It is a modern file format which can contain

14 2 Taxonomy of Program Features

all the information we have described in this section. It is identified by a series of
magic bytes in its headers. Object code is defined in PE sections and an Import
Address Table allows for dynamic linking.

2.4.2 Executable and Linking Format

The Executable and Linking Format [5] is the object file format in use on Linux
and other operating systems. It replaced the previous a.out object file format in
Linux. The a.out object file format did not natively support dynamic linking and
ELF brought a much more modern format to Linux and enabled the transition to
shared libraries using dynamic linking. An ELF binary is identified by a magic
sequence in its header. There are three types of ELF object files (Fig. 2.6).

• Executable Objects.
• Relocatable Objects.
• Dynamic Objects.

Executable objects have been linked and bound to an address. Relocatable
objects have not been bound to a load address and require linking. Dynamic
objects have both a relocatable view and an executable view—shared libraries use
this format.

Dynamic linking is slightly different to the PE format and uses a Global Offset
Table (GOT) and a stub call to the runtime linker to resolve imports.

Fig. 2.6 The output of objdump on a PE executable

2.4 Case Studies 15

2.4.3 Java Class File

Java class files [6] contain object code in sections defined in the file’s headers. The
object code is in the instruction format for execution on the Java Virtual Machine.
Like the previous object file format, a sequence of marker bytes (the magic bytes)
in the header identifies the file format.

References

1. Aho AV, Sethi R, Ullman JD (1986) Compilers: principles, techniques, and tools. Addison-
Wesley, Reading MA

2. Ferrante J, Ottenstein KJ, Warren JD (1987) The program dependence graph and its use in
optimization. ACM Trans Program Lang Syst (TOPLAS) 9(3):319–349

3. Levine JR (2000) Linkers and loaders. Morgan Kaufmann Pub, Massachusetts
4. Pietrek M (2002) Inside windows-an in-depth look into the Win32 portable executable file

format. MSDN magazine, pp 80–92
5. Standard TI (1995) Executable and linking format (ELF) specification version 1.2. In: TIS

committee, May
6. Lindholm T, Yellin F (1999) Java virtual machine specification. Addison-Wesley Longman

Publishing Co., Inc., Boston

16 2 Taxonomy of Program Features

Chapter 3
Program Transformations
and Obfuscations

Abstract Software feature extraction must cope with transformations that are
intended to obscure, evolve, or rewrite the program. For example, malware
polymorphism and metamorphism are transformations applied to the malicious code
to evade signature detection. Robust signatures must identify the invariant birth-
marks under these transformations. This chapter focuses on analysing these types of
program transformations and obfuscations including compiler optimsations,
recompilation, plagiarism, software theft, derivative works, malware packing,
malware polymorphism and malware metamorphism.

Keywords Program obfuscation � Compiler optimisation � Code packing �
Polymorphism � Metamorphism

3.1 Compiler Optimisation and Recompilation

Compiler optimisations and recompilation are semantic preserving transforma-
tions. These transformations rewrite the program but do not alter the behavioural
properties of the software. Compiler optimisations make feature extraction more
difficult. Even very minor changes to a program’s source code can result in sig-
nificant changes to the program’s instruction stream once recompiled.

Many compiler optimisations are possible. We examine some in this section.
Typical classes of code optimisation that may affect the birthmarks and feature
extraction are:

• Instruction Reordering
• Loop Invariant Code Motion
• Code Fusion
• Function Inlining
• Loop Unrolling

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_3,
� The Author(s) 2012

17

• Branch/Loop Inversion
• Strength Reduction
• Algebraic Identities
• Register Assignment

3.1.1 Instruction Reordering

Instructions can be reordered or scheduled in such a way that they are semantically
equivalent but perform faster due to caching. To determine if instructions inside a
basic block can be reordered, a directed acyclic graph can be drawn of the data
dependencies. Only instructions that have data dependencies between each other
require strict ordering between those instructions.

3.1.2 Loop Invariant Code Motion

Code that is inside a loop may be moved to outside the loop if no semantic change
occurs. This improves the efficiency of the code.

3.1.3 Code Fusion

Code inside loops in sequence can be fused into a single loop.

3.1.4 Function Inlining

Functions can be inlined to improve performance. Inlining a function means that a
clone or copy of that function replaces the function call. This means that a function
call is avoided and therefore improves performance.

3.1.5 Loop Unrolling

It can improve efficiency to unroll the loop by duplicating the loop body and
termination condition.

3.1.6 Branch/Loop Inversion

Branching on equality or non equality can be inverted and may improve efficiency
in some cases.

18 3 Program Transformations and Obfuscations

3.1.7 Strength Reduction

Strength reduction replaces expensive operations with equivalent but less expen-
sive operations.

3.1.8 Algebraic Identities

Algebraic identities take note that some expressions are algebraically equivalent to
other less expensive operations. For example, x ? 0 is equivalent to the less
expensive expression x.

3.1.9 Register Reassignment

Register allocation is the process of assigning specific registers to instructions. The
assignment of these registers can change while maintaining semantically equivalent
code.

3.2 Program Obfuscation

Program obfuscation obscures the workings of a program [1].

Definition 3.1 Let P�!T P0 be a transformation of a source program P into a target

program P0. P�!T P0 is an obfuscating transformation, if P and P0 have the same

observable behaviour. More precisely, in order for P�!T P0 to be a legal obfuscating
transformation the following conditions must hold:

• If P fails to terminate or terminates with an error condition, then P0 may or may
not terminate.

• Otherwise, P0 must terminate and produce the same output as P.

3.3 Plagiarism, Software Theft, and Derivative Works

An incomplete list of source code plagiarism techniques is described in [2]. The
authors state that such a list is never ending, so a comprehensive list is impossible.
Nevertheless, they identified the following forms of plagiarism:

3.1 Compiler Optimisation and Recompilation 19

• Lexical Changes

– Comments can be reworded, added and omitted.
– Formatting can be changed.
– Identifier names can be modified.
– Line numbers can be changed (e.g., in Fortran programs).

• Structural Changes

– Loops can be replaced (e.g., replacing a while loop with a for loop).
– Nested if statements can be replaced by case statements and vice versa.
– Statement order can be changed.
– Procedures can be replaced by functions (e.g., in Pascal).
– Procedures may be inlined.
– Ordering of operands may be changed (e.g., x \ y becomes x [= y).

3.3.1 Semantic Changes

An extension to syntactic changes is that of semantic changes where the new
variant is a derived work of the original malware. Semantic changes occur due to
the software authors modifying the original source code or functionality. This can
occur to a natural evolution of the software during its development life cycle.
Additionally, it can occur when a software author reuses existing code in a new
program instance.

3.3.2 Code Insertion

Code insertion occurs when new functionality is added to the malware.

3.3.3 Code Deletion

Code deletion occurs when functionality is removed from the malware.

3.3.4 Code Substitution

Code substitution occurs when functionality in the malware is replaced by an
alternative algorithm or code.

20 3 Program Transformations and Obfuscations

3.3.5 Code Transposition

Code transposition occurs when specific code and functionality of the malware is
removed from its initial location and inserted into a semantically different location
in the malware.

3.4 Malware Packing, Polymorphism, and Metamorphism

The two categories of malware obfuscation are syntactic and semantic changes.
Semantic changes include those described for plagiarism and software theft.
A syntactic polymorphic malware technique is a method that changes the syntactic
structure of the malware [3]. Though the syntactic structure changes in poly-
morphic malware, the malware semantically remains identical. The technique is
predominantly used to evade byte level signature based detection and classification
that is routinely employed by traditional Antivirus. Polymorphism borrows many
of the techniques from the field of program obfuscation.

Polymorphism is sometimes described by the similar term of metamorphism.
In that usage it is used to describe the automated syntactic mutation of the
malware’s code and instructions. Under such terminology, polymorphism is used
to describe syntactic mutation of limited parts of the malware’s instruction content.
The remaining parts of the malware are encoded at the byte level without regard to
the instruction syntax or semantics. In this book we treat polymorphism and
metamorphism as identical to each other.
Syntactic malware obfuscations and transformations include:

• Dead Code Insertion
• Instruction Substitution
• Variable Renaming
• Code Reordering
• Branch Inversion and Flipping
• Opaque Predicate Insertion
• Code Packing

3.4.1 Dead Code Insertion

Dead code is also known as junk code and a semantic nop [3]. Dead code is
semantically equivalent to a nil operation. Insertion of this type of code has no
semantic impact on the malware. The insertion increases the size of the malware
and modifies the byte and instruction level content of the malware (Fig. 3.1).

3.3 Plagiarism, Software Theft, and Derivative Works 21

3.4.2 Instruction Substitution

Instruction substitution replaces specific instructions or sequences of instructions
with semantically equivalent, but differing instructions and instruction sequences.
The size of the malware may grow or shrink in this procedure (Fig. 3.2).

3.4.3 Variable Renaming

Variable renaming [4] and the associated technique of register reassignment alters
the use of variables and registers in a sequence of code such that the instructions
are semantically equivalent but use different variables and registers when com-
pared to the original code (Fig. 3.3).

3.4.4 Code Reordering

Code reordering [4] changes the syntactic order of the code in the malware [3].
The actual or semantic execution path of the program does not change. However,
the syntactic order as present in the malware image is altered. Code reordering
includes the techniques of branch obfuscation, branch inversion, branch flipping,
and the use of opaque predicates.

Fig. 3.1 A semantic nop

Fig. 3.2 Instruction substituion

Fig. 3.3 Register reassignment

22 3 Program Transformations and Obfuscations

3.4.5 Branch Obfuscation

Branch obfuscation attempts to hide the target of a branch instruction. Examples
include the use of Structured Exception Handling (SEH) on the Microsoft
Windows platform. The use of SEH to obscure control flow is common in
modern malware. Similar techniques involve indirect branching. Indirect
branching uses data content as the target of a branch. This translates control flow
identification into a harder data flow analysis problem. The use of a branch
function [5] extends this approach and dispatches multiple branches through a
single routine. The main purpose of branch obfuscation is to make the static
analysis of the malware by an analyst or automated system harder to perform
(Fig. 3.4).

3.4.6 Branch Inversion and Flipping

Branch inversion inverts the branch condition in conditional branches. Whereas
the branch may originally transfer control when the condition is true, branch
inversion alters the condition to branch when false. To maintain the original
semantics of the program the branch instruction is also inverted. For example, a
branch on condition true statement can be changed to a branch on condition false
statement. Additionally, the condition being tested would also be inverted.
Branch inversion is effectively a form of instruction substitution on control flow
statements.

Branch flipping [5] is a similar technique to branch inversion and rewrites the
branch instruction by substituting it with semantically equivalent code with
different control flow properties. For example, if the original code is to branch
on condition true then the new code branches on condition false to the original
fall-through instruction. The new fall-through instruction then unconditionally
branches to the original conditional branch target (Figs. 3.5 and 3.6).

Fig. 3.4 An indirect branch

Fig. 3.5 Branch inversion

3.4 Malware Packing, Polymorphism, and Metamorphism 23

3.4.7 Opaque Predicate Insertion

An opaque predicate [5] is a predicate that always evaluates to the same result. An
opaque predicate is constructed so that it is difficult for an analyst or automated
analysis to know the predicate result. Opaque predicates can be used to insert
superfluous branching in the malware’s control flow. They can also be used to
assign variables values which are hard to determine statically. The use of opaque
predicates is primarily for code obfuscation, and to prevent understanding by an
analyst or automated static analysis.

3.4.8 Malware Obfuscation Using Code Packing

Code packing [6, 7] is the dominant technique used to obfuscate malware and
hinder an analyst’s understanding of the malware’s intent. In one month during
2007, 79% of identified malware from a commercial Antivirus vendor was found
to be packed [8]. Additionally, almost 50% of new malware in 2006 were repacked
versions of existing malware [9].

Code packing, in addition to obfuscating the understanding of the malware by
an analyst, is also used by malware to evade an Antivirus system’s detection.
Polypack [10] evaluated the effectiveness of code packing against Antivirus
detection by providing a service to pack malware using a variety of code packing
tools. Antivirus systems often have the capabilities of unpacking known code
packing tools, and unpacking unknown tools has also had commercial interest [11].
However, Polypack demonstrated that packing can be an effective tool to defeat an
Antivirus system with many commercial malware detection systems failing to
identify the packed versions of existing malware.

Code packing is used in the majority of malware, but code packing also serves
to provide compression and software protection for the intellectual property
contained in a program. It is not necessarily advantageous to flag all occurrences of
code packing as being indicative of malicious activity. Code packing tools are
freely available [12] and commercially sold to the public as legitimate software
[13]. For this reason, unpacking of packed programs provides benefit. It is
advisable to determine if the packed contents are malicious, rather than identifying
only the fact that unknown contents are packed.

Fig. 3.6 Branch flipping

24 3 Program Transformations and Obfuscations

3.4.9 Traditional Code Packing

The most common method of code packing is described in [6]. Malware employing
this method of code packing transforms executable code into data as a post-
processing stage in the malware development cycle. This transformation may
perform compression or encryption, hindering an analyst’s understanding of the
malware when using static analysis. At runtime, the data, or hidden code, is restored
to its original executable form through dynamic code generation using an associated
restoration routine [14]. Execution then resumes as normal to the original entry point.
The original entry point marks the entry point of the original malware, before the
code packing transformation is applied. Execution of the malware, once the resto-
ration routine is complete and control is transferred to the original entry point, is
transparent to the fact that code packing and restoration had been performed.
A malware may have the code packing transformation applied more than once. After
the restoration routine of one packing transformation has been applied, control may
transfer another packed layer. The original entry point is derived from the last such
layer. The process of this form of malware packing is shown in Fig. 3.7.

