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        Introduction 

 Malignant tumors of the kidney account for approximately 
2 % of all new primary cancer cases diagnosed in the United 
States (US) and worldwide [ 1 – 3 ]. Renal cell carcinoma 
(RCC) of the renal parenchyma accounts for over 80 % of all 
kidney cancers, the majority of which are adenocarcinomas 
that arise from the renal parenchyma [ 3 ]. RCC is divided into 
distinct histological subtypes, clear cell being the most prev-
alent (80–85 %) followed by papillary RCC (10 %). Less 
common subtypes of kidney cancer include oncocytoma and 
chromophobe tumors [ 4 ,  5 ]. Another histological subtype of 
kidney cancer is transitional cell carcinoma (TCC) which is 
most often located in the renal pelvis [ 6 ]. Histologically, these 
tumors are considered more similar to TCC of the bladder 
[ 7 ]. In RCC, the major etiologic risk factors that are thought 
to explain approximately 50 % of cases include cigarette 
smoking, obesity (high body mass index or BMI), hyperten-
sion, and diabetes [ 6 ,  8 ,  9 ]. The increasing prevalence of 
these risk factors may explain temporal variations in renal 
cancer incidence rates by country/region and within particular 

subpopulations. While the etiologic factors associated with 
the remaining 50 % of renal cancer cases are for the most 
part unexplained, other risk factors that have been described 
in the literature include analgesic use [ 3 ], long- term hemodi-
alysis [ 10 ], hormonal/reproductive factors [ 11 ], variations in 
diet [ 12 ,  13 ], family history of renal cancer [ 14 ], and genetic 
factors [ 15 ]. Although not generally considered an occupa-
tionally related cancer, several studies have pointed towards 
occupational and environmental exposures [ 16 ,  17 ]; many 
associations, however, remain inconclusive. The current 
review will focus upon renal cancer risk associated with 
exposure to various agents in the workplace that are sus-
pected of being renal carcinogens. Initial studies we present 
will evaluate historical exposures using job and industry 
titles, in which exposures to carcinogens were “likely” to be 
encountered in the workplace. Subsequently, to reduce specu-
lation and exposure misclassifi cation, higher- quality studies 
that used more sophisticated exposure assessment techniques 
(i.e., expert-assessed or actual industrial hygiene measure-
ments) will be presented.  

    Occupations and Industries 

 Studies of occupational history that classifi ed individuals by 
job and industry titles provided the fi rst clues to specifi c 
exposures as potential risk factors for renal cancer. Industries 
that have been signifi cantly associated with elevated renal 
cancer risk include employment in the dry cleaning [ 18 ,  19 ], 
agricultural and food [ 20 – 22 ], petroleum and gasoline [ 23 – 25 ], 
iron and steel [ 23 ,  25 ,  26 ], paper and printing/publishing 
[ 6 ,  18 ,  25 ], and automotive [ 22 ,  27 ] industries. Specifi c job 
titles have been less consistently associated with kidney 
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cancer risk; however, those that have shown signifi cant 
associations with increased risk include employment as a 
manager [ 20 ,  22 ,  28 ], auto or airline mechanic [ 6 ,  18 ,  22 ,  28 ], 
painter [ 29 ,  30 ], fi refi ghter [ 30 ,  31 ], architect [ 20 ,  32 ], engi-
neer [ 20 ,  33 ], truck or bus driver [ 25 ,  34 ,  35 ], as well as 
metal [ 6 ,  25 ,  36 ], railroad [ 6 ,  29 ,  37 ], and sales [ 22 ,  28 ] 
workers. Specifi c agents are identifi ed through studies that 
used detailed analyses of job and industry reports showing that 
exposure to solvents [ 29 ,  36 ], pesticides [ 25 ,  38 ], metals (i.e., 
lead, chromium, cadmium, arsenic, and nickel) [ 18 ,  23 ,  29 ], 
asbestos and other fi bers/dusts [ 18 ,  23 ,  37 ], automotive fumes/
diesel exhaust [ 18 ,  23 ,  36 ], polycyclic aromatic hydrocarbons 
(PAHs) [ 18 ,  29 ], and ultraviolet (UV) radiation [ 18 ,  33 ] could 
be responsible for the associations observed.  

    Solvents, Chlorinated Solvents, 
and Trichloroethylene 

 Results from occupational studies indicate that the increased 
kidney cancer rates observed among dry cleaners [ 39 ], archi-
tects [ 40 ], mechanics [ 41 ], and aerospace and aircraft main-
tenance workers [ 42 ] could be related to solvent exposures. 
In particular, chlorinated solvents, a subgroup of organic sol-
vents, have been examined in relation to kidney cancer risk 
in a number of occupational studies [ 23 ,  35 ,  36 ,  43 – 46 ]; 
however, signifi cant associations with risk have only been 
reported in a few case-control studies [ 23 ,  36 ,  45 ]. Schlehofer 
and colleagues observed a greater than twofold increase in 
RCC risk (relative risk (RR) = 2.5, 95 % confi dence interval 
(CI) = 1.2–5.2) among men reporting exposure to chlorinated 
solvents ( N  = 27 cases,  N  = 12 controls) in Germany [ 36 ]. In a 
slightly larger study conducted in the USA, occupational 
exposure to chlorinated aliphatic hydrocarbons was associ-
ated with increased RCC risk (odds ratio (OR) = 2.1, 95 % 
CI = 1.1–3.9) among women ( N  = 29) [ 45 ]. In a large, interna-
tionally based study (the USA, Australia, Sweden, Denmark, 
and Germany), increased RCC risk was also observed among 
male (RR = 1.4, 95 % CI = 1.1–1.7) and female (RR =1.6, 
95 % CI = 1.0–2.7) participants who reported ever being 
occupationally exposed to dry cleaning solvents ( N  = 245 
male cases,  N  = 223 male controls; number of exposed female 
subjects not reported); but no clear pattern of association was 
seen with increasing duration of employment, since the high-
est level of risk was observed among men in the midrange of 
exposure [ 23 ]. 

