
Chapter 8
Robust Parameter Estimation

In the previous chapters, methods for detecting control points in two images of a
scene and methods for determining the correspondence between the control points
were discussed. In this chapter, robust methods that use the control-point corre-
spondences to determine the parameters of a transformation function to register the
images are discussed. Transformation functions for image registration will be dis-
cussed in the following chapter.

Although inaccuracies in the coordinates of corresponding points can be man-
aged if the inaccuracies have a normal distribution with a mean of zero, but pres-
ence of even one incorrect correspondence can break down the parameter estimation
process. When using image features/descriptors to find the correspondence between
control points in two images, presence of noise, repeated patterns, and geometric
and intensity differences between the images can result in some incorrect corre-
spondences. Not knowing which correspondences are correct and which ones are
not, the job of a robust estimator is to identify some or all of the correct correspon-
dences and use their coordinates to determine the transformation parameters.

In the previous chapter, RANSAC, a robust estimator widely used in the com-
puter vision community was reviewed. In this chapter, mathematically well-known
robust estimators that are not widely used in computer vision and image analysis ap-
plications are reviewed. As we will see, these estimators can often replace RANSAC
and sometimes outperform it.

The general problem to be addressed in this chapter is as follows. Given n corre-
sponding points in two images of a scene:

{
(xi, yi), (Xi, Yi) : i = 1, . . . , n

}
, (8.1)

we would like to find the parameters of a transformation function with two compo-
nents fx and fy that satisfy

Xi ≈ fx(xi, yi),

Yi ≈ fy(xi, yi),
i = 1, . . . , n. (8.2)
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If the components of the transformation are independent of each other, their param-
eters can be determined separately. In such a situation, it is assumed that

{
(xi, yi,Fi) : i = 1, . . . , n

}
(8.3)

is given and it is required to find the parameters of function f to satisfy

Fi ≈ f (xi, yi), i = 1, . . . , n. (8.4)

By letting Fi = Xi , the estimated function will represent fx and by letting Fi = Yi ,
the estimated function will represent fy . If the two components of a transformation
are dependent, such as the component of a projective transformation, both compo-
nents of the transformation are estimated simultaneously.

f can be considered a single-valued surface that approximates the 3-D points
given by (8.3). If the points are on or near the model to be estimated, f will ap-
proximate the model closely. However, if some points are away from the model to
be estimated, f may be quite different from the model. The role of a robust estima-
tor is to find the model parameters accurately even in the presence of distant points
(outliers).

We assume each component of the transformation to be determined can be rep-
resented by a linear function of its parameters. That is

f = xta, (8.5)

where a = {a1, . . . , am} are the m unknown parameters of the model and x is a vector
with m components, each a function of x and y. For instance, when f represents a
component of an affine transformation, we have

f = a1x + a2y + a3, (8.6)

and so xt = [x y 1] and at = [a1 a2 a3]. When f represents a quadratic function,
we have

f = a1x
2 + a2y

2 + a3xy + a4x + a5y + a6, (8.7)

and so xt = [x2 y2 xy x y x 1] and at = [a1 a2 a3 a4 a5 a6].
When the observations given by (8.3) are contaminated, the estimated parameters

will contain errors. Substituting (8.5) into (8.4) and rewriting it to include errors at
the observations, we obtain

Fi = xt
ia + ei, i = 1, . . . , n, (8.8)

where ei is the vertical distance of Fi to the surface to be estimated at (xi, yi) as
shown in Fig. 8.1. This is the estimated positional error in a component of the ith
point in the sensed image. Not knowing which correspondences are correct and
which ones are not, an estimator finds the model parameters in such a way as to
minimize some measure of error between the given data and the estimated model.

In the remainder of this chapter, first the ordinary least squares (OLS) estima-
tion is described. OLS performs well when the errors have a normal distribution.
When errors have a long-tailed distribution, often caused by outliers, it performs
poorly. Next, robust estimators that reduce or eliminate the influence of outliers on
estimated parameters are discussed.
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Fig. 8.1 Linear parameter
estimation using
contaminated data

To evaluate and compare the performances of various estimators, 100 control
points detected in each of the coin images in Fig. 6.2 will be used. The coordinates
of the points are shown in Table 8.1. The points in the original coin image (Fig. 6.2a)
are used as the reference points and denoted by (x, y). The control points detected in
the blurred, noisy, contrast-enhanced, rotated, and scaled versions of the coin image
are considered sensed points and are denoted by (X,Y ).

Correspondence was established between the reference point set and each of the
sensed point sets by a graph-based matching algorithm with a rather large distance
tolerance (ε = 10 pixels) to allow inaccurate and incorrect correspondences enter
the process. The correspondences established between each sensed point set and the
reference point set are marked with a ‘+’ or a ‘−’ in Table 8.1. A ‘+’ indicates
a correspondence that is correct, while a ‘−’ indicates a correspondence that is
incorrect.

The algorithm found 95, 98, 98, 96, and 78 correspondences between the coin
image and its blurred, noisy, contrast-enhanced, rotated, and scaled versions, re-
spectively. Among the obtained correspondences, only 66, 60, 68, 48, and 28 are
correct. Due to the large distance tolerance used in matching, the process has picked
all of the correct correspondences (true positives). However, due to the large distance
tolerance, it has also picked a large number of incorrect correspondences (false pos-
itives).

Establishing correspondence between points by the closest-point criterion re-
sulted in some reference points being assigned to two or more sensed points. Al-
though multiple assignments are easy to detect and remove, by removing such as-
signments, we run the risk of eliminating some correct correspondences, something
that we want to avoid. Therefore, we keep the contaminated correspondences found
by our matching algorithm and use them to determine the parameters of the transfor-
mation between each sensed image and the reference image by various estimators.
After finding the transformation parameters by a robust estimator, we will then sep-
arate the correct correspondences from the incorrect ones.

The parameters of the affine transformations truly relating the blurred, noisy,
contrast-enhanced, rotated, and scaled images to the original image are listed in
Table 8.2. Knowing the true transformation parameters between each sensed image
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Table 8.1 The point sets used to evaluate the performances of various estimators. (x, y) denote the
column and row numbers of control points in the reference image, and (X,Y ) denote the column
and row numbers of control points in a sensed image. A sensed point that is found to correctly
corresponds to a reference point is marked with a ‘+’. The remaining points represent outliers.
A sensed point marked with a ‘−’ is a point that is incorrectly assigned to a reference point by the
matching algorithm

Point
#

Original Blurred Noisy Enhanced Rotated Scaled

x y X Y X Y X Y X Y X Y

1 5 77 5+ 76+ 5+ 77+ 5+ 76+ 13− 105− 5 94

2 7 84 8+ 85+ 7+ 84+ 7+ 84+ 25+ 109+ 11+ 126+
3 8 41 4− 36− 9− 39− 6− 47− 5− 77− 11− 63−
4 9 61 15− 64− 12− 55− 9+ 61+ 15+ 88+ 20− 87−
5 9 100 13− 105− 15− 99− 9+ 99+ 34+ 121+ 17 139

6 12 33 12+ 34+ 9− 39− 12+ 34+ 4+ 62+ 18+ 50+
7 12 94 13+ 95+ 15− 99− 12+ 93+ 34+ 115+ 17− 139−
8 13 105 13+ 105+ 13+ 105+ 9− 99− 34− 121− 28− 155−
9 16 47 4 65 16+ 47+ 16+ 47+ 15 88 24+ 72+

10 18 77 6 48 14− 74− 18+ 77+ 34− 95− 28+ 155+
11 20 23 21+ 22+ 21+ 22+ 14− 21− 6− 46− 35− 29−
12 20 87 5 93 15− 85− 20+ 87+ 20 14 34 161

13 21 105 21− 105− 22+ 106+ 21+ 105+ 47+ 120+ 28− 155−
14 24 115 28− 111− 29− 112− 28− 111− 56− 122− 36 116

15 26 67 26+ 67+ 26+ 67+ 26+ 67+ 32+ 85+ 39+ 102+
16 28 16 28+ 16+ 27+ 17+ 33− 20− 9+ 39+ 40 72

