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   Introduction 

 Obesity is a worldwide epidemic and the World 
Health Organization reports that at least 2.8 mil-
lion people die each year as a result of excess 
body weight  [  1  ] . Obesity is considered a true epi-
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  Abstract 

 Obesity is associated with alterations in several endocrine factors, some of 
which are involved in regulating bone metabolism.    The higher serum concen-
trations of parathyroid hormone (PTH), estradiol, pancreatic hormones, and 
adipokines such as leptin, resistin, and cytokines and the lower 25-hydroxyvi-
tamin D (25OHD) have speci fi c actions on the skeleton and regulate cortical 
and trabecular bone differently. Recent evidence suggests that bone quality is 
altered in obesity with a higher trabecular volumetric bone mineral density 
(vBMD), while cortical vBMD is lower. Also, the obese are at greater risk of 
fracture for a given BMD compared to normal weight individuals supporting 
the evidence that bone quality is altered due to excess adiposity. Higher con-
centrations of serum PTH have a catabolic effect on cortical bone and may 
play a role in reducing cortical vBMD in obesity. The lower serum 25OHD, 
higher leptin and resistin, and lower adiponectin may also independently con-
tribute to the lower cortical vBMD in obesity. There is little evidence to show 
that higher pancreatic hormones and cytokines in fl uence trabecular and corti-
cal bone in obesity. The altered hormonal milieu in obesity is one important 
factor that explains bone architectural changes that occur due to excess adi-
posity. However, other factors such as diet, genetic factors, altered mechani-
cal loading, and/or other environmental factors may also contribute to bone 
quality and site-speci fi c fracture risk in obesity.  
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demic because while rates are disparate    across 
different socioeconomic and racial/ethnic groups, 
the rise in obesity is similar  [  2  ] . It is associated 
with an increased risk for several comorbidities, 
including cardiovascular disease, type 2 diabetes, 
and certain cancers  [  3  ] . It has long been estab-
lished that bone mineral density (BMD) is greater 
in obesity; however, newer studies suggest that 
bone quality is altered and show evidence of frac-
tures in this population. The relationship between 
excess adiposity and bone is likely in fl uenced by 
the pluripotent stromal cell  [  4  ]  that differentiates 
into adipocytes and osteoblasts, as well as chon-
drocytes. Several endocrine aberrations are seen 
in obesity, some of which have an important 
effect on the skeleton. In addition, multiple other 
factors contribute to BMD and fracture risk in 
obesity, including mechanical loading of excess 
body weight on bone  [  5,   6  ] . This chapter dis-
cusses the unique aspects of bone and fracture 
risk due to obesity with a focus on the hormonal 
milieu and its in fl uence on the bone trabecular 
and cortical compartments of bone and 
geometry.  

   Areal and Volumetric Bone Mineral 
Density: Implications in Obesity 

 Dual-energy X-ray absorptiometry (DXA) is a 
valuable two-dimensional bone imaging technique 
that can assess the relationship between body com-
position (fat and lean tissue) and bone mineral con-
tent (BMC) and areal BMD (aBMD). Although it 
is the gold standard for BMD measurements, arti-
facts associated with a two- dimensional measure-
ment of areal bone density (g/cm 2 ) are considered a 
limitation at the extremes of BMD (very high or 
low) or due to excess soft tissue surrounding bone, 
such as in obesity  [  7–  9  ] . In addition, the obese have 
a higher prevalence of vertebral deformities  [  10  ]  
and spinal osteoarthritis  [  11  ] , which can overesti-
mate BMD and BMC. Careful examination of the 
lumbar spine measurement for vertebral exclusion 
is needed in the interpretation of BMD  [  12  ]  and 
may require special consideration for the obese. 

 Information about bone quality can be attained 
by the inclusion of architectural parameters such 

as bone size and geometry. This can be assessed 
with radiography, DXA, peripheral quantitative 
computed tomography (pQCT), quantitative com-
puted tomography (QCT), or magnetic resonance 
imaging (MRI). Microarchitectural parameters 
include cortical and trabecular structural detail 
which can be evaluated by pQCT or by using 
high-resolution imaging techniques such as mul-
tidetector CT, MRI, and higher-resolution pQCT 
which will allow for high-precision images and 
estimation of additional biomechanical proper-
ties. In addition, microcomputed tomography 
techniques are used to examine human bone 
biopsy samples or excised bone in rodent stud-
ies. Bone strength, de fi ned as the force required 
to cause a material to fail under a given loading 
condition  [  13  ] , can be measured directly using 
biomechanical testing methods in excised bone or 
can be estimated, in clinical trials, by the amount 
of mineralized material (BMD) and geometrical 
properties  [  14  ] . These three-dimensional method-
ologies can assess volumetric BMD (vBMD; mg/
cm 3 ) and bone structural parameters, distinguish 
between cortical and trabecular bone, and deter-
mine the relationship with soft tissue (e.g., mus-
cle and fat cross-sectional area). Measurements 
of true vBMD that use the density of fat tissue 
as zero have been found to reduce errors as com-
pared to an areal measurement, such as using 
DXA technology. Quantitative computed tomog-
raphy measurements of bone can measure axial 
sites by QCT and peripheral sites using pQCT. In 
obesity, potential BMD artifacts may be attenu-
ated or removed by measuring a peripheral (rather 
than axial) site because less soft tissue surrounds 
the bone of the arm or leg. In addition, most clini-
cal studies examining vBMD and bone architec-
tural parameters use pQCT due to ease of use and 
because, compared to QCT, the method produces 
very low radiation exposure to the patient at only 
peripheral sites, and therefore is appropriate for 
both adult and pediatric populations. For example, 
the total radiation dose is <7 uSv when measuring 
the tibia and radius using the Stratec-Orthometrix 
pQCT, and this dose is similar to a DXA measure-
ment at both the hip and spine. In comparison, this 
dose is less than 1 day of background radiation 
(~8 uSv/day) or a cross-country  fl ight (~40 uSv). 
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There is an association of peripheral QCT (pQCT) 
outcomes with fracture, although these studies are 
limited compared to measurements with DXA.  

