
Chapter 2
Similarity and Dissimilarity Measures

Given two sequences of measurements X = {xi : i = 1, . . . , n} and Y = {yi : i =
1, . . . , n}, the similarity (dissimilarity) between them is a measure that quantifies
the dependency (independency) between the sequences. X and Y can represent mea-
surements from two objects or phenomena. In this chapter, we assume they represent
images and xi and yi are intensities of corresponding pixels in the images. If X and
Y represent 2-D images, the sequences can be considered intensities in the images
in raster-scan order.

A similarity measure S is considered a metric if it produces a higher value as
the dependency between corresponding values in the sequences increases. A metric
similarity S satisfies the following [92]:

1. Limited Range: S(X,Y ) ≤ S0, for some arbitrarily large number S0.
2. Reflexivity: S(X,Y ) = S0 if and only if X = Y .
3. Symmetry: S(X,Y ) = S(Y,X).
4. Triangle Inequality: S(X,Y )S(Y,Z) ≤ [Z(X,Y ) + S(Y,Z)]S(X,Z).

S0 is the largest similarity measure between all possible X and Y sequences.
A dissimilarity measure D is considered a metric if it produces a higher value as

corresponding values in X and Y become less dependent. A metric dissimilarity D

satisfies the following for all sequences X and Y [23, 92]:

1. Nonnegativity: D(X,Y ) ≥ 0.
2. Reflexivity: D(X,Y ) = 0 if and only if X = Y .
3. Symmetry: D(X,Y ) = D(Y,X).
4. Triangle Inequality: D(X,Y ) + D(Y,Z) ≥ D(X,Z).

Although having the properties of a metric is desirable, a similarity/dissimilarity
measure can be quite effective without being a metric. Similarity/dissimilarity mea-
sures that are insensitive to radiometric changes in the scene or invariant to sensor
parameters are often not metrics. For instance, ordinal measures are not metrics but
are quite effective in comparing images captured under different lighting conditions,
and measures that are formulated in terms of the joint probability distribution of im-
age intensities are not metrics but are very effective in comparing images captured
by different sensors.

A.A. Goshtasby, Image Registration,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-2458-0_2, © Springer-Verlag London Limited 2012

7

http://dx.doi.org/10.1007/978-1-4471-2458-0_2


8 2 Similarity and Dissimilarity Measures

Fig. 2.1 (a) Observed image
X and saved images
{Yi : i = 1, . . . ,N} are given
and it is required to find the
saved image most similar to
the observed image.
(b) Template X and windows
{Yi : i = 1, . . . ,N} in an
observed image are given and
it is required to find the
window that is most similar
to the template

Various similarity/dissimilarity measures have been formulated throughout the
years, each with its own strengths and weaknesses. Some measures use raw image
intensities, some normalize the intensities before using them, some use the ranks of
the intensities, and some use joint probabilities of corresponding intensities.

The similarity and dissimilarity measures are discussed in the context of two real
problems. In one problem, an observed image and a number of saved images are
given and it is required to determine the saved image that best matches the observed
image (Fig. 2.1a). The saved images could be images in a database and the observed
image could be the one that is being viewed by a camera.

The second problem involves locating an object of interest in an observed image
where the model of the object is given in the form of a template and the observed
image is an image being viewed by a camera (Fig. 2.1b). To locate the object within
the observed image, there is a need to find the best-match position of the template
within the observed image.

The two problems are similar in the sense that both require determination of
the similarity between two images or between a template and a window in a larger
image. We will denote the observed image in the first problem and the template
in the second problem by X and denote a saved image in the first problem and
a window within the observed image in the second problem by Y . We will also
assume X and Y contain n pixels ordered in raster-scan order. Moreover, we assume
the images do not have rotational and scaling differences. Therefore, if images X

and Y truly match, corresponding pixels in the images will show the same scene
point.

In the following sections, properties of various similarity and dissimilarity mea-
sures are reviewed and their strengths and weaknesses are identified. In addition
to reviewing measures in the literature, four additional measures are newly in-
troduced. The discrimination powers of the measures are determined using syn-
thetic and real images and their sensitivities to noise and image blurring as well
as to intensity and geometric differences between images are determined and com-
pared.
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2.1 Similarity Measures

2.1.1 Pearson Correlation Coefficient

The correlation coefficient between sequences X = {xi : i = 1, . . . , n} and Y = {yi :
i = 1, . . . , n} is defined by

r =
∑n

i=1(xi − x̄)(yi − ȳ)

{∑n
i=1(xi − x̄)2} 1

2 {∑n
i=1(yi − ȳ)2} 1

2

, (2.1)

where x̄ = 1
n

∑n
i=1 xi , and ȳ = 1

n

∑n
i=1 yi . Correlation coefficient was first discov-

ered by Bravais in 1846, “Memoires par divers savants,” T, IX, Paris, 1846, pp. 255–
332 [86] and later shown by Pearson [65] to be the best possible correlation between
two sequences of numbers.

Dividing the numerator and denominator of (2.1) by n, we obtain

r =
1
n

∑n
i=1(xi − x̄)(yi − ȳ)

{ 1
n

∑n
i=1(xi − x̄)2} 1

2 { 1
n

∑n
i=1(yi − ȳ)2} 1

2

, (2.2)

which shows the sample covariance over the product of sample standard deviations.
Equation (2.2) can also be written as

r = 1

n

n∑

i=1

(
(xi − x̄)

σx

)(
(yi − ȳ)

σy

)

, (2.3)

or

r = 1

n
X̄t Ȳ , (2.4)

where X̄ and Ȳ are X and Y after being normalized with respect to their means and
standard deviations, and t denotes transpose.

Correlation coefficient r varies between −1 and +1. The case r = +1, called
perfect positive correlation, occurs when X̄ and Ȳ perfectly coincide, and the case
r = −1, called the perfect negative correlation, occurs when X̄ and negative of Ȳ

perfectly coincide. Under perfect positive or negative correlation:

xi − x̄

σx

= ±yi − ȳ

σy

, (2.5)

or

y = ±σy

σx

(x − x̄) + ȳ, (2.6)

showing that corresponding x and y values are related linearly.
When r is not equal to 1 or −1, the line best fitting corresponding values in X

and Y is obtained from [38]:

y′ = r
σy

σx

(x − x̄) + ȳ. (2.7)
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Therefore, correlation coefficient can be considered the coefficient of the linear re-
lationship between corresponding values in X and Y .

If X and Y represent intensities in two images obtained under different lighting
conditions of a scene and corresponding intensities are linearly related, a high sim-
ilarity will be obtained between the images. When images are in different modal-
ities so that corresponding intensities are nonlinearly related, perfectly matching
images may not produce high-enough correlation coefficients, causing mismatches.
Therefore, Pearson correlation coefficient is suitable for determining the similarity
between images with intensities that are known to be linearly related.

Pearson correlation coefficient is a relatively efficient similarity measure as it
requires a small number of additions and multiplication at each pixel. Therefore, its
computational complexity for images of size n pixels is on the order n. If correlation
coefficient is to be used to locate a template in an image, and if N subimages or
windows exist in the image that can be compared to the template, the time required
to locate the template inside the image will be proportional to Nn. This computation
time can be considerable, especially when N and n are large. A two-stage process
to speed up this search has been proposed [35].

To speed up template-matching search by correlation coefficient, Anuta [3] took
advantage of the high speed of the fast Fourier transform (FFT) algorithm. Assum-
ing V represents the 2-D image inside which a 2-D template is to be found and U

represents the template padded with zeros to be the same size as V , the result of cor-
relating the template with the best-matching window in the image (Fig. 2.1b) can be
computed by locating the peak of

C = F−1[F (U) · F ∗(V )
]
, (2.8)

where F implies 2-D Fourier transform, F−1 implies 2-D inverse Fourier trans-
form, ∗ implies complex conjugate, and · implies point-by-point multiplication.
Note that use of FFT requires that images U and V be the same size and have
dimensions that are powers of 2. If dimensions of the images are not powers of 2,
the images are padded with zeros so their dimensions become powers 2.

Use of FFT requires that the images be treated as 2-D arrays rather than 1-D
arrays. Also note that when FFT is used, individual windows in an image cannot
be normalized with respect to their means and standard deviations because all wid-
ows are collectively compared to the template. However, because Fourier transform
measures the spatial frequency characteristics of the template and the image, the
process is not sensitive to the absolute intensities but rather to the spatial variations
of intensities in the images.

Kuglin and Hines [48] observed that information about the displacement of one
image with respect to another is included in the phase component of the cross-
power spectrum of the images. If φ = φ1 − φ2 is the phase difference between two
images, the inverse Fourier transform of eφ will create a spike at the point showing
the displacement of one image with respect to the other. Denoting F (U) by F and
F (V ) by G, then phase correlation

Cp = F−1
[

F · G∗

|F · G∗|
]

, (2.9)
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Fig. 2.2 (a) A template. (b) An image containing the template. (c) The correlation image with
intensity at a pixel showing the correlation coefficient between the template and the window cen-
tered at the pixel in the image. The dark boundary in the correlation image represents pixels where
matching is not possible because a part of the window centered there will fall outside the image.
The pixel with the highest correlation coefficient, which shows the location of the center of the
window best matching the template is encircled. (d) The real part of image Cp calculated by for-
mula (2.9), showing the phase correlation result with the location of the spike encircled. The spike
shows the location of the upper-left-hand corner of the template within the image

where division is carried out point-by-point, separates the phase from the magnitude
in Fourier transform. The relative position of the template within the observed image
will appear as a spike in image Cp exactly at the location where the correlation will
peak when searching for the template within the image. This is demonstrated in an
example in Fig. 2.2.

Although phase correlation is already very fast compared to iterative search with
correlation coefficient, Alliney and Morandi [1] made the computations even faster
by projecting the images into the x and y axes and matching the projections using
1-D Fourier transform. To reduce the boundary effects, Gaussian weights were used.

The phase correlation idea has been extended to images with rotational differ-
ences [21] and images with rotational and scaling differences [12, 72]. Stone [87]
has provided an excellent review of phase correlation and its use in registration.

To make the matching process less dependent on absolute intensities in images,
Fitch et al. [26] used intensity gradients rather than raw intensities in the calcula-
tions. The operation, which is known as orientation correlation, creates a complex
image using gradients along x and y of each image and uses the complex gradient
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images in the calculations. If U and V represent the template and the image inside
which the template is to be found, and the template is padded with zeros to have the
same dimensions as the image, then complex images

Ud(x, y) = sgn

(
∂U(x, y)

∂x
+ j

∂U(x, y)

∂y

)

(2.10)

and

Vd(x, y) = sgn

(
∂V (x, y)

∂x
+ j

∂V (x, y)

∂y

)

, (2.11)

are prepared, where j = √−1 and sgn(a) = 0 if a = 0 and sgn(a) = a/|a|, other-
wise. If F and G are Fourier transforms of Ud and Vd , respectively, then

h = F−1(F · G∗) (2.12)

will represent a complex image, the real part of which will have a spike at the point
showing the location of the upper-left-hand corner of the template within the im-
age [26].

2.1.2 Tanimoto Measure

The Tanimoto measure between images X and Y is defined by [92]:

ST = XtY

‖X‖2 + ‖Y‖2 − XtY
(2.13)

= XtY

(X − Y)t (X − Y) + XtY
(2.14)

= XtY

‖X − Y‖2 + XtY
, (2.15)

where t implies transpose.
Comparing ST with r , we see that although the numerators of both represent

inner product, the one in correlation coefficient uses intensities that are normalized
with respect to their means and the one in Tanimoto measure uses the raw intensities.
While the denominator in correlation coefficient shows the product of the standard
deviations of X and Y , the denominator in the Tanimoto measure represents the
square Euclidean distance between X and Y plus the inner product of X and Y .

Tanimoto measure is proportional to the inner product of X and Y and inversely
proportional to the sum of the squared Euclidean distance and the inner product of
X and Y . The squared Euclidean distance between X and Y has the same effect as
the product of the standard deviations of X and Y and normalizes the measure with
respect to the scales of X and Y . Adding the inner product to the denominator in
the Tanimoto measure has an effect similar to normalizing X and Y with respect to
their means when divided by the inner product of X and Y . Therefore, Tanimoto
measure and correlation coefficient produce similar results. The Tanimoto measures
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Fig. 2.3 The similarity
image obtained while
searching for the template of
Fig. 2.2a in the image of
Fig. 2.2b using the Tanimoto
measure. The best-match
position of the template
within the image is encircled

obtained by matching the template in Fig. 2.2a to windows in the image in Fig. 2.2b
are shown in the similarity image in Fig. 2.3. The point of highest similarity, which
shows the best-match position of the template within the image, is encircled.

The computational complexity of Tanimoto measure is on the order of n. Sim-
ilar to correlation coefficient, it requires the calculation of the inner product, but
rather than calculating the standard deviations of X and Y it calculates the squared
Euclidean distance between X and Y , and rather than normalizing X and Y with
respect to their means it calculates the inner product of X and Y .

2.1.3 Stochastic Sign Change

If images X and Y are exactly the same except for one being a noisy version of the
other, the values in the difference image D = {xi − yi : i = 1, . . . , n} will frequently
change between positive and negative values due to noise. If Y is a shifted version
of X, there will be fewer sign changes in the difference image than when X and
Y perfectly align. This suggests that the number of sign changes can be used as a
similarity measure to quantify the degree of match between the two images. The
larger the number of sign changes in the difference image, the higher the match-
rating between the images will be [98, 99].

Contrary to other similarity measures that produce a higher matching accuracy
as image detail increases, this measure performs best when the images contain
smoothly varying intensities with added zero-mean noise of a small magnitude.
Strangely, this measure works better on images containing a small amount of noise
than on noise-free images. The template-matching result by this similarity measure
using the template of Fig. 2.2a and the image of Fig. 2.2b is shown in Fig. 2.4a. The
best-match position of the template within the image is encircled.