17 28 55 25− 58− 28+ 55+ 28+ 55+ 28+ 73+ 40− 72−
18 28 73 26− 67− 26− 67− 26− 67− 43− 86− 39− 102−
19 29 46 33− 41− 29+ 46+ 29+ 47+ 25+ 65+ 40− 72−
20 30 32 30+ 31+ 35− 33− 36− 33− 23− 51− 47+ 48+
21 32 6 33 121 32+ 6+ 32+ 7+ 9− 26− 45− 12−
22 32 21 31+ 22+ 33+ 21+ 33+ 20+ 15+ 41+ 57− 35−
23 32 114 28− 111− 29− 112− 34− 115− 56− 122− 51− 174−
24 33 121 33+ 121+ 33+ 121+ 34+ 121+ 72− 122− 51− 174−
25 34 101 35+ 101+ 34+ 101+ 34+ 101+ 56+ 110+ 51+ 152+
26 35 85 36+ 84+ 35+ 86+ 31− 80− 49+ 96+ 52− 128−
27 39 16 39+ 16+ 33− 21− 33− 20− 18+ 34+ 59+ 24+
28 40 49 46− 52− 40+ 48+ 40+ 48+ 35+ 62+ 63− 69−
29 41 62 36− 60− 41+ 62+ 41− 70− 47− 73− 60− 95−
30 42 105 42+ 105+ 41+ 105+ 42+ 105+ 69− 106− 63 69

31 42 119 42+ 119+ 45− 120− 41+ 119+ 72+ 122+ 62− 179−
32 43 29 42+ 30+ 43+ 29+ 43+ 29+ 28+ 43+ 67− 43−
33 44 99 44− 105− 41− 105− 42− 105− 69− 106− 69− 148−
34 46 13 47− 7− 47 72 28 111 20− 22− 71− 10−
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Table 8.1 (Continued)

Point
#

Original Blurred Noisy Enhanced Rotated Scaled

x y X Y X Y X Y X Y X Y

35 46 52 46+ 52+ 46+ 52+ 40− 48− 42+ 61+ 71+ 10+
36 46 86 46+ 85+ 46+ 86+ 46− 86− 59+ 91+ 75 183

37 47 7 47+ 7+ 45− 1− 46− 1− 20+ 22+ 71− 10−
38 52 35 53+ 34+ 53+ 34+ 53+ 35+ 40− 50− 79− 59−
39 53 122 52+ 121+ 54+ 122+ 53− 122− 90− 121− 75− 183−
40 54 96 54+ 97+ 54+ 96+ 45 125 71+ 96+ 82+ 144+
41 56 21 55+ 21+ 56+ 21+ 56+ 21+ 36− 25− 86+ 33+
42 56 72 56+ 72+ 56+ 72+ 54− 68− 61+ 74+ 87− 107−
43 56 114 57+ 114+ 56+ 114+ 57+ 115+ 81− 105− 79− 172−
44 58 12 58+ 12+ 58+ 12+ 58+ 12+ 36− 25− 84− 24−
45 59 52 59+ 52+ 56− 54− 59+ 52+ 59− 52− 90− 70−
46 60 5 60+ 5+ 59+ 5+ 58− 12− 31+ 14+ 91+ 7+
47 63 78 56− 72− 65− 87− 64+ 78+ 61− 74− 99− 122−
48 63 104 61 122 63 26 63+ 104+ 81− 105− 90 70

49 65 52 59− 52− 65+ 52+ 65+ 52+ 59+ 52+ 90 172

50 67 114 68+ 114+ 68+ 113+ 67+ 114+ 90− 115− 98− 178−
51 68 15 68− 15− 64− 11− 74− 12− 42+ 19+ 112− 18−
52 68 27 67− 21− 63− 26− 68+ 27+ 54− 27− 111− 42−
53 68 93 69+ 93+ 69+ 93+ 68+ 93+ 82+ 86+ 102− 148−
54 73 112 68− 114− 68− 113− 73+ 113+ 104− 105− 111− 169−
55 74 12 74+ 12+ 74+ 12+ 74+ 12+ 46− 7− 112+ 18+
56 74 28 81− 22− 75− 21− 74+ 28+ 54+ 27+ 111+ 42+
57 75 38 75+ 38+ 76+ 38+ 76+ 38+ 61+ 35+ 101 7

58 75 49 75+ 49+ 76+ 49+ 75− 49− 65+ 44+ 102 148

59 75 90 75+ 90+ 75+ 90+ 76− 89− 92− 81− 114− 131−
60 77 61 76+ 61+ 76+ 61+ 76+ 61+ 73+ 54+ 112− 92−
61 77 121 79− 120− 79− 120− 78+ 121+ 104+ 105+ 112 18

62 78 7 78+ 7+ 80− 7− 78− 1− 46− 7− 120− 10−
63 78 105 78+ 105+ 79+ 106+ 77− 101− 73 111 113− 155−
64 81 22 81+ 22+ 81+ 22+ 81+ 22+ 58− 12− 129− 34−
65 83 50 83+ 50+ 83+ 50+ 75− 49− 73+ 41+ 126+ 75+
66 85 74 77− 73− 84+ 75+ 83− 81− 87+ 61+ 125− 114−
67 87 36 87− 36− 87+ 36+ 87+ 36+ 69+ 27+ 129− 54−
68 87 63 87− 62− 87+ 63+ 87+ 63+ 82+ 50+ 118 97

69 87 110 87+ 110+ 86+ 111+ 87+ 111+ 107+ 92+ 127 179

70 88 11 88− 11− 89+ 12+ 87+ 11+ 58+ 5+ 133− 15−
71 88 90 88+ 90+ 88+ 90+ 80− 94− 97+ 73+ 133+ 134+
72 91 54 91+ 53+ 91+ 53+ 91+ 53+ 77− 36− 137+ 81+
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Table 8.1 (Continued)

Point
#

Original Blurred Noisy Enhanced Rotated Scaled

x y X Y X Y X Y X Y X Y

73 91 121 91− 121− 91+ 121+ 91+ 121+ 114+ 92+ 138− 174−
74 92 6 92+ 6+ 92+ 6+ 92+ 7+ 58− 5− 135 72

75 92 115 93+ 114+ 91− 121− 92+ 115+ 114− 92− 138+ 174+
76 93 40 88+ 36+ 94+ 39+ 93+ 40+ 77+ 27+ 146− 52−
77 94 14 98− 17− 89− 12− 94+ 14+ 58− 5− 130 25

78 95 84 94+ 85+ 95+ 84+ 96+ 78+ 106− 66− 143+ 125+
79 96 65 87+ 62+ 99− 62− 87− 63− 93− 43− 146 52

80 96 78 96+ 77+ 96+ 78+ 96− 78− 98+ 59+ 146+ 118+
81 97 93 97+ 94+ 97+ 94+ 97+ 94+ 107+ 72+ 147+ 139+
82 101 115 105− 112− 105− 112− 105− 112− 122− 87− 152 76

83 104 14 104+ 14+ 104+ 14+ 103+ 14+ 78− 7− 155 30

84 104 106 103+ 106+ 105− 112− 105− 112− 117− 86− 157+ 160+
85 106 50 106+ 50+ 101− 51− 106+ 50+ 88− 33− 152− 76−
86 106 88 106+ 87+ 106+ 88+ 106+ 88+ 106− 66− 158 88

87 108 70 108+ 70+ 108− 75− 108+ 71+ 105 31 157− 111−
88 109 28 111− 21− 114− 25− 111− 30− 84+ 9+ 163− 38−
89 111 106 111+ 106+ 108− 101− 105− 112− 125+ 77+ 171 69

