
Chapter 16
Fast Nonnegative Tensor Factorization
with an Active-Set-Like Method

Jingu Kim and Haesun Park

Abstract We introduce an efficient algorithm for computing a low-rank nonneg-
ative CANDECOMP/PARAFAC (NNCP) decomposition. In text mining, signal
processing, and computer vision among other areas, imposing nonnegativity con-
straints to the low-rank factors of matrices and tensors has been shown an effective
technique providing physically meaningful interpretation. A principled methodol-
ogy for computing NNCP is alternating nonnegative least squares, in which the
nonnegativity-constrained least squares (NNLS) problems are solved in each iter-
ation. In this chapter, we propose to solve the NNLS problems using the block
principal pivoting method. The block principal pivoting method overcomes some
difficulties of the classical active method for the NNLS problems with a large num-
ber of variables. We introduce techniques to accelerate the block principal pivot-
ing method for multiple right-hand sides, which is typical in NNCP computation.
Computational experiments show the state-of-the-art performance of the proposed
method.

16.1 Introduction

Tensors are mathematical objects for representing multidimensional arrays. Tensors
include vectors and matrices as first-order and second-order special cases, respec-
tively, and more generally, tensors of N th-order can represent an outer product of
N vector spaces. Recently, decompositions and low-rank approximations of tensors
have been actively studied and applied in numerous areas including signal process-
ing, image processing, data mining, and neuroscience. Several different decomposi-
tion models, their algorithms, and applications are summarized in recent reviews by
Kolda and Bader [19] and Acar and Yener [1].
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In this chapter, we discuss tensors with nonnegative elements and their low-
rank approximations. In particular, we are interested in computing a CANDE-
COMP/PARAFAC decomposition [5, 11] with nonnegativity constraints on fac-
tors. In the context of matrices, when data or signals are inherently represented by
nonnegative numbers, imposing nonnegativity constraints to low-rank factors was
shown to provide physically meaningful interpretation [21, 26]. Widely known as
nonnegative matrix factorization (NMF), it has been extensively investigated and
utilized in areas of computer vision, text mining, and bioinformatics. In higher-
order tensors with nonnegative elements, tensor factorizations with nonnegativity
constraints on factors have been developed in several papers [4, 6, 24, 29]. Interest-
ingly, some method for finding nonnegative factors of higher-order tensors, such as
[6], were introduced even before NMF. Recent work dealt with properties such as
degeneracy [23] and applications such as sound source separation [9], text mining
[2], and computer vision [27].

Suppose a tensor of order three, X ∈ R
M1×M2×M3 , is given. We will introduce

main concepts using this third-order tensor for the sake of simplicity, and will
deal with a tensor with a general order later. A canonical decomposition (CAN-
DECOMP) [5], or equivalently the parallel factor analysis (PARAFAC) [11], of X
can be written as

X =
K∑

k=1

ak ◦ bk ◦ ck, (16.1)

where ak ∈ R
M1 , bk ∈ R

M2 , ck ∈ R
M3 , and “◦” represents an outer product of vec-

tors. Following [19], we will call a decomposition in the form of Eq. (16.1) the CP
(CANDECOMP/PARAFAC) decomposition. A tensor in a form of a◦b◦ c is called
a rank-one tensor: In the CP decomposition, tensor X is represented as a sum of
K rank-one tensors. A smallest integer K for which Eq. (16.1) holds with some
vectors ak , bk , and ck for k ∈ {1, . . . ,K} is called the rank of tensor X . The CP
decomposition can be more compactly represented with factor matrices (or loading
matrices), A = [a1 · · ·aK ], B = [b1 · · ·bK ], and C = [c1 · · · cK ], as follows:

X = �A,B,C�,

where �A,B,C� = ∑K
k=1 ak ◦ bk ◦ ck (see [19]). With a tensor X of rank R, given

an integer K ≤ R, the computational problem of the CP decomposition is finding
factor matrices A, B, and C that best approximates X .

Now, for a tensor X with only nonnegative elements, we are interested in recov-
ering factor matrices A, B, and C that also contain only nonnegative components.
Using the Frobenius norm as a criterion for approximation, the factor matrices can
be found by solving an optimization problem:

min
A,B,C

∥∥X − �A,B,C�
∥∥2

F
s.t. A,B,C ≥ 0. (16.2)

Inequalities A,B,C ≥ 0 denote that all the elements of A,B, and C are nonnegative.
The factorization problem in Eq. (16.2) is known as nonnegative CP (NNCP). The



16 Fast Nonnegative Tensor Factorization with an Active-Set-Like Method 313

computation of NNCP is demanding not only because many variables are involved
in optimization but also because nonnegativity constraints are imposed on the fac-
tors. A number of algorithms have been developed for NNCP [4, 10, 15, 29], and
we will review them in Sect. 16.2.

In this chapter, extending our prior work on NMF [17], we present a new and
efficient algorithm for computing NNCP. Our algorithm is based on alternating
nonnegativity-constrained least squares (ANLS) framework, where in each itera-
tion the nonnegativity-constrained least squares (NNLS) subproblems are solved.
We propose to solve the NNLS problems based on the block principal pivoting
method [12]. The block principal pivoting method accelerates the traditional active-
set method [20] by allowing exchanges of multiple variables between index groups
per iteration. We adopt ideas that improve the block principal pivoting method in
multiple right-hand sides [17].