3.4.10 Shifting Decode Frame

An extension to traditional code packing is to maintain as much of the packed image in
an encrypted form at run-time. During execution of the malware, blocks of memory
can be decrypted as needed and subsequently re-encrypted to prevent an analyst or

Restoration
Routine

Hidden Code =
f(Original Code)

Original Code

Remnant Code
and Restoration

Routine

Original Code =
g(Hidden Code)

Packing Runtime

Original Executable Packed Executable Memory Image at Runtime

Fig. 3.7 The traditional code packing transformation

3.4 Malware Packing, Polymorphism, and Metamorphism 25

automated system from having access to all the hidden code at any single moment in
time. This technique is known as the shifting decode frame [15]. The granularity of
encryption can occur at the page level, the basic block level, and the instruction level.
This type of code packing is not often used in wild malware, and in practice, traditional
code packing and instruction virtualization are the dominant techniques used in real
malware. The process of this form of malware packing is shown in Fig. 3.8.

3.4.11 Instruction Virtualization and Malware Emulators

Code packing may employ the use of instruction virtualization also known as a
malware emulator [7]. An emulator used by a malware should not be confused
with an emulator used for automated unpacking of the malware. This type of code

Shifting Decode
Frame Restoration

Routine

Hidden Code =
f(Original Code)

Packing Runtime

Packed Executable Memory Image at Runtime

Original Code

Hidden Code

Shifting Decode
Frame Restoration

Routine

Original Code

Original Executable

Fig. 3.8 Code packing using the shifting decode frame

Interpreter

Byte Code =
f(Original Code)

Packing Runtime

Packed Executable Memory Image at Runtime

Original Code

Original Executable

Interpreter

Byte Code =
f(Original Code)

Fig. 3.9 Code packing using instruction virtualization

26 3 Program Transformations and Obfuscations

packing transformation employing an emulator is used in a minority of malware.
In this form of code packing, packing translates the original native code into a
byte-code which is subsequently emulated by the malware at run-time. Using this
form of code packing, the hidden code in its original form is never revealed.
The process of this form of malware packing is shown in Fig. 3.9.

3.5 Features under Program Transformations

Program features may change under program transformations and obfuscation. The
challenge then is in choosing features which remain invariant under these conditions.
The raw or byte level content deals poorly with program transformations. Small
changes in high level source code may result in large changes in the raw content.
Instruction level content is also prone to large changes under transformations such as
when registers are reassigned or the instruction stream is modified. Control flow is
more invariant than most syntactic features and can be a good choice. At a source
code level, program and system dependency graphs have been popular. The APIs
used by a program represent a good choice and have been widely used in behavioural
analysis of malware. For static analysis of malware, the malware must be unpacked to
reveal its hidden code. Unpacking of malware is not addressed in this book.

References

1. Collberg C, Thomborson C, Low D (1997) A taxonomy of obfuscating transformations.
Department of computer science, The University of Auckland, New Zealand

2. Joy M, Luck M (1999) Plagiarism in programming assignments. Education, IEEE
transactions on 42 (2):129–133

3. Christodorescu M, Kinder J, Jha S, Katzenbeisser S, Veith H (2005) Malware normalization.
University of Wisconsin, Madison

4. Mihai C, Somesh J (2004) Testing malware detectors. Paper presented at the proceedings of
the 2004 ACM SIGSOFT international symposium on software testing and analysis, Boston

5. Cullen L, Saumya D (2003) Obfuscation of executable code to improve resistance to static
disassembly. Paper presented at the Proceedings of the 10th ACM conference on computer
and communications security, Washington

6. Royal P, Halpin M, Dagon D, Edmonds R, Lee W (2006) Polyunpack: automating the
hidden-code extraction of unpack-executing malware. In: Computer security applications
conference, pp 289–300

7. Sharif M, Lanzi A, Giffin J, Lee W (2009) Rotalume: a tool for automatic reverse engineering
of malware emulators. Paper presented at the proceedings of the 30th IEEE symposium on
security and privacy

8. Panda Research (2007) Mal(ware)formation statistics–Panda Research Blog
9. Stepan A (2006) Improving proactive detection of packed malware. In: Virus Bulletin Conference

10. Oberheide J, Bailey M, Jahanian F (2009) Polypack. In: USENIX workshop on offensive
technologies (WOOT ‘09), Montreal

11. Graf T (2005) Generic unpacking: How to handle modified or unknown PE compression
engines. Paper presented at the Virus Bulletin Conference

3.4 Malware Packing, Polymorphism, and Metamorphism 27

12. UPX: the Ultimate Packer for eXecutables (2010) http://upx.sourceforge.net/. Accessed 6 April
2010

13. Themida (2010) http://www.themida.com/. Accessed 6 April 2010
14. Kang MG, Poosankam P, Yin H (2007) Renovo: a hidden code extractor for packed

executables. In: Workshop on recurring malcode, pp 46–53
15. Boehne L (2008) Pandora’s Bochs: automatic unpacking of malware. University of Mannheim

28 3 Program Transformations and Obfuscations

http://upx.sourceforge.net/
http://www.themida.com/

Chapter 4
Formal Methods of Program Analysis

Abstract Feature extraction is a necessary component to construct a birthmark,
show similarity and classify a program as belonging to a particular class. Program
analysis is an important component in feature extraction. The analysis reveals
information on the syntax, semantics, and behaviour of the program being
inspected. This chapter focuses on formal methods of program analysis which can
be used for the purpose of property and feature extraction.

Keywords Lexical analysis � Parsing � Intermediate representation � Formal
semantics � Theorem proving � Model checking � Data flow analysis � Static
program analysis

4.1 Static Feature Extraction

The majority of formal methods we will examine in this chapter are based on
analysing a static view of a program without performing execution of it. A number
of possible choices exist to perform feature extraction statically from a program.
There is some equivalence between source code and binary feature extraction,
however differences also exist.

The possible stages to extract static features from source code are:

• Raw Code Analysis
• Lexical Analysis
• Parsing
• Static Program Analysis

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_4,
� The Author(s) 2012

29

For binary only software, analyses can be divided into:

• Raw Code Analysis
• Object File Parsing
• Static Program Analysis of Binaries
• Decompilation

Static program analysis is an approximation of program behaviour. For an
analysis to be sound, then no behaviour should be omitted. For an analysis to be
precise, the over-approximation should be close to the actual behaviour. This over
approximation leads to false positives in the case of bug detection, or conservation
optimisations in the case of compiler techniques. A perfectly precise analysis is
undecidable due to Rice’s theorem [1], however even without perfect precision the
results are still practical and useful.

4.2 Formal Syntax and Lexical Analysis

Lexical analysis is the process of producing a sequence of tokens given a sequence
of characters. Lexical analysis is performed before parsing. The parser uses the
tokens generated from the lexical analysis (Fig. 4.1).

4.3 Parsing

Definition 4.1 A context-free grammar G is defined by the 4-tuple:
G = (V,R,R,S) where

V is a finite set of non terminal variables,
R is a finite set of terminals (Fig. 4.2),
R is a finite set of rules or productions of the grammar,
S is the start variable.

Fig. 4.1 Implementation of
lexical analysis

30 4 Formal Methods of Program Analysis

Rules are of the form V ! w where V is a non terminal symbol and w is a string of
terminals and/or non terminals.

Context-free grammars are the basis for recognizing and representing pro-
gramming languages in source code. However, in practice, a number of widely
used languages such as C++ are not strictly context-free in all cases.

The process of parsing in static analysis is to transform source code into a
concrete or abstract syntax tree.

4.4 Intermediate Representations

4.4.1 Intermediate Code Generation

The process of code generation is typically performed by traversing the abstract
syntax tree and generating intermediate code for each unit in the tree.

4.4.2 Abstract Machines

The intermediate language used for the intermediate code runs on an abstract
machine that has a correspondence to the actual machine. Typical models of
computation for the abstract machine are register machines or random access
machines. A typical implementation useful for static analysis consists of:

• An unlimited number of uniquely labelled registers.
• A small number of instruction prototypes to make an instruction set.
• An instruction pointer.
• A sequence of labelled instructions.
• A random access memory.
• An entry point.

Fig. 4.2 Implementation of parsing

4.3 Parsing 31

The instruction set can further be divided into:

• Data (arithmetic etc.)
• Control (conditional and unconditional branching etc.)
• API Calls (operating system and library interface etc.)

4.4.3 Basic Blocks

To partition the intermediate code into basic blocks [2] we determine instructions
that are leaders. Leaders are the first instruction in each basic block. An instruction
is a leader when it satisfies one of the following properties:

• The first instruction in the intermediate code.
• Any instruction that is the target of a branch.
• Any instruction that follows a branch.

4.4.4 Control Flow Graph

The successors of a basic block b, succ(b), are:

• The target of the basic block’s branch instruction.
• The basic block immediately following the current basic block in the instruction

stream.

Thus, a control flow graph [2] is defined as the directed graph C = (B,E) such
that B is the set of basic blocks, and E ¼ fðu; vÞju 2 B; v 2 succðuÞg:

4.4.5 Call Graph

The successors of a procedure f, call_succ(f), are:

• The set of call targets in the procedure body.

Thus, a call graph is defined as the directed graph CallGraph = (F,E) such that
F is the set of procedures, and E ¼ fðu; vÞju 2 F; v 2 call succðuÞg:

4.5 Formal Semantics of Programming Languages

The formal semantics of programming languages aims to rigourously reason about
program meaning by having a strict mathematical representation of a program’s
semantics. Multiple methods are available to represent program semantics and the
three main techniques are:

32 4 Formal Methods of Program Analysis

• Operational Semantics
• Denotational Semantics
• Axiomatic Semantics

Other approaches are also possible, including algebraic semantics [3] which has
been used successfully to show equivalence between code fragments of meta-
morphic malware.

4.5.1 Operational Semantics

Operational semantics capture the state transition that occurs when a program
instruction is executed. It can be thought of as defining an interpreter for a language [4].
Operational semantics can be expressed using the following notation:

premise1

. . .

premisen

ði;PÞ) P0
NAME

where i is the current instruction, P is the current state and P0 is the next state
following execution of the instruction i.

4.5.2 Denotational Semantics

Denotational semantics transform instructions to mathematical objects [4]. It can
be thought of as defining a compiler for a language.

4.5.3 Axiomatic Semantics

Axiomatic semantics give an axiomatic basis for a program. Typically this is
achieved by using preconditions and postconditions for instructions. These pre-
conditions and postconditions can be analysed with logic, typically first order
logic. The most common use of axiomatic semantics is to prove program cor-
rectness using Hoare logic [5] and its variants.

4.6 Theorem Proving

4.6.1 Hoare Logic

Hoare logic is a means for proving the correctness of structured programs [5]. It is
based on axiomatic semantics. Hoare logic provides a deductive method for

4.5 Formal Semantics of Programming Languages 33

proving correctness, however loop invariants must be synthesised and this repre-
sents a significant challenge in developing program proofs.

4.6.2 Predicate Transformer Semantics

Predicate transformer semantics [6] provide a method to generate verification
conditions through the weakest precondition. This is a form of axiomatic
semantics and reformulates Hoare logic to provide an automated construction of
first order logic formula to prove program correctness.

4.6.3 Symbolic Execution

Symbolic execution [7] is the process of executing a program using symbolic
represents for variables and data. The program executes by generating constraints
of the symbols for each instruction. Mixed symbolic execution [8] allows a more
efficient implementation by concretely executing part of the program using native
computations, and symbolically execution those variables of interest. Symbolic
execution is path based execution. At every control transfer point, a decision must
be made of which path to follow. The feasibility of paths and the symbolic con-
straints are modelled using an SMT decision procedure. The decision procedure
can report if a set of constraints is feasible, or provide a counter example to prove
otherwise. Symbolic execution has been applied to binaries for applications such
as malware analysis [9].

4.7 Model Checking

Model checking is used to verify that a model meets the properties of a specifi-
cation [10]. It achieves this by enumerating the state space of the model to verify
the specification.

4.8 Data Flow Analysis

Data flow analysis tries to statically determine the behaviour of data [11]. Perfectly
precise data is undecidable so data flow analysis seeks to find an approximation of
the data by discovering conservative program invariants. Data flow analyses are
flow-sensitive which means the ordering of instructions is taken into account. The
solution of data flow problems is based on lattice and order theory. The problems
are represented as monotone functions which can be approximated and computed
using fixed point solutions.

34 4 Formal Methods of Program Analysis

4.8.1 Partially Ordered Sets

Definition 4.2 A partial order (poset) is a binary relation � over a set P which
satisfies the following conditions:

• reflexivity: 8x 2 P : x� x
• transivity: 8x; y; z 2 P : x� y ^ y� z) x� z
• anti-symmetry: 8x; y 2 P : x� y ^ y� x) x ¼ y

Definition 4.3 Let X � P: y 2 P is an upper bound for X written as X� y iff
8x 2 P : x� y:

Definition 4.4 Let X � P: y 2 P is a lower bound for X written as y�X iff
8x 2 P : y� x:

4.8.2 Lattices

Definition 4.5 A lattice is a partially ordered set such that any two elements have
a unique least upper bound (its supremum or join) and a unique greatest lower
bound (its infimum or meet).

Definition 4.6 A complete lattice is a lattice such that all subsets have a meet and
a join.

Definition 4.7 A join-semilattice is a partially ordered set such that any two
elements have a join.

Definition 4.8 A meet-semilattice is a partially ordered set such that any two
elements have a meet.

4.8.3 Monotone Functions and Fixed Points

Definition 4.9 A function f : L! L is monotone when 8x; y 2 P : x� y)
f ðxÞ� f ðyÞ:

Definition 4.10 Let L be a complete lattice and let f : L! L be an order pre-
serving function. Then the set of fixed points of f in L is also a complete lattice.

This is known as the Knaster-tarski theorem and as a consequence states the
existence of a least fixed point (or greatest lower bound) in a non empty lattice
given a monotone function.