 Included within the subgroup of chlorinated organic 
solvents is trichloroethylene (TCE). In 1997, the International 
Agency for Research on Cancer (IARC) classifi ed TCE as a 
Group 2A, “probable” human carcinogen based on limited 
carcinogenic evidence in humans but suffi cient evidence in 
animals [ 47 ]. Recently, the US Environmental Protection 
Agency (EPA) released its fi nal health assessment for TCE 

and characterized the chemical as “carcinogenic to humans” 
based on additional carcinogenic evidence in human epide-
miological studies [ 48 ]. Subsequently, the IARC working 
group also elevated TCE’s classifi cation to a Group 1 human 
carcinogen [ 49 ]. TCE was a prominent chlorinated solvent 
used in the 1970s, primarily for degreasing metal parts, but 
also as an anesthetic, surgical disinfectant, pet food additive, 
typewriter correction fl uid, and extractant of spices in food 
[ 50 ]. Exposure to this solvent is also of concern as it remains 
a common water contaminant in the USA [ 51 ]. 

 TCE has been the most extensively studied of all chlori-
nated solvents in relation to RCC risk (Table  25.1 ) [ 19 ,  29 , 
 39 ,  43 ,  45 ,  52 – 67 ]. In animal studies, TCE exposure has 
been found to increase nephrotoxicity and nephrocarcinoge-
nicity [ 68 ]. At relatively low exposure levels, rats have been 
shown to develop nonneoplastic kidney lesions, as well as 
increased incidence of renal adenoma and adenocarcinoma 
[ 47 ,  69 ]. Findings from animal studies have suggested that 
kidney tumors result as a consequence of continual cytotox-
icity and regeneration [ 70 ,  71 ]. In humans, nephrotoxicity is 
thought to be a prerequisite for renal cancer development 
following TCE exposure [ 70 ].

   Interest regarding TCE exposure as a potential human car-
cinogen fi rst escalated after publication of two German epide-
miological case-control studies that indicated very strong 
associations between occupational exposure and RCC risk 
[ 54 ,  63 ], although some have questioned the validity of these 
two studies due to study design issues such as control selec-
tion, potential interview bias, and matching [ 72 ,  73 ]. Since 
then, accumulating epidemiological evidence from a variety 
of study designs employing various exposure assessment 
methodologies has examined the association between occu-
pational TCE exposure and kidney cancer risk, including four 
meta-analyses published over the past 13 years [ 72 ,  73 ]. The 
fi rst meta-analysis published on occupational TCE exposure 
and kidney cancer risk by Wartenberg et al. in 2000 reported 
a signifi cant summary RR of 1.17 (95 % CI = 1.1–2.7) for 
incidence cohort studies ( N  = 5) that assessed TCE exposure 
using urinary biomarkers, job exposure matrices (JEMs), or 
job histories. Elevated summary estimates were also reported 
for other types of study designs though not signifi cantly [ 73 ]. 
In 2007, Kelsh and colleagues observed signifi cant summary 
estimates for both cohort ( N  = 16, RR = 1.34, 95 % CI = 1.00–
1.81,  p -heterogeneity = 0.01) and case-control studies ( N  = 7, 
OR = 2.57, 95 % CI = 1.06–2.30,  p -heterogeneity = 0.003) that 
assessed occupational TCE exposure in relation to kidney 
cancer risk, and estimates remained elevated after excluding 
outlier studies that introduced heterogeneity to the combined 
risk estimates [ 72 ]. Recently, a US EPA-conducted meta-
analysis reported a signifi cant RR with kidney cancer show-
ing a 1.3 increase in risk overall and a 1.6 increase in risk for 
high exposure groups [ 74 ]. A subsequent updated meta-anal-
ysis conducted by the US National Cancer Institute (NCI) 
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observed signifi cantly elevated RRs for cohort studies 
(RR = 1.26, 95 % CI = 1.02–1.56,  p -heterogeneity = 0.56), 
case-control studies (OR = 1.35, 95 % CI = 1.17–1.57,  p -het-
erogeneity = 0.41), and both types of studies combined 
(RR = 1.32, 95 % CI = 1.17–1.50,  p -heterogeneity = 0.63) after 
removal of outlier studies, which, incidentally, were those 
reporting the highest associations between kidney cancer risk 
and TCE exposure [ 75 ]. Nonsignifi cant elevated summary 
estimates were observed for studies of workers exposed to the 
broader classifi cation of chlorinated solvents, but not assessed 
specifi cally for TCE. 

 An important question raised by most critiques surrounds 
TCE exposure and its mode of action in the kidney. Findings 
from recent epidemiological studies suggest that the associa-
tion between TCE exposure and kidney cancer risk may be 
modifi ed by polymorphisms in genes important in the reduc-
tive metabolism of TCE [ 43 ,  76 ]. In particular, evidence 
from these studies has demonstrated that TCE-associated 
renal genotoxicity occurs predominantly through glutathione 
S-transferase (GST) conjugation and subsequent bioactiva-
tion by the enzyme renal cysteine beta-lyase (CCBL1) 
[ 43 ,   68 ,  76 ]. One early study of RCC and risk modifi cation 
by  GST  genotypes among workers with long-term occupa-
tional exposure to high concentrations of TCE ( N  = 45 cases, 
 N  = 48 controls) observed positive associations among 
 GSTT1  active genotypes (OR = 4.2, 95 % CI = 1.16–14.91) 
[ 76 ]; however, fi ndings from a reassessment of the same 
TCE- exposed kidney cancer cases and additional controls 
[originating from various sources] did not corroborate the 
fi ndings [ 43 ,  77 ]. In a large case-control study of 1,097 RCC 
cases and 1,476 controls conducted in Central and Eastern 
Europe, job histories were assessed for the likelihood of 
exposure to organic solvents, chlorinated solvents, and spe-
cifi cally TCE [ 43 ]. RCC risk increased for subjects ever 
(compared to never) exposed to TCE ( N  = 48 cases,  N  = 40 
controls), and an exposure–response    trend was seen with 
higher estimated exposure levels. Elevated associations were 
not observed among individuals exposed to organic or chlo-
rinated solvents. Subsequently, risk modifi cation by  GSTT1  
and  CCBL1  genotypes were also evaluated. A signifi cant 
relationship (OR = 1.88, 95 % CI = 1.06–3.33) was found 
among likely TCE-exposed subjects with at least one intact 
 GSTT1  allele (active genotype  N  = 32 cases,  N  = 23 controls), 
but not among subjects with two deleted alleles (null geno-
type) [ 43 ]. These fi ndings provided the strongest evidence to 
date that TCE exposure is associated with increased renal 
cancer risk that was limited to individuals with a particular 
genotype necessary for the reductive metabolism of TCE. In 
addition, increased risk was observed among those with an 
active  GST  genotype that would be able to conjugate and 
subsequently bioactivate TCE in vivo [ 43 ]. This fi nding adds 
biological plausibility of the association in humans and pro-
vides some understanding of its mechanism of carcinogenic-

ity. Other pathways involved in the metabolism of TCE 
remain to be evaluated [ 43 ,  78 ]. 

