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Preface

Image registration is the process of finding correspondence between all points in
two images of a scene. This correspondence is required in stereo depth perception,
3-D scene reconstruction, object detection and recognition, change detection, image
fusion, object tracking and motion analysis. Analysis of two or more images of a
scene often depends on the ability to find correspondence between points in the
images.

This monograph overviews principles, tools and methods in image registration.
In addition to reviewing past tools and methods and comparing their performances,
new tools and methods are introduced and evaluated.

Chapter 1 describes the problem of image registration, identifies the steps in-
volved in registering two images, defines the terminologies used in the book and cat-
egorizes image registration methods. This monograph focuses on point-based meth-
ods to image registration, although other methods are also reviewed in Chap. 11.

Chapter 2 reviews various similarity and dissimilarity measures used to register
two images or find correspondence between local neighborhoods in two images.
Chapter 3 reviews various point detectors and compares their performances.

Chapter 4 reviews methods for extracting various image features and Chap. 5
discusses various image descriptors that can be associated with the detected points.
Chapter 6 shows that not all image features are equally informative. Some features
carry more information than others or are invariant under intensity and geometric
changes. Chapter 6 also describes various methods for selecting small subsets of
image features to make the point correspondence process more efficient.

Chapter 7 discusses methods for finding correspondence between points in two
images where each point has a feature vector associated with it. Robust matching
and robust estimation of transformation parameters are discussed in Chap. 8 and
various transformation models in image registration are discussed in Chap. 9.

Chapter 10 discusses the image resampling and intensity blending steps in image
registration. Chapters 2–10 review various tools needed to design a particular image
registration method. Specific methods that use the described tools to register images
are reviewed in Chap. 11.

This monograph covers the fundamentals of digital image registration. It does
not discuss applications of image registration nor does it discuss characteristics of
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various types of images. However, a researcher familiar with principles, tools, and
methods covered in this book should be able to design an effective method for reg-
istering a particular type of imagery and for a given application.

The content of this monograph is intended for students, image analysis software
developers, engineers, and researchers who would like to analyze two or more im-
ages of a scene. It provides the basic knowledge to find corresponding points in two
images and spatially align them.

The satellite images used in the examples are courtesy of NASA, the med-
ical images are courtesy of Kettering Medical Center, Kettering, Ohio, and the
aerial images are courtesy of Image Registration and Fusion Systems, Dayton,
Ohio. The remaining images are those of the author. The images may be found
at http://www.imgfsr.com/book2.html and may be downloaded and used in research
and scientific publications without a restriction.

A. Ardeshir GoshtasbyDayton, OH, USA

http://www.imgfsr.com/book2.html
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Chapter 1
Introduction

Image registration is the process of spatially aligning two images of a scene so that
corresponding points assume the same coordinates. This process enables finding,
for each point in the first image, the corresponding point in the second image. In
this monograph, the first image will be referred to as the reference image and the
second image will be referred to as the sensed image. The reference image is kept
unchanged and the sensed image is transformed to take the geometry and spatial
coordinates of the reference image.

If the images represent different views of a 3-D scene, or if the scene represents
a dynamic environment, it may not be possible to find correspondence between all
points in the images. Image registration aims to find correspondence between points
that are present in both images.

An example of image registration is given in Fig. 1.1. The reference image is a
Landsat multispectral (MSS) image of Kalkaska County, Michigan, and the sensed
image is a Landsat thematic mapper (TM) image of the same area. Registration
involves spatially aligning the TM image with the MSS image. By registering the
images, it becomes possible to fuse information in the images or identify differences
between the images.

Another example of image registration is given in Fig. 1.2. Reference and sensed
images show downtown Honolulu, Hawaii. By registering the images using their
overlap area, an image mosaic is created that contains areas covered by both images.

The word registration can be traced back to the year 1900 in a US patent by
Becker [5]. In this patent, Becker discloses a focusing camera that uses a half-mirror
and a full mirror to create two images of a scene on the viewer’s retina. By changing
the orientation of one mirror with respect to the other, images from the two mirrors
are aligned on the viewer’s retina. The mechanism that changes the orientation of
one mirror with respect to the other also changes the distance of the image plane
to the lens. The mechanism is designed in such a way that when images from the
two mirrors perfectly align on the viewer’s retina, the film also moves to the right
distance to the lens, enabling creation of a sharp image of the scene on the film.

The next advancement in image registration is observed in the film industry in
the production of a double-coated color film. In an apparatus disclosed by Kelley
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Fig. 1.1 (a) A Landsat MSS image and (b) a Landsat TM image of Kalkaska County, Michigan.
(c) The TM image is geometrically transformed to spatially align the MSS image

Fig. 1.2 (a), (b) Images of downtown Honolulu, Hawaii. (c) Registration of the images and cre-
ation of an image mosaic

and Mason in a US patent in 1917 [15], a color film is created by recording the
blue band on one side of the film and a combination of red and green bands on the
opposite side of the film. The challenge in creating a color film is to print two images
of the same scene taken separately in perfect alignment on the film. The disclosed
apparatus achieved alignment of different color bands with high precision using two
registration pins that fit into the perforations in the edges of the films.

The next natural use of image registration happened in printing. Seaman, in a
US patent in 1937 [29], disclosed an apparatus for printing overlapping images of
a scene captured separately into a more complete image. The invention not only
allowed the creation of an image mosaic from two or more overlapping images,
a masking mechanism was introduced that made it possible to add figures captured
from one scene to the photograph of another scene.

Image registration as we know it today emerged as an electronic image compar-
ison device. Dressler, in a US patent in 1956 [7], disclosed an electronic device for
comparing and combining two overlapping images. The images were provided on
films. Through the use of a half mirror and a full mirror, the images were projected
to an image subtraction circuitry that produced an output with an amplitude pro-
portional to the degree of match between the images. By providing the means to
translate and rotate one film with respect to the other and by observing the output of
the subtraction circuitry, the capability to align and combine images from two films
into a larger image was provided.

The electronic image comparison idea of Dressler was later extended to an image
correlator. Link and Smith, in a US patent in 1962 [18], disclosed an electronic tube
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that could store a reference image and correlate it with a sensed image, producing
an output signal with its strength a function of the correlation between the images.
Steiner, in a US Patent in 1965 [31], further advanced the tube to make it possible
to move the sensed image with respect to the reference image and align the images.
Johnson, in a US Patent in 1969 [14], further improved the apparatus to normalize
the correlation measure so that the output amplitude would be independent of the
amplitude of the sensed image, thereby measuring the degree of match between the
reference and sensed images more accurately.

The first example of digital image registration is traced back to the work of
Roberts at MIT in 1963 [27]. By aligning the projections of edges of model polyhe-
dral solids with image edges, Roberts developed a computational method for locat-
ing and recognizing predefined polyhedral objects in an image.

Methods for registering full digital images first appeared in the remote sensing
literature. Anuta [1, 2] developed an automatic method for registering images with
translational differences. Efforts to speed up the method and make it less sensitive
to intensity differences between the images were made by Leese et al. [16], Barnea
and Silverman [4], and Pratt [26] shortly after. The use of image registration in robot
navigation was pioneered by Mori et al. [23], Levine et al. [17], and Nevatia [24].
Image registration found its way to medical imaging as data from medical scanners
became digitally available [3, 30, 35].

While registration activities during 1970s focused on alignment of satellite im-
ages using rigid, similarity, and affine transformation functions, increased produc-
tion of low-altitude aerial images during 1980s was the driving force behind inven-
tion of methods that could spatially align images with local geometric differences
[9–13]. Due to the increased use of medical images during 1990s and the need for
spatially aligning multimodality image, considerable advances were made in formu-
lation of information theoretic similarity/dissimilarity measures that could compare
and register multimodality images [8, 19, 20, 22, 25, 32, 34].

During the last decade, due to the increased use of videos in surveillance and
other real-time applications, image registration became a necessary step in analysis
of single and multi source videos. Advances in the imaging technology to increase
resolution and quality of images, also increased the complexity of methods that can
register such images. Intensity-based registration methods gradually lost ground to
point-based registration methods that could accommodate local geometric differ-
ences between images.

During the past several years, considerable efforts have gone into locating unique
points in images [28, 33] and finding the correspondence between them [6, 21].
Locally unique points in two images that are used to register the images will be
referred to as control points in this monograph.

The general steps involved in image registration and the relation between them
are shown in Fig. 1.3. An image registration system can be considered a black box
that receives a reference image and a sensed image and resamples the sensed image
to spatially align with the reference image. This operation assigns the same coor-
dinates to corresponding points in the images, defining both images in the same
coordinate system.
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Fig. 1.3 Components of an
image registration system and
the relation between them

Depending on the severity of the intensity and geometric differences between the
reference and sensed images, different steps may be needed to register the images.
If the images can be treated as rigid bodies, they will have only translational and
rotational differences. By translating and rotating the sensed image with respect to
the reference image, the images can be registered. Early methods achieved image
registration in this manner. The process is simple but it is not efficient. It is also
limited to images that have only translational and rotational differences. Moreover,
the presence of outliers in one or both images can break down the registration pro-
cess.

A more robust approach will select a number of control points in the reference
image and will try to locate them in the sensed image. This is achieved by select-
ing small windows centered at the points in the reference image and searching for
the windows in the sensed image. If the images have only translation and rota-
tional differences, each correct match will produce the same rotational parameter.
By matching multiple windows in the images, the rotation parameter shared by two
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or more matches can be used to register the images even in the presence of out-
liers.

If the geometries of the images are not related by a rigid transformation, a se-
quence of steps as shown in Fig. 1.3 are needed to register the images. First, a
number of control points is selected in each image. Then, features describing the
neighborhoods of the points are calculated and the most informative features are
selected. Initial correspondence is established between the points using the features
of the points. Additional information about the images is then used in the form of
constraints to distinguish the correct correspondences from the incorrect ones. Once
a set of corresponding points in the images is found, the parameters of a nonlinear
function to transform the space of the sensed image to that of the reference image are
determined. The chapters containing the details of each step in image registration
are also included in Fig. 1.3.

Chapters 2–10 describe the tools needed to design image registration methods for
various applications and the underlying principles. Well-known registration methods
that are designed by these tools are reviewed in Chap. 11.
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Chapter 2
Similarity and Dissimilarity Measures

Given two sequences of measurements X = {xi : i = 1, . . . , n} and Y = {yi : i =
1, . . . , n}, the similarity (dissimilarity) between them is a measure that quantifies
the dependency (independency) between the sequences. X and Y can represent mea-
surements from two objects or phenomena. In this chapter, we assume they represent
images and xi and yi are intensities of corresponding pixels in the images. If X and
Y represent 2-D images, the sequences can be considered intensities in the images
in raster-scan order.

A similarity measure S is considered a metric if it produces a higher value as
the dependency between corresponding values in the sequences increases. A metric
similarity S satisfies the following [92]:

1. Limited Range: S(X,Y ) ≤ S0, for some arbitrarily large number S0.
2. Reflexivity: S(X,Y ) = S0 if and only if X = Y .
3. Symmetry: S(X,Y ) = S(Y,X).
4. Triangle Inequality: S(X,Y )S(Y,Z) ≤ [Z(X,Y ) + S(Y,Z)]S(X,Z).

S0 is the largest similarity measure between all possible X and Y sequences.
A dissimilarity measure D is considered a metric if it produces a higher value as

corresponding values in X and Y become less dependent. A metric dissimilarity D

satisfies the following for all sequences X and Y [23, 92]:

1. Nonnegativity: D(X,Y ) ≥ 0.
2. Reflexivity: D(X,Y ) = 0 if and only if X = Y .
3. Symmetry: D(X,Y ) = D(Y,X).
4. Triangle Inequality: D(X,Y ) + D(Y,Z) ≥ D(X,Z).

Although having the properties of a metric is desirable, a similarity/dissimilarity
measure can be quite effective without being a metric. Similarity/dissimilarity mea-
sures that are insensitive to radiometric changes in the scene or invariant to sensor
parameters are often not metrics. For instance, ordinal measures are not metrics but
are quite effective in comparing images captured under different lighting conditions,
and measures that are formulated in terms of the joint probability distribution of im-
age intensities are not metrics but are very effective in comparing images captured
by different sensors.

A.A. Goshtasby, Image Registration,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-2458-0_2, © Springer-Verlag London Limited 2012

7

http://dx.doi.org/10.1007/978-1-4471-2458-0_2


8 2 Similarity and Dissimilarity Measures

Fig. 2.1 (a) Observed image
X and saved images
{Yi : i = 1, . . . ,N} are given
and it is required to find the
saved image most similar to
the observed image.
(b) Template X and windows
{Yi : i = 1, . . . ,N} in an
observed image are given and
it is required to find the
window that is most similar
to the template

Various similarity/dissimilarity measures have been formulated throughout the
years, each with its own strengths and weaknesses. Some measures use raw image
intensities, some normalize the intensities before using them, some use the ranks of
the intensities, and some use joint probabilities of corresponding intensities.

The similarity and dissimilarity measures are discussed in the context of two real
problems. In one problem, an observed image and a number of saved images are
given and it is required to determine the saved image that best matches the observed
image (Fig. 2.1a). The saved images could be images in a database and the observed
image could be the one that is being viewed by a camera.

The second problem involves locating an object of interest in an observed image
where the model of the object is given in the form of a template and the observed
image is an image being viewed by a camera (Fig. 2.1b). To locate the object within
the observed image, there is a need to find the best-match position of the template
within the observed image.

The two problems are similar in the sense that both require determination of
the similarity between two images or between a template and a window in a larger
image. We will denote the observed image in the first problem and the template
in the second problem by X and denote a saved image in the first problem and
a window within the observed image in the second problem by Y . We will also
assume X and Y contain n pixels ordered in raster-scan order. Moreover, we assume
the images do not have rotational and scaling differences. Therefore, if images X

and Y truly match, corresponding pixels in the images will show the same scene
point.

In the following sections, properties of various similarity and dissimilarity mea-
sures are reviewed and their strengths and weaknesses are identified. In addition
to reviewing measures in the literature, four additional measures are newly in-
troduced. The discrimination powers of the measures are determined using syn-
thetic and real images and their sensitivities to noise and image blurring as well
as to intensity and geometric differences between images are determined and com-
pared.
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2.1 Similarity Measures

2.1.1 Pearson Correlation Coefficient

The correlation coefficient between sequences X = {xi : i = 1, . . . , n} and Y = {yi :
i = 1, . . . , n} is defined by

r =
∑n

i=1(xi − x̄)(yi − ȳ)

{∑n
i=1(xi − x̄)2} 1

2 {∑n
i=1(yi − ȳ)2} 1

2

, (2.1)

where x̄ = 1
n

∑n
i=1 xi , and ȳ = 1

n

∑n
i=1 yi . Correlation coefficient was first discov-

ered by Bravais in 1846, “Memoires par divers savants,” T, IX, Paris, 1846, pp. 255–
332 [86] and later shown by Pearson [65] to be the best possible correlation between
two sequences of numbers.

Dividing the numerator and denominator of (2.1) by n, we obtain

r =
1
n

∑n
i=1(xi − x̄)(yi − ȳ)

{ 1
n

∑n
i=1(xi − x̄)2} 1

2 { 1
n

∑n
i=1(yi − ȳ)2} 1

2

, (2.2)

which shows the sample covariance over the product of sample standard deviations.
Equation (2.2) can also be written as

r = 1

n

n∑

i=1

(
(xi − x̄)

σx

)(
(yi − ȳ)

σy

)

, (2.3)

or

r = 1

n
X̄t Ȳ , (2.4)

where X̄ and Ȳ are X and Y after being normalized with respect to their means and
standard deviations, and t denotes transpose.

Correlation coefficient r varies between −1 and +1. The case r = +1, called
perfect positive correlation, occurs when X̄ and Ȳ perfectly coincide, and the case
r = −1, called the perfect negative correlation, occurs when X̄ and negative of Ȳ

perfectly coincide. Under perfect positive or negative correlation:

xi − x̄

σx

= ±yi − ȳ

σy

, (2.5)

or

y = ±σy

σx

(x − x̄) + ȳ, (2.6)

showing that corresponding x and y values are related linearly.
When r is not equal to 1 or −1, the line best fitting corresponding values in X

and Y is obtained from [38]:

y′ = r
σy

σx

(x − x̄) + ȳ. (2.7)
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Therefore, correlation coefficient can be considered the coefficient of the linear re-
lationship between corresponding values in X and Y .

If X and Y represent intensities in two images obtained under different lighting
conditions of a scene and corresponding intensities are linearly related, a high sim-
ilarity will be obtained between the images. When images are in different modal-
ities so that corresponding intensities are nonlinearly related, perfectly matching
images may not produce high-enough correlation coefficients, causing mismatches.
Therefore, Pearson correlation coefficient is suitable for determining the similarity
between images with intensities that are known to be linearly related.

Pearson correlation coefficient is a relatively efficient similarity measure as it
requires a small number of additions and multiplication at each pixel. Therefore, its
computational complexity for images of size n pixels is on the order n. If correlation
coefficient is to be used to locate a template in an image, and if N subimages or
windows exist in the image that can be compared to the template, the time required
to locate the template inside the image will be proportional to Nn. This computation
time can be considerable, especially when N and n are large. A two-stage process
to speed up this search has been proposed [35].

To speed up template-matching search by correlation coefficient, Anuta [3] took
advantage of the high speed of the fast Fourier transform (FFT) algorithm. Assum-
ing V represents the 2-D image inside which a 2-D template is to be found and U

represents the template padded with zeros to be the same size as V , the result of cor-
relating the template with the best-matching window in the image (Fig. 2.1b) can be
computed by locating the peak of

C = F−1[F (U) · F ∗(V )
]
, (2.8)

where F implies 2-D Fourier transform, F−1 implies 2-D inverse Fourier trans-
form, ∗ implies complex conjugate, and · implies point-by-point multiplication.
Note that use of FFT requires that images U and V be the same size and have
dimensions that are powers of 2. If dimensions of the images are not powers of 2,
the images are padded with zeros so their dimensions become powers 2.

Use of FFT requires that the images be treated as 2-D arrays rather than 1-D
arrays. Also note that when FFT is used, individual windows in an image cannot
be normalized with respect to their means and standard deviations because all wid-
ows are collectively compared to the template. However, because Fourier transform
measures the spatial frequency characteristics of the template and the image, the
process is not sensitive to the absolute intensities but rather to the spatial variations
of intensities in the images.

Kuglin and Hines [48] observed that information about the displacement of one
image with respect to another is included in the phase component of the cross-
power spectrum of the images. If φ = φ1 − φ2 is the phase difference between two
images, the inverse Fourier transform of eφ will create a spike at the point showing
the displacement of one image with respect to the other. Denoting F (U) by F and
F (V ) by G, then phase correlation

Cp = F−1
[

F · G∗

|F · G∗|
]

, (2.9)
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Fig. 2.2 (a) A template. (b) An image containing the template. (c) The correlation image with
intensity at a pixel showing the correlation coefficient between the template and the window cen-
tered at the pixel in the image. The dark boundary in the correlation image represents pixels where
matching is not possible because a part of the window centered there will fall outside the image.
The pixel with the highest correlation coefficient, which shows the location of the center of the
window best matching the template is encircled. (d) The real part of image Cp calculated by for-
mula (2.9), showing the phase correlation result with the location of the spike encircled. The spike
shows the location of the upper-left-hand corner of the template within the image

where division is carried out point-by-point, separates the phase from the magnitude
in Fourier transform. The relative position of the template within the observed image
will appear as a spike in image Cp exactly at the location where the correlation will
peak when searching for the template within the image. This is demonstrated in an
example in Fig. 2.2.

Although phase correlation is already very fast compared to iterative search with
correlation coefficient, Alliney and Morandi [1] made the computations even faster
by projecting the images into the x and y axes and matching the projections using
1-D Fourier transform. To reduce the boundary effects, Gaussian weights were used.

The phase correlation idea has been extended to images with rotational differ-
ences [21] and images with rotational and scaling differences [12, 72]. Stone [87]
has provided an excellent review of phase correlation and its use in registration.

To make the matching process less dependent on absolute intensities in images,
Fitch et al. [26] used intensity gradients rather than raw intensities in the calcula-
tions. The operation, which is known as orientation correlation, creates a complex
image using gradients along x and y of each image and uses the complex gradient
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images in the calculations. If U and V represent the template and the image inside
which the template is to be found, and the template is padded with zeros to have the
same dimensions as the image, then complex images

Ud(x, y) = sgn

(
∂U(x, y)

∂x
+ j

∂U(x, y)

∂y

)

(2.10)

and

Vd(x, y) = sgn

(
∂V (x, y)

∂x
+ j

∂V (x, y)

∂y

)

, (2.11)

are prepared, where j = √−1 and sgn(a) = 0 if a = 0 and sgn(a) = a/|a|, other-
wise. If F and G are Fourier transforms of Ud and Vd , respectively, then

h = F−1(F · G∗) (2.12)

will represent a complex image, the real part of which will have a spike at the point
showing the location of the upper-left-hand corner of the template within the im-
age [26].

2.1.2 Tanimoto Measure

The Tanimoto measure between images X and Y is defined by [92]:

ST = XtY

‖X‖2 + ‖Y‖2 − XtY
(2.13)

= XtY

(X − Y)t (X − Y) + XtY
(2.14)

= XtY

‖X − Y‖2 + XtY
, (2.15)

where t implies transpose.
Comparing ST with r , we see that although the numerators of both represent

inner product, the one in correlation coefficient uses intensities that are normalized
with respect to their means and the one in Tanimoto measure uses the raw intensities.
While the denominator in correlation coefficient shows the product of the standard
deviations of X and Y , the denominator in the Tanimoto measure represents the
square Euclidean distance between X and Y plus the inner product of X and Y .

Tanimoto measure is proportional to the inner product of X and Y and inversely
proportional to the sum of the squared Euclidean distance and the inner product of
X and Y . The squared Euclidean distance between X and Y has the same effect as
the product of the standard deviations of X and Y and normalizes the measure with
respect to the scales of X and Y . Adding the inner product to the denominator in
the Tanimoto measure has an effect similar to normalizing X and Y with respect to
their means when divided by the inner product of X and Y . Therefore, Tanimoto
measure and correlation coefficient produce similar results. The Tanimoto measures
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Fig. 2.3 The similarity
image obtained while
searching for the template of
Fig. 2.2a in the image of
Fig. 2.2b using the Tanimoto
measure. The best-match
position of the template
within the image is encircled

obtained by matching the template in Fig. 2.2a to windows in the image in Fig. 2.2b
are shown in the similarity image in Fig. 2.3. The point of highest similarity, which
shows the best-match position of the template within the image, is encircled.

The computational complexity of Tanimoto measure is on the order of n. Sim-
ilar to correlation coefficient, it requires the calculation of the inner product, but
rather than calculating the standard deviations of X and Y it calculates the squared
Euclidean distance between X and Y , and rather than normalizing X and Y with
respect to their means it calculates the inner product of X and Y .

2.1.3 Stochastic Sign Change

If images X and Y are exactly the same except for one being a noisy version of the
other, the values in the difference image D = {xi − yi : i = 1, . . . , n} will frequently
change between positive and negative values due to noise. If Y is a shifted version
of X, there will be fewer sign changes in the difference image than when X and
Y perfectly align. This suggests that the number of sign changes can be used as a
similarity measure to quantify the degree of match between the two images. The
larger the number of sign changes in the difference image, the higher the match-
rating between the images will be [98, 99].

Contrary to other similarity measures that produce a higher matching accuracy
as image detail increases, this measure performs best when the images contain
smoothly varying intensities with added zero-mean noise of a small magnitude.
Strangely, this measure works better on images containing a small amount of noise
than on noise-free images. The template-matching result by this similarity measure
using the template of Fig. 2.2a and the image of Fig. 2.2b is shown in Fig. 2.4a. The
best-match position of the template within the image is encircled.

This measure can be implemented efficiently by simply finding the number of
zero-crossings in the difference image. Since no sign changes are obtained when
X = Y , in addition to the zero-crossings, points of zero difference are counted as a
part of the similarity measure. Determination of the similarity between two images
requires a few additions and comparisons at each pixel. Therefore, the computa-
tional complexity of the measure is on the order of n.
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Fig. 2.4 Similarity images
obtained by matching the
template of Fig. 2.2a to
windows in the image of
Fig. 2.2b using (a) stochastic
sign change and
(b) deterministic sign change.
The best-match position of
the template within the image
in each case is encircled

2.1.4 Deterministic Sign Change

This measure is similar to stochastic sign change except that noise is intentionally
added to one of the images to produce more sign changes in perfectly matching
images. Therefore, given images X = {xi : i = 1, . . . , n} and Y = {yi : i = 1, . . . , n},
a new image Z = {zi : i = 1, . . . , n} is created from X by setting

zi = xi + q(−1)i . (2.16)

This operation will add q to every other pixel in X while subtracting q from pixels
adjacent to them, simulating the addition of noise to X. The number of sign changes
in the difference image D = {zi − yi : i = 1, . . . , n} is counted and used as the
similarity measure [100]. The choice of parameter q greatly affects the outcome. q

should be taken larger than noise magnitude in Y , while smaller than the intensity
variation between adjacent pixels in X.

Since q is a fixed number, it can be estimated through a training process using
images where coordinates of corresponding points are known. During the training
process, q is varied until results closest to those expected are obtained. If estimation
of q through a training process is not possible, it should be set to twice the standard
deviation of noise, and if standard deviation of noise is not known, q should be set
to twice the standard deviation of intensity differences between X and its smoothed
version [100].

The similarity image obtained by matching the template of Fig. 2.2a to windows
of the same size in the image of Fig. 2.2b by deterministic sign change is shown in
Fig. 2.4b. Because the template is a cutout of the same image, stochastic sign change
has produced a more distinct peak at the best-match position than the deterministic
sign change. In general, however, experiments have shown that deterministic sign
change succeeds more frequently than stochastic sign change in matching [100].

Although the computational complexity of deterministic sign change is on the
order of n for images of size n pixels, it has a much larger coefficient than that by
stochastic sign change because of the need to estimate parameter q and create a
noisy version of the template using (2.16).
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Fig. 2.5 Template-matching
using the template of
Fig. 2.2a, the image of
Fig. 2.2b, and the minimum
ratio similarity measure. The
best-match position of the
template within the image is
encircled

2.1.5 Minimum Ratio

If image Y = {yi : i = 1, . . . , n} is a noisy version of image X = {xi : i = 1, . . . , n}
and if amplitude of noise is proportional to signal strength, then by letting ri =
min{yi/xi, xi/yi}, and calculating

mr = 1

n

n∑

i=1

ri , (2.17)

we see that mr measures the dependency between X and Y . When noise is not
present, ri will be equal to 1 and so will mr . When X and Y do not depend on each
other, yi/xi and xi/yi will be quite different, one becoming much smaller than the
other. As a consequence, when the sum of the smaller ratios is calculated, it will
become much smaller than 1. Therefore, the closer mr is to 1, the more similar the
images will be. Since ratios of intensities are considered in the calculation of the
similarity measure, noise that varies with image intensities will have a relatively
smaller effect on the calculated measure than measures that are calculated from the
difference of image intensities.

Although resistant to noise, minimum ratio is sensitive to intensity difference
between images and so is not suitable for matching images captured of a scene
under different lighting conditions or with different sensors. It, however, should
do well if the images are obtained under the same lighting condition and by the
same sensor, such as stereo images or frames in a video. The template-matching
result using the template of Fig. 2.2a and the image of Fig. 2.2b by minimum ratio
similarity measure is shown in Fig. 2.5.

Computation of minimum ratio requires only a small number of simple opera-
tions at each pixel. Therefore, its computational complexity is on the order of n.

Proposition 2.1 Minimum ratio is a metric.

Proof To be a metric, minimum ratio has to (1) have a limited range, (2) be reflexive,
(3) be symmetric, and (4) satisfy the triangle inequality.

First, minimum ratio has a limited range because the highest value it can have at
a pixel is 1, and so the maximum value it can produce for images of size n according
to formula (2.17) is 1, which happens when intensities of corresponding pixels in the
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images are exactly the same. Second, minimum ratio is reflexive because when X =
Y , we obtain mr = 1. When mr = 1, we have to have ri = 1 for all i, and that means
xi = yi for all i; therefore, X = Y . Third, minimum ratio is symmetric because
switching X and Y will result in the same measure since max{ai, bi} is the same
as max{bi, ai}. Finally, to show that minimum ratio satisfies triangle inequality, we
have to show that
(

1

n

∑

i

min

{
xi

yi

,
yi

xi

})(
1

n

∑

i

min

{
yi

zi

,
zi

yi

})

≤
(
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n

∑

i

min

{
xi

yi

,
yi

xi

}

+ 1
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i

min
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yi
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})(
1
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min
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xi

zi

,
zi

xi

})

. (2.18)

For the extreme cases when X = Y = Z, we obtain mr = 1 when comparing any
pair of images and so (2.18) reduces to 1 ≤ 2. For the extreme case where images
X, Y , and Z are least similar so that mr = 0 for any pair of images, relation (2.18)
reduces to 0 ≤ 0. As the images become more similar, the difference between left
and right sides of (2.18) increases, and as the images become less similar, the left
and right sides of (2.18) get closer, satisfying relation (2.18). While values on the
left-hand side of (2.18) vary between 0 and 1 from one extreme to another, values
on the right-hand side of (2.18) vary between 0 and 2 from one extreme to another,
always satisfying relation (2.18). �

2.1.6 Spearman’s Rho

A similarity measure relating to the Pearson correlation coefficient is Spearman
rank correlation or Spearman’s Rho [86]. If image intensities do not contain ties
when they are ordered from the smallest to the largest, then by replacing the intensi-
ties with their ranks and calculating the Pearson correlation coefficient between the
ranks in two images, Spearman rank correlation will be obtained. This is equivalent
to calculating [16]:

ρ = 1 − 6
∑n

i=1[R(xi) − R(yi)]2

n(n2 − 1)
, (2.19)

where R(xi) and R(yi) represent ranks of xi and yi in images X and Y , respec-
tively. To eliminate possible ties among discrete intensities in images, the images
are smoothed with a Gaussian of a small standard deviation, such as 1 pixel, to pro-
duce unique floating-point intensities. Compared to r , ρ is less sensitive to outliers
and, thus, less sensitive to impulse noise and occlusion. It is also less sensitive to
nonlinear intensity difference between images than Pearson correlation coefficient.

Spearman rank correlation has been used to measure trends in data as a function
of time or distance [29, 45, 110]. When comparing two images, ρ can be used to
determine the dependency of corresponding intensities in the images.

Computationally, ρ is much slower than r primarily due to the need for order-
ing intensities in X and Y , which requires on the order of n log2 n comparisons.
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Therefore, if images X and Y do not contain impulse noise or occluding parts and
intensities in the images are related linearly, no gain in accuracy is achieved by us-
ing ρ instead of r . However, under impulse noise, occlusion, and nonlinear intensity
differences between images, the additional computational cost of ρ over r may well
be worth it.

In a facial recognition study, Ayinde and Yang [4] compared Spearman rank cor-
relation and Pearson correlation coefficient, finding that under considerable inten-
sity differences between images, occlusion, and other random differences between
images, Spearman’s ρ consistently produced a higher discrimination power than
Pearson correlation coefficient. Muselet and Trémeau [62] observed that the rank
measures of color components of images captured under different scene illumina-
tions remain relatively unchanged. Based on this observation, they develop a robust
object recognition system using the rank correlation of color components.

2.1.7 Kendall’s Tau

If xi and yi , for i = 0, . . . , n, show intensities of corresponding pixels in X

and Y , then for i �= j , two possibilities exist: (1) sign(xj − xi) = sign(yj − yi)

or (2) sign(xj − xi) = − sign(yj − yi). The first case is called concordance and the
second case is called discordance. If a large number of corresponding intensity pairs
are chosen from X and Y and there are more concordants than discordants, this is
an indication that intensities in X and Y change together, although the magnitude

of the change can differ from X to Y . Assuming that out of possible
(n

2

)
combina-

tions, Nc pairs are concordants and Nd pairs are discordants, Kendall’s τ is defined
by [41]:

τ = Nc − Nd

n(n − 1)/2
. (2.20)

A variation of the Kendall’s τ has been proposed [84] that places more emphasis
on high (low) ranking values than on low (high) rankings ones. If, for example, noise
is known to be influencing low-rank intensities more than high-rank intensities, the
weighted τ makes it possible to put more emphasis on less noisy pixels than on
noisy ones.

It has been shown [47] that if bivariate (X,Y ) is normally distributed, Kendall’s
τ is related to Pearson correlation coefficient r by

r = sin(πτ/2). (2.21)

This relation shows that if (X,Y ) is normally distributed, Pearson correlation co-
efficient can more finely distinguish images that represent different scenes than
Kendall’s τ because the sinusoidal relation between τ and r enables finer detec-
tion of changes in r in the neighborhoods of τ = 0 compared to the neighborhood
of τ = 1. Conversely, Kendall’s τ can more finely distinguish similar images from
each other when compared to Pearson correlation coefficient. Chen [11], Fredricks
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Fig. 2.6 Similarity images
obtained when matching the
template of Fig. 2.2a to
windows in the image of
Fig. 2.2b using
(a) Spearman’s Rho, and
(b) Kendall’s Tau. The
best-match position of the
template within the image in
each case is encircled

and Nelsen [27], and Kendall [42] have shown that when X and Y are independent,
ρ/τ approaches 3/2 as n approaches infinity. This result implies that Spearman’s
ρ and Kendall’s τ have the same discrimination power when comparing images of
different scenes.

Kendall’s τ and Spearman’s ρ both measure the association between two ordinal
variables [31]. Both ρ and τ vary between −1 and +1, but for a considerable portion
of this range, the absolute value of ρ is 1.5 times that of τ . Therefore, ρ and τ are
not directly comparable. Gilpin [33] has provided formulas for converting Kendall’s
τ to Spearman’s ρ and to Pearson’s r .

An example comparing Spearman’s ρ and Kendall’s τ in template matching is
given in Fig. 2.6. Figure 2.2a is used as the template and Fig. 2.2b is used as the
image. The similarity images obtained by Spearman’s ρ and Kendall’s τ are shown
in Figs. 2.6a and 2.6b, respectively. Compared to the similarity images obtained so
far we see that the similarity images obtained by Spearman’s ρ and Kendall’s τ show
most distinct peaks at the best-match position, and among the two, the Kendall’s
peak is more distinct.

Kendall’s τ is one of the costliest similarity measures tested in this chapter. It
requires computation of the concordants and discordants out of n(n − 1)/2 combi-
nations of corresponding intensity pairs in images of size n pixels. Therefore, the
computational complexity of Kendall’s τ is on the order of n2 operations. In com-
parison, Pearson correlation coefficient requires on the order of n operations, and
Spearman rank correlation requires on the order of n log2 n.

2.1.8 Greatest Deviation

Suppose intensities in an image are replaced by their ranks from 1 to n, where n

is the number of pixels in the image. Suppose no ties exist among the intensities.
Since ties are possible in a digital image, to remove them, the image is convolved
with a Gaussian of a small standard deviation, such as 1 pixel. This will maintain
image details while removing the ties by converting the intensities from integer to
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Fig. 2.7 Template-matching
results of (a) the greatest
deviation and (b) the ordinal
measure when using the
template of Fig. 2.2a and the
image of Fig. 2.2b

float. Assuming R(xi) is the rank of intensity xi in image X and R(yi) is the rank
of intensity yi in image Y , let

di =
i∑

j=1

I
[
R(xi) ≤ i < R(yj )

]
, (2.22)

where I [E] = 1 if E is true and I [E] = 0 if E is false. Also, let

Di =
i∑

j=1

I
[
n + 1 − R(xi) > R(yi)

]
, (2.23)

then the greatest deviation between X and Y is calculated from [32]:

Rg = maxi (Di) − maxi (di)

n/2
. (2.24)

As an example, consider the following:

i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
xi : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
yi : 14 11 16 2 12 13 7 9 10 3 8 1 15 6 4 5
di : 1 2 3 3 4 5 5 6 6 5 4 3 3 2 1 0
Di : 1 2 1 2 2 1 2 2 2 2 2 3 3 2 1 0

(2.25)

In this example, we find Rg = (3 − 6)/8 = −3/8. It has been shown that Rg varies
between −1 and 1. Rg = 1 if yi monotonically increases with xi as i increases,
and Rg = 0 if X and Y are independent. Similar to Spearman’s ρ and Kendall’s τ ,
this similarity measure is less sensitive to impulse noise (or occlusion in images)
than correlation coefficient. However, for this same reason, it dulls the similarity
measure and in the absence of impulse noise or outliers it may not be as effective
as correlation coefficient. The similarity image obtained by searching the template
of Fig. 2.2a in the image of Fig. 2.2b using this similarity measure is shown in
Fig. 2.7a. The best-match position of the template within the image is encircled.

The greatest deviation similarity measure is computationally the costliest mea-
sure tested in this chapter. It first requires ordering the intensities in the images,
which requires on the order of n log2 n comparisons. Then, it requires on the order
of n2 comparisons to calculate di and Di . Therefore, the computational complexity
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of the greatest deviation is on the order of n2 with a coefficient larger than that in
Kendall’s τ .

2.1.9 Ordinal Measure

This similarity measure is the same as the greatest deviation except that it uses only
Di to define the similarity between two images [6]:

Ro = maxi (Di)

n/2
. (2.26)

The discrimination power of the ordinal measure is comparable to that of greatest
deviation, with half the computations because it does not calculate di , which takes
about the same time as calculating Di . An example of template matching using
this similarity measure is given in Fig. 2.7b. Figure 2.2a is used as the template and
Fig. 2.2b is used as the image. The position of the highest ordinal value, which iden-
tifies the best match position of the template within the image is encircled. Greatest
deviation and ordinal measure have produced very similar results.

2.1.10 Correlation Ratio

Correlation ratio is a similarity measure that quantifies the degree at which Y is a
single-valued function of X and was first proposed by Pearson [66]. To find the cor-
relation ratio between images X and Y , for entries in X with intensity i, intensities
at the corresponding entries in Y are found. If mapping of intensities from X to Y is
unique, this mapping will be a single-valued function; however, if an intensity in X

corresponds to many intensities in Y , the mapping will not be unique. If intensities
in Y are a single-valued function of intensities in X with a small amount of zero-
mean noise, a narrow band will appear centered at the single-valued function. The
standard deviation of intensities in Y that correspond to each intensity i in X can be
used to measure the width of the band at intensity i:

σi =
{

1

ni

∑

xi

(
Y [xi] − mi

)2
} 1

2

, (2.27)

where xi shows an entry in X with intensity i, and Y [xi] shows the intensity at the
corresponding entry in Y , and ni is the number of entries in X with intensity i. mi

is the mean of intensities in Y corresponding to intensity i in X. σi measures the
scatter of intensities in Y that map to intensity i in X. Therefore, average scatter
over all intensities in X will be

σm = 1

256

255∑

i=0

σi, (2.28)



2.1 Similarity Measures 21

and variance of σi for i = 0, . . . ,255 will be

D2 =
{

1

n

255∑

i=0

(
niσ

2
i

)
}

, (2.29)

where n =∑255
i=0 ni . Then, correlation ratio of Y on X is defined by

ηyx =
√

1 − D2. (2.30)

ηyx lies between 0 and 1 and ηyx = 1 only when D = 0, showing no variance in
intensities of Y when mapping to intensities in X, and that implies a unique mapping
from X to Y .

Given images X and Y of size n pixels, the steps to calculate the correlation ratio
between the images can be summarized as follows:

1. Find entries in X that have intensity i; suppose there are ni such entries, for
i = 0, . . . ,255.

2. If xi is an entry in X that has intensity i, find the intensity at the corresponding
entry in Y . Let this intensity be Y [xi]. Note that there are ni such intensities.

3. Find the average of such intensities Y [xi]: mi = 1
ni

∑
xi

Y [xi].
4. Find the variance of intensities in Y corresponding to intensity i in X: σ 2

i =
1
ni

∑
xi

(Y [xi] − mi)
2.

5. Finally, calculate the correlation ratio from ηyx =
√

1 − 1
n

∑255
i=0 niσ

2
i .

As the variance of intensities in Y that map to each intensity in X decreases, the
correlation ratio between X and Y increases. This property makes correlation ratio
suitable for comparing images that have considerable intensity differences when the
intensities of one is related to the intensities of the other by some linear or nonlinear
function. Combining Pearson correlation coefficient r and correlation ratio η, we
can determine the linearity of intensities in X when mapped to intensities in Y . The
measure to quantify this linearity is (η2 − r2) [18] with the necessary condition for
linearity being η2 − r2 = 0 [7].

Woods et al. [107] were the first to use correlation ratio in registration of mul-
timodality images. Roche et al. [75, 76] normalized D2 in (2.29) by the variance
of intensities in Y . That is, they replaced D2 with D2/σ 2, where σ 2 represents the
variance of intensities in Y .

A comparative study on registration of ultrasound and magnetic resonance
(MR) images [61] found correlation ratio producing a higher percentage of correct
matches than mutual information (described below). The superiority of correlation
ratio over mutual information was independently confirmed by Lau et al. [50] in
registration of inter- and intra-modality MR images. Matthäus et al. [57] used cor-
relation ratio in brain mapping to identify cortical areas where there is a functional
relationship between the electrical field strength applied to a point on the cortex and
the resultant muscle response. Maps generated by correlation ratio were found to be
in good agreement with maps calculated and verified by other methods.

Template-matching result using correlation ratio as the similarity measure, the
template of Fig. 2.2a, and the image of Fig. 2.2b is shown in Fig. 2.8. Among the
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Fig. 2.8 The similarity
image obtained when using
the correlation ratio as the
similarity measure and
searching for the template of
Fig. 2.2a in the image of
Fig. 2.2b

template-matching results presented so far, this similarity image shows the most
distinct peak, identifying the correct location of the template within the image with
least ambiguity.

Computationally, this measure requires calculation of 256 variances, each pro-
portional to 256ni additions and multiplications. ni is on average n/256, therefore,
the computational cost of correlation ratio is proportional to 256n.

2.1.11 Energy of Joint Probability Distribution

The relationship between intensities in two images is reflected in the joint proba-
bility distribution (JPD) of the images. After obtaining the joint histogram of the
images, each entry in the joint histogram is divided by n, the number of pixels in
each image to obtain the JPD of the images. If a single-valued mapping function ex-
ists that can uniquely map intensities in X to intensities in Y , the JPD of the image
will contain a thin density of points, showing the single-valued mapping function.
This is demonstrated in an example in Fig. 2.9.

If images X and Y are shifted with respect to each other, corresponding inten-
sities will not produce a single-valued mapping but will fall irregularly in the joint
histogram and, consequently, in the JPD of the images. This is demonstrated in an
example in Fig. 2.9d. Therefore, when intensities in two images are related by a
single-valued function and the two images perfectly align, their JPD will contain
a thin density of points, showing the single-valued mapping function that relates
intensities of corresponding pixels in the images. When the images do not match,
the JPD of the images will show a scattering of points. This indicates that the JPDs
of correctly matching and incorrectly matching images can be distinguished from
each other by using a scatter measure of their JPD. Correlation ratio was one way
of measuring this scattering. Energy is another measure that can be used to achieve
this. The energy of the JPD of two images is defined by [83]:

E =
255∑

i=0

255∑

j=0

p2
ij , (2.31)
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Fig. 2.9 (a), (b) Two images
with intensities related by a
sinusoidal function. (c) The
JPD of intensities in (a)
and (b). The darker a point is,
the higher the count is at the
point. (d) The JPD of
intensities in image (a) and a
translated version of
image (b)

Fig. 2.10 The similarity
image obtained when using
the energy of JPD as the
similarity measure to search
for the template of Fig. 2.2a
in the image of Fig. 2.2b

where pij is the value at entry (i, j) in the JPD of the images. Therefore, given
an observed image and many saved images, the saved image best matching the ob-
served image will be the one producing the highest JPD energy.

Energy of JPD can withstand considerable intensity differences between images,
but it quickly degrades with noise as noise causes intensities to shift from their true
values and produce a cloud of points in the JPD. This in turn, reduces the energy of
perfectly matching images, causing mismatches.

An example of template matching using the template of Fig. 2.2a and the image
of Fig. 2.2b with this similarity measure is given in Fig. 2.10. The presence of high
energy at the four corners of the similarity image, which corresponds to homoge-
neous areas in the image, indicates that any image can produce a high energy when
paired with a homogeneous image. If the homogeneous windows can be filtered out
through a preprocessing operation before calculating the energy, this similarity mea-
sure can be very effective in comparing multimodality images as evidenced by the
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very distinct and robust peak at the best-match position, with very small similarities
everywhere else.

Proposition 2.2 Energy of JPD is not a metric.

Proof Energy of the JPD of two images is not a metric because it is not reflexive.
When X = Y or xi = yi for i = 0, . . . , n, the JPD of the images will contain a
45-degree line, resulting in an entropy, which we denote by E0. A 45-degree line
in a JDP, however, can be obtained by adding a constant value to or multiplying a
constant value by intensities in Y . This means, the same energy E0 can be obtained
from different images Y when compared to X. Therefore, energy of JPD is not a
metric. For this same reason, any measure that is formulated in terms of the JPD of
two images is not a metric. �

Computationally, calculation of energy of JPD requires calculation of the JPD
itself, which is on the order of n, and calculation of the energy from the obtained
JPD, which is on the order of 2562 multiplications. Therefore, the computational
complexity of energy of JPD is on the order of n with an overhead, which is pro-
portional to 2562. This shows that the computational complexity of energy of JPD
varies linearly with n.

2.1.12 Material Similarity

We know that when two noise-free multimodality images perfectly match, their JPD
will contain a thin density of points, depicting the relation between intensities in the
images. Under random noise, the thin density converts to a band of points with the
width of the band depending on the magnitude of the noise. If noise is zero-mean, the
band will be centered at the single-valued curve representing the mapping. To reduce
the effect of noise, we smooth the JPD and look for the peak value at each column.
Assuming the horizontal axis in a JPD shows intensities in X and the vertical axis
shows intensities in Y , this smoothing and peak detection process will associate a
unique intensity in Y to each intensity in X, thereby removing or reducing the effect
of noise. The value at the peak can be used as the strength of the peak. This is
demonstrated in an example in Fig. 2.11.

If two images match perfectly, very close mapping functions will be obtained
when visiting every kth pixel once starting from 0 and another time starting from
k/2. Figure 2.11d shows such peaks when k = 4. If two images do not match, the
peaks detected in the two JPDs will be weaker and different. Taking this property
into consideration, we define a similarity measure, appropriately named material
similarity, which quantifies agreement between scene properties at corresponding
pixels in images captured by the same or different sensors:

Sm =
255∑

i=0

min{pij1, qij2}
|j1 − j2| + d

, (2.32)
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Fig. 2.11 (a) The JPD of the
image in Fig. 2.9a and the
image in Fig. 2.9b after being
corrupted with a Gaussian
noise of standard deviation
10. Darker points show
higher probabilities. The
horizontal axis shows
intensities in Fig. 2.9a and the
vertical axis shows intensities
in Fig. 2.9b. (b) Smoothing of
the JPD with a Gaussian of
standard deviation 3 pixels.
(c) Detected peaks of the
smoothed JPD. Stronger
peaks are shown darker.
(d) Overlaying of the peaks
obtained in the JPDs of the
images when visiting every
fourth entry, once starting
from entry 0 (red) and
another time starting from
entry 2 (light blue)

where i is the column number in a JPD and represents intensities in X. j1 and j2 are
the row numbers of the peaks in column i in the two JPDs. The magnitudes of the
peaks are shown by pij1 and qij2 in the two JPDs. d is a small number, such as 1, to
avoid a possible division by 0. The numerator in (2.32) takes the smaller peak from
the two JPDs at each column i. Therefore, if both peaks are strong, a higher simi-
larity will be obtained than when only one of the peaks is strong. The denominator
will ensure that as the peaks in the two JPDs at a column get closer and show the
same mapping, a higher similarity measure is obtained.

Because only the peak value in each column is used to calculate Sm, when noise
is zero-mean, the peak in the two JPDs is expected to coincide or be close to the
peak when the same image without noise is used. Therefore, this similarity measure
is less sensitive to zero-mean noise than the energy of JPD and other measures that
are based on JDP of image intensities. Experimental results show that when n is suf-
ficiently large, peaks in the JPDs with and without smoothing coincide, so there is
no need to smooth the JPDs before detecting the peaks. Smoothing is recommended
when n is small, typically smaller than 256. Template-matching results by material
similarity using the template of Fig. 2.2a and the image of Fig. 2.2b without and
with smoothing are shown in Figs. 2.12a and 2.12b. When noise is not present and
the template is sufficiently large, smoothing the JPDs does not affect the outcome.
Compared to the energy of JPD, we see that material similarity produces low simi-
larities everywhere except at the best-match position, showing a robust measure that
is not degraded when one of the images is homogeneous.

Computation of this similarity measure requires calculation of the two JPDs,
which is on the order of n, and detection of the peaks with or without smoothing,
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Fig. 2.12 (a) Template
matching with the material
similarity using the template
of Fig. 2.2a and the image of
Fig. 2.2b without smoothing
of the JPDs. (b) The same but
with smoothing of the JPDs.
The best-match position of
the template within the image
in each case is encircled

which is proportional to 2562. Therefore, similar to energy of JPD, the computa-
tional complexity of material similarity is a linear function of n but with larger
coefficients.

2.1.13 Shannon Mutual Information

Based on the observation that the JPD of registered images is less dispersed than
the JPD of misregistered images, Collignon et al. [15] devised a method for regis-
tering multimodality images. Relative joint entropy or mutual information was used
to quantify dispersion of JPD values and by maximizing it found best-matching
images. Dispersion is minimum when dependency of intensities of corresponding
pixels in images is maximum. Studholme et al. [88], Wells III et al. [104], Viola and
Wells III [101], and Maes et al. [53] were among the first to use mutual information
to register multimodality images.

Mutual information as a measure of dependence was introduced by Shannon
[82] and later generalized by Gel’fand and Yaglom [30]. The generalized Shannon
mutual information is defined by [24, 55]:

SMI =
255∑

i=0

255∑

j=0

pij log2
pij

pipj

, (2.33)

where pij is the probability that corresponding pixels in X and Y have intensities i

and j , respectively, and shows the value at entry ij th in the JPD of the images; pi is
the probability of intensity i appearing in image X and is equal to the sum of entries
in the ith column in the JDP of the images; and pj is the probability of intensity j

appearing in image Y and is equal to the sum of entries in the j th row of the JPD of
the images.

Equation (2.33) can be written as follows also:

SMI =
255∑

i=0

255∑

j=0

pij log2 pij

−
255∑

i=0

pi log2 pi −
255∑

j=0

pj log2 pj , (2.34)
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where

pi =
255∑

j=0

pij (2.35)

and

pj =
255∑

i=0

pij . (2.36)

Therefore, letting

Ei = −
255∑

j=0

pj log2 pj , (2.37)

Ej = −
255∑

i=0

pi log2 pi, (2.38)

and

Eij = −
255∑

i=0

255∑

j=0

pij log2 pij , (2.39)

we have

SMI = Ei + Ej − Eij , (2.40)

which defines mutual information as the difference between the sum of Shannon
marginal entropies and the joint entropy. Shannon’s mutual information is a power-
ful measure for determining the similarity between multimodality images, but it is
sensitive to noise. As noise in one or both images increases, dispersion in the JDP of
the images increases, reducing the mutual information between perfectly matching
images, causing mismatches.

When calculating the mutual information of images X and Y , the implied as-
sumption is that the images represent random and independent samples from two
distributions. This condition of independency is often violated because xi and xi+1

depend on each other, and yi and yi+1 depend on each other. As a result, cal-
culated mutual information is not accurate and not reflective of the dependency
between X and Y . To take into account the spatial information in images, rather
than finding the JPD of corresponding intensities in images, the JPD of intensity
pairs of adjacent pixels has been suggested [81]. The obtained mutual informa-
tion, which is called high-order mutual information has been shown to produce
more accurate registration results than traditionally used first-order mutual informa-
tion [81].

Note that the JPD of intensity pairs becomes a 4-D probability distribution and
to obtain a well populated 4-D JPD, the images being registered should be suf-
ficiently large to create a meaningful probability distribution. Otherwise, a very
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Fig. 2.13 Template matching
using Shannon mutual
information, the template of
Fig. 2.2a, and the image of
Fig. 2.2b. The best-match
position of the template
within the image is encircled

sparse array of very small numbers will be obtained, making the process ineffec-
tive and perhaps not any better than the regular entropy, if not worse. The require-
ment that images used in high-order mutual information be large makes high-order
mutual information unsuitable for registration of images with nonlinear geometric
differences because the subimages to be compared for correspondence cannot be
large.

To include spatial information in the registration process when using mutual in-
formation, Pluim et al. [68] used the product of mutual information and a gradi-
ent term instead of the mutual information alone. It should be noted that different-
modality images produce different gradients at corresponding pixels. Therefore, if
gradient information is used together with mutual information, the images to be reg-
istered should be of the same modality. This, however, beats the purpose of using
mutual information, which is designed for registration of different-modality images.
If images are in the same modality, other more powerful and computationally effi-
cient similarity measures are available for their registration.

Since mutual information between two images varies with the content and size
of images, Studholme et al. [89] provided a means to normalize mutual information
with respect to the size and content of the images. This normalization enables effec-
tive localization of one image with respect to another by sliding one image over the
other and determining the similarity between their overlap area.

Shannon mutual information is one of the most widely used similarity measures
in image registration. Point coordinates [71], gradient orientation [52], and phase
[60] have been used in the place of intensity to calculate mutual information and reg-
ister images. Shannon mutual information has been used to register multiresolution
[14, 54, 93, 108], monomodal [28, 112], multimodal [58, 103, 109], temporal [13],
deformed [17, 20, 43, 51, 85, 90, 96], and dynamic images [46, 105]. An example
of template matching using Shannon mutual information as the similarity measure
is given in Fig. 2.13.

The computational complexity of Shannon mutual information is proportional
to 2562 + n because creation of the JPD of two images of size n pixels takes
on the order of n additions and calculation of E3 takes on the order of 2562

multiplications and logarithmic evaluations. Its computational complexity, there-
fore, is a linear function of n but with larger coefficients than those of the energy
of JPD.
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Fig. 2.14 The similarity
image obtained when using
Rényi mutual information of
the order α = 2 to search for
the template of Fig. 2.2a in
the image of Fig. 2.2b. The
best-match position of the
template within the image is
encircled

2.1.14 Rényi Mutual Information

Rényi mutual information is defined in terms of Rényi entropy, and Rényi entropy
of order α of a finite discrete probability distribution {pi : i = 0, . . . ,255} is defined
by [73]:

Eα = 1

1 − α
log2

(
255∑

i=0

pα
i

)

, (2.41)

which is a generalization of Shannon entropy to a one-parameter family of en-
tropies. As parameter α of the entropy approaches 1, Rényi entropy approaches
Shannon entropy [73]. Moreover, as α is varied, Rényi entropy varies within range
log2(pmax) ≤ Eα ≤ log2(256), where pmax = max255

i=0{pi} [39, 113]. Rényi mutual
information is defined by [102]:

Rα = Ei
α + E

j
α

E
ij
α

, (2.42)

where Ei
α is the Rényi entropy of order α of probability distribution pi =∑255

j=0 pij

for i = 1, . . . ,255, E
j
α is the Rényi entropy of order α of pj =∑255

i=0 pij for j =
0, . . . ,255, and E

ij
α is the Rényi entropy of order α of probability distribution {pij :

i, j = 0, . . . ,255}. Equation (2.42) is based on the normalized mutual information
of Studholme et al. [89]: SNMI = (E1 + E2)/E3, where E1 and E2 are the marginal
entropies and E3 is the joint entropy. An example of Rényi mutual information
with α = 2 in template matching using the template of Fig. 2.2a and the image of
Fig. 2.2b is given in Fig. 2.14.

As the order α of Rényi mutual information is increased, entries in the JPD with
higher values are magnified, reducing the effect of outliers that randomly fall in the
JPD. Therefore, under impulse noise and occlusion, Rényi mutual information is ex-
pected to perform better than Shannon mutual information. Under zero-mean noise
also, Rényi mutual information is expected to perform better than Shannon mutual
information for the same reason though not as much. Computationally, Rényi mutual
information is about 20 to 30% more expensive than Shannon mutual information,
because it requires power computations in addition to the calculations required by
the Shannon mutual information.
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Fig. 2.15 The similarity
image obtained when using
Tsallis mutual information to
search for the template of
Fig. 2.2a in the image of
Fig. 2.2b. The best-match
position of the template
within the image is encircled

2.1.15 Tsallis Mutual Information

If instead of Shannon or Rényi entropy, Tsallis entropy is used to calculate the
mutual information, Tsallis mutual information will be obtained [102]. Tsallis en-
tropy of order q for a discrete probability distribution {pij : i, j = 0, . . . ,255} with
0 ≤ pij ≤ 1 and

∑255
i=0
∑255

i=0 pij = 1 is defined by [94]:

Sq = 1

(q − 1)

(

1 −
255∑

i=0

255∑

j=0

p
q
ij

)

, (2.43)

where q is a real number and as it approaches 1, Tsallis entropy approaches Shannon
entropy. Sq is positive for all values of q and is convergent for q > 1 [8, 70]. In the
case of equiprobability, Sq is a monotonic function of the number of intensities i

and j in the images [22]. Tsallis mutual information is defined by [19, 102]:

Rq = Si
q + S

j
q + (1 − q)Si

qS
j
q − Sq, (2.44)

where

Si
q = 1

q − 1

255∑

j=0

pij

(
1 − p

q−1
ij

)
(2.45)

and

S
j
q = 1

q − 1

255∑

i=0

pij

(
1 − p

q−1
ij

)
. (2.46)

Tsallis entropy makes outliers less important than Rényi entropy when q takes a
value larger than 1 because of the absence of the logarithmic function in the formula.
Therefore, Tsallis mutual information will make the similarity measure even less
sensitive to noise than Rényi mutual information and, therefore, more robust under
noise compared to Shannon mutual information and Rényi mutual information.

An example of template matching using Tsallis mutual information with q = 2 is
given in Fig. 2.15. Compared to the similarities discussed so far, this similarity mea-
sure has produced the most distinct peak when matching the template of Fig. 2.2a
to the windows of the same size in the image of Fig. 2.2b.
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Fig. 2.16 The similarity
image obtained using Iα as
the similarity measure with
α = 2 and when searching for
the template of Fig. 2.2a in
the image of Fig. 2.2b. The
best-match position of the
template within the image is
encircled

The performance of Tsallis mutual information in image registration varies with
parameter q . Generally, the larger the q is the less sensitive measure Rq will be to
outliers. The optimal value of q , however, is image dependent. In registration of
functional MR images, Tedeschi et al. [91] found the optimal value for q to be 0.7.

Computationally, Tsallis mutual information is as costly as Rényi mutual infor-
mation, because it replaces a logarithmic evaluation with a number of multipli-
cations. When the problem is to locate the position of one image inside another
through an iterative process, Martin et al. [56] have found that a faster convergence
speed is achieved by Tsallis mutual information than by Shannon mutual informa-
tion due to its steeper slope of the similarity image in the neighborhood of the peak.

2.1.16 F -Information Measures

The divergence or distance between the joint distribution and the product of the
marginal distributions of two images can be used to measure the similarity between
the images. A class of divergence measures that contains mutual information is the
f -information or f -divergence. F -information measures include [69, 95]:

Iα = 1

α(α − 1)

(
255∑

i=0

255∑

j=0

pα
ij

(pipj )α−1
− 1

)

, (2.47)

Mα =
255∑

i=0

255∑

j=0

∣
∣pα

ij − (pipj )
α
∣
∣

1
α , (2.48)

χα =
255∑

i=0

255∑

j=0

|pij − pipj |α
(pipj )α−1

. (2.49)

Iα is defined for α �= 0 and α �= 1 and it converges to Shannon information as α

approaches 1 [95]. Mα is defined for 0 < α ≤ 1, and χα is defined for α > 1. Pluim
et al. [69] have found that for the proper values of α these divergence measures can
register multimodality images more accurately than Shannon mutual information.
An example of template matching using Iα with α = 2 is given in Fig. 2.16.
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Computationally, f -information is costlier than Shannon mutual information, be-
cause in addition to calculating the JPD of the images, it requires multiple power
computations for each JPD entry. The computational complexity of f -information
is still proportional to 2562 +n and, therefore, a linear function of n but with higher
coefficients compared to Shannon mutual information.

2.2 Dissimilarity Measures

2.2.1 L1 Norm

L1 norm, Manhattan norm, or sum of absolute intensity differences is one of the
oldest dissimilarity measures used to compare images. Given sequences X = {xi :
i = 1, . . . , n} and Y = {yi : i = 1, . . . , n} representing intensities in two images in
raster-scan order, the L1 norm between the images is defined by [92]:

L1 =
n∑

i=1

|xi − yi |. (2.50)

If images X and Y are obtained by the same sensor and under the same environ-
mental conditions, and if the sensor has a very high signal to noise ratio, this simple
measure can produce matching results that are as accurate as those produced by
more expensive measures. For instance, images in a video sequence or stereo im-
ages obtained under low noise level can be effectively matched using this measure.
An example of template matching with L1 norm using the template of Fig. 2.2a and
the image of Fig. 2.2b is given in Fig. 2.17a.

Computationally, this measure requires determination of n absolute differences
and n additions for an image of size n pixels. Barnea and Silverman [5] suggested
ways to further speed up the computations by abandoning a case early in the com-
putations when there is evidence that a correct match is not likely to obtain. Coarse-
to-fine and two-stage approaches have also been proposed as a means to speed up
this measure in template matching [77, 97].

2.2.2 Median of Absolute Differences

At the presence of salt-and-pepper or impulse noise, L1 norm produces an exagger-
ated distance measure. For images of a fixed size with n pixels, L1 norm which mea-
sures the sum of absolute intensity differences between corresponding pixels in two
images is the same as the average absolute intensity difference between correspond-
ing pixels in the images. To reduce the effect of impulse noise on the calculated
dissimilarity measure, instead of the average of absolute differences, the median of
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Fig. 2.17 Dissimilarity images obtained when using (a) L1 norm and (b) MAD in template match-
ing using the template of Fig. 2.2a and the image of Fig. 2.2b. (c) Same as image of Fig. 2.2b but
with introduction of occlusion near the best-match position. Determination of the best match posi-
tion of the template within the occluded image by (c) the L1 norm and (d) by MAD, respectively

absolute differences (MAD) may be used to measure the dissimilarity between two
images. MAD measure is defined by

MAD = medn
i=1|xi − yi |. (2.51)

Although salt-and-pepper noise considerably affects L1 norm, its effect on MAD
is minimal. Calculation of MAD involves finding the absolute intensity differences
of corresponding pixels in images, ordering the absolute differences, and taking the
median value as the dissimilarity measure. In addition to impulse noise, this mea-
sure is effective in determining dissimilarity between images containing occluded
regions. These are regions that are visible in only one of the images. For exam-
ple, in stereo images, they appear in areas where there is a sharp change in scene
depth. Effectiveness of MAD in matching of stereo images has been demonstrated
by Chambon and Crouzil [9, 10]. This is a robust measure that does not change at
the presence of up to 50% outliers [36, 80].

An example of template matching with MAD using the template of Fig. 2.2a and
the image of Fig. 2.2b is given in Fig. 2.17b. Comparing this dissimilarity image
with that obtained by L1 norm, we see that the best-match position in the MAD
image is not as distinct as that in the L1 image. This implies that when salt-and-
pepper noise or occlusion is not present, MAD does not perform as well as L1 norm.
While MAD uses information about half of the pixels that have the most similar
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intensities, L1 norm uses information about all pixels with similar and dissimilar
intensities to measure the dissimilarity between two images.

By introducing occlusion in Fig. 2.2b near the best-match position, we observe
that while L1 norm misses the best match position as depicted in Fig. 2.17d, MAD
correctly locates the template within the image without any difficulty. Presence of
occlusion barely affects the dissimilarity image obtained by MAD, indicating that
MAD is a more robust measure under occlusion than L1 norm.

Computationally, MAD is much slower than L1 norm. In addition to requiring
computation of n absolute differences, it requires ordering the absolute differences,
which is on the order of n log2 n comparisons. Therefore, the computational com-
plexity of MAD is O(n log2 n).

2.2.3 Square L2 Norm

Square L2 norm, square Euclidean distance, or sum of squared intensity differ-
ences of corresponding pixels in sequences X = {xi : i = 1, . . . , n} and Y = {yi :
i = 1, . . . , n} is defined by [23]:

L2
2 =

n∑

i=1

(xi − yi)
2. (2.52)

Compared to L1 norm, square L2 norm emphasizes larger intensity differences be-
tween X and Y and is one of the popular measures in stereo matching. Compared to
Pearson correlation coefficient, this measure is more sensitive to the magnitude of
intensity difference between images. Therefore, it will produce poorer results than
correlation coefficient when used in the matching of images of a scene taken under
different lighting conditions.

To reduce the geometric difference between images captured from different
views of a scene, adaptive windows that vary in size depending on local inten-
sity variation have been used [64]. Another way to deemphasize image differences
caused by viewing differences is to weigh intensities in each image proportional to
their distances to the image center, used as the center of focus in matching [63].

An example of template matching using square L2 norm, the template of
Fig. 2.2a, and the image of Fig. 2.2b is given in Fig. 2.18a. The obtained dissim-
ilarity image is very similar to that obtained by L1 norm.

The computational complexity of square L2 norm is close to that of L1 norm.
After finding the difference of corresponding intensities in X and Y , L1 norm finds
the absolute of the differences while L2 norm squares the differences. Therefore, the
absolute-value operation in L1 norm is replaced with a multiplication in L2 norm.

2.2.4 Median of Square Differences

The median of square differences (MSD) is the robust version of the square L2
norm. When one or both images are corrupted with impulse noise, or when one
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Fig. 2.18 Dissimilarity
images obtained when using
(a) L2 norm and (b) MSD in
template matching with the
template of Fig. 2.2a and the
image of Fig. 2.2b.
Template-matching results by
(c) L2 norm and (d) MSD
when using the same template
but the image of Fig. 2.17c

image contains occluded regions with respect to the other, by discarding half of
the largest square differences, the influence of noise and occlusion is reduced. This
distance measure is defined by

MSD = medn
i=1(xi − yi)

2. (2.53)

When the images are not corrupted by noise and do not contain occluded regions,
MSD does not perform as well as square L2 norm, because MSD uses information
about the most similar half of pixel correspondences, while L2 norm uses informa-
tion about similar as well as dissimilar pixels, and dissimilar pixels play as important
a role in template matching as similar pixels.

Using the template of Fig. 2.2a and the image of Fig. 2.2b, the dissimilarity
image shown in Fig. 2.18b is obtained. We see the best match position determined
by L2 norm is more distinct than that obtained by MSD. In the absence of noise and
occlusion, L2 norm is generally expected to perform better than MSD in matching.

At the presence of occlusion or impulse noise, MSD is expected to perform bet-
ter than L2 norm. To verify this, template-matching is performed using the template
of Fig. 2.2a and the image of Fig. 2.17c, which is same as the image of Fig. 2.2b
except for introducing occlusion near the best-match position. The dissimilarity im-
ages obtained by L2 norm and MSD are shown in Figs. 2.18c and 2.18d, respec-
tively. Although the dissimilarity image of the L2 norm has changed considerably
under occlusion, the dissimilarity image of MSD is hardly changed. Use of MSD in
matching of stereo images with occlusions has been reported by Lan and Mohr [49].
This dissimilarity measure is based on the well-established least median of squares
distance measure used in robust regression under contaminated data [79].
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The computational complexity of MSD is similar to that of MAD. After finding
n square intensity differences of corresponding pixels in the given sequences, the
intensity differences are squared and ordered, which requires on the order of n log2 n

comparisons. Therefore, the computational complexity of MSD is O(n log2 n).
The performance of MSD is similar to that of MAD. This is because the small-

est 50% absolute intensity differences used in MAD and the smallest 50% square
intensity differences used in MSD both pick the same pixels in a template and a
matching window to measure the dissimilarity between the template and the win-
dow. Also, both have the same computational complexity except for MAD using
absolute intensity difference while MSD using square intensity difference, which
are computationally very close if not the same.

2.2.5 Normalized Square L2 Norm

Pearson correlation coefficient uses intensities in an image normalized with respect
to the mean intensity. This makes correlation coefficient invariant to bias in image
intensities. It also divides the inner product of the mean-normalized intensities by
the standard deviation of intensities in each image. This process normalizes the mea-
sure with respect to image contrast. Another way to make the measure insensitive
to image contrast, as suggested by Evangelidis and Psarakis [25], is to divide the
mean-normalized intensities in each image by the standard deviation of the intensi-
ties. The sum of squared differences of bias and scale normalized intensities in each
image is then used to measure the dissimilarity between the images.

Given images X = {xi : i = 1, . . . , n} and Y = {yi : i = 1, . . . , n}, assuming av-
erage intensities in X and Y are x̄ and ȳ , respectively, and letting

σx =
√
√
√
√1

n

n∑

i=1

(xi − x̄)2, (2.54)

σy =
√
√
√
√1

n

n∑

i=1

(yi − ȳ)2, (2.55)

the normalized square L2 norm is defined by [25]:

Normalized L2
2 =

n∑

i=1

(
xi − x̄

σx

− yi − ȳ

σy

)2

. (2.56)

Normalizing the intensities in an image first with respect to its mean and then
with respect to its standard deviation normalizes the intensities with respect to bias
and gain/scale. Therefore, similar to correlation coefficient, this measure is suitable
for comparing images that are captured under different lighting conditions. An ex-
ample of template matching using normalized square L2 norm is given in Fig. 2.19.

Compared to correlation coefficient, this measure is somewhat slower because
it requires normalization of each intensity before calculating the sum of squared
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Fig. 2.19 The dissimilarity
image obtained using
normalized square L2 norm
to search for the template of
Fig. 2.2a in the image of
Fig. 2.2b. The best-match
position of the template
within the image is encircled

Fig. 2.20 The dissimilarity
image obtained using
incremental sign distance
when searching for the
template of Fig. 2.2a in the
image of Fig. 2.2b. The
best-match position of the
template within the image is
encircled

differences between them. In the calculation of correlation coefficient, scale nor-
malization is performed once after calculating the inner product of the normalized
intensities.

2.2.6 Incremental Sign Distance

Given image X with intensities {xi : i = 1, . . . , n}, create a binary sequence BX =
{bi : i = 1, . . . , n − 1} with bi showing the sign of the intensity difference between
entries xi and xi+1. That is, let bi = 1 if xi+1 > xi and bi = 0 otherwise. Similarly,
replace image Y with binary image BY . The Hamming distance between BX and
BY can then be used to measure the dissimilarity between the images [40].

Use of intensity change rather than raw intensity at each pixel makes the cal-
culated measure insensitive to additive changes in scene lighting. Use of the sign
changes rather than the raw changes makes the measure insensitive to sharp lighting
changes in the scene caused by, for example, shadows. However, due to the use of
intensity difference of adjacent pixels, the process is sensitive to noise in homoge-
neous areas.

Incremental sign distance is a relatively fast measure as it requires on the order of
n comparisons, additions, and subtractions. The measure is suitable for comparing
images that are not noisy but may have considerable intensity differences. The result
of template matching using the template of Fig. 2.2a and the image of Fig. 2.2b with
this dissimilarity measure is shown in Fig. 2.20.
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Fig. 2.21 Template matching
using intensity-ratio variance,
the template of Fig. 2.2a, and
the image of Fig. 2.2b. The
best-match position of the
template within the image is
encircled

2.2.7 Intensity-Ratio Variance

If intensities in one image are a scaled version of intensities in another image, the
ratio of corresponding intensities across the image domain will be a constant. If two
images are obtained at different exposures of a camera, this measure can be used to
effectively determine the dissimilarity between them. Letting ri = (xi +ε)/(yi +ε),
where ε is a small number, such as 1 to avoid division by 0, intensity-ratio variance
is defined by [106]:

RV = 1

n

n∑

i=1

(ri − r̄)2, (2.57)

where

r̄ = 1

n

n∑

i=1

ri . (2.58)

Although invariant to scale difference between intensities in images, this mea-
sure is sensitive to additive intensity changes, such as noise. The computational
complexity of intensity-ratio variance is on the order of n as it requires computation
of a ratio at each pixel and determination of the variance of the ratios.

An example of template matching by intensity-ratio variance using the template
of Fig. 2.2a and the image of Fig. 2.2b is given in Fig. 2.21.

2.2.8 Intensity-Mapping-Ratio Variance

This measure combines correlation ratio, which measures intensity-mapping vari-
ance, with intensity-ratio variance [37]. Use of intensity ratios rather than raw in-
tensities makes the measure less sensitive to multiplicative intensity differences be-
tween images, such as difference in gains of the sensors. Use of mapping-ratio vari-
ance rather than ratio variance makes the measure insensitive to differences in sensor
characteristics. By minimizing the variance in intensity-mapping ratios, the measure
is made insensitive to differences in sensor characteristics and the gain parameters
of the sensors or the exposure levels of the cameras capturing the images.
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Fig. 2.22 The dissimilarity
image obtained by the
intensity-mapping-ratio
variance when searching the
template of Fig. 2.2a in the
image of Fig. 2.2b. The
best-match position of the
template within the image is
encircled

Computationally, this measure is slightly more expensive than the correlation
ratio for the additional calculation of the intensity ratios. A template matching ex-
ample by this dissimilarity measure using the template of Fig. 2.2a and the image of
Fig. 2.2b is given in Fig. 2.22.

2.2.9 Rank Distance

This measure is defined as the L1 norm of rank ordered intensities in two images.
Given images X = {xi : i = 1, . . . , n} and Y = {yi : i = 1, . . . , n}, intensity xi is
replaced with its rank R(xi) and intensity yi is replaced with its rank R(yi). To
reduce or eliminate ties among ranks in an image, the image is smoothed with a
Gaussian of a small standard deviation, such as 1 pixel. The rank distance between
images X and Y is defined by:

Dr = 1

n

n∑

i=1

∣
∣R(xi) − R(yi)

∣
∣. (2.59)

Since 0 ≤ |R(xi) − R(yi)| ≤ n, Dr will be between 0 and 1. The smaller is the
rank distance between two images, the less dissimilar the images will be. Rank
distance works quite well in images that are corrupted with impulse noise or contain
occlusion. In addition, rank distance is insensitive to white noise if noise magnitude
is small enough not to change the rank of intensities in an image. Furthermore, rank
distance is insensitive to bias and gain differences between intensities in images just
like other ordinal measures.

A template-matching example with rank distance using the template of Fig. 2.2a
and the image of Fig. 2.2b is given in Fig. 2.23. Among the distance measures
tested so far, rank distance finds the location of the template within the image most
distinctly.

Rank distance is one of the fastest ordinal measures as it requires only a subtrac-
tion and a sign check at each pixel once ranks of the intensities are determined. The
major portion of the computation time is spent on ranking the intensities in each
image, which is on the order of n log2 n comparisons for an image of size n pixels.
Therefore, the computational complexity of rank distance is on the order of n log2 n.
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Fig. 2.23 Template matching
with rank distance using the
template of Fig. 2.2a and the
image of Fig. 2.2b. The
best-match position of the
template within the image is
encircled

Proposition 2.3 Rank distance is not a metric.

Proof Rank distance is not a metric because it is not reflexive. When X = Y , we
have xi = yi for i = 1, . . . , n, and so Dr = 0. However, when Dr = 0, because
Dr is the sum of n non-negative numbers, it requires |R(xi) − R(yi)| = 0 for all i.
|R(xi)−R(yi)| can be 0 when yi = a +xi or yi = bxi , where a and b are constants;
therefore, Dr = 0 does not necessarily imply X = Y . For this same reason, none of
the ordinal measures is a metric. �

2.2.10 Joint Entropy

Entropy represents uncertainty in an outcome. The larger the entropy, the more in-
formative the outcome will be. Joint entropy represents uncertainty in joint out-
comes. The dependency of joint outcomes determines the joint entropy. The higher
the dependency between joint outcomes, the lower the uncertainty will be and, thus,
the lower the entropy will be. When joint outcomes are independent, uncertainty
will be the highest, producing the highest entropy. Given an observed image and a
number of saved images, the saved image that produces the lowest joint entropy with
the observed image is the image best matching the observed image. Joint entropy
is calculated from the JPD of the images. Assuming pij represents the probability
that intensities i and j appear at corresponding pixels in the images, Shannon joint
entropy is defined by [74, 82]:

DE = −
255∑

i=0

255∑

j=0

pij log2 pij . (2.60)

Similar to mutual information, the performance of joint entropy quickly degrades
with increasing noise. The measure, however, remains relatively insensitive to inten-
sity differences between images and, thus, is suitable for comparing multimodality
images.

An example of template matching by minimizing the entropy of JPD of the tem-
plate of Fig. 2.2a and windows of the same size in the image of Fig. 2.2b is given in
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Fig. 2.24 Template matching
using entropy of JPD of the
template of Fig. 2.2a and
windows of the same size in
the image of Fig. 2.2b. The
center of the window best
matching the template is
encircled

Fig. 2.24. The intensity at a pixel in the dissimilarity image is proportional to the en-
tropy of the JDP of the template and the window centered at the pixel in the image.
Relatively small values at the four corners of the dissimilarity image indicate that
any image will produce a low entropy when compared with a homogeneous image.
A preprocessing operation that marks the homogeneous windows so they are not
used in matching is needed to reduce the number of mismatches by this measure.

The computational cost of joint entropy is proportional to both 2562 and n. It
requires on the order of n comparisons to prepare the JDP and on the order of 2562

multiplications and logarithmic evaluations to calculate the joint entropy from the
obtained JPD.

2.2.11 Exclusive F -Information

Information exclusively contained in images X and Y when observed jointly is
known as exclusive f -information. Exclusive f -information Df (X,Y ) is related
to joint entropy E(X,Y ) and mutual information SMI(X,Y ) by [78]:

Df (X,Y ) = E(X,Y ) − SMI(X,Y ). (2.61)

Since mutual information is defined by [95]:

SMI(X,Y ) = E(X) + E(X) − E(X,Y ), (2.62)

we obtain

Df (X,Y ) = 2E(X,Y ) − E(X) − E(Y). (2.63)

The larger the exclusive f -information between images X and Y , the more dis-
similar the images will be. Therefore, in template matching, the window in an image
that produces the lowest exclusive f -information with a template will be the win-
dow most similar to the template and locates the position of the template within
the image. An example of template matching by exclusive f -information using the
template of Fig. 2.2a and the image of Fig. 2.2b is given in Fig. 2.25.

Computational cost of exclusive f -information is proportional to both 2562 and
n as it requires computation of the same terms as in mutual information as shown
in (2.62) and (2.63).
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Fig. 2.25 Template matching
using exclusive
f -information, the template
of Fig. 2.2a, and the image of
Fig. 2.2b. The best-match
position of the template
within the image is encircled

2.3 Performance Evaluation

To evaluate the performances of the similarity and dissimilarity measures described
in the preceding sections, the accuracies and speeds of the measures are determined
on a number of synthetic and real images and the results are compared.

2.3.1 Experimental Setup

To create image sets where correspondence between images is known, the image
shown in Fig. 2.26a is used as the base. This image, which shows a Martian rock,
contains various intensities and intensity variations. To evaluate the sensitivity of
the measures to zero-mean noise, Gaussian noise of standard deviations 5, 10, and
20 were generated and added to this image to obtain the noisy images shown in
Figs. 2.26b–d.

Images in Figs. 2.26a and 2.26b are considered Set 1, images in Figs. 2.26a and
2.26c are considered Set 2, and images in Figs. 2.26a and 2.26d are considered
Set 3. These image sets will be used to measure the sensitivity of the similarity and
dissimilarity measures to low, moderate, and high levels of noise.

To find the sensitivity of the measures to intensity differences between images,
intensities of the base image were changed as follows:

1. Intensities at the four quadrants of the base image were changed by −30, −10,
10, and 30 to obtain the image shown in Fig. 2.27b. Intensities below 0 were set
to 0 and intensities above 255 were set to 255. These images simulate images
taken at different exposures of a camera. Sharp intensity changes between the
quadrants can be considered intensity changes caused by shadows.

2. Intensities in the base image were changed based on their locations using a
sinusoidal function. Assuming the base image has nr rows and nc columns,
and the intensity at (x, y) is I , intensity I was replaced with O = I +
50 sin(4πy/nr) cos(4πx/nc) to obtain Fig. 2.27c. This simulates smoothly vary-
ing radiometric changes in a scene between times images 2.27a and 2.27c were
captured.

3. Intensities in the base image were changed by a sinusoidal function based on
their values. Assuming I is the intensity at a pixel in the base image, intensity
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Fig. 2.26 (a) A relatively
noise-free image of a Martian
rock, courtesy of NASA. This
image is used as the base.
(b)–(d) The images obtained
after adding Gaussian noise
of standard deviations 5, 10,
and 20, respectively, to the
base image. These images are
of size 400 × 300 pixels.
Image (a) when paired with
images (b)–(d) constitute
Sets 1–3

Fig. 2.27 (a) The Martian
rock image is again used as
the base image. (b) Intensities
in the four quadrants of the
base image are changed by
−30, −10, 10, and 30.
(c) Assuming the base image
contains nr rows and nc

columns, intensity I at pixel
(x, y) in the base image is
replaced with O = I +
50 sin(4πy/nr ) cos(4πx/nc).
(d) Intensity I in the base
image is replaced with
O = I (1 + cos(πI/255)).
These images are of size
400 × 300 pixels. Image (a)
when paired with images
(b)–(d) constitute Sets 4–6

at the same pixel in the output was calculated from O = I (1 + cos(πI/255)) to
obtain the image shown in Fig. 2.27d. This image together with the base image
can be considered images in different modalities.

Images in Figs. 2.27a and 2.27b are used as Set 4, images in Figs. 2.27a and
2.27c are used as Set 5, and images in Figs. 2.27a and 2.27d are used as Set 6.
These images are used to determine the sensitivity of various measures to intensity
differences between images.

To further evaluate the accuracy of the measures in matching multimodality
images, bands 2 and 4 of the Landsat thematic mapper (TM) image shown in
Figs. 2.28a and 2.28b were used. To test the measures against changes in camera
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Fig. 2.28 (a) Band 2 and
(b) band 4 of a Landsat
thematic mapper image of a
desert city scene, courtesy of
USGS. These images are of
size 532 × 432 pixels and
constitute the images in Set 7

Fig. 2.29 (a), (b) Images
obtained of an outdoor scene
by different exposures of a
stationary camera. These
images are of size 307 × 131
pixels and constitute the
images in Set 8

Fig. 2.30 (a) The same base
image as in Fig. 2.26a.
(b) The base image after
smoothing with a Gaussian of
standard deviation 1 pixel.
These images represent Set 9

exposure, the images in Figs. 2.29a and 2.29b, which were obtained at different
exposures of a static scene by a stationary camera, are used.

The Landsat TM bands 2 and 4 in Fig. 2.28 are used as Set 7 and the multi-
exposure images in Fig. 2.29 are used as Set 8 to further evaluate the sensitivity of
the measures to intensity differences between images.

To determine the sensitivity of the measures to image blurring caused by cam-
era defocus or change in image resolution, the Martian rock image shown again in
Fig. 2.30a was smoothed with a Gaussian of standard deviation 1 pixel to obtain the
image shown in Fig. 2.30b. The images in Figs. 2.30a and 2.30b are used as Set 9 to
determine the sensitivity of the measures to image blurring.

To determine the sensitivity of the measures to occlusion and local geometric
differences between images, stereo images of a Mars scene, courtesy of NASA,
and aerial stereo images of the Pentagon, courtesy of CMU Robotics Institute, were
used. These images are shown in Fig. 2.31. The Mars images represent Set 10 and
the Pentagon images represent Set 11.
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Fig. 2.31 (a), (b) Stereo
images of a Mars scene,
courtesy of NASA. These
images are of size 433 × 299
pixels. (c), (d) Stereo aerial
images of the Pentagon,
courtesy of CMU Robotics
Institute. These images are of
size 512 × 512 pixels. The
Mars images represent Set 10
and the Pentagon images
represent Set 11

2.3.2 Evaluation Strategy

To measure and compare the performances of various similarity and dissimilarity
measures, a number of template-matching scenarios were considered. Given two
images, a template centered at each pixel (x, y) in the first image was taken and
compared with windows of the same size in the neighborhood of (x, y) in the second
image. Knowing true corresponding points in images in Sets 1–9, the percentage of
correctly determined correspondences by each measure were determined.

As templates, square subimages of side 31 pixels were considered at each pixel
in the first image in each set. Each such template was then searched for in the second
image in the same set. Assuming a selected template was centered at pixel (x, y) in
the first image, the search was performed in a square neighborhood of side 11 pixels
centered at (x, y) in the second image. For stereo images, the search was performed
only horizontally along corresponding scanlines in the images. In the Mars image
set, the search area size was 81 pixels, and in the Pentagon data set, the search area
size was 21 pixels centered at column x in scanline y in the second image. The
search areas in the stereo images were selected in this manner in order to include
the correct match within the search neighborhood.

Since the objective is to find the correspondence between centers of square re-
gions in two images, when possible, intensities are weighted based on their distances
to the centers of the matching template and window to allow intensities closer to the
center of focus to influence the outcome more than intensities farther away. Gaus-
sian weights of standard deviation equal to half the side of a template was used. For
the Pearson correlation coefficient, Tanimoto measure, L1 norm, square L2 norm,
and normalized square L2 norm, intensities in a template and the pairing window
were multiplied by Gaussian weights to reduce the effect of pixels away from the
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centers of the template and window on a calculated measure. Gaussian weights were
not used in measures that used the ratios or ranks of the intensities.

In measures that are formulated in terms of the JPD or the joint histogram of two
images, instead of incrementing entry (i, j) in the joint histogram of two images by
1, if corresponding pixels in a pairing template and window had intensities i and j ,
entry (i, j) in the joint histogram was incremented by the Gaussian weight at the
pixel location in template with intensity i or in window with intensity j . Increment-
ing the joint histogram entries in this manner counts pixels away from template and
window center by a smaller amount than pixels closer to the template and window
centers when creating the joint histogram. In this way, the JPD produces measures
that are less sensitive to local geometric differences between images and, thus, im-
proves matching of images with geometric differences, such as stereo images.

Since correspondence between pixels in images in Sets 1–9 are known, it is pos-
sible to tell the correctness of a template-matching outcome. The number of correct
matches over the total number of matches attempted multiplied by 100 is used as
the percent correct matches.

For image sets with unknown correspondences, such as the stereo images in Sets
10 and 11, the root-mean-squared intensity differences (RMSID) between corre-
sponding pixels are used as the matching error. The smaller the RMSID is, the
smaller the matching error and so the more accurate the correspondences will be.

2.4 Characteristics of Similarity/Dissimilarity Measures

Percent correct matches (true positives) for images in Sets 1–9 by the 16 similarity
measures and the 11 dissimilarity measures are summarized in Tables 2.1 and 2.2.
The value at an entry, for example, Pearson correlation and Set 1, was obtained by
selecting square templates of side 31 pixels centered at pixels in the first image and
searching for them in square search areas of side 11 pixels in the second image,
and finding the percent matches that were correct. Since images in Set 1 are of size
400 × 300 pixels, (400 − 30 − 5) × (300 − 30 − 5) or 96725 possible templates of
side 31 pixels are selected in the first image and searched for in the second image.
Templates selected in this manner in the first image appear in their entirety in the
second images. The number of correct matches over 96725 was multiplied by 100
to obtain the percent correct matches. This number was then entered at the entry for
Pearson correlation and Set 1.

Because the correct correspondences are not known for the images in Sets 10 and
11, the RMSID between corresponding pixels obtained by various measures were
used to characterize matching accuracy. Average RMSID for all correspondences in
a set was then used as the average RMSID for that set. For example, the entry for
Pearson correlation and Set 11 was computed as follows. Since images in Set 11
are of size 512 × 512, using square templates of side 31 pixels and search areas of
width 21 pixels, (512 − 30) × (512 − 30 − 10) or 227504 templates can be selected
in the first image and searched in the second image. The RMSID for each match
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Table 2.1 Percent correct matches (true positives) of different similarity (top) and dissimilarity
(bottom) measures using noisy image Sets 1–3, and intensity transformed image Sets 4 and 5.
Newly introduced measures are shown in bold. Template size in each experiment was 31 × 31
pixels and search area size was 11 × 11 pixels. The three measures producing the most number
of correct matches in each set are shown in bold, unless more than three measures produce 100%
correct matches

Method Set 1 Set 2 Set 3 Set 4 Set 5

Pearson correlation 100.00 100.00 99.92 100.00 100.00

Tanimoto measure 100.00 100.00 99.95 100.00 100.00

Stochastic sign change 83.51 58.43 43.24 0.00 0.70

Deterministic sign change 98.50 99.05 85.81 48.20 49.45

Minimum ratio 100.00 100.00 99.61 42.29 50.41

Spearman’s Rho 100.00 100.00 99.96 99.97 100.00

Kendall’s Tau 100.00 100.00 100.00 100.00 100.00

Greatest deviation 99.92 99.36 91.18 97.17 94.01

Ordinal measure 99.98 99.25 90.35 94.66 87.75

Correlation ratio 100.00 100.00 99.90 100.00 99.49

Energy of JPD 100.00 82.13 16.91 100.00 87.59

Material similarity 100.00 97.82 56.06 100.00 73.11

Shannon MI 93.50 50.91 5.59 100.00 61.82

Rényi MI 98.11 54.12 5.93 100.00 73.66

Tsallis MI 100.00 83.61 17.46 100.00 90.16

Iα-information 99.85 98.06 77.72 100.00 98.92

L1 norm 100.00 100.00 99.95 57.70 57.46

MAD and MSD 100.00 99.26 85.42 2.29 37.45

Square L2 norm 100.00 100.00 100.00 95.18 75.34

Normalized square L2 norm 100.00 100.00 99.75 99.91 100.00

Incremental sign dist. 100.00 99.49 93.34 100.00 100.00

Intensity-ratio var. 99.84 98.50 56.15 99.43 91.59

Intensity-mapping-ratio var. 100.00 100.00 99.84 99.45 97.73

Rank distance 100.00 100.00 99.86 99.61 99.78

Joint entropy 100.00 95.43 31.34 100.00 92.85

Exclusive F -information 100.00 83.37 14.07 100.00 88.88

was found and the average of the 227504 RMSIDs was calculated and entered into
the entry for Pearson correlation and Set 11.

If three or fewer measures produce 100% correct matches under an image set,
the accuracies of the best three measures are shown in bold. For the stereo images
(Sets 10 and 11), the three measures with the lowest average RMSID are shown in
bold.
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Table 2.2 Same as Table 2.1 except for using intensity transformed image Set 6, different band
image Set 7, different exposure image Set 8, different resolution image Set 9, and stereo image
Sets 10, and 11. For the stereo images in Sets 10 and 11 the average RMSIDs of corresponding
pixels are shown. The smaller the average RMSID, the more accurate the correspondences are
expected to be. For stereo images, the search was carried out in 1-D horizontally. For Set 10, the
search area was 81 pixels, while for Set 11, the search area was 21 pixels. The three measures
producing the least RMSID under stereo data sets are shown in bold

Method Set 6 Set 7 Set 8 Set 9 Set 10 Set 11

Pearson correlation 52.78 96.87 98.96 100.00 8.44 9.81

Tanimoto measure 52.55 96.88 95.16 100.00 8.43 9.80

Stochastic sign change 13.06 0.27 9.61 93.17 10.30 11.83

Deterministic sign change 2.25 0.00 12.33 88.24 9.00 10.01

Minimum ratio 100.0 0.10 2.81 100.00 8.60 9.77

Spearman’s Rho 56.19 97.28 97.53 99.97 8.66 9.98

Kendall’s Tau 59.44 98.64 98.23 100.00 9.04 10.08

Greatest deviation 45.39 96.16 89.15 93.62 11.66 10.92

Ordinal measure 44.05 95.24 88.71 96.07 11.31 10.91

Correlation ratio 100.00 98.27 99.78 100.00 10.81 10.70

Energy of JPD 100.00 98.21 79.25 85.51 12.08 11.23

Material similarity 100.00 100.00 98.73 93.84 16.52 15.46

Shannon MI 100.00 98.36 83.59 61.61 20.33 14.12

Rényi MI 100.00 98.30 79.57 67.84 17.75 12.99

Tsallis MI 100.00 98.30 84.31 89.06 10.87 10.86

Iα-information 100.00 97.59 91.18 86.71 11.14 11.59

L1 norm 0.28 8.88 11.83 100.00 8.55 9.78

MAD and MSD 1.32 0.04 0.03 98.06 11.78 13.20

Square L2 norm 28.30 74.47 36.34 100.00 8.85 9.95

Normalized square L2 norm 52.91 96.65 98.45 100.00 8.40 9.92

Incremental sign dist. 60.96 99.97 93.90 98.78 10.23 10.56

Intensity-ratio var. 45.30 98.85 82.67 100.00 11.70 10.50

Intensity-mapping-ratio var. 100.00 96.96 97.60 99.53 13.18 11.17

Rank distance 56.52 97.72 98.54 100.00 9.85 10.36

Joint entropy 100.00 98.74 89.37 94.24 12.07 10.83

Exclusive F -information 100.00 99.00 95.79 89.14 16.19 11.12

2.4.1 Sensitivity to Noise

Results in Table 2.1 show that under zero-mean noise, Kendall’s Tau and square L2

norm tie for the most number of correct matches, followed by Spearman’s Rho. Un-
der zero-mean noise, measures that use intensity ranks generally perform well, while
measures that are based on the JPD of image intensities perform poorly. Among the
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measures that are based on JPD, Iα-information appears least sensitive to noise,
followed by material similarity and Tsallis mutual information.

2.4.2 Sensitivity to Scene Lighting/Camera Exposure

Sets 4 and 5 contain images simulating differences in scene lighting. Set 4 shows
changes in scene lighting by fixed amounts at the four image quadrants and sharp
changes across the boundary between the quadrants, while Set 5 shows changes
that vary smoothly across the image domain. Measures that are formulated in terms
of JPD perform well on Set 4 although ordinal measures perform equally well.
For Set 5, the best measures are Pearson correlation, Tanimoto measure, Spear-
man’s Rho, Kendall’s Tau, normalized square L2 norm, and incremental sign dis-
tance.

Set 8 contains images obtained at different exposures of a camera. Changing the
exposure has the same effect as changing scene lighting. Although no measure was
able to produce 100% correct matches for this image set, many measures performed
quite well, with the best measure being correlation ratio, followed by Pearson cor-
relation and material similarity.

2.4.3 Sensitivity to Image Modality

Images in Sets 6 and 7 represent simulated and real multimodality images with
intensities of corresponding pixels related by nonlinear mapping functions. Mea-
sures that are based on JPD work best on these image sets, as expected. The sur-
prising result is from the incremental sign distance, which also performs quite
well on Set 7, although it does not perform that well on Set 6. The best mea-
sure for Set 7 is the material similarity, the only measure producing 100% correct
matches.

2.4.4 Sensitivity to Image Blurring

Set 9 contains images with blurring differences. This represents images at different
resolutions. Measures that are computed from JPD generally perform poorly, while
ordinal measures generally perform well. Among the ordinal measures, Kendall’s
Tau and rank distance tie for the most number of correct matches. Other methods
that produce 100% correct matches are Pearson correlation, Tanimoto measure, min-
imum ratio, L1 norm, square L2 norm, normalized square L2 norm, and intensity-
ratio variance.
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Fig. 2.32 (a) Overlaying of
the stereo images in Set 10.
The left image is shown in red
and the right image is shown
in green. (b)–(d) Overlaying
of the left image and the right
image after being resampled
according to the
correspondences found by
normalized square L2 norm,
Tanimoto measure, and
Pearson correlation,
respectively

2.4.5 Sensitivity to Imaging View

Images from different views of a 3-D scene contain local geometric differences.
Stereo images have this characteristic. Tests on the stereo images in Sets 10 and
11 reveal that traditionally used measures such as Pearson correlation and L1 norm
perform well, while measures that are based on JPD perform the worst. Surpris-
ingly, ordinal measures do not perform that well when applied to images with lo-
cal geometric differences. The best measure for Set 10 was normalized square L2

norm followed by Tanimoto measure and Pearson correlation. The best measure for
Set 11 was minimum ratio followed by L1 Norm and Tanimoto measure. Examin-
ing results in Table 2.2 we see Pearson correlation, Tanimoto measure, minimum
ratio, L1 norm, square L2 norm, and normalized square L2 norm all have very
close performance measures with the remaining measures producing much worse
results.

To visually evaluate the quality of stereo correspondences obtained by these mea-
sures, after finding the correspondences, the right image in a stereo pair was re-
sampled to align with the left image. The overlaid images are shown in Figs. 2.32
and 2.33. Image (a) in each case shows overlaying of the original stereo images.
Figs. 2.32b–d show resampling of the right image to the space of the left image
using the correspondences obtained by normalized square L2 norm, Tanimoto mea-
sure, and Pearson correlation, respectively. The left image in a stereo pair is shown
in red, while the right image is shown in green. Yellow pixels show overlaid pix-
els with very close intensities, most likely representing correct correspondences,
and red and green pixels show overlaid pixels with quite different intensities. These
pixels most likely represent incorrect correspondences. The red boundary region
in each overlaid image shows pixels where matching was not performed because
parts of templates centered at those pixels fall outside the image during match-
ing.
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Fig. 2.33 (a) Overlaying of
the original left and right
stereo images in Set 11.
(b)–(d) Stereo-matching
results using minimum ratio,
L1 norm, and Tanimoto
measure, respectively

The matching results in Fig. 2.33 show correspondences obtained by minimum
ratio, L1 norm, and Tanimoto measure. Most mismatches seem to be occurring at
points visible to only one of the cameras due to occlusion, or in homogeneous re-
gions, where there is lack of sufficient detail for accurate matching.

It is interesting to note that the median of absolute differences and the median of
square differences have not performed as well as L1 norm and square L2 norm. Due
to very small occlusions in these stereo images, by discarding half of the pixels that
produce the highest 50% differences, not only the occluded pixels are discarded,
pixels that are critical in distinguishing adjacent neighborhoods from each other are
discarded, dulling the matching process.

2.4.6 Dependency on Template Size

As template size is increased, more image information is used in template match-
ing, increasing the correspondence accuracy. This is only true when the images
do not have geometric differences. When the images have geometric differences
and the images are overlaid at a point of interest, points farther away from the
point of interest will displace more, confusing the matching process. When deal-
ing with stereo images, matching accuracy increases as template size is increases
up to a point, beyond which increasing template size decreases matching accu-
racy.
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Table 2.3 Similar to Table 2.1 except for using square templates of side 51 pixels

Method Set 1 Set 2 Set 3 Set 4 Set 5

Pearson correlation 100.00 100.00 100.00 100.00 100.00

Tanimoto measure 100.00 100.00 100.00 100.00 100.00

Stochastic sign change 94.29 73.37 54.51 0.00 0.00

Deterministic sign change 99.94 100.00 96.31 47.69 54.43

Minimum ratio 100.00 100.00 100.00 49.23 65.94

Spearman’s Rho 100.00 100.00 100.00 100.00 100.00

Kendall’s Tau 100.00 100.00 100.00 100.00 100.00

Greatest deviation 100.00 99.94 99.26 98.31 91.46

Ordinal measure 100.00 99.97 99.11 94.22 83.37

Correlation ratio 100.00 100.00 100.00 100.00 99.66

Energy of JPD 100.00 99.97 69.46 100.00 92.77

Material similarity 100.00 100.00 72.14 100.00 81.51

Shannon MI 100.00 98.29 64.60 100.00 89.43

Rényi MI 100.00 99.09 54.83 100.00 90.83

Tsallis MI 100.00 100.00 69.26 100.00 95.34

Iα-information 100.00 99.97 94.14 100.00 99.69

L1 norm 100.00 100.00 100.00 74.97 75.49

MAD or MSD 100.00 100.00 97.41 5.08 60.68

Square L2 norm 100.00 100.00 100.00 99.43 89.97

Normalized square L2 norm 100.00 100.00 100.00 100.00 100.00

Incremental sign dist. 100.00 100.00 99.69 100.00 100.00

Intensity-ratio var. 99.71 98.60 55.51 99.94 89.94

Intensity-mapping-ratio var. 100.00 100.00 100.00 100.00 97.97

Rank distance 100.00 100.00 100.00 99.89 100.00

Joint entropy 100.00 100.00 87.63 100.00 96.51

Exclusive F -information 100.00 100.00 83.94 100.00 98.09

Increasing template size from 31 to 51 pixels in Sets 1–9, and decreasing the tem-
plate size from 31 to 21 pixels for Sets 10 and 11, the results shown in Tables 2.3
and 2.4 are obtained. Increasing template size clearly improves matching accuracy
for Sets 1–9. Improvement is observed the most among measures that are formu-
lated in terms of JPD. In particular, the accuracies of Iα-information and exclusive
f -information improve considerably, even under high noise level. The accuracy of
ordinal measures also increases considerably, especially that for Spearman’s Rho,
which produces perfect matches for all 9 image sets and surpasses the performances
of Kendall’s Tau and correlation ratio. Least affected by change in template size are
minimum ratio, correlation ratio, incremental sign distance, and rank distance. Since
these measures already perform quite well with small templates, if small templates
are required, they are the measures to use.
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Table 2.4 Similar to Table 2.2 except for using square templates of side 51 pixels in Sets 6–9 and
square templates of side 21 pixels in Sets 10 and 11

Method Set 6 Set 7 Set 8 Set 9 Set 10 Set 11

Pearson correlation 73.43 99.24 100.00 100.00 8.12 9.45

Tanimoto measure 73.46 99.22 99.66 100.00 8.04 9.41

Stochastic sign change 18.03 0.00 1.24 97.69 10.34 11.44

Deterministic sign change 2.80 0.00 9.05 97.86 8.55 9.53

Minimum ratio 0.00 0.00 3.05 100.00 8.05 9.23

Spearman’s Rho 100.00 100.00 100.00 100.00 8.23 9.62

Kendall’s Tau 78.69 99.87 100.00 100.00 8.42 9.64

Greatest deviation 37.69 98.33 98.29 97.26 11.49 10.81

Ordinal measure 35.63 97.62 98.42 98.69 11.01 10.62

Correlation ratio 100.00 99.34 100.00 100.00 9.50 10.64

Energy of JPD 100.00 99.85 90.61 99.11 13.13 12.92

Material similarity 100.00 100.00 100.00 100.00 16.32 16.49

Shannon MI 100.00 99.99 100.00 100.00 23.89 20.98

Rényi MI 100.00 99.93 99.21 99.63 22.65 19.84

Tsallis MI 100.00 99.94 95.48 99.57 11.90 11.94

Iα-information 100.00 99.17 99.89 93.69 12.99 12.18

L1 norm 0.66 21.19 15.16 100.00 8.04 9.23

MAD or MSD 1.05 0.07 1.64 99.94 13.50 11.20

Square L2 norm 40.17 87.48 46.27 100.00 8.26 9.47

Normalized square L2 norm 47.66 97.72 100.00 100.00 8.00 9.32

Incremental sign dist. 59.63 100.00 100.00 100.00 9.64 10.50

Intensity-ratio var. 35.43 99.97 89.82 100.00 10.23 10.13

Intensity-mapping-ratio var. 100.00 98.84 100.00 100.00 12.11 11.08

Rank distance 53.97 99.54 100.00 100.00 8.78 9.96

Joint entropy 100.00 100.00 99.55 99.96 12.57 11.96

Exclusive F -information 100.00 100.00 100.00 100.00 21.48 15.75

2.4.7 Speed

In addition to accuracy, speed determines the performance of a similarity or dissim-
ilarity measure. Computation time in milliseconds needed by a Windows PC with a
3.2 GHz processor to find a pair of corresponding points in the images for each case
in Tables 2.1–2.4 is determined and shown in Tables 2.5–2.8, respectively.

From the contents of Tables 2.5–2.8, we can conclude that ordinal measures are
the most expensive measures followed by measures that are based on the JPD of
image intensities. The three fastest methods are square L2 norm, L1 norm, and
intensity-ratio variance. The fact that square L2 norm is widely used in stereo match-
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Table 2.5 Computation time in milliseconds needed to find a pair of corresponding points in
Table 2.1 on a Windows PC with a 3.2 GHz processor

Method Set 1 Set 2 Set 3 Set 4 Set 5

Pearson correlation 5.09 5.09 5.05 5.13 5.13

Tanimoto measure 5.09 5.14 5.15 5.18 5.13

Stochastic sign change 4.29 4.30 4.36 3.86 3.87

Deterministic sign change 28.91 29.10 29.20 28.86 28.83

Minimum ratio 4.10 4.15 4.18 3.77 3.80

Spearman’s Rho 107.94 107.93 108.18 107.85 108.80

Kendall’s Tau 627.81 635.34 651.70 628.30 620.28

Greatest deviation 722.73 734.50 751.02 713.62 705.72

Ordinal measure 435.64 439.70 446.60 432.86 430.86

Correlation ratio 84.52 84.55 84.50 84.49 84.57

Energy of JPD 110.25 109.71 109.58 109.57 109.43

Material similarity 241.43 242.35 241.65 242.84 239.38

Shannon MI 172.97 172.58 172.96 172.41 172.59

Rényi MI 220.40 220.96 228.79 229.01 226.82

Tsallis MI 226.82 226.56 227.07 226.44 228.40

Iα-information 456.45 467.89 496.96 453.30 460.40

L1 norm 3.06 3.05 3.07 2.88 2.78

Median of absolute diff. 18.06 19.13 19.21 19.18 18.12

Square L2 norm 2.71 2.71 2.71 2.72 2.71

Median of square diff. 19.49 19.58 19.54 19.20 18.94

Normalized square L2 norm 6.15 6.21 6.18 6.19 6.19

Incremental sign dist. 4.50 4.54 4.54 4.49 4.51

Intensity-ratio var. 3.63 3.64 3.64 3.64 3.63

Intensity-mapping-ratio var. 84.65 84.56 84.57 86.44 85.71

Rank distance 108.99 109.16 109.08 112.19 114.35

Joint entropy 105.88 106.02 106.11 106.62 107.07

Exclusive F -information 172.45 172.64 177.13 177.42 176.87

ing is no surprise as it has the fastest speed among the measures tested with accuracy
that is very close to the best accuracy achievable.

