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           Introduction 

 Bioprosthetic valves are commonly utilized when there is 
need to reduce thromboembolic risk and avoid bleeding 
associated with anticoagulation [ 1 ]. However the durabil-
ity of bioprosthetic valves is less than mechanical pros-
theses [ 2 ,  3 ] and reoperation for failing bioprostheses is 
the current standard of care [ 4 – 6 ] (Fig.  32.1 ). 
Unfortunately, patients requiring reoperation are at higher 
risk for adverse events with rates in reported series rang-
ing from 4 to 20 % [ 7 – 11 ]. The use of transcatheter valve 
technology to treat degenerating surgical bioprostheses 
(the “valve-in-valve” procedure) has paralleled the growth 
of transcatheter aortic valve replacement (TAVR) in native 
valve disease. Multiple case series have reported excellent 
30-day outcomes [ 12 – 27 ] and, more recently, the Global 
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Valve-In-Valve Registry reported stable hemodynamics 
and persistent improvement in functional status at 
12 months (Fig.  32.2 ).

    It is recognized that the valve-in-valve procedure is tech-
nically challenging and requires appropriate case and device 
selection. Imaging plays a key role in all aspects of valve-in- 
valve implantation. Multidetector computed tomography 
(MDCT), echocardiography, and periprocedural angiogra-
phy to evaluate the radiopaque surgical landmarks are all 
crucial for correct valve-in-valve sizing and positioning and 
thus, successful implantation. We will review imaging 
requirements for valve-in-valve implantation for failed surgi-
cal bioprostheses. Valve-in-valve implantation for failed or 
malpositioned transcatheter valves is a separate topic and not 
discussed.  

    Surgical Valves 

 Bioprosthetic surgical valves have consistent, reproducible 
leafl et kinetics as the leafl ets are mounted in a rigid frame-
work. The wide variety of surgical valves available can be 
broadly classifi ed into stented and stentless devices 
(Tables  32.1  and  32.2 ). These groups have unique features 
that must be considered for valve-in-valve sizing and posi-
tioning. Conventional bioprosthetic valves incorporate 
bovine or porcine pericardium incorporated into a stent 
frame or stentless conduit.

    Stented valves have a support structure composed of var-
ious alloys and plastics attached to a basal ring covered by a 
fabric sewing cuff (Fig.  32.3 ). The basal ring may be circu-
lar or scallop shaped and newer designs incorporate low 
profi les or supra-aortic design features. The support struc-
tures defi ne the internal, outer, and external diameter of the 
valve. The support structures are generally radiopaque and 
well visualized on computed tomography during assessment 
of the internal diameter of the in vivo surgical prosthesis as 
well as on angiography during positioning and implanta-
tion. The rigid frame of most bioprostheses facilitates trans-
catheter valve positioning and paravalvular sealing while 
reducing the risk of atrioventricular block, annular rupture, 
and coronary obstruction. It is important to recognize two 
important exceptions: the Sorin Mitrofl ow valve (Sorin, 
Vancouver, BC, Canada) and the St. Jude Trifecta valve (St. 
Jude, St. Paul, MN). In contrast to other stented valves, 
these valves have leafl ets mounted outside the stent to maxi-
mize the orifi ce area. During valve-in-valve implantation 
the leafl ets are not constrained by the stent frame and thus 
may extend to the aortic wall causing obstruction of the 
coronary ostia.

   Stentless valves may be autograft, heterograft, or 
homograft and are sutured into the aortic root in the 
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  Fig. 32.1    Incidence of structural valve degeneration ( SVD ) with surgi-
cal bioprosthetic valves       

AV mas gradients (mmHg)

AV mean gradients (mmHg)

67.6 ± 25.6

Baseline

39.9 ± 17.2

29.2 ± 16.0

30-days

16.4 ± 10.1

32.7 ± 18.2

1-year

18.4 ± 11.5

Source: TCT 2011

Aortic regurgitation

NYHA class IV

III

II

I 0 %

25 %

50 %

75 %

100 %

  Fig. 32.2    One-year outcome 
results from the Global Valve-in-
Valve Registry ( n  = 78).  AV  aortic 
valve,  NYHA  New York Heart 
Association (Image courtesy of 
Dr Danny Dvir, Washington 
Hospital Center, Washington DC, 
USA)       
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   Table 32.1    Structural dimensions of stented bioprosthetic valves   

 Valve label 
size  Valve type/model (manufacturer) 