This measure can be implemented efficiently by simply finding the number of
zero-crossings in the difference image. Since no sign changes are obtained when
X = Y , in addition to the zero-crossings, points of zero difference are counted as a
part of the similarity measure. Determination of the similarity between two images
requires a few additions and comparisons at each pixel. Therefore, the computa-
tional complexity of the measure is on the order of n.
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Fig. 2.4 Similarity images
obtained by matching the
template of Fig. 2.2a to
windows in the image of
Fig. 2.2b using (a) stochastic
sign change and
(b) deterministic sign change.
The best-match position of
the template within the image
in each case is encircled

2.1.4 Deterministic Sign Change

This measure is similar to stochastic sign change except that noise is intentionally
added to one of the images to produce more sign changes in perfectly matching
images. Therefore, given images X = {xi : i = 1, . . . , n} and Y = {yi : i = 1, . . . , n},
a new image Z = {zi : i = 1, . . . , n} is created from X by setting

zi = xi + q(−1)i . (2.16)

This operation will add q to every other pixel in X while subtracting q from pixels
adjacent to them, simulating the addition of noise to X. The number of sign changes
in the difference image D = {zi − yi : i = 1, . . . , n} is counted and used as the
similarity measure [100]. The choice of parameter q greatly affects the outcome. q

should be taken larger than noise magnitude in Y , while smaller than the intensity
variation between adjacent pixels in X.

Since q is a fixed number, it can be estimated through a training process using
images where coordinates of corresponding points are known. During the training
process, q is varied until results closest to those expected are obtained. If estimation
of q through a training process is not possible, it should be set to twice the standard
deviation of noise, and if standard deviation of noise is not known, q should be set
to twice the standard deviation of intensity differences between X and its smoothed
version [100].

The similarity image obtained by matching the template of Fig. 2.2a to windows
of the same size in the image of Fig. 2.2b by deterministic sign change is shown in
Fig. 2.4b. Because the template is a cutout of the same image, stochastic sign change
has produced a more distinct peak at the best-match position than the deterministic
sign change. In general, however, experiments have shown that deterministic sign
change succeeds more frequently than stochastic sign change in matching [100].

Although the computational complexity of deterministic sign change is on the
order of n for images of size n pixels, it has a much larger coefficient than that by
stochastic sign change because of the need to estimate parameter q and create a
noisy version of the template using (2.16).
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Fig. 2.5 Template-matching
using the template of
Fig. 2.2a, the image of
Fig. 2.2b, and the minimum
ratio similarity measure. The
best-match position of the
template within the image is
encircled

2.1.5 Minimum Ratio

If image Y = {yi : i = 1, . . . , n} is a noisy version of image X = {xi : i = 1, . . . , n}
and if amplitude of noise is proportional to signal strength, then by letting ri =
min{yi/xi, xi/yi}, and calculating

mr = 1

n

n∑

i=1

ri , (2.17)

we see that mr measures the dependency between X and Y . When noise is not
present, ri will be equal to 1 and so will mr . When X and Y do not depend on each
other, yi/xi and xi/yi will be quite different, one becoming much smaller than the
other. As a consequence, when the sum of the smaller ratios is calculated, it will
become much smaller than 1. Therefore, the closer mr is to 1, the more similar the
images will be. Since ratios of intensities are considered in the calculation of the
similarity measure, noise that varies with image intensities will have a relatively
smaller effect on the calculated measure than measures that are calculated from the
difference of image intensities.

Although resistant to noise, minimum ratio is sensitive to intensity difference
between images and so is not suitable for matching images captured of a scene
under different lighting conditions or with different sensors. It, however, should
do well if the images are obtained under the same lighting condition and by the
same sensor, such as stereo images or frames in a video. The template-matching
result using the template of Fig. 2.2a and the image of Fig. 2.2b by minimum ratio
similarity measure is shown in Fig. 2.5.

Computation of minimum ratio requires only a small number of simple opera-
tions at each pixel. Therefore, its computational complexity is on the order of n.

Proposition 2.1 Minimum ratio is a metric.

Proof To be a metric, minimum ratio has to (1) have a limited range, (2) be reflexive,
(3) be symmetric, and (4) satisfy the triangle inequality.

First, minimum ratio has a limited range because the highest value it can have at
a pixel is 1, and so the maximum value it can produce for images of size n according
to formula (2.17) is 1, which happens when intensities of corresponding pixels in the
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images are exactly the same. Second, minimum ratio is reflexive because when X =
Y , we obtain mr = 1. When mr = 1, we have to have ri = 1 for all i, and that means
xi = yi for all i; therefore, X = Y . Third, minimum ratio is symmetric because
switching X and Y will result in the same measure since max{ai, bi} is the same
as max{bi, ai}. Finally, to show that minimum ratio satisfies triangle inequality, we
have to show that
(

1

n

∑

i

min

{
xi

yi

,
yi

xi

})(
1

n

∑

i

min

{
yi

zi

,
zi

yi

})

≤
(

1

n

∑

i

min

{
xi

yi

,
yi

xi

}

+ 1

n

∑

i

min

{
yi

zi

,
zi

yi

})(
1

n

∑

i

min

{
xi

zi

,
zi

xi

})

. (2.18)

For the extreme cases when X = Y = Z, we obtain mr = 1 when comparing any
pair of images and so (2.18) reduces to 1 ≤ 2. For the extreme case where images
X, Y , and Z are least similar so that mr = 0 for any pair of images, relation (2.18)
reduces to 0 ≤ 0. As the images become more similar, the difference between left
and right sides of (2.18) increases, and as the images become less similar, the left
and right sides of (2.18) get closer, satisfying relation (2.18). While values on the
left-hand side of (2.18) vary between 0 and 1 from one extreme to another, values
on the right-hand side of (2.18) vary between 0 and 2 from one extreme to another,
always satisfying relation (2.18). �

2.1.6 Spearman’s Rho

A similarity measure relating to the Pearson correlation coefficient is Spearman
rank correlation or Spearman’s Rho [86]. If image intensities do not contain ties
when they are ordered from the smallest to the largest, then by replacing the intensi-
ties with their ranks and calculating the Pearson correlation coefficient between the
ranks in two images, Spearman rank correlation will be obtained. This is equivalent
to calculating [16]:

ρ = 1 − 6
∑n

i=1[R(xi) − R(yi)]2

n(n2 − 1)
, (2.19)

where R(xi) and R(yi) represent ranks of xi and yi in images X and Y , respec-
tively. To eliminate possible ties among discrete intensities in images, the images
are smoothed with a Gaussian of a small standard deviation, such as 1 pixel, to pro-
duce unique floating-point intensities. Compared to r , ρ is less sensitive to outliers
and, thus, less sensitive to impulse noise and occlusion. It is also less sensitive to
nonlinear intensity difference between images than Pearson correlation coefficient.

Spearman rank correlation has been used to measure trends in data as a function
of time or distance [29, 45, 110]. When comparing two images, ρ can be used to
determine the dependency of corresponding intensities in the images.

Computationally, ρ is much slower than r primarily due to the need for order-
ing intensities in X and Y , which requires on the order of n log2 n comparisons.
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Therefore, if images X and Y do not contain impulse noise or occluding parts and
intensities in the images are related linearly, no gain in accuracy is achieved by us-
ing ρ instead of r . However, under impulse noise, occlusion, and nonlinear intensity
differences between images, the additional computational cost of ρ over r may well
be worth it.

In a facial recognition study, Ayinde and Yang [4] compared Spearman rank cor-
relation and Pearson correlation coefficient, finding that under considerable inten-
sity differences between images, occlusion, and other random differences between
images, Spearman’s ρ consistently produced a higher discrimination power than
Pearson correlation coefficient. Muselet and Trémeau [62] observed that the rank
measures of color components of images captured under different scene illumina-
tions remain relatively unchanged. Based on this observation, they develop a robust
object recognition system using the rank correlation of color components.

2.1.7 Kendall’s Tau

If xi and yi , for i = 0, . . . , n, show intensities of corresponding pixels in X

and Y , then for i �= j , two possibilities exist: (1) sign(xj − xi) = sign(yj − yi)

or (2) sign(xj − xi) = − sign(yj − yi). The first case is called concordance and the
second case is called discordance. If a large number of corresponding intensity pairs
are chosen from X and Y and there are more concordants than discordants, this is
an indication that intensities in X and Y change together, although the magnitude

of the change can differ from X to Y . Assuming that out of possible
(n

2

)
combina-

tions, Nc pairs are concordants and Nd pairs are discordants, Kendall’s τ is defined
by [41]:

τ = Nc − Nd

n(n − 1)/2
. (2.20)

A variation of the Kendall’s τ has been proposed [84] that places more emphasis
on high (low) ranking values than on low (high) rankings ones. If, for example, noise
is known to be influencing low-rank intensities more than high-rank intensities, the
weighted τ makes it possible to put more emphasis on less noisy pixels than on
noisy ones.

It has been shown [47] that if bivariate (X,Y ) is normally distributed, Kendall’s
τ is related to Pearson correlation coefficient r by

r = sin(πτ/2). (2.21)

This relation shows that if (X,Y ) is normally distributed, Pearson correlation co-
efficient can more finely distinguish images that represent different scenes than
Kendall’s τ because the sinusoidal relation between τ and r enables finer detec-
tion of changes in r in the neighborhoods of τ = 0 compared to the neighborhood
of τ = 1. Conversely, Kendall’s τ can more finely distinguish similar images from
each other when compared to Pearson correlation coefficient. Chen [11], Fredricks
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Fig. 2.6 Similarity images
obtained when matching the
template of Fig. 2.2a to
windows in the image of
Fig. 2.2b using
(a) Spearman’s Rho, and
(b) Kendall’s Tau. The
best-match position of the
template within the image in
each case is encircled

and Nelsen [27], and Kendall [42] have shown that when X and Y are independent,
ρ/τ approaches 3/2 as n approaches infinity. This result implies that Spearman’s
ρ and Kendall’s τ have the same discrimination power when comparing images of
different scenes.

Kendall’s τ and Spearman’s ρ both measure the association between two ordinal
variables [31]. Both ρ and τ vary between −1 and +1, but for a considerable portion
of this range, the absolute value of ρ is 1.5 times that of τ . Therefore, ρ and τ are
not directly comparable. Gilpin [33] has provided formulas for converting Kendall’s
τ to Spearman’s ρ and to Pearson’s r .

An example comparing Spearman’s ρ and Kendall’s τ in template matching is
given in Fig. 2.6. Figure 2.2a is used as the template and Fig. 2.2b is used as the
image. The similarity images obtained by Spearman’s ρ and Kendall’s τ are shown
in Figs. 2.6a and 2.6b, respectively. Compared to the similarity images obtained so
far we see that the similarity images obtained by Spearman’s ρ and Kendall’s τ show
most distinct peaks at the best-match position, and among the two, the Kendall’s
peak is more distinct.

Kendall’s τ is one of the costliest similarity measures tested in this chapter. It
requires computation of the concordants and discordants out of n(n − 1)/2 combi-
nations of corresponding intensity pairs in images of size n pixels. Therefore, the
computational complexity of Kendall’s τ is on the order of n2 operations. In com-
parison, Pearson correlation coefficient requires on the order of n operations, and
Spearman rank correlation requires on the order of n log2 n.

2.1.8 Greatest Deviation

Suppose intensities in an image are replaced by their ranks from 1 to n, where n

is the number of pixels in the image. Suppose no ties exist among the intensities.
Since ties are possible in a digital image, to remove them, the image is convolved
with a Gaussian of a small standard deviation, such as 1 pixel. This will maintain
image details while removing the ties by converting the intensities from integer to
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Fig. 2.7 Template-matching
results of (a) the greatest
deviation and (b) the ordinal
measure when using the
template of Fig. 2.2a and the
image of Fig. 2.2b

float. Assuming R(xi) is the rank of intensity xi in image X and R(yi) is the rank
of intensity yi in image Y , let

di =
i∑

j=1

I
[
R(xi) ≤ i < R(yj )

]
, (2.22)

where I [E] = 1 if E is true and I [E] = 0 if E is false. Also, let

Di =
i∑

j=1

I
[
n + 1 − R(xi) > R(yi)

]
, (2.23)

then the greatest deviation between X and Y is calculated from [32]:

Rg = maxi (Di) − maxi (di)

n/2
. (2.24)

As an example, consider the following:

i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
xi : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
yi : 14 11 16 2 12 13 7 9 10 3 8 1 15 6 4 5
di : 1 2 3 3 4 5 5 6 6 5 4 3 3 2 1 0
Di : 1 2 1 2 2 1 2 2 2 2 2 3 3 2 1 0

(2.25)

In this example, we find Rg = (3 − 6)/8 = −3/8. It has been shown that Rg varies
between −1 and 1. Rg = 1 if yi monotonically increases with xi as i increases,
and Rg = 0 if X and Y are independent. Similar to Spearman’s ρ and Kendall’s τ ,
this similarity measure is less sensitive to impulse noise (or occlusion in images)
than correlation coefficient. However, for this same reason, it dulls the similarity
measure and in the absence of impulse noise or outliers it may not be as effective
as correlation coefficient. The similarity image obtained by searching the template
of Fig. 2.2a in the image of Fig. 2.2b using this similarity measure is shown in
Fig. 2.7a. The best-match position of the template within the image is encircled.

The greatest deviation similarity measure is computationally the costliest mea-
sure tested in this chapter. It first requires ordering the intensities in the images,
which requires on the order of n log2 n comparisons. Then, it requires on the order
of n2 comparisons to calculate di and Di . Therefore, the computational complexity
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of the greatest deviation is on the order of n2 with a coefficient larger than that in
Kendall’s τ .

2.1.9 Ordinal Measure

This similarity measure is the same as the greatest deviation except that it uses only
Di to define the similarity between two images [6]:

Ro = maxi (Di)

n/2
. (2.26)

The discrimination power of the ordinal measure is comparable to that of greatest
deviation, with half the computations because it does not calculate di , which takes
about the same time as calculating Di . An example of template matching using
this similarity measure is given in Fig. 2.7b. Figure 2.2a is used as the template and
Fig. 2.2b is used as the image. The position of the highest ordinal value, which iden-
tifies the best match position of the template within the image is encircled. Greatest
deviation and ordinal measure have produced very similar results.