4.8 Data Flow Analysis 35

4.8.4 Fixed Point Solutions to Monotone Functions

The naive algorithm to reach a fixed point for F : Ln ! Ln such that
Fðx1; . . .; xnÞ ¼ ðF1ððx1; . . .; xnÞ; . . .;Fnðx1; . . .; xnÞÞ is

x ¼ ð?; . . .;?Þ;
doft ¼ x; x ¼ FðxÞ; gwhileðx 6¼ tÞ;

4.8.5 Dataflow Equations

Dataflow analysis is performed by reaching a fixpoint solution in a semilattice
for a system of monotone equations that describe the dataflow. Typical data
flow analyses require control flow information to perform the analysis. The
basic approach is to set up data flow equations to track data entering and
leaving each node in the control flow graph. In a forward flow analysis, a
transfer function is applied on the data entering a basic block which results in
the data leaving the basic block. Merging of control flow edges is applied using
a join operator. The analysis can be forwards or backwards merging successor
or predecessor nodes. In some literature a meet operator is used instead of a
join. This is arbitrarily dependent on whether a meet-semilattice or join-
semilatice is used for analysis.

In a forward analysis using a join-semilattice, for each block b:

outb ¼ transfer functionðinbÞ
inb ¼ joinðfpjp 2 predecessorbg; outbÞ

A backwards analysis replaces in with out, and out with in. It also uses the
successor blocks instead of the predecessor blocks in the join.

Typical join operators include union or intersection. Data flow analyses are
usually constructed to be conservative so that precision is sacrificed to capture all
possible behaviours. The analysis proceeds by iteratively computing the functions
for all blocks until a fixed point is reached.

4.8.6 Dataflow Analysis Examples

Common data flow analyses include reaching definitions and live variable analysis.
These analyses are use-def analyses. They resolve the problem of identifying
which instructions subsequently use a variable as in the case of liveness and
upwards exposed uses, or which variable definitions reach an instruction as in the
case of reaching definitions. There may be more than one reaching definition of the

36 4 Formal Methods of Program Analysis

same variable at an instruction if multiple paths lead to that instruction and
the same variable is defined along those separate paths.

If an accurate control flow graph is available, then data flow analysis performs
equally accurate. Data flow analyses has been heavily used in the decompilation of
binaries [12]. If data flow analyses is performed interprocedually, then the call
graph must be accurately generated.

4.8.7 Reaching Definitions

The lattice for reaching definitions is the power set of definitions ordered by set
inclusion. The data flow equations for reaching definitions are:

REACHOUT ½S� ¼ GEN½S� [ðREACHIN � KILL½S�Þ
REACHIN ½S� ¼

[

p2pred½S�
REACHOUT ½p�

GEN½d : y f ðx1; . . .; xnÞ� ¼ fdg
KILL½d : y f ðx1; . . .; xnÞ� ¼ DEFS½y� � fdg

where DEFS[y] is the set of all definitions that assign to variable y. d is a unique
label attached to the assigning instruction.

4.8.8 Live Variables

The lattice for live variable analysis is the power set of used variables ordered by
set inclusion. The data flow equations for live variable analysis are:

LIVEIN ½S� ¼ GEN½S� [ðLIVEOUT � KILL½S�Þ
LIVEOUT ½final� ¼ 0

LIVEOUT ½S� ¼
[

p2succ½S�
LIVEIN ½p�

GEN½d : y f ðx1; . . .; xnÞ� ¼ fx1; . . .; xng
KILL½d : y f ðx1; . . .; xnÞ� ¼ DEFS½y� � fyg

4.8.9 Available Expressions

An expression is available if it is has already been computed earlier. Data flow
analysis can solve the problem of identifying available expressions.

4.8 Data Flow Analysis 37

4.8.10 Very Busy Expressions

An expression is very busy if it will definitely be evaluated again before its value
changes. Data flow analysis can solve the problem of identifying very busy
expressions.

4.8.11 Classification of Dataflow Analyses

Data flow analyses may be categorized based on their direction and the type of join
or confluence operation. A may analysis uses set union whereas a must analysis
uses set intersection

Forwards Backwards

May Reaching definitions Liveness
Must Available expressions Very busy expressions

4.9 Abstract Interpretation

Abstract interpretation [13] is closely related to data flow analysis. Abstract
interpretation concerns to the sound approximation of programs. A classic example
of abstract interpretation used for pedagogical purposes is the abstract domain of
signs which represents numerical variables by the possible sign they have.
A variable may be positive, negative, possibly both, or zero. Abstract interpreta-
tion has been applied to, in amongst other things, malware detection.

4.9.1 Widening and Narrowing

To reach a fixed point in an ascending chain may require a long or infinite amount
of time. To make this feasible, widening implements a direct short cut to the least
fixed point. Widening may result in a significant over approximation, so narrowing
performs the converse and leads to increasing the precision of the analysis.

4.10 Intermediate Code Optimisation

Data flow analysis is used in intermediate code optimisation. A very small set of
possible optimisations are:

38 4 Formal Methods of Program Analysis

• Dead Store Elimination
• Constant Folding
• Copy Propagation

For example, in dead store elimination, if a variable is defined, but is not live,
then the definition can be safely removed from the code.

4.11 Research Opportunities

Algebraic semantics [14] have been used to show equivalence between meta-
morphic malware. However, the general approach of using formal semantics to
show semantic equivalence between programs is under-utilised. We believe this
presents an opportunity for researchers looking at the software similarity problem
in future work. The notion of non exact matching of semantics is an area that needs
investigation if we are to detect similar but not identical program copies.

References

1. Rice HG (1953) Classes of recursively enumerable sets and their decision problems. Trans
Am Math Soc 74(2):358–366

2. Muchnick SS (1997) Advanced compiler design and implementation. Morgan Kaufmann,
Los Altos

3. Goguen J, Malcolm G (1996) Algebraic semantics of imperative programs. MIT Press,
Cambridge

4. Nielson HR, Nielson F (2007) Semantics with applications: an appetizer. Springer Verlag,
NY

5. Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM
12(10):576–580. doi:10.1145/363235.363259

6. Dijkstra EW (1975) Guarded commands, nondeterminacy and formal derivation of programs.
Commun ACM 18(8):453–457. doi:10.1145/360933.360975

7. King JC (1976) Symbolic execution and program testing. Commun ACM 19(7):385–394
8. Cadar C, Ganesh V, Pawlowski PM, Dill DL, Engler DR (2008) EXE: automatically

generating inputs of death. ACM Trans Inf Syst Secur TISSEC (2008) 12(2):10:11–10:38.
doi:10.1145/1455518.1455522

9. Brumley D, Hartwig C, Kang MG, Liang Z, Newsome J, Song D, Yin H (2007) BitScope:
automatically dissecting malicious binaries. Technical report CMU-CS-07-133, school of
computer science, Carnegie Mellon University

10. Clarke E (1997) Model checking. In: Foundations of software technology and theoretical
computer science, pp 54–56

11. Aho AV, Sethi R, Ullman JD (1986) Compilers: principles, techniques, and tools. Addison-
Wesley, Reading

12. Cifuentes C (1994) Reverse compilation techniques. Queensland University of Technology
13. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In: Sixth annual ACM SIGPLAN-
SIGACT symposium on principles of programming languages, Los Angeles, California,
ACM Press, pp 238–252

14. Webster M, Malcolm G (2006) Detection of metamorphic computer viruses using algebraic
specification. J Comput Virol 2(3):149–161

4.10 Intermediate Code Optimisation 39

http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/360933.360975
http://dx.doi.org/10.1145/1455518.1455522

Chapter 5
Static Analysis of Binaries

Abstract Static binary analysis is more difficult than if source code is available.
In many cases, the analyses are unsound and behaviours are omitted to make
problems feasible. Heuristics may be required to separate code and data in a
disassembly or pointer behaviour may be weakly modelled to make statically
analysing programs feasible. Nevertheless, static analysis of binaries is an
important area of research with a number of practical applications including the
detection of software theft and the classification and detection of malware. This
chapter examines static analysis of binaries with the intent that properties and
features of binary programs can be extracted to create useful birthmarks for
software similarity and classification.

Keywords Disassembly � Intermediate language � Control flow reconstruction �
Decompilation

5.1 Disassembly

Disassembly is the process of translating machine code to assembly language [1].
This is typically the first stage of a static analysis. Static disassembly parses the
entire binary image statically without execution. In static disassembly, there are
two main algorithms. In the Linear Sweep algorithm, the instructions are disas-
sembled one instruction after another, starting from the beginning of code. The
disadvantage of this method is that data introduced into instruction stream may be
erroneously disassembled (Fig. 5.1).

The other main algorithm to perform disassembly is the Recursive Traversal
algorithm. This algorithm decodes each instruction following the order of the
control flow. This resolves the issue of embedded data, but may miss decoding
instructions that are the target of indirect jumps or other situations when it is hard
to resolve control flow statically (Fig. 5.2).

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_5,
� The Author(s) 2012

41

Speculative Disassembly attempts to remedy the problems of the Recursive
Traversal algorithm problem by first performing the Recursive Traversal, and then
performing a Linear Sweep in regions that are not decoded (Fig. 5.3).

Disassembly results in the following data.

disassembly ¼ faddress; opcode; operand1; . . .; operandng

5.2 Intermediate Code Generation

A simple approach to transforming assembly into an intermediate language is to
translate each instruction without maintaining intermediate state. This approach
has been used successfully in the Reverse Engineering Intermediate Language

Fig. 5.1 Linear sweep disassembly

Fig. 5.2 Recursive traversal disassembly

42 5 Static Analysis of Binaries

(REIL) [2]. Other popular intermediate languages are Vex as used in the Valgrind
binary instrumentation framework [3] and Vine as used in the BitBlaze project [4].
An example to translate native assembly into three address code is shown below.

native assembly instruction! ðTAC1; . . .TACnÞ

5.3 Procedure Identification

An important stage in reconstruction the control flow of an executable is identi-
fying procedures. There are roughly four approaches that can be employed
(Fig. 5.4).

• Using object file format information (e.g., symbols and exports)
• Using static targets of call site F ¼ ff jðaddress; call direct; f Þ 2 disassemblyg
• Using idioms to identify procedure prologues
• Using static analysis and data flow analysis to reconstruct indirect call targets

The main hindrance to generating accurate representations is when a program
uses indirect branches and procedure calls. The analysis of indirect targets requires

Fig. 5.4 Procedure disassembly

Fig. 5.3 Speculative disassembly

5.2 Intermediate Code Generation 43

data flow analysis. A number of approaches have been employed [5–7]. Using
idioms to identify procedures requires string matching algorithms to identify
common byte sequences.

5.4 Procedure Disassembly

Procedures consist of a body of instructions which must be recovered from the
disassembly. The algorithm is a very slight variation of the recursive traversal
disassembly algorithm. The difference is that inter procedural control flow is not
traversed.

5.5 Control Flow Analysis, Deobfuscation and Reconstruction

Control flow analysis is more difficult on binaries because of the difficultly in sep-
arating code and data. Likewise, the presence of indirect branch and call targets in
assembly language makes precisely determining the static control flow undecidable.

The simplest approach is to ignore indirect targets completely. The edges of the
graphs representing the call graph control flow can be constructed by connecting
the call site to the static call target. For control flow graphs the approach is
similarly applied to branch targets.

Control flow may also be obfuscated. An opaque predicate [8] is a predicate that
always evaluates to the same result. An opaque predicate is constructed so that it is
difficult for an analyst or automated analysis to know the predicate result. Opaque
predicates can be used to insert superfluous branching in a binary’s control flow.
They can also be used to assign variables values which are hard to determine
statically. The use of opaque predicates is primarily for code obfuscation, and to
prevent understanding by an analyst or automated static analysis.

The presence of opaque predicates in a control flow graph reduces the accuracy
of the graph because of misleading branch targets. In [9] it was proposed to use the
program analysis technique of abstract interpretation to detect specific classes of
opaque predicate algorithms.

5.6 Pointer Analysis

Pointer and alias analysis tries to determine the variables that a pointer may point
to. In assembly this problem is difficult. A conservative approach to alias analysis
of assembly using datalog constraints was proposed in [10], however, this work
was to introduce formal rigour and is not practical to deploy. Value-Set Analysis
[11] has been proposed as an alias analysis, suitable for binary programs and
assembly language. Value-Set Analysis has been used in malware detection [12]
and the automated static unpacking of malware [13].

44 5 Static Analysis of Binaries

5.7 Decompilation of Binaries

Decompilation [14] is the process of recovering source code from executable
binaries. In general, decompilation can be seen as a form of static analysis of a
binary that recovers additional information from its intermediate representation.
Research connecting the type of static analysis a compiler performs to the
requirements of a decompiler was proposed in [14, 15].

5.7.1 Condition Code Elimination

In Instruction Set Architectures such as x86, many arithmetical instructions modify
a status flag or condition code. For example, determining if two variables are equal
is divided into two computations. An arithmetic instruction over the two variables
that sets a condition code, and then a branch based on the resulting condition code.
Decompilation requires these two computations be reduced to one conditional test.

An approach to solve this is by maintaining a reaching definition of the various
conditions code set by each arithmetic instruction. At the point of a conditional
branch based on the condition code, the reaching definitions are combined into a
single condition.

5.7.2 Stack Variable Reconstruction

Stack variable reconstruction transforms variables allocated on the stack into
native variables in the intermediate representation. The stack can be accessed in
two main ways. The first method is by referencing variables relative to the top of
the stack, or stack pointer. The second method accesses the stack relative to the
frame pointer. The frame pointer is unique for each procedure or activation record.
It points to the top of the stack as set on function entry. During procedure exe-
cution the stack pointer may change, but the frame pointer remains constant. This
simplifies access to variables on the stack and is often used in debug builds of
application. It is clear that for a decompiler to be effective, it must handle both
methods of accessing the stack. Both frame and stack based addressing may be
intermixed in real life applications.

Another complication to using the stack pointer is that callees may or may not
change the stack pointer. It is the responsibility of the caller to push arguments
onto the stack, but the callee may or may not unwind these arguments based on the
calling convention being used.

