
Chapter 9
Transformation Functions

A transformation function uses the coordinates of corresponding control points in
two images to estimate the geometric relation between the images, which is then
used to transform the geometry of one image to that of the other to spatially aligned
the images. Spatial alignment of images makes it possible to determine correspon-
dence between points in overlapping areas in the images. This correspondence is
needed in various image analysis applications, such as stereo depth perception,
change detection, and information fusion.

Given the coordinates of n corresponding points in two images:
{
(xi, yi), (Xi, Yi) : i = 1, . . . , n

}
, (9.1)

we would like to find a transformation function with components fx and fy that
satisfies

Xi ≈ fx(xi, yi),

Yi ≈ fy(xi, yi),
i = 1, . . . , n. (9.2)

fx is a single-valued function that approximates 3-D points
{
(xi, yi,Xi) : i = 1, . . . , n

}
, (9.3)

and fy is another single-valued function that approximates 3-D points
{
(xi, yi, Yi) : i = 1, . . . , n

}
. (9.4)

Each component of a transformation function is, therefore, a single-valued sur-
face fitting to a set of 3-D points, representing the coordinates of control points in
the reference image and the X- or the Y -component of corresponding control points
in the sensed image. Many surface-fitting methods exist in the literature that can be
chosen for this purpose. In this chapter, functions most suitable for the registration
of images with local geometric differences will be examined.

If the type of transformation function relating the geometries of two images is
known, the parameters of the transformation can be determined from the coordi-
nates of corresponding points in the images by a robust estimator (Chap. 8). For
example, if the images to be registered represent consecutive frames in an aerial

A.A. Goshtasby, Image Registration,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-2458-0_9, © Springer-Verlag London Limited 2012

343

http://dx.doi.org/10.1007/978-1-4471-2458-0_9

344 9 Transformation Functions

video captured by a platform at a high altitude, the images will have translational
and small rotational differences. The transformation function to register such im-
ages has only a few parameters, and knowing a number of corresponding points in
the images, the parameters of the transformation can be determined. If the geometric
relation between the images is not known, a transformation function is required that
uses information present among the correspondences to adapt to the local geometric
differences between the images.

In the following sections, first transformation functions that have a fixed number
of parameters are discussed. These are well-known transformation functions that
describe the global geometric relations between two images. Next, adaptive trans-
formations that adapt to local geometric differences between images are discussed.
The number of parameters in a component of an adaptive transformation varies with
the severity of the geometric difference between two images and can be as high as
the number of corresponding points. At the end of this chapter, the properties of
various transformation functions will be reviewed, and their performances in regis-
tration of images with varying degrees of geometric differences will be measured
and compared.

9.1 Well-Known Transformation Functions

9.1.1 Translation

If the sensed image is only translated with respect to the reference image, corre-
sponding points in the images will be related by

X = x + h, (9.5)

Y = y + k. (9.6)

In matrix form, this can be written as
⎡

⎣
X

Y

1

⎤

⎦ =
⎡

⎣
1 0 h

0 1 k

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ , (9.7)

or simply by

P = Tp. (9.8)

P and p are homogeneous coordinates of corresponding points in the sensed and
reference images, respectively, and T is the transformation matrix showing that the
sensed image is translated with respect to the reference image by (h, k).

By knowing one pair of corresponding points in the images, parameters h and
k can be determined by substituting the coordinates of the points into (9.5) and
(9.6) and solving the obtained system of equations for h and k. If two or more
corresponding points are available, h and k are determined by one of the robust
estimators discussed in the previous chapter. A robust estimator can determine the

9.1 Well-Known Transformation Functions 345

parameters of the transformation if some of the correspondences are incorrect. If the
correspondences are known to be correct, the parameters can also be determined by
the ordinary least-squares method [84].

9.1.2 Rigid

When the sensed image is translated and rotated with respect to the reference im-
age, the distance between points and the angle between lines remain unchanged
from one image to another. Such a transformation is known as rigid or Euclidean
transformation and can be written as

X = x cos θ − y sin θ + h, (9.9)

Y = x sin θ + y cos θ + k. (9.10)

In matrix form, this will be
⎡

⎣
X

Y

1

⎤

⎦ =
⎡

⎣
1 0 h

0 1 k

0 0 1

⎤

⎦

⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ , (9.11)

or simply

P = TRp. (9.12)

θ shows the difference in orientation of the sensed image with respect to the ref-
erence image when measured in the counter-clockwise direction. The coordinates
of a minimum of two corresponding points in the images are required to determine
parameters θ,h, and k. From a pair of points in each image, a line is obtained. The
angle between the lines in the images determines θ . Knowing θ , by substituting the
coordinates of the midpoints of the lines into (9.9) and (9.10) parameters h and k

are determined.
If more than two corresponding points are available, parameters θ,h, and k are

determined by one of the robust methods discussed in the previous chapter. For
instance, if the RM estimator is used, parameter θ is calculated for various corre-
sponding lines and the median angle is taken as the estimated angle. Knowing θ ,
parameters h and k are estimated by substituting corresponding points into (9.9)
and (9.10), solving the obtained equations, and taking the median of h values and
the median of k values as estimations to h and k.

9.1.3 Similarity

When the sensed image is translated, rotated, and scaled with respect to the refer-
ence image, coordinates of corresponding points in the images will be related by

346 9 Transformation Functions

the similarity transformation, also known as the transformation of the Cartesian
coordinate system, defined by

X = xs cos θ − ys sin θ + h, (9.13)

Y = xs sin θ + ys cos θ + k, (9.14)

where s shows scale, θ shows orientation, and (h, k) shows location of the coordi-
nate system origin of the sensed image with respect to that of the reference image.

In matrix form, this can be written as
⎡

⎣
X

Y

1

⎤

⎦ =
⎡

⎣
1 0 h

0 1 k

0 0 1

⎤

⎦

⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦

⎡

⎣
s 0 0
0 s 0
0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ (9.15)

or simply by

P = TRSp. (9.16)

Under the similarity transformation, the angle between corresponding lines in the
images remains unchanged. Parameters s, θ, h, and k are determined by knowing a
minimum of two corresponding points in the images. The scale of the sensed image
with respect to the reference image is determined using the ratio of the length of the
line segment obtained from the two points in the sensed image over the length of
the same line segment obtained in the reference image. Knowing s, parameters θ,h,
and k are determined in the same way these parameters were determined under the
rigid transformation.

If more than two corresponding points in the images are available, parameters s,
θ , h, and k are determined by one of the robust methods discussed in the preced-
ing chapter. For example, if the RM estimator is used, an estimation to parameter s

is made by determining s for all combinations of two corresponding points in the
images, ordering the obtained s values, and taking the mid value. Knowing s, param-
eters θ , h, and k are determined in the same way these parameters were determined
under the rigid transformation.

9.1.4 Affine

Images that have translational, rotational, scaling, and shearing differences preserve
parallelism. Such a transformation is defined by

[
X

Y

1

]

=
[

1 0 h

0 1 k

0 0 1

][
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

][
s 0 0
0 s 0
0 0 1

][
1 α 0
β 1 0
0 0 1

][
x

y

1

]

(9.17)

or by

P = TRSEp. (9.18)

9.1 Well-Known Transformation Functions 347

An affine transformation has six parameters and can be written as a combination
of a linear transformation and a translation. That is,

X = a1x + a2y + a3, (9.19)

Y = a4x + a5y + a6. (9.20)

In matrix form, this can be written as⎡

⎣
X

Y

1

⎤

⎦ =
⎡

⎣
a1 a2 a3
a4 a5 a6
0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ , (9.21)

or

P = Lp. (9.22)

The two components of the transformation defined by (9.17) depend on each
other while the two components of the transformation defined by (9.21) are indepen-
dent of each other. Since transformation (9.17) is constrained by sin2 θ +cos2 θ = 1,
it cannot represent all the transformations (9.21) can define. Therefore, the affine
transformation allows more differences between two images than translation, rota-
tion, scaling, and shearing. Use of affine transformation in image registration in 2-D
and higher dimensions has been studied by Nejhum et al. [70].

To find the best affine transformation when n > 3 correspondences are available,
a robust estimator should be used. For instance, if the RM estimator is available,
from various combinations of 3 correspondences, the parameters of the transforma-
tion are determined. Then the median value obtained for each parameter is taken as
a robust estimation to that parameter.

9.1.5 Projective

Projective transformation, also known as homography, describes the true imaging
geometry. Corresponding points in a flat scene and its image, or corresponding
points in two images of a flat scene, are related by a projective transformation. Un-
der the projective transformation, straight lines remain straight. A projective trans-
formation is defined by

X = a1x + a2y + a3

a7x + a8y + 1
, (9.23)

Y = a4x + a5y + a6

a7x + a8y + 1
. (9.24)

In matrix form, this can be written as⎡

⎣
X

Y

1

⎤

⎦ =
⎡

⎣
a1 a2 a3
a4 a5 a6
a7 a8 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ , (9.25)

or simply by

P = Hp. (9.26)

348 9 Transformation Functions

Fig. 9.1 The relation
between cylindrical and
planar image coordinates. h is
the height and r is the radius
of the cylindrical image. f is
the focal length of the regular
camera capturing the planar
image, and (x0, x0) and
(X0, Y0) are the intersections
of the optical axis of the
regular camera with the
planar and cylindrical images,
respectively

Images of a flat scene, or images of a 3-D scene taken from a distance where the
heights of objects in the scene are negligible when compared with the distances of
the cameras to the scene, are related by the projective transformation. A projective
transformation has 8 parameters, requiring a minimum of 4 corresponding points in
the images to determine them. The components of a projective transformation are
interdependent due to the common denominator in (9.23) and (9.24). By substituting
each corresponding point pair from the images into (9.23) and (9.24), two linear
equations in terms of the unknown parameters are obtained. Having 4 corresponding
points in the image, a system of 8 linear equations are obtained, from which the 8
parameters of the transformation can be determined.

Since the components of a projective transformation are interdependent, if more
than 4 corresponding points are available, the residuals calculated by a robust es-
timator should include errors from both components as described by (8.17) in the
preceding chapter.

9.1.6 Cylindrical

Suppose a cylindrical image of an environment is taken by a virtual camera with its
center located in the middle of the axis of the cylinder. Also, suppose the camera has
infinite optical axes that fall in a plane passing through the center of the camera and
normal to the axis of the cylinder. A cylindrical image obtained in this manner can
be saved as a rectangular image XY by letting X = rθ represent the image columns
and Y = i represent the image rows (Fig. 9.1). r is the radius of the cylinder and i

varies between 0 and h−1 in the discrete domain. Although such a camera does not
exist in real life, images can be created that appear as if obtained by such a camera.
To create a cylindrical image, images taken by a regular camera with its center fixed
at the center of the cylinder and rotating about the axis of the cylinder are needed.

Suppose an image taken by a regular camera from view angle θ0, as shown in
Fig. 9.1, is available. If the optical axis of the regular camera is normal to the axis
of the cylinder, the planar image will be parallel to the axis of the cylinder. The

9.1 Well-Known Transformation Functions 349

Fig. 9.2 (a) A planar image of dimensions 256 × 256 and its corresponding cylindrical images
(b) when θ0 = 0 and (c) when θ0 = π/2 in clockwise direction (or −π/2 in counter-clockwise
direction). In these examples, r = 128, h = 256, and f = 128, all in pixels

coordinates of the center of the planar image (x0, y0) define the point where the
optical axis of the regular camera intersects the planar image. Suppose this point
maps to the cylindrical image at (X0, Y0). Then (X0, Y0) can be defined in terms of
the radius of the cylinder r , the viewing angle θ0, and the height of the cylinder h:

X0 = rθ0, (9.27)

Y0 = h/2. (9.28)

If the focal length of the regular camera is f , from the geometry in Fig. 9.1,
we can write the following relations between the coordinates of a point (x, y) in the
planar image and the coordinates of the corresponding point (X,Y) in the cylindrical
image:

x − x0

f
= tan

(
X

r
− θ0

)
, (9.29)

Y − Y0

r
= y − y0√

f 2 + (x − x0)2
, (9.30)

or

X = r

{
θ0 + tan−1

(
x − x0

f

)}
, (9.31)

Y = h

2
+ r(y − y0)√

f 2 + (x − x0)2
. (9.32)

Therefore, given the coordinates of a point (x, y) in the planar image, we can find
the coordinates of the corresponding point (X,Y) in the cylindrical image. Inversely,
given the coordinates of a point (X,Y) in the cylindrical images, we can find the
coordinates of the corresponding point (x, y) in the planar image from

x = x0 + f tan

(
X

r
− θ0

)
, (9.33)

y = y0 + Y − h/2

r

√
f 2 + (x − x0)2. (9.34)

Using the planar image of dimensions 256 × 256 in Fig. 9.2a, the corresponding
cylindrical image shown in Fig. 9.2b is obtained when letting θ0 = 0, h = 256,
r = 128, and f = 128, all in pixel units. Changing the view angle to θ0 = π/2,
the image shown in Fig. 9.2c is obtained. Note that in the above formulas, angle

350 9 Transformation Functions

θ increases in the clockwise direction. If θ is increased in the counter-clockwise
direction, the cylindrical image will be vertically flipped with respect to the planar
image.

If n planar images are taken with view angles θ1, . . . , θn, the images can be
mapped to the cylindrical image and combined using formulas (9.33) and (9.34).
For each regular image, mapping involves scanning the cylindrical image and for
each pixel (X,Y) determining the corresponding pixel (x, y) in the planar image,
reading the intensity there, and saving it at (X,Y). Since each planar image may
cover only a small portion of the cylindrical image, rather than scanning the en-
tire cylindrical image for each planar image, the midpoints of the four sides of the
regular image are found in the cylindrical image using (9.31) and (9.32). Then the
smallest bounding rectangle with horizontal and vertical sides is determined. This
bounding rectangle will contain the entire image; therefore, the cylindrical image
is scanned only within the bounding rectangle to find pixels in the planar image to
map to the cylindrical image.

These formulas can be used to combine images captured from a fixed viewpoint
and at different view angles to a cylindrical image. If gaps appear within the cylin-
drical image, and if the X-coordinate of the center of the gap is X0, from (9.27),
the view angle θ0 = X0/r can be determined and an image with that view angle
obtained and mapped to the cylindrical image to fill the gap. The process can be
repeated in this manner until all gaps are filled.

Formulas (9.31) and (9.32) can be used to map the cylindrical image to a planar
image from any view angle θ0. When planar images obtained in this manner are
projected to planar screens of height h and at distance r to a viewer of height h/2
standing at the middle of the cylinder, the viewer will see a surround view of the
environment without any geometric distortion. The cylindrical image can, therefore,
be used as a means to visualize a distortion-free surround image of an environment
through planar imaging and planar projection.

Note that this visualization does not require that the number of planar images
captured and the number of planar projections used in viewing be the same. There-
fore, if a number of video cameras are hinged together in such a way that they
share the same center and their optical axes lie in the same plane, video frames of
a dynamic scene simultaneously captured by the cameras can be combined into a
cylindrical video and mapped to a desired number of planar images and projected
to planar screens surrounding a viewer. The viewer will then see the dynamic scene
from all directions.

9.1.7 Spherical

Consider a spherical image obtained by a virtual camera where the image center
coincides with the camera center. Suppose the camera has infinite optical axes, each
axis connecting the camera center to a point on the sphere. Points on the spherical
image as well as directions of the optical axes can be represented by the angular

9.1 Well-Known Transformation Functions 351

Fig. 9.3 The relation between the spherical image coordinates (X,Y) and the planar image coor-
dinates (x, y). (x0, y0) is the center of the planar image and (X0, Y0) is the corresponding point
in the spherical image. The ray connecting (x0, y0) to (X0, Y0) passes through the center of the
spherical image and is normal to the planar image. θ0 shows the angle the projection of this ray to
the X′Z′-plane makes with the X′-axis, and φ0 is the angle this ray makes with the X′Z′-plane.
X′Y ′Z′ is the coordinate system of the sphere

coordinates (θ,φ). If an image is obtained by a regular camera with an optical axis
in direction (0,0), the relation between this planar image and the spherical image
(Fig. 9.3) will be:

θ = tan−1
(

x − x0

f

)
, (9.35)

φ = tan−1
(

y − y0

f

)
. (9.36)

Values at (θ,φ) can be saved in an XY array for storage purposes, where

X = rθ = r tan−1
(

x − x0

f

)
, (9.37)

Y = r(φ + π/2) = r

[
tan−1

(
y − y0

f

)
+ π

2

]
. (9.38)

By varying θ from 0 to 2π and φ from −π/2 to π/2, and letting r represent the
radius of the spherical image in pixel units, the obtained rectangular image (X,Y)

will show the spherical image in its entirety.
If the planar image is obtained when the regular camera optical axis was in direc-

tion (θ0, φ0), as shown in Fig. 9.3, we first assume the image is obtained at direction
(0,0), project it to the spherical image, and then shift the spherical image in such a
way that its center moves to (θ0, φ0). This simply implies replacing θ in (9.37) with
θ + θ0 and φ in (9.38) with φ + φ0. Therefore,

X = r

[
θ0 + tan−1

(
x0 − x

f

)]
, (9.39)

Y = r

[
φ0 + π

2
+ tan−1

(
y − y0

f

)]
. (9.40)

352 9 Transformation Functions

Fig. 9.4 (a)–(d) Spherical images corresponding to the planar image in Fig. 9.2a when viewing
the planar image from directions (θ0, φ0) = (0,0), (0,π/2), (π/2,0), and (π/2,π/2), respectively

Conversely, knowing the coordinates (X,Y) of a point in the spherical image, the
coordinates of the corresponding point in the planar image when viewed in direction
(θ0, φ0) will be

x = x0 + f tan

(
X

r
− θ0

)
, (9.41)

y = y0 + f tan

(
Y

r
− φ0 − π

2

)
. (9.42)

The planar image of Fig. 9.2a when mapped to a spherical image of radius r =
128 pixels according to (9.41) and (9.42) with various values of (θ0, φ0) are shown
in Fig. 9.4. Parameter f is set equal to r in these examples.