2.1.10 Correlation Ratio

Correlation ratio is a similarity measure that quantifies the degree at which Y is a
single-valued function of X and was first proposed by Pearson [66]. To find the cor-
relation ratio between images X and Y , for entries in X with intensity i, intensities
at the corresponding entries in Y are found. If mapping of intensities from X to Y is
unique, this mapping will be a single-valued function; however, if an intensity in X

corresponds to many intensities in Y , the mapping will not be unique. If intensities
in Y are a single-valued function of intensities in X with a small amount of zero-
mean noise, a narrow band will appear centered at the single-valued function. The
standard deviation of intensities in Y that correspond to each intensity i in X can be
used to measure the width of the band at intensity i:

σi =
{

1

ni

∑

xi

(
Y [xi] − mi

)2
} 1

2

, (2.27)

where xi shows an entry in X with intensity i, and Y [xi] shows the intensity at the
corresponding entry in Y , and ni is the number of entries in X with intensity i. mi

is the mean of intensities in Y corresponding to intensity i in X. σi measures the
scatter of intensities in Y that map to intensity i in X. Therefore, average scatter
over all intensities in X will be

σm = 1

256

255∑

i=0

σi, (2.28)
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and variance of σi for i = 0, . . . ,255 will be

D2 =
{

1

n

255∑

i=0

(
niσ

2
i

)
}

, (2.29)

where n = ∑255
i=0 ni . Then, correlation ratio of Y on X is defined by

ηyx =
√

1 − D2. (2.30)

ηyx lies between 0 and 1 and ηyx = 1 only when D = 0, showing no variance in
intensities of Y when mapping to intensities in X, and that implies a unique mapping
from X to Y .

Given images X and Y of size n pixels, the steps to calculate the correlation ratio
between the images can be summarized as follows:

1. Find entries in X that have intensity i; suppose there are ni such entries, for
i = 0, . . . ,255.

2. If xi is an entry in X that has intensity i, find the intensity at the corresponding
entry in Y . Let this intensity be Y [xi]. Note that there are ni such intensities.

3. Find the average of such intensities Y [xi]: mi = 1
ni

∑
xi

Y [xi].
4. Find the variance of intensities in Y corresponding to intensity i in X: σ 2

i =
1
ni

∑
xi

(Y [xi] − mi)
2.

5. Finally, calculate the correlation ratio from ηyx =
√

1 − 1
n

∑255
i=0 niσ

2
i .

As the variance of intensities in Y that map to each intensity in X decreases, the
correlation ratio between X and Y increases. This property makes correlation ratio
suitable for comparing images that have considerable intensity differences when the
intensities of one is related to the intensities of the other by some linear or nonlinear
function. Combining Pearson correlation coefficient r and correlation ratio η, we
can determine the linearity of intensities in X when mapped to intensities in Y . The
measure to quantify this linearity is (η2 − r2) [18] with the necessary condition for
linearity being η2 − r2 = 0 [7].

Woods et al. [107] were the first to use correlation ratio in registration of mul-
timodality images. Roche et al. [75, 76] normalized D2 in (2.29) by the variance
of intensities in Y . That is, they replaced D2 with D2/σ 2, where σ 2 represents the
variance of intensities in Y .

A comparative study on registration of ultrasound and magnetic resonance
(MR) images [61] found correlation ratio producing a higher percentage of correct
matches than mutual information (described below). The superiority of correlation
ratio over mutual information was independently confirmed by Lau et al. [50] in
registration of inter- and intra-modality MR images. Matthäus et al. [57] used cor-
relation ratio in brain mapping to identify cortical areas where there is a functional
relationship between the electrical field strength applied to a point on the cortex and
the resultant muscle response. Maps generated by correlation ratio were found to be
in good agreement with maps calculated and verified by other methods.

Template-matching result using correlation ratio as the similarity measure, the
template of Fig. 2.2a, and the image of Fig. 2.2b is shown in Fig. 2.8. Among the
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Fig. 2.8 The similarity
image obtained when using
the correlation ratio as the
similarity measure and
searching for the template of
Fig. 2.2a in the image of
Fig. 2.2b

template-matching results presented so far, this similarity image shows the most
distinct peak, identifying the correct location of the template within the image with
least ambiguity.

Computationally, this measure requires calculation of 256 variances, each pro-
portional to 256ni additions and multiplications. ni is on average n/256, therefore,
the computational cost of correlation ratio is proportional to 256n.

2.1.11 Energy of Joint Probability Distribution

The relationship between intensities in two images is reflected in the joint proba-
bility distribution (JPD) of the images. After obtaining the joint histogram of the
images, each entry in the joint histogram is divided by n, the number of pixels in
each image to obtain the JPD of the images. If a single-valued mapping function ex-
ists that can uniquely map intensities in X to intensities in Y , the JPD of the image
will contain a thin density of points, showing the single-valued mapping function.
This is demonstrated in an example in Fig. 2.9.

If images X and Y are shifted with respect to each other, corresponding inten-
sities will not produce a single-valued mapping but will fall irregularly in the joint
histogram and, consequently, in the JPD of the images. This is demonstrated in an
example in Fig. 2.9d. Therefore, when intensities in two images are related by a
single-valued function and the two images perfectly align, their JPD will contain
a thin density of points, showing the single-valued mapping function that relates
intensities of corresponding pixels in the images. When the images do not match,
the JPD of the images will show a scattering of points. This indicates that the JPDs
of correctly matching and incorrectly matching images can be distinguished from
each other by using a scatter measure of their JPD. Correlation ratio was one way
of measuring this scattering. Energy is another measure that can be used to achieve
this. The energy of the JPD of two images is defined by [83]:

E =
255∑

i=0

255∑

j=0

p2
ij , (2.31)
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Fig. 2.9 (a), (b) Two images
with intensities related by a
sinusoidal function. (c) The
JPD of intensities in (a)
and (b). The darker a point is,
the higher the count is at the
point. (d) The JPD of
intensities in image (a) and a
translated version of
image (b)

Fig. 2.10 The similarity
image obtained when using
the energy of JPD as the
similarity measure to search
for the template of Fig. 2.2a
in the image of Fig. 2.2b

where pij is the value at entry (i, j) in the JPD of the images. Therefore, given
an observed image and many saved images, the saved image best matching the ob-
served image will be the one producing the highest JPD energy.

Energy of JPD can withstand considerable intensity differences between images,
but it quickly degrades with noise as noise causes intensities to shift from their true
values and produce a cloud of points in the JPD. This in turn, reduces the energy of
perfectly matching images, causing mismatches.

An example of template matching using the template of Fig. 2.2a and the image
of Fig. 2.2b with this similarity measure is given in Fig. 2.10. The presence of high
energy at the four corners of the similarity image, which corresponds to homoge-
neous areas in the image, indicates that any image can produce a high energy when
paired with a homogeneous image. If the homogeneous windows can be filtered out
through a preprocessing operation before calculating the energy, this similarity mea-
sure can be very effective in comparing multimodality images as evidenced by the
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very distinct and robust peak at the best-match position, with very small similarities
everywhere else.

Proposition 2.2 Energy of JPD is not a metric.

Proof Energy of the JPD of two images is not a metric because it is not reflexive.
When X = Y or xi = yi for i = 0, . . . , n, the JPD of the images will contain a
45-degree line, resulting in an entropy, which we denote by E0. A 45-degree line
in a JDP, however, can be obtained by adding a constant value to or multiplying a
constant value by intensities in Y . This means, the same energy E0 can be obtained
from different images Y when compared to X. Therefore, energy of JPD is not a
metric. For this same reason, any measure that is formulated in terms of the JPD of
two images is not a metric. �

Computationally, calculation of energy of JPD requires calculation of the JPD
itself, which is on the order of n, and calculation of the energy from the obtained
JPD, which is on the order of 2562 multiplications. Therefore, the computational
complexity of energy of JPD is on the order of n with an overhead, which is pro-
portional to 2562. This shows that the computational complexity of energy of JPD
varies linearly with n.

2.1.12 Material Similarity

We know that when two noise-free multimodality images perfectly match, their JPD
will contain a thin density of points, depicting the relation between intensities in the
images. Under random noise, the thin density converts to a band of points with the
width of the band depending on the magnitude of the noise. If noise is zero-mean, the
band will be centered at the single-valued curve representing the mapping. To reduce
the effect of noise, we smooth the JPD and look for the peak value at each column.
Assuming the horizontal axis in a JPD shows intensities in X and the vertical axis
shows intensities in Y , this smoothing and peak detection process will associate a
unique intensity in Y to each intensity in X, thereby removing or reducing the effect
of noise. The value at the peak can be used as the strength of the peak. This is
demonstrated in an example in Fig. 2.11.

If two images match perfectly, very close mapping functions will be obtained
when visiting every kth pixel once starting from 0 and another time starting from
k/2. Figure 2.11d shows such peaks when k = 4. If two images do not match, the
peaks detected in the two JPDs will be weaker and different. Taking this property
into consideration, we define a similarity measure, appropriately named material
similarity, which quantifies agreement between scene properties at corresponding
pixels in images captured by the same or different sensors:

Sm =
255∑

i=0

min{pij1, qij2}
|j1 − j2| + d

, (2.32)
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Fig. 2.11 (a) The JPD of the
image in Fig. 2.9a and the
image in Fig. 2.9b after being
corrupted with a Gaussian
noise of standard deviation
10. Darker points show
higher probabilities. The
horizontal axis shows
intensities in Fig. 2.9a and the
vertical axis shows intensities
in Fig. 2.9b. (b) Smoothing of
the JPD with a Gaussian of
standard deviation 3 pixels.
(c) Detected peaks of the
smoothed JPD. Stronger
peaks are shown darker.
(d) Overlaying of the peaks
obtained in the JPDs of the
images when visiting every
fourth entry, once starting
from entry 0 (red) and
another time starting from
entry 2 (light blue)

where i is the column number in a JPD and represents intensities in X. j1 and j2 are
the row numbers of the peaks in column i in the two JPDs. The magnitudes of the
peaks are shown by pij1 and qij2 in the two JPDs. d is a small number, such as 1, to
avoid a possible division by 0. The numerator in (2.32) takes the smaller peak from
the two JPDs at each column i. Therefore, if both peaks are strong, a higher simi-
larity will be obtained than when only one of the peaks is strong. The denominator
will ensure that as the peaks in the two JPDs at a column get closer and show the
same mapping, a higher similarity measure is obtained.

Because only the peak value in each column is used to calculate Sm, when noise
is zero-mean, the peak in the two JPDs is expected to coincide or be close to the
peak when the same image without noise is used. Therefore, this similarity measure
is less sensitive to zero-mean noise than the energy of JPD and other measures that
are based on JDP of image intensities. Experimental results show that when n is suf-
ficiently large, peaks in the JPDs with and without smoothing coincide, so there is
no need to smooth the JPDs before detecting the peaks. Smoothing is recommended
when n is small, typically smaller than 256. Template-matching results by material
similarity using the template of Fig. 2.2a and the image of Fig. 2.2b without and
with smoothing are shown in Figs. 2.12a and 2.12b. When noise is not present and
the template is sufficiently large, smoothing the JPDs does not affect the outcome.
Compared to the energy of JPD, we see that material similarity produces low simi-
larities everywhere except at the best-match position, showing a robust measure that
is not degraded when one of the images is homogeneous.

Computation of this similarity measure requires calculation of the two JPDs,
which is on the order of n, and detection of the peaks with or without smoothing,
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Fig. 2.12 (a) Template
matching with the material
similarity using the template
of Fig. 2.2a and the image of
Fig. 2.2b without smoothing
of the JPDs. (b) The same but
with smoothing of the JPDs.
The best-match position of
the template within the image
in each case is encircled

which is proportional to 2562. Therefore, similar to energy of JPD, the computa-
tional complexity of material similarity is a linear function of n but with larger
coefficients.

2.1.13 Shannon Mutual Information

Based on the observation that the JPD of registered images is less dispersed than
the JPD of misregistered images, Collignon et al. [15] devised a method for regis-
tering multimodality images. Relative joint entropy or mutual information was used
to quantify dispersion of JPD values and by maximizing it found best-matching
images. Dispersion is minimum when dependency of intensities of corresponding
pixels in images is maximum. Studholme et al. [88], Wells III et al. [104], Viola and
Wells III [101], and Maes et al. [53] were among the first to use mutual information
to register multimodality images.

Mutual information as a measure of dependence was introduced by Shannon
[82] and later generalized by Gel’fand and Yaglom [30]. The generalized Shannon
mutual information is defined by [24, 55]:

SMI =
255∑

i=0

255∑

j=0

pij log2
pij

pipj

, (2.33)

where pij is the probability that corresponding pixels in X and Y have intensities i

and j , respectively, and shows the value at entry ij th in the JPD of the images; pi is
the probability of intensity i appearing in image X and is equal to the sum of entries
in the ith column in the JDP of the images; and pj is the probability of intensity j

appearing in image Y and is equal to the sum of entries in the j th row of the JPD of
the images.

Equation (2.33) can be written as follows also:

SMI =
255∑

i=0

255∑

j=0

pij log2 pij

−
255∑

i=0

pi log2 pi −
255∑

j=0

pj log2 pj , (2.34)
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where

pi =
255∑

j=0

pij (2.35)

and

pj =
255∑

i=0

pij . (2.36)

Therefore, letting

Ei = −
255∑

j=0

pj log2 pj , (2.37)

Ej = −
255∑

i=0

pi log2 pi, (2.38)

and

Eij = −
255∑

i=0

255∑

j=0

pij log2 pij , (2.39)

we have

SMI = Ei + Ej − Eij , (2.40)

which defines mutual information as the difference between the sum of Shannon
marginal entropies and the joint entropy. Shannon’s mutual information is a power-
ful measure for determining the similarity between multimodality images, but it is
sensitive to noise. As noise in one or both images increases, dispersion in the JDP of
the images increases, reducing the mutual information between perfectly matching
images, causing mismatches.

When calculating the mutual information of images X and Y , the implied as-
sumption is that the images represent random and independent samples from two
distributions. This condition of independency is often violated because xi and xi+1

depend on each other, and yi and yi+1 depend on each other. As a result, cal-
culated mutual information is not accurate and not reflective of the dependency
between X and Y . To take into account the spatial information in images, rather
than finding the JPD of corresponding intensities in images, the JPD of intensity
pairs of adjacent pixels has been suggested [81]. The obtained mutual informa-
tion, which is called high-order mutual information has been shown to produce
more accurate registration results than traditionally used first-order mutual informa-
tion [81].