One approach [16] to reconstruct stack based variables takes advantage of the
fact that in compiled programs, the position of the stack pointer in each basic block
remains constant. The stack pointer can be modified within a basic block when

5.7 Decompilation of Binaries 45

calls are made or values or pushed and popped on or from the stack. Using this
information, a set of constraints over the control flow graph can describe the stack
pointer. Solving the constraints identifies the relative position of the stack pointer
at the entry and exit of each basic block. Frame pointer relative addressing uses
fixed offsets from the top of the stack at the beginning of the procedure, and
knowing the position of the stack pointer at each basic block enables knowing
exactly which memory location on the stack is being referenced. This enables a
unified approach to modelling stack and frame based addressing.

Pointers and arrays complicate the process of stack variable reconstruction. In
these cases, the stack variable may only be referencing the beginning of an array or
pointing to the beginning of the object. Heuristics must be used to estimate the size
of the object. An approach to estimate this is by looking at the size of the stack
frame or looking at the next adjacent stack reference to predict a bounds on the
object in question.

5.7.3 Preserved Register Detection

A typical problem that arises is determining if the register is modified in the life
time of a procedure. If the register is used in procedure, but maintains its original
value once returning from the procedure’s callsite then the register is preserved.
The process of preserving a register is to copy the register into a temporary
variable and then restore it before leaving the function. Detecting preserved reg-
isters is important in the process of identifying which registers are arguments or
return values from a procedure.

Data flow analysis and a suitable intermediate representation can help solve the
preserved register problem. If we ignore calls within a procedure, we can identify a
preserved register by the fact that the reaching definitions for that register at each
function exit, is the value of a copy of the register on function entry. To determine
where the value is copied on entry to the function we can use a liveness analysis to
identify where the register is used and check that instruction for a copy instruction.

This process of identifying preserved registers requires that local variable
reconstruction be performed. The reason is that the temporary variable used to
save a copy of the preserved register is typically represented by a local variable.

5.7.4 Procedure Parameter Reconstruction

The parameters to procedures may be passed on the stack, or passed via registers.
The return values are typically passed by registers. The exact semantics are defined

46 5 Static Analysis of Binaries

the calling convention on a particular procedure. The arguments used by a pro-
cedure can be determined by the procedure accessing variables outside the current
stack frame. Once the arguments are known, at call sites, the stack is statically
unwound to the required depth to retrieve them.

Registers may also be passed as arguments. Ignoring calls, arguments are
registers that are live on procedure entry that aren’t preserved. To take into account
calls, the analysis is performed on inner calls first as defined by their depth first
order in the call graph. Recursive calls require further analysis.

5.7.5 Reconstruction of Structured Control Flow

A standard technique in decompilation is transforming a control flow graph into
higher level structured control flow [14, 17, 18]. This is the process of structuring.
Identifying conditions, loops, and parts of the control flow graph that cannot be
structured is required. Conditions may be compound conditional statements
involving conjunction and disjunction. The higher the quality of structuring means
the less the number of gotos in the generated code. Some graphs cannot be
structured and the reducibility of the graph identifies these cases.

Structuring of control flow graphs was proposed in [19, 20] to generate string
signatures that were later used to identify malware variants (Fig. 5.5).

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_5

true

true

true

true

true

proc(){
L_0:
while (v1 || v2) {

L_1:
if (v3) {

L_2:
} else {

L_4:
}

L_5:
}

L_7:
return ;

}

Fig. 5.5 A control flow graph and its linearized form

5.7 Decompilation of Binaries 47

5.7.6 Type Reconstruction

Type information is lacking from binaries. Reconstruction of types enables higher
quality code in the decompiled output. An approach to type reconstruction using
the unification algorithm was proposed in [21]. A data flow analysis approach
based on lattices and using single static analysis was proposed in [15].

5.8 Obfuscation and Limits to Static Analysis

It is known that perfectly precise disassembly is undecidable [22]. Branch targets
can be indirect, and precise understanding of those run-time values can be prob-
lematic. In [23] an analysis of some limits to static analysis of malware were
identified. The use of opaque predicates was shown to confound the problem of
precise program representation. Determining whether two programs are semanti-
cally equivalent is also known to an undecidable problem which is why for
example malware detection is often based on heuristic and unsound solutions.
Likewise, perfect decompilation, for all possible binaries, is undecidable. If the
binary does not originate from high level source then it is unlikely decompilation
will give meaningful results.

5.9 Research Opportunities

Decompilation presents potential research opportunities when combined with
other techniques such as static analysis or malware classification. Very little
research has been performed on decompilation-based applications. The main
application of decompilation thus far has been source code recovery. However, the
high level information it recovers makes it a suitable abstraction for useful soft-
ware features.

References

1. Kruegel C, Robertson W, Valeur F, Vigna G (2004) Static disassembly of obfuscated
binaries. In: USENIX security symposium, p 18

2. Dullien T, Porst S (2009) REIL: a platform-independent intermediate representation of
disassembled code for static code analysis. In: CanSecWest applied security conference, 2009

3. Nethercote N, Seward J (2003) Valgrind a program supervision framework. Electron Notes
Theor Comput Sci 89(2):44–66

4. Song D, Brumley D, Yin H, Caballero J, Jager I, Kang M, Liang Z, Newsome J, Poosankam P,
Saxena P (2008) BitBlaze: a new approach to computer security via binary analysis.
Information systems security, pp 1–25

5. Kästner D, Stephan W (2002) Generic control flow reconstruction from assembly code.
SIGPLAN Not 37(7):46–55. doi:http://doi.acm.org/10.1145/566225.513839

48 5 Static Analysis of Binaries

http://doi.acm.org/10.1145/566225.513839

6. Theiling H (2000) Extracting safe and precise control flow from binaries. Paper presented at
the proceedings of the 7th international conference on real-time systems and applications

7. Johannes K, Florian Z, Helmut V (2009) An abstract interpretation-based framework for
control flow reconstruction from binaries. Paper presented at the proceedings of the 10th
international conference on verification, model checking, and abstract interpretation,
Savannah

8. Cullen L, Saumya D (2003) Obfuscation of executable code to improve resistance to static
disassembly. Paper presented at the proceedings of the 10th ACM conference on computer
and communications security, Washington

9. Dalla Preda M, Madou M, De Bosschere K, Giacobazzi R (2006) Opaque predicates
detection by abstract interpretation. Algebraic methodology and software technology,
pp 81–95

10. Brumley D, Newsome J (2006) Alias analysis for assembly. Technical Report CMU-CS-06-
180, Carnegie Mellon University School of Computer Science, 2006

11. Balakrishnan G, Reps T, Melski D, Teitelbaum T (2007) Wysinwyx: What you see is not
what you execute. Verified software: theories, tools, experiments, pp 202–213

12. Leder F, Steinbock B, Martini P (2009) Classification and detection of metamorphic malware
using value set analysis. In: Proceedings of 4th international conference on malicious and
unwanted software (Malware 2009), Montreal, 2009

13. Debray KCS, Townsend TKG (2009) Automatic Static Unpacking of Malware Binaries.
Paper presented at the working conference on reverse engineering—WCRE

14. Cifuentes C (1994) Reverse compilation techniques. Queensland University of Technology
15. Van Emmerik MJ (2007) Static single assignment for decompilation. The University of

Queensland
16. Hex-Rays S (2008) IDA Pro Disassembler
17. Moretti E, Chanteperdrix G, Osorio A (2001) New algorithms for control-flow graph

structuring. Paper presented at the software maintenance and reengineering
18. Wei T, Mao J, Zou W, Chen Y (2007) Structuring 2-way branches in binary executables.

Paper presented at the international computer software and applications conference
19. Cesare S, Xiang Y (2010) Classification of malware using structured control flow. In: 8th

Australasian symposium on parallel and distributed computing (AusPDC 2010)
20. Cesare S, Xiang Y (2010) A fast flowgraph based classification system for packed and

polymorphic Malware on the Endhost. In: IEEE 24th international conference on advanced
information networking and application (AINA)

21. Mycroft A (1999) Type-based decompilation. Lecture notes in computer science, vol 1576.
Springer, Heidelberg, pp 208–223

22. Horspool RN, Marovac N (1979) An approach to the problem of detranslation of computer
programs. Comput J 23(3):223–229

23. Moser A, Kruegel C, Kirda E (2007) Limits of static analysis for malware detection. In:
Annual computer security applications conference (ACSAC), 2007

References 49

Chapter 6
Dynamic Analysis

Abstract In the previous chapters we have examined static extraction of program
features for the purpose of birthmark construction. Dynamic analysis is examined
in this chapter. It is an alternative approach to static analysis that can be used for
birthmark construction. Dynamic analysis concerns itself with analysing a running
program. The program being run is typically isolated in an environment which
allows its behaviour to be inspected. Typical behaviours that are extracted are the
API call sequence. Instruction sequences, basic block sequences and control flow
are amongst other behaviours that can also be identified.

Keywords Dynamic analysis � Hooking � Dynamic binary instrumentation �
Virtualization � Application level emulation � Whole system emulation

6.1 Relationship to Static Analysis

There are roughly two approaches to extract program features from software. In
the static approach, the software is never executed and the features are extracted
from a static view of the program. In dynamic analysis the software is executed,
possibly in a virtual machine, and its run-time behaviour examined. The run-time
behaviours exhibit the properties or features being extracted.

Static analysis is effective because it is able to examine to represent the set of all
possible execution paths by approximating program behaviour. This is important
because behaviours of specific programs may be hard to trigger dynamically. It is
often difficult to trigger corner cases in programs and as a result a number of dynamic
analysis testing methodologies exist to address this such as the use of analysing code
coverage during execution. In the case of malicious code, malware authors actively
change the behaviour of the code when under analysis.

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_6,
� The Author(s) 2012

51

The main advantage of dynamic analysis is that the semantics of the program
are exhibited, and obfuscations applied to the program have less effect on these
exhibited semantics. Attempting to identify run-time behaviour properties for
multiple paths of execution has been researched [1]. It is still a new area, but using
symbolic execution to trigger different behaviours has had some success. The
results of exploring these multiple paths can be accumulated into a final report to
infer the intent or potential behaviour of a piece of software.

6.2 Environments

Dynamic analysis requires an environment in which to run and isolate the program
being analysed. The environment in which to run a program can be categorized in
the following list:

• Hooking
• Dynamic Binary Instrumentation
• Virtualization
• Application Level Emulation
• Whole System Emulation

6.3 Debugging

An operating system typically provides an API to debug processes. Debugging can
allow for operations including single stepping through execution an instruction at a
time, or setting a breakpoint at a particular code address. Debugging can be useful
to monitor non malicious programs, however, most malware today implements
anti-debugging functionality which can detect the presence of a debugger.

6.4 Hooking

Hooking is the process of intercepting API calls allowing for possible instru-
mentation. Hooks can be placed in user space or kernel space. Hooking is com-
monly used by commercial Antivirus software to monitor process behaviour and
detect possible misuse. Detours [2] is an implementation of hooking for the
Windows operating system. The basic mode of operation is to overwrite the
function in memory with a trampoline to the intercept handling code. The intercept
handling code performs any instrumentation or monitoring as necessary then
restores control back to the original function. Another method of hooking is
overwriting dispatch tables such as system call tables or import addresses. It is also

52 6 Dynamic Analysis

possible in Linux to natively intercept API calls to dynamic libraries by preloading
another library. Malware today often can detect the presence of hooking by
implementing checksums over their executable code.

6.5 Dynamic Binary Instrumentation

Dynamic binary instrumentation is an approach that instruments native code on the
fly. The binary being executed is controlled from a dispatcher which analyses the
code, instruments it, and then rewrites it for execution. Some examples of dynamic
binary instrumentation include PIN [3], DynamoRIO [4], and Valgrind [5].
Dynamic binary instrumentation based on PIN has been used for malware
unpacking and analysis in [6, 7].

6.6 Virtualization

Virtualization is a technique that supports native execution of a guest operating
system by exploiting separation and isolation mechanisms implemented by the
native hardware architecture or software. A number of methods are available to
implement virtualization including paravirtualization which must be supported by
both the host and the guest operating systems. The most important type of virtu-
alization for providing an environment to perform feature extractions is hardware
assisted virtualization. In the x86 architecture, hardware assisted virtualization was
not always supported and detection of the virtualized environment was imple-
mented by many strains of malware [6]. Hardware assisted virtualization has been
used for malware analysis [8]. This type of analysis is harder to detect but attacks
still exist to detect virtualization from a guest [9]. For example, it is known that
memory caching between guests and hosts are different in the virtualized envi-
ronment. However, as virtualization becomes a standard tool on the desktop,
malware authors might no longer be able to associate virtualization with threat
analysis.

6.7 Application Level Emulation

Application level emulation emulates the operating system and instruction set
architecture for specific applications. This approach has been predominantly
employed in Antivirus systems to perform real-time analysis of malware and
automated unpacking [10]. Its main disadvantage is its inability to faithfully
emulate the desired system which makes it susceptible to detection as has been the
case with modern malware.

6.4 Hooking 53

The typical features emulated in an application level emulator on the x86
Windows platform for the purposes of malware detection include:

• Instruction Set Architecture (ISA).
• Virtual Memory.
• Windows API emulation.
• Linking and Loading.
• Thread and Process Management.
• OS Specific Structures.

The instruction set architecture (ISA) must be faithfully emulated. In practice,
most deployed emulators only simulate part of the complete x86 ISA. Malware
authors have responded by using uncommon instructions such as those associated
with MMX and FPU to detect and thwart the emulation process.

Virtual memory must be emulated. 32-bit x86 employs a segmented memory
architecture. In Windows the segment registers are utilised to reference thread specific
data. This data is additionally used by Windows Structured Exception Handling
(SEH). SEH is used to gracefully handle abnormal conditions such as division by zero
and is routinely used by packers and malware to obfuscate control flow.

The Windows API is the official system call interface provided by Windows.
There are too many Windows API functions to full emulate in a typical envi-
ronment so only the most common APIs are implemented. This also presents a
method for malware to detect and thwart an emulator using uncommon API calls.

Linking and loading must be implemented by an emulator. Program loading
entails allocating the appropriate virtual memory, loading the program text, data and
dynamic libraries. Relocations must be performed and run-time linking performed.