A rectangular image with XY coordinates and dimensions 2πr × πr can be cre-
ated by combining planar images taken at different orientations (θ0, φ0) of an envi-
ronment. Having a spherical image created with coordinates (θ,φ), or equivalently
(X,Y), we can project the spherical image to any plane and create a planar image.
Such images, when projected to planes surrounding a viewer, will enable the viewer
to see the environment from all directions.

Given a planar image that represents a particular view of a scene, its mapping to
the spherical image is obtained by scanning the XY image and for each pixel (X,Y),
locating the corresponding pixel (x, y) in the planar image from (9.41) and (9.42).
If (x, y) falls inside the planar image, its intensity is read and saved at (X,Y). To
avoid scanning XY areas where the planar image is not likely to produce a result,
first, a bounding rectangle is found in the XY image where the planar image is
mapped. This involves substituting the coordinates of the four corners of the image
into (9.39) and (9.40) as (x, y) and finding the corresponding coordinates (X,Y) in
the spherical image. This will create a rectangle inside which the planar image will

9.2 Adaptive Transformation Functions 353

be mapped. Then the bounding rectangle is scanned to determine the corresponding
pixels in the planar image and mapped to the spherical image.

To find the projection of the spherical image to a planar image of a particular
size and direction (θ0, φ0), the planar image is scanned and for each pixel (x, y) the
corresponding pixel in the spherical image is located using (9.39) and (9.40). Then
intensity at (X,Y) is read and saved at (x, y). Note that when X > 2πr , because
θ ± 2π = θ , we should let X = X − 2πr , and when X < 0, we should let X =
X + 2πr . Similarly, we should let φ = −π − φ when φ < −π/2, φ = π − φ when
φ > π/2, Y = −Y when Y < 0, and Y = 2Y − πr when Y > πr .

9.2 Adaptive Transformation Functions

9.2.1 Explicit

An explicit transformation function of variables x and y is defined by

F = f (x, y). (9.43)

An explicit function produces a single value for each point in the xy domain. An
explicit function of variables x and y can be considered a single-valued surface that
spans over the xy domain. Therefore, given a set of 3-D points

{
(xi, yi,Fi) : i = 1, . . . , n

}
, (9.44)

an explicit function interpolates the points by satisfying

Fi = f (xi, yi), i = 1, . . . , n, (9.45)

and approximates the points by satisfying

Fi ≈ f (xi, yi), i = 1, . . . , n. (9.46)

If (xi, yi) are the coordinates of the ith control point in the reference image and
Fi is the X or the Y coordinate of the corresponding control point in the sensed
image, the surface interpolating/approximating points (9.44) will represent the X-
or the Y -component of the transformation.

If corresponding points in the images are accurately located, an interpolating
function should be used to ensure that the obtained transformation function maps
corresponding points to each other. However, if the coordinates of corresponding
points contain inaccuracies, approximating functions should be used to smooth the
inaccuracies.

A chronological review of approximation and interpolation methods is provided
by Meijering [68] and comparison of various approximation and interpolation meth-
ods is provided by Franke [25] and Renka and Brown [82]. Bibliography and cat-
egorization of explicit approximation and interpolation methods are provided by
Franke and Schumaker [28, 93] and Grosse [40].

In the remainder of this chapter, transformation functions that are widely used
or could potentially be used to register images with local geometric differences are
reviewed.

354 9 Transformation Functions

9.2.1.1 Multiquadrics

Interpolation by radial basis functions is in general defined by

f (x, y) =
n∑

i=1

AiRi(x, y). (9.47)

Parameters {Ai : i = 1, . . . , n} are determined by letting f (xi, yi) = Fi for i =
1, . . . , n and solving the obtained system of linear equations. Ri(x, y) is a radial
function whose value is proportional to the distance between (x, y) and (xi, yi).
A surface point is obtained from a weighted sum of these radial functions. Powell
[75] has provided an excellent review of radial basis functions.

When

Ri(x, y) = [
(x − xi)

2 + (y − yi)
2 + d2] 1

2 , (9.48)

f (x, y) represents a multiquadric interpolation [42, 43]. As d2 is increased,
a smoother surface is obtained. In a comparative study carried out by Franke [25],
multiquadrics were found to produce the best accuracy in the interpolation of ran-
domly spaced data in the plane when compared with many other interpolation meth-
ods.

Multiquadric interpolation depends on parameter d2. This parameter works like
a stiffness parameter and as it is increased, a smoother surface is obtained. The best
stiffness parameter for a data set depends on the spacing and organization of the data
as well as on the data gradient. Carlson and Foley [10], Kansa and Carlson [47], and
Franke and Nielson [29] have studied the role parameter d2 plays on multiquadric
interpolation accuracy.

An example of the use of multiquadric interpolation in image registration is given
in Fig. 9.5. Images (a) and (b) represent multiview images of a partially snow cov-
ered rocky mountain. 165 corresponding points are identified in the images using
the coarse-to-fine matching Algorithm F5 in Sect. 7.10. Corresponding points in
corresponding regions that fall within 1.5 pixels of each other after transformation
of a sensed region to align with its corresponding reference region by an affine
transformation are chosen and used in the following experiments. About half (83
correspondences) are used to determine the transformation parameters and the re-
maining half (82 correspondences) are used to evaluate the registration accuracy.
Images (a) and (b) will be referred to as the Mountain image set.

Resampling image (b) to align with image (a) by multiquadrics using the 83
correspondences (shown in red) produced the image shown in (c) when letting
d = 12 pixels. Assigning values larger or smaller than 12 to d increases root-
mean-squared error (RMSE) at the 82 remaining correspondences. Overlaying of
images (a) and (c) is shown in (d). The reference image is shown in the red and blue
bands and the resampled sensed image is shown in the green band of a color image.
Pixels in the overlaid image where the images register well appear gray, while pixels
in the overlaid image where the images are locally shifted with respect to each other
appear purple or green. Although registration within the convex hull of the control
points may be acceptable, registration outside the convex hull of the control points
contain large errors and is not acceptable.

9.2 Adaptive Transformation Functions 355

Fig. 9.5 (a) Reference and (b) sensed images used in image registration. The control points
marked in red ‘+’ are used to determine the registration parameters. The control points marked
in light blue ‘+’ are used to determine the registration accuracy. (c) Resampling of image (b) to
align with image (a) using multiquadrics with d = 12 pixels. (d) Overlaying of the reference im-
age (purple) and the resampled sensed image (green). Areas that are correctly registered appear in
gray, while misregistered areas appear in purple or green. The reference image areas where there
is no correspondence in the sensed image also appear in purple (the color of the reference image)

Multiquadrics use monotonically increasing basis functions. This implies that
farther control points affect registration of a local neighborhood more than control
points closer to the neighborhood. This is not a desirable property in image regis-
tration because we do not want a local error affect registration of distant points and
would like to keep the influence of a control point local to its neighborhood. To
obtain a locally sensitive transformation function, monotonically decreasing radial
basis functions are needed.

If a transformation function is defined by monotonically decreasing radial basis
functions, the farther a control point is from a neighborhood, the smaller will be
its influence on that neighborhood. Radial basis functions that are monotonically
decreasing are, therefore, more suitable for registration of images with local ge-
ometric differences. Moreover, monotonically decreasing basis functions keep the
inaccuracy in a correspondence to a small neighborhood of the inaccuracy and will
not spread the inaccuracy over the entire image domain.

Examples of radial basis functions with monotonically decreasing basis functions
are Gaussians [37, 87],

Ri(x, y) = exp

{
− (x − xi)

2 + (y − yi)
2

2σ 2
i

}
(9.49)

356 9 Transformation Functions

and inverse multiquadrics [25, 43],

Ri(x, y) = [
(x − xi)

2 + (y − yi)
2 + d2]− 1

2 . (9.50)

Franke [25] has found through extensive experimentation that monotonically de-
creasing radial basis functions do not perform as well as monotonically increasing
radial basis functions when data are accurate and are randomly spaced. Therefore,
if the coordinates of corresponding points in the images are known to be accurate,
multiquadric is preferred over inverse multiquadric in image registration. However,
if some point coordinates are not accurate or the local geometric difference be-
tween some areas in the images is sharp, monotonically decreasing radial func-
tions are preferred over monotonically increasing radial functions in image registra-
tion.

9.2.1.2 Surface Spline

Surface spline, also known as thin-plate spline (TPS), is perhaps the most widely
used transformation function in nonrigid image registration. Harder and Desmarais
[41] introduced it as an engineering mathematical tool and Duchon [20] and
Meinguet [69] investigated its properties. It was used as a transformation function in
the registration of remote sensing images by Goshtasby [33] and in the registration
of medical images by Bookstein [6].

Given a set of points in the plane with associating values as described by (9.44),
the surface spline interpolating the points is defined by

f (x, y) = A1 + A2x + A3y +
n∑

i=1

Bir
2
i ln r2

i , (9.51)

where r2
i = (x − xi)

2 + (y − yi)
2 + d2. Surface spline is formulated in terms of

an affine transformation and a weighted sum of radially symmetric (logarithmic)
basis functions. In some literature, basis functions of form r2

i log ri are used. Since
r2
i log r2

i = 2r2
i log ri , by renaming 2Bi by Bi we obtain the same equation. r2

i log r2
i

is preferred over r2
i log ri as it avoids calculation of the square root of r2

i .
Surface spline represents the equation of a plate of infinite extent deforming un-

der point loads at {(xi, yi) : i = 1, . . . , n}. The plate deflects under the imposition of
the loads to take values {Fi : i = 1, . . . , n}. Parameter d2 acts like a stiffness param-
eter. As d2 is increased, a smoother surface is obtained. When spacing between the
points varies greatly in the image domain, a stiffer surface increases fluctuations in
the interpolating surface. Franke [26] used a tension parameter as a means to keep
fluctuations in interpolation under control.

Equation (9.51) contains n + 3 parameters. By substituting the coordinates of
n points as described by (9.44) into (9.51), n equations are obtained. Three more

9.2 Adaptive Transformation Functions 357

Fig. 9.6 Registration of the Mountain image set using surface spline as the transformation func-
tion. (a) Resampled sensed image. (b) Overlaying of the reference and resampled sensed images

equations are obtained from the following constraints:
n∑

i=1

Bi = 0, (9.52)

n∑

i=1

xiBi = 0, (9.53)

n∑

i=1

yiBi = 0. (9.54)

Constraint (9.52) ensures that the sum of the loads applied to the plate is 0 so
that the plate will not move up or down. Constraints (9.53) and (9.54) ensure that
moments with respect to the x- and y-axes are zero, so the surface will not rotate
under the imposition of the loads.

Using surface spline transformation to register the Mountain image set in
Fig. 9.5, the results shown in Fig. 9.6 are obtained when letting the stiffness pa-
rameter d = 0. Comparing these results with those obtained by multiquadric inter-
polation, we see that while within the convex hull of the control points similar results
are obtained, outside the convex of the control points surface spline produces sig-
nificantly better results than multiquadric. By increasing the stiffness parameter d2,
registration error increases.

When the control point correspondences contain errors and the density of con-
trol points in the reference image is not uniform, improved registration accuracy
can be achieved by allowing each component of the transformation to approximate
rather than interpolate the points. Rohr et al. [85] added a smoothing term to the
interpolating spline while letting d2 = 0 to obtain a surface that contained smaller
fluctuations. As the smoothness term is increased, the obtained surface becomes
smoother and fluctuations become smaller, but the surface moves away from some
of the control points. The process, therefore, requires interaction by the user to spec-
ify a smoothness parameter that is large enough to reduce noise among control-point
correspondences but not so smooth as to increase distances between the surface and
the points it is approximating.

Monotonically increasing radial basis functions such as multiquadrics and sur-
face splines that interpolate points produce a smooth mapping from one image to

358 9 Transformation Functions

another. If the correspondences are accurate, surfaces representing the components
of the transformation represent smoothly varying geometric differences between the
images. However, when a function is defined in terms of monotonically increasing
basis functions, a positional error in a pair of corresponding points in the images
will influence the registration accuracy everywhere in the image domain.

Since radial basis functions are symmetric, when spacing between the control
points varies greatly across the image domain, the transformation may produce large
errors away from the control points. To increase registration accuracy, the density of
the control points may be increased, but that will not only slow down the process,
it will make the process unstable as it will require the solution of large systems of
equations to find the parameters of the transformation.

Compactly supported radial basis functions, examined next, use local basis func-
tions to keep errors and deformations local.

9.2.1.3 Compactly Supported Radial Basis Functions

Monotonically decreasing radial basis functions can be defined with local support
in such a way that the data value at (x, y) is determined from data at a small number
of points near (x, y). Interpolation by compactly supported radial basis functions is
defined by

f (x, y) =
n∑

i=1

AiRi(x, y) =
n∑

i=1

AiW(ri), (9.55)

where ri = √
(x − xi)2 + (y − yi)2. By replacing ri with

√
(x − xi)2 + (y − yi)2,

a function in (x, y) is obtained, which has been denoted by Ri(x, y) in the above
formula. W(ri) can take different forms. Wendland [102] defined it by

W(ri) =
{

(a − ri)
2, 0 ≤ ri ≤ a,

0, ri > a,
(9.56)

while Buhmann [9] defined it by

W(ri) =

⎧
⎪⎪⎨

⎪⎪⎩

112
45 (a − ri)

9
2 + 16

3 (a − ri)
7
2 − 7(a − ri)

4 − 14
15 (a − ri)

2 + 1
9 ,

0 ≤ ri ≤ a,

0, ri > a.

(9.57)

In both cases, W(ri) not only vanishes at distance a from (xi, yi), but its gradient
vanishes also. Therefore, the basis functions smoothly vanish at distance a from
their centers and a weighted sum of them will create a surface that will be smooth
everywhere in the image domain.

Parameter a should be large enough so that within each region of radius a, at least
a few control points appear in the reference image. The unknown parameters {Ai :
i = 1, . . . , n} are determined by solving the following system of linear equations:

Fj =
n∑

i=1

AiRi(xj , yj), j = 1, . . . , n. (9.58)

9.2 Adaptive Transformation Functions 359

Fig. 9.7 Registration of the Mountain image set using Wendland’s compactly supported radial
basis functions with parameter a = 5000 pixels. (a) Resampled sensed image. (b) Overlaying of
the reference and resampled sensed images

Note that although the basis functions have local support, a global system of equa-
tions has to be solved to find parameters {Ai : i = 1, . . . , n}.

Using Wendland’s compactly supported radial functions as the transformation to
register the Mountain image set in Fig. 9.5, acceptable results are not obtained when
a is small enough to consider the transformation local. As parameter a is increased,
registration accuracy improves. Registration of the images when a = 5000 pixels
is shown in Fig. 9.7. Results are acceptable within the convex hull of the control
points, but they are inferior to those obtained by surface spline.

To overcome some of the weaknesses of compactly supported radial basis func-
tions of a fixed support radius a, use of a hierarchy of compactly supported radial
basis functions of varying support radii has been proposed [72]. Starting from basis
functions of a large radius, basis functions of smaller radii are added to the approx-
imation until residual errors in approximation fall within a desired range. A method
proposed by Floater and Iske [23] uses a hierarchy of basis functions. The radii of
basis functions at different levels are estimated by successive triangulation of the
points and determination of the triangle sizes at each hierarchy. Wider basis func-
tions are used to capture global structure in data while narrower basis functions are
used to capture local details in data.