Note that the JPD of intensity pairs becomes a 4-D probability distribution and
to obtain a well populated 4-D JPD, the images being registered should be suf-
ficiently large to create a meaningful probability distribution. Otherwise, a very
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Fig. 2.13 Template matching
using Shannon mutual
information, the template of
Fig. 2.2a, and the image of
Fig. 2.2b. The best-match
position of the template
within the image is encircled

sparse array of very small numbers will be obtained, making the process ineffec-
tive and perhaps not any better than the regular entropy, if not worse. The require-
ment that images used in high-order mutual information be large makes high-order
mutual information unsuitable for registration of images with nonlinear geometric
differences because the subimages to be compared for correspondence cannot be
large.

To include spatial information in the registration process when using mutual in-
formation, Pluim et al. [68] used the product of mutual information and a gradi-
ent term instead of the mutual information alone. It should be noted that different-
modality images produce different gradients at corresponding pixels. Therefore, if
gradient information is used together with mutual information, the images to be reg-
istered should be of the same modality. This, however, beats the purpose of using
mutual information, which is designed for registration of different-modality images.
If images are in the same modality, other more powerful and computationally effi-
cient similarity measures are available for their registration.

Since mutual information between two images varies with the content and size
of images, Studholme et al. [89] provided a means to normalize mutual information
with respect to the size and content of the images. This normalization enables effec-
tive localization of one image with respect to another by sliding one image over the
other and determining the similarity between their overlap area.

Shannon mutual information is one of the most widely used similarity measures
in image registration. Point coordinates [71], gradient orientation [52], and phase
[60] have been used in the place of intensity to calculate mutual information and reg-
ister images. Shannon mutual information has been used to register multiresolution
[14, 54, 93, 108], monomodal [28, 112], multimodal [58, 103, 109], temporal [13],
deformed [17, 20, 43, 51, 85, 90, 96], and dynamic images [46, 105]. An example
of template matching using Shannon mutual information as the similarity measure
is given in Fig. 2.13.

The computational complexity of Shannon mutual information is proportional
to 2562 + n because creation of the JPD of two images of size n pixels takes
on the order of n additions and calculation of E3 takes on the order of 2562

multiplications and logarithmic evaluations. Its computational complexity, there-
fore, is a linear function of n but with larger coefficients than those of the energy
of JPD.
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Fig. 2.14 The similarity
image obtained when using
Rényi mutual information of
the order α = 2 to search for
the template of Fig. 2.2a in
the image of Fig. 2.2b. The
best-match position of the
template within the image is
encircled

2.1.14 Rényi Mutual Information

Rényi mutual information is defined in terms of Rényi entropy, and Rényi entropy
of order α of a finite discrete probability distribution {pi : i = 0, . . . ,255} is defined
by [73]:

Eα = 1

1 − α
log2

(
255∑

i=0

pα
i

)

, (2.41)

which is a generalization of Shannon entropy to a one-parameter family of en-
tropies. As parameter α of the entropy approaches 1, Rényi entropy approaches
Shannon entropy [73]. Moreover, as α is varied, Rényi entropy varies within range
log2(pmax) ≤ Eα ≤ log2(256), where pmax = max255

i=0{pi} [39, 113]. Rényi mutual
information is defined by [102]:

Rα = Ei
α + E

j
α

E
ij
α

, (2.42)

where Ei
α is the Rényi entropy of order α of probability distribution pi = ∑255

j=0 pij

for i = 1, . . . ,255, E
j
α is the Rényi entropy of order α of pj = ∑255

i=0 pij for j =
0, . . . ,255, and E

ij
α is the Rényi entropy of order α of probability distribution {pij :

i, j = 0, . . . ,255}. Equation (2.42) is based on the normalized mutual information
of Studholme et al. [89]: SNMI = (E1 + E2)/E3, where E1 and E2 are the marginal
entropies and E3 is the joint entropy. An example of Rényi mutual information
with α = 2 in template matching using the template of Fig. 2.2a and the image of
Fig. 2.2b is given in Fig. 2.14.

As the order α of Rényi mutual information is increased, entries in the JPD with
higher values are magnified, reducing the effect of outliers that randomly fall in the
JPD. Therefore, under impulse noise and occlusion, Rényi mutual information is ex-
pected to perform better than Shannon mutual information. Under zero-mean noise
also, Rényi mutual information is expected to perform better than Shannon mutual
information for the same reason though not as much. Computationally, Rényi mutual
information is about 20 to 30% more expensive than Shannon mutual information,
because it requires power computations in addition to the calculations required by
the Shannon mutual information.
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Fig. 2.15 The similarity
image obtained when using
Tsallis mutual information to
search for the template of
Fig. 2.2a in the image of
Fig. 2.2b. The best-match
position of the template
within the image is encircled

2.1.15 Tsallis Mutual Information

If instead of Shannon or Rényi entropy, Tsallis entropy is used to calculate the
mutual information, Tsallis mutual information will be obtained [102]. Tsallis en-
tropy of order q for a discrete probability distribution {pij : i, j = 0, . . . ,255} with
0 ≤ pij ≤ 1 and

∑255
i=0

∑255
i=0 pij = 1 is defined by [94]:

Sq = 1

(q − 1)

(

1 −
255∑

i=0

255∑

j=0

p
q
ij

)

, (2.43)

where q is a real number and as it approaches 1, Tsallis entropy approaches Shannon
entropy. Sq is positive for all values of q and is convergent for q > 1 [8, 70]. In the
case of equiprobability, Sq is a monotonic function of the number of intensities i

and j in the images [22]. Tsallis mutual information is defined by [19, 102]:

Rq = Si
q + S

j
q + (1 − q)Si

qS
j
q − Sq, (2.44)

where

Si
q = 1

q − 1

255∑

j=0

pij

(
1 − p

q−1
ij

)
(2.45)

and

S
j
q = 1

q − 1

255∑

i=0

pij

(
1 − p

q−1
ij

)
. (2.46)

Tsallis entropy makes outliers less important than Rényi entropy when q takes a
value larger than 1 because of the absence of the logarithmic function in the formula.
Therefore, Tsallis mutual information will make the similarity measure even less
sensitive to noise than Rényi mutual information and, therefore, more robust under
noise compared to Shannon mutual information and Rényi mutual information.

An example of template matching using Tsallis mutual information with q = 2 is
given in Fig. 2.15. Compared to the similarities discussed so far, this similarity mea-
sure has produced the most distinct peak when matching the template of Fig. 2.2a
to the windows of the same size in the image of Fig. 2.2b.
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Fig. 2.16 The similarity
image obtained using Iα as
the similarity measure with
α = 2 and when searching for
the template of Fig. 2.2a in
the image of Fig. 2.2b. The
best-match position of the
template within the image is
encircled

The performance of Tsallis mutual information in image registration varies with
parameter q . Generally, the larger the q is the less sensitive measure Rq will be to
outliers. The optimal value of q , however, is image dependent. In registration of
functional MR images, Tedeschi et al. [91] found the optimal value for q to be 0.7.

Computationally, Tsallis mutual information is as costly as Rényi mutual infor-
mation, because it replaces a logarithmic evaluation with a number of multipli-
cations. When the problem is to locate the position of one image inside another
through an iterative process, Martin et al. [56] have found that a faster convergence
speed is achieved by Tsallis mutual information than by Shannon mutual informa-
tion due to its steeper slope of the similarity image in the neighborhood of the peak.

2.1.16 F -Information Measures

The divergence or distance between the joint distribution and the product of the
marginal distributions of two images can be used to measure the similarity between
the images. A class of divergence measures that contains mutual information is the
f -information or f -divergence. F -information measures include [69, 95]:

Iα = 1

α(α − 1)

(
255∑

i=0

255∑

j=0

pα
ij

(pipj )α−1
− 1

)

, (2.47)

Mα =
255∑

i=0

255∑

j=0

∣
∣pα

ij − (pipj )
α
∣
∣

1
α , (2.48)

χα =
255∑

i=0

255∑

j=0

|pij − pipj |α
(pipj )α−1

. (2.49)

Iα is defined for α �= 0 and α �= 1 and it converges to Shannon information as α

approaches 1 [95]. Mα is defined for 0 < α ≤ 1, and χα is defined for α > 1. Pluim
et al. [69] have found that for the proper values of α these divergence measures can
register multimodality images more accurately than Shannon mutual information.
An example of template matching using Iα with α = 2 is given in Fig. 2.16.
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Computationally, f -information is costlier than Shannon mutual information, be-
cause in addition to calculating the JPD of the images, it requires multiple power
computations for each JPD entry. The computational complexity of f -information
is still proportional to 2562 +n and, therefore, a linear function of n but with higher
coefficients compared to Shannon mutual information.

2.2 Dissimilarity Measures

2.2.1 L1 Norm

L1 norm, Manhattan norm, or sum of absolute intensity differences is one of the
oldest dissimilarity measures used to compare images. Given sequences X = {xi :
i = 1, . . . , n} and Y = {yi : i = 1, . . . , n} representing intensities in two images in
raster-scan order, the L1 norm between the images is defined by [92]:

L1 =
n∑

i=1

|xi − yi |. (2.50)

If images X and Y are obtained by the same sensor and under the same environ-
mental conditions, and if the sensor has a very high signal to noise ratio, this simple
measure can produce matching results that are as accurate as those produced by
more expensive measures. For instance, images in a video sequence or stereo im-
ages obtained under low noise level can be effectively matched using this measure.
An example of template matching with L1 norm using the template of Fig. 2.2a and
the image of Fig. 2.2b is given in Fig. 2.17a.

Computationally, this measure requires determination of n absolute differences
and n additions for an image of size n pixels. Barnea and Silverman [5] suggested
ways to further speed up the computations by abandoning a case early in the com-
putations when there is evidence that a correct match is not likely to obtain. Coarse-
to-fine and two-stage approaches have also been proposed as a means to speed up
this measure in template matching [77, 97].

2.2.2 Median of Absolute Differences

At the presence of salt-and-pepper or impulse noise, L1 norm produces an exagger-
ated distance measure. For images of a fixed size with n pixels, L1 norm which mea-
sures the sum of absolute intensity differences between corresponding pixels in two
images is the same as the average absolute intensity difference between correspond-
ing pixels in the images. To reduce the effect of impulse noise on the calculated
dissimilarity measure, instead of the average of absolute differences, the median of
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Fig. 2.17 Dissimilarity images obtained when using (a) L1 norm and (b) MAD in template match-
ing using the template of Fig. 2.2a and the image of Fig. 2.2b. (c) Same as image of Fig. 2.2b but
with introduction of occlusion near the best-match position. Determination of the best match posi-
tion of the template within the occluded image by (c) the L1 norm and (d) by MAD, respectively

absolute differences (MAD) may be used to measure the dissimilarity between two
images. MAD measure is defined by

MAD = medn
i=1|xi − yi |. (2.51)

Although salt-and-pepper noise considerably affects L1 norm, its effect on MAD
is minimal. Calculation of MAD involves finding the absolute intensity differences
of corresponding pixels in images, ordering the absolute differences, and taking the
median value as the dissimilarity measure. In addition to impulse noise, this mea-
sure is effective in determining dissimilarity between images containing occluded
regions. These are regions that are visible in only one of the images. For exam-
ple, in stereo images, they appear in areas where there is a sharp change in scene
depth. Effectiveness of MAD in matching of stereo images has been demonstrated
by Chambon and Crouzil [9, 10]. This is a robust measure that does not change at
the presence of up to 50% outliers [36, 80].

An example of template matching with MAD using the template of Fig. 2.2a and
the image of Fig. 2.2b is given in Fig. 2.17b. Comparing this dissimilarity image
with that obtained by L1 norm, we see that the best-match position in the MAD
image is not as distinct as that in the L1 image. This implies that when salt-and-
pepper noise or occlusion is not present, MAD does not perform as well as L1 norm.
While MAD uses information about half of the pixels that have the most similar
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intensities, L1 norm uses information about all pixels with similar and dissimilar
intensities to measure the dissimilarity between two images.

By introducing occlusion in Fig. 2.2b near the best-match position, we observe
that while L1 norm misses the best match position as depicted in Fig. 2.17d, MAD
correctly locates the template within the image without any difficulty. Presence of
occlusion barely affects the dissimilarity image obtained by MAD, indicating that
MAD is a more robust measure under occlusion than L1 norm.

Computationally, MAD is much slower than L1 norm. In addition to requiring
computation of n absolute differences, it requires ordering the absolute differences,
which is on the order of n log2 n comparisons. Therefore, the computational com-
plexity of MAD is O(n log2 n).

2.2.3 Square L2 Norm

Square L2 norm, square Euclidean distance, or sum of squared intensity differ-
ences of corresponding pixels in sequences X = {xi : i = 1, . . . , n} and Y = {yi :
i = 1, . . . , n} is defined by [23]:

L2
2 =

n∑

i=1

(xi − yi)
2. (2.52)

Compared to L1 norm, square L2 norm emphasizes larger intensity differences be-
tween X and Y and is one of the popular measures in stereo matching. Compared to
Pearson correlation coefficient, this measure is more sensitive to the magnitude of
intensity difference between images. Therefore, it will produce poorer results than
correlation coefficient when used in the matching of images of a scene taken under
different lighting conditions.

To reduce the geometric difference between images captured from different
views of a scene, adaptive windows that vary in size depending on local inten-
sity variation have been used [64]. Another way to deemphasize image differences
caused by viewing differences is to weigh intensities in each image proportional to
their distances to the image center, used as the center of focus in matching [63].

An example of template matching using square L2 norm, the template of
Fig. 2.2a, and the image of Fig. 2.2b is given in Fig. 2.18a. The obtained dissim-
ilarity image is very similar to that obtained by L1 norm.

The computational complexity of square L2 norm is close to that of L1 norm.
After finding the difference of corresponding intensities in X and Y , L1 norm finds
the absolute of the differences while L2 norm squares the differences. Therefore, the
absolute-value operation in L1 norm is replaced with a multiplication in L2 norm.

2.2.4 Median of Square Differences

The median of square differences (MSD) is the robust version of the square L2
norm. When one or both images are corrupted with impulse noise, or when one
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Fig. 2.18 Dissimilarity
images obtained when using
(a) L2 norm and (b) MSD in
template matching with the
template of Fig. 2.2a and the
image of Fig. 2.2b.
Template-matching results by
(c) L2 norm and (d) MSD
when using the same template
but the image of Fig. 2.17c

image contains occluded regions with respect to the other, by discarding half of
the largest square differences, the influence of noise and occlusion is reduced. This
distance measure is defined by

MSD = medn
i=1(xi − yi)

2. (2.53)

When the images are not corrupted by noise and do not contain occluded regions,
MSD does not perform as well as square L2 norm, because MSD uses information
about the most similar half of pixel correspondences, while L2 norm uses informa-
tion about similar as well as dissimilar pixels, and dissimilar pixels play as important
a role in template matching as similar pixels.