Changing template size changes the computation time. Computation time varies
from a linear function of template size n to a quadratic function of n. Computation
time when using templates of side 51 pixels in Sets 1–9 and templates of side 21
pixels in Sets 10 and 11 are shown in Tables 2.7 and 2.8. When compared with
Tables 2.5 and 2.6, we see that again square L2 norm is the fastest and the gap
between slower and faster measures widens for Sets 1–9. For Sets 10 and 11, the
gap in computation time between slow and fast measures narrows as template size
is decreased.
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Table 2.6 Computation time in milliseconds needed to find a pair of corresponding points in
Table 2.2 on a Windows PC with a 3.2 GHz processor

Method Set 6 Set 7 Set 8 Set 9 Set 10 Set 11

Pearson correlation 5.12 6.69 4.49 4.92 3.49 2.18

Tanimoto measure 5.09 6.67 4.48 4.98 3.50 2.19

Stochastic sign change 3.61 4.30 3.30 4.13 2.97 2.06

Deterministic sign change 28.52 52.67 12.06 29.12 28.63 57.37

Minimum ratio 3.60 4.66 3.02 3.78 2.77 1.96

Spearman’s Rho 108.67 110.39 103.21 110.14 74.83 21.05

Kendall’s Tau 629.60 642.28 552.20 624.68 442.79 111.94

Greatest deviation 738.69 764.53 643.89 714.55 518.37 128.17

Ordinal measure 444.00 459.51 360.63 439.40 319.03 81.52

Correlation ratio 84.58 86.12 81.90 86.36 57.67 16.73

Energy of JPD 110.36 111.17 106.39 112.33 80.66 21.39

Material similarity 234.08 234.60 223.35 250.50 135.91 37.41

Shannon MI 171.90 173.52 166.53 176.41 116.72 32.83

Rényi MI 226.20 222.73 220.77 228.22 150.14 40.91

Tsallis MI 227.59 222.73 220.47 227.86 154.03 41.12

Iα-information 392.71 352.34 398.74 432.19 289.03 77.62

L1 norm 2.83 3.68 2.46 3.14 2.29 1.87

Median of absolute diff. 19.29 19.56 22.54 19.23 20.11 5.26

Square L2 norm 2.71 3.58 2.44 2.86 2.07 1.77

Median of square diff. 19.89 19.83 22.89 19.53 20.44 5.64

Normalized square L2 norm 6.18 7.01 5.86 6.44 4.50 2.08

Incremental sign dist. 4.48 5.31 4.06 4.59 3.35 1.98

Intensity-ratio var. 3.62 4.51 3.31 3.85 2.73 1.93

Intensity-mapping-ratio var. 84.87 85.28 81.24 88.37 58.81 16.45

Rank distance 109.52 110.92 104.74 115.12 72.88 20.25

Joint entropy 105.91 104.48 99.71 106.05 70.69 19.91

Exclusive F -information 173.36 172.92 166.76 183.66 118.33 32.94

The smallest increase in computation time as template size is increased is ob-
served in measures that use JPD. This is because a portion of the computation time
is spent by these measures to create the JPD, which is a linear function of template
size n, and a portion of the computation time that is independent of n is spent on
calculating a similarity or dissimilarity measure from the obtained JPD. Increase in
template size, therefore, only linearly increases the time for creating the JPD, which
is a small portion of the overall computation time. Measures that have computa-
tional complexities a linear function of n, such as correlation coefficient, Tanimoto
measure, minimum ratio, L1 norm, square L2 norm, and intensity ratio variance
also have the smallest increase in computation time with an increase in n.
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Table 2.7 Computation time in milliseconds needed to find a pair of corresponding points in
Table 2.3 on a Windows PC with a 3.2 GHz processor

Method Set 1 Set 2 Set 3 Set 4 Set 5

Pearson correlation 12.13 12.29 12.13 12.03 11.94

Tanimoto measure 12.15 12.03 12.05 12.03 12.05

Stochastic sign change 10.78 10.75 10.96 9.53 9.67

Deterministic sign change 36.63 36.75 36.92 36.38 36.33

Minimum ratio 9.96 10.03 10.19 9.02 9.15

Spearman’s Rho 320.36 320.39 320.87 320.37 319.26

Kendall’s Tau 4547.6 4608.7 4641.3 4471.3 4447.1

Greatest deviation 4873.3 4956.9 5110.9 4834.7 4708.7

Ordinal measure 2718.3 2778.2 2762.6 2627.6 2616.3

Correlation ratio 224.92 224.91 224.94 225.01 224.92

Energy of JPD 118.89 119.73 119.01 119.92 120.25

Material similarity 273.27 268.75 268.92 272.66 272.58

Shannon MI 192.60 193.41 194.57 192.71 190.21

Rényi MI 232.93 235.06 232.08 231.32 231.32

Tsallis MI 230.17 230.74 231.66 229.94 231.04

Iα-information 534.25 536.42 578.38 520.28 546.20

L1 norm 7.95 7.89 7.96 7.37 7.45

Median of absolute diff. 124.65 124.12 122.97 122.28 120.08

Square L2 norm 7.25 6.90 6.90 6.94 6.93

Median of square diff. 125.12 126.32 126.06 124.43 121.72

Normalized square L2 norm 15.61 15.56 15.62 15.59 15.60

Incremental sign dist. 11.20 11.24 11.27 11.19 11.11

Intensity-ratio var. 8.96 8.94 8.95 8.94 8.92

Intensity-mapping-ratio var. 231.14 231.05 230.48 231.97 232.40

Rank distance 346.73 351.22 346.45 325.22 323.55

Joint entropy 119.45 120.38 120.66 118.67 119.58

Exclusive F -information 195.25 197.11 198.02 196.86 198.36

The largest increase in computation time as a function of n is observed by mea-
sures that use ranks of intensities, especially those that are quadratic functions of n,
such as greatest deviation, Kendall’s Tau, and the ordinal measure.

2.5 Choosing a Similarity/Dissimilarity Measure

Each similarity/dissimilarity measure has its strengths and weaknesses. A measure
that performs well on one type of images may perform poorly on another type of
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Table 2.8 Computation time in milliseconds needed to find a pair of corresponding points in
Table 2.4 on a Windows PC with a 3.2 GHz processor

Method Set 6 Set 7 Set 8 Set 9 Set 10 Set 11

Pearson correlation 11.94 12.74 11.17 13.00 1.86 1.75

Tanimoto measure 12.02 12.72 11.12 12.98 1.90 1.74

Stochastic sign change 9.02 10.03 8.36 10.32 1.72 1.67

Deterministic sign change 35.74 59.01 18.36 36.17 28.42 56.06

Minimum ratio 8.54 9.28 7.80 9.41 1.46 1.60

Spearman’s Rho 320.86 321.68 297.40 344.80 74.35 9.53

Kendall’s Tau 4550.9 4675.4 3809.5 4468.6 95.43 25.35

Greatest deviation 5035.3 5144.4 4008.0 4645.8 118.24 31.21

Ordinal measure 2742.3 2877.2 2058.5 2601.5 80.46 21.56

Correlation ratio 224.98 225.43 213.48 241.97 27.74 8.50

Energy of JPD 118.51 121.18 113.72 113.37 70.14 20.42

Material similarity 264.89 273.22 258.00 339.64 137.62 36.79

Shannon MI 185.32 183.75 174.74 181.89 116.16 31.21

Rényi MI 230.75 225.78 213.29 224.32 150.83 39.99

Tsallis MI 231.12 231.07 222.11 233.37 157.88 39.90

Iα-information 427.03 375.91 464.31 488.50 255.86 69.33

L1 norm 7.30 8.15 6.41 7.92 1.28 1.55

Median of absolute diff. 121.18 125.88 122.01 125.73 5.08 1.75

Square L2 norm 7.01 7.67 6.31 6.73 1.20 1.52

Median of square diff. 122.20 126.55 123.53 123.51 5.42 2.02

Normalized square L2 norm 15.57 16.29 14.53 15.56 2.28 1.75

Incremental sign dist. 11.15 11.72 10.25 10.87 1.80 1.64

Intensity-ratio var. 8.92 9.72 8.27 8.96 1.48 1.56

Intensity-mapping-ratio var. 233.46 242.16 228.98 239.13 26.99 8.09

Rank distance 325.58 328.92 301.42 324.32 31.36 8.99

Joint entropy 116.46 115.26 109.89 119.41 69.48 18.99

Exclusive F -information 194.40 193.40 185.59 196.25 117.23 31.02

images. Therefore, an absolute conclusion cannot be reached about the superior-
ity of one measure against another. However, the experimental results obtained on
various image types and various image differences reveal that Pearson correlation
coefficient, Tanimoto measure, minimum ratio, L1 norm, square L2 norm, and in-
tensity ratio variance overall perform better than other measures. If the images are
captured under different exposures of a camera or under different lighting of a scene,
the results show that Pearson correlation coefficient, Tanimoto measure, normalized
square L2 norm, and incremental sign distance perform better than others.

Different-modality images are most efficiently and accurately matched by
intensity-mapping-ratio variance, joint entropy, energy of JPD, correlation ratio,
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and Spearman’s Rho. Although in the past, measures solely based on JPD have
been used to match images in different modalities, experimental results obtained in
this chapter show that ordinal measures such as correlation ratio and Spearman’s
Rho are equally effective and more efficient than many of the JPD measures in the
matching of multimodality images.

Stereo images are most efficiently and accurately matched using Pearson correla-
tion, Tanimoto measure, minimum ratio, L1 norm, square L2 norm, and normalized
square L2 norm. It is clear that when the images being matched are stereo, the mea-
sures to avoid are those that are based on JPD as not only are they computationally
very expensive, they are the least accurate. Outliers and noise quickly degrade such
measures. Some of the ordinal measures such as Spearman’s Rho, Kendall’s Tau,
and rank distance produce accuracies that are close to those obtained by Pearson
correlation, Tanimoto measure, minimum ratio, L1 norm, square L2 norm, and nor-
malized square L2 norm, but they are not as efficient and so are not recommended
in stereo matching.

Considering the accuracies of the measures obtained using the images in Sets 1–
9, we find that correlation ratio followed by intensity-mapping-ratio variance pro-
duce the best accuracy when template size is relatively small (side 31 pixels). At
a larger template size (side 51 pixels), Spearman’s Rho takes the lead followed by
correlation ratio. Therefore, if a single measure is to be used to compare images
containing noise and intensity differences but no geometric differences, correlation
ratio, Spearman’s rho, and Kendall’s Tau are the ones to choose. Considering com-
putational efficiency as well as accuracy, correlation ratio is clearly the choice fol-
lowed by Spearman’s Rho.

If a single measure is to be used to match all 11 image sets, we see that Pear-
son correlation and Tanimoto measure receive the highest score as they manage
to match 7 out of 11 image sets either perfectly or better than all other measures.
This is followed by Kendall’s Tau and correlation ratio. At a larger template size,
Spearman’s Rho takes the lead, either perfectly matching 9 out of 11 images sets
or matching them better than any other measure. This is followed by normalized
square L2, which manages to match 8 out of 11 sets either perfectly or better than
other measures.

Among the four newly introduced measures, minimum ratio was found the best
in matching the stereo images in Set 11 when using small templates and the best
in matching the stereo images in Sets 10 and 11 when using moderate size tem-
plates. Also, because of its very low computational cost it is the similarity measure
of choice when matching stereo images. Energy of JPD when compared to Shannon
mutual information produces a better accuracy on 10 out of the 11 image sets for
small templates and 8 out of the 11 image sets for moderate size templates. Consid-
ering that it requires nearly half the computation time of Shannon mutual informa-
tion, it can replace Shannon mutual information to increase both speed and accu-
racy. Material similarity produced the highest accuracy in matching multimodality
images in Sets 7 and 8 when using a relatively small template size and produced
perfect matches for the same image sets at a larger template size, thus making it the
most accurate measure in matching multimodality images. Material similarity is,
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Fig. 2.34 (a), (b) A noise-
free image and its noisy
version. These images are the
same as those in Figs. 2.26a
and 2.26d. (c) Smoothing of
image (b) by an adaptive
Gaussian filter of standard
deviation 1 pixel.
(d) Smoothing of image (b)
by the traditional Gaussian
filter of standard deviation
1 pixel

however, computationally more expensive than Shannon mutual information. Rank
distance is an ordinal measure that has the fastest speed among the ordinal measures
and has an accuracy that falls somewhere in the middle among the ordinal measures
tested.

2.6 Preprocessing Considerations

Similarity and dissimilarity measures that are based on JDP or intensity ranks are
not sensitive to sensor characteristics or scene lighting but are computationally very
expensive. On the other hand, measures that use raw image intensities are fast but
are sensitive to differences in sensor characteristics and scene lighting. In order to
take advantage of the fast speed of the latter and the robustness of the former, the
images may be preprocessed, normalizing the intensities before using them in the
calculation of a measure.

If the images are known to contain noise, one may filter out the noise before
attempting to compute the similarity/dissimilarity between them. If the images are
known to contain impulse noise, median filtering may be used to reduce or remove
noise, and if the images are known to contain zero-mean noise, Gaussian filtering
may be used to reduce the effect of noise. Since image filtering changes intensities
even at pixels that are not affected by noise, the filter kernel should be sufficiently
small to avoid smoothing the image structures but large enough to reduce sufficient
noise to produce an accurate similarity/dissimilarity measure.

To preserve image structures while reducing noise, filter kernels that change in
shape and size are most desirable [2, 34, 59, 67]. Figure 2.34 compares adaptive
smoothing versus traditional smoothing at the presence of zero-mean noise.

If the images are obtained under different lighting conditions, through a prepro-
cessing operation image intensities can be normalized to remove global intensity
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Fig. 2.35 (a), (b) Images
with smoothly varying
intensity differences. These
images are the same as those
shown in Figs. 2.27a and
2.27c. (c), (d) Rank transform
intensity mapping of (a)
and (b), respectively, using
17 × 17 windows and setting
ranks greater than 255 to 255

differences between them. In the monotonicity operation proposed by Kories and
Zimmerman [44], a 3 × 3 window is considered at a pixel, and the intensity at the
pixel is replaced by a number between 0 and 8 depending on the number of in-
tensities within the 3 × 3 window that are smaller than the intensity at the pixel.
Intensities are newly assigned that depend on their relative values within a small
neighborhood rather than their absolute values globally. This process will reduce or
remove global intensity differences between images.

The rank transform proposed by Zabih and Woodfill [111], replaces the local
intensity distribution of an image with values in the range 0 to d2 − 1 similar to
monotonicity operation, where d = 2r + 1 is an odd number showing the side of the
square window centered at the pixel under consideration. This mapping is partic-
ularly effective when high-dynamic range images are used. The method brightens
areas that are too dark and darkens areas that are too bright.

Suppose the center pixel in a d × d neighborhood is denoted by p and the inten-
sity at p is I (p). Also, suppose the intensity at pixel p′ (p′ �= p) in that neighborhood
is I (p′). If the number of pixels within the neighborhood where I (p′) < I (p) is m,
then m is considered the rank of p and assigned to p. This is the same as monotonic-
ity operation except for using a neighborhood larger than 3 × 3.

If a 16 × 16 neighborhood is selected, the center pixel can be considered the
128th pixel within the neighborhood when counted in raster scan order. Then, the
rank of the intensity at the center pixel will have a value between 0 and 255 depend-
ing on whether from none to all intensities within the neighborhood are smaller than
the intensity at the center pixel. Mapping intensities in this manner enables remov-
ing global intensity differences between images. An example of intensity mapping
using 17 × 17 neighborhoods is given in Fig. 2.35. Ranks greater than 255, which
rarely occur, are set to 255. Figures 2.35a and 2.35b after rank transform are shown
in Figs. 2.35c and 2.35d, respectively. The images after rank transform are indistin-
guishable.
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At the presence of outliers (occlusions), rank transform has been found to im-
prove matching accuracy [111]. This can be attributed to the fact that at occluded
boundaries there are sharp intensity changes and rank transform dulls the sharp
changes, reducing the occlusion effect and producing more accurate matches. How-
ever, this dulling effect can worsen matching accuracy when applied to images that
do not contain occlusions. Rank transform intensity mapping when applied to high-
contrast and noise-free images may reduce image information sufficiently to worsen
matching accuracy. Therefore, care should be taken when choosing a preprocessing
operation in image matching.
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Chapter 3
Point Detectors

Feature points in an image carry critical information about scene structure [7] and
are widely used in image analysis. In image registration, knowledge about corre-
sponding points in two images is required to spatially align the images. It is impor-
tant that detected points be independent of noise, blurring, contrast, and geometric
changes so that the same points can obtained in images of the same scene taken
under different environmental conditions and sensor parameters.

A large number of point detectors have been developed throughout the years.
These detectors will be reviewed and their sensitivities to noise, blurring, and inten-
sity and geometric changes will be compared. A number of surveys have appeared
in the literature comparing point detectors in different contexts. These include the
papers by Rajan and Davidson [122], Heyden and Rohr [71], Schmid and Mohr
[135], Schmid et al. [137], Fraundorfer and Bischof [58], Moreels and Perona [108],
Tuytelaars and Mikolajczyk [157], and Gauglitz et al. [60].

Feature points have also been referred to as critical points, interest points, key
points, extremal points, anchor points, landmarks, control points, tie points, corners,
vertices, and junctions in the literature. We will refer to feature points as control
points in this chapter and elsewhere in this book.

In the following, point detectors appeared in the literature are reviewed chrono-
logically while classifying them. A number of new point detectors are also intro-
duced. Next, the performances of widely used detectors under noise and intensity
and geometric changes are determined and compared. Finally, the detectors are char-
acterized and a guide to their selection is provided.

3.1 Categorization of Point Detectors

3.1.1 Correlation-Based Detectors

One of the earliest point detectors was designed using the correlation of concentric
circles [165]. Examples of two concentric circles are given in Fig. 3.1. If pixel (x, y)
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Fig. 3.1 Examples of concentric circles used in the correlation-based detector of Winston and
Lerman [165]

represents a vertex or a junction, intensities of two or more concentric circles at the
pixel will correlate highly. Suppose there are n pixels along the smallest circle, the
angle between the line connecting pixel (x, y) to the ith pixel on the smallest circle
and the x-axis is θi , and the intensity at the ith pixel is I1(θi). To determine whether
(x, y) represents a corner, first, intensities along each circle are normalized to have
a mean of 0. If Īj (θi) represents the normalized intensity at θi in the j th circle, then

C(x, y) =
n∑

i=1

m∏

j=1

Īj (θi) (3.1)

is used to measure the strength of a vertex or a junction at (x, y). Pixel (x, y) is then
considered a corner if C(x, y) is locally maximum.

To reduce the effect of noise, intensities along a circle are smoothed with a Gaus-
sian of standard deviation proportional to the radius of the circle. This detector is
invariant to image rotation. As larger circles are used, junctions at larger scales are
detected, and as more concentric circles are used, fewer but more robust junctions
are obtained. An even number of circles should be used so that when Īj (θi) is neg-
ative for all j , a positive value is obtained.

It should be mentioned that although a low correlation correctly rejects a junc-
tion, a high correlation does not necessarily mean the presence of a junction. This
is because correlation of concentric circles in a homogeneous area or along a line
is also high. Therefore, a detected junction should be rejected when (1) the interior
circle does not contain a sufficient number of high-gradient pixels, and (2) gradient
directions at and around the detected point form a single mode in the histogram of
the gradient directions.

Examples of the kind of points detected by the correlation-based detector of Win-
ston and Lerman [165] with four concentric circles of radii 2, 4, 8, and 16 pixels are
given in Fig. 3.2. The images were smoothed with a Gaussian of standard deviation
2 pixels to reduce the effect of image noise. Smoothing is performed similarly on all
images tested in this chapter. Centers of the small circles depicted in Fig. 3.2 show
the detected points. Black circles are shown in high intensity areas and white circles
are shown in low intensity areas to enhance viewing of the detected points. Only the
strongest 100 points that are also well dispersed over the image domain are shown.
In all the examples given in this chapter, the 100 strongest and well-dispersed points
will be displayed. Some of the detected points represent visually obvious vertices
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Fig. 3.2 Points detected by the detector of Winston and Lerman [165] using correlation of four
concentric circles in (a) an image of the Pentagon (courtesy of CMU Robotics Institute) and (b) an
image of the surface of Mars (courtesy of NASA). The centers of the small circles in the images
represent the detected points

and junctions, while some of the other points represent vertices and junctions that
are not visually obvious.

In image registration it is important to select points that are widely spread over
the image domain. If too many points are detected in an image, some of the points
detected in high density areas may be eliminated. Different approaches have been
proposed to achieve this. Fonseca and Kenney [54] suggested clustering the points
into a required number of clusters and selecting the strongest point within each
cluster. Brown et al. [24] selected a desired number of well-dispersed points in an
image by examining the strength of each point and keeping a point only if it has the
highest strength within a neighborhood of radius r . Starting from the entire set of
detected points and radius r = 1, the neighborhood radius is gradually increased to
eliminate weak points in dense areas until the desired number of points is reached.
Eliminating points in this manner selects well-dispersed points that are locally the
strongest. In all the experiments reported in this chapter, the method of Brown et al.
[24] is used to select the 100 strongest and well-dispersed points in an image from
among the detected points.

3.1.2 Edge-Based Detectors

Edge information can be used to detect points in an image. In an edge-based point
detector developed by Horn [73], first, edges are detected by correlating various
edge masks with an image. Then, lines are fitted to the edges. When two line end-
points appear near each other, the intersection of the lines is used as a vertex. If
three or more line end-points appear near each other, their average intersection is
used as an initial estimate to a vertex. A search is then made for all lines that have
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an end-point near the vertex and whose extensions fall sufficiently close to the ver-
tex. Finally, the accurate position of the vertex is calculated by least-squares fitting.
T-junctions are formed by locating a line end-point near another line and extending
the line at the end-point to intersect the line. Further, heuristics are used to form K-
and X-junctions. The heuristics are determined empirically with tolerances that are
functions of image resolution and image noise.

An edge-based point detector developed by Beymer [19] analyzes image gradi-
ents to fill gaps between Canny edges [26] or LoG zero-crossings [102] after re-
moving the false edges [32]. Since at a junction, edges become disconnected due
to the absence of a unique gradient direction, a disconnected edge’s gradient ridge
is traced until it reaches another junction edge. For junctions with vanishing gradi-
ents, the minimum direction of the nearby saddle point is traced to bridge the gap
between disconnected edges and form junctions.

An edge-based point detector developed by Xie et al. [167] finds edge contours
in an image and calculates a cost function at each edge point using the gradient mag-
nitude, curvature, and similarity of regions on the two sides of the contour. Then,
maximum and minimum costs are determined over the image domain and through a
thresholding process, edges that are not likely to represent a vertex are suppressed.
Finally, the optimal position, orientation, and angular opening of a vertex are deter-
mined through a simulated annealing optimization process.

3.1.3 Model-Based Detectors

One of the earliest model-based point detectors is due to Perkins and Binford [119].
A model corner is defined by two or three lines, angles between the lines, direc-
tions of the lines (showing which side of a line is darker than the other), and unit
vectors along the lines pointing toward the corner. To find a corner in a neighbor-
hood, Hueckel [76] edges are determined in the neighborhood. Lines are formed
from the edges by the Hough transform [45, 74], and from among the detected lines
those that are quite different from the lines in the model are discarded. The remain-
ing lines are then used to form corners. From among the created corners, the one
best matching the model is taken as the final result. The method has been found to
perform quite well in images of textureless polyhedral scenes. The weakness of the
method is in requiring the approximate location of the model corner and the strength
of the method is in being invariant to the orientation of the image and, up to a point,
to its scale.

A model-based point detector that uses the plot of an ordered list of image inten-
sities against the positions of the intensities within the list is described by Paler et al.
[116]. For each model corner centered at a 5 × 5 or 7 × 7 window, intensities of the
window are ordered from the smallest to the largest. Then a plot is created with the
horizontal axis showing the intensities and the vertical axis showing the positions of
the intensities within the list. This plot is then used as a rotation invariant model of
the corner. Use of a circular window rather than a square one will make the model
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more independent of the orientation of the image. To locate corners in an image
similar to the model corner, windows containing intensity plots similar to that of the
model corner are located. Since windows with different intensity arrangements can
produce the same plot, the process can pick false corners. This method, therefore,
may be used as a preprocessor to select likely corner positions in an image. A more
elaborate method can then be used to reject the false corners from among the likely
ones.

To locate L-shaped corners in an image, first, templates representing models of L-
shaped corners at various orientations are created. Then the models are searched for
in an image via template matching [88]. In the implementation of Singh and Shneier
[144], first a template representing the desired corner type is created. The template
is then rotated about its center by π/4 increments to obtain eight model templates.
A corner is declared at a pixel if the largest correlation coefficient between the eight
templates and the window of the same size centered at the pixel is sufficiently high
and locally maximum. A circular template with a smaller rotational increment may
be used to create more model templates and find the locations of the desired corner
type in an image independent of the image’s orientation more accurately.

The idea of adaptable models with parameters that adjust to local image details
is proposed by Rohr [128, 129]. Parametric models of L-, T-, Y-, and W-shaped
junctions are developed. Points in an image where variation in intensity is locally
maximum and sufficiently high are taken as the initial positions of junctions. The
initial values for the angles in a model junction are estimated by fitting straight lines
to linked edges within the window centered at an estimated junction. Then, the ac-
curate position and orientation of the junction are determined iteratively by varying
the model parameters and minimizing the sum of squared intensity differences be-
tween the model and the image via Levenberg-Marquardt optimization [101]. Based
on the same ideal, a parametric model of a ring-shaped structure is developed [44].

Olague and Hernández [115] developed a parametric model of L-shaped corners
similar to the parametric model of Rohr but relying more on the geometric relation
between edges in a window than the differential property of their intensities. Vincent
and Laganière [160] segmented a neighborhood that was believed to contain a corner
into foreground and background regions using the mean intensity as the threshold
value. Then, a model wedge-corner best fitting the boundary between foreground
and background regions was determined through functional minimization.

Baker et al. [11] represented L-shaped corners by a parametric manifold in a
lower dimensional subspace of a Hilbert space. Image information within a small
window centered at a pixel is projected to the subspace and if the projection is
sufficiently close to the manifold, a corner is declared. The manifold point closest
to the projected point is used to estimate the corner parameters.

Cooper and Kitchen [35] modeled a corner by two templates on opposing sides
of a pixel. If the gradient magnitude at the pixel is not sufficiently high, a corner is
rejected at the pixel. Otherwise, if templates at opposing sides of the pixel and in
the gradient direction are not sufficiently similar, a corner is declared at the pixel.
Similarity is measured using the sum of absolute intensity differences between the
templates.
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Brand and Mohr [23] modeled L-shaped corners by a blurred region that is sep-
arated by two regions of higher and lower intensities. They first estimate the initial
location of a corner by an existing method. They then refine the initial corner pa-
rameters by iteratively determining the location, orientation, and opening of a wedge
corner that best fits image intensities in the window centered at the initial corner.

Parida et al. [117] modeled a corner by a circular template of piecewise constant
wedge-shaped regions emanating from the template center with unknown template
radius, center location, number of wedges, angular direction of lines creating the
wedges, and intensity of each wedge. The best-fit corner parameters are determined
by optimally partitioning the template into wedges using gradient information and
dynamic programming. The radius of the best-fit model determines the scale of the
corner and the wedge angles determine the orientation of the corner. Therefore, in
addition to determining the location of a corner, this detector determines the scale
and orientation of a corner.

3.1.4 Uniqueness-Based Detectors

To select unique points in an image, the correlation values of the window centered
at a pixel with windows centered at surrounding pixels may be used. If the smallest
correlation value is locally minimum and sufficiently small, the pixel is considered
locally unique and used as a control point [68].

Directional variance can be used to identify unique points in an image also [106,
107]. If the minimum variance at a pixel when measured in horizontal, vertical, and
the two diagonal directions is sufficiently high and locally maximum, the pixel is
considered locally unique and used as a control point. Variance in a direction is
measured using the sum of squared intensity differences of overlapping windows at
opposing sides of a pixel in that direction. Variance at a pixel is set to the minimum
variance calculated in the four directions. Experiments carried out by Barnard and
Thompson [14] have confirmed the distinctiveness and effectiveness of the unique
points determined by directional variance in stereo matching.

Because the directional variance of Moravec [106, 107] finds intensity variance
in only four directions, the method is not fully rotation invariant. Trajković and
Hedley [153] used variances in 8, 12, and 16 orientations in a multigrid approach
to make the detector more rotation invariant. A pixel where the minimum gradient
when considering all directions is sufficiently high and locally maximum is taken
as a control point. First, a 3 × 3 neighborhood with 8 directions is used. A detected
point is considered robust if it is also detected when using a 5 × 5 neighborhood
with 12 directions and a 7 × 7 neighborhood with 16 directions.

3.1.5 Curvature-Based Detectors

Information about second derivative image intensities or curvature along isointen-
sity contours can be used to detect control points in an image. A point detector in-
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troduced by Beaudet [18] calculates the cornerness measure at pixel (x, y) in image
I by the determinant of the Hessian matrix defined by

H(x, y) =
[
Ixx(x, y) Ixy(x, y)

Ixy(x, y) Iyy(x, y)

]

. (3.2)

That is

DET(x, y) = Ixx(x, y)Iyy(x, y) − I 2
xy(x, y). (3.3)

This detector, which is also known as the Hessian detector, finds image locations
where the absolute value of DET becomes maximum and larger than a prespecified
threshold value. Deriche and Blaszka [39] used points obtained by this detector as
initial estimates to corners. Edges passing through each estimated corner are then
used to find the optimal corner model with two or three edges by an iterative gradient
descent algorithm. The model parameters producing the least error are then used as
the corner parameters.

Nagel [112] showed that the determinant of the Hessian matrix at (x, y) is pro-
portional to the Gaussian curvature of the patch centered at (x, y). That is,

DET(x, y) ∝ κmax(x, y)κmin(x, y), (3.4)

where κmax(x, y) and κmin(x, y) represent principal curvatures at (x, y). Guiducci
[67] showed that the principal curvatures at pixel (x, y) in an image are related to
the components of the Hessian matrix by,

κmax(x, y) = Ixx(x, y) cos2(θ) + 2Ixy(x, y) sin(θ) cos(θ)

+ Iyy(x, y) sin2(θ), (3.5)

κmin(x, y) = Ixx(x, y) sin2(θ) − 2Ixy(x, y) sin(θ) cos(θ)

+ Iyy(x, y) cos2(θ), (3.6)

where

θ = 1

2
tan−1

{
2Ixy(x, y)

Ixx(x, y) − Iyy(x, y)

}

. (3.7)

Deriche and Giraudon [40] find 1/(1 + I 2
x + I 2

y ) to be the proportionality term be-
tween the Gaussian curvature and the determinant of the Hessian matrix; there-
fore,

κmax(x, y)κmin(x, y) = DET(x, y)

1 + I 2
x (x, y) + I 2

y (x, y)
. (3.8)

Both Gaussian curvature extrema and DET extrema detect saddle points in
an image when intensities are treated as height values. Through experimentation,
Dreschler and Nagel [43] found that when the product of the two principal curva-
tures is used to detect corners and one of the principal curvatures is much larger than
the other, the detected corner can fall along a line of very high gradient, which does
not represent a true corner. They also note that curvature maxima and minima come
in pairs. Therefore, rather than taking both as corners, they suggest taking the point
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Fig. 3.3 The point on the
line connecting pairing
Gaussian curvature extrema
where the curvature changes
sign is taken as the location of
a wedge corner. Alternatively,
the zero curvature point along
the line connecting points of
curvature maxima at two
resolutions is used as the
corner. P and P′ are points of
maximum curvature obtained
at two different resolutions, N
is the point of minimum
curvature obtained at the
same resolution as P, and C
is the point of zero curvature.
The three figures from top to
bottom show wedge corners
with aperture equal to, less
than, and greater than π/2

on the line connecting pairing curvature extrema and taking the point where curva-
ture changes sign as the location of a wedge corner (Fig. 3.3). Although the location
of a curvature extremum may change considerably as resolution is changed, the
point where curvature extremum changes sign remains relatively stationary. There-
fore, points of zero curvature represent more stable control points than points of
curvature extremum.
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Deriche and Giraudon [40] found through further analysis of the Gaussian curva-
ture that although a locally maximum curvature point is unique, a locally minimum
curvature point is not. Therefore, they suggest using two curvature maxima deter-
mined at two different resolutions and finding the curvature zero-crossing on the
line connecting the two curvature maxima. This is demonstrated in Fig. 3.3. Instead
of using locally maximum curvature point P and locally minimum curvature point
N to find curvature zero-crossing C, locally maximum curvature points P and P′
obtained at two resolutions are used to find the point of zero curvature. Giraudon
and Deriche [64] and Deriche and Giraudon [41] later extended this method to de-
tect Y-junctions by finding neighborhoods that contained two curvature maxima for
each curvature minimum.

Dreschler and Nagel [43] compared the local curvature extrema of LoG zero-
crossings and zero-crossings of lines connecting pairing Gaussian curvature ex-
trema. Since LoG zero-crossings correspond to locally maximum intensity gradi-
ents and corner points represent saddle points of image intensities, which may not
necessarily have locally maximum gradients, they used the zero-crossings of the
Gaussian curvature rather than the curvature extrema of zero-crossing contours as
feature points. Because curvature extrama of LoG zero-crossings displace more than
other points along a zero-crossing contour when changing image resolution, curva-
ture extrema of the LoG zero-crossings are sensitive to image resolution. Gaussian
curvature zero-crossings and LoG zero-crossings follow rather similar paths as im-
age resolution is changed, although they are not exactly the same. Points detected
under both methods shift as image resolution is changed; therefore, although these
detectors are invariant to image rotation, they are sensitive to changes in image res-
olution.

Kitchen and Rosenfeld [80] and later Fang and Huang [48] used the product of
the rate of change of the gradient direction (curvature) and the gradient magnitude
at a pixel as the cornerness measure:

k = IxxI
2
y + IyyI

2
x − 2IxyIxIy

I 2
x + I 2

y

. (3.9)

Mathematical derivation of this cornerness measure from image intensities was later
provided by Torre and Poggio [152] and Clark [32]. Zuniga and Haralick [172] take
curvature extrema along an edge contour independent of their gradient magnitudes
as corners. Nagel [112] showed that the extremum of the product of curvature and
gradient magnitude used by Kitchen and Rosenfeld [80] is the same as the zero-
crossing of the Gaussian curvature along the line connecting pairing Gaussian cur-
vature extrema as described by Dreschler and Nagel [43].

Examples of points detected by the method of Kitchen and Rosenfeld [80] are
given in Fig. 3.4. Although many of the detected points represent visually unique
and high-curvature points, the detector selects also some points that do not appear
visually unique or highly curved.

Wang and Brady [162, 163] showed that the total curvature of a surface rep-
resenting intensities in a neighborhood is proportional to the second derivative of
intensities in the gradient tangent (k in (3.9)) and inversely proportional to the gra-
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Fig. 3.4 Points detected by the detector of Kitchen and Rosenfeld [80] in (a) the Pentagon image
and (b) the Mars image

dient magnitude. That is

κ = k

[I 2
x + I 2

y ]1/2

= IxxI
2
y + IyyI

2
x − 2IxyIxIy

[I 2
x + I 2

y ]3/2
. (3.10)

They then take pixels where total curvature is locally extremum as corners.
Brunnström et al. [25] used the numerator of (3.9) as curvature that is scaled by

square gradient. Possible locations of junctions are found in an image by tracing
isovalued scaled curvature contours. The junctions are located by further analyzing
the isovalued curvatures.

Fidrich and Thirion [52] took the zero-crossing of the curvature gradient in the
direction normal to the gradient tangent as a corner. Assuming (κx(x, y), κy(x, y))

represent the curvature gradients in x- and y-directions at (x, y), and Ix(x, y) and
Iy(x, y) represent the intensity gradients in x- and y-directions at the same point,
image pixels satisfying

(
κx(x, y), κy(x, y)

) · (−Iy(x, y), Ix(x, y)
)= 0, (3.11)

where the dot indicates inner product, are taken as loci of curvature extrema of
isovalued intensity contours in the direction tangent to the contour. The point where
such contours meet (Fig. 3.5) is taken as a control point. This point is invariant to
image rotation and scale. Intensities and gradients along contours associated with
each control point can be used as rotation-invariant descriptors in matching.

It is often required to smooth an image before finding its derivatives to reduce
the effect of noise. Therefore, Ix is calculated by convolving image I with Gaussian
G and then determining the derivative of the convolved image with respect to x.
This is equivalent to convolving image I with the first derivative of a Gaussian with
respect to x, that is, Gx(x, y) or Gx(x)G(y). Similarly, Iy , Ixx , Iyy , and Ixy are
obtained by convolving image I with G(x)Gy(y), Gxx(x)G(y), G(x)Gyy(y), and
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Fig. 3.5 Paths of curvature
maxima and minima
satisfying (3.11) are shown in
solid and dashed contours,
respectively. The point where
the curvature extrema
contours meet represents a
point that is invariant of the
orientation and scale of an
image

Gx(x)Gy(y). Stammberger et al. [147] showed that the Gaussian derivatives can
be combined into orthogonal operators and used to detect curvature-based corners
in an image. The first derivatives of a 2-D Gaussian are already orthogonal. The
orthogonal operators obtained from the Gaussian second derivatives are

A0(x, y) = 1√
2

[
Gxx(x)G(y) + G(x)Gyy(y)

]
, (3.12)

A1(x, y) = 1√
2

[
Gxx(x)G(y) − G(x)Gyy(y)

]
, (3.13)

A2(x, y) = Gx(x)Gy(y). (3.14)

Using these orthogonal operators, the cornerness measure k of Kitchen and Rosen-
feld [80] can be calculated from

k(x, y) =
{

1√
2

[
G2

x(x)G2(y) + G2(x)G2
y(y)

]
A0

+ 1√
2

[

G2
x(x)G2(y) − G2(x)G2

y(y)

]

A1

− 2Gx(x)Gy(y)A2

}/{
G2

x(x)G2(y) + G2(x)G2
y(y)

}
(3.15)

and the cornerness measure of Beaudet [18] can be computed from

DET(x, y) = 1

2

[
A2

0(x, y) − A2
1(x, y)

]− A2
2(x, y). (3.16)

In relations (3.15) and (3.16), for notational convenience, I ⊕ G and I ⊕ A are
denoted by G and A, respectively, where ⊕ implies convolution.

Florack and Kuijper [53] note that image pixels where the Hessian determinant
is positive represent peak intensities, while pixels where the Hessian determinant
is negative represent saddle points. As image resolution is decreased (the standard
deviation of the Gaussian smoother is increased), adjacent peak and saddle points
approach each other and merge. The point at which a peak point and a saddle point
merge represents a unique point in an image called a top point. Top points are points
in an image where the image gradient vanishes and the Hessian matrix becomes 0.
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Therefore, if (x, y) is a top point, then

Ix(x, y) = 0, (3.17)

Iy(x, y) = 0, (3.18)

Ixx(x, y)Iyy(x, y) − I 2
xy(x, y) = 0. (3.19)

The point in an image where gradients vanish in scale-space forms a path. Platel
et al. [120] called such a path a critical path and showed that local maxima and
minima of a critical path correspond to the top points. Platel et al. showed that top
points are invariant under affine transformation as well as gray value scaling and
offset. They also showed that top points have a high repeatability rate under image
rotation and random noise. Since top points correspond to local maxima and minima
of curves representing critical paths in scale-space, and at the neighborhood of such
points a path is relatively flat, the location of a minimum or maximum cannot be
accurately determined. The matching process that uses top points as feature points
should allow some positional difference between them. Platel et al. [121] created
directed acyclic graphs (DAGs) from the points and use DAGs in matching. For
two DAGs to match, it is important that similar top points are obtained, although
corresponding points may be slightly displaced with respect to each other. DAGs of
top points can be used to match images representing different views of a 3-D scene
for recognition purposes.

3.1.6 Laplacian-Based Detectors

A number of detectors use either the Laplacian of Gaussian (LoG) or the differ-
ence of Gaussians (DoG) to detect points in an image. The DoG operator is an
approximation to the LoG operator, first suggested by Marr and Hildreth [102]. The
best approximation to the LoG operator of standard deviation σ is the difference of
Gaussians of standard deviations σ and 1.6σ . That is

∇2G(σ) = 1.6[G(1.6σ) − G(σ)]
σ 2

. (3.20)

Local extrema of LoG or its approximation DoG detect centers of bright or dark
blobs in an image. Examples of points detected by the LoG operator with a Gaussian
of standard deviation 2 pixels are given in Fig. 3.6. Points that represent centers of
round blobs in an image are not as much influenced by noise as points representing
corners and junctions. Therefore, points detected by the LoG operator are generally
more resistant to noise than points detected by vertex and junction detectors. How-
ever, points detected by the LoG operator do not always represent round blobs. They
sometime represent elongated and branching structures. Such points are influenced
by noise just like points detected by vertex and junction detectors.

The response of the LoG to a circular blob reaches a peak when the size of the
LoG matches the size of the blob. The relation between the scale σ of LoG and
diameter D of the blob is D = 2

√
2σ [21]. The LoG operator, therefore, can be

tuned to detect center points of blobs of a desired size in an image.
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Fig. 3.6 Points representing the local extrema of the LoG of (a) the Pentagon image and (b) the
Mars image

Therefore, the LoG operator of a particular scale responds the highest to blobs of
the matching size [91]. To detect blobs of various sizes in an image simultaneously,
the response of the LoG operator of scale σ is scaled by σ 2.

Crowley and Parker [37] described a detector that uses a bandpass filter created
by the difference of low-pass (DOLP) filters, such as Gaussians, to detect points in
an image. They convolved an image with bandpass filters of standard deviations in-
creasing by a factor of

√
2. They then tracked local extrema of the filtered images in

scale-space from high to low resolution. The paths tracking different extrema from
high to low resolution form a tree structure. They then used the tree to characterize
the contents of an image. Points where paths from different extrema meet in scale-
space represent unique points that are independent of the scale and orientation of an
image. Such points only depend on the image content and can be used as scale- and
rotation-invariant points.

Lowe [97, 98] used the difference of Gaussians (DoG) to find points in an image.
Since DoG is an approximation to LoG, the obtained detector behaves like the blob
detector of Lindeberg [91]. Lowe calls the detector obtained from the DoG operator
SIFT for scale-invariant feature transform. In SIFT, a local extremum at a resolution
is considered a feature point if its value is smaller (larger) than all its 26 neighbors
in scale-space. The SIFT detector has been extended to color [1] and hyperspectral
images [109].

The difference between DOLP and SIFT points is depicted in Fig. 3.7. In SIFT,
a feature point is only required to be locally maximum or minimum within a 3 ×
3 × 3 neighborhood in scale-space, while in DOLP a feature point is obtained when
two or more extrema at a higher resolution meet and produce a single extremum at
a lower resolution.

To find the size of a round blob, rather than tracking the extrema of the DoG
or LoG, Bay et al. [17] suggested taking the locally maximum determinant of the
Hessian matrix (4.121) in scale-space and using the scale at which the determinant
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Fig. 3.7 The difference between SIFT [97, 98] and DOLP [37] points. In SIFT, a point is selected
if it is locally extremum within a 3 × 3 × 3 neighborhood in scale-space. In DOLP, a point is
selected if it connects to two or more feature points in one level higher resolution and also connects
to a feature point in one level lower resolution. In the above figures, image resolution increases
downward

becomes maximum. They show that this detector has a repeatability comparable to
or better than that of SIFT while being computationally faster. Increased speed is
achieved by approximating the Gaussian second derivatives used in the calculation
of the Hessian matrix by box filters that contain only −1, 0, and 1 values, thereby
performing all computations with additions and subtractions.

When the LoG or DoG points represent centers of round blobs in an image, they
are relatively immune to noise. Therefore, their positional accuracy is high under
noise and changes in resolution. However, if a LoG or a DoG point belongs to an
elongated or a branching structure, noise and changes in image scale/resolution can
significantly affect the location of the detected point. To distinguish stable SIFT
points from unstable ones, Li et al. [90] ranked the points using their differential
features in a training process.

To make the detected LoG or DoG points less dependent on image contrast,
Voorhees and Poggio [161] suggested using the logarithm intensities rather than the
raw intensities in the calculations. Difference of logarithm intensities is the same as
the logarithm of intensity ratios, and intensity ratios remove the luminance compo-
nent of recorded intensities and use only the albedo component to find the points,
making the detected points less dependent on scene luminance that influences image
contrast.

3.1.7 Gradient-Based Detectors

A number of detectors use the first derivative image intensities to find control points
in an image. Förstner [55] and Förstner and Gülch [57] used distinctiveness, in-
variance, stability, and seldomness to select points in an image. Distinctiveness is
considered local uniqueness and is measured using correlation [68] or directional
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Fig. 3.8 Points found in (a) the Pentagon image and (b) the Mars image by the detector of Förstner
and Gülch [57]

variance [106]. Invariance is considered insensitivity to geometric and radiomet-
ric changes. This property makes it possible to find the same points in images that
may have been obtained from different views, by cameras with different radiometric
characteristics, or under different lighting conditions. Stability ensures robustness
under noise, and seldomness ensures that selected points are widely spread over an
image rather than being clustered in a few areas. Based on these properties, a detec-
tor was designed that first finds optimal windows in an image and then determines
the optimal location of a point within each window using intensity gradients. To find
the optimal windows, first the square gradient matrix defined by

N(x, y) =
[ ∑

I 2
x (x, y)

∑
Ix(x, y)Iy(x, y)

∑
Iy(x, y)Ix(x, y)

∑
I 2
y (x, y)

]

, (3.21)

is calculated, where the sum is over a small neighborhood, such as 5 × 5. Assum-
ing λ1(x, y) and λ2(x, y) are the eigenvalues of N(x, y) with λ1(x, y) > λ2(x, y),
and the determinant and trace of N are denoted by Det(N) and Tr(N), respectively,
letting,

r(x, y) = Det
(
N(x, y)

)
/Tr
(
N(x, y)

)
, (3.22)

s(x, y) = 1 −
[
λ1(x, y) − λ2(x, y)

λ1(x, y) + λ2(x, y)

]2

, (3.23)

and if both r and s are sufficiently high and r is locally maximum, (x, y) is consid-
ered a corner. A large r avoids selection of homogeneous windows, and a large s

ensures that the selected window contains a well-defined corner with strong inten-
sity gradients in orthogonal directions.

Examples of points detected by the method of Förstner and Gülch [57] are given
in Fig. 3.8. Local maxima of r(x, y) where s(x, y) > 0.5 are shown. Detected points
correlate well with visual corners. Interestingly, the process detects small spots in
the images also.
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Fig. 3.9 Points found by the detector of Rohr [131] in (a) the Pentagon image and (b) the Mars
image

Rohr [130] finds the localization accuracy of the detector of Förstner to be su-
perior to those of the detectors appearing before it. Rohr [131] also shows that
Det(N)/Tr(N) is one of the principal invariants of matrix N. He finds another prin-
cipal invariant of N to be Det(N) and suggests maximizing it to detect points of
least uncertainty in an image. The points detected in the Pentagon image and the
Mars image by this method are shown in Fig. 3.9. The process has detected points
representing visual corners as well as small spots in the images.

Nobel [113] calls the detector that uses the cornerness measure r (see (3.22))
the Plessey detector and demonstrates its ability to locate L-shaped, T-shaped, and
Y-shaped junctions in an image.

Harris and Stephens [70] defined the cornerness measure at pixel (x, y) by

R(x, y) = Det
[
N(x, y)

]− hTr2[N(x, y)
]

(3.24)

and selected points where R(x, y) is locally maximum as corners. Numbers such as
0.04 and 0.06 have been used for h. Zheng et al. [171] let h = t/(1 + t)2 and set t to
a value satisfying t > λ1/λ2 > 1/t , where λ1 and λ2 represent the eigenvalues of N.

The Harris detector was originally designed to detect both edges and corners.
Analysis of R(x, y) reveals that parameter h can assume values between 0 and 0.25
and when h = 0 only points are detected and when h = 0.25 only edges are detected.
As h is increased from 0 to 0.25 more points along edges are obtained [93].

Brown et al. [24] defined corner strength by

B(x, y) = Det[N(x, y)]
Tr[N(x, y)] (3.25)

and selected points with locally maximum B(x, y) as corners. Loog and Lauze [95]
find that the points detected by the method of Harris and Stephens are the most
salient when compared to points detected by many other point detectors. Examples
of corners detected by the method of Harris and Stephens [70] with h = 0.08 are
given in Fig. 3.10.
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Fig. 3.10 Points found in (a) the Pentagon image and (b) the Mars image by the detector of Harris
and Stephens [70]

While the Plessey detector considers all image locations where measure r is lo-
cally maximum as corners, the Förstner detector rejects those locations where mea-
sure s is not sufficiently high; thus, filtering out points that fall along edges with one
eigenvalue substantially larger than the other. The detector of Harris and Stephens
[70], which maximizes measure R, has the same weakness in that it may pick points
along strong edges. To ensure that detected points do not lie along edges, Tomasi and
Kanade [151] as well as Shi and Tomasi [143] selected only points where the smaller
of the two eigenvalues was sufficiently high and also locally maximum. Since the
eigenvalues are very much image dependent, selection of the threshold value for the
smaller eigenvalue will be image dependent. To make the process less dependent on
image contrast, Carneiro and Jepson [27] normalized the smaller eigenvalues in an
image so their values vary between 0 and 1:

C(x, y) = 2λ2(x, y)

λ1(x, y) + λ2(x, y)
. (3.26)

Point (x, y) is selected if C(x, y) ≥ 0.5 and C(x, y) is locally maximum.
Examples of corners detected by the method of Tomasi and Kanade [151] are

given in Fig. 3.11. Rather than using a threshold value to avoid detection of weak
corners, the 100 corners with the highest λ2 that were also well dispersed over
the image domain were selected. The corners found by the detectors of Harris and
Stephens [70] and Tomasi and Kanade [151] have considerable overlap.

Rather than selecting corners using only a cornerness measure that is a function
of the eigenvalues of the square gradient matrix and is dependent on image contrast,
Bastanlar and Yardimci [15] suggested selecting corners if, in addition to produc-
ing high cornerness measures, they have a sufficiently high match-rating with an
ideal corner, created beforehand. This process selects only well-defined corners in
an image.
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Fig. 3.11 Points found in (a) the Pentagon image and (b) the Mars image by the detector of Tomasi
and Kanade [151]

Fig. 3.12 Various types of points found by the detector of Ando [5] in (a) the Pentagon image and
(b) the Mars image

Ando [5] showed that the dimensionless measure

Q(x,y) = 4λ1(x, y)λ2(x, y)

[λ1(x, y) + λ2(x, y)]2
(3.27)

varies between 0 and 1 and produces a high response at the center of a blob or
a saddle-shaped region. Q also produces a high response at the center of regions
containing L-, T-, and X-shaped junctions. This measure is, therefore, suitable for
detecting various types of points in an image. Examples of points found by the
detector of Ando [5] are given in Fig. 3.12.

Experimental results obtained by Schmid et al. [135–137] on various images
show that Harris detector is the most repeatable when compared to a number of other
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detectors. They also find that rather than calculating Ix and Iy from the raw image
intensities, if the intensities are convolved with the first derivative of a Gaussian filter
of a small standard deviation in x- and y-directions, more repeatable and distinct
points will be obtained.

Ix in (3.21) can be calculated by convolving I with gx = G′(σ, x)⊕G(σ,y) [46,
56], where ⊕ denotes convolution, G′ is the first derivative of Gaussian G, and σ is
the standard deviation of G. Iy is calculated similarly. Therefore,

N1(x, y) =
[ ∑[I ⊕ gx]2 ∑[I ⊕ gx][I ⊕ gy]
∑[I ⊕ gx][I ⊕ gy] ∑[I ⊕ gy]2

]

(3.28)

can be used in place of N(x, y). The sum in (3.28) can be replaced by Gaussian
smoothing also. For instance

∑[I ⊕ gx]2 can be considered finding [I ⊕ gx]2 at
each pixel and smoothing the obtained image with a Gaussian of standard deviation
σ ′. Therefore, images corresponding to [I ⊕ gx]2, [I ⊕ gx][I ⊕ gy], and [I ⊕ gy]2

are obtained and smoothed with a Gaussian of standard deviation σ ′. Then, corre-
sponding entries in the images are used to find the equivalent square gradient matrix:

N1(x, y) =
[

Gσ ′ ⊕ [I ⊕ gx]2 Gσ ′ ⊕ [I ⊕ gx][I ⊕ gy]
Gσ ′ ⊕ [I ⊕ gx][I ⊕ gy] Gσ ′ ⊕ [I ⊕ gy]2

]

(3.29)

where Gσ ′ denotes the 2-D Gaussian smoother of standard deviation σ ′. The larger
the σ ′, the fewer the number of detected points and, thus, the larger the spacing
between the points.

Mikolajczyk and Schmid [103, 105] further adapted the square gradient matrix
to local scale, making the detector less dependent on changes in image resolution.
The scale-adapted square gradient matrix is defined by

N2(x, y) = σ 2

[
Gσ ′ ⊕ [I ⊕ gx]2 Gσ ′ ⊕ [I ⊕ gx][I ⊕ gy]

Gσ ′ ⊕ [I ⊕ gx][I ⊕ gy,] Gσ ′ ⊕ [I ⊕ gy]2

]

. (3.30)

Use of scaling factor σ 2 in (3.30) enables comparing the eigenvalues of the gra-
dient matrix at different resolutions. Mikolajczyk and Schmid use matrix N2 to find
the Harris points at various resolutions. They then determine the Laplacian at vari-
ous resolutions at each Harris point and find the resolution at which the Laplacian
becomes extremum when compared to Laplacians at lower and higher resolutions.
The location of the Harris point is used as the location of the point obtained at the
optimal Laplacian scale. If a local extremum is not found among the resolutions
tested, the Harris point is not selected. This has shown to filter out weak and noisy
Harris points and retain points that are strong and well defined. The process chooses
Harris points that appear more like round spots and so remain relatively stable un-
der changes in resolution when compared to acute corners that displace as image
resolution is changed. Experimental results by Mikolajczyk and Schmid [103] show
that this new detector, which is called the Harris–Laplacian detector, has a higher
repeatability than those of the Laplacian detector and the Harris detector.

To increase the robustness of a detector, Goshtasby [66] found corners at two
different resolutions, σ1 and σ2 (σ2 > σ1). A corner is considered stable and retained
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if it does not move by more than 2(σ2 − σ1) pixels from one resolution to another;
otherwise, the point is discarded. Stable corners remain stationary over changes
in image resolution, while weak and noisy corners displace or disappear as image
resolution is changed.

When images from different views of a scene are available and the objective is to
find the same scene points in the images, the corresponding neighborhood must pro-
duce the same cornerness measure. To make this possible, Lindeberg and Gårding
[92] suggested adapting the neighborhood shape to the local gradient information
and proposed an iterative algorithm for achieving that. Baumberg [16] normalized
local intensity patches using the affine-adapted square gradient matrix. After this
normalization, two patches that are related by an affine transformation have only ro-
tational differences, enabling detection of the same scene points in two images by a
rotationally invariant detector. Based on this local image normalization idea, Miko-
lajczyk and Schmid [104, 105] developed an affine invariant Harris detector. They
take the neighborhood centered at a Harris point and allow the iterative process to
gradually warp the neighborhood and reposition the point within the neighborhood
until the gradient matrix produces identical eigenvalues. The detector is found suit-
able for determining correspondence between images representing different views
of a scene where corresponding local neighborhoods in the images can be related
by an affine transformation.

Experimental results by Mikolajczyk and Schmid [104, 105] reveal that as view-
angle difference between two images is increased, the affine-adapted Harris points
more accurately correspond to each other when compared to points detected by the
regular Harris detector. This is confirmed by the experimental results of Moreels
and Perona [108]. The experimental results by Fraundorfer and Bischof [58], how-
ever, show that the regular Harris detector produces more repeatable results than its
affine-adapted version. This can be attributed to the use of information in a larger
neighborhood by the affine-adapted Harris detector when compared to the regular
Harris detector. As neighborhood size is increased, various geometric and intensity
differences between images cause corresponding points in images to displace with
respect to each other. Smaller detectors reduce global image differences and, as a re-
sult, produce points in two images that more closely represent the same scene points
than detectors that use larger neighborhoods to find the points.

To make the Harris detector less sensitive to radiometric changes, Faille [47]
suggested using the logarithm of the intensities rather than the raw intensities when
calculating the square gradient matrix. Alternatively, Faille suggested replacing Ix

by Ix/I and Iy by Iy/I in N, where I denotes the average intensity of pixels in a
small circular window centered at the pixel under consideration to make the detector
invariant to radiometric changes, Gevrekci and Gunturk [61] suggested stretching
image intensities in the range [0,1] by sigmoid function

Ic(x, y) = 1

1 + e−γ (I (x,y)−c)
(3.31)

where c is the contrast center and γ is the slope of the sigmoid function. The Harris
cornerness measure is then calculated at each pixel at a range of contrast centers,
and a point (x, y) where the sum of the cornerness measures at the contrast centers
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is maximum is selected as a corner. Although this process slows down the Harris
detector by a factor of n where n is the number of contrast centers used, results on
high-dynamic range images obtained by Gevrekci and Gunturk [61] show that this
intensity mapping can increase the repeatability of the Harris detector by up to 25%
in some images.

Since Harris points are found in high-gradient areas in an image, to speed up
the process Rémi and Bernard [127] preprocessed an image to identify low-gradient
areas and by avoiding computation in such areas reduced computation time. The gra-
dient across resolutions is built into a hierarchical structure using the Haar wavelets.
The structure is then used to access high-gradient image regions at different resolu-
tions and detect the Harris points.

A method that does not use the square gradient matrix but uses image gradients
to find corners is described by Achard et al. [4]. In this method the sum of square of
the cross-product of the gradient vector at a pixel is replaced with gradient vectors
of the surrounding pixels to calculate a cornerness measure. Local maxima of this
cornerness measure are detected and used as corners. This method can be easily ex-
tended to color, multispectral, and hyperspectral images by calculating the gradient
magnitude and gradient direction using color, multispectral, or hyperspectral data.

3.1.8 Hough Transform-Based Detectors

Hough transform-based detectors rely on global information in images to detect
points. A detector introduced by Davies [38] uses the Hough transform [12, 45,
74] to detect L-shaped corners in an image. The detector first uses a boundary-
following algorithm to find the boundary contour of an object or region. Lines are
formed from the contour points using the Hough transform and corners are detected
from the intersections of the lines. Davies makes the Hough space and the image
space the same and for each contour point in the image space draws a line through
the point and normal to the gradient direction in the Hough space. If a corner with
aperture θ is present in a contour, pixels contributing to the corner will produce
lines that go through the corner. Therefore, after drawing a line for each point in
the contour, points in the Hough space where a sufficiently large number of lines
meet are identified and among them those with locally maximum counts are used as
corners.

Because global information is used in the method of Davies, the process can de-
tect dull and defective corners where local detectors fail. Also, the method is invari-
ant to homography because under homography straight lines remain straight and the
locations where the lines meet remain unchanged. In addition, since image gradients
and edges are used to draw the lines, the process is resistant to radiometric changes.
Therefore, this detector can detect similar corners in two images obtained from dif-
ferent views and under different lighting conditions of a scene. However, because
of the global nature of the method, the likelihood for detecting false corners exists,
especially when many contours are present in an image. To reduce the likelihood
of producing false corners, each contour should be processed independent of other
contours.
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Shen and Wang [141] used subimages to find lines via Hough transform and then
formed corners from the lines. They consider a corner to be the point where two
or more lines meet. For each image pixel, edges within a small window centered at
the pixel are found and possible lines passing through the pixel are determined. The
window center is used as the local coordinate system, enabling representation of a
line by only one parameter, its orientation with respect to the x-axis. The orienta-
tions of the detected lines are determined and if two or more sufficiently strong lines
intersect at the window center, the window center is taken as a corner. This method
is also invariant to homography and linear changes in image intensity.

3.1.9 Symmetry-Based Detectors

Detectors inspired by psychophysical evidence on symmetry and fixation point by
primates have been proposed also. A detector proposed by Reisfeld et al. [125, 126]
finds points of high radial symmetry and uses them as control points. Operators
based on intuitive notion of radial symmetry are proposed that assign a symmetry
score to a pixel based on its local symmetry. Points that have a sufficiently high and
locally maximum symmetry score are detected.

The detector proposed by Reisfeld et al. [125] uses image gradients to calculate
symmetry. Since image gradients change with image contrast, a lower symmetry
score is obtained for a darker circular region than for a brighter one. To make the
symmetry scores independent of image contrast, Kovesi [83] observed that sym-
metry points give rise to patterns of local phase, which can be used to construct a
contrast-invariant measure that depends on the level of symmetry of a spot rather
than its contrast.

In a later study, Reisfeld [123] described a method for relating symmetry to phase
using the local phase response of filters in quadrature. Image locations producing a
consistent symmetry phase across resolutions were then used as control points.

Oh and Chien [114] improved the localization accuracy of Reisfeld points by
using a parametric corner model defined in terms of two intersecting lines. The
parameters of the lines forming a symmetry point were then determined via Hough
transform using edges in the neighborhood of the point.

The intersection of symmetry lines in a neighborhood of interest has been used
as a control point also [138]. Inspired by this method, Loy and Zelinsky [99] intro-
duced a point detector that calculates radial symmetry at a pixel using the symmetry
contributions of pixels around it.

Given a radial distance r , an orientation image and a magnitude image are calcu-
lated as follows. For each pixel p = (x, y) in the image and in the gradient direction,
the pixel at distance r from it is located. Let’s denote this pixel by p+. Also, the pixel
opposing p+ with respect to p and at distance r is found (Fig. 3.13). Let’s denote
this pixel by p−. Then, assuming initial values of the orientation image Or and the
magnitude image Mr are 0, for each pixel p in the image, entries p+ and p− of
Or are incremented and decremented by 1, respectively. Also, entry p+ of Mr is
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Fig. 3.13 Calculation of
radial symmetry at a pixel p
in an image. Pixel p+ is in the
gradient direction at distance
r from p, and pixel p− is
opposing p+ with respect to p

incremented by gradient magnitude ‖p′‖ and entry p− of Mr is decremented by
‖p′‖, where p′ denotes the gradient vector at p. Next, the orientation and magnitude
images are normalized to have maximum value 1:

Õr (p) = Or(p)

maxp{‖Or(p)‖} , (3.32)

M̃r(p) = Mr(p)

maxp{‖Mr(p)‖} . (3.33)

Then,

Fr(p) = ∥∥Õr (p)
∥
∥α

M̃r(p) (3.34)

and

Sr = Fr ⊕ Gσ (3.35)

are calculated, where ⊕ implies convolution and α is the radial strictness parameter
and determines the degree of circularity of a region from which a symmetry point
is found. The larger the value for α is, the fewer will be the number of detected
symmetry points. Typically, α = 2 and Gσ is a 2-D Gaussian of standard deviation
σ = r/4 pixels.

After calculating Sr for a number of radial distances, the full symmetry measure
is calculated from

S =
rn∑

r=r1

Sr . (3.36)

Typically, r1 = 1 pixel and rn ≤ 16 pixels. Local extrema of image S identify points
of locally maximum radial symmetry. These points are invariant to image rotation
and small changes in scale. The symmetry detector of Loy and Zelinsky [99] is
found to be an order of magnitude faster than the symmetry detector of Reisfeld
et al. [124, 126] while producing a larger number of points [99]. Examples of points
detected by the detector of Loy and Zelinsky [99] are given in Fig. 3.14 when letting
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Fig. 3.14 The strongest and well-dispersed 100 local extrema of the radial symmetry measure S

of Loy and Zelinsky [99] in (a) the Pentagon image and (b) the Mars image

r = 2, 4, 8, and 16 pixels. Local extrema of S, which represent the symmetry points,
are encircled.

Johansson and Granlund [77] detect points of radial symmetry in an image by
finding the local orientation at each pixel, correlating the orientation image with
rotational symmetry filters, and allowing filter responses to inhibit each other and
enhance points of radial symmetry and facilitating their detection.

3.1.10 Intensity-Based Detectors

If intensities in an image represent height values in a scene, the intensity extrema of
the image will represent unique points that are independent of the scale and orien-
tation of the image. Kweon and Kanade [84] used the extrema of the height map of
a terrain to find the peaks and pits in the terrain.

Smith and Brady [145] described a heuristic point detector using raw image in-
tensities called SUSAN for Smallest Univalue Segment Assimilating Nucleus. They
consider a pixel a control point if the sum of absolute intensity differences between
that pixel and pixels within a circular region centered at the pixel is not only suf-
ficiently high but is also locally maximum. If the pixel at the center of a window
is not influenced by noise, the summation process reduces the effect of noise at
non-center pixels. If the center pixel is corrupted by noise, the calculated sum will
overestimate/underestimate the determined measure. This detector is invariant to
rotation and small scale changes. The detector is fast but is sensitive to noise.

Tuytelaars and Van Gool [158] take local intensity extrema in an image as con-
trol points. They describe a method for selecting regions related by the affine trans-
formation in two images. Points of local intensity extremum are used as anchors.
A measure of intensity is calculated at each pixel along a ray emanating from the
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Fig. 3.15 Selection of an
affine-invariant region
centered at an anchor point.
Points of extremum intensity
calculated by f (r) along rays
emanating from the anchor
point are selected and an
ellipse is fitted to the points to
create the affine-invariant
region

anchor point and the pixel with locally extremum value is located. An ellipse is then
fitted to such points and the image region within the ellipse is taken as an affine in-
variant region (Fig. 3.15). The intensity measure used to select the extremum point
along a ray is computed from

f (r) = |I (r) − I (0)|
1 + 1

r

∑ |I (r) − I (0)| , d > r > 1. (3.37)

I (0) in (3.37) represents the intensity at the anchor point and I (r) represents the
intensity at distance r from the anchor point along the ray. The addition of 1 in the
denominator is to avoid a possible division by 0. Parameter d specifies the radius of
the local neighborhood inside which the affine region should be found.

If the images have unknown scale differences, since corresponding elliptic re-
gions will be different in size, parts of an ellipse in one image may fall outside the
circular regions of radius d . Therefore, intensity extrema along rays emanating from
corresponding anchor points in two images may produce different points within re-
gions of radius d . This makes the method unsuitable for images that have scale
differences. Instead of using an anchor point as a feature point, the center of the
ellipse fitting the extremum points is suggested as the control point. Since this de-
tector relies on intensity extremum at an anchor point and also on intensity extrema
along rays emanating from the anchor point, the process is sensitive to noise.

Bae et al. [9] determined the responses of a 3 × 3 neighborhood to a ‘+’ oper-
ator and a ‘×’ operator and identified corners in an image through a non-maxima
suppression process. Due to the small size of the neighborhoods tested for corners,
false corners are possible to obtain at the presence of noise. Larger neighborhoods
can be used to detect more robust corners.

A detector is described by Rosten et al. [133] that selects a pixel as a corner if
intensities of n contiguous pixels along a circle of radius 3 pixels centered at the
pixel are all greater than the intensity of the center pixel plus a threshold value
(or less than the intensity of the center pixel minus a threshold value). A circle of
radius 3 pixels has 16 pixels, and n is typically set to a value between 9 and 12. The
threshold value is image dependent and is determined experimentally. This detector
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is sensitive to noise as the process does not include an averaging process, although
use of a proper threshold value can make the process less sensitive to noise.

Under homography and small amounts of noise, the detector of Rosten et al.
is shown to be more repeatable than the detector of Harris and Stephens [70] and
the detector of Smith and Brady [145]. Under noise, however, the repeatability of
this detector falls below those of Harris and Stephens, and Smith and Brady. The
detector is made faster and more repeatable later [134] by rejecting image pixels
that are not likely to be corners.

Li et al. [89] suggested ordering pixels in a neighborhood in a list according to
their intensities, finding the intensity difference of adjacent pixels in the list, and
locating adjacent pixels in the list that have the highest intensity difference. If this
difference is lower than a prespecified threshold value, it is concluded that the neigh-
borhood does not contain a corner. Otherwise, the list is partitioned into two at the
point where the largest intensity difference is obtained and the ratio of the number
of pixels in the two sublists is determined (ratio of the smaller over the larger). If
this ratio is larger than a second threshold value, again the presence of a corner is
rejected. Otherwise, a corner is declared at the center of the neighborhood. The two
threshold values are determined experimentally.

3.1.11 Filtering-Based Detectors

A number of detectors use oriented filters to find points in an image. Rosenthaler
et al. [132] convolved oriented filters with an image and analyzed the filtered outputs
to detect line end-points, corners, and junctions. Noting that edges in a particular
orientation respond the highest to matching oriented filter, line end-points, corners,
and junctions were located in an image by analyzing the response of the image to
various oriented filters.

Assuming n oriented filters are used and the response of the image at pixel p to
orientation θi is Ei(p), first and second derivatives of Ei(p) in filter direction are
determined:

E′
i (p) =

∣
∣
∣
∣
∂Ei(p)

∂θi

∣
∣
∣
∣, E′′

i (p) =
[

−∂2Ei(p)

∂θ2
i

]+
, (3.38)

where [A]+ implies max(0,A). The responses of the image at p to the n filters are
determined and the cornerness measure at p is calculated from

K̂(p) = n−1
max
i=0

√
E′

i (p)2 + E′′
i (p)2. (3.39)

Image points where K̂(p) is locally maximum and sufficiently high are taken as
control points. To avoid detection of false points when filter orientations do not per-
fectly match the edges of a corner, a correction is made to K̂(p) using the derivatives
of Ei(p) in the gradient direction:

K(p) = [K̂(p) − Ĉ(p)
]+

, (3.40)
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where

Ĉ(p) =
n−1∑

i=0

[
O ′

i (p) + O ′′
i (p)

]
, (3.41)

O ′
i (p) =

∣
∣
∣
∣
∂Ei(p)

∂θi⊥

∣
∣
∣
∣, O ′′

i (p) =
[

−∂2Ei(p)

∂θ2
i⊥

]+
, (3.42)

and θi⊥ represents the direction normal to θi . If measure K(p) is sufficiently high
and is locally maximum, p is considered a control point, which may represent a line
endpoint, a corner, or a junction.

A filtering-based detector developed by Felsberg and Sommer [50] estimates the
local orientation at each pixel. The orientation is then used to steer quadrature filter
responses. Linear combinations of the filter responses are then used to detect various
types of image features including corners and points of isotropy.

3.1.12 Transform Domain Detectors

The detectors described so far analyze information in the spatial domain to find con-
trol points in an image. A number of detectors analyze information in the frequency
domain to find control points in an image. Based on a simple observation that an
edge in the spatial domain contributes to a line through the origin in the frequency
domain, Yang et al. [169] and Chabat et al. [29] considered a corner to be the center
of a neighborhood if gradient magnitude there is high and gradient directions of pix-
els within the neighborhood are not dominant in only one direction. They calculate
the orientations of the arms of a corner or junction in a neighborhood by measuring
the likelihood that pixels in that neighborhood will belong to a corner or junction.

A detector based on Hilbert transform is described by Kohlmann [82]. The
Hilbert transform of 1-D image I with N pixels is defined by:

h[k] = F−1{H [n]F[I ]}, k = 0, . . . ,N − 1, (3.43)

where F and F−1 denote Fourier and inverse Fourier transforms,

H [n] =

⎧
⎪⎨

⎪⎩

−j for n = 1, . . . ,N/2 − 1,

0 for n = 0,N/2,

j for n = N/2 + 1, . . . ,N − 1,

⎫
⎪⎬

⎪⎭
(3.44)

and j = √−1. Similarly, the Hilbert transform of 2-D image I with M rows and N

columns is defined by

h[k1, k2] = F−1{H [m,n]F[I ]} (3.45)
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Fig. 3.16 Points detected by the Hilbert transform [82] in (a) the Pentagon image and (b) the Mars
image

where

H [m,n] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1 for m = 1, . . . ,M/2 − 1, n = 1, . . . ,N/2 − 1,

or m = M/2 + 1, . . . ,M − 1, n = N/2 + 1, . . . ,N − 1,

0 for m = 0,M/2, n = 0,N/2,

1 for m = 1, . . . ,M/2 − 1, n = N/2 + 1, . . . ,N − 1,

or m = M/2 + 1, . . . ,M − 1, n = 1, . . . ,N/2 − 1.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.46)

Since 2-D Fourier and inverse Fourier transforms can be calculated from 1-D
Fourier and inverse Fourier transforms, the 2-D Hilbert transform of an image can
be calculated very efficiently. The Hilbert transform of an image produces sharp
extremas at corner points.

Examples of points detected by the Hilbert transform are given in Fig. 3.16. Lo-
cal maxima of the absolute transform coefficients are detected and used as control
points. Being primarily a corner detector, the method of Kohlmann [82] detects
some of the well-defined corners in the Pentagon image. It also detects some points
in the Mars image that do not visually appear like corners but have locally extremum
Hilbert-transform coefficients.

Chen et al. [31] detected corners in an image by analyzing the wavelet transform
coefficients of the image at two different scales. Loupias et al. [96] noted that points
representing global variations contribute to coarser wavelet coefficients and points
representing local variations contribute to finer wavelet coefficients. Based on this
observation, they developed a detector capable of finding a desired number of points
at different resolutions in an image.

Fauqueur et al. [49] detected points in an image by analyzing the dual tree com-
plex wavelet transform (DTCWT) coefficients of the image. Energies of the points
are computed from the decimated DTCWT coefficients at different scales and ac-
cumulated into a smooth energy map. The peaks of the map are then considered
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control points. Scales of the control points are determined from the gradient of the
accumulated energy map. This detector finds blobs, corners, and junctions. Exper-
imental results show that this detector produces more robust points under image
rotation than the SIFT detector of Lowe [97]. Generally, fewer points are reported
by DTCWT compared to SIFT. The number of points detected by SIFT increases
with noise, while the number of points detected by DTCWT remains relatively un-
changed. DTCWT tends to remove noisy points and keep points that persist over
changes in image resolution, thus detecting more stable points. Bharath and Kings-
bury [20] extended the method of Fauqueur et al. [49] to include a circular mea-
sure.

3.1.13 Pattern Recognition-Based Detectors

Point detection in an image can be considered a pattern recognition problem [86].
Consider a 2-D feature vector that represents the gradient magnitude and gradient
direction at a pixel. Since corners have rather high gradient magnitudes, first, all
feature vectors with small gradient magnitudes are removed. Then, the remaining
feature vector are classified into corners and non-corners as follows. A feature vector
X is classified to corner (c0) or non-corner (c1) based on whether

λ01P(X|c0)P (c0) − λ10P(X|c1)P (c1) > 0 (3.47)

is true or false. λ01 represents the cost of incorrectly classifying a pixel to a corner,
and λ10 is the cost of incorrectly classifying a pixel to a non-corner. P(c0) and
P(c1) are the a-priori probabilities that a feature vector represents a corner and a
non-corner, respectively, and P(X|c0) and P(X|c1) are class conditional probability
density functions of corners and non-corners, respectively.

Instead of 0 on the right-hand side in (3.47), a threshold value T may be used to
avoid detection of weak corners. The cost functions are empirically determined and
the class-conditional probability densities are estimated by fuzzy logic. The a-priori
probabilities P(c0) and P(c1) are estimated by finding the number of true corners
and non-corners among the feature vectors selected in representative images. The
class conditional probability density functions P(X|c0) and P(X|c1) are estimated
using gradient information in small patches that represent both corners and non-
corners in training data.

A neural network approximation to the Bayesian classifier for L-shaped corners
has been proposed by Chen and Rockett [30] with a performance close to that of the
detector of Harris and Stephens [70].

Dias et al. [42] defined a corner as the point of intersection of straight edges
at angles in multiples of 45◦ and trained a neural network with 8 × 8 subimages
containing known corners as well as non-corners. Detection rate is found to be 97%
when using noise-free images containing corners with edge slopes in multiples of
45◦ and 71% for images containing some noise and edges that do not have slopes in
multiples of 45◦.
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Trujillo and Olague [154–156] developed a genetic programming learning algo-
rithm for automatically detecting corners in an image by optimizing repeatability
and global separability of the corners. Repeatability rate of this detector is reported
to be comparable to that of the detector of Harris and Stephens [70].

Based on the observation that intensity gradient in the neighborhood of an edge
has a single dominant direction, while those in the neighborhood of a corner have
multiple dominant directions, Banerjee et al. [13] designed a support vector learn-
ing machine to distinguish corners from non-corners using four-dimensional feature
vectors. The four components of a feature vector show the number of pixels within
a small neighborhood of an edge point that have gradient directions closest to 0, 45,
90, and 135 degrees. Only points along edge contours are tested for corners to avoid
detection of weak and noisy corners.

3.1.14 Moment-Based Detectors

Moment-based detectors use geometric information in an image to detect patterns of
interest. A detector proposed by Ghosal and Mehrotra [62, 63] projects intensities
within a circular neighborhood to orthogonal and rotationally symmetric Zernike
moments and by analyzing the moments detects various types of points. Because
Zernike moments are orthogonal, a small number of them can describe various local
intensity patterns, detecting various types of points. Overall brightness in a neigh-
borhood is reflected in the zeroth-order moment, a discontinuity in intensities is
reflected in the first-order moments, and a discontinuity in gradients is reflected in
the second-order moments for the neighborhood.

Denoting the Zernike moment of order n and repetition m by Anm, Ghosal and
Mehrotra [62, 63] show that Zernike moments A11, A20, A22, and A31 are suffi-
cient to detect rotationally invariant edges and points in an image. In particular,
they show that neighborhoods centered at unique points in an image produce a high
|A22| and have locally maximum |A′

22/A20|, where A′
22 = A22e

jφ , j = √−1, and
φ = tan−1(Im[A22])/Re[A22]). Re[A] and Im[A] are the real and imaginary parts
of A.

Due to the integral nature of Zernike moments, this detector is resistant to uncor-
related noise. This is in contrast to derivative-based detectors, which are sensitive
to noise. This detector has proven effective in detecting corners in range images,
which are often missed by derivative-based operators due to very small gradients at
range corners.

3.1.15 Entropy-Based Detectors

Entropy measures information content and can be used to limit search for the points.
Kadir and Brady [78] developed a salient point detector that relies on the entropy of
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Fig. 3.17 Points found by the detector of Goshtasby [66], identifying highly informative and lo-
cally unique neighborhoods in (a) the Pentagon image and (b) the Mars image

circular neighborhoods. Entropy over a range of resolutions is determined for each
neighborhood and neighborhoods where the entropy exhibits a peak under change
in resolution are selected. Then, magnitude change in the histogram of the neigh-
borhood at a peak is determined, the product of entropy and magnitude change in
histogram is used as the saliency measure, and the peaks are ordered according to
their saliency measures. Since histogram and entropy of circular neighborhoods are
invariant to the orientation of an image, and since the peaks are calculated at var-
ious resolutions, the process is expected to be invariant to image orientation and
resolution.

Kadir et al. [79] later extended the method to affine invariant points. This exten-
sion involved replacing circular areas with elliptic ones. Starting from each circular
region, the region is iteratively revised to an ellipse while maximizing saliency using
local image information.

Although entropy can locate informative (detailed) areas in an image, detected
neighborhoods may lack uniqueness. Kadir et al. [78, 79] used change in the prob-
ability density function (histogram) of intensities within a neighborhood as resolu-
tion was varied to identify unique neighborhoods from non-unique ones. Goshtasby
[66] measured uniqueness by determining the normalized correlation of a window
centered at pixel (x, y) with windows centered at the eight neighboring pixels. If
maximum correlation obtained at (x, y) is r , 1 − r is used as the uniqueness of the
neighborhood centered at (x, y). Points detected in this manner in the Pentagon and
Mars images are shown in Fig. 3.17. Detected points represent centers of highly
informative and unique neighborhoods.

3.2 New Point Detectors

Efforts to detect points in an image in the past have focused mostly on visually iden-
tifiable points, such as corners, junctions, centers of blobs, etc. In many applications,
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however, it is not the visual identity of the points but the invariance property of the
points that is important. It does not matter whether a point is visually identifiable
or not, but it is important that the point be stable under various image changes. As
long as the same points are detected in two images of a scene independent of their
intensity and geometric differences, the points will be valuable.

If an image property assumes a maximum or a minimum value in a neighbor-
hood, the extremum point will be locally unique and can be used as a control point.
Some of these properties, have been explored in the past, such as curvature, sym-
metry, filter response, and entropy. By measuring an image property and through
non-maxima suppression, many other point detectors can be designed. In the fol-
lowing sections, a number of point detectors designed in this manner are intro-
duced.

3.2.1 Moment Invariant-Based Detectors

Moment invariants naturally provide invariance under various geometric transfor-
mations and should make good point detectors. The moment of order (p, q) of im-
age I (x, y) of dimensions M × N is defined by [75]:

Mpq =
M−1∑

x=0

N−1∑

y=0

xpyqI (x, y). (3.48)

M00 is equal to the total image intensity, and the coordinates of the center of gravity
of the image (x0, y0) are obtained from x0 = M10/M00 and y0 = M01/M00. To
make the moments shift invariant, they are calculated with respect to the center of
gravity of the image. Such moments are called central moments [75]:

μpq =
M−1∑

x=0

N−1∑

y=0

(x − x0)
p(y − y0)

qI (x, y). (3.49)

These moments vary with the orientation of an image. A set of rotationally invariant
second and third order moments has been derived by Hu [75]:

φ1 = (μ20 + μ02), (3.50)

φ2 = (μ20 − μ02)
2 + 4μ2

11, (3.51)

φ3 = (μ30 − 3μ12)
2 + (3μ21 − μ03)

2, (3.52)

φ4 = (μ30 + μ12)
2 + (μ21 + μ03)

2, (3.53)

φ5 = (μ30 − 3μ12)(μ30 + μ12)

× [(μ30 + μ12)
2 − 3(μ21 + μ03)

2]

+ (3μ21 − μ03)(μ21 + μ03)

× [3(μ30 + μ12)
2 − (μ21 + μ03)

2], (3.54)
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Fig. 3.18 Points found in (a) the Pentagon image and (b) the Mars image by the Hu invariant
moment φ4 [75]

φ6 = (μ20 − μ02)
[
(μ30 + μ12)

2 − (μ21 + μ03)
2]

+ 4μ11(μ30 + μ12)(μ21 + μ03), (3.55)

φ7 = (3μ21 − μ03)(μ30 + μ12)

× [(μ30 + μ12)
2 − 3(μ21 + μ03)

2]

− (μ30 − 3μ12)(μ21 + μ03)

× [3(μ30 + μ12)
2 − (μ21 + μ03)

2]. (3.56)

Any of the above invariant moments can be calculated locally within circular
windows, and through non-maxima suppression control points can be detected. For
instance, the 100 strongest and widely dispersed points in the Pentagon and Mars
images detected using φ4 are shown in Fig. 3.18. Circular neighborhoods of radius
8 pixels are used to calculate φ4. These points show locations where φ4 is locally
maximum. Since φ4 is always positive, only local maxima of φ4 are detected. Al-
though the detected points do not represent any particular visual patterns, due to the
rotationally invariant nature of these moments, we expect to detect the same points
under different orientations of the same images.

When calculating invariant moments, it is important that circular images/win-
dows are used so that if two images/windows have rotational differences they will
contain the same scene parts.

Maitra [100] extended the rotationally invariant moments of Hu (φ1–φ7) to mo-
ments that are invariant to image scale as well as image contrast. The relation be-
tween these new moments and φ1–φ7 are:

β1 =
√

φ2

φ1
, (3.57)

β2 = φ3μ00

φ2φ1
, (3.58)
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β3 = φ4

φ3
, (3.59)

β4 =
√

φ5

φ4
, (3.60)

β5 = φ6

φ4φ1
, (3.61)

β6 = φ7

φ5
. (3.62)

The maxima of any one of these invariant moments when considered locally
can be used as control points. In addition to Zernike moments with complex val-
ues (Sect. 3.1.14), complex moments formulated in terms of Hu invariant moments
produce complex numbers that can be used to detect control points in an image.
Complex moments are defined by [2, 3]

Cpq =
∑

x

∑

y

(x + jy)p(x − jy)qI (x, y), (3.63)

or equivalently by

Cpq =
∑

x

∑

y

rp+qej (p−q)θ I (x, y), (3.64)

where j = √−1, and r =√x2 + y2 and θ = tan−1(y/x) are the polar coordinates
of pixel (x, y). Note that under this definition, Cqp becomes the complex conjugate
of Cpq . Rotating the image by φ counter-clockwise will change the pqth order mo-
ment from Cpq to Cpqe−j (p−q)φ . Therefore, rotating an image about its center will
only change the phase of the complex moments, without changing their magnitudes.
Since Cpq is the complex conjugate of Cqp , we get about half as many rotationally
invariant complex moments of a particular order. In addition to

CpqCqp (3.65)

being rotationally invariant,

CrsC
k
tu + CsrC

k
ut , (3.66)

conditioned that (r − s) + k(t − u) = 0, is invariant to rotation. Image properties
defined by (3.65) and (3.66) have exponents that reduce to 0 under any rotational
angle, thus, making them real-valued properties [3]. Complex moments are made
invariant to image contrast and image scale, by normalizing them as follows [2]:

Cn
pq = Cpq

[
1

C00

(
C00

C11

)(p+q)/2]

, (3.67)

where Cn
pq is the normalized complex moment of order (p, q), Cpq is the complex

moment of order (p, q) computed when origin of the local coordinate system is
at the center of the neighborhood under consideration. The term inside the bracket
shows normalization with respect to image contrast and scale. Therefore, if CpqCqp
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Fig. 3.19 Points found in (a) the Pentagon image and (b) the Mars image by the normalized
complex moment [2]

is translation and rotation invariant,

Cn
pqCn

qp (3.68)

will be invariant to translation, rotation, scale, and contrast.
The 100 widely dispersed local maxima of property (3.68) detected in the Pen-

tagon and Mars images are shown in Fig. 3.19. Again, the points do not identify
visually distinct patterns, but they are locally maximum values of property (3.68),
calculated within circular neighborhoods of radius 8 pixels. Knowing that property
(3.68) is invariant to translation, rotation, scale, and contrast of an image, the same
points are expected in images with translational, rotational, and scaling differences
as well as differences in contrast.

In addition to the above invariant moments, Legendre moments [149], Gaussian-
Hermite moments [142, 166], Tchebichef moments [110], Krawtchouk moments
[170], and wavelet moments [51, 140] can be used to measure local image properties
and by non-maxima suppression of the properties unique points in an image can be
detected.

3.2.2 Filtering-Based Detectors

In Sect. 3.1.11, the use of oriented filters [50, 132] in design of point detectors was
discussed. In addition to oriented filters, image responses to steerable filters [28,
33, 59], Gabor filters [22, 139, 164], and masks [34, 85] may be used in a non-
maxima suppression algorithm to detect points in an image. Responses to masks are
of particular interest because of their simplicity.



102 3 Point Detectors

Masks can be designed to capture desired spatial frequencies in an image. Cohen
et al. [34] used the following 2 × 2 orthogonal masks to capture low frequencies as
well as high frequencies horizontally, vertically, and diagonally.

H1 =
[

1 1
1 1

]

, H2 =
[

1 1
−1 −1

]

,

H3 =
[

1 −1
1 −1

]

, H4 =
[

1 −1
−1 1

]

.

(3.69)

Assuming I (x, y) is an image normalized to have mean of 0 and letting I (d)(x, y)

represent the image at resolution d , the following measures for i = 1, . . . ,4 can be
used to capture low and high spatial frequencies at (x, y) in an image.

Fi(x, y, d) = Hi ⊕ I (d)(x, y), i = 1, . . . ,4, (3.70)

where ⊕ denotes convolution. By finding the responses of these masks to different
resolutions of an image, local frequency characteristics of the image can be deter-
mined.

Laws [85] created 3 × 3, 5 × 5, and 7 × 7 masks and used responses of a 15 × 15
neighborhood to the masks to characterize multi-scale frequency characteristics of
a neighborhood. For instance, to create 5 × 5 masks, the following 1-D masks were
used:

B0 = [ 1 4 6 4 1 ],
B1 = [ −1 −2 0 2 1 ],
B2 = [ −1 0 2 0 −1 ],
B3 = [ −1 2 0 −2 1 ],
B4 = [ 1 −4 6 −4 1 ].

(3.71)

By convolving any one of the above masks horizontally with any of the masks ver-
tically, a 5 × 5 mask is obtained. Overall, 25 such 2-D masks are obtained from the
combinations. All created masks have mean of 0 except for mask B00 = Bt

0 ⊕ B0,
which has a nonzero mean. t denotes matrix transpose. The B00 convolution result
is used to normalize the convolution results of other 5 × 5 masks and to reduce the
effect of image contrast on the calculated measures. Therefore, denoting Bt

i ⊕ Bj

by Bij for i, j = 0, . . . ,4, and letting

F0(x, y) = I (x, y) ⊕ B00, (3.72)

the following 24 measures

Gij (x, y) = [I (x, y) ⊕ Bij

]
/F0(x, y), (3.73)

where i, j = 0, . . . ,4, and i + j > 0 can be used to characterize frequencies in a
5×5 neighborhood centered at (x, y). Similar features can be calculated from 3×3
and 7 × 7 masks [85].

The feature points representing the local extrema of G22 in the Pentagon and
Mars images are shown in Fig. 3.20. Responses of an image to mask B22 are deter-
mined and the local extrema of the responses are detected. Since B22 is actually a
Laplacian operator, G22 tends to detect centers of small bright and dark spots in an
image.



3.2 New Point Detectors 103

Fig. 3.20 Local extrema of the responses of Laws mask B22 [85] in (a) the Pentagon image and
(b) the Mars image

3.2.3 Intensity-Based Detectors

Various image properties can be calculated from raw image intensities and used to
detect points in an image.

1. Smoothed intensity: By smoothing an image I (x, y) with a Gaussian of standard
deviation σ (Gσ (x, y)) an image will be obtained that will be resistant to noise
and invariant to image rotation.

Ī (x, y) = Gσ (x, y) ⊕ I (x, y) (3.74)

2. Gradient magnitude of smoothed intensity: The gradient magnitude of a smoothed
image is also resistant to noise and invariant to rotation.

ḡ(x, y) =
√

Ī 2
x (x, y) + Ī 2

y (x, y) (3.75)

3. Center contrast: The average difference between the center pixel and other pixels
in a neighborhood [65].

c(x, y) = 1

N − 1

∑

x

∑

y

(
I (x, y) − Ic

)
, (3.76)

where Ic is the intensity at the center of the neighborhood and N is the number
of pixels within the neighborhood under consideration.

Examples of points detected in the Pentagon and the Mars images by non-
extrema suppression of smoothed intensities and non-maxima suppression of gradi-
ent magnitude are shown in Figs. 3.21 and 3.22, respectively. A Gaussian of stan-
dard deviation 2 pixels was used to smooth the images. Local extrema of the center
contrast measure calculated in the Pentagon and the Mars images using circular
neighborhoods of radius 8 pixels are shown in Fig. 3.23.
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Fig. 3.21 Points detected in (a) the Pentagon image and (b) the Mars image using the local ex-
trema of smoothed intensities

Fig. 3.22 Points detected in (a) the Pentagon image and (b) the Mars image using the local max-
ima of the gradient magnitude of the smoothed intensities

3.2.4 Other Point Detectors

A large number of other point detectors can be designed through non-maxima
or non-extrema suppression of other image properties. These properties can be
statistical [69, 148, 159], geometric [75, 87, 168], algebraic [6, 111], differ-
ential [81, 150], fractal dimension [118, 146], and spatial frequency content
[10, 72, 94].
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Fig. 3.23 Points detected in (a) the Pentagon image and (b) the Mars image using the local ex-
trema of the center contrast measure when computed in circular neighborhoods of radius 8 pixels

3.3 Performance Evaluation

The most important information about a control point is its location. Detectors that
identify the same points in two images of a scene independent of the intensity and
geometric differences between the images are most desired. Detected points do not
have to be visually identifiable to be valuable, they only have to identify the same
physical points in two images so that accurate correspondence can be established
between the images.

The number of same points found by a detector in two images of a scene de-
termines the repeatability of the detector. The detectors described in the preceding
sections are all highly repeatable in the absence of noise and geometric and inten-
sity differences between the images. However, some detectors perform better than
others in the presence of image differences. Detectors that include image smoothing
as a part of the detection process are usually more resistant to noise than detectors
that do not include smoothing in the detection process.

Detectors that are based on intensity gradients are generally more invariant to
image contrast than detectors that are based on raw image intensities. Also, detectors
that use properties invariant to image geometric transformations are generally more
repeatable under changes in imaging view-angle than other detectors.

A number of studies have compared the performances of various point detectors.
Fraundorfer and Bischof [58] find that when images have view-angle differences,
the detectors of Harris and Stephens [70] and Beaudet [18] produce more repeat-
able points than the SIFT detector [97, 98] and the affine-adapted Harris detector
[104, 105]. This can be attributed to the fact that the simpler detectors use more lo-
cal information that is immune to image geometric differences than more complex
detectors that use information in larger neighborhoods. Due to occlusion and sharp
changes in scene depth, larger neighborhoods that are centered at the same scene
point in two images cannot contain the same scene parts, producing points that are
displaced with respect to each other.
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Fig. 3.24 (a) The base image (932 × 820). The base image after (b) histogram equalization,
(c) rotation by 10 degrees clockwise, (d) scaling by 1.25, (e) transformations by affine, (f) trans-
formation by homography, (g) addition of 20% zero-mean uniform noise, and (h) smoothing by a
Gaussian of standard deviation 2 pixels

In the following sections, a number of experiments are performed using various
synthetic and real data sets. The experiments are performed using a number of well-
known and promising detectors. The repeatability, localization accuracy, and speed
of the detectors are determined and compared.

3.3.1 Experimental Setup

To create a controlled data set where the coordinates of corresponding points in the
images are known, an image containing various details as shown in Fig. 3.24a is
selected. The intensity and the geometry of the image are then transformed to ob-
tain the images shown in Figs. 3.24b–f. In addition, noise is added to the image
to obtain Fig. 3.24g, and the image is blurred to obtain Fig. 3.24h. The repeatabil-
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ity and accuracy of the detectors under these image variations are determined and
compared.

Histogram equalization is used to change intensities in the base image. This map-
ping nonlinearly changes the intensities but in a monotonic manner. The noisy image
is obtained by adding 20% zero-mean uniform noise to the base image. 20% zero-
mean uniform noise implies generating random numbers between −255 and 255,
multiplying the numbers by 0.20, and adding them to the image intensities. If by
this addition a pixel intensity becomes larger than 255, it is set to 255, and if the
intensity becomes smaller than 0, it is set to 0 to keep the intensities between 0 and
255.

Six widely used detectors in the literature and five newly proposed detectors
are subjected to a series of tests and their repeatabilities, localization accuracies,
and computational speeds are measured and compared. The detectors used in the
experiments are:

1. The curvature-based detector of Kitchen and Rosenfeld [80], which detects cor-
ners in an image (4.124).

2. The LoG detector of standard deviation 2 pixels, which locates small dark and
bright blobs in an image.

3. The SIFT detector of Lowe [97, 98], which also locates dark and bright blobs
in an image.

4. The gradient-based detector of Harris and Stephens [70], which finds corners
using measure R = Det(N)−hTr2(N). h = 0.08 is assumed in the experimental
results reported here.

5. The gradient-based detector of Tomasi and Kanade [151], which uses the
smaller of the two eigenvalues of the square gradient matrix N to locate cor-
ners in an image.

6. The Hilbert-transform-based detector of Kohlmann [82], which detects corners
in an image.

7. Local maxima of the invariant moment φ4 of Hu [75] (3.53) computed within
circular neighborhoods of radius 8 pixels.

8. Local maxima of the normalized complex moment invariant of order (1,1)

(3.68). Again the invariant moments are calculated within circular neighbor-
hoods of radius 8 pixels.

9. Local extrema of the response of an image to the Laws mask B22 (3.73).
10. Local extrema of image intensities after being smoothed with a Gaussian of

standard deviation 2 pixels (3.74).
11. Local extrema of the center-contrast measure calculated within circular neigh-

borhoods of radius 8 pixels (3.76).

Since a control point cannot appear in a homogeneous area in an image, if the
gradient magnitude at a pixel is less than 1, the pixel is not tested for the presence
of a point and further computation at the pixel is abandoned. In implementation of
the gradient-based methods, (3.29) is used to calculate the square gradient matrix
by letting σ = σ ′ = 2 pixels.
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3.3.2 Performance Measures

A detector is required to find the same points in two images of a scene. If a detector
finds N1 points in one image and N2 points in another image in their overlap area,
and if N of the points are the same, then the ratio of the number of points common
in the two sets and the number of points in the smaller set defines the repeatability
of the detector. That is

R = N

min(N1,N2)
. (3.77)

A pair of points in two images is considered to represent the same scene point
if they fall within a small distance ε of each other after proper transformation. ε

depends on the resolution of the provided images and the application under con-
sideration. In an application where symbolic matching is sufficient without the need
for accurate correspondence between the points, such as object recognition by graph
matching, a larger ε may be used than in an application where accurate coordinates
of corresponding points in the images are needed, such as image registration.

In the following discussion, a point in the reference image is denoted by p =
(x, y), the corresponding point in the sensed image is denoted by P = (X,Y ), and
the geometric relation between the images is denoted by f. If the geometric relation
between two images is known, from the coordinates of points in the reference image,
the coordinates of the corresponding points in the sensed image can be determined
from,

P = f(p). (3.78)

f has two components fx and fy satisfying

X = fx(x, y), (3.79)

Y = fy(x, y). (3.80)

If the geometric relation f between two images of a scene is known and a detector
finds point pi in the reference image and point Pi in the sensed image, and if pi and
Pi approximately represent the same scene point, then the localization error of Pi

with respect to pi will be ‖Pi − f(pi )‖. If N corresponding points are found in two
images, the average localization error of points in the reference image with respect
to those in the sensed image will be

E = 1

N

N∑

i=1

∥
∥Pi − f(pi )

∥
∥. (3.81)

The smaller measure E is, the smaller the correspondence error will be, implying a
higher accuracy in localization of the detected points.

Representing the geometric relation between two images in Fig. 3.24 by f, points
p and P in two images will be considered corresponding points if

∥
∥P − f(p)

∥
∥≤ ε, (3.82)
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where ε is the desired error tolerance. In the event that two or more points in the
reference image after transformation by f fall within the distance tolerance of a point
in the sensed image, the sensed point closest to the transformed reference points is
taken as the correspondence point. In the experiments conducted in this chapter, ε is
set to 2

√
2 pixels. In many applications, such as stereo depth perception and image

registration, correspondences that are apart by more than a few pixels are not useful.

3.4 Characterization of Point Detectors

Repeatability R (3.77), localization error E (3.81), and number of corresponding
points found in the overlap area between two images of a scene N are included in
Table 3.1. Knowing the exact locations of corresponding points in various image
pairs, these performance measures can be calculated from the detected points in the
images.

The computation time C for each detector is also measured and entered into
Table 3.1. The computation time in a table entry shows the time in seconds needed
to detect points in an image by a detector on a 3.2 GHz PC. Results reported in
the table for the SIFT detector are the ones obtained from the program provided
by David Lowe, University of British Colombia (US Patent 6,711,293, March 23,
2004). The program finds the point locations with subpixel accuracy. The remaining
point detectors were implemented by the author and provide only pixel accuracy.
The SIFT program does not report the computation time; therefore, the table does
not include the computation time for the SIFT detector. Since computation of LoG
and DoG require the same time and the SIFT detector computes DoG at least three
times, computation time of SIFT is expected to be at least 3 times that of the LoG
detector.

From the performance measures in Table 3.1, the following conclusions can be
reached.

3.4.1 Sensitivity to Intensity Changes

The images depicted in Figs. 3.24a and 3.24b have intensity differences. Intensities
in the images are related nonlinearly but the relation is monotonic. By comparing the
points detected by various detectors in these images, we see that under the applied
intensity transformation, the lowest localization error and the highest repeatability
are achieved by the Laws B22 mask. Among all detectors tested the Laws mask
has also produced the most correspondences in the shortest time. It is interesting
to note that the Laws B22 mask is actually a Laplacian that is defined within a
5 × 5 neighborhood. LoG and SIFT provide properties similar to those of Laws
B22 mask but in larger neighborhoods. Consequently, the localization accuracy and
repeatability of LoG and SIFT are also high, although not as high as those of Laws
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Table 3.1 P : performance, E: localization error, R: repeatability, N : number of corresponding
points in two images, and C: computation time in seconds. Histogram equalized (Fig. 3.24b),
rotated (Fig. 3.24c), scaled (Fig. 3.24d), affine transformed (Fig. 3.24e), projective transformed
(Fig. 3.24f), noisy (Fig. 3.24g), and smoothed (Fig. 3.24h) images were compared individually to
the base image (Fig. 3.24a) to obtain these performance measures. The bold numbers in a column
show the best performance measures obtained for an image

Method P 3.24b 3.24c 3.24d 3.24e 3.24f 3.24g 3.24h

Kitchen and
Rosenfeld
[80]

E 0.358 0.986 0.862 0.975 0.955 1.060 1.314

R 0.718 0.450 0.751 0.486 0.462 0.427 0.435

N 2478 1534 2590 1675 1593 1017 1501

C 0.816 0.805 1.270 0.801 0.789 0.811 0.790

LoG E 0.327 0.567 0.870 0.787 0.922 0.877 1.117

R 0.913 0.858 0.916 0.837 0.713 0.756 0.907

N 9389 7943 9412 7882 6951 7766 5088

C 0.833 0.826 1.291 0.822 0.823 0.837 0.830

SIFT [97] E 0.378 0.366 0.578 0.693 0.645 0.930 1.063

R 0.798 0.774 0.952 0.723 0.647 0.557 0.916

N 8251 8001 9848 7474 6689 4756 2242

Harris and
Stephens
[70]

E 0.563 0.802 0.735 0.901 0.888 0.902 1.266

R 0.833 0.687 0.846 0.721 0.657 0.704 0.544

N 3079 2347 3126 2468 2202 2603 1629

C 1.031 1.024 1.605 1.030 1.063 1.108 1.080

Tomasi and
Kanade
[151]

E 0.667 0.836 0.711 0.884 0.931 0.927 1.291

R 0.826 0.675 0.926 0.732 0.664 0.683 0.538

N 3173 2431 3557 2692 2445 2622 2047

C 1.043 1.039 1.636 1.042 1.043 1.051 1.041

Kohlmann
[82]

E 0.476 1.451 0.696 1.279 1.127 0.684 0.912

R 0.850 0.329 0.793 0.419 0.505 0.812 0.908

N 3502 1234 3269 1650 1949 3345 1955

C 1.878 1.873 6.931 1.878 1.895 1.866 1.863

Hu
invariant
moment
[75]

E 0.775 0.691 1.349 1.017 1.224 0.878 0.980

R 0.820 0.873 0.826 0.831 0.650 0.799 0.925

N 6380 6096 6430 5709 4718 6218 4521

C 183.9 203.3 289.4 199.4 191.0 184.4 184.0

Complex
moment
[2]

E 0.713 0.834 1.423 1.075 1.240 1.092 1.320

R 0.847 0.805 0.818 0.774 0.584 0.737 0.627

N 4035 5064 5611 4816 3963 5056 3609

C 186.1 185.7 291.1 184.9 184.6 185.1 184.8
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Table 3.1 (Continued)

Method P 3.24b 3.24c 3.24d 3.24e 3.24f 3.24g 3.24h

Laws
mask
response
[85]

E 0.230 0.563 0.529 0.727 0.694 0.611 1.653

R 0.994 0.979 0.834 0.975 0.883 0.999 0.405

N 98482 82757 118741 92637 78641 98975 47847

C 0.416 0.407 0.638 0.406 0.407 0.415 0.397

Smoothed
intensity

E 0.556 0.733 0.832 0.839 0.902 0.651 1.133

R 0.504 0.462 0.577 0.529 0.434 0.500 0.487

N 1851 1391 2119 1526 1594 1838 415

C 0.566 0.556 0.877 0.557 0.560 0.569 0.551

Center
contrast
[65]

E 0.283 0.632 0.551 0.947 1.000 0.606 1.642

R 0.939 0.885 0.914 0.973 0.941 0.997 0.698

N 37202 23888 27883 30400 25714 39505 4570

C 3.087 3.085 4.852 3.089 3.161 3.215 3.141

mask. Image changes outside a 5 × 5 window do not affect the Laws mask response
but do affect the LoG and SIFT responses.

The Laws mask, by operating in very small neighborhoods detects a large number
of points. We have considered two points corresponding if they are within a thresh-
old distance of ε = 2

√
2 pixels. By reducing the threshold distance to 1 pixel, the

number of correspondences obtained by the Laws mask is 91627, which is not much
lower than 98482 correspondences found under the threshold distance of ε = 2

√
2

pixels. This implies that the majority of the correspondences found by Laws mask
accurately correspond to each other. To reduce the number of detected points, one
may keep points with stronger responses and discard points with weaker responses.

Another impressive detector under the applied intensity transformation is center
contrast, which produces a very low localization error and has a very high repeata-
bility.

3.4.2 Sensitivity to Geometric Changes

The images in Figs. 3.24a and 3.24c have rotational differences. Under rotation,
SIFT produces the most accurately localized points, while the Laws mask finds the
most repeatable points and the most correspondences in the shortest time among
all detectors tested. Note that SIFT point locations are determined with subpixel
accuracy while point locations of other detectors are determined with pixel accuracy.
Some of the gains achieved by the SIFT detector can be the result of localizing the
points with subpixel accuracy.