To avoid solving a system of equations, Maude [66] used weight functions with
local support to formulate an approximation method to irregularly spaced data.
Maude’s weight functions are defined by:

Wi(x, y) = W(Ri) =
{

1 − 3R2
i + 2R3

i , 0 ≤ Ri ≤ 1,

0, Ri > 1,
(9.59)

where Ri = √
(x − xi)2 + (y − yi)2/Rk and Rk is the distance of (x, y) to the kth

point closest to it. Note that not only W(Ri) vanishes at distance Rk to point (x, y),
its first derivative vanishes there also. Then

f (x, y) =
∑k

i=1 FiWi(x, y)
∑k

i=1 Wi(x, y)
(9.60)

is used as the approximating functional value at (x, y).

360 9 Transformation Functions

Fig. 9.8 Registration results using Maude’s local interpolation formula with neighborhood size
k = 10 points. (a) Resampling of sensed image to overlay the reference image. (b) Overlaying of
the reference and resampled sensed images

Therefore, to estimate functional value at (x, y), the k points closest to (x, y)

are identified. Let’s suppose data values at the points are: {Fi : i = 1, . . . , k}. Then a
weighted sum of the values is calculated and used as the value at (x, y). The weights
vanish at the kth point and the sum of the weights everywhere in a region of radius
Rk centered at (x, y) is 1.

Note that the neighborhood size automatically adjusts to the local density of
points. In areas where a high density of points is available, parameter Rk will be
small, while in sparse areas, Rk will be large. The method does not require the so-
lution of a system of equations, but it does require determination of the k control
points that are closest to pixel (x, y) in the reference image.

Maude’s weighted mean approximation uses rational weights, which is known
to produce flat spots in the obtained surface at the control points. We will see later
in this chapter how such errors can be reduced through parametric reformulation of
the problem. Another way to remedy the flat-spot effect is to use data values as well
as data gradients at the points. This can be achieved by replacing Fi in (9.60) with
a linear function that evaluates to Fi at (xi, yi) and fits the k points closest to (x, y)

by the least-squares method. Denoting such a linear function by Li(x, y), (9.60)
becomes

f (x, y) =
∑k

i=1 Li(x, y)Wi(x, y)
∑k

i=1 Wi(x, y)
. (9.61)

This represents a local weighted linear approximation. Registering the mountain
images using (9.61) as the components of the transformation with k = 10, the result
shown in Fig. 9.8 is obtained. Except for areas with sharp geometric differences, the
images are registered relatively well.

A local weighted mean method that interpolates irregularly spaced data is de-
scribed by McLain [67]. In this method, first, the given points are triangulated.
Then, the patch over each triangle is computed from the weighted sum of data at
the vertices of the triangle. If data at the three vertices of a triangle are F1,F2, and
F3, the functional value at (x, y) inside the triangle is obtained from

f (x, y) = W1(x, y)F1 + W2(x, y)F2 + W3(x, y)F3, (9.62)

9.2 Adaptive Transformation Functions 361

Fig. 9.9 McLain [67]
interpolation over a triangle

where W1,W2, and W3 are weights associated with data at the vertices of the triangle
and are determined by first calculating the distance of point (x, y) to the three sides
of the triangle (Fig. 9.9):

di(x, y) = lix + miy + ni, for i = 1,2,3. (9.63)

Coefficients li ,mi , and ni are determined only once for each triangle side and are
normalized so that di = 1 when (x, y) = (xi, yi). Then the weight associated with
a vertex is set proportional to the distance of (x, y) to the triangle side opposing it.
That is

Wi(x, y) = d2
i

d1(x, y)2 + d2(x, y)2 + d3(x, y)2
, for i = 1,2,3. (9.64)

Square weights are used to ensure continuous and smooth transition from one trian-
gle to the next. If second derivative continuity is required across triangle edges, the
cubic power of distances is needed to define the weights [67].

Radial basis functions with local support are preferred over radial basis func-
tions with global support when registering images with local geometric differences.
Remote sensing images of a 3-D scene captured from different views or serial im-
ages of a patient captured by a medical scanner have local geometric differences.
Compactly supported radial basis functions, by modeling the geometric difference
between corresponding local neighborhoods in images, use a small number of points
within corresponding areas to transform the geometry of the sensed image locally to
resemble that of the reference image. In this manner, global registration is achieved
via local registration.

A comparison between globally defined radial basis functions and compactly
supported radial basis functions in medical image registration has been provided by
Fornefett et al. [24]. Improved registration accuracy has been reported with com-
pactly supported radial basis functions over globally defined radial basis functions
in the registration of serial brain images.

Although not a radial function, tensor-product functions that have local support,
such as B-splines, can be used in approximation/interpolation also. Lee et al. [57]
used multi-level B-splines with varying local support to interpolate data in the plane.
The control points of a B-spline surface are determined by the least-squares method
in such a way that the surface would interpolate given points. By using B-spline ba-
sis functions with different support levels, different levels of detail are reproduced in

362 9 Transformation Functions

the surface. By adding together B-spline basis functions at different support levels,
a multi-level B-spline interpolation to scattered data is obtained.

For very large and irregularly spaced data, Bozzini et al. [7] laid a regular grid
over the approximation domain and estimated the data at each grid point from the
noisy and irregularly spaced data around it. Then, a B-spline surface was fitted to
data at the regular grid. To produce B-splines that interpolate scattered data, Greiner
et al. [39] first found parameter coordinates at the points to guarantee existence of
an interpolating B-spline. Then, the control vertices of the interpolating B-spline
surface were determined by an optimization process formulated in terms of surface
fairness.

B-splines are a family of grid functions that are defined over regular grids of
nodes (parameter coordinates). The process of generating grid functions that ap-
proximate scattered data is known as gridding. In spite of their limitations, in certain
engineering applications, grid functions are preferred over other functions because
of their ability to easily modify and visualize an approximation. Arge et al. [3] de-
veloped a three-step process for approximating scattered data by grid functions. The
steps are: (1) Regularization: Identifying a subset of grid nodes in regions where
density of data is high. (2) Approximation: Finding values at the grid nodes using
approximation to nearby data. (3) Extrapolation: Extending the data values defined
on the grid subset to the entire grid.

9.2.1.4 Moving Least-Squares

Suppose data points {pi = (xi, yi) : i = 1, . . . , n} with associating data values {Fi :
i = 1, . . . , n} are given. A moving least-squares approximation is a function f (p)

that minimizes [52]:
n∑

i=1

[
f (pi) − Fi

]2
Wi(p) (9.65)

at each p = (x, y). Wi(p) is a non-negative monotonically decreasing radial func-
tion centered at pi . This weight function ensures that a data point closer to p will
influence the estimated value more than a data point that is farther away. If function
f is a polynomial in x and y, the best polynomial for point (x, y) is determined by
the weighted least squares in such a way as to minimize (9.65).

Note that relation (9.65) is specific to point p. Therefore, function f determined
according to (9.65) will be specific to point p and vary from point to point. Since the
parameters of a new function have to be determined for each point in the approxi-
mation domain, f cannot be a very complex function. Typically, it is a polynomial
of degree 1 or 2.

For interpolating moving least squares, it is required that the weight functions
assume value ∞ at p = pi . Some of the suggested weight functions are [53]:

Wi(p) = 1

‖p − pi‖2
, (9.66)

9.2 Adaptive Transformation Functions 363

Fig. 9.10 Registration with moving least-squares using linear polynomials and weight functions
of (9.66). (a) Resampling of the sensed image to overlay the reference image. (b) Overlaying of
the reference and the resampled sensed images

Wi(p) = 1

‖p − pi‖4
, (9.67)

Wi(p) = α exp(−β‖p − pi‖2)

‖p − pi‖k
, α,β, k > 0. (9.68)

To make the computations local, compactly supported weight functions are used.
Examples are [53]:

Wi(p) =
{

a‖p − pi‖−k(1 − ‖p − pi‖/d)2, for ‖p − pi‖ ≤ d,

0, for ‖p − pi‖ > d,
(9.69)

Wi(p) =
{

a‖p − pi‖−k cos(π‖p − pi‖/2d), for ‖p − pi‖ ≤ d,

0 for ‖p − pi‖ > d.
(9.70)

When f represents a polynomial of degree 1, the surface obtained by moving
least-squares will be continuous and smooth everywhere in the approximation do-
main [51]. Levin [58] has found that moving least-squares are not only suitable for
interpolation but are also useful in smoothing and derivatives estimation. For fur-
ther insights into moving least-squares and its variations, see the excellent review
by Belytschko et al. [4].

An example of image registration by moving least squares using the Mountain
image set, linear polynomials, and weight functions of (9.66) is given in Fig. 9.10.
The transformation is well-behaved outside the convex hull of the control points,
and registration is acceptable at and near the control points; however, registration
error is relatively large away from the control points.

9.2.1.5 Piecewise Polynomials

If control points in the reference image are triangulated [56, 91], by knowing the
correspondence between the control points in the sensed and reference images, cor-
responding triangles will be known in the sensed image. This makes it possible to
determine a transformation function for corresponding triangles and map triangles
in the sensed image one by one to the corresponding triangles in the reference image.

364 9 Transformation Functions

Fig. 9.11 Registration of the Mountain image set using the piecewise linear transformation.
(a) Resampling of the sensed image to the space of the reference image. (b) Overlaying of the
reference and the resampled sensed images

If a linear function is used to do the mapping, the transformation becomes piecewise
linear.

If coordinates of the vertices of the ith triangle in the reference image are
(xi1, yi1), (xi2, yi2), and (xi3, yi3) and coordinates of the corresponding vertices in
the sensed image are (Xi1, Yi1), (Xi2, Yi2), and (Xi3, Yi3), the ith triangular regions
in the images can be related by an affine transformation as described by (9.19) and
(9.20). The six parameters of the transformation, a–f , can be determined by substi-
tuting the coordinates of three corresponding triangle vertices into (9.19) and (9.20)
and solving the obtained system of linear equations.

Finding an affine transformation for each corresponding triangle produces a com-
posite of local affine transformations or an overall piecewise linear transformation.
An example of image registration by piecewise linear interpolation is depicted in
Fig. 9.11. Registration is shown within the convex hull of the control points in the
reference image. Although affine transformations corresponding to the boundary
triangles can be extended to cover image regions outside the convex hull of the con-
trol points, registration errors outside the convex hull of the points could be large
and so is not recommended. Piecewise linear transformation has been used in im-
age registration before [31]. The method was later extended to piecewise cubic [32]
to provide a smooth as well as continuous mapping within the convex hull of the
control points.

Within the convex hull of the control points, registration by piecewise linear is
comparable to surface spline or moving least-squares. Although piecewise linear
transformation is continuous within the convex hull of the points, it is not smooth
across the triangle edges. The affine transformations obtained over triangles sharing
an edge may have different gradients, producing an overall transformation that is
continuous but not smooth.

To ensure that a transformation is smooth as well as continuous across a triangle
edge, a polynomial of degree two or higher is required to represent the component
of a transformation over each triangle. The parameters of the polynomial are deter-
mined in such a way that adjacent triangular patches join smoothly and produce the
same gradient at the two sides of an edge, and all patches sharing a vertex produce
the same gradient at the vertex. Various triangular patches that provide this property
have been proposed [2, 12, 14–17, 48, 50, 54, 63, 73, 76, 89, 97].

9.2 Adaptive Transformation Functions 365

A factor that affects the registration accuracy is the choice of triangulation. As
a general rule, elongated triangles should be avoided. Algorithms that maximize
the minimum angle in triangles is know as Delaunay triangulation [38, 54]. A better
approximation accuracy is achieved if triangulation is obtained in 3-D using the data
values as well as the data points. Various data-dependent triangulation algorithms
have been proposed [5, 8, 21, 22, 83, 92].

If the points are triangulated in 3-D, a subdivision method may be used to create
a smooth approximation or interpolation to the triangle mesh. A subdivision method
typically subdivides each triangle into four smaller triangles with a limiting smooth
surface that approximates or interpolates the mesh vertices [64, 65, 74, 88, 98].

Loop [60] proposed a recursive subdivision algorithm that approximates a
smooth surface to a triangle mesh, while Dyn et al. [22] proposed a recursive algo-
rithm that generates a smooth surface interpolating the vertices of a triangle mesh.
Doo [18] and Doo and Sabin [19] described a subdivision scheme that can approx-
imate a mesh with triangular, quadrilateral, and, in general, n-sided faces. Subdivi-
sion surfaces contain B-spline, Bézier, and non-uniform B-spline (NURBS) as spe-
cial cases [90]. Therefore, transformation functions can be created with each com-
ponent representing a piecewise surface composed of B-spline, Bézier, or NURBS
patches.

In the following, two of the popular subdivision algorithms that work with trian-
gle meshes are described. The subdivision scheme developed by Loop [44, 60] gen-
erates an approximating surface, while the subdivision scheme developed by Dyn
et al. [22] creates an interpolating surface. The Loop subdivision scheme is depicted
in Fig. 9.12. Given a triangle mesh, at each iteration of the algorithm a triangle is
replaced with four smaller triangles by (1) inserting a new vertex near the midpoint
of each edge, (2) refining the old vertex positions, and (3) replacing each old tri-
angle with four new triangles obtained by connecting the new and refined triangle
vertices.

Assuming triangle vertices at iteration r surrounding vertex vr are vr
1,vr

2, . . . ,vr
k

(Fig. 9.12d), new vertex vr+1
i is inserted midway between vr and vr

i for i = 1, . . . , k.
The location of a newly inserted vertex is computed from

vr+1
i = 3vr + 3vr

i + vr
i−1 + vr

i+1

8
, i = 1, . . . , k. (9.71)

Then, vertex vr is replaced with

vr+1 = (1 − kβ)vr + β
(
v2

1 + · · · + vr
k

)
, (9.72)

where according to Loop [60]

β = 1

k

(
5

8
−

(
3

8
+ 1

4
cos(2π/k)

)2)
. (9.73)

A different set of subdivision rules are used along the boundary of the mesh to
prevent the approximating open surface from shrinking towards its center after a
number of iterations. Only points along the boundary are used in the rules as de-

366 9 Transformation Functions

Fig. 9.12 (a) A triangle mesh. (b) The mesh after one iteration of Loop subdivision. (c) Overlay-
ing of (a) and (b). (d) Loop vertex insertion and refinement rules for interior edges and vertices.
(e) Loop vertex insertion for boundary edges and (f) vertex refinement for boundary vertices

picted in Figs. 9.12e, f. The vertex inserted between vr and vr
i along the boundary

is computed from

vr+1
i = vr + vr

i

2
(9.74)

and vertex vr
i , which is between vr

i−1 and vr
i+1 along the boundary, is replaced with

vr+1
i = vr

i−1 + 6vr
i + vr

i+1

8
. (9.75)

At the limit, the surface generated by Loop subdivision is C1 continuous ev-
erywhere [95, 103]. That is, not only is the created surface continuous over the
approximation domain, its first derivative is also continuous everywhere. For image
registration purposes, the insertion and refinement steps should be repeated until the
surface at iteration r + 1 is sufficiently close to that obtained at iteration r . Suffi-
ciently close is when the maximum refinement among all vertices in an iteration is
less than half a pixel and all newly inserted vertices are less than half a pixel away
from their edge midpoints. This ensures that subdivision surfaces at two consecu-
tive iterations produce the same resampled image when using the nearest-neighbor
resampling rule.

Registration of the Mountain data set using the Loop subdivision surface is
shown in Fig. 9.13. Although Loop subdivision surface produces a smoother re-
sampled image due to gradient continuity of the transformation function within the

9.2 Adaptive Transformation Functions 367

Fig. 9.13 Registration of the Mountain image set using Loop subdivision surfaces as the com-
ponents of the transformation. (a) Resampling of the sensed image to the space of the reference
image. (b) Overlaying of the reference and the resampled sensed images

Fig. 9.14 Butterfly subdivision rules for (a) interior edges, (b) boundary edges, and (c)–(e) interior
edges that touch the boundary or a crease

convex hull of the control points when compared with piecewise linear, there isn’t a
significant difference between the registration accuracy of the two methods.

The interpolative subdivision surface described by Dyn et al. [22] uses a neigh-
borhood that has the shape of a butterfly as shown in Fig. 9.14a. Subdivision requires
vertex insertion only. Existing vertices are not repositioned after each iteration be-
cause the original and newly inserted vertices are on the limiting surface. Vertex
vr+1
i , which is newly inserted between vertices vr and vr

i when surrounded by the
vertices shown in Fig. 9.14a, is computed from

vr+1
i = vr + vr

i

2
+ vr

i−2 + vr
i+2

8
− vr

i−3 + vr
i−1 + vr

i+1 + vr
i+3

16
. (9.76)

368 9 Transformation Functions

Subdivision rules along the boundary are slightly different. Vertex vr+1, which
is inserted between vertices vr

i and vr
i+1 along the boundary, is computed from

vr+1 = −vr
i−1 + 9vr

i + 9vr
i+1 − vr

i+2

16
. (9.77)

Vertex insertion at interior edges that touch the boundary or a crease is obtained
using the rules shown in Figs. 9.14c–e.