Using the template of Fig. 2.2a and the image of Fig. 2.2b, the dissimilarity
image shown in Fig. 2.18b is obtained. We see the best match position determined
by L2 norm is more distinct than that obtained by MSD. In the absence of noise and
occlusion, L2 norm is generally expected to perform better than MSD in matching.

At the presence of occlusion or impulse noise, MSD is expected to perform bet-
ter than L2 norm. To verify this, template-matching is performed using the template
of Fig. 2.2a and the image of Fig. 2.17c, which is same as the image of Fig. 2.2b
except for introducing occlusion near the best-match position. The dissimilarity im-
ages obtained by L2 norm and MSD are shown in Figs. 2.18c and 2.18d, respec-
tively. Although the dissimilarity image of the L2 norm has changed considerably
under occlusion, the dissimilarity image of MSD is hardly changed. Use of MSD in
matching of stereo images with occlusions has been reported by Lan and Mohr [49].
This dissimilarity measure is based on the well-established least median of squares
distance measure used in robust regression under contaminated data [79].
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The computational complexity of MSD is similar to that of MAD. After finding
n square intensity differences of corresponding pixels in the given sequences, the
intensity differences are squared and ordered, which requires on the order of n log2 n

comparisons. Therefore, the computational complexity of MSD is O(n log2 n).
The performance of MSD is similar to that of MAD. This is because the small-

est 50% absolute intensity differences used in MAD and the smallest 50% square
intensity differences used in MSD both pick the same pixels in a template and a
matching window to measure the dissimilarity between the template and the win-
dow. Also, both have the same computational complexity except for MAD using
absolute intensity difference while MSD using square intensity difference, which
are computationally very close if not the same.

2.2.5 Normalized Square L2 Norm

Pearson correlation coefficient uses intensities in an image normalized with respect
to the mean intensity. This makes correlation coefficient invariant to bias in image
intensities. It also divides the inner product of the mean-normalized intensities by
the standard deviation of intensities in each image. This process normalizes the mea-
sure with respect to image contrast. Another way to make the measure insensitive
to image contrast, as suggested by Evangelidis and Psarakis [25], is to divide the
mean-normalized intensities in each image by the standard deviation of the intensi-
ties. The sum of squared differences of bias and scale normalized intensities in each
image is then used to measure the dissimilarity between the images.

Given images X = {xi : i = 1, . . . , n} and Y = {yi : i = 1, . . . , n}, assuming av-
erage intensities in X and Y are x̄ and ȳ , respectively, and letting

σx =
√
√
√
√1

n

n∑

i=1

(xi − x̄)2, (2.54)

σy =
√
√
√
√1

n

n∑

i=1

(yi − ȳ)2, (2.55)

the normalized square L2 norm is defined by [25]:

Normalized L2
2 =

n∑

i=1

(
xi − x̄

σx

− yi − ȳ

σy

)2

. (2.56)

Normalizing the intensities in an image first with respect to its mean and then
with respect to its standard deviation normalizes the intensities with respect to bias
and gain/scale. Therefore, similar to correlation coefficient, this measure is suitable
for comparing images that are captured under different lighting conditions. An ex-
ample of template matching using normalized square L2 norm is given in Fig. 2.19.

Compared to correlation coefficient, this measure is somewhat slower because
it requires normalization of each intensity before calculating the sum of squared
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Fig. 2.19 The dissimilarity
image obtained using
normalized square L2 norm
to search for the template of
Fig. 2.2a in the image of
Fig. 2.2b. The best-match
position of the template
within the image is encircled

Fig. 2.20 The dissimilarity
image obtained using
incremental sign distance
when searching for the
template of Fig. 2.2a in the
image of Fig. 2.2b. The
best-match position of the
template within the image is
encircled

differences between them. In the calculation of correlation coefficient, scale nor-
malization is performed once after calculating the inner product of the normalized
intensities.

2.2.6 Incremental Sign Distance

Given image X with intensities {xi : i = 1, . . . , n}, create a binary sequence BX =
{bi : i = 1, . . . , n − 1} with bi showing the sign of the intensity difference between
entries xi and xi+1. That is, let bi = 1 if xi+1 > xi and bi = 0 otherwise. Similarly,
replace image Y with binary image BY . The Hamming distance between BX and
BY can then be used to measure the dissimilarity between the images [40].

Use of intensity change rather than raw intensity at each pixel makes the cal-
culated measure insensitive to additive changes in scene lighting. Use of the sign
changes rather than the raw changes makes the measure insensitive to sharp lighting
changes in the scene caused by, for example, shadows. However, due to the use of
intensity difference of adjacent pixels, the process is sensitive to noise in homoge-
neous areas.

Incremental sign distance is a relatively fast measure as it requires on the order of
n comparisons, additions, and subtractions. The measure is suitable for comparing
images that are not noisy but may have considerable intensity differences. The result
of template matching using the template of Fig. 2.2a and the image of Fig. 2.2b with
this dissimilarity measure is shown in Fig. 2.20.
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Fig. 2.21 Template matching
using intensity-ratio variance,
the template of Fig. 2.2a, and
the image of Fig. 2.2b. The
best-match position of the
template within the image is
encircled

2.2.7 Intensity-Ratio Variance

If intensities in one image are a scaled version of intensities in another image, the
ratio of corresponding intensities across the image domain will be a constant. If two
images are obtained at different exposures of a camera, this measure can be used to
effectively determine the dissimilarity between them. Letting ri = (xi +ε)/(yi +ε),
where ε is a small number, such as 1 to avoid division by 0, intensity-ratio variance
is defined by [106]:

RV = 1

n

n∑

i=1

(ri − r̄)2, (2.57)

where

r̄ = 1

n

n∑

i=1

ri . (2.58)

Although invariant to scale difference between intensities in images, this mea-
sure is sensitive to additive intensity changes, such as noise. The computational
complexity of intensity-ratio variance is on the order of n as it requires computation
of a ratio at each pixel and determination of the variance of the ratios.

An example of template matching by intensity-ratio variance using the template
of Fig. 2.2a and the image of Fig. 2.2b is given in Fig. 2.21.

2.2.8 Intensity-Mapping-Ratio Variance

This measure combines correlation ratio, which measures intensity-mapping vari-
ance, with intensity-ratio variance [37]. Use of intensity ratios rather than raw in-
tensities makes the measure less sensitive to multiplicative intensity differences be-
tween images, such as difference in gains of the sensors. Use of mapping-ratio vari-
ance rather than ratio variance makes the measure insensitive to differences in sensor
characteristics. By minimizing the variance in intensity-mapping ratios, the measure
is made insensitive to differences in sensor characteristics and the gain parameters
of the sensors or the exposure levels of the cameras capturing the images.
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Fig. 2.22 The dissimilarity
image obtained by the
intensity-mapping-ratio
variance when searching the
template of Fig. 2.2a in the
image of Fig. 2.2b. The
best-match position of the
template within the image is
encircled

Computationally, this measure is slightly more expensive than the correlation
ratio for the additional calculation of the intensity ratios. A template matching ex-
ample by this dissimilarity measure using the template of Fig. 2.2a and the image of
Fig. 2.2b is given in Fig. 2.22.

2.2.9 Rank Distance

This measure is defined as the L1 norm of rank ordered intensities in two images.
Given images X = {xi : i = 1, . . . , n} and Y = {yi : i = 1, . . . , n}, intensity xi is
replaced with its rank R(xi) and intensity yi is replaced with its rank R(yi). To
reduce or eliminate ties among ranks in an image, the image is smoothed with a
Gaussian of a small standard deviation, such as 1 pixel. The rank distance between
images X and Y is defined by:

Dr = 1

n

n∑

i=1

∣
∣R(xi) − R(yi)

∣
∣. (2.59)

Since 0 ≤ |R(xi) − R(yi)| ≤ n, Dr will be between 0 and 1. The smaller is the
rank distance between two images, the less dissimilar the images will be. Rank
distance works quite well in images that are corrupted with impulse noise or contain
occlusion. In addition, rank distance is insensitive to white noise if noise magnitude
is small enough not to change the rank of intensities in an image. Furthermore, rank
distance is insensitive to bias and gain differences between intensities in images just
like other ordinal measures.

A template-matching example with rank distance using the template of Fig. 2.2a
and the image of Fig. 2.2b is given in Fig. 2.23. Among the distance measures
tested so far, rank distance finds the location of the template within the image most
distinctly.

Rank distance is one of the fastest ordinal measures as it requires only a subtrac-
tion and a sign check at each pixel once ranks of the intensities are determined. The
major portion of the computation time is spent on ranking the intensities in each
image, which is on the order of n log2 n comparisons for an image of size n pixels.
Therefore, the computational complexity of rank distance is on the order of n log2 n.
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Fig. 2.23 Template matching
with rank distance using the
template of Fig. 2.2a and the
image of Fig. 2.2b. The
best-match position of the
template within the image is
encircled

Proposition 2.3 Rank distance is not a metric.

Proof Rank distance is not a metric because it is not reflexive. When X = Y , we
have xi = yi for i = 1, . . . , n, and so Dr = 0. However, when Dr = 0, because
Dr is the sum of n non-negative numbers, it requires |R(xi) − R(yi)| = 0 for all i.
|R(xi)−R(yi)| can be 0 when yi = a +xi or yi = bxi , where a and b are constants;
therefore, Dr = 0 does not necessarily imply X = Y . For this same reason, none of
the ordinal measures is a metric. �

2.2.10 Joint Entropy

Entropy represents uncertainty in an outcome. The larger the entropy, the more in-
formative the outcome will be. Joint entropy represents uncertainty in joint out-
comes. The dependency of joint outcomes determines the joint entropy. The higher
the dependency between joint outcomes, the lower the uncertainty will be and, thus,
the lower the entropy will be. When joint outcomes are independent, uncertainty
will be the highest, producing the highest entropy. Given an observed image and a
number of saved images, the saved image that produces the lowest joint entropy with
the observed image is the image best matching the observed image. Joint entropy
is calculated from the JPD of the images. Assuming pij represents the probability
that intensities i and j appear at corresponding pixels in the images, Shannon joint
entropy is defined by [74, 82]:

DE = −
255∑

i=0

255∑

j=0

pij log2 pij . (2.60)

Similar to mutual information, the performance of joint entropy quickly degrades
with increasing noise. The measure, however, remains relatively insensitive to inten-
sity differences between images and, thus, is suitable for comparing multimodality
images.

An example of template matching by minimizing the entropy of JPD of the tem-
plate of Fig. 2.2a and windows of the same size in the image of Fig. 2.2b is given in
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Fig. 2.24 Template matching
using entropy of JPD of the
template of Fig. 2.2a and
windows of the same size in
the image of Fig. 2.2b. The
center of the window best
matching the template is
encircled

Fig. 2.24. The intensity at a pixel in the dissimilarity image is proportional to the en-
tropy of the JDP of the template and the window centered at the pixel in the image.
Relatively small values at the four corners of the dissimilarity image indicate that
any image will produce a low entropy when compared with a homogeneous image.
A preprocessing operation that marks the homogeneous windows so they are not
used in matching is needed to reduce the number of mismatches by this measure.

The computational cost of joint entropy is proportional to both 2562 and n. It
requires on the order of n comparisons to prepare the JDP and on the order of 2562

multiplications and logarithmic evaluations to calculate the joint entropy from the
obtained JPD.

2.2.11 Exclusive F -Information

Information exclusively contained in images X and Y when observed jointly is
known as exclusive f -information. Exclusive f -information Df (X,Y ) is related
to joint entropy E(X,Y ) and mutual information SMI(X,Y ) by [78]:

Df (X,Y ) = E(X,Y ) − SMI(X,Y ). (2.61)

Since mutual information is defined by [95]:

SMI(X,Y ) = E(X) + E(X) − E(X,Y ), (2.62)

we obtain

Df (X,Y ) = 2E(X,Y ) − E(X) − E(Y). (2.63)

The larger the exclusive f -information between images X and Y , the more dis-
similar the images will be. Therefore, in template matching, the window in an image
that produces the lowest exclusive f -information with a template will be the win-
dow most similar to the template and locates the position of the template within
the image. An example of template matching by exclusive f -information using the
template of Fig. 2.2a and the image of Fig. 2.2b is given in Fig. 2.25.

Computational cost of exclusive f -information is proportional to both 2562 and
n as it requires computation of the same terms as in mutual information as shown
in (2.62) and (2.63).
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Fig. 2.25 Template matching
using exclusive
f -information, the template
of Fig. 2.2a, and the image of
Fig. 2.2b. The best-match
position of the template
within the image is encircled

2.3 Performance Evaluation

To evaluate the performances of the similarity and dissimilarity measures described
in the preceding sections, the accuracies and speeds of the measures are determined
on a number of synthetic and real images and the results are compared.

2.3.1 Experimental Setup

To create image sets where correspondence between images is known, the image
shown in Fig. 2.26a is used as the base. This image, which shows a Martian rock,
contains various intensities and intensity variations. To evaluate the sensitivity of
the measures to zero-mean noise, Gaussian noise of standard deviations 5, 10, and
20 were generated and added to this image to obtain the noisy images shown in
Figs. 2.26b–d.

Images in Figs. 2.26a and 2.26b are considered Set 1, images in Figs. 2.26a and
2.26c are considered Set 2, and images in Figs. 2.26a and 2.26d are considered
Set 3. These image sets will be used to measure the sensitivity of the similarity and
dissimilarity measures to low, moderate, and high levels of noise.

To find the sensitivity of the measures to intensity differences between images,
intensities of the base image were changed as follows:

1. Intensities at the four quadrants of the base image were changed by −30, −10,
10, and 30 to obtain the image shown in Fig. 2.27b. Intensities below 0 were set
to 0 and intensities above 255 were set to 255. These images simulate images
taken at different exposures of a camera. Sharp intensity changes between the
quadrants can be considered intensity changes caused by shadows.