Figures 3.24a and 3.24d have scaling differences. By comparing the points found
in these images by the various detectors, we see that Laws mask localizes the points
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most accurately, produces the largest number of correspondences, and is the fastest.
The SIFT detector has the highest repeatability closely followed by the detector of
Tomasi and Kanade and center contrast.

Images in Figs. 3.24a and 3.24e are related by the affine transformation. Compar-
ing the points in these images, we see that SIFT points are most accurately localized,
but the points detected by Laws mask are most repeatable. Laws mask also produces
the largest number of correspondences and has the fastest speed among all detectors.
Center contrast also has a very high repeatability.

Under the applied homography (Figs. 3.24a and 3.24f), the SIFT detector finds
the most accurately localized points, but center contrast finds the most repeatable
points, and the Laws mask produces the largest number of correspondences in the
shortest time.

3.4.3 Sensitivity to Noise

The image in Fig. 3.24g is obtained after adding 20% zero-mean uniform noise
to the image in Fig. 3.24a. Under the applied noise, center contrast finds the most
accurate points, while the Laws mask produces the most repeatable points, finds the
largest number of correspondences, and is the fastest.

3.4.4 Sensitivity to Blurring

The image in Fig. 3.24h is obtained after smoothing the image in Fig. 3.24a with a
Gaussian of standard deviation 2 pixels. Image smoothing blurs and reduces image
details. Under the applied blurring, the Kohlmann detector finds the most accurately
localized points, while the Hu moment invariant finds the most repeatable points.
Laws mask finds the most correspondences and has the shortest computation time.

3.5 Performance Analysis

Examining the results in Table 3.1, we see that the LoG detector has a relatively high
performance in each category, but it is not the highest in any of the categories. The
LoG detector finds the extrema of intensity second derivatives after being smoothed.
As the standard deviation of the Gaussian smoother is changed, the positional ac-
curacy of some points improve. This can be attributed to the improved positional
accuracy of the SIFT detector when compared to the LoG detector under image
intensity and geometric transformation and also under blurring. The improved posi-
tional accuracy of SIFT points over LoG points can also be because the SIFT points
are determined with subpixel accuracy while the LoG points are determined with
pixel accuracy. The positional accuracy of SIFT points can be further improved by
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improving the accuracy of the interpolation that determines the subpixel position of
a point from the feature values of pixels around it [36].

Responses of an image to Laws B22 mask remain most invariant under various
image changes, except under image blurring. Since Laws mask is a local operator,
it is greatly influenced by blurring. LoG and SIFT on the other hand are larger
operators, making them less sensitive to blurring. Image blurring causes extrema
points to displace [8], reducing the localization accuracy of the Laws mask and, to
a lesser degree, the localization accuracies of LoG and SIFT.

The SIFT detector first estimates the scale and orientation of a blob and then cal-
culates its center. To determine the accuracy of an estimated scale or orientation for
a blob by the SIFT detector, images in Figs. 3.24a, 3.24b, 3.24g, and 3.24h, which
have exactly the same geometry were used. Corresponding points in these images
have exactly the same coordinates. To determine the accuracy with which the scale
and orientation of points in these images are estimated, the maximum and mean dif-
ferences between the scales and orientations of corresponding points in image 3.24a
and in images 3.24b, 3.24g, and 3.24h were determined. The maximum difference
between estimated scales in images 3.24a and 3.24b was 38.1 while the maximum
difference in estimated orientations was 3.14 radians. On average, estimated error
in scale was 0.23, while estimated error in orientation was 0.52 radians.

Comparing the scales and orientations of points detected in Figs. 3.24a and 3.24g
by the SIFT detector, we find that maximum error in estimated scale is 22.8, while
maximum error in estimated orientation is 3.14 radians. Average error in estimated
scale is 0.34, while average estimated error in orientation is 0.65 radians. Images
3.24a and 3.24h have blurring differences. Comparing the scales and orientations of
SIFT points detected in these images, we find that maximum error in scale estima-
tion is 24.0, while maximum error in orientation estimation is 3.14 radians. Average
error in estimated scale is 0.84, while average estimation error in orientation is 0.77
radians.

Although estimated errors at some points may be acceptable, estimated error
at some other points are considerably higher than many applications can handle.
Such large errors in scale could displace a detected point. This can be the reason
for obtaining a lower repeatability for SIFT when compared to LoG in some of the
images.

Examining the performances of the two moment-based detectors in Table 3.1, we
see that these detectors are highly repeatable under all image variations, although
they are very time consuming. When comparing the localization errors and repeata-
bilities of the various corner detectors with those of various blob detectors, we see
that blob detectors, in general, perform better than corner detectors.

3.6 Further Observations

From the experimental results obtained in this chapter, we can conclude that over-
all, the SIFT detector is the most accurate, closely followed by the LoG detector
and the Laws mask. Some of the superior accuracy of SIFT can be attributed to
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its subpixel localization implementation. One should note that other detectors can
also be implemented to provide subpixel localization accuracy. SIFT detector, how-
ever, can displace a detected point from its true position by estimating the scale of
the blob incorrectly and over- or under-smoothing a neighborhood. When blobs are
nonsymmetric, elongated, or contain branches, detected points shift with respect to
each other in images if corresponding neighborhoods are not smoothed by the same
amount. If a blob is not round, branches or segments of it can fall off under blurring
[8], displacing the detected point.

The LoG detector smoothes all areas in an image similarly while the SIFT de-
tector, in effect, applies different smoothing to different areas in an image. When
images are known to have about the same scale, the LoG detector is expected to
produce a higher repeatability than the SIFT detector, as evidenced by the results
in Table 3.1. However, if the images have unknown scaling differences, the SIFT
detector is expected to produce more repeatable points than the LoG detector.

Repeatability under changes in scale/resolution is low for many of the detec-
tors because image information in local neighborhoods is changed by changing the
scale or resolution of an image. The same image structure is not simply scaled up or
down, image details are reduced or added to an area as image resolution is changed.
This change instead causes a feature point in one image to displace or disappear in
another image. The problem of scale is that it is often unknown, and an attempt to
estimate it, as done in SIFT [98] and some other detectors, could involve inaccura-
cies. Scale estimation will be accurate only for round blobs. To distinguish points
representing round blobs from points representing non-round blobs, one may asso-
ciate a roundness score with a blob, measuring the radial symmetry of the blob. The
user can then choose only those points that are associated with round/symmetric
blobs.

The solution to the unknown scale is to choose a property that does not change
with scale or changes very gradually with scale. Invariant moments are intrinsically
invariant to scale. However, even with invariant moments, when the scale difference
between two images is not known, the neighborhoods inside which calculations
should be performed cannot be chosen, and if the same neighborhood size is chosen
in two images at different scales, the neighborhoods cannot contain the same pat-
tern, producing different moments for corresponding neighborhoods. Examining the
contents of Table 3.1 we observe that if the scaling difference between two images
is not very large, invariant moments still produce better results than other detectors.
We also observe that the Kohlmann [82] detector has a high performance under un-
known scale. The Kohlmann detector measures the spatial frequency characteristics
of a neighborhood, and it appears that if the scaling difference between two images
is not very high, the frequency characteristics of corresponding neighborhoods will
not be very different, detecting the same points in the images.

References

1. Abdel-Hakim, A.E., Farag, A.A.: CSIFT: A SIFT descriptor with color invariant characteris-
tics. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 1978–1983
(2006)



References 115

2. Abo-Zaid, A., Hinton, O., Horne, E.: About moment normalisation and complex moment
descriptors. In: Proc. 4th Int’l Conf. Pattern Recognition, pp. 399–407 (1988)

3. Abu-Mostafa, Y.S., Psaltis, D.: Recognitive aspects of moment invariants. IEEE Trans. Pat-
tern Anal. Mach. Intell. 6(6), 698–706 (1984)

4. Achard, C., Bigorgne, E., Devars, J.: A sub-pixel and multispectral corner detector. In: 15th
Int’l Conf. Pattern Recognition, vol. 3, pp. 959–962 (2000)

5. Ando, S.: Image field categorization and edge/corner detection from gradient covariance.
IEEE Trans. Pattern Anal. Mach. Intell. 22(2), 179–190 (2000)

6. Andrews, H.C., Patterson, C.L.: Singular value decomposition and digital image processing.
In: IEEE Trans. Acoustics, Speech, and Signal Processing, pp. 26–53 (1976)

7. Attneave, F.: Some informational aspects of visual perception. Psychol. Rev. 61(3), 183–193
(1954)

8. Babaud, J., Witkin, A.P., Baudin, M., Duda, R.O.: Uniqueness of the Gaussian kernel for
scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 8(1), 26–33 (1986)

9. Bae, S.C., Kweon, S., Yoo, C.D.: COP: A new corner detector. Pattern Recognit. Lett. 23,
1349–1360 (2002)

10. Bajcsy, R.: Computer description of textured surfaces. In: Proc. 3rd Int’l J. Conf. Artificial
Intelligence, pp. 572–579 (1973)

11. Baker, S., Nayar, S.K., Murase, H.: Parametric feature detection. Int. J. Comput. Vis. 27(1),
27–50 (1998)

12. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit.
13, 111–122 (1981)

13. Banerjee, M., Kundu, M.K., Mitra, P.: Corner detection using support vector machines. In:
Proc. Int’l Conf. Pattern Recognition (ICPR), vol. 2, pp. 819–822 (2004)

14. Barnard, S.T., Thompson, W.B.: Disparity analysis of images. IEEE Trans. Pattern Anal.
Mach. Intell. 2(4), 333–340 (1980)

15. Bastanlar, Y., Yardimci, Y.: Corner validation based on extracted corner properties. Comput.
Vis. Image Process. 112, 243–261 (2008)

16. Baumberg, A.: Reliable feature matching across widely separated views. In: IEEE Conf.
Computer Vision and Pattern Recognition, vol. 1, pp. 774–781 (2000)

17. Bay, H., Tuetelaars, T., van Gool, L.: SURF: Speeded up robust features. In: Proc. European
Conf. Computer Vision (2006). Also in Comput. Vis. Image Underst. 110, 346–359 (2006)

18. Beaudet, P.R.: Rotationally invariant image operators. In: Proc. Int’l Conf. Pattern Recogni-
tion, pp. 579–583 (1978)

19. Beymer, D.J.: Finding junctions using the image gradient. In: Proc. IEEE Conf. Computer
Vision and Pattern Recognition, Maui, Hawaii (1991). Also see MIT AI Lab Memo No. 1266,
December 1991

20. Bharath, A.A., Kingsbury, N.: Phase invariant keypoint detection. In: Proc. 15th Int’l Conf.
Digital Signal Processing, pp. 447–450 (2007)

21. Blostein, D., Ahuja, N.: A multiscale region detector. Comput. Vis. Graph. Image Process.
45, 22–41 (1989)

22. Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial
filters. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 55–73 (1990)

23. Brand, P., Mohr, R.: Accuracy in image measure. In: Proc. SPIE Videometrics III, Boston,
MA, pp. 218–228 (1994)

24. Brown, M., Szeliski, R., Winder, S.: Multi-image matching using multi-scale oriented
patches. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 510–
517 (2005) Also see Microsoft Research Technical Report MSR-TR-2004-133

25. Brunnström, K., Lindeberg, T., Eklundh, J.O.: Active detection and classification of junctions
by foveation with head-eye system guided by the scale-space primal sketch. In: Proc. 2nd
European Conf. Computer Vision. Lecture Notes in Computer Science, vol. 588, pp. 701–
709 (1992)

26. Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell. 8(6), 679–698 (1986)



116 3 Point Detectors

27. Carneiro, G., Jepson, A.D.: Phase-based local features. In: European Conf. Computer Vision,
Copenhagen, Denmark, pp. 282–296 (2002)

28. Carneiro, G., Jepson, A.D.: Multi-scale phase-based local features. In: Proc. Computer Vi-
sion and Pattern Recognition, vol. 1, pp. 736–743 (2003)

29. Chabat, F., Yang, G.Z., Hansell, D.M.: A corner orientation detector. Image Vis. Comput.
17, 761–769 (1999)

30. Chen, W.-C., Rockett, P.: Bayesian labeling of corners using a grey-level corner image model.
In: IEEE Int’l Conf. Image Processing, vol. 1, pp. 687–690 (1997)

31. Chen, C.-H., Lee, J.-H., Sun, Y.-N.: Wavelet transformation for gray-level corner detection.
Pattern Recognit. 28(6), 853–861 (1995)

32. Clark, J.J.: Authenticating edges produced by zero-crossing algorithms. IEEE Trans. Pattern
Anal. Mach. Intell. 11(1), 43–57 (1989)

33. Coggins, J.M., Jain, A.K.: A spatial filtering approach to texture analysis. Pattern Recognit.
Lett. 3(3), 195–203 (1985)

34. Cohen, P., LeDinh, C.T., Lacasse, V.: Classification of textures by means of two-dimensional
orthogonal masks. IEEE Trans. Acoust. Speech Signal Process. 37(1), 125–128 (1989)

35. Cooper, S.J., Kitchen, L.: Early jump-out corner detectors. IEEE Trans. Pattern Anal. Mach.
Intell. 15(8), 823–828 (1993)

36. Cordes, K., Müller, O., Rosenhahn, B., Ostermann, J.: HALF-SIFT: High accurate localized
features for SIFT. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 31–38
(2009)

37. Crowley, J.L., Parker, A.C.: A representation for shape based on peaks and ridges in the
difference of low pass transform. IEEE Trans. Pattern Anal. Mach. Intell. 6(2), 156–170
(1984)

38. Davies, E.R.: Application of the generalized Hough transform to corner detection. IEE Proc.
135(1), 49–54 (1988)

39. Deriche, R., Blaszka, T.: Recovering and characterizing image features using an efficient
model based approach. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, New
York, NY, pp. 530–535 (1993). Also see T. Blaszka and R. Deriche, Recovering and char-
acterizing image features using an efficient model based approach, INRIA Technical Report
No. 2422 (1994)

40. Deriche, R., Giraudon, G.: Accurate corner detection: An analytical study. In: Proc. 3rd Int’l
Conf. Computer Vision, Osaka, Japan, pp. 66–70 (1990)

41. Deriche, R., Giraudon, G.: A computational approach for corner and vertex detection. Int. J.
Comput. Vis. 10(2), 101–124 (1993)

42. Dias, P., Kassim, A., Srinivasan, V.: A neural network based corner detection method. In:
IEEE Int’l Conf. Neural Networks, Perth, Australia, vol. 4, pp. 2116–2120 (1995)

43. Dreschler, L., Nagel, H.H.: Volumetric model and 3D-trajectory of a moving car derived
from monocular TV-frame sequences of a street scene. In: Proc. Int’l J. Conf. Artificial In-
telligence, Vancouver, Canada, pp. 692–697 (1981)

44. Drewniok, C., Rohr, K.: High-precision localization of circular landmarks in aerial images.
In: Wachsmuth, I., Rollinger, C.-R., Brauer, W. (eds.) Proc. 19th Conf. on Artificial Intel-
ligence, KI-95: Advances in Artificial Intelligence, Bielefeld, Germany. Lecture Notes in
Artificial Intelligence, vol. 981, pp. 259–268. Springer, Berlin (1995)

45. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures.
Commun. ACM 15(1), 11–15 (1972)

46. Dufournaud, Y., Schmid, C., Horaud, R.: Matching images with different resolutions. In:
Proc. Conf. Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina,
pp. 612–618 (2000)

47. Faille, F.: A fast method to improve the stability of interest point detection under illumination
changes. In: Int’l Conf. Image Processing, pp. 2673–2676 (2004)

48. Fang, T.J., Huang, Z.H., Kanal, L.N., Lavine, B.D., Stockman, G., Xiong, F.L.: Three-
dimensional object recognition using a transform clustering technique. In: Proc. 6th Int’l
Conf. Pattern Recognition, pp. 678–681 (1982)



References 117

49. Fauqueur, J., Kingsbury, N., Anderson, R.: Multiscale keypoint detection using the dual-tree
complex wavelet transform. In: Proc. IEEE Int’l Conf. Image Processing, pp. 1625–1628
(2006)

50. Felsberg, M., Sommer, G.: Image features based on a new approach to 2-D rotation invariant
quadrature filters. In: Lecture Notes in Computer Science, vol. 2350, pp. 369–383. Springer,
Berlin (2002)

51. Feng, Z., Shang-qian, L., Da-bao, W., Wei, G.: Aircraft recognition in infrared image using
wavelet moment invariants. Image Vis. Comput. 27, 313–318 (2009)

52. Fidrich, M., Thirion, J.-P.: Multiscale extraction and representation of features from medical
images. INRIA Technical Report No. 2365 (1994)

53. Florack, L., Kuijper, A.: The topological structure of scale-space images. J. Math. Imaging
Vis. 12(1), 65–79 (2000)

54. Fonseca, L., Kenney, C.: Control point assessment for image registration. In: Proc. XII
Brazilian Symp. Computer Graphics and Image Processing, pp. 125–132 (1999)

55. Förstner, W.: A feature based correspondence algorithm for image matching. Int. Arch. Pho-
togramm. Remote Sens. 26, 150–166 (1986)

56. Förstner, W.: A framework for low level feature extraction. In: European Conf. Computer
Vision. Lecture Notes in Computer Science, vol. 801, pp. 383–394 (1994)

57. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points,
corners and centers of circular features. In: Intercommission Conf. Fast Processing of Pho-
togrammetric Data, Interlaken, Switzerland, pp. 281–305 (1987)

58. Fraundorfer, F., Bischof, H.: Evaluation of local detectors on nonplanar scenes. In: Proc. 28th
Workshop of the Austrian Association for Pattern Recognition, pp. 125–132 (2004)

59. Freeman, W.T., Adelson, W.H.: The design and use of steerable filters. IEEE Trans. Pattern
Anal. Mach. Intell. 13(9), 891–906 (1991)

60. Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descrip-
tors for visual tracking. Int. J. Comput. Vis. 94, 335–360 (2011)

61. Gevrekci, M., Gunturk, K.: Illumination robust interest point detection. Comput. Vis. Image
Underst. 113, 565–571 (2009)

62. Ghosal, S., Mehrotra, R.: Zernicke moment-based feature detectors. In: Int’l Conf. Image
Processing, pp. 934–938 (1994)

63. Ghosal, S., Mehrotra, R.: A moment based unified approach to image feature detection. IEEE
Trans. Image Process. 6(6), 781–793 (1997)

64. Giraudon, G., Deriche, R.: On corner and vertex detection. In: Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. 650–655 (1991)

65. Gong, P., Howarth, P.J.: An assessment of some small window-based spatial features for
land-cover classification. In: Int’l Conf. Geoscience and Remote Sensing Symposium, vol. 4,
pp. 1668–1670 (1993)

66. Goshtasby, A.: 2-D and 3-D Image Registration for Medical, Remote Sensing, and Industrial
Applications. Wiley, New York (2005)

67. Guiducci, A.: Corner characterization by differential geometry techniques. Pattern Recognit.
Lett. 8(5), 311–318 (1988)

68. Hannah, M.J.: Computer matching of areas in stereo images. Ph.D. Dissertation, Stanford
University, Department of Computer Science (1974)

69. Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE
Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

70. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. 4th Alvey Vision
Conf. (AVC88), Univ. Manchester, pp. 147–151 (1988)

71. Heyden, A., Rohr, K.: Evaluation of corner extraction schemes using invariance methods. In:
Proc. 13th Int’l Conf. Pattern Recognition (ICPR’96), Vienna, Austria, vol. 1, pp. 895–899
(1996)

72. Horikawa, Y.: A feature of 2D and 3D image invariant to similarity transformations based on
the bispectrum. Syst. Comput. Jpn. 33(3), 1–10 (2002)

73. Horn, B.K.P.: The Binford-Horn Line-finder, MIT Artificial Intelligence Laboratory AI
Memo No. 285, July 1971, revised December 1973



118 3 Point Detectors

74. Hough, P.V.C.: Method and means for recognizing complex patterns. US Patent 3,069,654, 1
December l962

75. Hu, M.K.: Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theory 8, 179–
187 (1962)

76. Hueckel, M.H.: An operator which locates edges in digitized pictures. J. ACM 18(1), 113–
125 (1971)

77. Johansson, B., Granlund, G.: Fast selective detection of rotational symmetries using normal-
ized inhibition. In: Proc. 6th European Conf. Computer Vision, vol. 1, pp. 871–887 (2000)

78. Kadir, T., Brady, J.M.: Scale saliency and image description. Int. J. Comput. Vis. 45(2),
83–105 (2001)

79. Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient detector. In: Proc. 8th Euro-
pean Conf. Computer Vision, pp. 228–241 (2004)

80. Kitchen, L., Rosenfeld, A.: Gray level corner detection. Technical Report #887, Computer
Science Center, University of Maryland (1980). Also in Pattern Recogn. Lett. 1, 95–102
(1982)

81. Koenderink, J.J., van Doorn, A.J.: Representation of local geometry in the visual system.
Biol. Cybern. 55, 367–375 (1987)

82. Kohlmann, K.: Corner detection in natural images based on the 2-D Hilbert transform. Signal
Process. 48, 225–234 (1996)

83. Kovesi, P.: Detection of interest points using symmetry. In: Proc. 3rd Int’l Conf. Computer
Vision, pp. 62–65 (1990)

84. Kweon, I., Kanade, T.: Extracting topologic terrain features from elevation maps. CVGIP,
Image Underst. 59(2), 171–182 (1994)

85. Laws, K.I.: Rapid texture identification. In: Image Processing for Missile Guidance, Proc.
SPIE, vol. 238, pp. 376–380 (1980)

86. Lee, K.-J., Bien, Z.: A gray-level corner detector using fuzzy logic. In: Pattern Recognition
Letters, vol. 17, pp. 939–950 (1996)

87. Li, Y.: Reforming the theory of invariant moments for pattern recognition. Pattern Recognit.
25(7), 723–730 (1992)

88. Li, X., Wu, T., Madhavan, R.: Correlation measure for corner detection. In: Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 643–646 (1986)

89. Li, Q., Ye, Y., Kambhamettu, C.: Interest point detection using imbalance selection. Pattern
Recognit. 41, 672–688 (2008)

90. Li, R., Xiao, R., Li, Z., Cai, R., Lu, B.-L., Zhang, L.: Rank-SIFT: Learning to rank repeat-
able local interest points. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition,
pp. 1737–1744 (2011)

91. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2),
79–116 (1998)

92. Lindeberg, T., Gårding, J.: Shape-adapted smoothing in estimation of 3-D shape cues from
affine deformations of local 2-D brightness structure. Image Vis. Comput. 15(6), 415–434
(1997)

93. Linden, T.: A triangulation-based approach to nonrigid image registration. M.S. Thesis,
Department of Computer Science and Engineering, Wright State University, Dayton, OH
(2011)

94. Lohmann, A.W., Wirnitzer, B.: Tripple correlations. Proc. IEEE 72(7), 889–901 (1984)
95. Loog, M., Lauze, F.: The improbability of Harris interest points. IEEE Trans. Pattern Anal.

Mach. Intell. 32(6), 1141–1147 (2010)
96. Loupias, E., Sebe, N., Bres, S., Jolion, J.-M.: Wavelet-based salient points for image retrieval.

In: IEEE Int’l Conf. Image Processing, pp. 518–521 (2000)
97. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. Int’l Conf. Com-

puter Vision, vol. 2, pp. 1150–1157 (1999)
98. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.

60(2), 91–110 (2004)
99. Loy, G., Zelinsky, A.: A fast radial symmetry transform for detecting points of interest. In:

7th European Conf. Computer Vision, pp. 358–368 (2002)



References 119

100. Maitra, S.: Moment invariants. Proc. IEEE 67(4), 697–699 (1979)
101. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J.

Appl. Math. 11, 431–444 (1963)
102. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B 207, 187–217 (1980)
103. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proc. Int’l

Conf. Computer Vision, pp. 525–531 (2001)
104. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: European Conf.

Computer Vision, vol. 1, pp. 128–142 (2002)
105. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Com-

put. Vis. 60(1), 63–86 (2004)
106. Moravec, H.P.: Towards automatic visual obstacle avoidance. In: Proc. Int’l Joint Conf. Ar-

tificial Intelligence, p. 584 (1977)
107. Moravec, H.P.: Rover visual obstacle avoidance. In: Proc. Int’l Joint Conf. Artificial Intelli-

gence, pp. 785–790 (1981)
108. Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3D objects.

In: Proc. Int’l Conf. Computer Vision, vol. 1, pp. 800–807 (2005)
109. Mukherjee, A., Velez-Reyes, M., Roysam, B.: Interest points for hyperspectral image data.

IEEE Trans. Geosci. Remote Sens. 47(3), 748–760 (2009)
110. Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans.

Image Process. 10(9), 1357–1364 (2001)
111. Murase, H., Nayar, S.: Visual learning and recognition of 3-D objects from appearance. Int.

J. Comput. Vis. 14, 5–24 (1995)
112. Nagel, H.H.: Displacement vectors derived from second order intensity variations in image

sequences. Comput. Vis. Graph. Image Process. 21, 85–117 (1983)
113. Nobel, J.A.: Finding corners. In: Proc. 3rd Alvey Vision Conference, Cambridge, England,

pp. 267–274 (1988)
114. Oh, H.-H., Chien, S.-I.: Exact corner location using attentional generalized symmetry trans-

form. Pattern Recognit. Lett. 23(11), 1361–1372 (2002)
115. Olague, G., Hernández, B.: A new accurate and flexible model based multi-corner detector

for measurement and recognition. Pattern Recognit. Lett. 26(1), 27–41 (2005)
116. Paler, K., Föglein, J., Illingworth, J., Kittler, J.V.: Local ordered grey levels as an aid to

corner detection. Pattern Recognit. 17(5), 535–543 (1984)
117. Parida, L., Geiger, D., Hummel, R.: Junctions: Detection, classification, and reconstruction.

IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 687–698 (1998)
118. Pentland, A.: Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Mach.

Intell. 6(6), 661–674 (1984)
119. Perkins, W.A., Binford, T.O.: A corner finder for visual feedback, Stanford Artificial Intel-

ligence Laboratory, Memo AIM-214, Computer Science Department, Report No. CS-386
(1973)

120. Platel, B., Balmachnova, E., Florack, L., Kanters, F., ter Haar Romeny, B.M.: Using top-
points as interest points for image matching. In: Deep Structure, Singularities, and Computer
Vision, pp. 211–222 (2005)

121. Platel, B., Fatih Demirci, M., Shokoufandeh, A., Florack, L.M.J., Kanters, F.M.W., Dickin-
son, S.J.: Discrete representation of top points via scale space tessellation. In: Proc. 5th Int’l
Conf. Scale Space Methods in Computer Vision, Germany, pp. 73–84 (2005)

122. Rajan, P.K., Davidson, J.M.: Evaluation of corner detection algorithms. In: IEEE Proc. 21st
Southeastern Symposium on System Theory, pp. 29–33 (1989)

123. Reisfeld, D.: The constrained phase congruency feature detector: Simultaneous location,
classification, and scale determination. Pattern Recognit. Lett. 17(11), 1161–1169 (1996)

124. Reisfeld, D., Yeshurun, Y.: Preprocessing of face images: Detection of features and pose
normalization. Comput. Vis. Image Underst. 71(3), 413–430 (1998)

125. Reisfeld, D., Wolfson, H., Yeshurun, Y.: Detection of interest points using symmetry. In:
Proc. 3rd Int’l Conf. Computer Vision, Osaka, Japan, pp. 62–65 (1990)

126. Reisfeld, D., Wolfson, H., Yeshurun, Y.: Context-free attention operators: The generalized
symmetry transform. Int. J. Comput. Vis. 14(2), 119–130 (1995)



120 3 Point Detectors

127. Rémi, T., Bernard, M.: Accelerated keypoint extraction. In: 9th Int’l Workshop on Image
Analysis for Multimedia Interactive Services (WIAMIS’08), pp. 183–186 (2008)

128. Rohr, K.: Recognizing corners by fitting parametric models. Int. J. Comput. Vis. 9(3), 213–
230 (1992)

129. Rohr, K.: Modelling and identification of characteristic intensity variations. Image Vis. Com-
put. 10, 66–76 (1992)

130. Rohr, K.: Localization properties of direct corner detectors. J. Math. Imaging Vis. 4, 139–150
(1994)

131. Rohr, K.: Extraction of 3D anatomical point landmarks based on invariance principles. Pat-
tern Recognit. 32, 3–15 (1999)

132. Rosenthaler, L., Heitger, F., Kubler, O., van Heydt, R.: Detection of general edges and key-
points. In: Proc. European Conf. Computer Vision, pp. 78–86 (1992)

133. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: European
Conf. Computer Vision, pp. 430–443 (2006)

134. Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning approach to
corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)

135. Schmid, C., Mohr, R.: Local gray-value invariants for image retrieval. IEEE Trans. Pattern
Anal. Mach. Intell. 19(5), 530–535 (1997)

136. Schmid, C., Mohr, R., Bauckhage, C.: Comparing and evaluating interest points. In: Int’l
Conf. Computer Vision, pp. 230–235 (1998)

137. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput.
Vis. 37(2), 151–172 (2000)

138. Sela, G., Levine, M.D.: Real-time attention for robotic vision. Real-Time Imaging 3, 173–
194 (1997)

139. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In:
Proc. Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 994–1000 (2005)

140. Shen, D., Ip, H.H.S.: Discriminative wavelet shape descriptors for recognition of 2-D pat-
terns. Pattern Recognit. 32, 151–165 (1999)

141. Shen, F., Wang, H.: Corner detection based on modified Hough transform. Pattern Recognit.
Lett. 23, 1039–1049 (2002)

142. Shen, J., Shen, W., Shen, D.: On geometric and orthogonal moments. Int. J. Pattern Recognit.
Artif. Intell. 14(7), 875–894 (2000)

143. Shi, J., Tomasi, C.: Good features to track. In: Proc. IEEE Conf. Computer Vision and Pattern
Recognition, Seattle, WA, pp. 593–600 (1994)

144. Singh, A., Shneier, M.: Grey level corner detection: A generalization and a robust real time
implementation. Comput. Vis. Graph. Image Process. 51(1), 54–59 (1990)

145. Smith, S.M., Brady, J.M.: SUSAN—A new approach to low level image processing. Int. J.
Comput. Vis. 23(1), 45–78 (1997)

146. Soille, P., Rivest, J.-F.: On the validity of fractal dimension measurements in image analysis.
J. Vis. Commun. Image Represent. 7(3), 217–229 (1996)

147. Stammberger, T., Michaelis, M., Reiser, M., Englmeier, K.-H.: A hierarchical filter scheme
for efficient corner detection. Pattern Recognit. Lett. 9, 687–700 (1998)

148. Tang, F., Lim, S.H., Chang, N.L., Tao, H.: A novel feature descriptor invariant to com-
plex brightness changes. In: Proc. Computer Vision and Pattern Recognition, pp. 2631–2638
(2009)

149. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8),
920–930 (1980)

150. ter Haar Romeny, B.M., Florack, L.M.J., Salden, A.H., Viergever, M.A.: High order differ-
ential structure of images. In: 13th Int’l Conf. Information Processing in Medical Imaging,
pp. 77–93 (1993)

151. Tomasi, C., Kanade, T.: Shape and motion from image streams: a factorization method—
part 3. Technical Report CMU-CS-91-132, April 1991

152. Torre, V., Poggio, T.: On edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 147–
163 (1986)



References 121
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Chapter 4
Feature Extraction

Image features provide a critical source of information for various recognition tasks.
A feature may measure a global or a local image property, revealing statistical, al-
gebraic, geometric, spatial, differential, and spectral information about an image or
subimage.

Features that are stable under noise and invariant to changes in geometry and
contrast of an image are most useful. Invariant features enable comparison of images
taken from different views, under different lighting conditions, and with different
sensors.

Among the many types of features that can be extracted from an image, one is
faced with the problem of selecting those features that carry the most information
about the image. This chapter covers topics relating to only feature extraction. Top-
ics relating to feature selection will be covered in the subsequent chapter.

For a feature to be useful, it should produce the same value for images of the same
scene while producing different values for images of different scenes. By compar-
ing a set of features in two images, it is possible to measure the degree of similar-
ity/match between the images without knowing the correspondence between pixels
in the images.

To study the behaviors of various image features under changes in imaging condi-
tions, the images shown in Fig. 4.1 will be used in various experiments. Figure 4.1a
is a 128 × 128 image of a coin. This will be used as the base image. Figure 4.1b
is a blurred version of the base image obtained by smoothing the coin image with
a Gaussian of standard deviation 1.5 pixels. Figure 4.1c is the image obtained by
adding Gaussian noise of standard deviation 20 to the base image. To keep inten-
sities of the noisy image within [0,255], intensities above 255 are set to 255 and
intensities below 0 are set to 0. Figure 4.1d shows the base image after histogram
equalization. This process nonlinearly but monotonically transforms intensities in
the base image. Figure 4.1e shows the base image after rotation clockwise by 30◦,
and Fig. 4.1f shows the base image after scaling by factor of 1.5. Resampling of geo-
metrically transformed images are achieved via bilinear interpolation. These images
contain the same pattern but have different intensities and geometries.

In order to evaluate the invariance properties of a feature under intensity and ge-
ometric changes of an image, a window of radius 8 pixels is taken centered at each
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Fig. 4.1 (a) The base image.
The base image after
(b) blurring, (c) addition of
noise, (d) histogram
equalization, (e) rotation, and
(f) scaling

pixel and the feature value calculated within the window is saved at the pixel to cre-
ate a feature image. A feature image, therefore, shows the feature values calculated
everywhere in the image domain using windows of radius 8 pixels. Values in a fea-
ture image are mapped to [0,255] so they can be visually compared. Since windows
in these images contain a wide range of patterns, the obtained feature images show
the responses of a feature to a wide range of intensity patterns.

The blurring invariance (BI) property of a feature is measured by finding the
average absolute difference between feature images obtained for the base image
and its blurred version. Change in blurring can be considered change in resolution
also.

The noise invariance (NI) property of a feature is measured by finding the feature
images for the base image and its noisy version and calculating the average absolute
difference between the two. The intensity invariance (II) property of a feature is
measured by comparing the feature images of the base image and its histogram
equalized version.

The rotation invariance (RI) and scale invariance (SI) properties of a feature are
determined by computing the average absolute difference between corresponding
feature values in the base image and its rotated and scaled versions. Note that since
the rotational difference between Fig. 4.1e and the base image, and the scaling dif-
ference between Fig. 4.1f and the base image are known, correspondence between
pixels in these images is known.

To convert the invariance properties to numbers between 0 and 1, first, the fea-
ture values in a feature image are mapped to [0,255]. Then, the average absolute
difference between two feature images is determined and divided by 255. This will
produce a value between 0 and 1, with a larger value showing a larger difference
between the feature images. Finally, the obtained value is subtracted from 1 to asso-
ciate a higher value with a higher invariance.
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In addition to being resistant to noise and invariant to changes in the geometry
and contrast of an image, a feature is required to be highly repeatable. To measure
repeatability, local extrema of a feature image are determined. Extremum locations
form a unique geometric network that can be used to characterize and recognize an
image. If similar extrema networks are obtained in feature images before and after
an intensity or geometric transformation, the feature is considered highly repeatable.
If the number of extrema detected in the base image and in its transformed version
are N1 and N2, and N of the extrema remain unchanged from one image to another,
the repeatability of the feature is measured by

R = N

min(N1,N2)
. (4.1)

Repeatabilities of a feature under image blurring, intensity transformation, noise,
rotation, and scaling will be denoted by BR, IR, NR, RR, and SR, respectively.
Generally, the higher the invariance property of a feature, the higher will be its
repeatability; however, exceptions are possible. While invariance is calculated using
all corresponding values in two feature images, repeatability is calculated using only
the locations of extrema in two feature images.

In the following sections, various image features are reviewed, categorized, and
evaluated. Earlier review, categorization, and evaluation of image features may be
found at [72, 107, 159, 198, 230]. The features will be denoted by Lx , with x

uniquely identifying a feature. 122 different features are studied in this chapter.
Therefore, index x varies between 1 to 122.

4.1 Statistical Features

The first- and second-order statistics of image intensities characterize the statistical
properties of an image. The probability that a pixel will have a particular intensity
in an image is considered a first-order statistic, and the probability that two pixels
in predefined positions with respect to each other in an image will have particular
intensities is considered a second-order statistic. The first-order statistic represents a
1-D probability distribution, while the second-order statistic represents a 2-D prob-
ability distribution. Features calculated from a 1-D or a 2-D probability distribution
can be used to characterize and recognize an image.

4.1.1 First-Order Statistical Features

4.1.1.1 Histogram Features

If an M × N image f (x, y) contains intensities in the range [0,255], then

H(i) =
M−1∑

x=0

N−1∑

y=0

δ
(
f (x, y) = i

)
, i = 0, . . . ,255 (4.2)
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shows the number of pixels in the image with intensity i, where δ(a) is a binary
function returning a 1 if a is true and a 0 otherwise. The histogram of an image is
defined by array H(i) for i = 0, . . . ,255.

To make a histogram independent of an image’s size, its entries are divided by
the image size. Therefore, if the number of pixels in an image is S = MN , then

p(i) = H(i)/S, (4.3)

shows the probability that if a pixel is randomly selected in the image it will have in-
tensity i, and {p(i) : i = 0, . . . ,255} shows the probability distribution of intensities
in the image.

Peak entries in a histogram or a probability distribution are often the consequence
of regions of homogeneous intensities in an image. The most dominant intensity

L1 = i such that p(i) = 255
max
k=0

{
p(k)

}
(4.4)

in an image is a useful feature. More than one peak may be selected from a his-
togram or a probability distribution. Intensities corresponding to local peaks often
correspond to homogeneous regions of different intensities in an image and may be
used as features. To avoid selection of noisy peaks, a peak may be required to have a
value at least twice those appearing about the same distance to it on its left and right
sides. To avoid detection of noisy peaks, Goshtasby and O’Neill [69] decomposed a
signal (a probability distribution in this case) into Gaussians and used the positions
of the Gaussians as the locations of the peaks.

Given the probability distribution of intensities in an image, the mean intensity

L2 = μ =
255∑

i=0

ip(i), (4.5)

the variance intensity

σ 2 =
255∑

i=0

(i − μ)2p(i), (4.6)

or the standard deviation

L3 = σ (4.7)

are unique features that can be used to characterize the image. Other unique features
that can be calculated from a probability distribution are skewness [86]

L4 = γ = 1

σ 3

255∑

i=0

(i − μ)3p(i), (4.8)

which measures asymmetry, and kurtosis [86]

L5 = κ = 1

σ 4

255∑

i=0

(i − μ)4p(i) − 3, (4.9)
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Fig. 4.2 (a)–(f) Mean (L2) feature images computed for the images in Figs. 4.1a–f. The more
similar features images (b)–(f) are when compared to feature image (a), the more invariant the
mean feature is to blurring, noise, change in intensity, rotation, and scaling. The invariance mea-
sures obtained from feature images (b)–(f) when compared with feature image (a) are BI = 0.97,
NI = 0.98, II = 0.98, RI = 0.99, SI = 0.93. The repeatability measures computed for the same
images are BR = 1.00, NR = 0.75, IR = 0.86, RR = 0.88, SR = 0.12, respectively

which shows the degree of similarity of a distribution to a normal distribution. A dis-
tribution with a distinct peak at or near the mean that sharply declines and has long
tails on both sides has a high kurtosis, while a distribution that is flat near the mean
without a distinct mean, such as a uniform distribution, has a low kurtosis.

Mean intensity varies with image brightness, and standard deviation intensity
varies with image contrast. An image with a high mean intensity implies a bright
image, and an image with a high standard deviation implies a high-contrast image.
An image with a high skewness implies an image with a dominant dark or bright
intensity, and an image with a high kurtosis implies an image with an intensity
distribution similar to a normal distribution.

The feature images obtained from the mean, standard deviation, skewness, and
kurtosis of the images in Fig. 4.1 are shown in Figs. 4.2, 4.3, 4.4, 4.5. Although
the invariance properties of these features are consistently high under noise as well
as under intensity and geometric changes, the repeatabilities of the features vary
greatly under these changes. The mean feature is highly repeatable under blurring,
but the standard deviation, skewness, and kurtosis features are not.

The repeatabilities of these features are especially low under image scaling be-
cause fixed circular windows of radius 8 pixels are used to calculate the features
independent of the image scale. When centers of two windows in two images with
scaling differences coincide, the windows will have some overlap but they do not
contain exactly the same scene parts, resulting in different intensity distributions.
This change in intensity distribution does not affect the invariance properties of the
features as much as it does the repeatabilities of the features. A change in the lo-
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Fig. 4.3 (a)–(f) Standard
deviation (L3) feature
images, producing invariance
measures BI = 0.81,
NI = 0.92, II = 0.94,
RI = 0.93, SI = 0.88, and
repeatability measures
BR = 0.39, NR = 0.61,
IR = 0.69, RR = 0.63,
SR = 0.17

Fig. 4.4 (a)–(f) Skewness
(L4) feature images,
producing invariance
measures BI = 0.84,
NI = 0.95, II = 0.93,
RI = 0.97, SI = 0.93, and
repeatability measures
BR = 0.19, NR = 0.57,
IR = 0.71, RR = 0.55,
SR = 0.11

cal intensity distribution displaces extrema locations and such displacements bring
down the repeatability measure. Since the scales of images being registered are of-
ten not known, degradation in repeatability measure due to change in image scale is
inevitable.

Other related features have been proposed. Unser [206] considered image inten-
sities as random variables. Since the sum and difference of two random variables
define the principal axes of their joint probability density, Unser suggests scanning
an image at a desired orientation, finding the sum and difference of adjacent inten-
sities, creating two 1-D histograms, and using the histograms to characterize the
intensity distribution of the image in the scanned direction.

Since a histogram does not contain information about local intensity distribution
but rather provides a global intensity distribution of an image, to capture some local
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Fig. 4.5 (a)–(f) Kurtosis
(L5) feature images,
producing invariance
measures BI = 0.89,
NI = 0.93, II = 0.91,
RI = 0.96, SI = 0.88, and
repeatability measures
BR = 0.25, NR = 0.57,
IR = 0.43, RR = 0.56,
SR = 0.17

intensity characteristics of an image Lazebnik et al. [100] used the spin-image idea
of Johnson and Hebert [88] to map image intensities to a 2-D histogram with the
horizontal axis showing distances of pixels to the image center and the vertical axis
showing the intensities. Thus, entry (d, i) in the histogram shows the number of
pixels in the image that have intensity i and are of distance d to the image center.
That is,

H(d, i) =
∑

x

∑

y

δ
(
D(x,y) = d & f (x, y) = i

)
, (4.10)

where D(x,y) denotes the distance of pixel (x, y) to the image center and δ(a & b)

is a binary function that returns a 1 when both a and b are true, and it returns a 0
otherwise. Since H(d, i) is invariant to the orientation of an image, it can be used
as a rotation-invariant feature in recognition tasks. Tang et al. [190] suggested using
the histogram of angularly scanned ordinal intensities to characterize the intensity
distribution of an image. Ordinal intensities as opposed to raw intensities make the
calculated features invariant to nonlinear but monotone intensity changes.

Local peaks of H(d, i) are unique and can be used as features to characterize
an image. To avoid detection of noisy peaks, H(d, i) may be decomposed into 2-D
Gaussians [68] and the locations of the Gaussians can be used as the peaks. Alter-
natively, H(d, i) may be smoothed to suppress noise before detecting its peaks.

In a color image, the histogram will be a 3-D array. If the image is small, most
entries in the 3-D array will be 0. To avoid creation of a very sparse histogram,
values in each color component are mapped to a smaller range such as [0,7]. This
will produce a 3-D array with 512 entries, creating a denser histogram.

In spite of the fact that different images can produce the same histogram, the
likelihood that images of two different scenes have exactly the same or very similar
histograms is very low. Images captured from different views of a scene, or images
representing small changes in the shape or position of objects in the scene, will
produce very similar histograms. Swain and Ballard [187] demonstrated the power
of image histograms in recognition of objects of the same class.
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4.1.1.2 Gray-Level Difference Features

Gray-level difference (GLD) of adjacent pixels in different directions can be used
to characterize an image also. Weszka et al. [218] used the absolute intensity dif-
ference of adjacent pixels in horizontal, vertical, and diagonal directions to char-
acterize intensity variations in an image. Letting H(g|θ) denote the number of ad-
jacent pixels in direction θ that have absolute intensity difference g, and letting
h(g|θ) = H(g|θ)/

∑
g H(g|θ) be the probability that adjacent pixels when scanned

in θ direction have absolute intensity difference g, the following image features have
been proposed [38, 218]:

1. Gradient contrast:

L6(θ) =
∑

g

g2h(g | θ). (4.11)

2. Gradient second moment:

L7(θ) =
∑

g

[
h(g | θ)

]2
. (4.12)

3. Gradient entropy:

L8(θ) = −
∑

g

h(g | θ) logh(g | θ). (4.13)

4. Gradient mean:

L9(θ) =
∑

g

h(g | θ)g. (4.14)

5. Inverse-difference moment:

L10(θ) =
∑

g

h(g | θ)

(g2 + 1)
. (4.15)

To make these features less dependent on scene lighting, Funt and Finlayson
[60] suggested using the ratio of intensities rather than the difference of intensities.
The ratio of the intensities represent changes in local scene albedo and capture the
property of the scene rather than that of the lighting. To make the process rotation
invariant, instead of finding the difference of intensities in an image in a particular
direction, the image is convolved with a Laplacian or a Laplacian of a Gaussian of
standard deviation 0.5 pixels. For a color image, the same is performed on each color
component and the histogram of the ratios in each component is used to calculate
features invariant to scene lighting.

Instead of using intensity differences or ratios, Schiele and Crowley [171, 172]
convolved an image with various filters and used the histograms of the filtered im-
ages to characterize the image. Worthy and Singzinger [220] used histograms of
polar image gradients and saturation-weighted hues scanned angularly to character-
ize an image.
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4.1.2 Second-Order Statistical Features

4.1.2.1 Gray-Level Spatial-Dependence Features

To determine the second-order statistical features of image f (x, y) with intensities
in the range [0,255], first a gray-level spatial-dependence (GLSD) or co-occurrence
matrix is created with entry (i1, i2) in the matrix showing the number of adjacent
pixels in the image, when scanned in the desired direction, having intensity i1 at the
first pixel and intensity i2 at the second pixel [72, 73]. For instance, given image

y x

0 1 2 3

0 0 0 10 10
1 0 0 10 10
2 0 20 20 20
3 20 20 30 30

(4.16)

the co-occurrence matrix obtained at direction θ = 0◦ (horizontally), h(i1, i2|θ = 0)

will be:

i1 i2
0 10 20 30

0 2 2 1 0
10 0 2 0 0
20 0 0 3 1
30 0 0 0 1

(4.17)

The sum of the entries of a co-occurrence matrix of an image with M columns and
N rows calculated in this manner in direction 0◦ will be (M − 1)N . Similarly, co-
occurrence matrices for directions θ = 45◦,90◦, and 135◦ can be calculated. Since
h(i1, i2|θ +π) = h(i2, i1|θ), the co-occurrence matrices for θ and θ +π contain the
same information. Haralick et al. [73] used the sum of the two, that is, the sum of
h(i1, i2|θ) and its transpose h(i2, i1|θ) as the co-occurrence matrix for direction θ .
Therefore,

i1 i2
0 10 20 30

0 4 2 1 0
10 2 4 0 0
20 1 0 6 1
30 0 0 1 2

(4.18)

will be the co-occurrence matrix for image (4.16) when calculated in direction
θ = 0◦.

When entries of a co-occurrence matrix are divided by the sum of its entries, the
joint conditional probability density (JCPD) p(i1, i2|θ) will be obtained. Therefore,
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using (4.18) as the co-occurrence matrix for direction θ = 0◦, the corresponding
JCPD p(i1, i2|0◦) will be:

i1 i2
0 10 20 30

0 4
24

2
24

1
24 0

10 2
24

4
24 0 0

20 1
24 0 6

24
1

24

30 0 0 1
24

2
24

(4.19)

An image with intensities varying smoothly in the horizontal direction will pro-
duce a JCPD matrix calculated at θ = 0◦ that contains high values diagonally, and an
image containing highly varying intensities in the horizontal direction will produce
a JCPD matrix calculated at θ = 0◦ that has high values away from the diagonal
elements.

The following features can be calculated from a co-occurrence matrix to charac-
terize texture in an image [73]:

1. Energy:

L11(θ) =
∑

i1

∑

i2

[
p(i1, i2|θ)

]2
. (4.20)

As the number of intensities in an image decreases, a higher energy is obtained.
2. Contrast:

L12(θ) =
∑

i1

∑

i2

(i1 − i2)
2p(i1, i2|θ). (4.21)

As the difference between intensities of adjacent pixels increases, a higher con-
trast is obtained.

3. Correlation:

L13(θ) =
∑

i1

∑

i2

(i1 − μi1)(i2 − μi2)

σi1σi2

p(i1, i2|θ), (4.22)

where μi1 and σi1 denote the mean and the standard deviation of
∑

i2
h(i1, i2|θ),

and μi2 and σi2 denote the mean and the standard deviation of
∑

i1
h(i1, i2|θ).

A higher correlation is obtained when intensities of adjacent pixels vary together,
showing a slowly varying pattern.

4. Entropy:

L14(θ) = −
∑

i1

∑

i2

p(i1, i2| θ) logp(i1, i2|θ). (4.23)

Maximum entropy is obtained when the probability of two intensities appearing
next to each other becomes the same for any two intensities. As zero-mean noise
in an image increases, entropy of the image increases.
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Fig. 4.6 (a)–(f) The energy
(L11) feature images of the
co-occurrence matrix
computed for the images in
Figs. 4.1a–f, respectively. The
invariance measures obtained
when comparing
images (b)–(f) to image (a)
are BI = 0.79, NI = 0.89,
II = 0.86, RI = 0.86,
SI = 0.87, and the
corresponding repeatability
measures are BR = 0.15,
NR = 0.29, IR = 0.38,
RR = 0.29, SR = 0.11

5. Homogeneity:

L15(θ) =
∑

i1

∑

i2

p(i1, i2|θ)

1 + (i1 − i2)2
. (4.24)

This feature is the inverse of contrast. It produces a higher value for a smoother
image.

An image that contains a small number of repeated intensities has a higher energy
than an image that contains about the same number of pixels in each intensity. This is
the reverse of entropy which produces the highest value when an image contains the
same number of pixels in each intensity. An image where many adjacent pixels have
high intensity differences produces a high contrast and an image where intensities
vary slowly produces a high homogeneity measure. Therefore, the values of the
measures can be used to describe the intensity characteristics of an image. Note that
these image features are for scanning an image in a particular direction. Therefore,
an image and its rotated version may produce very different features.

Compared to GLSD features, GLD features are less dependent on absolute im-
age intensities. Therefore, images of the same scene captured under different light-
ing conditions will produce more similar GLD features than GLSD features. On the
other hand if the images are obtained under the same lighting conditions, GLSD
features produce more distinct values than GLD features, providing a higher dis-
crimination power. Conners and Harlow [38] find that GLSD features, in general,
have a higher discrimination power than GLD features.

The feature images computed from the co-occurrence matrices of the images in
Fig. 4.1 are depicted in Figs. 4.6, 4.7, 4.8, 4.9. Energy, contrast, correlation, and
entropy feature images are shown. The feature value at a pixel is calculated using a
circular window of radius 8 pixels centered at the pixel. To make the features less
dependent on an image’s orientation, a window is scanned horizontally, vertically,
and in the two diagonal directions. Then, the highest feature value obtained by scan-
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Fig. 4.7 (a)–(f) The contrast
(L12) feature images of the
co-occurrence matrix
computed for the images in
Figs. 4.1a–f, producing
invariance measures
BI = 0.79, NI = 0.94,
II = 0.96, RI = 0.80,
SI = 0.90, and repeatability
measures BR = 0.19,
NR = 0.51, IR = 0.44,
RR = 0.19, SR = 0.11,
respectively

Fig. 4.8 (a)–(f) The
correlation (L13) feature
images of the co-occurrence
matrix computed for the
images in Figs. 4.1a–f,
producing invariance
measures BI = 0.83,
NI = 0.80, II = 0.74,
RI = 0.90, SI = 0.89, and
repeatability measures
BR = 0.14, NR = 0.29,
IR = 0.16, RR = 0.20,
SR = 0.12, respectively

ning the window in the four directions is selected as the feature value at the center
of window.

Second-order statistical features generally produce invariance and repeatability
measures that are similar to those obtained by the first-order statistical features.
Noise as well as intensity and geometric changes influence second-order statistical
features slightly more than first-order statistical features. The repeatability measures
of first-order and second-order statistical features are both low. Therefore, these fea-
tures should not be used when the images are noisy or have intensity and geometric
differences.

Co-occurrence matrices obtained by scanning an image in a particular direction
depend on the image orientation. To obtain features that are less dependent on the
orientation of an image, the image is scanned at θ = 0◦, 45◦, 90◦, and 135◦ direc-
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Fig. 4.9 (a)–(f) The entropy
(L14) feature images of the
co-occurrence matrix
computed for the images in
Figs. 4.1a–f, producing
invariance measures
BI = 0.83, NI = 0.91,
II = 0.87, RI = 0.88,
SI = 0.89, and repeatability
measures BR = 0.16,
NR = 0.30, IR = 0.35,
RR = 0.31, SR = 0.17,
respectively

tions. Features are calculated for each direction and the maximum (or the minimum)
feature in all directions is used as the feature value. To make the process less depen-
dent on an image’s orientation, circular images or windows should be used in the
calculations so that the same pattern can be included in two images or two windows
with rotational differences.

4.1.2.2 Run-Length Features

Consider creating a matrix with the value at an entry showing the number of runs of
a particular length and intensity when scanning an image in a particular direction.
Such a matrix can be used to characterize intensity variations in the image [62]. The
value at entry (i, l) in the run-length matrix (RLM) when an image is scanned in
direction 0◦ shows the number of runs of length l of intensity i appearing in the
image horizontally. For example, the run-length matrix h of the 4 × 4 image shown
in (4.16) when scanned at θ = 0◦ (horizontally) will be:

i l

1 2 3 4

0 1 2 0 0
10 0 2 0 0
20 0 1 1 0
30 0 1 0 0

(4.25)

h(i, l|θ) shows the number of runs of intensity i of length l in direction θ . Note that
sum of the entries of a run-length matrix when each entry is weighted by its run-
length l will be equal to image size, MN . A joint conditional probability density
function p(i, l|θ) can be obtained from a run-length matrix by dividing each entry
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of the matrix by the sum of the entries. Therefore, in the above example, we will
have p(i, l|0◦) as below:

i l

1 2 3 4

0 1
8

2
8 0 0

10 0 2
8 0 0

20 0 1
8

1
8 0

30 0 1
8 0 0

(4.26)

The following features have been proposed for p(i, l|θ) [62]:

1. Short-runs emphasis:

L16(θ) =
∑

i

∑

l

p(i, l|θ)

l2
. (4.27)

This feature will be high when the image contains mostly short runs, implying a
noisy or highly-varying image.

2. Long-runs emphasis:

L17(θ) =
∑

i

∑

l

l2p(i, l|θ). (4.28)

This feature will increase as the number of longs runs in an image increase,
implying a smoother image.

3. Gray-level nonuniformity:

L18(θ) =
∑

i (
∑

l h(i, l|θ))2
∑

i

∑
l h(i, l|θ)

. (4.29)

This feature increases as the number of runs of the same intensity increases,
implying an image with highly varying intensities.

4. Run-length nonuniformity:

L19(θ) =
∑

l (
∑

i h(i, l|θ))2
∑

i

∑
l h(i, l|θ)

. (4.30)

This feature increases as the number of intensities of the same run-length in-
creases, implying a noisy image or an image with highly varying and most likely
repeated patterns.

5. Run percentage:

L20(θ) = 100

MN

∑

i

∑

l

h(i, l|θ). (4.31)

This feature shows the percentage of runs in direction θ in an image when nor-
malized with respect to the image size. The smaller the percentage, the smaller
the number of runs, implying a smoothly varying image or an image with large
homogeneous regions.
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Run-length features are effective in distinguishing images from each other if
the images contain a small number of intensities. However, noise and blurring can
greatly affect run-length features. When images contain a large number of intensi-
ties, a small amount of noise or blurring can considerably change the feature values.

Features that are computed from the histogram or the probability distribution of
an image are invariant to the orientation of the image if circular images are used.
If square or rectangular images are used and the images have rotational differences
that are not a multiple of 90◦, since the images cannot contain the same scene parts,
they cannot produce the same features.

4.2 Geometric Features

Features that characterize the geometric layout of intensities in an image are known
as geometric features. These include structural features, geometric moments, Legen-
dre moments, Tchebichef moments, Krawtchouk moments, Zernike moments, and
wavelet moments.

4.2.1 Structural Features

The fact that we can effortlessly identify objects in an image from their bound-
ary shapes is evidence that structural features contain useful information about ob-
jects. Images of man-made scenes contain abundant lines, circles, and other simple
shapes. The number of line segments of similar slope, the number of line segments
of similar length, and the total number of line segments in an image are powerful
features that can be used to describe an image independent of its orientation. The
number of circles of similar radii, the number of circular arcs of similar radii, and
the total number of circles or circular arcs are also useful in characterizing the con-
tents of an image. These structural features are rotation invariant and can be used to
effectively analyze images of man-made scenes.

The spatial relationship between structural features provides additional informa-
tion that can be used in conjunction with the structural features to recognize objects.
Relationships can be topological (e.g., adjacent, overlap), directional (e.g., north-of,
east-of), and show proximity (e.g., close, far) [33]. The calculus-based topological
relations, consisting of five relationships (in, overlap, cross, touch, and disjoint) are
known to be complete and capable of describing all topological situations [34].

Zhang and Ghosh [228] used structural features and their spatial relations to rec-
ognize scene parts and build the floor map for a mobile robot; Peterson et al. [150]
used structural features to detect road curbs, berms, and shoulders in an autonomous
vehicle project; Chhabra et al. [31] used structural features to recognize handprinted
characters; and Zhang and Chen [227] used multiple structure types in an image and
the relationship between them to identify previously seen complex objects in an im-
age.
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To characterize an image based on its edges, Zhou et al. [233] found the distance
of an edge point to the closest endpoint along a contour and assigned the obtained
distance to the edge point. Distances assigned to edge points along a closed contour
are all set to the length of the contour. Values assigned to edges in an image in this
manner are relatively invariant to the orientation of the image. Zhou et al. [233] used
the histogram of such edge images to characterize geometric structures in them.

Damon et al. [41] used local relations between various structural features
(T-junction, V-junction, curve end point, etc.) in an image containing smooth or
piecewise smooth surfaces to characterize the image. Using an alphabet of struc-
tural features and the spatial relationship between them, they provided a means to
describe the contents of an image.

Structural features are invariant to the orientation of an image. Being extracted
from image edges, they are also relatively insensitive to image contrast.

4.2.2 Geometric Moments

The geometric moment of order (p, q) of image f (x, y) of dimensions M × N is
defined by [80]:

L21(p, q) = Mpq =
M−1∑

x=0

N−1∑

y=0

xpyqf (x, y). (4.32)

M00 is equal to the total image intensity, and the coordinates of the center of gravity
of the image, (x0, y0), are obtained from x0 = M10/M00 and y0 = M01/M00. To
make the moments invariant of the coordinate system origin, the moments are cal-
culated with respect to the center of gravity of the image. Such moments are called
central moments [80]:

L22(p, q) = μpq =
M−1∑

x=0

N−1∑

y=0

(x − x0)
p(y − y0)

qf (x, y). (4.33)

If an image is isotropically scaled by factor of s, that is, if

x′ = sx, (4.34)

y′ = sy, (4.35)

the central moment of the image in the new coordinate system will be

μ′
pq =

Ms−1∑

x=0

Ns−1∑

y=0

(x′ − x′
0)

p(y′ − y′
0)

qf (x′, y′) (4.36)

=
M−1∑

x=0

N−1∑

y=0

(sx − sx0)
p(sy − sy0)

qs2f (x, y) (4.37)
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=
M−1∑

x=0

N−1∑

y=0

sp+q+2(x − x0)
p(y − y0)

qf (x, y) (4.38)

= sp+q+2μpq. (4.39)

When p = q = 0, we have μ′
00 = s2μ00, or s = {μ′

00/μ00}1/2. Therefore, we can
rewrite (4.39) by

μ′
pq =

{
μ′

00

μ00

} p+q
2 +1

μpq, (4.40)

or

μ′
pq

(μ′
00)

p+q
2 +1

= μpq

(μ00)
p+q

2 +1
, (4.41)

or

ηpq = μpq

(μ00)
p+q

2 +1
, (4.42)

which is invariant of scale. The measure, however, still depends on the orientation
of the image. A set of second-order and third-order moments that are invariant of the
orientation of an image as well as its scale and coordinate system origin has been
derived by Hu [80]:

L23 = (η20 + η02), (4.43)

L24 = (η20 − η02)
2 + 4η2

11, (4.44)

L25 = (η30 − 3η12)
2 + (3η21 − η03)

2, (4.45)

L26 = (η30 + η12)
2 + (η21 + η03)

2, (4.46)

L27 = (η30 − 3η12)(η30 + η12)

× [(η30 + η12)
2 − 3(η21 + η03)

2]

+ (3η21 − η03)(η21 + η03)

× [3(η30 + η12)
2 − (η21 + η03)

2], (4.47)

L28 = (η20 − η02)
[
(η30 + η12)

2 − (η21 + η03)
2]

+ 4η11(η30 + η12)(η21 + η03), (4.48)

L29 = (3η21 − η03)(η30 + η12)

× [(η30 + η12)
2 − 3(η21 + η03)

2]

− (η30 − 3η12)(η21 + η03)

× [3(η30 + η12)
2 − (η21 + η03)

2]. (4.49)

To learn the invariance and repeatability of geometric moments, L23–L26 feature
images were computed for the images in Fig. 4.1 to obtain the images shown in
Figs. 4.10, 4.11, 4.12, 4.13, respectively. Compared to the statistical features, we see
that geometric features remain more invariant under image blurring and noise. They



140 4 Feature Extraction

Fig. 4.10 (a)–(f) Hu
invariant moment (L23)
feature images obtained for
the images in Figs. 4.1a–f.
The invariance measures of
feature images (b)–(f) with
respect to feature image (a)
are BI = 0.97, NI = 0.98,
II = 0.97, RI = 0.98,
SI = 0.91, and the
corresponding repeatability
measures are BR = 0.92,
NR = 0.79, IR = 0.90,
RR = 0.84, SR = 0.11

Fig. 4.11 (a)–(f) Hu
invariant moment (L24)
feature images. The
invariance measures are
BI = 0.95, NI = 0.96,
II = 0.98, RI = 0.98,
SI = 0.89, and the
repeatability measures are
BR = 0.92, NR = 0.72,
IR = 0.83, RR = 0.75,
SR = 0.33

are also more invariant under image rotation and scaling. Repeatability of geometric
features are also higher than those of statistical features. The very detailed nature of
geometric feature images is evidence of their distinctive nature. Adjacent windows
with considerable overlap have produced quite different geometric features com-
pared to statistical features. Therefore, geometric features can discriminate images
with subtle differences better than statistical features.

Li [108] derived invariant moments of up to order 9, Jin and Tianxu [85] and
Papakostas et al. [146] proposed efficient algorithms for the calculation of geometric
moments, and Xu and Li [223] showed how to extend 2-D geometric moments to
3-D and use them to recognize 3-D objects.

Reddi [157] derived geometric moments in polar coordinates. Assuming a Carte-
sian coordinate system with origin at the center of the image, pixel (x, y) in the
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Fig. 4.12 (a)–(f) Hu
invariant moment (L25)
feature images, producing
invariance measures
BI = 0.96, NI = 0.97,
II = 0.98, RI = 0.97,
SI = 0.90 and repeatability
measures BR = 0.84,
NR = 0.72, IR = 0.84,
RR = 0.74, SR = 0.47

Fig. 4.13 (a)–(f) Hu
invariant moment (L26)
feature images, producing
invariance measures
BI = 0.98, NI = 0.98,
II = 0.98, RI = 0.99,
SI = 0.93 and repeatability
measures BR = 0.88,
NR = 0.67, IR = 0.81,
RR = 0.81, SR = 0.40

Cartesian coordinate system is represented by (r, θ) in the polar coordinate system,
where r =√x2 + y2 and θ = tan−1[(y−y0)/(x−x0)]. Knowing f (x, y) = f (r, θ),
the radial moment of order k and orientation θ is obtained from [157]:

L30(k, θ) =
rmax∑

r=0

rkf (r, θ), (4.50)

where rmax is the radius of the circular image under consideration, and the angular
moment of order (p, q) at radial distance r is [157]:

L31(p, q, r) =
2π∑

θ=0

cosp(θ) sinq(θ)f (r, θ). (4.51)
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Fig. 4.14 (a)–(f) Normalize
invariant moment (L32)
feature images obtained for
the images in Figs. 4.1a–f,
respectively. The invariance
measures of feature
images (b)–(f) with respect to
feature image (a) are
BI = 0.94, NI = 0.95,
II = 0.97, RI = 0.97,
SI = 0.85, and the
corresponding repeatability
measures are BR = 0.93,
NR = 0.76, IR = 0.86,
RR = 0.85, SR = 0.41

Reddi in this manner derived invariant moments in polar coordinates equivalent to
Hu invariant moments in Cartesian coordinates.

When calculating invariant moments, it is important to use circular images and
windows so that if the centers of two images or two windows correspond, they can
contain the same pattern.

Maitra [120] extended the rotationally invariant moments of Hu, L23–L29, to
moments that are invariant to image scale as well as image contrast. The relation
between these new invariant moments and L23–L29 are:

L32 =
√

L24

L23
, (4.52)

L33 = L25μ00

L24L23
, (4.53)

L34 = L26

L25
, (4.54)

L35 =
√

L27

L26
, (4.55)

L36 = L28

L26L23
, (4.56)

L37 = L29

L27
. (4.57)

To verify the effectiveness of the normalization of Maitra [120] on the invariance
and repeatability properties of invariant moments, feature images were produced for
L32–L34 using the images in Figs. 4.1a–f, and the results are shown in Figs. 4.14,
4.15, 4.16. We observe that, in general, invariance measures slightly worsen while
repeatability measures slightly improve after this normalization.

A consistent improvement in the repeatability of geometric moments after nor-
malization can be attributed to the fact that the extrema points become more well-
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Fig. 4.15 (a)–(f) Normalized
invariant moment (L33)
feature images, shown in
logarithmic scale. The
invariance measures are
BI = 0.94, NI = 0.95,
II = 0.98, RI = 0.95,
SI = 0.89, while the
repeatability measures are
BR = 0.90, NR = 0.81,
IR = 0.87, RR = 0.83,
SR = 0.53

Fig. 4.16 (a)–(f) Normalized
invariant moment (L34)
feature images, shown in
logarithmic scale. Invariance
measures are BI = 0.92,
NI = 0.95, II = 0.97,
RI = 0.90, SI = 0.90, while
repeatability measures are
BR = 0.90, NR = 0.78,
IR = 0.86, RR = 0.81,
SR = 0.52

defined and digital noise caused by geometric transformation of an image does not
move the locations of the extrema. For a better viewing of L33 and L34 feature
images, the values were logarithmically scaled and displayed. The very detailed na-
ture of these feature images indicate their distinctiveness nature and their ability
to discriminate images with subtle differences while remaining stable under noise,
blurring, and intensity and geometric transformations.

Flusser and Suk [57] derived moments that were invariant to affine transforma-
tion:

L38 = μ20μ02 − μ2
11

μ4
00

, (4.58)

L39 = (μ2
30μ

2
03 − 6μ30μ21μ12μ03 + 4μ30μ

3
12

+ 4μ3
21μ03 − 3μ2

21μ
2
12

)/
μ10

00, (4.59)
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L40 = [μ20
(
μ21μ03 − μ2

12

)− μ11(μ30μ03

− μ21μ12) + μ02
(
μ30μ12 − μ2

21

)]/
μ7

00. (4.60)

In addition to affine invariance, Yuanbin et al. [226] derived moments that were
invariant to projective transformation, and Wang et al. [216] found moments that
were invariant to restricted projective transformations. Van Gool et al. [207] derived
moments that were invariant to photometric scaling.

Higher order invariant moments are increasingly influenced by noise [2]. Abu-
Mostafa and Psaltis [3] proposed means to normalizing invariant moments so they
become less sensitive to noise and changes in imaging conditions.

Geometric moments suffer from information redundancy due to their dependency
on each other. In the following section, moments are described in terms of orthogo-
nal polynomials to minimize information redundancy.

4.2.3 Legendre Moments

While reconstructing an image from its moments, Teague [192] noticed that geo-
metric moments contain redundant information, and in search for less redundant
moments came up with Legendre moments. Considering an image a 2-D function,
the function can be decomposed into orthogonal polynomials. After mapping co-
ordinates (x, y) of an image to the range [−1,1], the image is decomposed into
Legendre orthogonal polynomials:

f (x, y) =
∑

p

∑

q

λpqKp(x)Kq(y), (4.61)

where Kp(x) =∑p

i=0 Cpix
i is the Legendre polynomial of order p, x varies be-

tween −1 and 1, and Cpi for i ≤ p are the Legendre coefficients of order p [4] and
are computed from

Cpi = (p + i + 1)(i+1)

(2i + 1)p(i)
. (4.62)

a(i) is the backward factorial function of order i defined by

a(i) = a(a − 1) · · · (a − i + 1). (4.63)

λpq in (4.61) is the Legendre moment of order (p, q) and is computed from the
Legendre polynomials of order (p, q):

L41(p, q) = λpq = (2p + 1)(2q + 1)

4

∫ +1

−1

∫ +1

−1
Kp(x)Kq(y)f (x, y) dx dy.

(4.64)

Teague [192] showed that Legendre moments are related to geometric moments
by:

λpq = (2p + 1)(2q + 1)

4

p∑

k=0

q∑

l=0

CpkCqlMkl, (4.65)
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where Mkl is the geometric moment of order (k, l). Since coordinate origin is as-
sumed at (0,0), Legendre moments are invariant to translation. Since image coordi-
nates are mapped to [1,−1], one would expect that Legendre moments be invariant
to image scale; however, larger images contain more pixels, so more terms are added
together than a smaller image even though pixel coordinates in both vary between
−1 and 1. Legendre moments change with blurring but by determining the relation
between Legendre moments of an image an its blurred version it is possible to derive
blur-invariant moments [232].

Legendre moments are not invariant to image rotation and they do not perform
well under noise. Liao and Pawlak [110] show that given a noisy image, use of
higher-order Legendre moments improves reconstruction accuracy but only up to
a point, beyond which use of higher-order moments decreases reconstruction ac-
curacy. They developed a procedure to determine the optimal number of Legendre
moments that could reconstruct an image with the highest accuracy.

Direct computation of the Legendre moments can be quite costly. Papakostas
et al. [147] proposed an efficient algorithm for computing the Legendre moments
using the block representation of an image.

4.2.4 Gaussian–Hermite Moments

Hermite polynomials are defined by [188]:

Hp(x) = (−1)p exp
(
x2) dp

dxp
exp
(−x2). (4.66)

Hp is a polynomial of degree p for p ≥ 0 and the polynomials are orthogonal with
respect to weight function

w(x) = exp
(−x2). (4.67)

Therefore,
∫ ∞

−∞
Hp(x)Hq(x)w(x)dx = 0, when p �= q, (4.68)

and
∫ ∞

−∞
Hp(x)Hp(x)w(x)dx = p!2p

√
π when p = q. (4.69)

The Hermite moment of order (p, q) of discrete image f (x, y) with the coordi-
nate system origin at the center of the image is defined by [178, 221]:

Hpq =
∑

x

∑

y

Hp(x)Hq(y)f (x, y). (4.70)

Note that Hermite moments are not orthogonal. To obtain orthogonal moments, term
w(x)w(y) = exp(−x2 − y2) should be included in the computations. Therefore,

L42(p, q) = Gpq =
∑

x

∑

y

Hp(x)w(x)Hq(y)w(y)f (x, y). (4.71)
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Also note that since

w(x)w(y) = exp
(−x2) exp

(−y2)

= exp

{

− (x2 + y2)

2(1/2)

}

(4.72)

represents a 2-D Gaussian of standard deviation
√

2/2 and height 1, Gpq is called
the Gaussian–Hermite moment of order (p, q) and represents orthogonal moments
for various values of p,q ≥ 0 [178]. Gaussian–Hermite moment Gpq of image
f (x, y) can be considered a linear combination of the convolution of the pth deriva-
tive in the x-direction and the qth derivative in the y-direction of a Gaussian with
the image [221]. Different order moments, therefore, respond to objects of differ-
ent sizes (different spatial frequencies) in an image. Shen et al. [178] find that the
Gaussian smoothing in Gaussian–Hermite moments makes the moments less sen-
sitive to noise and find Gaussian–Hermite moments to have a higher recognition
power than the Legendre and geometric moments under noise. Gaussian–Hermite
moments vary with rotation and scale of an image as well as with image contrast.

4.2.5 Tchebichef Moments

Tchebichef moments are the coefficients of an image represented by discrete
Tchebichef polynomials [134]:

f (x, y) =
M∑

p=0

N∑

q=0

Tpqtp(x)tq(y), (4.73)

tp(x) is the Tchebichef polynomial of order p in x, tq(y) is the Tchebichef polyno-
mial of order q in y, and Tpq for 0 ≤ p ≤ M and 0 ≤ q ≤ N are computed from:

Tpq = 1

ρ(p)ρ(q)

M−1∑

x=0

N−1∑

y=0

tp(x)tq(y)f (x, y), (4.74)

where

ρ(p) =
M−1∑

x=0

[
tp(x)

]2 (4.75)

and

ρ(q) =
N−1∑

y=0

[
tq(y)

]2
. (4.76)

The Tchebichef polynomial of order p + 1 is recursively defined in terms of
Tchebichef polynomials of orders p and p − 1:
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tp+1(x) = (2p + 1)(2x − M + 1)

(p + 1)
tp(x)

− p(M2 − p2)

(p + 1)
tp−1(x), q = 1, . . . ,N − 1. (4.77)

Tchebichef polynomials calculated in this manner, however, quickly increase in
magnitude because of term Mp in the recurrence formula. In order to obtain
Tchebichef moments in the range [−1,1], Tchebichef polynomials are scaled by
suitable terms β(p) and β(q) that adjust to p and q . That is

t̃p(x) = tp(x)

ρ̃(p)
; t̃q (y) = tq(y)

ρ̃(q)
(4.78)

where

ρ̃(p) = ρ(p)

β(p)2
; ρ̃(q) = ρ(q)

β(q)2
. (4.79)

Simple choices for β(p) and β(q) are Mp and Nq , although other choices are pos-
sible [134]. Using the scaled Tchebichef polynomials so they vary between −1 and
1, Tchebichef moments are calculated from [134]:

L43(p, q) = Tpq = 1

ρ̃(p)ρ̃(q)

M−1∑

x=0

N−1∑

y=0

t̃p(x)t̃q(y)f (x, y), (4.80)

for p = 0, . . . ,M − 1 and q = 0, . . . ,N − 1. Mukundan et al. [134] experimen-
tally showed that Tchebichef moments encode more image information in a fixed
number of coefficients than Legendre moments. Tchebichef moments, like Legen-
dre moments, are not invariant to rotation and scaling of an image. Unlike Legendre
moments, Tchebichef moments are not invariant to the location of the coordinate
system origin. An extension of Tchebichef moments to make them invariant to scale
is proposed by Zhu et al. [234]. Numerical stability of Tchebichef moments has been
studied by Mukundan [133], proposing means to produce accurate high-order mo-
ments. Efficient algorithms for computing Tchebichef moments are described by
Wang and Wang [214] and Shu et al. [181].

4.2.6 Krawtchouk Moments

Features obtained from the decomposition of an image into discrete orthogonal
Krawtchouk polynomials is referred to as Krawtchouk moments [224]. The orthog-
onality of the polynomials ensures minimal redundancy. Since Krawtchouk poly-
nomials are discrete, no numerical approximation is needed in their calculation. By
scaling the Krawtchouk polynomials with local weight functions, Krawtchouk mo-
ments can be made to capture local image information. This scaling also eliminates
the possibility of obtaining overflows when calculating high-order moments.
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In the discrete domain, the Krawtchouk polynomial of order p, Kp(x;u,M), for
x,p = 0,1, . . . ,M − 1 and u ∈ [0,1] is defined by [224]:

Kp(x;u,M) = HG(−p,−x;−M;1/u), (4.81)

where HG is a hypergeometric function defined by

HG(a, b; c;x) =
∞∑

k=0

(a)k(b)kx
k

(c)kk! , (4.82)

and (a)k = a(a + 1) · · · (a + k − 1).
Scaled Krawtchouk polynomials are defined by

K̄p(x;u,M) = Kp(x;u,M)

√
w(x;u,M)

ρ(p;u,M)
, (4.83)

where

w(x;u,M) =
(

M

x

)

ux(1 − u)M−x (4.84)

and

ρ(p;u,M) = (−1)p
(

1 − u

u

)p
p!

(−M)p
. (4.85)

Given a discrete image f (x, y) of dimensions M ×N , the Krawtchouk moments
of order (p, q) are defined in terms of the weighted Krawtchouk polynomials of
orders p and q [224]:

L44(p, q,u, v) = Qpq(u, v) =
M−1∑

x=0

N−1∑

y=0

K̄p(x;u,M)

× K̄q(y;v,N)f (x, y), (4.86)

where p,x = 0, . . . ,M − 1, q, y = 0, . . . ,N − 1, and u,v ∈ [0,1].
Experiments by Yap et al. [224] have revealed a higher recognition ability by the

Krawtchouk moments than by the geometric moments in both noise-free and noisy
images. Despite superior performance under noise when compared to invariant mo-
ments, Krawtchouk moments are not invariant to translation, rotation, and scale of
an image.

4.2.7 Zernike Moments

If image coordinates are mapped to range [−1,1] and only the circular region of
radius 1 centered at the image is used, then x can be considered the real part and y

the imaginary part of complex number z = x + jy. In polar form, this can be written
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as z = r(cos θ + j sin θ) or z = rejθ . With this notation, an image within the unit
disk centered at the origin can be decomposed into [192, 193]

f (x, y) =
∞∑

p=0

∞∑

q=−∞
ApqVpq(r, θ), (4.87)

where Apq is the Zernike moment of order (p, q), Vpq(r, θ) = Rpq(r)ejqθ is the
Zernike polynomial of order (p, q) [191], and

Rpq(r) =
(p−|q|)/2∑

s=0

(−1)s

× (p − s)!
s!(p+|q|

2 − s)!(p−|q|
2 − s)! × rp−2s , (4.88)

conditioned that p − |q| be an even number and |q| ≤ p. Letting k = p − 2s, the
above relation can be written as

Rpq(r) =
p∑

k=|q|
Bp|q|krk (4.89)

conditioned that p − k be an even number. Zernike polynomials are orthogonal
within a unit disk. Therefore,

∫ 2π

0
dθ

∫ 1

0
r dr Vpq(r, θ)V ∗

p′q ′(r, θ) = π

q + 1
δ(q = q ′)

× δ(p = p′), (4.90)

where ∗ implies complex conjugate, and δ(a = a′) is equal to 1 when a = a′ and
equal to 0, otherwise.

Given discrete image f (xi, yi) or f (ri cos θi, ri sin θi) for i = 1, . . . ,N , the
Zernike moments of the image are computed from

Apq = p + 1

π

N∑

i=1

f (xi, yi)V
∗
pq(ri, θi), (4.91)

where p = 0,1, . . . ,∞ and q takes positive and negative values from −∞ to +∞
conditioned that p − |q| is an even number and |q| ≤ p.

Zernike moments are related to geometric moments by [192, 193]:

L45(p, q) = Apq = p + 1

π

p∑

k=|q|

n∑

i=0

|q|∑

m=0

wm

×
(

n

i

)( |q|
m

)

Bp|q|kMk−2i−m,2i+m, (4.92)

where p − k is even, w = −j when q > 0 and w = +j when q ≤ 0, and n =
(k − |q|)/2.
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Zernike moments are complex numbers and by rotating an image within the unit
disk centered at the origin by θ the Zernike moments will convert from Apq to
Apq exp(−iqθ), shifting the phase of the moments by qθ while keeping the magni-
tude of the moments unchanged [192]. Therefore, magnitude Zernike moments can
be used as rotation-invariant features. When an image is reflected with respect to
a line that makes angle φ with the x axis, its Zernike moments change from Apq

to A∗
pq exp(−i2qφ) [192]. Therefore, the magnitude Zernike moments are invariant

under reflection of the image also. This means having images that show the opposite
sides of a symmetric object, such as a fish, will produce the same magnitude Zernike
moments, facilitating recognition of such objects.

Teh and Chin [193] find that Zernike moments carry less redundancy than Leg-
endre moments and, thus, fewer of them are sufficient to reconstruct an image with
a required accuracy. Khotanzad and Hong [93] show through experimentation that if
an equal number of geometric moments and magnitude Zernike moments are used,
Zernike moments have a higher recognition ability and are less sensitive to noise
than geometric moments.

Liao and Pawlak [111] and Wee and Paramesran [217] have pointed out the in-
herent precision limitation of Zernike moments and proposed means to improve it.
Papakostas et al. [144] also studied the numerical accuracy of Zernike moments and
found that as the order of the moments increase, the moments become less reliable
due to propagation of overflow and finite precision in the calculations. They later
[145] suggest replacing the factorials that result in overflows with their approxi-
mations, making the process computationally more stable while maintaining the in-
variance property of Zernike moments. Other efficient algorithms for the calculation
of Zernike moments have been described by Belkasim et al. [16] and Mohammed
and Jie [129]. Zernike moments were originally described in the polar coordinate
system. Extension of the formulas to the Cartesian coordinate system makes it pos-
sible to formulate Zernike moments in terms of geometric moments [17]. Zernike
moments have been extended to 3-D by Canterakis [22] as well as by Novotni and
Klein [137].

If the real-valued radial polynomial Rpq of Zernike polynomials is replaced with

Rpq(r) =
p−|q|∑

s=0

(−1)s

× (2p + 1 − s)!
s!(p − |q| − s)!(p + |q| + 1 − s)! × rp−s

=
p∑

k=|q|
Sp|q|krk, (4.93)

pseudo-Zernike polynomials will be obtained [193], where p = 0,1, . . . ,∞ and q

takes on positive and negative values conditioned that |q| ≤ p. There are (p + 1)2

linearly independent pseudo-Zernike polynomials of degree p or lower while there
are only (p + 1)(p + 2)/2 linearly independent Zernike polynomials of degree p

or lower due to the additional requirement that p − |q| be an even number. Pseudo-
Zernike moments are found to be less sensitive to noise than Zernike moments [193].



4.2 Geometric Features 151

4.2.8 Complex Moments

Like Zernike moments complex moments have magnitude and phase, but unlike
Zernike moments they are not defined in terms of orthogonal polynomials. There-
fore, they suffer from information redundancy if a combination of them are used
for recognition. However, they provide a computationally fast means of generating
invariant moments [2].

Complex moments are defined by [1, 2]:

Cpq =
∑

x

∑

y

(x + jy)p(x − jy)qf (x, y). (4.94)

This can also be defined by:

L46(p, q) = Cpq =
∑

x

∑

y

rp+qej (p−q)θf (x, y), (4.95)

where r =√x2 + y2 and θ = tan−1(y/x) are the polar coordinates of pixel (x, y).
Note that under this definition, Cqp becomes the complex conjugate of Cpq . Rotat-
ing an image by φ counter-clockwise will change the pqth order moment from Cpq

to Cpqe−j (p−q)φ . Therefore, rotating an image about its center will only change the
phase of the complex moments, without changing the magnitude. Since Cpq is the
complex conjugate of Cqp , we get about half as many rotationally invariant complex
moments of a particular order. In addition to

L47(p, q) = CpqCqp (4.96)

being rotationally invariant,

L48(r, s, t, u, k) = CrsC
k
tu + CsrC

k
ut (4.97)

are rotation invariant when (r −s)+k(t −u) = 0. Features L47 and L48 are designed
to have exponents that reduce to 0 under any rotational angle, thus, they are real-
valued features [2]. To obtain features invariant to image contrast and image scale,
Abo-Zaid et al. [1] normalized complex moments as follows:

L49(p, q) = Cn
pq = Cpq

[
1

C00

(
C00

C11

)(p+q)/2
]

, (4.98)

where Cn
pq is the normalized complex moment of order (p, q), Cpq is the complex

moment of order (p, q) computed when an image is centered at the origin. The term
inside the brackets shows normalization with respect to image contrast and scale of
the image. Therefore, since CpqCqp is translation and rotation invariant,

L50(p, q) = Cn
pqCn

qp (4.99)

will be invariant to translation, rotation, scale, and contrast.
Examples of complex invariant moments are given in Figs. 4.17, 4.18, 4.19.

These are feature images obtained for L47 when using the images in Fig. 4.1 and
letting (p, q) be (2,0), (0,2), and (1,1), respectively. Invariance and repeatability
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Fig. 4.17 (a)–(f) Complex
moment (L47) feature images
obtained for the images in
Fig. 4.1 when p = 2 and
q = 0. The invariance
measures of feature
images (b)–(f) when
compared to feature
image (a) are BI = 0.93,
NI = 0.95, II = 0.97,
RI = 0.97, SI = 0.84, and the
corresponding repeatability
measures are BR = 0.95,
NR = 0.81, IR = 0.88,
RR = 0.86, SR = 0.40

Fig. 4.18 (a)–(f) Complex
moment (L47) feature images
obtained when p = 0 and
q = 2, producing invariance
measures BI = 0.93,
NI = 0.95, II = 0.97,
RI = 0.97, SI = 0.84, and
repeatability measures
BR = 0.95, NR = 0.79,
IR = 0.88, RR = 0.86,
SR = 0.40

measures of these complex invariant moments are similar to those obtained by geo-
metric invariant moments. The moment features tested so far have higher invariance
and repeatability measures than the corresponding measures obtained from statisti-
cal features.

To show the amount of improvement achieved in the invariance and repeatability
measures of complex moments after normalization, L50 was calculated for (p, q)

equal to (2,0), (0,2), and (1,1) and displayed in Figs. 4.20, 4.21, and 4.22, re-
spectively. Normalization has slightly improved the invariance property of complex
invariant moments. Generally, the invariance and repeatability of complex moments
and their normalized versions are not any better than those of the originally proposed
Hu invariant moments [80].
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Fig. 4.19 (a)–(f) Complex
moment (L47) feature images
obtained when p = 1 and
q = 1, resulting in invariance
measures BI = 0.97,
NI = 0.96, II = 0.97,
RI = 0.98, SI = 0.91, and
repeatability measures
BR = 0.99, NR = 0.78,
IR = 0.88, RR = 0.88,
SR = 0.11

Fig. 4.20 (a)–(f) Normalized
complex moment (L50)
feature images obtained for
the images in Fig. 4.1 when
p = 2 and q = 0. The
invariance measures of
feature images (b)–(f) when
computed against feature
image (a) are BI = 0.95,
NI = 0.95, II = 0.98,
RI = 0.97, SI = 0.86, and the
corresponding repeatability
measures are BR = 0.97,
NR = 0.78, IR = 0.86,
RR = 0.88, SR = 0.38

4.2.9 Wavelet Moments

Rotation invariant moments can be generally defined by [176]:

Fpq =
∫

θ

∫

r

f (r, θ)Ap(r)ejqθ r dr dθ, (4.100)

where Ap(r) is a function of radial variable r and integers p and q are the radial
and angular orders of the moments. In the discrete domain, Fpq is defined by

L51(p, q) = Fpq =
∑

x

∑

y

f (x, y)Ap(r)ejqθ r, (4.101)

where r =√x2 + y2 and θ = tan−1(y/x). ‖Fpq‖, which is independent of θ , is a
rotation invariant feature [176].
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Fig. 4.21 (a)–(f) Normalized
complex moment (L50)
feature images obtained for
p = 0 and q = 2, producing
invariance measures
BI = 0.95, NI = 0.96,
II = 0.98, RI = 0.97,
SI = 0.86, and repeatability
measures BR = 0.97,
NR = 0.79, IR = 0.86,
RR = 0.88, SR = 0.38

Fig. 4.22 (a)–(f) Normalized
complex moment (L50)
feature images when p = 1
and q = 1, resulting in
invariance measures
BI = 0.98, NI = 0.98,
II = 0.98, RI = 0.99,
SI = 0.93, and repeatability
measures BR = 0.93,
NR = 0.72, IR = 0.81,
RR = 0.91, SR = 0.12

When Ap(r) = rp with some constraints on p and q [80], geometric moments
are obtained, and when Ap(r) is replaced with Rpq(r) as defined in (4.93), Zernike
moments are obtained [176]. Ap(r) may be represented by other radial functions to
produce additional moments. In particular, if Ap(r) is replaced with wavelet func-
tions, the obtained moments will contain image information at multiresolution.

Shen and Ip [176] suggest replacing Ap(r) with

ψm,n(r) = 2m/2ψ
(
2mr − n/2

)
(4.102)

where m = 0, . . . ,3, n = 0, . . . ,2m+1, and

ψ(r) = 4an+1

√
2π(n + 1)

σw cos
[
2πf0(2r − 1)

]
exp

[

− (2r − 1)2

2σ 2
w(n + 1)

]

. (4.103)
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If n = 3, a = 0.697066, f0 = 0.409177, and σ 2
w = 0.561145, a Gaussian approxima-

tion to the cubic B-spline function will be obtained. Using cubic B-spline wavelets,
the wavelet moment invariants will be [176]:

L52(m,n, q) = Fm,n,q =
∫

Sq(r)ψm,n(r)r dr, (4.104)

where m = 0, . . . ,3 is the scale index; n = 0, . . . ,2m+1 is the shift index; q =
0, . . . ,3 shows resolution; and for a fixed r ;

Sq(r) =
∫ 2π

0
f (r, θ)ejqθ dθ (4.105)

shows the qth frequency feature of image f (r, θ) angularly and Sq(r)r represents
the intensity distribution of image f (r, θ) radially for 0 ≤ r ≤ 1. Note that

L53(m,n, q) = ‖Fm,n,q‖ (4.106)

is invariant to rotation.
Experimental results obtained by Shen and Ip [176] and Feng et al. [52] on

various images reveal the superior discrimination power of wavelet moments over
Zernike and geometric moments. Because different wavelet moments contain infor-
mation about different scales in an image, by proper selection of wavelet moments,
it is possible to ignore small differences between images and find image similarity
based on large variations in them, or emphasize small differences between images
and distinguish images with subtle differences from each other.

4.3 Algebraic Features

Algebraic features represent the intrinsic attributes of images. They are global fea-
tures such as the singular values or the eigenvalues of an image, or they represent lo-
cal features calculated from the inertia or Hessian matrices of local neighborhoods.

4.3.1 Singular Values

Treating image f (x, y) as a matrix f and assuming U represents the row eigenvector
system of f and V represents the column eigenvector system of f, we can write [9,
185]:

UfV =
(

Σ 0
0 0

)

, (4.107)

where Σ = diag(σ1, σ2, . . . , σr ) and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values
of the image. σi = λ

1/2
i , where λi is the ith largest eigenvalue of f.
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Note that since U and V are orthonormal matrices, we have

UUt = I, and (4.108)

VtV = I, (4.109)

where t implies transpose and I implies unit matrix.
If ui is the ith row eigenvector of U and vi is the ith column eigenvector of V,

we can reconstruct the image from its eigenvectors and singular values:

f =
r∑

i=1

σiuivi . (4.110)

Singular values of an image,

L54(i) = σi, i = 1, . . . , r, (4.111)

therefore, contain valuable information about an image, which can be used to char-
acterize the image [10]. r , which shows the number of nonzero singular values of
the image, is known as the rank of the image.

σi depends on image contrast. Features independent of image contrast can be
obtained by finding the ratio of the singular values and the largest singular value.
That is

L55(i) = σi/σ1, i = 2, . . . , r. (4.112)

Although for a given image the singular values are unique [78], different images
can produce the same singular values. Singular values of an image are more useful
if they are used together with their eigenvectors [196].

If C images {fi : i = 1, . . . ,C} are available, for example, showing different
views of an object, each image can be opened into a long 1-D array in scan-order
form, and if each image contains S = M × N pixels, then, letting m represent the
pixel-by-pixel mean of the C images,

Q = 1

C

C∑

i=1

(fi − m)(fi − m)t (4.113)

will be an S × S matrix with r ≤ S nonzero singular values.
Considering the d-dimensional space defined by the eigenvectors representing

the d largest singular values of Q, where d ≤ r , each image can be considered a
point in the d-dimensional space obtained by opening it into a 1-D array and finding
its dot product with each of the d eigenvectors of Q.

The process of mapping the C images into the d-dimensional space can be con-
sidered a learning process. To determine whether an image contains an object of
interest, it is opened to a 1-D array and its dot product is determined with eigenvec-
tors corresponding to the d largest singular values of the image, producing a point in
the d-dimensional space. If this point is sufficiently close to a model point obtained
during the learning process, it is concluded that the object is the same as the model.

This method has been used [135] to recognize images containing arbitrary views
of previously seen objects. A combination of eigenvectors and eigen/singular values
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is used to provide an effective means of recognizing various objects. This idea was
first developed by Sirovich and Kirby [182] and was made popular by Turk and
Pentland [199] in the recognition of human faces. Extension of the idea to a multi-
class problem where training images are available in each class is provided by Liu
et al. [113]. Representation of a sequence of images by Q in (4.113) and use of the
eigenvectors and eigenvalues of Q to describe and characterize the images is known
as Hotelling transform or Karhunen–Loève transform [66].

4.3.2 Inertia-Matrix Features

Denoting ∂f (x, y)/∂x by fx and ∂f (x, y)/∂y by fy , the second moment matrix or
the inertia matrix of image f computed in the neighborhood of (x, y) is defined by

I(x, y) =
[ ∑

f 2
x (x, y)

∑
fx(x, y)fy(x, y)

∑
fy(x, y)fx(x, y)

∑
f 2

y (x, y)

]

. (4.114)

The sum is over a small circular neighborhood centered at pixel of interest, (x, y).
The eigenvectors of I(x, y) show the dominant gradient directions in the neighbor-
hood of (x, y). When a well-defined corner structure is present in a neighborhood,
both eigenvalues will be high, while if a neighborhood contains an edge structure,
only one of the eigenvalues will be high. Assuming λ1(x, y) and λ2(x, y) are the
eigenvalues of I(x, y), and λ1(x, y) > λ2(x, y), then

L56(x, y) = λ1(x, y) and

L57(x, y) = λ2(x, y) (4.115)

represent rotation-invariant features that can be used to describe the neighborhood.
Shi and Tomasi [179] used the locations where λ2(x, y) was locally maximum as
feature points for tracking.

Since λ1(x, y) and λ2(x, y) vary with image contrast, to make the detected fea-
ture points independent of an image’s contrast, Carneiro and Jepson [23] normalized
λ2(x, y):

L58(x, y) = λ2(x, y)

[λ1(x, y) + λ2(x, y)]/2
(4.116)

before using it. Ando [6] selected pixels where the following measure was locally
maximum as feature points:

L59(x, y) = 4λ1(x, y)λ2(x, y)

[λ1(x, y) + λ2(x, y)]2
. (4.117)

Ballester and González [12] used the direction of the eigenvector corresponding
to the larger eigenvalue as the dominant direction in a neighborhood to segment a
textured image. An elliptic neighborhood based on the directions and magnitudes
of the eigenvectors was used to calculate an affine-invariant energy for texture dis-
crimination. Various methods to select affine-invariant regions and compute affine-
invariant features have been reported [14, 127, 169, 170, 201–204].
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Fig. 4.23 (a)–(f) Second
eigenvalue of inertia matrix
(L57) feature images obtained
using the images in Fig. 4.1.
The invariance measures of
feature images (b)–(f) with
respect to feature image (a)
are BI = 0.85, NI = 0.93,
II = 0.96, RI = 0.92,
SI = 0.92, and the
corresponding repeatability
measures are BR = 0.30,
NR = 0.65, IR = 0.75,
RR = 0.47, SR = 0.47

In addition to the eigenvalues of the inertia matrix, the determinant and the trace
of the inertia matrix show unique properties of a local neighborhood and may be
used as features.

L60(x, y) = Det
[
I(x, y)

]
,

L61(x, y) = Tr
[
I(x, y)

]
. (4.118)

Rohr [163] used locations in an image where the determinant of the inertia matrix
became locally maximum as control points. Harris and Stephens [74] used locations
where

L62(x, y) = Det
[
I(x, y)

]− hTr2[I(x, y)
]

(4.119)

became locally maximum as control points. h is a small number, such as 0.05. Först-
ner [58] used locations in an image where

L63(x, y) = Det
[
I(x, y)

]
/Tr
[
I(x, y)

]
(4.120)

became locally maximum as control points.
Examples of inertia matrix features are given in Figs. 4.23, 4.24, 4.25, 4.26, 4.27,

4.28. Circular neighborhoods of radius 4 pixels were used to calculate the inertia
matrix at each pixel. Repeatability measures are calculated using the maxima (rather
than the extrema) in a feature image as is customary by point detectors. From the
obtained feature images and their invariance and repeatability measures, we observe
that these features behave similarly, and generally are less invariant and repeatable
than geometric features. Experimental results show that in general low repeatability
measures are obtained for these features, especially under blurring.
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Fig. 4.24 (a)–(f) Normalized
second eigenvalue of inertia
matrix (L58) feature images,
producing invariance
measures BI = 0.73,
NI = 0.88, II = 0.97,
RI = 0.83, SI = 0.84, and
repeatability measures
BR = 0.58, NR = 0.65,
IR = 0.85, RR = 0.67,
SR = 0.57

Fig. 4.25 (a)–(f) Ando (L59)
feature images, producing
invariance measures
BI = 0.70, NI = 0.89,
II = 0.97, RI = 0.84,
SI = 0.85, and repeatability
measures BR = 0.58,
NR = 0.66, IR = 0.85,
RR = 0.65, SR = 0.57

4.3.3 Hessian-Matrix Features

The Hessian matrix of image f (x, y) at pixel (x, y) is defined by

H(x, y) =
[
fxx(x, y) fxy(x, y)

fxy(x, y) fyy(x, y)

]

, (4.121)

where fxx denotes intensity second derivative with respect to x, fyy denotes inten-
sity second derivative with respect to y, and fxy denotes intensity derivative with
respect to both x and y. Beaudet [15] used image locations where determinant of
the Hessian matrix

L64(x, y) = Det
[
H(x, y)

]= fxx(x, y)fyy(x, y) − f 2
xy(x, y) (4.122)
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Fig. 4.26 (a)–(f)
Determinant of inertia matrix
(L60) feature images,
producing invariance
measures BI = 0.90,
NI = 0.94, II = 0.97,
RI = 0.96, SI = 0.94, and
repeatability measures
BR = 0.26, NR = 0.56,
IR = 0.72, RR = 0.63,
SR = 0.49

Fig. 4.27 (a)–(f) Harris and
Stephens (L62) feature
images, producing invariance
measures BI = 0.74,
NI = 0.81, II = 0.98,
RI = 0.65, SI = 0.76, and
repeatability measures
BR = 0.30, NR = 0.64,
IR = 0.75, RR = 0.54,
SR = 0.51

became locally maximum as feature points. It has been shown [136] that if image
intensities are considered height values, treating an image as a surface, the determi-
nant of the Hessian matrix at a pixel is proportional to the Gaussian curvature of the
surface at the pixel. That is,

Det
[
H(x, y)

]∝ κmax(x, y)κmin(x, y), (4.123)

where κmax and κmin represent the principal curvatures of the surface at (x, y). De-
riche and Giraudon [46] found this proportionality term to be 1

1+f 2
x (x,y)+f 2

y (x,y)
.
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Fig. 4.28 (a)–(f) Förstner
and Gülch (L63) feature
images, producing invariance
measures BI = 0.84,
NI = 0.93, II = 0.96,
RI = 0.93, SI = 0.91, and
repeatability measures
BR = 0.31, NR = 0.62,
IR = 0.71, RR = 0.55,
SR = 0.50

Kitchen and Rosenfeld [95] defined a cornerness measure that is a combination
of image first and second derivatives:

L65(x, y) = k(x, y)

= fxx(x, y)f 2
y (x, y) + fyy(x, y)f 2

x (x, y)

f 2
x (x, y) + f 2

y (x, y)

− 2fxy(x, y)fx(x, y)fy(x, y)

f 2
x (x, y) + f 2

y (x, y)
(4.124)

and selected image pixels where this measure was locally maximum as control
points. Wang and Brady [212, 213] showed that total curvature κ is proportional
to k, while inversely proportional to gradient magnitude. Therefore,

L66(x, y) = κ(x, y) = k(x, y)

[f 2
x (x, y) + f 2

y (x, y)]1/2
(4.125)

and used pixels with locally maximum total curvature as control points.
Examples of feature images obtained using feature L64 of Beaudet [15] and fea-

ture L65 of Kitchen and Rosenfeld [95] are given in Figs. 4.29 and 4.30, respec-
tively. Invariance and repeatability measures of Hessian matrix features are gener-
ally higher than those of inertia matrix features. To quantify repeatability, in both
cases, only peak feature locations are used.

4.4 Frequency-Domain Features

The features discussed so far are calculated in the spatial domain. Features may be
calculated in the frequency domain also. The features discussed in the following
sections are extracted from various image transforms.



162 4 Feature Extraction

Fig. 4.29 (a)–(f)
Determinant of
Hessian-matrix feature (L64)
images obtained using the
images in Fig. 4.1. The
invariance measures of
feature images (b)–(f) when
computed with respect to the
feature image (a) are
BI = 0.87, NI = 0.90,
II = 0.95, RI = 0.93,
SI = 0.97, and the
corresponding repeatability
measures are BR = 0.89,
NR = 0.82, IR = 0.93,
RR = 0.74, SR = 0.87

Fig. 4.30 (a)–(f)
Curvature-based feature (L65)
images, resulting in
invariance measures
BI = 0.90, NI = 0.94,
II = 0.98, RI = 0.92,
SI = 0.96, and repeatability
measures BR = 0.81,
NR = 0.81, IR = 0.95,
RR = 0.78, SR = 0.86

4.4.1 Transform Coefficients

Transform coefficients encode spatial frequencies in an image and can be used as
features to describe the image. Image transform coefficients can be obtained by pre-
and post-multiplying an image by a transform matrix. Transform matrices are often
orthogonal, capturing non-redundant spatial information about an image. A typical
transform matrix is the same size as the image itself. For instance, the transform
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matrix for calculating the discrete Fourier transform (DFT) of an N × N image is
[112]:

W = 1√
N

⎡

⎢
⎢
⎢
⎢
⎣

1 1 1 . . . 1
1 wN w2

N . . . wN−1
N

. . . . .

. . . . .

1 wN−1
N w

2(N−1)
N . . . w

((N−1)(N−1)
N

⎤

⎥
⎥
⎥
⎥
⎦

, (4.126)

where N is a power of 2 and wN = exp(− 2πj
N

). The DFT coefficients of image f are
obtained from Df = WfW. Except for Df [0,0], which contains information about
image contrast, transform coefficients

L67(i, j) = Df [i, j ] (4.127)

for i, j = 0, . . . ,N where i + j > 0 represent information about various spatial
frequencies in the image. Higher order coefficients measure higher frequencies in
the image. DFT coefficients are complex numbers, having magnitude and phase.
Changing the location of the coordinate system origin will change the phase com-
ponent of a coefficient but not its magnitude. Through a log-polar mapping of DFT
coefficients, Reddy and Chatterji [158] derived features that were invariant to the
translation, rotation, and scale of an image.

The transform matrix for Hadamard transform (HT) is recursively defined by
[152]:

Hn = H1 ⊗ Hn−1, (4.128)

where ⊗ denotes the Kronecker product of two matrices. For example,

A ⊗ B =

⎡

⎢
⎢
⎣

a[1,1]B a[1,2]B . . . a[1, n]B
. . . .

. . . .

a[N,1]B a[N,2]B . . . a[N,N ]B

⎤

⎥
⎥
⎦ , (4.129)

where matrix A is assumed N × N with entries a[1,1] . . . a[N,N ]. Knowing that a
2 × 2 Hadamard matrix is defined by

H1 = 1√
2

[
1 1
1 −1

]

, (4.130)

we obtain

H2 = H1 ⊗ H1 =
[

H1 H1
H1 −H1

]

= 1

2

⎡

⎢
⎢
⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤

⎥
⎥
⎦ , (4.131)
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and so on. HT coefficients, similar to DFT coefficients, capture spatial frequencies
in an image. Given an image f of dimensions N × N , where N = 2n, the Hadamard
transform of the image is obtained from Dh = HnfHn. Transform coefficients

L68(i, j) = Dh[i, j ] (4.132)

for i, j = 0, . . . ,N and i + j > 0 contain information about various spatial fre-
quencies in the image and can be used as image features. Note that DFT features
represent complex numbers, while HT features represent real numbers. Also note
that computation of HT features is much faster than computation of DFT features
because HT matrices contain 1 and −1, requiring only addition and subtraction of
image intensities. Computation of the DFT of an image involves complex multipli-
cations.

Other transform coefficients can be used as features to characterize spatial fre-
quencies in an image. These include discrete cosine transform (DCT) coefficients
[5], Haar transform coefficients [8], Walsh transform coefficients [211], and slant
transform coefficients [153]. Shen and Sethi [177] used DCT coefficients to deter-
mine the presence of edges of particular scales and orientations in an image, while
Feng and Jiang [51] used the moments of DCT coefficients to retrieve compressed
JPEG images from a database.