 Sewing ring external 
diameter, mm 

 Stent outer 
diameter, mm 

 Stent internal 
diameter, mm 

 Profi le height, 
mm 

 18  Soprano (Sorin Biomedica)  26  21  17.8  12 
 19  Magna (Edwards Lifesciences)  24  19  18  13 

 Perimount (Edwards Lifesciences)  26  19  18  14 
 Mosaic (Medtronic)  25  19  17.5  13.5 
 Hancock Ultra (Medtronic)  24  19  17.5  14 
 Mitrofl ow (Sorin Biomedica)  21  18.6  15.4  11 
 Trifecta (St. Jude Medical)  24  19  17  15 
 Epic Supra/Biocor Supra (St. Jude Medical)  25  19  19  14 

 20  Soprano (Sorin Biomedica)  28  23  19.8  14 
 Aspire (Vascutek Terumo)  23  20  18.2  16 

 21  Magna (Edwards Lifesciences)  26  21  20  15 
 Perimount (Edwards Lifesciences)  29  21  20  15 
 Mosaic/Hancock II (Medtronic)  27  21  18.5  15 
 Hancock/Hancock Ultra (Medtronic)  26  21  18.5 
 Mitrofl ow (Sorin Biomedica)  23  20.7  17.3  13 
 Trifecta (St. Jude Medical)  26  21  19  16 
 Epic/Biocor (St. Jude Medical)  25  21  19  14 
 Aspire (Vascutek Terumo)  24  21  19.2  16 

 22  Soprano (Sorin Biomedica)  30  25  21.7  15 
 23  Magna (Edwards Lifesciences)  28  23  22  16 

 Perimount (Edwards Lifesciences)  31  23  22  16 
 Mosaic/Hancock II (Medtronic)  30  23  20.5  16 
 Hancock/Hancock Ultra (Medtronic)  28  23  22 
 Mitrofl ow (Sorin Biomedica)  26  22.7  19  14 
 Trifecta (St. Jude Medical)  28  23  21  17 
 Epic/Biocor (St. Jude Medical)  27  23  21  15 
 Aspire (Vascutek Terumo)  26  23  21  17 

 24  Soprano (Sorin Biomedica)  32  27  23.7  16 
 25  Magna (Edwards Lifesciences)  28  23  22  17 

 Perimount (Edwards Lifesciences)  31  23  22  17 
 Mosaic/Hancock II (Medtronic)  33  25  22.5  17.5 
 Mosaic Ultra/Hancock I Ultra (Medtronic)  30  25  22.5 
 Mitrofl ow (Sorin Biomedica)  29  25.1  21  15 
 Trifecta (St. Jude Medical)  31  25  23  18 
 Epic/Biocor (St. Jude Medical)  29  25  23  16 
 Epic Supra (St. Jude Medical)  N/A  25  25 
 Aspire (Vascutek Terumo)  28  25  23  18 

 26  Soprano (Sorin Biomedica)  35  29  25.6  19 
 27  Magna (Edwards Lifesciences)  32  27  26  18 

 Perimount (Edwards Lifesciences)  35  27  26  18 
 Mosaic/Hancock II (Medtronic)  36  27  24  18.5 
 Mosaic Ultra/Hancock II Ultra (Medtronic)  32  27  24 
 Mitrofl ow (Sorin Biomedica)  31  27.3  22.9  16 
 Trifecta (St. Jude Medical)  33  27  25  19 
 Epic/Biocor (St. Jude Medical)  31  27  25  17 
 Aspire (Vascutek Terumo)  30  27  25  18 

 28  Soprano (Sorin Biomedica)  38  31  27.6  19 
 29  Magna (Edwards Lifesciences)  34  29  28  19 

 Perimount (Edwards Lifesciences)  37  29  28  19 
 Mosaic/Hancock II (Medtronic)  39  29  26  20 
 Mosaic Ultra/Hancock II Ultra (Medtronic)  34  29  26 
 Mitrofl ow (Sorin Biomedica)  33  29.5  24.7  16 
 Trifecta (St. Jude Medical)  35  29  27  20 
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position of the native valve, thus eliminating the need 
for the support structures (Fig.  32.4 ). However, the 
stentless valve also lacks radiopaque elements to guide 
positioning and anchor the new transcatheter valve. 
Positioning with fl uoroscopy relies on the presence of 
leafl et calcifi cation.

       Transcatheter Valves 

 Currently three transcatheter device systems have been used 
for valve-in-valve intervention (Fig.  32.5 ). Importantly these 
valves differ fundamentally from surgical valves as the 
leafl et kinematics is determined by valve expansion.