 High-quality exposure assessment and robustness of fi nd-
ings across studies that specifi cally focused upon TCE expo-
sure raises the likelihood of an association. Weaknesses that 
exist across all studies conducted to date include potential 
confounding and exposure misclassifi cation due to possible 
exposures to other solvents, although both factors would 
likely reduce risk estimates, rather than increase them. 
Additional studies, particularly more recently updated meta- 
analytic studies, are warranted to help support a human 
health risk assessment between TCE exposure and kidney 
cancer risk.  

    Agricultural Work and Exposure 
to Pesticides, Insecticides, and Herbicides 

 Increased renal cancer risk has been observed in several stud-
ies of agricultural workers and farmers [ 20 ,  22 ,  28 ,  79 ,  80 ]. 
Updated cancer mortality data among a cohort of US farmers 
who applied pesticides revealed a signifi cant 62 % increase 
(95 % CI = 1.28–2.05) in renal cancer mortality [ 76 ]. Elevated 
mortality (standard mortality ratio (SMR) = 2.12) also was 
observed among a cohort of Italian farmers [ 80 ], but a signifi -
cantly reduced renal cancer incidence was found among 
Swedish male (standardized incidence ratio (SIR) = 0.88) [ 28 ] 
and female (SIR = 0.81, 95 % CI = 0.68–0.97) [ 81 ] farmers. 
Mixed results have been shown in case-control studies report-
ing specifi c agricultural industries, occupations, and job titles 
[ 18 – 20 ,  22 ,  36 ,  82 – 84 ]. For example, fi ndings from a recent 
renal cancer case-control study analyzing job and industry 
titles reported a signifi cant 43 % (95 % CI = 1.03–2.00) 
increase in risk for subjects employed as agricultural and ani-
mal husbandry workers ( N  = 107 cases,  N  = 108 controls); an 
overall 35 % (95 % CI = 1.3–1.77) increase for participants in 
the agricultural, hunting, and related services industries 
( N  = 132 cases,  N  = 138 controls); and a more than twofold 
increase in risk for female general farmers ( N  = 16 cases,  N  = 7 
controls, OR = 2.73, 95 % CI = 1.05–7.13). Higher-risk esti-
mates were also observed among those with a longer duration 
of employment (10+ years) for these jobs/industries [ 20 ]. On 
the other hand, no increase in cancer risk was observed among 
agricultural livestock workers ( N  = 15 cases,  N  = 19 controls, 
OR = 1.00) [ 20 ]. Additionally, an earlier review of cancer 
patterns among farmers in developed countries found a sig-
nifi cant 8 % reduction in kidney cancer risk (combined 
RR = 0.92, 95 % CI = 0.86–0.98) (risks ranging from 0.6 to 
1.5) based on results from 13 epidemiological studies of 
various designs [ 85 ]. 

 The relationship between evaluation of likely occupa-
tional pesticide exposure and RCC risk has been examined in 
eight epidemiological studies (Table  25.2 ), and results have 

25 Kidney Cancer
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been inconsistent [ 23 – 25 ,  36 – 38 ,  82 ,  86 ]. No associations 
were observed between RCC risk and occupational pesticide 
exposure in a large international multicenter population- 
based study of 1,723 cases and 2,309 controls [ 23 ] or in three 
smaller European case-control studies [ 36 ,  37 ,  86 ]. 
Nonsignifi cant increased risks were observed in two 
European case-control studies [ 25 ,  82 ]. When analyses were 
restricted to subjects occupationally exposed to pesticides 
for at least 20 years, one study reported a fourfold increase in 
risk in males ( N  = 10 cases,  N  = 3 controls, OR = 3.9, 95 % 
CI = 1.0–15.0) [ 25 ]. A large case-control study conducted in 
Central and Eastern Europe showed increased RCC risk 
among subjects whose job histories were assessed for likely 
pesticide exposure ( N  = 44 cases,  N  = 34 controls). Elevated 
risk was observed for ever exposure (OR = 1.60, 95 % 
CI = 1.00–2.55) and with years ( p -trend = 0.01), hours 
( p -trend = 0.03), and cumulative ( p -trend = 0.04) exposures, 
but no association was observed with average exposure indi-
ces ( p -trend = 0.09) [ 38 ]. Resulting risk estimates from this 
study were strengthened when analyses were limited to jobs 
assessed by occupational health experts as having the highest 
confi dence of exposures. Moreover, a signifi cantly elevated 
RCC risk was reported among males exposed to herbicides 
( N  = 131 cases,  N  = 318 controls, OR = 1.6, 95 % CI = 1.3–
2.0) and pesticides ( N  = 157 cases,  N  = 368 controls, OR = 1.8, 
95 % CI = 1.4–2.3) in a large Canadian case-control study of 
1,279 cases and 5,370 controls, and risk also increased lin-
early with increasing years of exposure [ 24 ].

   Some pesticides are comprised of halogenated com-
pounds, which can be metabolized and subsequently bioacti-
vated through mechanisms similar to chlorinated solvents 
like TCE [ 9 ,  87 ]. A few studies have examined RCC risk in 
relation to  GST  genotype [ 38 ,  88 ], with the hypothesis that 
an active  GST  genotype would result in renal bioactivation of 
halogenated pesticide compounds. Active genotypes are able 
to encode GST proteins; therefore, their presence would be 
required for conjugation and subsequent bioactivation of 
related metabolites in the kidney [ 38 ]. Since  GST  genes are 
expressed and enzymes are active in the kidney, GST activity 
associated with functional polymorphisms in the glutathione 
S-transferase mu ( GSTM1 ) and theta ( GSTT1 ) genes are 
hypothesized to modify cancer risk because of the differ-
ences in the ability to bioactivate halogenated compounds in 
the kidney [ 38 ,  88 ]. Although two small earlier studies of 
GSTs and pesticide exposure did not observe risk modifi ca-
tion by  GST  genotype [ 87 ,  89 ], two recent studies have found 
that RCC risk was increased among likely pesticide-exposed 
participants with active  GSTM1  or  GSTT1 genotypes [ 38 ,  88 ]. 
Moreover, the results of both studies were further strength-
ened among subjects with both active genotypes. 