The number of transform coefficients equals the number of pixels in an image.
Some transform coefficients contain more information about an image than other
coefficients. For example, locations in the transform image where the magnitude
transform become locally maximum show dominant horizontal and vertical spacial
frequencies in the image. The magnitude of a peak coefficient indicates the abun-
dance of the spatial frequencies represented by the peak. The number of such peaks
and their spatial arrangement can be represented in a graph (such as a minimum
spanning tree) and via graph matching, images can be compared independent of
their contrast, translational, rotational, and scaling differences. To avoid detection
of peaks caused by noise or changes in the scale/resolution of an image, rather than
using all peaks, the n largest peaks may be used. Alternatively, peaks corresponding
to very high frequencies may be excluded in the count as such peaks are often the
result of image noise.

Assuming image f (x, y) has Fourier transform F(u, v), the magnitude coef-
ficient at (u, v) will be

√
F(u, v)F ∗(u, v), where ∗ implies complex conjugate.

A transform such as Hadamard transform, which produces real coefficients, the
magnitude coefficient at (u, v) will be |F(u, v)|. The n largest locally peak coef-
ficients ordered according to their angles with u axis when connected to (0,0) in
the uv-domain will produce a feature vector that can be used in recognition and
matching. Alternatively, the location (u, v) of a peak can be used as a complex
number (u + jv), and a feature vector of such complex numbers can be created by
ordering them according to their magnitudes or phases for recognition or matching.

An example using

L69 = Number of peaks in the magnitude DFT (4.133)

as the feature, computed in a 16 × 16 neighborhood, is shown in Fig. 4.31. The
detail of the feature images is indicative of the distinctive nature of the feature;
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Fig. 4.31 (a)–(f) Number of
peaks of the DFT (L69)
feature images obtained from
the images in Fig. 4.1. The
invariance measures of
feature images (b)–(f) when
computed against feature
image (a) are BI = 0.82,
NI = 0.95, II = 0.93,
RI = 0.93, SI = 0.93, and the
corresponding repeatability
measures are BR = 0.48,
NR = 0.62, IR = 0.79,
RR = 0.65, SR = 0.21

therefore, the process can distinguish images with small differences from each other.
However, the abundance of similar features in a feature image indicates that different
images can produce the same number of peaks. Therefore, although false negative
probability is low when using this feature, false positive probability is high.

Examining the invariance and repeatability measures of the feature images, we
observe that this simple spatial feature is highly invariant under monotone intensity
transformation because such a transformation does not change spatial frequencies
in the image noticeably. Although the repeatability measures of this feature under
various image changes are relatively low, they are still higher than those obtained by
statistical features. Since square windows rather than circular windows were used in
the calculation of transform coefficients, some of the degradations in invariance and
repeatability measures under rotation can be attributed to that. Influence of noise
on invariance and repeatability properties can be reduced by not using the high-
frequency regions in the transform domain as noise predominantly contributes to
the high frequency coefficients.

4.4.2 Bispectrum Features

In the preceding section, we saw that the magnitude Fourier transform of an image
is invariant to image translation and by log-polar mapping it can be made invariant
to rotation and scale. It is important to note that most information in the Fourier
transform of an image is kept in the phase rather than in the magnitude of the trans-
form [140]. By discarding phase, we discard important information, weakening the
discrimination power of the transform coefficients.

Bispectrum is an attempt to preserve phase information in frequency-domain fea-
tures. The bispectrum of an image is a triple correlation measure, introduced by
Lohmann and Wirnitzer [114]. Given image f (x), where x = (x, y), and assuming
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u = (u, v) and F(u) is the Fourier transform of f (x), the bispectrum of the image
is defined by

B(u1,u2) = F(u1)F (u2)F (−u1 − u2). (4.134)

The bispectrum of an image is invariant to image translation because Fourier
transform is invariant to image translation. If image f (x) is of dimensions N × N ,
the bispectrum will be of dimensions N ×N ×N ×N , requiring considerable space
and time for its computation. A solution provided by Marabini and Carazo [125] is
to project the bispectrum in the direction u1, reducing the 4-D bispectrum space into
a 2-D space. Therefore,

I (u2) =
∑

u1

B(u1,u2)

=
∑

u1

F(u1)F (u2)F (−u1 − u2)

= F(u2)
∑

u1

F(u1)F
∗(u1 + u2). (4.135)

Now, letting h(x) = f (−x) and denoting F ∗ by H , we obtain

I (u2) = F(u2)
∑

u1

F(u1)F
∗(u1 + u2)

= F(u2)
∑

u1

H ∗(u1)H(u1 + u2)

= F(u2)H � H

= F(u2)F
(
h2(x)

)

= F(u2)F
(
f 2(−x)

)

= F
(
f (x)

)
F
(
f 2(−x)

)
(4.136)

where ∗ implies complex conjugate and � denotes correlation. Therefore,

L70(u) = I (u), (4.137)

which is obtained from point-by-point multiplication of the DFT of image f (x) and
the DFT of an inverted version of the same image with squared intensities can be
used as translation invariant features. It has been shown [125] that these invariant
features are capable of reconstructing an image up to its position.

Bispectrum features can be made invariant to the orientation and scale of an im-
age. Since by scaling an image its Fourier transform is inversely scaled, the scaling
will not change ratio r = |u1|/|u2|. If an image is rotated, its Fourier transform
will rotate by the same amount, but the rotation will not change angle θ , where
cos θ = (u1 · u2)/(|u1‖u2|). By integrating the bispectrum in (u1,u2) space where
|u1|/|u2| = r and (u1 · u2)/(|u1‖u2|) = cos θ , we will obtain features

J (r, θ) =
∑

r

∑

θ

g
(
B(u1,u2)

)
, (4.138)
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that are invariant to the orientation and scale of an image. Since B is invariant to
translation, J (r, θ) is actually invariant to translation, rotation, and scale of an im-
age. In the above equation g(·) can be any function. Since B(u1,u2) is a complex
number, to create real features, one may let g be the real part, the imaginary part,
or the magnitude of B . J (r, θ) can be considered a 2-D histogram in the (r, θ)

space and the entries of the histogram can be filled by going through B(u1,u2),
and for each (u1,u2) finding the corresponding (r, θ) and incrementing J (r, θ) by
g(B(u1,u2)).

Horikawa [79] suggested the following normalization to make the bispectrum
features invariant to image contrast also:

L71(r, θ) = J (r, θ)

[∑r

∑
θ J 2(r, θ)]1/2

. (4.139)

Again, some entries in the J (r, θ) histogram carry more information about the
underlying image than other entries. Therefore, if there is a choice to be made on
the entries of J (r, θ), one should choose local maxima entries. A feature vector
representing maxima of J (r, θ) when ordered in increasing r or θ may be used for
recognition or matching. Alternatively, the network of the peak entries in J (r, θ)

can be used as a graph or a tree in recognition or matching.

4.4.3 Power-Spectrum Features

If F(u, v) is the DFT of image f (x, y) and F ∗(u, v) is the complex conjugate of
F(u, v), the power spectrum φ(u, v) of image f (x, y) is defined by

φ(u, v) = F(u, v)F ∗(u, v) = ∥∥F(u, v)
∥
∥2

. (4.140)

Since the angular variation of ‖F‖2 depends on the direction of the pattern in im-
age f (x, y), and values of ‖F‖2 at different distances to the 0 frequency show the
presence of objects of different sizes, ‖F‖2 calculated angularly and within vari-
ous rings can be used to characterize the spatial characteristics of objects in image
f (x, y).

Use of power spectrum features in texture discrimination was first suggested by
Bajcsy [11]. Letting r = √

u2 + v2 and θ = tan−1(v/u), typical features calculated
from the power spectrum are [38, 50]:

1. Annular-ring sampling geometry:

L72(r0, δr) =
∑

r

∑

θ

∥
∥F(r, θ)

∥
∥2

, (4.141)

where r0 − δr ≤ r < r0 + δr and 0 ≤ θ < 2π . This feature is invariant to image
rotation as it is independent of parameter θ .

2. Wedge sampling geometry:

L73(θ0, δθ) =
∑

θ

∑

r

∥
∥F(r, θ)

∥
∥2

, (4.142)
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Fig. 4.32 (a)–(f) Local
power spectrum (L74) feature
images obtained for the
images in Fig. 4.1. The
invariance measures of
feature images (b)–(f) when
compared to feature
image (a) are BI = 0.81,
NI = 0.93, II = 0.94,
RI = 0.95, SI = 0.93, and the
corresponding repeatability
measures are BR = 0.94,
NR = 0.82, IR = 0.92,
RR = 0.79, SR = 0.80

where θ0 − δθ ≤ θ < θ0 + δθ , 0 ≤ r ≤ R, and R is the maximum radius of the
circular region enclosed in the image.

3. Parallel-slit sampling geometry:

L74(u0, δu;v0, δv) =
∑

u

∑

v

∥
∥F(u, v)

∥
∥2

, (4.143)

where u0 − δu ≤ u < u0 + δu and v0 − δv ≤ v < v0 + δv. This feature is only
invariant to image translation and captures information within a range of fre-
quencies horizontally and vertically.

4. Frequency-domain entropy: Letting suv = ‖F(u, v)‖2 and puv = suv/∑
u

∑
v suv , entropy within a region in the frequency domain is calculated

from [84]:

L75(u1, u2;v1, v2) = −
∑

u

∑

v

puv logpuv, (4.144)

where u1 ≤ u < u2 and v1 ≤ v < v2. This feature is also invariant to image trans-
lation.

Conners and Harlow [38] find that power spectrum features classify a larger num-
ber of textures than GLSD features (Sect. 4.1.2.1) and GLD features (Sect. 4.1.1.2).
They also find textures that can be recognized by GLSD and GLD features but not
by power spectrum features and vice versa. They find 50% of textures recognizable
by power spectrum features are also recognizable by GLSD or GLD features.

Examples of power spectrum feature images are given in Figs. 4.32 and 4.33.
Feature L74 is calculated for all u and v, producing the total power spectrum in each
local neighborhood. Feature L75 is also calculated at all frequencies, producing the
total entropy of the power spectrum in each local neighborhood. More specifically,
to calculate the feature value at pixel (x, y) in an image, a 16 × 16 window is taken
centered at the pixel, the Fourier transform of the window is calculated and L74
is calculated for all values of u and v. The obtained result is then saved at (x, y).
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Fig. 4.33 (a)–(f) Local
frequency-domain entropy
(L75) feature images,
producing invariance
measures BI = 0.87,
NI = 0.92, II = 0.84,
RI = 0.95, SI = 0.96, and
repeatability measures
BR = 0.96, NR = 0.85,
IR = 0.98, RR = 0.82,
SR = 0.76

Entry (8,8) within a 16 × 16 window is considered the center of the window. This
produced the feature images depicted in Fig. 4.32 when using the images in Fig. 4.1.
Feature values have been mapped to [0,255] for viewing purposes. The same was
repeated for feature L75 over all frequencies within each neighborhood and for the
images in Fig. 4.1 to produce the feature images shown in Fig. 4.33.

Examining L74 feature images and the calculated invariance measures, we see
that this feature is highly invariant under image rotation, scale, noise, and monotone
intensity transformation, but it is sensitive to blurring. Examining the repeatability
measures of this feature under various image changes, we see that they are relatively
low under noise, rotation, and scaling of the image but are relatively high under blur-
ring and intensity transformation. This implies that although blurring and intensity
transformation change power spectrum values, many of the same peak locations are
obtained before and after image blurring and monotone intensity transformation.

Repeatability measures are rather low under rotation and scale because fixed
square windows in images rotated by 30◦ or scaled by 1.5 with respect to each other
cannot contain the same pattern, resulting in different peaks in the power spectra
of the images. Decreased repeatability under noise can be attributed to change in
the locations of many high-frequency peaks. Similar results are obtained for the fre-
quency domain entropy feature L75 except that monotone intensity mapping affects
the local frequency-domain feature more than the local power-spectrum feature.

4.4.4 Wavelet Transform Coefficients

Consider a set of 1-D real orthonormal bases, created by translating and scaling
mother wavelet ψ(x):

ψi,n(x) = 2− i
2 ψ
(
2−ix − n

)
. (4.145)



170 4 Feature Extraction

Then, a 1-D signal g(x) can be defined in terms of the bases by

g(x) =
∑

i,k

di,kψi,k(x), (4.146)

where di,k are the wavelet transform coefficient. Conversely, if the signal and the
orthonormal bases are known, the wavelet coefficients can be computed from

di,k = f (x) � ψi,k(x), (4.147)

where � implies correlation.
The mother signal ψ(x) is obtained by first determining a scaling function φ(x)

that satisfies [43]

φ(x) = √
2
∑

k

h(k)φ(2x − k), (4.148)

where coefficients h(k) are specified in such a way that the wavelet bases are unique
and orthonormal [186]. Then, the wavelet kernel is defined by

ψ(x) = √
2
∑

k

g(k)φ(2x − k), (4.149)

where

g(k) = (−1)kh(1 − k). (4.150)

Various sets of coefficients h(k) satisfying these conditions have been found and
reported [44, 122].

B-spline bases provide one example of scaling functions. A B-spline function of
order d can be constructed from scaled and translated versions of itself [32]:

φ(x) =
d∑

k=0

21−d

(
d

k

)

Bd(2x − k). (4.151)

Note that since a B-spline function of order d > 1 can be obtained from B-spline
functions of order d − 1,

Bd
k (x) = x − xk

xk+d − xk

Bd−1
k (x) + xk+d+1 − x

xk+d+1 − xk+1
Bd−1

k+1 (x), (4.152)

the B-spline scaling functions can be recursively defined in terms of a scaling func-
tion of order 1,

φ1
k (x) =

{
1 if xk ≤ x < xk+1,

0 otherwise,
(4.153)

where xk are the knots of the B-spline and for uniform B-spline they are inte-
gers, and the first and last knots are repeated d times: (x0, x1, . . . , x2k+2d−2) =
2−k(0, . . . ,0,1,2, . . . ,2k − 1,2k, . . . ,2k). The B-spline scaling functions of order
2 are shown in Fig. 4.34. Note that the sum of the scaling functions at any x is equal
to 1.

Considering a separable multiresolution approximation where 2-D scaling func-
tion φ(x, y) is defined in terms of two 1-D scaling functions: φ(x, y) = φ(x)φ(y),
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Fig. 4.34 Five B-spline
scaling functions of order 2.
Each scaling function is
drawn with a different line
width

and assuming ψ(x) and ψ(y) are wavelets associated with φ(x) and φ(y), respec-
tively, and letting

φi,k(x) = 2− i
2 φ
(
2−ix − k

)
, (4.154)

and

ψi,k(x) = 2
i
2 ψ
(
2−ix − k

)
, (4.155)

three 2-D wavelets can be defined as follows [26, 121]:

ψ1
i,k,l(x, y) = φi,k(x)ψi,l(y), (4.156)

ψ2
i,k,l(x, y) = ψi,k(x)φi,l(y), (4.157)

ψ3
i,k,l(x, y) = ψi,k(x)ψi.l(y). (4.158)

An orthonormal basis set in 2-D, {φi,k,l(x, y)}, can be constructed from various
translation parameters k and l and scale parameter i:

φi,k,l(x, y) = 2−iφ
(
2−ix − k

)
φ
(
2−iy − l

)
. (4.159)

Knowing the wavelet basis set at scale i, the wavelet coefficients of 2-D image
f (x, y) at scale i can be obtained from [122]:

L76(i,m, k, l) = dm
i [k, l] = f � ψm

i,k,l, (4.160)

where � denotes correlation, m = 1,2,3, and ψ1
i,k,l(x, y), ψ2

i,k,l(x, y), and

ψ3
i,k,l(x, y) are given in (4.156)–(4.158).

The wavelet coefficients at level or band i show image information at scale 2i .
Use of wavelets makes it possible to separate information at different scales from
each other and use them to describe an image. Oren et al. [141] use Haar wavelet
coefficients calculated at scales 2i = 16 and 2i = 32 in subimages of size 128 × 64
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to detect pedestrians. The three 2-D Haar wavelets are:

−1 1
−1 1

,
−1 −1

1 1
,

1 −1
−1 1

. (4.161)

Papageorgiou et al. [143] follow a similar approach to detect faces in an image.
Discrete wavelet transform coefficients are generally dependent on scene light-

ing, although Garcia et al. [63] show that they are relatively unaffected by small
illumination changes. Shift-invariant features have been extracted from images us-
ing complex wavelets [94, 173]. To represent an object independent of its orientation
and scale, Shokoufandeh et al. [180] made the wavelet coefficients the nodes of a
tree so that an object present in two images creates similar branches in the trees,
enabling comparison via graph-matching. To produce rotation-invariant wavelets,
polar mapping [154, 167] has been proposed, and to produce rotation- and scale-
invariant wavelets, log-polar mapping [104] has been used. Le Moigne et al. [103]
explored use of wavelet features in image registration.

To verify the presence of objects of a given size, wavelet coefficients at the ap-
propriate scale or subband should be examined. If wavelet coefficients at a subband
are sufficiently high, it is an indication that objects (intensity variations) at that scale
are present in the image. A threshold value may be used to count the coefficients that
are sufficiently high. Assuming nl is the number of coefficients that are higher than
a prespecified threshold value at subband l, then

L77(l) = nl

nmax
(4.162)

may be used as a feature, where nmax is the number of pixels in the subband. This
feature, which is relatively invariant to image rotation, can be used to characterize
an image for the presence of objects of a given size [109].

For an image representation to be efficient, it should be local, directional, and
multiresolution [47]. Wavelets are local and multiresolution but capture only limited
directional information. To overcome this weakness, contourlet transform has been
proposed [47]. After applying a multiscale transform, a local directional transform
is performed to gather nearby basis functions at the same scale into linear structures,
producing elongated supports. By repeating the process at multiresolution, supports
at various scales, directions, and aspect ratios are formed to create contourlet filter
banks. It is shown that contourlet representation can optimally reproduce piecewise
boundaries that are continuous up to second derivatives. The contourlet transform
proposed by Do and Vetterli [47] is not shift-invariant due to its filter bank structure.
A shift-invariant version of the contourlet transform has been proposed by Cunha
et al. [40].

The image transforms discussed above capture global image information, except
for the wavelet transform, which captures both local and global information de-
pending on the wavelet coefficients used. With wavelet coefficients it is possible to
tell the presence of an object of a given size at a particular location in an image.
Transform coefficients are generally not translation, rotation, and scale invariant,
although means to produce translation, rotation, and scale invariant features have
been proposed [79, 94, 154, 158, 167].
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4.5 Filter Responses

The transform coefficients described above (except for the wavelet transform coeffi-
cients) capture global information about spatial frequencies in an image. To capture
local spatial frequencies in an image, filter responses may be used.

4.5.1 Steerable Filter Responses

It is convenient to synthesize a filter of a desired orientation from a linear combina-
tion of a number of basis filters. The process can then steer a filter to any orientation,
making it possible to determine the response of an image to a filter of an arbitrary
orientation [59]. The process also makes it possible to determine the filter direction
that produces the maximum response at any image pixel.

Consider a 2-D Gaussian of standard deviation σ :

G(x,y,σ ) = 1

2πσ 2
exp

{

− (x2 + y2)

2σ 2

}

(4.163)

and oriented filters representing the derivatives of the Gaussian in x (0◦) and y (90◦)
directions:

G0◦
1 (x, y, σ ) = ∂

∂x
G(x, y,σ )

= − x

2πσ 4
exp

{

− (x2 + y2)

2σ 2

}

, (4.164)

G90◦
1 (x, y, σ ) = ∂

∂y
G(x, y,σ )

= − y

2πσ 4
exp

{

− (x2 + y2)

2σ 2

}

, (4.165)

then, the filter representing the first derivative of a 2-D Gaussian at orientation θ can
be obtained from

Gθ
1(x, y, σ ) = G0◦

1 (x, y, σ ) cos θ + G90◦
1 (x, y, σ ) sin θ. (4.166)

This implies that the response of an image f (x, y) to filter Gθ
1(σ ) at (x, y) can be

obtained by a weighted sum of the responses of the image to filters G0◦
1 (σ ) and

G90◦
1 (σ ) at (x, y), with the weights being cos θ and sin θ . That is,

L78(x, y, σ, θ) = f (x, y) ⊕ Gθ
1(x, y, σ )

= f (x, y) ⊕ G0◦
1 (x, y, σ ) cos θ

+ f (x, y) ⊕ G90◦
1 (x, y, σ ) sin θ

= A(x,y) cos θ + B(x, y) sin θ, (4.167)

where ⊕ implies convolution. A(x,y) and B(x, y) represent the responses of im-
age f (x, y) to G0◦

1 and G90◦
1 at (x, y). The orientation producing the highest re-
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sponse can be determined by finding the derivative of A(x,y) cos θ + B(x, y) sin θ

with respect to θ , setting it to zero, and solving for θ . This results in θ =
tan−1[B(x, y)/A(x, y)], which is the gradient direction at (x, y). Substituting this
θ into (4.167), we obtain the gradient magnitude at (x, y) in direction θ .

Freeman and Adelson [59] created a filter of an arbitrary orientation θ by a
weighted sum of a number of basis filters of appropriately oriented filters:

gθ (x, y) =
n∑

j=1

kj (θ)gθj (x, y), (4.168)

where gθj (x, y) is the j th basis filter with orientation θj , and kj (θ) is the associ-
ating weight. For instance, the filter representing the second derivative of Gaussian
calculated in orientation θ , Gθ

2(σ ), is obtained from

Gθ
2(x, y, σ ) =

3∑

j=1

kj (θ)G
θj

2 (x, y, σ ), (4.169)

where θ1 = 0, θ2 = 60◦, θ3 = 120◦, kj (θ) = [1 + 2 cos(2θ − 2θj )]/3,
and G0◦

2 (x, y, σ ) = σ−2(x2σ−2 − 1)G(x, y,σ ). G60◦
2 (x, y, σ ) and G120◦

2 (x, y, σ )

are obtained by rotating G0◦
2 by 60◦ and 120◦, respectively. Therefore, the response

of image f (x, y) to a second derivative of a 2-D Gaussian at an arbitrary orientation
θ can be computed from

L79(x, y, σ, θ) = f ⊕ Gθ
2(x, y, σ ). (4.170)

Note that L79 is a function of θ and, therefore, the orientation maximizing/minimiz-
ing this feature at each pixel can be determined by finding the derivative of L79 with
respect to θ , setting it to 0, and solving the obtained equation for θ . The calculated θ

will represent the maximum when Gθ
1 is positive and it will represent the minimum

when Gθ
1 is negative. For image edges, since the second derivative image intensity

at the edge points will be zero, to determine whether an edge is present at a pixel
or not, one can solve L79(x, y, σ, θ) = 0 for θ . If a solution can be obtained, edge
(x, y) will have direction θ .

Carneiro and Jepson [23, 24] proposed complex-valued steerable filters and used
the phase of the complex responses as features. Assuming Gθ

2(x, y, σ ) represents
the second derivative of a 2-D Gaussian in θ direction and Hθ

2 (x, y, σ ) is the Hilbert
transform of Gθ

2(x, y, σ ), and also letting

g(x, y, σ, θ) = Gθ
2(x, y, σ ) ⊕ f (x, y), (4.171)

h(x, y,σ, θ) = Hθ
2 (x, y, σ ) ⊕ f (x, y), (4.172)

then g(x, y, σ, θ) + jh(x, y, σ, θ) represents a complex response at (x, y). This re-
sponse can be written in polar form as

g(x, y, σ, θ) + ih(x, y, σ, θ) = ρ(x, y,σ, θ)eiφ(x,y,σ,θ). (4.173)

ρ(x, y,σ, θ) represents the amplitude and

L80(x, y, σ, θ) = φ(x, y,σ, θ) (4.174)
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Fig. 4.35 (a)–(f) Gradient
magnitude (L78) feature
images obtained for the
images in Fig. 4.1 when
letting σ = 2 pixels.
Invariance measures of
feature images (b)–(f) with
respect to feature image (a)
are BI = 0.97, NI = 0.98,
II = 0.96, RI = 0.97,
SI = 0.94, and the
corresponding repeatability
measures are BR = 0.91,
NR = 0.77, IR = 0.92,
RR = 0.80, SR = 0.85

represents the phase at (x, y). It has been shown that the phase feature is less sen-
sitive to noise than the amplitude feature and, thus, provides a more robust feature
than the amplitude in recognition [23, 24].

To capture scale as well as orientation information in an image Coggins and Jain
[35] used responses of the image to a combination of ring-shaped and wedge-shaped
filters. The ring-shaped filters capture scale while the wedge-shaped filters capture
orientation information about intensity variations in an image.

As an example of a steerable filter, the feature image obtained from L78 (the
gradient magnitude in the gradient direction when σ = 2) is calculated and shown
in Fig. 4.35. This is basically the gradient magnitude at each pixel after smoothing
with a Gaussian of standard deviation 2 pixels. This feature is highly invariant un-
der noise, monotone intensity transformation, and image rotation and scaling. The
repeatability of this feature is also relatively high. Although highly invariant under
noise, the repeatability of the feature degrades under noise as noise displaces some
of the gradient peaks. The elongated region boundaries contribute to this degrada-
tion as a gradient ridge is formed along a boundary and the peaks along a ridge
can displace due to noise. Interestingly, image scaling has preserved the locations
of many of the peaks, producing relatively high repeatability measures.

4.5.2 Gabor Filter Responses

A Gabor filter is a complex sinusoidal function modulated by a Gaussian [21]:

h(x, y) = G(x′, y′) exp
[
2πj (Ux + Vy)

]
, (4.175)
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where

G(x,y) =
(

1

2πλσ 2

)

exp

[

− (x/λ)2 + y2

2σ 2

]

(4.176)

is a 2-D Gaussian of standard deviation σ and aspect ratio λ and

x′ = x cosφ + y sinφ, (4.177)

y′ = −x sinφ + y cosφ (4.178)

represent rotation of the Gaussian coordinate system about the origin by φ. When
λ = 1, the Gaussian is circularly symmetric, so x′ = x and y′ = y.

The Fourier transform of h(x, y) is

H(u,v) = exp
{−2π2σ 2[(u′ − U ′)2λ2 + (v′ − V ′)2]}, (4.179)

where

u′ = u cosφ + v sinφ, (4.180)

v′ = −u sinφ + v cosφ, (4.181)

and (U ′,V ′) is rotation of (U,V ) by φ. H(u,v) is a bandpass Gaussian with the
minor axis having angle φ with the u-axis, aspect ratio 1/λ, radial frequency F =√

U2 + V 2 octave, and orientation θ = tan−1(V/U) radians.
If the modulating Gaussian has the same orientation as the complex sinusoidal

grating, then θ = φ and

h(x, y) = G(x′, y′) exp(2πjFx′) (4.182)

has spatial frequency response

H(u,v) = exp
{−2π2σ 2[(u′ − F)2λ2 + (v′)2]}. (4.183)

Gabor filter h(x, y) has real and imaginary parts:

hc(x, y) = G(x′, y′) cos(2πFx′), (4.184)

hs(x, y) = G(x′, y′) sin(2πFx′). (4.185)

Filtering image f (x, y) with h(x, y) produces complex image k(x, y) = kc(x, y) +
jks(x, y) with real and imaginary parts obtained from:

kc(x, y) = Re
[
k(x, y)

]= hc(x, y) ⊕ f (x, y)

= [G(x′, y′) ⊕ f (x, y)
]

cos(2πFx′), (4.186)

ks(x, y) = Im
[
k(x, y)

]= hs(x, y) ⊕ f (x, y)

= [G(x′, y′) ⊕ f (x, y)
]

sin(2πFx′). (4.187)

The amplitude A(x,y) and phase ψ(x, y) of the complex response k(x, y) of an
image with a Gabor filter of scale σ and orientation θ can be calculated at each
pixel (x, y) and used as features to characterize the spatial frequency characteristic
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of the neighborhood of (x, y):

L81(x, y, σ, θ) = A(x,y) =
√

k2
c (x, y) + k2

s (x, y), (4.188)

L82(x, y, σ, θ) = ψ(x, y) = tan−1
(

ks(x, y)

kc(x, y)

)

. (4.189)

Serre et al. [174] used real sinusoids modulated by Gaussian:

G(x,y,σ, θ, γ ) = exp

(

−X2 + Y 2

2σ 2

)

cos

(
2πX

γ

)

(4.190)

to extract image features, where θ shows filter orientation, σ shows filter scale, X =
x cos θ + y sin θ , Y = −x sin θ + y cos θ , and γ shows wavelength. The response of
an image to such a filter is

L83(x, y, σ, θ, γ ) = G(x,y,σ, θ, γ ) ⊕ f (x, y), (4.191)

which can be used to characterize the scale, orientation, and wavelength of the image
in the neighborhood of (x, y). Serre et al. [174] found responses of the neighborhood
of interest to such filters at 4 orientations, 16 scales, and 16 wavelengths, and used
the maximum response at a pixel as the feature value at the pixel.

Gabor filters have Gaussian transfer functions in the linear frequency scale. Fil-
ters that have Gaussian transfer functions in the logarithmic frequency scale are
known as Log-Gabor filters [54, 215]. A Log-Gabor filter in the polar coordinate
system G(r, θ) is the product of a radial component G(r) and an angular compo-
nent G(θ), where the radial component is defined by

G(r) = exp

{

−[log(r/f0)]2

2σ 2
r

}

(4.192)

and the angular component is defined by

G(θ) = exp

{

− (θ − θ0)
2

2σ 2
θ

}

. (4.193)

f0 is the center frequency, θ0 is the orientation angle, σr is the scale bandwidth and
σθ is the angular bandwidth. Therefore,

L84(r, θ) = f (r, θ) ⊕ G(r) ⊕ G(θ) (4.194)

shows response of the Log-Gabor filter with center frequency f0, orientation angle
θ0, scale bandwidth σr , and angular bandwidth σθ of image f with polar coordinates
(r, θ).

A class of self-similar Gabor filters, known as Gabor wavelets, was designed by
scaling and rotating a single Gabor filter h(x, y) known as the mother filter [123]:

hmn(x, y) = a−mh(x′, y′), (4.195)

where a > 1,

x′ = a−m(x cos θ + y sin θ), (4.196)

y′ = a−m(−x sin θ + y cos θ), (4.197)
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θ = nπ/k, k is the desired number of orientations, and m and n are indices of the
filters. Parameters a and k are chosen in such way that the half-peak magnitude
support of filter responses in the transform domain touch each other [82, 83, 123].

A bank of filters used in this manner produces an m×n matrix of features. Kyrki
et al. [98] showed that feature matrices calculated at corresponding points in two
images with rotational and scaling differences will have translational differences,
providing an easy means of comparing local image neighborhoods irrespective of
their orientations and scales. Dunn and Higgins [49] described the design of opti-
mal Gabor filters for a known texture in a recognition task. The process finds the
center frequency and bandwidth of each filter through a training process to produce
minimum classification error.

Image features captured by Gabor filters of various scales and orientations
characterize intensity variations in an image locally and have been used in tex-
ture discrimination [21, 76, 81, 142, 200], as well as in image matching [124]
and object recognition [165, 231]. The 1-D version of the Gabor filter h(x) =
G(x) exp(2πjUx) was introduced by Gabor [61] and shown to minimize combined
uncertainty in the spatial and frequency domain. Gabor filter was extended to 2-D
by Daugman [45], showing that in 2-D also the filter provides optimal localization
in space and frequency. This property makes it possible to design filters that are spa-
tially well localized and can provide narrow frequency and orientation responses.
A comparative study carried out by Randen and Husøy [156] finds that optimal joint
resolution in the spatial and frequency domain does not necessarily imply optimal
recognition performance. The study finds that quadrature mirror filters [155] with
sharper frequency responses compared to Gabor filters, but wider impulse responses
have a superior discrimination power than Gabor filters.

Gabor filters have a number of nice properties. First, they are smooth and in-
finitely differentiable. Second, their modulus transforms are monomodal and have
no side lobes in the frequency domain. Third, they are optimally joint-localized in
the space and frequency domains. In spite of these nice properties, Gabor filters have
a number of drawbacks. For example, it is not possible to build complete orthogonal
bases and often non-orthogonal overlapping bases are used, involving redundancies.
Gabor filters are bandpass filters, and as such they are inadequate in covering the
lowest and the highest frequencies in an image. Moreover, it is difficult to cover
the mid-frequencies uniformly. To overcome some of these drawbacks, Fischer et
al. [55] proposed an overcomplete multiresolution scheme resembling the recep-
tive field of simple cortical cells, using log-polar coordinates in the Fourier domain,
uniformly covering the frequency domain.

4.5.3 Mask Correlation Responses

Masks can be designed to capture desired spatial frequencies in an image. Cohen
et al. [36] used the following 2 × 2 orthogonal masks to capture low as well as high
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frequencies horizontally, vertically, and diagonally.

H1 =
[

1 1
1 1

]

, H2 =
[

1 1
−1 −1

]

,

H3 =
[

1 −1
1 −1

]

, H4 =
[

1 −1
−1 1

]

.

(4.198)

Assuming f (x, y) is an image normalized to have mean of 0 and letting f (d)(x, y)

represent the image at resolution d , the following features for i = 1, . . . ,4 capture
low and high frequency characteristics at location (x, y) in an image.

L85(x, y, d, i) = Hi ⊕ f (d)(x, y), i = 1, . . . ,4. (4.199)

By finding the responses of these masks to different resolutions of an image, local
frequency characteristics of the image can be determined.

Laws [99] created 3 × 3, 5 × 5, and 7 × 7 masks and used responses of the masks
within a 15 × 15 neighborhood to characterize multi-scale frequency characteristics
of the neighborhood. For instance, to create 5 × 5 masks, the following 1-D masks

B0 = ( 1 4 6 4 1),

B1 = (−1 −2 0 2 1),

B2 = (−1 0 2 0 −1),

B3 = (−1 2 0 −2 1),

B4 = ( 1 −4 6 −4 1)

(4.200)

were used. By convolving any one of the above masks taken horizontally with any
one of the masks taken vertically, a 5 × 5 mask will be obtained. Overall, 25 such
2-D masks will be obtained from all combinations. Created masks have mean of 0
except for mask B00 = Bt

0 ⊕ B0, which has a nonzero mean. The B00 convolution
result is used to normalize convolution results by other 5 × 5 masks and reduce the
effect of image contrast on the calculated features. Therefore, denoting Bt

i ⊕ Bj by
Bij for i, j = 0, . . . ,4, and letting

F0 = f (x, y) ⊕ B00, (4.201)

the following 24 features:

L86(x, y, i, j) = [f (x, y) ⊕ Bij

]
/F0, (4.202)

where i, j = 0, . . . ,4, and i + j > 0, can be used to characterize spatial frequencies
in the 5×5 neighborhood centered at (x, y). Similar features can be calculated from
3 × 3 and 7 × 7 masks.

Examples of mask correlation feature images are given in Figs. 4.36, 4.37, 4.38
using Laws masks B11, B22, and B33 in L86. As can be observed from the feature
images, these masks capture details at different scales in an image. Invariance and
repeatability measures of these features for lower-order masks are generally higher
than those for higher-order masks.
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Fig. 4.36 (a)–(f) Laws L86
feature images calculated by
letting Bij = B11 and using
the images in Fig. 4.1. The
invariance measures of
feature images (b)–(f) when
computed with respect to
feature image (a) are
BI = 0.86, NI = 0.96,
II = 0.99, RI = 0.90,
SI = 0.96, and the
corresponding repeatability
measures are BR = 0.93,
NR = 0.83, IR = 0.95,
RR = 0.62, SR = 0.95

Fig. 4.37 (a)–(f) Laws L86
feature images when
Bij = B22, producing
invariance measures
BI = 0.75, NI = 0.95,
II = 0.98, RI = 0.92,
SI = 0.96, and repeatability
measures BR = 0.93,
NR = 0.89, IR = 0.95,
RR = 0.81, SR = 0.93

To emphasize center-symmetric patterns, Harwood et al. [75] used the following
3 × 3 mask.

g3 g2 g4
g1 g′

1
g′

4 g′
2 g′

3

gi and g′
i denote opposing intensities with respect to the center pixel (x, y). Then,

the covariance measure

L87(x, y) =
1
4

∑4
i=1(gi − μ)(g′

i − μ)

VAR
, (4.203)
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Fig. 4.38 (a)–(f) Laws L86
feature images calculated by
letting Bij = B33, resulting in
invariance measures
BI = 0.93, NI = 0.94,
II = 0.98, RI = 0.92,
SI = 0.91, and repeatability
measures BR = 0.83,
NR = 0.85, IR = 0.91,
RR = 0.87, SR = 0.93

where

μ = 1

8

4∑

i=1

(gi + g′
i ) (4.204)

and

VAR = 1

8

4∑

i=1

(
g2

i + g′
i
2)− μ2 (4.205)

are rotation invariant and produce a higher response in a more symmetric neighbor-
hood.

The symmetry feature described in (4.203) is invariant to intensity scaling due to
normalization by VAR. By using the rank-order of the intensities rather than the raw
intensities, a symmetry feature is obtained that is invariant to monotone changes in
intensities also [75].

Johansson et al. [87] used twenty 5 × 5 masks that represented different types
of corners and by finding the correlation responses of the masks with an image
identified various corners in an image.

Rather than using fixed masks, Benke et al. [18] and You and Cohen [225] used
masks that adapted to local patterns. Ojala et al. [138, 139] created an adaptable
3 × 3 mask at a pixel by thresholding intensities within the mask with the center
intensity, obtaining a binary mask. Values within the mask were then multiplied by
prespecified values based on their positions within the mask to encode local intensity
patterns to numbers that could identify different patterns. For example, the pattern
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in the following 3 × 3 neighborhood is given value 98.

10 15 3
12 13 8
15 25 9

−→
0 1 0
0 0
1 1 0

×
1 2 4
8 16

32 64 128

=
0 2 0
0 0
32 64 0

−→ 98.

The leftmost mask shows intensities in a 3 × 3 neighborhood. Intensity at the
center of the mask, in this case 13, is used as the threshold value. Entries with values
higher than or equal to 13 are set to 1 and those below 13 are set to 0 as shown in the
binary mask. The rightmost mask contains prespecified values that when multiplied
by the binary mask produces the values shown in the bottom mask. Sum of values
in the bottom mask will be the response of the adaptive filter to the neighborhood.
The sum, which varies between 0 and 255, identifies various intensity patterns in a
3 × 3 neighborhood. Note that the measure is invariant to image contrast due to the
thresholding step.

4.6 Differential Features

Koenderink and van Doorn [96] have shown that certain filter operations are equiv-
alent to partial derivatives of image intensities after smoothing. They also show that
concatenation of such filter operations are equivalent to higher order derivatives of
image intensities with more smoothing. Based on this finding, ter Haar Romeny
et al. [194] derived a number of derivative-based invariants by concatenating Gaus-
sian derivatives of different degrees. Letting f̄ (x, y) represent a Gaussian filtered
image and denoting the derivatives of the smoothed image in x and y directions by
f̄x(x, y) and f̄y(x, y), respectively, and second derivatives by f̄xx(x, y), f̄xy(x, y),
and f̄yy(x, y), the following are rotationally invariant features [194]:

L88(x, y) = f̄ (x, y), (4.206)

L89(x, y) = {f̄ 2
x (x, y) + f̄ 2

y (x, y)
} 1

2 , (4.207)

L90(x, y) = f̄xx(x, y) + f̄yy(x, y), (4.208)

L91(x, y) = {2f̄x(x, y)f̄y(x, y)f̄xy(x, y)

− f̄ 2
x (x, y)f̄yy(x, y) − f̄ 2

y (x, y)f̄xx(x, y)
}

/{
f̄ 2

x (x, y) + f̄ 2
y (x, y)

}3/2
, (4.209)

L92(x, y) = {f̄x(x, y)f̄y(x, y)
(
f̄yy(x, y)

− f̄xx(x, y)
)+ f̄xy

{
f̄ 2

x (x, y) − f̄ 2
y (x, y)

}

/
{
f̄ 2

x (x, y) + f̄ 2
y (x, y)

}3/2
. (4.210)
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Fig. 4.39 (a)–(f) Smoothed
intensity (L88) feature images
obtained from the images in
Fig. 4.1 using a Gaussian
smoother of standard
deviation 2 pixels. The
invariance measures of
feature images (b)–(f) with
respect to feature image (a)
are BI = 0.98, NI = 0.98,
II = 0.90, RI = 0.97,
SI = 0.97, and the
corresponding repeatability
measures are BR = 0.84,
NR = 0.65, IR = 0.81,
RR = 0.73, SR = 0.82

Fig. 4.40 (a)–(f) The LoG
(L90) feature images
calculated using a Gaussian
of standard deviation 2 pixels
and the images in Fig. 4.1.
Obtained invariance measures
are BI = 0.97, NI = 0.97,
II = 0.97, RI = 0.99,
SI = 0.87, and the
corresponding repeatability
measures are BR = 0.87,
NR = 0.72, IR = 0.87,
RR = 0.89, SR = 0.85

Features L88–L92 are called smoothed intensity, gradient magnitude, Laplacian,
isophote curvature, and flowline curvature of smoothed intensity, respectively [194].
The intensity derivatives of various degrees after image smoothing are obtained by
convolving Gaussian derivatives of various degrees with an image, combining both
image smoothing and intensity derivative into one operation. By changing the stan-
dard deviation of the Gaussian, derivatives of an image at various resolutions are
obtained, creating derivative-based features at different resolutions.

Examples of feature images obtained from the smoothed intensity (L88) and
the Laplacian (L90) are shown in Figs. 4.39 and 4.40, respectively. The images
in Fig. 4.39 were obtained by smoothing the images in Fig. 4.1 with a Gaussian
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of standard deviation 2 pixels. Note that the smoothed intensity feature (L88) is
not the same as the mean intensity feature (L2). The mean intensity represents the
global average of intensities in a window, while the smoothed intensity is a Gaussian
weighted averaging of the intensities and so is a locally sensitive feature.

The images in Fig. 4.40 show the LoG of standard deviation 2 pixels of the im-
ages in Fig. 4.1. Although the repeatability measures of these features are relatively
low, the invariance measures are quite high.

Differential features have been used to identify distinct or salient neighborhoods
and to determine corresponding neighborhoods in two images of a scene [184, 209,
210].

Among the differential features, Laplacian of Gaussian (LoG) has received the
most attention due to its ability to detect dark and bright blobs of different sizes
in an image. When an image that contains varying sized blobs is convolved with a
Laplacian of Gaussian (LoG), local maxima or minima will be obtained depending
on whether the blob is darker or brighter than its surroundings. Local exterma of a
LoG of an image identify the center points of the blobs.

Letting ∇2Gσ denote the LoG of standard deviation σ , the result of convolving
∇2Gσ with image f (x, y) will be gσ (x, y) = ∇2Gσ ⊕ f (x, y). Quantity

L93(x, y, σ ) = gσ (x, y) (4.211)

can then be used as the feature value at (x, y) and local extrema of this feature,
which identifies the centers of the blobs, can be used as control points in an image.

Blostein and Ahuja [19] have shown that the absolute response of a LoG at an
extremum point increases as the diameter of the circular blob, D, approaches 2

√
2σ .

If the blob is not circular, D will be its effective diameter. This property makes it
possible to determine the size of a blob by changing σ and finding the value of σ that
produces the highest response. The location where L93(x, y, σ ) becomes extremum
as σ is varied, therefore, can be used as a control point with associating scale σ

[115, 116].
The difference of Gaussians (DoG) has been used as an approximation to LoG

for speed purposes. Since a circle under affine transformation converts to an ellipse,
and the center of a circle under an affine transformation converts to the center of
the ellipse, control points obtained for circular and elliptic blobs are invariant under
affine transformation [64, 101, 102].

It should be mentioned that the LoG of an image produces extrema at non-
circular and non-elliptic blobs also. However, extrema of non-circular and non-
elliptic blobs are not guaranteed to remain invariant under affine transformation.

4.7 Spatial-Domain Features

Features can also be calculated from the raw image intensities. These include [65]:

1. Deviation from mean: The average absolute difference between the mean inten-
sity and other intensities in an image
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L94(x, y) = 1

MN

M−1∑

x=0

N−1∑

y=0

∣
∣f (x, y) − f̄

∣
∣, (4.212)

where f̄ is the mean intensity.
2. Absolute center contrast: The average absolute difference between the center

intensity and other intensities in an image

L95(x, y) = 1

MN − 1

M−1∑

x=0

N−1∑

y=0

∣
∣f (x, y) − fc

∣
∣, (4.213)

where fc is the intensity at the center pixel in the image.
3. Center contrast: The average difference between the center pixel and other pixels

L96(x, y) = 1

MN − 1

M−1∑

x=0

N−1∑

y=0

(
f (x, y) − fc

)
. (4.214)

4. Average local contrast: The average of absolute difference between intensities of
adjacent pixels

L97(x, y) = 1

MN

M−1∑

x=0

N−1∑

y=0

1

n

∑

x′,y′

∣
∣f (x, y) − f (x′, y′)

∣
∣, (4.215)

where (x′, y′) represents a pixel adjacent to (x, y) and n is the number of such
pixels [65].

5. Dominant intensity: The dominant intensity in the image

L98 = i such that H(i) = max
k

{
H(k)

}
, (4.216)

where H(k) is the number of pixels in the image with intensity k.

These features are typically calculated within small windows in an image and, thus,
describe local spatial characteristics of the image. The features are rotation-invariant
if circular neighborhoods are used in the calculations.

Examples of feature images obtained from features L94–L98 using the images
in Fig. 4.1 are given in Figs. 4.41, 4.42, 4.43, 4.44, 4.45. The invariance measures
of these features are generally high, although their repeatability measures are low.
There are exceptions though. For instance, the center contrast has a relatively high
repeatability under noise and geometric transformation. Worst repeatability mea-
sures are obtained from the dominant intensity feature, since it remains unchanged
with great variation in window position. The feature value at a window depends
on a single intensity, ignoring other intensities in the window and producing the
same (nonunique) feature in a wide area in an image, consequently producing poor
repeatability measures.

Edges in an image also represent spatial features; however, edges appear at only
a small number of pixels in an image. To assign a spatial feature value to all pixels
in an edge image, the Euclidean distance of a pixel to the edge pixel closest to it can
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Fig. 4.41 (a)–(f) Deviation
from mean (L94) feature
images obtained using the
images in Fig. 4.1. The
invariance measures of
feature images (b)–(f) when
calculated against feature
image (a) are BI = 0.82,
NI = 0.94, II = 0.93,
RI = 0.93, SI = 0.93, and the
corresponding repeatability
measures are BR = 0.50,
NR = 0.59, IR = 0.71,
RR = 0.60, SR = 0.17

Fig. 4.42 (a)–(f) Absolute
center contrast (L95) feature
images, producing invariance
measures BI = 0.81,
NI = 0.93, II = 0.94,
RI = 0.95, SI = 0.93, and
repeatability measures
BR = 0.87, NR = 0.75,
IR = 0.88, RR = 0.74,
SR = 0.70

be used. Distances of non-edge pixels to edge pixels in an image can be determined
efficiently from the distance transform of the image [20, 42, 130]:

L99(x, y) = DT(x, y), (4.217)

where DT(x, y) represents the Euclidean distance between pixel (x, y) and the edge
pixel closest to it. Distances at edge pixels will be 0. Ridges in a distance transform
image, which are also known as medial axis ridges, represent unique points that
depend only on the edges in an image. A medial-axis point is a point that has two or
more edge points at the same distance to it. A medial axis contour traces the center
of a rolling circle that changes its radius to remain tangent to two or more edge
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Fig. 4.43 (a)–(f) Center
contrast (L96) feature images,
producing invariance
measures BI = 0.87,
NI = 0.92, II = 0.84,
RI = 0.95, SI = 0.96, and
repeatability measures
BR = 1.00, NR = 0.86,
IR = 0.97, RR = 0.85,
SR = 0.79

Fig. 4.44 (a)–(f) Average
local contrast (L97) feature
images, resulting in
invariance measures
BI = 0.93, NI = 0.97,
II = 0.95, RI = 0.98,
SI = 0.94, and repeatability
measures BR = 0.82,
NR = 0.74, IR = 0.85,
RR = 0.67, SR = 0.09

contours without ever intersecting an edge contour. Medial axis contours merge to
create unique points in an image. A medial axis pixel

L100 = (x, y) (4.218)

that has more than two medial axis pixels adjacent to it can be used as a unique
location and a unique feature.

Distance transform features are rotation-invariant and are useful when dealing
with binary (edge) images. Such features are, however, very sensitive to noise. A sin-
gle noisy edge pixel can drastically change the distance transform and so the medial
axis structure of an edge image. A distance transform scheme that is defined in terms
of a nonlinear function of distances has been proposed by Goshtasby [67], which is
less sensitive to noise.
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Fig. 4.45 (a)–(f) Dominant
intensity (L98) feature
images, producing invariance
measures BI = 0.86,
NI = 0.86, II = 0.81,
RI = 0.90, SI = 0.88, and
repeatability measures
BR = 0.09, NR = 0.08,
IR = 0.74, RR = 0.20,
SR = 0.20

4.8 Color Features

Color images contain more information than gray scale images. Average color as
well as number of color edges have been used as features to recognize images [25].
Assuming red, green, and blue components of the color at pixel (x, y) are denoted by
R(x, y), G(x,y), and B(x, y), average color at the pixel using a 3×3 neighborhood
will be

L101(x, y) = (R̄, Ḡ, B̄
)
, (4.219)

where

R̄ = 1

9

1∑

k=−1

1∑

l=−1

R(x + k, y + l), (4.220)

Ḡ = 1

9

1∑

k=−1

1∑

l=−1

G(x + k, y + l), (4.221)

B̄ = 1

9

1∑

k=−1

1∑

l=−1

B(x + k, y + l). (4.222)

Note that this feature is vector-valued and has three components.
To determine the number of color edges, first an image is separated into regions

of uniform color. To reduce the number of colors in an image, R, G, and B , values
are mapped from 0–255 to a smaller range, such as 0–15. Then the number of pixels
on the boundaries of regions of the same color are counted. Assuming k different
colors are available, and there are ni pixels on the boundaries of regions of color i,
feature

L102 = {ni : i = 1,2, . . . , k}, (4.223)
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which has k components, can be used to describe the color characteristics of the
image. Note that since a boundary pixel is shared between two regions, it is counted
twice.

Assuming C1 = (R1,G1,B1) and C2 = (R2,G2,B2) are average or representa-
tive colors of two regions,

L103(C1,C2) = {|R2 − R1|, |G2 − G1|, |B2 − B1|
}

(4.224)

measures the relative color of the regions. Cheng et al. [30] used relative color as
the feature to distinguish malignant lesions from benign lesions in color skin im-
ages. Using the difference between the color of a lesion and the color of the normal
skin surrounding the lesion, the lesion is classified into one of many categories and
through a learning process malignant lesions are distinguished from the benign ones.
Lu and Chang [118] used color distance ‖C1 − C2‖ as the feature to discriminate
images.

To segment microscopic bone marrow images, Zhang et al. [229] used the dom-
inant color and the density of the dominant color. Dominant color represents the
color with the most pixels in an image. Denoting the number of pixels of color C in
an image or subimage by NC, dominant color is defined by

L104 = Ci such that max
k

{NCk
} = NCi

. (4.225)

Density of dominant color is the ratio of number of pixels with dominant color
to the total number of pixels in the image. That is, if Ci denotes the dominant color
and NCi

is the number of pixels with the dominant color, then density of dominant
color will be

L105 = NCi∑
k NCk

. (4.226)

To provide illumination invariant color features, Andreadis and Tsalides [7] con-
verted colors in the RGB coordinate system to HSI (hue, saturation, intensity) col-
ors, discarded the I component, which represents scene illumination, and used the
H and S components that represent surface characteristics to segment an image.
Given the RGB values at a pixel, and letting

θ = 0.5[(R − G) + (R − B)]
[(R − G)2 + (R − B)(G − B)]1/2

, (4.227)

the hue at the pixel is computed from

L106 = H = cos−1(θ) (4.228)

when G > B . Otherwise, hue is calculated from

L106 = H = 360◦ − cos−1(θ). (4.229)

Saturation at the same pixel is calculated from

L107 = S = 1 − 3 min(R,G,B)

(R + G + B)
. (4.230)
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Salvador et al. [164] proposed the following illumination invariant color features
for image recognition.

L108 = tan−1
{

R

max(G,B)

}

, (4.231)

L109 = tan−1
{

G

max(R,B)

}

, (4.232)

L110 = tan−1
{

B

max(R,G)

}

. (4.233)

One may also convert RGB color coordinates to Lab color coordinates [92],
discard the L component, which represents luminance, and use a and b, which rep-
resent chroma, as illumination-invariant features to recognize/match images.

Heo et al. [77] considered each component of the color at a pixel a product of
(1) brightness ρ, which is a function of the angle between the direction of light and
the surface normal, (2) a global scale factor s, which depends on quantization step
in image acquisition, and (3) power γ of actual color at the pixel, which depends on
the camera. For example, the red component of color at a pixels is defined by ρsRγ .
If instead of colors, the logarithm of colors is used, the red component will be

R′ = logρ + log s + γ logR. (4.234)

logρ, which is a function of surface normal of the scene point being imaged can be
removed from R′ by subtracting the average of the three transformed color compo-
nents from it. Therefore, if

I ′ = R′ + G′ + B ′

3
(4.235)

is the average of the three color components, then

R′′ = R′ − I ′ = α + β logR, (4.236)

will be a linear function of the logarithm of the actual color of the point. Repre-
senting colors in this manners makes matching of patches in different images by
cross-correlation independent of the surface normal and differences in camera pa-
rameters capturing the images [77].

4.9 Fractal Dimension

Fractal dimension highly correlates with human perception of roughness [149] and
can be used to characterize image details. Different methods for estimating the frac-
tal dimension of an image have been proposed [183].

Consider an object that is of unit size and suppose reducing the size of the object
by 1/ε in each spatial dimension. Then, if N(ε) of the scaled-down objects perfectly
fit inside the original object, the dimension D of the fractal structure will be

L111 = D = lim
ε→0

logNε

log 1
ε

, (4.237)
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which is also known as the Hausdorff-Besicovitch dimension [183]. While the defi-
nition of fractal dimension via the notion of self-similarity is clear, its computation
using image data is less straightforward.

A popular method for estimating the fractal dimension is via box counting [27,
166]. Consider an M ×M image that is scaled down to an L×L image with 1 ≤ L ≤
M/2. The scale ratio ε is, therefore, L/M . Treating intensities as the third dimension
(z) and partitioning the (x, y) image space into an L×L grid, fractal dimension can
be estimated as follows. Assuming there are G intensities in the image and there is
a block of size L′ = �L × G/M� at each grid element, and assuming intensities in
the ij th grid element fall between k and l, define

nε(i, j) = l − k + 1 (4.238)

and calculate

Nε =
∑

i

∑

j

nε(i, j). (4.239)

Nε is obtained for different values of ε (different values of L) and fractal dimension
D is estimated from the linear least-squares fit of log(Nε) versus log(1/ε).

In a method developed by Peleg et al. [148], the area of the intensity surface is de-
termined at various resolutions and the rate of decrease in surface area as resolution
is decreased is used to calculate fractal dimension.

Fractal dimension has been calculated using the image power spectrum by treat-
ing intensities as a fractional Brownian function f and noting that the power spectral
density P of function f is proportional to its radial frequency [149, 208]. That is,

Pf (u, v) ∝ 1

ρβ
, (4.240)

where β ≥ 0, ρ = √
u2 + v2 is the radial frequency, and (u, v) are the 2-D frequency

coordinates. The exponent β in the above equation relates to the fractal dimension
by [168]:

f112 = D = 3.5 − β/2. (4.241)

Estimation of the fractal dimension by the power spectrum involves: (1) computing
the power spectrum of the image, (2) taking the power spectrum along various radial
directions θ = tan−1(v/u), (3) determining exponent β of the power-law curve that
best fits each radial power spectrum, (4) finding average of β over various θ , and
(5) estimating fractal dimension D from (4.241). Note that the fractal dimension
of an image estimated in this manner is a rotation-invariant feature if β is estimated
radially at a sufficiently large number of directions. Lundahl et al. [119] showed that
a fractal dimension determined in this manner involves errors due to the discrete
use of power spectrum rather than the continuous power spectrum and proposed a
maximum likelihood estimation of the fractal dimension.

Fractal dimension has been estimated through wavelet analysis also [126, 195,
219]. Variances of wavelet coefficients are found to follow a power law, from which
the fractal dimension is computed. An estimated fractal dimension is found to de-
pend on the choice of the wavelet orthonormal bases [56]. It is also found that a
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Fig. 4.46 (a)–(f) Fractal
(L111) feature images
obtained using the images in
Fig. 4.1. The invariance
measures of feature
images (b)–(f) when
computed in reference to
feature image (a) are
BI = 0.85, NI = 0.98,
II = 0.95, RI = 0.98,
SI = 0.91, and the
corresponding repeatability
measures are BR = 0.05,
NR = 0.47, IR = 0.59,
RR = 0.48, SR = 0.06

Fig. 4.47 (a) A 32 × 32
image displayed in intensity
form. (b) The same image
displayed as a 3-D surface by
letting the intensities show
the height values.
(c) Triangulation of the height
values. (d)–(f) The surfaces
obtained at resolutions
σ = (1.5)0, (1.5)2, and
(1.5)4. The surface points at
the pixel locations are
triangulated and the sum of
the triangle areas is used as
the area of the surface

fractal dimension calculated from wavelet coefficients could overestimate the actual
fractal dimension due to the local nature of the wavelet coefficients [56].

Examples of fractal feature images are given in Fig. 4.46 using the images in
Fig. 4.1. Fractal dimension at a pixel is calculated using a circular window of radius
8 pixels centered at the pixel. To calculate the fractal dimension, intensities are
considered height values, creating a surface from an array of intensities. The area of
this surface changes as the resolution of the image is changed. The area of a surface
is calculated by triangulating the height values, finding the area of each triangle, and
finding the sum of the triangle areas over the image domain. This process is depicted
in Fig. 4.47.

When the image is smoothed with a Gaussian of standard deviation σi , if the
obtained surface area is Sσi

, xi = log(Sσi
) is calculated for σi = (1.5)(i−1) and i =

0, . . . ,7. Therefore, σ0 = 1/1.5, σ1 = 1, σ2 = 1.5, σ3 = (1.5)2, and so on. Letting
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yi = log(1/σ 2
i ) for i = 0, . . . ,7, and fitting a line to (xi, yi) for i = 0, . . . ,7 by the

least-squares method, the slope of the line will represent the fractal dimension of
the image.

An estimated fractal dimension should be in the range 2–3. However, digital in-
accuracies can cause the fractal dimension to become smaller than 2.0 or larger
than 3.0 for some images. To minimize digital error, smoothing is performed with
floating-point precision, and floating-point intensities are used in triangulating and
computing the surface area. Moreover, rather than smoothing individual local neigh-
borhoods (windows), the entire image is smoothed to eliminate boundary effects in
smoothing. The fractal dimensions calculated in this manner for windows of radius
8 pixels using Fig. 4.1 are shown in Fig. 4.46. These figures show mapping of the
fractal dimensions from [2,3] to [0,255] for viewing purposes.

The invariance property of fractal dimension is generally high, especially with re-
spect to noise, intensity transformation, and rotation. Invariance property of fractal
dimension is degraded by blurring and change in scale. The repeatability of fractal
dimension is relatively low, especially under blurring and change in scale. Although
fractal dimension cannot be used to compare images that have gone through reso-
lution or scale changes, they can be used to segment an image with respect to local
roughness by treating intensities in the image as height values.

Fractal dimension as a feature has been used in texture analysis. Chen et al.
[29] used fractal dimension to segment ultrasound breast images, separating ma-
lignant from benign tissues; Chen et al. [28] used fractal dimension to segment
CT liver images; and Lee et al. [105, 106] used fractal dimension to segment ul-
trasonic liver images. Wu et al. [222] experimentally demonstrate that fractal di-
mensions calculated at multiresolutions are able to segment liver images more
accurately than features calculated from gray-level spatial dependence matrices
(Sect. 4.1.2.1), gray-level run-length matrices (Sect. 4.1.2.2), and Fourier power
spectrum (Sect. 4.4.3).

4.10 Information-Theoretic Features

Different neighborhoods in an image carry different information. The higher the
information content in a neighborhood the less ambiguous it is. Information content
in an image can be measured by entropy [175]:

L113 = −
255∑

i=0

P(i) log2 P(i), (4.242)

where P(i) is the probability that if a pixel is randomly selected in the image it will
have intensity i. The higher the entropy of an image, the more informative the image
will be.

If the entropy calculated for a circular region of radius r is E(r), the radius
maximizing E(r) is selected as the scale of the region. The calculated entropy can
then be weighted by some measure of self-dissimilarity in scale-space and local
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Fig. 4.48 (a)–(f) Local
entropy (L113) feature images
obtained from the images in
Fig. 4.1. The invariance
measures of feature
images (b)–(f) when
computed with respect to
feature image (a) are
BI = 0.82, NI = 0.89,
II = 0.97, RI = 0.88,
SI = 0.90, and the
corresponding repeatability
measures are BR = 0.25,
NR = 0.51, IR = 0.84,
RR = 0.46, SR = 0.32

maxima of the weighted entropies can be chosen as salient points [89]. Fergus et al.
[53] selected a region of scale r centered at a salient point and by mapping it to a
region of a fix size, normalize the scales of all regions to the same, thereby providing
a means to compare regions of different scales to each other.

Saliency can also be measured by uniqueness, computed from the mutual in-
formation [37, 175] between two neighborhoods. Assuming PA(i) and PB(i) are
probabilities that intensity i appear in A and B , and PAB(i, j) is the probability that
corresponding pixels in A and B have intensities i and j , respectively, then mutual
information between A and B is computed from

L114 =
∑

i

∑

j

PAB(i, j) log2
PAB(i, j)

PA(i)PB(j)
. (4.243)

The higher the mutual information between the neighborhoods, the more de-
pendent intensities in the neighborhoods will be. A unique neighborhood A will,
therefore, have a small mutual information when compared with each neighbor-
hood B adjacent to it. A neighborhood with 8 surrounding neighbors will be unique
if the maximum mutual information calculated with the 8 neighbors is sufficiently
small and locally minimum. Ullman et al. [205] found that when the size of a neigh-
borhood is adjusted to the size of the pattern to be recognized the most accurate
recognition will be achieved when using mutual information to measure similarity
between patterns.

Uniqueness has also been measured using Pearson correlation [39, 70] and in-
tensity variance [131, 132, 197]. Pixels belonging to unique neighborhoods produce
more robust matches than pixels belonging to not so unique neighborhoods [13].

Examples of entropy feature images are given in Fig. 4.48. The entropy of the
circular region of radius 8 pixels centered at each pixel in the images in Fig. 4.1 is
calculated and assigned to the pixel to obtain the feature images shown in Fig. 4.48.
Low entropies are obtained in homogeneous areas while high entropies are obtained
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in detailed areas. Entropy remains highly invariant under monotone intensity trans-
formation, while it is most influenced by blurring. The repeatability of entropy is
also the lowest under blurring and generally low under other image changes.

4.11 Other Features

Other image features have been used in the past to analyze images. This includes
scale-trace features, trace-transform features, extrema-based features, and psycho-
logically inspired features.

4.11.1 Scale-Trace Features

A scale-trace is a sequence of numbers representing the property value at a pixel
under changes in image resolution [71]. As image resolution is decreased, the inten-
sity at a pixel is influenced by the intensities of pixels farther from it. A scale-trace
of intensities at a pixel depends on the intensities of pixels surrounding the pixel.

If fσ (x, y) is the intensity at (x, y) after smoothing image f (x, y) with a Gaus-
sian of standard deviation σ , the scale trace at pixel (x, y) is defined by:

L115(x, y, σ1, σ2,�σ) = {fσ (x, y) : σ = σ1, σ1 + �σ,

σ1 + 2�σ, . . . , σ2
}
. (4.244)

Note that scale trace is a vector-valued feature, which can be determined for any
image property. For instance, rather than the intensity, the gradient magnitude, the
Laplacian, the entropy, or other image properties can be used. A scale trace is repre-
sented by an array of scalars and is invariant under image orientation if smoothing
is performed using a circularly symmetric operator. Changing the scale of an im-
age will shift values in a scale-trace array. Hansen and Morse [71] used scale-trace
features to determine the scaling difference between two images.

4.11.2 Trace-Transform Features

Trace transform captures image information in a manner invariant to the image’s
orientation. To create a trace transform of an image, the image is scanned in all
directions and intensities along each scan direction are evaluated according to a
prespecified function [90, 91]. Given image f (x, y), the trace transform of it is an
image g(φ,ρ) where φ shows the scan direction with respect to the x-axis and ρ

shows distance of the scanline to the origin. Therefore, for a circular image, as-
suming origin is at the image center and the prespecified function is averaging, the
average intensity obtained in direction φ at distance ρ is saved at g(φ,ρ). Note
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Fig. 4.49 (a)–(f) Extrema
count ratio (L116) feature
images obtained using the
images in Fig. 4.1. The
invariance measures of
feature images (b)–(f) when
computed against feature
image (a) are BI = 0.83,
NI = 0.91, II = 0.96,
RI = 0.91, SI = 0.89, and the
corresponding repeatability
measures are BR = 0.37,
NR = 0.41, IR = 0.60,
RR = 0.47, SR = 0.33

that trace transforms of two images with rotational differences will have only trans-
lational differences. Petrou and Kadyrov [151] described a method for calculating
affine-invariant features from the trace transform of an image.

4.11.3 Extrema-Based Features

Mitchell et al. [128] used the number of intensity extrema in an image as a feature.
They found that the ratio of the number of extrema in two resolutions of an image
distinguish different textures from each other quite well. If the number of extrema
obtained by convolving an image with Gaussians of standard deviations σ1 and σ2
are n1 and n2, respectively, and σ2 > σ1, then they define an extrema-based feature
by:

L116(σ1, σ2) = n2

n1
. (4.245)

This feature is invariant to image rotation if computed within circular neighbor-
hoods. As the difference between the number of extrema intensities in two im-
ages increases, the images will have more spatial frequency differences. Using the
extrema-based ratios obtained from six different resolutions of an image, Mitchell
et al. [128] experimentally showed that extrema ratios have a higher discrimination
power than the same number of other spatially dependent features.

Examples of extrema-based features are given in Fig. 4.49 using the images in
Fig. 4.1. σ1 and σ2 were 1 pixel and 2 pixels, respectively. The ratio of extremum
counts is highly invariant to intensity mapping and to a lesser degree to noise and
image rotation. Its invariance property under blurring is relatively low. This feature
is not very repeatable, especially under blurring and change in image scale. This is
attributed to the displacement of extremum points under blurring or change in scale.
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A measure similar to the extrema count is the busyness feature introduced by
Dondes and Rosenfeld [48]. Busyness of a neighborhood is defined as the median
of absolute intensity difference of adjacent pixel intensities measured horizontally,
vertically, and diagonally within the neighborhood. Alternatively, the median of the
gradient magnitude of pixels within the neighborhood may be used.

L117(x, y) = medianx,y

{∥
∥f ′(x, y)

∥
∥
}
, (4.246)

where ‖f ′(x, y)‖ implies gradient magnitude at (x, y). If variations are abundant
within a neighborhood, the median gradient magnitude will be high, and if intensity
variations are rare, the median gradient magnitude will be low. This feature is also
rotation invariant if calculations are performed in circular neighborhoods.

4.11.4 Psychologically Inspired Features

Computational features that simulate the measures used by the human visual system
to distinguish different textures from each other have been proposed by Tamura et al.
[189]. These features include coarseness, directionality, and symmetry.

4.11.4.1 Coarseness

To determine the coarseness or fineness of image f (x, y) at a pixel, the difference
of average intensities of regions on opposing sides of the pixel is calculated hori-
zontally, vertically, and diagonally and under different region sizes. Then the region
size producing the highest difference is chosen as the coarseness measure at the
pixel. The average of coarseness values at all pixels in the image is then used as the
coarseness of the image.

The average intensity of a neighborhood of size 2k × 2k centered at (x, y) is

Ak(x, y) = 1

22k

∑

i

∑

j

f (i, j), (4.247)

where x − 2k−1 ≤ i ≤ x + 2k−1 − 1 and y − 2k−1 ≤ j ≤ y + 2k−1 − 1. Then, the
absolute difference between average intensities of adjacent neighborhoods of size
2k horizontally at (x, y) is computed

E0
k (x, y) = ∣∣Ak

(
x + 2k−1, y

)− Ak

(
x − 2k−1, y

)∣
∣. (4.248)

Similarly, differences vertically, E90
k , and diagonally, E45

k and E135
k , are calculated.

Among directions 0, 45, 90, and 135 degrees, the k maximizing E is found and
denoted by km. Finally, coarseness is calculated from

L118 = 1

MN

M−1∑

x=0

N−1∑

y=0

2km(x,y). (4.249)
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Fig. 4.50 (a)–(f) Scale
(L119) feature images
obtained using the images in
Fig. 4.1. The invariance
measures of feature
images (b)–(f) when
computed with respect to
feature image (a) are
BI = 0.94, NI = 0.97,
II = 0.98, RI = 0.96,
SI = 0.90, and the
corresponding repeatability
measures are BR = 0.49,
NR = 0.47, IR = 0.63,
RR = 0.63, SR = 0.74

This coarseness measure shows the average diameter of different-sized texture el-
ements in an image, and is approximately rotation invariant. The approximation is
because of the use of square neighborhoods rather than circular ones in the calcula-
tions.

Note that parameter km is associated with the pixel between two regions of
size 2km . To associate such a parameter with the pixel at the center of a region,
the absolute differences of a region with its 8 neighbors is determined and the min-
imum absolute difference is used as the value at the pixel. This minimum can then
be calculated at a range of scales, and the scale producing the highest minimum is
taken as the scale of the region centered at the pixel.

Rather than finding the absolute difference between the region at (x, y) and the
regions surrounding it, the response of the image at (x, y) to a Laplacian of Gaus-
sian (LoG) of an appropriate standard deviation can be used. Blostein and Ahuja
[19] show that when the radius of the circle best approximating the region is r ,
highest response is obtained when standard deviation of the LoG is σ = r/

√
2. As-

suming the response of image f (x, y) to the LoG of standard deviation σ reaches
an extremum when σ = σm, the radius of the region centered at (x, y) will be

L119 = r = σm

√
2, (4.250)

which can be taken as the scale feature at pixel (x, y). Lowe [116] approximated a
LoG by the difference of two Gaussians and used the scale feature r at a pixel to
create a scale-invariant descriptor at the pixel.

Examples of scale feature L119 calculated for the images in Fig. 4.1 are given
in Fig. 4.50 starting from σ = 1 pixel and with increments of 0.5 pixels until σ =
D/2

√
2, where D is the diameter of the local circular neighborhood used in the

calculations. Gray pixels in these feature images correspond to detailed areas while
dark and bright pixels correspond to dark and bright homogeneous regions in the
image. Pixels where a minimum or a maximum is not found for the range of scales



4.11 Other Features 199

tested are set to black. The black ring around the boundary of the coin in the an
image shows pixels where extrema were not detected due to the absence of circular
regions at those pixels for the range of scales tested.

The invariance property of this scale feature is high under blurring, noise, and
intensity and geometric transformations. Under changes in scale, the feature values
change, degrading the invariance measure. The repeatability of the scale feature is
relatively low under blurring, noise, and intensity and geometric transformations.
This is because circular regions are scarce in these images and effective scales of
non-circular regions change with noise and other image changes.

4.11.4.2 Directionality

This feature identifies one or more dominant directions in an image and is obtained
from the histogram of gradient directions in the image. The most dominant direction
in an image is found from the highest peak in the gradient direction histogram.
A peak is required to have valleys on both sides with counts smaller than half that
at the peak. Under this condition, an image may have no dominant direction or have
more than one dominant direction. Therefore, the number of dominant directions in
an image, n, can be used as a rotation-invariant feature to characterize the image

L120 = n, number of dominant directions. (4.251)

If n > 1, and denoting the peak directions by θ0, . . . , θn−1, with θ0 denoting the
most dominant direction, then all directions can be normalized with respect to the
dominant direction to produce n − 1 rotationally invariant features

L121(i) = θi − θ0, i = 1, . . . , n − 1. (4.252)

4.11.4.3 Symmetry

Inspired by psychophysical evidence on symmetry and fixation point by primates,
Reisfeld et al. [160–162] suggested radial symmetry as a feature to characterize
local neighborhoods in an image. Kovesi [97] observed that symmetry points give
rise to patterns of local phase that can then be used to construct a contrast-invariant
feature with a value that depends on the level of symmetry of a spot than its contrast.

Loy and Zelinsky [117] calculated radial symmetry at a pixel using the sym-
metry contributions of pixels around it. This was discussed in Sect. 3.1.9 in detail.
Therefore, the symmetry feature S calculated in (3.36):

L122 = S =
rn∑

r=r1

Sr (4.253)

can be used to characterize the degree of radial symmetric of a neighborhood. This
symmetry feature is invariant to rotation and small changes in scale [117].
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4.12 Performance Evaluation

Invariance and repeatability properties of a number of representative features were
tested under image blurring, noise, and changes in image intensity and geometry.
Although a single image is used in the experiments, because a large number of
windows are taken from the image to calculate the features and the windows contain
a vast variety of intensity patterns, the results obtained on other images are not
expected to be very different from the results reported here.

4.12.1 Invariance

To compare the invariance properties of the features, the invariance measures of the
tested features are calculated and tabulated in Table 4.1. The highest measure ob-
tained under each category of image change is shown in bold. If the highest measure
is shared by more than one feature, the measures for all those features are shown in
bold. Some features are highly invariant under one image change, while some are
highly invariant under a number of image changes.

4.12.1.1 Invariance Under Blurring

When an image is blurred, it loses some of its details. Although many features
are highly invariant under blurring, a third-order Hu invariant moment (L26), the
normalized complex invariant moment of order (p, q) = (1,1) (L50c), and the
smoothed intensity (L88) are the most invariant under image blurring. The least
invariant feature under image blurring is the cornerness measure of Ando (L59).
Among the cornerness measures, those defined by Rohr (L60) and Kitchen and
Rosenfeld (L65) are the most invariant under blurring.

4.12.1.2 Invariance Under Noise

Examining the results in Table 4.1, we see that mean intensity (L2), the Hu invariant
moments (L23, L24, L26), the normalized complex invariant moment of order (1,1)

(L50c), the steerable filter response (L78), smoothed intensity (L88), and fractal di-
mension (L111) are the least sensitive to noise. It is interesting to note that noise
does not affect fractal dimension greatly as it does not change the repeated struc-
tural organization of an intensity pattern. The feature most sensitive to noise is the
correlation of the co-occurrence matrix (L13). Noise affects the co-occurrence ma-
trix, and among the co-occurrence matrix features, it influences the correlation the
most.
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Table 4.1 Invariance properties of a number of representative features. Bold numbers show the
highest invariance measure obtained in a particular category of image change. The following nota-
tions are used. L#: feature index; BI: blurring invariance; NI: noise invariance; II: intensity invari-
ance; RI: rotation invariance; SI: scale invariance; L2–L5: mean, standard deviation, skewness,
and kurtosis of image intensities; L11–L14: energy, contrast, correlation, and entropy of the co-
occurrence matrix; L23–L26: two second-order and two third-order Hu invariant moments; L32–
L34: contrast normalized invariant moments; L47a–L47c : complex invariant moments of orders
(p, q) = (2,0), (0,2), and (1,1); L50a–L50c : normalized complex invariant moments of orders
(2,0), (0,2), and (1,1); L57–L60, L62–L65: cornerness measures of Shi and Tomasi, Carneiro and
Jepson, Ando, Rohr, Harris and Stephens, Förstner and Gülch, Beaudet, and Kitchen and Rosen-
feld; L69: number of peaks in magnitude transform; L74: local power spectrum; L75: local fre-
quency domain entropy; L78: steerable filter response; L86a–L86c : correlation responses to Laws
masks B11,B22,B33; L88: smoothed intensity; L90: Laplacian; L94–L98: deviation from mean, ab-
solute center contrast, center contrast, average local contrast, and dominant intensity; L111: fractal
dimension; L113: image entropy; L116: extrema count ratio; and L119: local scale feature

L# BI NI II RI SI

L2 0.97 0.98 0.98 0.99 0.93

L3 0.81 0.92 0.94 0.93 0.88

L4 0.84 0.95 0.93 0.97 0.93

L5 0.89 0.93 0.91 0.96 0.88

L11 0.79 0.89 0.86 0.86 0.87

L12 0.79 0.94 0.96 0.80 0.90

L13 0.83 0.80 0.74 0.90 0.89

L14 0.83 0.91 0.87 0.88 0.89

L23 0.97 0.98 0.97 0.98 0.91

L24 0.97 0.98 0.97 0.98 0.91

L25 0.96 0.97 0.98 0.97 0.90

L26 0.98 0.98 0.98 0.99 0.93

L32 0.94 0.95 0.97 0.97 0.85

L33 0.94 0.95 0.98 0.95 0.89

L34 0.92 0.89 0.97 0.90 0.90

L47a 0.93 0.95 0.97 0.97 0.84

L47b 0.93 0.95 0.97 0.97 0.84

L47c 0.97 0.97 0.97 0.98 0.91

L50a 0.95 0.95 0.98 0.97 0.86

L50b 0.95 0.96 0.98 0.97 0.86

L50c 0.98 0.98 0.98 0.99 0.93

L57 0.85 0.93 0.96 0.92 0.92

L58 0.73 0.88 0.97 0.83 0.84

L59 0.70 0.89 0.97 0.84 0.85

L# BI NI II RI SI

L60 0.90 0.94 0.97 0.96 0.94

L62 0.74 0.81 0.98 0.65 0.76

L63 0.84 0.93 0.96 0.93 0.91

L64 0.87 0.90 0.95 0.93 0.97

L65 0.90 0.94 0.98 0.92 0.96

L69 0.82 0.93 0.93 0.93 0.93

L74 0.81 0.93 0.94 0.95 0.93

L75 0.87 0.92 0.84 0.95 0.96

L78 0.97 0.98 0.96 0.97 0.94

L86a 0.86 0.96 0.99 0.90 0.96

L86b 0.75 0.95 0.98 0.92 0.96

L86c 0.93 0.92 0.98 0.92 0.91

L88 0.98 0.98 0.90 0.97 0.97

L90 0.97 0.97 0.97 0.99 0.87

L94 0.82 0.94 0.93 0.93 0.93

L95 0.81 0.93 0.94 0.95 0.93

L96 0.87 0.92 0.84 0.95 0.96

L97 0.93 0.97 0.95 0.98 0.94

L98 0.86 0.86 0.81 0.90 0.88

L111 0.85 0.98 0.95 0.98 0.91

L113 0.82 0.89 0.97 0.88 0.90

L116 0.83 0.91 0.96 0.91 0.89

L119 0.94 0.97 0.98 0.96 0.90
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4.12.1.3 Invariance under Intensity Transformation

The features have been tested under intensity transformation through histogram
equalization. This is a nonlinear but monotone intensity transformation. Best per-
formance has been achieved by a Laws mask (L86a), which measures image gradi-
ent. For the kind of images used, the gradient of an image and the gradient of its
histogram-equalized version seem to be very similar, producing the highest invari-
ance measure. The feature least invariant under monotone intensity transformation is
the correlation of the co-occurrence matrix (L13). Since intensity mapping changes
intensities of adjacent pixels, it greatly affects the co-occurrence matrix, and that
appears to affect the correlation feature the most.

4.12.1.4 Invariance under Geometric Transformation

Since the features are calculated within small neighborhoods of radius 8 pixels, only
rotation and scale changes are considered. Although in many real situations, images
may have affine, projective, or even nonlinear geometric differences, often within
such small neighborhoods, affine, projective, and nonlinear differences between im-
ages can be considered negligible and ignored. Therefore, results reported here ap-
ply to images where affine, projective, and nonlinear distortions within regions of
radius 8 pixels are negligible.

Among the features tested, mean intensity (L2), an invariant moment of Hu
(L26), the normalized complex invariant moment of order (1,1) (L50c), and the
Laplacian (L90) are the most invariant under rotation. The features most invariant
under scale are the Beaudet cornerness measure (L64) and the smoothed intensity
feature (L88). The feature least invariant under rotation and scaling is the Harris and
Stephens cornerness measure (L62). This is an unexpected result since Harris corner
detector is widely used in image registration. Results in Table 4.1, however, indicate
that some of the Harris corners detected in images with rotational and scaling dif-
ferences may point to different scene points.

4.12.1.5 Most Invariant Features

Although some features remain highly invariant under a particular type of image
change, some features remain highly invariant under a wide range of image changes.
Not knowing differences between two images, the feature that is most invariant
under all image changes should be chosen to compare the images. Assuming an
invariance measure of 0.9 or higher is required of a feature to be useful in a particular
vision task, from Table 4.1 we see that features highly invariant under all image
changes are L2, L23–L26, L50c , L60, L65, L78, L86c , L88, L97, and L119. Among all
the features tested, a third-order invariant moment of Hu (L26) and the normalized
complex invariant moment of order (1,1) (L50c) are the most invariant under all
image changes considered in the experiments.
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4.12.1.6 Sensitivity of Invariance to Feature Parameters

The results reported in Table 4.1 are for circular windows of radius 8 pixels. Some
features, such as inertia matrix features, use small fixed windows, but many features
have free parameters that can affect their performances. Changing the window size
in some features can change their invariance properties and change their ranking. In
addition to window size, parameters such as the standard deviation of the Gaussian
in derivative-based features, can influence the ranking of features. To determine the
influence of the free parameters of the features on their invariance measures, exper-
iments were carried out on the features identified as most invariant in the preceding
section.

Specifically, window size (radius) was changed from 2 pixels to 32 pixels with
an increment of 2 pixels, and the invariance measures for L26 and L50c were cal-
culated for each window size and plotted in Fig. 4.51. Results indicate that window
size has very little effect on the invariance measures of these features under noise,
image blurring, monotone intensity transformation, and image rotation. The invari-
ance measures of these features decrease under unknown scaling. However, even
with decreased invariance measures, we see that these features remain moderately
invariant under unknown image scales.

4.12.2 Repeatability

Repeatability measures the stability of a feature extremum under various image
changes. Locations of feature extrema represent unique points in an image that can
be used as control points to register images. Since a feature can be measured at any
pixel in an image, locations where a feature becomes locally minimum or maximum
are of interest.

To measure repeatability, extrema feature locations are marked in the base image
in Fig. 4.1a. The extrema locations are also marked in the images in Figs. 4.1b–f.
If the number of extrema detected in the base image and in its transformed version
are n1 and n2, and n = min(n1, n2), and also if m of the extrema detected in both
images are verified to be the same, then repeatability is defined by

R = m

n
. (4.254)

Since the geometric relations between the base image in Fig. 4.1 and its trans-
formed versions in Figs. 4.1b–f are known, corresponding extrema in the images
can be identified. For images with rotational and scaling differences, to compensate
for digital errors caused by image transformation, extrama falling within a pixel of
each other are considered corresponding extrema. Repeatabilities of various features
measured under various image changes are included in Table 4.2.
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Fig. 4.51 Sensitivity of the
invariance measures of (a) the
Hu invariant moment L26 and
(b) the normalized complex
invariant moment L56c on
window size (radius)

4.12.2.1 Repeatability Under Blurring

Repeatability under blurring varies vastly from feature to feature. The most repeat-
able features are local mean intensity (L2) and center contrast (L96). The least
repeatable feature is fractal dimension (L111). Fractal dimension varies relatively
slowly from region to region, making the feature locally less unique. Although frac-
tal dimension was found to be highly invariant under blurring, local extrema of
fractal dimension move under image blurring, making the feature unsuitable for use
as a point detector.

The repeatability measures of the features used in traditional point detectors
L57–L65 are not very high under image blurring. Extrema of the local mean (L2),
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Table 4.2 Repeatability measures of image features. The bold number under each category of im-
age change shows the feature that is the most repeatable under that category of image change. The
following notations are used. L#: feature index; BR: blurring repeatability; NR: noise repeatability;
IR: intensity repeatability; RR: rotation repeatability; SR: scale repeatability; L2–L5: mean, stan-
dard deviation, skewness, and kurtosis of image intensities; L11–L14: energy, contrast, correlation,
and entropy of the co-occurrence matrix; L23–L26: two second-order and two third-order Hu in-
variant moments; L32–L34: contrast normalized invariant moments; L47a–L47c : complex invariant
moments of orders (p, q) = (2,0), (0,2), and (1,1); L50a–L50c : normalized complex invariant
moments of orders (2,0), (0,2), and (1,1); L57–L60, L62–L65: cornerness measures of Shi and
Tomasi, Carneiro and Jepson, Ando, Rohr, Harris and Stephens, Förstner and Gülch, Beaudet, and
Kitchen and Rosenfeld; L69: number of peaks in magnitude transform; L74: local power spec-
trum; L75: local frequency domain entropy; L78: steerable filter response; L86a–L86c : correlation
responses to Laws masks B11,B22,B33; L88: smoothed intensity; L90: Laplacian; L94–L98: de-
viation from mean, absolute center contrast, center contrast, average local contrast, and dominant
intensity; L111: fractal dimension; L113: image entropy; L116: extrema count ratio; and L119: local
scale feature

L# BR NR IR RR SR

L2 1.00 0.75 0.86 0.88 0.12

L3 0.39 0.61 0.69 0.63 0.17

L4 0.19 0.57 0.71 0.55 0.11

L5 0.25 0.57 0.43 0.56 0.17

L11 0.15 0.29 0.38 0.29 0.11

L12 0.19 0.51 0.44 0.19 0.11

L13 0.14 0.29 0.16 0.20 0.12

L14 0.16 0.30 0.35 0.31 0.17

L23 0.92 0.79 0.90 0.84 0.11

L24 0.92 0.72 0.83 0.75 0.33

L25 0.84 0.72 0.84 0.74 0.47

L26 0.88 0.67 0.81 0.81 0.40

L32 0.93 0.76 0.86 0.85 0.41

L33 0.90 0.81 0.87 0.83 0.53

L34 0.90 0.78 0.86 0.81 0.52

L47a 0.95 0.81 0.88 0.86 0.40

L47b 0.95 0.79 0.88 0.86 0.40

L47c 0.99 0.78 0.88 0.88 0.11

L50a 0.97 0.78 0.86 0.88 0.38

L50b 0.97 0.79 0.86 0.88 0.38

L50c 0.93 0.72 0.81 0.91 0.12

L57 0.30 0.65 0.75 0.47 0.47

L58 0.58 0.65 0.85 0.67 0.57

L59 0.58 0.66 0.85 0.65 0.57

L# BR NR IR RR SR

L60 0.26 0.56 0.72 0.63 0.49

L62 0.30 0.64 0.75 0.54 0.51

L63 0.31 0.62 0.71 0.55 0.50

L64 0.89 0.82 0.93 0.74 0.87

L65 0.81 0.81 0.95 0.78 0.86

L69 0.48 0.62 0.79 0.65 0.21

L74 0.94 0.82 0.92 0.79 0.80

L75 0.96 0.85 0.98 0.82 0.76

L78 0.91 0.77 0.92 0.80 0.85

L86a 0.93 0.83 0.95 0.62 0.95

L86b 0.93 0.89 0.95 0.81 0.93

L86c 0.83 0.85 0.91 0.87 0.93

L88 0.84 0.65 0.81 0.73 0.82

L90 0.87 0.72 0.87 0.89 0.85

L94 0.50 0.59 0.71 0.60 0.17

L95 0.87 0.75 0.88 0.74 0.70

L96 1.00 0.86 0.97 0.85 0.79

L97 0.82 0.74 0.85 0.67 0.09

L98 0.09 0.08 0.74 0.20 0.20

L111 0.05 0.47 0.59 0.48 0.06

L113 0.25 0.51 0.84 0.46 0.32

L116 0.37 0.41 0.60 0.47 0.33

L119 0.49 0.47 0.63 0.63 0.74
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center contrast (L96), various moment invariants (L23, L24, L32–L34, L47a–L47c ,
L50a–L50c), local power spectrum (L74), local frequency domain entropy (L75),
the steerable filter (L78), and Laws masks B11 and B22 (L86a , L86b) are all more
repeatable under blurring than the cornerness measures used by the point detectors.

4.12.2.2 Repeatability Under Noise

In general, repeatability of all features decrease under noise. Noise displaces the lo-
cations of the extrema in a feature image. The most repeatable feature under noise
is correlation response to Laws first derivative mask (L86b). The worst repeatable
feature under noise is the correlation of the co-occurrence matrix (L13). The co-
occurrence matrix of an image is sensitive to noise, and the extrema of the correla-
tion of the matrix are most influenced by noise.

4.12.2.3 Repeatability Under Intensity Transformation

Under the applied monotone intensity transformation, the most repeatable feature
is the local frequency domain entropy (L75). The applied intensity transformation
does not change the spatial frequency characteristics of an image noticeably, and any
such change appears to have the least effect on the extrema of the local entropy in the
frequency domain. The least repeatable feature under this intensity transformation
is correlation of the co-occurrence matrix (L13).

4.12.2.4 Repeatability Under Geometric Transformation

Under rotation, the most repeatable feature is the normalized complex invariant mo-
ment of order (1,1) (L50c). Overall, complex invariant moments and normalized
complex invariant moments are the most stable under rotation, resulting in the most
repeatable extrema due to their rotationally invariant property. The feature the least
repeatable under image rotation is the contrast of the co-occurrence matrix (L12).
Although L12 is computed by taking the highest contrast of co-occurrence matrices
obtained by scanning the image horizontally, vertically, and diagonally, but under
30◦ rotation the co-occurrence matrices obtained are different from those before the
rotation, producing features that are sensitive to image rotation. The extrema of the
contrast of the co-occurrence matrix is the least stable and, thus, the least repeatable
under rotation.

The repeatability measures of the features tested in this chapter are relatively
low under scaling. This can be attributed to the use of the same window of radius
8 pixels independent of an image’s scale. Often in practice the scales of images to
be compared are not known. Among the features tested in this study, correlation
response to Laws B11 filter (L86a) is the most repeatable. In general, we see that un-
der image scaling, Laws masks (L86a–L86c) produce the most stable extrema when
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Fig. 4.52 Sensitivity of the
repeatability of the center
contrast feature (L96) on
window size and various
image changes

compared to other features. The least repeatable features under image scaling are
skewness (L4), the energy (L11) and the contrast (L12) of the co-occurrence matrix,
a second-order invariant moment of Hu (L23), and the complex invariant moment
of order (1,1) (L47c). Although invariant moments are formulated to be invariant
to scale, under unknown scale since the proper window size cannot be chosen, win-
dows containing the same pattern in the images cannot be chosen, causing a poor
performance under unknown scaling.

4.12.2.5 Most Repeatable Features

Examining the contents of Table 4.2 and assuming repeatability measures of 0.9
and higher are needed in an application, we see that among all the features tested in
this study, correlation responses to Laws masks (L86a–L86c) and the center contrast
feature (L96) produce the most repeatable results under all image changes. Invari-
ant moments are generally the most repeatable except for unknown scaling. Least
repeatable features under various image changes are the co-occurrence matrix fea-
tures.

4.12.2.6 Sensitivity of Repeatability to Feature Parameters

The most repeatable features are found to be correlation responses to Laws masks
(L86a–L86c) and the center contrast feature (L96). The Laws masks in L86a–L86c are
5 × 5 and any window of radius 2 and higher is going to produce the same repeata-
bility measure. The repeatability of the center contrast feature, however, depends
on the window size as depicted in Fig. 4.52. The repeatability of the center contrast
feature remains relatively unchanged under noise, monotone intensity transforma-
tion, and image rotation. Under image blurring, the repeatability measure initially
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increases, then decreases, and then increases again. The feature is the most repeat-
able under Gaussian blurring of standard deviation 2 pixels when window radius is
between 5 and 10 pixels. Under unknown scaling, the repeatability of the feature
initially decreases, but then it remains relatively unchanged when window radius is
larger than 7 pixels. The repeatability of the center contrast feature remains rela-
tively high under all image changes and a wide range of window sizes.

4.13 Final Remarks

Image features provide a means of measuring the similarity between two images
without establishing correspondence between pixels in the images. A feature mea-
sures a particular property of an image. A feature is ideal if it does not depend on
an image’s orientation or scale, is not affected by noise or image contrast, and is
insensitive to image blurring that may have been caused by camera defocus.

Among the features tested, invariant moments are found to be highly invariant
and repeatable under various image changes. Laws masks, although small and con-
tain limited information, are highly invariant and repeatable under a variety of image
changes. Simple features such as local and global intensity averaging are highly in-
variant and repeatable under various image changes.

This chapter examined the invariance and repeatability properties of various im-
age features. The recognition ability of the features was not discussed. In addition
to being invariant and repeatable, a feature should carry the most information about
an image. We are interested in features that produce different values for different
images and produce the same value for images containing the same pattern but are
noisy and may have scale, rotational, contrast, and resolution (blurring) differences.
The problem of finding features that can most unambiguously recognize an image is
addressed by feature selection. In Chap. 6, those features that carry the most infor-
mation about an image are searched and algorithms for selecting the best n features
from among N > n features for image recognition/matching are reviewed.
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Chapter 5
Image Descriptors

An image descriptor is a feature vector containing various information about an
image. It is a compact representation that can be used to distinguish one image from
another. Summary and characterization of image descriptors have been previously
provided by Guyon and Elisseeff [20], Kittler [27], Mikolajczyk and Schmid [31],
Saeys et al. [39], and Winder and Brown [56].

Descriptors are traditionally created from components of the same type, measur-
ing statistical, geometric, algebraic, differential, or spatial properties of an image.
This self-imposed restriction, however, is not necessary and the components of a
descriptor can represent different types of information. Hörster and Lienhart [21]
and Schiele and Crowley [42] have shown that two or more descriptors of different
types provide a higher recognition power than any one of the descriptors when used
alone. Descriptors that are composed of heterogenous components are discussed in
the next chapter.

In image registration, descriptors are needed to determine the correspondence
between control points in two images. Once control points are detected, windows
centered at them are selected (Fig. 5.1). Information within the windows are then
used to establish correspondence between points in the images. If the images do
not have rotation and scaling differences, by finding the similarity between the win-
dows, best-matching windows in the images can be identified by template-matching,
as discussed in Chap. 2. However, when the images have unknown rotation and
scaling differences, rotation and scale invariant descriptors are needed to find the
correspondences.

Although our focus will be on windows centered at control points in images,
the following discussions apply to whole images as well. Therefore, in the rest of
this chapter, image and window will be used interchangeably. We consider circular
rather than rectangular windows to ensure that windows centered at corresponding
points in two images contain the same scene parts independent of their rotational
differences.

To create scale and rotation invariant descriptors, various approaches have been
proposed. One class of descriptors converts an image to a representation that is
invariant to rotation and scale and characterizes the transformed image. An example
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Fig. 5.1 (a), (b) Stereo images of a Mars scene, courtesy of NASA. Shown are detected control
points and the circular windows centered at them

of such a representation is an image histogram. Another class of methods estimates
the scale and orientation of an image first, normalizes the image with respect to
scale and rotation, and then describes the normalized image. An example of such a
representation is SIFT [30] (Sect. 5.2). Other descriptors use invariant features, such
as invariant moments, to characterize a neighborhood.

5.1 Histogram-Based Descriptors

The color or intensity histogram of a circular window is a rotationally invariant
vector that describes the window. Swain and Ballard [48] used the color histogram
of an image to characterize the color distribution of the image. Image histograms
are insensitive to small changes in imaging view angle, occlusion, and scale. The
invariant property of the histogram, which is its strength, is also its weakness. Two
images of the same scene could produce very different histograms due to different
lighting conditions, while images of two different scenes could produce very similar
histograms.

A color image with red (R), green (G), and blue (B) components has a 3-D his-
togram. When the image under consideration is very small, the obtained histogram
will be very sparse, making histogram matching unreliable. In such a situation, each
color component, which normally is in the range [0,255], is mapped to a smaller
range, such as [0,7]. Since this quantization can cause two very similar colors to
be mapped to different bins in a histogram, rather than letting the color at a pixel
contribute to a single histogram bin, a Gaussian is centered at the histogram bin
corresponding to the color at the pixel, contributing to different histogram bins by
amounts inversely proportional to their distances to the bin representing the center
of the Gaussian. Assuming Gσ (R,G,B) is a 3-D Gaussian of standard deviation
σ centered at bin (R,G,B) within the 3-D histogram, the image histogram is then
calculated from

H(R,G,B) =
∑

x

∑

y

Gσ

(
R(x, y),G(x, y),B(x, y)

)
, (5.1)
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where (R(x, y),G(x, y),B(x, y)) denote (R,G,B) color components at pixel
(x, y). The sum is over all pixels in a circular window of a given radius centered
at a control point. Note that Gσ does not have to be quantized to discrete values.
Rather, their floating-point values can be used in the calculation of the histogram.
The standard deviation of the Gaussian is typically a small number, such as 0.5 or 1.
Also, note that instead of RGB, other color coordinates can be used in the same
manner to create a color histogram.

The similarity between two color histograms is determined from their intersec-
tion. Given histograms H1 and H2, their intersection at entry (R,G,B) is computed
from [48]

D(R,G,B) = min
{
H1(R,G,B),H2(R,G,B)

}
(5.2)

and the intersection at all entries is computed from:

I (H1,H2) =
∑

R

∑

G

∑

B

D(R,G,B). (5.3)

To obtain a measure between 0 and 1 independent of the size of a window, the
above measure is normalized with respect to the window size. Therefore, if the
windows used in matching are of size N pixels,

S1(H1,H2) = I (R,G,B)

N
(5.4)

will be the normalized similarity measure. The closer S1 is to 1, the more similar
the color distributions in the windows being matched will be.

Schiele and Crowley [41] proposed methods for finding the dissimilarity or dis-
tance between two histograms. In one method, they suggested using the sum of
squared differences between corresponding histogram bins as the dissimilarity mea-
sure:

S2(H1,H2) =
∑

R

∑

G

∑

B

[
H1(R,G,B) − H2(R,G,B)

]2
. (5.5)

In another method, they suggested using the χ2 test as the dissimilarity measure:

χ2(H1,H2) =
∑

R

∑

G

∑

B

[H1(R,G,B) − H2(R,G,B)]2

H1(R,G,B) + H2(R,G,B)
. (5.6)

The smaller the dissimilarity between two histograms, the more likely it is that their
associating windows represent the same scene. Sebe and Lew [44] formulated the
problem of finding the similarity between two histograms as a maximum likelihood
estimation problem. In addition, they showed that hue-saturation-value (HSV) his-
tograms more reliably match/recognize images than RGB histograms.

Note that two windows that contain the same pattern but have different con-
trasts can produce histograms that have a small overlap, while two windows that
contain quite different patterns can produce histograms that have a large overlap.
Therefore, histogram-based descriptors have the potential to produce high false pos-
itive and high false negative probabilities. However, Swain and Ballard [48] show
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that in real-life applications, if the images/windows under consideration are suffi-
ciently large and histogram bins are finely spaced, such likelihoods are small, and
histograms are, in general, effective rotation-invariant descriptors that can be used
to match/recognize images.

The effect of image contrast on a computed similarity measure can be minimized
by converting RGB to HSV (hue, saturation, value), discarding the V component,
which varies with image contrast, and using only the HS components. It should be
noted that by discarding the V component, considerable image information is lost.
Therefore, if the images do not have contrast differences, HSV histograms rather
than HS histograms should be used to find correspondence between image win-
dows.

Although the preceding discussions centered at color images and color his-
tograms, the same discussions apply to gray-scale images. A gray-scale image has
a 1-D histogram, simplifying calculation of the intersection of two histograms.

Rather than using the raw intensities or colors at image pixels, one may use local
image properties that are calculated from the intensities or colors. An example is the
Weber local descriptor (WLD) of Chen et al. [10], where from image intensities in a
window two properties are calculated. One property shows the ratio of the difference
of the intensity at a pixel and average intensity of pixels around it, and the second
property shows the gradient direction at the pixel. A 2-D histogram is then formed
from pixels within the window with the two dimensions representing the two prop-
erties. WLD is inspired by the Weber’s law, which states that the ratio of the just
noticeable change in intensity observed by a human over the original intensity at a
point is a constant. The descriptor, therefore, has some invariance properties that are
shared by the human visual system.

5.2 Scale-Invariant Feature Transform (SIFT)

To detect points representing the centers of blobs in an image, the image is con-
volved with Gaussians of standard deviations 2n/2 for n ≥ 0, creating a stack of im-
ages. From the stack of Gaussian smoothed images, another stack of images is pro-
duced with each image representing the difference of adjacent Gaussian smoothed
images. The nth image in the new stack, which is a difference of Gaussian (DoG)
smoothed images, approximates the Laplacian of Gaussian (LoG) image of standard
deviation 2n/2. Pixel (x, y) in the original image is considered the center of a blob
if an extremum is detected at (x, y,n) in the volumetric image obtained from the
stack of DoG images [30].

As the size/scale of an image is changed, the parameter n obtained at an ex-
tremum will change. Therefore, n is an indicator of the scale of the image. How-
ever, n also depends on the scale of the local pattern centered at the point. If the
same pattern of a larger size appears in another location in the same image, param-
eter n calculated there will be higher. Therefore, parameter n depends on the local
scale of the pattern as well as the global scale of the image.
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Considering that the same point (x, y) can be extremum at multiple scales, it
may not be possible to find a unique scale at an image point. This is natural because
concentric overlapping regions can produce multiple extrema at exactly the same
point or at points very close to each other. Therefore, there may not be a one-to-one
correspondence between an extremum at scale n and the actual scale of the blob
there. Assuming that a single extremum is detected at an image point at scale n,
by mapping an area of radius 2n/2 at the extremum to an area of a fixed size, the
neighborhood can be normalized for its local and global scale.

To create a descriptor for the window centered at an extremum detected at scale
n, first, the gradient magnitude and gradient direction of each pixel within the win-
dow at scale n are computed. This involves convolving the image with a Gaussian
of standard deviation σn = 2n/2 and calculating gradient magnitude and direction
at each pixel in the smoothed image. The gradient magnitudes within a window of
width 2σn centered at the extremum are then weighted by a Gaussian of standard
deviation 1.5σn centered at the extremum. This weighting will make gradient con-
tributions farther from the extremum smaller, making the descriptor less sensitive
to geometric differences between two windows. This Gaussian weighting also re-
duces the difference between the contents of square windows in two images with
coinciding centers but rotational differences.

The direction of the highest gradient magnitude sum within a window is then
used as the direction of the window. This involves finding a 36-bin histogram of
the gradient directions and locating the peak of the histogram. The histogram bin
with the peak value identifies the direction where the gradient magnitude sum is
maximum. This direction is normal to the direction of local structure. If the his-
togram does not possess a unique peak, the dominant gradient direction will not be
unique. This happens when a symmetric pattern is centered at a point. If a unique
peak is found, by rotating the image so that the peak gradient direction aligns with
the y-axis, the local structure will align with the x-axis, and it becomes possible
to measure gradient information in the window centered at the extremum indepen-
dent of the image orientation. The process, in effect, makes it possible to generate a
descriptor independent of the orientation of the image.

Knowing the orientation of a local structure with respect to the image coordinate
axes, a square window of side 21+n/2 pixels is considered at the calculated orienta-
tion (Fig. 5.2). Gradient magnitudes within the window are then accumulated into 8
directions after normalization with respect to the peak direction in each of the 4 × 4
blocks within the window (Fig. 5.2b). The bin corresponding to a direction within
a block, therefore, contains the sum of the gradient magnitudes in that direction
within the block. The process produces 4 × 4 × 8 = 128 numbers overall, which are
used as the descriptor for the window. Finally, the descriptor is normalized to have
magnitude 1.

Since a proportionately larger window is selected for a larger scale n, a larger
scale will produce a larger gradient sum. The normalization is meant to ensure that
if the same pattern is scaled and the scale is known, by selecting the window size
proportionately large, the same descriptor is obtained for the same pattern inde-
pendent of its scale. However, local scale is not known and the only information
available is the combined local and global scale.
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Fig. 5.2 A square window is selected centered at an extremum detected at scale n with its side
equal to 21+n/2. Gradient magnitudes and directions of pixels within the window are calculated.
The gradient magnitudes are weighted by a Gaussian centered at the extremum and standard devi-
ation equal to 1.5 × 2n/2 and the histogram of the gradient-magnitude weighted gradient directions
is computed with 36 bins. The direction represented by the histogram peak is taken as the direction
for the window. A window of side equal to 21+n/2 is then taken in the peak direction, as shown
in (a), and gradient magnitudes within each of the 4 × 4 square blocks, shown in (b), are grouped
into 8 bins according to their gradient directions with respect to the peak direction. This produces
a histogram with 8 bins within each block, producing 4 × 4 × 8 = 128 numbers overall, which are
used as the descriptor of the window centered at the extremum

Assuming the images being registered are of the same scale and have the same
orientation but have different local contrasts, the peak gradient sum obtained at cor-
responding points in the images can point to different gradient directions. Weigh-
ing gradient directions with their gradient magnitudes, therefore, works well when
the images do not have spatially varying intensity differences. To reduce the in-
fluence of local image contrast on the generated descriptors, the histograms of the
gradient directions at the 4 × 4 blocks within a window should be calculated with-
out gradient-magnitude weighting. To make the generated descriptors invariant to
smoothly varying image contrast, Toews and Wells III [52] used the ranks of the
gradient magnitudes rather than their raw values. Improved matching accuracy was
reported as a result of this new weighting, especially when images had nonlinear but
monotone intensity differences.

Along with each SIFT descriptor, the scale and orientation of the window used
in the calculations are saved. By normalizing the gradient directions with respect to
the peak gradient direction and by normalizing the descriptors to have magnitude
1, a created descriptor is intended to be invariant to the scale and orientation of the
image.

Since a SIFT descriptor is based on estimated scale and orientation of a local
neighborhood, an error in the estimation of the scale or orientation parameter will
result in inaccuracies in the created descriptor. The SIFT detector finds local extrema
of the response of an image to LoG or its approximation, DoG, in scale-space. When
the underlying structure is circular, the estimated scale is proportional to the size of
the structure [4]. The same applies to elliptic structures. However, for more complex
structures with branches, the process is very sensitive to changes in image view,
image scale, and noise. Therefore, estimated scale and orientation parameters for a
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neighborhood can be quite different from their true values. Not knowing the shape
of a local structure, it is not know how reliable the estimated scale and rotation
parameters are.