   Volumetric BMD and Bone Quality 
in Obesity 

 An altered bone quality may partially explain 
the greater than expected fracture risk in 
the overweight and obese for a given BMD. 
Trabecular and cortical vBMD and geometry 
differ in the obese compared to normal weight 
individuals. In children, a higher body weight 

is associated with a higher trabecular bone, but 
not cortical vBMD, and may decrease bone 
strength  [  15–  17  ] . Lower forearm bone strength 
found in overweight children has been attrib-
uted to the greater fat to muscle ratio in the 
overweight than normal weight children  [  18  ] . 
In adults, obesity is also associated with higher 
trabecular and some cortical bone parameters 
and lower cortical vBMD. In a study with 211 
women, we found that the higher trabecular 
parameters and lower cortical vBMD remain 
signi fi cantly different in the obese even when 
controlling for confounders (i.e., lean mass and 
physical activity) (Fig.  4.1 )  [  19  ] .    Also, a higher 
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  Fig. 4.1    Relationship between body mass index, cortical, 
and trabecular bone parameters (volumetric bone mineral 
density (vBMD) and content (BMC), cortical area, and 
stress-strain index) and serum parathyroid hormone (PTH) 

and 25-hydroxyvitamin D (25OHD) in 211 women. 
* p  < 0.001 (Reprinted from Sukumar et al.  [  19  ] . With 
 permission from Springer Science + Business Media)       
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body mass index (BMI) does not confer a posi-
tive effect on other cortical parameters such as 
BMC and area, thickness, and strength indi-
ces  [  19  ] . Taes et al.  [  20  ]  showed that greater 
fat mass is associated with smaller bone size in 
men at 25–45 years of age. A recent study  [  21  ] , 
however, shows that a history of being over-
weight in childhood is associated with greater 
total cross-sectional area of long bone sites in 
men and women (36 years of age) and a 5 % 
higher trabecular density at the distal radius 
and tibia in the adult women, but not in men. 
Hence, the effect of obesity on bone may vary 
due to gender and a history of obesity. Studies 
examining the in fl uence of excess body weight 
on the cortical and trabecular compartments of 
bone compared to normal weight populations 
are summarized in Table  4.1 .    

   Fracture Risk in Obesity 

 In an epidemiological perspective of osteoporo-
sis and fracture risk in overweight and obese indi-
viduals, researchers demonstrate that osteoporotic 
fractures are more problematic in this population 
than previously believed and that obese men may 
be particularly susceptible  [  22,   23  ] . For example, 
hip fracture incidence is highest in the under-
weight, but there is a higher prevalence of  fracture 
in overweight and obese individuals in the USA 
because they represent the largest portion of the 
population  [  24  ] . Others suggest that a BMI 
greater than 35 kg/m 2  increases the risk of frac-
ture, when adjusted for BMD  [  25  ] . In women 
presenting with low-trauma fracture, 59 % of 
obese and 73 % of morbidly obese women had 
normal BMD, and only 12 and 5 %, respectively, 

   Table 4.1    Bone variables obtained by peripheral quantitative computed tomography at the radius and tibia comparing 
obese to normal weight groups a,b    

 Trabecular 
bone vBMD 

 Cortical 
bone vBMD  SSI 

 References  Population  Groups  Bone site  Obese b  compared to normal weight (%) 

 Ducher et al.  [  18  ]   Boys and girls  Normal wt. ( n  = 334)  Radius  +7.9*  +0.5  +16.2* 
 7–10 years  Overweight ( n  = 93)  Tibia  +6.9*  0  +21.0* 

 Pollock et al.  [  15  ]   Females  Normal fat ( n  = 93)  Radius  −2.9  +0.3  −0.7 
 18 years  High fat ( n  = 22)  Tibia  −1.5  −0.1  −5.6 

 Pollock et al.  [  150  ]       Black females  Normal fat ( n  = 33)  Radius  +5.1  +0.4 %  +5.0 
 19 years  High fat ( n  = 15)  Tibia  −0.04  −0.5 %  −3.2 

 Wetzsteon et al.  [  16  ]   Boys and girls  Health weight 
( n  = 302) 

 Tibia  NA  0  +15.4* 

 9–11 years  Overweight 
( n  = 143) 