90 112 96 112+ 95+ 112+ 96+ 112+ 96+ 121+ 67+ 169+ 145+
91 115 37 113− 34− 121− 37− 121− 38− 95− 8− 174− 53−
92 115 68 115+ 68+ 115+ 67+ 115+ 67+ 116− 40− 173+ 101+
93 116 57 106− 95− 121− 58− 115− 67− 105+ 31+ 175− 83−
94 117 86 117+ 85+ 116− 88− 117+ 86+ 120− 54− 177+ 130+
95 118 44 117− 42− 121− 37− 118+ 44+ 100+ 18+ 178− 63−
96 119 79 119+ 78+ 123− 84− 119+ 78+ 120− 54− 181− 116−
97 121 37 121+ 37+ 121+ 37+ 121+ 38+ 95− 8− 178− 63−
98 121 70 121+ 70+ 121+ 71+ 121+ 70+ 116+ 40+ 183+ 105+
99 123 84 117− 85− 123+ 84+ 123+ 84+ 120− 54− 177− 130−

100 124 45 120− 51− 121− 37− 124+ 46+ 100− 18− 182− 72−

and the reference image, we would like to see how accurately various estimators can
find these parameters using the contaminated correspondences shown in Table 8.1

8.1 OLS Estimator

Letting xij represent the j th element of x when evaluated at the ith data point,
relation (8.8) can be written as
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Table 8.2 True linear
transformation parameters
between the blurred, noisy,
contrast-enhanced, rotated,
and scaled coin images and
the original coin image

Data set a b c d e f

Blurred 1.000 0.000 0.000 0.000 1.000 0.000

Noisy 1.000 0.000 0.000 0.000 1.000 0.000

Enhanced 1.000 0.000 0.000 0.000 1.000 0.000

Rotated 0.866 −0.500 39.94 0.500 0.866 −23.06

Scaled 1.500 0.000 0.000 0.000 1.500 0.000

Fi =
m∑

j=1

xij aj + ei, i = 1, . . . , n. (8.9)

ei is positive when the given data point falls above the approximating surface, and
ei is negative when the point falls below the surface. Assuming the error at a data
point is independent of errors at other data points and the errors have a Gaussian
distribution, the ordinary least-squares (OLS) estimator finds the parameters of the
model by minimizing the sum of squared vertical distance between the data and the
estimated surface:

R =
n∑

i=1

r2
i , (8.10)

where

ri = Fi −
m∑

j=1

xij aj . (8.11)

Vertical distance or residual ri can be considered an estimate of the actual error
ei at the ith point. If the components of a transformation depend on each other, the
squared residual at the ith point will be

r2
i =

(

Xi −
mx∑

j=1

xij aj

)2

+
(

Yi −
my∑

j=1

xij bj

)2

, (8.12)

where {aj : j = 1, . . . ,mx} are the parameters describing the x-component of
the transformation, and {bj : j = 1, . . . ,my} are the parameters describing the y-
component of the transformation. When the two components of a transformation
function are interdependent, some parameters appear in both components. For in-
stance, in the case of the projective transformation, we have

X = a1x + a2y + a3

a7x + a8y + 1
, (8.13)

Y = a4x + a5y + a6

a7x + a8y + 1
, (8.14)

or

a7xX + a8yX + X = a1x + a2y + a3, (8.15)

a7xY + a8yY + Y = a4x + a5y + a6, (8.16)
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so the squared distance between the ith point and the transformation function will
be

r2
i = (a7xiXi + a8yiXi + Xi − a1xi − a2yi − a3)

2

+ (a7xiYi + a8yiYi + Yi − a4xi − a5yi − a6)
2. (8.17)

The linear parameters a1, . . . , a8 are estimated by minimizing the sum of such
squared distances or residuals.

To find the parameters that minimize the sum of squared residuals R, the gradient
of R is set to 0 and the obtained system of linear equations is solved. For example,
a component of an affine transformation (m = 3) is determined by solving

∂R

∂a1
= −2

n∑

i=1

xi(Fi − a1xi − a2yi − a3) = 0,

∂R

∂a2
= −2

n∑

i=1

yi(Fi − a1xi − a2yi − a3) = 0,

∂R

∂a3
= −2

n∑

i=1

(Fi − a1xi − a2yi − a3) = 0, (8.18)

which can be written as
⎛

⎜
⎝

∑n
i=1 x2

i

∑n
i=1 xiyi

∑n
i=1 xi

∑n
i=1 xiyi

∑n
i=1 y2

i

∑n
i=1 yi∑n

i=1 xi

∑n
i=1 yi n

⎞

⎟
⎠

⎛

⎝
a1
a2
a3

⎞

⎠ =
⎛

⎜
⎝

∑n
i=1 xiFi∑n
i=1 yiFi∑n
i=1 Fi

⎞

⎟
⎠ . (8.19)

In matrix form, this can be written as

AtAX = Atb, (8.20)

where A is an n × 3 matrix with Ai1 = xi , Ai2 = yi , and Ai3 = 1; b is an n × 1
array with bi = Fi ; and X is a 3 × 1 array of unknowns. Generally, when f is a
function of m variables, Aij represents the partial derivative of f with respect to the
j th parameter when evaluated at the ith point.

We see that (8.20) is the same as left multiplying both sides of equation

AX = b (8.21)

by At , and (8.21) is an overdetermined system of equations for which there isn’t an
exact solution. Therefore, OLS finds the solution to this overdetermined system of
linear equations in such a way that the sum of squared residuals obtained at the data
points becomes minimum.

If (8.20) has full rank m, its solution will be

X̂ = (
AtA

)−1Atb. (8.22)

Matrix A† = (AtA)−1At is known as the pseudo-inverse of A [4, 22]. Therefore,

X̂ = A†b. (8.23)
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Table 8.3 Estimated parameters by OLS for the five data sets in Table 8.1. RMSEa indicates
RMSE when using all correspondences (marked with a ‘+’ or a ‘−’) and RMSEc indicates RMSE
when using only the correct correspondences (marked with a ‘+’). The last column shows compu-
tation time in seconds when using all correspondences on a Windows PC with a 2.2 MHz processor

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.007 −0.004 0.676 −0.002 0.989 0.665 3.46 1.03 0.0001

Noisy 1.012 0.000 0.899 0.007 1.004 −0.652 3.56 0.88 0.0001

Enhanced 0.998 0.110 −0.353 −0.001 1.000 −0.274 3.70 0.84 0.0001

Rotated 0.872 −0.489 38.35 0.505 0.850 −22.78 4.31 0.83 0.0001

Scaled 1.501 0.017 −1.454 −0.021 1.485 2.899 5.01 1.75 0.0001

The OLS estimator was developed independently by Gauss and Legendre. Al-
though Legendre published the idea in 1805 and Gauss published it in 1809, records
show that Gauss has been using the method since 1795 [31]. It has been shown
that if (1) data represent random observations from a model with linear parameters,
(2) errors at the points have a normal distribution with a mean of zero, and (3) the
variables are independent, then the parameters determined by OLS represent the
best linear unbiased estimation (BLUE) of the model parameters [1]. Linear inde-
pendence requires that the components of x be independent of each other. An exam-
ple of dependence is x2 and xy. This implies that when least squares is used to find
parameters of functions like (8.7) with x containing interdependent components, the
obtained parameters may not be BLUE.

Comparing the linear model with m parameters estimated by OLS with the first
m principal components about the sample mean (Sect. 8.11), we see that OLS finds
the model parameters by minimizing the sum of squared distances of the points
to the surface vertically, while the parameters predicted by the first m principal
components of the same data minimizes the sum of squared distances measured
between the points and the surface in the direction normal to the surface. Although
the two use the same error measure, OLS treats one dimension of the observations
preferentially, while principal component analysis (PCA) treats all dimensions of
observations similarly.

In addition to treating one dimension of data preferentially, OLS lacks robust-
ness. A single outlier can drastically change the estimated parameters. The notion
of breakdown point ε∗, introduced by Hampel [5], is the smallest fraction of outliers
that can change the estimated parameters drastically. In the case of OLS, ε∗ = 1/n.

Using the 95 points marked with ‘+’ and ‘−’ in Table 8.1 for the blurred image
and the corresponding points in the original image, OLS estimated the six linear
parameters shown in Table 8.3. The root-mean-squared error (RMSE) obtained at all
correspondences and the RMSE obtained at the 66 correct correspondences are also
shown. The estimated model parameters and RMSE measures between the noisy,
contrast-enhanced, rotated, and scaled images and the original image are also shown
in Table 8.3.