Normally, when an extremum is detected from a round structure, by increasing
or decreasing the scale of the image, the location of the extremum does not change.
However, if an extremum is detected from a complex structure with branches,
a small change in image scale can break the structure and displace the detected
extremum. Therefore, if point (x, y,n) in scale-space is a locally extremum point,
then we can consider the point at (x, y) stable if the same point will be locally ex-
tremum in the DoG images at scales n − �n and n + �n also, where �n is a small
increment in n, such as

√
2. This simple test makes it possible to distinguish a stable

extremum and its descriptor from an unstable extremum and its descriptor.
To find a match to a sensed window from among many reference windows,

Lowe [30] determined the Euclidean distance between the sensed descriptor and
the two reference descriptors closest to it. Let’s suppose the obtained distances
are D1 and D2, where D1 ≤ D2. Then the ratio of the smaller distance over
the larger, r = D1/D2, is determined and p = 1 − r is considered the likeli-
hood that the closest reference descriptor corresponds to the sensed descriptor
in a nearest-neighbor classifier. Correspondences where p < 0.8 are discarded to
avoid mismatches. Note that matching in this manner will discard all similar ref-
erence windows and will keep only those that are globally unique. In effect, the
process cannot find correspondence between local structures that are not globally
unique.

To make the process use local rather than global uniqueness, ratio of distances
of a control point to control points within a scale-adjusted threshold distance is
taken and the similarity between the distance-ratios is used to determine correspon-
dence between control points in images. If k reference windows produce p > 0.8
when matching with a sensed window, the reference window that produces the most
similar distance-ratios when compared to that of the sensed window is chosen as
the best-match window. Chin and Suter [12] used distances alone to find corre-
spondence between control points in two images. Shin and Tjahjadi [45] used local
distances of a control point to its surrounding control points to supplement the in-
formation provided by SIFT, improving the recognition/matching accuracy of the
SIFT descriptor.

Pele and Werman [37] noticed that Euclidean distance between SIFT descriptors
is based on the assumption that the SIFT descriptors are correctly aligned (i.e., the
scale and orientation parameters are determined accurately). Otherwise, descriptors
for corresponding points will be displaced with respect to each other. Pele and Wer-
man suggested using the Earth Mover’s distance rather than the Euclidean distance
to compute the distance between SIFT descriptors, reporting improved matching
accuracy.

Rather than using image gradients, Mutch and Lowe [35] and Moreno et al. [34]
used responses to multi-scale Gabor filters to define a SIFT descriptor, reporting
improved recognition/matching accuracy over the original SIFT descriptor.

The SIFT descriptor has been extended to color and multispectral images. Bosch
et al. [5] computed SIFT descriptors over the three HSV color components, creat-
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Fig. 5.3 (a) The log-polar grid with the 17 blocks used in the GLOH descriptor [31]. Gradient
magnitudes in each block are grouped into 16 according to their gradient directions, producing
17 × 16 = 272 numbers. The dimensions of a descriptor are reduced to 128 by PCA. (b) The
shape context of Belongie et al. [3] with 5 uniformly spaced rings in the log-polar space. Gradient
magnitudes in each circular block are then grouped into 12 according to their gradient directions,
producing a descriptor with 5 × 12 = 60 values

ing a descriptor with 3 × 128 components. Van de Weijer [54] concatenated the hue
histogram with the luminance SIFT descriptor to create a new descriptor that con-
tained both color and luminance information. Abdel-Hakim and Farag [1] used the
gradients of the color invariance described by Geusebroek et al. [19] instead of the
intensity gradients used in the SIFT descriptor to create a color descriptor invariant
to change in contrast.

Van de Sande et al. [53] found that a SIFT descriptor based on opponent colors
is most invariant to changes in color. The opponent and RGB color coordinates are
related by
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Brown and Süsstrunk [6] followed the method of Van de Sande et al. but replaced
the three-dimensional RGB vectors with four-dimensional RGB and near-infrared
vectors, in a descriptor called multispectral SIFT or MSIFT.

An extension of the SIFT descriptor proposed by Mikolajczyk and Schmid [31]
uses the gradient location and orientation histogram (GLOH) computed in a log-
polar grid. At each extremum, a log-polar grid with rings of radii 6, 11, and 15 pixels
is positioned. The grid has 2 blocks radially and 8 blocks angularly, plus the center
block, creating 17 blocks overall (Fig. 5.3a). Then, gradient magnitudes at pixels in
each block are grouped into 16 according to their gradient directions, producing a
descriptor with 16 × 17 = 272 components. A component shows the sum of gradi-
ent magnitude of a particular direction at a particular block within the neighborhood
under consideration. Finally, the number of components is reduced to 128 by prin-
cipal component analysis (PCA). The covariance matrix for PCA is computed from
the windows centered at the points in the reference image. Note that the window
used by GLOH is circular while that used by SIFT is square but Gaussian weighted.
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Belongie et al. [3] used a grid with 5 uniformly spaced radial blocks in the log-
polar space and 12 uniformly spaced blocks angularly, creating a descriptor called
shape context with 60 components (Fig. 5.3b). Radial spacing is made uniform in
the log-polar space to increase the influence of information at and near the point
of interest. Each component in the descriptor shows the number of edges in one of
the 12 directions in one of the 5 circular blocks. Note that this descriptor also uses
a circular neighborhood. Mikolajczyk and Schmid [31] find that if the images do
not have intensity differences, the sum of the gradient magnitudes produces a better
matching accuracy than the number of pixels of a particular gradient direction.

In some literature, SIFT, GLOH, and shape context are called histogram-based
descriptors, although these descriptors do not possess the global properties of a his-
togram. In SIFT and GLOH, a histogram is formed within each block and the his-
togram bins from the blocks are concatenated in a prespecified order to create the
descriptor. In shape context, 12-bin histograms are produced at each of the 5 radial
blocks and the histograms are concatenated to create a sequence of 60 numbers.
Therefore, although parts of these descriptors represent histograms, a created de-
scriptor does not posses the properties of a histogram. Rather than being a weakness,
this can be considered a strength. By ordering local histograms in a prespecified or-
der in a descriptor, structural information in the underlying window is preserved.

Another extension of the SIFT descriptor is provided by Ke and Sukthanker [25]
called PCA-SIFT. First, local scale and orientation are determined for the window
centered at an extremum by SIFT. Then the neighborhood of the right size and ori-
entation centered at the point is resampled to a 41 × 41 patch. This resampling
normalizes the neighborhood with respect to scale and orientation. Next, gradients
of pixels in the patch are horizontally and vertically calculated and ordered in a
gradient vector of size 2 × 39 × 39 = 3042. The dimension of the gradient vec-
tor is reduced to 36 by PCA. The covariance matrix for PCA is calculated using
the gradient vectors for the windows centered at extrema in the reference image.
Matching/recognition is achieved using a nearest-neighbor classifier.

A sensed window is represented by a point in the 36-dimensional eigenspace
by projecting the gradient vector of the sensed window to the 36 principal compo-
nents. The same is done for the reference windows, each producing a point in the
eigenspace. Then, distances of the sensed point to the reference points are deter-
mined in the eigenspace and the reference point closest to a sensed point is taken
to identify the sensed point and the window corresponding to the reference point is
taken to correspond to the sensed window.

The rotation and scale invariant properties of the SIFT descriptor makes the de-
scriptor suitable for determining the correspondence between local neighborhoods
that are related by the similarity transformation. To enable matching of local neigh-
borhoods in images captured from different views, an affine-invariant descriptor
called ASIFT is proposed by Morel and Yu [33]. ASIFT normalizes image features
with respect to shearing and leaves normalization of features with respect to trans-
lation, rotation, and scaling to SIFT, thus producing an affine-invariant descriptor.
When the images to be matched represent different views of a scene, considerable
improvement in matching has been reported by ASIFT when compared with SIFT.
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Fig. 5.4 (a) A circular window centered at a point of interest and the direction of the peak gradient
magnitude sum are shown. (b) The window is quantized into 16 sectors, with the first sector aligned
with the direction of peak gradient magnitude sum. Ordinal intensity histograms of the sectors are
then concatenated in a prespecified order to create a descriptor for the window

Improvements to ASIFT have been proposed by Le Brese et al. [29] and Noury
et al. [36].

Although many image descriptors are based on image gradients, other properties
of an image may be used to create descriptors. Huang et al. [22] used central contrast
in a log-polar grid similar to that of Belongie et al. [3] to define a descriptor called
contrast context histogram (CCH). Contrast at a pixel is calculated from the intensity
difference between that pixel and the center pixel within a window. The descriptor
obtained from the contrast measure calculated in this manner will be insensitive to
changes in scene lighting. This is because such changes affect all pixels in a window,
including its center. The intensity difference between each pixel in a window and the
intensity at the center of the window normalizes the intensities, creating a descriptor
that is resistant to slowly varying image contrast.

Other descriptors that are formed from the concatenation of local histograms
have been proposed. Tang et al. [49] first converted image intensities to 8 ordinal
values to reduce the dependency of a descriptor on image contrast. Then, a circu-
lar window centered at a point was taken and subdivided into 16 sectors (Fig. 5.4).
The histogram of the ordinal intensities within each sector was then determined and
the histograms were concatenated in a prespecified order to create a descriptor with
8 × 16 = 128 components. The first sector is taken to be the peak gradient direction
determined by SIFT. The obtained descriptor is called ordinal spatial intensity distri-
bution (OSID). Use of ordinal intensities rather than the raw intensities is intended
to make the descriptor independent of nonlinear but monotone intensity differences
between two images in matching. Since the peak direction is taken to be the di-
rection determined by SIFT, which is sensitive to local image contrast, the created
descriptor will be sensitive to local image contrast even though ordinal intensities
are used to create the histogram within each of the 16 sectors.

A similar structure was employed by Worthy and Sinzinger [57] using both gradi-
ent and color information in a sector. Gradient is calculated radially and tangentially.
The circular window centered at a point is divided into 4 sectors, and a histogram
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with 8 bins is created from the gradients for each sector, each bin covering an angu-
lar range of π/8, producing overall 8×4 = 32 numbers. A similar vector is obtained
using saturation-weighted hues within each sector, again, grouping the values into
8 bins and producing another 32 numbers. The two vectors are then concatenated
to produce a descriptor with 64 components, containing both spatial and color in-
formation about a neighborhood in its descriptors. Use of only hue and saturation
without luminance makes the descriptor invariant to changes in scene illumination,
and concatenation of the histograms for different sectors in a prespecified order with
respect to the peak gradient direction makes the descriptor invariant to rotation. Con-
trast invariance is achieved at the cost of discarding the rich luminance information
that can potentially distinguish complex structures from each other. Other descrip-
tors that have been inspired by the SIFT descriptor have used edge orientation [38]
and gradient orientation [13, 14, 58].

When a window is subdivided into blocks, if the rotational difference between
two windows is a multiple of the angle covered by a block, the descriptors will
be rotation invariant. However, if the rotational difference between two windows is
not an integer multiple of a block’s angular width, the information contained in a
block in one window will be split into adjacent blocks in the other window, dulling
the matching process. To improve matching accuracy, the window can be subdi-
vided into finer blocks, each covering a smaller angular range. This, however, will
make the histograms sparser and will increase the dimensionality of the descrip-
tor.

The key ideas intended in the SIFT descriptor are: (1) to use the histogram of
an image property to make a created descriptor resistant to the local geometric de-
formation caused by imaging view or presence of occlusion, (2) to concatenate the
local histograms in a window in a prespecified order to encode structural informa-
tion in the window within the created descriptor, (3) to describe the contents of the
window with respect to a local coordinate system that has its x-axis pointing in
the direction of the local structure, and (4) to take window size proportional to the
scale of the local structure. A descriptor obtained in this manner will be indepen-
dent of the scale and orientation of the local structure and insensitive to local image
deformation.

5.3 Spin-Image-Based Descriptors

Lazebnik et al. [28] used the spin-image idea of Johnson and Hebert [24] to map
properties at pixels in a circular window to a rectangular grid where the horizontal
axis shows the distance of a pixel in the circular grid to its center and the verti-
cal axis shows the quantized property value at the pixel. An example of this map-
ping is given in Fig. 5.5. Property values of pixels in a circular block (pixels be-
tween two consecutive rings) are grouped into 8 bins in a histogram. This process,
in effect, maps property values in a circular grid to a vector of 4 × 8 = 32 num-
bers.
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Fig. 5.5 (a) A grid containing 4 circular blocks and (b) its spin image. A rotation-invariant prop-
erty, such as intensity or radial gradient, is chosen. A histogram of the property values at pixels
within each circular block is obtained. In this example, the histogram has 8 bins. The histogram
bins are then mapped to spin-image entries in a column. Therefore, different columns in the spin
image represent different circular blocks in the grid, and a particular row in a column shows the
value at the corresponding histogram bin obtained for the circular block representing that column.
When the spin image entries are scanned in raster (or any other prespecified) order, a descriptor
with 32 components called rotation-invariant feature transform (RIFT) is obtained

Note that if the property under consideration is invariant to image rotation, the
information produced in the rectangular grid will be rotation invariant. Image inten-
sity is an example of such a property. Lazebnik et al. [28] used gradient direction
calculated radially in the outward direction and used that as the rotation invariant
property. The gradient direction at a pixel is determined with respect to the direc-
tion obtained by connecting the pixel to the window center. The descriptor obtained
as a result is called rotation-invariant feature transform (RIFT).

There is a similarity between the shape context of Belongie et al. [3] and RIFT in
that both concatenate histograms of the property values between consecutive rings
in a circular grid; however, their main difference is in the spacing between the rings.
In the spin image the radii of the rings are uniformly spaced, but in the shape context
the logarithm radii of the rings are uniformly spaced. Logarithm spacing emphasizes
property values at and near the center of the window and deemphasizes property
values far away from the center. When the centers of two windows with geometric
differences correspond, since geometric differences between windows increase as
one moves away from the window center, shape context will be less sensitive to
image deformations than RIFT.

The desire to describe an object with respect to a local coordinate system rather
than the global coordinate system of the image has led to the development of the spin
image idea. A spin image is meant to produce the same representation for a window
independent of its position within an image and the orientation of the image. All
the descriptors discussed above provide this property as they are measured with
respect to a coordinate system that is positioned at the center of the window under
consideration and normalized in one way or another with respect to the orientation
of the window.
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Fig. 5.6 (a) Arrangement of regions around a point of interest as considered by Schmid and Mohr
[43]. The region centers can themselves be detected points closest to the point under consideration.
(b) Arrangement of regions around a point of interest as considered by Carneiro and Jepson [8].
The regions are at fixed positions and orientations with respect to the point under consideration

5.4 Filtering-Based Descriptors

Florack et al. [17] used responses of an image window to rotationally invariant
Gaussian derivative filters as the descriptor for the window. For instance, responses
of a window to zeroth order and second order Gaussian filters are invariant to ro-
tation. The sum of squares of the responses of a window to the first derivatives of
a Gaussian in x- and y-directions is also rotationally invariant. Other filters cre-
ated from combinations of Gaussian derivatives that are rotationally invariant have
been found [17], some of which were outlined in Sect. 4.6. Consider convolving
various rotationally invariant filters within a window. A feature vector constructed
from the obtained responses can then be used as a descriptor to characterize the
window.

Schmid and Mohr [43] used feature vectors representing responses of regions
within a window to various Gaussian derivative filters to describe the window. Fea-
ture vectors were then used to establish correspondence between parts of two win-
dows. As more correspondence is established between parts of the windows, corre-
spondence between the windows is reinforced.

Carneiro and Jepson [8] used responses of regions around a point of interest to
complex steerable filters as a descriptor for the window centered at the point. The
difference between the regions used by Schmid and Mohr [43] and Carneiro and
Jepson [8] is depicted in Fig. 5.6. While the regions used by Schmid and Mohr are
centered at an unorganized set of points around a point of interest, the regions used
by Carneiro and Jepson are centered at fixed locations and orientations with respect
to the point under consideration. The feature vectors produced for the individual
regions are then concatenated to create a descriptor for the neighborhood centered
at the point. To produce a rotationally invariant descriptor, the reference direction is
determined by one of the existing methods [18, 30].
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Complex filter responses [2] and wavelet transform coefficients [31] are other
filtering-based descriptors that have been used. The descriptor obtained from fil-
ter responses characterizes the spatial frequency characteristics of a neighborhood.
Such descriptors are generally not invariant to image scale since a change in image
scale results in changes in spatial frequencies in the neighborhood. In Sect. 5.8.2,
a method for normalizing an image with respect to scale and orientation is described.

5.5 Moment-Based Descriptors

Various moments can be used to characterize the geometry of the pattern in a win-
dow. Chen and Sun [9] used Zernike moments to construct a descriptor for a circular
window. Zernike moments provide orthogonal features that lack redundancy and,
therefore, are very compact. Magnitude Zernike moments are invariant to image ro-
tation [32]; therefore, they can be used to create rotation-invariant descriptors. How-
ever, by discarding phase, valuable information is lost. Therefore, in the descriptor
of Chen and Sun [9], phase as well as magnitude Zernike moments are used. The
rotational difference between two windows is determined from the phase difference
between corresponding Zernike moments.

Assuming f (ρ, θ) shows intensity at polar coordinates (ρ, θ) measured with re-
spect to the center of a circular window where ρ is normalized to vary between 0
and 1, and assuming Amn is the Zernike moment of order (m,n) given by (4.91),
the Zernike moment of the same order after rotating the window about its center by
α will be Amn exp(jnα), where j = √−1. If two sets of Zernike moments describe
two windows that are rotated with respect to each other by α, corresponding mo-
ments will be different in phase by α. Corresponding moments in descriptors that
represent different patterns will not have the same phase difference. This provides a
means to use Zernike moments to not only establish correspondence between circu-
lar windows in two images, but also to determine the rotational difference between
them.

Noise and other image differences, however, can produce somewhat different
phases even when the windows contain the same scene parts. Kim and Kim [26]
suggested weighing the phase difference estimated for a corresponding Zernike mo-
ment of order (m,n) by the magnitude Zernike moment ‖Amn‖ and finding the
weighted average of the phase differences of corresponding moments as the phase
difference between matching windows. An advantage that this method has over the
principal axis method or the gradient peak of SIFT is in its ability to determine the
rotational difference between nearly symmetric windows.

Van Gool et al. [55] used affine invariant moments that were also invariant to im-
age contrast as image descriptors. Other invariant moments discussed in Sect. 4.2.2
can be used to create descriptors in the same manner. It should be noted that, since
the ranges of values the higher order moments can assume is much higher than that
of lower order moments, when a descriptor is created from a combination of mo-
ments of different orders, the moments with highest orders will dominate the calcu-
lation of a similarity or dissimilarity measure. Either the moments used as features
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in a descriptor should be normalized so they all have the same dynamic range, or a
similarity/dissimilarity measure that takes into consideration the dynamic ranges of
the features should be used.

5.6 Composite Descriptors

To use various types of information in matching/recognition, a combination of de-
scriptors may be used. Schiele and Crowley [40, 42] provide a means for determin-
ing the similarity between two images when using two or more descriptors from
each image. Suppose p(oi |rj ) represents the probability density function of win-
dows in the reference image corresponding to window oi in the sensed image. Since
window rj is unique in reference image, p(rj ) = 1/M for M windows in the refer-
ence image, and the probability that window oi in the sensed image corresponds to
window rj in the reference image is estimated by the Bayes decision rule from [51]:

p(rj |oi) = p(oi |rj )p(rj )

p(oi)

= p(oi |rj )p(rj )
∑M

j=1 p(oi |rj )p(rj )
. (5.8)

If two descriptors that provide different types of information about a window
are available, both descriptors can be used to improve the correspondence accuracy.
Schiele and Crowley [42] suggested using the joint probabilities of the normalized
descriptors. Therefore, if descriptors oi1 and oi2 represent independent properties of
a window i in the sensed image, and assuming that the corresponding descriptors for
window j in the reference image are rj1 and rj2, then the probability that windows
i and j in the images correspond will be

p(rj1, rj2|oi1, oi2) = p(oi1, oi2|rj1, rj2)p(rj )
∑M

j=1 p(oi1, oi2|rj1, rj2)p(rj )

= p(oi1|rj1)p(oi2|rj2)p(rj )
∑M

j=1 p(oi1|rj1)p(oi2|rj2)p(rj )
. (5.9)

In general, if k descriptors are available, each of which provide independent infor-
mation about a window, a sensed window can be identified from among M reference
windows by finding the reference window rj that maximizes [42]

p(rj1, . . . , rjk|oi1, . . . , oik) =
∏k

l=1 p(oil |rjl)p(rj )
∑M

j=1
∏k

l=1 p(oil |rjl)p(rj )
. (5.10)

If the a priori probability p(rj ) = 1/M for all j , the above relation reduces to

p(rj1, . . . , rjk|oi1, . . . , oik) =
∏k

l=1 p(oil |rjl)
∑M

j=1
∏k

i=1 p(oil |rjl)
. (5.11)
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To describe the contents of a window with moving parts, Fergus et al. [16] defined
a descriptor for each part of the window and used a combination of the descriptors
to represent the window. A Bayesian maximum-likelihood classifier was then used
to find the class of a window using descriptors representing its parts. The same can
be done to match windows with fixed parts and find the correspondence between
windows centered at control points in two images.

Creating a descriptor from the responses of a window to Gaussian derivatives of
various degrees and creating another descriptor from the responses of the window
to a bank of Gabor filters, Schiele and Crowley [42] showed that if both descriptors
are used, an unknown window can be more accurately identified. The same conclu-
sion was reached by Hörster and Lienhart [21] using descriptors representing color
histogram and SIFT features. Brown et al. [7] also showed that a combination of
various descriptors provides a higher discrimination power than SIFT. In addition,
they developed a learning mechanism to select the best combination of descriptors
to minimize error in nearest-neighbor matching using a training data set.

Rather than using a single scale and orientation for the window centered at a
point of interest, Cheng et al. [11] used multiple support regions around the point of
interest, each with its own scale and orientation. Then a descriptor was computed for
each support region and by concatenating the local descriptors, a global descriptor
was formed. Similarity between two global descriptors was computed using a filter-
ing step and a refinement step. The filtering step rejected those reference windows
that were not likely to match a sensed window, and the refinement step narrowed
down on the reference window that best matched the sensed window. This method
was found to be particularly effective when matching windows with deformable
parts.

Dickscheild et al. [15] compared local descriptors from the point of view of in-
formation completeness and found that a combination of descriptors that decode
complimentary information reproduce the most complete information about an im-
age.

5.7 Similarity/Dissimilarity Between Descriptors

When features in a descriptor have different dynamic ranges, the dynamic range
of each feature should be taken into consideration when calculating the similarity
or dissimilarity between the descriptors. If descriptors x = {xi : i = 1, . . . , n} and
y = {yi : i = 1, . . . , n} have positive components, a dissimilarity or distance measure
that normalizes each feature with respect to its scale is [46]:

d1(x,y) =
{

1

n

n∑

i=1

(
xi − yi

xi + yi

)2
} 1

2

. (5.12)

The difference between corresponding features in the two descriptors is divided by
the sum of the two features. This normalization ensures that the squared difference
of corresponding features will vary between 0 and 1 independent of the scale of that
feature.
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Another dissimilarity/distance measure that provides this property is [46]:

d2(x,y) = − log

(

1 − 1

n

n∑

i=1

|xi − yi |
bi − ai

)

(5.13)

where ai and bi are the minimum and maximum values of the ith feature and are
obtained from all available descriptors, and log is in base 10. Distance measure
d2 becomes 0 when the two descriptors are exactly the same, and as the descriptors
become less similar, the distance d2 increases. Note that the scale normalization per-
formed by d1 is local to the two descriptor, while the scale normalization performed
by d2 is global to all descriptors. Therefore, d1 will scale the same feature differ-
ently depending on the two descriptors being compared, while d2 scales a feature
independent of the particular descriptors being compared.

Schmid and Mohr [43] and Mikolajczyk and Schmid [31] used the Mahalanobis
distance between two descriptors as the distance between the descriptors. Given two
descriptors x and y with covariance matrix Σ , the Mahalanobis distance between x
and y is computed from

d3(x,y) =
√

(y − x)tΣ−1(y − x). (5.14)

The covariance matrix Σ in the Mahalanobis distance takes into consideration not
only the correlation between features, it normalizes the scale of each feature by its
spread. When the range of values a feature takes in a descriptor varies from feature
to feature, Mahalanobis distance is preferred over the Euclidean distance.

If features with different scales are used in a descriptor, since the feature with
the largest scale has the most influence on a calculated Euclidean distance, small
inaccuracies in features with large scales can degrade a calculated measure and have
a significant effect on the outcome. If the true descriptor is v and the measured
descriptor is ṽ, we can write

ṽ = v + e, (5.15)

where e is the error vector. Therefore, if error in the measurement of the ith feature
is e[i], we will have

ṽ[i] = v[i] + e[i]. (5.16)

Mahalanobis distance assumes that e has a multidimensional normal distribution.
However, this assumption is violated when the features are calculated from windows
centered at non-corresponding points. Terasawa et al. [50] suggested calculating the
distance between feature vectors vi and vj from

d4(vi ,vj ) =
√
√
√
√
∑

k

(
vi[k] − vj [k]

s[k]
)2

, (5.17)

where s[k] is the scale of the kth feature.
When calculating the distance between two descriptors with features that have

different scales, first the scale of each feature should be estimated. Assuming σi is
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the scale of the ith feature, then distance di between the ith feature in two descrip-
tors should be normalized with respect to σi . Then the sum of the normalized feature
distances

d5 =
n∑

i=1

di

σi

(5.18)

can be used as the distance between the descriptors.
If the features represent different types of information, the similarity/dissimilarity

measure between each type may be determined and an appropriate weighted sum
of the measures can be used as the similarity/dissimilarity measure. For example,
to determine the similarity between descriptors containing both shape and color in-
formation about two windows, Jain and Vailaya [23] calculated similarities of the
windows using the shape features and the color features separately. Then they com-
bined the individual similarity measures into a combined similarity measure using
appropriate weights. Assuming Sc and Ss represent color and shape similarities of
two windows, the combined similarity between the windows is determined from

S = WcSc + WsSs

Wc + Ws

, (5.19)

where weights Wc and Ws are determined empirically and show the importance
of color and shape features in determining the similarity between two images or
windows.

5.8 Estimating Global Scale and Rotation Parameters

If two windows have different scales and orientations, there is a need to either use
scale and rotation invariant features or normalize the windows so they have the
same scale and orientation before finding their features. The SIFT descriptor esti-
mates the scale and orientation of a window, reorients the window, and normalizes
the calculated features with respect to the estimated scale, generating a scale- and
rotation-invariant descriptor for the window.

If the pattern within the window under consideration is round and symmetric,
SIFT can localize the window quite accurately, but it cannot reliably estimate its
orientation. If the pattern is elongated or has branches, it can find the local orien-
tation reliably, but it cannot estimate the local scale reliably as a small change in
image resolution can change local structure drastically.

Since the scale estimated by SIFT depends on the global scale of the image as
well as the local scale of the pattern, it is not possible to tell the scale of the im-
age from an estimated scale. The questions we would like to answer are: (1) Given
estimates to dominant orientations of windows centered at control points in two im-
ages without knowledge about the correspondence between the points, is it possible
to determine the rotational difference between the images? (2) Given estimates to
the scales of windows centered at control points in two images without knowledge
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about correspondence between the points, is it possible to determine the scale ratio
between the images?

Once the rotational difference and the scale ratio between two images are known,
then one image can be resampled to the scale and orientation of the other, facilitating
the correspondence process. Two approaches to global scale and rotation parameter
estimation are provided below.

5.8.1 Scale and Rotation Estimation by Clustering

Suppose M control points are present in a reference image and N control points
are present in a sensed image. Suppose the orientations estimated by SIFT or other
methods at windows centered at the points in the reference and sensed images are
{αi : i = 1, . . . ,M} and {βj : j = 1, . . . ,N}, respectively.

If we calculate Dij = βj − αi for different values of i and j , we will see that
when points i and j in the images truly correspond to each other, and the estimated
orientations are relatively accurate, Dij will produce about the same difference,
forming a cluster around the true rotational difference between the images. However,
when points i and j do not correspond to each other, Dij for different values of i

and j will fall randomly in the 1-D space. Therefore, clustering can be performed
in 1-D to find the rotational difference between the images. This method was first
proposed by Stockman et al. [47]. The process involves clustering Dij for a large
combination of i and j and finding the location of the highest peak.

When the orientations estimated at the points are not accurate, clustering may
miss the correct rotational difference between the images due to lack of a clear
peak. To enhance the peak, there is a need to avoid irrelevant angles that appear as
noise in clustering. Rather than finding the rotational difference between random
combinations of points in the images, points in the sensed image are only paired
with points in the reference image that have similar local arrangements. Information
about local arrangement of points in an image is reflected in the minimum spanning
tree (MST) or the triangulation of the points. Such information is invariant of the
orientation and scale of an image. Degree of a point P in an MST or a triangulation
of a point set shows the number of edges with one end at P. Having a graph to
represent the MST or the triangulation of the points in an image, each point becomes
a vertex in the graph. We will determine and save the degree of each vertex with the
vertex in the graph.

After finding the degrees of the points in both images, we will calculate Dij only
when the degree at point i in the reference image is within a small threshold of the
degree of point j in the sensed image. The threshold value will be a small number
such as 1. A small threshold value will reduce calculation of a large number of
irrelevant angles that act as noise in clustering, while preserving the relevant angles
in clustering and facilitating localization of the dominant peak.

To determine the scaling ratio between two images, we will determine the ratio of
scales estimated at points i and j and use the logarithm of the ratio when clustering.
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That is, we let Dij = log(Sj /si) = log(Sj ) − log(si), where si and Sj are the scales
of windows centered at point i in the reference image and point j in the sensed
image, respectively. The scale ratio between two images is then determined in the
same manner the rotational difference between the images is determined.

Since Dij for both rotation and scale represents a floating-point number, to map
the numbers to discrete bins in the cluster space, if a cluster space with n bins
is used and assuming a = min(Dij ) and b = max(Dij ), then values in [a, b] are
mapped to [0, n − 1] by letting xij = (Dij − a)(n − 1)/(b − a) and incrementing
entry round(xij ) by Aij = exp{−(k − l)2}. k and l represent the degrees of point i in
the reference image and point j in the sensed image, respectively. The process will
produce a weighted histogram, emphasizing point pairs that have closer degrees.

Clustering will find the rotational difference or the scale ratio between two im-
ages such that most points in the images are matched. The rotational difference
Dmax identified by the cluster peak shows the rotational difference of the sensed
image with respect to the reference image. In the case of scale, Dmax shows the
logarithm of scale ratio of the sensed image with respect to the reference image.
Therefore, exp(Dmax) represents the scale of the sensed image with respect to the
reference image.

Since bins in the cluster space represent discrete measures, to more accurately
estimate the rotational difference or scale ratio of two images, rather than incre-
menting a single histogram bin by Aij for Dij , bin D is incremented by

Aij exp

{

− (D − Dij )
2

2σ 2

}

, (5.20)

for D = 0, . . . , n− 1, where σ is a small number such as 0.5 or 1. This will produce
a “soft cluster” where a measured rotational difference or scale ratio contributes to
more than one cluster bin and is proportional to the difference between the Dij and
the center of bin D.

The finer the clustering bins are, the more accurate the estimated rotational differ-
ence or scaling ratio between the images will be. Soft clustering with the increments
shown by (5.20) avoids creation of sparse entries. Soft clustering ensures that values
are obtained in all bins in the cluster space, reducing ambiguity in localization of
the cluster peak.

Examples demonstrating use of clustering in determination of the unknown rota-
tion of one image with respect to another are given in Fig. 5.7. Suppose Fig. 5.7a is a
reference image, and Figs. 5.7b–e are various sensed images obtained by adding uni-
form noise of amplitude 10 to reference image, rotating reference image clockwise
by 30 degrees, smoothing reference image with a Gaussian of standard deviation
1.5 pixels, and scaling reference image by 1.5. 10% uniform noise implies generat-
ing random numbers between −0.1 and 0.1, multiplying the numbers by 255, and
adding the obtained numbers to the intensities. In the event that an intensity becomes
larger than 255, it is set to 255, and in the event that it becomes smaller than 0, it is
set to 0. The SIFT points detected in these images along with their local orientations
and scales are shown in Figs. 5.7f–j, respectively. The orientation of the window
centered at a point is shown by the arrow at the point and the scale of the pattern
within the window is shown by the length of the arrow.
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Fig. 5.7 (a) A circular image
showing a coin.
(b)–(e) Noisy, rotated,
smoothed, and scaled images
of the coin. (f)–(j) The SIFT
points of images (a)–(e),
respectively, along with their
orientations and scales

Assuming degree of point i in the reference image is k and degree of point j in
the sensed image is l when |k − l| ≤ 1, the orientational differences between points
i and j in the images are determined and clustered for all possible i and j . When
using Fig. 5.7a as the reference and Fig. 5.7c as the sensed image, we obtain the
clustering shown in Fig. 5.8a. Entry round(Dij ) in cluster space is incremented by
exp(−|k − l|2). Processing only point pairs in the images that have exactly the same
degree, that is k = l, we obtained the clustering depicted in Fig. 5.8b. Although the
location of the peak has not changed, the noise has decreased and the peak is more
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Fig. 5.8 (a) Rotational clustering of descriptors in images of Figs. 5.7a and 5.7c using points pairs
that either have the same degree or have degrees that differ by 1. (b) The same as (a) but computed
from point pairs that have exactly the same degree. (c) The same as (b) but using the soft clustering
idea with σ = 1

Fig. 5.9 (a)–(c) Rotational clustering when using the image in Fig. 5.7c against the images in
Figs. 5.7b, 5.7d, and 5.7e, respectively

pronounced. The soft clustering idea with σ = 1 produced a less noisy clustering as
shown in Fig. 5.8c.

When using the image in Fig. 5.7c against the images in Figs. 5.7b, 5.7d, and
5.7e, the clustering results shown in Figs. 5.9a–c, respectively, are obtained. The
cluster peak in each case corresponds to the 30◦ rotational difference between the
images. Although the peaks find the correct answer in each case, the peaks are not
pronounced and it is conceivable that the process could fail in other images. This
is an indication that a great proportion of the dominant directions reported by the
SIFT descriptor at the control points is not accurate.

Clustering was not able to find the scale ratio between the images in Fig. 5.7 using
the scale parameters produced by the SIFT descriptor. Since a SIFT descriptor is
generated based on the estimated scale and rotation, any inaccuracy in the estimated
scale and/or rotation will carry over to the accuracy of the generated descriptor.
Therefore, windows that have inaccurate rotation and/or scale parameters will have
descriptors that are inaccurate.

To distinguish useful descriptors from noisy ones in SIFT, post-processing of the
parameters is required. We know that if a point represents a round region, its scale
can be more accurately estimated than a point that represents a complex structure
with branches. Therefore, we will need to distinguish round regions from non-round
ones to identify useful descriptors from other descriptors.

A characteristic of a round region is that its center will not move as the image
resolution/scale is changed. Using this property, we can find SIFT points at two
resolutions of an image, keep only those points that do not move, and discard the
rest.
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Fig. 5.10 (a)–(d) Scale clustering when using the image in Fig. 5.7c against the images in
Figs. 5.7a, 5.7b, 5.7d, and 5.7e, respectively

The above process was repeated after filtering out the unstable points using a
distance tolerance of 1 pixel and Gaussian smoothing of standard deviation 1 pixel.
When using the image in Fig. 5.7c against images in Figs. 5.7a, 5.7b, 5.7d, and
5.7e, the clustering results shown in Figs. 5.10a–d are, respectively, obtained. Rela-
tively well-defined histograms are created. The scale parameter for the original and
noisy images are estimated correctly to be 1. However, the scale parameter estimated
when the images have scale or resolution differences is not reliable. When using the
images in Figs. 5.7c and 5.7d, a scale ratio of 1 should be obtained; however, the
process finds a scale ratio of 0.66. The process thinks that the image in Fig. 5.7c is
a scaled down version of the smoothed image in Fig. 5.7d. On the other hand, when
using the images in Figs. 5.7c and 5.7e, the process finds a scale ratio of 1.0, even
though the correct scale ratio is 1/1.5.

The conclusion to be reached by these experiments is that when the images do
not have scale or resolution differences, the scale and rotation parameters gener-
ated by SIFT are useful and can be used to determine the rotational difference and
the scale ratio of local neighborhoods. However, if the images have unknown scale
and resolution differences, the scale parameters estimated by SIFT are not useful.
Since the generated descriptors are based on the estimated rotation and scale pa-
rameters, this implies that SIFT descriptors are useful when comparing images with
the same scale/resolution, and they are not useful when comparing images with
scale/resolution differences.

5.8.2 Scale and Rotation Estimation by Log-Polar Mapping

A descriptor provides information about a window with respect to a coordinate sys-
tem that is centered at the window. If two images have only translational differences,
windows centered at corresponding points will contain the same scene parts, pro-
ducing descriptors that are the same or very similar.

If the images have unknown rotational and scaling differences, windows contain-
ing the same scene parts cannot be selected at corresponding points and that makes
generation of similar descriptors for windows centered at corresponding points im-
possible. One way to overcome this difficulty is to transform the window centered
at each point into a form that is invariant to the orientation and scale of the image.
A transformation that provides this property is log-polar mapping.
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In log-polar mapping, an M × N window f (x, y) in the Cartesian coordinate
system is mapped to a P ×Q array g(u, v) in the log-polar coordinate system. First,
the Cartesian coordinate system origin is moved to the image center. This involves
a translation:

X = x − x̄, (5.21)

Y = y − ȳ, (5.22)

where x̄ = M/2 and ȳ = N/2. Then, polar coordinates

r =
√

X2 + Y 2, (5.23)

θ = tan−1(Y/X) (5.24)

are calculated from the new Cartesian coordinates, and finally the log-polar coordi-
nates are found:

u = a log(r), (5.25)

v = bθ, (5.26)

where r ≥ 1 and a and b are parameters that determine the dimensions P and Q

of the log-polar image. a and b can be considered units defining pixel dimensions
in the log-polar map. Given a and b, the dimensions of the log-polar image are
calculated from

P = [0.5 log
(
M2 + N2)− log 2

]
a, (5.27)

Q = 2πb. (5.28)

The center pixel, which represents the origin of the Cartesian coordinate system, is
not processed in order to avoid calculation of log(0).

Note that isotropic scaling with respect to the center of a window implies re-
placing r with sr . Scaling in the Cartesian coordinate system will displace point
(a log(r), bθ) to (a log(r) + a log(s), bθ) in the log-polar map. Therefore, isotrop-
ically scaling a window by s causes its log-polar map to translate along the
u-axis by a log(s). Rotating a window by α will move point (a log(r), bθ) to
(a log(r), bθ + bα) in the log-polar map, cyclically translating the log-polar map
along the v-axis by bα.

Examples of log-polar mapping are given in Fig. 5.11. Images (a)–(e) in this
figure show the log polar maps of images (a)–(e) in Fig. 5.7, respectively. As can
be observed, isotropic scaling causes the log-polar map to shift horizontally, and
rotation causes the log-polar map to cyclically shift vertically. Therefore, images
that have scaling and rotational differences but coincide at their centers will produce
log-polar maps that are only translated with respect to each other.

Log-polar mapping can be considered a preprocessing operation that is applied
to a window to normalize it with respect to scale and orientation of the underly-
ing image. Note that this normalization is done with respect to a center point that
is the control point location. Therefore, if circular windows are taken centered at
corresponding control points, the produced log-polar maps will have only trans-
lational differences. The translational difference between two log-polar maps can
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Fig. 5.11 (a)–(e) Log-polar maps of the images in Figs. 5.7a–e, respectively

Fig. 5.12 (a) The central
portion of Fig. 5.7e taken to
be the same size as that in
Figs. 5.7a–d. (b) The
log-polar map of image (a)

be determined by locating the peak in their cross-power spectrum, as discussed in
Sect. 2.1.1.

Since there is a one-to-one correspondence between points in a window and
points in its log-polar map, knowing the translational difference between two log-
polar maps, the rotational and scaling difference between the windows can be de-
termined. For instance, if in the transformed domain the sensed image is translated
with respect to the reference image by (u, v), the scale ratio and rotational difference
between the original images will be:

s = e
u
a , (5.29)

θ = v/b. (5.30)

Parameters a and b relate to the resolution of the log-polar map and determine
the accuracy in estimation of the rotational difference and scaling ratio between
the two images from the translational difference between their log-polar maps. The
larger parameters a and b are, the more accurate the estimated scale and rotation
parameters will be. Increased accuracy, however, will be at a higher computational
cost.

Cross-power spectra of log-polar map pairs in Fig. 5.11 correctly determined
the scaling and rotational differences between the images from which the log-polar
maps were found. Note that not knowing the scale ratio between two images, the
windows used to obtain the log-polar maps will be all the same size. This means that
instead of the image in Fig. 5.7e, we actually have to use the image in Fig. 5.12a. The
log-polar map of this image is shown in Fig. 5.12b. The cross-power spectrum of
this image and any of the images in Fig. 5.11 again correctly determine the rotational
difference and scaling ratio between the images.
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While it was possible to determine the rotation and scale parameters between
only some of the images in Fig. 5.7 by clustering of SIFT parameters, it was pos-
sible to determine the rotation and scale parameters between all images in Fig. 5.7
by clustering of parameters determined by log-polar mapping. For points that corre-
spond, log-polar mapping determines the rotation and scale parameters accurately.
The rotation and scale parameters determined by SIFT are often not accurate enough
to produce unique and robust peaks in clustering to unambiguously determine the
rotation and scale parameters.
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Chapter 6
Feature Selection and Heterogeneous
Descriptors

Various image features were described and their invariances and repeatabilities were
explored in Chap. 4. The question we would like to answer in this chapter is, if d

features are to be selected from among D > d features for inclusion in an image de-
scriptor, which features should be chosen? Creation of image descriptors from ho-
mogeneous features was discussed in the previous chapter. Our focus in this chapter
will be to create descriptors from heterogeneous features.

Feature selection is the problem of reducing the number of features in a recog-
nition or matching task. Feature selection problems arise in regression analysis, in-
dependence analysis, discriminant analysis, cluster analysis and classification [3],
inductive learning [15, 21], and image matching, which is of particular interest in
image registration.

In regression analysis, features that add little to the regression accuracy are
discarded. Independent analysis is the problem of determining whether a D-
dimensional structure can be represented exactly or approximately by d < D dimen-
sions, and if so, which of the original dimensions should be used. In discriminant
analysis, the objective is to find whether some features can be dropped without sig-
nificantly changing the discrimination power of a recognition system. In clustering
and classification also, there is a need to remove features that do not influence the
final clustering or classification result.

In inductive learning, since a learner uses all available features, the presence of
irrelevant information can decrease the learning performance [39]. Therefore, again,
there is a need to remove the irrelevant features to improve the learning performance.
For example, if feature x2 is a linear function of feature x1 or if x2 = x1 + ε, where
ε represents random noise, then either x1 or x2 can be dropped with little change in
the classification result.

Given a set of D features from an image or a window, the feature selection prob-
lem is that of selecting a subset d < D of features that contains more discriminatory
information than any other subset of d features. An exhaustive search for the optimal

solution requires
(

D

d

)
comparisons, which is prohibitively large even for moderate

values of D and d .
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If the features are statistically independent, the problem may be solved by se-
lecting individually the d best features out of D [26]. This involves first selecting
the feature that maximizes a matching/recognition criterion. Among the remaining
features, the next feature is then selected that maximizes the same criterion, and the
process is repeated until the best d features are selected. However, Elashoff et al.
[12] and Cover [6] show that the set of best two features do not necessarily contain
the two best features. Toussaint [41] shows that the set of best two features may not
even include the best feature. Therefore, the set of most informative d features out
of D is not necessarily the set of the d individually most informative features. We
would like to select the features in such a way as to achieve the smallest classifica-
tion/matching error.

It is generally expected that the selected features (1) be independent of each
other, and (2) when combined, provide the most complete information about the ob-
jects to be recognized. Condition 1 ensures that the selected features do not contain
redundant information and condition 2 ensures that the selected features will least
ambiguously distinguish different objects (or in our case, image windows) from
each other.

Fourier transform and Zernike moments satisfy these conditions if a sufficient
number of them are selected, but we know these features are not very efficient when
used in recognition/matching. One can often find a combination of features that
are not independent (orthogonal) but can provide more complete information about
the objects or image windows. It has also been shown that informative class-specific
features provide a higher discriminative power than generic features such as Zernike
moments or wavelets [43]. We, therefore, will relax the orthogonality requirement
and select rich features that may have some overlap with other features but when
combined can provide the most complete information about the objects to be recog-
nized or the windows to be located in an image.

Given M windows {Oi : i = 1, . . . ,M} and D features {fi : i = 1, . . . ,D} from
each window, we would like to determine the smallest subset d among D features
that can distinguish the windows from each other with least ambiguity. We start
by extracting features that are the least sensitive to changes in scale, orientation,
contrast, noise, and blurring from the windows. Among the extracted features, we
then select a subset that can best distinguish the windows from each other.

If the feature vector with d components is used to describe the contents of a win-
dow, the feature vector can be represented by a point in a d-dimensional space. By
increasing the number of features, distance between the points in the feature space
will increase, improving the recognition/matching accuracy. However, as the num-
ber of dimensions increases, the computational resources needed to solve a recogni-
tion/matching problem increase also. The key is to find the smallest d that can solve
the problem with a required error tolerance.

Since it is possible for a pattern to appear repeatedly in an image, and know-
ing that a descriptor provides only information about a pattern local to a window,
some kind of an information exterior to the window is needed to distinguish the
pattern in different locations from each other. Assuming windows are taken cen-
tered at the control points in an image, examples of such exterior information are:
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(1) distance of a control point to the control point closest to it, (2) the degree of a
control point in the minimum-spanning tree (MST) or triangulation of the points,
and (3) the largest/smallest angle between edges of the MST or triangulation at the
control point. One or more of these exterior features, which are invariant to image
scale and orientation, can be used together with the interior features of a window to
distinguish windows containing the same pattern in different locations in an image
from each other.

In the rest of this chapter, various feature selection methods are reviewed and
their uses in creation of efficient heterogeneous image descriptors are explored.

6.1 Feature Selection Algorithms

Feature selection algorithms generally follow either a filter algorithm or a wrapper
algorithm [8, 9, 21], although hybrid algorithms that take advantage of the strengths
of both have been proposed also [27]. A filter algorithm selects features without re-
gard to the final matching rate. For example, it may remove features that are highly
dependent and retain only features that are independent. In a wrapper algorithm, fea-
tures are selected taking into consideration the final matching outcome and will rely
on the particular correspondence algorithm used. Wrapper algorithms are generally
more accurate than filter algorithms, but they are computationally costlier.

Hybrid algorithms combine the strengths of the filter and wrapper algorithms and
work well when a large feature set is provided. In a hybrid algorithm, first the best
feature subset of a given cardinality is selected by removing redundant, irrelevant,
or dependent features. Then by a wrapper algorithm and cross-validation, the final
best features are selected [8, 18, 32, 47, 52].

6.1.1 Filter Algorithms

Given feature set X = {xi : i = 1, . . . ,D}, we would like to select the feature subset
Y = {yj : j = 1, . . . , d} from X that is least redundant. Das [7] (also see [42]) mea-
sured redundancy by calculating linear dependency, while Heydorn [14] measured
redundancy by calculating statistical dependency. A feature z in X is considered
redundant with respect to feature subset Y if the probability distributions of (Y, z)

and (Y ) completely overlap. That is,

P
[
F(Y, z) = F(Y )

]= 1, (6.1)

where F(Y ) denotes the probability distribution of features in Y and F(Y, z) denotes
the cumulative distribution of Y and z. By adding feature z to feature subset Y , the
distribution of Y does not change, and so Y still carries the same information. Koller
and Sahami [22] remove redundant features in such a way that the class-conditional
probability after removal of the redundant features is as close as possible to the
class-conditional probability of the original features.
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In an attempt to remove redundant features in a feature set, King [19] and Jol-
liffe [16] used a cluster merging idea. Initially, each feature is included in a cluster
of its own. Then, the two closest clusters are merged to a new cluster. The cluster
feature is then considered the average of the two features. The merging process is
repeated by letting the feature representing the merged cluster be the average of the
features in it. The process is stopped any time the desired number of clusters or fea-
tures is reached. This method, in effect, merges similar features, producing features
that are less similar. Note that this method transforms given features to new features
while reducing redundancy.

Based on the clustering idea of King [19] and Jolliffe [16], Mitra et al. [30]
used feature similarity to subdivide a feature set into clusters in such a way that the
features in a cluster are highly similar, while those in different clusters are highly
dissimilar. Similarity is measured using Pearson correlation. If N windows are avail-
able in the reference image, each with an associating feature vector, the correlation
between features x any y is calculated from

r(x, y) =
∑N

i=1(xi − x̄)(yi − ȳ)

σxσy

(6.2)

where

x̄ = 1

N

N∑

i=1

xi, ȳ = 1

N

N∑

i=1

yi, (6.3)

and

σx =
(

1

N

N∑

i=1

(xi − x̄)2

)1/2

, σy =
(

1

N

N∑

i=1

(yi − ȳ)2

)1/2

. (6.4)

Clustering of the features is achieved by the k-nearest neighbor (k-NN) method.
First, the k-nearest features of each feature are identified and among them the feature
with the most compact subset, determined by its distance to the farthest neighbor,
is selected. Then, those k-neighboring features are discarded. Initially, k is set to
D − d and is gradually reduced until distance of a feature to the kth feature closest
to it becomes larger than a required tolerance ε or k reaches 1.

Note that when Pearson correlation is used to measure the similarity between
two features, the measure only detects linear dependency between features. If the
features have nonlinear dependencies, a measure such as information gain or mutual
information should be used.

Information gain is the amount of reduction in entropy of a feature x after ob-
serving feature y. That is,

IG(x|y) = H(x) − H(x|y), (6.5)

where H(x) is the entropy of feature x and is computed from

H(x) = −
N∑

i=1

P
(
x(i)

)
log2

(
P
(
x(i)

))
. (6.6)
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P(x(i)) denotes the probability that feature x will have value x(i) and H(x|y) is
the entropy of observing feature x after having observed feature y and is computed
from

H(x|y) = −
N∑

j=1

P
(
y(j)

) N∑

i=1

[
P
(
x(i)|y(j)

)
log2

(
P
(
x(i)|y(j)

))]
. (6.7)

Given N windows in the reference image with associating feature vectors, the in-
formation gain for any pair of features can be calculated in this manner.

If two features are highly dependent, the obtained information gain will be
smaller than when two less dependent features are used. Therefore, information
gain can be used as a means to remove dependent (redundant) features from a set.
Yu and Liu [48–50] normalized information gain IG(x|y) with respect to the sum
of the entropies of x and y to obtain a symmetrical uncertainty measure:

SU(x, y) = 2

[
IG(x|y)

H(x) + H(y)

]

= 2

[
IG(y|x)

H(x) + H(y)

]

. (6.8)

This measure varies between 0 and 1, with 0 indicating that x and y are completely
independent and 1 indicating that x and y are completely dependent. The closer
the symmetrical uncertainly between two features is to 1, the more dependent the
features will be, so one of them should be removed from the feature set. This process
can be repeated until all features are sufficiently independent of each other. Note
that accurate calculation of entropies for H(x) and H(y) as well as the conditional
entropy H(x|y) requires well populated probability distributions for P(x),P (y),
and P(x|y), and that requires a large number of reference windows.

Dependency can be measured using generalized Shannon mutual information
[11] also:

I (x, y) = H(x) + H(y) − H(x,y), (6.9)

where H(x) and H(y) are entropies of features x and y and H(x,y) is the joint
entropy of features x and y, defined by

H(x,y) = −
N∑

i=1

N∑

j=1

P
(
x(i), y(j)

)
log2 P

(
x(i), y(j)

)
. (6.10)

P(x(i), y(j)) is the probability that feature x has value x(i) and feature y has value
y(j). Bonnlander and Weigend [5], Wang et al. [44], and Bell and Wang [4] used
mutual information to measure feature dependency and relevance. Ding, Peng, and
Long [10, 33, 34] considered relevance the inverse of redundancy and selected fea-
tures in such a way that redundancy was minimized.

To select a representative subset from a set, Wei and Billings [45] first selected
the feature that correlated with most features in the set. They then added features
one at a time such that each newly selected feature correlated the most with the
remaining features and correlated the least with features already selected. Least cor-
relation was ensured through an orthogonalization process. They argue that if many
features correlate with feature x, feature x represents those features and so should
be included in the selected subset.
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6.1.2 Wrapper Algorithms

Wrapper algorithms select features in a training step where correspondence between
windows in the images are known. Given a set of corresponding windows in two
images, a wrapper algorithm selects the features such that the number of incorrect
matches is minimized. The matching process can be considered a nearest-neighbor
classifier. To determine the window in the reference image that corresponds to a
window in the sensed image, distances between all windows in the reference image
to the window in the sensed image are determined and the reference window closest
to the sensed window is selected as the corresponding window. Examples of distance
measures are given in (5.12) and (5.13).

Perhaps the simplest wrapper algorithm is the Max-Min algorithm [2], which
selects the features one at a time until the required number of features is reached.

Max-Min Algorithm Given features X = {xi : i = 1, . . . ,D} from each window
and knowing the correspondence between windows in reference and sensed images,
we would like to find feature subset Y ⊂ X, which is initially empty, and upon exit
contains d features maximizing the number of correspondences. Let J (xi) show
the number of correspondences obtained when using feature xi , and let J (xi, xj )

show the number of correspondences obtained when using features xi and xj , where
i �= j . Then:

1. Select feature xj in X and include in Y where J (xj ) = maxi (J (xi)).
2. Among the remaining features in X, select feature xk and include in Y if for

all features xj in Y we obtain J (xk, xj ) = maxk{minj (�J (xk, xj ))}, where
�J(xk, xj ) = J (xk, xj ) − J (xj ).

3. Repeat Step 2 until Y contains d features.

�J(xk, xj ) is the increase in the number of correspondences by moving feature xk

from X to Y . The feature in X that maximizes the minimum increase in the number
of correspondences when considered pairwise against all features in Y is selected
and added to Y . The computational complexity of this algorithm is on the order of
Dd operations, where each operation involves a few additions, multiplications, and
comparisons.

A feature selection algorithm that is based on the search algorithm of Marill
and Green [28] removes the least relevant features from X one at a time until the
desired number of features remains. This algorithm is known as sequential backward
selection (SBS) [20]. Similarly, an algorithm developed by Whitney [46] selects the
most relevant features one at a time from a feature set to create the desired subset.
This algorithm is known as sequential forward selection (SFS) [20].

SBS starts from the given feature set and removes the worst feature from the set at
each iteration until the desired number of features remains. On the other hand, SFS
starts from an empty subset, selects a feature from among the given set and moves it
to the subset in such a way that the number of correspondences is maximized. Steps
in the SFS and SBS algorithms are given below [40].
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Sequential Forward Selection (SFS) Algorithm Given N corresponding win-
dows in two images and feature set X = {xi : i = 1, . . . ,D} calculated for each
window, we would like to select feature subset Y = {yj : j = 1, . . . , d}, such that
d < D, Y ⊂ X, and the obtained feature subset maximizes the number of correct
correspondences.

1. Choose a dissimilarity measure to determine the distance between two feature
vectors.

2. Compute the number of correspondences using each feature individually. Move
the feature from X to Y that produces the most correct correspondences, and let
k = 1.

3. Select a feature from among the remaining D − k features. There are D − k

such cases. Use the selected feature and the k features already in Y to determine
the number of correct correspondences. Move the feature that produces the most
correspondences from X to Y and incremented k by 1.

4. If k = d , return Y . Otherwise, go to Step 3.

Sequential Backward Selection (SBS) Algorithm Starting from feature subset Y

containing all D features in X, remove features from Y one at a time until d fea-
tures remain and the d features produce the smallest number of incorrect correspon-
dences.

1. Choose a dissimilarity measure to determine the distance between two feature
vectors.

2. Let Y contain all D features in X and k = D.
3. Eliminate one feature from Y . There are k possibilities. Find the number of cor-

respondences obtained when using the remaining k − 1 features. Eliminate the
feature that produces the minimum number of incorrect correspondences when
using the remaining features in Y , and decrement k by 1.

4. If k = d , return the d features in Y . Otherwise, go to Step 3.

SFS starts from an empty subset and adds one feature at a time to it until the re-
quired number of features is reached, and SBS starts from the entire set and removes
features one at a time from it until the required number of features remain.

The choice of forward or backward comes from the relative value of d with
respect to D. If d is close to D, backward elimination is more efficient than forward
selection. However, if d is very small compared to D, forward selection is more
efficient than backward elimination.

Note that in backward elimination, once a feature is removed from the set of
features, it never gets a chance to return to the set. Also, in forward selection, once
a feature is included in the subset, it remains there and there is no chance for it
to get out. This problem, which is known as nesting, may introduce considerable
redundancy in the created subset.

To reduce redundancy in backward elimination, Pudil et al. [35] described a float-
ing algorithm that revises SBS algorithm to exchange a feature already excluded
from the subset with a feature in the subset if that increases the number of corre-
spondences. This involves only a slight modification of the SBS algorithm. Insert a
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step between Steps 3 and 4 in the SBS algorithm as follows: Replace each of the
k features remaining in the set, with one of the features already removed from the
set. There are D − k such replacements for each of the k features. If a replacement
increases the number of correspondences, keep the replacement. The SFS can be
revised in the same manner to avoid nesting. Insert a step between Steps 3 and 4
in SFS algorithm as follows: Replace each of the k features in Y with one of the
D − k features still remaining in X. If this replacement increases the number of
correspondences, keep it.

Generalized versions of SFS and SBS have also been proposed [20]. In the gener-
alized SFS (GSFS), if k features are already selected, all subsets with k + r features
are generated by adding r features from the remaining D −k features to the existing
subset. Then the subset that maximizes the number of correspondences is selected.
In the generalized SBS (GSBS), if k features remain in the set after removing fea-
tures from the set, all combinations of k + r subsets are created by adding to the
subset all combinations of r features out of D − k. Again, the subset maximizing
the number of correspondences is chosen. As r , the number of features added or
removed in each iteration, is increased, a more optimal subset is obtained but at a
higher computational cost. Aha and Bankert [1] explored other variations of the SFS
and SBS algorithms.

Somol et al. [37] further improved the feature selection optimality by combining
the forward and backward steps, calling the new algorithm adaptive floating feature
selection. By carrying out a more thorough search in each selection step, a solution
closer to the optimal one is reached, at a higher computational cost.

An SFS algorithm that prevents nesting is proposed by Michael and Lin [29].
The idea is generalized by Stearns [38] into an algorithm appropriately called plus l

take away r , which adds l features to the subset at each iteration while removing r

features.

Plus l Take Away r Algorithm Assuming l > r , X represents a set of D features,
and Y ⊂ X represents the feature subset containing d < D features:

1. Choose a distance measure and initially let Y be an empty set. Also let k = 0.
2. Choose feature x in X and add to Y if new Y maximizes the number of corre-

spondences, then increment k by 1. If k = d , return Y . Otherwise, repeat this step
l times.

3. Remove that feature y from Y such that the new Y minimizes the number of
incorrect correspondences, then decrement k by 1. Repeat this step r times.

4. Repeat Steps 2 and 3 in sequence as many times as needed until d features are
obtained in Y .

Stearns [38] compared the computational complexities of plus-l-take-away-r and
SFS and SBS algorithms, finding that the computational complexity of plus-l-take-
away-r algorithm is only several times higher than those of the SFS and SBS al-
gorithms. Kittler [20] found that the plus-l-take-away-r algorithm produces signifi-
cantly better results than the SFS and SBS algorithms but only when l ≈ r . When l

and r are too different, the process is incapable of avoiding nesting.
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The above algorithms are suboptimal. To obtain the optimal solution, exhaustive
search is needed, but that is not feasible when the feature set contains 100 or more
features. A branch-and-bound algorithm developed by Narender and Fukunaga [31]
selects the optimal feature subset without explicitly evaluating all possible feature
subsets. The algorithm, however, requires the feature selection criterion be mono-
tonic. That is, the provided features should be such that the correspondence algo-
rithm would produce more correspondences when using d + 1 features than when
using d features.

A branch-and-bound algorithm repeatedly partitions the solution space into
smaller subspaces. Within each subspace, a lower bound is found for the solutions
there. Those subspaces with bounds that exceed the cost of a feasible solution are
excluded from future partitioning. Among all remaining subspaces, the subspace
with the lowest cost is partitioned and the process is repeated until a solution is
reached. The solution reached first will be the lowest-cost as any solution obtained
subsequently will have a higher cost [25].

Narender and Fukunaga [31] used the branch-and-bound principle to develop an
optimal feature selection algorithm that selects the feature subset maximizing the
number of correspondences. The performance of the branch-and-bound algorithm
is further improved by Yu and Yuan [51] by expanding the tree branches that are
more likely to be a part of the solution subset. The algorithm adds one feature at a
time to a subset, always keeping track of the subset producing the highest number
of correspondences. The process will find the highest number of correspondences
for a required number of features. The steps of this algorithm are as follows.

Branch-and-Bound Algorithm

1. Create the root of a tree T and an empty list L. Also, let m = 0 and k = 0. m

shows the height of a node from the root and k shows the index of a selected
feature. 0 implying that no feature has been selected.

2. Create i = 1, . . . ,D − d + 1 nodes, then save in the ith node xi and the number
of correspondences found using feature xi . Also, increment m by 1 and save that
at the nodes. Next, make a link from each newly created node to the root and
save in L pointers to the created nodes in the descending order of the number of
obtained correspondences. These nodes represent the leaves of the tree at height
m = 1.

3. Take the first node in L and suppose the index of the node is k. If m = d , back-
track from that node to the root and return the indices of the features saved at the
visited nodes. Otherwise continue.

4. Create l = D − d − k + m + 1 nodes pointing to node k in the tree and save
at the created nodes feature indices k + 1, . . . , k + l. Also, find the number of
correspondences found for each node using the features from that node to the
root and save that number at the node. Then, increment m by 1 and save m at
the created nodes. Next, update L by inserting the newly created nodes in the list
in such a way that the list remains ordered in descending order of the number of
correspondences. L now points to nodes in the tree that represent the leaves of
the new tree. Go back to Step 3.
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Fig. 6.1 The complete
solution tree for selecting 3
features out of 6 by the
branch-and-bound algorithm.
The solution subset is found
by partially traversing the tree
from top to bottom while
maximizing the number of
correspondences

In Step 2, instead of creating D nodes only D −d +1 nodes are created. Because
d features are required, the distance of a node at level 1 to a leaf of the tree should
be d to produce d features. After using d features, there will be D − d features
remaining, each creating a new branch in the tree and each branch defining the
solution subset. This results in D − d + 1 nodes at level 1. At each level in the tree,
the leftmost node has D − d + 1 branches, but the branch to the right of it at the
same level has one fewer branches. This is because the order of features in a set
is not important. For example, once set {x1, x2} is tested, there is no need to test
{x2, x1}.

Step 3 returns an optimal subset containing d features, because if a path exists
that can produce a higher number of correspondences, it is already found. We know
this because the path with the highest number of correspondences is always on top
of list L, and we know that our matching algorithm produces more correspondences
with feature subset (Y ∪{xl}) than with feature subset Y , where xl is any feature that
is not already in Y . The tree structure when X contains 6 features and Y is required
to contain 3 features is shown in Fig. 6.1. Note that use of list L makes it possible
to find the solution set without exploring the entire tree.

The above algorithm shows steps of a forward algorithm as the number of fea-
tures is gradually increased until the desired number of features is obtained. A sim-
ilar algorithm can be designed to eliminate features one at a time while minimizing
the number of incorrect correspondences until the required number of features is
obtained. It has been shown that the branch and bound algorithm works quite well
even when the feature selection criterion is not monotonic [13].

A study carried out by Kittler [20] in a two-class problem with 20 features finds
that the optimal branch-and-bound algorithm has the highest discriminatory power,
closely followed by the GSFS and GSBS algorithms, and the discriminatory power
of the two get closer as the number of features added to or removed from the subset
increases in each iteration. The Max-Min algorithm is found to be the fastest but the
least accurate when compared to the branch-and-bound and the GSFS and GSBS
algorithms.
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Although the ultimate goal of a feature selector is to take the fewest features to
achieve a required recognition rate, a property of a feature selector that is important
is its stability [17, 23, 24, 36]. If features are extracted of the same phenomenon un-
der slightly different conditions, will the feature selector under consideration select
the same features? The stability can be measured using the Hamming distance be-
tween selected features in two tests. Stability shows robustness and ensures similar
results under small perturbations in data.

6.2 Selecting the Best Features for Image Matching

Tables 4.1 and 4.2 in Chap. 4 identify the most invariant and repeatable features.
If the features are to be selected individually, the tables are useful. However, if a
combination of d features is to be selected for image matching, we do not know
which d features to choose.

A set of features performing well on a class of images may perform poorly on
another class of images. To determine optimal features in image matching, a training
step is required that finds the optimal features for a class of images. Given two
representative images and a number of corresponding windows in the images, we
would like to find the set of d features that can find most corresponding windows in
the images?

We start with the features suggested in Tables 4.1 and 4.2. That is, we assume
the features available to us are X = {x1: mean intensity (L2), x2: second-order mo-
ment 1 (L23), x3: second-order moment 2 (L24), x4: third-order moment 2 (L26), x5:
normalized complex moment invariant of order (1,1) (L50c), x6: Beaudet’s corner-
ness measure (L64), x7: local frequency domain entropy (L75), x8: steerable filter
response (L78), x9: correlation response to Laws mask B11 (L86a), x10: correla-
tion response to Laws mask B22 (L86b), x11: smoothed intensity with a Gaussian
of standard deviation 2 pixels (L88), x12: Laplacian after smoothing with a Gaus-
sian of standard deviation 2 pixels (L90), x13: center contrast (L96), and x14: fractal
dimension (L111)}.

If different windows in the same image contain the same pattern, we will distin-
guish them from each other by using two features that provide external information
about the windows. As external information, we will use x15: MST degree and x16:
triangulation degree. The degree of a control point is considered the number of
edges connected to the control point in the MST or in the triangulation of the con-
trol points. Local features are measured within circular windows of radius r pixels
centered at the points. In the following experiments, r is taken to be 8 pixels.

Given a set of corresponding control points in two images, we take a circular
window of radius r = 8 pixels centered at each control point and determine the
above-mentioned 16 features using intensities in the window. As control points, we
choose local extrema of the response of the Laplacian of Gaussian (LoG) of stan-
dard deviation 2 pixels in an image. Then we calculate the 16 features for windows
centered at each control point. In the following, we will then determine the small-
est subset d < 16 features that can determine the most correspondences. Sequential
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Fig. 6.2 (a) Image of a coin, used as the reference image. The reference image after (b) blurring,
(c) addition of noise, (d) histogram equalization, (e) rotation, and (f) scaling

forward selection (SFS) algorithm will be used to search for the best suboptimal
features.

To demonstrate the search process, the simple coin image shown in Fig. 6.2a is
used as the reference image. The image is then blurred with a Gaussian of standard
deviation 1.5 pixels to obtain the image shown in Fig. 6.2b. Next, Gaussian noise
of standard deviation 20 is added to the reference image to obtain the noisy image
shown in Fig. 6.2c. Values higher than 255 are set to 255 and values below 0 are
set to 0. The reference image after histogram equalization is shown in Fig. 6.2d.
This can be considered a nonlinear but monotone intensity transformation of the
reference image. Finally, we rotate the reference image by 30◦ clockwise to obtain
the image in Fig. 6.2e, and scale the reference image by a factor of 1.5 to obtain the
image in Fig. 6.2f.

The 100 strongest and well dispersed points determined in these images by the
LoG detector are shown in Fig. 6.3. Details about point detection are provided in
Chap. 3. The problem to be solved is to locate the points of the reference image in
images (b)–(f) using the 16 or fewer features calculated within circular windows of
radius 8 pixels centered at the points.

Knowing the geometric relations between image (a) and images (b)–(f) in
Fig. 6.2, the coordinates of corresponding points in the images will be known.
Therefore, given 100 points in each image, we know which point in image (a) corre-
sponds to which point in any of the other images. Mapping the points in image (a) to
the space of images (b)–(f), we obtain images (b)–(f) shown in Fig. 6.4. The points
in image (a) are shown in red, while those in images (b)–(f) in Fig. 6.3 are shown in
green. points that are perfectly aligned in these images appear in yellow.
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Fig. 6.3 (a)–(f) Points detected in images (a)–(f) in Fig. 6.2 using the LoG detector of standard
deviation 2 pixels. Only the 100 strongest and well dispersed points are used in the experiments

Fig. 6.4 (a) Same as image (a) in Fig. 6.3. (b)–(f) Points in image (a) when overlaid with im-
ages (b)–(f) in Fig. 6.3. In these images, points of image (a) are shown in red, while points in
images (b)–(f) in Fig. 6.3 are shown in green. Perfectly aligned points appear as yellow
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Fig. 6.5 Performances of
various image features in
image matching under
various image changes. The
numbers along a plot indicate
the order in which the
particular features are
selected as the number of
features is increased

Out of 100 points in these images, 66, 60, 68, 48, and 28 of the points in blurred
image (b), noisy image (c), contrast enhanced image (d), rotated image (e), and
scaled image (f) in Fig. 6.3 are the same as those in the image (a). We consider points
that are within distance

√
2 of each other as corresponding points to compensate for

the digital errors caused by image rotation and scaling.
Knowing the true correspondence between points in these images, we will take

circular windows of radius 8 pixels centered at each point, calculate the 16 fea-
tures listed above from each window, and through feature selection determine the
best feature subsets that can find the most correspondences between image (a) and
images (b)–(f) in Fig. 6.2.

The matching results are summarized in Fig. 6.5. The graph shows the number of
correspondences obtained for a particular set of features obtained by the SFS algo-
rithm. As the number of features increases, the number of correspondences initially
increases up to a point, but then it decreases as more features are added. The features
selected early appear to contain the right information for a particular image variation
and improve matching result. However, features selected later in the process contain
misleading information and instead of improving the matching, worsen the process,
increasing the number of mismatches.

Under blurring, the best features are (1) x12: Laplacian of Gaussian intensity,
(2) x14: fractal dimension, (3) x1: mean intensity, (4) x8: steerable filter response,
(5) x5: normalized complex moment 2, (6) x4: third-order moment 2, (7) x11:
smoothed Gaussian intensity, (8) x2: second order moment 1, and (9) x3: second-
order moment 2. These features not only remain relatively unchanged under image
blurring or change in resolution, they contain sufficient discriminatory power to rec-
ognize various patterns.

The worst features under image blurring are x9: correlation response to Laws
mask B11 and x7: local frequency domain entropy. These features appear to be very
sensitive to image blurring and should be avoided when matching images obtained
at different resolutions. 66 of the 100 landmarks detected in the coin image and its
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Fig. 6.6 (a), (b) 66 true corresponding points existing between the coin image and its blurred
version. (c), (d) 13 of the correspondences are found when using the first 9 features as selected by
the SFS algorithm

Fig. 6.7 (a), (b) 60 true corresponding points exist in the coin image and its noisy version.
(c), (d) 32 of the 60 correspondences are found using the first 6 features as selected by the SFS
algorithm

blurred version truly correspond to each other. This is depicted in Fig. 6.6a and b.
Two points are considered corresponding points if they appear at the same pixel
location or at adjacent pixel locations. 13 of the 66 correspondences are found when
using the above 9 features as depicted in (c) and (d) in Fig. 6.6. Use of more features
actually reduces the number of correspondences as can be observed in the graph in
Fig. 6.5.

Under noise, the most effective feature are: (1) x12: Laplacian of Gaussian in-
tensity, (2) x2: second-order moment 1, (3) x3: second-order moment 2, (4) x14:
fractal dimension, (5) x11: Gaussian smoothed intensity, and (6) x1: mean intensity.
These feature remain relatively unchanged under noise. They also carry the most
information when matching the noisy images used in this experiment. The worst
features under noise are x16: triangulation degree and x15: MST degree. Since noise
can change the number of points and their locations, the triangulation and the MST
of the points will differ, making these features unsuitable for matching noisy im-
ages. 60 out of the 100 points in the coin image an in its noisy version, as shown in
the images in Figs. 6.7a, b are the same. Using the first 6 features as selected by the
SFS algorithm, 32 of the correspondences are found as shown in Figs. 6.7c, d. Use
of more features reduces the number of correspondences.

Under monotone intensity transformation, the most effective features for image
matching are found to be: (1) x8: steerable filter response, (2) x12: Laplacian of
Gaussian intensity, (3) x7: local frequency domain entropy, (4) x10: correlation re-
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Fig. 6.8 (a), (b) 68 corresponding landmarks are detected in the coin image and its contrast en-
hanced version. (c), (d) 10 of the correspondences are identified using the first 10 features as
selected by the SFS algorithm

sponse to Laws mask B22, (5) x3: second order moment 2, (6) x6: Beaudet’s cor-
nerness measure, (7) x9: correlation response to Laws B11 mask, (8) x4: third-order
moment 2, (9) x13: center contrast, and (10) x2: second-order moment 1. Observ-
ing the graph in Fig. 6.5, we see that the number of correspondences rises to 7 and
then falls to 6 and again rises to 10. This behavior is a side effect of the suboptimal
feature selection algorithm of SFS.

The worst features under monotone change in image contrast are x16: triangula-
tion degree, x11: Gaussian smoothed intensity, and x5: normalized complex moment.
68 features out of the 100 points in the coin image and its contrast enhanced version
truly correspond to each other as shown in Figs. 6.8a, b. Using the first 10 features as
selected by the SFS algorithm the process finds 10 of the correspondences as shown
in Figs. 6.8c, d.

Images that have rotational differences are best matched using features (1) x12:
Laplacian of Gaussian intensity, (2) x2: second-order moment 1, (3) x3: second-
order moment 2, and (4) x4: third-order moment 2. These features are known to be
rotation invariant. Among all rotationally invariant features, these features capture
sufficient non-overlapping information to enable effective recognition/matching of
local neighborhoods. The worst features to be used in matching of images with
rotational differences are x15: MST degree and x16: triangulation degree.

It is interesting to note that the MST and triangulation degrees are not very re-
liable under image rotation. Although MST and triangulation of a set of points are
invariant to rotation of the points, the point detector that has been used has found
only 48 corresponding points out of 100 in the coin image and its rotated version as
shown in Figs. 6.9a, b. As a result, the MST and the triangulation of control points
in the images look very different from each other, producing very little useful infor-
mation for matching. The process has been able to find 26 of the correspondences
using the first 4 features as detected by the SFS algorithm.

Finally, examining the matching result of images with scaling differences, we
find that the best features are: (1) x4: third-order moment 2, (2) x11: Gaussian
smoothed intensity, and (3) x13: center contrast. The worst features are: x16: tri-
angulation degree, x15: MST degree, and x1: mean intensity. It is interesting to see
that under change in scale, mean intensity is not a reliable feature for use in image
matching. Not knowing the scale difference between two images, averaging a fixed
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Fig. 6.9 (a), (b) 48 true corresponding landmarks exist between the coin image and its rotated
version. (c), (d) 26 of the correspondences are found when using the first 4 features as selected by
the SFS algorithm

Fig. 6.10 (a), (b) 28 true corresponding points are present in the coin image and its scaled version.
(c), (d) 3 of the correspondences are identified when using the first 3 features as selected by the
SFS algorithm

neighborhood of 3 × 3 pixels centered at a point results in considerably different
intensities that are not reliable in image matching.

The point detector has been able to find only 28 common points out of 100 in
both images. Using the first 3 features as detected by the SFS algorithm, 3 of the
correspondences are identified (Fig. 6.10). Using more features actually reduces the
number of correspondences as the remaining features do not contain useful infor-
mation when the images to be matched have unknown scaling differences.

Overall, worst matching results are obtained when the images have unknown
scaling differences. A very small number of correspondences are obtained when
considering all combinations of features. This can be attributed to (1) sensitivity of
the features to change in scale, and (2) sensitivity of the point detector to change in
scale. If a sufficiently large number of the same points is not detected in the images,
the matching process cannot find a large number of correspondences.

Examining all these results, we see that various moments perform the best, and
if the images do not have scaling difference, Laplacian of Gaussian intensity is also
a very effective feature in image matching. It should be mentioned that the results
obtained by the simple experiments above cannot be used to make a general con-
clusion about the power of the features. The performance of a feature can vary from
image to image and it depends on the size of the window used in the calculations.
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If the type of images to be registered is known, a number of the images may
be used to identify those features that most effectively find the same points in the
images and find correspondence between the points using the features of windows
centered at the points. Once the best features are identified, they can be used in a
custom system that can effectively register images in that class.

An important conclusion that can be reached from the above experiments is that
use of more features does not necessarily mean a more accurate matching. Some
features vary under certain image changes and do not contain useful information
to help matching, and if used, they may confuse the matching process and reduce
match rating.

When it comes to finding correspondence between windows in two images, in
addition to the features of the windows, relations between the windows can be used
as constraints to reject the false correspondences. Use of constraints in matching is
discussed in detail in the next chapter.
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Chapter 7
Point Pattern Matching

In previous chapters, methods for determining control points in images and meth-
ods for finding features of the control points were discussed. Some control points,
known as outliers, appear in only one of the images, and some control points are
slightly displaced from their true positions due to noise or other factors. Methods
that establish correspondence between such control points in two images of a scene
are discussed in this chapter.

The control points in an image may have associating features but due to intensity
and geometric differences between the images and the presence of noise, the features
may be inaccurate. We will use features at the control points and/or the geometric
constraint that holds between corresponding points in two images of a scene to
determine the correspondence between the points.

More specifically, the problem to be solved is as follows: Given points {pi =
(xi, yi) : i = 1, . . . ,m} in the reference image and points {Pi = (Xi, Yi) : i =
1, . . . , n} in the sensed image, we would like to determine the correspondence be-
tween the points. Each point may have an associating descriptor or feature vec-
tor. We will denote the descriptor or feature vector associated with point pi by
fi = {fij : j = 1, . . . , nf } and the descriptor or feature vector associated with Pi by
Fi = {Fij : j = 1, . . . , nf }. nf is the number of features in each descriptor or feature
vector. It is also assumed that the descriptor or feature vector associated with each
point is normalized to have magnitude 1. Methods for finding homogeneous and
heterogeneous descriptors at the control points were discussed in Chaps. 5 and 6.

Point pattern matching algorithms typically use the geometric constraint that
holds between corresponding points in the images to distinguish correct correspon-
dences from incorrect ones. The geometric constraint depends on the imaging ge-
ometry and the geometry of the scene. It may be known that the images represent
different views of a flat scene. Since images of a flat scene are related by a projec-
tive transformation, projective constraint is used to find the correspondences. If the
images represent distant views of a flat scene, instead of projective constraint, affine
constraint may be used to find the correspondences.
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7.1 Random Sample and Consensus (RANSAC)

Suppose two images are related by a transformation with p parameters. For instance,
if the images are known to have translational, rotational, and scaling differences,
a similarity transformation with 4 parameters can spatially align the images. Since
each point in a 2-D image has two coordinates, from the coordinates of 2 corre-
sponding points a system of 4 equations can be produced and solved to determine
the transformation parameters. Knowing the transformation that relates the geome-
tries of two point sets, the geometry of one point set can be transformed to that of
the other, aligning the point sets. Points falling within a distance tolerance of each
other after this alignment are considered corresponding points.

When the type of transformation that relates the geometry of one point set to
that of another point set is known, RANSAC can estimate the parameters of the
transformation and use the transformation to establish correspondence between the
remaining points in the two sets [18]. If the transformation has p parameters, a
minimum of q = �p/2� non-colinear points are needed to determine the parameters.
If p is an odd number, (p + 1)/2 points are selected from each point set but only
the x- or the y-coordinate of the last point is used to produce p equations.

If a subset of q points is selected from each point set randomly, then when the
two subsets contain corresponding points, the transformation obtained from them
will align many other points in the two sets. If f is the function that transforms the
geometry of the sensed set to that of the reference set, then f has two components
(fx, fy), relating coordinates of points in the sensed set to coordinates of points in
the reference set as follows:

x = fx(X,Y ), (7.1)

y = fy(X,Y ). (7.2)

Given sensed point Pi = (Xi, Yi), the above transformation estimates the location
of the corresponding point f(Pi ) in the reference space. If f(Pi ) is within distance
ε of a reference point pl , that is, if ‖pl − f(Pi )‖ ≤ ε, then pl and Pi are considered
corresponding points.

If the transformation function obtained from two point subsets finds t correspon-
dences from among n points in the sensed set, the subsets are considered to contain
corresponding points if r = t/n is sufficiently high. If noise is present and r is set
too high, the process may miss detecting the correct correspondences since the pa-
rameters estimated from noisy points may not be accurate enough to map the sensed
points sufficiently close to the corresponding reference points. To avoid failure, if
after N iterations corresponding point subsets are not found, from among the N

cases the subsets producing the most correspondences are chosen as the subsets con-
taining corresponding points. Then the transformation function mapping the sensed
points to the reference points is determined by the least-squares (Chap. 8) using
the available correspondences. The obtained transformation is then used to find the
remaining correspondences between the point sets.

The performance of RANSAC is affected by three parameters: ε, r , and N . Pa-
rameter ε depends on the accuracy of point locations. If the points are accurately
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located, this parameter should be small, such as 1 pixel. However, if point coor-
dinates are not accurately determined due to noise or other factors, this parameter
should be set proportionately higher. However, it should not be set higher than half
the distance between closest points in the reference set; otherwise, incorrect corre-
spondences could be counted as correct ones.

Parameter r depends on the number of inliers. If there are i inliers among m

points in the reference set and n points in the sensed set, there will be m− i outliers
in the reference set and n − i outliers in the sensed set, and r ≤ i/n. If there are as
many outliers as inliers, r ≤ 0.5. If no outliers are present so that all points in the
sensed set appear in the reference set, then r ≤ 1.

If r is selected too high and points are noisy, the process may miss identifying
point subsets that truly correspond to each other when all N iterations are exhausted.
This is because the iterations may not produce a sufficiently high number of corre-
spondences from the obtained transformations. If r is set too low and there is a large
number of outliers, since it is possible to obtain accidental correspondences from
the outliers, the process may prematurely halt, reporting correspondences that are
incorrect.

When the maximum number of iterations is reached, the iteration producing the
highest number of correspondences is revisited and the correspondences are used to
determine the transformation parameters. The smaller the N , the greater the like-
lihood that the process stops prematurely, resulting in an incorrect transformation.
The larger the N , the more time consuming the process will be, but the higher the
likelihood that the obtained transformation will be correct. Parameters ε, r , and N

are estimated through a training process using a number of representative data sets
where the true correspondence between the points is known.

Algorithm F1 (Point pattern matching by RANSAC) Given (1) a reference point
set containing m points and a sensed point set containing n points, (2) knowing
that coordinates of points in the sensed set are related to coordinates of points in
the reference set by a transformation function with p parameters, (3) knowing the
distance tolerance ε to consider two points as corresponding points after the sensed
point set is transformed to align the reference point set, (4) knowing the minimum
ratio r of number of correspondences found and the number of points in the sensed
set to consider the correspondences correct, and (5) knowing the maximum number
of iterations N that can be afforded to hypothesize and test various transformation
functions, one of which can find correspondence between the point sets, we want to
find the transformation that establishes the most correspondence between the point
sets.

In the following, ni denotes the iteration number, nc is the largest number of cor-
respondences obtained up to iteration ni , and f denotes the transformation function
with p parameters that will align points in the two sets.

1. Let ni = 0 and nc = 0.
2. Take a random subset containing q = �p/2� points from each point set.
3. Hypothesize a correspondence between points in the two subsets. There are q!

such cases. For each case:
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(a) From the q corresponding points, set up a system of p linear equations
by substituting the coordinates of corresponding points into the x- and y-
components of the transformation function ((7.1) and (7.2)). If p is an odd
number, use the x- or the y-component of the last point in each subset.

(b) Solve the system of p equations to determine the p parameters of transfor-
mation f.

(c) For each point Pi in the sensed set, determine the corresponding point f(Pi )

in the reference set with the obtained transformation. If ‖pl − f(Pi )‖ ≤ ε for
some l, then consider point pl in the reference set corresponding to point
Pi in the sensed set. Suppose t correspondences are obtained in this manner
while changing i = 1, . . . , n.

(d) If t > nc, let nc = t and save the obtained transformation f. If nc/n ≥ r , go
to Step 5.

4. Increment ni by 1. If ni ≤ N go to Step 2.
5. Find points in the sensed set that fall within distance ε of points in the reference

set after transformation with f. There should be nc correspondences. Use the
coordinates of corresponding points to calculate a new transformation, fn, by the
least-squares method.

6. Determine the correspondences obtained from fn and return transformation fn
and the obtained correspondences.

In Step 3, when q points are selected from each set, points in the reference subset
are kept fixed and points in the sensed subset are permuted and each case is consid-
ered to correspond to points in the reference subset. For instance, if the point sets
are related by an affine transformation with 6 unknown parameters, point subsets
containing 3 points are selected from each set. Suppose points in the reference sub-
set are ABC and points in the sensed subset are DEF. Then point sequence ABC
is matched to point subsets {DEF, DFE, EDF, EFD, FDE, FED}, one at a time. In
each case, Steps 3a–d are performed until a point sequence from the sensed subset is
found that matches the point sequence from the reference subset. By matching the
reference point sequence and a sensed point sequence the transformation relating
the point subsets is determined. If the same transformation can relate a sufficiently
large number of other points in the two sets, a jump is made to Step 5 to find all
correspondences and return them. If a sufficient number of correspondences is not
found after N iterations, the process is stopped and the transformation producing
the most correspondences and with the obtained correspondences are returned.

When the point sets are very large, it may require a large number of iterations
before randomly selected point subsets correspond. For example, if the point sets
have only translational differences, a pair of corresponding points can determine
the translational difference between the point sets. Even in the absence of outliers,
given a point in the reference set, there is a need to take an average of n/2 points
in the sensed set until a correspondence to a selected reference point is found. In
the presence of outliers, this number increases. Since points are randomly selected,
the same non-matching point can be selected over and over while the sensed point
corresponding to the reference point may be missed even after a very large number
of iterations.
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When the point sets are related by a similarity transformation, two points ran-
domly selected from each set are needed to find the transformation parameters. The
number of average iterations required for two points selected from the sensed set
to correspond to two points selected in the reference set is on the order of n2. The
number of average iterations required to successfully find the parameters of an affine
transformation using 3 points from each set is on the order of n3, and the number of
iterations required to find the parameters of a projective transformation is on the or-
der of n4. When n is small, such as 10, computations by RANSAC can be afforded;
however, when n is on the order of hundreds or thousands, determination of point
correspondence by RANSAC becomes impractical.

Approaches to speed up RANSAC have been proposed. In an algorithm known as
randomized RANSAC or R-RANSAC, Matas and Chum [31] suggested first verify-
ing the correctness of a hypothesized transformation using a small number of points
d , and if the d points are found to satisfy the transformation, then the correctness of
the transformation is verified using the remaining points. They derived d based on
prior knowledge of the fraction of outliers. Later they showed how to estimate this
fraction online [12]. d is typically a small number such as 1, 2, or 3.

To implement R-RANSAC, a step is inserted between Steps 3b and 3c in Algo-
rithm F1 to first test the transformation for d randomly selected points, and if the
test succeeds, then a further test is performed in Step 3c. Otherwise, a jump is made
to Step 4 to increment the iteration number and repeat the process until a sufficiently
large number of correspondences is obtained.

A speed-up method proposed by Van Wamelen et al. [51] initially finds the k-
nearest points of each point in the two sets. Then for each point pair pi and qj in the
two sets, the k-nearest points of pi and qj are matched, and if the neighborhoods
are found to correspond, the obtained local transformation is tested globally to de-
termine the number of points in the two sets that match with the provided distance
tolerance ε. This can be considered a hierarchical search where the first search for
the transformation is performed locally using small point subsets and when one is
found the transformation is verified globally using all points. Optimal k depends on
m, n, and ε [51] and is typically a small number such as 10. A similar approach is
proposed by Denton and Beveridge [15] by clustering the point and matching points
within clusters.

An early bail-out test proposed by Capel [5] abandons testing of all points against
a hypothesized transformation if after testing a sufficient number of points the per-
centage of inliers obtained is much smaller than the best percentage of inliers ob-
tained thus far. For instance, if the test is performed on n1 randomly selected points
and the largest number of points satisfying the transformation thus far is n2, and if
a new transformation is tested against n1 points and n3 < αn2 correspondences are
obtained, further testing against the transformation is abandoned. α and n1 depend
on the parameters of RANSAC. α is a number such as 0.5 and n1 is a number such
as 100 or n/100, whichever is smaller. n is the number of points in the sensed set.
This early bail-out test can also be added to the above RANSAC algorithm right
before Step 3c. Therefore, after it is determined that the hypothesized transforma-
tion can match d points, the hypothesis is verified using n1 points. If the number
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of points passing the test n3 < αn2, a jump is made to Step 4. Otherwise, testing is
continued by going to Step 3c.

In an algorithm known as preemptive RANSAC, Nistér [33] proposed generat-
ing a predetermined number of transformations. This can be achieved either using
random subsets from the two sets or knowing the possible transformations between
the two sets. A counter is associated with each transformation and initialized to
0. A point from each set is tested against all transformations, and the counter for
the transformation that matches the points is incremented by 1. If a randomly se-
lected point pair truly corresponds, they satisfy the correct transformation. If they
do not correspond, they will not satisfy any of the transformations; however, they
may accidentally satisfy and contribute to an incorrect transformation. The incorrect
correspondences either randomly satisfy a transformation or they do not satisfy any
of the transformations. Correct correspondences, however, contribute to the same
transformation. After testing a sufficiently large number of randomly selected point
pairs from the two sets, the transformation receiving the highest score is considered
the correct transformation and is used to determine the correspondence between
points in the two sets. The main difficulty in this approach is to come up with the
smallest number of transformations that contain the correct transformation.

In the maximum likelihood estimation sample consensus (MLESAC) proposed
by Torr and Zisserman [49], correspondence is established between point sets by
maximizing the likelihood of finding the solution rather than maximizing the num-
ber of inliers. In a guided-sampling approach proposed by Tordoff and Murray [48],
a feature matching quality is added to MLESAC to assist in the search for the max-
imum likelihood solution. Guided sampling enables selecting subsets that are more
likely to find the solution. Subset selection or hypothesis generation in guided sam-
pling relies on additional information about the points. The information can be in
the form of features, such as the number of points with a fixed radius of a point,
the degree of a point in the minimum spanning tree of the points, the intensity of
a point, etc. By choosing point subsets that have similar features, point subsets are
selected that are more likely to produce the correct transformation.

An extension to guided sampling proposed by Chum and Matas is known as pro-
gressive sample consensus (PROSAC) [11]. The idea is to create a small subset of
points from each set based on the similarity of features/descriptors associated with
the points. Initially, small subsets from each set are selected from points with the
most similar features/descriptors. The size of the subset is progressively increased
to generate hypotheses until the solution transformation is found.

In a RANSAC algorithm developed by Serradell et al. [42], initial correspon-
dence is established between points in two images using their intensity features.
Since lack of uniqueness among intensity features could result in some incorrect
correspondences, to remove the incorrect correspondences, geometric information
(constraint) holding between the images is used. In particular, homography is used
as the geometric constraint between points in the images to remove the incorrect
and ambiguous correspondences and arrive at unique ones.

In the generalized RANSAC framework developed by Zhang and Kos̆ecká [57],
initially multiple correspondences of sensed points are considered for each refer-
ence point using the similarity between the features of the points [37]. Then, unique
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correspondences are determined between the reference and sensed points using ad-
ditional information in the images. Hsiao et al. [24] have shown that keeping am-
biguities among the correspondences and removing them later during hypothesis
testing using global information in addition to the local information provided by the
features of the points improves match rating among the points. Use of image fea-
tures to find the putative correspondences before finding the final correspondences
has been found to speed up RANSAC by two orders of magnitude. Use of image fea-
tures to aid determination of correspondence between point sets is further discussed
in Sect. 7.4.

A variant of RANSAC, known as geometric hashing, uses a table look-up to
simultaneously compare one sensed point set to many reference point sets. For each
reference set a point pair, called a basis pair, is selected and mapped to (0,0) and
(1,0). The transformation obtained as a result is used to transform the remaining
points in the reference set. Each transformed point is then mapped to an entry in
a 2-D array called the hash table. The identity of the reference set and the basis
point pair are then added to that entry. The process is repeated for other point pairs.
After processing all point pairs, entries in the hash table will contain the name of the
reference set. The same is repeated for other reference sets. Note that the process
may save the identities of many reference sets in the same table entry.

To determine the reference point set best matching a sensed point set, point pairs
are selected from the sensed set and mapped to (0,0) and (1,0). The transformation
is then used to map the remaining points in the sensed set to the table. The model
name most frequently encountered in the hash table during this mapping identifies
the reference point matching the sensed point set. The basis point pairs in the ref-
erence and sensed point sets are used to determine the correspondence between re-
maining points by the similarity transformation [26, 54]. Note that this limits usage
of the hash table to point sets that are related by only similarity transformation.

The performance of geometric hashing degrades quickly with noise [22, 27].
Also, since each reference point pair should be used to prepare the hash table, the
point sets cannot be very large. Otherwise, preparation of the hash table from many
point sets becomes impractical. Geometric hashing is suitable when each point set
contains a small number of points, there is a small number of point sets, and the
reference point sets are known ahead of time so that a hash table can be prepared
from them off-line.

7.2 Graph-Based Point Pattern Matching

A graph representation of a set of points in the plane is independent of the po-
sition and orientation of the points within the plane. Examples are the complete
graph, triangulation, minimum-spanning tree (MST), and the convex-hull of the
points (Fig. 7.1). One of the earliest point correspondence algorithms determined
the maximal cliques (connected subgraphs) in two point sets that satisfied the same
geometric relation [2, 4]. Although matching in this manner is efficient for small
point sets, due to its backtracking nature, its computational complexity increases
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Fig. 7.1 (a) A set of points in the plane. (b) Complete graph, (c) triangulation, (d) MST, and
(e) convex-hull of the points

exponentially with the number of points. To increase speed, Lavine et al. [28] cor-
related sorted edge lengths of subgraphs and Ahuja [1] correlated sorted areas of
connected Voronoi polygons to establish correspondence between subgraphs.

To establish correspondence between two point sets, Zhan [56] matched an edge
in the MST of one point set to an edge in the MST of another point set to deter-
mine the translational, rotational, and scaling differences between the point sets.
The obtained transformation was then used to determine the correspondence be-
tween remaining points in the two sets.

The complete graph of a set of n points contains n(n − 1)/2 edges. Therefore,
if two point sets that contain m and n points are related by the similarity transfor-
mation, the exhaustive search using the complete graph of the point sets requires
hypothesizing and testing n(n − 1)m(m − 1)/2 or on the order of n2m2 differ-
ent transformations. Note that each edge in the reference graph should be matched
against a sensed edge twice by reordering the edge endpoints in the sensed set. If
instead of the complete graph edges the MST edges are used, because a point set
with n points has an MST with n − 1 edges, the exhaustive search involves hypoth-
esizing and testing 2(n − 1)(m − 1) or on the order of nm transformations. Use
of MST edges, therefore, considerably reduces search time for the correspondences
when compared to the complete graph edges. Since each hypothesis requires map-
ping n points in the sensed set to points in the reference, and finding which of the m

points in the reference is closest to each of the mapped points from the sensed set,
on the order of mn distance computations is needed. This makes the computational
complexity of the graph-based algorithm using MST edges on the order of m2n2.

Further speed-up can be achieved by matching an edge in the reference set to
a small number of edges that have about the same length or length ratio in the
sensed set rather than to all edges. It is not likely that the longest edge in one MST
will produce correct correspondences when matched against the smallest edge in
the other MST. Therefore, edges in the sensed set are ordered according to their
lengths, and for each edge in the reference set, matching is performed between that
edge and k � m − 1 edges in the sensed set that have the closest edge ratio. Edge
ratio is considered to be the length of an edge divided by the average length of
edges in an MST. Matching in this manner reduces the number of hypothesized
and tested transformations from 2(n − 1)(m − 1) to 2(m − 1)k but with overhead
of (n − 1) log2(n − 1), the time needed to order the (n − 1) edges of the MST
in the sensed set. Considering each hypothesized transformation requires on the
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order of mn distance calculations to verify its correctness, the overall computational
complexity of the process in this case will be O(m2nk).

Instead of MST edges, convex-hull edges can be used to match the points [21].
The maximum number of convex-hull edges of a set of n points is n and the min-
imum number is 3. Therefore, in general, there are fewer edges in the convex-hull
than in the MST of a set of points. Edges in the convex-hull of a set of points are
generally longer than MST edges (Fig. 7.1e). Therefore, matching of convex-hull
edges generally results in more accurate transformation parameters than matching
of MST edges.

When the point sets contain considerable outliers and noise, the likelihood that
a tested edge pair finds the correct correspondences is low. The fewer the number
of outliers and noisy points, the higher will be the likelihood that a tested edge
pair finds the correct correspondences. Therefore, one may start by matching the
convex-hull edges, and if that does not find a sufficient number of correspondences,
then the MST edges are matched. If that also does not succeed, then the triangu-
lation edges are matched, and if that also fails, an exhaustive search is performed
using the complete-graph edges. In rare cases where the same convex hull, MST, or
triangulation edges are not found in the two point sets due to a large number of out-
liers, the exhaustive search should be able to find the correspondences. Exhaustive
search should be used as the last resort though, as it is very time consuming.

Similar to RANSAC, graph-based matching can have parameters ε, r , and N .
r shows the ratio of the number of inliers and the number of points in the sensed
set under a hypothesized transformation. For instance, if a transformation finds cor-
respondence for 1/4th of the points in the sensed set, one may stop the process. In
the event that r is not selected properly, the process may not stop even though the
correct transformation is found. In that case, when the process stops after N itera-
tions, the transformation producing the most correspondences is taken as the correct
transformation and the correspondences obtained from it are returned.

If the point sets are related by an affine transformation, three corresponding
points are needed to determine the transformation parameters. In such a situation,
each point set is triangulated [16] and vertices of triangle pairs are used to determine
the transformation parameters. If a point set contains n points, k of which fall on the
convex-hull of the points, there will be T = 2n − 2 − k triangles. Therefore, if there
are T1 triangles in the reference set and T2 triangles in the sensed set, there will be
T1T2 triangle pairs that can be tested. Note that each reference triangle should be
matched with the sensed triangle 6 times by reordering the vertices of the sensed
triangle.

To limit the search space when using triangulated points, the sensed triangles
can be ordered according to their area sizes, largest angles, or ratio of largest and
smallest sides. Then, given a reference triangle, a small number of sensed triangles
most similar to it can be identified in the ordered list and used in matching. This
will reduce the number of hypothesized transformations from T1T2 to kT1, where
k � T2.

If the point sets are related by the projective transformation, four points are re-
quired from each set to determine the transformation parameters. If a point set is
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triangulated, except for the convex-hull edges, each interior edge is shared by two
triangles that form a quadrilateral. If a point set contains n points, k of which fall on
the convex-hull of the points, there will be E = 3n−3−k edges in the triangulation.
Since k edges fall on the convex-hull of the points, there will be Q = 3n−3−2k in-
terior edges, so there will be Q quadrilaterals. Consequently, if there are Q1 quadri-
laterals in the reference set and Q2 quadrilaterals in the sensed set, there will Q1Q2

quadrilateral pairs that can be used to hypothesize and test the projective transfor-
mation relating the point sets.

Some quadrilateral pairs are unlikely to produce correspondences. Therefore, if
the sensed quadrilaterals are ordered according to a predefined property, then quadri-
laterals of similar property from the two sets can be matched. For example, a sim-
ple convex-concave categorization of the quadrilaterals can reduce the number of
matches by a factor of 4. Other invariant properties of quadrilaterals under homog-
raphy can be used to order the quadrilaterals and reduce computation time. Selecting
similar quadrilaterals in reference and sensed sets increases the likelihood that the
matched quadrilateral vertices find the correspondences, and that reduces the num-
ber of hypothesized transformations from Q1Q2 to kQ1, where k � Q2. To avoid
verification of a hypothesized transformation using all points, an early bail-out step
like that used in RANSAC can be used here also to avoid further testing of a trans-
formation function that is not likely to produce a solution.

In graph-based approaches, the local information provided by an edge, a triangle,
or a quadrilateral is used to estimate a local transformation that is hypothesized to
be the global transformation and verified using all points in the two sets. For the
process to work, a locally estimated transformation should be the same or very close
to the global transformation. This requires that points in the two sets be related
to each other by a globally rigid, linear, or projective transformation. Moreover,
noise among point coordinates should be smaller than half distances between closest
points in the reference set. Otherwise, the local transformation determined from
local MST edges, triangles, or quadrilaterals may not be able to correctly count
corresponding points in the two sets during hypothesis and testing.

The correspondences reported by a graph-based method can be used to determine
refined transformation parameters by the least-squares method. Least-squares will
use more global information and produce a more accurate estimation of the transfor-
mation parameters than the parameters estimated using local point coordinates. The
obtained global transformation can then be used to determine more correspondences
in the two sets.

Outliers produce matches that can mislead the process if there are a sufficiently
large number of them. Presence of too many outliers may produce completely dif-
ferent convex-hulls, MSTs, triangles, and quadrilaterals, causing the process that
uses them to fail. Therefore, it is critical to include, as a last resort, an exhaustive
search that uses the complete graph edges of the points to find the correspondences.

Graph-based approaches are similar to RANSAC in the way the transformation
parameters are determined from point subsets. The two are different in the way the
point subsets are selected. In graph-based approaches, point subsets are chosen in a
structured manner. Since the number of such cases is much smaller than the number
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of random cases that produce subsets containing corresponding points, there rarely
is a need to stop the process after N iterations. However, if N is available, it can be
used in graph-based matching also.

The speed-up techniques discussed in RANSAC can be applied to graph-based
matching also. For instance, the randomized, preemptive, and early bail-out schemes
used in RANSAC can be used to speed up graph-based matching algorithms in the
same manner.

7.3 Performance Measures in Point Pattern Matching

To characterize a matching algorithm and to evaluate its performance, a number of
point sets with known correspondences is required. To demonstrate the evaluation
process, the point sets obtained in the coin images in Fig. 6.2 will be used. Since
the geometric relations between images (b)–(f) and image (a) are known, given a
point in image (a), we will know its correspondence in images (b)–(f). 100 points
detected in each image are used in the experiments. Due to the geometric and inten-
sity differences between image (a) and images (b)–(f), some points detected in (a)
do not appear in (b)–(f). Due to noise and other factors, some points detected in
(a) are slightly displaced in (b)–(f). Assuming the geometric relation between im-
age (a) and image (x) is f, where (x) is one of (b)–(f), point p in (a) is considered
corresponding to point P in (x) if ‖p − f(P)‖ ≤ ε. We let ε = 1.5 pixels.

The 100 strongest points that are also the most widely spread over images (a)–(f)
in Fig. 6.2 are detected and points in (b)–(f) falling within ε = 1.5 pixels of points
in (a) after a transformation are considered to be corresponding points. If point P
in (b)–(f) falls horizontally, vertically, or diagonally adjacent to or at point p in (a)
after transformation, it is considered corresponding to point p.

Since these images are related by the similarity transformation, two correspond-
ing control points in the images are sufficient to align the images and find the cor-
respondence between the points in the images. After determining the MST edges of
points in each set, the MST edges are ordered from the longest to the shortest. Then,
for the ith reference MST edge, a search is made among the sensed MST edges
from i − δn + 1 to i + δn + 1 edges, where δn represents the difference between
the number of points in the two sets. That is, δn = |m − n|. If no successful match
is found, each reference MST edge is then matched with all sensed MST edges,
and if that fails, each reference MST edge is matched with all triangulation edges
of sensed points. If that also fails, each reference MST edge is matched against all
edges in the complete graph of points in the sensed set.

The matching results obtained by edge matching are depicted in Fig. 7.2. Yellow
lines connect the true correspondences found by the algorithm, red lines connect the
correspondences found that are false, and green lines connect the true correspon-
dences missed by the algorithm.

Matching the MST edges of points in the coin image and points in its blurred
version (Fig. 7.2a) 67 correspondences are obtained, of which 66 are correct and
1 is incorrect. The algorithm finds 61 correspondences between points in the coin
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Fig. 7.2 (a)–(e) Correspondences obtained between points in the original coin image and points
in its (a) blurred, (b) noisy, (c) contrast-enhanced, (d) rotated, and (e) scaled versions by MST
edge matching. Yellow lines connect the true correspondences obtained by the algorithm, red lines
connect correspondences found by the algorithm that are false, and green lines connect the true
correspondences missed by the algorithm

image and its noisy version (Fig. 7.2b), of which 60 are correct and 1 is incor-
rect. The algorithm finds 68 correspondences between points in the coin image and
its contrast-enhanced version (Fig. 7.2c), all of which are correct. The algorithm
finds 48 correspondences between points in the coin image and its rotated version
(Fig. 7.2d), of which 47 are correct and 1 is incorrect.

MST edges failed to match points in the coin image and its scaled version due
to the absence of common edges in the MSTs of the points while satisfying ε = 1.5
pixels and r = 0.25. The process failed to find the correspondences by matching
edges in the triangulation of the points also because of the same reason; however,
it was able to find the correspondence between the point sets when matching the
complete graph edges of the points. It found 28 correspondences between points in
the coin image and its scaled version (Fig. 7.2e), of which 23 are correct and 5 are
incorrect. It also misses 5 of the true correspondences.