 Sukumar  [  19 ]  Female  Normal ( n  = 42) 
 24–75 years  Overweight 

( n  = 119) 
 Tibia c   +15.5*  −0.3  +6.8* 

 Obese ( n  = 50)  Tibia d   +19.3*  −1.2*  +3.18* 
 Uusi Rasi et al.  [  21  ]  e   Male and female  BMI measured at 12 

years of age 
 Radius  F +5.1  F −0.2  F +14.7 

 M −0.8  M −0.9  M +8.6 
 36 years  Normal ( n  = 767) or 

overweight ( n  = 65) 
 Tibia  F +7.2  F −0.6  F +17.9 

 M −0.9  M −1.1  M +12.9 

   Abbreviations :  vBMD  volumetric bone mineral density,  SSI  stress-strain index 
  a Studies reported only for those that also included a normal weight control group 
  b “Obese” refers to excess body weight described as either obese, overweight, or high-fat groups based on the terminology 
used in the study 
  c Overweight compared to normal weight group 
  d Obese compared to normal weight group 
  e Statistical data unavailable for comparison with normal weight 
 *Signi fi cantly different from normal weight  
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had evidence of osteoporosis  [  23  ] . The normal 
BMD and higher risk of fracture in obesity are 
either the result of compromised bone quality or 
greater forces on the bone during a fall despite 
the extra body fat padding. It is also possible that 
excess adiposity overestimates BMD in obese 
subjects due to measurement artifacts. 

 The risk of fracture in the obese differs by ana-
tomic site and has been shown in a few epidemio-
logical studies. In a longitudinal study with nearly 
11,000 women, high BMI signi fi cantly increased 
the risk of proximal humerus and ankle fractures 
but was associated with a lower risk at the forearm, 
spine, and hip  [  26  ] . In addition, other researchers 
have also found a higher humerus fracture risk in 
obese women  [  27  ] . Compston and colleagues 
report that obese compared to nonobese women 
have more ankle and upper leg fractures  [  28  ] . In 
22,444 men, the increased risk of fracture risk with 
a high BMI only shows a trend for higher fracture 
risk at the ankle and is lower at other sites, includ-
ing the proximal humerus  [  26  ] . Further analysis is 
needed to establish a fat-fracture relationship in 
older men  [  23,   29  ]  and to distinguish whether it 
differs from women or if there are racial/ethnic 
differences. A speci fi c effect of obesity on verte-
bral fracture compared to normal weight individu-
als is not clear; however, adiposity is associated 
with vertebral deformity in obese women and is 
attributed to excess loading on the thoracic spine 
 [  10  ] . Therefore, obesity is associated with lower 
hip fracture, but higher risk of proximal humerus 
fracture and possibly ankle and upper leg fractures 
in women  [  23,   26–  28  ] . These  fi ndings are consis-
tent with higher forearm fracture risk in children 
 [  30  ] . Also, fractures in both obese pediatric and 
adult patients increase recovery time and involves 
more complications  [  31,   32  ] , so preventing frac-
tures in this population is especially important. 

 Overall, the strong evidence that bone quality 
is compromised in obesity may explain fracture 
risk in this population. In addition, because frac-
tures occur more at certain anatomical sites, the 
alterations in microarchitecture that is either rich 
in trabecular or cortical bone may in fl uence the 
susceptible to fracture. It is also possible that the 
force upon falling and an altered balance are fac-
tors contributing to site-speci fi c fractures in the 

obese. The different ratios of lean to fat tissue 
mass or fat depots in obesity may help in under-
standing the etiology and implications for BMD 
and fracture risk and is discussed below.  

   Relationship of a BMD with Soft Tissue 

 Body composition and its relationship to bone have 
been examined in numerous studies, and most agree 
that lean and fat mass are both independent determi-
nants of bone mass. Lean mass and fat mass are 
strongly in fl uenced by age, gender, dietary intake, 
and the level of physical activity among other fac-
tors which in turn can independently affect bone. 

   Lean Tissue Mass 

 When measuring lean tissue mass using DXA, it 
consists of both skeletal muscle and BMC. For 
studies that have differentiated these compart-
ments, the term “fat-free soft tissue” is used to 
indicate skeletal muscle tissue without the inclu-
sion of BMC. The positive effect of a higher fat-
free soft tissue on BMD can be attributed to 
lifestyle factors, steroid hormone suf fi ciency, 
genetic in fl uences, or a combination of these fac-
tors. Importantly, muscle mass has an indepen-
dent effect on better balance to prevent frailty and 
falls associated with osteoporotic fracture risk. 
The excess weight in obesity consists primarily 
of excess adipose tissue, yet in general, there is 
also higher fat-free soft tissue. It has been sug-
gested that the positive effect of a higher body 
weight on bone and fracture risk reduction occurs 
only when it is primarily composed of fat-free 
soft tissue  [  33,   34  ] . It is possible that in older 
individuals, the obese compared to normal weight 
have a higher incidence of combined sarcopenia 
and osteopenia due to reduced mobility in this 
population  [  35  ] . In a large study of elderly white 
and black women and men where hip fracture 
was validated over a 7-year period, it was found 
that a decrease of one standard deviation in thigh 
muscle    Houns fi eld Unit (an indicator of intra-
muscular fat) conferred a nearly 40 % increase in 
fracture risk. Hence, measurement of total fat or 
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lean mass by DXA may not be able to adequately 
capture changes in muscle composition in older 
individuals, suggesting that thigh muscle fat may 
provide a better estimate of muscle strength and 
hip fracture risk  [  29  ] . Although no de fi ned rec-
ommendations are available to consider muscle-
related parameters in clinical bone assessments, 
there is now a greater effort in the  fi eld to address 
these relationships with new trials using 3D bone 
techniques that are ongoing.  