Due to the fact that the outliers are not farther than 10 pixels from the surface
to be estimated, their adverse effect on the estimated parameters is limited. Since in
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image registration the user can control this distance tolerance, outliers that are very
far from the surface model to be estimated can be excluded from the point corre-
spondences. Therefore, although the correspondences represent contaminated data,
the maximum error an incorrect correspondence can introduce to the estimation pro-
cess can be controlled. Decreasing the distance tolerance too much, however, may
eliminate some of the correct correspondences, something that we want to avoid.
Therefore, we would like to have the distance tolerance large enough to detect all
the correct correspondences but not so large as to introduce false correspondences
that can irreparably damage the estimation process.

Having contaminated data of the kind shown in Table 8.1, we would like to iden-
tify estimators that can accurately estimate the parameters of an affine transforma-
tion model and produce as small an RMSE measure as possible.

Since points with smaller residuals are more likely to represent correct corre-
spondences than points with larger residuals, one way to reduce the estimation error
is to give lower weights to points that are farther from the estimated surface. This is
discussed next.

8.2 WLS Estimator

The weighted least-squares (WLS) estimator gives lower weights to points with
higher square residuals. The weights are intended to reduce the influence of outliers
that are far from the estimated model surface. It has been shown that OLS produces
the best linear unbiased estimation of the model parameters if all residuals have
the same variance [20]. It has also been shown that when the observations contain
different uncertainties or variances, least-squares error is reached when the square
residuals are normalized by the reciprocals of the residual variances [2]. If σ 2

i is the
variance of the ith observation, by letting wi = 1/σi , we can normalize the residuals
by replacing xi with wixi and fi with wifi . Therefore, letting A′

ij = Aijwi and
b′
i = biwi , (8.20) converts to

A′tA′X = A′tb′, (8.24)

producing the least squares solution

X = (
A′tA′)−1A′tb′. (8.25)

If variances at the sample points are not known, wi is set inversely proportional
to the magnitude of residual at the ith observation. That is, if

ri = Fi − xi â, i = 1, . . . , n, (8.26)

then

wi = 1

|ri | + ε
, i = 1, . . . , n. (8.27)

ε is a small number, such as 0.01, to avoid division by zero.
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Table 8.4 Estimated parameters by WLS for the five data sets in Table 8.1 and the RMSE mea-
sures

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.001 −0.003 −0.108 0.001 0.998 0.063 3.52 0.79 0.001

Noisy 1.000 0.000 −0.038 0.000 1.000 0.089 3.59 0.75 0.001

Enhanced 0.997 0.005 −0.132 0.000 1.000 −0.043 3.73 0.69 0.001

Rotated 0.872 −0.489 38.36 0.505 0.850 −22.79 4.33 0.83 0.001

Scaled 1.501 −0.001 −0.082 −0.001 1.507 0.134 5.15 1.06 0.001

Since the weights depend on estimated errors at the points, better weights can
be obtained by improving the estimated parameters. If (8.26) represents residuals
calculated using the model surface obtained by OLS and denoting the initial model
by f0(x), the residuals at the (k + 1)st iteration can be estimated from the model
obtained at the kth iteration:

r
(k+1)
i = Fi − fk(xi ), i = 1, . . . , n. (8.28)

The process of improving the weights and the process of improving the model pa-
rameters are interconnected. From the residuals, weights at the points are calculated,
and using the weights, the model parameters are estimated. The residuals are recal-
culated using the refined model and the process is repeated until the sum of square
weighted residuals does not decrease noticeably from one iteration to the next.

Using the data in Table 8.1 and letting ε = 0.01, WLS finds the model parame-
ters shown in Table 8.4 between the blurred, noisy, contrast-enhanced, rotated, and
scaled images and the original image. Only a few to several iterations were needed
to obtain these parameters. The estimation errors obtained by WLS using the correct
correspondences are lower than those obtained by OLS. Interestingly, the parame-
ters and the errors obtained by OLS and WLS on the rotated data set are almost the
same. Results obtained on contaminated data by WLS are not any better than those
obtained by OLS.

If some information about the uncertainties of the point correspondences is avail-
able, the initial weights can be calculated using that information. This enables es-
timating the initial model parameters by WLS rather than by OLS and achieving a
more accurate initial model. For instance, if a point in each image has an associat-
ing feature vector, the distance between the feature vectors of the ith corresponding
points can be used as |ri | in (8.27). The smaller the distance between the feature
vectors of corresponding points, the more likely it will be that the correspondence
is correct and, thus, the smaller the correspondence uncertainty will be.

The main objective in WLS estimation is to provide a means to reduce the in-
fluence of outliers on the estimation process. Although weighted mean can reduce
the influence of distant outliers on estimated parameters, it does not diminish their
influence. To completely remove the influence of distant outliers on estimated pa-
rameters, rather than using the weight function of (8.27), a weight function that cuts
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Table 8.5 Estimated parameters by the weighted least squares with cut-off threshold r0 = 2 pixels

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.001 −0.005 0.026 0.001 0.996 0.295 3.52 0.78 0.001

Noisy 1.000 0.000 0.030 0.000 0.999 0.202 3.60 0.75 0.001

Enhanced 0.998 0.006 −0.276 −0.001 0.999 0.180 3.74 0.69 0.001

Rotated 0.872 −0.489 38.36 0.505 0.850 −22.79 4.33 0.83 0.001

Scaled 1.502 −0.001 −0.067 −0.002 1.507 0.357 5.15 1.03 0.001

off observations farther away than a certain distance to the estimated surface can be
used. An example of a weight function with this characteristic is

wi =
{

1
|ri |+ε

|ri | ≤ r0,

0 |ri | > r0,
(8.29)

where r0 is the required distance threshold to identify and remove the distant out-
liers.

The WLS estimator with a cut-off of r0 = 2 pixels and ε = 0.01 produced the
model parameters shown in Table 8.5. The errors when using the correct correspon-
dences are either the same or only slightly lower than those found by the WLS
estimator without a cut-off threshold. Removing points with larger residuals does
not seem to change the results significantly when using the contaminated data. If
the residuals obtained with and without the cut-off threshold both have the same
distribution, the same results will be produced by OLS. Because the residuals ini-
tially estimated by OLS contain errors, by removing points with high residuals or
weighting them lower, the distribution of the residuals does not seem to change,
resulting in the same parameters by OLS and by WLS with and without a cut-off
threshold distance in this example.

8.3 M Estimator

An M estimator, like the OLS estimator, is a maximum likelihood estimator [12],
but instead of minimizing the sum of squared residuals, it minimizes the sum of
functions of the residuals that increases less rapidly with increasing residuals when
compared with squared residuals. Consider the objective function:

n∑

i=1

ρ(ri), (8.30)

where ρ(ri) is a function of ri that increases less rapidly with ri when compared
with the square of ri . To minimize this objective function, its partial derivatives with
respect to the model parameters are set to 0 and the obtained system of equations is
solved. Therefore,

n∑

i=1

∂ρ(ri)

∂ri

∂ri

∂ak

= 0, k = 1, . . . ,m. (8.31)



8.3 M Estimator 325

Since ∂ri/∂ak = xik , and denoting ∂ρ(ri)/∂ri by ψ(ri), we obtain
n∑

i=1

ψ(ri)xik = 0, k = 1, . . . ,m. (8.32)

The residual at the ith observation, ri = Fi − ∑m
j=1 xij aj , depends on the measure-

ment scale, another unknown parameter. Therefore, rather than solving (8.32), we
solve

n∑

i=1

ψk

(
ri

σ

)
xik = 0, k = 1, . . . ,m, (8.33)

for the model parameters as well as for the scale parameter σ .
The process of determining the scale parameter and the parameters of the model

involves first estimating the initial model parameters by OLS and from the residuals
estimating the initial scale. A robust method to estimate scale from the residuals is
the median absolute deviation [6, 12]:

b medi

{|ri − Mn|
}
, (8.34)

where Mn = medi{ri} for i = 1, . . . , n. To make the estimated scale comparable to
the spread σ of a Gaussian distribution representing the residuals, it is required that
we let b = 1.483.