 The carcinogenic potential of specifi c pesticides has been 
evaluated by the IARC [ 90 ]. Most occupational epidemio-
logical studies have not been able to examine cancer risk 

associated with exposure to specifi c pesticides given the 
small number of study participants, the lack of detailed 
information collected to identify individual classes of pesti-
cides, and misclassifi cation due to exposures to multiple pes-
ticides. However, the carcinogenic risk posed to humans 
from occupational exposure during the spraying and applica-
tion of insecticides has been evaluated by the IARC and clas-
sifi ed as “probably” carcinogenic to humans (Group 2A) 
[ 90 ]. The need for additional studies is apparent given the 
limited number of studies that have evaluated occupational 
pesticide exposure in relation to kidney cancer and the 
important role of the kidneys in the metabolism of certain 
classes of pesticides.  

    Lead 

 Inorganic lead and lead compounds are classifi ed as “proba-
ble” human carcinogens by the IARC [ 91 ] and listed as “rea-
sonably anticipated to be human carcinogens” by the 
National Toxicology Program [ 92 ], based on limited evi-
dence of carcinogenicity in humans and suffi cient evidence 
in laboratory animals, particularly for cancers of the stomach 
and lung. Inconsistent evidence for an association between 
kidney cancer and exposure to lead or lead compounds has 
been shown [ 91 – 104 ]. Among lead-exposed workers, high 
exposure has been reported in lead smelting and lead battery 
plants, while moderate exposure has been shown for welders 
of metals containing lead or painted with lead (lead fumes), 
lead miners, lead glass workers, automobile radiator repair 
workers, leaded paint manufacture workers, as well as lead 
typesetting printing workers [ 93 ,  94 ]. 

 Lead has been shown to induce renal cancers in rodents 
and chronic nephropathy among humans with high occupa-
tional exposures [ 91 ,  92 ]. The carcinogenic effect of lead on 
the kidneys is plausible since urinary elimination is the main 
route of excretion and the proximal tubules are particularly 
sensitive to lead given their high reabsorption activity [ 95 ]. 
Moreover, the tubular epithelium of the renal cortex is a 
major target for the carcinogenicity of inorganic lead salts in 
animals, although the type of lead used in animal experimen-
tation was different than the type to which humans are occu-
pationally exposed [ 91 ,  96 ]. 

 Exposure to lead has been suspected for the elevated kid-
ney cancer associations observed among welders [ 18 ,  28 ,  29 , 
 86 ,  97 ], auto mechanics and technicians [ 20 ], painters [ 29 , 
 30 ], and lead smelter [ 98 – 100 ] and production [ 101 ] work-
ers. However, epidemiological studies examining the 
 association between occupational lead exposure and kidney 
cancer have been inconsistent [ 18 ,  29 ,  98 – 100 ,  102 ,  103 ]. 
Three cohort studies of male lead smelter workers assessed 
for high lead exposure using air monitoring measurements 
[ 98 ,  99 ] and industrial hygiene surveys [ 98 – 100 ] observed a 
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1.4–2-fold increase in kidney cancer mortality risk when 
compared to national rates. In 1985, Selevan and coauthors 
reported a borderline signifi cant increase in kidney cancer 
mortality (SMR = 301, 95 % CI = 98–703) among high-lead- 
exposed (airborne levels >200 μg/m 3 ) workers from Idaho 
( N  = 5) [ 99 ]. Utilizing updated information from the same 
cohort, Steenland et al. also found non-statistically elevated 
risk for kidney cancer mortality among all workers 8 years 
later, but also a signifi cant increase in risk (SMR = 2.39, 
95 % CI = 1.03–4.71) for workers with high lead exposure 
( N  = 8 observed deaths) [ 98 ]. Using an internal comparison 
of workers, Cocco and investigators observed an RR of 10.9 
(95 % CI = 1.0–121.0,  N  = 2 observed cases) among lead 
smelter workers in Italy who had been employed for at least 
21 years [ 100 ]. Studies of other lead-exposed occupational 
cohorts have not found a signifi cant excess in kidney cancer 
risk [ 102 ,  103 ]. Similarly, a meta-analysis of published epi-
demiological studies on cancer risk and occupational expo-
sure to lead using measurement of exposure levels or blood 
levels through the year 2000 ( N  = 7 studies,  N  = 40 deaths) 
did not fi nd an association with kidney cancer (RR = 1.01, 
95 % CI = 0.72–1.42) [ 93 ]. However, the use of JEMs or 
occupational experts to estimate likely lead exposures in 
case-control studies has usually shown an increase in kidney 
cancer risk [ 29 ,  65 ,  67 ,  96 ,  97 ,  104 ]. The most recent large- 
scale case-control study of approximately 1,100 cases and 
1,500 controls reported a signifi cant increase in RCC risk 
(OR = 1.55, 95 % CI = 1.09–2.21) among likely lead-exposed 
workers ( N  = 80 cases,  N  = 71 controls). Although no clear 
monotonic exposure–response was observed for either dura-
tion or cumulative exposure, RCC risk was 2.25 (95 % 
CI = 1.21–4.19) among subjects in the highest cumulative 
lead exposure category [ 96 ]. 

 Lead is not considered to be directly genotoxic in vitro, 
and it has been shown to increase the mutagenicity of other 
carcinogens by acting as a cocarcinogen, possibly through 
inhibition of DNA repair [ 93 ]. One of the most important 
mechanisms of lead toxicity occurs through its ability to 
impede key enzymes within the heme biosynthetic pathway 
[ 105 ]. Therefore, previous studies of genetic susceptibility to 
lead exposure and cancer risk have analyzed risk modifi ca-
tion by genetic variants in the δ (delta)-aminolevulinic acid 
dehydratase ( ALAD ) gene [ 105 – 107 ], the second enzyme in 
the heme biosynthetic pathway [ 105 ]. The gene that encodes 
 ALAD  exists in two polymorphic forms ( ALAD   1  ,  ALAD   2   )  
[single nucleotide polymorphism (SNP) 1800436], the pres-
ence of which may infl uence an individual’s susceptibility to 
lead poisoning [ 105 ,  108 ]. The substitution of an asparagine 
for lysine at residue 59 results in an increased affi nity for 
lead by  ALAD   2   compared to  ALAD  1  [ 105 ,  109 ]. It is unclear 
whether other functional variants exist. One recent study 
found that rs8177796 CT/TT variants were associated 
with RCC risk overall (OR = 1.35, 95 % CI = 1.05–1.73), 