   Fat Mass 

 Because adipose tissue acts as an endocrine organ 
 [  36  ] , the hormones and adipokines produced will 
have a major in fl uence on the bone and this is dis-
cussed below. Fat mass, unlike muscle mass, does 
not always show a direct correlation with bone. It 
appears to be age and gender speci fi c so while 
there is a correlation between fat and bone in post-
menopausal women  [  37,   38  ] , this has not been 
found in children and young adults  [  39,   40  ] . Only 
some of these studies have corrected for muscle 
mass to determine the independent effect of fat on 
bone; this may explain some of the different 
 fi ndings in these studies. Also, the in fl uence of soft 
tissue on bone mass is complicated by variability 
in the bone site being evaluated  [  41,   42  ] . Varying 
amounts of trabecular or cortical content in differ-
ent bones, as well as weight bearing of the speci fi c 
site, may confound the observations. For example, 
a study in older women showed that total weight 
in fl uenced BMD at weight-bearing sites, yet only 
adiposity in fl uenced non-weight-bearing sites, 
including the radius  [  43  ] .  

   Fat Depot 

 Bone may be in fl uenced by the location and type 
of white adipose tissue accumulation, including 
visceral adipose tissue (VAT) compared to subcu-
taneous tissue. Excess VAT has a greater associa-
tion with symptoms of metabolic syndrome than 
the increased total body adipose tissue per se. The 
metabolic syndrome symptoms (such as dyslipi-
demia, insulin resistance, and higher in fl ammatory 
cytokines) each have independent effects on bone 

and may explain the inconsistent  fi ndings for the 
in fl uence of excess VAT on bone. For example, 
the positive in fl uence of VAT on bone reported in 
postmenopausal women has not been shown in 
children or men  [  44–  47  ] . It is also possible that 
inconsistent  fi ndings for an inverse relationship 
between visceral fat and bone are due to different 
methodologies and protocols used in each study. 
Because most of the studies either use waist to hip 
ratio or measure trunk fat using DXA to estimate 
VAT, which include both subcutaneous and vis-
ceral depots, this limits the interpretation. In addi-
tion, studies examining the VAT and bone 
relationship use different anatomical bone sites. 
Studies using more precise techniques to measure 
adipose tissue, such as QCT or MRI, will be 
important to better understand how the type of fat 
differentially in fl uences BMD or BMC. 

 Besides white adipose tissue (subcutaneous 
and visceral fat), other types of fat (brown fat and 
bone marrow fat, also referred to as “yellow” fat) 
may in fl uence BMD. Brown adipose tissue has 
been reported to maintain bone based on a study 
in women with anorexia nervosa compared to 
healthy controls  [  48  ] , whereas increased bone 
marrow fat tissue is associated with lower BMD 
 [  49  ] . In addition, a recent study in obese women 
showed that vertebral bone marrow fat is posi-
tively associated with visceral fat and inversely 
associated with insulin-like growth factor (IGF-1) 
 [  50  ]  and BMD. Further studies examining the 
endocrine function of bone marrow fat in regulat-
ing bone and differentiation of mesenchymal 
stem cells are needed to advance the  fi eld. 

 In summary, the amount and type of soft tissue 
mass results in differential mechanical support 
and endocrine regulation of bone that would be 
expected to in fl uence growth and maintenance. 
Both fat-free soft tissue and the type and location 
of adipose tissue are important in fl uences on 
BMD and may change with age or in different 
populations. These differences may explain the 
large body of con fl icting data that link body adi-
posity, bone mass, and fracture risk. Hormonal 
alterations are in fl uenced by the type and loca-
tion of fat depots, and the amount of fat-free soft 
tissue may explain the etiology for the altered 
bone quality and fracture risk in obesity and is 
discussed in the next section.   
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   Hormonal Milieu in Obesity 
That In fl uence BMD at Cortical 
and Trabecular Sites and Bone 
Geometry 

 Adipose tissue is a metabolically active tissue 
containing a vast variety of cell types, the more 
abundant being adipocytes, preadipocytes, 
immune cells, and endothelial cells  [  36  ] . The adi-
pose tissue secretes adipocyte-derived factors 
that have effects on many organs in the body, 
including the bone. The altered hormonal milieu 
and adipokines in obesity have speci fi c actions 
on BMD, its geometry, and microarchitectural 
properties that are discussed below.  

   Sex Steroids 

 The obese individual has higher levels of serum 
estrogen and lower sex hormone-binding globu-
lin (SHBG). Serum estrogens in postmenopausal 
women are largely derived from the metabolism 
of circulating androstenedione by peripheral tis-
sues, and concentrations are higher in obesity. 
The higher concentrations of serum estrone in 
obesity are largely derived from the metabolism 
of circulating androstenedione by adipose tissue 
and may also be responsible for higher BMD 
due to excess body weight  [  51  ] . In addition, the 
adipose-derived enzymes, such as aromatase and 
hydroxyl steroid dehydrogenase, are elevated 
in obesity and have known anabolic actions on 
the osteoblast  [  52,   53  ] . Obese men, on the other 
hand, have low total and free testosterone and 
low SHBG  [  54,   55  ] . The sex steroids, including 
bioavailable estradiol and testosterone, have been 
shown to be the major positive hormonal determi-
nants of trabecular microstructure in elderly men 
and women  [  56  ] , and the age-related loss of corti-
cal bone is associated with sex steroid de fi ciency 
 [  57  ] . The GOOD Study  [  58  ]  in young men shows 
that free estradiol is an independent negative 
predictor of cortical parameters such as cross-
sectional area, periosteal circumference, and 
endosteal circumference, whereas it is a positive 
independent predictor of cortical vBMD at both 
the tibia and radius. Conversely, free testosterone 
is an independent positive  predictor of cortical 