Knowing the initial scale, the model parameters are estimated from (8.33) by
letting ri = Fi − ∑m

j=1 xij aj . The process of scale and parameter estimation is re-
peated until the objective function defined by (8.30) reaches its minimum value.

A piecewise continuous ρ that behaves like a quadratic up to a point, beyond
which it behaves linearly, is [11, 12]:

ρ(r) =
{

r2/2 if |r| < c,

c|r| − 1
2c2 if |r| ≥ c.

(8.35)

The gradient of this function is also piecewise continuous:

ψ(r) =
{

r if |r| < c,

c sgn(r) if |r| ≥ c.
(8.36)

ρ(r) and ψ(r) curves, depicted in Fig. 8.2, reduce the effect of distant outliers by
switching from quadratic to linear at the threshold distance c. To achieve an asymp-
totic efficiency of 95%, it is required that we set c = 1.345σ when residuals have a
normal distribution with spread σ .

The gradient of the objective function, known as the influence function, is a linear
function of the residuals or a constant in this example. Therefore, the parameters
of the model can be estimated by solving a system of linear equations. Although
this M estimator reduces the influence of distant outliers and produces more robust
parameters than those obtained by OLS, the breakdown point of this estimator is also
ε∗ = 1/n. This is because the objective function still monotonically increases with
increasing residuals and a single distant outlier can arbitrarily change the estimated
parameters.
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Fig. 8.2 (a) The plot of ρ(r) curve of (8.35). (b) The plot of ψ(r) curve of (8.36)

Fig. 8.3 (a) The plot of ρ(r) of (8.37). (b) The plot of ψ(r) of (8.38)

To further reduce the influence of outliers, consider [28]:

ρ(r) =
⎧
⎨

⎩

r2

2 − r4

2c2 + r6

6c4 if |r| ≤ c,

c2

6 if |r| > c.

(8.37)

This ρ(r) is also a piecewise function. It is a function of degree six in r up to
distance c, beyond which it changes to a constant, treating all residuals with magni-
tudes larger than c similarly. This estimator will, in effect, avoid distant outliers to
arbitrarily change the estimated parameters. The gradient of ρ(r) is:

ψ(r) =
{

r[1 − ( r
c
)2]2 if |r| ≤ c,

0 if |r| > c.
(8.38)

ρ(r) and ψ(r) curves are plotted in Fig. 8.3. Setting parameter c = 4.685σ , 95%
asymptotic efficiency is reached when residuals have a normal distribution with
spread of σ .

Note that the influence function in this example is a nonlinear function of the
residuals, requiring the solution of a nonlinear system of equations to estimate the
model parameters, which can be very time consuming. The objective function, by
assuming a fixed value for residuals larger than a given magnitude, keeps the max-
imum influence an outlier can have on the estimated parameters under control. In
this M estimator, a distant outlier can also adversely affect the estimated parame-
ters, although the effect is not as damaging as the M estimator with the objective
and influence curves defined by (8.35) and (8.36).
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8.4 S Estimator

The scale (S) estimator makes estimation of the scale parameter σ in an M estimator
the central problem [28]. An S estimator has the following properties:

1. The ρ curve in the objective function is continuously differentiable and symmet-
ric, and it evaluates to 0 at 0 (i.e., ρ(0) = 0).

2. There exists an interval [0, c] (c > 0), where ρ is monotonically increasing, and
an interval (c,∞), where ρ is a constant.

3.
E(ρ)

ρ(c)
= 0.5, (8.39)

where E(ρ) is the expected value of ρ.

An example of such an estimator is [28]:

ρ(r) =
{

r2

2 − r4

2c2 + r6

6c4 if |r| ≤ c,

c2

6 if |r| > c,
(8.40)

with influence curve

ψ(r) =
{

r[1 − ( r
c
)2]2 if |r| ≤ c,

0 if |r| > c.
(8.41)

The third property is achieved in this example by letting c = 1.547 [28].
Given residuals {ri : i = 1, . . . , n} and letting â be the model parameters esti-

mated by OLS, the scale parameter σ is estimated by solving

1

n

n∑

i=1

ρ
(
ri(â)/σ̂

) = K, (8.42)

where K is the expected value of ρ. If there is more than one solution, the largest
scale is taken as the solution, and if there is no solution, the scale is set to 0 [28].
Knowing scale, a is estimated, and the process of estimating σ and a is repeated
until dispersion among the residuals reaches a minimum.

A robust method for estimating the initial scale is the median absolute deviation
described by (8.34) [6, 12]. An alternative robust estimation of the scale parameter
is [25]:

1.193 medi

{
medj

{|ri − rj |
}}

. (8.43)

For each ri , the median of {|ri − rj | : j = 1, . . . , n} is determined. By varying i =
1, . . . , n, n numbers are obtained, the median of which will be the estimated scale.
The number 1.193 is to make the estimated scale consistent with the scale σ of the
Gaussian approximating the distribution of the residuals.

If ρ possesses the three properties mentioned above, the breakdown point of the
S estimator will be [28]:

ε∗ = 1

n

(⌊
n

2

⌋
− m + 2

)
. (8.44)
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As n approaches ∞, the breakdown point of the S estimator approaches 0.5. This
high breakdown point of the S estimator is due to the second property of the ρ curve
that is required to have a constant value beyond a certain point. This will stop a
single outlier from influencing the outcome arbitrarily. Note that although an outlier
in the S estimator is not as damaging as it can be, an outlier still adversely affects
the estimated parameters and as the number of outliers increases, the estimations
worsen up to the breakdown point, beyond which there will be a drastic change in
the estimated parameters.

To summarize, an S estimator first determines the residuals using OLS or a more
robust estimator. Then the scale parameter is estimated using the residuals. Know-
ing an estimation σ̂ to the scale parameter, ri is replaced with ri/σ̂ and the influence
function is solved for the parameters of the model. Note that this requires the solu-
tion of a system of nonlinear equations. Having the estimated model parameters â,
the process of finding the residuals, estimating the scale, and estimating the model
parameters is repeated until a minimum is reached in the estimated scale, showing
minimum dispersion of the obtained residuals.

8.5 RM Estimator

The repeated median (RM) estimator works with the median of the parameters esti-
mated by different combinations of m points out of n [32]. If there are n points and
m model parameters, there will be overall n!/[m!(n − m)!] or O(nm) combinations
of points that can be used to estimate the model parameters.

Now consider the following median operator:

M
{
ã(i1, . . . , im)

} = medim

{
ã(i1, . . . , im−1, im)

}
, (8.45)

where the right-hand side is the median of parameters ã(i1, . . . , im−1, im) as point im
is replaced with all points not already among the m points. Every time the operator
is called, it replaces one of its m points with all points not already in use. By calling
the operator m times, each time replacing one of its points, the median parameters
for all combinations of m points out of n will be obtained. The obtained median
parameters are taken as the parameters of the model.

â = Mm
{
ã(i1, . . . , im)

}
, (8.46)

= medi1

(· · · (medim−1
(
medim ã(i1, . . . , im)

)) · · ·). (8.47)

The process of estimating the model parameters can be considered m nested loops,
where each loop goes through the n points except for the ones already in use by the
outer loops and determines the parameters of the model for each combination of m

points. The median of each parameter is used as the best estimate of that parameter.
When n is very large, an exhaustive search for the optimal parameters will be-

come prohibitively time consuming, especially when m is also large. To reduce com-
putation time without significantly affecting the outcome, only point combinations
that are sufficiently far from each other in the (x, y) domain is used. Points distant
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Table 8.6 The parameters estimated by the RM estimator along with RMSE measures and com-
putation time for the five data sets in Table 8.1

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.000 0.000 0.000 0.000 1.000 0.000 3.57 0.79 133

Noisy 1.000 0.000 0.000 0.000 1.000 0.000 3.50 0.75 162

Enhanced 1.000 0.000 0.000 0.000 1.000 0.000 3.75 0.69 164

Rotated 0.871 −0.485 38.68 0.501 0.853 −22.70 4.32 0.79 144

Scaled 1.504 0.008 −0.049 −0.014 1.496 1.964 5.13 1.30 41

Table 8.7 Results obtained by the fast version of the RM estimator using only the convex-hull
points in parameter estimation

Data set a b c d e f RMSEa RMSEc Time

Blurred 0.999 0.000 0.000 0.000 1.000 0.000 3.38 0.83 0.035

Noisy 1.000 0.000 0.000 0.009 1.000 0.000 3.63 0.84 0.021

Enhanced 0.972 0.005 1.558 0.008 1.000 −0.497 3.65 1.10 0.009

Rotated 0.809 −0.485 41.64 0.507 0.845 −22.71 5.27 2.17 0.028

Scaled 1.458 0.034 1.712 0.003 1.474 0.039 4.91 2.90 0.011

from each other result in more accurate parameters as they are less influenced by
small positional errors. For instance, points describing the convex hull of the points
can be used. By discarding points inside the convex hull of the points, considerable
savings can be achieved.