Threads and process management must be performed. Malware can sometimes
try to detect and thwart a debugger or emulator by being multi-process or multi-
threaded.

OS specific structures must also be simulated. Windows has a number of these
including the Process Environment Block, the Thread Environment Block and the
Loader Module. These structures are visible to applications and can be used by
malware.

6.8 Whole System Emulation

A whole system emulator emulates the hardware of a PC. This allows an operating
system to be installed as a guest. There are roughly two approaches to implement a
whole system emulator or any emulator in general:

• Interpretation
• Dynamic Binary Instrumentation

An example of whole system emulators includes QEMU [11] which is based on
dynamic binary translation. Bochs is another whole system emulator that uses

54 6 Dynamic Analysis

interpretation instead of dynamic binary translation. Bochs has been used for
malware unpacking and analysis [12]. Interpretation is slower than dynamic binary
translation which makes QEMU a popular choice.

Interpretation works by implementing a fetch, decode and execute loop inside
the emulator. Dynamic binary translation translates sequences of code from the
guest into native code on the host. It can perform optimisations on these blocks of
code which improves efficiency. The blocks are also cached reducing the costs of
translation. In general, dynamic binary translation offers significant performance
improvements over an interpretation based emulator.

It is possible to modify a whole system emulator to monitor or instrument guest
execution [13]. The BitBlaze project [14] is a project for binary analysis that
makes heavy use of whole system emulation to perform tasks including malware
analysis. Whole system emulation is effective for behavioural analysis of code but
attacks exist to detect its presence from the guest [9].

References

1. Brumley D, Hartwig C, Kang MG, Liang Z, Newsome J, Song D, Yin H (2007) BitScope:
automatically dissecting malicious binaries. Technical report CMU-CS-07-133, School of
Computer Science, Carnegie Mellon University

2. Hunt G, Brubacher D (1999) Detours: binary interception of win32 functions. Paper
presented at the proceedings of the 3rd conference on USENIX Windows NT symposium, vol
3. Seattle, Washington

3. Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ, Hazelwood
K (2005) Pin: building customized program analysis tools with dynamic instrumentation.
Paper presented at the proceedings of the 2005 ACM SIGPLAN conference on programming
language design and implementation

4. Bala V, Duesterwald E, Banerjia S (2000) Dynamo: a transparent dynamic optimization
system. Paper presented at the proceedings of the ACM SIGPLAN 2000 conference on
programming language design and implementation

5. Nethercote N, Seward J (2003) Valgrind a program supervision framework. Electron Notes
Theor Comput Sci 89(2):44–66

6. Guizani W, Marion JY, Reynaud-Plantey D (2009) Server-side dynamic code analysis. In:
Malicious and unwanted software (MALWARE), 2009 4th international conference on, 2009,
pp 55–62

7. Quist D (2007) Valsmith covert debugging circumventing software armoring techniques. In:
Black hat briefings USA

8. Dinaburg A, Royal P, Sharif M, Lee W Ether (2008) Malware analysis via hardware
virtualization extensions. In: Proceedings of the 15th ACM conference on computer and
communications security 2008. ACM, New York, USA, pp 51–62

9. Raffetseder T, Kruegel C, Kirda E (2007) Detecting system emulators. In: Lecture notes in
computer science, vol 4779, p 1

10. Cesare S, Xiang Y (2010) Classification of malware using structured control flow. In: 8th
Australasian symposium on parallel and distributed computing (AusPDC 2010

11. Bellard F (2005) QEMU, a fast and portable dynamic translator. In: USENIX annual
technical conference 2005, pp 41–46

12. Boehne L (2008) Pandora’s bochs: automatic unpacking of malware. University of
Mannheim

6.8 Whole System Emulation 55

13. Bayer U, Kruegel C, Kirda E (2006) TTAnalyze: a tool for analyzing malware. In: European
Institute for Computer Antivirus Research (EICAR), 2006

14. Song D, Brumley D, Yin H, Caballero J, Jager I, Kang M, Liang Z, Newsome J, Poosankam
P, Saxena P (2008) BitBlaze: a new approach to computer security via binary analysis. In:
Information systems security

56 6 Dynamic Analysis

Chapter 7
Feature Extraction

Abstract In the previous chapters we have examined static and dynamic methods
of program analysis. These features must be translated into mathematical repre-
sentations and birthmarks to be useful. Furthermore, mathematical representations
may be embedded in other mathematical types to make birthmarks more amenable
to similarity comparisons and for use in classification algorithms. Another
approach is to represent features using kernels. This allows for the use of classi-
fication algorithms including the support vector machine for complex data types.
This chapter examines the mathematical representations that we use to describe
program features.

Keywords Program feature processing � Strings �Vectors � Sets � Sets of vectors �
Trees � Graphs � Embeddings � Kernels

7.1 Processing Program Features

Program features are the basis of software similarity and classification, but must be
transformed or into a meaningful representation that allows for similarity com-
parisons and indexing. Different representations are possible ranging from highly
efficient but least expressive, to highly expressive but least efficient. For example,
representing birthmarks as vectors allows for very efficient comparisons, but tends
to lose structural information that is present in graph based representations.

Combining features into a unified form may result in the establishment of
software metrics. Attribute counting is one approach. Attributes that can be tallied
might include the number of specific keywords, the number of conditionals, the
number of loops and so forth. The final metric is the set of counted attributes.
Processing might be done on these counted attributes to result in other measures.

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_7,
� The Author(s) 2012

57

The Halstead complexity measures [1] are a set of software metrics that uses
attribute counting at its core to give a measure on a programs complexity. Its initial
use was for the purpose of software maintenance metrics but it has also been
applied to software similarity.

Another approach to combine the expressiveness of complex objects, such as
graphs, is to transform or embed one representation into another. For example,
a graph can be transformed into a vector based representation. Information is lost,
but in many cases this is still useful as a birthmark.

7.2 Strings

A string describes a sequence of tokens or characters. An example of a string could
be a sequence of instruction opcodes making up a program path.

Definition 7.1 Let
P

be an alphabet of symbols. Let s be a string over the
alphabet where s 2

P �:

7.3 Vectors

Vectors are one of the simplest representations and are efficient to work with.
A vector is an ordered list or tuple of a fixed number of elements or dimensions.
A feature vector describes the frequency of particular features occurring. If the
number of features is very large then dimensionality reduction can be used to filter
unimportant features, or combine features together such as when using Principle
Component Analysis (PCA).

Examples of using vectors include describing features based on the occurrence
of a specific n characters or n-grams.

7.4 Sets

A set is a collection of unique objects. A set of features is sometimes a useful
representation. It ignores ordering of those features. An example use of sets is to
describe the set of API calls a program makes.

7.5 Sets of Vectors

A set of vectors may sometimes be useful. If we consider that a procedure can be
represented as a vector, then the set of procedures can be represented as a set of
vectors.

58 7 Feature Extraction

7.6 Trees

Trees capture the structure of data, but are not as general as graphs. A tree is a
connected undirected graph without cycles. Abstract syntax trees and parse trees
are naturally represented by trees. Structured control flow can also be represented
by trees. Trees can have a defined ordering of child nodes or be unordered.

7.7 Graphs

Graphs model structure in the data. Many program features are naturally repre-
sented as graphs include control flow graphs, call graphs, and dependency graphs.

Definition 7.2 A graph is g = (V, E) where V is a set of vertices.
E ¼ fðu; vÞ j u; v 2 Vg � V � V

Definition 7.3 A labelled graph g ¼ ðV ; a; bÞ where V is a set of vertices a :
V ! L is the node labelling function, and b : V � V ! L is the edge labelling
function.

7.8 Embeddings

Strings may be embedded in vectors. To reduce the string problem into an n-gram
vector problem, a string may be divided into n-grams where the specific n-grams
represent features.

Definition 7.4 Given a set of strings L, and a set of vectors V there is a function f
such that f : L! V

Strings may be embedded in sets. To reduce the string problem into a set
problem, a string may be divided into n-grams or shingles where the unique
n-grams represent set elements.

Definition 7.5 Given a set of strings L, and a set of sets S there is a function f such
that f : L! S

Trees may be embedded in vectors. A tree may be decomposed into fixed sized
subtrees. These subtrees can represent features in a feature vector.

Definition 7.6 Given a set of trees T, and a set of vectors V there is a function f
such that f : T ! V

Trees may be embedded in sets. Similar to a tree to vector problem, decom-
posing the tree into unique features can be represented by sets.

Definition 7.7 Given a set of trees T, and a set of sets S there is a function f such
that f : T ! S

7.6 Trees 59

A graph may be embedded in a vector. A graph can be decomposed into fixed
sized k-subgraphs. One approach is to construct a spanning tree and then extract
the subgraphs. These subgraphs can be canonized into strings and used to represent
features in a feature vector. Another approach to embedding a set of control flow
graphs into a vector is by embedding the graphs into strings using decompilation
and then embedding the strings into vectors using k-grams [2] (Fig. 7.1).

Definition 7.8 Given a set of graphs G, and a set of vectors V there is a function f
such that f : G! V

A graph may be embedded in a set. Transforming a graph into a set is analogous
to a graph to vector problem.

Definition 7.9 Given a set of graphs G, and a set of sets S there is a function f such
that f : G! S

A graph may be embedded in a tree. A graph can be represented by tree by
constructing a spanning tree.

Definition 7.10 Given a set of graphs G, and a set of trees T there is a function f
such that f : G! T

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_5

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_3

L_6

L_7L_1

L_2 L_4

L_5

L_0

L_3

L_6

L_7L_1

L_2 L_4

L_5

true

true

true

true

true

L_0

L_3

L_6

L_1

L_2 L_4

L_5

0101000
0000000
0000010
0010100
0000010
0000001
1001000

0001010
0000000
1000000
0000100
0010000
0101000
1000000

0000001
0000100
0000001
0010000
0001010
0010000
0100100

Fig. 7.1 The k-subgraph feature for a graph embedding in a vector

60 7 Feature Extraction

7.9 Kernels

Kernels are most used in kernel based statistical machine learning classifiers.
A kernel function operates in feature space which is typically of much higher
dimensionality. A string kernel based on the subsequences in the string known as a
subsequence kernels was proposed in [3]. A kernel for sets of features was pro-
posed in [4]. A kernel for vector sets was proposed in [5]. A kernel for trees was
proposed in [6]. A kernel based on random walks in a graph was proposed in [7].
Subtree kernels have been proposed. A kernel based the set of all paths in a graph
has also been proposed. A kernel based on the shortest paths in a graph was
proposed in [8].

7.10 Research Opportunities

Embeddings and kernels present a significant opportunity for researchers.
Embeddings have been investigated somewhat, but a comprehensive treatment of
different embeddings for different structures has not been performed in the context
of software similarity. Kernel methods are effectively unused in software similarity
and this presents many opportunities for researchers to apply kernel methods to so
the software similarity and classification problem. Graph kernels could be used to
perform software classification in applications such as malware classification.

References

1. Halstead MH (1977) Elements of software science (operating and programming systems
series). Elsevier Science Inc, NY

2. Cesare S, Xiang Y (2011) Malware variant detection using similarity search over sets of
control flow graphs. In: IEEE Trustcom

3. Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N, Watkins C (2002) Text classification
using string kernels. J Mach Learn Res 2:419–444

4. Grauman K, Darrell T (2007) The pyramid match kernel: efficient learning with sets of
features. J Mach Learn Res 8:725–760

5. Kondor R, Jebara T (2003) A kernel between sets of vectors. In: Proceedings of ICML’2003,
vol 1, p 361

6. Collins M, Duffy N (2002) Convolution kernels for natural language. Adv Neural Inf Process
Syst 1:625–632

7. Kashima H, Inokuchi A (2002) Kernels for graph classification, p 25
8. Borgwardt KM, Kriegel HP (2005) Shortest-path kernels on graphs. In: Data mining

7.9 Kernels 61

Chapter 8
Software Birthmark Similarity

Abstract Comparing birthmarks is necessary to identify similarities between
software. If two birthmarks are similar, then the software is similar. Birthmarks
may be compared to show similarity, or an alternative to showing similarity is to
show dissimilarity or distance. Similarity measures and metrics exist for the
different types of data such as strings, vectors, trees, graphs, etc. This chapter
examines the different similarity measures and metrics for the different classes of
birthmarks.

Keywords Birthmark similarity � Distance metrics � String similarity � Vector
similarity � Set similarity � Set of vectors similarity � Tree similarity � Graph
similarity

8.1 Distance Metrics

Definition 8.1 A metric on a set X is a function (known as the distance function or
distance):

d : X � D! N

For all x, y, z in X, this function is required to satisfy the following conditions:

1. dðx; yÞ� 0
2. dðx; yÞ ¼ 0 iff x ¼ y
3. dðx; yÞ ¼ dðy; xÞ
4. dðx; zÞ� dðx; yÞ þ dðy; zÞ ðtriangle inequalityÞ

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_8,
� The Author(s) 2012

63

If the distance function has the properties of a distance metric then indexing and
searching a database can be performed more efficiently. Therefore, it is beneficial
to compare software using distance functions that are metric. Examples of metric
access methods are in [1–3].

8.2 String Similarity

Strings can be compared using string metrics. The Levenshtein distance between two
strings defines the number of edit operations that must be performed to transform one
string to the other. An edit operation includes character insertion, deletion, and
substitution. Other string metrics include the Smith-Waterman algorithm which is
used to perform local string alignment, or using the longest common subsequence.
Optimal solutions to edit distance and alignments are normally O(n.m) where n and
m are the lengths of each respective string. The solutions are typically implemented
using dynamic programming. The Levenshtein distance, Smith-Waterman distance
and Normalized Compression Distance are all metric.

8.2.1 Levenshtein Distance

Definition 8.2 For two strings s and t, the Levenshtein distance is measured as
follows:

D i; 0ð Þ ¼ 0 0� i� lenðsÞ

D 0; jð Þ ¼ 0 0� j� lenðtÞ

Dði; jÞ ¼ min

Dði� 1; j� 1Þ þ dðsi; tjÞ; substitution
Dði� 1; jÞ þ 1; insertion
Dði; j� 1Þ þ 1 deletion

8
<

:

d(i,j) is a function whereby d(c,d) = 0 if c = d, 1 else.