cross-sectional area, periosteal circumference, 
and endosteal circumference, but is not associ-
ated with vBMD  [  58  ] . SHBG is an independent 
positive predictor of cortical cross-sectional area 
and periosteal and endosteal circumference  [  58  ] . 
An obesity-induced association between higher 
circulating estrogen and lower testosterone con-
centrations in older adults would be expected 
to increase trabecular and possibly reduce cor-
tical BMD, but the in fl uence of sex steroids on 
these bone compartments in obesity has not been 
speci fi cally addressed.  

   Serum 25-Hydroxyvitamin D 
and Parathyroid Hormone 

 Obesity is associated with higher parathyroid hor-
mone (PTH), lower 25-hydroxyvitamin D 
(25OHD), and possibly lower 1,25-dihydroxyvita-
min D 

3
  (1,25(OH) 

2
 D 

3
 ) and all have speci fi c actions 

on bone. The lower circulating concentrations of 
25OHD in obesity are possibly due to greater 
deposition in the excess adipose tissue or lower 
sun exposure in obese individuals  [  59–  61  ] . In 
addition, there is a rise in serum 25OHD with 
weight loss and it has been shown to be propor-
tional to loss of body weight  [  62  ] . In the 
InCHIANTI study conducted in Italy, serum 
25OHD was positively associated with total cross-
sectional area and cortical vBMD, while PTH was 
negatively associated with cortical vBMD in 
women, but not in men  [  63  ] . Another rodent study 
showed that vitamin D de fi ciency in young grow-
ing male rats results in a signi fi cant reduction in 
femoral trabecular bone volume, while cortical 
bone is maintained  [  64  ] . On the other hand, in 
adult patients with primary hyperparathyroidism 
(PHPT), in those with low serum 25OHD (<20 ng/
mL), there is evidence of higher serum PTH con-
centrations and a greater catabolic effect on corti-
cal bone and anabolic effect on trabecular bone 
compared to PHPT patients without low 25OHD 
 [  65  ] . Another study also assessed the association 
of 25OHD with cortical and trabecular bone 
parameters in men of Caucasian and African 
ancestry  [  66  ] . Among Caucasians, serum 25OHD 
was positively associated with cortical vBMD, 
total BMC, cortical thickness, and strength param-
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eters at the distal radius. Results also showed that 
there was an inverse association between serum 
25OHD and the cortical cross-sectional area and 
stress-strain index in men of African ancestry. 
Whether or not the effects of vitamin D de fi ciency 
on bone compartments differ by ethnic/racial dif-
ference or are due to a direct effect on bone or due 
to its parallel increases in PTH is unclear. Currently, 
there is no data to support a signi fi cant association 
between the lower levels of 25OHD levels in obe-
sity and cortical/trabecular bone  [  19  ] . 

 Parathyroid hormone is positively correlated 
with excess body fat  [  67,   68  ] . While short-term 
increases in PTH are associated with increased 
calcium absorption and an increase in BMD, 
chronically elevated PTH will alter calcium 
metabolism and increase proin fl ammatory cytok-
ines  [  69,   70  ] , which would have a detrimental 
effect on bone. Chronically elevated PTH reduces 
cortical BMD and inhibits bone collagen synthe-
sis. In contrast, elevated serum PTH preserves or 
increases trabecular, possibly by increasing 
 osteoblast recruitment  [  71  ] . For example, patients 

with either primary or secondary hyperparathy-
roidism have increased spine BMD, which is rich 
in trabecular bone, but decreased cortical bone mass 
 [  72,   73  ] . Patients with osteoporosis who are treated 
with PTH show higher spine BMD but lower cor-
tical BMD, especially at the distal radius as com-
pared to bisphosphonate treatment  [  74  ] . In support 
of the bone site-speci fi c action of PTH, obese 
postmenopausal women with high PTH who had 
a history of gastric bypass surgery compared to 
obese controls with normal PTH have higher lum-
bar spine BMD (rich in trabecular bone) and BMC 
and lower BMC at the femoral neck  [  75  ] . 

 The effect of higher PTH levels on bone in 211 
women with a wide range of body weights has 
been examined in a cross-sectional study in our 
laboratory  [  19  ] . The obese women showed a lower 
cortical vBMD, and in the total population of 
women with a wide range of body weights, there 
was a negative association between PTH and cor-
tical vBMD (Fig.  4.2 )  [  19  ] . It is thus possible that 
the lower cortical bone in obesity is due to their 
higher PTH levels. Others have found lower 
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  Fig. 4.2    Relationship 
between cortical volumetric 
bone mineral density 
(vBMD) and serum 
parathyroid hormone (PTH) 
is positively correlated, but 
there is no relationship with 
25-hydroxyvitamin D 
(25OHD). ( n  = 73 premeno-
pausal women); * p  < 0.001 
(Modi fi ed from Sukumar 
et al.  [  19  ] . With permission 
from Springer 
Science + Business Media)       
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 cortical vBMD in obese children  [  15  ]  and young 
adults  [  20  ] , but circulating hormones were not 
measured in these studies. Thus, there are cur-
rently only limited studies that support the hypoth-
esis that the elevated PTH in obesity is responsible 
for the lower cortical BMD  [  19,   75  ]  and none that 
can establish a cause and effect relationship.   