To measure the performance of the graph-based matching algorithm on the coin
images, true positive (TP): number of correspondences found that are correct; true
negative (TN): correctly not selecting correspondences that do not exist; false posi-
tive (FP): number of correspondences found that are incorrect; false negative (FN):
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number of correspondences missed. P ′ = TP + FP is the number of detected cor-
respondences, N ′ = FN + TN is the number of predicted non-correspondences,
P = TP + FN is the number of true correspondences or inliers, N = FP + TN
is the number of true non-correspondences or outliers.

The example in Fig. 7.2a shows matching of points in the original coin image
and in its blurred version. In this example, TP = 66, FP = 1, TN = 33, and FN = 0.
Therefore, the number of predicted correspondences P ′ = 67 and the number of
predicted non-correspondences N ′ = 33. The number of true correspondences P =
66 and the number of true non-correspondences N = 34. Note that P ′ + N ′ = P +
N = 100.

Other measures used to characterize the performance of a correspondence algo-
rithm are:

true positive rate: TPR = TP

P
, (7.3)

false positive rate: FPR = FP

N
, (7.4)

accuracy: ACC = TP + TN

P + N
. (7.5)

Therefore, in the above example we find TPR = 66/66 = 1.0, FPR = 1/33 = 0.03,
and ACC = (66 + 33)/(66 + 34) = 0.99.

As the error tolerance ε is increased, the number of missed correspondences
(FN) decreases but the number of false correspondences (FP) increases. As ε is
decreased, the number of false correspondences decrease but the number of missed
correspondences increases. For image registration purposes, having fewer false
correspondences is preferred over having fewer missed correspondences because
missed correspondences can be recovered once the transformation to align the point
sets is estimated from the correspondences. Presence of false correspondences de-
grades the estimated transformation, missing the correct correspondences.

Although accuracy is the most important performance measure in a correspon-
dence algorithm, speed is also very important. Some applications demand high
speed and speed becomes a critical factor. The speed of a matching algorithm de-
pends on the average number of hypothesized transformations tested before finding
a correct one. The computation times required to find the correspondence between
points in the coin image and its blurred, noisy, contrast-enhanced, rotated, and scaled
versions are 0.52, 0.51, 0.48, 0.40, and 30.22 seconds, respectively, on a Windows
PC with a 2.2 GHz processor.

The excessive time needed to find the correspondence between points in the coin
image and points in its scaled version is due to the fact that the MST and the trian-
gulation edges in the sensed image could not find sufficient correspondences with
the imposed ε = 1.5 pixels and r = 0.25, requiring matching of MST edges in the
reference image to complete-graph edges in the sensed image to find the correspon-
dences.
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7.4 Feature-Based Matching

If a descriptor is associated with each control point, we can determine the sensed de-
scriptor that is the most similar (or the least dissimilar) to each reference descriptor.
Knowing that features within a descriptor can be inaccurate, the correspondences
obtained from the descriptors of the points can contain correct and incorrect corre-
spondences. The important point to note is that if among the obtained correspon-
dences some are correct, those correspondences can be used to determine the re-
maining correspondences using the geometric constraint holding between the point
sets. For example, if the point sets are known to be related by a similarity trans-
formation, two correct correspondences are sufficient to determine the parameters
of the transformation. The obtained transformation can then be used to find the re-
maining correspondences. If the point sets are related by an affine transformation,
three corresponding points are sufficient to find the remaining correspondences, and
if the point sets are related by a projective transformation (homography), four cor-
responding points are sufficient to find the remaining correspondences.

As the geometric relation between the point sets becomes more complex, a larger
number of correspondences is needed to determine the parameters of the transfor-
mation. We will deal with this problem later in this chapter by developing a corre-
spondence algorithm that gradually adapts to the local geometric difference between
the point sets. In this section, we will consider cases where a similarity, an affine, or
a projective transformation can align inliers in two point sets.

Let A be a proximity matrix with m rows and n columns with Aij showing
the dissimilarity (such as, Euclidean distance) between the descriptors of points pi

and Pj . Suppose b is an array of length m with bi = j if the descriptor of pi is
closest to the descriptor of Pj among all sensed descriptors. Also suppose e is an
array of length m of distances with ei = dij = minl(dil). dij is the distance between
descriptors of pi and Pj , where Pj is the point in the sensed set with a descriptor
that is closest to the descriptor of pi when considering the descriptors of all points
in the sensed set.

Algorithm F2 (Feature-based point pattern matching) It is assumed that the point
sets are related by a similarity transformation and L denotes a sorted list of point
pairs obtained from the correspondence array b. The point pairs are used to esti-
mate the parameters of the similarity transformation. If b has m entries, L will have
m(m − 1) entries, showing all permutations of point pairs that can possibly find the
correspondence between the point sets. nm denotes the maximum number of corre-
spondences found so far. Therefore, initially nm = 0. h denotes the index of list L,
thus it varies between 1 and m(m − 1) and is initially set to 0. r denotes the ratio
of the number of correspondences found in an iteration and the number of points
in the sensed set (m), rm denotes the largest r found so far and so is initially set
to 0, and rt is a threshold ratio showing the smallest r to consider a hypothesized
transformation correct and is provided by the user.

1. Normalize the features of the descriptors so they all vary between 0 and 1.
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2. Compute proximity matrix A:

Aij =
{ nf∑

k=1

(fik − Fjk)
2

} 1
2

, i = 1, . . . ,m, j = 1, . . . , n, (7.6)

where nf is the number of features in a descriptor.
3. Compute the correspondence array b from the proximity matrix A by letting

bi = j , for i = 1, . . . ,m, with j being the smallest element in row i. That is, j

is found such that

Aij = n

min
l=1

(Ail). (7.7)

4. Compute distance array e of length m with entry ei showing the Euclidean
distance between descriptors of pi and Pbi

.
5. Compute entries of list L. This involves: (a) finding the MST of points in the

reference set, (b) for each MST edge pipj , hypothesizing sensed corresponding
points PkPl by letting k = bi and l = bj , (c) finding the sum of Euclidean dis-
tances between descriptors of pi and Pk and between descriptors of pj and Pl

for each such point pair in the list, and (d) ordering the point pairs according to
the sum of their Euclidean distances from the smallest to the largest in the list.

6. Take the point pair from entry h in list L and denote the points by (pi , Pk ;
pj , Pl).

7. Determine the similarity transformation parameters by letting pi correspond to
Pk and pj correspond to Pl .

8. Using the obtained transformation, transform the sensed points and find the
number of the transformed points that fall within distance tolerance ε of refer-
ence points, np .

9. If np/m ≥ rt , go to Step 11. Otherwise, if np/m > rm, let rm = np/m and save
the obtained correspondences.

10. If L is not empty, increment h by 1 and go to Step 6.
11. From the obtained correspondences, recalculate the transformation parameters,

this time by a robust estimator (Chap. 8).
12. From the obtained transformation, find the correspondences and return the

transformation and the correspondences.

In Step 1, each feature is normalized to vary between 0 and 1. This normalization
is essential when descriptors containing heterogeneous features are used, because it
prevents a feature with a larger range from influencing the matching outcome more
than a feature with a smaller range.

The reason for using point pairs representing MST edges in Step 5 rather than
all combinations of point pairs is to reduce the length of list L while ensuring all
reference points participate in the matching process. When m ≤ 100, instead of
MST edges, all point pairs may be used to search for the correspondences. For a
very large m, in the interest of time, point pairs representing the MST edges should
be used to find the correspondences.
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The point sets used in Algorithm F2 should be related by a similarity transfor-
mation. If the point sets are related by an affine transformation, three corresponding
points are needed to find the transformation parameters. In that case, Step 5 of the
algorithm should be changed to triangulate the points, insert vertices of triangles
into list L, and find the affine transformation parameters by using corresponding
point triples.

If the point sets are related by homography, points in the reference set should
be triangulated, interior edges should be identified, and vertices of triangles sharing
each edge should be used along with the initial correspondences saved in b to de-
termine the projective transformation parameters. The transformation that finds the
most correspondences with distance tolerance ε is then chosen as the transformation
to find correspondence between the remaining points in the two sets.

In Step 8, instead of adding 1 to the count when a transformed sensed point falls
within the distance threshold of ε of a reference point, a weight between 0 and 1
can be added to the count. For instance, if the distance between reference point pi

and the transformed sensed point Pj closest to it is rij , the weight can be considered
exp(−r2

ij /ε
2). When two transformations produce the same number of correspon-

dences, use of continuous weights makes it possible to select the transformation that
more closely aligns corresponding points.

Step 9 stops the iterations if a sufficiently high proportion of the points in the two
sets are found to correspond to each other. Threshold value rt , which determines this
proportionality is provided by the user. rt and ε can be determined through a training
process using a number of representative data sets with known correspondences. The
algorithm is set up in such a way that if rt is too high, it will exhaustively search list
L for the best answer. If rt is too low, it may stop the search prematurely with an
incorrect answer.

Parameter ε depends on noise and geometric difference between the images. If
it is set too low, it may miss finding the correspondences. If it is set too high, it
may find some incorrect correspondences. The robust estimator in Step 11 is used
to determine the transformation parameters at the presence of some incorrect corre-
spondences.

Since in the feature-based algorithm a graph is formed from points in the refer-
ence set only and the graph in the sensed set is obtained from the correspondences
estimated by the features saved in b, far fewer transformations are hypothesized by
the feature-based algorithm than by the graph-based algorithm.

To evaluate the performance of the feature-based matching algorithm, the point
sets obtained from the coin images in Fig. 6.2 are used. Point correspondences ob-
tained by Algorithm F2 are shown in Fig. 7.3. As features, L23, L24, L26, L50c , L90,
and L96 (see Chap. 4) calculated at each point within a circular window of radius
8 pixels were used. The correspondences found by the algorithm are connected by
red lines while the true correspondences are drawn with green lines. Yellow lines,
which are obtained when red and green lines coincide, show the correspondences
found by the algorithm that are correct.

Algorithm F2 finds 68 correspondences between the original coin image and its
blurred version, of which 66 are correct and 2 are incorrect. It finds 62 correspon-
dences between the coin image and its noisy version, of which 60 are correct and 2
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Fig. 7.3 Correspondences obtained between points in the original coin image and points in its
(a) blurred, (b) noisy, (c) contrast-enhanced, (d) rotated, and (e) scaled versions when matching
the MST edges using the descriptors of the points

are incorrect. It finds 69 correspondences between points in the coin image and its
contrast-enhanced version, of which 68 are correct and 1 is incorrect. The algorithm
finds 51 correspondences between points in the coin image and its rotated version,
of which 48 are correct and 3 are incorrect. Finally, the algorithm finds 30 corre-
spondences between points in the coin image and its scaled version, of which 26 are
correct and 4 are incorrect. It also misses 2 correct correspondences.

If the reference set contains m points, the MST of the points will contain (m− 1)

edges. This will produce (m − 1) different hypothesized transformations that need
to be tested for correctness. Each transformation requires mapping points in the
sensed set to the space of the reference set and finding the reference point set closest
to each mapped point. This requires mn distance calculations for each hypothesized
transformation. If the reference MST has (m − 1) edges, there will be O(m2n) dis-
tance calculation to find correspondence between points in the two sets. The actual
computational time of Algorithm F2 depends on parameter rt . The smaller it is, the
faster the algorithm will find an answer and halt. However, it should be noted that
if rt is too small, it may stop the process prematurely, producing incorrect corre-
spondences. An exhaustive search by Algorithm F2 (rt = 1) when using all MST
edges in the reference set has computational complexity O(m2n). This shows that
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we should let the smaller set represent the reference set to achieve a higher speed in
finding the correspondences.

An early bailout approach like that used in RANSAC can be used here also to
speed up the computations. Instead of testing a hypothesized transformation using
all sensed points, the transformation can be first tested on a small fraction of the
sensed points, and if the transformation finds correspondence for a large proportion
of the points, then the transformation can be tested on all sensed points. If k � n,
then this will reduce computational complexity of the feature-based algorithm to
O(mkn).

The results produced in Fig. 7.3 were obtained with rt = 0.25. The time re-
quired to produce the correspondences depicted in (a)–(e) are 0.18, 0.21, 0.45, 0.18,
and 0.16 seconds, respectively. These times include computation of the descriptors
at the points. We see that computation times for the feature-based matching and
graph-based matching are close for cases (a)–(d); however, due to excessive out-
liers, if the MSTs of two point sets do not contain matching edges, graph-based
matching fails. In feature-based matching, since the MST in one of the point sets
is used and the corresponding MST is obtained through correspondences guessed
through feature matching, the likelihood that all point pairs representing the MST
edges in the reference set incorrectly predict their correspondences is very low;
therefore, the process has a very high likelihood of finding the correct correspon-
dences.

In situations where MST edges in feature-based matching do not produce a so-
lution, similar to graph-based matching, triangulation edges can be used, and if that
fails, an exhaustive search using all complete graph edges can be used to find the
correspondences. Note that when complete graph edges are used in feature-based
matching, the exhaustive search by feature-based matching takes on the order of
m3n distance calculations. In feature-based matching, once an edge is selected in
the complete graph of reference points, the corresponding edge in the sensed set is
provided by the contents of array b, requiring only mn additional distance calcula-
tions to verify the correspondences.

7.5 Clustering-Based Matching

In RANSAC, graph-based, and feature-based matching, transformation parameters
that relate the geometries of point sets are determined in such a way as to maximize
the number of correspondences. Considering the fact that all point subsets that truly
correspond to each other produce the same or very close transformation parameters
and other point subsets produce parameters that randomly fill the parameter space,
the parameters representing the strongest cluster center in the parameter space match
the most points in the two sets.

If the point sets are related by a similarity transformation, a 4-D parameter space
is required to find the parameters of the transformation that matches most points in
the two sets. If the largest cluster formed in the 4-D space can be approximated by a
4-D Gaussian, since a 4-D Gaussian can be decomposed into 4 1-D Gaussians, the
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location of the 4-D Gaussian can be determined by locating 4 Gaussians in the 4
1-D spaces.

Consider selecting 2 points from each set and determining the scale ratio s of
the line segments connecting the points in the two sets and the rotational difference
θ between the line segments. Suppose 2 1-D accumulator arrays to record various
values for s and θ are created and their entries are initialized to 0. Then, for each
point pair from each set, parameters (s, θ) are estimated and corresponding entries
of the accumulator arrays are incremented by 1. If there aren’t too many outliers in
the point sets, the most dominant peak within each array will identify the parameter
that produces the most correspondences. After finding s and θ , parameters tx and ty
are determined in the same manner.

Presence of zero-mean noise among point positions will produce a wider cluster
but will not change the location of the peak and, therefore, the process performs
well under zero-mean noise. As the number of outliers increases, a larger number
of point subsets is needed to form a well-defined peak within each accumulator
array.

Algorithm F3 (Point pattern matching by clustering) Given (1) reference point set
{pi = (xi, yi) : i = 1, . . . ,m} and sensed point set {Pj = (Xj ,Yj ) : j = 1, . . . , n},
(2) knowing that the transformation mapping the sensed point set to the reference
point set is a similarity transformation, and (3) knowing that a sensed point is con-
sidered to correspond to a reference point if it falls within distance ε of the reference
point after being transformed with the obtained transformation, the following algo-
rithm determines the correspondence between points in the two sets by clustering.

1. Create accumulator arrays {Ak : k = 1, . . . ,4} of sufficient size and initialize the
entries of the arrays to 0.

2. Select 2 points from the reference set and 2 points from the sensed set. Keep the
order of the points in the reference subset fixed but permute the order of points
in the sensed subset and for each permutation determine the rotation and scale
parameters of the transformation using the point subsets. Then, map the obtained
parameters to the corresponding array entries and increment the entries by 1.

3. Repeat Step 2 a sufficient number of times until a clear peak emerges in each
array.

4. Detect the location of the cluster peak in the rotation and scale accumulator ar-
rays. Knowing rotation and scale parameters, repeat Steps 2–4 in the same man-
ner to find the translation parameters.

5. Use parameters corresponding to the peak entries in the accumulator arrays to
define the transformation that maps the sensed points to the reference points.

6. Using the obtained transformation, find points in the sensed set that fall within
distance tolerance ε of points in the reference set after the transformation and
return the obtained correspondences.

The length of the accumulator arrays determines the accuracy of the estimated
parameters. If arrays with 100 entries are selected, the range of value of a param-
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eter is mapped to 0–99. Therefore, if parameter a varies between amin and amax,
a particular value of a is mapped to entry �99(a − amin)/(amax − amin)�.

The number of iterations required for Step 2 to form a clear cluster in an accu-
mulator array depends on factors such as noise, ratio of outliers and inliers, and the
complexity of the transformation function. A measure that determines the quality of
a peak is kurtosis (4.9). The larger the kurtosis, the more clearly defined the obtained
Gaussian will be.

To form peaks in the accumulator arrays faster, the points should be selected
in a structured manner rather than randomly. Moreover, distances between points
should be used to filter out cases that are not likely to produce correct parameters.
For instance, if the images are related by the similarity transformation and the MST
edges are used to determine the transformation parameters, the MST edges should
be ordered from the largest to the smallest in both sets. Then, when an edge is
selected from the reference list, it should be matched to a small number of edges
that have about the same length in the sensed list. This will increase the likelihood
that the matched edges produce correct parameters and contribute to the peaks in
the accumulator arrays.

Note that the location of a peak within an accumulator array can be determined
with floating point accuracy by fitting a Gaussian to a small number of entries sur-
rounding the peak. If the peak location of accumulator Ak is a, the parameter corre-
sponding to the peak entry in the array will be a(amax − amin)/99 + amin.

Wang and Chen [52] and Chang et al. [8] used 2-D accumulator arrays to deter-
mine the parameters of a similarity transformation to align the point sets by clus-
tering. By selecting two points from each point set, the ratio of distances between
the points in the two sets and the angle between lines connecting the points were
determined and indexed into a 2-D accumulator array. With each point pair, an en-
try of the accumulator array is incremented by 1. After trying a large number of
point pairs, a cluster forms at the parameters representing the scale ratio and the
rotational difference between the point sets. Using the scale ratio and rotational dif-
ference parameters at the cluster center, the scale and orientation of one point set is
corrected with respect to the other. The translational difference between the point
sets is determined again by clustering using a 2-D accumulator array.

The parameters determined by clustering are less influenced by noise than param-
eters estimated by least-squares, especially when noise is not zero-mean. Parameters
estimated by clustering are also less influenced by outliers than by RANSAC, graph-
based, and feature-based approaches, because the transformation parameters are ob-
tained from a small set of points that correspond to each other accurately rather than
a large number of points, some of which only approximately correspond.

Point pattern matching by clustering is generally slower than RANSAC, graph-
based, and feature-based methods. This is because a single correct match between
point subsets finds the transformation parameters by RANSAC, graph-based, and
feature-based methods, while a large number of correct subset matches are needed
by clustering to form a well-defined cluster from which the parameters of the trans-
formation are estimated. Presence of too many outliers hides peaks in the accumu-
lators, making it difficult or impossible to find the transformation parameters.
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The idea of clustering in parameter estimation was introduced by Stockman et al.
[47]. The clustering approach to point pattern matching has been extended to local-
ization and recognition of predefined objects in an image [17, 45, 46].

7.6 Geometric Invariance-Based Matching

Some properties of a point set are invariant under certain geometric transforma-
tions. Invariance under affine transformation and projective transformation are well-
known. Geometric invariance can be used as a means to verify the correctness of
correspondences between two point sets.

When two point sets are related by an affine transformation, given three non-
colinear points p1, p2, and p3 in the reference set, any other point p in the reference
set can be defined in terms of the three points by [19]:

p = p1 + α1(p2 − p1) + α2(p3 − p1). (7.8)

If A is the affine transformation that maps the sensed point set to the reference point
set, we have

p = AP, (7.9)

where p and P are corresponding points in the reference and sensed sets. Substitut-
ing (7.9) into (7.8), we obtain

AP = [AP1 + α1(AP2 − AP1) + α2(AP3 − AP1)
]

(7.10)

= A
[
P1 + α1(P2 − P1) + α2(P3 − P1)

]
. (7.11)

Multiply both sides by A−1, we obtain

P = P1 + α1(P2 − P1) + α2(P3 − P1). (7.12)

This implies that the same relation holds between corresponding points in the sensed
set. Therefore, if a subset containing 3 points are selected from each set and the
points truly correspond to each other, for each point p in the reference set the corre-
spondence to it P can be found in the sensed set. The same parameters α1 and α2 are
obtained by substituting the coordinates of p into (7.8) and the coordinates of point
P into (7.12) and solving the obtained equations. Note that each point in the refer-
ence or sensed set has two coordinates, producing two equations when substituted
into (7.8) or (7.12).

Taking advantage of this property, a 2-D accumulator array is created for each
point set, one dimension showing α1 and the second dimension showing α2. The
array entries are initially set to 0. Then, a subset containing 3 points is selected from
the reference set and for each additional point in that set α1 and α2 are determined
and the corresponding entry in the accumulator array is incremented by 1. The same
is repeated for a combination of 3 points in the sensed set, creating a second accu-
mulator array. The accumulator arrays appear like images where intensities show the
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counts. The similarity/dissimilarity between the images (accumulator arrays) deter-
mine whether the point triples selected from the two sets truly correspond to each
other or not. The process is repeated until the obtained accumulator arrays become
sufficiently similar.

Algorithm F4 (Point pattern matching using affine invariance) Given (1) reference
point set {pi = (xi, yi) : i = 1, . . . ,m} and sensed point set {Pj = (Xj ,Yj ) : j =
1, . . . , n}, (2) knowing the distance tolerance ε to consider two points correspond-
ing, and (3) knowing that the two point sets are related by an affine transformation,
the following steps outline the affine-invariance-based point pattern matching algo-
rithm.

1. Create two 2-D accumulator arrays H1 and H2 and let Sm denote the maximum
similarity achieved thus far between H1 and H2. Initially, let Sm = −1.

2. Triangulate the points in each set.
3. Take a reference triangle and perform the following:

(a) Initialize all entries of H1 to 0. Then, for each point in the reference set that is
not a vertex of the reference triangle, calculate α1 and α2, map the obtained
values to the indices of H1, and increment the obtained entry by 1.

(b) Take a sensed triangle and initialize all entries of H2 to 0. Then, for each
point in the sensed set that is not a vertex of the sensed triangle, calculate
α1 and α2, map the obtained values to the indices of H2, and increment the
obtained entry by 1.

(c) Determine the similarity S between H1 and H2 using normalized cross-
correlation. If S > Sm, let Sm = S and save the corresponding triangle ver-
tices.

(d) Permute the vertices of the sensed triangle (there are 6 such cases), and for
each case repeat Steps 3b and 3c.

4. If Sm > St , go to Step 5. Otherwise, if unprocessed sensed triangles are available,
go to Step 3b. If all sensed triangles are tested but untested reference triangles
remain, go to Step 3a.

5. Use the coordinates of saved corresponding triangle vertices to determine the
parameters of the affine transformation.

6. Using the obtained affine transformation, for each point Pi in the sensed set,
determine point p in the reference set. If the point in the reference set closest
to p is pl and ‖p − pl‖ < ε, consider points Pi and pl as corresponding points.
Repeat this step for i = 1, . . . , n to determine all corresponding points in the two
sets. Suppose np corresponding points are obtained.

7. Use the coordinates of the np correspondences to calculate a new transformation
by the least-squares method.

8. Determine the correspondences with the new transformation and return the trans-
formation and the correspondences.

The size of the accumulator arrays should be chosen taking into consideration the
cardinalities of the point sets. If M = min(m,n), dimensions of H1 and H2 should
be N × N , where N = √

M . If much larger arrays are used, patterns formed in the
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arrays will be sparse, making correlation of the arrays inaccurate. If much smaller
arrays are chosen, the estimated affine parameters may not be sufficiently accurate.

Mapping of particular values of α1 and α2 into the array indices can be achieved
by finding the acceptable ranges of values for each parameter by testing a number
of representative point sets. Once the maximum and minimum values for each pa-
rameter are determined, newly observed α1 and α2 can be mapped to [0,N − 1]
using

(α1 − αmin1)
N − 1

αmax1 − αmin1

, (7.13)

(α2 − αmin2)
N − 1

αmax2 − αmin2

, (7.14)

where αmax1 and αmin1 are maximum and minimum values of α1 and αmax2 and
αmin2 are maximum and minimum values of α2.

After finding corresponding points, instead of returning them they are used in
Step 7 to find the transformation parameters more accurately by least-squares. The
newly obtained transformation is then used to determine the final set of correspon-
dences in Step 8.

The computational complexity of invariance-based point pattern matching is sim-
ilar to that of graph-based matching in the sense that 3 or 4 point subsets from each
set produce the hypothesized transformations. But unlike graph-based matching,
points in each set are used independently to produce arrays H1 and H2 that are then
correlated. Therefore, invariance-based matching is faster than graph-based match-
ing using affine and projective transformation by a factor of mn/(m + n).

If two point sets are related by the projective transformation, we have

X = ax + by + c

gx + hy + 1
, (7.15)

Y = dx + ey + f

gx + hy + 1
. (7.16)

Under the projective transformation, the following two properties remain invariant
between five non-colinear points in the plane [14]:

I1 = det[m431]det[m521]
det[m421]det[m531] , (7.17)

I2 = det[m421]det[m532]
det[m432]det[m521] . (7.18)

For the sensed set, det[mijk] is defined by

det[mijk] =
∣
∣
∣
∣
∣
∣

Xi Xj Xk

Yi Yj Yk

1 1 1

∣
∣
∣
∣
∣
∣
. (7.19)
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Substituting the X’s and Y ’s calculated from (7.15) and (7.16) into (7.17) and
(7.18) and simplifying the relations, we obtain

I1 = det[n431]det[n521]
det[n421]det[n531] , (7.20)

I2 = det[n421]det[n532]
det[n432]det[n521] (7.21)

where

det[nijk] =
∣
∣
∣
∣
∣
∣

xi xj xk

yi yj yk

1 1 1

∣
∣
∣
∣
∣
∣
. (7.22)

If the point subsets truly correspond to each other, I1 and I2 determined by the two
subsets will be the same or very close. Letting �I1 represent the absolute difference
between I1 determined by the two subsets and letting �I2 represent the absolute

difference between I2 obtained from the two subsets, then �I =
√

�I 2
1 + �I 2

2 can
be used as a distance measure to determine the degree of dissimilarity between the
two point subsets. The point subsets producing the smallest distance are used to
determine the projective transformation parameters.

To increase the likelihood that a selected subset of 4 points from the two sets cor-
respond to each other, rather than taking the points randomly, they should be selected
in a prespecified manner. For example, each point set can be triangulated, interior
edges can be identified, and triangle vertices sharing interior edges in the two sets
can be used in matching. Therefore, if triangulation of reference and sensed sets pro-
duce me and ne interior edges, there will be mene such matches. To further reduce
the number of irrelevant matches, the interior edges in both sets are ordered and for
each reference edge, only sensed edges that have similar properties are matched.
Examples of these properties are convexity/concavity of the quadrilateral obtained
with the edge, the ratio of areas of triangles sharing the edge, etc.

In addition to the five-point projective invariance discussed above, a number of
other invariance properties have been found between point sets from images of flat
scenes. For further information about geometric invariance, the reader is referred to
the collection of papers edited by Mundy and Zisserman [32].

Under projective invariance, interior triangle edges are identified and vertices of
triangles sharing each interior edge are used to hypothesize a projective transforma-
tion. Since the number of interior edges of a triangulation is a linear function of the
number of points in a set, the computational complexity of projective matching is
on the order of mn(m + n). To reduce the computational complexity of projective
matching, rather than using all interior edges of a triangulation, only those falling on
the MST of the points may be used. The computational complexity of the process
will still be on the order of mn(m + n) but with a smaller coefficient.

Note that as the search space is reduced, the likelihood of missing the correct
solution increases. The matching process can start by matching quadrilaterals ob-
tained from MST edges in each set, and if that did not produce a solution, then all
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interior edges in the triangulation of the point sets can be tried. If that also failed,
quadrilaterals with diagonals representing complete graph edges of the points in
each set should be used to find the correspondences. If quadrilaterals obtained from
the complete graph edges are used in the search, the computational complexity of
the algorithm will increase to m2n2(m + n).

7.7 Axis of Minimum Inertia-Based Matching

The axis of minimum inertia of a set of points is a line that (1) passes through the
centroid (center of gravity) of the points and (2) the sum of squared distances of
the points to it is minimum. A line passing through the centroid of the points and
normal to the axis of minimum inertia is the axis of maximum inertia. Denoting
the sum of squared distances of the given points to its axis of minimum inertia by
Mmin and the sum of squared distances of points to the axis of maximum inertia
by Mmax, by (1) stretching the coordinate space along the axis of maximum inertia
or shrinking the coordinate space along the axis of minimum inertia in such a way
that Mmin = Mmax, and (2) isotropically scaling the point coordinates with respect
to the centroid in such a way that distance of the farthest point to the centroid is 1,
a canonical representation for the points will be obtained.

Hong and Tan [23] showed that if the axis of minimum inertia makes angle φ

with the x-axis, the relation between M , the sum of squared distances of points to
the x-axis, and angle φ can be written as

M = a + b cos(φ). (7.23)

Note that when φ = 0, M = a + b and the x-axis aligns with the axis of minimum
inertia, and when φ = π/2, M = a − b and the x-axis aligns with axis of maximum
inertia. The three unknowns a, b, and φ can be determined by rotating the coor-
dinate system with respect to the centroid of the points three times and each time
determining M . For example, when rotating the coordinate system by 0, 2π/3, and
4π/3, we obtain

M1 = a + b cos(φ), (7.24)

M2 = a + b cos(φ + 2π/3), (7.25)

M3 = a + b cos(φ + 4π/3), (7.26)

from which we find

a = (M1 + M2 + M3)/3, (7.27)

b =
√

2
[
(M1 − a)2 + (M2 − a)2 + (M3 − a)2

]
/3, (7.28)

φ = arccos(M1 − a)/b. (7.29)

By scaling the coordinate space of the point set in direction φ by
√

(a − b)/(a + b)

and scaling the points with respect to their centroid so that the farthest point is of
distance 1 to the centroid, the canonical form of the points will be obtained.
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Fig. 7.4 (a), (d) Two point sets. (b), (e) The axis of minimum inertia and the coordinate axes cen-
tered at the centroid of each point set. (c), (f) Canonical transformation of the point sets. (g) Align-
ing the canonical point sets at their centroids. (h) Rotating one canonical set with respect to the
other about their coinciding centroids so that points in the two sets farthest from the centroid align

If the given point sets do not contain outliers and points in the two sets are related
by the affine transformation, then by converting each point set into canonical form,
aligning the canonical forms at their centroids (Fig. 7.4), rotating one point set with
respect to the other about the centroid such that the point farthest from the centroid
in each set aligns, the remaining points in the two sets will align also.

When each point set contains n points, the computational complexity of this
method is on order of n2, making this method the fastest thus far. However, this
method has many limitations. First, although it remains stable under zero-mean
noise, it is very sensitive to outliers, especially when an outlier happens to be
the point farthest from the centroid. Also, the method cannot align symmetric or
nearly symmetric point sets that have undefined or non-unique axis of minimum
inertia.

7.8 Relaxation-Based Matching

Relaxation labeling is an iterative approach that starts with an initial correspondence
using features of the points. Then, the geometric constraint holding between the
point sets is used to reduce ambiguity among the correspondences and arrive at a
unique correspondence. A relaxation labeling approach to point pattern matching
treats the matching problem as a consistent labeling problem where points in one
set are considered objects and points in the second set are considered labels. Unique
labeling of the objects is achieved iteratively by finding labels that are consistent
with some world knowledge. The geometric relation between points in the reference
set is considered world knowledge.
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In a probabilistic relaxation labeling process developed by Goshtasby and Page
[20], reference points {pi : i = 1, . . . ,m} are considered objects and sensed points
{qi : i = 1, . . . , n} are considered labels. An additional label q0 is considered a non-
existent-object label. Since it is possible that some points in the reference set do not
appear in the sensed set, the label for such points is considered q0.

It is assumed that each point has an associating feature vector. Suppose the sim-
ilarity measure between the feature vector of point pi in the reference set and the
feature vector of point qj in the sensed set is sij . Let’s also suppose the similarity
measures obtained for each point pi in the reference set are normalized to have a
sum of 1. That is

P
(0)
i (j) = sij

∑m
j=1 sij

. (7.30)

P
(0)
i (j) is considered the initial probability that object pi will have label qj , im-

plying that point pi in the reference set corresponds to point qj in the sensed set.

Note that this will initially set P
(0)
i (0) = 0. That is, each point in the reference set

corresponds to some point in the sensed set, although there may be more than one
point in the reference set that corresponds to a point in the sensed set. The label
probabilities are gradually revised until a consistent labeling is reached.

The probability that object pi has label qj at the (k + 1)st iteration is defined by

P
(k+1)
i (j) = P

(k)
i (j)[1 + Q

(k)
i (j)]

∑
j P

(k)
i (j)[1 + Q

(k)
i (j)]

, (7.31)

where Q
(k)
i (j) is the support for object pi having label qj at the kth iteration and

is in the range [−1,1]. It is the compatibility of point pi in the reference set cor-
responding to point qj in the sensed set considering the correspondences of other
points in the sets. If the vector of distances Di = {dii′ : i′ = 1, . . . ,m} shows dis-
tances of point pi to each point in the reference set. Suppose the label with the
highest probability at point i′ is j ′. This will identify for each point in the reference
set a point in the sensed set. Then, create a second distance vector showing distances
of points in the sensed set to point qj . That is, Dj = {djj ′ : j ′ = 1, . . . ,m}, where j ′

is the label with the highest probability at point i′ in the reference set. Then, Q(k)
i (j)

can be considered the normalized correlation between Di and Dj .

Since Q
(k)
i (0) cannot be calculated in this manner because distances of points to

a point that does not exist cannot be calculated. If reference point pi does not truly
exist in the sensed set, then by assigning label q0 to pi , the label probabilities of
points with labels other than q0 should increase, otherwise, the probabilities should
decrease. If m′ objects out of m whose highest probability labels are not q0, and
if by assigning label q0 to pi the probabilities of m1 of the labels increase and
the probabilities of m2 of the labels decrease, Q

(k)
i (0) = (m1 − m2)/m′. Note that

m1 + m2 = m′ and when m2 = 0, Q
(k)
i (0) = 1 and when m1 = 0, Q

(k)
i (0) = −1.

Starting from the initial label probabilities P
(0)
i (j), the label probabilities are

iteratively revised according to (7.31) until label probabilities converge to either 0
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Fig. 7.5 (a) The reference
and (b) sensed point sets used
in the relaxation labeling
point pattern matching
example. These points
represent the centers of
regions in two segmented
images of a scene

or 1. For each object, there will be one label with probability 1 and all remaining
label probabilities 0. The above relaxation labeling algorithm relies on distances
between points rather than their coordinates to find the correspondence between
them. By correlating the distances, the process can find correspondence between
point sets that have translational, rotational, and scaling differences.

Point pattern matching by relaxation labeling is generally slower than the meth-
ods described above. When very large point sets are given and the ratio of outliers
and inliers is high, the process may take a long time to converge. The success of the
method is very much dependent on the initial probabilities. For relatively small point
sets (a dozen or so) where most of the highest initial label probabilities correctly
identify the correspondences, the process could find the correspondences relatively
quickly. However, the process can take a very long time to converge if the initial
probabilities of many points obtained from inaccurate features incorrectly identify
the correspondences. Therefore, this method is suitable for small point sets with
accurate features.

An example of this method on a small set of points is given below. Consider
the 14 points given in the reference and sensed sets in Fig. 7.5. The correct corre-
spondences are (1,9), (2,10), (3,11), (5,13), (6,14), (8,1), (9,2), (10,3), (11,4),
(12,5), and (13,6). Other points represent outliers. Using features at the points, the
initial label probabilities shown in Table 7.1 were obtained. Label probabilities after
10 and 100 iterations are shown in Tables 7.2 and 7.3, respectively. By taking the la-
bel with the highest probability at each reference point as the corresponding sensed
point, we see that the process finds all corresponding points correctly. In addition, it
correctly identifies point 7 in the reference set as an outlier.

Relaxation labeling was introduced to computer vision by Rosenfeld and col-
leagues [39]. Ranade and Rosenfeld [38] described a relaxation labeling process
that pairs points in the two sets and finds the number of other points that also match
as the support. The process can handle only translational difference between point
sets, although it has been shown to withstand a small amount of rotational difference
between the points also.

In a relaxation labeling algorithm developed by Cheng [9], at each iteration the
highest probability label of each object is used to guess a correspondence. From
three of the correspondences, an affine transformation is determined and for each
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Table 7.1 Initial probabilities of each point in the reference set having labels of each of the points
in the sensed set depicted in Fig. 7.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.00 0.07 0.08 0.08 0.05 0.06 0.08 0.08 0.08 0.09 0.05 0.06 0.07 0.06 0.07

2 0.00 0.07 0.06 0.07 0.09 0.07 0.06 0.06 0.07 0.07 0.10 0.07 0.06 0.07 0.08

3 0.00 0.06 0.08 0.08 0.04 0.07 0.08 0.09 0.08 0.05 0.05 0.10 0.07 0.08 0.07

4 0.00 0.05 0.08 0.07 0.05 0.07 0.08 0.08 0.10 0.06 0.05 0.07 0.07 0.07 0.06

5 0.00 0.07 0.08 0.08 0.06 0.07 0.06 0.08 0.06 0.07 0.05 0.07 0.06 0.10 0.08

6 0.00 0.09 0.07 0.07 0.06 0.07 0.07 0.07 0.08 0.06 0.07 0.06 0.06 0.07 0.09

7 0.00 0.06 0.08 0.07 0.06 0.07 0.08 0.08 0.09 0.06 0.06 0.06 0.07 0.08 0.08

8 0.00 0.10 0.07 0.08 0.06 0.07 0.07 0.08 0.08 0.05 0.06 0.06 0.06 0.07 0.08

9 0.00 0.08 0.09 0.07 0.06 0.07 0.08 0.08 0.08 0.05 0.06 0.05 0.06 0.07 0.08

10 0.00 0.08 0.07 0.10 0.06 0.07 0.07 0.08 0.08 0.05 0.06 0.06 0.06 0.06 0.09

11 0.00 0.07 0.06 0.07 0.09 0.06 0.05 0.07 0.07 0.07 0.08 0.07 0.05 0.08 0.08

12 0.00 0.06 0.06 0.05 0.09 0.10 0.06 0.06 0.08 0.08 0.09 0.05 0.07 0.07 0.07

13 0.00 0.07 0.07 0.06 0.06 0.08 0.10 0.07 0.10 0.05 0.07 0.05 0.07 0.07 0.08

14 0.00 0.08 0.08 0.08 0.05 0.06 0.07 0.10 0.08 0.05 0.05 0.07 0.06 0.07 0.09

Table 7.2 Label probabilities after 10 iterations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.20 0.24 0.21 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.37 0.22 0.15 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.16 0.39 0.27 0.00 0.00

4 0.29 0.08 0.11 0.03 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.16

5 0.00 0.06 0.16 0.07 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.26

6 0.00 0.01 0.16 0.12 0.05 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.34

7 0.42 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.09 0.18 0.19 0.00 0.00

8 0.09 0.70 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.04

9 0.00 0.01 0.28 0.19 0.09 0.14 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.16

10 0.00 0.00 0.12 0.29 0.16 0.19 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.09

11 0.00 0.00 0.06 0.02 0.32 0.18 0.17 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.04

12 0.00 0.00 0.08 0.14 0.27 0.29 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.07

13 0.02 0.00 0.03 0.10 0.16 0.13 0.44 0.07 0.04 0.00 0.00 0.00 0.00 0.00 0.01

14 0.07 0.00 0.00 0.02 0.03 0.02 0.19 0.49 0.18 0.00 0.00 0.00 0.00 0.00 0.00

reference point the location of the sensed point is estimated and distance of the esti-
mated sensed point to the sensed point represented by the object label is calculated.
If the average of the distances falls below a prespecified error tolerance, the process
is stopped and the obtained correspondences are reported. Otherwise, the relaxation
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Table 7.3 Label probabilities after 100 iterations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.17 0.11 0.03 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.69 0.02 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.03 0.62 0.29 0.00 0.00

4 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.03

6 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.97

7 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

8 0.12 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 0.00 0.00 0.95 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.01 0.77 0.11 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 0.00 0.00 0.00 0.04 0.84 0.07 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 0.00 0.00 0.00 0.06 0.24 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 0.06 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.14 0.00 0.00 0.00 0.00 0.00 0.00

is continued and the label probabilities are revised using the inter-point distances
until object labels change enough so the largest probability label of each reference
point uniquely identifies a sensed point.

Ogawa [34], using distances between point pairs in each set as the information
source, developed a relaxation labeling process that can find correspondence be-
tween point sets with translational, rotational, and scaling differences. By using
rotation and scale invariant descriptor at the points, Zhao et al. [59] revised the
relaxation-based correspondence algorithm of Ranade and Rosenfeld [38] to find
the correspondence between point sets with translational, rotational, and scaling
differences.

Relaxation labeling was used by Lee and Won [29] to determine the correspon-
dence between point sets with nonlinear geometric differences. Correlation of log-
arithm distances and polar angles formed by connecting a point to a number of
points nearest to it in each point set were used to define the support or compatibil-
ity coefficients. Logarithmic distances de-emphasize differences between distances
of corresponding point pairs in images and correlation of polar angles measured
at corresponding points in images de-emphasizes spacing difference between corre-
sponding points in images caused by local stretching or shrinking of one image with
respect to the other. Choi and Kweon [10] required that not only the relaxation label-
ing process maximize an objective function but also to satisfy the required geomet-
ric constraint between images. Using some knowledge about the correspondences
in the form of constraints a process was set up to find correspondence between point
sets with nonlinear geometric differences.
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7.9 Spectral Graph Theory-Based Matching

A number of correspondence algorithms analyze the singular values of inter-image
proximity matrix or eigenvalues of the intra-image proximity matrices to find the
correspondence between the points. These algorithms are known as spectral graph
theory algorithms. An excellent overview of concepts relating to spectral graph the-
ory is provided by Chung [13]. These algorithms take advantage of the following
properties of eigen/singular values and eigenvectors of proximity matrices to find
the correspondences: (1) A small perturbation in the positions of points in one set
results in small changes in the created proximity matrix, which translates to small
changes in the obtained eigen/singular values. More importantly, the changes appear
in the trailing eigen/singular values [44]. Therefore, the process captures the global
similarity between the point sets and makes it possible to establish correspondence
between many of the points. (2) The orthogonal property of the decomposition en-
sures that the obtained correspondences are unique.

7.9.1 Matching Using Inter-image Proximity Matrix

A correspondence algorithm developed by Scott and Longuet-Higgins [41] relies on
the principles of proximity and exclusion. These are the principles the human visual
system is believed to use to establish correspondence between points in consecutive
video frames. To implement the proximity principle, a correspondence that results
in the least motion of a point from one frame to the next is given a higher prefer-
ence than correspondences that result in larger motions. To implement the exclusion
principle, the correspondences are ensured to be unique.

Given m points in the reference set and n ≥ m points in the sensed set, an m × n

proximity matrix G is created with entry ij containing a value inversely proportional
to the distance of point i in the reference set to point j in the sensed set when
considering the same coordinate system for both point sets. A proximity matrix
determined in this manner assigns a higher value to closer points. Note that if m > n,
the point sets should be switched so that reference set has fewer points than the
sensed set. The inverse proportionality function is taken to be a Gaussian:

Gij = exp
{−r2

ij /2σ 2}, (7.32)

where rij is the distance between point i in the reference set and point j in the sensed
set. σ is a scale factor and represents the average distance between corresponding
points in the two sets and has to be provided by the user based on a-priori knowledge
about the motion of points in the sensed set with respect to motion of points in the
reference set.

Next, the obtained proximity matrix is subjected to singular value decomposition:

G = TDU, (7.33)

where T and U are orthogonal matrices and D is a diagonal matrix with dimensions
similar to those of G and diagonal entries equal to the singular values of G.
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The exclusion constraint is implemented by replacing matrix D with matrix E of
the same size but with all diagonal elements equal to 1 and other entries equal to 0.
Then the assignment matrix is computed from [41]:

P = TEU. (7.34)

The rows of P, like rows of G, identify points in the reference set and the columns
of P identify points in the sensed set. Note that because of the way E is set up, Pij

will show the correlation between row i of T and column j of U. Therefore, Pij

shows the confidence that point i in the reference set would correspond to point j

in the sensed set. Consequently, if Pij is the largest element in row i and the largest
element in column j , then point i in the reference set will most likely correspond to
point j than to other points in the sensed set.

Scott and Longuet-Higgins [41] show that the correspondences obtained in this
manner maximize the inner-product between P and G,

P : G =
∑

i

∑

j

PijGij . (7.35)

By maximizing the inner product of proximity and exclusion matrices, the obtained
correspondences will maximize the correlation between the proximity and exclusion
measures. It has been shown that if the point sets are related by an affine transfor-
mation that involves only very small rotational and scaling differences, this method
can effectively determine the correspondence between the point sets.

Pilu [36] augmented the proximity measure Gij proposed by Scott and Longuet-
Higgins with correlation coefficient Cij of windows centered at points i and j in the
reference and sensed images to produce a correlation-weighted proximity measure,

gij = Cij + 1

2
Gij . (7.36)

gij still varies between 0 and 1 as Cij varies between −1 and 1. It is shown that
in stereo images with very little to no rotational differences, proximity measure gij

produces a higher correspondence rate than Gij .
Parameter σ should be set equal to the average distance between correspond-

ing points in the two sets. σ shows the radius of interaction between points in the
two sets and may be taken larger than the average distance between corresponding
points, but not smaller. If the average distance between corresponding points is not
known, σ may be taken large enough to capture sufficient local information about
geometries of the point patterns. A very small σ will use information in the imme-
diate neighborhood of a point when finding the correspondences, which may not be
sufficient to arrive at unique correspondences. At the other extreme, a very large σ

can dull the process and also result in incorrect correspondences.
A number of correspondence examples using the singular values of inter-image

proximity matrix are given in Fig. 7.6. As data, the coin images depicted in Fig. 6.2
are used. Image (a) in Fig. 6.2 is used as the reference and images (b)–(f) in the
same figure are used as the sensed, one at a time. The correspondences obtained by
the method of Scott and Longuet-Higgins [41] are depicted in Fig. 7.6. One-hundred
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Fig. 7.6 Correspondences obtained between points in the coin image and points in its
(a) smoothed, (b) noisy, (c) contrast-enhanced, (d) rotated, and (e) scaled versions. Red lines con-
nect correspondences obtained by the method of Scott and Longuet-Higgins [41], green lines con-
nect points that truly correspond to each other, and complete yellow lines, which are obtained when
red and green lines coincide, identify those correspondences found by the program that are correct

landmarks obtained in these images as depicted in Fig. 6.3 are used. The correspon-
dences found by the program are connected by red lines, while the true correspon-
dences are connected by green lines. Yellow lines connect correspondences found
by the program that are correct. The absence of green lines in an image is indication
that all correct correspondences are found. Presence of red is indication that some
additional correspondences are obtained that are incorrect. Yellow line segments
in these figures are obtained when red and green lines cross each other. Complete
yellow lines show correspondences found by the program that are correct.

In the examples in Figs. 7.6a–c, σ was 2 pixels, since we know correct corre-
spondences cannot fall farther than 2 pixels from each other. When matching points
in the original coin image and points in its smoothed version, the program finds
94 correspondences (the red + yellow lines). We know that only 66 true correspon-
dences exist among the points in these images. The process has been able to find all
correct correspondences; however, it has picked 28 incorrect correspondences (false
positive). The process has been able to successfully reject 6 correspondences that
do not exist (true negative).
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When matching points from the original coin image and points from its noisy
version (Fig. 7.6b), again 94 correspondences are found, among which 60 are cor-
rect (true positive) and 34 are incorrect (false positive). Matching of the coin image
and its contrast-enhance version (Fig. 7.6c) resulted in 93 correspondences, among
which 68 are correct and 25 are incorrect. These experiments show that when the
true correspondences have the same or close coordinates, the process is able to find
them; however, when outliers are present the process assigns some incorrect corre-
spondences.

It is interesting to note that most of the incorrect correspondences (the red lines)
have the same general direction as the correct correspondences (yellow lines). This
can be the main source of confusion when trying to distinguish correct from in-
correct correspondences. If additional information, such as features at the points, is
available, correlation of features at the points can be used to detect some of the incor-
rect correspondences and remove them. This, however, will be at the cost of remov-
ing some correct correspondences also. For instance, in the example in Fig. 7.6c,
if we calculate and use features L23, L24, L26, L50c , L90, and L96 (see Chap. 4)
at each point with a circular window of radius 8 pixels, and if we discard corre-
spondences that produce a correlation coefficient smaller than 0.8, we detect 72
correspondences, among which 58 are correct and 14 are incorrect. Using correla-
tion of features at the points, the process has been able to detect and remove 11 of
the incorrect correspondences, but this has been at the cost of removing 10 correct
correspondences.

When matching the coin image with its 30◦ rotated version (Fig. 7.6d), the pro-
gram finds 90 correspondences, none of which are correct. There are 48 true cor-
respondences among the points in these images. One reason for this failure is that
among the 100 points in each image, there are 52 outliers. The second reason is
the fact that the performance of this correspondence algorithm quickly declines as
the rotational difference between the images increases. Changing the value of σ

from 1 to 100 pixels reduces the number of correspondences found, but it does
not change the number of true correspondences found. Similar results are obtained
when matching images with scaling differences, as depicted in Fig. 7.6e. Sixty-six
correspondences are obtained, among which none are correct. This correspondence
algorithm, therefore, should be avoided when the point sets have rotational and/or
scaling differences.

Note that rij does not have to show the Euclidean distance between points i and
j , and it can show a measure of dissimilarity between the points. For example, if
each point comes with a feature vector, the distance between the feature vectors
associated with points pi and Pj can be taken as rij . If the points come with fea-
ture vectors, instead of using the distance between point coordinates, the distance
between feature vectors of the points can be used as rij to compute the proximity
matrix.

Using features L23, L24, L26, L50c , L90, and L96 at each point, and using the
Euclidean distance between the six features at the points, we obtain the correspon-
dences depicted in Figs. 7.7a and 7.7b for the case of images with rotational and
scaling differences, respectively. Eighty-two correspondences are found in Fig. 7.7a,
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Fig. 7.7 (a), (b) Same as (d) and (e) in Fig. 7.6 but using the distance between feature vectors at
the points rather than the distance between coordinates of points

among which 17 are correct and 65 are incorrect. In Fig. 7.7b, 71 correspondences
are found, among which 2 are correct. The reason for this is two-fold. First, only
28 points among 100 in each image are present in both images, and second, the
six features measured in images with scaling differences are not accurate enough to
uniquely identify the correspondences.

A correspondence method developed by Leordeanu and Hebert [30] uses the sim-
ilarity between descriptors of the points to create the proximity matrix. The proxim-
ity matrix is augmented with the geometric constraint that holds between point pairs
in the images to arrive at consistent correspondences. If there are m points in the ref-
erence set and n points in sensed set, initially a proximity matrix M of dimension
mn × mn is created.

Letting a = (i, i′) denote assignment of reference point pi to sensed point Pi′ ,
entry (a, a) in the proximity matrix is set to the similarity between descriptors as-
sociated with points pi and Pi′ . If M(a,a) is not sufficiently high, row and column
a of the matrix are eliminated, reducing the size of M by 1 row and 1 column. The
actual size of M at the end, therefore, can be much smaller than nm × nm. Smaller
entries (a, a) in the matrix can be removed until a proximity matrix of a desired
size is obtained. Entry (a, b) in the matrix is set to the degree of compatibility of
pairwise geometric relations from assignments a and b. That is, if b = (j, j ′), entry
(a, b) is set to the similarity of geometric relation between points Pi′ and Pj ′ in the
sensed set and geometric relation between points pi and pj in the reference set. If
a and b are both correct assignments, M(a,b) will be high; otherwise, it will be
low. M(a,b) can simply be the product or the smaller of the similarity measures for
assignments a and b.

The correspondence problem is treated as one of finding a set of assignments C

that maximizes the matching score

S =
∑

a,b∈C

M(a,b). (7.37)

The problem is solved by considering an indicator vector x with the number of
entries equal to the number of assignments in M and letting entry a in x be 1 if a is
in C and 0 otherwise. Then,

S = xtMx (7.38)
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is calculated and according to Raleigh’s ratio theorem [30], the maximum matching
score is obtained when x is the principle eigenvector of M. To summarize, the steps
of this correspondence algorithm are [30]:

1. Given two point sets with associating descriptors, create proximity matrix M as
outlined above.

2. Compute the principal eigenvector of M, denote it by x∗, and initialize the solu-
tion vector x to 0. Also, let L represent the set of assignments in M.

3. Let a∗ be that assignment in L that has the highest value in x∗. If the highest
value is 0, return the assignments saved in x. Otherwise, set entry a of x to 1 and
remove a∗ from L.

4. Remove from L all assignments that are in conflict with assignment a∗. If L

becomes empty as a result, return x. Otherwise, go to Step 3.

The computational complexity of the spectral point pattern matching algorithm
of Scott and Longuet-Higgins [41] is on the order of m3 or n3, whichever is higher.
That is the time required to compute the singular values of the proximity matrix
obtained from m or n points. The computational complexity of the algorithm of
Leordeanu and Hebert [30] is even higher because it starts with a much larger prox-
imity matrix. These algorithms are suitable when the given point sets are relatively
small and the ratio of outliers and inliers is very small.

7.9.2 Matching Using Intra-image Proximity Matrices

Shapiro and Brady [43] used the structural information present in the proximity
matrices of point sets to establish correspondence between the sets. Denoting the
Euclidean distance between points pi and pj in the reference set by rij,1, a proximity
matrix can be defined for the reference set with entry ij representing

Hij,1 = exp
{−r2

ij,1/2σ 2
1

}
. (7.39)

σ1 controls the amount of local/global information used in matching. Denoting the
kth eigenvalue of H1 by λk,1, the kth eigenvector of H1 by vk,1, and creating matrix
V1 with its kth column representing vk,1, we obtain

H1 = V1D1Vt
1, (7.40)

where t denotes matrix transpose. If we create V2 in the same manner but discard
the eigenvectors corresponding to the smallest n − m eigenvalues of H2, we obtain

H2 ≈ V2D2Vt
2. (7.41)

The ith row of V1 represents feature vector fi,1 and the j th row of V2 represents
feature vector fj,2. The ij th entry of an assignment matrix Z is then computed from:

Zij = ‖fi,1 − fj,2‖2 (7.42)

= (fi,1 − fj,2)t (fi,1 − fj,2) (7.43)

= 2
[
1 − (fi,1)t fj,2

]
. (7.44)
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Point pi in the reference set is considered to correspond to point Pj in the sensed
set if Zij is the smallest entry in row i and column j in Z. Zij will have values
between 0 and 2, with 0 showing the highest confidence level and 2 showing the
lowest confidence level in matching.

Note that the signs of the eigenvectors of a proximity matrix are not unique, but
when calculating the distance between two feature vectors in (7.44), signs play a
critical role and there is a need to change the signs of the feature vector components
in the sensed set so that they match those of the feature vectors in the reference set.
Given feature vector fi,1, the feature vector fj,2 best matching it is considered to
be the one minimizing ‖fi,1 − fj,2‖ when the signs of components of fj,2 are set to
match the signs of components of fi,1.

If H1 represents the proximity matrix of a set of points and H2 represents the
proximity matrix of the same set of points after reordering the labels of the points,
the two proximity matrices will contain the same measures but at different entries.
Consequently, the eigenvalues obtained from the two matrices will be the same ex-
cept that they will be in different order. When m �= n, the eigenvalues obtained from
H1 and H2 are both ordered from the largest to the smallest. Similarly, the eigen-
vectors obtained from H1 and H2 are reordered so their orders match those of their
eigenvalues. Then, m or fewer eigenvectors from H1 and H2 are used to create the
feature vectors, from which the assignment matrix Z is calculated.

Parameters σ1 and σ2 should be proportional to the spacing between points in
set 1 and set 2. If they are taken too small, the information used to match the points
can be easily influenced by noise. If they are taken too large, the process may not
capture sufficient local structural information among the points to correctly establish
correspondence between them. σ1 and σ2 should make it possible to capture local
structural information within each point set.

Since density and organization of points can vary across an image, instead of
taking a fixed standard deviation, it is better to use a standard deviation at a point
that reflects the density of points locally. For instance, the standard deviation at a
point can be set equal to its distance to the kth point closest to it. Parameter k, if not
given, can be set to

√
m where m is the cardinality of the point set. The process will

produce a small standard deviation where the density of points is high and a large
standard deviation where the density of points is low. Adaption of σ to the local
organization of the points can be implemented by replacing (7.39) with

Hij,1 = exp{−r2
ij,1/2σ 2

i,1}
∑

k exp{−r2
ik,1/2σ 2

i,1}
. (7.45)

The denominator is a normalization factor that sets the sum of influences of the k

closest points to a particular point to 1. Similarly entries of the proximity matrix for
the sensed set can be adapted to the local density and organization of the points.

To determine the performance of the eigen-decomposition algorithm of Shapiro
and Brady [43] in determining correspondence between points in real images, the
images depicted in Fig. 6.2 were used. Points in image (a) were used as the reference
set and points in images (b)–(f) were used as the sensed set, one set at a time. The
correspondences obtained in these images by the method of Shapiro and Brady are



304 7 Point Pattern Matching

Fig. 7.8 The number of correspondences obtained by the method of Shapiro and Brady [43] using
the coin image and its (a) smoothed, (b) noisy, (c) contrast-enhanced, (d) rotated, and (e) scaled
versions are 1, 2, 0, 0, and 0, respectively

depicted in Fig. 7.8. Due to the large number of outliers, the number of correspon-
dences obtained is too few to be useful. True correspondences are linked with green
lines and the correspondences obtained by this method are shown in red. When full
red and green lines fall on top of each other, they produce yellow lines, showing
correspondences obtained by the program that are correct. Note that when red and
green lines cross each other yellow segments are obtained, which do not correspond
to correct correspondences.

Experiments on the method of Shapiro and Brady [43] show that the method is
very sensitive to outliers; therefore the process quickly deteriorates as the difference
between m and n increases. When m ≈ n and the point sets are related by a rigid
transformation, the process finds the correspondences in one shot. This is in contrast
to RANSAC and other methods that require a large number of iterations before
finding the correspondences. The only drawback of the eigen-decomposition is that
its computational complexity is already a cubic function of the number of points.
Therefore, considering the fact that it requires m ≈ n and it can handle only a very
small number of outliers, the method has very limited uses.

Carcassoni and Hancock [6, 7] suggested a number of refinements to the method
of Shapiro and Brady to make it robust under noise and outliers. First, the correspon-
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dence problem is formulated as an expectation maximization (EM) problem. This
enables the identification and removal of outliers by properly selecting the weights
in the expectation step. Second, new proximity measures are introduced that are
more robust under noise and outliers than the Gaussian-weighted proximity mea-
sures used by Shapiro and Brady. The new proximity measures reduce influence of
a single measurement on the correspondence outcome, lowering the influence of an
outlier on the final correspondence result.

If two point sets contain m points each and denoting the proximity matrices com-
puted from the point sets by H1 and H2, Umeyama [50] proposed finding the cor-
respondence between the point sets by first transforming the proximity matrices to
complex Hermitian matrices

Hh
1 = H1 + Ht

1

2
+ √−1

H1 − Ht
1

2
, (7.46)

Hh
2 = H2 + Ht

2

2
+ √−1

H2 − Ht
2

2
, (7.47)

and then subjecting the Hermitian matrices to eigen-decomposition to obtain

Hh
1 = W1D1W∗

1, (7.48)

Hh
2 = W2D2W∗

2, (7.49)

where ∗ implies complex conjugate, and D1 and D2 are diagonal matrices of the
eigenvalues of Hh

1 and Hh
2 . Finally, computing a permutation matrix from

R = Hungarian
(|W2||W1|t

)
, (7.50)

where |W1| and |W2| denote matrices whose entries are absolute values of entries of
W1 and W2, respectively, and Hungarian(·) denotes the Hungarian algorithm [25],
which is a combinatorial optimization algorithm that determines permutation matrix
R from matrices |W1| and |W2| in O(n3) time [35]. Entries of the permutation
matrix take values 0 and 1. When a 1 appears at entry ij in R, it indicates that point
pi in the reference set corresponds to point Pj in the target set.

Through experimentation Zhao et al. [58] found that the method of Umeyama
[50] works well when (1) noise is sufficiently low, (2) the eigenvalues of the prox-
imity matrix for each point set are not very close to each other, and (3) any two rows
of matrices |W1| and |W2| are sufficiently different from each other. If these condi-
tions are not met, the process may incorrectly assign some of the correspondences.

Sclaroff and Pentland [40] made the method of Shapiro and Brady more robust
under noise and local deformations by making the following modifications: (1) Cor-
respondences with high confidence are used to determine the global transformation
between the images. The global transformation is then used to find the remaining
correspondences. (2) The eigenvectors corresponding to the lowest 75% of eigen-
values that are sensitive to noise are truncated, using only the top 25% low-order
eigenvalues to the correspondences. (3) A correspondence is considered correct if
obtained in both directions; that is, the match between reference point pi and sensed
point Pj is considered correct if Zij assumes the minimum value at its ith row and
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j th column, and when the point sets are switched and the calculations are repeated,
Zji will assume the minimum value at row j and column i.

If two point sets have translational and rotational differences, their proximity
matrices will be the same. If the point sets have translational, rotational, and scal-
ing differences, corresponding entries in the proximity matrices of the point sets
will have scaling differences, which will only affect the eigenvalues and not the
eigenvectors of the proximity matrices. Wang and Hancock [53] determine the cor-
respondence to point pi in the reference set by finding the feature vector fj,2 in the
sensed set that is closest to feature vector fi,1 in the reference set. Note that point pi

in the reference set is associated with the ith row (feature vector) of V1 in (7.40).
Similarly, point Pj in the sensed set is associated with the j th row (feature vector)
of V2.

7.10 Coarse-to-Fine Matching

The common characteristic of the above matching algorithms is that they use all
points in matching. Although graph-based and feature-based algorithms reduce the
search space by avoiding matching of point subsets that are not likely to produce a
solution, verification is done using all points. When the point sets are small, con-
taining up to 100 points, these algorithms are practical; however, when point sets
are large, containing thousands of points, the matching speed of the algorithms may
not be high enough to be useful in some applications.

Even when the speed restriction is lifted, these algorithms are limited to point
sets that are related by rigid, similarity, affine, and projective transformations. For
point sets that are related by more complex transformation functions, a matching
algorithm is required that can adapt to the local geometric difference between the
images. Large images representing different views of a scene have local geometric
differences. Consequently, points extracted from such images cannot be related by
a single rigid, similarity, affine, or projective transformation. As a result, the above
algorithms cannot find the correspondence between point sets with local geometric
differences even without outliers and noise.

To determine the correspondence between large point sets with local geometric
differences, a coarse-to-fine approach is needed. Initially, the images are reduced in
scale sufficiently to produce a few dozen points in each image. It is assumed that at
such a low resolution, corresponding points in the images when aligned by an affine
transformation will fall within a distance tolerance ε of each other. When 4K × 4K

images of a natural scene are reduced to 32 × 32 images, this is not an unreasonable
assumption when ε = 1 or 2 pixels. Correspondence will be established between
points in the lowest resolution images by any one of the above methods. By tessel-
lating the points in the reference image into triangular or Voronoi regions, and by
knowing the corresponding points in the sensed image, corresponding triangular or
Voronoi regions will be obtained in the sensed image.

As the resolution of the images is increased, more points will be obtained. By
knowing the correspondence between triangular or Voronoi regions in the images at
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one level, we can determine the correspondence between points in corresponding re-
gions at one level higher resolution, again, by using one of the preceding algorithms.
The process can be repeated in this manner until correspondence is established be-
tween points in the images at the highest resolution. The process at each resolution
requires determining correspondence between a small number of points that fall
within small corresponding regions.

Let’s denote the reference and sensed images at the highest resolution by A0 and
B0, respectively. Suppose after reducing the scale of the images by a factor of 2k ,
we obtain images Ak and Bk . The resolution of the images is reduced with steps of
2 in scale to produce two image pyramids. Then, points are detected in images at
each resolution. To produce the image pyramid, the scale of the images is reduced
until the number of points detected in each image will be a few dozen. Suppose
images on top of the two pyramids represent reduction in scale of images A0 and
B0 by 2N . Also, suppose points in images Ak and Bk are denoted by pk and Pk ,
respectively. Moreover, let’s suppose by tessellating pk into triangular or Voronoi
regions we obtain regions tk and by tessellating Pk we obtain regions Tk . Then, the
following steps outline the coarse-to-fine matching algorithm.

Algorithm F5 (Coarse-to-fine point pattern matching) Given two image pyramids
along with points in the images at each resolution, this algorithm finds the corre-
spondence between the points in the images at the highest resolution. Lp denotes a
list containing corresponding points in the images at a particular resolution, and Lt

denotes a list containing corresponding regions in the images at the same resolution.
Initially, both lists are empty.

1. Find correspondence between point sets pN and PN using a feature-based match-
ing, graph-based matching, or a RANSAC algorithm under affine transformation
and enter the obtained correspondences into list Lp . Also, let k = N .

2. If k = 0, return the list of corresponding points. Otherwise, tessellate the inliers
in pk and through correspondence between inliers in pk and Pk find the corre-
sponding regions in Pk . Enter corresponding points into Lp and corresponding
regions into list Lt (Fig. 7.9a).

3. Decrement k by 1.
4. Scale up coordinates of vertices of regions in Lt by a factor of 2 to obtain ap-

proximating region vertices in images at new resolution k.
5. Assign points in the images at resolution k to the regions in list Lt . This will

assign to each point the label of the region the point belongs to (Fig. 7.9b).
6. Clear list Lp and find the correspondence between points in corresponding re-

gions and enter the obtained correspondences into Lp . Repeat this step for all
corresponding regions and then go to Step 2.

In Step 1, if points have associating features, a feature-based matching algorithm
is used to find the correspondences. In the absence of features, a graph-based match-
ing or RANSAC algorithm is used to find the correspondences.

In Step 6, list Lp is cleared and replaced with new point correspondences ob-
tained for images at the kth level in the pyramid.
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Fig. 7.9 (a) Determination
of correspondence between
inliers and tessellation of
inliers in the reference image.
Tessellation of inliers in the
sensed image is obtained
using correspondence
between the inliers in the
images. Points shown in
smaller size are the outliers.
(b) The same regions when
drawn in images at one-level
higher resolution.
Corresponding regions in the
images are given the same
label and correspondence is
established between points in
corresponding regions

Since the regions obtained at resolution k + 1 approximately locate the regions
at resolution k, due to the local geometric difference between images, points near
region edges on one side of a region edge in the reference image may belong to
the region from the other side in the sensed image. Since points only within cor-
responding regions are subjected to matching, some points near region boundaries
may be grouped to different regions. Consequently, such points may be incorrectly
classified into outliers, contributing to false negatives. To reduce the number of false
negatives, points within a pixel or two of a region edge obtained at the highest res-
olution (k = 0) are considered fuzzy points and included in both regions that share
an edge. After matching, if a fuzzy point is found to satisfy the transformations for
both regions, it is assigned to the region with the transformation best satisfying the
point.

An example of point patter matching by the coarse-to-fine matching of Algorithm
F5 is given in Fig. 7.10. The original images are given in Figs. 7.10a and 7.10b. The
correspondences obtained at the lowest resolution are shown in yellow and green
in Figs. 7.10c and d. The points shown in yellow in the images define the affine
transformation used to obtained the remaining correspondences shown in green.
The points shown in red do not have correspondences and are considered outliers.

Using the correspondences obtained at the lowest resolution, the images at
one level higher resolution are subdivided into Voronoi regions [3] as shown in
Figs. 7.10e and f. Then correspondence is established between points within cor-
responding regions. The subdivision and correspondence processes are repeated in
sequence until correspondence is established between points in corresponding re-
gions at the highest resolution. The coarse-to-fine subdivision result when using
image pyramids, each with 5 levels, is depicted in Figs. 7.10g and h. Resolution
increases from blue to green to red, and finally to black. As the resolution increases,
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Fig. 7.10 (a), (b) Typical images considered for registration by the coarse-to-fine matching algo-
rithm. These images are of size 2016 × 1280 pixels. (c), (d) The control points detected at the top
level in the images. The correspondences are shown in yellow and green and the outliers are shown
in red. (e), (f) Subdivision of the images at one level higher resolution using the correspondences
obtained a the top level. (g), (h) Progressive subdivision of images (a) and (b), respectively, into
finer regions while going from low to high resolution

more points and regions are produced, keeping the number of points within each
region small and manageable.

Registration of the images in Figs. 7.10a and b using the correspondences ob-
tained by Algorithm F5 within the convex hull of the control points in the overlap
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Fig. 7.11 Registration of the images in Figs. 7.10a and b when using the point correspondences
obtained by Algorithm F5 and using a piecewise-linear transformation function (Chap. 9)

area between the images is shown in Fig. 7.11. The reference image is shown in the
green band and the resampled sensed image is shown in the red and blue bands of a
color image. Therefore, when the images register perfectly, all three color bands at a
pixel will have the same or similar values, producing gray scale. In areas where the
images do not register well, the pixels will appear green or purple. Occluded pixels
also appear in green or purple. These images provide visual or qualitative evaluation
of registration results. Quantitative results as well as further information about this
coarse-to-fine matching method have been reported elsewhere [55].
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Chapter 8
Robust Parameter Estimation

In the previous chapters, methods for detecting control points in two images of a
scene and methods for determining the correspondence between the control points
were discussed. In this chapter, robust methods that use the control-point corre-
spondences to determine the parameters of a transformation function to register the
images are discussed. Transformation functions for image registration will be dis-
cussed in the following chapter.

Although inaccuracies in the coordinates of corresponding points can be man-
aged if the inaccuracies have a normal distribution with a mean of zero, but pres-
ence of even one incorrect correspondence can break down the parameter estimation
process. When using image features/descriptors to find the correspondence between
control points in two images, presence of noise, repeated patterns, and geometric
and intensity differences between the images can result in some incorrect corre-
spondences. Not knowing which correspondences are correct and which ones are
not, the job of a robust estimator is to identify some or all of the correct correspon-
dences and use their coordinates to determine the transformation parameters.

In the previous chapter, RANSAC, a robust estimator widely used in the com-
puter vision community was reviewed. In this chapter, mathematically well-known
robust estimators that are not widely used in computer vision and image analysis ap-
plications are reviewed. As we will see, these estimators can often replace RANSAC
and sometimes outperform it.

The general problem to be addressed in this chapter is as follows. Given n corre-
sponding points in two images of a scene:

{
(xi, yi), (Xi, Yi) : i = 1, . . . , n

}
, (8.1)

we would like to find the parameters of a transformation function with two compo-
nents fx and fy that satisfy

Xi ≈ fx(xi, yi),

Yi ≈ fy(xi, yi),
i = 1, . . . , n. (8.2)
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If the components of the transformation are independent of each other, their param-
eters can be determined separately. In such a situation, it is assumed that

{
(xi, yi,Fi) : i = 1, . . . , n

}
(8.3)

is given and it is required to find the parameters of function f to satisfy

Fi ≈ f (xi, yi), i = 1, . . . , n. (8.4)

By letting Fi = Xi , the estimated function will represent fx and by letting Fi = Yi ,
the estimated function will represent fy . If the two components of a transformation
are dependent, such as the component of a projective transformation, both compo-
nents of the transformation are estimated simultaneously.

f can be considered a single-valued surface that approximates the 3-D points
given by (8.3). If the points are on or near the model to be estimated, f will ap-
proximate the model closely. However, if some points are away from the model to
be estimated, f may be quite different from the model. The role of a robust estima-
tor is to find the model parameters accurately even in the presence of distant points
(outliers).

We assume each component of the transformation to be determined can be rep-
resented by a linear function of its parameters. That is

f = xta, (8.5)

where a = {a1, . . . , am} are the m unknown parameters of the model and x is a vector
with m components, each a function of x and y. For instance, when f represents a
component of an affine transformation, we have

f = a1x + a2y + a3, (8.6)

and so xt = [x y 1] and at = [a1 a2 a3]. When f represents a quadratic function,
we have

f = a1x
2 + a2y

2 + a3xy + a4x + a5y + a6, (8.7)

and so xt = [x2 y2 xy x y x 1] and at = [a1 a2 a3 a4 a5 a6].
When the observations given by (8.3) are contaminated, the estimated parameters

will contain errors. Substituting (8.5) into (8.4) and rewriting it to include errors at
the observations, we obtain

Fi = xt
ia + ei, i = 1, . . . , n, (8.8)

where ei is the vertical distance of Fi to the surface to be estimated at (xi, yi) as
shown in Fig. 8.1. This is the estimated positional error in a component of the ith
point in the sensed image. Not knowing which correspondences are correct and
which ones are not, an estimator finds the model parameters in such a way as to
minimize some measure of error between the given data and the estimated model.

In the remainder of this chapter, first the ordinary least squares (OLS) estima-
tion is described. OLS performs well when the errors have a normal distribution.
When errors have a long-tailed distribution, often caused by outliers, it performs
poorly. Next, robust estimators that reduce or eliminate the influence of outliers on
estimated parameters are discussed.
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Fig. 8.1 Linear parameter
estimation using
contaminated data

To evaluate and compare the performances of various estimators, 100 control
points detected in each of the coin images in Fig. 6.2 will be used. The coordinates
of the points are shown in Table 8.1. The points in the original coin image (Fig. 6.2a)
are used as the reference points and denoted by (x, y). The control points detected in
the blurred, noisy, contrast-enhanced, rotated, and scaled versions of the coin image
are considered sensed points and are denoted by (X,Y ).

Correspondence was established between the reference point set and each of the
sensed point sets by a graph-based matching algorithm with a rather large distance
tolerance (ε = 10 pixels) to allow inaccurate and incorrect correspondences enter
the process. The correspondences established between each sensed point set and the
reference point set are marked with a ‘+’ or a ‘−’ in Table 8.1. A ‘+’ indicates
a correspondence that is correct, while a ‘−’ indicates a correspondence that is
incorrect.

The algorithm found 95, 98, 98, 96, and 78 correspondences between the coin
image and its blurred, noisy, contrast-enhanced, rotated, and scaled versions, re-
spectively. Among the obtained correspondences, only 66, 60, 68, 48, and 28 are
correct. Due to the large distance tolerance used in matching, the process has picked
all of the correct correspondences (true positives). However, due to the large distance
tolerance, it has also picked a large number of incorrect correspondences (false pos-
itives).

Establishing correspondence between points by the closest-point criterion re-
sulted in some reference points being assigned to two or more sensed points. Al-
though multiple assignments are easy to detect and remove, by removing such as-
signments, we run the risk of eliminating some correct correspondences, something
that we want to avoid. Therefore, we keep the contaminated correspondences found
by our matching algorithm and use them to determine the parameters of the transfor-
mation between each sensed image and the reference image by various estimators.
After finding the transformation parameters by a robust estimator, we will then sep-
arate the correct correspondences from the incorrect ones.

The parameters of the affine transformations truly relating the blurred, noisy,
contrast-enhanced, rotated, and scaled images to the original image are listed in
Table 8.2. Knowing the true transformation parameters between each sensed image
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Table 8.1 The point sets used to evaluate the performances of various estimators. (x, y) denote the
column and row numbers of control points in the reference image, and (X,Y ) denote the column
and row numbers of control points in a sensed image. A sensed point that is found to correctly
corresponds to a reference point is marked with a ‘+’. The remaining points represent outliers.
A sensed point marked with a ‘−’ is a point that is incorrectly assigned to a reference point by the
matching algorithm

Point
#

Original Blurred Noisy Enhanced Rotated Scaled

x y X Y X Y X Y X Y X Y

1 5 77 5+ 76+ 5+ 77+ 5+ 76+ 13− 105− 5 94

2 7 84 8+ 85+ 7+ 84+ 7+ 84+ 25+ 109+ 11+ 126+
3 8 41 4− 36− 9− 39− 6− 47− 5− 77− 11− 63−
4 9 61 15− 64− 12− 55− 9+ 61+ 15+ 88+ 20− 87−
5 9 100 13− 105− 15− 99− 9+ 99+ 34+ 121+ 17 139

6 12 33 12+ 34+ 9− 39− 12+ 34+ 4+ 62+ 18+ 50+
7 12 94 13+ 95+ 15− 99− 12+ 93+ 34+ 115+ 17− 139−
8 13 105 13+ 105+ 13+ 105+ 9− 99− 34− 121− 28− 155−
9 16 47 4 65 16+ 47+ 16+ 47+ 15 88 24+ 72+

10 18 77 6 48 14− 74− 18+ 77+ 34− 95− 28+ 155+
11 20 23 21+ 22+ 21+ 22+ 14− 21− 6− 46− 35− 29−
12 20 87 5 93 15− 85− 20+ 87+ 20 14 34 161

13 21 105 21− 105− 22+ 106+ 21+ 105+ 47+ 120+ 28− 155−
14 24 115 28− 111− 29− 112− 28− 111− 56− 122− 36 116

15 26 67 26+ 67+ 26+ 67+ 26+ 67+ 32+ 85+ 39+ 102+
16 28 16 28+ 16+ 27+ 17+ 33− 20− 9+ 39+ 40 72

17 28 55 25− 58− 28+ 55+ 28+ 55+ 28+ 73+ 40− 72−
18 28 73 26− 67− 26− 67− 26− 67− 43− 86− 39− 102−
19 29 46 33− 41− 29+ 46+ 29+ 47+ 25+ 65+ 40− 72−
20 30 32 30+ 31+ 35− 33− 36− 33− 23− 51− 47+ 48+
21 32 6 33 121 32+ 6+ 32+ 7+ 9− 26− 45− 12−
22 32 21 31+ 22+ 33+ 21+ 33+ 20+ 15+ 41+ 57− 35−
23 32 114 28− 111− 29− 112− 34− 115− 56− 122− 51− 174−
24 33 121 33+ 121+ 33+ 121+ 34+ 121+ 72− 122− 51− 174−
25 34 101 35+ 101+ 34+ 101+ 34+ 101+ 56+ 110+ 51+ 152+
26 35 85 36+ 84+ 35+ 86+ 31− 80− 49+ 96+ 52− 128−
27 39 16 39+ 16+ 33− 21− 33− 20− 18+ 34+ 59+ 24+
28 40 49 46− 52− 40+ 48+ 40+ 48+ 35+ 62+ 63− 69−
29 41 62 36− 60− 41+ 62+ 41− 70− 47− 73− 60− 95−
30 42 105 42+ 105+ 41+ 105+ 42+ 105+ 69− 106− 63 69

31 42 119 42+ 119+ 45− 120− 41+ 119+ 72+ 122+ 62− 179−
32 43 29 42+ 30+ 43+ 29+ 43+ 29+ 28+ 43+ 67− 43−
33 44 99 44− 105− 41− 105− 42− 105− 69− 106− 69− 148−
34 46 13 47− 7− 47 72 28 111 20− 22− 71− 10−
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Table 8.1 (Continued)

Point
#

Original Blurred Noisy Enhanced Rotated Scaled

x y X Y X Y X Y X Y X Y

35 46 52 46+ 52+ 46+ 52+ 40− 48− 42+ 61+ 71+ 10+
36 46 86 46+ 85+ 46+ 86+ 46− 86− 59+ 91+ 75 183

37 47 7 47+ 7+ 45− 1− 46− 1− 20+ 22+ 71− 10−
38 52 35 53+ 34+ 53+ 34+ 53+ 35+ 40− 50− 79− 59−
39 53 122 52+ 121+ 54+ 122+ 53− 122− 90− 121− 75− 183−
40 54 96 54+ 97+ 54+ 96+ 45 125 71+ 96+ 82+ 144+
41 56 21 55+ 21+ 56+ 21+ 56+ 21+ 36− 25− 86+ 33+
42 56 72 56+ 72+ 56+ 72+ 54− 68− 61+ 74+ 87− 107−
43 56 114 57+ 114+ 56+ 114+ 57+ 115+ 81− 105− 79− 172−
44 58 12 58+ 12+ 58+ 12+ 58+ 12+ 36− 25− 84− 24−
45 59 52 59+ 52+ 56− 54− 59+ 52+ 59− 52− 90− 70−
46 60 5 60+ 5+ 59+ 5+ 58− 12− 31+ 14+ 91+ 7+
47 63 78 56− 72− 65− 87− 64+ 78+ 61− 74− 99− 122−
48 63 104 61 122 63 26 63+ 104+ 81− 105− 90 70

49 65 52 59− 52− 65+ 52+ 65+ 52+ 59+ 52+ 90 172

50 67 114 68+ 114+ 68+ 113+ 67+ 114+ 90− 115− 98− 178−
51 68 15 68− 15− 64− 11− 74− 12− 42+ 19+ 112− 18−
52 68 27 67− 21− 63− 26− 68+ 27+ 54− 27− 111− 42−
53 68 93 69+ 93+ 69+ 93+ 68+ 93+ 82+ 86+ 102− 148−
54 73 112 68− 114− 68− 113− 73+ 113+ 104− 105− 111− 169−
55 74 12 74+ 12+ 74+ 12+ 74+ 12+ 46− 7− 112+ 18+
56 74 28 81− 22− 75− 21− 74+ 28+ 54+ 27+ 111+ 42+
57 75 38 75+ 38+ 76+ 38+ 76+ 38+ 61+ 35+ 101 7

58 75 49 75+ 49+ 76+ 49+ 75− 49− 65+ 44+ 102 148

59 75 90 75+ 90+ 75+ 90+ 76− 89− 92− 81− 114− 131−
60 77 61 76+ 61+ 76+ 61+ 76+ 61+ 73+ 54+ 112− 92−
61 77 121 79− 120− 79− 120− 78+ 121+ 104+ 105+ 112 18

62 78 7 78+ 7+ 80− 7− 78− 1− 46− 7− 120− 10−
63 78 105 78+ 105+ 79+ 106+ 77− 101− 73 111 113− 155−
64 81 22 81+ 22+ 81+ 22+ 81+ 22+ 58− 12− 129− 34−
65 83 50 83+ 50+ 83+ 50+ 75− 49− 73+ 41+ 126+ 75+
66 85 74 77− 73− 84+ 75+ 83− 81− 87+ 61+ 125− 114−
67 87 36 87− 36− 87+ 36+ 87+ 36+ 69+ 27+ 129− 54−
68 87 63 87− 62− 87+ 63+ 87+ 63+ 82+ 50+ 118 97

69 87 110 87+ 110+ 86+ 111+ 87+ 111+ 107+ 92+ 127 179

70 88 11 88− 11− 89+ 12+ 87+ 11+ 58+ 5+ 133− 15−
71 88 90 88+ 90+ 88+ 90+ 80− 94− 97+ 73+ 133+ 134+
72 91 54 91+ 53+ 91+ 53+ 91+ 53+ 77− 36− 137+ 81+
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Table 8.1 (Continued)

Point
#

Original Blurred Noisy Enhanced Rotated Scaled

x y X Y X Y X Y X Y X Y

73 91 121 91− 121− 91+ 121+ 91+ 121+ 114+ 92+ 138− 174−
74 92 6 92+ 6+ 92+ 6+ 92+ 7+ 58− 5− 135 72

75 92 115 93+ 114+ 91− 121− 92+ 115+ 114− 92− 138+ 174+
76 93 40 88+ 36+ 94+ 39+ 93+ 40+ 77+ 27+ 146− 52−
77 94 14 98− 17− 89− 12− 94+ 14+ 58− 5− 130 25

78 95 84 94+ 85+ 95+ 84+ 96+ 78+ 106− 66− 143+ 125+
79 96 65 87+ 62+ 99− 62− 87− 63− 93− 43− 146 52

80 96 78 96+ 77+ 96+ 78+ 96− 78− 98+ 59+ 146+ 118+
81 97 93 97+ 94+ 97+ 94+ 97+ 94+ 107+ 72+ 147+ 139+
82 101 115 105− 112− 105− 112− 105− 112− 122− 87− 152 76

83 104 14 104+ 14+ 104+ 14+ 103+ 14+ 78− 7− 155 30

84 104 106 103+ 106+ 105− 112− 105− 112− 117− 86− 157+ 160+
85 106 50 106+ 50+ 101− 51− 106+ 50+ 88− 33− 152− 76−
86 106 88 106+ 87+ 106+ 88+ 106+ 88+ 106− 66− 158 88

87 108 70 108+ 70+ 108− 75− 108+ 71+ 105 31 157− 111−
88 109 28 111− 21− 114− 25− 111− 30− 84+ 9+ 163− 38−
89 111 106 111+ 106+ 108− 101− 105− 112− 125+ 77+ 171 69

90 112 96 112+ 95+ 112+ 96+ 112+ 96+ 121+ 67+ 169+ 145+
91 115 37 113− 34− 121− 37− 121− 38− 95− 8− 174− 53−
92 115 68 115+ 68+ 115+ 67+ 115+ 67+ 116− 40− 173+ 101+
93 116 57 106− 95− 121− 58− 115− 67− 105+ 31+ 175− 83−
94 117 86 117+ 85+ 116− 88− 117+ 86+ 120− 54− 177+ 130+
95 118 44 117− 42− 121− 37− 118+ 44+ 100+ 18+ 178− 63−
96 119 79 119+ 78+ 123− 84− 119+ 78+ 120− 54− 181− 116−
97 121 37 121+ 37+ 121+ 37+ 121+ 38+ 95− 8− 178− 63−
98 121 70 121+ 70+ 121+ 71+ 121+ 70+ 116+ 40+ 183+ 105+
99 123 84 117− 85− 123+ 84+ 123+ 84+ 120− 54− 177− 130−

100 124 45 120− 51− 121− 37− 124+ 46+ 100− 18− 182− 72−

and the reference image, we would like to see how accurately various estimators can
find these parameters using the contaminated correspondences shown in Table 8.1

8.1 OLS Estimator

Letting xij represent the j th element of x when evaluated at the ith data point,
relation (8.8) can be written as
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Table 8.2 True linear
transformation parameters
between the blurred, noisy,
contrast-enhanced, rotated,
and scaled coin images and
the original coin image

Data set a b c d e f

Blurred 1.000 0.000 0.000 0.000 1.000 0.000

Noisy 1.000 0.000 0.000 0.000 1.000 0.000

Enhanced 1.000 0.000 0.000 0.000 1.000 0.000

Rotated 0.866 −0.500 39.94 0.500 0.866 −23.06

Scaled 1.500 0.000 0.000 0.000 1.500 0.000

Fi =
m∑

j=1

xij aj + ei, i = 1, . . . , n. (8.9)

ei is positive when the given data point falls above the approximating surface, and
ei is negative when the point falls below the surface. Assuming the error at a data
point is independent of errors at other data points and the errors have a Gaussian
distribution, the ordinary least-squares (OLS) estimator finds the parameters of the
model by minimizing the sum of squared vertical distance between the data and the
estimated surface:

R =
n∑

i=1

r2
i , (8.10)

where

ri = Fi −
m∑

j=1

xij aj . (8.11)

Vertical distance or residual ri can be considered an estimate of the actual error
ei at the ith point. If the components of a transformation depend on each other, the
squared residual at the ith point will be

r2
i =

(

Xi −
mx∑

j=1

xij aj

)2

+
(

Yi −
my∑

j=1

xij bj

)2

, (8.12)

where {aj : j = 1, . . . ,mx} are the parameters describing the x-component of
the transformation, and {bj : j = 1, . . . ,my} are the parameters describing the y-
component of the transformation. When the two components of a transformation
function are interdependent, some parameters appear in both components. For in-
stance, in the case of the projective transformation, we have

X = a1x + a2y + a3

a7x + a8y + 1
, (8.13)

Y = a4x + a5y + a6

a7x + a8y + 1
, (8.14)

or

a7xX + a8yX + X = a1x + a2y + a3, (8.15)

a7xY + a8yY + Y = a4x + a5y + a6, (8.16)
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so the squared distance between the ith point and the transformation function will
be

r2
i = (a7xiXi + a8yiXi + Xi − a1xi − a2yi − a3)

2

+ (a7xiYi + a8yiYi + Yi − a4xi − a5yi − a6)
2. (8.17)

The linear parameters a1, . . . , a8 are estimated by minimizing the sum of such
squared distances or residuals.

To find the parameters that minimize the sum of squared residuals R, the gradient
of R is set to 0 and the obtained system of linear equations is solved. For example,
a component of an affine transformation (m = 3) is determined by solving

∂R

∂a1
= −2

n∑

i=1

xi(Fi − a1xi − a2yi − a3) = 0,

∂R

∂a2
= −2

n∑

i=1

yi(Fi − a1xi − a2yi − a3) = 0,

∂R

∂a3
= −2

n∑

i=1

(Fi − a1xi − a2yi − a3) = 0, (8.18)

which can be written as
⎛

⎜
⎝

∑n
i=1 x2

i

∑n
i=1 xiyi

∑n
i=1 xi

∑n
i=1 xiyi

∑n
i=1 y2

i

∑n
i=1 yi

∑n
i=1 xi

∑n
i=1 yi n

⎞

⎟
⎠

⎛

⎝
a1
a2
a3

⎞

⎠=
⎛

⎜
⎝

∑n
i=1 xiFi

∑n
i=1 yiFi
∑n

i=1 Fi

⎞

⎟
⎠ . (8.19)

In matrix form, this can be written as

AtAX = Atb, (8.20)

where A is an n × 3 matrix with Ai1 = xi , Ai2 = yi , and Ai3 = 1; b is an n × 1
array with bi = Fi ; and X is a 3 × 1 array of unknowns. Generally, when f is a
function of m variables, Aij represents the partial derivative of f with respect to the
j th parameter when evaluated at the ith point.

We see that (8.20) is the same as left multiplying both sides of equation

AX = b (8.21)

by At , and (8.21) is an overdetermined system of equations for which there isn’t an
exact solution. Therefore, OLS finds the solution to this overdetermined system of
linear equations in such a way that the sum of squared residuals obtained at the data
points becomes minimum.

If (8.20) has full rank m, its solution will be

X̂ = (AtA
)−1Atb. (8.22)

Matrix A† = (AtA)−1At is known as the pseudo-inverse of A [4, 22]. Therefore,

X̂ = A†b. (8.23)
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Table 8.3 Estimated parameters by OLS for the five data sets in Table 8.1. RMSEa indicates
RMSE when using all correspondences (marked with a ‘+’ or a ‘−’) and RMSEc indicates RMSE
when using only the correct correspondences (marked with a ‘+’). The last column shows compu-
tation time in seconds when using all correspondences on a Windows PC with a 2.2 MHz processor

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.007 −0.004 0.676 −0.002 0.989 0.665 3.46 1.03 0.0001

Noisy 1.012 0.000 0.899 0.007 1.004 −0.652 3.56 0.88 0.0001

Enhanced 0.998 0.110 −0.353 −0.001 1.000 −0.274 3.70 0.84 0.0001

Rotated 0.872 −0.489 38.35 0.505 0.850 −22.78 4.31 0.83 0.0001

Scaled 1.501 0.017 −1.454 −0.021 1.485 2.899 5.01 1.75 0.0001

The OLS estimator was developed independently by Gauss and Legendre. Al-
though Legendre published the idea in 1805 and Gauss published it in 1809, records
show that Gauss has been using the method since 1795 [31]. It has been shown
that if (1) data represent random observations from a model with linear parameters,
(2) errors at the points have a normal distribution with a mean of zero, and (3) the
variables are independent, then the parameters determined by OLS represent the
best linear unbiased estimation (BLUE) of the model parameters [1]. Linear inde-
pendence requires that the components of x be independent of each other. An exam-
ple of dependence is x2 and xy. This implies that when least squares is used to find
parameters of functions like (8.7) with x containing interdependent components, the
obtained parameters may not be BLUE.

Comparing the linear model with m parameters estimated by OLS with the first
m principal components about the sample mean (Sect. 8.11), we see that OLS finds
the model parameters by minimizing the sum of squared distances of the points
to the surface vertically, while the parameters predicted by the first m principal
components of the same data minimizes the sum of squared distances measured
between the points and the surface in the direction normal to the surface. Although
the two use the same error measure, OLS treats one dimension of the observations
preferentially, while principal component analysis (PCA) treats all dimensions of
observations similarly.

In addition to treating one dimension of data preferentially, OLS lacks robust-
ness. A single outlier can drastically change the estimated parameters. The notion
of breakdown point ε∗, introduced by Hampel [5], is the smallest fraction of outliers
that can change the estimated parameters drastically. In the case of OLS, ε∗ = 1/n.

Using the 95 points marked with ‘+’ and ‘−’ in Table 8.1 for the blurred image
and the corresponding points in the original image, OLS estimated the six linear
parameters shown in Table 8.3. The root-mean-squared error (RMSE) obtained at all
correspondences and the RMSE obtained at the 66 correct correspondences are also
shown. The estimated model parameters and RMSE measures between the noisy,
contrast-enhanced, rotated, and scaled images and the original image are also shown
in Table 8.3.

Due to the fact that the outliers are not farther than 10 pixels from the surface
to be estimated, their adverse effect on the estimated parameters is limited. Since in
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image registration the user can control this distance tolerance, outliers that are very
far from the surface model to be estimated can be excluded from the point corre-
spondences. Therefore, although the correspondences represent contaminated data,
the maximum error an incorrect correspondence can introduce to the estimation pro-
cess can be controlled. Decreasing the distance tolerance too much, however, may
eliminate some of the correct correspondences, something that we want to avoid.
Therefore, we would like to have the distance tolerance large enough to detect all
the correct correspondences but not so large as to introduce false correspondences
that can irreparably damage the estimation process.

Having contaminated data of the kind shown in Table 8.1, we would like to iden-
tify estimators that can accurately estimate the parameters of an affine transforma-
tion model and produce as small an RMSE measure as possible.

Since points with smaller residuals are more likely to represent correct corre-
spondences than points with larger residuals, one way to reduce the estimation error
is to give lower weights to points that are farther from the estimated surface. This is
discussed next.

8.2 WLS Estimator

The weighted least-squares (WLS) estimator gives lower weights to points with
higher square residuals. The weights are intended to reduce the influence of outliers
that are far from the estimated model surface. It has been shown that OLS produces
the best linear unbiased estimation of the model parameters if all residuals have
the same variance [20]. It has also been shown that when the observations contain
different uncertainties or variances, least-squares error is reached when the square
residuals are normalized by the reciprocals of the residual variances [2]. If σ 2

i is the
variance of the ith observation, by letting wi = 1/σi , we can normalize the residuals
by replacing xi with wixi and fi with wifi . Therefore, letting A′

ij = Aijwi and
b′
i = biwi , (8.20) converts to

A′tA′X = A′tb′, (8.24)

producing the least squares solution

X = (A′tA′)−1A′tb′. (8.25)

If variances at the sample points are not known, wi is set inversely proportional
to the magnitude of residual at the ith observation. That is, if

ri = Fi − xi â, i = 1, . . . , n, (8.26)

then

wi = 1

|ri | + ε
, i = 1, . . . , n. (8.27)

ε is a small number, such as 0.01, to avoid division by zero.
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Table 8.4 Estimated parameters by WLS for the five data sets in Table 8.1 and the RMSE mea-
sures

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.001 −0.003 −0.108 0.001 0.998 0.063 3.52 0.79 0.001

Noisy 1.000 0.000 −0.038 0.000 1.000 0.089 3.59 0.75 0.001

Enhanced 0.997 0.005 −0.132 0.000 1.000 −0.043 3.73 0.69 0.001

Rotated 0.872 −0.489 38.36 0.505 0.850 −22.79 4.33 0.83 0.001

Scaled 1.501 −0.001 −0.082 −0.001 1.507 0.134 5.15 1.06 0.001

Since the weights depend on estimated errors at the points, better weights can
be obtained by improving the estimated parameters. If (8.26) represents residuals
calculated using the model surface obtained by OLS and denoting the initial model
by f0(x), the residuals at the (k + 1)st iteration can be estimated from the model
obtained at the kth iteration:

r
(k+1)
i = Fi − fk(xi ), i = 1, . . . , n. (8.28)

The process of improving the weights and the process of improving the model pa-
rameters are interconnected. From the residuals, weights at the points are calculated,
and using the weights, the model parameters are estimated. The residuals are recal-
culated using the refined model and the process is repeated until the sum of square
weighted residuals does not decrease noticeably from one iteration to the next.

Using the data in Table 8.1 and letting ε = 0.01, WLS finds the model parame-
ters shown in Table 8.4 between the blurred, noisy, contrast-enhanced, rotated, and
scaled images and the original image. Only a few to several iterations were needed
to obtain these parameters. The estimation errors obtained by WLS using the correct
correspondences are lower than those obtained by OLS. Interestingly, the parame-
ters and the errors obtained by OLS and WLS on the rotated data set are almost the
same. Results obtained on contaminated data by WLS are not any better than those
obtained by OLS.

If some information about the uncertainties of the point correspondences is avail-
able, the initial weights can be calculated using that information. This enables es-
timating the initial model parameters by WLS rather than by OLS and achieving a
more accurate initial model. For instance, if a point in each image has an associat-
ing feature vector, the distance between the feature vectors of the ith corresponding
points can be used as |ri | in (8.27). The smaller the distance between the feature
vectors of corresponding points, the more likely it will be that the correspondence
is correct and, thus, the smaller the correspondence uncertainty will be.

The main objective in WLS estimation is to provide a means to reduce the in-
fluence of outliers on the estimation process. Although weighted mean can reduce
the influence of distant outliers on estimated parameters, it does not diminish their
influence. To completely remove the influence of distant outliers on estimated pa-
rameters, rather than using the weight function of (8.27), a weight function that cuts
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Table 8.5 Estimated parameters by the weighted least squares with cut-off threshold r0 = 2 pixels

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.001 −0.005 0.026 0.001 0.996 0.295 3.52 0.78 0.001

Noisy 1.000 0.000 0.030 0.000 0.999 0.202 3.60 0.75 0.001

Enhanced 0.998 0.006 −0.276 −0.001 0.999 0.180 3.74 0.69 0.001

Rotated 0.872 −0.489 38.36 0.505 0.850 −22.79 4.33 0.83 0.001

Scaled 1.502 −0.001 −0.067 −0.002 1.507 0.357 5.15 1.03 0.001

off observations farther away than a certain distance to the estimated surface can be
used. An example of a weight function with this characteristic is

wi =
{

1
|ri |+ε

|ri | ≤ r0,

0 |ri | > r0,
(8.29)

where r0 is the required distance threshold to identify and remove the distant out-
liers.

The WLS estimator with a cut-off of r0 = 2 pixels and ε = 0.01 produced the
model parameters shown in Table 8.5. The errors when using the correct correspon-
dences are either the same or only slightly lower than those found by the WLS
estimator without a cut-off threshold. Removing points with larger residuals does
not seem to change the results significantly when using the contaminated data. If
the residuals obtained with and without the cut-off threshold both have the same
distribution, the same results will be produced by OLS. Because the residuals ini-
tially estimated by OLS contain errors, by removing points with high residuals or
weighting them lower, the distribution of the residuals does not seem to change,
resulting in the same parameters by OLS and by WLS with and without a cut-off
threshold distance in this example.

8.3 M Estimator

An M estimator, like the OLS estimator, is a maximum likelihood estimator [12],
but instead of minimizing the sum of squared residuals, it minimizes the sum of
functions of the residuals that increases less rapidly with increasing residuals when
compared with squared residuals. Consider the objective function:

n∑

i=1

ρ(ri), (8.30)

where ρ(ri) is a function of ri that increases less rapidly with ri when compared
with the square of ri . To minimize this objective function, its partial derivatives with
respect to the model parameters are set to 0 and the obtained system of equations is
solved. Therefore,

n∑

i=1

∂ρ(ri)

∂ri

∂ri

∂ak

= 0, k = 1, . . . ,m. (8.31)
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Since ∂ri/∂ak = xik , and denoting ∂ρ(ri)/∂ri by ψ(ri), we obtain
n∑

i=1

ψ(ri)xik = 0, k = 1, . . . ,m. (8.32)

The residual at the ith observation, ri = Fi −∑m
j=1 xij aj , depends on the measure-

ment scale, another unknown parameter. Therefore, rather than solving (8.32), we
solve

n∑

i=1

ψk

(
ri

σ

)

xik = 0, k = 1, . . . ,m, (8.33)

for the model parameters as well as for the scale parameter σ .
The process of determining the scale parameter and the parameters of the model

involves first estimating the initial model parameters by OLS and from the residuals
estimating the initial scale. A robust method to estimate scale from the residuals is
the median absolute deviation [6, 12]:

b medi

{|ri − Mn|
}
, (8.34)

where Mn = medi{ri} for i = 1, . . . , n. To make the estimated scale comparable to
the spread σ of a Gaussian distribution representing the residuals, it is required that
we let b = 1.483.

Knowing the initial scale, the model parameters are estimated from (8.33) by
letting ri = Fi −∑m

j=1 xij aj . The process of scale and parameter estimation is re-
peated until the objective function defined by (8.30) reaches its minimum value.

A piecewise continuous ρ that behaves like a quadratic up to a point, beyond
which it behaves linearly, is [11, 12]:

ρ(r) =
{

r2/2 if |r| < c,

c|r| − 1
2c2 if |r| ≥ c.

(8.35)

The gradient of this function is also piecewise continuous:

ψ(r) =
{

r if |r| < c,

c sgn(r) if |r| ≥ c.
(8.36)

ρ(r) and ψ(r) curves, depicted in Fig. 8.2, reduce the effect of distant outliers by
switching from quadratic to linear at the threshold distance c. To achieve an asymp-
totic efficiency of 95%, it is required that we set c = 1.345σ when residuals have a
normal distribution with spread σ .

The gradient of the objective function, known as the influence function, is a linear
function of the residuals or a constant in this example. Therefore, the parameters
of the model can be estimated by solving a system of linear equations. Although
this M estimator reduces the influence of distant outliers and produces more robust
parameters than those obtained by OLS, the breakdown point of this estimator is also
ε∗ = 1/n. This is because the objective function still monotonically increases with
increasing residuals and a single distant outlier can arbitrarily change the estimated
parameters.
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Fig. 8.2 (a) The plot of ρ(r) curve of (8.35). (b) The plot of ψ(r) curve of (8.36)

Fig. 8.3 (a) The plot of ρ(r) of (8.37). (b) The plot of ψ(r) of (8.38)

To further reduce the influence of outliers, consider [28]:

ρ(r) =
⎧
⎨

⎩

r2

2 − r4

2c2 + r6

6c4 if |r| ≤ c,

c2

6 if |r| > c.

(8.37)

This ρ(r) is also a piecewise function. It is a function of degree six in r up to
distance c, beyond which it changes to a constant, treating all residuals with magni-
tudes larger than c similarly. This estimator will, in effect, avoid distant outliers to
arbitrarily change the estimated parameters. The gradient of ρ(r) is:

ψ(r) =
{

r[1 − ( r
c
)2]2 if |r| ≤ c,

0 if |r| > c.
(8.38)

ρ(r) and ψ(r) curves are plotted in Fig. 8.3. Setting parameter c = 4.685σ , 95%
asymptotic efficiency is reached when residuals have a normal distribution with
spread of σ .

Note that the influence function in this example is a nonlinear function of the
residuals, requiring the solution of a nonlinear system of equations to estimate the
model parameters, which can be very time consuming. The objective function, by
assuming a fixed value for residuals larger than a given magnitude, keeps the max-
imum influence an outlier can have on the estimated parameters under control. In
this M estimator, a distant outlier can also adversely affect the estimated parame-
ters, although the effect is not as damaging as the M estimator with the objective
and influence curves defined by (8.35) and (8.36).
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8.4 S Estimator

The scale (S) estimator makes estimation of the scale parameter σ in an M estimator
the central problem [28]. An S estimator has the following properties:

1. The ρ curve in the objective function is continuously differentiable and symmet-
ric, and it evaluates to 0 at 0 (i.e., ρ(0) = 0).

2. There exists an interval [0, c] (c > 0), where ρ is monotonically increasing, and
an interval (c,∞), where ρ is a constant.

3.
E(ρ)

ρ(c)
= 0.5, (8.39)

where E(ρ) is the expected value of ρ.

An example of such an estimator is [28]:

ρ(r) =
{

r2

2 − r4

2c2 + r6

6c4 if |r| ≤ c,

c2

6 if |r| > c,
(8.40)

with influence curve

ψ(r) =
{

r[1 − ( r
c
)2]2 if |r| ≤ c,

0 if |r| > c.
(8.41)

The third property is achieved in this example by letting c = 1.547 [28].
Given residuals {ri : i = 1, . . . , n} and letting â be the model parameters esti-

mated by OLS, the scale parameter σ is estimated by solving

1

n

n∑

i=1

ρ
(
ri(â)/σ̂

)= K, (8.42)

where K is the expected value of ρ. If there is more than one solution, the largest
scale is taken as the solution, and if there is no solution, the scale is set to 0 [28].
Knowing scale, a is estimated, and the process of estimating σ and a is repeated
until dispersion among the residuals reaches a minimum.

A robust method for estimating the initial scale is the median absolute deviation
described by (8.34) [6, 12]. An alternative robust estimation of the scale parameter
is [25]:

1.193 medi

{
medj

{|ri − rj |
}}

. (8.43)

For each ri , the median of {|ri − rj | : j = 1, . . . , n} is determined. By varying i =
1, . . . , n, n numbers are obtained, the median of which will be the estimated scale.
The number 1.193 is to make the estimated scale consistent with the scale σ of the
Gaussian approximating the distribution of the residuals.