compared to the CC major allele. Joint effects of lead 
exposure and SNP rs2761016 suggested an increased RCC 
risk for the homozygous wild-type and heterozygous alleles 
( GG OR = 2.68, 95 % CI = 1.17–6.12;  GA OR = 1.79, 95 % 
CI = 1.06–3.04) with an interaction approaching signifi cance 
( p -interaction = 0.06). In contrast, no modifi cation of risk 
was observed for the functional SNP rs1800435 (K68N) 
[ 105 ], which had previously been associated with brain can-
cer and susceptibility to lead poisoning [ 106 ]. But, due to the 
limited analytic power (small number of participants) in that 
study to investigate interaction between  ALAD  and lead 
exposure in RCC, further investigations are needed to eluci-
date this relationship. 

 Results of studies of welders and renal cancer case- control 
studies of lead exposure may have been subject to confound-
ing by other metal exposures. However, because of the 
important role of the kidney in metal excretion and reabsorp-
tion, and of genetic factors known to infl uence susceptibility 
to lead exposures, biological plausibility of the association 
exists, and additional studies designed to identify susceptible 
subpopulations are warranted.  

    Other Metals: Cadmium, Chromium, 
Nickel, and Arsenic 

 Cadmium, chromium, nickel, and arsenic are classifi ed by 
the IARC as group 1, “known” human carcinogens, but this 
conclusion is based on associations with lung cancer [ 110 ]. 
Findings from studies of cadmium exposure and kidney can-
cer have for the most part yielded inconclusive results [ 23 , 
 24 ,  29 ,  86 ,  96 ,  104 ,  111 ,  112 ]. Cadmium has a long residence 
time in the renal cortex and nephrotoxic effects associated 
with occupational and environmental exposures have been 
observed [ 113 ,  114 ]. Three major sources of cadmium expo-
sure include diet, cigarette smoking, and occupation [ 115 ]. 
One of the earliest studies of cadmium exposure by Kolonel 
in 1976 reported a positive association between renal cancer 
risk and occupational cadmium exposure [ 116 ]. Three 
population- based RCC case-control studies, by Mandel et al. 
[ 23 ], Pesch et al. [ 29 ], and Hu et al. [ 24 ], have since reported 
signifi cantly elevated cancer risk for self-reported exposure 
to cadmium and cadmium salts among male workers ( N  = 25 
exposed cases,  N  = 15 exposed controls, RR = 2.0, 95 % 
CI = 1.0–3.9;  N  = 99 exposed cases (number of exposed con-
trols not reported), OR = 1.4, 95 % CI = 1.1–1.8; and  N  = 19 
exposed cases,  N  = 32 exposed controls, OR = 1.7, 95 % 
CI = 1.0–3.2, respectively). A signifi cant increase in risk was 
also reported by Pesch et al. among female workers assessed 
for high cadmium exposure (OR = 2.5, 95 % CI = 1.2–5.3) 
[ 29 ]. However, further exposure–response analyses revealed 
no monotonic increase with cancer risk for years [ 23 ,  24 ] or 
level of exposure [ 29 ] in these studies. One of the highest 
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risk estimates observed with cadmium exposure was reported 
by Partanen et al., who found a greater than fourfold increase 
in RCC risk among subjects who were expert-assessed to 
have likely occupational cadmium exposure (OR = 4.4, 95 % 
CI = 0.4–43.0), although results were based on only three 
exposed cases [ 104 ]. Most recently, in a European case- 
control study that collected detailed occupational informa-
tion and expert exposure assessment, an elevated RCC risk 
estimate was reported for cadmium exposure (OR = 1.46, 
95 % CI = 0.82–2.85). Yet no exposure–response relationship 
for duration or cumulative exposure was observed, and the 
number of exposed cases was small ( N  = 25) [ 96 ]. Other epi-
demiological studies have not observed signifi cant associa-
tions between occupational cadmium exposure and kidney 
cancer risk [ 86 ,  111 ]. 

 Studies of occupational exposure to chromium and nickel 
with kidney cancer risk have been inconsistent [ 18 ,  24 ,  65 , 
 96 ,  117 – 120 ]. To date, signifi cant risk associated with occu-
pational exposure to chromium has only been reported in one 
small case-control study from Germany that assessed expo-
sure using a JEM in which a greater than twofold increase in 
risk was seen for both low ( N  = 16 cases,  N  = 28 controls, 
OR = 2.09, 95 % CI = 1.03–4.22) and high ( N  = 20 cases, 
 N  = 32 controls, OR = 2.21, 95 % CI = 1.15–4.25) levels of 
occupational exposure to chromium [ 65 ]. Evidence of asso-
ciation between occupational nickel exposure and kidney 
cancer risk has only been suggested in a large cohort study of 
nickel alloy plant workers from the USA. Though no increase 
in kidney cancer mortality risk was observed among all plant 
workers, a signifi cant twofold increase in risk was reported for 
white male workers employed in smelting [ 118 ]. Arsenic 
exposure has been associated with kidney cancer mortality in 
ecologic studies of drinking water contamination [ 121 ], but, 
typically, associations between occupational arsenic exposure 
and renal cancer risk have not been observed [ 24 ,  96 ,  122 ]. 

 Given the possibility of exposure misclassifi cation due to 
the presence of mixed occupational exposures, and limited 
study power observed in many studies due to the low number 
of exposed cases, additional well-powered studies that exam-
ine the relationship between occupational exposure to each 
of these metals that are also “known” human carcinogens 
and kidney cancer are warranted.  