   Table 32.2    Structural dimensions of stentless bioprosthetic valves   

 Valve label size  Bioprosthesis  Manufacturer  Outer diameter, mm  Internal diameter, mm 

 19  Freestyle  Medtronic  19  16 
 Prima Plus  Edwards Lifesciences  19  16 
 3 F Therapeutics  ATS Medical  19  17 
 Pericarbon Freedom  Sorin Biomedica  19  17 

 21  Freestyle  Medtronic  21  18 
 Prima Plus  Edwards Lifesciences  21  18 
 3 F Therapeutics  ATS Medical  21  19 
 Toronto SPV  St. Jude Medical  21  18 
 Pericarbon freedom  Sorin Biomedica  21  19 

 23  Freestyle  Medtronic  23  20 
 Prima Plus  Edwards Lifesciences  23  20 
 3 F Therapeutics  ATS Medical  23  21 
 Toronto SPV  St. Jude Medical  23  20 
 Pericarbon Freedom  Sorin Biomedica  23  21 

 25  Freestyle  Medtronic  25  21 
 Prima Plus  Edwards Lifesciences  25  21 
 3 F Therapeutics  ATS Medical  25  23 
 Toronto SPV  St. Jude Medical  25  21 
 Pericarbon Freedom  Sorin Biomedica  25  23 

  Fig. 32.3    Stented bioprosthetic surgical valves.  Top row  ( left-right ): 
Soprano (Sorin Biomedica), Magna (Edwards Lifesciences), Perimount 
(Edwards Lifesciences), Mosaic (Medtronic).  Bottom row  ( left-right ): 

Hancock Ultra (Medtronic), Mitrofl ow (Sorin Biomedica), Trifecta (St. 
Jude Medical), Epic (St. Jude Medical)       
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      SAPIEN/XT Balloon Expandable Valves 

 The Edwards    SAPIEN and SAPIEN XT valve is a balloon 
expandable valve with bovine pericardium leafl ets on a radi-
opaque cobalt chromium frame. The current SAPIEN XT 
device is available in 20, 23, 26, and 29 mm sizes and can be 
implanted in valves with internal diameters of 16–27 mm; 
however, caution is warranted when implanting within small 
surgical prostheses as the residual transvalvular gradient can 
be signifi cant. Small-diameter surgical bioprostheses (par-
ticularly ≤19 mm) may not allow for optimal expansion of 
current transcatheter implants. The strut height of the 
SAPIEN XT valve post-deployment ranges from 13.5 to 
19.1 mm making this device suitable for implantation in all 
four valve positions.  

    CoreValve Prostheses 

 The Medtronic CoreValve has three porcine leafl ets mounted 
on a self-expandable nitinol stent. It is currently available in 
two sizes: 26 mm (accommodates 20–23 mm diameter) and 

29 mm (accommodates 23–27 mm diameter). The valve can 
only be mounted one way in the restraining sheath, hence the 
device can only be deployed retrograde. The length of this 
device makes it unsuitable for implantation in the mitral 
position.  

    Melody Valve 

 The Melody transcatheter valve (Medtronic Inc) is a bovine 
jugular venous valve attached to a platinum iridium scaffold. 
Originally designed to treat dysfunctional right ventricular 
outfl ow tract conduits, this valve has been deployed in the 
pulmonic and tricuspid position.   

    Imaging for Valve Sizing 

 Surgical stented valves have labeled sizes from 18 to 29 mm 
and stentless 19–25 mm depending upon the manufacturer. 
However these sizings are not standardized [ 28 ,  29 ] and may 
often refer to the internal or outer diameter for stented valves, 

  Fig. 32.4    Stentless bioprosthetic surgical valves ( left-right ): Freestyle (Medtronic), Prima Plus (Edwards Lifesciences), 3 F Therapeutics (ATS 
Medical), Pericarbon Freedom (Sorin Biomedica)       

  Fig. 32.5    Current transcatheter valve devices used for valve-in-valve implantation. ( a ) SAPIEN XT (Edwards Lifesciences), ( b ) CoreValve 
(Medtronic), ( c ) Melody (Medtronic)       
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or external diameter for stentless valves (Fig.  32.6 ). In this 
regard, operative reports and reference tables of surgical 
valve dimensions are crucial for planning. In cases where the 
type of prosthesis is unknown, computed tomography or 
transesophageal echocardiography may help clarify valve 
geometry.