If ρ possesses the three properties mentioned above, the breakdown point of the
S estimator will be [28]:

ε∗ = 1

n

(⌊
n

2

⌋

− m + 2

)

. (8.44)
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As n approaches ∞, the breakdown point of the S estimator approaches 0.5. This
high breakdown point of the S estimator is due to the second property of the ρ curve
that is required to have a constant value beyond a certain point. This will stop a
single outlier from influencing the outcome arbitrarily. Note that although an outlier
in the S estimator is not as damaging as it can be, an outlier still adversely affects
the estimated parameters and as the number of outliers increases, the estimations
worsen up to the breakdown point, beyond which there will be a drastic change in
the estimated parameters.

To summarize, an S estimator first determines the residuals using OLS or a more
robust estimator. Then the scale parameter is estimated using the residuals. Know-
ing an estimation σ̂ to the scale parameter, ri is replaced with ri/σ̂ and the influence
function is solved for the parameters of the model. Note that this requires the solu-
tion of a system of nonlinear equations. Having the estimated model parameters â,
the process of finding the residuals, estimating the scale, and estimating the model
parameters is repeated until a minimum is reached in the estimated scale, showing
minimum dispersion of the obtained residuals.

8.5 RM Estimator

The repeated median (RM) estimator works with the median of the parameters esti-
mated by different combinations of m points out of n [32]. If there are n points and
m model parameters, there will be overall n!/[m!(n − m)!] or O(nm) combinations
of points that can be used to estimate the model parameters.

Now consider the following median operator:

M
{
ã(i1, . . . , im)

}= medim

{
ã(i1, . . . , im−1, im)

}
, (8.45)

where the right-hand side is the median of parameters ã(i1, . . . , im−1, im) as point im
is replaced with all points not already among the m points. Every time the operator
is called, it replaces one of its m points with all points not already in use. By calling
the operator m times, each time replacing one of its points, the median parameters
for all combinations of m points out of n will be obtained. The obtained median
parameters are taken as the parameters of the model.

â = Mm
{
ã(i1, . . . , im)

}
, (8.46)

= medi1

(· · · (medim−1
(
medim ã(i1, . . . , im)

)) · · ·). (8.47)

The process of estimating the model parameters can be considered m nested loops,
where each loop goes through the n points except for the ones already in use by the
outer loops and determines the parameters of the model for each combination of m

points. The median of each parameter is used as the best estimate of that parameter.
When n is very large, an exhaustive search for the optimal parameters will be-

come prohibitively time consuming, especially when m is also large. To reduce com-
putation time without significantly affecting the outcome, only point combinations
that are sufficiently far from each other in the (x, y) domain is used. Points distant
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Table 8.6 The parameters estimated by the RM estimator along with RMSE measures and com-
putation time for the five data sets in Table 8.1

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.000 0.000 0.000 0.000 1.000 0.000 3.57 0.79 133

Noisy 1.000 0.000 0.000 0.000 1.000 0.000 3.50 0.75 162

Enhanced 1.000 0.000 0.000 0.000 1.000 0.000 3.75 0.69 164

Rotated 0.871 −0.485 38.68 0.501 0.853 −22.70 4.32 0.79 144

Scaled 1.504 0.008 −0.049 −0.014 1.496 1.964 5.13 1.30 41

Table 8.7 Results obtained by the fast version of the RM estimator using only the convex-hull
points in parameter estimation

Data set a b c d e f RMSEa RMSEc Time

Blurred 0.999 0.000 0.000 0.000 1.000 0.000 3.38 0.83 0.035

Noisy 1.000 0.000 0.000 0.009 1.000 0.000 3.63 0.84 0.021

Enhanced 0.972 0.005 1.558 0.008 1.000 −0.497 3.65 1.10 0.009

Rotated 0.809 −0.485 41.64 0.507 0.845 −22.71 5.27 2.17 0.028

Scaled 1.458 0.034 1.712 0.003 1.474 0.039 4.91 2.90 0.011

from each other result in more accurate parameters as they are less influenced by
small positional errors. For instance, points describing the convex hull of the points
can be used. By discarding points inside the convex hull of the points, considerable
savings can be achieved.

To evaluate the performance of the RM estimator on the data sets in Table 8.1
when using the full combination of 3 correspondences out of the marked corre-
spondences in the table, the parameters listed in Table 8.6 are obtained. The RMSE
measures and computation time required to find the parameters for each set are also
shown.

The results obtained by the fast version of the RM estimator, which uses only the
convex hull points in the reference image and the corresponding points are shown in
Table 8.7. The fast RM estimator achieves a speed up factor of more than 1000 by
introducing only small errors into the estimated parameters. The difference between
the two is expected to reduce further with increasing n.

Although the RM estimator has a theoretical breakdown point of 0.5, we see
that in the scaled data set there are only 28 true correspondences from among the
78 marked correspondences in Table 8.1, showing that more than half of the corre-
spondences are incorrect. However, since all residuals are within 10 pixels, the RM
estimator has been able to estimate the parameters of the model.
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Table 8.8 The parameters estimated by the LMS estimator using the data sets in Table 8.1

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.000 −0.003 −0.097 −0.001 0.996 0.319 3.52 0.79 0.004

Noisy 1.012 0.000 −0.889 0.007 1.004 −0.562 3.56 0.88 0.003

Enhanced 0.997 0.11 −0.353 −0.001 1.001 −0.274 3.71 0.84 0.001

Rotated 0.869 −0.499 39.32 0.502 0.860 −23.54 4.37 0.58 0.001

Scaled 1.507 −0.007 −0.015 −0.005 1.509 0.612 5.18 1.02 0.001

8.6 LMS Estimator

The least median of squares (LMS) estimator finds the model parameters by mini-
mizing the median of squared residuals [24]:

min
â

{
medi

(
r2
i

)}
. (8.48)

When the residuals have a normal distribution with a mean of zero and when two
or more parameters are to be estimated (m ≥ 2), the breakdown point of the LMS
estimator is [24]:

ε∗ = 1

n

(⌊
n

2

⌋

− m + 2

)

. (8.49)

As n approaches ∞, the breakdown point of the estimator approaches 0.5.
By minimizing the median of squares, the process, in effect, minimizes the sum

of squares of the smallest �n/2� absolute residuals. Therefore, first, the parameters
of the model are estimated by OLS or a more robust estimator. Then, points that
produce the �n/2� smallest magnitude residuals are identified and used in OLS to
estimate the parameters of the model. The process is repeated until the median of
squared residuals reaches a minimum.

Using the data sets shown in Table 8.1, the results in Table 8.8 are obtained. The
process in each case takes from a few to several iterations to find the parameters. The
LMS estimator has been able to find parameters between the transformed images
and the original image that are as close to the ideal parameters as the parameters
estimated by any of the estimators discussed so far.

8.7 LTS Estimator

The least trimmed squares (LTS) estimator [26] is similar to the LMS estimator
except that it uses fewer than half of the smallest squared residuals to estimate the
parameters. LTS estimates the parameters by minimizing

h∑

i=1

(
r2)

i:n, (8.50)
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Table 8.9 Parameters estimated by the LTS estimator with h = n/4 using the data sets in Table 8.1

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.000 0.000 0.000 0.000 1.000 0.000 3.57 0.79 0.002

Noisy 1.000 0.000 0.000 0.000 1.000 0.000 3.60 0.75 0.001

Enhanced 1.000 0.000 0.000 0.000 1.000 0.000 3.75 0.69 0.002

Rotated 0.873 −0.496 38.90 0.503 0.857 −23.18 4.35 0.65 0.001

Scaled 1.510 −0.002 −0.579 −0.009 1.505 0.932 5.12 1.08 0.002

where m ≤ h ≤ n/2 + 1 and (r2)i:n ≤ (r2)j :n, when i < j . The process initially
estimates the parameters of the model by OLS or a more robust estimator. It then
orders the residuals and identifies points that produce the h smallest residuals. Those
points are then used to estimate the parameters of the model. The squared residuals
are recalculated using all points and ordered. The process of selecting points and
calculating and ordering the residuals is repeated. The parameters obtained from
the points producing the h smallest residuals are taken as estimates to the model
parameters in each iteration. The process is stopped when the hth smallest squared
residual reaches a minimum.

The breakdown point of the LTS estimator is [26]:

ε∗ =
{

(h − m + 1)/n if m ≤ h < �n+m+1
2 �,

(n − h + 1)/n if �n+m+1
2 � ≤ h ≤ n.

(8.51)

When n is not very large and if the number of parameters m is small, by letting
h = n/2 + 1 we see that the breakdown point of this estimator is close to 0.5.
When n is very large, by letting h = n/2, we see that irrespective of m a break-
down point close to 0.5 is achieved. Note that due to the ordering need in the
objective function, each iteration of the algorithm requires O(n log2 n) compar-
isons.

By letting h = n/4 and using the data in Table 8.1, we obtain the results shown
in Table 8.9. Obtained results are similar to those obtained by the LMS estimator
when using all the correspondences. When using only the correct correspondences,
results obtained by the LTS estimator are slightly better than those obtained by the
LMS estimator.

When the ratio of correct correspondences over all correspondences falls below
0.5, the parameters initially estimated by OLS may not be accurate enough to pro-
duce squared residuals that when ordered will place correct correspondences before
the incorrect ones. Therefore, the obtained ordered list may contain a mixture of
correct and incorrect correspondences from the very start. When the majority of
correspondences is correct and there are no distant outliers, the residuals are or-
dered such that more correct correspondences appear at and near the beginning of
the list. This enables points with smaller squared residuals to be selected, allowing
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more correct correspondences to participate in the estimation process, ultimately
producing more accurate results.

8.8 R Estimator

A rank (R) estimator ranks the residuals and uses the ranks to estimate the model pa-
rameters [13]. By using the ranks of the residuals rather than their actual values, the
influence of very distant outliers is reduced. By assigning weights to the residuals
through a scoring function, the breakdown point of the estimator can be increased
up to 0.5. Using a fraction α of the residuals in estimating the parameters of the
model, Hossjer [9] reduced the influence of the 1 −α largest magnitude residuals in
parameter estimation. It is shown that a breakdown point of 0.5 can be achieved by
letting α = 0.5.

If Ri is the rank of the ith largest magnitude residual |ri | from among n residuals
and if bn(Ri) is the score assigned to the ith largest magnitude residual from a score
generating function, then the objective function to minimize is

1

n

n∑

i=1

bn(Ri)r
2
i , (8.52)

which can be achieved by setting its gradient to zero and solving the obtained system
of linear equations. Therefore,

n∑

i=1

bn(Ri)rixik = 0, k = 1, . . . ,m. (8.53)

This is, in effect, a WLS estimator where the weight of the residual at the i point is
bn(Ri).

Given ranks {Ri : i = 1, . . . , n}, an example of a score generating function is

bn(Ri) = h
(
Ri/(n + 1)

)
, (8.54)

which maps the ranks to (0,1) in such a way that

sup
{
u;h(u) > α

}= α, 0 < α ≤ 1. (8.55)

For example, if α = 0.25 and letting u = Ri/(n + 1), then when Ri/(n + 1) ≤ α

the score is u, and when Ri/(n + 1) > α the score is 0.25. This scoring function, in
effect, assigns a fixed weight to a certain percentage of highest magnitude residuals.
Therefore, when α = 0.25, the highest 75% residuals are given a fixed weight that is
lower than what they would otherwise receive. The scoring function can be designed
to assign decreasing scores to increasing residuals from a point and to assign a score
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Fig. 8.4 Plot of the scoring
function of (8.56)

of 0 to a percentage of the largest magnitude residuals. For example, consider the
scoring function depicted in Fig. 8.4 with 0 < α ≤ β ≤ γ ≤ 1,

bn(Ri) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ri/(n + 1), if Ri/(n + 1) ≤ α,

α, if α < Ri/(n + 1) ≤ β,

α[γ − Ri/(n + 1)]/(γ − β), if β < Ri/(n + 1) ≥ γ,

0, if Ri/(n + 1) > γ.

(8.56)

This scoring function discards the 100γ percentage of the points that produce
the largest magnitude residuals. By discarding such points, the process removes the
outliers. Hössjer [9] has shown that if the scoring function is nondecreasing, the
process has a single global minimum. However, if the scoring function decreases
in an interval, there may be more than one minima, and if the initial parameters
estimated by OLS are not near the final parameters, the R estimator may converge
to a local minimum rather than the global one.

To summarize, estimation by an R estimator involves the following steps:

1. Design a scoring function.
2. Estimate the model parameters by OLS or a more robust estimator and calculate

the residuals.
3. Let initial weights at all points be 1/n.
4. Rank the points according to the magnitude of the weighted residuals.
5. Find the score at each point using the scoring function, and let the score represent

the weight at the point.
6. Find the model parameters by the WLS estimator.
7. Estimate the new residuals at the points. If a minimum is reached in the sum of

weighted square residuals, stop. Otherwise, go to Step 4.

Using the nondecreasing scoring function in (8.54), the results shown in Ta-
ble 8.10 are obtained for the data sets in Table 8.1. Using the scoring function (8.56)
with α = 0.5, β = 0.75, and γ = 1.0, the results shown in Table 8.11 are obtained
for the same data sets.

Similar results are obtained by the two scoring functions. Comparing these re-
sults with those obtained by previous estimators, we see that the results by the R
estimator are not as good as those obtained by some of the other estimators when
using the data sets in Table 8.1. By using the ranks of the residuals rather than their
magnitudes, the process reduces the influence of distant outliers. The process, how-
ever, may assign large ranks to very small residuals in cases where a great portion of
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Table 8.10 Parameter estimation by the R estimator when using the scoring function of (8.54)
with α = 0.5 and the data sets in Table 8.1

Data set a b c d e f RMSEa RMSEc Time

Blurred 1.000 0.002 −0.256 −0.006 1.000 0.036 3.55 0.95 0.001

Noisy 1.010 −0.004 −0.120 0.005 0.992 −0.044 3.61 0.92 0.001

Enhanced 0.996 0.003 0.038 −0.002 0.994 0.057 3.74 0.91 0.001

Rotated 0.872 −0.489 38.36 0.505 0.850 −22.79 4.33 0.83 0.001

Scaled 1.497 0.002 −0.249 −0.013 1.5001 0.604 5.13 1.59 0.001

Table 8.11 Parameter estimation by the R estimator when using the scoring function of (8.56)
with α = 0.5, β = 0.75, and γ = 1.0 and the data sets in Table 8.1

Data set a b c d e f RMSEa RMSEc Time

Blurred 0.996 0.007 −0.220 −0.003 0.995 0.055 3.58 1.01 0.001

Noisy 1.009 −0.007 −0.053 0.003 0.994 −0.033 3.60 0.89 0.001

Enhanced 0.987 0.008 0.143 0.000 0.999 −0.070 3.75 0.90 0.001

Rotated 0.872 −0.489 38.36 0.505 0.850 −22.79 4.33 0.83 0.001

Scaled 1.484 0.012 −0.109 −0.007 1.500 0.438 5.13 1.67 0.001

the residuals are very small. This, in effect, degrades the estimation accuracy. There-
fore, in the absence of distant outliers, as is the case for the data sets in Table 8.1,
the R estimator does not produce results as accurate as those obtained by LMS and
LTS estimators.

8.9 Effect of Distant Outliers on Estimation

If a correspondence algorithm does not have the ability to distinguish inaccurate cor-
respondences from incorrect ones, some incorrect correspondences (outliers) may
take part in estimation of the model parameters. In such a situation, the results pro-
duced by different estimators will be different from the results presented so far. To
get an idea of the kind of results one may get from the various estimators in the
presence of distant outliers, the following experiment is carried out.

The 28 correct corresponding points in the original and scaled images marked
with ‘+’ in Table 8.1 are taken. These correspondences are connected with yellow
lines in Fig. 8.5a. In this correspondence set, points in the original set are kept fixed
and points in the scaled set are switched one at a time until the breakdown point
for each estimator is reached. To ensure that the outliers are far from the estimating
model, the farthest points in the scaled set are switched. The correct correspon-
dences, along with the outliers tested in this experiment, are shown in Figs. 8.5b–i.
Red lines connect the incorrect correspondences and yellow lines connect the cor-
rect correspondences. Using point correspondences connected with yellow and red
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Fig. 8.5 (a) 28 corresponding points in the coin image and its scaled version. (b)–(i) Introduction
of 1, 2, 4, 6, 8, 9, 10, and 14 outliers into the correspondence set of (a). Red lines are the outliers
(false positives) and green lines are the missed correspondences (false negatives). The yellow lines
are the correct correspondences (true positives). The points connected with the yellow and red lines
are used as corresponding points in the experiments

lines, the results shown in Table 8.12 are obtained by the various estimators. The
green lines indicate the correct correspondences that are not used in the estimation
process.

From the results in Table 8.12, we can conclude the following:

1. For the data set in Fig. 8.5a where no outliers are present and data are simply
corrupted with random noise, OLS performs as good as any other estimator by
finding the maximum likelihood estimation of the parameters.

2. Because OLS can break down with a single distant outlier, the estimators that
depend on OLS to find the initial residuals or initial parameters can also break
down with a single distant outlier. WLS and R-1 estimators have exhibited this
characteristic when using the data sets containing one or more outliers.

3. To improve the accuracy of the estimators, a means to either eliminate some of
the distant outliers, as done by R-2, or to estimate the initial model parameters
more robustly is required.

4. When using the data sets in Fig. 8.5, the clear winner is the R-2 estimator, which
uses the scoring function in (8.56). By effectively removing some of the outliers,
ordering the rest, and using points with low squared residuals, this estimator has
been able to find correct model parameters from data containing up to 50% of
distant outliers (Fig. 8.5i). LTS with h = n/4 and LMS have also been able to
perform well under distant outliers.
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Table 8.12 Breakdown points for various estimators in the presence of distant outliers. Table
entries show RMSE at the correct correspondences. The point at which a sharp increase in RMSE
is observed while gradually increasing the number of outliers is the breakdown point. WLS-1 and
WLS-2 imply WLS estimation without and with a cut-off threshold of 2 pixels, RM-1 and RM-2
imply the regular and the fast RM estimators, and R-1 and R-2 imply the R estimator with the non-
decreasing scoring function of (8.54) with α = 0.5 and the decreasing scoring function of (8.56)
with α = 0.25, β = 0.5, and γ = 0.75, respectively. The numbers in the top row show the number
of distant outliers used in a set of 28 corresponding points

Estimator 0 1 2 4 6 8 9 10 14

OLS 0.97 11.14 20.31 33.01 42.53 48.04 50.73 50.86 51.75

WLS-1 0.97 11.14 20.31 33.01 42.53 48.04 50.73 50.86 106.2

WLS-2 0.97 11.14 20.31 33.01 42.53 48.04 50.73 50.86 51.75

RM-1 0.98 1.01 1.06 1.19 5.88 67.07 47.46 47.63 58.30

RM-2 1.15 0.56 1.06 44.04 44.04 59.51 54.74 50.06 45.27

LMS 1.01 1.10 1.20 1.09 1.18 1.05 50.89 50.86 59.16

LTS 1.01 1.36 1.39 1.28 1.17 1.20 1.14 55.65 51.75

R-1 1.02 15.95 22.58 42.98 53.26 52.06 70.52 67.40 84.85

R-2 1.01 1.04 1.07 1.25 1.10 1.10 1.07 1.11 1.21

8.10 Additional Observations

For the data sets in Table 8.1, all tested estimators were able to find the parameters
of the affine transformation to register the images with acceptable accuracies. These
data sets do not contain distant outliers and errors at the points have distributions that
are close to normal with a mean of 0. Among the estimators tested, RM, LMS, and
LTS estimators produce the highest accuracies. Considering the high computational
requirement of RM estimator, LMS and LTS stand out among the others in overall
speed and accuracy in estimating model parameters when using the data sets of the
kind shown in Table 8.1.

For the data sets of the kind depicted in Fig. 8.5, where distant outliers are
present, results in Table 8.12 show that R estimator with the scoring function given
in (8.56) is the most robust among the estimators tested, followed by LTS and LMS
estimators. The OLS and WLS estimators are not to be used when the provided data
contains distant outliers.

Although some estimators performed better than others on the limited tests per-
formed in this chapter, it should be mentioned that one may be able to find a data set
where any of the estimators can perform better than many of the other estimators.
When data sets represent coordinates of corresponding points obtained by a point
pattern matching algorithm, it is anticipated that the R-2 estimator will perform
better than others when distant outliers are present, and LTS and LMS estimators
will perform better than other estimators when the correspondences do not contain
distant outliers.

When the ratio of outliers and inliers is small and the outliers are distant from the
model, methods to remove the outliers have been developed. Hodge and Austin [8]
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provided a survey of such methods. Outlier detection, however, without information
about the underlying model is not always possible especially when the number of
outliers is nearly the same as the number of inliers, or when outliers are not very
far from the model to be estimated. Robust estimators coupled with the geometric
constraint that hold between images of a scene can determine model parameters
in the presence of a large number of outliers and without use of outlier detection
methods.

The list of estimators discussed in this chapter is by no means exhaustive. For a
more complete list of estimators, the reader is referred to excellent monographs by
Andrews et al. [3], Huber [12], Hampel et al. [7], Rousseeuw and Leroy [27], and
Wilcox [36].

8.11 Principal Component Analysis (PCA)

Suppose feature vector x = {x0, x1, . . . , xN−1} represents an observation from a
phenomenon and there are m such observations: {xi : i = 0, . . . ,m − 1}. We would
like to determine an N × N matrix A that can transform x to a new feature vector
y = Atx that has a small number of high-valued components. Such a transformation
makes it possible to reduce the dimensionality of x while maintaining its overall
variation.

Assuming each feature is normalized to have mean of 0 and a fixed scale, such
as 1, then the expected value of yyt can be computed from

E
(
yyt
)= E

(
AtxxtA

)

= AtE
(
xxt
)
A

= AtΣxA (8.57)

where

Σx =

⎡

⎢
⎢
⎣

E(x0x0) E(x0x1) . . . E(x0xN−1)

E(x1x0) E(x1x1) . . . E(x1xN−1)

· · . . . ·
E(xN−1x0) E(xN−1x1) . . . E(N − 1xN−1)

⎤

⎥
⎥
⎦ (8.58)

is the covariance matrix with its ij th entry computed from

E(xixj ) = 1

m

m−1∑

k=0

(
xk
i xk

j

)
. (8.59)

By letting the eigenvectors of Σx represent the columns of A, AtΣxA will become
a diagonal matrix with diagonal entries showing the eigenvalues of Σx .

Suppose the eigenvalues of Σx are ordered so that λi ≥ λi+1 for 0 ≤ i < N − 1
and eigenvectors corresponding to the eigenvalues are v0,v1, . . . ,vN−1, we can then
write

yi = vt
ix, i = 0, . . . ,N − 1. (8.60)
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If transformed features are known, the original features can be computed from

x =
N−1∑

i=0

yivi . (8.61)

An approximation to x using eigenvectors of Σx corresponding to its n largest
eigenvalues is obtained from

x̂ =
n−1∑

i=0

yivi . (8.62)

Squared error in this approximation will be [23, 34]

E
(‖x − x̂‖2)=

N−1∑

i=n

vt
iλivi

=
N−1∑

i=n

λi (8.63)

for using y0, y1, . . . , yn−1 instead of x0, x1, . . . , xN−1.
Since the eigenvalues depend on the scale of features, the ratio measure [23]

rn =
N−1∑

i=n

λi

/N−1∑

i=0

λi (8.64)

may be used as a scale-independent error measure to select the number of principal
components needed to achieve a required squared error tolerance in approximation.

To summarize, following are the steps to reduce the dimensionality of feature
vector x from N to n < N using a training data set containing m observations:

1. Estimate Σx from the m observations.
2. Find eigenvalues and eigenvectors of Σx . Order the eigenvalues from the largest

to the smallest: λ0 ≥ λ1 ≥ · · · ≥ λN−1. Note that eigenvalue λi has an associating
eigenvector, vi .

3. Find the largest n such that
∑N−1

i=n λi < ε, where ε is the required squared error
tolerance.

4. Given a newly observed feature vector x, project x to the n-dimensions defined
by the eigenvectors corresponding to the n largest eigenvalues of Σx . That is
compute yi = vt

ix for i = 0, . . . , n−1. y represents a point in n < N dimensions,
thereby, reducing the dimensionality of x while ensuring the squared approxima-
tion error stays below the required tolerance.

PCA was first used by Pearson [21] to find the best-fit line or plane to high di-
mensional points. The best-fit line or plane was found to show the direction of most
uncorrelated variation. Therefore, PCA transforms correlated values into uncorre-
lated values, called principal components. The components represent the direction
of most uncorrelated variation, the direction of second most uncorrelated variation,
and so on.
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PCA is also called Karhunen–Loève (K–L) transform and Hotelling transform.
Given a feature vector containing N features, in an attempt to create n < N new fea-
tures that carry about the same variance from the linear combinations of the features,
Hotelling [10] (also see [16, 17]) found the linear coefficients relating the original
features to new ones in such a way that the first new feature had the largest variance.
Then, the second feature was created in such a way that it was uncorrelated with the
first and had as large a variance as possible. He continued the process until n new
features were created. The coefficients of the linear functions defining a new feature
in terms of the original features transform the original features to the new ones.

Rao [23] provided various insights into the uses and extensions of PCA. Watan-
abe [35] showed that dimensionality reduction by PCA minimizes average classifi-
cation error when taking only a finite number of coefficients in a series expansion
of a feature vector in terms of orthogonal basis vectors. He also showed that PCA
minimizes the entropy of average square coefficients of the principal components.
These two characteristics make PCA a very efficient tool for data reduction. The di-
mensionality reduction power of PCA using artificial and real data has been demon-
strated by Kittler and Young [18]. For a thorough treatment of PCA and its various
applications, see the excellent monograph by Jolliffe [16].

Since PCA calculates a new feature using all original features, it still requires
high-dimensional data collection. It would be desirable to reduce the number of
original features while preserving sufficient variance in collected features without
changing the number of principal components. Jolliffe [14, 15] suggested discarding
features that contributed greatly to the last few principal components, or selecting
features that contributed greatly to the first few principal components. Therefore, if

y = Atx, (8.65)

or

yi =
N−1∑

j=0

Ajixj , i = 0, . . . ,N − 1, (8.66)

where Aji denotes the entry at column i and row j in matrix A, then magnitude of
Aji determines the contribution of xj to yi .

Since this method finds ineffective features in the original set by focusing on
the principal components one at a time, the influence of an original feature on a
number of principal components is not taken into consideration. Mao [19] suggested
finding the contribution of an original feature on all selected principal components.
The significance of an original feature on the selected n principal components is
determined by calculating the squared error in (8.63) once using all features and
another time using all features except the feature under consideration. The feature
producing the least increase in error is then removed from the original set and the
process is repeated until the squared error among the remaining features reaches a
desired tolerance.

Since each transformed feature in PCA is a linear combination of the original fea-
tures, the process detects only linear dependency between features. If dependency
between features is nonlinear, nonlinear approaches [29, 30, 33] should be used to
reduce the number of features.
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Chapter 9
Transformation Functions

A transformation function uses the coordinates of corresponding control points in
two images to estimate the geometric relation between the images, which is then
used to transform the geometry of one image to that of the other to spatially aligned
the images. Spatial alignment of images makes it possible to determine correspon-
dence between points in overlapping areas in the images. This correspondence is
needed in various image analysis applications, such as stereo depth perception,
change detection, and information fusion.

Given the coordinates of n corresponding points in two images:
{
(xi, yi), (Xi, Yi) : i = 1, . . . , n

}
, (9.1)

we would like to find a transformation function with components fx and fy that
satisfies

Xi ≈ fx(xi, yi),

Yi ≈ fy(xi, yi),
i = 1, . . . , n. (9.2)

fx is a single-valued function that approximates 3-D points
{
(xi, yi,Xi) : i = 1, . . . , n

}
, (9.3)

and fy is another single-valued function that approximates 3-D points
{
(xi, yi, Yi) : i = 1, . . . , n

}
. (9.4)

Each component of a transformation function is, therefore, a single-valued sur-
face fitting to a set of 3-D points, representing the coordinates of control points in
the reference image and the X- or the Y -component of corresponding control points
in the sensed image. Many surface-fitting methods exist in the literature that can be
chosen for this purpose. In this chapter, functions most suitable for the registration
of images with local geometric differences will be examined.

If the type of transformation function relating the geometries of two images is
known, the parameters of the transformation can be determined from the coordi-
nates of corresponding points in the images by a robust estimator (Chap. 8). For
example, if the images to be registered represent consecutive frames in an aerial
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video captured by a platform at a high altitude, the images will have translational
and small rotational differences. The transformation function to register such im-
ages has only a few parameters, and knowing a number of corresponding points in
the images, the parameters of the transformation can be determined. If the geometric
relation between the images is not known, a transformation function is required that
uses information present among the correspondences to adapt to the local geometric
differences between the images.

In the following sections, first transformation functions that have a fixed number
of parameters are discussed. These are well-known transformation functions that
describe the global geometric relations between two images. Next, adaptive trans-
formations that adapt to local geometric differences between images are discussed.
The number of parameters in a component of an adaptive transformation varies with
the severity of the geometric difference between two images and can be as high as
the number of corresponding points. At the end of this chapter, the properties of
various transformation functions will be reviewed, and their performances in regis-
tration of images with varying degrees of geometric differences will be measured
and compared.

9.1 Well-Known Transformation Functions

9.1.1 Translation

If the sensed image is only translated with respect to the reference image, corre-
sponding points in the images will be related by

X = x + h, (9.5)

Y = y + k. (9.6)

In matrix form, this can be written as
⎡

⎣
X

Y

1

⎤

⎦=
⎡

⎣
1 0 h

0 1 k

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ , (9.7)

or simply by

P = Tp. (9.8)

P and p are homogeneous coordinates of corresponding points in the sensed and
reference images, respectively, and T is the transformation matrix showing that the
sensed image is translated with respect to the reference image by (h, k).

By knowing one pair of corresponding points in the images, parameters h and
k can be determined by substituting the coordinates of the points into (9.5) and
(9.6) and solving the obtained system of equations for h and k. If two or more
corresponding points are available, h and k are determined by one of the robust
estimators discussed in the previous chapter. A robust estimator can determine the
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parameters of the transformation if some of the correspondences are incorrect. If the
correspondences are known to be correct, the parameters can also be determined by
the ordinary least-squares method [84].

9.1.2 Rigid

When the sensed image is translated and rotated with respect to the reference im-
age, the distance between points and the angle between lines remain unchanged
from one image to another. Such a transformation is known as rigid or Euclidean
transformation and can be written as

X = x cos θ − y sin θ + h, (9.9)

Y = x sin θ + y cos θ + k. (9.10)

In matrix form, this will be
⎡

⎣
X

Y

1

⎤

⎦=
⎡

⎣
1 0 h

0 1 k

0 0 1

⎤

⎦

⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ , (9.11)

or simply

P = TRp. (9.12)

θ shows the difference in orientation of the sensed image with respect to the ref-
erence image when measured in the counter-clockwise direction. The coordinates
of a minimum of two corresponding points in the images are required to determine
parameters θ,h, and k. From a pair of points in each image, a line is obtained. The
angle between the lines in the images determines θ . Knowing θ , by substituting the
coordinates of the midpoints of the lines into (9.9) and (9.10) parameters h and k

are determined.
If more than two corresponding points are available, parameters θ,h, and k are

determined by one of the robust methods discussed in the previous chapter. For
instance, if the RM estimator is used, parameter θ is calculated for various corre-
sponding lines and the median angle is taken as the estimated angle. Knowing θ ,
parameters h and k are estimated by substituting corresponding points into (9.9)
and (9.10), solving the obtained equations, and taking the median of h values and
the median of k values as estimations to h and k.

9.1.3 Similarity

When the sensed image is translated, rotated, and scaled with respect to the refer-
ence image, coordinates of corresponding points in the images will be related by
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the similarity transformation, also known as the transformation of the Cartesian
coordinate system, defined by

X = xs cos θ − ys sin θ + h, (9.13)

Y = xs sin θ + ys cos θ + k, (9.14)

where s shows scale, θ shows orientation, and (h, k) shows location of the coordi-
nate system origin of the sensed image with respect to that of the reference image.

In matrix form, this can be written as
⎡

⎣
X

Y

1

⎤

⎦=
⎡

⎣
1 0 h

0 1 k

0 0 1

⎤

⎦

⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦

⎡

⎣
s 0 0
0 s 0
0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ (9.15)

or simply by

P = TRSp. (9.16)

Under the similarity transformation, the angle between corresponding lines in the
images remains unchanged. Parameters s, θ, h, and k are determined by knowing a
minimum of two corresponding points in the images. The scale of the sensed image
with respect to the reference image is determined using the ratio of the length of the
line segment obtained from the two points in the sensed image over the length of
the same line segment obtained in the reference image. Knowing s, parameters θ,h,
and k are determined in the same way these parameters were determined under the
rigid transformation.

If more than two corresponding points in the images are available, parameters s,
θ , h, and k are determined by one of the robust methods discussed in the preced-
ing chapter. For example, if the RM estimator is used, an estimation to parameter s

is made by determining s for all combinations of two corresponding points in the
images, ordering the obtained s values, and taking the mid value. Knowing s, param-
eters θ , h, and k are determined in the same way these parameters were determined
under the rigid transformation.

9.1.4 Affine

Images that have translational, rotational, scaling, and shearing differences preserve
parallelism. Such a transformation is defined by
[

X

Y

1

]

=
[

1 0 h

0 1 k

0 0 1

][
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

][
s 0 0
0 s 0
0 0 1

][
1 α 0
β 1 0
0 0 1

][
x

y

1

]

(9.17)

or by

P = TRSEp. (9.18)
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An affine transformation has six parameters and can be written as a combination
of a linear transformation and a translation. That is,

X = a1x + a2y + a3, (9.19)

Y = a4x + a5y + a6. (9.20)

In matrix form, this can be written as
⎡

⎣
X

Y

1

⎤

⎦=
⎡

⎣
a1 a2 a3
a4 a5 a6
0 0 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ , (9.21)

or

P = Lp. (9.22)

The two components of the transformation defined by (9.17) depend on each
other while the two components of the transformation defined by (9.21) are indepen-
dent of each other. Since transformation (9.17) is constrained by sin2 θ +cos2 θ = 1,
it cannot represent all the transformations (9.21) can define. Therefore, the affine
transformation allows more differences between two images than translation, rota-
tion, scaling, and shearing. Use of affine transformation in image registration in 2-D
and higher dimensions has been studied by Nejhum et al. [70].

To find the best affine transformation when n > 3 correspondences are available,
a robust estimator should be used. For instance, if the RM estimator is available,
from various combinations of 3 correspondences, the parameters of the transforma-
tion are determined. Then the median value obtained for each parameter is taken as
a robust estimation to that parameter.

9.1.5 Projective

Projective transformation, also known as homography, describes the true imaging
geometry. Corresponding points in a flat scene and its image, or corresponding
points in two images of a flat scene, are related by a projective transformation. Un-
der the projective transformation, straight lines remain straight. A projective trans-
formation is defined by

X = a1x + a2y + a3

a7x + a8y + 1
, (9.23)

Y = a4x + a5y + a6

a7x + a8y + 1
. (9.24)

In matrix form, this can be written as
⎡

⎣
X

Y

1

⎤

⎦=
⎡

⎣
a1 a2 a3
a4 a5 a6
a7 a8 1

⎤

⎦

⎡

⎣
x

y

1

⎤

⎦ , (9.25)

or simply by

P = Hp. (9.26)
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Fig. 9.1 The relation
between cylindrical and
planar image coordinates. h is
the height and r is the radius
of the cylindrical image. f is
the focal length of the regular
camera capturing the planar
image, and (x0, x0) and
(X0, Y0) are the intersections
of the optical axis of the
regular camera with the
planar and cylindrical images,
respectively

Images of a flat scene, or images of a 3-D scene taken from a distance where the
heights of objects in the scene are negligible when compared with the distances of
the cameras to the scene, are related by the projective transformation. A projective
transformation has 8 parameters, requiring a minimum of 4 corresponding points in
the images to determine them. The components of a projective transformation are
interdependent due to the common denominator in (9.23) and (9.24). By substituting
each corresponding point pair from the images into (9.23) and (9.24), two linear
equations in terms of the unknown parameters are obtained. Having 4 corresponding
points in the image, a system of 8 linear equations are obtained, from which the 8
parameters of the transformation can be determined.

Since the components of a projective transformation are interdependent, if more
than 4 corresponding points are available, the residuals calculated by a robust es-
timator should include errors from both components as described by (8.17) in the
preceding chapter.

9.1.6 Cylindrical

Suppose a cylindrical image of an environment is taken by a virtual camera with its
center located in the middle of the axis of the cylinder. Also, suppose the camera has
infinite optical axes that fall in a plane passing through the center of the camera and
normal to the axis of the cylinder. A cylindrical image obtained in this manner can
be saved as a rectangular image XY by letting X = rθ represent the image columns
and Y = i represent the image rows (Fig. 9.1). r is the radius of the cylinder and i

varies between 0 and h−1 in the discrete domain. Although such a camera does not
exist in real life, images can be created that appear as if obtained by such a camera.
To create a cylindrical image, images taken by a regular camera with its center fixed
at the center of the cylinder and rotating about the axis of the cylinder are needed.

Suppose an image taken by a regular camera from view angle θ0, as shown in
Fig. 9.1, is available. If the optical axis of the regular camera is normal to the axis
of the cylinder, the planar image will be parallel to the axis of the cylinder. The
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Fig. 9.2 (a) A planar image of dimensions 256 × 256 and its corresponding cylindrical images
(b) when θ0 = 0 and (c) when θ0 = π/2 in clockwise direction (or −π/2 in counter-clockwise
direction). In these examples, r = 128, h = 256, and f = 128, all in pixels

coordinates of the center of the planar image (x0, y0) define the point where the
optical axis of the regular camera intersects the planar image. Suppose this point
maps to the cylindrical image at (X0, Y0). Then (X0, Y0) can be defined in terms of
the radius of the cylinder r , the viewing angle θ0, and the height of the cylinder h:

X0 = rθ0, (9.27)

Y0 = h/2. (9.28)

If the focal length of the regular camera is f , from the geometry in Fig. 9.1,
we can write the following relations between the coordinates of a point (x, y) in the
planar image and the coordinates of the corresponding point (X,Y ) in the cylindrical
image:

x − x0

f
= tan

(
X

r
− θ0

)

, (9.29)

Y − Y0

r
= y − y0
√

f 2 + (x − x0)2
, (9.30)

or

X = r

{

θ0 + tan−1
(

x − x0

f

)}

, (9.31)

Y = h

2
+ r(y − y0)
√

f 2 + (x − x0)2
. (9.32)

Therefore, given the coordinates of a point (x, y) in the planar image, we can find
the coordinates of the corresponding point (X,Y ) in the cylindrical image. Inversely,
given the coordinates of a point (X,Y ) in the cylindrical images, we can find the
coordinates of the corresponding point (x, y) in the planar image from

x = x0 + f tan

(
X

r
− θ0

)

, (9.33)

y = y0 + Y − h/2

r

√

f 2 + (x − x0)2. (9.34)

Using the planar image of dimensions 256 × 256 in Fig. 9.2a, the corresponding
cylindrical image shown in Fig. 9.2b is obtained when letting θ0 = 0, h = 256,
r = 128, and f = 128, all in pixel units. Changing the view angle to θ0 = π/2,
the image shown in Fig. 9.2c is obtained. Note that in the above formulas, angle
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θ increases in the clockwise direction. If θ is increased in the counter-clockwise
direction, the cylindrical image will be vertically flipped with respect to the planar
image.

If n planar images are taken with view angles θ1, . . . , θn, the images can be
mapped to the cylindrical image and combined using formulas (9.33) and (9.34).
For each regular image, mapping involves scanning the cylindrical image and for
each pixel (X,Y ) determining the corresponding pixel (x, y) in the planar image,
reading the intensity there, and saving it at (X,Y ). Since each planar image may
cover only a small portion of the cylindrical image, rather than scanning the en-
tire cylindrical image for each planar image, the midpoints of the four sides of the
regular image are found in the cylindrical image using (9.31) and (9.32). Then the
smallest bounding rectangle with horizontal and vertical sides is determined. This
bounding rectangle will contain the entire image; therefore, the cylindrical image
is scanned only within the bounding rectangle to find pixels in the planar image to
map to the cylindrical image.

These formulas can be used to combine images captured from a fixed viewpoint
and at different view angles to a cylindrical image. If gaps appear within the cylin-
drical image, and if the X-coordinate of the center of the gap is X0, from (9.27),
the view angle θ0 = X0/r can be determined and an image with that view angle
obtained and mapped to the cylindrical image to fill the gap. The process can be
repeated in this manner until all gaps are filled.

Formulas (9.31) and (9.32) can be used to map the cylindrical image to a planar
image from any view angle θ0. When planar images obtained in this manner are
projected to planar screens of height h and at distance r to a viewer of height h/2
standing at the middle of the cylinder, the viewer will see a surround view of the
environment without any geometric distortion. The cylindrical image can, therefore,
be used as a means to visualize a distortion-free surround image of an environment
through planar imaging and planar projection.

Note that this visualization does not require that the number of planar images
captured and the number of planar projections used in viewing be the same. There-
fore, if a number of video cameras are hinged together in such a way that they
share the same center and their optical axes lie in the same plane, video frames of
a dynamic scene simultaneously captured by the cameras can be combined into a
cylindrical video and mapped to a desired number of planar images and projected
to planar screens surrounding a viewer. The viewer will then see the dynamic scene
from all directions.

9.1.7 Spherical

Consider a spherical image obtained by a virtual camera where the image center
coincides with the camera center. Suppose the camera has infinite optical axes, each
axis connecting the camera center to a point on the sphere. Points on the spherical
image as well as directions of the optical axes can be represented by the angular
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Fig. 9.3 The relation between the spherical image coordinates (X,Y ) and the planar image coor-
dinates (x, y). (x0, y0) is the center of the planar image and (X0, Y0) is the corresponding point
in the spherical image. The ray connecting (x0, y0) to (X0, Y0) passes through the center of the
spherical image and is normal to the planar image. θ0 shows the angle the projection of this ray to
the X′Z′-plane makes with the X′-axis, and φ0 is the angle this ray makes with the X′Z′-plane.
X′Y ′Z′ is the coordinate system of the sphere

coordinates (θ,φ). If an image is obtained by a regular camera with an optical axis
in direction (0,0), the relation between this planar image and the spherical image
(Fig. 9.3) will be:

θ = tan−1
(

x − x0

f

)

, (9.35)

φ = tan−1
(

y − y0

f

)

. (9.36)

Values at (θ,φ) can be saved in an XY array for storage purposes, where

X = rθ = r tan−1
(

x − x0

f

)

, (9.37)

Y = r(φ + π/2) = r

[

tan−1
(

y − y0

f

)

+ π

2

]

. (9.38)

By varying θ from 0 to 2π and φ from −π/2 to π/2, and letting r represent the
radius of the spherical image in pixel units, the obtained rectangular image (X,Y )

will show the spherical image in its entirety.
If the planar image is obtained when the regular camera optical axis was in direc-

tion (θ0, φ0), as shown in Fig. 9.3, we first assume the image is obtained at direction
(0,0), project it to the spherical image, and then shift the spherical image in such a
way that its center moves to (θ0, φ0). This simply implies replacing θ in (9.37) with
θ + θ0 and φ in (9.38) with φ + φ0. Therefore,

X = r

[

θ0 + tan−1
(

x0 − x

f

)]

, (9.39)

Y = r

[

φ0 + π

2
+ tan−1

(
y − y0

f

)]

. (9.40)
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Fig. 9.4 (a)–(d) Spherical images corresponding to the planar image in Fig. 9.2a when viewing
the planar image from directions (θ0, φ0) = (0,0), (0,π/2), (π/2,0), and (π/2,π/2), respectively

Conversely, knowing the coordinates (X,Y ) of a point in the spherical image, the
coordinates of the corresponding point in the planar image when viewed in direction
(θ0, φ0) will be

x = x0 + f tan

(
X

r
− θ0

)

, (9.41)

y = y0 + f tan

(
Y

r
− φ0 − π

2

)

. (9.42)

The planar image of Fig. 9.2a when mapped to a spherical image of radius r =
128 pixels according to (9.41) and (9.42) with various values of (θ0, φ0) are shown
in Fig. 9.4. Parameter f is set equal to r in these examples.

A rectangular image with XY coordinates and dimensions 2πr × πr can be cre-
ated by combining planar images taken at different orientations (θ0, φ0) of an envi-
ronment. Having a spherical image created with coordinates (θ,φ), or equivalently
(X,Y ), we can project the spherical image to any plane and create a planar image.
Such images, when projected to planes surrounding a viewer, will enable the viewer
to see the environment from all directions.

Given a planar image that represents a particular view of a scene, its mapping to
the spherical image is obtained by scanning the XY image and for each pixel (X,Y ),
locating the corresponding pixel (x, y) in the planar image from (9.41) and (9.42).
If (x, y) falls inside the planar image, its intensity is read and saved at (X,Y ). To
avoid scanning XY areas where the planar image is not likely to produce a result,
first, a bounding rectangle is found in the XY image where the planar image is
mapped. This involves substituting the coordinates of the four corners of the image
into (9.39) and (9.40) as (x, y) and finding the corresponding coordinates (X,Y ) in
the spherical image. This will create a rectangle inside which the planar image will



9.2 Adaptive Transformation Functions 353

be mapped. Then the bounding rectangle is scanned to determine the corresponding
pixels in the planar image and mapped to the spherical image.

To find the projection of the spherical image to a planar image of a particular
size and direction (θ0, φ0), the planar image is scanned and for each pixel (x, y) the
corresponding pixel in the spherical image is located using (9.39) and (9.40). Then
intensity at (X,Y ) is read and saved at (x, y). Note that when X > 2πr , because
θ ± 2π = θ , we should let X = X − 2πr , and when X < 0, we should let X =
X + 2πr . Similarly, we should let φ = −π − φ when φ < −π/2, φ = π − φ when
φ > π/2, Y = −Y when Y < 0, and Y = 2Y − πr when Y > πr .

9.2 Adaptive Transformation Functions

9.2.1 Explicit

An explicit transformation function of variables x and y is defined by

F = f (x, y). (9.43)

An explicit function produces a single value for each point in the xy domain. An
explicit function of variables x and y can be considered a single-valued surface that
spans over the xy domain. Therefore, given a set of 3-D points

{
(xi, yi,Fi) : i = 1, . . . , n

}
, (9.44)

an explicit function interpolates the points by satisfying

Fi = f (xi, yi), i = 1, . . . , n, (9.45)

and approximates the points by satisfying

Fi ≈ f (xi, yi), i = 1, . . . , n. (9.46)

If (xi, yi) are the coordinates of the ith control point in the reference image and
Fi is the X or the Y coordinate of the corresponding control point in the sensed
image, the surface interpolating/approximating points (9.44) will represent the X-
or the Y -component of the transformation.

If corresponding points in the images are accurately located, an interpolating
function should be used to ensure that the obtained transformation function maps
corresponding points to each other. However, if the coordinates of corresponding
points contain inaccuracies, approximating functions should be used to smooth the
inaccuracies.

A chronological review of approximation and interpolation methods is provided
by Meijering [68] and comparison of various approximation and interpolation meth-
ods is provided by Franke [25] and Renka and Brown [82]. Bibliography and cat-
egorization of explicit approximation and interpolation methods are provided by
Franke and Schumaker [28, 93] and Grosse [40].

In the remainder of this chapter, transformation functions that are widely used
or could potentially be used to register images with local geometric differences are
reviewed.
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9.2.1.1 Multiquadrics

Interpolation by radial basis functions is in general defined by

f (x, y) =
n∑

i=1

AiRi(x, y). (9.47)

Parameters {Ai : i = 1, . . . , n} are determined by letting f (xi, yi) = Fi for i =
1, . . . , n and solving the obtained system of linear equations. Ri(x, y) is a radial
function whose value is proportional to the distance between (x, y) and (xi, yi).
A surface point is obtained from a weighted sum of these radial functions. Powell
[75] has provided an excellent review of radial basis functions.

When

Ri(x, y) = [(x − xi)
2 + (y − yi)

2 + d2] 1
2 , (9.48)

f (x, y) represents a multiquadric interpolation [42, 43]. As d2 is increased,
a smoother surface is obtained. In a comparative study carried out by Franke [25],
multiquadrics were found to produce the best accuracy in the interpolation of ran-
domly spaced data in the plane when compared with many other interpolation meth-
ods.

Multiquadric interpolation depends on parameter d2. This parameter works like
a stiffness parameter and as it is increased, a smoother surface is obtained. The best
stiffness parameter for a data set depends on the spacing and organization of the data
as well as on the data gradient. Carlson and Foley [10], Kansa and Carlson [47], and
Franke and Nielson [29] have studied the role parameter d2 plays on multiquadric
interpolation accuracy.

An example of the use of multiquadric interpolation in image registration is given
in Fig. 9.5. Images (a) and (b) represent multiview images of a partially snow cov-
ered rocky mountain. 165 corresponding points are identified in the images using
the coarse-to-fine matching Algorithm F5 in Sect. 7.10. Corresponding points in
corresponding regions that fall within 1.5 pixels of each other after transformation
of a sensed region to align with its corresponding reference region by an affine
transformation are chosen and used in the following experiments. About half (83
correspondences) are used to determine the transformation parameters and the re-
maining half (82 correspondences) are used to evaluate the registration accuracy.
Images (a) and (b) will be referred to as the Mountain image set.

Resampling image (b) to align with image (a) by multiquadrics using the 83
correspondences (shown in red) produced the image shown in (c) when letting
d = 12 pixels. Assigning values larger or smaller than 12 to d increases root-
mean-squared error (RMSE) at the 82 remaining correspondences. Overlaying of
images (a) and (c) is shown in (d). The reference image is shown in the red and blue
bands and the resampled sensed image is shown in the green band of a color image.
Pixels in the overlaid image where the images register well appear gray, while pixels
in the overlaid image where the images are locally shifted with respect to each other
appear purple or green. Although registration within the convex hull of the control
points may be acceptable, registration outside the convex hull of the control points
contain large errors and is not acceptable.
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Fig. 9.5 (a) Reference and (b) sensed images used in image registration. The control points
marked in red ‘+’ are used to determine the registration parameters. The control points marked
in light blue ‘+’ are used to determine the registration accuracy. (c) Resampling of image (b) to
align with image (a) using multiquadrics with d = 12 pixels. (d) Overlaying of the reference im-
age (purple) and the resampled sensed image (green). Areas that are correctly registered appear in
gray, while misregistered areas appear in purple or green. The reference image areas where there
is no correspondence in the sensed image also appear in purple (the color of the reference image)

Multiquadrics use monotonically increasing basis functions. This implies that
farther control points affect registration of a local neighborhood more than control
points closer to the neighborhood. This is not a desirable property in image regis-
tration because we do not want a local error affect registration of distant points and
would like to keep the influence of a control point local to its neighborhood. To
obtain a locally sensitive transformation function, monotonically decreasing radial
basis functions are needed.

If a transformation function is defined by monotonically decreasing radial basis
functions, the farther a control point is from a neighborhood, the smaller will be
its influence on that neighborhood. Radial basis functions that are monotonically
decreasing are, therefore, more suitable for registration of images with local ge-
ometric differences. Moreover, monotonically decreasing basis functions keep the
inaccuracy in a correspondence to a small neighborhood of the inaccuracy and will
not spread the inaccuracy over the entire image domain.

Examples of radial basis functions with monotonically decreasing basis functions
are Gaussians [37, 87],

Ri(x, y) = exp

{

− (x − xi)
2 + (y − yi)

2

2σ 2
i

}

(9.49)
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and inverse multiquadrics [25, 43],

Ri(x, y) = [(x − xi)
2 + (y − yi)

2 + d2]− 1
2 . (9.50)

Franke [25] has found through extensive experimentation that monotonically de-
creasing radial basis functions do not perform as well as monotonically increasing
radial basis functions when data are accurate and are randomly spaced. Therefore,
if the coordinates of corresponding points in the images are known to be accurate,
multiquadric is preferred over inverse multiquadric in image registration. However,
if some point coordinates are not accurate or the local geometric difference be-
tween some areas in the images is sharp, monotonically decreasing radial func-
tions are preferred over monotonically increasing radial functions in image registra-
tion.

9.2.1.2 Surface Spline

Surface spline, also known as thin-plate spline (TPS), is perhaps the most widely
used transformation function in nonrigid image registration. Harder and Desmarais
[41] introduced it as an engineering mathematical tool and Duchon [20] and
Meinguet [69] investigated its properties. It was used as a transformation function in
the registration of remote sensing images by Goshtasby [33] and in the registration
of medical images by Bookstein [6].

Given a set of points in the plane with associating values as described by (9.44),
the surface spline interpolating the points is defined by

f (x, y) = A1 + A2x + A3y +
n∑

i=1

Bir
2
i ln r2

i , (9.51)

where r2
i = (x − xi)

2 + (y − yi)
2 + d2. Surface spline is formulated in terms of

an affine transformation and a weighted sum of radially symmetric (logarithmic)
basis functions. In some literature, basis functions of form r2

i log ri are used. Since
r2
i log r2

i = 2r2
i log ri , by renaming 2Bi by Bi we obtain the same equation. r2

i log r2
i

is preferred over r2
i log ri as it avoids calculation of the square root of r2

i .
Surface spline represents the equation of a plate of infinite extent deforming un-

der point loads at {(xi, yi) : i = 1, . . . , n}. The plate deflects under the imposition of
the loads to take values {Fi : i = 1, . . . , n}. Parameter d2 acts like a stiffness param-
eter. As d2 is increased, a smoother surface is obtained. When spacing between the
points varies greatly in the image domain, a stiffer surface increases fluctuations in
the interpolating surface. Franke [26] used a tension parameter as a means to keep
fluctuations in interpolation under control.

Equation (9.51) contains n + 3 parameters. By substituting the coordinates of
n points as described by (9.44) into (9.51), n equations are obtained. Three more
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Fig. 9.6 Registration of the Mountain image set using surface spline as the transformation func-
tion. (a) Resampled sensed image. (b) Overlaying of the reference and resampled sensed images

equations are obtained from the following constraints:
n∑

i=1

Bi = 0, (9.52)

n∑

i=1

xiBi = 0, (9.53)

n∑

i=1

yiBi = 0. (9.54)

Constraint (9.52) ensures that the sum of the loads applied to the plate is 0 so
that the plate will not move up or down. Constraints (9.53) and (9.54) ensure that
moments with respect to the x- and y-axes are zero, so the surface will not rotate
under the imposition of the loads.

Using surface spline transformation to register the Mountain image set in
Fig. 9.5, the results shown in Fig. 9.6 are obtained when letting the stiffness pa-
rameter d = 0. Comparing these results with those obtained by multiquadric inter-
polation, we see that while within the convex hull of the control points similar results
are obtained, outside the convex of the control points surface spline produces sig-
nificantly better results than multiquadric. By increasing the stiffness parameter d2,
registration error increases.

When the control point correspondences contain errors and the density of con-
trol points in the reference image is not uniform, improved registration accuracy
can be achieved by allowing each component of the transformation to approximate
rather than interpolate the points. Rohr et al. [85] added a smoothing term to the
interpolating spline while letting d2 = 0 to obtain a surface that contained smaller
fluctuations. As the smoothness term is increased, the obtained surface becomes
smoother and fluctuations become smaller, but the surface moves away from some
of the control points. The process, therefore, requires interaction by the user to spec-
ify a smoothness parameter that is large enough to reduce noise among control-point
correspondences but not so smooth as to increase distances between the surface and
the points it is approximating.

Monotonically increasing radial basis functions such as multiquadrics and sur-
face splines that interpolate points produce a smooth mapping from one image to
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another. If the correspondences are accurate, surfaces representing the components
of the transformation represent smoothly varying geometric differences between the
images. However, when a function is defined in terms of monotonically increasing
basis functions, a positional error in a pair of corresponding points in the images
will influence the registration accuracy everywhere in the image domain.

Since radial basis functions are symmetric, when spacing between the control
points varies greatly across the image domain, the transformation may produce large
errors away from the control points. To increase registration accuracy, the density of
the control points may be increased, but that will not only slow down the process,
it will make the process unstable as it will require the solution of large systems of
equations to find the parameters of the transformation.

Compactly supported radial basis functions, examined next, use local basis func-
tions to keep errors and deformations local.

9.2.1.3 Compactly Supported Radial Basis Functions

Monotonically decreasing radial basis functions can be defined with local support
in such a way that the data value at (x, y) is determined from data at a small number
of points near (x, y). Interpolation by compactly supported radial basis functions is
defined by

f (x, y) =
n∑

i=1

AiRi(x, y) =
n∑

i=1

AiW(ri), (9.55)

where ri = √(x − xi)2 + (y − yi)2. By replacing ri with
√

(x − xi)2 + (y − yi)2,
a function in (x, y) is obtained, which has been denoted by Ri(x, y) in the above
formula. W(ri) can take different forms. Wendland [102] defined it by

W(ri) =
{

(a − ri)
2, 0 ≤ ri ≤ a,

0, ri > a,
(9.56)

while Buhmann [9] defined it by

W(ri) =

⎧
⎪⎪⎨

⎪⎪⎩

112
45 (a − ri)

9
2 + 16

3 (a − ri)
7
2 − 7(a − ri)

4 − 14
15 (a − ri)

2 + 1
9 ,

0 ≤ ri ≤ a,

0, ri > a.

(9.57)

In both cases, W(ri) not only vanishes at distance a from (xi, yi), but its gradient
vanishes also. Therefore, the basis functions smoothly vanish at distance a from
their centers and a weighted sum of them will create a surface that will be smooth
everywhere in the image domain.

Parameter a should be large enough so that within each region of radius a, at least
a few control points appear in the reference image. The unknown parameters {Ai :
i = 1, . . . , n} are determined by solving the following system of linear equations:

Fj =
n∑

i=1

AiRi(xj , yj ), j = 1, . . . , n. (9.58)
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Fig. 9.7 Registration of the Mountain image set using Wendland’s compactly supported radial
basis functions with parameter a = 5000 pixels. (a) Resampled sensed image. (b) Overlaying of
the reference and resampled sensed images

Note that although the basis functions have local support, a global system of equa-
tions has to be solved to find parameters {Ai : i = 1, . . . , n}.

Using Wendland’s compactly supported radial functions as the transformation to
register the Mountain image set in Fig. 9.5, acceptable results are not obtained when
a is small enough to consider the transformation local. As parameter a is increased,
registration accuracy improves. Registration of the images when a = 5000 pixels
is shown in Fig. 9.7. Results are acceptable within the convex hull of the control
points, but they are inferior to those obtained by surface spline.

To overcome some of the weaknesses of compactly supported radial basis func-
tions of a fixed support radius a, use of a hierarchy of compactly supported radial
basis functions of varying support radii has been proposed [72]. Starting from basis
functions of a large radius, basis functions of smaller radii are added to the approx-
imation until residual errors in approximation fall within a desired range. A method
proposed by Floater and Iske [23] uses a hierarchy of basis functions. The radii of
basis functions at different levels are estimated by successive triangulation of the
points and determination of the triangle sizes at each hierarchy. Wider basis func-
tions are used to capture global structure in data while narrower basis functions are
used to capture local details in data.

To avoid solving a system of equations, Maude [66] used weight functions with
local support to formulate an approximation method to irregularly spaced data.
Maude’s weight functions are defined by:

Wi(x, y) = W(Ri) =
{

1 − 3R2
i + 2R3

i , 0 ≤ Ri ≤ 1,

0, Ri > 1,
(9.59)

where Ri =√(x − xi)2 + (y − yi)2/Rk and Rk is the distance of (x, y) to the kth
point closest to it. Note that not only W(Ri) vanishes at distance Rk to point (x, y),
its first derivative vanishes there also. Then

f (x, y) =
∑k

i=1 FiWi(x, y)
∑k

i=1 Wi(x, y)
(9.60)

is used as the approximating functional value at (x, y).
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Fig. 9.8 Registration results using Maude’s local interpolation formula with neighborhood size
k = 10 points. (a) Resampling of sensed image to overlay the reference image. (b) Overlaying of
the reference and resampled sensed images

Therefore, to estimate functional value at (x, y), the k points closest to (x, y)

are identified. Let’s suppose data values at the points are: {Fi : i = 1, . . . , k}. Then a
weighted sum of the values is calculated and used as the value at (x, y). The weights
vanish at the kth point and the sum of the weights everywhere in a region of radius
Rk centered at (x, y) is 1.

Note that the neighborhood size automatically adjusts to the local density of
points. In areas where a high density of points is available, parameter Rk will be
small, while in sparse areas, Rk will be large. The method does not require the so-
lution of a system of equations, but it does require determination of the k control
points that are closest to pixel (x, y) in the reference image.

Maude’s weighted mean approximation uses rational weights, which is known
to produce flat spots in the obtained surface at the control points. We will see later
in this chapter how such errors can be reduced through parametric reformulation of
the problem. Another way to remedy the flat-spot effect is to use data values as well
as data gradients at the points. This can be achieved by replacing Fi in (9.60) with
a linear function that evaluates to Fi at (xi, yi) and fits the k points closest to (x, y)

by the least-squares method. Denoting such a linear function by Li(x, y), (9.60)
becomes

f (x, y) =
∑k

i=1 Li(x, y)Wi(x, y)
∑k

i=1 Wi(x, y)
. (9.61)

This represents a local weighted linear approximation. Registering the mountain
images using (9.61) as the components of the transformation with k = 10, the result
shown in Fig. 9.8 is obtained. Except for areas with sharp geometric differences, the
images are registered relatively well.

A local weighted mean method that interpolates irregularly spaced data is de-
scribed by McLain [67]. In this method, first, the given points are triangulated.
Then, the patch over each triangle is computed from the weighted sum of data at
the vertices of the triangle. If data at the three vertices of a triangle are F1,F2, and
F3, the functional value at (x, y) inside the triangle is obtained from

f (x, y) = W1(x, y)F1 + W2(x, y)F2 + W3(x, y)F3, (9.62)
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Fig. 9.9 McLain [67]
interpolation over a triangle

where W1,W2, and W3 are weights associated with data at the vertices of the triangle
and are determined by first calculating the distance of point (x, y) to the three sides
of the triangle (Fig. 9.9):

di(x, y) = lix + miy + ni, for i = 1,2,3. (9.63)

Coefficients li ,mi , and ni are determined only once for each triangle side and are
normalized so that di = 1 when (x, y) = (xi, yi). Then the weight associated with
a vertex is set proportional to the distance of (x, y) to the triangle side opposing it.
That is

Wi(x, y) = d2
i

d1(x, y)2 + d2(x, y)2 + d3(x, y)2
, for i = 1,2,3. (9.64)

Square weights are used to ensure continuous and smooth transition from one trian-
gle to the next. If second derivative continuity is required across triangle edges, the
cubic power of distances is needed to define the weights [67].

Radial basis functions with local support are preferred over radial basis func-
tions with global support when registering images with local geometric differences.
Remote sensing images of a 3-D scene captured from different views or serial im-
ages of a patient captured by a medical scanner have local geometric differences.
Compactly supported radial basis functions, by modeling the geometric difference
between corresponding local neighborhoods in images, use a small number of points
within corresponding areas to transform the geometry of the sensed image locally to
resemble that of the reference image. In this manner, global registration is achieved
via local registration.

A comparison between globally defined radial basis functions and compactly
supported radial basis functions in medical image registration has been provided by
Fornefett et al. [24]. Improved registration accuracy has been reported with com-
pactly supported radial basis functions over globally defined radial basis functions
in the registration of serial brain images.

Although not a radial function, tensor-product functions that have local support,
such as B-splines, can be used in approximation/interpolation also. Lee et al. [57]
used multi-level B-splines with varying local support to interpolate data in the plane.
The control points of a B-spline surface are determined by the least-squares method
in such a way that the surface would interpolate given points. By using B-spline ba-
sis functions with different support levels, different levels of detail are reproduced in
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the surface. By adding together B-spline basis functions at different support levels,
a multi-level B-spline interpolation to scattered data is obtained.

For very large and irregularly spaced data, Bozzini et al. [7] laid a regular grid
over the approximation domain and estimated the data at each grid point from the
noisy and irregularly spaced data around it. Then, a B-spline surface was fitted to
data at the regular grid. To produce B-splines that interpolate scattered data, Greiner
et al. [39] first found parameter coordinates at the points to guarantee existence of
an interpolating B-spline. Then, the control vertices of the interpolating B-spline
surface were determined by an optimization process formulated in terms of surface
fairness.

B-splines are a family of grid functions that are defined over regular grids of
nodes (parameter coordinates). The process of generating grid functions that ap-
proximate scattered data is known as gridding. In spite of their limitations, in certain
engineering applications, grid functions are preferred over other functions because
of their ability to easily modify and visualize an approximation. Arge et al. [3] de-
veloped a three-step process for approximating scattered data by grid functions. The
steps are: (1) Regularization: Identifying a subset of grid nodes in regions where
density of data is high. (2) Approximation: Finding values at the grid nodes using
approximation to nearby data. (3) Extrapolation: Extending the data values defined
on the grid subset to the entire grid.

9.2.1.4 Moving Least-Squares

Suppose data points {pi = (xi, yi) : i = 1, . . . , n} with associating data values {Fi :
i = 1, . . . , n} are given. A moving least-squares approximation is a function f (p)

that minimizes [52]:
n∑

i=1

[
f (pi ) − Fi

]2
Wi(p) (9.65)

at each p = (x, y). Wi(p) is a non-negative monotonically decreasing radial func-
tion centered at pi . This weight function ensures that a data point closer to p will
influence the estimated value more than a data point that is farther away. If function
f is a polynomial in x and y, the best polynomial for point (x, y) is determined by
the weighted least squares in such a way as to minimize (9.65).

Note that relation (9.65) is specific to point p. Therefore, function f determined
according to (9.65) will be specific to point p and vary from point to point. Since the
parameters of a new function have to be determined for each point in the approxi-
mation domain, f cannot be a very complex function. Typically, it is a polynomial
of degree 1 or 2.

For interpolating moving least squares, it is required that the weight functions
assume value ∞ at p = pi . Some of the suggested weight functions are [53]:

Wi(p) = 1

‖p − pi‖2
, (9.66)
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Fig. 9.10 Registration with moving least-squares using linear polynomials and weight functions
of (9.66). (a) Resampling of the sensed image to overlay the reference image. (b) Overlaying of
the reference and the resampled sensed images

Wi(p) = 1

‖p − pi‖4
, (9.67)

Wi(p) = α exp(−β‖p − pi‖2)

‖p − pi‖k
, α,β, k > 0. (9.68)

To make the computations local, compactly supported weight functions are used.
Examples are [53]:

Wi(p) =
{

a‖p − pi‖−k(1 − ‖p − pi‖/d)2, for ‖p − pi‖ ≤ d,

0, for ‖p − pi‖ > d,
(9.69)

Wi(p) =
{

a‖p − pi‖−k cos(π‖p − pi‖/2d), for ‖p − pi‖ ≤ d,

0 for ‖p − pi‖ > d.
(9.70)

When f represents a polynomial of degree 1, the surface obtained by moving
least-squares will be continuous and smooth everywhere in the approximation do-
main [51]. Levin [58] has found that moving least-squares are not only suitable for
interpolation but are also useful in smoothing and derivatives estimation. For fur-
ther insights into moving least-squares and its variations, see the excellent review
by Belytschko et al. [4].

An example of image registration by moving least squares using the Mountain
image set, linear polynomials, and weight functions of (9.66) is given in Fig. 9.10.
The transformation is well-behaved outside the convex hull of the control points,
and registration is acceptable at and near the control points; however, registration
error is relatively large away from the control points.

9.2.1.5 Piecewise Polynomials

If control points in the reference image are triangulated [56, 91], by knowing the
correspondence between the control points in the sensed and reference images, cor-
responding triangles will be known in the sensed image. This makes it possible to
determine a transformation function for corresponding triangles and map triangles
in the sensed image one by one to the corresponding triangles in the reference image.
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Fig. 9.11 Registration of the Mountain image set using the piecewise linear transformation.
(a) Resampling of the sensed image to the space of the reference image. (b) Overlaying of the
reference and the resampled sensed images

If a linear function is used to do the mapping, the transformation becomes piecewise
linear.

If coordinates of the vertices of the ith triangle in the reference image are
(xi1, yi1), (xi2, yi2), and (xi3, yi3) and coordinates of the corresponding vertices in
the sensed image are (Xi1, Yi1), (Xi2, Yi2), and (Xi3, Yi3), the ith triangular regions
in the images can be related by an affine transformation as described by (9.19) and
(9.20). The six parameters of the transformation, a–f , can be determined by substi-
tuting the coordinates of three corresponding triangle vertices into (9.19) and (9.20)
and solving the obtained system of linear equations.

Finding an affine transformation for each corresponding triangle produces a com-
posite of local affine transformations or an overall piecewise linear transformation.
An example of image registration by piecewise linear interpolation is depicted in
Fig. 9.11. Registration is shown within the convex hull of the control points in the
reference image. Although affine transformations corresponding to the boundary
triangles can be extended to cover image regions outside the convex hull of the con-
trol points, registration errors outside the convex hull of the points could be large
and so is not recommended. Piecewise linear transformation has been used in im-
age registration before [31]. The method was later extended to piecewise cubic [32]
to provide a smooth as well as continuous mapping within the convex hull of the
control points.

Within the convex hull of the control points, registration by piecewise linear is
comparable to surface spline or moving least-squares. Although piecewise linear
transformation is continuous within the convex hull of the points, it is not smooth
across the triangle edges. The affine transformations obtained over triangles sharing
an edge may have different gradients, producing an overall transformation that is
continuous but not smooth.

To ensure that a transformation is smooth as well as continuous across a triangle
edge, a polynomial of degree two or higher is required to represent the component
of a transformation over each triangle. The parameters of the polynomial are deter-
mined in such a way that adjacent triangular patches join smoothly and produce the
same gradient at the two sides of an edge, and all patches sharing a vertex produce
the same gradient at the vertex. Various triangular patches that provide this property
have been proposed [2, 12, 14–17, 48, 50, 54, 63, 73, 76, 89, 97].
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A factor that affects the registration accuracy is the choice of triangulation. As
a general rule, elongated triangles should be avoided. Algorithms that maximize
the minimum angle in triangles is know as Delaunay triangulation [38, 54]. A better
approximation accuracy is achieved if triangulation is obtained in 3-D using the data
values as well as the data points. Various data-dependent triangulation algorithms
have been proposed [5, 8, 21, 22, 83, 92].

If the points are triangulated in 3-D, a subdivision method may be used to create
a smooth approximation or interpolation to the triangle mesh. A subdivision method
typically subdivides each triangle into four smaller triangles with a limiting smooth
surface that approximates or interpolates the mesh vertices [64, 65, 74, 88, 98].

Loop [60] proposed a recursive subdivision algorithm that approximates a
smooth surface to a triangle mesh, while Dyn et al. [22] proposed a recursive algo-
rithm that generates a smooth surface interpolating the vertices of a triangle mesh.
Doo [18] and Doo and Sabin [19] described a subdivision scheme that can approx-
imate a mesh with triangular, quadrilateral, and, in general, n-sided faces. Subdivi-
sion surfaces contain B-spline, Bézier, and non-uniform B-spline (NURBS) as spe-
cial cases [90]. Therefore, transformation functions can be created with each com-
ponent representing a piecewise surface composed of B-spline, Bézier, or NURBS
patches.

In the following, two of the popular subdivision algorithms that work with trian-
gle meshes are described. The subdivision scheme developed by Loop [44, 60] gen-
erates an approximating surface, while the subdivision scheme developed by Dyn
et al. [22] creates an interpolating surface. The Loop subdivision scheme is depicted
in Fig. 9.12. Given a triangle mesh, at each iteration of the algorithm a triangle is
replaced with four smaller triangles by (1) inserting a new vertex near the midpoint
of each edge, (2) refining the old vertex positions, and (3) replacing each old tri-
angle with four new triangles obtained by connecting the new and refined triangle
vertices.

Assuming triangle vertices at iteration r surrounding vertex vr are vr
1,vr

2, . . . ,vr
k

(Fig. 9.12d), new vertex vr+1
i is inserted midway between vr and vr

i for i = 1, . . . , k.
The location of a newly inserted vertex is computed from

vr+1
i = 3vr + 3vr

i + vr
i−1 + vr

i+1

8
, i = 1, . . . , k. (9.71)

Then, vertex vr is replaced with

vr+1 = (1 − kβ)vr + β
(
v2

1 + · · · + vr
k

)
, (9.72)

where according to Loop [60]

β = 1

k

(
5

8
−
(

3

8
+ 1

4
cos(2π/k)

)2)

. (9.73)

A different set of subdivision rules are used along the boundary of the mesh to
prevent the approximating open surface from shrinking towards its center after a
number of iterations. Only points along the boundary are used in the rules as de-
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Fig. 9.12 (a) A triangle mesh. (b) The mesh after one iteration of Loop subdivision. (c) Overlay-
ing of (a) and (b). (d) Loop vertex insertion and refinement rules for interior edges and vertices.
(e) Loop vertex insertion for boundary edges and (f) vertex refinement for boundary vertices

picted in Figs. 9.12e, f. The vertex inserted between vr and vr
i along the boundary

is computed from

vr+1
i = vr + vr

i

2
(9.74)

and vertex vr
i , which is between vr

i−1 and vr
i+1 along the boundary, is replaced with

vr+1
i = vr

i−1 + 6vr
i + vr

i+1

8
. (9.75)

At the limit, the surface generated by Loop subdivision is C1 continuous ev-
erywhere [95, 103]. That is, not only is the created surface continuous over the
approximation domain, its first derivative is also continuous everywhere. For image
registration purposes, the insertion and refinement steps should be repeated until the
surface at iteration r + 1 is sufficiently close to that obtained at iteration r . Suffi-
ciently close is when the maximum refinement among all vertices in an iteration is
less than half a pixel and all newly inserted vertices are less than half a pixel away
from their edge midpoints. This ensures that subdivision surfaces at two consecu-
tive iterations produce the same resampled image when using the nearest-neighbor
resampling rule.

Registration of the Mountain data set using the Loop subdivision surface is
shown in Fig. 9.13. Although Loop subdivision surface produces a smoother re-
sampled image due to gradient continuity of the transformation function within the
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Fig. 9.13 Registration of the Mountain image set using Loop subdivision surfaces as the com-
ponents of the transformation. (a) Resampling of the sensed image to the space of the reference
image. (b) Overlaying of the reference and the resampled sensed images

Fig. 9.14 Butterfly subdivision rules for (a) interior edges, (b) boundary edges, and (c)–(e) interior
edges that touch the boundary or a crease

convex hull of the control points when compared with piecewise linear, there isn’t a
significant difference between the registration accuracy of the two methods.

The interpolative subdivision surface described by Dyn et al. [22] uses a neigh-
borhood that has the shape of a butterfly as shown in Fig. 9.14a. Subdivision requires
vertex insertion only. Existing vertices are not repositioned after each iteration be-
cause the original and newly inserted vertices are on the limiting surface. Vertex
vr+1
i , which is newly inserted between vertices vr and vr

i when surrounded by the
vertices shown in Fig. 9.14a, is computed from

vr+1
i = vr + vr

i

2
+ vr

i−2 + vr
i+2

8
− vr

i−3 + vr
i−1 + vr

i+1 + vr
i+3

16
. (9.76)
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Subdivision rules along the boundary are slightly different. Vertex vr+1, which
is inserted between vertices vr

i and vr
i+1 along the boundary, is computed from

vr+1 = −vr
i−1 + 9vr

i + 9vr
i+1 − vr

i+2

16
. (9.77)

Vertex insertion at interior edges that touch the boundary or a crease is obtained
using the rules shown in Figs. 9.14c–e.

The limiting surface produced by the butterfly subdivision scheme of Dyn et al.
[22] is C1-continuous everywhere when a regular mesh is provided. The surface,
however, is not smooth at mesh vertices of valance k = 3 or k > 7 when an irregu-
lar mesh is given [103]. Zorin [103, 104] proposed a modified butterfly subdivision
scheme that at the limit interpolates a smooth surface to any triangle mesh. Qu and
Agarwal [77] described a 10-point interpolatory subdivision scheme over an arbi-
trary triangle mesh that has a limiting surface that is smooth everywhere, including
at the mesh vertices.

9.2.2 Parametric

Parametric functions are of form

P(u, v) = f(u, v). (9.78)

P(u, v) is the surface point at (u, v), defined as a function of parameters u and v.
f(u, v) is a function with three independent components, each a function of (u, v);
therefore,

x(u, v) = fx(u, v), (9.79)

y(u, v) = fy(u, v), (9.80)

F(u, v) = fF (u, v). (9.81)

Since the three components of a parametric surface are independent of each other,
each can be determined separately.

Given {(xi, yi,Fi) : i = 1, . . . , n}, to determine the surface value at (x, y), first,
the corresponding (u, v) coordinates are determined from (9.79) and (9.80). Know-
ing (u, v), surface value F is then calculated. The nonlinear nature of the equations
makes determination of exact surface values very time consuming. For image regis-
tration purposes, however, we will see that approximations to the surface values can
be determined efficiently with sufficient accuracy.

Parametric surfaces used in geometric modeling require a regular grid of control
points. The control points available in image registration are, however, irregularly
spaced. Below, parametric surfaces suitable for interpolation/approximation to scat-
tered data are explored.
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Table 9.1 Coordinates of 9
uniformly spaced points in
the xy domain with
associating data values

i 1 2 3 4 5 6 7 8 9

xi 0 1 2 0 1 2 0 1 2

yi 0 0 0 1 1 1 2 2 2

Fi 0 1 2 0 1 2 0 1 2

Fig. 9.15 Interpolation of the
data in Table 9.1 by Shepard’s
method. (a) The ideal surface
and (b) the surface obtained
by Shepard’s method

9.2.2.1 Parametric Shepard Interpolation

One of the earliest methods for the interpolation of scattered data is proposed by
Shepard [96]. This is a weighted mean method with rational weights. Given data
sites {(xi, yi) : i = 1, . . . , n} with associating data values {Fi : i = 1, . . . , n}, Shep-
ard’s interpolation is defined by

f (x, y) =
n∑

i=1

Wi(x, y)Fi, (9.82)

where

Wi(x, y) = Ri(x, y)
∑n

j=1 Rj (x, y)
, (9.83)

and

Ri(x, y) = {(x − xi)
2 + (y − yi)

2}− 1
2 . (9.84)

The surface interpolates the points, yet it does not require the solution of a system
of equations. The interpolating surface is obtained immediately by substituting the
coordinates of the data sites and the data values into (9.82).

Shepard’s method is known to produce flat spots in the surface at and near the
data sites. Consider the data in Table 9.1, showing coordinates of 3-D points in a
plane as depicted in Fig. 9.15a. Shepard’s method, however, produces the surface
depicted in Fig. 9.15b.

The reason for the flat spots is the nonlinear relation between xy and f . The
flat spots show increased surface point density near the data sites. This weakness
can be overcome by subjecting x and y to the same nonlinear transformation that
f is subjected to. By letting (ui, vi) ∝ (xi, yi) and defining the components of the
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parametric Shepard similarly by formula (9.82), we obtain

x(u, v) =
n∑

i=1

Wi(u, v)xi, (9.85)

y(u, v) =
n∑

i=1

Wi(u, v)yi, (9.86)

f (u, v) =
n∑

i=1

Wi(u, v)Fi, (9.87)

where

Wi(u, v) = Ri(u, v)
∑n

j=1 Rj(u, v)
, (9.88)

Ri(u, v) = {(u − ui)
2 + (v − vi)

2}− 1
2 , (9.89)

ui = xi/(nc − 1), and vi = yi/(nr − 1). nc and nr are, respectively, the number of
columns and number of rows in the reference image. As x varies between 0 and
nc − 1, u will vary between 0 and 1, and as y varies between 0 and nr − 1, v will
vary between 0 and 1.

Parametric Shepard, however, requires the solution of two nonlinear equations to
find (u, v) for a given (x, y). Then, it uses the obtained (u, v) to find the surface
value F . For image registration purposes though, this is not necessary since exact
surface coordinates are not required. Surface coordinates that are within half a pixel
of the actual coordinates are sufficient to resample the sensed image to align with
the reference image when using nearest neighbor resampling.

The following algorithm determines a component of a transformation function
by the parametric Shepard method.

Algorithm PSI (Parametric Shepard Interpolation) Given points {(xi, yi,Fi) : i =
1, . . . , n}, calculate image F [x, y], showing the surface interpolating the points
when quantized at discrete pixel coordinates in the reference image.

1. Let ui = xi/(nc − 1) and vi = yi/(nr − 1). This will ensure parameters in the
image domain vary between 0 and 1.

2. Initially, let increments in u and v be �u = 0.5 and �v = 0.5.
3. For u = 0 to 1 with increment �u and for v = 0 to 1 with increment �v, repeat

the following.

• If [x(u, v) + x(u + �u,v)]/2! ∈ [x(u + �u/2, v) ± 0.5] or [y(u, v) + y(u +
�u,v)]/2! ∈ [y(u+�u/2, v)±0.5] or [F(u, v)+F(u+�u,v)]/2! ∈ [F(u+
�u/2, v) ± 0.5] or
[x(u, v) + x(u, v + �v)]/2! ∈ [x(u, v + �v/2) ± 0.5] or [y(u, v) + y(u, v +
�v)]/2! ∈ [y(u, v + �v/2) ± 0.5] or [F(u, v) + F(u, v + �v)] �= [F(u, v +
�v/2) ± 0.5] or
[x(u, v) + x(u + �u,v) + x(u, v + �v) + x(u + �u,v + �v)]/4! ∈ [x(u +
�u/2, v + �v/2) ± 0.5] or [y(u, v) + y(u + δu, v) + y(u, v + �v) + y(u +
�u,v + �v)]/4! ∈ [y(u + �u/2, v + �v/2) ± 0.5] or
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Fig. 9.16 (a) The subdivision scheme at Step 3. (b) Ensuring the approximating surface passes
within half a pixel of the given points in Step 5

[F(u, v) + F(u + δu, v) + x(u, v + �v) + F(u + �u,v + �v)]/4! ∈ [F(u +
�u/2, v + �v/2) ± 0.5], then reduce �u and �v by a factor of 2 and go to
Step 3.

4. If Fi ! ∈ [F [xi, yi] ± 0.5] for any i = 1, . . . , n, reduce �u and �v by a factor of
2 and repeat this step.

5. For u = 0 to 1 with increment �u and for v = 0 to 1 with increment �v, repeat
the following.

• Calculate [x(u, v), y(u, v),F (u, v)], [x(u + �u,v), y(u + �u,v),F (u +
�u,v)], [x(u + �u,v + �v), y(u + �u,v + �v),F (u + �u,v + �v)],
[x(u, v + �v), y(u, v + �v),F (u, v + �v)]. This defines a local patch. Esti-
mate values within the patch using bilinear interpolation of values at its four
corners.

By notation “a! ∈ [b ± 0.5],” it is implied “if a < b − 0.5 or a > b + 0.5.” In
Step 3, for each patch defined within parameters (u, v) to (u + �u,v + �v), the
distances of the midpoints of the four sides and at the center of the patch to its
bilinear approximation (Fig. 9.16a) are determined. Subdivision is continued until
all distances become smaller than half a pixel.

Step 4 ensures that the obtained approximation is within half a pixel of the points
it is supposed to interpolate. If it is not, subdivision is continued until the approxi-
mating surface falls within half a pixel of the given points. Note that in Step 3 the
patches are not generated. Values at only edge midpoints and patch centers are cal-
culated. In most situations, this finds the required increment in u and v that will
obtain the required surface. In some rare cases, the process may not produce a sur-
face sufficiently close to the given points. In such cases, Step 4 ensures that the
obtained surface does, in fact, pass within half a pixel of the points it is supposed to
interpolate (Fig. 9.16b).

The interpolating parametric Shepard defined in this manner may produce sharp
edges and corners at the interpolating points. This problem can be alleviated by
replacing the radial function defined in (9.89) by

Ri(u, v) = {(u − ui)
2 + (v − vi)

2 + d2}− 1
2 . (9.90)

d2 is a small positive number. The larger its value, the smoother the obtained surface
will be, but also the farther the surface will fall from some of the points. Note that
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this is an inverse multiquadric weight. Therefore, Shepard weights can be consid-
ered rational inverse multiquadric weights. When d2 = 0, the surface will interpolate
the points and when d2 > 0, the surface will approximate the points. Wi is a rational
function in u and v when parametric Shepard is used with ui = xi/(nc − 1) and
vi = yi/(nr − 1) for i = 1, . . . , n.

Letting

Ri(u, v) = exp

{

− (u − ui)
2 + (v − vi)

2

2(sσi)2

}

, (9.91)

the obtained surface will be a rational Gaussian (RaG) surface [37] that approxi-
mates the points. The standard deviation of the Gaussian at the ith point, σi , shows
spacing between the points surrounding it. It can be taken equal to the distance of
that point to the kth point closest to it. The smoothness parameter s is a global
parameter that will increase or decrease the standard deviations of all Gaussians
simultaneously. The larger is the value for s, the smoother will be the obtained sur-
face. The smaller is the s, the more closely the approximation will follow local data.
Since the influence of a Gaussian vanishes exponentially, for small standard devi-
ations and considering the digital nature of images, the weight functions, in effect,
have only local support.

By setting the standard deviations of Gaussians proportional to the spacing be-
tween the points, the surface is made to automatically adapt to the spacing between
the points. In areas where density of points is high, narrow Gaussians are used to
keep the effect of the points local. In areas where the points are sparse, wide Gaus-
sians are used to cover large gaps between the points.

As the standard deviations of Gaussians are increased, the surface gets smoother
and moves away from some of the points. To ensure that a surface interpolates the
points, new data values {Ai : i = 1, . . . , n} at {(ui, vi) : i = 1, . . . , n} are determined
such that the surface obtained from the new data values will evaluate to the old
data values at the parameter coordinates corresponding to the data sites. That is, the
surface is obtained by solving

xj =
n∑

i=1

AiWi(uj , vj ), (9.92)

yj =
n∑

i=1

BiWi(uj , vj ), (9.93)

Fj =
n∑

i=1

CiWi(uj , vj ), (9.94)

for {Ai,Bi,Ci : i = 1, . . . , n}, where j = 1, . . . , n, and

Wi(uj , vj ) = Gi(uj , vj )
∑n

k=1 Gk(uj , vj )
(9.95)

is the ith basis function of the RaG surface evaluated at (uj , vj ), and Gi(uj , vj )

is a 2-D Gaussian of standard deviation sσi centered at (ui, vi) when evaluated at
(uj , vj ).



9.2 Adaptive Transformation Functions 373

Fig. 9.17 (a)–(c) Resampling of the sensed image to the space of the reference image as the
smoothness parameters is increased. Density of surface points is high at and near the control points
as well as along edges connecting the points when smoothness parameter s is very small. Missing
surface values are estimated by bilinear interpolation as outlined in Algorithm PSA. (d) Registra-
tion with parametric Shepard approximation when s = 2.5

It is important to note that due to the nonlinear relation between (x, y) and (u, v),
by varying u and v from 0 to 1, x may not vary between 0 and nc − 1 and y may
not vary between 0 and nr − 1. Consequently, it may be necessary to start u and v

slightly below 0 and continue slightly past 1. If u and v are varied between 0 and 1,
the sensed image may leave some gaps near the borders of the reference image.

Examples of parametric Shepard approximation using RaG weights are given in
Fig. 9.17. The standard deviation of a Gaussian at a control point is set proportional
to the distance of that control point to the control point closest to it in the reference
image. Therefore, k = 1. Figure 9.17a shows resampling of the sensed image when
s = 0.25. That is, the standard deviation at a control point is set to 0.25 times the
distance of that control point to the control point closest to it. At such low standard
deviations, the approximation is close to piecewise linear, and for uniformly spaced
u and v, surface points primarily concentrate along edges and at vertices of the
triangle mesh obtained from the points.

By increasing the smoothness parameter to 1, a smoother surface is obtained
and for uniformly spaced u and v, points on the surface become more uniformly
spaced as shown in (b). Increasing the smoothness parameter to 2.5 will further
increase the smoothness of the surface, but it will shrink the surface at the same
time when varying u and v from 0 to 1, as depicted in (c). It also moves the surface
farther from some of the points, increasing approximation error. The registration
result when s = 2.5 is depicted in (d).

In order to create a smooth surface that interpolates the points, we will find new
coordinates {(Ai,Bi,Ci) : i = 1, . . . , n} such that the obtained surface would inter-
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Fig. 9.18 Registration of the Mountain image set using parametric Shepard interpolation as the
components of the transformation. (a) Resampling of the sensed image to the space of the reference
image. (b) Overlaying of the reference and the resampled sensed images

polate 3-D points {(xi, yi,Fi) : i = 1, . . . , n}. Doing so, we obtain the resampled
image shown in Fig. 9.18a and the registration result shown in Fig. 9.18b. Ignoring
its rough boundary, the quality of registration obtained by interpolative parametric
Shepard is as good as any of the methods discussed so far.

Examining Shepard’s interpolation as described by (9.82), we see that the sur-
face that interpolates a set of points is obtained by a weighted sum of horizontal
planes passing through the points. The plane passing through point (xi, yi,Fi) is
F(x, y) = Fi . The reason for obtaining a high density of points near (xi, yi) is that
many points near (xi, yi) produce values close to Fi . This formulation ignores the
surface gradient at (xi, yi) and always uses horizontal plane F(x, y) = Fi at (xi, yi).
One remedy to this problem is to use a plane with a gradient equal to that estimated
at (xi, yi) rather than using gradient 0 at every point.

Gradient vectors at the data points, if not given, can be estimated directly from
the data. Typically, a surface is fitted to the points and the gradient vectors of the
surface at the points are determined. Stead [99] found that gradient vectors produced
by multiquadric surface fitting is superior to those estimated by other methods when
using randomly spaced points. Goodman et al. [30] triangulated the points with their
associating data values in 3-D and used a convex combination of gradient vectors of
the triangle planes sharing a point as the gradient vector at the point.

To find the gradient vector at a point, we fit a plane to the that point and k > 2
other points nearest to it by the least-squares method. The gradients of the plane
are then taken as estimates to the gradients of the surface at the point. Assuming
the plane fitting to point (xi, yi,Fi) and a small number of points around it by the
least-squares method is

F(x, y) = aix + biy + ci, (9.96)

we recalculate ci in such a way that F(xi, yi) = Fi . Doing so, we find ci = Fi −
aixi − biyi . Therefore, the equation of the plane passing through the ith point will
be

Li(x, y) = ai(x − xi) + bi(y − yi) + Fi. (9.97)

In the Shepard interpolation of (9.82), we replace Fi , which is a horizontal plane
passing through point (xi, yi,Fi), with Li(x, y), which is a plane of a desired gra-
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Fig. 9.19 Registration of the Mountain image set using weighted linear approximation as the
components of the transformation. (a) Resampling of the sensed image to the space of the refer-
ence image. (b) Overlaying of the reference and the resampled sensed images. The smoothness
parameter s = 1 in this example

dient passing through the same point. The weighted sum of such planes produces a
weighted linear interpolation to the points:

f (x, y) =
∑n

i=1 Ri(x, y)Li(x, y)
∑n

i=1 Ri(x, y)
. (9.98)

This weighted linear function [34, 36] interpolates the points and provides de-
sired gradients at the points. To make the surface approximate the points, instead of
(9.89) we let the radial functions be (9.91) but define it in the xy space. If neces-
sary, this surface can be made to interpolate the points by finding new data values
at the points in such a way that the obtained surface would evaluate to the old data
values at the control points by solving a system of equations similar to (9.94) but as
a function of (x, y) rather than (u, v). Note that this new formulation is in explicit
form; therefore, revising Shepard’s method to use gradients at the points will make
it possible to avoid formation of horizontal flat spots in the created surface without
parametrizing it.

An example of the use of weighted linear approximation as the components of
the transformation function in image registration is given in Fig. 9.19. RaG weights
are used with the standard deviation of Gaussian at a point proportional to the dis-
tance of that point to the point closest to it. The smoothness parameter s is set to 1 in
Fig. 9.19. Since this is an approximating surface, increasing s will create a smoother
surface that gets farther from some of the given points. As s is decreased, the sur-
face will more resemble a piecewise linear interpolation. Being an approximation
method, weighted linear is particularly suitable in image registration when a large
number of point correspondences is given. Registration results are better than those
obtained by multiquadric and surface spline and are comparable to those obtained
by parametric Shepard interpolation.

A number of modifications to the Shepard interpolation have been proposed.
These modifications replace a data point with a function. Franke and Nielson [27]
fitted a quadratic function, Renka and Brown [80] fitted a cubic function, Lazzaro
and Montefusco [55] fitted a radial function, and Renka and Brown [81] fitted a 10-
parameter cosine series to a small number of points in the neighborhood of a point
as the nodal function at the point. The weighted sum of the functions were then used
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Fig. 9.20 (a) Scattered data points in the plane, showing 3-D points. (b) Scattered horizontal data
lines, showing 3-D lines parallel to the x-axis. (c) Scattered data lines of arbitrary orientation with
values along a line varying linearly. These represent scattered 3-D lines. Higher values are shown
brighter in these images

to obtain the interpolation. Rational weights with local support are used, vanishing
at a fixed distance of the data sites. Renka [78] further allowed the width of each
weight function to vary with the density of local data and vanish at a distance equal
to the distance of a data site to the kth data site closest to it.

Weights with local support are attractive because they are computationally effi-
cient and do not allow a local deformation or inaccuracy to spread over the entire
approximation domain. Weights with local support, however, may produce a surface
with holes if spacing between the points varies greatly across the image domain.

9.2.2.2 Surface Approximation to Scattered Lines

Image registration methods rely on the coordinates of corresponding points in im-
ages to find the transformation function. Transformation functions defined in terms
of points, however, cannot represent sharp geometric differences along edges, as
found in images of man-made scenes taken from different views.

Line segments are abundant in images of indoor and outdoor scenes and methods
to find correspondence between them have been developed [13, 46, 101]. Therefore,
rather than defining a transformation function in terms of corresponding points, we
would like to formulate the transformation function in terms of corresponding lines
in images.

Suppose n corresponding line segments are obtained in two images. Let’s de-
note the coordinates of the end points of the ith line segment by (xi1, yi1,Fi1) and
(xi2, yi2,Fi2). We want to find a function F = f (x, y) that approximates the lines.

The surface approximating a set of scattered lines is obtained by extending the
equation of a surface that approximates a set of points [35]. Consider fitting a single-
valued surface to data at scattered points in the plane {(xi, yi,Fi) : i = 1, . . . , n}. An
example of scattered data in the plane is given in Fig. 9.20a. Intensities of the points
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represent the data values at the points. A weighted mean approximation to the data
will be

f (x, y) =
n∑

i=1

Figi(x, y). (9.99)

gi(x, y) can be considered a rational basis function centered at (xi, yi) defined in
such a way that the sum of n basis functions everywhere in the approximation do-
main is 1. One such example is rational Gaussian (RaG) basis functions [37]:

gi(x, y) = wiGi(x, y)
∑n

j=1 wjGj (x, y)
, (9.100)

where Gi(x, y) is a 2-D Gaussian centered at (xi, yi) and wi is the weight associated
with the ith data point. For point data, we let wi = 1 for i = 1, . . . , n. For a line, we
let a weight be proportional to the length of the line it represents. The standard
deviations of the Gaussians can be varied to generate surfaces at different levels of
detail.

Now, consider using a data line in place of a data point. For the sake of simplicity,
let’s first assume that data along a line does not vary and all lines are parallel to the
x-axis. An example of such data lines is given in Fig. 9.20b. Therefore, instead of
point (xi, yi), we will have a line with end points (xi1, yi1) and (xi2, yi2) and the
same data value Fi everywhere along the line. To fit a surface to these lines, we will
horizontally stretch the Gaussian associated with a line proportional to its length.

If the coordinates of the midpoint of the ith line are (xi, yi), since a 2-D Gaussian
can be decomposed into two 1-D Gaussians, we have

Gi(x, y) = exp

{

− (x − xi)
2 + (y − yi)

2

2σ 2

}

, (9.101)

= exp

{

− (x − xi)
2

2σ 2

}

exp

{

− (y − yi)
2

2σ 2

}

, (9.102)

= Gi(x)Gi(y). (9.103)

To stretch Gi(x, y) along the x-axis, we scale σ by a factor proportional to the
length of the line. Let’s denote this scaling by mi > 1. Then, we replace Gi(x) with

Hi(x) = exp

{

− (x − xi)
2

2(miσ )2

}

, (9.104)

where mi = (1 + εi) and εi is proportional to the length of the ith line. After this
stretching, relation (9.99) becomes

f (x, y) =
∑n

i=1 wiFiHi(x)Gi(y)
∑n

i=1 wiHi(x)Gi(y)
. (9.105)

Now suppose data values along a line vary linearly, but the projections of the
lines to the xy plane are still parallel to the x-axis. To fit a surface to such lines,
instead of using a Gaussian of a fixed height Fi , we let the height of a Gaussian vary
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with data along the line. Assuming data at the endpoints of the ith line are Fi1 and
Fi2 and the data value at the line midpoint is Fi , in (9.105) we will replace Fi with

Fi(x) = Fi + (x − xi)

(xi2 − xi)
(Fi2 − Fi). (9.106)

This formula changes the height of the Gaussian along a line proportional to the
data values on the line. The new approximation formula, therefore, becomes

f (x, y) =
∑n

i=1 wiFi(x)Hi(x)Gi(y)
∑n

i=1 wiHi(x)Gi(y)
. (9.107)

To adapt the surface to data lines with arbitrary orientations, such as those shown
in Fig. 9.20c, we rotate each data line about its center so that it becomes parallel to
the x-axis. Then, we use the above formula to find its contribution to the surface.
Finally, we rotate the values back. Doing this for each line and adding contributions
from the lines, we obtain the approximating surface. If the projection of the ith line
to the xy-plane makes angle θi with the x-axis, when rotating the coordinate system
clockwise about the line’s midpoint by θi so that it becomes parallel to the x-axis,
denoting the coordinates of points on the line before and after this rotation by (X,Y )

and (x, y), we have

x = (X − Xi) cos θi − (Y − Yi) sin θi + xi, (9.108)

y = (X − Xi) sin θi + (Y − Yi) cos θi + yi. (9.109)

Substituting relations (9.108) and (9.109) into the right side of (9.107), we obtain
a relation in (X,Y ). This relation finds the surface value at (X,Y ) in the approxi-
mation domain. Renaming the approximating function by F(X,Y ), we will have

F(X,Y ) =
∑n

i=1 wiFi(X,Y )Hi(X,Y )Gi(X,Y )
∑n

i=1 wiHi(X,Y )Gi(X,Y )
, (9.110)

where

Fi(X,Y ) = Fi + (X − Xi) cos θi − (Y − Yi) sin θi

Di

(Fi2 − Fi), (9.111)

Hi(X,Y ) = exp

{

−[(X − Xi) cos θi − (Y − Yi) sin θi]2

2(miσ )2

}

, (9.112)

Gi(X,Y ) = exp

{

−[(X − Xi) sin θi + (Y − Yi) cos θi]2

2σ 2

}

, (9.113)

and

Di =
√

(xi2 − xi)2 + (yi2 − yi)2 =
√

(Xi2 − Xi)2 + (Yi2 − Yi)2 (9.114)

is half the length of the ith line segment in the xy or XY domain. Weight wi of
line Li is set equal to 1 + 2Di . The 1 in the formula ensures that if points are used
in addition to lines, the obtained surface will approximate the points as well as the
lines. As the length of a line increases, the volume under the stretched Gaussian
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Fig. 9.21 (a) Data lines of Table 9.2. Higher values are shown brighter. (b) The single-valued
surface of (9.110) approximating the data lines. (c) The parametric surface of (9.116)–(9.118)
approximating the same data lines. (d) Same as (c) but using a larger σ . (e) Same as (c) but using
a smaller σ . (f) Same as (e) but viewing from the opposite side. The lines and the approximating
surface are overlaid for qualitative evaluation of the approximation

increases. To make the weight function dependent on the length of the line as well
as on the data values along the line, we let

wi = 1 + 2Di = 1 + 2
√

(Xi2 − Xi)2 + (Yi2 − Xi)2 + (Fi2 − Fi)2. (9.115)

Substituting (9.111)–(9.113) into (9.110), a single-valued surface is obtained that
approximates scattered line data in the plane.

An example of the kind of surfaces obtained by this method is shown in Fig. 9.21.
Figure (a) shows seven data lines in the xy-plane. Intensities of points along a line
show the data values. The coordinates of the line endpoints and the associating data
values are shown in Table 9.2. Figure 9.21b shows the surface approximating the
lines according to formula (9.110). Although the surface approximates the lines, flat
spots are obtained along the lines. This is a known property of the weighted-mean
method.

Since the sum of the weights is required to be 1 everywhere in the approximation
domain, when the weight functions are rather narrow, flat spots are obtained at and
near the data lines. To prevent such flat spots from appearing in the approximating
surface, instead of a single-valued surface, as explained in the preceding section,
a parametric surface should be used. Therefore, instead of the single-valued surface
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Table 9.2 The coordinates of
the endpoints of the lines in
Fig. 9.21a and the associating
data values

i 1 2 3 4 5 6 7

Xi1 −50 50 50 −50 1 −1 0
Yi1 −50 −50 50 50 1 1 −10
Fi1 0 0 0 0 50 50 40
Xi2 50 50 −50 −50 50 −50 0
Yi2 −50 50 50 −50 50 50 −20
Fi2 0 0 0 0 0 0 20

given by (9.110), we use the parametric surface defined by

Fx(u, v) =
∑n

i=1 wiXi(u, v)Hi(u, v)Gi(u, v)
∑n

i=1 wiHi(u, v)Gi(u, v)
, (9.116)

Fy(u, v) =
∑n

i=1 wiYi(u, v)Hi(u, v)Gi(u, v)
∑n

i=1 wiHi(u, v)Gi(u, v)
, (9.117)

FF (u, v) =
∑n

i=1 wiFi(u, v)Hi(u, v)Gi(u, v)
∑n

i=1 wiHi(u, v)Gi(u, v)
. (9.118)

Doing so, we obtain the surface shown in Fig. 9.21c. Fx,Fy , and FF are the
x, y, and F components of the surface, each obtained by varying u and v from 0
to 1. Due to the nonlinear relation between (u, v) and (x, y), when varying u and
v from 0 to 1, the obtained surface leaves gaps near the image borders. To recover
surface values at and near the image borders, u and v need to be varied from values
slightly below 0 to values slightly above 1.

In this example, parameter coordinates at the line midpoints and line end points
were set proportional to the XY coordinates of the line midpoints and end points,
respectively. That is,

ui = (Xi − Xmin)/(Xmax − Xmin), (9.119)

ui1 = (Xi1 − Xmin)/(Xmax − Xmin), (9.120)

ui2 = (Xi2 − Xmin)/(Xmax − Xmin), (9.121)

vi = (Yi − Ymin)/(Ymax − Ymin), (9.122)

vi1 = (Yi1 − Ymin)/(Ymax − Ymin), (9.123)

vi2 = (Yi2 − Ymin)/(Ymax − Ymin), (9.124)

where Xmin,Xmax, Ymin, and Ymax define the range of coordinates in the approxima-
tion domain. In image registration, Xmin = Ymin = 0, Xmax = nc −1, Ymax = nr −1,
and nc and nr are the image dimensions (i.e., number of columns and number of
rows in the reference image).

The transformation with components described by (9.116)–(9.118) maps the
sensed image to the reference image in such a way that corresponding lines in the
images align. The transformation most naturally registers images containing sharp
edges, such as close-range imagery of buildings and man-made structures. The ac-
curacy of the method depends on the accuracy with which the endpoints of the lines
are determined.
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9.2.3 Implicit

Implicit functions are generally of the form

f (p) = c. (9.125)

Given point p = (x, y,F ), the value at the point is f (p). If this value happens to be
c, the point will be on the surface. The process of determining an implicit surface
involves producing a volumetric image and thresholding it at c. When c = 0, the
obtained surface is called the zero surface or the zero-crossing surface.

Implicit surfaces are easy to generate, but if the function is not formulated care-
fully, multiple surface points can be obtained for the same (x, y), making resampling
ambiguous. Implicit functions suitable for image registration are described next.

9.2.3.1 Interpolating Implicit Surfaces

If φ(p) is a radial function, a function of form

f (p) =
n∑

i=1

Aiφ
(‖p − pi‖

)+ L(p) (9.126)

will interpolate points {pi = (xi, yi,Fi) : i = 1, . . . , n} if it satisfies f (pi ) = hi for
i = 1, . . . , n [86, 100]. Since hi can take any value, we will let it to be 0 for i =
1, . . . , n. This will make the surface of interest be the zero surface of f (p). L(p) is
an optional degree one polynomial in x, y, and F , with its coefficients determined
in such a way that the surface would satisfy prespecified conditions. Carr et al. [11]
used radial functions of form ‖p − pi‖, while Turk and O’Brien [100] used radial
functions of form ‖p − pi‖3. If logarithmic basis functions are used, φ(‖p − pi‖) =
‖p − pi‖2 log(‖p − pi‖2).

Parameters {Ai : i = 1, . . . , n} are determined by letting f (pi ) = 0 in (9.126) for
i = 1, . . . , n and solving the obtained system of n linear equations. Note that the
obtained system of equations will have a trivial solution Ai = 0 for i = 1, . . . , n

when term L(p) is not present. To avoid the trivial solution, additional constraints
need to be provided. Since the surface traces the zeros of f (p), one side of the
surface will be positive, while the opposite side will be negative. To impose this
constraint on the obtained surface, 2 virtual points pn+1 and pn+2 are added to
the set of given points. pn+1 is considered a point below the surface and pn+2 is
considered a point above the surface. Then, f (pn+1) is set to an appropriately large
negative value and f (pn+2) is set to an appropriately large positive value.

Once the coefficients of the implicit surface are determined, the function is quan-
tized within a volume where its xy domain covers the reference image and its F

domain covers the columns (when F = X) or rows (when F = Y ) of the sensed
image. Then, the zero surface within the volume is obtained by thresholding the
volume at 0 and tracing the zero values [61, 71].