2. Intensities in the base image were changed based on their locations using a
sinusoidal function. Assuming the base image has nr rows and nc columns,
and the intensity at (x, y) is I , intensity I was replaced with O = I +
50 sin(4πy/nr) cos(4πx/nc) to obtain Fig. 2.27c. This simulates smoothly vary-
ing radiometric changes in a scene between times images 2.27a and 2.27c were
captured.

3. Intensities in the base image were changed by a sinusoidal function based on
their values. Assuming I is the intensity at a pixel in the base image, intensity
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Fig. 2.26 (a) A relatively
noise-free image of a Martian
rock, courtesy of NASA. This
image is used as the base.
(b)–(d) The images obtained
after adding Gaussian noise
of standard deviations 5, 10,
and 20, respectively, to the
base image. These images are
of size 400 × 300 pixels.
Image (a) when paired with
images (b)–(d) constitute
Sets 1–3

Fig. 2.27 (a) The Martian
rock image is again used as
the base image. (b) Intensities
in the four quadrants of the
base image are changed by
−30, −10, 10, and 30.
(c) Assuming the base image
contains nr rows and nc

columns, intensity I at pixel
(x, y) in the base image is
replaced with O = I +
50 sin(4πy/nr ) cos(4πx/nc).
(d) Intensity I in the base
image is replaced with
O = I (1 + cos(πI/255)).
These images are of size
400 × 300 pixels. Image (a)
when paired with images
(b)–(d) constitute Sets 4–6

at the same pixel in the output was calculated from O = I (1 + cos(πI/255)) to
obtain the image shown in Fig. 2.27d. This image together with the base image
can be considered images in different modalities.

Images in Figs. 2.27a and 2.27b are used as Set 4, images in Figs. 2.27a and
2.27c are used as Set 5, and images in Figs. 2.27a and 2.27d are used as Set 6.
These images are used to determine the sensitivity of various measures to intensity
differences between images.

To further evaluate the accuracy of the measures in matching multimodality
images, bands 2 and 4 of the Landsat thematic mapper (TM) image shown in
Figs. 2.28a and 2.28b were used. To test the measures against changes in camera
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Fig. 2.28 (a) Band 2 and
(b) band 4 of a Landsat
thematic mapper image of a
desert city scene, courtesy of
USGS. These images are of
size 532 × 432 pixels and
constitute the images in Set 7

Fig. 2.29 (a), (b) Images
obtained of an outdoor scene
by different exposures of a
stationary camera. These
images are of size 307 × 131
pixels and constitute the
images in Set 8

Fig. 2.30 (a) The same base
image as in Fig. 2.26a.
(b) The base image after
smoothing with a Gaussian of
standard deviation 1 pixel.
These images represent Set 9

exposure, the images in Figs. 2.29a and 2.29b, which were obtained at different
exposures of a static scene by a stationary camera, are used.

The Landsat TM bands 2 and 4 in Fig. 2.28 are used as Set 7 and the multi-
exposure images in Fig. 2.29 are used as Set 8 to further evaluate the sensitivity of
the measures to intensity differences between images.

To determine the sensitivity of the measures to image blurring caused by cam-
era defocus or change in image resolution, the Martian rock image shown again in
Fig. 2.30a was smoothed with a Gaussian of standard deviation 1 pixel to obtain the
image shown in Fig. 2.30b. The images in Figs. 2.30a and 2.30b are used as Set 9 to
determine the sensitivity of the measures to image blurring.

To determine the sensitivity of the measures to occlusion and local geometric
differences between images, stereo images of a Mars scene, courtesy of NASA,
and aerial stereo images of the Pentagon, courtesy of CMU Robotics Institute, were
used. These images are shown in Fig. 2.31. The Mars images represent Set 10 and
the Pentagon images represent Set 11.
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Fig. 2.31 (a), (b) Stereo
images of a Mars scene,
courtesy of NASA. These
images are of size 433 × 299
pixels. (c), (d) Stereo aerial
images of the Pentagon,
courtesy of CMU Robotics
Institute. These images are of
size 512 × 512 pixels. The
Mars images represent Set 10
and the Pentagon images
represent Set 11

2.3.2 Evaluation Strategy

To measure and compare the performances of various similarity and dissimilarity
measures, a number of template-matching scenarios were considered. Given two
images, a template centered at each pixel (x, y) in the first image was taken and
compared with windows of the same size in the neighborhood of (x, y) in the second
image. Knowing true corresponding points in images in Sets 1–9, the percentage of
correctly determined correspondences by each measure were determined.

As templates, square subimages of side 31 pixels were considered at each pixel
in the first image in each set. Each such template was then searched for in the second
image in the same set. Assuming a selected template was centered at pixel (x, y) in
the first image, the search was performed in a square neighborhood of side 11 pixels
centered at (x, y) in the second image. For stereo images, the search was performed
only horizontally along corresponding scanlines in the images. In the Mars image
set, the search area size was 81 pixels, and in the Pentagon data set, the search area
size was 21 pixels centered at column x in scanline y in the second image. The
search areas in the stereo images were selected in this manner in order to include
the correct match within the search neighborhood.

Since the objective is to find the correspondence between centers of square re-
gions in two images, when possible, intensities are weighted based on their distances
to the centers of the matching template and window to allow intensities closer to the
center of focus to influence the outcome more than intensities farther away. Gaus-
sian weights of standard deviation equal to half the side of a template was used. For
the Pearson correlation coefficient, Tanimoto measure, L1 norm, square L2 norm,
and normalized square L2 norm, intensities in a template and the pairing window
were multiplied by Gaussian weights to reduce the effect of pixels away from the
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centers of the template and window on a calculated measure. Gaussian weights were
not used in measures that used the ratios or ranks of the intensities.

In measures that are formulated in terms of the JPD or the joint histogram of two
images, instead of incrementing entry (i, j) in the joint histogram of two images by
1, if corresponding pixels in a pairing template and window had intensities i and j ,
entry (i, j) in the joint histogram was incremented by the Gaussian weight at the
pixel location in template with intensity i or in window with intensity j . Increment-
ing the joint histogram entries in this manner counts pixels away from template and
window center by a smaller amount than pixels closer to the template and window
centers when creating the joint histogram. In this way, the JPD produces measures
that are less sensitive to local geometric differences between images and, thus, im-
proves matching of images with geometric differences, such as stereo images.

Since correspondence between pixels in images in Sets 1–9 are known, it is pos-
sible to tell the correctness of a template-matching outcome. The number of correct
matches over the total number of matches attempted multiplied by 100 is used as
the percent correct matches.

For image sets with unknown correspondences, such as the stereo images in Sets
10 and 11, the root-mean-squared intensity differences (RMSID) between corre-
sponding pixels are used as the matching error. The smaller the RMSID is, the
smaller the matching error and so the more accurate the correspondences will be.

2.4 Characteristics of Similarity/Dissimilarity Measures

Percent correct matches (true positives) for images in Sets 1–9 by the 16 similarity
measures and the 11 dissimilarity measures are summarized in Tables 2.1 and 2.2.
The value at an entry, for example, Pearson correlation and Set 1, was obtained by
selecting square templates of side 31 pixels centered at pixels in the first image and
searching for them in square search areas of side 11 pixels in the second image,
and finding the percent matches that were correct. Since images in Set 1 are of size
400 × 300 pixels, (400 − 30 − 5) × (300 − 30 − 5) or 96725 possible templates of
side 31 pixels are selected in the first image and searched for in the second image.
Templates selected in this manner in the first image appear in their entirety in the
second images. The number of correct matches over 96725 was multiplied by 100
to obtain the percent correct matches. This number was then entered at the entry for
Pearson correlation and Set 1.

Because the correct correspondences are not known for the images in Sets 10 and
11, the RMSID between corresponding pixels obtained by various measures were
used to characterize matching accuracy. Average RMSID for all correspondences in
a set was then used as the average RMSID for that set. For example, the entry for
Pearson correlation and Set 11 was computed as follows. Since images in Set 11
are of size 512 × 512, using square templates of side 31 pixels and search areas of
width 21 pixels, (512 − 30) × (512 − 30 − 10) or 227504 templates can be selected
in the first image and searched in the second image. The RMSID for each match
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Table 2.1 Percent correct matches (true positives) of different similarity (top) and dissimilarity
(bottom) measures using noisy image Sets 1–3, and intensity transformed image Sets 4 and 5.
Newly introduced measures are shown in bold. Template size in each experiment was 31 × 31
pixels and search area size was 11 × 11 pixels. The three measures producing the most number
of correct matches in each set are shown in bold, unless more than three measures produce 100%
correct matches

Method Set 1 Set 2 Set 3 Set 4 Set 5

Pearson correlation 100.00 100.00 99.92 100.00 100.00

Tanimoto measure 100.00 100.00 99.95 100.00 100.00

Stochastic sign change 83.51 58.43 43.24 0.00 0.70

Deterministic sign change 98.50 99.05 85.81 48.20 49.45

Minimum ratio 100.00 100.00 99.61 42.29 50.41

Spearman’s Rho 100.00 100.00 99.96 99.97 100.00

Kendall’s Tau 100.00 100.00 100.00 100.00 100.00

Greatest deviation 99.92 99.36 91.18 97.17 94.01

Ordinal measure 99.98 99.25 90.35 94.66 87.75

Correlation ratio 100.00 100.00 99.90 100.00 99.49

Energy of JPD 100.00 82.13 16.91 100.00 87.59

Material similarity 100.00 97.82 56.06 100.00 73.11

Shannon MI 93.50 50.91 5.59 100.00 61.82

Rényi MI 98.11 54.12 5.93 100.00 73.66

Tsallis MI 100.00 83.61 17.46 100.00 90.16

Iα-information 99.85 98.06 77.72 100.00 98.92

L1 norm 100.00 100.00 99.95 57.70 57.46

MAD and MSD 100.00 99.26 85.42 2.29 37.45

Square L2 norm 100.00 100.00 100.00 95.18 75.34

Normalized square L2 norm 100.00 100.00 99.75 99.91 100.00

Incremental sign dist. 100.00 99.49 93.34 100.00 100.00

Intensity-ratio var. 99.84 98.50 56.15 99.43 91.59

Intensity-mapping-ratio var. 100.00 100.00 99.84 99.45 97.73

Rank distance 100.00 100.00 99.86 99.61 99.78

Joint entropy 100.00 95.43 31.34 100.00 92.85

Exclusive F -information 100.00 83.37 14.07 100.00 88.88

was found and the average of the 227504 RMSIDs was calculated and entered into
the entry for Pearson correlation and Set 11.

If three or fewer measures produce 100% correct matches under an image set,
the accuracies of the best three measures are shown in bold. For the stereo images
(Sets 10 and 11), the three measures with the lowest average RMSID are shown in
bold.
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Table 2.2 Same as Table 2.1 except for using intensity transformed image Set 6, different band
image Set 7, different exposure image Set 8, different resolution image Set 9, and stereo image
Sets 10, and 11. For the stereo images in Sets 10 and 11 the average RMSIDs of corresponding
pixels are shown. The smaller the average RMSID, the more accurate the correspondences are
expected to be. For stereo images, the search was carried out in 1-D horizontally. For Set 10, the
search area was 81 pixels, while for Set 11, the search area was 21 pixels. The three measures
producing the least RMSID under stereo data sets are shown in bold

Method Set 6 Set 7 Set 8 Set 9 Set 10 Set 11

Pearson correlation 52.78 96.87 98.96 100.00 8.44 9.81

Tanimoto measure 52.55 96.88 95.16 100.00 8.43 9.80

Stochastic sign change 13.06 0.27 9.61 93.17 10.30 11.83

Deterministic sign change 2.25 0.00 12.33 88.24 9.00 10.01

Minimum ratio 100.0 0.10 2.81 100.00 8.60 9.77

Spearman’s Rho 56.19 97.28 97.53 99.97 8.66 9.98

Kendall’s Tau 59.44 98.64 98.23 100.00 9.04 10.08

Greatest deviation 45.39 96.16 89.15 93.62 11.66 10.92

Ordinal measure 44.05 95.24 88.71 96.07 11.31 10.91

Correlation ratio 100.00 98.27 99.78 100.00 10.81 10.70

Energy of JPD 100.00 98.21 79.25 85.51 12.08 11.23

Material similarity 100.00 100.00 98.73 93.84 16.52 15.46

Shannon MI 100.00 98.36 83.59 61.61 20.33 14.12

Rényi MI 100.00 98.30 79.57 67.84 17.75 12.99

Tsallis MI 100.00 98.30 84.31 89.06 10.87 10.86

Iα-information 100.00 97.59 91.18 86.71 11.14 11.59

L1 norm 0.28 8.88 11.83 100.00 8.55 9.78

MAD and MSD 1.32 0.04 0.03 98.06 11.78 13.20

Square L2 norm 28.30 74.47 36.34 100.00 8.85 9.95

Normalized square L2 norm 52.91 96.65 98.45 100.00 8.40 9.92

Incremental sign dist. 60.96 99.97 93.90 98.78 10.23 10.56

Intensity-ratio var. 45.30 98.85 82.67 100.00 11.70 10.50

Intensity-mapping-ratio var. 100.00 96.96 97.60 99.53 13.18 11.17

Rank distance 56.52 97.72 98.54 100.00 9.85 10.36

Joint entropy 100.00 98.74 89.37 94.24 12.07 10.83

Exclusive F -information 100.00 99.00 95.79 89.14 16.19 11.12

2.4.1 Sensitivity to Noise

Results in Table 2.1 show that under zero-mean noise, Kendall’s Tau and square L2

norm tie for the most number of correct matches, followed by Spearman’s Rho. Un-
der zero-mean noise, measures that use intensity ranks generally perform well, while
measures that are based on the JPD of image intensities perform poorly. Among the
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measures that are based on JPD, Iα-information appears least sensitive to noise,
followed by material similarity and Tsallis mutual information.

2.4.2 Sensitivity to Scene Lighting/Camera Exposure

Sets 4 and 5 contain images simulating differences in scene lighting. Set 4 shows
changes in scene lighting by fixed amounts at the four image quadrants and sharp
changes across the boundary between the quadrants, while Set 5 shows changes
that vary smoothly across the image domain. Measures that are formulated in terms
of JPD perform well on Set 4 although ordinal measures perform equally well.
For Set 5, the best measures are Pearson correlation, Tanimoto measure, Spear-
man’s Rho, Kendall’s Tau, normalized square L2 norm, and incremental sign dis-
tance.