   Adipose-Derived Hormones 
and Peptides, Pancreatic Hormones, 
and Cytokines 

 The adipose-derived hormones, adiponectin, lep-
tin, and resistin are altered by obesity and also 
in fl uence bone. Obesity reduces circulating adi-
ponectin  [  36  ] , and in vitro observations show it 
increases osteoblastic activity  [  76  ] . Most clinical 
studies  [  77–  80  ] , but not all  [  81  ] , show that adi-
ponectin is negatively associated with BMD in 
adults and children. Adiponectin is also inversely 
correlated with trabecular and cortical BMD  [  82  ] . 
Consistent with these  fi ndings, fracture studies 
suggest that higher adiponectin is associated with 
greater fracture risk but may be gender speci fi c 
 [  83,   84  ] . The Health Aging and Body Composition 
(Health ABC) Study in 3,075 men and women 
showed that men in the highest tertile of adi-
ponectin had a 94 % higher risk of fracture [haz-
ard ratio (HR) = 1.94; 95 % con fi dence interval 
(CI) 1.20–3.16] compared with the lowest tertile, 
but it was not signi fi cant in women  [  83  ] . The 
Osteoporotic Fractures in Men (MrOS) Study 
also shows that the risk of fracture increases with 
increasing serum adiponectin with a hazard ratio 
HR/SD of 1.46 (95 % CI, 1.23–1.72)  [  85  ] . 

 Leptin suppresses appetite and increases energy 
expenditure and there is resistance to leptin associ-
ated with the high serum concentrations in obesity. 
Leptin also has both direct and centrally mediated 
effects on bone remodeling. The centrally medi-
ated effect on bone occurs through sympathetic 
tone. It has been shown to inhibit bone formation 
and enhance bone resorption  [  86  ] . In contrast, 
in vitro studies show a direct effect of leptin on 
osteoblast differentiation  [  87,   88  ] . These different 
central and peripheral effects of leptin may explain 
why clinical trials have reported both positive and 

negative effects of leptin on bone  [  81,   89–  91  ] . One 
report suggests that leptin is negatively associated 
with cortical bone size in adolescents and young 
men. In obese mice, serum leptin levels negatively 
correlates with trabecular, but not cortical bone 
 [  92  ] . The two genetic models of obesity, the ob/ob 
(leptin-de fi cient) and db/db (leptin null) mouse, 
have short limbs with thin cortical bone, low trabe-
cular bone volume and BMD, and high marrow 
adiposity, whereas vertebrae are larger, with ele-
vated BMD and trabecular bone volume, and lower 
marrow adiposity  [  93  ] . Furthermore, there are 
higher levels of pancreatic hormones such as insu-
lin, amylin, and preptin in the obese, which have 
anabolic actions on bone  [  94–  96  ] . In young mice, 
lower amylin leads to lower trabecular bone vol-
ume and thickness  [  97  ] ; however, its effect on 
bone compartments in obesity is unclear. 

 There are also higher circulating concentrations 
of in fl ammatory cytokines, such as interleukin-6 
(IL-6), tumor necrosis factor (TNF- a ), monocyte 
chemoattractant protein-1, and C-reactive protein 
(CRP) in obesity. Higher in fl ammatory cytokines 
have been associated with higher bone turnover 
 [  98–  101  ]  and have differential effects on corti-
cal and trabecular bone. In mice, IL-6 transgenic 
mice show severe alterations in cortical and trabe-
cular bone microarchitecture  [  102  ] . Serum levels 
of CRP do not seem to be associated with trabe-
cular  [  103  ]  or cortical bone  [  104  ]  in adults. In one 
study of older women and men (BMI of 27.5 kg/
m 2 ), IL-1 was negatively associated with cortical 
vBMD, and surprisingly TNF- a  was positively 
associated with total and cortical cross-sectional 
area  [  63  ] . The effect of cytokines on trabecular 
and cortical bone has not speci fi cally been exam-
ined in obese individuals, but may be dependent on 
the presence of higher serum PTH concentrations 
 [  69  ] . It is possible that the low level of chronic 
in fl ammation in obesity is counterbalanced by 
adipose-derived estrogen, lower adiponectin, and 
greater weight bearing that act to prevent bone 
loss in the obese compared to leaner populations. 

 Conditions of excess adiposity are associated 
with reduced growth hormone  [  105,   106  ]  and 
IGF-1 and insulin-like growth factor binding pro-
tein (IGFBP)-1  [  107  ] . However, the implications 
of low serum IGF-1 concentrations  [  105  ]  are not 
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entirely clear, since it has been reported that  free 
or bioactive  IGF-1 concentrations are either simi-
lar or higher in obese compared to normal weight 
subjects  [  106,   107  ] . In young men, higher serum 
IGF-I and IGFBP-3 concentrations are associated 
with conversion of thick trabecular into more 
numerous and thinner trabeculae from aging to 
mid-life  [  56  ] , but this study found that in the older 
population, sex steroids are the major determi-
nants of trabecular microstructure. In a study of 
older women, serum IGF-1 was found to be 
signi fi cantly related to cortical, but not to trabecu-
lar density  [  108  ] . Consistent with these  fi ndings, 
mice with low serum levels of IGF-1 exhibit 
reduced cortical but normal trabecular bone  [  109  ]  
suggesting a more pronounced role of systemic 
IGF-1 on cortical than on trabecular bone. It is 
possible that the lower cortical vBMD in obesity 
is related to a lower IGF. However, these  fi ndings 
should be con fi rmed in larger prospective studies. 