   The principle of oversizing used in transcatheter inter-
vention of native valve aortic stenosis [ 30 ] also applies to 
valve-in- valve intervention. It is the internal diameter that 
is most relevant for valve-in-valve therapy as an implant 
is chosen with a nominal external diameter matching the 
internal diameter of the failed valve. Importantly, the 
internal diameter of surgical valves can vary by up to 
10 % from the labeled size. Within stented prostheses the 
sewing ring and stent posts can constrain an oversized 
transcatheter valve, while stentless valves often need 
2–3 mm oversizing to achieve stability. Currently, optimal 
transcatheter valve function requires expansion of the 
prosthesis to its nominal dimensions. A transcatheter 
valve implanted within a smaller surgical prosthesis can 
be expected to function suboptimally with increased 
transvalvular gradient, impaired leafl et coaptation, and 
reduced durability. Matching of an appropriate size trans-
catheter valve to the surgical valve is thus crucial as 
excessive oversizing, especially in small-diameter surgi-
cal prostheses (<19 mm), may lead to lack of expansion of 
the transcatheter valve resulting in high-residual transval-
vular gradients [ 31 ,  32 ]. While the acceptable boundaries 
of under- expansion remain undefi ned, a recent case report 
utilizing a 20 mm SAPIEN XT valve within a 16 mm 
internal diameter surgical prosthesis for severe regurgita-
tion resulted in only a modest residual transvalvular gra-
dient. Further study is warranted as there remains limited 
long-term evidence documenting durability of valve-in-
valve implantations.  

    Imaging the In Vivo Valve 

 Understanding the mechanism of surgical valve failure is of sig-
nifi cant relevance to planning a valve-in-valve procedure. 
Bioprosthetic valves may fail due to leafl et or non-leafl et pathol-
ogies. Leafl et failure is most commonly due to degeneration or 
calcifi cation. Often as valves degenerate, calcifi c deposits form 
within the leafl et tissue at sites of high stress (commissural and 
leafl et attachment points). Valves with signifi cant calcifi cation 
or pannus may have reduced internal diameters relative to ex 
vivo sizing and imaging of the valve to assess leafl et bulkiness, 
as well as the extent and location of pannus and calcifi cation can 
be used when considering sizing of the transcatheter valve. 
Cardiac CT and transesophageal echo are both useful modali-
ties for assessing leafl et morphology (Fig.  32.7 ).

   In addition to stenosis, bioprosthetic valves may develop 
signifi cant regurgitation due to leafl et degeneration, endocar-
ditis, or paravalvular leaks. The latter must be distinguished 
from other causes of valvular regurgitation as it cannot be 
ameliorated by valve-in-valve intervention (Fig.  32.8 ).

       Anatomic Suitability for Valve-in-Valve 
Procedures 

 Assessment of the in vivo valve is important for sizing and 
predicting leafl et function. Adequate expansion, symme-
try, and circularity is needed for optimal function [ 33 ], and 
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  Fig. 32.6    Reference dimensions of surgical bioprosthetic valves       

  Fig. 32.7    CT multiplanar reformat showing Hancock II bioprosthetic 
valve in the aortic position. Calcifi cation occurs at points of high stress and 
is present along the commissures extending to the leafl et insertion points       

  

R. Poulter et al.



383

the presence of signifi cant bulkiness or calcifi cation could 
lead to a suboptimal result. The geometry of the aortic 
root, the relationship of the prosthesis, and leafl et height in 
relation to the coronary ostia as well as the size of the sino-
tubular junction are relevant in pre-procedure planning 
(Fig.  32.9 ). Typically, however, as the transcatheter valve 
is constrained within the structure of the surgical prosthe-
sis, there is less concern with coronary obstruction, annu-
lar rupture, and heart block with valve-in-valve 
implantation compared to native valve intervention 
(Fig.  32.10 ).

        Imaging for Access and Delivery 

 Access routes for valve-in-valve intervention are the same as 
those for conventional TAVR. Both transapical and trans-
femoral access are currently used for aortic valve-in-valve 
implantation. Transapical access currently remains the pre-
ferred route for mitral valve-in-valve interventions as it pro-
vides direct coaxial alignment. A variety of percutaneous 

and surgical routes have been used for tricuspid and pul-
monic valve-in-valve procedures both within native valves 
and surgically implanted right heart conduits. Regardless of 
the route selected, coaxial alignment is critical for valve-in- 
valve implantation success. Surgical bioprosthetic valves 
have the benefi t of radiopaque annular and strut frames [ 34 ] 
making the optimal angle for deployment easier to ascertain 
than with native valve disease [ 35 ,  36 ] (Figs.  32.11  and 
 32.12 ).