Set 8 contains images obtained at different exposures of a camera. Changing the
exposure has the same effect as changing scene lighting. Although no measure was
able to produce 100% correct matches for this image set, many measures performed
quite well, with the best measure being correlation ratio, followed by Pearson cor-
relation and material similarity.

2.4.3 Sensitivity to Image Modality

Images in Sets 6 and 7 represent simulated and real multimodality images with
intensities of corresponding pixels related by nonlinear mapping functions. Mea-
sures that are based on JPD work best on these image sets, as expected. The sur-
prising result is from the incremental sign distance, which also performs quite
well on Set 7, although it does not perform that well on Set 6. The best mea-
sure for Set 7 is the material similarity, the only measure producing 100% correct
matches.

2.4.4 Sensitivity to Image Blurring

Set 9 contains images with blurring differences. This represents images at different
resolutions. Measures that are computed from JPD generally perform poorly, while
ordinal measures generally perform well. Among the ordinal measures, Kendall’s
Tau and rank distance tie for the most number of correct matches. Other methods
that produce 100% correct matches are Pearson correlation, Tanimoto measure, min-
imum ratio, L1 norm, square L2 norm, normalized square L2 norm, and intensity-
ratio variance.
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Fig. 2.32 (a) Overlaying of
the stereo images in Set 10.
The left image is shown in red
and the right image is shown
in green. (b)–(d) Overlaying
of the left image and the right
image after being resampled
according to the
correspondences found by
normalized square L2 norm,
Tanimoto measure, and
Pearson correlation,
respectively

2.4.5 Sensitivity to Imaging View

Images from different views of a 3-D scene contain local geometric differences.
Stereo images have this characteristic. Tests on the stereo images in Sets 10 and
11 reveal that traditionally used measures such as Pearson correlation and L1 norm
perform well, while measures that are based on JPD perform the worst. Surpris-
ingly, ordinal measures do not perform that well when applied to images with lo-
cal geometric differences. The best measure for Set 10 was normalized square L2

norm followed by Tanimoto measure and Pearson correlation. The best measure for
Set 11 was minimum ratio followed by L1 Norm and Tanimoto measure. Examin-
ing results in Table 2.2 we see Pearson correlation, Tanimoto measure, minimum
ratio, L1 norm, square L2 norm, and normalized square L2 norm all have very
close performance measures with the remaining measures producing much worse
results.

To visually evaluate the quality of stereo correspondences obtained by these mea-
sures, after finding the correspondences, the right image in a stereo pair was re-
sampled to align with the left image. The overlaid images are shown in Figs. 2.32
and 2.33. Image (a) in each case shows overlaying of the original stereo images.
Figs. 2.32b–d show resampling of the right image to the space of the left image
using the correspondences obtained by normalized square L2 norm, Tanimoto mea-
sure, and Pearson correlation, respectively. The left image in a stereo pair is shown
in red, while the right image is shown in green. Yellow pixels show overlaid pix-
els with very close intensities, most likely representing correct correspondences,
and red and green pixels show overlaid pixels with quite different intensities. These
pixels most likely represent incorrect correspondences. The red boundary region
in each overlaid image shows pixels where matching was not performed because
parts of templates centered at those pixels fall outside the image during match-
ing.
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Fig. 2.33 (a) Overlaying of
the original left and right
stereo images in Set 11.
(b)–(d) Stereo-matching
results using minimum ratio,
L1 norm, and Tanimoto
measure, respectively

The matching results in Fig. 2.33 show correspondences obtained by minimum
ratio, L1 norm, and Tanimoto measure. Most mismatches seem to be occurring at
points visible to only one of the cameras due to occlusion, or in homogeneous re-
gions, where there is lack of sufficient detail for accurate matching.

It is interesting to note that the median of absolute differences and the median of
square differences have not performed as well as L1 norm and square L2 norm. Due
to very small occlusions in these stereo images, by discarding half of the pixels that
produce the highest 50% differences, not only the occluded pixels are discarded,
pixels that are critical in distinguishing adjacent neighborhoods from each other are
discarded, dulling the matching process.

2.4.6 Dependency on Template Size

As template size is increased, more image information is used in template match-
ing, increasing the correspondence accuracy. This is only true when the images
do not have geometric differences. When the images have geometric differences
and the images are overlaid at a point of interest, points farther away from the
point of interest will displace more, confusing the matching process. When deal-
ing with stereo images, matching accuracy increases as template size is increases
up to a point, beyond which increasing template size decreases matching accu-
racy.
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Table 2.3 Similar to Table 2.1 except for using square templates of side 51 pixels

Method Set 1 Set 2 Set 3 Set 4 Set 5

Pearson correlation 100.00 100.00 100.00 100.00 100.00

Tanimoto measure 100.00 100.00 100.00 100.00 100.00

Stochastic sign change 94.29 73.37 54.51 0.00 0.00

Deterministic sign change 99.94 100.00 96.31 47.69 54.43

Minimum ratio 100.00 100.00 100.00 49.23 65.94

Spearman’s Rho 100.00 100.00 100.00 100.00 100.00

Kendall’s Tau 100.00 100.00 100.00 100.00 100.00

Greatest deviation 100.00 99.94 99.26 98.31 91.46

Ordinal measure 100.00 99.97 99.11 94.22 83.37

Correlation ratio 100.00 100.00 100.00 100.00 99.66

Energy of JPD 100.00 99.97 69.46 100.00 92.77

Material similarity 100.00 100.00 72.14 100.00 81.51

Shannon MI 100.00 98.29 64.60 100.00 89.43

Rényi MI 100.00 99.09 54.83 100.00 90.83

Tsallis MI 100.00 100.00 69.26 100.00 95.34

Iα-information 100.00 99.97 94.14 100.00 99.69

L1 norm 100.00 100.00 100.00 74.97 75.49

MAD or MSD 100.00 100.00 97.41 5.08 60.68

Square L2 norm 100.00 100.00 100.00 99.43 89.97

Normalized square L2 norm 100.00 100.00 100.00 100.00 100.00

Incremental sign dist. 100.00 100.00 99.69 100.00 100.00

Intensity-ratio var. 99.71 98.60 55.51 99.94 89.94

Intensity-mapping-ratio var. 100.00 100.00 100.00 100.00 97.97

Rank distance 100.00 100.00 100.00 99.89 100.00

Joint entropy 100.00 100.00 87.63 100.00 96.51

Exclusive F -information 100.00 100.00 83.94 100.00 98.09

Increasing template size from 31 to 51 pixels in Sets 1–9, and decreasing the tem-
plate size from 31 to 21 pixels for Sets 10 and 11, the results shown in Tables 2.3
and 2.4 are obtained. Increasing template size clearly improves matching accuracy
for Sets 1–9. Improvement is observed the most among measures that are formu-
lated in terms of JPD. In particular, the accuracies of Iα-information and exclusive
f -information improve considerably, even under high noise level. The accuracy of
ordinal measures also increases considerably, especially that for Spearman’s Rho,
which produces perfect matches for all 9 image sets and surpasses the performances
of Kendall’s Tau and correlation ratio. Least affected by change in template size are
minimum ratio, correlation ratio, incremental sign distance, and rank distance. Since
these measures already perform quite well with small templates, if small templates
are required, they are the measures to use.
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Table 2.4 Similar to Table 2.2 except for using square templates of side 51 pixels in Sets 6–9 and
square templates of side 21 pixels in Sets 10 and 11

Method Set 6 Set 7 Set 8 Set 9 Set 10 Set 11

Pearson correlation 73.43 99.24 100.00 100.00 8.12 9.45

Tanimoto measure 73.46 99.22 99.66 100.00 8.04 9.41

Stochastic sign change 18.03 0.00 1.24 97.69 10.34 11.44

Deterministic sign change 2.80 0.00 9.05 97.86 8.55 9.53

Minimum ratio 0.00 0.00 3.05 100.00 8.05 9.23

Spearman’s Rho 100.00 100.00 100.00 100.00 8.23 9.62

Kendall’s Tau 78.69 99.87 100.00 100.00 8.42 9.64

Greatest deviation 37.69 98.33 98.29 97.26 11.49 10.81

Ordinal measure 35.63 97.62 98.42 98.69 11.01 10.62

Correlation ratio 100.00 99.34 100.00 100.00 9.50 10.64

Energy of JPD 100.00 99.85 90.61 99.11 13.13 12.92

Material similarity 100.00 100.00 100.00 100.00 16.32 16.49

Shannon MI 100.00 99.99 100.00 100.00 23.89 20.98

Rényi MI 100.00 99.93 99.21 99.63 22.65 19.84

Tsallis MI 100.00 99.94 95.48 99.57 11.90 11.94

Iα-information 100.00 99.17 99.89 93.69 12.99 12.18

L1 norm 0.66 21.19 15.16 100.00 8.04 9.23

MAD or MSD 1.05 0.07 1.64 99.94 13.50 11.20

Square L2 norm 40.17 87.48 46.27 100.00 8.26 9.47

Normalized square L2 norm 47.66 97.72 100.00 100.00 8.00 9.32

Incremental sign dist. 59.63 100.00 100.00 100.00 9.64 10.50

Intensity-ratio var. 35.43 99.97 89.82 100.00 10.23 10.13

Intensity-mapping-ratio var. 100.00 98.84 100.00 100.00 12.11 11.08

Rank distance 53.97 99.54 100.00 100.00 8.78 9.96

Joint entropy 100.00 100.00 99.55 99.96 12.57 11.96

Exclusive F -information 100.00 100.00 100.00 100.00 21.48 15.75

2.4.7 Speed

In addition to accuracy, speed determines the performance of a similarity or dissim-
ilarity measure. Computation time in milliseconds needed by a Windows PC with a
3.2 GHz processor to find a pair of corresponding points in the images for each case
in Tables 2.1–2.4 is determined and shown in Tables 2.5–2.8, respectively.

From the contents of Tables 2.5–2.8, we can conclude that ordinal measures are
the most expensive measures followed by measures that are based on the JPD of
image intensities. The three fastest methods are square L2 norm, L1 norm, and
intensity-ratio variance. The fact that square L2 norm is widely used in stereo match-
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Table 2.5 Computation time in milliseconds needed to find a pair of corresponding points in
Table 2.1 on a Windows PC with a 3.2 GHz processor

Method Set 1 Set 2 Set 3 Set 4 Set 5

Pearson correlation 5.09 5.09 5.05 5.13 5.13

Tanimoto measure 5.09 5.14 5.15 5.18 5.13

Stochastic sign change 4.29 4.30 4.36 3.86 3.87

Deterministic sign change 28.91 29.10 29.20 28.86 28.83

Minimum ratio 4.10 4.15 4.18 3.77 3.80

Spearman’s Rho 107.94 107.93 108.18 107.85 108.80

Kendall’s Tau 627.81 635.34 651.70 628.30 620.28

Greatest deviation 722.73 734.50 751.02 713.62 705.72

Ordinal measure 435.64 439.70 446.60 432.86 430.86

Correlation ratio 84.52 84.55 84.50 84.49 84.57

Energy of JPD 110.25 109.71 109.58 109.57 109.43

Material similarity 241.43 242.35 241.65 242.84 239.38

Shannon MI 172.97 172.58 172.96 172.41 172.59

Rényi MI 220.40 220.96 228.79 229.01 226.82

Tsallis MI 226.82 226.56 227.07 226.44 228.40

Iα-information 456.45 467.89 496.96 453.30 460.40

L1 norm 3.06 3.05 3.07 2.88 2.78

Median of absolute diff. 18.06 19.13 19.21 19.18 18.12

Square L2 norm 2.71 2.71 2.71 2.72 2.71

Median of square diff. 19.49 19.58 19.54 19.20 18.94

Normalized square L2 norm 6.15 6.21 6.18 6.19 6.19

Incremental sign dist. 4.50 4.54 4.54 4.49 4.51

Intensity-ratio var. 3.63 3.64 3.64 3.64 3.63

Intensity-mapping-ratio var. 84.65 84.56 84.57 86.44 85.71

Rank distance 108.99 109.16 109.08 112.19 114.35

Joint entropy 105.88 106.02 106.11 106.62 107.07

Exclusive F -information 172.45 172.64 177.13 177.42 176.87

ing is no surprise as it has the fastest speed among the measures tested with accuracy
that is very close to the best accuracy achievable.