An alternative approach to tracing the zero surface without creating an actual
volume is to first find a point on the surface by scanning along F axis with discrete
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Fig. 9.22 Registration of the Mountain image set using interpolative implicit surfaces as the com-
ponents of the transformation. (a) Resampling of the sensed image to align with the reference
image. (b) Overlaying of the reference and resampled sensed images

steps within its possible range at an arbitrary point (x, y) in the image domain. Once
the surface value F at (x, y) is determined, the surface value at a pixel adjacent to
(x, y) is determined by using F as the start value and incrementing or decrementing
it until a zero-crossing is detected. The process is propagated from one pixel to the
next until surface points for all pixels in the reference image are determined.

An example of image registration using the interpolative implicit surface with
φ(‖p − pi‖) = ‖p − pi‖ is given in Fig. 9.22. The two virtual points are assumed to
be (nc/2, nr/2,−n) and (nc/2, nr/2, n), where nr and nc are the number of rows
and columns, respectively, in the reference image and n is set to the number of
columns of the sensed image when calculating the x-component and it is set to the
number of rows of the sensed image when calculating the y-component of the trans-
formation. A much larger n will require a longer time to calculate the surface points
and a much smaller n will result in inaccurate surface values when incrementing and
decrementing F by 1 to locate the zero-crossing at a particular (x, y). These virtual
points are located in the middle of the image domain, one below and one above
the surface. The registration result is shown in Fig. 9.22. Although the results may
be acceptable within the convex hull of the control points, errors are rather large
outside the convex hull of the points.

9.2.3.2 Approximating Implicit Surfaces

We are after an implicit function of form f (x, y,F ) = 0 that can approximate points
{pi = (xi, yi,Fi) : i = 1, . . . , n}. If a 3-D monotonically decreasing radial function,
such as a Gaussian, is centered at each point, then by adding the functions we obtain

f1(x, y,F ) =
N∑

i=1

gi(σ, x, y,F ), (9.127)

where gi(σ, x, y,F ) is a 3-D Gaussian of standard deviation σ centered at
(xi, yi,Fi). f1 in (9.127) generally increases towards the points and decreases away
from the points. Therefore, by tracing locally maximum values of f1, we can obtain
a surface that passes near the points. When the points are uniformly spaced and the
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standard deviations are all equal to the spacing between the points, the process will
work well, but when the points are irregularly spaced, the process will produce a
fragmented surface.

Usually, control points in an image are not uniformly spaced. To find a surface
that approximates a set of irregularly spaced points, we center a 3-D Gaussian at
each point with its standard deviation proportional to the distance of that point to
the kth point closest to it. Adding such Gaussians, we obtain

f2(x, y,F ) =
n∑

i=1

gi(σi, x, y,F ), (9.128)

where gi(σi, x, y,F ) is a 3-D Gaussian of magnitude 1 and standard deviation σi

centered at point (xi, yi,Fi). By tracing the local maxima of f2 in the direction of
maximum gradient, a surface that approximates the points will be obtained.

When isotropic Gaussians are centered at the points and the points are irregularly
spaced, local maxima of f2 in the gradient direction will again produce a fragmented
surface. We have to stretch the Gaussians toward the gaps in order to avoid fragmen-
tation. This is achieved by replacing a 3-D isotropic Gaussian with a 3-D anisotropic
Gaussian oriented in such a way that it stretches toward the gaps.

Letting XYZ represent the local coordinate system of a point, with the Z-axis
pointing in the direction of surface normal and XY defining the tangent plane at
the point, the relation between the global coordinate system xyF of the surface and
the local coordinate system XYZ of a point will be a rigid transformation. The 3-D
anisotropic Gaussian centered at pi in the local coordinate system of the point can
be defined by

Gi(σX,X)Gi(σY ,Y )Gi(σZ,Z), (9.129)

where Gi(σX,X), Gi(σY ,Y ), and Gi(σZ,Z) are 1-D Gaussians centered at the
origin and laid along X-, Y -, and Z-axes, respectively.

To determine the coordinate axes at point pi , first, the surface normal at the point
is determined by identifying the k closest points of pi and calculating from them the
covariance matrix [1]:

Mi = 1

k

k∑

j=1

(
pj

i − pi

)(
pj

i − pi

)t
, (9.130)

where pj
i denotes the j th point closest to pi and t denotes matrix transpose opera-

tion. The eigenvectors of the 3 × 3 matrix Mi define three orthogonal axes, which
are taken as the local coordinate axes at pi . The eigenvector associated with the
smallest eigenvalue is taken as the surface normal at pi . All normals are made to
point upward. The surface normal is taken as the Z-axis and the eigenvector associ-
ated with the largest eigenvalue is taken as the Y -axis of the local coordinate system.
The X-axis is taken normal to both Y and Z.
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Letting the eigenvalues of Mi from the largest to the smallest be λ1, λ2, and λ3,
we define

σ 2
X = aλ2, (9.131)

σ 2
Y = aλ1, (9.132)

σ 2
Z = bλ3. (9.133)

This will ensure that the 3-D Gaussian is stretched toward the gaps where the density
of points is low. The process will automatically adapts local averaging to the local
density and organization of points. Parameters a and b are global parameters that
can be varied to produce surfaces at different levels of detail. Parameters a and
b smooth the surface in the tangent and normal directions. A larger a will stretch a
Gaussian at a data point in the tangent direction of the approximating surface, filling
large gaps between points and avoiding the creation of holes. A larger b smoothes
the surface more in the normal direction, reducing noise among the correspondences
and also smoothing surface details.

A local coordinate system is considered at point pi with coordinate axes repre-
senting the eigenvectors of the covariance matrix Mi . The sum of the Gaussians at
point (x, y,F ) in the approximation can be computed from:

f3(x, y,F ) =
n∑

i=1

gi(σX, x)gi(σY , y)gi(σZ,F ), (9.134)

where gi(σX, x), gi(σY , y), and gi(σZ,F ), correspondingly, represent 1-D Gaus-
sians Gi(σX,X), Gi(σY ,Y ), and Gi(σZ,Z) after coordinate transformation from
XYZ to xyF . Note that parameters σX,σY , and σZ are local to point pi and, thus,
vary from point to point.

The surface to be recovered is composed of points where function f3(x, y,F ) be-
comes locally maximum in the direction of surface normal. To simplify the surface
detection process, rather than finding local maxima of f3(x, y,F ) in the direction of
surface normal, we determine the zero-crossings of the first derivative of f3(x, y,F )

in the direction of surface normal. To achieve this, we orient the first-derivative of
Gaussian in the direction of surface normal at each point in such a way that its
positive side always points upward. Then, zero-crossings of the sum of the first-
derivative Gaussians are determined and used as the approximating surface. More
specifically, we use the zeros of

f (x, y,F ) =
n∑

i=1

gi(σX, x)gi(σY , y)g′
i (σZ,F ) (9.135)

as the approximating surface, where g′
i (σZ,F ) is the coordinate transformation of

G′
i (σZ,Z) from XYZ to xyF , and G′

i (σZ,Z) is the first derivative of 1-D Gaussian
Gi(σZ,Z) centered at the origin and along the Z-axis.

Note that a zero-point of function f (x, y,F ) can be a locally maximum or a
locally minimum point of f3(x, y,F ) in the normal direction. However, only locally
maximum points of function f3(x, y,F ) correspond to the true surface points, and
locally minimum points of f3(x, y,F ) represent false surface points that have to be
discarded.



9.2 Adaptive Transformation Functions 385

Zero surface points that correspond to local minima of f3(x, y,F ) in the
normal direction can be easily identified by examining the sign of the second
derivative of f3(x, y,F ) calculated in the direction of surface normal. At the
point where f3(x, y,F ) is maximum in the normal direction, the second deriva-
tive of f3(x, y,F ) in the normal direction will be negative, and at the point
where f3(x, y,F ) is minimum in the normal direction, the second derivative of
f3(x, y,F ) in the normal direction will be positive. Therefore, at each zero-crossing
of f (x, y,F ), we find the sign of the second derivative of f3(x, y,F ) calculated in
the normal direction. If the sign is negative, the zero-crossing is retained, otherwise
it is discarded.

Note that the second derivative of f3(x, y,F ) in the normal direction is ob-
tained by replacing g′

i (σZ,F ) in (9.135) with g′′
i (σZ,F ), the second derivative of

gi(σZ,F ) in the normal direction, which is the second derivative of Gi(σZ,Z) after
the coordinate transformation from XYZ to xyz.

To summarize, steps in the implicit surface detection algorithm are:

1. For each point pi , i = 1, . . . , n, repeat (a)–(c) below.
a. Find the k closest points of pi .
b. Using the points determine the eigenvalues (λ1 > λ2 > λ3) and the cor-

responding eigenvectors (v1,v2,v3) of the covariance matrix Mi defined
by (9.130) and use the eigenvectors to define a local coordinate system XYZ

at pi .
c. Let σ 2

X = aλ2, σ 2
Y = aλ1, and σ 2

Z = bλ3. a and b are globally controlled
smoothness parameters.

2. Create an xyF volume of sufficient size and initialize the entries to 0.
3. For each point pi , i = 1, . . . , n, add the volume representing gi(σX, x)gi(σY , y)×

g′
i (σZ,F ) to the xyF volume.

4. Find the zero-crossings of the obtained volume.
5. Discard zero-crossings where the second derivative of f3(x, y,F ) is positive,

as they represent false surface points. The remaining zero-crossings define the
desired surface.

The computation of the second derivative of f3(x, y,F ) can be avoided by sim-
ply checking the magnitude of f3(x, y,F ). If at a zero-crossing of the first derivative
of f (x, y,F ), the magnitude of f3(x, y,F ) is sufficiently large (say > ε) the zero-
crossing is considered authentic. Otherwise, it is considered false and discarded. ε is
usually a very small number, determined experimentally.

The process of centering the first-derivative of a 3-D anisotropic Gaussian at
point pi and adding the Gaussians to volume xyF is achieved by resampling the
first-derivative of a 3-D isotropic Gaussian centered at the origin by a similarity
transformation. The first-derivative (with respect to Z) of an isotropic Gaussian of
standard deviation σ and magnitude 1 centered at the origin is:

G(σ,X,Y,Z) = G(σ,X)G(σ,Y )G′(σ,Z), (9.136)

where

G(σ,X) = exp

{

− X2

2σ 2

}

, G(σ,Y ) = exp

{

− Y 2

2σ 2

}

, (9.137)
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and

G′(σ,Z) = − Z

σ 2
exp

{

− Z2

2σ 2

}

. (9.138)

The first-derivative isotropic Gaussian centered at the origin in the XYZ coordinate
system is then transformed to the first-derivative anisotropic Gaussian at (x, y,F ).
This involves (1) scaling the isotropic Gaussian of standard deviation σ along X,
Y , and Z by σX/σ , σY /σ , and σZ/σ , respectively, (2) rotating it about X-, Y -,
and Z-axes in such a way that the X-, Y -, and Z-axes align with the eigenvectors
v2,v1, and v3 of covariance matrix Mi , and (3) translating the scaled and rotated
Gaussian to (xi, yi,Fi). Let’s denote this similarity transformation by Ai . Then, for
each point P = (X,Y,Z) in the local coordinate system of point pi , the coordinates
of the same point p = (x, y,F ) in the xyF coordinate system will be p = AiP.
Conversely, given point p in the xyF coordinate system, the same point in the local
coordinate system of point pi will be

P = A−1
i p. (9.139)

Therefore, if the given points are in xyF space, create the first-derivative (with
respect to Z) of an isotropic 3-D Gaussian centered at the origin in a sufficiently
large 3-D array XYZ with the origin at the center of the array. Then, resample array
XYZ and add to array xyF by the similarity transformation given in (9.139). This
involves scanning the xyF volume within a small neighborhood of pi and for each
entry (x, y,F ), determining the corresponding entry (X,Y,Z) in isotropic volume
XYZ using (9.139), reading the value in the isotropic volume, and adding it to the
value at entry (x, y,F ) in the xyF volume.

Since a Gaussian approaches 0 exponentially, it is sufficient to scan the xyF

space within a sphere of radius ri centered at pi to find its effect. ri is determined to
satisfy

exp

{

− r2
i

2σ 2
i

}

< ε (9.140)

where σi is the largest of σX,σY , and σZ calculated at pi , ε is the required error
tolerance, which should be smaller than half the voxel size in the xyF volume to
meet digital accuracy.

For a given a and b, the subvolume centered at each point (xi, yi,Fi) is de-
termined. The isotropic first-derivative Gaussian is mapped to the subvolume with
transformation Ai , the sum of the anisotropic first-derivative Gaussians is deter-
mined, and its zero-surface is calculated by thresholding the volume at 0. The ob-
tained zero surface will approximate points {(xi, yi,Fi) : i = 1, . . . , n}.

9.3 Properties of Transformation Functions

Transformation functions carry information about scene geometry as well as the
relation of cameras with respect to each other and with respect to the scene. Camera
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geometry is global, while scene geometry is local. We would like to see if we can
use information in a transformation function to estimate camera relations as well as
scene geometry.

Because scene geometry is local in nature, it is reflected in the gradient of a
transformation function. Camera geometry is either fixed across an image or it varies
gradually; therefore, it has very little influence on the gradient of a transformation
function.

If the components of a transformation function are

X = fx(x, y), (9.141)

Y = fy(x, y), (9.142)

the gradients of fx with respect to x and y are

∂X

∂x
= ∂fx(x, y)

∂x
, (9.143)

∂X

∂y
= ∂fx(x, y)

∂y
. (9.144)

Therefore, the gradient magnitude of X at (x, y) can be computed from

∣
∣X′(x, y)

∣
∣=
{(

∂X

∂x

)2

+
(

∂X

∂y

)2} 1
2

. (9.145)

Similarly, the gradient magnitude of the Y -component of the transformation is

∣
∣Y ′(x, y)

∣
∣=
{(

∂Y

∂x

)2

+
(

∂Y

∂y

)2} 1
2

. (9.146)

When the images are translated with respect to each other in a neighborhood, the
components of the transformation that register the images in that neighborhood are
defined by (9.5) and (9.6), from which we find |X′(x, y)| = 1 and |Y ′(x, y)| = 1.
Therefore, the gradient magnitude of each component of the transformation in the
neighborhood under consideration is equal to 1 independent of (x, y).

When the images in a neighborhood have translational and rotational differences
(rigid transformation) as defined by (9.9) and (9.10), the gradient magnitude for each

component of the transformation in that neighborhood will be
√

sin2 θ + cos2 θ = 1.
Therefore, the gradient magnitude of each component of the transformation in the
neighborhood under consideration is also equal to 1 independent of (x, y).

When two images in a neighborhood are related by an affine transformation as
defined by (9.19) and (9.20), the gradient magnitude of each component of the trans-
formation in that neighborhood will be

∣
∣X′(x, y)

∣
∣=
√

a2
1 + a2

2, (9.147)

∣
∣Y ′(x, y)

∣
∣=
√

a2
3 + a2

4 . (9.148)
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Fig. 9.23 (a), (b) An image and its transformation by an affine transformation. (c), (d) The
X-component and the Y -component of the transformation, respectively. Values in the components
of the transformation are appropriately scaled for viewing purposes

This shows that the X-component and the Y -component of an affine transformation

have different gradient magnitudes unless
√

a2
1 + a2

2 =
√

a2
3 + a2

4 , implying the im-
ages are related by the similarity transformation. Therefore, gradient magnitudes of
the two components of the similarity transformation are also the same. However, the
gradient magnitude may be smaller than or larger than 1. The gradient magnitude,
in fact, is equal to the

√
2 of the scale of the sensed image with respect to that of the

reference image.
When two images are locally related by an affine transformation, gradient magni-

tudes
√

a2
1 + a2

2 and
√

a2
3 + a2

4 , in addition to containing scale information, contain
information about shearing of the sensed image with respect to the reference image.
A larger shearing is obtained when the scene makes a larger angle with the direction
of view. Therefore, the gradient of an affine transformation can be used to guess the
orientation of the planar scene with respect to the view direction. The gradients of
the X-component and the Y -component contain information about foreshortening
of the scene horizontally and vertically with respect to the view.

Transforming the image in Fig. 9.23a by an affine transformation with a1 = 1.5,
a2 = 0.5, a3 = 0, a4 = 1, a5 = 2, and a6 = 0, we obtain the image shown in
Fig. 9.23b. The X-component and the Y -component of this transformation are
shown in Figs. 9.23c and 9.23d, respectively. The gradient magnitude for the X-
component transformation computed digitally is 1.581, which is the same as its

theoretical value
√

a2
1 + a2

2 = √
2.5. The gradient magnitude of the Y -component

transformation determined digitally is 2.236, which is the same as its theoretical

value
√

a2
3 + a2

4 = √
5.

When two images are locally related by the projective transformation as defined
by (9.23) and (9.24), the gradients of the two components become

∂X

∂x
= a1(a7x + a8y + 1) − a7(a1x + a2y + a3)

(a7x + a8y + 1)2
, (9.149)

∂X

∂y
= a2(a7x + a8y + 1) − a8(a1x + a2y + a3)

(a7x + a8y + 1)2
, (9.150)
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∂Y

∂x
= a4(a7x + a8y + 1) − a7(a4x + a5y + a3)

(a7x + a8y + 1)2
, (9.151)

∂Y

∂y
= a5(a7x + a8y + 1) − a8(a4x + a5y + a3)

(a7x + a8y + 1)2
, (9.152)

or

∂X

∂x
= a1 − a7X

a7x + a8y + 1
, (9.153)

∂X

∂y
= a2 − a8X

a7x + a8y + 1
, (9.154)

∂Y

∂x
= a4 − a7Y

a7x + a8y + 1
, (9.155)

∂Y

∂y
= a5 − a8Y

a7x + a8y + 1
, (9.156)

or

∂X

∂x
= A1 + A2X, (9.157)

∂X

∂y
= A3 + A4X, (9.158)

∂Y

∂x
= A5 + A2Y, (9.159)

∂Y

∂y
= A6 + A4Y, (9.160)

therefore,
∣
∣X′(x, y)

∣
∣=
√

(A1 + A2X)2 + (A3 + A4X)2, (9.161)
∣
∣Y ′(x, y)

∣
∣=
√

(A5 + A2Y)2 + (A6 + A4Y)2. (9.162)

The gradient magnitude for the X-component of the projective transformation is
not only dependent on (x, y), it depends on X. Similarly, the gradient magnitude of
the Y -component of the transformation is a function of Y as well as (x, y). Also,
the gradient magnitudes of the two components of the projective transformation
depend on each other. The gradient magnitudes become independent of (x, y) when
a7 = a8 = 0, and that happens when the projective transformation becomes an affine
transformation.

Since ∂X/∂x and ∂X/∂y are linear functions of X, their derivatives with respect
to X will be constants. Denoting ∂X/∂x by Xx and denoting ∂X/∂y by Xy , we find
dXx/dX = A2 and dXy/dX = A4. Let’s define

∣
∣(dX)′

∣
∣≡
√

(dXx/dX)2 + (dXy/dX)2 =
√

A2
2 + A2

4. (9.163)

Similarly, denoting ∂Y/∂x by Yx and denoting ∂Y/∂y by Yy , we find

∣
∣(dY )′

∣
∣≡
√

(dYx/dY )2 + (dYy/dY )2 =
√

A2
2 + A2

4, (9.164)
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Fig. 9.24 (a) A projective transformation of the image in Fig. 9.23a. (b), (c) The X-component
and the Y -component of the transformation. (d), (e) Images representing |(dX)′| and |(dY )′|. In
(b)–(e) the values are appropriately scaled to range [0,255] for enhanced viewing

we find that |(dX)′| = |(dY )′|. This implies that the gradient of the X-component
of a projective transformation calculated in the xy domain has a gradient magnitude
with respect to X that is the same as the gradient of the Y -component of the trans-
formation calculated in the xy domain when its gradient magnitude is calculated
with respect to Y . However, this amount varies from pixel to pixel as A2 and A4
both depend on (x, y).

An example showing this property is given in Fig. 9.24. Using the image in
Fig. 9.23a and letting the parameters of the projective transformation be a1 = 1.5,
a2 = −0.5, a3 = 0, a4 = 1, a5 = 2, a6 = 0, a7 = 0.005, and a8 = 0.01, we obtain the
transformed image shown in Fig. 9.24a. The X- and Y -components of this transfor-
mation are shown in 9.24b and 9.24c. The gradient magnitude of the gradient of
the two components of the transformation, |(dX)′| and |(dY )′|, as shown in 9.24d
and 9.24e, are exactly the same. This property can be used to determine whether a
transformation in a neighborhood is projective or not.

When the geometric difference between two images varies locally, the above
mentioned properties hold within corresponding local neighborhoods in the images.
At each (x, y), |X′| and |Y ′| can be determined and based on their values, the ge-
ometric difference between the images at and in the neighborhood of (x, y) can be
guessed. The parameters of the transformation mapping images in the neighborhood
of (x, y) can be estimated using the X and the Y values at (x, y) and at pixels around
it. Knowing the X- and the Y -components of a transformation, algorithms can be
developed to examine X, Y , |X′|, and |Y ′| at each pixel and derive information about
the geometry of the scene.

Consider the example in Fig. 9.25. Images (a) and (b) show the X-component and
the Y -component of the transformation obtained by the weighted-linear (WLIN)
method to register the Mountain image set. Images (c) and (d) represent |X′|
and |Y ′|. We see a larger variation in gradient magnitudes of the X-component trans-
formation than the Y -component transformation. This is typical of stereo images,
showing a larger change in foreshortening horizontally than vertically. Variation in
local geometry of the sensed image with respect to the reference image is reflected in
the components of the transformation. Images |X′| and |Y ′| not only contain infor-
mation about the geometry of the scene, they contain information about the relation
of the cameras with respect to each other and with respect to the scene.

Darker areas in |X′| and |Y ′| are indicative of areas that are going out of view
horizontally and vertically from the sensed image to the reference image. Brighter
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Fig. 9.25 (a), (b) The X-component and the Y -component of the transformation obtained by the
weighted-linear (WLIN) method to register the Mountain images. (c), (d) Plots of |X′| and |Y ′|.
Intensities in the images have been appropriately scaled for better viewing

areas show regions that are coming into view and expanding in size in the sensed
image when compared to the reference image. Such regions point towards the view
while darker regions point away from the view. The sensed image, therefore, has
been obtained to the left of the reference image. Using the transformation function
obtained for the registration of two images, some characteristics of the scene as well
as the relation between the cameras and the scene can be determined.

9.4 Evaluation

Various interpolating/approximating functions suitable for representing the compo-
nents of a transformation function in image registration were discussed. Each trans-
formation has its strengths and weaknesses. It is hard to find a single transformation
function that performs the best on all types of images; however, there are transfor-
mation functions that perform better than others on many image types. The desired
properties of a transformation function for image registration are:

1. Monotonicity, convexity, and nonnegativity preserving: These properties ensure
that the function is well behaved and it does not produce high fluctuations and
overshoots away from the control points. The properties can be obtained by for-
mulating the surface in terms of not only the data values but also the data gra-
dients at the points. The properties are easier to achieve when a function is for-
mulated in such a way that its variations can be more easily controlled. Lu and
Schumaker [62] and Li [59] derived monotonicity-preserving conditions, Renka
[79] and Lai [49] derived convexity-preserving conditions, and Schumaker and
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Speleers [94] and Hussain and Hussain [45] derived nonnegativity preserving
conditions for piecewise smooth surface interpolation to scattered data. These
methods typically constrain gradient vectors at the points to ensure a desired
property in the created surface.

2. Linearity preserving: If data values in the image domain vary linearly, the func-
tion interpolating/approximating the data should also vary linearly. This property
ensures that a transformation function would not introduce nonlinearity into the
resampling process when corresponding reference and sensed areas are related
linearly.

3. Adaptive to the density and organization of points: Since control points in an
image are rarely uniformly spaced, a transformation function should have the
ability to adapt to the local density and organization of the points. Density of
points across the image domain can vary greatly and so can the spacing between
the points. If the transformation function is defined by radial basis functions, the
widths of the functions should adapt to the local density of points and the shape of
the basis functions should adapt to the irregular spacing of the points. Generally,
monotonically decreasing rational basis functions adapt well to the organization
of points. Rational basis functions, however, should be used in parametric form.
If used in explicit form, flat spots appear in the components of the transformation,
producing large errors in registration.

To determine the strengths and weaknesses of the transformation functions de-
scribed in this chapter and to determine their performances in image registration,
experiments were carried out using the images depicted in Fig. 9.26. Corresponding
points in the images are also shown. The images have various degrees of geometric
differences.

Images (a) and (b) are captured from different views and different distances of
an art piece. They are of dimensions 520 × 614 and 505 × 549, respectively. The
geometric difference between the images varies from point to point. We will refer
to these images as Face images. The images contain 80 corresponding points. Im-
ages (c) and (d) show aerial images, again, taken from different views and different
distances to the scene. They are of dimensions 412 × 244 and 469 × 274, respec-
tively. The images contain small local and global geometric differences. We will
refer to them as Aerial images. There are 31 corresponding points in these images.

Images (e) and (f) show two views of a terrain. These images are of dimensions
655 × 438 and 677 × 400, respectively. There is depth discontinuity near the center
of the images at about 120 degrees. There are 46 corresponding points in the images.
We will call these Terrain images. Images (g) and (h) show a close up of a small area
in the terrain. The images are of dimensions 409 × 531 and 402 × 542, respectively.
There are 58 corresponding points in these images. These images will be referred to
as the Rock images. The geometric difference between these images vary across the
image domain.

Images (i) and (j) show two views of a partially snow-covered, rocky mountain.
These images are of dimensions 719 × 396 and 565 × 347, respectively. There are
165 corresponding points in theses images. This is called the Mountain data set. The
geometric difference between these images varies considerably across the image
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Fig. 9.26 (a), (b) Face, (c), (d) Aerial, (e), (f) Terrain, (g), (h) Rock, (i), (j) Mountain, and (k),
(l) Parking images used to evaluate the performances of various transformation functions in image
registration. The number of corresponding points in these image sets are 80, 31, 46, 58, 165, and 32.
The control points are marked with ‘+’ in the images. Points marked in red are used to determine
the transformation parameters, and points marked in light blue are used to quantify registration
accuracy

domain. Finally, (k) and (l) are images of a parking lot taken from the same view-
point but with different view angles. These images are of dimensions 450 × 485 and
449 × 480, respectively. They contain only global geometric differences, defined
by a projective transformation. Local geometric differences between the images are
negligible. The images contain 32 corresponding points. We will refer to these im-
ages as the Parking images.

The control points in these images were determined using the Harris point detec-
tor and correspondence between the points were determined by the coarse-to-fine
matching Algorithm F5 in Chap. 7 using error tolerance of 1.5 pixels.

We will compare the speeds and accuracies of various transformation functions
in the registration of these images using the provided correspondences. For each
transformation, the time to determine its parameters and the time to resample the
sensed image to the geometry of the reference image are determined. Since the
true transformation function between the images is not known, we will use half of
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the correspondences to determine the transformation and use the remaining half to
measure the registration accuracy. Points marked in red in Fig. 9.26 are used to
determine a transformation and points marked in light blue are used to determine
the registration accuracy with the obtained transformation.

The transformation functions used in this evaluation are (1) multiquadric,
(2) surface or thin-plate spline, (3) Wendland’s compactly supported interpola-
tion (9.55), (9.56), (4) Maude’s local weighted linear (9.61), (5) moving least
squares (9.65) using polynomials of degree 1 and inverse square distance weights
(9.66), (6) piecewise-linear interpolation, (7) approximating subdivision surface of
Loop, (8) parametric Shepard interpolation using rational Gaussian weights with
smoothness parameter s = 0.75 (9.92)–(9.95), (9) weighted-linear approximation
(9.98), and (10) interpolating implicit surface (9.126) with Euclidean (‖p − pi‖)
basis functions without a linear term.

Results are tabulated in Table 9.3. Examining the results, we see that surface
or thin-plate spline (TPS) has the highest speed in spite of the fact that it solves a
global system of equations to find each component of a transformation. A single
method could not produce the best RMSE for all images and methods vary in accu-
racy depending on the organization of the points and the severity of the geometric
difference between the images.

For images with small to moderate geometric differences, Maude’s weighted lin-
ear approximation (MAUD) produced the best result, while for images with large
local geometric differences, Loop subdivision method (LOOP) and implicit interpo-
lation produced the smallest MAX errors. Weighted-linear (WLIN) and parametric
Shepard (SHEP) also produce low MAX errors.

Considering both speed and accuracy, overall best results are obtained by moving
least-squares (MLQ) followed by weighted-linear (WLIN) and parametric Shepard
(SHEP). These methods are especially attractive because they have the ability to
resample image regions outside the convex hull of the control points. Registration
results for the six image sets in Fig. 9.26 by the moving least-square method are
shown in Fig. 9.27 for qualitative evaluation. The reference image is shown in the
red and blue bands and the sensed image is shown in the green band of a color
image. At pixels where the images perfectly align gray values are obtained, and at
pixels where the images do not align well green or purple are obtained. Scene areas
visible in only one of the images also appear in green or purple.

9.5 Final Remarks

To register two images, not only is a set of corresponding points in the images re-
quired, a transformation function is required that can use information about the cor-
respondences to find the geometric relations between the images. A transformation
function makes it possible to spatially align the images and determine the corre-
spondence between all points in the images. It also provides the means to infer the
geometric characteristics of the underlying scene.
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Table 9.3 Performance measures for various transformation functions used to register the images
shown in Fig. 9.26. The transformation functions tested are: multiquadric (MQ), surface or thin-
plate spline (TPS), Wendland’s compactly supported radial basis functions (WEND), Maude’s lo-
cal weighted linear formula (MAUD), moving least squares (MLQ), piecewise linear (PWL), Loop
subdivision surface (LOOP), parametric Shepard interpolation (SHEP), weighted linear approx-
imation (WLIN), and interpolative implicit surface with Euclidean basis functions (IMPL). Per-
formance measures are: computation time (TIME) in seconds, root-mean-squared error (RMSE)
in pixels, and maximum (MAX) registration error, also in pixels. The transformation parameters
are determined using half of the provided control-point correspondences and registration errors are
determined using the remaining correspondences. Best results are shown in bold

Method Measure Face Aerial Terrain Rock Mountain Parking

MQ TIME 1.34 0.19 0.73 0.70 2.48 0.39

RMSE 4.05 6.80 10.28 4.08 4.62 5.89

MAX 9.00 13.89 26.38 9.10 30.62 14.33

TPS TIME 1.09 0.14 0.58 0.61 1.93 0.31

RMSE 3.85 1.34 2.16 1.51 4.47 0.98

MAX 10.68 2.43 4.26 3.34 32.18 1.79

WEND TIME 1.54 0.23 0.81 0.81 3.28 0.48

RMSE 3.59 5.22 5.59 4.22 4.57 6.71

MAX 7.26 10.01 12.57 12.16 30.05 12.88

MAUD TIME 4.32 1.06 3.30 2.64 5.32 2.31

RMSE 4.09 1.07 1.38 1.50 4.40 0.93

MAX 9.34 1.88 3.12 3.35 27.55 1.69

MLQ TIME 1.98 0.41 1.15 1.06 3.35 0.67

RMSE 3.96 1.16 1.62 1.52 5.46 0.95

MAX 9.32 2.13 3.40 3.69 33.17 1.45

PWL TIME 2.20 0.30 1.26 1.16 4.71 0.61

RMSE 4.08 1.28 1.70 1.48 4.55 0.94

MAX 10.94 2.49 4.33 3.23 30.10 1.47

LOOP TIME 6.86 7.16 8.5 6.68 4.52 8.13

RMSE 4.13 1.24 1.45 1.59 4.46 0.95

MAX 10.33 2.53 3.61 3.75 25.49 1.64

SHEP TIME 1.93 0.27 1.05 1.05 2.98 0.69

RMSE 4.32 1.38 1.79 1.59 4.91 1.13

MAX 11.64 2.35 5.10 3.04 33.97 1.70

WLIN TIME 1.95 0.27 1.01 1.03 3.06 0.69

RMSE 4.25 1.28 1.58 1.51 4.47 0.96

MAX 12.96 2.44 3.01 3.33 26.29 1.72

IMPL TIME 6.80 0.91 3.74 3.50 12.22 2.01

RMSE 3.48 5.58 8.55 3.93 4.43 6.14

MAX 6.96 14.23 27.75 13.46 28.8 15.30
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Fig. 9.27 (a)–(f) Registration of the Face, Aerial, Terrain, Rock, Mountain, and Parking images
by the moving least-squares transformation function

If the geometry of a scene and the relations of the cameras to each other and
to the scene are known, the type of transformation function most suitable to relate
the geometries of the images can be selected. The parameters of the transformation
can then be determined from the coordinates of corresponding points in the images.
However, often information about the scene and the cameras is not available. In
such a situation, the employed transformation function should be able to adapt to
the local geometric differences between the images.

Comparing the performances of a number of adaptive transformation functions
on various images with varying degrees of local and global geometric differences,
we observe that although a single transformation does not exist that can outper-
form all other transformations, but some transformations clearly perform better than
others. Among the tested transformation functions, weighted-linear, moving least-
squares, and parametric Shepard methods generally perform better than other meth-
ods in both speed and accuracy.

The quality of a resampled image depends on the resampling method used. Image
resampling is discussed in the next chapter. When registering two images, there is
sometimes a need to combine the images into a larger image mosaic. To create a
seamless mosaic, intensities in the overlap area in the images should be blended in
such a way that intensities in the images smoothly merge. Image blending is also
discussed in the next chapter.
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Chapter 10
Image Resampling and Compositing

10.1 Image Resampling

The transformation

X = f (x, y), (10.1)

Y = g(x, y) (10.2)

relates the coordinates of points in the reference image to the coordinates of cor-
responding points in the sensed image. Given the (x, y) coordinates of a point in
the reference image, relations (10.1) and (10.2) determine the (X,Y ) coordinates of
the same point in the sensed image. By reading the intensity at (X,Y ) in the sensed
image and saving at (x, y) in a new image, the sensed image is point-by-point re-
sampled to the geometry of the reference image. Therefore, to resample the sensed
image, the reference image is scanned and, for each pixel (x, y), the correspond-
ing point (X,Y ) is determined in the sensed image. Although coordinates (x, y) are
integers, coordinates (X,Y ) are floating-point numbers. Since intensities at only in-
teger coordinates are available in the sensed image, the intensity at point (X,Y ) has
to be estimated from the intensities of a small number of pixels surrounding (X,Y ).

If the sensed image were a continuous image, the intensity of any point (X,Y )

in the image would be known. However, a sensed image I (u, v) contains only uni-
formly spaced samples of a continuous image C(X,Y ). A resampling method has to
estimate the intensity at (X,Y ) from the intensities at discrete locations surrounding
it. Figure 10.1 depicts the resampling process. Pixel a in the reference image maps
to point A in the continuous sensed image. To estimate the intensity at A, intensi-
ties in a small neighborhood of A in the discrete sensed image are used. Different
methods to achieve this estimation have been developed. In the following sections,
nearest-neighbor, bilinear interpolation, cubic convolution, cubic spline interpola-
tion, and radially symmetric resampling methods are discussed.

A.A. Goshtasby, Image Registration,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-2458-0_10, © Springer-Verlag London Limited 2012
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Fig. 10.1 The resampling process. (a) Pixels in the reference image. (b) A continuous sensed
image. The grid points in this image correspond to the pixels in the reference image. (c) Overlaying
of the continuous and discrete sensed images. The continuous sensed image is determined from
intensities in the discrete sensed image. Resampling involves scanning the reference image and,
for each pixel a, determining the intensity of the corresponding grid point A in the continuous
sensed image. Intensity at A in the continuous image is estimated from the intensities of a small
number of pixels surrounding A in the discrete sensed image

10.1.1 Nearest-Neighbor

Given the coordinates (X,Y ) of a point, where X and Y are floating-point numbers,
and assuming u is the integer part of X and v is the integer part of Y , the rectangular
neighborhood defined by pixels (u, v), (u, v +1), (u+1, v), and (u+1, v +1) con-
tain point (X,Y ). Among the four pixels, the one closest to (X,Y ) is determined and
its intensity is used as the intensity at (X,Y ). There is actually no need to calculate
the distances to achieve this. If X − u < 0.5, u is considered the X-coordinate of
the pixel to be used, otherwise u+ 1 is used. If Y − v < 0.5, the Y -coordinate of the
pixel to be used is v, otherwise v + 1 is used. This is actually a rounding operation;
therefore, the intensity at pixel [round(X), round(Y )] is taken and considered the
intensity at (X,Y ).

Nearest neighbor resampling preserves the image intensities. Therefore, the his-
tograms of an image before and after resampling will be very similar. If certain
intensities do not exist in an image, they will not be present in the resampled image.
The process does not blur an image, but it may produce aliasing effects. Horizontal
and vertical edges in an image may appear jagged after rotation of the image by an-
gles that are not a multiple of 90 degrees. Figure 10.2 shows a resampling example
by the nearest-neighbor method. Figure 10.2a is an image of a penny and Fig. 10.2b
is the penny after being rotated by 10 degrees counterclockwise about the image
center and resampled by the nearest-neighbor method. The jagged appearance of
the penny, especially along its boundary, is quite evident in the resampled image.

The computational complexity of nearest-neighbor resampling is on the order of
n comparisons if reference image containing n pixels.
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Fig. 10.2 (a) A penny and
(b) its rotation by 10 degrees
counterclockwise when using
nearest-neighbor resampling

10.1.2 Bilinear Interpolation

In bilinear interpolation, the intensity at a point is determined from the weighted
sum of intensities of the four pixels closest to it. Therefore, given location (X,Y )

and assuming u is the integer part of X and v is the integer part of Y , the inten-
sity at (X,Y ) is estimated from the intensities at (u, v), (u + 1, v), (u, v + 1), and
(u + 1, v + 1). This resampling involves first finding the intensity at (X,v) from
the linear interpolation of intensities at (u, v) and (u + 1, v). Let this intensity be
I (X,v). Then, finding the intensity at (X,v + 1) from the linear interpolation of
intensities at (u, v + 1) and (u+ 1, v + 1). Let this intensity be I (X,v + 1). Finally,
finding the intensity at (X,Y ) from the linear interpolation of intensities at (X,v)

and (X,v + 1). This can be summarized as

I (X,Y ) = Wu,vI (u, v) + Wu+1,vI (u + 1, v) + Wu,v+1I (u, v + 1)

+ Wu+1,v+1I (u + 1, v + 1), (10.3)

where

Wu,v = (u + 1 − X)(v + 1 − Y), (10.4)

Wu+1,v = (X − u)(v + 1 − Y), (10.5)

Wu,v+1 = (u + 1 − X)(Y − v), (10.6)

Wu+1,v+1 = (X − u)(Y − v), (10.7)

and I (u, v), I (u + 1, v), I (u, v + 1, and I (u + 1, v + 1) are intensities at (u, v),
(u+ 1, v), (u, v + 1), and (u+ 1, v + 1), respectively. Figure 10.3a depicts this esti-
mation process. Figure 10.3b shows resampling of Fig. 10.2a after rotation counter-
clockwise by 10 degrees about the image center by bilinear interpolation. Compared
to Fig. 10.2b, we see that the aliasing effect has mostly disappeared. One should also
note that this anti-aliasing is at the cost of blurring the image. Therefore, if repeated
resampling of an image is required, the process will gradually smooth image details.
Bilinear interpolation changes image intensities, thereby changing the histogram of
the image.
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Fig. 10.3 (a) Estimating the intensity at (X,Y ) from intensities at (u, v), (u + 1, v), (u, v + 1),
and (u + 1, v + 1) by bilinear interpolation. (b) The penny shown in Fig. 10.2a after rotation by
10 degrees counterclockwise about its center and resampling by bilinear interpolation

Computationally, resampling by bilinear interpolation requires on the or-
der of n multiplications if the reference image contains n pixels. Therefore,
nearest-neighbor and bilinear interpolation have the same computational com-
plexity, although nearest-neighbor is several times faster than bilinear interpola-
tion.

10.1.3 Cubic Convolution

In cubic convolution, the intensity at point (X,Y ) is estimated from the intensities
of a 4 × 4 grid of pixels closest to it as depicted in Fig. 10.4a. Just like a separa-
ble 2-D convolution that can be performed via 1-D convolutions row-by-row and
then column-by-column, cubic convolution can be carried out in 1-D first along the
rows and then along the columns [8]. Therefore, first, 1-D interpolation is carried
out along the four image rows in the 4 × 4 neighborhood of (X,Y ). This will deter-
mine values at (X,v − 1), (X,v), (X,v + 1), and (X,v + 2). Then interpolation is
carried out along column X to find the intensity at (X,Y ). Figure 10.4a depicts this
computation graphically.

If u denotes the integer part of X in a 1-D image, and assuming intensities at
u − 1, u, u + 1, and u + 2 are I (u − 1), I (u), I (u + 1), and I (u + 2), respectively,
a function f (t) that interpolates the four intensities should satisfy f (ti) = I (ti),
where ti is one of u − 1, u, u + 1, or u + 2. Function f is defined in terms of a
weighted sum of four local functions, the weights representing the intensities at the
pixels. That is,

f (X) = I (u − 1)f−1 + I (u)f0 + I (u + 1)f1 + I (u + 2)f2, (10.8)
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Fig. 10.4 (a) Cubic convolution uses intensities in a 4 × 4 neighborhood to estimate the intensity
at a point. To determine the intensity at (X,Y ), first 1-D interpolation is carried out along the 4
rows to determine intensities at X in each row. Then 1-D interpolation is carried out along column
X to determine the intensity at (X,Y ). (b) Resampling of Fig. 10.2a by cubic convolution

where

f−1 = −1

2
t3 + t2 − 1

2
t, (10.9)

f0 = 3

2
t3 − 5

2
t2 + 1, (10.10)

f1 = −3

2
t3 + 2t2 + 1

2
t, (10.11)

f2 = 1

2
t3 − 1

2
t2, (10.12)

and t = X − u. Note that the sum of the local functions for any t in the range from
0 to 1 is 1. f (X) evaluates to I (u) when X = u and it evaluates to I (u + 1) when
X = u + 1. In a 1-D image with n pixels, the pixel positions are u = 0,1, . . . , n − 1
with corresponding intensities I (u). At the two image borders, it is assumed that
I (−1) = 3I (0) − 3I (1) + I (2) and I (n) = 3I (n − 1) − 3I (n − 2) + I (n − 3).
Resampling of the coin image of Fig. 10.2a after rotation counterclockwise by 10
degrees by cubic convolution is shown in Fig. 10.4b.

Although resampling by cubic convolution appears visually similar to that of
bilinear interpolation, by a closer examination it becomes apparent that intensities
estimated by the two methods are not the same. An example is given in Fig. 10.5.
The image of Fig. 10.2a is rotated by 10 degrees 36 times. This is expected to pro-
duce the original image if no resampling errors existed. However, due to resampling
errors, the obtained image is different from the original one. The absolute differ-
ence between the intensities of the obtained image and the intensities of the original
image show the magnitude of resampling error.

Figures 10.5a–c show absolute errors when nearest-neighbor, bilinear interpo-
lation, and cubic convolution, respectively, are used. Only errors within the circle
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Fig. 10.5 (a)–(c) Resampling errors when rotating the image in Fig. 10.2a 36 times with 10-de-
gree increments and computing the absolute difference between corresponding pixels in the orig-
inal and resampled images using nearest-neighbor, bilinear interpolation, and cubic convolution,
respectively. Higher intensities show larger errors

touching the image borders can be computed. As the image is rotated, areas near im-
age corners move outside the image, causing them to be cut off. Consequently, after
a 360-degree rotation, only pixels within the largest circle that can be contained in
the image remain. Pixels outside this circle will all assume a value of zero. There-
fore, when subtracting the resampled image from the original image, intensities of
pixels outside this circle become equal to the intensities of the original image. This
experiment reveals that among the three methods, cubic convolution is the most
accurate method, while nearest-neighbor is the least accurate method.

Computational complexity of cubic convolution is O(n) multiplications when
reference image contains n pixels. Cubic convolution is several times slower than
bilinear interpolation.

10.1.4 Cubic Spline

Given intensities {Ii : i = −1,0,1,2} of pixels at {ui : i = −1,0,1,2} in a 1-D
image, the intensity at point 0 ≤ u < 1 in the image can be estimated using a B-
spline curve of order four (degree three) from:

f (u) =
2∑

i=−1

Iibi(u), (10.13)

where

b−1(u) = (−u3 + 3u2 − 3u + 1
)
/6, (10.14)

b0(u) = (3u3 − 6u2 + 4
)
/6, (10.15)

b1(u) = (−3u3 + 3u2 + 3u + 1
)
/6, (10.16)

b2(u) = u3/6 (10.17)
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are the B-spline basis functions of order 4 and Iis are the control points of the
curve. Note that the sum of the B-spline basis functions is 1 everywhere in the range
0 ≤ u ≤ 1. The basis functions, when evaluated at a particular point u, show the
contributions of the control points in the computation of the intensity at that point.
The intensity at point u in a 1-D image is, therefore, a weighted sum of the intensities
of the four pixels closest to it.

Formula (10.13) shows an approximation, thus f (u) will only approximately
evaluate to the intensities at the pixels. In order to interpolate the intensities, it is
required to find new intensities such that, when they are used as the control points,
the obtained B-spline curve will evaluate to the intensities at the pixels. That is
{I ′

j : j = −1, . . . ,2} should be determined such that

Ii =
2∑

j=−1

I ′
j bj (ui), i = −1, . . . ,2. (10.18)

Since two adjacent B-spline segments of order four share three control points
(pixel intensities in our case), we cannot determine the control points of an interpo-
lating B-spline by repeated use of formula (10.18). Instead, it is required to deter-
mine the entire set of control points collectively. This would require the solution of
a system of n equations if a 1-D image with n pixels is given.

Estimation of the intensity at point (u, v) requires use of intensities of pixels at
the 4 × 4 grid closest to the point. To make this estimation, first, new intensities
should be determined so that when used as the control points in a bicubic B-spline
surface, the obtained surface will interpolate the given intensities. Computation of
the control points of a bicubic B-spline surface interpolating the intensities in an im-
age with n pixels requires the solution of a system of n equations. This computation
is on the order of n2 multiplications. A parallel algorithm to calculate the control
points of an interpolating B-spline surface with a smaller computational complexity
is given by Cheng and Goshtasby [1].

Properties of B-splines as filters have been explored by Ferrari et al. [3]. Noticing
that a B-spline curve acts like a digital filter when intensities of uniformly spaced
pixels in a 1-D image are used as its control points; the control points of the B-spline
curve interpolating the intensities can be obtained through an inverse filtering op-
eration [6]. This involves finding the Fourier transform of the image and dividing
it point-by-point by the Fourier transform of the B-spline filter. The inverse Fourier
transform of the result will produce the control points of the interpolating B-spline.
If FFT algorithm is used to compute the Fourier transform coefficients, it will take
on the order of n logn multiplications to find the n control points of the interpo-
lating B-spline. This is a reduction in computation time from O(n2) to O(n logn)

multiplications.
The cubic spline method is computationally more expensive than cubic convo-

lution; however, cubic spline has been found to produce more accurate results than
cubic convolution [7].
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Fig. 10.6 (a) A radial function with local support of radius 1.8 pixels centered at pixel (Xi, Yi).
This function shows the influence of pixel (Xi, Yi) on the interpolating function within the shaded
area. (b) The intensity at (X,Y ) is estimated from the intensities of pixels whose distances to
(X,Y ) are less than a. The pixels used in the calculation are those falling in the shaded area in this
figure when a = 1.8 pixels

10.1.5 Compactly Supported Radial Functions

Cubic spline, cubic convolution, and bilinear interpolation are not radially symmet-
ric functions. In general, locally defined separable functions are not radially sym-
metric because they approximate rectangular domains. The effect of such functions
on an image depends on the orientation of the image. For a resampling operation
to be rotationally invariant, the function used in resampling should be radially sym-
metric. Consider centering the compactly supported radial function,

f (ri) =
{

1 − 3r2
i + 2r3

i , 0 ≤ ri ≤ 1,

0, ri > 1,
(10.19)

at pixel (Xi, Yi), where

ri =
√

(X − Xi)2 + (Y − Yi)2

a
(10.20)

and a is the radius of the domain where the function is nonzero (Fig. 10.6a). Func-
tion f (ri) will then show the influence of the intensity at (Xi, Yi) on intensity at
(X,Y ). Note that since df (ri)/dri = 0 at ri = 1, not only does f (ri) vanish at
ri = 1, its derivative vanishes at ri = 1. Therefore, if radial function f is centered
at each pixel and a weighted sum of the functions is computed, the obtained surface
will be smooth everywhere in the image domain.

Assuming intensity at (Xi, Yi) in the sensed image is Ii , for the surface to in-
terpolate the intensities in a circular neighborhood of radius a centered at point of
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Table 10.1 Computational
complexities of
nearest-neighbor, bilinear
interpolation, cubic
convolution, cubic spline, and
radial functions with local
support in image resampling.
It is assumed that the sensed
image is resampled to a
reference image of size n

pixels

Type of resampling Computational
complexity

Nearest-neighbor O(n)

Bilinear interpolation O(n)

Cubic convolution O(n)

Cubic spline, direct computation O(n2)

Cubic spline, using FFT O(n logn)

Compactly supported radial functions O(nm2)

interest (X,Y ) (Fig. 10.6b), new intensities I ′
i should be computed at the pixels

within the neighborhood so that when

I (X,Y ) =
∑

ri<a

I ′
i f (ri), (10.21)

is evaluated at the pixels within that neighborhood produce the original intensities,
that is I (Xi, Yi) = Ii for all pixels (Xi, Yi) within the circular neighborhood of
radius a centered at (X,Y ). Knowing I ′

i at the pixels, the intensity at (X,Y ) can
then be determined from (10.21).

If there are m pixels within a circular neighborhood of radius a pixels, determi-
nation of new intensities at the pixels within the neighborhood requires on the order
of m2 multiplications. Since this should be repeated for each pixel, if reference im-
age contains n pixels, resampling the sensed image to register with the reference
image requires on the order of nm2 multiplications.

10.1.6 Summary

Nearest-neighbor, bilinear interpolation, cubic convolution, cubic spline, and com-
pactly supported radial functions in image resampling were discussed. The compu-
tational complexities of these resampling methods are summarized in Table 10.1.
Nearest-neighbor is the fastest while compactly supported radial functions is the
slowest.

Nearest-neighbor resampling does not change the image intensities; it preserves
them. However, it can cause aliasing. Bilinear interpolation reduces the aliasing
effect by slightly smoothing image intensities. Among all resampling methods, bi-
linear interpolation is perhaps the best compromise between speed and accuracy.
Cubic convolution requires several times more time than bilinear interpolation, but
it produces less aliasing. Cubic spline is considerably slower than cubic convolu-
tion, especially when the control points of the spline are determined by solving a
system of equations. However, resampling accuracy of cubic spline is found to be
better than that of cubic convolution [8].

Also discussed was use of radially symmetric kernels in image resampling. Con-
sidering the fact that the neighborhood size used in radial functions is adjustable,
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Fig. 10.7 (a), (b) Reference image A and sensed image B. (c) Registration and intensity blending
of images A and B using inverse-distance weighting. C is the area of overlap between images A
and B

this resampling method can be adapted to the level of details in an image. If cubic
spline is used, since a fixed neighborhood size is used independent of the spatial
frequency contents in an image, the matrix of coefficients may become singular for
some images, making image resampling impossible. In resampling by compactly
supported radial functions since the equations to be solved are for the determination
of local intensities, the systems are relatively small and the likelihood of becom-
ing singular reduces significantly. However, since a system of equations need be
solved for resampling the intensity at each pixel, the process is the slowest among
the resampling methods discussed.

10.2 Image Compositing and Mosaicking

After registering two images, there often is a need to combine the images into a
larger image called a composite or a mosaic. Intensities at corresponding pixels in
the overlap area of registered images may be different due to differences in envi-
ronmental and sensor parameters during image acquisition. Different-view images
of a scene record different intensities at the same scene point if the scene has spec-
ular characteristics. Change in scene brightness due to difference in time of day or
weather conditions results in intensity differences between corresponding points in
images.

The problem to be solved is as follows: Given reference image A and sensed
image B , by registering B to A, we would like to create a mosaic that covers scene
areas contained in both A and B as depicted in Fig. 10.7c. Denoting the area of
overlap between the images by C, we would like to find intensities in C in such
a way that they vary smoothly from region C to both regions A and B , creating a
seamless mosaic.
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10.2.1 Intensity blending

Intensities in region A in Fig. 10.7c are those of the reference image, intensities in
region B are those of the sensed image, and intensities in region C are computed
from a weighted sum of intensities of corresponding pixels in the reference and
sensed images. To make sure that a seamless mosaic is obtained, the weights at a
pixel in region C are set inversely proportional to the distances of that pixel to pixels
closest to it in regions A and B . The closer the pixel in C is to region A, the higher
the contribution of the pixel in the reference image will be to the computed intensity.
If the distance of a pixel in region C to the pixel closest to it in region A is dA and
its distance to the pixel closest to it in region B is dB , the intensity at the pixel in C

is estimated from

IC = IAd−1
B + IBd−1

A

d−1
A + d−1

B

, (10.22)

where IA and IB are intensities of corresponding pixels in the reference and sensed
images in the overlap area, and IC is the estimated intensity there. Distances dA and
dB can be calculated ahead of time efficiently by finding the distance transform [2,
4, 9] of the mosaic image using the border pixels in each image as the object pixels
and the remaining pixels as the background pixels.

Intensity blending by weighted averaging has been referred to as feathering [10].
Intensity blending in this manner can cause ghosting effects if images in the over-
lap area have differences due to occlusion or other factors. One way to reduce the
ghosting effect is to use a higher power of distances. This will assign the intensities
in most areas of C to either those of image A or image B , reducing the areas in C

affected by ghosting. If too high a power is used, however, transition of intensities
from one image to another becomes rather sharp and visible when the images have
large intensity differences.

An alternative method for overcoming ghosting is to find a function that maps
intensities of the sensed image to those of the reference image so that, rather than
blending intensities of both images in the overlap area, intensities of only the ref-
erence image are used everywhere. The process assigns intensities of the reference
image to region C, and since intensities in region A are already those of the refer-
ence image and intensities of region B are converted to those of the reference image,
the composite image will have only intensities of the reference image. The process,
in effect, by not blending intensities in region C, avoids the ghosting effect. This is
explained in more detail next.

10.2.2 Intensity Mapping

Sometimes intensities in the images to be registered represent different scene prop-
erties, and averaging the properties is not meaningful. Consider the reference and
sensed images shown in Figs. 10.8a and 10.8b. They represent aerial images of a city
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Fig. 10.8 (a), (b) Aerial images of a city downtown in different modalities. (c) Registration of
the images and blending of image intensities by inverse-distance weighting. (d) Joint probability
density (JPD) of intensities in sensed and reference images. (e) Intensity map of the sensed image
with respect to the reference image. A black dot identifies the row with the highest value in each
column of JPD. The curve shows approximation of the black dots by a rational Gaussian (RaG)
curve. The curve maps intensities in the sensed to intensities in the reference images. (f) Composit-
ing images (a) and (b) after registering them and mapping the intensities of the sensed image to
those of the reference image (without intensity blending)

downtown in different modalities. While 10.8a is obtained by a sensor with spectral
frequencies centered at red, the image in Fig. 10.8b is obtained by a sensor with
frequencies centered at green. Registering the images and blending the intensities
by the inverse-distance weighting method produces the composite image shown in
Fig. 10.8c.

Although the images are seamlessly combined, the obtained intensities are no
longer meaningful. We would like to map intensities of the sensed image to those
of the reference image so that the combined image shows intensities of only the
reference image. To achieve this, a mapping function that relates intensities of the
sensed image to those of the reference images is required.

To find this mapping function, first, the joint probability density (JPD) of inten-
sities in the images is calculated. A matrix is created with its entry (i, j) showing
the number of pixels in the overlap area in the images where the intensity in the ref-
erence image is i and the intensity in the sensed image is j . Therefore, the columns
in this matrix index to the intensities in the sensed image, while the rows index to
the intensities in the reference image. The entries of the matrix are divided by the
number of pixels in the overlap area to obtain probabilities.
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The JPD of intensities in images in Figs. 10.8a and 10.8b is shown in Fig. 10.8d.
Higher probabilities are shown darker in this image. This JPD shows that an in-
tensity in the sensed image maps to a number of relatively close intensities in the
reference image. This occurs due to noise and resampling side effects. When bi-
linear interpolation is used to resample the sensed image to register the reference
image, most often intensities of four adjacent pixels in the sensed image are used
to calculate the intensity of a pixel in the resampled image. Even when intensities
in the sensed image uniquely map to intensities in the reference image, the resam-
pling process destroys this uniqueness and makes the mapping ambiguous. Noise
and other factors worsen the situation.

To obtain a unique mapping, at each column j in the JPD, the row i with the
highest probability is identified. i will be the intensity in the reference image most
frequently corresponding to intensity j in the sensed image. The JPD entries identi-
fied in this manner are shown by black dots in Fig. 10.8e. The black dots provide a
unique mapping from intensities in the sensed image to those in the reference image,
because each intensity j in the sensed image has a unique value i in the reference
image. Such a mapping, however, is very noisy as can be observed in Fig. 10.8e.
Adjacent intensities in the sensed image do not map to adjacent intensities in the
reference image.

To reduce the effect of noise and map adjacent intensities in the sensed image
to adjacent intensities in the reference image, a rational Gaussian (RaG) curve [5]
is fitted to the points as shown in Fig. 10.8e. The curve provides a unique mapping
from intensities in the sensed image to intensities in the reference image.

The image composite obtained after converting intensities of the sensed image to
those of the reference image in this manner is shown in Fig. 10.8f. Intensities across
the composite image measure the same scene properties. Although the images in
Figs. 10.8c and 10.8f appear similar, looking more closely, we see that intensities
in 10.8f follow the intensities in 10.8a, while those in 10.8c are a blending of the
intensities in 10.8a and 10.8b. For instance, this difference is seen in Figs. 10.8c
and 10.8f in the areas pointed to by the arrows.
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Chapter 11
Image Registration Methods

In the preceding chapters, various tools for image registration were discussed. In
this chapter, methods that use these tools to register various types of images are dis-
cussed. We start with methods that register images rigidly and continue to methods
that register images nonrigidly. Also discussed in this chapter are multiresolution
and adaptive registration methods as well as evaluation of the performance of a reg-
istration method.

11.1 Principal Axes Registration

If two images have translational and rotational differences, they can be registered by
a rigid transformation. Suppose the images are segmented to contain the same scene
parts, and coordinates of pixels belonging to the segmented regions in the reference
image are:

{
pi = (xi, yi) : i = 1, . . . ,m

}
(11.1)

and coordinates of pixels belonging to the same regions in the sensed image are:

{
Pj = (Xj ,Yj ) : j = 1, . . . , n

}
. (11.2)

Then the coordinates of the centroid of the reference image will be

x̄ = 1

m

m∑

i=1

xi,

ȳ = 1

m

m∑

i=1

yi,

(11.3)
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and the coordinates of the centroid of the sensed image will be

X̄ = 1

n

n∑

j=1

Xj ,

Ȳ = 1

n

n∑

j=1

Yj .

(11.4)

If the centroids of two images correspond to the same scene point, by moving the
coordinate system origin in each image to its centroid, coordinates of points in both
images will be measured with respect to the same coordinate system origin. This
transformation requires replacing pi with T1pi and replacing Pj with T2Pj , where

T1 =
⎡

⎣
1 0 −x̄

0 1 −ȳ

0 0 1

⎤

⎦ , (11.5)

T2 =
⎡

⎣
1 0 −X̄

0 1 −Ȳ

0 0 1

⎤

⎦ , (11.6)

pi =
⎡

⎣
xi

yi

1

⎤

⎦ , (11.7)

Pj =
⎡

⎣
Xj

Yj

1

⎤

⎦ (11.8)

in homogeneous coordinates.
Once the coordinate systems of the images are moved to their centroids, the rota-

tional difference between them can be determined by finding the axis of minimum
inertia [24, 38] of each image and calculating the angle between them. The axis of
minimum inertia of a set of points, also known as the major axis of the points, is a
line that passes through the centroid of the points, and the sum of squared distances
of the points to that line is minimum. Using points in the reference image, the angle
between the major axis of the points and the x-axis is [38]:

α = 0.5 tan−1
{

2
∑m

i=1(xi − x̄)(yi − ȳ)
∑m

i=1(xi − x̄)2 −∑m
i=1(yi − ȳ)2

}

. (11.9)

Note that (11.9) is ambiguous and the sign of the term within the bracket can be ob-
tained by two different sign combinations of the numerator and denominator. Since
the same line will be obtained when rotating the points about the centroid by π ,
there is an ambiguity in determination of α. This ambiguity cannot be resolved un-
less some additional information about the points is provided. In the absence of such
information, after finding α, π +α should also be considered a solution, and among
the two the one producing a higher match rating between reference and sensed im-
ages should be chosen as the answer.
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The angle between the major axis of points in the sensed image and the X-axis
can be computed similarly from

β = 0.5 tan−1
{ 2

∑n
j=1(Xj − X̄)(Yj − Ȳ )

∑n
j=1(Xj − X̄)2 −∑n

j=1(Yj − Ȳ )2

}

. (11.10)

Having selected α and β , the rotational difference between the images will be

θ = α − β. (11.11)

Keeping α fixed, among the two choices of β the one that produces the lower regis-
tration error is chosen.

The problem of determining the major axis of a set of points can be solved from a
different point of view. Consider finding the direction along which the largest spread
among the points is observed in the image. The direction of maximum spread can be
determined by finding the covariance matrix of the points and calculating the eigen-
vectors and eigenvalues of the matrix [2, 49]. Then, the eigenvector corresponding
to the larger eigenvalue defines the major axis of the points. The other eigenvector,
which is normal to the major axis is known as the minor axis. Major and minor axes
of a set of points are known as the principal axes of the set of points.

The covariance matrix of the reference image is computed from

c = 1

m

[ ∑m
i=1(xi − x̄)2 ∑m

i=1(xi − x̄)(yi − ȳ)
∑m

i=1(xi − x̄)(yi − ȳ)
∑m

i=1(yi − ȳ)2

]

, (11.12)

while the covariance matrix for the sensed image is obtained from

C = 1

n

[ ∑n
j=1(Xj − X̄)2 ∑n

j=1(Xj − X̄)(Yj − Ȳ )
∑n

j=1(Xj − X̄)(Yj − Ȳ )
∑n

j=1(Yj − Ȳ )2

]

. (11.13)

Denoting the eigenvector associated with the larger eigenvalue of c by v =
[v1 v2 v3]t and the eigenvector associated with the larger eigenvalue of C by
V = [V1 V2 V3]t , the angle v makes with the x-axis can be computed from

α = tan−1
(

v2

v1

)

. (11.14)

There is ambiguity in this α also, which can be resolved by taking into considera-
tion the signs of v1 and v2 individually rather than collectively as discussed above.
Similarly, the angle vector V makes with the X-axis can be computed from

β = tan−1
(

V2

V1

)

. (11.15)

Therefore, if the x-axis and X-axis have the same direction, then the sensed image
will be rotated with respect to the reference image by

θ = β − α. (11.16)

Letting

R =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦ , (11.17)
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if the reference and sensed images have only translational and rotational differences,
the transformation that maps point p in the reference image to the corresponding
point P in the sensed image will be

T−1
2 RT1. (11.18)

Therefore,

P = T−1
2 RT1p. (11.19)

This transformation involves translating each point p in the reference image by
T1 so that the coordinate system origin of the reference image moves to its centroid
and then rotating the coordinate system about the origin by θ . This is equivalent
to rotating the coordinate system by −α so that the major axis of the image aligns
horizontally, then rotating it by β so that the major axis of the reference image aligns
with that of the sensed image, and then translating the point so that the centroid of
the sensed image moves to its coordinate system origin. Denoting the obtained point
by P, finally, the intensity at P in the sensed image is read and saved at p in the
resampled image. In this manner, by scanning the reference image, corresponding
locations in the sensed image are found and the sensed image is resampled to align
with the reference images. Note that in formulas (11.18) and (11.19)

T−1
2 =

⎡

⎣
1 0 X̄

0 1 Ȳ

0 0 1

⎤

⎦ . (11.20)

If the sensed image, in addition to being translated and rotated, it is also scaled
with respect to the reference image by a factor of s, the larger eigenvalue of C will
be scaled with respect to the larger eigenvalue of c by s2. Therefore, if the larger
eigenvalues of c and C are λ1 and λ2, respectively, the sensed image will be scaled
with respect to the reference image by s = √

λ2/λ1. Therefore, letting

S =
⎡

⎣
s 0 1
0 s 1
0 0 1

⎤

⎦ , (11.21)

the transformation used to resample the sensed image to the geometry of the refer-
ence image will be

T−1
2 SRT1. (11.22)

Therefore,

P = T−1
2 SRT1p. (11.23)

An example of global registration using principal axes of segmented images is
given in Fig. 11.1. Images (a) and (b) show the boundary contours of two gray-scale
images with only translational and rotational differences. Registering (b) to (a) so
that the centroids of the images coincide and their major axes align, the result shown
in (c) is obtained.

If the images are not segmented but contain the same object or objects and the
images are related by the rigid or similarity transformation, the parameters of the
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Fig. 11.1 (a), (b) Binary images that have only translational and rotational differences. (c) Regis-
tration of the images by the principal-axes method

Fig. 11.2 Image (b) is translated and rotated with respect to image (a). Registration and overlay-
ing of the images by the principal-axes method. The reference image is shown in green and the
resampled sensed image is shown in purple. Pixels in images that perfectly align appear in gray.
Otherwise, they appear green or purple

transformation can be determined using the intensities as the weights at the points.
Therefore, if intensity at (xi, yi) in the reference image is fi and the intensity at
(Xj ,Yj ) in the sensed image is Fj , all that needs to be done is to replace xi , yi with
xifi and yifi , and replace Xj and Yj with XjFj and YjFj , respectively. It is also
required to replace coefficient 1/m in (11.3) and (11.12) with 1/

∑m
i=1 fi . Similarly,

it is required to replace coefficient 1/n in (11.4) and (11.13) with 1/
∑n

j=1 Fj .
An example of gray-scale image registration by principal axes method is given in

Fig. 11.2. The reference image is shown in green and the resampled sensed image
is shown in purple in Fig. 11.2c. When the images perfectly align, a gray pixel is
obtained. Otherwise, a purple or green pixel is obtained. Some green and purple
colors can be observed in neighborhoods where intensity gradient is high. Some of
this error is due to resampling error and the digital nature of images.

It is often the case that the given images do not cover exactly the same parts
of a scene; therefore, registration by principal axes will not be accurate. In such a
situation, the principal axes method is used to only approximately align the images.
Approximate alignment of the images makes it possible to limit the computations to
the area of overlap between the images and gradually improve registration accuracy.
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Fig. 11.3 The
multiresolution image
registration paradigm. Levels
0, i, and n are shown. Level 0
is the bottom level and shows
images at the highest
resolution. Level n is the top
level and shows images at the
lowest resolution. Level i

represents any level
between 0 and n

The process can be repeated until the overlap area between the images would not
change. This method is known as iterative principal axes registration [16].

Being a global registration method, the principal axes method can be used to
approximately align images that have nonlinear geometric differences [2]. Once the
images are approximately aligned, a nonrigid registration method can be used to
refine the registration so that the images will align locally as well as globally.

11.2 Multiresolution Registration

Multiresolution methods have also been called coarse-to-fine, hierarchical, and
pyramidal in the literature. Multiresolution methods create from each image two or
more images of increasingly smaller sizes. Smaller images reduce image geometric
differences and speed up the registration process.

The structure of a typical multiresolution image registration method is depicted
in Fig. 11.3. The original images at level 0 are decreased in size, typically by a factor
of 2, to obtain new images at level 1. The images at level 1 are reduced in size by the
same factor to obtain the images at level 2. The process is repeated until the desired
lowest-resolution images are obtained. The number of levels n is either provided
by the user or determined automatically by satisfying a prespecified condition. For
instance, it may be required to reduce the sizes of images until the number of control
points detected in each image falls below 30.

Registration is first achieved between images at the lowest resolution (level n).
By reducing the sizes of the images sufficiently, local geometric differences between
the images are reduced sufficiently to register the images by a global transformation
function. Smaller images simplify the correspondence process because of presence
of fewer control points in the images. The registration result at level n is then used
to estimate registration parameters at level n − 1.

Knowing that two images approximately register at a given resolution, it is pos-
sible to (1) subdivide the images at one level higher resolution into corresponding
subimages and (2) refine the registration parameters using information within corre-
sponding subimages. Subdivision makes it possible to deal with smaller images and
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have a more focused search. Knowledge about the approximate registration param-
eters makes it possible to find the ultimate registration parameters faster.

Information about the registration of images at level i is used to guide registration
at level i − 1, and the process is repeated until registration at the highest resolution
(level 0) is achieved. Multiresolution is the method of choice when registering im-
ages with local geometric differences. One of the earliest multiresolution methods
to elastically register a CT brain image to a brain atlas was proposed by Bajcsy and
Kovačič [2].

After registering images at the lowest resolution, Likar and Pernuš [29] subdi-
vided the overlap area between the images into four subimages, and the subimages
were registered again to improve registration within the quadrants. The process was
repeated until subimages were small enough that the geometric difference between
local image neighborhoods could be approximated by a rigid transformation. Cen-
ters of corresponding subimages at the bottom level were then used to determine
an elastic transformation function (thin-plate spline) that could globally register the
images. Buerger et al. [7] extended the method of Likar and Pernus to 3-D to register
volumetric thoracic images.

In a multiresolution approach developed by Wu and Goshtasby [60], the images
to be registered are subdivided into corresponding regions based on image content.
In homogenous image areas where change in geometry is unlikely, an image is sub-
divided into large regions while in highly detailed areas where the images are likely
to have local geometric differences, the images are subdivided into smaller regions.
Subdivision is performed using Dirichlet tessellation [6], decomposing an image
into corresponding Voronoi regions. Using the correspondences at one resolution,
the images at one level higher resolution are subdivided into corresponding Voronoi
regions. Then correspondence is established between control points within corre-
sponding regions and the process is repeated until correspondence is established
between points in images at the highest resolution.

An example of image registration by Dirichlet subdivision is given in Fig. 7.10.
The images in Figs. 7.10a and 7.10b show different views of a city downtown. At
the top level (level n), using a small number of corresponding points in the images,
the images are subdivided into Voronoi regions (shown in blue in Fig. 7.10g, h).
At the next higher resolution, correspondence is established between points within
corresponding Voronoi regions and the correspondences are used to subdivide the
images at the next higher resolution (shown in green). The subdivision process is
repeated in this manner from low to high resolution, always keeping the sizes of
corresponding regions small and manageable.

Corresponding Voronoi regions shown in blue, green, red, and black, respec-
tively, show corresponding regions at levels 3, 2, 1, and 0 in the multiresolution
method. At the top level (level 4), a small number of correspondences is obtained.
The correspondences are then used to subdivide the images at level 3 into corre-
sponding Voronoi regions. Level 0 is the bottom level, showing the subdivision of
the original images into corresponding Voronoi regions. By focusing on small re-
gions in images when finding point correspondences, not only is the likelihood of
obtaining incorrect correspondences reduced, the search for the correspondences is
made more efficient.
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Registration of the images in Figs. 7.10a, b by this multiresolution method is
shown in Fig. 7.11. Areas within the convex hull of corresponding control points in
the images are registered. In Fig. 7.11, the reference image is treated as the green
band and the resampled sensed image is treated as the red and blue bands of a color
image. Therefore, areas in the images that register perfectly appear in gray, while in
areas where there is misregistration, green or purple is obtained. Green or purple is
also obtained around the boundaries of tall buildings due to occlusion.

For images that are not very large but have nonlinear geometric differences,
multi-stage methods have been developed. In these methods, first the images are
approximately registered by an affine transformation. Then registration accuracy is
improved by subdividing the image into quadrants and registering each by an affine
transformation [1]. The local affine transformations are then blended to create a
global transformation and register the images nonrigidly. Martín et al. [35] achieved
nonrigid registration in this manner by using local affine transformations to register
individual bones in hand radiographs and then using a weighted sum of the affine
transformations to register entire radiographs.

The multiresolution approach has also been used to register images with only
global geometric differences. The aim in such cases has been to achieve a higher
speed in registration. At a coarse resolution, the approximate translational [20, 47,
56] and rotational [21, 42] differences between the images are determined and the
parameters are refined using information in higher resolution images.

11.3 Optimization-Based Registration

A registration may be considered optimal if it maximizes a measure of similarity
or minimizes a measure of dissimilarity between the images. In an optimization-
based registration, it is required to (1) define the similarity/dissimilarity measure,
(2) find initial parameters that approximately register the images, and (3) develop
an algorithm that takes the initial registration to the final one.

A proper measure of similarity/dissimilarity between two images can be chosen
by knowing some properties of the images. For instance, if the images are in the
same modality, cross-correlation coefficient may be used to measure the similarity
between images and sum of squared intensity differences may be used to measure
the dissimilarity between images. If the images are in different modalities, mutual
information may be used as the similarity measure and joint entropy may be used as
the dissimilarity measure to quantify the degree of match between two images.

The initial transformation parameters may be specified interactively or deter-
mined automatically. An interactive method allows the user to drag one image over
the other and approximately align them. An automatic method will achieve the same
without user interaction. For example, if the images are in the same modality, initial
registration can be achieved by aligning the principal axes of the images as outlined
in Sect. 11.1. If the images are in different modalities, the entire parameter space
can be searched with relatively large steps to find the best approximate registration
and use that as the initial registration.
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The initial registration parameters are then refined iteratively until optimal
registration is reached. The refinement step involves measuring the similar-
ity/dissimilarity between registered images and revising the registration parame-
ters in such a way that similarity is increased or dissimilarity is decreased at each
iteration.

For instance, if the images to be registered are related by a rigid transformation,
there are 3 parameters to be estimated: translation along the x-axis, translation along
the y-axis, and rotation about the origin. The 3 registration parameters are used to
create a 3-D digital space where the initial registration parameters represent a point
in that space. Starting from the initial point, the similarity/dissimilarity between
images when registered using the parameters at each of the 26 neighbors of the
initial point is calculated and the parameters of the neighbor producing the highest
similarity or lowest dissimilarity are chosen to represent the refined parameters. The
refinement process is continued until no more refinement is possible.

Rather than examining all neighbors of a point in the parameter space to re-
fine the registration parameters, a steepest gradient-descent method may be used to
refine the parameters. A gradient-descent method relies on past search history to
guess future registration parameters without examining all possible values. Maes
et al. [31] and Zhu [62] used a gradient-based method [43] to find optimal param-
eters to register multimodality images. Maes et al. [32, 33] compared a number
of gradient-based and non-gradient-based multiresolution methods, finding that the
Levenberg-Marquardt [27, 34] algorithm performs the best when using mutual in-
formation as the similarity measure to register MR and CT brain images. A review
of gradient-descent methods in image registration has been provided by Cole-Rode
and Eastman [11].

The measure to be optimized depends on the similarity/dissimilarity used to de-
termine the degree of match between the images. Maes et al. [31] used mutual
information as the similarity measure, while Bajcsy and Kovačič [2] used cross-
correlation coefficient as the similarity measure. If feature points are available in
images, Hausdorff distance [48] between the points may be used as a measure of
dissimilarity between images. Rather than optimizing the similarity between reg-
istered images, Chen et al. [8] optimized a measure of fusion between registered
images through expectation maximization.

Jenkinson and Smith [25] found that local search for the optimal registration pa-
rameters in a multiresolution scheme may not find globally optimal parameters and
suggested a two-step approach to the problem. In the first step, a fast local optimizer,
such as Powell’s optimizer [43], is used to find the initial registration parameters.
In the second step, the transformation parameters are perturbed to escape a possible
local minimum and reach the global optimum.

To achieve a globally optimal registration, simulated annealing [55] may be used.
Simulated annealing perturbs the parameters in a stochastic manner to avoid con-
verging to a local optimum. An evolutionary algorithm may be used to achieve the
same. Winter et al. [58] developed an evolutionary registration algorithm that per-
formed better than gradient-based optimization methods in both speed and precision
when registering CT and ultrasound images of the spine.
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Fig. 11.4 (a) Region boundaries in the reference image. (b) Distance transform of (a). (c) Region
boundaries in the sensed image. (d) Distance values in (b) coinciding with the boundary pixels
in (c). As (c) is moved over (b), the distance values in (b) coinciding with the boundary pixels
in (c) change

Of similar nature are genetic algorithms that search for the registration parame-
ters globally. A genetic registration algorithm has been proposed by Staib and Lei
[51] that first identifies promising areas of the search space very quickly. Then it
searches for the globally optimal solution in finer steps. The rate of convergence
of this algorithm near the solution is very slow though. Therefore, after finding the
most promising regions of the parameter space, the search is switched to a gradient-
based locally convergent method. By combining the global nature of the genetic
algorithm and the high speed of the gradient-based search algorithm, Press et al.
[43] developed a fast globally optimal registration method.

11.4 Boundary Registration

In the presence of outliers or a difference in the modality of images, it may not
be possible to register the images using their intensities. If boundaries of the same
objects can be determined in the images, the images can be registered using their
boundaries. When the images have only translational and rotational differences, the
principal axes of the boundaries can be used to register the images as outlined in
Sect. 11.1. If the same boundaries are not detected in the images, the principal axes
method will not be able to register the images.

When region boundaries in one image are a subset of region boundaries in
another image, a more robust registration method is chamfer matching. Chamfer
matching involves converting the boundary images into intensity images with the
intensity at a pixel showing the distance of that pixel to the boundary pixel closest
to it. The process is known as distance transform computation [12].

An example showing conversion of a boundary image to a distance image is
given in Fig. 11.4. Image (b) shows the distance transform of boundary image (a).
The value at a pixel in (b) is equal to the Euclidean distance of that pixel to the
boundary pixel in (a) closest to it. Suppose image (c) shows region boundaries of
another image of the same scene. Then, by translating and rotating image (c) over
image (a), and determining the sum of the distances of points in (a) closest to points
in (c), the degree of match between the two images can be measured.
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This involves finding for each boundary pixel in (c) the boundary pixel in (a)
closest to it and adding such distances over all boundary pixels in (c). If the distance
transform of (a) is available, as shown in (b), this sum can be calculated very ef-
ficiently by simply adding the intensities in (b) that coincide with boundary pixels
in (c). Therefore, as (c) is moved over (b), the sum of intensities coinciding with the
boundary pixels in (c) is determined. The translation and rotation parameters that
produce the smallest such sum determine the best rigid parameters registering the
images.

Boundary registration was called chamfer matching by Barrow et al. [3]. Borge-
fors [4] provided an efficient means for calculating approximate Euclidean distances
and extended it to 3-D for registration of volumetric images [5]. Levin et al. [28],
Pelizzari et al. [39], and Van Herk and Kooy [54] used chamfer matching to register
volumetric images using bounding surfaces of rigid bodies in images, and Kozinska
et al. [26] used the Levenberg-Marquardt algorithm [34] to search for the optimal
registration parameters more efficiently.

Davatzikos et al. [14, 15] used a length-preserving energy minimizing contour
to delineate the outer cortical boundaries in two images. Correspondence was es-
tablished between points in the boundary images by aligning the contours at a small
number of points manually and letting the remaining points fall into correspondence
using their distances to the selected points. The correspondences were then used to
nonlinearly transform one image to align with the other.

If all boundaries are closed, rather than Euclidean distances, signed Euclidean
distances may be used to reduce the number of local minima in the search domain
and enable registration of more complex boundaries. Distance of a point inside a
boundary to the boundary point closest to it is given a positive (negative) value,
while distance of a point outside the boundary to the boundary point closest to it is
given a negative (positive) value. This reduces inside/outside ambiguity and enables
a quicker search for the registration parameters. When signed distances are used,
rather than moving a boundary over a distance image, one signed distance image
is moved over the other to locate the best-match position and find the registration
parameters. Masuda [36] used signed distances to rigidly register range images in
this manner.

Note that the edges in (c) should be a subset of the edges in (a). If the images
contain many boundaries, one of the boundaries in one image may be chosen and
searched for in another image. The obtained transformation can then be used to
verify other boundaries in the images and ensure that the same transformation aligns
other boundaries in the images.

11.5 Model-Based Registration

In certain applications, intensities in the images to be registered are so different
that traditional similarity/dissimilarity measures cannot find an initial or approxi-
mate registration of the images. In such a situation, additional information about the
images may be used to guide the registration.
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One form of information is the model of the object or objects in the images. For
instance, the shape of the human skull in a brain CT image, the shape of myocardial
walls in a cardiac MR image, or the shape of ribs in a CT chest image is known.
This shape information may be used to guide the registration and make sure that the
shape of interest in the images align. A model-based method can use information
about the shapes of objects in images to verify the correctness of a registration.

Constraints have been used to guide registration also. Giessen et al. [53] used the
fixed distances between carpal bones that slide against each other as the constraint
to achieve nonrigid registration of wrist joint images while preserving the rigidity
of individual bones.

Symmetry can be used as a constraint to guide the registration also. The human
body is symmetric for the most part. For example, when registering brain images,
the registration parameters for the left and right sides of the brain should be similar.
If similar parameters are not obtained, steps should be taken to guide the process to
achieve a more symmetric result.

Certain images have strong orientational information. For instance, images of
indoor and outdoor scenes often contain a large number of lines. Images of build-
ings contain lines that are either nearly parallel or nearly normal to each other. If
histograms of gradient directions in such images are obtained, dominant peaks will
be observed that enable estimation of initial registration parameters and facilitate a
search for the optimal parameters.

11.6 Adaptive Registration

An adaptive registration method has access to a collection of tools and uses infor-
mation about the geometric and intensity differences between the images to choose
the right tools to register the images. Image information may be provided by the
user or determined automatically. For instance, the user may let the system know
that the images to be registered are of the same modality, they represent different
views of a relatively flat scene, or they contain a large number of lines.

An adaptive registration method chooses a sequence of increasingly more pow-
erful but less efficient tools. Initially, the fastest tools are tested, and if they fail, the
next fastest tools are used and the process is continued until tools are chosen that
successfully register the images. Such systems, by utilizing the outcomes of various
tools, can learn the characteristics of the given images and finally choose the tools
that can effectively register the images.

In a registration method proposed by Park et al. [37], the number of control points
used to register two images is adapted to the geometric difference between the im-
ages. Initially, a small number of corresponding points is used to register the images
with thin-plate spline [17, 23]. Then the quality of registration is evaluated using
mutual information and additional control points are selected in areas where reg-
istration error exceeds a prespecified tolerance. The process is repeated until local
registration error within the image domain falls below the required tolerance.
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Fig. 11.5 Forward and
backward resampling to
calculate RMSE

If parts of two images are related rigidly while the other parts are related non-
rigidly, the transformation function that is used to register the images should respond
to different parts of the images differently. A transformation function defined by Lit-
tle et al. [30] provides this functionality. It registers bones in the images rigidly while
registering the soft tissues nonrigidly.

Rohr et al. [46] achieved simultaneous rigid and nonrigid registration by revis-
ing the formulation for thin-plate spline so it could assume desired gradients at the
interpolating points. Gradients at the boundaries of rigid bodies were determined
from the relation between corresponding rigid regions in the images. Then by re-
quiring the nonrigid transformation to assume specified gradients at boundaries of
rigid regions, rigid and nonrigid transformations are smoothly joined to register two
images, part rigidly and part nonrigidly.

11.7 Evaluation of Registration Methods

Suppose the transformation function to register image S to image R is f = (fx, fy)

(Fig. 11.5). fx and fy are the two components of transformation f. Knowing f,
for any point p = (x, y) in image R, we can determine the corresponding point
P = (X,Y ) in image S from

P = f(p). (11.24)

Now, suppose the images are switched and transformation g that registers image
R to image S is determined so that given any point in S we can estimate the location
of the corresponding point in image R. Therefore, given point P in S we can find its
correspondence in image R from

p′ = g(P). (11.25)

Substituting P from (11.24) into (11.25), we obtain

p′ = g
(
f(p)

)
. (11.26)

If registration did not include any errors, points p and p′ would coincide. At the
presence of inaccuracies, points p and p′ will be displaced with respect to each other,
and the distance between them will measure registration error. The closer points p
and p′ are, the more accurate the registration will be. If N control points in image
R after forward transformation by f fall inside image S and then after backward
transformation with g fall inside image R, then

RMSE =
{

1

N

N∑

i=1

∥
∥pi − g

(
f(pi )

)∥
∥2

} 1
2

(11.27)
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Fig. 11.6 Forward and
backward transformation to
calculate AAID

and

MAX = N
max
i=1

∥
∥pi − g

(
f(pi )

)∥
∥, (11.28)

respectively, quantify root-mean-squared error (RMSE) and maximum error (MAX)
in registration.

If the images are in the same modality and corresponding points in the images
have the same intensity, another measure that can be used to quantify registration
error is the intensity difference between the reference image and its transformed
version, first to register with the sensed image and then back to register with itself.
Therefore, if the intensity at point p in the reference image is R(p) and if point p
in image R corresponds to point P in image S, then transforming image R to align
with image S will create an image R′ that has the geometry of image S but has the
intensities of image R (Fig. 11.6).

Let’s denote the intensity at P in this image by R′(P). Now since transformation
f registers image S to image R, and image R′ has the same geometry as image S, we
can use f to register image R′ to image R. Suppose image R′ after transformation
to register with image R is denoted by R′′ (Fig. 11.6). Then, if the registration is
perfect, we obtain R = R′′ in the overlap area between images R and S. If regis-
tration contains errors, the images will be locally shifted with respect to each other.
The smaller the local shift between the images, the smaller the intensity difference
between R and R′′ is expected to be.

Therefore,

AAID = 1

N

N∑

i=1

∣
∣R(pi ) − R′′(pi )

∣
∣ (11.29)

can be used to represent the average absolute intensity difference between the refer-
ence image and its resampled version after a forward transformation followed by a
backward transformation. Christensen et al. [10] have referred to this error measure
as the inverse consistency error.

Note that AAID is meaningful only when the images are in the same modality.
Otherwise, a smaller AAID may not necessarily imply a more accurate registration.
When the images are in different modalities, the joint-probability density (JPD) of
the images contain information about the quality of registration. If the registration
is accurate, intensities of corresponding pixels in the images will form a JPD that
contains a narrow band. However, if the registration is not accurate, the obtained JPD
will contain a wider distribution. Measures that quantify the spread of a probability
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Fig. 11.7 (a), (b) Two bands of a Landsat image of the Tokyo Bay. (c) The JPD of the images.
(d)–(f) JPDs of image (b) when shifted with respect to image (a) by (1,1), (2,2), and (3,3) pixels,
respectively

distribution are joint entropy and joint energy. Denoting joint entropy by P and joint
energy by E, we have

P = −
255∑

i=0

255∑

j=0

pij log2 pij , (11.30)

E =
255∑

i=0

255∑

j=0

p2
ij . (11.31)

The smaller the P (the larger the E) is, the better the registration will be. These
two measures can be used to quantify registration accuracy when the images are in
the same modality or in different modalities. Both measures carry similar informa-
tion. Therefore, if one is used, use of the other will be redundant.

An example demonstrating use of these measures in quantifying registration ac-
curacy is given in Fig. 11.7. (a) and (b) show two bands of a Landsat image of the
Tokyo Bay. These images are perfectly registered. The JPD of the images is shown
in (c). Shifting image (b) with respect to image (a) by (1,1), (2,2), and (3,3) pixels
changes the JPD to those shown in (d)–(f), respectively. The entropies of the JPDs
in (c)–(f) are 8.1110, 9.2638, 9.4224, and 9.4887, while the energies of the same
JPDs are 0.00149, 0.00101, 0.00083, and 0.00073, respectively. We see that as mis-
registration between the images increases, their joint entropy increases, while their
joint energy decreases.
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RMSE, AAID, P , and E are overall measures of registration accuracy/error. It is
not clear which component of a registration method is causing most of the errors. To
determine the weakest component, it is necessary to evaluate each component sep-
arately. The components represent the tools that build the method. They include a
point detector, a point descriptor or feature extractor, a point matcher, and a transfor-
mation function. Evaluation of each tool was mentioned in the respective chapters.
If an image registration method is found not to provide sufficient accuracy for a par-
ticular application, tools representing the weaker components may be replaced with
stronger ones to achieve a higher registration accuracy.

In addition to accuracy, repeatability is an important performance measure. How
stable is a method under noise? Can the same accuracy be achieved when the method
is applied to different images of the same type? For instance, having developed
a method for registering MR and PET brain images of the same patient, what is
the mean and variance in registration error that can be expected when applying the
method to a new set of images? Therefore, having designed a method, the variances
of RMSE, AAID (if the images are in the same modality), and P and E (if the images
are in different modalities) should be determined on a number of representative
images. These variances characterize the repeatability of the method, which shows
the degree of stability or reliability of the method.

Although the above measures were defined over the entire image domain, to
obtain a more localized measure of error, the measures can be calculated within
windows of interest in the image domain. For instance, the image domain may be
subdivided into windows of size d × d pixels and the error measures can be calcu-
lated within those windows. This process will make it possible to determine vari-
ation in errors across the image domain. This variation can be used as a feedback
to an adaptive registration method and improve registration accuracy in neighbor-
hoods that have errors higher than a prespecified tolerance. Registration accuracy in
a neighborhood can be improve by, for example, finding more control points in that
neighborhood.

Measures RMSE, AAID, P , and E use the reference image as the gold standard.
The reference image is first transformed to the geometry of the sensed image, then
it is transformed back to itself. The process involves carrying out transformation
twice. Therefore, the estimated registration error is normally higher than the actual
error, which involves registration only in the forward direction.

Arguing that in an ideal registration forward and backward transformations are
the inverse of each other, Christensen and Johnson [9] found the transformation
function for the registration of two images in such a way that the forward transfor-
mation was the inverse of the backward transformation. This constraint, however,
should be used with care, as error in one direction may force error in the opposite
direction to satisfy the inverse constraint.

Attempts to create gold standards for the purpose of measuring registration accu-
racy have been made. Rohlfing et al. [45] and Strother et al. [52] used a stereotactic
frame with fiducial markers that were visible in both images as the gold standard.
Fitzpatrick and West et al. [18, 57] screwed fiducials to the skull of a patient and
used the images of the fiducials as the gold standard, and Penney et al. [40] screwed
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fiducials to the femur and pelvis of a cadaver and used their images as the gold
standard.

Attempts have also been made to find bounds on registration accuracy in well-
defined situations. Robinson and Milanfar [44] determined the bounds on registra-
tion accuracy of gradient-based methods and suggested improvement in registration
accuracy in multiresolution methods. Yetik and Nehorai [61] found bounds on the
accuracy of point-based and intensity-based registration methods when the images
were related by the affine transformation.

If fiducial markers are fixed to a rigid frame and the locations of corresponding
fiducials in images have negligible positional errors, rigid registration error can be
determined by (1) registering the images without the fiducials, (2) using the obtained
transformation to map the fiducials in one image to the space of the other, (3) de-
termining the distance between corresponding fiducials, and (4) using the mean and
maximum of distances between corresponding fiducials to quantify registration ac-
curacy. The fiducial markers take away user bias in measurement of registration
accuracy.

The gold standard proposed by Schnabel et al. [50] is a finite-element-based
system that learns the characteristics of the medium being imaged and evaluates
the accuracy of a registration by taking the deformation obtained in the medium
by registration and comparing it against the deformation predicted by the system.
The discrepancy between the predicted and the estimated deformations is used as a
metric to quantify registration accuracy. This gold standard has been found effective
in validating registration of elastic breast images that lack clearly defined features.

A gold standard makes objective evaluation of a registration method possible as it
takes user bias out of the registration process by providing the true locations of a set
of corresponding points in the images. In certain applications, however, it is critical
to include an expert in the process. Due to noise, outliers, and other image differ-
ences, quantifiable measures may not reliably determine registration accuracy and
an expert observer, such as a radiologist, is required to judge the outcome of a reg-
istration and decide whether the registration is suitable for a diagnostic or treatment
task. Fitzpatrick et al. [19] considered visual assessment when registration error was
high. Pietrzyk et al. [41] studied inter-individual and intra-individual variability in
visual registration assessment and concluded that influence of subjectivity in visual
assessment is not significant.

Visual evaluation by an expert alone may be used to qualitatively measure reg-
istration accuracy. Although subjective in nature, this is the method of choice to
accept or reject the result of an automatic registration method. Various visual aides
to facilitate visual evaluation [22] or assist [13] the quantitative assessment of reg-
istration methods have been developed. Woods [59] has discussed the role of visual
inspection in image registration and has reviewed the options and strategies that a
user has to validate the accuracy of an image registration method.

Speed is another important performance measure. If sufficient accuracy can be
achieved with different tools, the tools with the highest speed should be chosen to
build the system. Computational complexity of the tools used in image registration
were discussed in the respective chapters.
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Glossary

Affine transformation A transformation that is a combination of linear transfor-
mation and translation. Under the affine transformation, parallel lines remain par-
allel.

Control point A locally unique point in the reference or sensed image. A control
point can be the point where two or more lines join, the centroid of a region or a
blob, or a locally peak curvature point along a contour in an image. Control point
is also referred to as critical point, interest point, key point, extremal point, anchor
point, landmark, tie point, corner, vertex, and junction in the literature.

Geometric feature A feature that characterizes the geometric layout of intensities
in an image or subimage.

Axis of minimum inertia Given a set of points, the axis of minimum inertia of
the points is a line that (1) passes through the center of gravity of the points and
(2) produces the smallest sum of squared distances of the points to it.

Dissimilarity measure Given two sequences of numbers, the dissimilarity measure
between the sequences determines the independency between the sequences. The
more independent the sequences the higher will be the dissimilarity measure. Dis-
similarity measure is also referred to as distance measure.

Metric dissimilarity Given two sequences of numbers, the dissimilarity measure
between the sequences becomes a metric if the dissimilarity measure between the
sequences increases as the sequences become more independent.

Metric similarity Given two sequences of numbers, the similarity measure be-
tween the sequences becomes a metric if the similarity measure increases as the
dependency between the sequences increases.

Reference image The first image in a set of two used in image registration. This
is the image that is kept unchanged and used as the reference. The second image,
known as the sensed image, is geometrically transformed and resampled to align
with the reference image. Reference image is also known as source image.

Sensed image This is the second image in a set of two used in image registration. It
is a newly sensed image that should be geometrically transformed to spatially align
with the first image, known as the reference image. Sensed image is also known as
target image and test image.
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Similarity measure Given two sequences of numbers, the similarity measure be-
tween the sequences determines the dependency between the sequences. The more
dependent the sequences are the higher will be the similarity measure between
them.

Statistical feature A feature that is computed from the first-order or second-order
statistic of an image. A histogram represents a first-order statistic and a co-
occurrence matrix represents a second-order statistic.



Index

A
Absolute center contrast, 185
Adaptive registration, 426
Adaptive transformation functions, 353
Affine transformation, 346, 435
Affine-invariant descriptor, 227
Algebraic features, 155
Annular-ring sampling geometry, 167
Approximating implicit surface, 382
Average local contrast, 185
Axis of minimum inertia, 435

B
Backward factorial function, 144
Bilinear interpolation, 403
Bilinear resampling, 403
Bispectrum features, 165
Boundary registration, 424
Butterfly subdivision scheme, 367

C
Center contrast, 185
Central moments, 98, 138
Chamfer matching, 424
Characteristics of dissimilarity measures, 46
Characteristics of similarity measures, 46
Co-occurrence matrix, 131

contrast of, 132
correlation of, 132
energy of, 132
entropy of, 132
homogeneity of, 133

Coarseness features, 197
Color features, 188
Compactly supported radial basis functions,

358
Compactly supported weight functions, 363

Complex moments, 151
Composite descriptors, 233
Concordance, 17
Contrast context histogram, 228
Control point, 3, 67, 435
Correlation coefficient, 9
Correlation ratio, 20
Cross-power spectrum, 10
Cubic convolution resampling, 404
Cubic spline resampling, 406
Cylindrical transformation, 348

D
Descriptor, 219

affine-invariant, 227
ASIFT, 227
CCH, 228
composite, 233
contrast context histogram, 228
dissimilarity, 234
filtering-based, 231
GLOH, 226
histogram-based, 220
moment-based, 232
OSID, 228
PCA-SIFT, 227
RIFT, 230
shape context, 227
SIFT, 222
similarity, 234
spin-image, 229
Weber, 222
WLD, 222

Deterministic sign change, 14
Deviation from mean, 184
Difference of Gaussian, 78
Difference of low-pass filters, 79
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Differential features, 182
Directionality features, 199
Discordance, 17
Dissimilarity between descriptors, 234
Dissimilarity measure, 7, 435
Distance measure, 435
Distance transform, 424
DoG, 78
DOLP, 79
Dominant intensity, 185

E
Early bail-out test, 271
Energy of JPD, 22
Estimating rotation parameter, 236
Estimating scale parameter, 236
Estimator

least median of squares, 330
least trimmed squares, 330
LMS, 330
LTS, 330
M, 324
maximum likelihood, 324
OLS, 318
ordinary least-squares, 318
R, 332
rank, 332
repeated median, 328
RM, 328
S, 327
scale, 327
weighted least-squares, 322
WLS, 322

Euclidean transformation, 345
Evaluation of registration, 427
Exclusive f -information, 41
Explicit transformation functions, 353
Extrema-based features, 196

F
F-information measures, 31
False-positive rate, 279
Feathering, 411
Feature extraction, 123
Feature selection, 249

branch-and-bound algorithm, 255
min-max algorithm, 252
plus l take away r algorithm, 254
sequential backward selection algorithm,

253
sequential forward selection algorithm, 253

Features
algebraic, 155
bispectrum, 165
coarseness, 197
color, 188
differential, 182
directionality, 199
extrema-based, 196
filter response, 173
first-order statistical, 125
fractal dimension, 190
frequency-domain, 161
Gabor filter, 175
gray-level difference, 130
Hessian-matrix, 159
inertia-matrix, 157
information-theoretic, 193
power-spectrum, 167
psychologically inspired, 197
run-length, 135
scale-trace, 195
spatial domain, 184
statistical, 125
steerable filter, 173
structural, 137
symmetry, 199
trace-transform, 195
wavelet transform, 169

Filter algorithms, 249
Filter responses, 173
Filtering-based descriptors, 231
First-order statistic, 125
Fourier transform, 163
Fractal dimension, 190
Frequency-domain entropy, 168
Frequency-domain features, 161

G
Gabor filter responses, 175
Gaussian–Hermite moments, 145
Generalized Shannon mutual information, 26
Geometric feature, 137, 435
Geometric hashing, 273
Geometric moments, 138
GLOH, 226
Gradient location and orientation histogram,

226
Graph-based point pattern matching, 273
Gray-level spatial-dependence, 131
Greatest deviation, 18

H
Hadamard transform, 163
Harris detector, 82
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Hessian-matrix features, 159
Heterogeneous descriptors, 247
High-order mutual information, 27
Hilbert transform, 93
Histogram dissimilarity, 221
Histogram features, 125
Histogram similarity, 221
Histogram-based descriptors, 220
Homogeneous descriptors, 219
Homography, 347

I
Image compositing, 410
Image descriptors, 219
Image mosaicking, 410
Implicit transformation functions, 381
Incremental sign distance, 37
Inertia-matrix features, 157
Information-theoretic features, 193
Intensity blending, 411
Intensity mapping, 411
Intensity-mapping-ratio variance, 38
Intensity-ratio variance, 38
Inter-image proximity matrix, 297
Interpolating implicit surfaces, 381
Intra-image proximity matrix, 302
Invariant moments, 98
Inverse consistency error, 428

J
Joint entropy, 27, 40
Joint probability distribution, 22

K
Kendall’s Tau, 17
Krawtchouk moments, 147

L
L1 norm, 32
L2 norm, 34
Laplacian of Gaussian, 78
Least median of squares estimator, 330
Least trimmed squares estimator, 330
Legendre moments, 144
LMS estimator, 330
LoG, 78
Log-polar mapping, 241
Loop subdivision surface, 365
LTS estimator, 330

M
M estimator, 324
Major axis, 416
Manhattan norm, 32

Marginal entropy, 27
Mask correlation responses, 178
Material similarity, 24
Maximum likelihood estimation sample

consensus, 272
Maximum likelihood estimator, 324
Median of absolute differences, 32
Median of square differences, 34
Metric dissimilarity, 7, 435
Metric similarity, 7, 435
Minimum ratio, 15
Minor axis, 417
MLESAC, 272
Model-based registration, 425
Moment-based descriptors, 232
Moments, 98

complex, 151
Gaussian–Hermite, 145
geometric, 138
Krawtchouk, 147
Legendre, 144
Tchebichef, 146
wavelet, 153
Zernike, 148

Monotonicity operation, 60
Moving least-squares, 362
Multiquadrics, 354
Mutiresolution registration, 420
Mutual information, 194

Rényi, 29
Shannon, 26
Tsallis, 30

N
Nearest-neighbor resampling, 402
Normalized mutual information, 28
Normalized square L2 norm, 36

O
OLS estimator, 318
Opponent colors, 226
Optimization-based registration, 422
Ordinal measure, 20
Ordinal spatial intensity distribution, 228
Ordinary least-squares, 318
Orientation correlation, 11

P
Parallel-slit sampling geometry, 168
Parametric Shepard interpolation, 369
Parametric transformation functions, 368
Pearson correlation coefficient, 9
Phase correlation, 11
Piecewise linear transformation function, 364
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Piecewise polynomial transformation function,
363

Point detection methods, 67
Point detector

center contrast-based, 103
correlation-based, 67
curvature-based, 72
edge-based, 69
entropy-based, 96
filtering-based, 92, 101
gradient-based, 80
Harris–Laplacian, 85
Hough transform-based, 87
intensity-based, 103
Laplacian-based, 78
model-based, 70
moment invariant-based, 98
moment-based, 96
pattern recognition-based, 95
sensitivity to blurring, 112
sensitivity to geometric changes, 111
sensitivity to intensity changes, 109
sensitivity to noise, 112
smoothed gradient-based, 103
smoothed intensity-based, 103
symmetry-based, 88
transform domain, 93
uniqueness-based, 72

Point pattern matching, 267
in coarse-to-fine, 306
performance measures, 277
via affine-invariance, 288
via axis of minimum inertia, 291
via clustering, 284
via feature matching, 280
via geometric invariance, 287
via graph matching, 273
via RANSAC, 268, 269
via relaxation labeling, 292
via spectral graph theory, 297

Power-spectrum features, 167
Preemptive RANSAC, 272
Preprocessing operations, 59
Principal axes, 415
Principal component analysis, 337
Progressive sample consensus, 272
Projective transformation, 347
PROSAC, 272
Psychologically inspired features, 197

R
R-RANSAC, 271
Radial basis functions, 354
Radially symmetric resampling, 408

Random sample and consensus, 268
Randomized RANSAC, 271
Rank distance, 39
Rank estimator, 332
Rank transform, 60
RANSAC, 268
Reference image, 1, 435
Reflexivity, 7
Registration

adaptive, 426
boundary, 424
coarse-to-fine, 420
evaluation, 427
hierarchical, 420
methods, 415
model-based, 425
multiresolution, 420
optimization-based, 422
principal axes, 415
pyramidal, 420

Relative joint entropy, 26
Rényi entropy, 29
Rényi mutual information, 29
Repeated median estimator, 328
Resampling, 401

bilinear, 403
cubic convolution, 404
cubic spline, 406
nearest-neighbor, 402
radially symmetric, 408

R estimator, 332
Rigid transformation, 345
RM estimator, 328
Rotation estimation, 237
Rotation-invariant feature transform, 230
Run-length matrix, 135

gray-level nonuniformity, 136
long-runs emphasis, 136
run percentage, 136
run-length nonuniformity, 136
short-runs emphasis, 136

S
S estimator, 327
Scale estimation, 237
Scale estimator, 327
Scale-invariant feature transform, 79, 222
Scale-trace features, 195
Second moment matrix, 157
Second-order statistic, 125
Second-order statistical features, 131
Sensed image, 1, 435
Shannon entropy, 27, 40
Shannon mutual information, 26
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SIFT, 79
SIFT descriptor, 222
Similarity between descriptors, 234
Similarity measure, 7, 436
Similarity transformation, 345
Singular values, 155
Soft clustering, 238
Spatial-domain features, 184
Spearman rank correlation, 16
Spearman’s Rho, 16
Spherical transformation, 350
Spin image, 229
Square gradient matrix, 81
Square L2 norm, 34
Statistical feature, 436
Steerable filter responses, 173
Stochastic sign change, 13
Structural features, 137
Surface spline, 356
Symmetry features, 199

T
Tanimoto measure, 12
Tchebichef moments, 146
Top point, 77
Trace-transform features, 195
Transformation function, 343

adaptive, 353
affine, 346
compactly supported radial, 358
cylindrical, 348
explicit, 353
for images with sharp edges, 376
implicit, 381
moving least-squares, 362

multiquadric, 354
parametric, 368
parametric Shepard interpolation, 369
peicewise polynomial, 363
piecewise linear, 364
projective, 347
rigid, 345
similarity, 345
surface spline, 356
translation, 344
weighted linear approximation, 375
weighted linear interpolation, 375

Transformation of the Cartesian coordinate
system, 346

Triangle inequality, 7
True-positive rate, 279
Tsallis entropy, 30
Tsallis mutual information, 30

W
Wavelet moments, 153
Wavelet transform coefficients, 169
Weber local descriptor, 222
Wedge sampling geometry, 167
Weighted least squares estimator, 322
Weighted linear approximation, 375
Weighted linear interpolation, 375
WLD descriptor, 222
WLS estimator, 322
Wrapper algorithms, 252

Z
Zernike moments, 148
Zero surface, 381
Zero-crossing surface, 381
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