    Diesel and Automotive Fumes 

 Interest regarding exposure to diesel and automotive fumes 
as possible renal carcinogens grew following a study demon-
strating RCC among rats chronically exposed to unleaded 
gasoline fumes [ 123 ]. In 1985, McLaughlin and coauthors 
identifi ed an elevation in RCC risk with duration of employ-
ment among gas station attendants [ 124 ]. Similar fi ndings in 
both cohort and case-control studies have since been reported 

in this group of workers [ 22 ,  23 ,  124 – 126 ]. Occupational 
cohort and case-control studies have also found elevated 
RCC risk among truck and urban bus drivers [ 25 ,  34 ], rail-
road workers [ 29 ,  37 ,  127 ], fi refi ghters [ 30 ,  31 ], and automo-
tive repairers/mechanics [ 22 ,  28 ]. Findings from these and 
other epidemiological studies further suggest that diesel and 
gasoline exhaust and fumes may be etiologic risk factors 
associated with renal cancer risk [ 18 – 20 ,  22 ,  25 ,  29 ,  34 ,  36 , 
 65 ,  124 ,  127 ,  128 ]. 

 Diesel exhaust, according to the IARC, is classifi ed as a 
“probable” human carcinogen because of the limited evi-
dence of carcinogenicity in humans coupled with suffi cient 
evidence of in experimental animals exposed to whole engine 
exhaust    [ 129 ]. Epidemiological studies on occupational die-
sel exhaust and kidney cancer in humans have produced 
mixed results [ 128 – 136 ]. A small but signifi cant increase in 
kidney cancer risk ( N  = 2,243, SIR = 1.06, 95 % CI = 1.02–
1.11) was shown among men with likely diesel exhaust 
exposure in a large Swedish occupational cohort study in 
which exposure was estimated using a JEM [ 128 ]. More 
recently, a similar association between kidney cancer risk 
and likely exposure to low levels (<2.0 mg/m 3 -years) of die-
sel exhaust ( N  = 465 exposed cases) was observed among 
men in a cohort of Finnish workers (RR = 1.17, 95 % 
CI = 1.05–1.30); however, no increase in risk was seen for 
moderate or high levels of exposure or among female work-
ers [ 130 ]. Several early studies of railroad workers reported 
small increased associations with kidney cancer risk and 
exposure to diesel [ 131 ,  132 ], but other occupational studies 
of diesel-exposed workers did not fi nd an elevated risk 
[ 133 – 136 ]. 

 Occupational gasoline exposure, classifi ed as a Group 2B 
“possible” human carcinogen by the IARC [ 129 ], using both 
self-reported [ 23 ,  36 ] and JEM-based evaluations [ 104 ], has 
been associated with an elevated RCC risk. A population- 
based case-control study conducted in Germany found a sig-
nifi cantly elevated kidney cancer risk among men reporting 
occupational exposure to gas exhaust ( N  = 37 cases,  N  = 23 
controls, RR = 1.82, 95 % CI = 1.03–3.22) for at least 5 years 
[ 36 ]. A similar result was shown for men in an international 
study of workers who reported ever having been exposed to 
gasoline ( N  = 164 cases, 189 controls, OR = 1.6, 95 % 
CI = 1.2–2.0) [ 23 ]. Occupational gasoline exposure, assessed 
by industrial hygiene experts, was associated with a signifi -
cant increase in RCC risk among ever versus never exposed 
workers ( N  = 39 cases, number of exposed controls not 
reported, OR = 1.72, 95 % CI = 1.03–2.87) and among men 
with the highest cumulative exposure levels ( N  = 9 cases, 
number of controls not reported, OR = 4.34, 95 % 
CI = 1.15–16.4) [ 104 ]. Other studies have found no elevation 
in risk among gasoline-exposed workers [ 62 ,  124 ] or among 
mechanics, automotive dealers, or service station employees 
[ 18 ,  137 ]. 
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 Limitations in assessing the intensity of exposure based 
on job title, the geographic differences in gasoline constitu-
ents, and the substantial improvements in work practices that 
have resulted in the decrease in daily exposures to gasoline 
attendants over time may explain the inconsistent fi ndings 
between earlier and more recent studies. Moreover, several 
studies did not adjust for smoking, a known renal cancer risk 
factor, which may have confounded some of the results 
observed.  

    Polycyclic Aromatic Hydrocarbons (PAHs) 

 PAHs are a group of chemical compounds found naturally in 
fossil fuels which are formed as by-products during the 
incomplete combustion of organic material such as coal, oil, 
wood, garbage, gas, tobacco, and charbroiled meat [ 138 , 
 139 ]. Constituents of diesel and gasoline exhausts also con-
tain PAHs [ 129 ]. PAHs comprise over 100 compounds that 
exist exclusively as complex mixtures [ 138 – 140 ]. PAHs 
have also been used in the production of plastics, dyes, medi-
cines, aluminum, coke, and pesticides, and they are also 
present in tars and asphalts [ 138 ]. Specifi c PAHs, such as 
benzo[a]pyrene and benzo[a]anthracene, are considered 
known or suspected human carcinogens [ 138 ]. The IARC 
has identifi ed several mixtures containing PAHs, including 
coal tar, diesel engine exhaust, and soot as carcinogenic or 
probably carcinogenic to humans [ 129 ]. 

 In a few early occupational cohort studies, elevated RCC 
risk among coke oven and petroleum refi nery workers (the 
latter associated with PAH by-products of the refi ning pro-
cess) had generated interest in PAHs as occupational renal 
carcinogens [ 23 ,  141 ]. However, confl icting results have been 
reported in studies of employees assessed as highly exposed 
to PAHs, such as asphalt workers, printers, machinists, and 
mechanics [ 18 ,  25 ,  28 ,  86 ,  142 ]. Historically, county-level 
kidney cancer mortality rates in the USA have shown an eco-
logic correlation with the proportion of the population 
employed in the petroleum-refi ning and other petroleum-
related industries [ 143 ]. Population- and hospital- based case-
control studies have reported elevated risks for employment 
in the oil refi nery industry [ 19 ,  23 ,  124 ]. Two studies have 
shown a suggestive exposure–response effect with the length 
of employment [ 83 ] and exposure intensity [ 62 ] among work-
ers occupationally exposed to various PAHs. 

 Three European case-control studies that used JEMs to esti-
mate likely PAH intensity did not report a positive association 
or an exposure–response effect [ 29 ,  104 ,  144 ]. Studies have 
also examined  GSTs  [ 145 ] and cytochrome p450 ( CYP450 ) 
genotypes [ 144 ,  146 ], and modifi cation of PAH associated risk 
was observed in one [ 146 ], but not both studies [ 144 ]. 