The Levenshtein distance is metric.

Definition 8.3 A method of normalizing the edit distance to give a similarity in
[0,1] is:

simðs; tÞ ¼ 1� edðs; tÞ
maxðlenðsÞ; lenðtÞÞ

8.2.2 Smith-Waterman Algorithm

Definition 8.4 For two strings s and t, the Smith-Waterman similarity score is
measured as follows:

64 8 Software Birthmark Similarity

D i; 0ð Þ ¼ 0 0� i� lenðsÞ

D 0; jð Þ ¼ 0 0� j� lenðtÞ

If ai ¼ bjw ai; bj

� �
¼ w matchð Þ or ai 6¼ bjw ai; bj

� �
¼ w mismatchð Þ

Dði; jÞ ¼ max

0
Hði� 1; j� 1Þ þ wðai; bjÞ match=mismatch

Hði� 1; jÞ þ wðai;�Þ deletion
Hði; j� 1Þ þ wð�; bjÞ insertion

8
>><

>>:

The Smith-Waterman algorithm when constructed as a distance instead of a
similarity is known to be metric. The similarity algorithm is known as an optimal
local string alignment.

8.2.3 Longest Common Subsequence (LCS)

Definition 8.5 For two strings X and Y, the LCS is found as follows:

LCSðXi; YiÞ ¼
0 if i ¼ 0 or j ¼ 0

ðLCSðXi� 1; Yj� 1Þ; xiÞ if xi ¼ yj

longestðLCSðXi; Yj� 1Þ; LCSðXi� 1; YjÞÞ if xi 6¼ yj

8
><

>:

The similarity between two strings X and Y is defined as LCSðX; YÞj j.

8.2.4 Normalized Compression Distance

Definition 8.6 For two strings x and y where C(x) is the length of a compressed x,
the normalized compression distance (NCD) [4] is:

NCDðx; yÞ ¼ Cðx; yÞ �minðCðxÞ;CðyÞÞ
maxðCðxÞ;CðyÞÞ

The NCD is metric.

8.2 String Similarity 65

8.3 Vector Similarity

Vector distance can be performed using metrics such as the Euclidean distance or
Manhattan distance. Non metric similarity measures can include the cosine
similarity which is often used in text mining.

8.3.1 Euclidean Distance

Definition 8.7 The Euclidean distance between vectors p and q is:

dðp; qÞ ¼
ffi
Xn

i¼1

ðqi � piÞ2
s

The Euclidean distance is metric.

8.3.2 Manhattan Distance

Definition 8.8 The Manhattan distance between vectors p and q is:

dðp; qÞ ¼
Xn

i¼1

qi� pij j

The Manhattan distance is metric.

8.3.3 Cosine Similarity

Definition 8.9 The cosine similarity between vectors A and B is:

similarity ¼ cosðuÞ ¼ A � B
Ak k Bk k

The cosine similarity is not metric.

66 8 Software Birthmark Similarity

8.4 Set Similarity

Two sets can be compared using a variety of measures. The Dice coefficient and
Jaccard Index are two such measures. The Jaccard Index is not metric, but its
parallel the Jaccard Distance is, which allows for efficient indexing and searching.
Containment and the Tversky index are examples of asymmetric similarity mea-
sures. Because they are asymmetric, they do not qualify as metric distance
functions.

8.4.1 Dice Coefficient

Definition 8.10 The Dice coefficient between sets A and B is:

s ¼ 2 A \ Bj j
Aj j þ Bj j

The Dice coefficient is not metric.

8.4.2 Jaccard Index

Definition 8.11 The Jaccard Index between sets A and B is:

JðA;BÞ ¼ A \ Bj j
A [Bj j

The Jaccard Index is not metric, however, the Jaccard distance is.

8.4.3 Jaccard Distance

Definition 8.12 The Jaccard distance between sets A and B is:

JdðA;BÞ ¼ 1� JðA;BÞ

The Jaccard distance is metric.

8.4 Set Similarity 67

8.4.4 Containment

Definition 8.13 The Containment of set B in A is:

CðA;BÞ ¼ A \ Bj j
Aj j

Containment is an asymmetric measure and therefore not metric.

8.4.5 Overlap Coefficient

Definition 8.14 The overlap coefficient between sets A and B.

overlapðX; YÞ ¼ A \ Bj j
minð Xj j; Yj jÞ

The overlap coefficient is not metric.

8.4.6 Tversky Index

Definition 8.15 The Tversky Index of sets X and Y is:

SðX; YÞ ¼ X \ Yj j
A \ Bj j þ a X � Yj j þ b Y � Xj j

The Tversky index is an asymmetric measure and therefore not metric.

8.5 Set of Vectors Similarity

A set of vectors can be compared using the minimum matching distance [5], which
constructs a minimum weight matching between pairs of vectors in each set. This
distance is metric and can be evaluated in polynomial time.

68 8 Software Birthmark Similarity

8.6 Tree Similarity

Trees can be compared for equality using tree isomorphism. Ordered trees are trees
such that the children of each node are in a specific sequence. Ordered trees are
significantly more efficient to process than unordered trees. Approximate matching
and similarity between trees can also be found using the tree edit distance [6].
The tree edit distance is metric. Alternatives to the tree edit distance include using
the largest common subtree as an indicator of similarity. These are similar to the
graph based version of the problem and are shown in the next section.

Definition 8.16 The tree edit distance between two graphs d : T1� T2 ! N is the
minimum number of edge or vertex insertions, deletions, and substitutions to
transform one tree to the other.

8.7 Graph Similarity

8.7.1 Graph Isomorphism

Graphs can be tested for structural equality by graph isomorphism testing. Graph
isomorphism has not been demonstrated to belong to the complexity class P but it
has not been proven to be in NP either.

Definition 8.17 Let g1 ¼ ðV1; a1; b1Þ and g2 ¼ ðV2; a2; b2Þ be two graphs. A
graph isomorphism between g1 and g2 is a bijective mapping f : V1 ! V2 such that

a1ðxÞ ¼ a2ðf ðxÞÞ8x 2 V1

b1ððx; yÞÞ ¼ b2ððf ðxÞ; f ðyÞÞÞ8ðx; yÞ 2 V1�V1

.

If V1 = V2 = 0 then f is called the empty graph isomorphism

8.7.2 Graph Edit Distance

A harder problem is calculating the approximate similarity or distance between
two graphs. The two main approaches are the graph edit distance and using the
maximum common subgraph. The graph edit distance is metric. These problems
are proven not to belong to P. However, polynomial time approximate solutions
exist to the graph edit distance.

Definition 8.18 The graph edit distance d : G1�G2 ! N between two graphs is
the minimum sum cost of basic edit operations to transform one graph to another.

8.6 Tree Similarity 69

8.7.3 Maximum Common Subgraph

Definition 8.19 Let g1 ¼ ðV1; a1; b1Þ and g2 ¼ ðV2; a2; b2Þ be two graphs and
g0

1 � g1; g02 � g2 : If there exists a graph isomorphism between g1
0 and g2

0, then
both g1

0 and g2
0 are called a common subgraph of g1 and g2.

Definition 8.20 Let g1 and g2 be two graphs. A graph g is called the maximum
common subgraph of g1 and g2 if g is a common subgraph of g1 and g2 and there
exists no other common subgraph of g1 and g2 that has more nodes than g.

Definition 8.21 The distance between graphs g1 and g2 is:

dðg1; g2Þ ¼
MCSðg1; g2Þj j

g1j j where gj j ¼ Vj j þ Ej j:

Definition 8.22 The distance between graphs g1 and g2 is:

dðg1; g2Þ ¼
MCSðg1; g2Þj j

maxð g1j j; g2j jÞ
where gj j ¼ Vj j þ Ej j:

An approximate or inexact maximum common subgraph is also possible.

Definition 8.23 The graph edit distance between two graphs d : G1�G2 ! N is
the minimum number of edge or vertex insertions, deletions, and substitutions to
transform one graph to the other.

Distances based on the maximum common subgraph are not metric.

References

1. Peter NY (1993) Data structures and algorithms for nearest neighbor search in general metric
spaces. In: Proceedings of the fourth annual ACM-SIAM symposium on discrete algorithms,
Austin, Texas, United States. Society for industrial and applied mathematics, pp 311–321

2. Vieira MR, Chino FJT, Traina C Jr., Traina AJM (2004) DBM-Tree: a dynamic metric access
method sensitive to local density data. In: Brazilian symposium on databases, Brazil, pp 163–177

3. Paolo C, Marco P, Pavel Z (1997) M-tree: an efficient access method for similarity search in
metric spaces. Paper presented at the proceedings of the 23rd international conference on very
large data bases

4. Cilibrasi R, Vitányi PMB (2005) Clustering by compression. Inf Theory IEEE Trans
51(4):1523–1545

5. Brecheisen S (2007) Efficient and effective similarity search on complex objects. Ludwig-
Maximilians-Universität München, Munich, Germany

6. Bille P (2005) A survey on tree edit distance and related problems. Theor Comput Sci
337(1–3):217–239

70 8 Software Birthmark Similarity

Chapter 9
Software Similarity Searching
and Classification

Abstract The ultimate problem of this book is to search for similar software to
our query from a database and to classify a program as belonging to a particular
class. This chapter examines how we transform the pair-wise similarity problem
into a similarity search problem over a database. Moreover, we examine statistical
classification of birthmarks to identify the class of software it belongs to.

Keywords Software similarity search � Software classification � Similarity search �
Instance-based learning � Nearest neighbour � Metric trees � Locality sensitive
hashing � Kernel methods

9.1 Instance-Based Learning and Nearest Neighbour

Instance-based learning is a form of machine learning used in classification. To classify
an object, it is compared to known instances of that object. If the query is similar to a
known instance, or alternatively closest to an instance, known as its nearest neighbour,
then it is classified as belonging to the same class. Nearest neighbour and range
searches are the fundamental basis for software similarity using software features. If a
piece of software represented as an object is in very close range or distance to known
software instances, then it is declared a variant (Fig. 9.1).

9.1.1 k Nearest Neighbours Query

Definition 9.1 Given a set of objects P and a query Q, and an integer k [0, the
k nearest neighbours (kNN) query is to find a result set kNN that consists of k objects
such that for any p 2 ðP� kNNÞand any p0 2 kNN; distðp0; qÞ� distðp; qÞ:

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_9,
� The Author(s) 2012

71

9.1.2 Range Query

Definition 9.2 Given a set of objects P and a query Q, and a range r [0, the
range query is to find a result set rNN that consists of objects such that for any
p0 2 rNN; distðp0; qÞ� r:

9.1.3 Metric Trees

Metric trees allow similarity searches (nearestneighbour and range searches) for objects
that have a metric distance function. A number of algorithms have been proposed such
as BK Trees [1], Vantage Point trees [2], M-Trees [3], Slim trees [4], or DBM Trees [5].
Metric access methods can be categorized by different qualities such as whether the data
structures allow for efficient insertion and deletion of objects allowing for dynamic
access, or whether the data structures are kept in main memory or on disk.

9.1.4 Locality Sensitive Hashing

Locality sensitive hashing [6] is a scheme whereby similar objects are hashed to
the same buckets. This allows a similarity search to perform nearest neighbour
searches by hashing.

Definition 9.3 Let d be a metric distance function. Let Bðv; rÞ ¼ fq 2 Xjðv; qÞ� rg:
A family H ¼ fh : S! Ug is called {r1, r2, p1, p2} sensitive for D if for any v; q 2 S

• If v 2 Bðq; r1Þ then PrH ½hðqÞ ¼ hðvÞ� � p1

• If v 62 Bðq; r2Þ then PrH ½hðqÞ ¼ hðvÞ� � p2

In order of a locality-sensitive hash (LSH) family to be useful, it has to satisfy
inequalities p1 [p2 and r1 \ r2.

q

Query Malicious

Query Benign

d(p,q)

p

r

Malware

Query

Fig. 9.1 The software
similarity search to detect
malware

72 9 Software Similarity Searching and Classification

9.1.5 Distributed Similarity Search

Scalability becomes a problem when database sizes increase. For example,
malware databases have been growing exponentially [7] and efficient algorithms
are required to handle the problem. Distributed algorithms are one solution to scale
similarity searches. Distributed metric space similarity search algorithms include
M-Chord [8] and GHT* [9, 10]. An approach based on Locality Sensitive Hashing
is proposed in [11].

9.2 Statistical Machine Learning

Statistical classification is the process of assigning objects to classes. A typical
example is the malware classification problem which is the process of assigning an
unknown executable to the class of malicious or non malicious software.

Machine learning can be supervised or unsupervised. In the unsupervised
model, none of the objects are labelled, and their class designation is unknown.
The usual approach is to perform clustering to identify separate classes. In the
supervised approach, a training set of data is labelled and used to build a model of
classes in relation to their characteristics. After training, the system classifies
unlabelled data and determines their classes.

Statistical classifiers include the popular and efficient Bayesian classifiers.
Artificial Neural Networks (ANN) are another popular choice. The classifiers can
also be grouped into linear and non linear systems. In a linear classifier, the input
space can divide the classes using hyperplanes.

Vectors are used in many machine learning algorithms so often it is most useful
to represent software as feature vectors. Features that are extracted from software
can be used to construct feature vectors. Kernel machines provide an alternative
approach to using feature effects and the most popular kernel method based
classifier is the Support Vector Machine [12]. In this approach, a kernel for a
particular object must be constructed. For classification of objects such as graphs,
a variety of graph kernels can be used.

9.2.1 Vector Space Models

In the vector space model, a feature vector is constructed in Rn and classes are
separated by partitioning over that space. The original feature vectors may have a
high dimensionality, but in reality many of these features may be of low impor-
tance or redundant. Dimensionality reduction reduces the size of the feature vector
(Fig. 9.2).