To evaluate the performance of the RM estimator on the data sets in Table 8.1
when using the full combination of 3 correspondences out of the marked corre-
spondences in the table, the parameters listed in Table 8.6 are obtained. The RMSE
measures and computation time required to find the parameters for each set are also
shown.

The results obtained by the fast version of the RM estimator, which uses only the
convex hull points in the reference image and the corresponding points are shown in
Table 8.7. The fast RM estimator achieves a speed up factor of more than 1000 by
introducing only small errors into the estimated parameters. The difference between
the two is expected to reduce further with increasing n.

Although the RM estimator has a theoretical breakdown point of 0.5, we see
that in the scaled data set there are only 28 true correspondences from among the
78 marked correspondences in Table 8.1, showing that more than half of the corre-
spondences are incorrect. However, since all residuals are within 10 pixels, the RM
estimator has been able to estimate the parameters of the model.
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Table 8.8 The parameters estimated by the LMS estimator using the data sets in Table 8.1

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.000 −0.003 −0.097 −0.001 0.996 0.319 3.52 0.79 0.004

Noisy 1.012 0.000 −0.889 0.007 1.004 −0.562 3.56 0.88 0.003

Enhanced 0.997 0.11 −0.353 −0.001 1.001 −0.274 3.71 0.84 0.001

Rotated 0.869 −0.499 39.32 0.502 0.860 −23.54 4.37 0.58 0.001

Scaled 1.507 −0.007 −0.015 −0.005 1.509 0.612 5.18 1.02 0.001

8.6 LMS Estimator

The least median of squares (LMS) estimator finds the model parameters by mini-
mizing the median of squared residuals [24]:

min
â

{
medi

(
r2
i

)}
. (8.48)

When the residuals have a normal distribution with a mean of zero and when two
or more parameters are to be estimated (m ≥ 2), the breakdown point of the LMS
estimator is [24]:

ε∗ = 1

n

(⌊
n

2

⌋
− m + 2

)
. (8.49)

As n approaches ∞, the breakdown point of the estimator approaches 0.5.
By minimizing the median of squares, the process, in effect, minimizes the sum

of squares of the smallest �n/2	 absolute residuals. Therefore, first, the parameters
of the model are estimated by OLS or a more robust estimator. Then, points that
produce the �n/2	 smallest magnitude residuals are identified and used in OLS to
estimate the parameters of the model. The process is repeated until the median of
squared residuals reaches a minimum.

Using the data sets shown in Table 8.1, the results in Table 8.8 are obtained. The
process in each case takes from a few to several iterations to find the parameters. The
LMS estimator has been able to find parameters between the transformed images
and the original image that are as close to the ideal parameters as the parameters
estimated by any of the estimators discussed so far.

8.7 LTS Estimator

The least trimmed squares (LTS) estimator [26] is similar to the LMS estimator
except that it uses fewer than half of the smallest squared residuals to estimate the
parameters. LTS estimates the parameters by minimizing

h∑

i=1

(
r2)

i:n, (8.50)
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Table 8.9 Parameters estimated by the LTS estimator with h = n/4 using the data sets in Table 8.1

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.000 0.000 0.000 0.000 1.000 0.000 3.57 0.79 0.002

Noisy 1.000 0.000 0.000 0.000 1.000 0.000 3.60 0.75 0.001

Enhanced 1.000 0.000 0.000 0.000 1.000 0.000 3.75 0.69 0.002

Rotated 0.873 −0.496 38.90 0.503 0.857 −23.18 4.35 0.65 0.001

Scaled 1.510 −0.002 −0.579 −0.009 1.505 0.932 5.12 1.08 0.002

where m ≤ h ≤ n/2 + 1 and (r2)i:n ≤ (r2)j :n, when i < j . The process initially
estimates the parameters of the model by OLS or a more robust estimator. It then
orders the residuals and identifies points that produce the h smallest residuals. Those
points are then used to estimate the parameters of the model. The squared residuals
are recalculated using all points and ordered. The process of selecting points and
calculating and ordering the residuals is repeated. The parameters obtained from
the points producing the h smallest residuals are taken as estimates to the model
parameters in each iteration. The process is stopped when the hth smallest squared
residual reaches a minimum.

The breakdown point of the LTS estimator is [26]:

ε∗ =
{

(h − m + 1)/n if m ≤ h < �n+m+1
2 	,

(n − h + 1)/n if �n+m+1
2 	 ≤ h ≤ n.

(8.51)

When n is not very large and if the number of parameters m is small, by letting
h = n/2 + 1 we see that the breakdown point of this estimator is close to 0.5.
When n is very large, by letting h = n/2, we see that irrespective of m a break-
down point close to 0.5 is achieved. Note that due to the ordering need in the
objective function, each iteration of the algorithm requires O(n log2 n) compar-
isons.

By letting h = n/4 and using the data in Table 8.1, we obtain the results shown
in Table 8.9. Obtained results are similar to those obtained by the LMS estimator
when using all the correspondences. When using only the correct correspondences,
results obtained by the LTS estimator are slightly better than those obtained by the
LMS estimator.

When the ratio of correct correspondences over all correspondences falls below
0.5, the parameters initially estimated by OLS may not be accurate enough to pro-
duce squared residuals that when ordered will place correct correspondences before
the incorrect ones. Therefore, the obtained ordered list may contain a mixture of
correct and incorrect correspondences from the very start. When the majority of
correspondences is correct and there are no distant outliers, the residuals are or-
dered such that more correct correspondences appear at and near the beginning of
the list. This enables points with smaller squared residuals to be selected, allowing
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more correct correspondences to participate in the estimation process, ultimately
producing more accurate results.

8.8 R Estimator

A rank (R) estimator ranks the residuals and uses the ranks to estimate the model pa-
rameters [13]. By using the ranks of the residuals rather than their actual values, the
influence of very distant outliers is reduced. By assigning weights to the residuals
through a scoring function, the breakdown point of the estimator can be increased
up to 0.5. Using a fraction α of the residuals in estimating the parameters of the
model, Hossjer [9] reduced the influence of the 1 −α largest magnitude residuals in
parameter estimation. It is shown that a breakdown point of 0.5 can be achieved by
letting α = 0.5.

If Ri is the rank of the ith largest magnitude residual |ri | from among n residuals
and if bn(Ri) is the score assigned to the ith largest magnitude residual from a score
generating function, then the objective function to minimize is

1

n

n∑

i=1

bn(Ri)r
2
i , (8.52)

which can be achieved by setting its gradient to zero and solving the obtained system
of linear equations. Therefore,

n∑

i=1

bn(Ri)rixik = 0, k = 1, . . . ,m. (8.53)

This is, in effect, a WLS estimator where the weight of the residual at the i point is
bn(Ri).