The limiting surface produced by the butterfly subdivision scheme of Dyn et al.
[22] is C1-continuous everywhere when a regular mesh is provided. The surface,
however, is not smooth at mesh vertices of valance k = 3 or k > 7 when an irregu-
lar mesh is given [103]. Zorin [103, 104] proposed a modified butterfly subdivision
scheme that at the limit interpolates a smooth surface to any triangle mesh. Qu and
Agarwal [77] described a 10-point interpolatory subdivision scheme over an arbi-
trary triangle mesh that has a limiting surface that is smooth everywhere, including
at the mesh vertices.

9.2.2 Parametric

Parametric functions are of form

P(u, v) = f(u, v). (9.78)

P(u, v) is the surface point at (u, v), defined as a function of parameters u and v.
f(u, v) is a function with three independent components, each a function of (u, v);
therefore,

x(u, v) = fx(u, v), (9.79)

y(u, v) = fy(u, v), (9.80)

F(u, v) = fF (u, v). (9.81)

Since the three components of a parametric surface are independent of each other,
each can be determined separately.

Given {(xi, yi,Fi) : i = 1, . . . , n}, to determine the surface value at (x, y), first,
the corresponding (u, v) coordinates are determined from (9.79) and (9.80). Know-
ing (u, v), surface value F is then calculated. The nonlinear nature of the equations
makes determination of exact surface values very time consuming. For image regis-
tration purposes, however, we will see that approximations to the surface values can
be determined efficiently with sufficient accuracy.

Parametric surfaces used in geometric modeling require a regular grid of control
points. The control points available in image registration are, however, irregularly
spaced. Below, parametric surfaces suitable for interpolation/approximation to scat-
tered data are explored.

9.2 Adaptive Transformation Functions 369

Table 9.1 Coordinates of 9
uniformly spaced points in
the xy domain with
associating data values

i 1 2 3 4 5 6 7 8 9

xi 0 1 2 0 1 2 0 1 2

yi 0 0 0 1 1 1 2 2 2

Fi 0 1 2 0 1 2 0 1 2

Fig. 9.15 Interpolation of the
data in Table 9.1 by Shepard’s
method. (a) The ideal surface
and (b) the surface obtained
by Shepard’s method

9.2.2.1 Parametric Shepard Interpolation

One of the earliest methods for the interpolation of scattered data is proposed by
Shepard [96]. This is a weighted mean method with rational weights. Given data
sites {(xi, yi) : i = 1, . . . , n} with associating data values {Fi : i = 1, . . . , n}, Shep-
ard’s interpolation is defined by

f (x, y) =
n∑

i=1

Wi(x, y)Fi, (9.82)

where

Wi(x, y) = Ri(x, y)
∑n

j=1 Rj (x, y)
, (9.83)

and

Ri(x, y) = {
(x − xi)

2 + (y − yi)
2}− 1

2 . (9.84)

The surface interpolates the points, yet it does not require the solution of a system
of equations. The interpolating surface is obtained immediately by substituting the
coordinates of the data sites and the data values into (9.82).

Shepard’s method is known to produce flat spots in the surface at and near the
data sites. Consider the data in Table 9.1, showing coordinates of 3-D points in a
plane as depicted in Fig. 9.15a. Shepard’s method, however, produces the surface
depicted in Fig. 9.15b.

The reason for the flat spots is the nonlinear relation between xy and f . The
flat spots show increased surface point density near the data sites. This weakness
can be overcome by subjecting x and y to the same nonlinear transformation that
f is subjected to. By letting (ui, vi) ∝ (xi, yi) and defining the components of the

370 9 Transformation Functions

parametric Shepard similarly by formula (9.82), we obtain

x(u, v) =
n∑

i=1

Wi(u, v)xi, (9.85)

y(u, v) =
n∑

i=1

Wi(u, v)yi, (9.86)

f (u, v) =
n∑

i=1

Wi(u, v)Fi, (9.87)

where

Wi(u, v) = Ri(u, v)
∑n

j=1 Rj(u, v)
, (9.88)

Ri(u, v) = {
(u − ui)

2 + (v − vi)
2}− 1

2 , (9.89)

ui = xi/(nc − 1), and vi = yi/(nr − 1). nc and nr are, respectively, the number of
columns and number of rows in the reference image. As x varies between 0 and
nc − 1, u will vary between 0 and 1, and as y varies between 0 and nr − 1, v will
vary between 0 and 1.

Parametric Shepard, however, requires the solution of two nonlinear equations to
find (u, v) for a given (x, y). Then, it uses the obtained (u, v) to find the surface
value F . For image registration purposes though, this is not necessary since exact
surface coordinates are not required. Surface coordinates that are within half a pixel
of the actual coordinates are sufficient to resample the sensed image to align with
the reference image when using nearest neighbor resampling.

The following algorithm determines a component of a transformation function
by the parametric Shepard method.

Algorithm PSI (Parametric Shepard Interpolation) Given points {(xi, yi,Fi) : i =
1, . . . , n}, calculate image F [x, y], showing the surface interpolating the points
when quantized at discrete pixel coordinates in the reference image.

1. Let ui = xi/(nc − 1) and vi = yi/(nr − 1). This will ensure parameters in the
image domain vary between 0 and 1.

2. Initially, let increments in u and v be �u = 0.5 and �v = 0.5.
3. For u = 0 to 1 with increment �u and for v = 0 to 1 with increment �v, repeat

the following.

• If [x(u, v) + x(u + �u,v)]/2! ∈ [x(u + �u/2, v) ± 0.5] or [y(u, v) + y(u +
�u,v)]/2! ∈ [y(u+�u/2, v)±0.5] or [F(u, v)+F(u+�u,v)]/2! ∈ [F(u+
�u/2, v) ± 0.5] or
[x(u, v) + x(u, v + �v)]/2! ∈ [x(u, v + �v/2) ± 0.5] or [y(u, v) + y(u, v +
�v)]/2! ∈ [y(u, v + �v/2) ± 0.5] or [F(u, v) + F(u, v + �v)] 	= [F(u, v +
�v/2) ± 0.5] or
[x(u, v) + x(u + �u,v) + x(u, v + �v) + x(u + �u,v + �v)]/4! ∈ [x(u +
�u/2, v + �v/2) ± 0.5] or [y(u, v) + y(u + δu, v) + y(u, v + �v) + y(u +
�u,v + �v)]/4! ∈ [y(u + �u/2, v + �v/2) ± 0.5] or

9.2 Adaptive Transformation Functions 371

Fig. 9.16 (a) The subdivision scheme at Step 3. (b) Ensuring the approximating surface passes
within half a pixel of the given points in Step 5

[F(u, v) + F(u + δu, v) + x(u, v + �v) + F(u + �u,v + �v)]/4! ∈ [F(u +
�u/2, v + �v/2) ± 0.5], then reduce �u and �v by a factor of 2 and go to
Step 3.

4. If Fi ! ∈ [F [xi, yi] ± 0.5] for any i = 1, . . . , n, reduce �u and �v by a factor of
2 and repeat this step.

5. For u = 0 to 1 with increment �u and for v = 0 to 1 with increment �v, repeat
the following.

• Calculate [x(u, v), y(u, v),F (u, v)], [x(u + �u,v), y(u + �u,v),F (u +
�u,v)], [x(u + �u,v + �v), y(u + �u,v + �v),F (u + �u,v + �v)],
[x(u, v + �v), y(u, v + �v),F (u, v + �v)]. This defines a local patch. Esti-
mate values within the patch using bilinear interpolation of values at its four
corners.

By notation “a! ∈ [b ± 0.5],” it is implied “if a < b − 0.5 or a > b + 0.5.” In
Step 3, for each patch defined within parameters (u, v) to (u + �u,v + �v), the
distances of the midpoints of the four sides and at the center of the patch to its
bilinear approximation (Fig. 9.16a) are determined. Subdivision is continued until
all distances become smaller than half a pixel.

Step 4 ensures that the obtained approximation is within half a pixel of the points
it is supposed to interpolate. If it is not, subdivision is continued until the approxi-
mating surface falls within half a pixel of the given points. Note that in Step 3 the
patches are not generated. Values at only edge midpoints and patch centers are cal-
culated. In most situations, this finds the required increment in u and v that will
obtain the required surface. In some rare cases, the process may not produce a sur-
face sufficiently close to the given points. In such cases, Step 4 ensures that the
obtained surface does, in fact, pass within half a pixel of the points it is supposed to
interpolate (Fig. 9.16b).

The interpolating parametric Shepard defined in this manner may produce sharp
edges and corners at the interpolating points. This problem can be alleviated by
replacing the radial function defined in (9.89) by

Ri(u, v) = {
(u − ui)

2 + (v − vi)
2 + d2}− 1

2 . (9.90)

d2 is a small positive number. The larger its value, the smoother the obtained surface
will be, but also the farther the surface will fall from some of the points. Note that

372 9 Transformation Functions

this is an inverse multiquadric weight. Therefore, Shepard weights can be consid-
ered rational inverse multiquadric weights. When d2 = 0, the surface will interpolate
the points and when d2 > 0, the surface will approximate the points. Wi is a rational
function in u and v when parametric Shepard is used with ui = xi/(nc − 1) and
vi = yi/(nr − 1) for i = 1, . . . , n.

Letting

Ri(u, v) = exp

{
− (u − ui)

2 + (v − vi)
2

2(sσi)2

}
, (9.91)

the obtained surface will be a rational Gaussian (RaG) surface [37] that approxi-
mates the points. The standard deviation of the Gaussian at the ith point, σi , shows
spacing between the points surrounding it. It can be taken equal to the distance of
that point to the kth point closest to it. The smoothness parameter s is a global
parameter that will increase or decrease the standard deviations of all Gaussians
simultaneously. The larger is the value for s, the smoother will be the obtained sur-
face. The smaller is the s, the more closely the approximation will follow local data.
Since the influence of a Gaussian vanishes exponentially, for small standard devi-
ations and considering the digital nature of images, the weight functions, in effect,
have only local support.

By setting the standard deviations of Gaussians proportional to the spacing be-
tween the points, the surface is made to automatically adapt to the spacing between
the points. In areas where density of points is high, narrow Gaussians are used to
keep the effect of the points local. In areas where the points are sparse, wide Gaus-
sians are used to cover large gaps between the points.

As the standard deviations of Gaussians are increased, the surface gets smoother
and moves away from some of the points. To ensure that a surface interpolates the
points, new data values {Ai : i = 1, . . . , n} at {(ui, vi) : i = 1, . . . , n} are determined
such that the surface obtained from the new data values will evaluate to the old
data values at the parameter coordinates corresponding to the data sites. That is, the
surface is obtained by solving

xj =
n∑

i=1

AiWi(uj , vj), (9.92)

yj =
n∑

i=1

BiWi(uj , vj), (9.93)

Fj =
n∑

i=1

CiWi(uj , vj), (9.94)

for {Ai,Bi,Ci : i = 1, . . . , n}, where j = 1, . . . , n, and

Wi(uj , vj) = Gi(uj , vj)∑n
k=1 Gk(uj , vj)

(9.95)

is the ith basis function of the RaG surface evaluated at (uj , vj), and Gi(uj , vj)

is a 2-D Gaussian of standard deviation sσi centered at (ui, vi) when evaluated at
(uj , vj).

9.2 Adaptive Transformation Functions 373

Fig. 9.17 (a)–(c) Resampling of the sensed image to the space of the reference image as the
smoothness parameters is increased. Density of surface points is high at and near the control points
as well as along edges connecting the points when smoothness parameter s is very small. Missing
surface values are estimated by bilinear interpolation as outlined in Algorithm PSA. (d) Registra-
tion with parametric Shepard approximation when s = 2.5

It is important to note that due to the nonlinear relation between (x, y) and (u, v),
by varying u and v from 0 to 1, x may not vary between 0 and nc − 1 and y may
not vary between 0 and nr − 1. Consequently, it may be necessary to start u and v

slightly below 0 and continue slightly past 1. If u and v are varied between 0 and 1,
the sensed image may leave some gaps near the borders of the reference image.

Examples of parametric Shepard approximation using RaG weights are given in
Fig. 9.17. The standard deviation of a Gaussian at a control point is set proportional
to the distance of that control point to the control point closest to it in the reference
image. Therefore, k = 1. Figure 9.17a shows resampling of the sensed image when
s = 0.25. That is, the standard deviation at a control point is set to 0.25 times the
distance of that control point to the control point closest to it. At such low standard
deviations, the approximation is close to piecewise linear, and for uniformly spaced
u and v, surface points primarily concentrate along edges and at vertices of the
triangle mesh obtained from the points.

By increasing the smoothness parameter to 1, a smoother surface is obtained
and for uniformly spaced u and v, points on the surface become more uniformly
spaced as shown in (b). Increasing the smoothness parameter to 2.5 will further
increase the smoothness of the surface, but it will shrink the surface at the same
time when varying u and v from 0 to 1, as depicted in (c). It also moves the surface
farther from some of the points, increasing approximation error. The registration
result when s = 2.5 is depicted in (d).

In order to create a smooth surface that interpolates the points, we will find new
coordinates {(Ai,Bi,Ci) : i = 1, . . . , n} such that the obtained surface would inter-

374 9 Transformation Functions

Fig. 9.18 Registration of the Mountain image set using parametric Shepard interpolation as the
components of the transformation. (a) Resampling of the sensed image to the space of the reference
image. (b) Overlaying of the reference and the resampled sensed images

polate 3-D points {(xi, yi,Fi) : i = 1, . . . , n}. Doing so, we obtain the resampled
image shown in Fig. 9.18a and the registration result shown in Fig. 9.18b. Ignoring
its rough boundary, the quality of registration obtained by interpolative parametric
Shepard is as good as any of the methods discussed so far.

Examining Shepard’s interpolation as described by (9.82), we see that the sur-
face that interpolates a set of points is obtained by a weighted sum of horizontal
planes passing through the points. The plane passing through point (xi, yi,Fi) is
F(x, y) = Fi . The reason for obtaining a high density of points near (xi, yi) is that
many points near (xi, yi) produce values close to Fi . This formulation ignores the
surface gradient at (xi, yi) and always uses horizontal plane F(x, y) = Fi at (xi, yi).
One remedy to this problem is to use a plane with a gradient equal to that estimated
at (xi, yi) rather than using gradient 0 at every point.

Gradient vectors at the data points, if not given, can be estimated directly from
the data. Typically, a surface is fitted to the points and the gradient vectors of the
surface at the points are determined. Stead [99] found that gradient vectors produced
by multiquadric surface fitting is superior to those estimated by other methods when
using randomly spaced points. Goodman et al. [30] triangulated the points with their
associating data values in 3-D and used a convex combination of gradient vectors of
the triangle planes sharing a point as the gradient vector at the point.

To find the gradient vector at a point, we fit a plane to the that point and k > 2
other points nearest to it by the least-squares method. The gradients of the plane
are then taken as estimates to the gradients of the surface at the point. Assuming
the plane fitting to point (xi, yi,Fi) and a small number of points around it by the
least-squares method is

F(x, y) = aix + biy + ci, (9.96)

we recalculate ci in such a way that F(xi, yi) = Fi . Doing so, we find ci = Fi −
aixi − biyi . Therefore, the equation of the plane passing through the ith point will
be

Li(x, y) = ai(x − xi) + bi(y − yi) + Fi. (9.97)

In the Shepard interpolation of (9.82), we replace Fi , which is a horizontal plane
passing through point (xi, yi,Fi), with Li(x, y), which is a plane of a desired gra-

9.2 Adaptive Transformation Functions 375

Fig. 9.19 Registration of the Mountain image set using weighted linear approximation as the
components of the transformation. (a) Resampling of the sensed image to the space of the refer-
ence image. (b) Overlaying of the reference and the resampled sensed images. The smoothness
parameter s = 1 in this example

dient passing through the same point. The weighted sum of such planes produces a
weighted linear interpolation to the points:

f (x, y) =
∑n

i=1 Ri(x, y)Li(x, y)
∑n

i=1 Ri(x, y)
. (9.98)

This weighted linear function [34, 36] interpolates the points and provides de-
sired gradients at the points. To make the surface approximate the points, instead of
(9.89) we let the radial functions be (9.91) but define it in the xy space. If neces-
sary, this surface can be made to interpolate the points by finding new data values
at the points in such a way that the obtained surface would evaluate to the old data
values at the control points by solving a system of equations similar to (9.94) but as
a function of (x, y) rather than (u, v). Note that this new formulation is in explicit
form; therefore, revising Shepard’s method to use gradients at the points will make
it possible to avoid formation of horizontal flat spots in the created surface without
parametrizing it.