    Positioning of the new prosthesis is dependent on the 
model used (Fig.  32.13 ). The CoreValve may be deployed in 
a supra-annular position to optimize the hemodynamics. 
Conversely, the SAPIEN XT must overlap to extend below 
the bioprosthetic annulus to splay the struts and prevent 
embolization. As the height of the deployed SAPIEN XT 
valve may be up to 3 mm shorter than when crimped on the 
balloon, the positioning must account for the transcatheter 
valve struts engaging the tissue valve and concertina shorten-
ing occurring on the ventricular side. Adequacy of deploy-
ment can be determined by intraprocedural TEE, and 
subsequent TTE and CT (Fig.  32.14 ).

  Fig. 32.8    Transesophageal echocardiographic images showing a surgical prosthesis in the aortic position. The sewing ring is visible ( white arrow ) 
and color fl ow imaging shows a large paravalvular leak ( black arrow ). Paravalvular leaks cannot be managed with a valve-in-valve procedure       
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  Fig. 32.9    CT assessment of a Perimount bioprosthetic valve. 
Multiplanar reformats show the annular ring ( a ) and leafl et struts ( b ) 
with clearance to both the coronary ostia ( b ) and ( c ). 3-D volume 

 rendered reconstruction ( d ) demonstrates the relationship of the valve 
to structures in the aortic root       
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        Novel Transcatheter Systems for Valve-in- 
valve Implantation 

 Multiple novel transcatheter valve systems are currently being 
developed for valve-in-valve applications that utilize a variety 
of innovative sizing criteria. Although still being refi ned, these 
systems will need to be easily deliverable and repositionable 
while maximizing the effective orifi ce area and minimizing 
both the residual gradient and inter- or transvalvular regurgita-
tion. As with existing transcatheter systems, sizing will still be 
individualized for each patient, taking into consideration the 
reported internal diameter, patient size, bulkiness of the degen-
erated valve, nature of the valve failure, and the location of 
calcifi cation or pannus. MDCT is proving invaluable for next-
generation device development and refi nement.  

    Conclusion 

 Transcatheter valve-in-valve intervention is becoming an 
acceptable alternative to standard surgical reoperation in 

select high-risk patients with degenerated surgical bio-
prostheses. Valve-in-valve procedures can be performed 
using current transcatheter valve devices using similar 
access and imaging to native valve interventions. The 
structural elements of the surgical prosthesis often limit 
the risk of complications due to coronary obstruction, 
annular rupture, and atrioventricular heart block. 
However, optimal transcatheter valve function requires 
expansion of the prosthesis to its nominal dimensions. 
Knowledge of the in situ surgical prosthesis is therefore 
crucial for procedural success. MDCT imaging is useful 
for identifying and sizing the in vivo surgical prostheses. 
MDCT also clearly defi nes adjacent anatomical structures 
important for valve-in-valve positioning. Echocardio-
graphy and angiography provide crucial periprocedural 
guidance during valve-in-valve implantation within both 
radiolucent and radiopaque surgical prostheses. Further 
study is warranted to assess the long-term durability of 
valve-in-valve implantation within degenerated surgical 
prostheses in all four valve positions.     

  Fig. 32.10    A Hancock II surgical prosthesis ( a ) with the frame of a SAPIEN XT visible within the leafl et struts ( b )       
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  Fig. 32.11    Fluoroscopic appearance of selected bioprosthetic surgical valves. ( a ) Perimount (Edwards Lifesciences), ( b ) Magna (Edward 
Lifesciences), ( c ) Carpentier-Edwards Porcine (Edwards Lifesciences), ( d ) Trifecta (St. Jude Medical), ( e ) Epic (St. Jude Medical)       
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  Fig. 32.12    Fluoroscopic appearance of selected bioprosthetic surgical valves. ( a ) Mosaic (Medtronic), ( b ) Hancock II (Medtronic), ( c ) Soprano 
(Sorin), ( d ) Mitrofl ow (Sorin), ( e ) Aspire (Vascutek)       
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  Fig. 32.13    Deployment of a SAPIEN XT inside a Hancock II surgical 
prosthesis. Injection in the aortic root demonstrates a coaxial angle for 
deployment. The radiopaque markers of the prosthesis and the cusps of 
the aortic root are aligned ( a ). The SAPIEN XT is positioned using the 

markers and aortic cusps as a guide ( b ). The transcatheter valve is 
deployed ( c ) and repeat injection confi rms optimal positioning ( d ). 
Note the splaying of the frame on the ventricular side       
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a

c
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d

  Fig. 32.14    Assessing optimal transcatheter valve-in-valve deploy-
ment. Intraprocedural TEE shows good valve orifi ce ( a ) with no aortic 
regurgitation ( b ). Subsequent CT shows a well expanded circular frame 

within the surgical struts ( c ) and transthoracic echocardiography dem-
onstrates mild late paravalvular regurgitation ( d )       
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