 Obesity also alters the gut peptides, including 
ghrelin, incretins, CCK, pancreatic polypeptide 
(PPY), and peptide YY (PYY). These peptides 
not only regulate satiety but also have reported 
effects on bone. A meta-analysis  [  84  ]  shows no 
convincing data to support an association between 
visfatin and ghrelin and BMD. In the case of 
 ghrelin, this appetite stimulant is high in obesity, 

and it increases osteoclastic bone resorption dur-
ing fasting  [  110  ] , but also increases bone forma-
tion in other studies  [  111–  113  ] . However, the 
meta-analysis by Biver et al.  [  84  ]  did not  fi nd an 
association between ghrelin and BMD. Overall, 
there are a limited number of studies examining 
the effect of these peptides on cortical and trabe-
cular bone compartments and the data remain 
unclear.  

   Bone and Diet-Induced Obesity 
Models 

 Besides hormonal factors, the skeletal conse-
quences of obesity will vary depending on the age 
at onset, duration, and composition of the diet. 
Animal models offer an opportunity to determine 
these effects. Most diet-induced obesity in rodents 
during growth has shown that it lowers BMD 
and impairs bone quality  [  114–  116  ]  (Fig.  4.3 ). 
Some studies suggest that age in fl uences the BMD 
response to a high-fat diet (HFD) because the 
effect may be exaggerated during rapid growth as 
compared to a more mature skeleton. One study 
examined the effect of a 16-week HFD in very 
young (3 weeks of age) and 3-month-old mice 
 [  117  ] . The HFD resulted in greater lean and fat 

a High-fat diet

b Low-fat diet

5 weeks 10 weeks 15 weeks0 weeks

5 weeks 10 weeks 15 weeks0 weeks

  Fig. 4.3    Image shows the typical 
3D trabecular  microarchitectural 
changes in the L4 vertebral 
bodies with micro-CT-based 
 fi nite element model. In this 
study, young mice (6 weeks of 
age) were fed a high-fat diet or a 
normal low-fat diet for 15 weeks. 
The HFD ( a ) increases trabecular 
space, number, and loss of 
metaphyseal trabeculae compared 
to control ( b ) (Modi fi ed from 
Woo et al.  [  114  ] . With permission 
from Elsevier)       
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tissue mass and lower cortical bone biomechanical 
properties, as compared to the low-fat diet (LFD) 
 [  117  ] . The HFD also increased serum IGF-1 and 
leptin levels compared to controls, but the rise in 
IGF-1 was markedly higher in the young com-
pared to adult mice  [  117  ] . This may explain the 
greater bone size in the younger mice vs. smaller 
bone size in the adult mice compared to their lean 
counterparts  [  117  ] . In mice (9 weeks of age), 
excessive fat and sucrose intake for 10 weeks 
impaired bone geometry and mechanical proper-
ties of cortical bone in mice  [  118  ] . The bone 
changes are attributed to the upregulation of recep-
tor activator of nuclear    factor kappa-B ligand 
(RANKL) mRNA suggesting higher osteoclast 
activity with obesity. In addition, it was found that 
the detrimental effects of a high-fat high-sucrose 
diet (HF/HS) on bone are exacerbated in the femo-
ral neck and lumbar vertebrae after long-term 
feeding (2 years), showing that duration of dietary 
exposure is also important  [  119  ] . Other studies 
where the diet was initiated in adolescent or adult 
rodents have not found a detrimental effect of a 
HFD on bone. In a study in our lab, 2-month-old 
female rats were fed either a HFD or control LFD. 
At 8 months of age, the obese vs. lean rats showed 
no difference in femoral aBMD and femoral neck 
vBMD, or trabecular thickness and number  [  120  ] . 
In addition, in 11-month-old male rats who had 
been fed a HF/HS diet for 16 weeks, most bone 
parameters were greater than the low-fat controls, 
except for a lower cortical porosity  [  121  ] . Others 
have studied the effect of excessive caloric intake 
on bones in rodents by examining different types 
of dietary sugars. For example, excessive intake of 
fructose or glucose has been shown to produce a 
detrimental effect on BMD, BMC, and/or mechan-
ical strength in rats  [  122,   123  ] . Protein source dur-
ing excessive energy intake may also in fl uence the 
bone response. Researchers studied the bones of 
4-month-old rats that were fed 8 weeks of pow-
dered skim milk, casein, or whey added to a HF/
HS diet  [  124  ] . The rats given the skim milk showed 
an attenuated weight gain and increased trabecular 
bone architecture as compared to casein or whey 
alone  [  124  ] . Whether diet composition is 
in fl uencing the bone parameters measured by 
pQCT in clinical obesity studies is not known. 

Overall, it is likely that diet duration and composi-
tion, the level of adiposity, and skeletal age are 
important factors in fl uencing the detrimental 
effects reported on bone mass, size, and biome-
chanical properties.   