An example of the use of weighted linear approximation as the components of
the transformation function in image registration is given in Fig. 9.19. RaG weights
are used with the standard deviation of Gaussian at a point proportional to the dis-
tance of that point to the point closest to it. The smoothness parameter s is set to 1 in
Fig. 9.19. Since this is an approximating surface, increasing s will create a smoother
surface that gets farther from some of the given points. As s is decreased, the sur-
face will more resemble a piecewise linear interpolation. Being an approximation
method, weighted linear is particularly suitable in image registration when a large
number of point correspondences is given. Registration results are better than those
obtained by multiquadric and surface spline and are comparable to those obtained
by parametric Shepard interpolation.

A number of modifications to the Shepard interpolation have been proposed.
These modifications replace a data point with a function. Franke and Nielson [27]
fitted a quadratic function, Renka and Brown [80] fitted a cubic function, Lazzaro
and Montefusco [55] fitted a radial function, and Renka and Brown [81] fitted a 10-
parameter cosine series to a small number of points in the neighborhood of a point
as the nodal function at the point. The weighted sum of the functions were then used

376 9 Transformation Functions

Fig. 9.20 (a) Scattered data points in the plane, showing 3-D points. (b) Scattered horizontal data
lines, showing 3-D lines parallel to the x-axis. (c) Scattered data lines of arbitrary orientation with
values along a line varying linearly. These represent scattered 3-D lines. Higher values are shown
brighter in these images

to obtain the interpolation. Rational weights with local support are used, vanishing
at a fixed distance of the data sites. Renka [78] further allowed the width of each
weight function to vary with the density of local data and vanish at a distance equal
to the distance of a data site to the kth data site closest to it.

Weights with local support are attractive because they are computationally effi-
cient and do not allow a local deformation or inaccuracy to spread over the entire
approximation domain. Weights with local support, however, may produce a surface
with holes if spacing between the points varies greatly across the image domain.

9.2.2.2 Surface Approximation to Scattered Lines

Image registration methods rely on the coordinates of corresponding points in im-
ages to find the transformation function. Transformation functions defined in terms
of points, however, cannot represent sharp geometric differences along edges, as
found in images of man-made scenes taken from different views.

Line segments are abundant in images of indoor and outdoor scenes and methods
to find correspondence between them have been developed [13, 46, 101]. Therefore,
rather than defining a transformation function in terms of corresponding points, we
would like to formulate the transformation function in terms of corresponding lines
in images.

Suppose n corresponding line segments are obtained in two images. Let’s de-
note the coordinates of the end points of the ith line segment by (xi1, yi1,Fi1) and
(xi2, yi2,Fi2). We want to find a function F = f (x, y) that approximates the lines.

The surface approximating a set of scattered lines is obtained by extending the
equation of a surface that approximates a set of points [35]. Consider fitting a single-
valued surface to data at scattered points in the plane {(xi, yi,Fi) : i = 1, . . . , n}. An
example of scattered data in the plane is given in Fig. 9.20a. Intensities of the points

9.2 Adaptive Transformation Functions 377

represent the data values at the points. A weighted mean approximation to the data
will be

f (x, y) =
n∑

i=1

Figi(x, y). (9.99)

gi(x, y) can be considered a rational basis function centered at (xi, yi) defined in
such a way that the sum of n basis functions everywhere in the approximation do-
main is 1. One such example is rational Gaussian (RaG) basis functions [37]:

gi(x, y) = wiGi(x, y)
∑n

j=1 wjGj (x, y)
, (9.100)

where Gi(x, y) is a 2-D Gaussian centered at (xi, yi) and wi is the weight associated
with the ith data point. For point data, we let wi = 1 for i = 1, . . . , n. For a line, we
let a weight be proportional to the length of the line it represents. The standard
deviations of the Gaussians can be varied to generate surfaces at different levels of
detail.

Now, consider using a data line in place of a data point. For the sake of simplicity,
let’s first assume that data along a line does not vary and all lines are parallel to the
x-axis. An example of such data lines is given in Fig. 9.20b. Therefore, instead of
point (xi, yi), we will have a line with end points (xi1, yi1) and (xi2, yi2) and the
same data value Fi everywhere along the line. To fit a surface to these lines, we will
horizontally stretch the Gaussian associated with a line proportional to its length.

If the coordinates of the midpoint of the ith line are (xi, yi), since a 2-D Gaussian
can be decomposed into two 1-D Gaussians, we have

Gi(x, y) = exp

{
− (x − xi)

2 + (y − yi)
2

2σ 2

}
, (9.101)

= exp

{
− (x − xi)

2

2σ 2

}
exp

{
− (y − yi)

2

2σ 2

}
, (9.102)

= Gi(x)Gi(y). (9.103)

To stretch Gi(x, y) along the x-axis, we scale σ by a factor proportional to the
length of the line. Let’s denote this scaling by mi > 1. Then, we replace Gi(x) with

Hi(x) = exp

{
− (x − xi)

2

2(miσ)2

}
, (9.104)

where mi = (1 + εi) and εi is proportional to the length of the ith line. After this
stretching, relation (9.99) becomes

f (x, y) =
∑n

i=1 wiFiHi(x)Gi(y)
∑n

i=1 wiHi(x)Gi(y)
. (9.105)

Now suppose data values along a line vary linearly, but the projections of the
lines to the xy plane are still parallel to the x-axis. To fit a surface to such lines,
instead of using a Gaussian of a fixed height Fi , we let the height of a Gaussian vary

378 9 Transformation Functions

with data along the line. Assuming data at the endpoints of the ith line are Fi1 and
Fi2 and the data value at the line midpoint is Fi , in (9.105) we will replace Fi with

Fi(x) = Fi + (x − xi)

(xi2 − xi)
(Fi2 − Fi). (9.106)

This formula changes the height of the Gaussian along a line proportional to the
data values on the line. The new approximation formula, therefore, becomes

f (x, y) =
∑n

i=1 wiFi(x)Hi(x)Gi(y)
∑n

i=1 wiHi(x)Gi(y)
. (9.107)

To adapt the surface to data lines with arbitrary orientations, such as those shown
in Fig. 9.20c, we rotate each data line about its center so that it becomes parallel to
the x-axis. Then, we use the above formula to find its contribution to the surface.
Finally, we rotate the values back. Doing this for each line and adding contributions
from the lines, we obtain the approximating surface. If the projection of the ith line
to the xy-plane makes angle θi with the x-axis, when rotating the coordinate system
clockwise about the line’s midpoint by θi so that it becomes parallel to the x-axis,
denoting the coordinates of points on the line before and after this rotation by (X,Y)

and (x, y), we have

x = (X − Xi) cos θi − (Y − Yi) sin θi + xi, (9.108)

y = (X − Xi) sin θi + (Y − Yi) cos θi + yi. (9.109)

Substituting relations (9.108) and (9.109) into the right side of (9.107), we obtain
a relation in (X,Y). This relation finds the surface value at (X,Y) in the approxi-
mation domain. Renaming the approximating function by F(X,Y), we will have

F(X,Y) =
∑n

i=1 wiFi(X,Y)Hi(X,Y)Gi(X,Y)
∑n

i=1 wiHi(X,Y)Gi(X,Y)
, (9.110)

where

Fi(X,Y) = Fi + (X − Xi) cos θi − (Y − Yi) sin θi

Di

(Fi2 − Fi), (9.111)

Hi(X,Y) = exp

{
−[(X − Xi) cos θi − (Y − Yi) sin θi]2

2(miσ)2

}
, (9.112)

Gi(X,Y) = exp

{
−[(X − Xi) sin θi + (Y − Yi) cos θi]2

2σ 2

}
, (9.113)

and

Di =
√

(xi2 − xi)2 + (yi2 − yi)2 =
√

(Xi2 − Xi)2 + (Yi2 − Yi)2 (9.114)

is half the length of the ith line segment in the xy or XY domain. Weight wi of
line Li is set equal to 1 + 2Di . The 1 in the formula ensures that if points are used
in addition to lines, the obtained surface will approximate the points as well as the
lines. As the length of a line increases, the volume under the stretched Gaussian

9.2 Adaptive Transformation Functions 379

Fig. 9.21 (a) Data lines of Table 9.2. Higher values are shown brighter. (b) The single-valued
surface of (9.110) approximating the data lines. (c) The parametric surface of (9.116)–(9.118)
approximating the same data lines. (d) Same as (c) but using a larger σ . (e) Same as (c) but using
a smaller σ . (f) Same as (e) but viewing from the opposite side. The lines and the approximating
surface are overlaid for qualitative evaluation of the approximation

increases. To make the weight function dependent on the length of the line as well
as on the data values along the line, we let

wi = 1 + 2Di = 1 + 2
√

(Xi2 − Xi)2 + (Yi2 − Xi)2 + (Fi2 − Fi)2. (9.115)

Substituting (9.111)–(9.113) into (9.110), a single-valued surface is obtained that
approximates scattered line data in the plane.

An example of the kind of surfaces obtained by this method is shown in Fig. 9.21.
Figure (a) shows seven data lines in the xy-plane. Intensities of points along a line
show the data values. The coordinates of the line endpoints and the associating data
values are shown in Table 9.2. Figure 9.21b shows the surface approximating the
lines according to formula (9.110). Although the surface approximates the lines, flat
spots are obtained along the lines. This is a known property of the weighted-mean
method.

Since the sum of the weights is required to be 1 everywhere in the approximation
domain, when the weight functions are rather narrow, flat spots are obtained at and
near the data lines. To prevent such flat spots from appearing in the approximating
surface, instead of a single-valued surface, as explained in the preceding section,
a parametric surface should be used. Therefore, instead of the single-valued surface

380 9 Transformation Functions

Table 9.2 The coordinates of
the endpoints of the lines in
Fig. 9.21a and the associating
data values

i 1 2 3 4 5 6 7

Xi1 −50 50 50 −50 1 −1 0
Yi1 −50 −50 50 50 1 1 −10
Fi1 0 0 0 0 50 50 40
Xi2 50 50 −50 −50 50 −50 0
Yi2 −50 50 50 −50 50 50 −20
Fi2 0 0 0 0 0 0 20

given by (9.110), we use the parametric surface defined by

Fx(u, v) =
∑n

i=1 wiXi(u, v)Hi(u, v)Gi(u, v)
∑n

i=1 wiHi(u, v)Gi(u, v)
, (9.116)

Fy(u, v) =
∑n

i=1 wiYi(u, v)Hi(u, v)Gi(u, v)
∑n

i=1 wiHi(u, v)Gi(u, v)
, (9.117)

FF (u, v) =
∑n

i=1 wiFi(u, v)Hi(u, v)Gi(u, v)
∑n

i=1 wiHi(u, v)Gi(u, v)
. (9.118)

Doing so, we obtain the surface shown in Fig. 9.21c. Fx,Fy , and FF are the
x, y, and F components of the surface, each obtained by varying u and v from 0
to 1. Due to the nonlinear relation between (u, v) and (x, y), when varying u and
v from 0 to 1, the obtained surface leaves gaps near the image borders. To recover
surface values at and near the image borders, u and v need to be varied from values
slightly below 0 to values slightly above 1.

In this example, parameter coordinates at the line midpoints and line end points
were set proportional to the XY coordinates of the line midpoints and end points,
respectively. That is,

ui = (Xi − Xmin)/(Xmax − Xmin), (9.119)

ui1 = (Xi1 − Xmin)/(Xmax − Xmin), (9.120)

ui2 = (Xi2 − Xmin)/(Xmax − Xmin), (9.121)

vi = (Yi − Ymin)/(Ymax − Ymin), (9.122)

vi1 = (Yi1 − Ymin)/(Ymax − Ymin), (9.123)

vi2 = (Yi2 − Ymin)/(Ymax − Ymin), (9.124)

where Xmin,Xmax, Ymin, and Ymax define the range of coordinates in the approxima-
tion domain. In image registration, Xmin = Ymin = 0, Xmax = nc −1, Ymax = nr −1,
and nc and nr are the image dimensions (i.e., number of columns and number of
rows in the reference image).

The transformation with components described by (9.116)–(9.118) maps the
sensed image to the reference image in such a way that corresponding lines in the
images align. The transformation most naturally registers images containing sharp
edges, such as close-range imagery of buildings and man-made structures. The ac-
curacy of the method depends on the accuracy with which the endpoints of the lines
are determined.

9.2 Adaptive Transformation Functions 381

9.2.3 Implicit

Implicit functions are generally of the form

f (p) = c. (9.125)

Given point p = (x, y,F), the value at the point is f (p). If this value happens to be
c, the point will be on the surface. The process of determining an implicit surface
involves producing a volumetric image and thresholding it at c. When c = 0, the
obtained surface is called the zero surface or the zero-crossing surface.

Implicit surfaces are easy to generate, but if the function is not formulated care-
fully, multiple surface points can be obtained for the same (x, y), making resampling
ambiguous. Implicit functions suitable for image registration are described next.

9.2.3.1 Interpolating Implicit Surfaces

If φ(p) is a radial function, a function of form

f (p) =
n∑

i=1

Aiφ
(‖p − pi‖

) + L(p) (9.126)

will interpolate points {pi = (xi, yi,Fi) : i = 1, . . . , n} if it satisfies f (pi) = hi for
i = 1, . . . , n [86, 100]. Since hi can take any value, we will let it to be 0 for i =
1, . . . , n. This will make the surface of interest be the zero surface of f (p). L(p) is
an optional degree one polynomial in x, y, and F , with its coefficients determined
in such a way that the surface would satisfy prespecified conditions. Carr et al. [11]
used radial functions of form ‖p − pi‖, while Turk and O’Brien [100] used radial
functions of form ‖p − pi‖3. If logarithmic basis functions are used, φ(‖p − pi‖) =
‖p − pi‖2 log(‖p − pi‖2).

Parameters {Ai : i = 1, . . . , n} are determined by letting f (pi) = 0 in (9.126) for
i = 1, . . . , n and solving the obtained system of n linear equations. Note that the
obtained system of equations will have a trivial solution Ai = 0 for i = 1, . . . , n

when term L(p) is not present. To avoid the trivial solution, additional constraints
need to be provided. Since the surface traces the zeros of f (p), one side of the
surface will be positive, while the opposite side will be negative. To impose this
constraint on the obtained surface, 2 virtual points pn+1 and pn+2 are added to
the set of given points. pn+1 is considered a point below the surface and pn+2 is
considered a point above the surface. Then, f (pn+1) is set to an appropriately large
negative value and f (pn+2) is set to an appropriately large positive value.

Once the coefficients of the implicit surface are determined, the function is quan-
tized within a volume where its xy domain covers the reference image and its F

domain covers the columns (when F = X) or rows (when F = Y) of the sensed
image. Then, the zero surface within the volume is obtained by thresholding the
volume at 0 and tracing the zero values [61, 71].

An alternative approach to tracing the zero surface without creating an actual
volume is to first find a point on the surface by scanning along F axis with discrete

382 9 Transformation Functions

Fig. 9.22 Registration of the Mountain image set using interpolative implicit surfaces as the com-
ponents of the transformation. (a) Resampling of the sensed image to align with the reference
image. (b) Overlaying of the reference and resampled sensed images

steps within its possible range at an arbitrary point (x, y) in the image domain. Once
the surface value F at (x, y) is determined, the surface value at a pixel adjacent to
(x, y) is determined by using F as the start value and incrementing or decrementing
it until a zero-crossing is detected. The process is propagated from one pixel to the
next until surface points for all pixels in the reference image are determined.

An example of image registration using the interpolative implicit surface with
φ(‖p − pi‖) = ‖p − pi‖ is given in Fig. 9.22. The two virtual points are assumed to
be (nc/2, nr/2,−n) and (nc/2, nr/2, n), where nr and nc are the number of rows
and columns, respectively, in the reference image and n is set to the number of
columns of the sensed image when calculating the x-component and it is set to the
number of rows of the sensed image when calculating the y-component of the trans-
formation. A much larger n will require a longer time to calculate the surface points
and a much smaller n will result in inaccurate surface values when incrementing and
decrementing F by 1 to locate the zero-crossing at a particular (x, y). These virtual
points are located in the middle of the image domain, one below and one above
the surface. The registration result is shown in Fig. 9.22. Although the results may
be acceptable within the convex hull of the control points, errors are rather large
outside the convex hull of the points.