 In addition to the duration and level of exposure, the 
carcinogenicity of PAHs depends on the specifi c chemical 

composition of the mixture that can infl uence toxicodynamics, 
toxicokinetics, and ultimately their biological effect [ 144 ]. 
Because certain PAHs are recognized as carcinogenic or 
possibly carcinogenic to humans, additional studies that are 
well powered for analyses of gene–environment interaction 
that can identify the unique chemical composition of PAHs 
are needed.  

    Asbestos 

 Exposure to all forms of asbestos, including actinolite, 
amosite, anthophyllite, chrysotile, crocidolite, and tremolite, 
has been classifi ed by the IARC as carcinogenic to humans 
(Group 1), based on association with respiratory cancers 
[ 111 ]. Asbestos fi bers have been shown to induce kidney can-
cer in animals, and asbestos bodies have been detected in the 
kidneys of individuals diagnosed with asbestosis [ 147 – 149 ]. 
Several industry- and occupationally based cohort and case-
control studies have reported elevated kidney cancer risk 
among persons likely exposed to asbestos, including asbestos 
workers; shipyard, railway, and insulation workers; seafarers; 
and fi refi ghters [ 18 ,  23 ,  25 ,  37 ,  86 ,  147 ,  150 – 153 ]. 

 Studies that have assessed exposure to asbestos and kid-
ney cancer risk have generally been null [ 154 ,  155 ]. Only 
two occupational cohort studies to date have reported a sig-
nifi cant increase for kidney cancer risk and asbestos expo-
sure [ 152 ,  156 ]. In 1987, Enterline et al. reported a nearly 
threefold increase in risk for kidney cancer mortality ( N  = 7 
observed deaths, SMR = 2.76, 95 % CI = 1.11–5.68) among 
asbestos production and maintenance workers when com-
pared to US national death rates [ 152 ]. A few years later, 
Selikoff and Seidman observed a signifi cant SMR of 1.70 
(95 % CI = 1.16–2.39,  N  = 32 observed deaths) for kidney 
cancer among a cohort of asbestos insulator workers from 
the USA and Canada [ 156 ]. Case-control studies utilizing 
JEMs or occupational health experts to assess likely expo-
sure to asbestos have also shown signifi cantly elevated kid-
ney cancer risks ranging from 1.4 to 1.6 among exposed 
participants [ 23 ,  86 ]. However, positive trends with 
 increasing intensity [ 29 ,  157 ] or duration [ 18 ,  23 ,  153 ,  157 ] 
of asbestos exposure from case-control studies have not been 
associated with kidney cancer risk. Moreover, other studies 
of similar design [ 24 ,  83 ,  104 ] and two meta-analyses [ 154 , 
 155 ] of occupationally exposed cohorts have not corrobo-
rated the positive fi ndings. 

 While animal studies have shown increased kidney cancer 
risk following exposure, the evidence linking occupational 
asbestos exposure to kidney cancer risk in humans has been 
weak. Given the signifi cant fi ndings observed in a few stud-
ies, which were mainly based on small case numbers, addi-
tional studies would be required to determine if asbestos 
should be considered a renal carcinogen. Furthermore, the 
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lack of supporting evidence from incidence cohort studies 
reduces the plausibility of an association between exposure 
and kidney cancer risk.  

    Other Fibers and Dusts 

 While a positive association between occupational fi ber 
exposures has been observed for cancers of the respiratory 
system, associations with kidney cancer risk have been found 
in only a few occupational studies [ 157 – 162 ]. In a large 
Canadian cohort of 2,557 male fi berglass manufacturing 
workers, a signifi cantly elevated kidney cancer risk ( N  = 14 
observed cases, SIR = 192, 95 % CI = 105–321) was observed 
in comparison to national cancer registry rates [ 158 ]. Yet a 
comparison of US mortality rates revealed no increase in 
kidney cancer mortality risk ( N  = 4 observed cases, 
SMR = 0.77, 95 % CI = 0.21–1.97) in a cohort of 4,008 
female fi berglass manufacturing plant workers [ 159 ]. No 
association with mortality was seen in a US cohort of man- 
made mineral fi ber plant workers exposed to elevated air-
borne fi ber concentrations of mineral wool and fi berglass 
[ 160 ]. However, likely occupational exposure to glass ( N  = 28 
cases,  N  = 19 controls) and mineral wool ( N  = 22 cases,  N  = 14 
controls) fi bers (both of which share asbestos-like proper-
ties), assessed by industrial hygiene experts through the 
application of a JEM, was associated with an increase in kid-
ney cancer risk (OR = 2.1, 95 % CI = 1.1–3.9; OR = 2.5, 95 % 
CI = 1.2–5.1, respectively) in a Central and Eastern European 
case-control study [ 157 ]. Signifi cant trends were also 
observed with duration and cumulative exposure to glass and 
mineral wool fi bers. However, increased associations 
between exposure to these fi bers and kidney cancer risk have 
not been shown for all case-control studies [ 161 ,  162 ]. 

 Results from studies on occupational dust exposure and kid-
ney cancer have been mixed [ 25 ,  157 ,  163 – 169 ]. In a small 
group of European bricklayers with suspected brick dust expo-
sure, a nonsignifi cant elevation in RCC risk was observed [ 25 ], 
and elevated kidney cancer mortality risk was reported in a sur-
veillance study of US construction workers (concrete/terrazzo 
fi nishers) [ 163 ]. A JEM-based assessment of occupational 
brick dust exposure among participants in a large European 
case-control study also reported an increase in RCC risk ( N  = 72 
exposed cases,  N  = 80 exposed controls, OR = 1.5, 95 % 
CI = 1.0–2.4). Duration and cumulative exposure to brick dust 
was also signifi cantly associated with risk [ 157 ]. A study of 
female pottery workers, who were also exposed to silica, 
reported increased kidney cancer mortality [ 164 ]. A plausible 
cause for the relationship observed between brick dust and 
renal cancer may be related to the silica content of brick [ 157 ]. 
Silica is a Group 1 “known” human carcinogen, according to 
the IARC, based on suffi cient epidemiological evidence from 
animal studies of lung cancer [ 165 ]. Scientifi c evidence has 

shown that chronic silica exposure can induce nephrotoxicity 
and fi brosis, glomerulonephritis, and degenerative changes in 
the renal tubular epithelium [ 165 ,  166 ,  170 – 172 ]. Silica expo-
sure has been associated with cytogenetic damage in both ani-
mal and human studies of silica-exposed workers [ 165 ]. In 
2005, Steenland and colleagues showed that silica exposure 
was associated with excess risk of end-stage renal disease 
[ 166 ]. A few years earlier, results from cohort studies (includ-
ing one that assessed exposure using employment histories 
among silica-exposed taconite miners/millers and duration of 
employment in specifi c work areas [ 167 ] and a second 
Norwegian study of ferrosilicon/silicon metal plant workers 
that used dust measurements as estimates of silica exposure 
[ 168 ]) identifi ed increased kidney cancer risk. Findings from 
the most recent US cohort study which assessed exposure using 
six environmental surveys and a JEM showed a signifi cantly 
elevated threefold increase in kidney cancer mortality among 
silica-exposed granite workers with at least 15 years of employ-
ment [ 169 ]. 