Given ranks {Ri : i = 1, . . . , n}, an example of a score generating function is

bn(Ri) = h
(
Ri/(n + 1)

)
, (8.54)

which maps the ranks to (0,1) in such a way that

sup
{
u;h(u) > α

} = α, 0 < α ≤ 1. (8.55)

For example, if α = 0.25 and letting u = Ri/(n + 1), then when Ri/(n + 1) ≤ α

the score is u, and when Ri/(n + 1) > α the score is 0.25. This scoring function, in
effect, assigns a fixed weight to a certain percentage of highest magnitude residuals.
Therefore, when α = 0.25, the highest 75% residuals are given a fixed weight that is
lower than what they would otherwise receive. The scoring function can be designed
to assign decreasing scores to increasing residuals from a point and to assign a score
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Fig. 8.4 Plot of the scoring
function of (8.56)

of 0 to a percentage of the largest magnitude residuals. For example, consider the
scoring function depicted in Fig. 8.4 with 0 < α ≤ β ≤ γ ≤ 1,

bn(Ri) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ri/(n + 1), if Ri/(n + 1) ≤ α,

α, if α < Ri/(n + 1) ≤ β,

α[γ − Ri/(n + 1)]/(γ − β), if β < Ri/(n + 1) ≥ γ,

0, if Ri/(n + 1) > γ.

(8.56)

This scoring function discards the 100γ percentage of the points that produce
the largest magnitude residuals. By discarding such points, the process removes the
outliers. Hössjer [9] has shown that if the scoring function is nondecreasing, the
process has a single global minimum. However, if the scoring function decreases
in an interval, there may be more than one minima, and if the initial parameters
estimated by OLS are not near the final parameters, the R estimator may converge
to a local minimum rather than the global one.

To summarize, estimation by an R estimator involves the following steps:

1. Design a scoring function.
2. Estimate the model parameters by OLS or a more robust estimator and calculate

the residuals.
3. Let initial weights at all points be 1/n.
4. Rank the points according to the magnitude of the weighted residuals.
5. Find the score at each point using the scoring function, and let the score represent

the weight at the point.
6. Find the model parameters by the WLS estimator.
7. Estimate the new residuals at the points. If a minimum is reached in the sum of

weighted square residuals, stop. Otherwise, go to Step 4.

Using the nondecreasing scoring function in (8.54), the results shown in Ta-
ble 8.10 are obtained for the data sets in Table 8.1. Using the scoring function (8.56)
with α = 0.5, β = 0.75, and γ = 1.0, the results shown in Table 8.11 are obtained
for the same data sets.

Similar results are obtained by the two scoring functions. Comparing these re-
sults with those obtained by previous estimators, we see that the results by the R
estimator are not as good as those obtained by some of the other estimators when
using the data sets in Table 8.1. By using the ranks of the residuals rather than their
magnitudes, the process reduces the influence of distant outliers. The process, how-
ever, may assign large ranks to very small residuals in cases where a great portion of
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Table 8.10 Parameter estimation by the R estimator when using the scoring function of (8.54)
with α = 0.5 and the data sets in Table 8.1

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.000 0.002 −0.256 −0.006 1.000 0.036 3.55 0.95 0.001

Noisy 1.010 −0.004 −0.120 0.005 0.992 −0.044 3.61 0.92 0.001

Enhanced 0.996 0.003 0.038 −0.002 0.994 0.057 3.74 0.91 0.001

Rotated 0.872 −0.489 38.36 0.505 0.850 −22.79 4.33 0.83 0.001

Scaled 1.497 0.002 −0.249 −0.013 1.5001 0.604 5.13 1.59 0.001

Table 8.11 Parameter estimation by the R estimator when using the scoring function of (8.56)
with α = 0.5, β = 0.75, and γ = 1.0 and the data sets in Table 8.1

Data set a b c d e f RMSEa RMSEc Time

Blurred 0.996 0.007 −0.220 −0.003 0.995 0.055 3.58 1.01 0.001

Noisy 1.009 −0.007 −0.053 0.003 0.994 −0.033 3.60 0.89 0.001

Enhanced 0.987 0.008 0.143 0.000 0.999 −0.070 3.75 0.90 0.001

Rotated 0.872 −0.489 38.36 0.505 0.850 −22.79 4.33 0.83 0.001

Scaled 1.484 0.012 −0.109 −0.007 1.500 0.438 5.13 1.67 0.001

the residuals are very small. This, in effect, degrades the estimation accuracy. There-
fore, in the absence of distant outliers, as is the case for the data sets in Table 8.1,
the R estimator does not produce results as accurate as those obtained by LMS and
LTS estimators.

8.9 Effect of Distant Outliers on Estimation

If a correspondence algorithm does not have the ability to distinguish inaccurate cor-
respondences from incorrect ones, some incorrect correspondences (outliers) may
take part in estimation of the model parameters. In such a situation, the results pro-
duced by different estimators will be different from the results presented so far. To
get an idea of the kind of results one may get from the various estimators in the
presence of distant outliers, the following experiment is carried out.

The 28 correct corresponding points in the original and scaled images marked
with ‘+’ in Table 8.1 are taken. These correspondences are connected with yellow
lines in Fig. 8.5a. In this correspondence set, points in the original set are kept fixed
and points in the scaled set are switched one at a time until the breakdown point
for each estimator is reached. To ensure that the outliers are far from the estimating
model, the farthest points in the scaled set are switched. The correct correspon-
dences, along with the outliers tested in this experiment, are shown in Figs. 8.5b–i.
Red lines connect the incorrect correspondences and yellow lines connect the cor-
rect correspondences. Using point correspondences connected with yellow and red
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Fig. 8.5 (a) 28 corresponding points in the coin image and its scaled version. (b)–(i) Introduction
of 1, 2, 4, 6, 8, 9, 10, and 14 outliers into the correspondence set of (a). Red lines are the outliers
(false positives) and green lines are the missed correspondences (false negatives). The yellow lines
are the correct correspondences (true positives). The points connected with the yellow and red lines
are used as corresponding points in the experiments

lines, the results shown in Table 8.12 are obtained by the various estimators. The
green lines indicate the correct correspondences that are not used in the estimation
process.

From the results in Table 8.12, we can conclude the following:

1. For the data set in Fig. 8.5a where no outliers are present and data are simply
corrupted with random noise, OLS performs as good as any other estimator by
finding the maximum likelihood estimation of the parameters.

2. Because OLS can break down with a single distant outlier, the estimators that
depend on OLS to find the initial residuals or initial parameters can also break
down with a single distant outlier. WLS and R-1 estimators have exhibited this
characteristic when using the data sets containing one or more outliers.

3. To improve the accuracy of the estimators, a means to either eliminate some of
the distant outliers, as done by R-2, or to estimate the initial model parameters
more robustly is required.

4. When using the data sets in Fig. 8.5, the clear winner is the R-2 estimator, which
uses the scoring function in (8.56). By effectively removing some of the outliers,
ordering the rest, and using points with low squared residuals, this estimator has
been able to find correct model parameters from data containing up to 50% of
distant outliers (Fig. 8.5i). LTS with h = n/4 and LMS have also been able to
perform well under distant outliers.
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Table 8.12 Breakdown points for various estimators in the presence of distant outliers. Table
entries show RMSE at the correct correspondences. The point at which a sharp increase in RMSE
is observed while gradually increasing the number of outliers is the breakdown point. WLS-1 and
WLS-2 imply WLS estimation without and with a cut-off threshold of 2 pixels, RM-1 and RM-2
imply the regular and the fast RM estimators, and R-1 and R-2 imply the R estimator with the non-
decreasing scoring function of (8.54) with α = 0.5 and the decreasing scoring function of (8.56)
with α = 0.25, β = 0.5, and γ = 0.75, respectively. The numbers in the top row show the number
of distant outliers used in a set of 28 corresponding points

Estimator 0 1 2 4 6 8 9 10 14

OLS 0.97 11.14 20.31 33.01 42.53 48.04 50.73 50.86 51.75

WLS-1 0.97 11.14 20.31 33.01 42.53 48.04 50.73 50.86 106.2

WLS-2 0.97 11.14 20.31 33.01 42.53 48.04 50.73 50.86 51.75

RM-1 0.98 1.01 1.06 1.19 5.88 67.07 47.46 47.63 58.30

RM-2 1.15 0.56 1.06 44.04 44.04 59.51 54.74 50.06 45.27

LMS 1.01 1.10 1.20 1.09 1.18 1.05 50.89 50.86 59.16

LTS 1.01 1.36 1.39 1.28 1.17 1.20 1.14 55.65 51.75

R-1 1.02 15.95 22.58 42.98 53.26 52.06 70.52 67.40 84.85

R-2 1.01 1.04 1.07 1.25 1.10 1.10 1.07 1.11 1.21

8.10 Additional Observations

For the data sets in Table 8.1, all tested estimators were able to find the parameters
of the affine transformation to register the images with acceptable accuracies. These
data sets do not contain distant outliers and errors at the points have distributions that
are close to normal with a mean of 0. Among the estimators tested, RM, LMS, and
LTS estimators produce the highest accuracies. Considering the high computational
requirement of RM estimator, LMS and LTS stand out among the others in overall
speed and accuracy in estimating model parameters when using the data sets of the
kind shown in Table 8.1.