9.2.3.2 Approximating Implicit Surfaces

We are after an implicit function of form f (x, y,F) = 0 that can approximate points
{pi = (xi, yi,Fi) : i = 1, . . . , n}. If a 3-D monotonically decreasing radial function,
such as a Gaussian, is centered at each point, then by adding the functions we obtain

f1(x, y,F) =
N∑

i=1

gi(σ, x, y,F), (9.127)

where gi(σ, x, y,F) is a 3-D Gaussian of standard deviation σ centered at
(xi, yi,Fi). f1 in (9.127) generally increases towards the points and decreases away
from the points. Therefore, by tracing locally maximum values of f1, we can obtain
a surface that passes near the points. When the points are uniformly spaced and the

9.2 Adaptive Transformation Functions 383

standard deviations are all equal to the spacing between the points, the process will
work well, but when the points are irregularly spaced, the process will produce a
fragmented surface.

Usually, control points in an image are not uniformly spaced. To find a surface
that approximates a set of irregularly spaced points, we center a 3-D Gaussian at
each point with its standard deviation proportional to the distance of that point to
the kth point closest to it. Adding such Gaussians, we obtain

f2(x, y,F) =
n∑

i=1

gi(σi, x, y,F), (9.128)

where gi(σi, x, y,F) is a 3-D Gaussian of magnitude 1 and standard deviation σi

centered at point (xi, yi,Fi). By tracing the local maxima of f2 in the direction of
maximum gradient, a surface that approximates the points will be obtained.

When isotropic Gaussians are centered at the points and the points are irregularly
spaced, local maxima of f2 in the gradient direction will again produce a fragmented
surface. We have to stretch the Gaussians toward the gaps in order to avoid fragmen-
tation. This is achieved by replacing a 3-D isotropic Gaussian with a 3-D anisotropic
Gaussian oriented in such a way that it stretches toward the gaps.

Letting XYZ represent the local coordinate system of a point, with the Z-axis
pointing in the direction of surface normal and XY defining the tangent plane at
the point, the relation between the global coordinate system xyF of the surface and
the local coordinate system XYZ of a point will be a rigid transformation. The 3-D
anisotropic Gaussian centered at pi in the local coordinate system of the point can
be defined by

Gi(σX,X)Gi(σY ,Y)Gi(σZ,Z), (9.129)

where Gi(σX,X), Gi(σY ,Y), and Gi(σZ,Z) are 1-D Gaussians centered at the
origin and laid along X-, Y -, and Z-axes, respectively.

To determine the coordinate axes at point pi , first, the surface normal at the point
is determined by identifying the k closest points of pi and calculating from them the
covariance matrix [1]:

Mi = 1

k

k∑

j=1

(
pj

i − pi

)(
pj

i − pi

)t
, (9.130)

where pj
i denotes the j th point closest to pi and t denotes matrix transpose opera-

tion. The eigenvectors of the 3 × 3 matrix Mi define three orthogonal axes, which
are taken as the local coordinate axes at pi . The eigenvector associated with the
smallest eigenvalue is taken as the surface normal at pi . All normals are made to
point upward. The surface normal is taken as the Z-axis and the eigenvector associ-
ated with the largest eigenvalue is taken as the Y -axis of the local coordinate system.
The X-axis is taken normal to both Y and Z.

384 9 Transformation Functions

Letting the eigenvalues of Mi from the largest to the smallest be λ1, λ2, and λ3,
we define

σ 2
X = aλ2, (9.131)

σ 2
Y = aλ1, (9.132)

σ 2
Z = bλ3. (9.133)

This will ensure that the 3-D Gaussian is stretched toward the gaps where the density
of points is low. The process will automatically adapts local averaging to the local
density and organization of points. Parameters a and b are global parameters that
can be varied to produce surfaces at different levels of detail. Parameters a and
b smooth the surface in the tangent and normal directions. A larger a will stretch a
Gaussian at a data point in the tangent direction of the approximating surface, filling
large gaps between points and avoiding the creation of holes. A larger b smoothes
the surface more in the normal direction, reducing noise among the correspondences
and also smoothing surface details.

A local coordinate system is considered at point pi with coordinate axes repre-
senting the eigenvectors of the covariance matrix Mi . The sum of the Gaussians at
point (x, y,F) in the approximation can be computed from:

f3(x, y,F) =
n∑

i=1

gi(σX, x)gi(σY , y)gi(σZ,F), (9.134)

where gi(σX, x), gi(σY , y), and gi(σZ,F), correspondingly, represent 1-D Gaus-
sians Gi(σX,X), Gi(σY ,Y), and Gi(σZ,Z) after coordinate transformation from
XYZ to xyF . Note that parameters σX,σY , and σZ are local to point pi and, thus,
vary from point to point.

The surface to be recovered is composed of points where function f3(x, y,F) be-
comes locally maximum in the direction of surface normal. To simplify the surface
detection process, rather than finding local maxima of f3(x, y,F) in the direction of
surface normal, we determine the zero-crossings of the first derivative of f3(x, y,F)

in the direction of surface normal. To achieve this, we orient the first-derivative of
Gaussian in the direction of surface normal at each point in such a way that its
positive side always points upward. Then, zero-crossings of the sum of the first-
derivative Gaussians are determined and used as the approximating surface. More
specifically, we use the zeros of

f (x, y,F) =
n∑

i=1

gi(σX, x)gi(σY , y)g′
i (σZ,F) (9.135)

as the approximating surface, where g′
i (σZ,F) is the coordinate transformation of

G′
i (σZ,Z) from XYZ to xyF , and G′

i (σZ,Z) is the first derivative of 1-D Gaussian
Gi(σZ,Z) centered at the origin and along the Z-axis.

Note that a zero-point of function f (x, y,F) can be a locally maximum or a
locally minimum point of f3(x, y,F) in the normal direction. However, only locally
maximum points of function f3(x, y,F) correspond to the true surface points, and
locally minimum points of f3(x, y,F) represent false surface points that have to be
discarded.

9.2 Adaptive Transformation Functions 385

Zero surface points that correspond to local minima of f3(x, y,F) in the
normal direction can be easily identified by examining the sign of the second
derivative of f3(x, y,F) calculated in the direction of surface normal. At the
point where f3(x, y,F) is maximum in the normal direction, the second deriva-
tive of f3(x, y,F) in the normal direction will be negative, and at the point
where f3(x, y,F) is minimum in the normal direction, the second derivative of
f3(x, y,F) in the normal direction will be positive. Therefore, at each zero-crossing
of f (x, y,F), we find the sign of the second derivative of f3(x, y,F) calculated in
the normal direction. If the sign is negative, the zero-crossing is retained, otherwise
it is discarded.

Note that the second derivative of f3(x, y,F) in the normal direction is ob-
tained by replacing g′

i (σZ,F) in (9.135) with g′′
i (σZ,F), the second derivative of

gi(σZ,F) in the normal direction, which is the second derivative of Gi(σZ,Z) after
the coordinate transformation from XYZ to xyz.

To summarize, steps in the implicit surface detection algorithm are:

1. For each point pi , i = 1, . . . , n, repeat (a)–(c) below.
a. Find the k closest points of pi .
b. Using the points determine the eigenvalues (λ1 > λ2 > λ3) and the cor-

responding eigenvectors (v1,v2,v3) of the covariance matrix Mi defined
by (9.130) and use the eigenvectors to define a local coordinate system XYZ

at pi .
c. Let σ 2

X = aλ2, σ 2
Y = aλ1, and σ 2

Z = bλ3. a and b are globally controlled
smoothness parameters.

2. Create an xyF volume of sufficient size and initialize the entries to 0.
3. For each point pi , i = 1, . . . , n, add the volume representing gi(σX, x)gi(σY , y)×

g′
i (σZ,F) to the xyF volume.

4. Find the zero-crossings of the obtained volume.
5. Discard zero-crossings where the second derivative of f3(x, y,F) is positive,

as they represent false surface points. The remaining zero-crossings define the
desired surface.

The computation of the second derivative of f3(x, y,F) can be avoided by sim-
ply checking the magnitude of f3(x, y,F). If at a zero-crossing of the first derivative
of f (x, y,F), the magnitude of f3(x, y,F) is sufficiently large (say > ε) the zero-
crossing is considered authentic. Otherwise, it is considered false and discarded. ε is
usually a very small number, determined experimentally.

The process of centering the first-derivative of a 3-D anisotropic Gaussian at
point pi and adding the Gaussians to volume xyF is achieved by resampling the
first-derivative of a 3-D isotropic Gaussian centered at the origin by a similarity
transformation. The first-derivative (with respect to Z) of an isotropic Gaussian of
standard deviation σ and magnitude 1 centered at the origin is:

G(σ,X,Y,Z) = G(σ,X)G(σ,Y)G′(σ,Z), (9.136)

where

G(σ,X) = exp

{
− X2

2σ 2

}
, G(σ,Y) = exp

{
− Y 2

2σ 2

}
, (9.137)

386 9 Transformation Functions

and

G′(σ,Z) = − Z

σ 2
exp

{
− Z2

2σ 2

}
. (9.138)

The first-derivative isotropic Gaussian centered at the origin in the XYZ coordinate
system is then transformed to the first-derivative anisotropic Gaussian at (x, y,F).
This involves (1) scaling the isotropic Gaussian of standard deviation σ along X,
Y , and Z by σX/σ , σY /σ , and σZ/σ , respectively, (2) rotating it about X-, Y -,
and Z-axes in such a way that the X-, Y -, and Z-axes align with the eigenvectors
v2,v1, and v3 of covariance matrix Mi , and (3) translating the scaled and rotated
Gaussian to (xi, yi,Fi). Let’s denote this similarity transformation by Ai . Then, for
each point P = (X,Y,Z) in the local coordinate system of point pi , the coordinates
of the same point p = (x, y,F) in the xyF coordinate system will be p = AiP.
Conversely, given point p in the xyF coordinate system, the same point in the local
coordinate system of point pi will be

P = A−1
i p. (9.139)

Therefore, if the given points are in xyF space, create the first-derivative (with
respect to Z) of an isotropic 3-D Gaussian centered at the origin in a sufficiently
large 3-D array XYZ with the origin at the center of the array. Then, resample array
XYZ and add to array xyF by the similarity transformation given in (9.139). This
involves scanning the xyF volume within a small neighborhood of pi and for each
entry (x, y,F), determining the corresponding entry (X,Y,Z) in isotropic volume
XYZ using (9.139), reading the value in the isotropic volume, and adding it to the
value at entry (x, y,F) in the xyF volume.

Since a Gaussian approaches 0 exponentially, it is sufficient to scan the xyF

space within a sphere of radius ri centered at pi to find its effect. ri is determined to
satisfy

exp

{
− r2

i

2σ 2
i

}
< ε (9.140)

where σi is the largest of σX,σY , and σZ calculated at pi , ε is the required error
tolerance, which should be smaller than half the voxel size in the xyF volume to
meet digital accuracy.

For a given a and b, the subvolume centered at each point (xi, yi,Fi) is de-
termined. The isotropic first-derivative Gaussian is mapped to the subvolume with
transformation Ai , the sum of the anisotropic first-derivative Gaussians is deter-
mined, and its zero-surface is calculated by thresholding the volume at 0. The ob-
tained zero surface will approximate points {(xi, yi,Fi) : i = 1, . . . , n}.

9.3 Properties of Transformation Functions

Transformation functions carry information about scene geometry as well as the
relation of cameras with respect to each other and with respect to the scene. Camera

9.3 Properties of Transformation Functions 387

geometry is global, while scene geometry is local. We would like to see if we can
use information in a transformation function to estimate camera relations as well as
scene geometry.

Because scene geometry is local in nature, it is reflected in the gradient of a
transformation function. Camera geometry is either fixed across an image or it varies
gradually; therefore, it has very little influence on the gradient of a transformation
function.

If the components of a transformation function are

X = fx(x, y), (9.141)

Y = fy(x, y), (9.142)

the gradients of fx with respect to x and y are

∂X

∂x
= ∂fx(x, y)

∂x
, (9.143)

∂X

∂y
= ∂fx(x, y)

∂y
. (9.144)

Therefore, the gradient magnitude of X at (x, y) can be computed from

∣∣X′(x, y)
∣∣ =

{(
∂X

∂x

)2

+
(

∂X

∂y

)2} 1
2

. (9.145)

Similarly, the gradient magnitude of the Y -component of the transformation is

∣∣Y ′(x, y)
∣∣ =

{(
∂Y

∂x

)2

+
(

∂Y

∂y

)2} 1
2

. (9.146)

When the images are translated with respect to each other in a neighborhood, the
components of the transformation that register the images in that neighborhood are
defined by (9.5) and (9.6), from which we find |X′(x, y)| = 1 and |Y ′(x, y)| = 1.
Therefore, the gradient magnitude of each component of the transformation in the
neighborhood under consideration is equal to 1 independent of (x, y).

When the images in a neighborhood have translational and rotational differences
(rigid transformation) as defined by (9.9) and (9.10), the gradient magnitude for each

component of the transformation in that neighborhood will be
√

sin2 θ + cos2 θ = 1.
Therefore, the gradient magnitude of each component of the transformation in the
neighborhood under consideration is also equal to 1 independent of (x, y).

When two images in a neighborhood are related by an affine transformation as
defined by (9.19) and (9.20), the gradient magnitude of each component of the trans-
formation in that neighborhood will be

∣∣X′(x, y)
∣∣ =

√
a2

1 + a2
2, (9.147)

∣∣Y ′(x, y)
∣∣ =

√
a2

3 + a2
4 . (9.148)

388 9 Transformation Functions

Fig. 9.23 (a), (b) An image and its transformation by an affine transformation. (c), (d) The
X-component and the Y -component of the transformation, respectively. Values in the components
of the transformation are appropriately scaled for viewing purposes

This shows that the X-component and the Y -component of an affine transformation

have different gradient magnitudes unless
√

a2
1 + a2

2 =
√

a2
3 + a2

4 , implying the im-
ages are related by the similarity transformation. Therefore, gradient magnitudes of
the two components of the similarity transformation are also the same. However, the
gradient magnitude may be smaller than or larger than 1. The gradient magnitude,
in fact, is equal to the

√
2 of the scale of the sensed image with respect to that of the

reference image.
When two images are locally related by an affine transformation, gradient magni-

tudes
√

a2
1 + a2

2 and
√

a2
3 + a2

4 , in addition to containing scale information, contain
information about shearing of the sensed image with respect to the reference image.
A larger shearing is obtained when the scene makes a larger angle with the direction
of view. Therefore, the gradient of an affine transformation can be used to guess the
orientation of the planar scene with respect to the view direction. The gradients of
the X-component and the Y -component contain information about foreshortening
of the scene horizontally and vertically with respect to the view.

Transforming the image in Fig. 9.23a by an affine transformation with a1 = 1.5,
a2 = 0.5, a3 = 0, a4 = 1, a5 = 2, and a6 = 0, we obtain the image shown in
Fig. 9.23b. The X-component and the Y -component of this transformation are
shown in Figs. 9.23c and 9.23d, respectively. The gradient magnitude for the X-
component transformation computed digitally is 1.581, which is the same as its

theoretical value
√

a2
1 + a2

2 = √
2.5. The gradient magnitude of the Y -component

transformation determined digitally is 2.236, which is the same as its theoretical

value
√

a2
3 + a2

4 = √
5.

When two images are locally related by the projective transformation as defined
by (9.23) and (9.24), the gradients of the two components become

∂X

∂x
= a1(a7x + a8y + 1) − a7(a1x + a2y + a3)

(a7x + a8y + 1)2
, (9.149)

∂X

∂y
= a2(a7x + a8y + 1) − a8(a1x + a2y + a3)

(a7x + a8y + 1)2
, (9.150)

9.3 Properties of Transformation Functions 389

∂Y

∂x
= a4(a7x + a8y + 1) − a7(a4x + a5y + a3)

(a7x + a8y + 1)2
, (9.151)

∂Y

∂y
= a5(a7x + a8y + 1) − a8(a4x + a5y + a3)

(a7x + a8y + 1)2
, (9.152)

or

∂X

∂x
= a1 − a7X

a7x + a8y + 1
, (9.153)

∂X

∂y
= a2 − a8X

a7x + a8y + 1
, (9.154)

∂Y

∂x
= a4 − a7Y

a7x + a8y + 1
, (9.155)

∂Y

∂y
= a5 − a8Y

a7x + a8y + 1
, (9.156)

or

∂X

∂x
= A1 + A2X, (9.157)

∂X

∂y
= A3 + A4X, (9.158)

∂Y

∂x
= A5 + A2Y, (9.159)

∂Y

∂y
= A6 + A4Y, (9.160)

therefore,
∣∣X′(x, y)

∣∣ =
√

(A1 + A2X)2 + (A3 + A4X)2, (9.161)
∣∣Y ′(x, y)

∣∣ =
√

(A5 + A2Y)2 + (A6 + A4Y)2. (9.162)

The gradient magnitude for the X-component of the projective transformation is
not only dependent on (x, y), it depends on X. Similarly, the gradient magnitude of
the Y -component of the transformation is a function of Y as well as (x, y). Also,
the gradient magnitudes of the two components of the projective transformation
depend on each other. The gradient magnitudes become independent of (x, y) when
a7 = a8 = 0, and that happens when the projective transformation becomes an affine
transformation.