 In general, the lack of supporting evidence from cohort 
studies reduces plausibility of an association between RCC 
risk with dust and fi ber exposures. Although these fi ndings 
were for the most part negative, the fact that certain fi bers are 
components of mixtures and may induce degenerative 
changes in renal tissue warrants future larger renal cancer 
studies with high-quality fi ber exposure assessment. 
Additional studies that take into account silica content of 
brick dust exposures may help elucidate associations with 
specifi c dust subgroups as possible renal carcinogens.  

    Occupational Ultra Violet (UV) Exposure 

 Overall, ecologic studies examining the association between 
cancer risk and UV sunlight exposure have reported inverse 
associations for kidney cancer mortality and incidence 
[ 173 – 177 ]. However, results from occupational/industry stud-
ies have typically shown that employment as a farmer [ 20 ,  22 , 
 28 ,  79 ,  80 ], railway worker [ 6 ,  29 ,  37 ,  127 ], gardener [ 18 ], or 
sailor [ 178 ], jobs assumed to have the highest UV exposures, 
is associated with higher kidney cancer risks. A large cohort of 
over 300,000 Swedish, male, outdoor construction workers 
observed a 30 % reduction in kidney cancer risk (RR = 0.7, 
95 % CI = 0.4–1.0) among those with higher levels of occupa-
tional UV exposure ( N  = 23 cases) when evaluated by an 
industrial hygienist from the construction industry [ 179 ]. 
More recently, in a larger European case-control study, JEM- 
based UV exposure estimates were associated with a signifi -
cant 24–38 % reduction in RCC risk among males [ 180 ]. 
However, the strongest reduction in RCC risk in that study was 
observed among men residing at the highest latitudes; subjects 
suspected to have comparatively the weakest UV exposures 
may benefi t from increased UV exposure overall. 
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 The association between UV exposure and kidney cancer 
risk is biologically plausible since exposure to solar UV rays 
accounts for greater than 90 % of 1,25-dihydroxy vitamin D 
[ 181 ], the biologically active form of vitamin D. Moreover, 
the conversion of vitamin D to its biologically active form 
occurs within the kidney [ 181 ,  182 ]. Additionally, the kidney 
is the major organ for vitamin D metabolism, activity, and 
calcium homeostasis [ 183 – 185 ]. While emerging scientifi c 
data suggest that vitamin D has anticarcinogenic properties 
including inhibition of clonal tumor cell proliferation, induc-
tion of immune cell differentiation and apoptosis, and 
decreased angiogenesis [ 186 ,  187 ], epidemiological evi-
dence in human studies for most cancer sites including kid-
ney have been inconsistent [ 188 – 191 ]. In a recent large 
pooled cohort consortium study, no signifi cant relationship 
between serum vitamin D levels and renal cancer risk was 
observed [ 188 ]. While there is general agreement that the 
serum vitamin D level is the best indicator of current vitamin 
D status, the short half-life of this biomarker may not refl ect 
long-term exposure levels that are relevant to cancer latency 
and to lifetime occupational exposure studies [ 192 ].  

    Conclusion 

 Approximately 50 % of sporadic kidney cancer incidence 
remains unexplained by established risk factors; therefore, it 
remains important to investigate relationships with occupa-
tional exposures that may also contribute to risk. Although 
not normally considered an occupational cancer, associa-
tions between occupations and industries, as well as specifi c 
occupational exposures investigated, using a variety of epi-
demiological study designs over the past 30 years, have 
demonstrated some evidence of an occupational contribu-
tion to kidney cancer risk. The most consistent association 
has been observed with the solvent TCE. Elevated risk esti-
mates and exposure–response relationships have been 
observed in both cohort and case-control studies that were 
designed to assess risk to TCE specifi cally, rather than to all 
chlorinated solvents or organic solvents as a combined 
group. The biological plausibility of the association appears 
to be supported by genetic work, but replication is needed. 
In addition to TCE, employment in farm/agricultural 
work and evaluation of occupational pesticide exposures 
have provided some evidence of association, although 
additional studies that evaluate specifi c types of pesticide 
exposures are needed. Similarly, studies of metal expo-
sures, particularly lead and cadmium and other metals 
associated with nephrotoxicity, are warranted. 

 This review article covered risk factors for which the 
strongest associations with kidney cancer risk have been 
observed. Results from epidemiological studies are lim-
ited in their ability to establish causality due to inconsis-
tencies in case defi nition, misclassifi cation due to 
imprecise estimates of exposure (i.e., employment length, 

job title, or exposures to mixed agents), and a lack of con-
trol for confounding factors (i.e., smoking, comorbidities, 
etc.). Studies relying solely on job or industry titles to infer 
exposure are limited in that exposure may vary consider-
ably among individuals with the same title. Results may 
also be inconsistent between studies of kidney cancer inci-
dence or mortality, since renal cancer is not always accu-
rately reported as a cause of death. Subsequently, risk 
estimates may be underestimated in studies of kidney can-
cer mortality compared to those evaluating incidence [ 6 ]. 

 Other limitations of studies conducted to date include 
recall and selection bias. The application of new biologi-
cal markers of exposure and internal dose, genotyping/
phenotyping of subjects to identify variations in xenobi-
otic metabolism, as well as inclusion of intermediate bio-
logical endpoints that target RCC and related conditions 
associated with RCC risk could strengthen causal infer-
ence and lead to exposure reductions in subpopulations at 
greatest risk. Future occupational investigations designed 
to thoroughly address the weaknesses of previous epide-
miological studies, identify specifi c factors infl uencing 
individual risk, and to explain the gender variations of 
kidney cancer risk merit future research.     
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