For the data sets of the kind depicted in Fig. 8.5, where distant outliers are
present, results in Table 8.12 show that R estimator with the scoring function given
in (8.56) is the most robust among the estimators tested, followed by LTS and LMS
estimators. The OLS and WLS estimators are not to be used when the provided data
contains distant outliers.

Although some estimators performed better than others on the limited tests per-
formed in this chapter, it should be mentioned that one may be able to find a data set
where any of the estimators can perform better than many of the other estimators.
When data sets represent coordinates of corresponding points obtained by a point
pattern matching algorithm, it is anticipated that the R-2 estimator will perform
better than others when distant outliers are present, and LTS and LMS estimators
will perform better than other estimators when the correspondences do not contain
distant outliers.

When the ratio of outliers and inliers is small and the outliers are distant from the
model, methods to remove the outliers have been developed. Hodge and Austin [8]
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provided a survey of such methods. Outlier detection, however, without information
about the underlying model is not always possible especially when the number of
outliers is nearly the same as the number of inliers, or when outliers are not very
far from the model to be estimated. Robust estimators coupled with the geometric
constraint that hold between images of a scene can determine model parameters
in the presence of a large number of outliers and without use of outlier detection
methods.

The list of estimators discussed in this chapter is by no means exhaustive. For a
more complete list of estimators, the reader is referred to excellent monographs by
Andrews et al. [3], Huber [12], Hampel et al. [7], Rousseeuw and Leroy [27], and
Wilcox [36].

8.11 Principal Component Analysis (PCA)

Suppose feature vector x = {x0, x1, . . . , xN−1} represents an observation from a
phenomenon and there are m such observations: {xi : i = 0, . . . ,m − 1}. We would
like to determine an N × N matrix A that can transform x to a new feature vector
y = Atx that has a small number of high-valued components. Such a transformation
makes it possible to reduce the dimensionality of x while maintaining its overall
variation.

Assuming each feature is normalized to have mean of 0 and a fixed scale, such
as 1, then the expected value of yyt can be computed from

E
(
yyt

) = E
(
AtxxtA

)

= AtE
(
xxt

)
A

= AtΣxA (8.57)

where

Σx =

⎡

⎢⎢
⎣

E(x0x0) E(x0x1) . . . E(x0xN−1)

E(x1x0) E(x1x1) . . . E(x1xN−1)

· · . . . ·
E(xN−1x0) E(xN−1x1) . . . E(N − 1xN−1)

⎤

⎥⎥
⎦ (8.58)

is the covariance matrix with its ij th entry computed from

E(xixj ) = 1

m

m−1∑

k=0

(
xk
i xk

j

)
. (8.59)

By letting the eigenvectors of Σx represent the columns of A, AtΣxA will become
a diagonal matrix with diagonal entries showing the eigenvalues of Σx .

Suppose the eigenvalues of Σx are ordered so that λi ≥ λi+1 for 0 ≤ i < N − 1
and eigenvectors corresponding to the eigenvalues are v0,v1, . . . ,vN−1, we can then
write

yi = vt
ix, i = 0, . . . ,N − 1. (8.60)
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If transformed features are known, the original features can be computed from

x =
N−1∑

i=0

yivi . (8.61)

An approximation to x using eigenvectors of Σx corresponding to its n largest
eigenvalues is obtained from

x̂ =
n−1∑

i=0

yivi . (8.62)

Squared error in this approximation will be [23, 34]

E
(‖x − x̂‖2) =

N−1∑

i=n

vt
iλivi

=
N−1∑

i=n

λi (8.63)

for using y0, y1, . . . , yn−1 instead of x0, x1, . . . , xN−1.
Since the eigenvalues depend on the scale of features, the ratio measure [23]

rn =
N−1∑

i=n

λi

/N−1∑

i=0

λi (8.64)

may be used as a scale-independent error measure to select the number of principal
components needed to achieve a required squared error tolerance in approximation.

To summarize, following are the steps to reduce the dimensionality of feature
vector x from N to n < N using a training data set containing m observations:

1. Estimate Σx from the m observations.
2. Find eigenvalues and eigenvectors of Σx . Order the eigenvalues from the largest

to the smallest: λ0 ≥ λ1 ≥ · · · ≥ λN−1. Note that eigenvalue λi has an associating
eigenvector, vi .

3. Find the largest n such that
∑N−1

i=n λi < ε, where ε is the required squared error
tolerance.

4. Given a newly observed feature vector x, project x to the n-dimensions defined
by the eigenvectors corresponding to the n largest eigenvalues of Σx . That is
compute yi = vt

ix for i = 0, . . . , n−1. y represents a point in n < N dimensions,
thereby, reducing the dimensionality of x while ensuring the squared approxima-
tion error stays below the required tolerance.

PCA was first used by Pearson [21] to find the best-fit line or plane to high di-
mensional points. The best-fit line or plane was found to show the direction of most
uncorrelated variation. Therefore, PCA transforms correlated values into uncorre-
lated values, called principal components. The components represent the direction
of most uncorrelated variation, the direction of second most uncorrelated variation,
and so on.
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PCA is also called Karhunen–Loève (K–L) transform and Hotelling transform.
Given a feature vector containing N features, in an attempt to create n < N new fea-
tures that carry about the same variance from the linear combinations of the features,
Hotelling [10] (also see [16, 17]) found the linear coefficients relating the original
features to new ones in such a way that the first new feature had the largest variance.
Then, the second feature was created in such a way that it was uncorrelated with the
first and had as large a variance as possible. He continued the process until n new
features were created. The coefficients of the linear functions defining a new feature
in terms of the original features transform the original features to the new ones.

Rao [23] provided various insights into the uses and extensions of PCA. Watan-
abe [35] showed that dimensionality reduction by PCA minimizes average classifi-
cation error when taking only a finite number of coefficients in a series expansion
of a feature vector in terms of orthogonal basis vectors. He also showed that PCA
minimizes the entropy of average square coefficients of the principal components.
These two characteristics make PCA a very efficient tool for data reduction. The di-
mensionality reduction power of PCA using artificial and real data has been demon-
strated by Kittler and Young [18]. For a thorough treatment of PCA and its various
applications, see the excellent monograph by Jolliffe [16].

Since PCA calculates a new feature using all original features, it still requires
high-dimensional data collection. It would be desirable to reduce the number of
original features while preserving sufficient variance in collected features without
changing the number of principal components. Jolliffe [14, 15] suggested discarding
features that contributed greatly to the last few principal components, or selecting
features that contributed greatly to the first few principal components. Therefore, if

y = Atx, (8.65)

or

yi =
N−1∑

j=0

Ajixj , i = 0, . . . ,N − 1, (8.66)

where Aji denotes the entry at column i and row j in matrix A, then magnitude of
Aji determines the contribution of xj to yi .

Since this method finds ineffective features in the original set by focusing on
the principal components one at a time, the influence of an original feature on a
number of principal components is not taken into consideration. Mao [19] suggested
finding the contribution of an original feature on all selected principal components.
The significance of an original feature on the selected n principal components is
determined by calculating the squared error in (8.63) once using all features and
another time using all features except the feature under consideration. The feature
producing the least increase in error is then removed from the original set and the
process is repeated until the squared error among the remaining features reaches a
desired tolerance.

Since each transformed feature in PCA is a linear combination of the original fea-
tures, the process detects only linear dependency between features. If dependency
between features is nonlinear, nonlinear approaches [29, 30, 33] should be used to
reduce the number of features.
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