Since ∂X/∂x and ∂X/∂y are linear functions of X, their derivatives with respect
to X will be constants. Denoting ∂X/∂x by Xx and denoting ∂X/∂y by Xy , we find
dXx/dX = A2 and dXy/dX = A4. Let’s define

∣∣(dX)′
∣∣ ≡

√
(dXx/dX)2 + (dXy/dX)2 =

√
A2

2 + A2
4. (9.163)

Similarly, denoting ∂Y/∂x by Yx and denoting ∂Y/∂y by Yy , we find

∣∣(dY)′
∣∣ ≡

√
(dYx/dY)2 + (dYy/dY)2 =

√
A2

2 + A2
4, (9.164)

390 9 Transformation Functions

Fig. 9.24 (a) A projective transformation of the image in Fig. 9.23a. (b), (c) The X-component
and the Y -component of the transformation. (d), (e) Images representing |(dX)′| and |(dY)′|. In
(b)–(e) the values are appropriately scaled to range [0,255] for enhanced viewing

we find that |(dX)′| = |(dY)′|. This implies that the gradient of the X-component
of a projective transformation calculated in the xy domain has a gradient magnitude
with respect to X that is the same as the gradient of the Y -component of the trans-
formation calculated in the xy domain when its gradient magnitude is calculated
with respect to Y . However, this amount varies from pixel to pixel as A2 and A4
both depend on (x, y).

An example showing this property is given in Fig. 9.24. Using the image in
Fig. 9.23a and letting the parameters of the projective transformation be a1 = 1.5,
a2 = −0.5, a3 = 0, a4 = 1, a5 = 2, a6 = 0, a7 = 0.005, and a8 = 0.01, we obtain the
transformed image shown in Fig. 9.24a. The X- and Y -components of this transfor-
mation are shown in 9.24b and 9.24c. The gradient magnitude of the gradient of
the two components of the transformation, |(dX)′| and |(dY)′|, as shown in 9.24d
and 9.24e, are exactly the same. This property can be used to determine whether a
transformation in a neighborhood is projective or not.

When the geometric difference between two images varies locally, the above
mentioned properties hold within corresponding local neighborhoods in the images.
At each (x, y), |X′| and |Y ′| can be determined and based on their values, the ge-
ometric difference between the images at and in the neighborhood of (x, y) can be
guessed. The parameters of the transformation mapping images in the neighborhood
of (x, y) can be estimated using the X and the Y values at (x, y) and at pixels around
it. Knowing the X- and the Y -components of a transformation, algorithms can be
developed to examine X, Y , |X′|, and |Y ′| at each pixel and derive information about
the geometry of the scene.

Consider the example in Fig. 9.25. Images (a) and (b) show the X-component and
the Y -component of the transformation obtained by the weighted-linear (WLIN)
method to register the Mountain image set. Images (c) and (d) represent |X′|
and |Y ′|. We see a larger variation in gradient magnitudes of the X-component trans-
formation than the Y -component transformation. This is typical of stereo images,
showing a larger change in foreshortening horizontally than vertically. Variation in
local geometry of the sensed image with respect to the reference image is reflected in
the components of the transformation. Images |X′| and |Y ′| not only contain infor-
mation about the geometry of the scene, they contain information about the relation
of the cameras with respect to each other and with respect to the scene.

Darker areas in |X′| and |Y ′| are indicative of areas that are going out of view
horizontally and vertically from the sensed image to the reference image. Brighter

9.4 Evaluation 391

Fig. 9.25 (a), (b) The X-component and the Y -component of the transformation obtained by the
weighted-linear (WLIN) method to register the Mountain images. (c), (d) Plots of |X′| and |Y ′|.
Intensities in the images have been appropriately scaled for better viewing

areas show regions that are coming into view and expanding in size in the sensed
image when compared to the reference image. Such regions point towards the view
while darker regions point away from the view. The sensed image, therefore, has
been obtained to the left of the reference image. Using the transformation function
obtained for the registration of two images, some characteristics of the scene as well
as the relation between the cameras and the scene can be determined.

9.4 Evaluation

Various interpolating/approximating functions suitable for representing the compo-
nents of a transformation function in image registration were discussed. Each trans-
formation has its strengths and weaknesses. It is hard to find a single transformation
function that performs the best on all types of images; however, there are transfor-
mation functions that perform better than others on many image types. The desired
properties of a transformation function for image registration are:

1. Monotonicity, convexity, and nonnegativity preserving: These properties ensure
that the function is well behaved and it does not produce high fluctuations and
overshoots away from the control points. The properties can be obtained by for-
mulating the surface in terms of not only the data values but also the data gra-
dients at the points. The properties are easier to achieve when a function is for-
mulated in such a way that its variations can be more easily controlled. Lu and
Schumaker [62] and Li [59] derived monotonicity-preserving conditions, Renka
[79] and Lai [49] derived convexity-preserving conditions, and Schumaker and

392 9 Transformation Functions

Speleers [94] and Hussain and Hussain [45] derived nonnegativity preserving
conditions for piecewise smooth surface interpolation to scattered data. These
methods typically constrain gradient vectors at the points to ensure a desired
property in the created surface.

2. Linearity preserving: If data values in the image domain vary linearly, the func-
tion interpolating/approximating the data should also vary linearly. This property
ensures that a transformation function would not introduce nonlinearity into the
resampling process when corresponding reference and sensed areas are related
linearly.

3. Adaptive to the density and organization of points: Since control points in an
image are rarely uniformly spaced, a transformation function should have the
ability to adapt to the local density and organization of the points. Density of
points across the image domain can vary greatly and so can the spacing between
the points. If the transformation function is defined by radial basis functions, the
widths of the functions should adapt to the local density of points and the shape of
the basis functions should adapt to the irregular spacing of the points. Generally,
monotonically decreasing rational basis functions adapt well to the organization
of points. Rational basis functions, however, should be used in parametric form.
If used in explicit form, flat spots appear in the components of the transformation,
producing large errors in registration.

To determine the strengths and weaknesses of the transformation functions de-
scribed in this chapter and to determine their performances in image registration,
experiments were carried out using the images depicted in Fig. 9.26. Corresponding
points in the images are also shown. The images have various degrees of geometric
differences.

Images (a) and (b) are captured from different views and different distances of
an art piece. They are of dimensions 520 × 614 and 505 × 549, respectively. The
geometric difference between the images varies from point to point. We will refer
to these images as Face images. The images contain 80 corresponding points. Im-
ages (c) and (d) show aerial images, again, taken from different views and different
distances to the scene. They are of dimensions 412 × 244 and 469 × 274, respec-
tively. The images contain small local and global geometric differences. We will
refer to them as Aerial images. There are 31 corresponding points in these images.

Images (e) and (f) show two views of a terrain. These images are of dimensions
655 × 438 and 677 × 400, respectively. There is depth discontinuity near the center
of the images at about 120 degrees. There are 46 corresponding points in the images.
We will call these Terrain images. Images (g) and (h) show a close up of a small area
in the terrain. The images are of dimensions 409 × 531 and 402 × 542, respectively.
There are 58 corresponding points in these images. These images will be referred to
as the Rock images. The geometric difference between these images vary across the
image domain.

Images (i) and (j) show two views of a partially snow-covered, rocky mountain.
These images are of dimensions 719 × 396 and 565 × 347, respectively. There are
165 corresponding points in theses images. This is called the Mountain data set. The
geometric difference between these images varies considerably across the image

9.4 Evaluation 393

Fig. 9.26 (a), (b) Face, (c), (d) Aerial, (e), (f) Terrain, (g), (h) Rock, (i), (j) Mountain, and (k),
(l) Parking images used to evaluate the performances of various transformation functions in image
registration. The number of corresponding points in these image sets are 80, 31, 46, 58, 165, and 32.
The control points are marked with ‘+’ in the images. Points marked in red are used to determine
the transformation parameters, and points marked in light blue are used to quantify registration
accuracy

domain. Finally, (k) and (l) are images of a parking lot taken from the same view-
point but with different view angles. These images are of dimensions 450 × 485 and
449 × 480, respectively. They contain only global geometric differences, defined
by a projective transformation. Local geometric differences between the images are
negligible. The images contain 32 corresponding points. We will refer to these im-
ages as the Parking images.

The control points in these images were determined using the Harris point detec-
tor and correspondence between the points were determined by the coarse-to-fine
matching Algorithm F5 in Chap. 7 using error tolerance of 1.5 pixels.

We will compare the speeds and accuracies of various transformation functions
in the registration of these images using the provided correspondences. For each
transformation, the time to determine its parameters and the time to resample the
sensed image to the geometry of the reference image are determined. Since the
true transformation function between the images is not known, we will use half of

394 9 Transformation Functions

the correspondences to determine the transformation and use the remaining half to
measure the registration accuracy. Points marked in red in Fig. 9.26 are used to
determine a transformation and points marked in light blue are used to determine
the registration accuracy with the obtained transformation.

The transformation functions used in this evaluation are (1) multiquadric,
(2) surface or thin-plate spline, (3) Wendland’s compactly supported interpola-
tion (9.55), (9.56), (4) Maude’s local weighted linear (9.61), (5) moving least
squares (9.65) using polynomials of degree 1 and inverse square distance weights
(9.66), (6) piecewise-linear interpolation, (7) approximating subdivision surface of
Loop, (8) parametric Shepard interpolation using rational Gaussian weights with
smoothness parameter s = 0.75 (9.92)–(9.95), (9) weighted-linear approximation
(9.98), and (10) interpolating implicit surface (9.126) with Euclidean (‖p − pi‖)
basis functions without a linear term.

Results are tabulated in Table 9.3. Examining the results, we see that surface
or thin-plate spline (TPS) has the highest speed in spite of the fact that it solves a
global system of equations to find each component of a transformation. A single
method could not produce the best RMSE for all images and methods vary in accu-
racy depending on the organization of the points and the severity of the geometric
difference between the images.

For images with small to moderate geometric differences, Maude’s weighted lin-
ear approximation (MAUD) produced the best result, while for images with large
local geometric differences, Loop subdivision method (LOOP) and implicit interpo-
lation produced the smallest MAX errors. Weighted-linear (WLIN) and parametric
Shepard (SHEP) also produce low MAX errors.

Considering both speed and accuracy, overall best results are obtained by moving
least-squares (MLQ) followed by weighted-linear (WLIN) and parametric Shepard
(SHEP). These methods are especially attractive because they have the ability to
resample image regions outside the convex hull of the control points. Registration
results for the six image sets in Fig. 9.26 by the moving least-square method are
shown in Fig. 9.27 for qualitative evaluation. The reference image is shown in the
red and blue bands and the sensed image is shown in the green band of a color
image. At pixels where the images perfectly align gray values are obtained, and at
pixels where the images do not align well green or purple are obtained. Scene areas
visible in only one of the images also appear in green or purple.

9.5 Final Remarks

To register two images, not only is a set of corresponding points in the images re-
quired, a transformation function is required that can use information about the cor-
respondences to find the geometric relations between the images. A transformation
function makes it possible to spatially align the images and determine the corre-
spondence between all points in the images. It also provides the means to infer the
geometric characteristics of the underlying scene.

9.5 Final Remarks 395

Table 9.3 Performance measures for various transformation functions used to register the images
shown in Fig. 9.26. The transformation functions tested are: multiquadric (MQ), surface or thin-
plate spline (TPS), Wendland’s compactly supported radial basis functions (WEND), Maude’s lo-
cal weighted linear formula (MAUD), moving least squares (MLQ), piecewise linear (PWL), Loop
subdivision surface (LOOP), parametric Shepard interpolation (SHEP), weighted linear approx-
imation (WLIN), and interpolative implicit surface with Euclidean basis functions (IMPL). Per-
formance measures are: computation time (TIME) in seconds, root-mean-squared error (RMSE)
in pixels, and maximum (MAX) registration error, also in pixels. The transformation parameters
are determined using half of the provided control-point correspondences and registration errors are
determined using the remaining correspondences. Best results are shown in bold

Method Measure Face Aerial Terrain Rock Mountain Parking

MQ TIME 1.34 0.19 0.73 0.70 2.48 0.39

RMSE 4.05 6.80 10.28 4.08 4.62 5.89

MAX 9.00 13.89 26.38 9.10 30.62 14.33

TPS TIME 1.09 0.14 0.58 0.61 1.93 0.31

RMSE 3.85 1.34 2.16 1.51 4.47 0.98

MAX 10.68 2.43 4.26 3.34 32.18 1.79

WEND TIME 1.54 0.23 0.81 0.81 3.28 0.48

RMSE 3.59 5.22 5.59 4.22 4.57 6.71

MAX 7.26 10.01 12.57 12.16 30.05 12.88

MAUD TIME 4.32 1.06 3.30 2.64 5.32 2.31

RMSE 4.09 1.07 1.38 1.50 4.40 0.93

MAX 9.34 1.88 3.12 3.35 27.55 1.69

MLQ TIME 1.98 0.41 1.15 1.06 3.35 0.67

RMSE 3.96 1.16 1.62 1.52 5.46 0.95

MAX 9.32 2.13 3.40 3.69 33.17 1.45

PWL TIME 2.20 0.30 1.26 1.16 4.71 0.61

RMSE 4.08 1.28 1.70 1.48 4.55 0.94

MAX 10.94 2.49 4.33 3.23 30.10 1.47

LOOP TIME 6.86 7.16 8.5 6.68 4.52 8.13

RMSE 4.13 1.24 1.45 1.59 4.46 0.95

MAX 10.33 2.53 3.61 3.75 25.49 1.64

SHEP TIME 1.93 0.27 1.05 1.05 2.98 0.69

RMSE 4.32 1.38 1.79 1.59 4.91 1.13

MAX 11.64 2.35 5.10 3.04 33.97 1.70

WLIN TIME 1.95 0.27 1.01 1.03 3.06 0.69

RMSE 4.25 1.28 1.58 1.51 4.47 0.96

MAX 12.96 2.44 3.01 3.33 26.29 1.72

IMPL TIME 6.80 0.91 3.74 3.50 12.22 2.01

RMSE 3.48 5.58 8.55 3.93 4.43 6.14

MAX 6.96 14.23 27.75 13.46 28.8 15.30

396 9 Transformation Functions

Fig. 9.27 (a)–(f) Registration of the Face, Aerial, Terrain, Rock, Mountain, and Parking images
by the moving least-squares transformation function

If the geometry of a scene and the relations of the cameras to each other and
to the scene are known, the type of transformation function most suitable to relate
the geometries of the images can be selected. The parameters of the transformation
can then be determined from the coordinates of corresponding points in the images.
However, often information about the scene and the cameras is not available. In
such a situation, the employed transformation function should be able to adapt to
the local geometric differences between the images.

Comparing the performances of a number of adaptive transformation functions
on various images with varying degrees of local and global geometric differences,
we observe that although a single transformation does not exist that can outper-
form all other transformations, but some transformations clearly perform better than
others. Among the tested transformation functions, weighted-linear, moving least-
squares, and parametric Shepard methods generally perform better than other meth-
ods in both speed and accuracy.

The quality of a resampled image depends on the resampling method used. Image
resampling is discussed in the next chapter. When registering two images, there is
sometimes a need to combine the images into a larger image mosaic. To create a
seamless mosaic, intensities in the overlap area in the images should be blended in
such a way that intensities in the images smoothly merge. Image blending is also
discussed in the next chapter.