Changing template size changes the computation time. Computation time varies
from a linear function of template size n to a quadratic function of n. Computation
time when using templates of side 51 pixels in Sets 1–9 and templates of side 21
pixels in Sets 10 and 11 are shown in Tables 2.7 and 2.8. When compared with
Tables 2.5 and 2.6, we see that again square L2 norm is the fastest and the gap
between slower and faster measures widens for Sets 1–9. For Sets 10 and 11, the
gap in computation time between slow and fast measures narrows as template size
is decreased.
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Table 2.6 Computation time in milliseconds needed to find a pair of corresponding points in
Table 2.2 on a Windows PC with a 3.2 GHz processor

Method Set 6 Set 7 Set 8 Set 9 Set 10 Set 11

Pearson correlation 5.12 6.69 4.49 4.92 3.49 2.18

Tanimoto measure 5.09 6.67 4.48 4.98 3.50 2.19

Stochastic sign change 3.61 4.30 3.30 4.13 2.97 2.06

Deterministic sign change 28.52 52.67 12.06 29.12 28.63 57.37

Minimum ratio 3.60 4.66 3.02 3.78 2.77 1.96

Spearman’s Rho 108.67 110.39 103.21 110.14 74.83 21.05

Kendall’s Tau 629.60 642.28 552.20 624.68 442.79 111.94

Greatest deviation 738.69 764.53 643.89 714.55 518.37 128.17

Ordinal measure 444.00 459.51 360.63 439.40 319.03 81.52

Correlation ratio 84.58 86.12 81.90 86.36 57.67 16.73

Energy of JPD 110.36 111.17 106.39 112.33 80.66 21.39

Material similarity 234.08 234.60 223.35 250.50 135.91 37.41

Shannon MI 171.90 173.52 166.53 176.41 116.72 32.83

Rényi MI 226.20 222.73 220.77 228.22 150.14 40.91

Tsallis MI 227.59 222.73 220.47 227.86 154.03 41.12

Iα-information 392.71 352.34 398.74 432.19 289.03 77.62

L1 norm 2.83 3.68 2.46 3.14 2.29 1.87

Median of absolute diff. 19.29 19.56 22.54 19.23 20.11 5.26

Square L2 norm 2.71 3.58 2.44 2.86 2.07 1.77

Median of square diff. 19.89 19.83 22.89 19.53 20.44 5.64

Normalized square L2 norm 6.18 7.01 5.86 6.44 4.50 2.08

Incremental sign dist. 4.48 5.31 4.06 4.59 3.35 1.98

Intensity-ratio var. 3.62 4.51 3.31 3.85 2.73 1.93

Intensity-mapping-ratio var. 84.87 85.28 81.24 88.37 58.81 16.45

Rank distance 109.52 110.92 104.74 115.12 72.88 20.25

Joint entropy 105.91 104.48 99.71 106.05 70.69 19.91

Exclusive F -information 173.36 172.92 166.76 183.66 118.33 32.94

The smallest increase in computation time as template size is increased is ob-
served in measures that use JPD. This is because a portion of the computation time
is spent by these measures to create the JPD, which is a linear function of template
size n, and a portion of the computation time that is independent of n is spent on
calculating a similarity or dissimilarity measure from the obtained JPD. Increase in
template size, therefore, only linearly increases the time for creating the JPD, which
is a small portion of the overall computation time. Measures that have computa-
tional complexities a linear function of n, such as correlation coefficient, Tanimoto
measure, minimum ratio, L1 norm, square L2 norm, and intensity ratio variance
also have the smallest increase in computation time with an increase in n.
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Table 2.7 Computation time in milliseconds needed to find a pair of corresponding points in
Table 2.3 on a Windows PC with a 3.2 GHz processor

Method Set 1 Set 2 Set 3 Set 4 Set 5

Pearson correlation 12.13 12.29 12.13 12.03 11.94

Tanimoto measure 12.15 12.03 12.05 12.03 12.05

Stochastic sign change 10.78 10.75 10.96 9.53 9.67

Deterministic sign change 36.63 36.75 36.92 36.38 36.33

Minimum ratio 9.96 10.03 10.19 9.02 9.15

Spearman’s Rho 320.36 320.39 320.87 320.37 319.26

Kendall’s Tau 4547.6 4608.7 4641.3 4471.3 4447.1

Greatest deviation 4873.3 4956.9 5110.9 4834.7 4708.7

Ordinal measure 2718.3 2778.2 2762.6 2627.6 2616.3

Correlation ratio 224.92 224.91 224.94 225.01 224.92

Energy of JPD 118.89 119.73 119.01 119.92 120.25

Material similarity 273.27 268.75 268.92 272.66 272.58

Shannon MI 192.60 193.41 194.57 192.71 190.21

Rényi MI 232.93 235.06 232.08 231.32 231.32

Tsallis MI 230.17 230.74 231.66 229.94 231.04

Iα-information 534.25 536.42 578.38 520.28 546.20

L1 norm 7.95 7.89 7.96 7.37 7.45

Median of absolute diff. 124.65 124.12 122.97 122.28 120.08

Square L2 norm 7.25 6.90 6.90 6.94 6.93

Median of square diff. 125.12 126.32 126.06 124.43 121.72

Normalized square L2 norm 15.61 15.56 15.62 15.59 15.60

Incremental sign dist. 11.20 11.24 11.27 11.19 11.11

Intensity-ratio var. 8.96 8.94 8.95 8.94 8.92

Intensity-mapping-ratio var. 231.14 231.05 230.48 231.97 232.40

Rank distance 346.73 351.22 346.45 325.22 323.55

Joint entropy 119.45 120.38 120.66 118.67 119.58

Exclusive F -information 195.25 197.11 198.02 196.86 198.36

The largest increase in computation time as a function of n is observed by mea-
sures that use ranks of intensities, especially those that are quadratic functions of n,
such as greatest deviation, Kendall’s Tau, and the ordinal measure.

2.5 Choosing a Similarity/Dissimilarity Measure

Each similarity/dissimilarity measure has its strengths and weaknesses. A measure
that performs well on one type of images may perform poorly on another type of



2.5 Choosing a Similarity/Dissimilarity Measure 57

Table 2.8 Computation time in milliseconds needed to find a pair of corresponding points in
Table 2.4 on a Windows PC with a 3.2 GHz processor

Method Set 6 Set 7 Set 8 Set 9 Set 10 Set 11

Pearson correlation 11.94 12.74 11.17 13.00 1.86 1.75

Tanimoto measure 12.02 12.72 11.12 12.98 1.90 1.74

Stochastic sign change 9.02 10.03 8.36 10.32 1.72 1.67

Deterministic sign change 35.74 59.01 18.36 36.17 28.42 56.06

Minimum ratio 8.54 9.28 7.80 9.41 1.46 1.60

Spearman’s Rho 320.86 321.68 297.40 344.80 74.35 9.53

Kendall’s Tau 4550.9 4675.4 3809.5 4468.6 95.43 25.35

Greatest deviation 5035.3 5144.4 4008.0 4645.8 118.24 31.21

Ordinal measure 2742.3 2877.2 2058.5 2601.5 80.46 21.56

Correlation ratio 224.98 225.43 213.48 241.97 27.74 8.50

Energy of JPD 118.51 121.18 113.72 113.37 70.14 20.42

Material similarity 264.89 273.22 258.00 339.64 137.62 36.79

Shannon MI 185.32 183.75 174.74 181.89 116.16 31.21

Rényi MI 230.75 225.78 213.29 224.32 150.83 39.99

Tsallis MI 231.12 231.07 222.11 233.37 157.88 39.90

Iα-information 427.03 375.91 464.31 488.50 255.86 69.33

L1 norm 7.30 8.15 6.41 7.92 1.28 1.55

Median of absolute diff. 121.18 125.88 122.01 125.73 5.08 1.75

Square L2 norm 7.01 7.67 6.31 6.73 1.20 1.52

Median of square diff. 122.20 126.55 123.53 123.51 5.42 2.02

Normalized square L2 norm 15.57 16.29 14.53 15.56 2.28 1.75

Incremental sign dist. 11.15 11.72 10.25 10.87 1.80 1.64

Intensity-ratio var. 8.92 9.72 8.27 8.96 1.48 1.56

Intensity-mapping-ratio var. 233.46 242.16 228.98 239.13 26.99 8.09

Rank distance 325.58 328.92 301.42 324.32 31.36 8.99

Joint entropy 116.46 115.26 109.89 119.41 69.48 18.99

Exclusive F -information 194.40 193.40 185.59 196.25 117.23 31.02

images. Therefore, an absolute conclusion cannot be reached about the superior-
ity of one measure against another. However, the experimental results obtained on
various image types and various image differences reveal that Pearson correlation
coefficient, Tanimoto measure, minimum ratio, L1 norm, square L2 norm, and in-
tensity ratio variance overall perform better than other measures. If the images are
captured under different exposures of a camera or under different lighting of a scene,
the results show that Pearson correlation coefficient, Tanimoto measure, normalized
square L2 norm, and incremental sign distance perform better than others.

Different-modality images are most efficiently and accurately matched by
intensity-mapping-ratio variance, joint entropy, energy of JPD, correlation ratio,
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and Spearman’s Rho. Although in the past, measures solely based on JPD have
been used to match images in different modalities, experimental results obtained in
this chapter show that ordinal measures such as correlation ratio and Spearman’s
Rho are equally effective and more efficient than many of the JPD measures in the
matching of multimodality images.

Stereo images are most efficiently and accurately matched using Pearson correla-
tion, Tanimoto measure, minimum ratio, L1 norm, square L2 norm, and normalized
square L2 norm. It is clear that when the images being matched are stereo, the mea-
sures to avoid are those that are based on JPD as not only are they computationally
very expensive, they are the least accurate. Outliers and noise quickly degrade such
measures. Some of the ordinal measures such as Spearman’s Rho, Kendall’s Tau,
and rank distance produce accuracies that are close to those obtained by Pearson
correlation, Tanimoto measure, minimum ratio, L1 norm, square L2 norm, and nor-
malized square L2 norm, but they are not as efficient and so are not recommended
in stereo matching.

Considering the accuracies of the measures obtained using the images in Sets 1–
9, we find that correlation ratio followed by intensity-mapping-ratio variance pro-
duce the best accuracy when template size is relatively small (side 31 pixels). At
a larger template size (side 51 pixels), Spearman’s Rho takes the lead followed by
correlation ratio. Therefore, if a single measure is to be used to compare images
containing noise and intensity differences but no geometric differences, correlation
ratio, Spearman’s rho, and Kendall’s Tau are the ones to choose. Considering com-
putational efficiency as well as accuracy, correlation ratio is clearly the choice fol-
lowed by Spearman’s Rho.

If a single measure is to be used to match all 11 image sets, we see that Pear-
son correlation and Tanimoto measure receive the highest score as they manage
to match 7 out of 11 image sets either perfectly or better than all other measures.
This is followed by Kendall’s Tau and correlation ratio. At a larger template size,
Spearman’s Rho takes the lead, either perfectly matching 9 out of 11 images sets
or matching them better than any other measure. This is followed by normalized
square L2, which manages to match 8 out of 11 sets either perfectly or better than
other measures.

Among the four newly introduced measures, minimum ratio was found the best
in matching the stereo images in Set 11 when using small templates and the best
in matching the stereo images in Sets 10 and 11 when using moderate size tem-
plates. Also, because of its very low computational cost it is the similarity measure
of choice when matching stereo images. Energy of JPD when compared to Shannon
mutual information produces a better accuracy on 10 out of the 11 image sets for
small templates and 8 out of the 11 image sets for moderate size templates. Consid-
ering that it requires nearly half the computation time of Shannon mutual informa-
tion, it can replace Shannon mutual information to increase both speed and accu-
racy. Material similarity produced the highest accuracy in matching multimodality
images in Sets 7 and 8 when using a relatively small template size and produced
perfect matches for the same image sets at a larger template size, thus making it the
most accurate measure in matching multimodality images. Material similarity is,
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Fig. 2.34 (a), (b) A noise-
free image and its noisy
version. These images are the
same as those in Figs. 2.26a
and 2.26d. (c) Smoothing of
image (b) by an adaptive
Gaussian filter of standard
deviation 1 pixel.
(d) Smoothing of image (b)
by the traditional Gaussian
filter of standard deviation
1 pixel

however, computationally more expensive than Shannon mutual information. Rank
distance is an ordinal measure that has the fastest speed among the ordinal measures
and has an accuracy that falls somewhere in the middle among the ordinal measures
tested.

2.6 Preprocessing Considerations

Similarity and dissimilarity measures that are based on JDP or intensity ranks are
not sensitive to sensor characteristics or scene lighting but are computationally very
expensive. On the other hand, measures that use raw image intensities are fast but
are sensitive to differences in sensor characteristics and scene lighting. In order to
take advantage of the fast speed of the latter and the robustness of the former, the
images may be preprocessed, normalizing the intensities before using them in the
calculation of a measure.

If the images are known to contain noise, one may filter out the noise before
attempting to compute the similarity/dissimilarity between them. If the images are
known to contain impulse noise, median filtering may be used to reduce or remove
noise, and if the images are known to contain zero-mean noise, Gaussian filtering
may be used to reduce the effect of noise. Since image filtering changes intensities
even at pixels that are not affected by noise, the filter kernel should be sufficiently
small to avoid smoothing the image structures but large enough to reduce sufficient
noise to produce an accurate similarity/dissimilarity measure.

To preserve image structures while reducing noise, filter kernels that change in
shape and size are most desirable [2, 34, 59, 67]. Figure 2.34 compares adaptive
smoothing versus traditional smoothing at the presence of zero-mean noise.

If the images are obtained under different lighting conditions, through a prepro-
cessing operation image intensities can be normalized to remove global intensity
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Fig. 2.35 (a), (b) Images
with smoothly varying
intensity differences. These
images are the same as those
shown in Figs. 2.27a and
2.27c. (c), (d) Rank transform
intensity mapping of (a)
and (b), respectively, using
17 × 17 windows and setting
ranks greater than 255 to 255

differences between them. In the monotonicity operation proposed by Kories and
Zimmerman [44], a 3 × 3 window is considered at a pixel, and the intensity at the
pixel is replaced by a number between 0 and 8 depending on the number of in-
tensities within the 3 × 3 window that are smaller than the intensity at the pixel.
Intensities are newly assigned that depend on their relative values within a small
neighborhood rather than their absolute values globally. This process will reduce or
remove global intensity differences between images.

The rank transform proposed by Zabih and Woodfill [111], replaces the local
intensity distribution of an image with values in the range 0 to d2 − 1 similar to
monotonicity operation, where d = 2r + 1 is an odd number showing the side of the
square window centered at the pixel under consideration. This mapping is partic-
ularly effective when high-dynamic range images are used. The method brightens
areas that are too dark and darkens areas that are too bright.

Suppose the center pixel in a d × d neighborhood is denoted by p and the inten-
sity at p is I (p). Also, suppose the intensity at pixel p′ (p′ �= p) in that neighborhood
is I (p′). If the number of pixels within the neighborhood where I (p′) < I (p) is m,
then m is considered the rank of p and assigned to p. This is the same as monotonic-
ity operation except for using a neighborhood larger than 3 × 3.

If a 16 × 16 neighborhood is selected, the center pixel can be considered the
128th pixel within the neighborhood when counted in raster scan order. Then, the
rank of the intensity at the center pixel will have a value between 0 and 255 depend-
ing on whether from none to all intensities within the neighborhood are smaller than
the intensity at the center pixel. Mapping intensities in this manner enables remov-
ing global intensity differences between images. An example of intensity mapping
using 17 × 17 neighborhoods is given in Fig. 2.35. Ranks greater than 255, which
rarely occur, are set to 255. Figures 2.35a and 2.35b after rank transform are shown
in Figs. 2.35c and 2.35d, respectively. The images after rank transform are indistin-
guishable.
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At the presence of outliers (occlusions), rank transform has been found to im-
prove matching accuracy [111]. This can be attributed to the fact that at occluded
boundaries there are sharp intensity changes and rank transform dulls the sharp
changes, reducing the occlusion effect and producing more accurate matches. How-
ever, this dulling effect can worsen matching accuracy when applied to images that
do not contain occlusions. Rank transform intensity mapping when applied to high-
contrast and noise-free images may reduce image information sufficiently to worsen
matching accuracy. Therefore, care should be taken when choosing a preprocessing
operation in image matching.
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