   Effect of Weight Loss on Cortical/
Trabecular Bone 

 Weight loss is associated with 1–2 % bone loss at 
the hip and possibly more at highly trabecular sites, 
such as the trochanter and radius  [  125–  133  ] . 
Epidemiological studies show that only 5% weight 
loss is associated with increased fracture risk in 
both men and women  [  126,   134,   135  ] . A variety of 
anatomical sites are reported to have higher frac-
ture risk in individuals with a history of weight loss. 
These fracture sites include hip  [  126,   136  ] , non-verte-
bral fractures  [  137  ] , and distal forearm fractures 
 [  138  ] . Bone loss and increased fracture risk due to 
moderate weight reduction occur in both older 
women and men  [  131  ] , but neither has been dem-
onstrated in younger individuals  [  139–  142  ]  unless 
there is severe weight reduction. 

 Few studies have evaluated the effect of weight 
loss on trabecular and cortical bone parameters. In 
a 1-year study in older women, 7 % weight reduc-
tion decreased aBMD at the radius (distal and 
33 % sites) and hip  [  128  ] . Weight loss also reduced 
vBMD and area of the tibia, but there were no 
signi fi cant changes in trabecular vBMD and geom-
etry and only a trend to decrease and increase cor-
tical area and vBMD, respectively  [  128  ] . In a 
3-month study in premenopausal women, a very 
low-energy diet resulted in a 10 % loss of body 
weight and a slight increase in cortical vBMD at 
the radius  [  142  ] . However, because there was also 
a rise in bone turnover markers, it is possible that 
bone loss may have occurred at other anatomical 
sites or would occur in a longer-term study. 

 In rodent studies, energy restriction is associated 
with a marked decrease in femoral cortical bone 
mass, but no change in trabecular bone volume 
 fraction  [  143  ] . Both age and initial body weight 
appear to be important factors in fl uencing the effect 
of energy restriction on bone. For example, older 
(14 months) compared to younger (6 months) 
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mature energy-restricted rats result in a greater 
reduction in biomechanical properties of bone 
 [  144  ] . Others have studied the effect of energy 
restriction in very young male mice (3 weeks of 
age)  [  145  ] . After energy restriction, there was 
greater inhibition of cortical and trabecular bone 
mass accrual in the limbs than in the spine  [  145  ] . In 
addition, energy restriction decreased appendicular 
cortical and trabecular bone mass while preserving 
trabecular bone in the spine  [  145  ] . In skeletally 
mature 8-month-old obese and lean female rats 
 [  120  ] , energy restriction in obese rats does not 
decrease BMD compared to ad-libitum fed controls. 
However, the lean energy-restricted rats had a lower 
BMD at the femoral neck and distal femur com-
pared to their lean ad libitum-fed controls  [  120  ] . 
Hence, the age and initial body weight before caloric 
restriction appear to not only affect whether there 
will be any bone loss but may also differentially 
in fl uence the anatomical sites, compartments, and 
geometry of bone. 

 Several bone-regulating hormones are altered 
during caloric restriction and may explain at least 
some of the bone changes associated with weight 
loss. For example, a reduction in estrogen levels, 
rise in cortisol  [  120,   146  ] , and reduction in IGF-1 
and leptin  [  143  ]  occur during energy restriction 
and have direct detrimental effects on BMD  [  133  ] . 
The importance and role of exogenous hormones 
in regulating bone during caloric restriction and 
preventing BMD loss has also been studied  [  146–  149  ] . 
Medications to treat osteoporosis, such as estrogen 
and raloxifene, during weight reduction will pre-
vent bone loss in postmenopausal women  [  147  ] . In 
rodent studies, treatment with IGF-1  [  149  ]  or with 
low-dose PTH  [  148  ]  has been shown to maintain 
normal bone formation during rapid weight loss in 
a rodent study. Importantly, dietary and exercise 
interventions will in fl uence the hormonal response 
to caloric restriction and can also attenuate bone 
loss due to weight reduction  [  133  ] .  

   Conclusions 

 There is strong evidence that bone quality and 
fracture risk is altered by obesity in both clini-
cal trials and in rodent studies. In addition, the 
amount, type, and location of the excess adipose 
tissue; the ratio with muscle mass; and the altered 

hormonal milieu are important determinants of 
bone quality and fracture risk in obesity. The 
higher circulating estrogens and/or lower testos-
terone due to excess adiposity may have gender-
speci fi c effects on trabecular and cortical bone. 
Higher serum PTH in obesity appears to play 
a role in reducing cortical BMD, but the lower 
serum 25OHD associated with obesity may not 
be low enough to negatively affect bone. The 
higher leptin and resistin and lower adiponec-
tin may also contribute to the lower cortical 
vBMD in obesity. There is currently inadequate 
information on whether the higher pancreatic 
hormones in obesity alter trabecular or cortical 
bone compartments. Cytokines have a catabolic 
effect on both bone compartments; however, 
higher circulating concentrations do not explain 
the higher trabecular and lower  cortical vBMD 
in obesity. Because the altered hormonal milieu 
in obesity does not completely explain bone 
architectural changes that occur due to excess 
adiposity, the in fl uence of other factors such as 
genetics, altered mechanical loading, diet, phys-
ical activity, and/or other environmental factors 
may have independent effects on bone quality 
and site-speci fi c fracture risk in obesity.      
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