References

1. Adamson, A., Alexa, M.: On normals and projection operators for surfaces defined by point
sets. In: Eurographics Symposium on Point-based Graphics, pp. 149–155 (2004)

References 397

2. Akima, H.: A method of bivariate interpolation and smooth surface fitting for irregularly
distributed data points. ACM Trans. Math. Softw. 4, 148–159 (1978)

3. Arge, E., Dæhlen, M., Tveito, A.: Approximation of scattered data using smooth grid func-
tions. J. Comput. Appl. Math. 59, 191–205 (1995)

4. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: An
overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

5. Bertram, M., Barnes, J.C., Hamann, B., Joy, K.I., Pottmann, H., Wushour, D.: Piecewise
optimal triangulation for the approximation of scattered data in the plane. Comput. Aided
Geom. Des. 17, 767–787 (2000)

6. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations.
IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

7. Bozzini, M., Lenarduzzi, L., Rossini, M.: Polyharmonic splines: An approximation method
for noisy scattered data of extra-large size. Appl. Math. Comput. 216, 317–331 (2010)

8. Brown, J.L.: Vertex based data dependent triangulations. Comput. Aided Geom. Des. 8, 239–
251 (1991)

9. Buhmann, M.D.: A new class of radial basis functions with compact support. Math. Comput.
70(233), 307–318 (2000)

10. Carlson, R.E., Foley, T.A.: The parameter R2 in multiquadric interpolation. Comput. Math.
Appl. 21(9), 29–42 (1991)

11. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans,
T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proc.
SIGGRAPH ’01 Conf., pp. 67–76 (2001)

12. Chang, L.H.T., Said, H.B.: A C2 triangular patch for the interpolation of functional scattered
data. Comput. Aided Des. 29(6), 407–412 (1997)

13. Choi, Y.-L., Yoo, K.-W., Cho, N.-I., Lee, J.-H.: Line based image matching method. US
Patent 9,884,079, Filed 20 Jun. 2001, Patented 29 Aug. 2002

14. Chui, C.K., Lai, M.-J.: Filling polygonal holes using C1 cubic triangular spline patches.
Comput. Aided Geom. Des. 17, 297–307 (2000)

15. Constantini, P., Manni, C.: On a class of polynomial triangular macro-elements. Comput.
Appl. Math. 73, 45–64 (1996)

16. Dahmen, W., Meyling, R.H.J.G., Ursem, J.H.M.: Scattered data interpolation by bivariate
C1-piecewise quadratic functions. Approx. Theory Appl. 6(3), 6–29 (1990)

17. Davydov, O., Schumaker, L.L.: Stable approximation and interpolation with C1 quartic bi-
variate splines. SIAM J. Numer. Anal. 39(5), 1732–1748 (2002)

18. Doo, D.W.H.: A subdivision algorithm for smoothing down irregular shaped polyhedrons.
In: Proc. Interactive Techniques in Computer Aided Design, vol. 1, pp. 157–165 (1978)

19. Doo, D., Sabin, M.: Behavior of recursive division surfaces near extraordinary points. In:
Computer Aided Design, pp. 356–360 (1978)

20. Duchon, J.: Splines minimizing rotation-invariant seminorms in Sobolov spaces. In: Con-
structive Theory of Functions of Several Variables. Lecture Notes in Math., vol. 571, pp. 85–
100. Springer, Berlin (1977)

21. Dyn, N., Levin, D., Rippa, S.: Algorithms for the construction of data dependent triangu-
lation. In: Mason, J.S., Cox, M.G. (eds.) Algorithms for Approximation II, pp. 185–192.
Chapman and Hall, New York (1988)

22. Dyn, N., Levin, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation
with tension control. ACM Trans. Graph. 9(2), 160–169 (1990)

23. Floater, M.S., Iske, A.: Multistep scattered data interpolation using compactly supported
radial basis functions. J. Comput. Appl. Math. 73, 65–78 (1996)

24. Fornefett, M., Rohr, K., Stiehl, H.S.: Radial basis functions with compact support for elastic
registration of medical images. Image Vis. Comput. 19, 87–96 (2001)

25. Franke, R.: Scattered data interpolation: Tests of some methods. Math. Comput. 38(157),
181–200 (1982)

26. Franke, R.: Thin plate splines with tension. Comput. Aided Geom. Des. 2, 87–95 (1985)
27. Franke, R., Nielson, G.: Smooth interpolation of large sets of scattered data. Int. J. Numer.

Methods Eng. 15, 1691–1704 (1980)

398 9 Transformation Functions

28. Franke, R., Schumaker, L.L.: A bibliography of multivariate approximation. In: Chui, C.,
Schumaker, L., Utrerus, F. (eds.) Topics in Multivariate Approximation, pp. 79–98. Aca-
demic Press, San Diego (1987)

29. Franke, R., Hagen, H., Nielson, G.M.: Least squares surface approximation to scattered data
using multiquadric functions. Adv. Comput. Math. 2, 81–99 (1994)

30. Goodman, T.N.T., Said, H.B., Chang, L.H.T.: Local derivative estimation for scattered data
interpolation. Appl. Math. Comput. 68, 41–50 (1995)

31. Goshtasby, A.: Piecewise linear mapping functions for image registration. Pattern Recognit.
19(6), 459–466 (1986)

32. Goshtasby, A.: Piecewise cubic mapping functions for image registration. Pattern Recognit.
20(5), 525–533 (1987)

33. Goshtasby, A.: Registration of image with geometric distortion. IEEE Trans. Geosci. Remote
Sens. 26(1), 60–64 (1988)

34. Goshtasby, A.: A weighted linear method for approximation of irregularly spaced data. In:
Lucian, M.M., Neamtu, M. (eds.) Geometric Modeling and Computing, pp. 285–294. Nash-
boro Press, Brentwood (2004)

35. Goshtasby, A.: Surface approximation to scattered lines. Comput-Aided Des. Appl. 4(1–4),
277–286 (2007)

36. Goshtasby, A.: Registration of multi-view images. In: LeMoigne, J., Netanyahoo, N.S., East-
man, R.D. (eds.) Image Registration for Remote Sensing, pp. 153–178. Cambridge Univer-
sity Press, Cambridge (2011)

37. Goshtasby, A.: Design and recovery of 2-D and 3-D shapes using rational Gaussian curves
and surfaces. Int. J. Comput. Vis. 10(3), 233–256 (1993)

38. Green, P.J., Sibson, R.: Computing Dirichlet tessellation in the plane. Comput. J. 21, 168–173
(1978)

39. Greiner, G., Kolb, A., Riepl, A.: Scattered data interpolation using data dependent optimiza-
tion techniques. Graph. Models 64, 1–18 (2002)

40. Grosse, E.: A catalogue of algorithms for approximation. In: Mason, J., Cox, M. (eds.) Al-
gorithms for Approximation II, pp. 479–514. Chapman and Hall, London (1990)

41. Harder, R.L., Desmarais, R.N.: Interpolation using surface splines. J. Aircr. 9(2), 189–191
(1972)

42. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys.
Res. 76(8), 1905–1915 (1971)

43. Hardy, R.L.: Theory and applications of the multiquadric-biharmonic method—20 years of
discovery—1969–1988. Comput. Math. Appl. 19(8/9), 163–208 (1990)

44. Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J.,
Stuetzle, W.: Piecewise smooth surface reconstruction. In: SIGGRAPH’94: Proc. 21st An-
nual Conference on Computer Graphics and Interactive Techniques, pp. 295–302 (1994)

45. Hussain, M.Z., Hussain, M.: C1 positive scattered data interpolation. Comput. Math. Appl.
59, 457–567 (2010)

46. Kamgar-Parsi, B., Kamgar-Parsi, B.: Algorithms for matching 3D line sets. IEEE Trans.
Pattern Anal. Mach. Intell. 26(5), 582–593 (2004)

47. Kansa, E.J., Carlson, R.E.: Improved accuracy of multiquadric interpolation using variable
shape parameters. Comput. Math. Appl. 24, 99–120 (1992)

48. Klucewicz, I.M.: A piecewise C1 interpolant to arbitrarily spaced data. Comput. Graph. Im-
age Process. 8, 92–112 (1978)

49. Lai, M.-J.: Convex preserving scattered data interpolation using bivariate C1 cubic spline.
J. Comput. Appl. Math. 119, 249–258 (2000)

50. Lai, M.-J., Wenston, P.: L1 spline methods for scattered data interpolation and approxima-
tion. Adv. Comput. Math. 21, 293–315 (2004)

51. Lancaster, P.: Moving weighted least-squares methods. In: Sahney, B.N. (ed.) Polynomial
and Spline Approximation, pp. 103–120 (1979)

52. Lancaster, P., Šalkauskas, K.: Surfaces generated by moving least squares methods. Math.
Comput. 37(155), 141–158 (1981)

References 399

53. Lancaster, P., Šalkauskas, K.: Curve and Surface Fitting: An Introduction. Academic Press,
San Diego (1986), pp. 55–62, 225–244

54. Lawson, C.L.: Software for C1 surface interpolation. In: Rice, J.R. (ed.) Mathematical Soft-
ware III, pp. 161–194. Academic Press, San Diego (1977)

55. Lazzaro, D., Montefusco, L.B.: Radial basis functions for the multivariate interpolation of
large scattered data sets. J. Comput. Appl. Math. 140, 521–536 (2002)

56. Lee, D.T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J.
Comput. Inf. Sci. 9, 219–242 (1980)

57. Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel B-splines. IEEE
Trans. Vis. Comput. Graph. 3(3), 228–244 (1997)

58. Levin, D.: The approximation power of moving least-squares. Math. Comput. 67(224), 1517–
1531 (1998)

59. Li, A.: Convexity preserving interpolation. Comput. Aided Geom. Des. 16, 127–147 (1999)
60. Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis, Department of

Mathematics, University of Utah (1987)
61. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction al-

gorithm. In: Proc. SIGGRAPH, pp. 71–78. ACM Press/ACM SIGGRAPH, New York (1992)
62. Lu, H., Schumaker, L.L.: Monotone surfaces to scattered data using C1 piecewise cubics.

SIAM J. Numer. Anal. 34(2), 569–585 (1997)
63. Luo, Z., Peng, X.: A C1-rational spline in range restricted interpolation of scattered data. J.

Comput. Appl. Math. 194, 255–266 (2006)
64. Maillot, J., Stam, J.: A unified subdivision scheme for polygonal modeling. In: Chalmers, A.,

Rhyne, T.-M. (eds.) EUROGRAPHICS, vol. 20(3) (2001)
65. Marinov, M., Kobbelt, L.: Optimization methods for scattered data approximation with sub-

division surfaces. Graph. Models 67, 452–473 (2005)
66. Maude, A.D.: Interpolation–mainly for graph plotters. Comput. J. 16(1), 64–65 (1973)
67. McLain, D.H.: Two dimensional interpolation from random data. Comput. J. 19(2), 178–181

(1976)
68. Meijering, E.: A chronology of interpolation: From ancient astronomy to modern signal and

image processing. Proc. IEEE 90(3), 319–342 (2002)
69. Meinguet, J.: An intrinsic approach to multivariate spline interpolation at arbitrary points. In:

Sahney, B.N. (ed.) Polynomial and Spline Approximation, pp. 163–190. Reidel, Dordrecht
(1979)

70. Nejhum, S.M.S., Chi, Y.-T., Yang, M.-H.: Higher-dimensional affine registration and vision
applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1324–1338 (2011)

71. Nielson, G.M.: Dual marching cubes. In: Proc. IEEE Visualization, pp. 489–496 (2004)
72. Ohtake, Y., Belyaev, A., Seidel, H.-P.: 3D scattered data interpolation and approximation

with multilevel compactly supported RBFs. Graph. Models 67, 150–165 (2005)
73. Percell, P.: On cubic and quartic Clough-Tocher finite elements. SIAM J. Numer. Anal. 13,

100–103 (1976)
74. Peters, J., Reif, U.: The simplest subdivision scheme for smoothing polyhedra. ACM Trans.

Graph. 16(4), 420–431 (1997)
75. Powell, M.J.D.: Radial basis functions for multivariate interpolation: A review. In: Mason,

J.C., Cox, M.G. (eds.) Algorithms for Approximation, pp. 143–167. Clarendon Press, Oxford
(1987)

76. Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximation on triangles. ACM Trans.
Math. Softw. 3, 316–325 (1977)

77. Qu, R., Agarwal, R.P.: Smooth surface interpolation to scattered data using interpolatory
subdivision algorithms. Comput. Math. Appl. 32(3), 93–110 (1996)

78. Renka, R.J.: Multivariate interpolation of large sets of scattered data. ACM Trans. Math.
Softw. 14(2), 139–148 (1988)

79. Renka, R.J.: Algorithm 833: CSRFPAXK—Interpolation of scattered data with a C1

convexity-preserving surface. ACM Trans. Math. Softw. 30(2), 200–211 (2004)
80. Renka, R.J., Brown, R.: Algorithm 790: CSHEP2D: Cubic Shepard method for bivariate

interpolation of scattered data. ACM Trans. Math. Softw. 25(1), 70–73 (1999)

400 9 Transformation Functions

81. Renka, R.J., Brown, R.: Algorithm 791: TSHEP2D: Cosine series Shepard method for bi-
variate interpolation of scattered data. ACM Trans. Math. Softw. 25(1), 74–77 (1999)

82. Renka, R.J., Brown, R.: Algorithm 792: Accuracy tests of ACM algorithms for interpolation
of scattered data in the plane. ACM Trans. Math. Softw. 25(1), 78–94 (1999)

83. Rippa, S.: Scattered data interpolation using minimum energy Powell-Sabin elements and
data dependent triangulations. Numer. Algorithms 5, 577–587 (1993)

84. Rivlin, T.J.: Least-squares approximation. In: An Introduction to the Approximation of Func-
tions, pp. 48–61. Dover, New York (1969)

85. Rohr, K., Stiehl, H.S., Sprengel, R., Buzug, T.M., Weese, J., Kuhn, M.H.: Landmark-based
elastic registration using approximating thin-plate splines. IEEE Trans. Med. Imaging 20(6),
526–534 (2001)

86. Savchenko, V.V., Pasko, A.A., Okunev, O.G., Kunii, T.L.: Function representation of solids
reconstructed from scattered surface points and contours. Comput. Graph. Forum 14(4), 181–
188 (1995)

87. Schagen, I.P.: The use of stochastic processes in interpolation and approximation. Int. J.
Comput. Math., Sect. B 8, 63–76 (1980)

88. Scheib, V., Haber, J., Lin, M.C., Seidel, H.-P.: Efficient fitting and rendering of large scattered
data sets using subdivision surfaces. Eurographics 21(3), 353–362 (2002)

89. Schmidt, J.W.: Scattered data interpolation applying regional C1 splines on refined triangu-
lations. Math. Mech. 80(1), 27–33 (2000)

90. Schröder, P., Zorin, D.: Subdivision for modeling and animation. SIGGRAPH Course No.
36 Notes (1998)

91. Schumaker, L.L.: Triangulation methods. In: Chui, C.K., Schumaker, L.L., Utreras, F. (eds.)
Topics in Multivariate Approximation, pp. 219–232. Academic Press, San Diego (1987)

92. Schumaker, L.L.: Computing optimal triangulations using simulated annealing. Comput.
Aided Geom. Des. 10, 329–345 (1993)

93. Schumaker, L.L.: Multivariate spline bibliography. In: Chui, C., Neamtu, M., Schumaker,
L.L. (eds.) Approximation Theory XI: Gatlinburg. Nashboro Press, Brentwood (2005)

94. Schumaker, L.L., Speleers, H.: Nonnegativity preserving macro-element interpolation of
scattered data. Comput. Aided Geom. Des. 27(3), 245–261 (2010)

95. Schweitzer, J.E.: Analysis and application of subdivision surfaces. Ph.D. Dissertation, Uni-
versity of Washington, Seattle (1996)

96. Shepard, D.: A two-dimensional interpolation function for irregularly spaced data. In: Proc.
23rd Nat’l Conf. ACM, pp. 517–524 (1968)

97. Shirman, L.A., Sequin, C.H.: Local surface interpolation with shape parameters between
adjoining Gregory patches. Comput. Aided Geom. Des. 7, 375–388 (1990)

98. Stam, J.: On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree.
Comput. Aided Geom. Des. 18, 383–396 (2001)

99. Stead, S.E.: Estimation of gradients from scattered data. Rocky Mt. J. Math. 14, 265–279
(1984)

100. Turk, G., O’Brien, J.F.: Modeling with implicit surfaces that interpolate. ACM Trans. Graph.
21(4), 855–873 (2002)

101. Wang, L., Neumann, U., You, S.: Image matching using line signature. US Patent 12,486,506,
Filed 17 Jun. 2009, Patented 23 Dec. 2010

102. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial func-
tions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

103. Zorin, D.: Subdivision and multiresolution surface representations. Ph.D. Dissertation, Cal-
tech, Pasadena (1997)

104. Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary
topology. In: Computer Graphics Proceedings (SIGGRAPH 96), pp. 189–192 (1996)

	Chapter 9: Transformation Functions
	9.1 Well-Known Transformation Functions
	9.1.1 Translation
	9.1.2 Rigid
	9.1.3 Similarity
	9.1.4 Afﬁne
	9.1.5 Projective
	9.1.6 Cylindrical
	9.1.7 Spherical

	9.2 Adaptive Transformation Functions
	9.2.1 Explicit
	9.2.1.1 Multiquadrics
	9.2.1.2 Surface Spline
	9.2.1.3 Compactly Supported Radial Basis Functions
	9.2.1.4 Moving Least-Squares
	9.2.1.5 Piecewise Polynomials

	9.2.2 Parametric
	9.2.2.1 Parametric Shepard Interpolation
	9.2.2.2 Surface Approximation to Scattered Lines

	9.2.3 Implicit
	9.2.3.1 Interpolating Implicit Surfaces
	9.2.3.2 Approximating Implicit Surfaces

	9.3 Properties of Transformation Functions
	9.4 Evaluation
	9.5 Final Remarks
	 References