9.1 Instance-Based Learning and Nearest Neighbour 73

9.2.2 Kernel Methods

The most well known kernel based classifier is the support vector machine (SVM)
[12]. It is a linear classifier and works by constructing a hyperplane that maximally
separates the margins between each class.

9.3 Research Opportunities

Nearest neighbour searches using metric distance functions to perform similarity
searches has been employed in some malware detection literature. Much existing
literature on software similarity has only focused on pairwise similarity and
ignored the indexing and searching problem. Opportunities exist to transfer
existing techniques into metric indexing methods.

Locality sensitive hashing also represents an opportunity as this indexing and
searching technique has not been employed in all areas such as malware detection.
Likewise, distributed similarity search algorithms are still to be exploited in the
domain of software similarity.

The use of kernel methods for graph and tree based features is an area which is
unexplored. The use of graph kernels to enable graph based classification presents
much opportunity for researchers in future work.

References

1. Baeza-Yates R, Navarro G (1998) Fast approximate string matching in a dictionary. In: South
American symposium on string processing and information retrieval (SPIR’98), pp 14–22

2. Peter NY (1993) Data structures and algorithms for nearest neighbor search in general metric
spaces. In: Proceedings of the fourth annual ACM-SIAM symposium on discrete algorithms,
Austin, Texas, United States. Society for Industrial and Applied Mathematics, pp 311–321

Class B

Class A

Fig. 9.2 A linear classifier
separating two classes

74 9 Software Similarity Searching and Classification

3. Paolo C, Marco P, Pavel Z (1997) M-Tree: an efficient access method for similarity search in
metric spaces. Paper presented at the proceedings of the 23rd international conference on
very large data bases

4. Caetano Traina Jr, Agma JMT, Bernhard S, Christos F (2000) Slim-trees: high performance
metric trees minimizing overlap between nodes. Paper presented at the proceedings of the 7th
international conference on extending database technology: advances in database technology

5. Vieira MR, Chino FJT, Traina C, Jr, Traina AJM (2004) DBM-Tree: a dynamic metric access
method sensitive to local density data. In: Brazilian symposium on databases, Brazil
pp 163–177

6. Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of
dimensionality. In: ACM pp 604–613

7. F-Secure (2007) F-Secure reports amount of malware grew by 100% during 2007
8. Novak D, Zezula P (2006) M-Chord: a scalable distributed similarity search structure. Paper

presented at the proceedings of the 1st international conference on scalable information
systems, Hong Kong

9. Batko M, Gennaro C, Savino P, Zezula P (2004) Scalable similarity search in metric spaces.
In: 213–224

10. Batko M, Gennaro C, Zezula P (2005) A scalable nearest neighbor search in p2p systems.
Databases, information systems, and peer-to-peer computing, pp 79–92

11. Haghani P, Michel S, Aberer K (2009) Distributed similarity search in high dimensions using
locality sensitive hashing. Paper presented at the proceedings of the 12th international
conference on extending database technology: advances in database technology, Saint
Petersburg, Russia

12. Cortes C, Vapnik V (1995) Support-vector networks. Mach learn 20(3):273–297

References 75

Chapter 10
Applications

Abstract This chapter surveys the application specific literature in software
similarity and classification. It examines malware classification, software theft
detection, plagiarism detection and code clone detection. We group the literature
based on the class of program feature that is used to construct birthmarks. Finally,
we critically analyse the approaches used.

Keywords Software similarity � Software classification �Malware classification �
Software theft detection � Plagiarism detection � Code clone detection

10.1 Malware Classification

10.1.1 Raw Code

An approach employed by commercial Antivirus avoids static analysis by auto-
matically extracting string signatures [1, 2].The main problem with this approach
is that polymorphic malware makes string signatures prone to failure when the
byte level content changes due to mutation, recompilation, and source code
modification.

Kolmogorov complexity is a theoretical measure of the computational com-
plexity, or minimum string length in a universal description language, required to
represent an object or set of data. It is a theoretical measure that is not computable.
To estimate the Kolmogorov complexity, an object may be compressed and
concatenated with the associated decompression routine, to give the approximate
minimum string length to describe the object. The observation, when this theory is
related to malware, is that similar malware have similar measures of Kolmogorov
complexity. This form of analysis occurs on the malwares raw file or section
content.

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_10,
� The Author(s) 2012

77

Estimating Kolmogorov complexity was proposed in peHash [3] by identifying
the compression ratio of a malicious sample that was subsequently used for
clustering malware families. Another measure of similarity related to Kolmogorov
complexity is the Normalized Compression Distance (NCD). The NCD was used
in [4] to cluster worms into families. This approach, like peHash [3], was not used
to classify samples as being benign or malicious, but to cluster malicious samples
only.

It was the observation in [5] that malware and benign programs can be clas-
sified according to a likeness to a compression model for each of the malicious and
benign classes. In this research, it was proposed that two compression models be
constructed from a two training sets, one of malicious samples, and one of benign
samples. To classify a query sample as being malicious or benign, the number of
bits required to encode the query was calculated for each compression model. The
query was classified by identifying the class that requires the least data to encode
the query.

10.1.2 Instructions

An approach that employs static analysis is code normalization [6, 7]. Code
normalization canonizes malware before Antivirus string scanning. In [6], static
analysis eliminated superfluous control flow by merging redundant control flow
nodes together. Instruction sequences within basic blocks that had no effect were
also removed using an SMT decision procedure. The malware normalization
approach improves on Antivirus detection but does not always effectively canonize
a program to a unique form. This can affect the effectiveness and efficiency of
malicious code detection.

A simple approach requiring only disassembly is fingerprinting malware based
on opcode distributions [8]. An improved approach was proposed by using n-gram
analysis of opcode and byte sequences. N-grams and n-perms can identify simi-
larity between malicious programs and build evolutionary trees [9]. N-gram based
feature vectors were used in instance-based learning and statistical classification.
Statistical classification allowed for the detection of novel and unknown malware
in [10, 11]. These systems improve the effectiveness of static string signatures, but
instruction level classification has similar problems when the instruction stream
changes to any significant degree.

10.1.3 Basic Blocks

Malware classification using the basic blocks of a program has been investigated in
[12]. This approach requires disassembly and ideally a reasonable control flow
analysis to identify targets of branchs and calls. The edit distance can be used

78 10 Applications

between basic blocks to identify similarity. Existence of a basic block in a mali-
cious sample can be determined using an inverted index or bloom filters. The main
problem with this approach is polymorphic malware that changes the instructions
within a basic block.

10.1.4 API Calls

The static ordering of system API calls can be extracted and used for malware
classification. Association mining was proposed in [13] proposed to detect
unknown malicious programs. Dynamic analysis of API calls or the combination
of API calls and data flow can also be used as proposed in [14].

10.1.5 Control Flow and Data Flow

Control flow has been shown to be one of the more invariant features of a poly-
morphic malware and is resistant to byte and instruction level changes. Combining
data flow analysis and control flow analysis was proposed in [15, 16]. Annotated
flowgraphs combining data flow were compared to signatures, or automata, that
describe the malware.

10.1.6 Data Flow

A data flow analysis was proposed in [17] where value set analysis was used to
construct signatures.

10.1.7 Call Graph

Interprocedural control flow using the call graphs of a program have been com-
pared to show similarity to existing malware [18–21]. An approach to transform
the interprocedural control flow information into a context free grammar, allowing
for homomorphism testing using string equality was also proposed in [22].

10.1 Malware Classification 79

10.1.8 Control Flow Graphs

Control flow graphs have also been employed in [22–26] using graph edit dis-
tances, maximum common subgraphs and decomposition of graphs into small
fixed sized subgraphs or decompiled k-grams.

10.2 Software Theft Detection (Static Approaches)

10.2.1 Instructions

Considering the static instruction sequences in control flow graphs was proposed
for Java programs in [27]. This approach proposed using control flow graphs to
build static instruction traces. The traces were constructed by imposing a tree
structure on the control flow graphs and performing tree traversals to generate an
ordering of the instructions. To compare traces a sequence alignment algorithm
was used. The similarities between traces in control flow graphs were accumulated
to generate a program level similarity score.

K-grams were proposed in [28] to compare two programs. In this work, a k-
gram was defined as a unique sequence of k instructions as laid out in the exe-
cutable. The resulting birthmark is a set of k-grams. To compare two programs, set
similarity measures were used which parallel the Jaccard index and the detection
of subsets.

The operands of instructions have also been proposed as a useful birthmark in
Java programs. Reference [29] proposed four birthmarks, one being the sequence
of constant values in field variables. Operand stack patterns were proposed in [30,
31]. Operand stack patterns looked at sequences of bytecode that shared operands
through the operand stack.

10.2.2 Control Flow

Control flow has been proposed as a static feature from which birthmarks can be
constructed [32, 33]. In the proposed approaches, the edges in the control flow
graph were used. The instructions in the basic blocks making up the edge were
concatenated with each other to construct a possible execution sequence of code.
To compare two of these features, the longest common subsequence (LCS)
algorithm was used. To compare two sets of these features, as when all the control
flow edges are considered, a maximum weight matching was performed on the set
of all pairwise comparisons of those features. This matching sum allows for a
calculation of similarity.

80 10 Applications

10.2.3 API Calls

Static API calls were proposed as birthmarks in [34, 35]. The API calls made in
each procedure of a program were grouped together in sets. To compare two sets,
the Dice coefficient which measures the similarity between two sets was used. To
compare two programs, where each program consists of multiple sets, a maximum
weight matching was used on the set of all pairwise comparisons between those
sets. This matching allows for calculation of similarity.

10.2.4 Object Dependencies

Object inheritance graphs in Java programs and the objects other objects used was
proposed in [29] as a birthmark. This paper proposed a total of four birthmarks that
could be used for software theft detection.

10.3 Software Theft Detection (Dynamic Approaches)

10.3.1 Instructions

Dynamic extraction of instruction N-grams was proposed in [36]. This is analo-
gous to k-grams and n-grams in the static approach.

10.3.2 Control Flow

An interesting approach to capture the dynamic nature of control flow was pro-
posed in [37]. The control flow is dynamically traced, and the edges in the
associated control flow graph labelled. The execution trace generates a sequence of
those labels. The sequence is converted into a context free grammar using the
SEQUITUR algorithm which is useful in capturing the repetitive nature of
dynamic control flow. The grammar produces a graph and the terminal nodes are
removed. This final graph is the birthmark. To compare two birthmarks, a maxi-
mum common subgraph is used to identify similarity.

10.3.3 API Calls

Dynamic tracing of API class has had a considerable amount of research [38–42].
The dynamic API trace exhibits properties of the programs semantics and is less

10.2 Software Theft Detection (Static Approaches) 81

prone to the problems of obfuscation that static API call traces have. However,
triggering all behaviours can be difficult.

10.3.4 Dependence Graphs

A dynamically generated system call dependence graph approach to building a
birthmark was employed in [43]. Nodes in the graph represented system calls and
control and data dependencies were represented by edges. The graphs, or birth-
marks, were compared to show similarity using subgraph isomorphism testing.

10.4 Plagiarism Detection

Plagiarism detection systems often make the distinction between attribute counting
and structure based techniques. Attribute counting is based on software metrics, or
the frequencies of particular features occurring. Typical approaches include Hal-
stead metrics and other metrics which take into account attributes including the
number of tokens, the number of operators, the number of variables, or the number
of source lines [44]. Structure based techniques rely on using program structure
which typically include the use of dependency graphs or parse trees.

10.4.1 Raw Code and Tokens

JPlag [45] and YAP3 [46] consider tokens from source code as features and
perform similarity comparisons using greedy string tiling. Another approach [47]
considers tokenization and linearization of the source code and uses an adaptive
sequence alignment to construct a similarity measure.

10.4.2 Parse Trees

Parse trees are related to abstract syntax trees and have been proposed for pla-
giarism detection [48] by using tree comparisons to identify similarity. Tree
similarity can be based on algorithms including tree edit distances or largest
common subtrees.

82 10 Applications

10.4.3 Program Dependency Graph

GPLAG used program dependency graphs of programs [49]. Similarity between
program dependency graphs uses similarity metrics such as the graph edit
distances.

10.5 Code Clone Detection

10.5.1 Raw Code and Tokens

Clone detection can be performed on the textual stream in a source file once
whitespace and comments are removed [50]. The key concept is that a fingerprint
of a code fragment is obtained and then the remainder of the source scanned for
possible matching duplicates. More recently [51, 52] has used the token approach
with good success in large scale evaluations. Large scale copy and paste clones
using a data mining approach was investigated in [53, 54].

10.5.2 Abstract Syntax Tree

An alternative approach is to use the abstract syntax tree of the source to generate a
fingerprint [55]. Tree matching can subsequently be used to discover software
clones. Abstract syntax trees are more impervious to superficial changes to the
textual stream and textual organization of the code.

10.5.3 Program Dependency Graph

Other program abstractions can be used to fingerprint code fragments such as the
program dependency graph which is a graph combining control and data depen-
dencies [56].

10.6 Critical Analysis

All applications of software similarity and classification share common themes of
feature extraction, similarity functions and statistical classification. The literature
reviewed in this chapter should be in the context of the theory presented in this
book. Initial work on malware detection was based primarily on the raw code

10.4 Plagiarism Detection 83

contents. As noted in previous chapters, raw code is ineffective when trying to
detect malware variants including polymorphic and metamorphic samples.
Instruction opcodes and sequences also face similar problems. Control flow has
been used successfully in most of the above applications when perform static
analyses. The danger of including data flow as a feature is that the birthmarks
created become too specific to the instance of code and therefore suffer the same
fate as using byte-level content. Therefore, control flow might be the best choice
for the time being. Control flow can be obfuscated however, using packing and
other techniques so a trend has been to perform dynamic analysis by running the
sample program in a virtualized environment. The feature of choice has been the
API calls the program makes. Dynamic analysis is not without fault though and
that has also been discussed in previous chapters of this book. Of note, there is a
distinction in the literature between the software similarity problem and the
software classification problem. Some applications such as software theft detection
will always be based upon software similarity. However, applications such as
malware detection only care for a signature-less binary classification. Neverthe-
less, software similarity is still useful for identifying families of malware and
attributing authorship of those malicious executables.

References

1. Griffin K, Schneider S, Hu X, Chiueh T (2009) Automatic generation of string signatures for
malware detection. In: Recent advances in intrusion detection: 12th international symposium,
RAID 2009, Saint-Malo. Springer

2. Kephart JO, Arnold WC (1994) Automatic extraction of computer virus signatures. In: 4th
virus bulletin international conference, pp 178–184

3. Wicherski G (2009) peHash: a novel approach to fast malware clustering. In: Usenix
workshop on large-scale exploits and emergent threats (LEET’09), Boston

4. Wehner S (2007) Analyzing worms and network traffic using compression. J Comput Secur
15(3):303–320

5. Zhou Y, Inge WM (2008) Malware detection using adaptive data compression. In:
Proceedings of the 1st ACM workshop on AISec (AISec ‘08). ACM New York, pp 53–60

6. Christodorescu M, Kinder J, Jha S, Katzenbeisser S, Veith H (2005) Malware normalization.
University of Wisconsin, Madison

7. Andrew W, Rachit M, Mohamed RC, Arun L (2006) Normalizing metamorphic malware
using term rewriting. Paper presented at the proceedings of the sixth IEEE international
workshop on source code analysis and manipulation

8. Bilar D (2007) Opcodes as predictor for malware. Int J Electron Secur Digit Forensics
1(2):156–168

9. Karim ME, Walenstein A, Lakhotia A, Parida L (2005) Malware phylogeny generation using
permutations of code. J Comput Virol 1(1):13–23

10. Perdisci R, Lanzi A, Lee W (2008) McBoost: boosting scalability in malware collection and
analysis using statistical classification of executables. In: Proceedings of the 2008 annual
computer security applications conference. IEEE Computer Society Washington, pp 301–310

11. Kolter JZ, Maloof MA (2004) Learning to detect malicious executables in the wild. In:
International conference on knowledge discovery and data mining, pp 470–478

12. Gheorghescu M (2005) An automated virus classification system. In: Virus bulletin
conference, pp 294–300

84 10 Applications

13. Ye Y, Wang D, Li T, Ye D (2007) IMDS: intelligent malware detection system. In:
Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery
and data mining. ACM

14. Kolbitsch C, Comparetti PM, Kruegel C, Kirda E, Zhou X, Wang XF, Santa Barbara UC
(2009) Effective and efficient malware detection at the end host. In: 18th USENIX security
symposium

15. Christodorescu M, Jha S, Seshia SA, Song D, Bryant RE (2005) Semantics-aware malware
detection. In: Proceedings of the 2005 IEEE symposium on security and privacy (S&P 2005),
Oakland

16. Christodorescu M, Jha S (2003) Static analysis of executables to detect malicious patterns.
Paper presented at the proceedings of the 12th USENIX security symposium

17. Leder F, Steinbock B, Martini P (2009) Classification and detection of metamorphic malware
using value set analysis. In: Proceedings of 4th international conference on malicious and
unwanted software (Malware 2009), Montreal

18. Carrera E, Erdélyi G (2004) Digital genome mapping–advanced binary malware analysis. In:
Virus bulletin conference, pp 187–197

19. Briones I, Gomez A (2008) Graphs, entropy and grid computing: automatic comparison of
malware. In: Virus bulletin conference, pp 1–12

20. Hu X, Chiueh T, Shin KG (2009) Large-scale malware indexing using function-call graphs.
In: computer and communications security, Chicago. ACM, pp 611–620

21. Dullien T, Rolles R (2005) Graph-based comparison of executable objects (English version).
In: SSTIC

24. Cesare S, Xiang Y (2011) Malware variant detection using similarity search over sets of
control flow graphs. In: IEEE Trustcom

22. Cesare S, Xiang Y (2010) A fast flowgraph based classification system for packed and
polymorphic malware on the endhost. In: IEEE 24th international conference on advanced
information networking and application (AINA 2010)

23. Kruegel C, Kirda E, Mutz D, Robertson W, Vigna G (2006) Polymorphic worm detection
using structural information of executables. Lect Notes Comput Sci 3858:207

25. Cesare S, Xiang Y (2010) Classification of malware using structured control flow. In: 8th
Australasian symposium on parallel and distributed computing (AusPDC 2010)

26. Bonfante G, Kaczmarek M, Marion JY (2008) Morphological detection of malware. In:
International conference on malicious and unwanted software, IEEE, Alexendria 1–8 Oct 2008

27. Park H, Choi S, Lim H, Han T (2008) Detecting code theft via a static instruction trace
birthmark for Java methods. In IEEE, pp 551–556

28. Myles G, Collberg C (2005) K-gram based software birthmarks. Paper presented at the
proceedings of the 2005 ACM symposium on applied computing, Santa Fe

29. Tamada H, Nakamura M, Monden A, Matsumoto KI (2005) Java birthmarks-detecting the
software theft. IEICE Trans Inf Syst E Ser D 88(9):2148

30. Lim H, Park H, Choi S, Han T (2008) Detecting theft of java applications via a static
birthmark based on weighted stack patterns. IEICE Trans Inf Syst E91-D(9):2323–2332

31. Park H, Lim H, Choi S, Han T (2008) A static java birthmark based on operand stack
behaviors. In: Proceedings of the 2008 international conference on information security and
assurance (ISA 2008), pp 133–136

32. Lim H, Park H, Choi S, Han T (2009) A static java birthmark based on control flow edges. In:
Computer software and applications conference (COMPSAC ‘09). IEEE, pp 413–420

33. Lim H, Park H, Choi S, Han T (2009) A method for detecting the theft of Java programs
through analysis of the control flow information. Inf Softw Technol 51(9):1338–1350

34. Choi S, Park H, Lim H, Han T (2009) A static API birthmark for Windows binary
executables. J Syst Softw 82(5):862–873

35. Choi S, Park H, Lim H, Han T (2008) A static birthmark of binary executables based on API
call structure. Advances in computer science—ASIAN 2007 computer and network security,
pp 2–16

References 85

36. Lu B, Liu F, Ge X, Liu B, Luo X (2007) A software birthmark based on dynamic opcode n-
gram. In: Proceedings of the international conference on semantic computing (ICSC ‘07).
IEEE computer society

37. Myles G, Collberg C (2004) Detecting software theft via whole program path birthmarks.
Information security, pp 404–415

38. Moriyama O, Furue T, Tooyama T, Matsumoto T (2006) A method of software dynamic
birthmarks using history of API function calls. In: IEIC technical report (Institute of
Electronics, Information and Communication Engineers), vol 106(235), pp 77–84

39. Schuler D, Dallmeier V, Lindig C (2007) A dynamic birthmark for java. Paper presented at
the proceedings of the twenty-second IEEE/ACM international conference on automated
software engineering, Atlanta

40. Tamada H, Okamoto K, Nakamura M, Monden A, Matsumoto K (2004) Dynamic software
birthmarks to detect the theft of windows applications. In: International symposium on future
software technology (ISFST 2004)

41. Tamada H, Okamoto K, Nakamura M, Monden A, Ichi Matsumoto K (2007) Design and
evaluation of dynamic software birthmarks based on API calls. Nara Institute of Science and
Technology, Technical Report

42. Schuler D, Dallmeier V (2006) Detecting software theft with API call sequence sets. In:
Proceedings of the 8th workshop software reengineering, Bad Honnef

43. Wang X, Jhi Y-C, Zhu S, Liu P (2009) Behavior based software theft detection. Paper
presented at the proceedings of the 16th ACM conference on computer and communications
security, Chicago

44. Jones EL (2001) Metrics based plagarism monitoring. J Comput Sci Coll 16(4):253–261
45. Prechelt L, Malpohl G, Philippsen M (2002) Finding plagiarisms among a set of programs

with JP lag. J Univers Comput Sci 8(11):1016–1038
46. Wise MJ (1996) YAP3: improved detection of similarities in computer program and other

texts. SIGCSE Bull 28(1):130–134. doi:10.1145/236462.236525
47. Ji J-H, Woo G, Cho H-G (2007) A source code linearization technique for detecting

plagiarized programs. SIGCSE Bull 39(3):73–77. doi:10.1145/1269900.1268807
48. Son J-W, Park S-B, Park S-Y (2006) Program plagiarism detection using parse tree kernels.

In: Yang Q, Webb G (eds) PRICAI 2006: Trends in artificial intelligence, vol 4099. Lecture
notes in computer science. Springer Berlin/Heidelberg, pp 1000–1004. doi:10.1007/978-3-
540-36668-3_122

49. Liu C, Chen C, Han J, Yu PS (2006) GPLAG: detection of software plagiarism by program
dependence graph analysis. Paper presented at the proceedings of the 12th ACM SIGKDD
international conference on knowledge discovery and data mining, Philadelphia

50. Ducasse S, Rieger M, Demeyer S (1999) A language independent approach for detecting
duplicated code. Published by the IEEE Computer Society, p 109

51. Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: a multilinguistic token-based code clone
detection system for large scale source code. IEEE Trans Softw Eng, pp 654–670

52. Livieri S, Higo Y, Matushita M, Inoue K (2007) Very-large scale code clone analysis and
visualization of open source programs using distributed CCFinder: D-CCFinder. In:
Proceedings of the 29th international conference on software engineering (ICSE ‘07).
IEEE computer society, pp 106–115

53. Li Z, Lu S, Myagmar S, Zhou Y (2004) CP-Miner: a tool for finding copy-paste and related
bugs in operating system code. In: Proceedings of the 6th conference on symposium on
operating systems design & implementation (OSDI ‘04). USENIX association, pp 20–20

54. Li Z, Lu S, Myagmar S, Zhou Y (2006) CP-Miner: finding copy-paste and related bugs in
large-scale software code. IEEE Trans Softw Eng, pp 176–192

55. Baxter ID, Yahin A, Moura L, Sant’Anna M, Bier L (1998) Clone detection using abstract
syntax trees. Published by the IEEE computer society, p 368

56. Krinke J (2001) Identifying similar code with program dependence graphs. Published by the
IEEE computer society, p 301

86 10 Applications

http://dx.doi.org/10.1145/236462.236525
http://dx.doi.org/10.1145/1269900.1268807
http://dx.doi.org/10.1007/978-3-540-36668-3_122
http://dx.doi.org/10.1007/978-3-540-36668-3_122

Chapter 11
Future Trends and Conclusion

Abstract This chapter looks at future trends in software similarity and classifi-
cation research and engineering. We look at the technology becoming unified and
its applications in cloud services and mobile platforms. Finally, we conclude the
book with some final thoughts.

Keywords Cloud services � Mobile computing � Antivirus

11.1 Future Trends

Software similarity and classification may see the unification of malware classi-
fication with other technologies such as software theft detection or software clone
detection. These topics will see sharing of concepts and techniques and the use of
program features will become comprehensive. It may indicate that a combination
approach to software similarity and classification is appropriate. Many of the
features are useful at representing a particular property of software, but obfusca-
tions or transformations may alter these properties. Using a variety of properties in
combination may be a suitable response for increasing accuracy.

Static binary analysis is an emerging field and continues to improve. The
analyses are becoming stronger and able to model more complex behaviour
without gross under-approximations or over-approximations. This will continue to
improve as this area of static analysis becomes more recognized. In particular,
malware classification and software theft detection are driving forces of the need
for analyses.

Static binary analysis is used in academic malware classification. It has not seen
widespread use in commercial Antivirus. We believe this situation will change due
to the more effective signatures and the ability to use machine learning and

S. Cesare and Y. Xiang, Software Similarity and Classification,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-2909-7_11,
� The Author(s) 2012

87

statistical classification to detect novel samples of malware. The trend in malware
classification is to use higher level of abstractions and more emphasis is placed on
combining data flow analysis with control flow analysis. Appropriate database
technologies are being used more as the problem is becoming how to effectively
perform indexing and searching of program features for an instance-based
signature approach of malware variant detection. Statistical classification contin-
ues to improve on the effectiveness of program features used. We are likely to see
the combination of program features, and the combination of different classifiers to
improve system accuracy. Complex objects such as graphs will continue to be used
with an emphasis on problems in graph mining.

Software theft detection is not widely used by all vendors, but as technology
improves and matures, this may become more common. Software theft detection is
a program variant detection problem and therefore uses instance-based learning.
Database technology as in the case of malware variant detection will take
important roles.

Network speeds are improving and cloud services are becoming more popular.
Antivirus vendors have already taken advantage of this and have provided an
initial set of offerings for cloud based malware detection. Services already exist
that provide AV scanning on demand using a large number of commercial scan-
ners. A hybrid scheme may also be used where some of the processing and feature
extraction is done on the endpoint. We expect that as bandwidth becomes less of
an issue, cloud Antivirus will become popular. Placing malware classification in
the cloud allows the use of huge signature databases along with correlation not
possible when end users are disconnected. Mobile platforms are less powerful than
their desktop counterparts, so these devices would benefit from cloud services
where the majority of processing is done away from the user’s device. Finally,
cloud services may provide an opportunity to detect attackers, through service
misuse, from tuning their malware or plagiarised code to evade detection.

11.2 Conclusion

In conclusion, software similarity and classification is an important topic that
unifies and tackles the problems of malware classification, plagiarism detection,
software theft detection and code clone detection. Many techniques are pioneered
or formalized in one topic but only later applied, if at all, to other domains. We
have presented the core concepts of how to approach this problem and identify
new areas of research. Much research is possible simply by applying existing
research across domains.

88 11 Future Trends and Conclusion

	Software Similarity and Classification
	Preface
	Acknowledgments
	Contents
	1 Introduction
	2 Taxonomy of Program Features
	3 Program Transformations and Obfuscations
	4 Formal Methods of Program Analysis
	5 Static Analysis of Binaries
	6 Dynamic Analysis
	7 Feature Extraction
	8 Software Birthmark Similarity
	9 Software Similarity Searching and Classification
	10 Applications
	11 Future Trends and Conclusion