The remaining of this chapter is organized as follows. In Sect. 16.2, related work
is reviewed. In Sect. 16.3, the ANLS framework is described, and in Sect. 16.4, the
block principal pivoting method is introduced as well as ideas for improvements for
multiple right-hand sides. In Sect. 16.5, we describe how the proposed method can
be used to solve regularized and sparse formulations. In Sect. 16.6, experimentation
settings and results are shown. We conclude this chapter in Sect. 16.7.

Notations Let us summarize some notations used in this chapter. A lowercase or
an uppercase letter, such as x or X, is used to denote a scalar; a boldface lowercase
letter, such as x, is used to denote a vector; a boldface uppercase letter, such as X,
is used to denote a matrix; and a boldface Euler script letter, such as X , is used
to denote a tensor of order three or higher. Indices typically grow from 1 to its
uppercase letter: For example, n ∈ {1, . . . ,N}. Elements of a sequence of vectors,
matrices, or tensors are denoted by superscripts within parentheses: X(1), . . . ,X(N).
For a matrix X, xi denotes its ith column, and xij denotes its (i, j) component.

16.2 Related Work

Several computational methods have been developed for solving NNCP. Within the
ANLS framework, different methods for solving the NNLS subproblems have been
proposed. A classical method for solving the NNLS problem is the active set method
of Lawson and Hanson [20]; however, applying Lawson and Hanson’s method di-
rectly to NNCP is extremely slow. Bro and De Jong [4] suggested an improved
active-set method to solve the NNLS problems, and Ven Benthem and Keenan [28]
further accelerated the active-set method, which was later utilized in NMF [14] and
NNCP [15]. In Friedlander and Hatz [10], the NNCP subproblems are solved by a
two-metric projected gradient descent method.

In our work of this chapter, we solve the NNLS subproblems using the block
principal pivoting method [12, 17]. The block principal pivoting method is similar
to the active set method in that (1) the groups of zero and nonzero variables are
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explicitly kept track of, and (2) a system of linear equations is solved at each it-
eration. However, unlike the active set method, the objective function value in the
block principal pivoting method does not monotonically decrease. Instead, by ex-
changing multiple variables between variable groups after each iteration, the block
principal pivoting method is much faster than the active set method. Due the rela-
tionship with the active set method, we note the block principal pivoting method as
an active-set-like method.

Numerous other algorithms that are not based on the ANLS framework were
suggested. Paatero discussed a Gauss-Newton method [24] and a conjugate gradi-
ent method [25], but nonnegativity constraints were not rigorously handled in those
work. Extending the multiplicative updating rule of Lee and Seung [22], Welling
and Weber [29] proposed a multiplicative updating method for NNCP. Earlier in
[6], Carroll et al. proposed a simple procedure that focuses on a rank-one approxi-
mation conditioned that other variables are fixed. Recently, Cichocki et al. proposed
a similar algorithm, called hierarchical alternating least squares (HALS), which up-
dates each column of factor matrices at a time [8].

16.3 ANLS Framework

We describe the ANLS framework for solving NNCP. Let us consider the a N th-
order tensor X ∈ R

M1×···×MN and a corresponding factorization problem

min
A(1),...,A(N)

f
(
A(1), . . . ,A(N)

) = ∥∥X − �
A(1), . . . ,A(N)

�∥∥2
F

s.t. A(n) ≥ 0 for n = 1, . . . ,N,
(16.3)

where A(n) ∈ R
Mn×K for n = 1, . . . ,N , and

�
A(1), . . . ,A(N)

� =
K∑

k=1

a(1)
k ◦ · · · ◦ a(N)

k .

In order to introduce the ANLS framework, we need definitions of some tensor
operations. See Kolda and Bader [19] and references therein for more details of
these operations.

Mode-n matricization The mode-n matricization of a tensor X , denoted by X(n),
is a matrix obtained by linearizing all indices except n. More formally, X(n) is a
matrix of size Mn ×∏N

k=1,k �=n Mk , and the (m1, . . . ,mN)th element of X is mapped
to the (mn, I )th element of X(n) where

I = 1 +
N∑

k=1

(mk − 1)Ik, and Ik =
k−1∏

j=1,j �=n

Mj .
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Khatri–Rao product The Khatri–Rao product of two matrices A ∈ R
J1×L and

B ∈ R
J2×L, denoted by A � B, is defined as

A � B =

⎡

⎢⎢⎢⎣

a11b1 a12b2 · · · a1LbL

a21b1 a22b2 · · · a2LbL

...
...

. . .
...

aJ11b1 aJ12b2 · · · aJ1LbL

⎤

⎥⎥⎥⎦ .

Using above notations, the approximation model

X ≈ �
A(1), . . . ,A(N)

�

can be written as, for any n ∈ {1, . . . ,N},
X(n) ≈ A(n) × (

B(n)
)T

, (16.4)

where

B(n) = A(N) � · · · � A(n+1) � A(n−1) � · · · � A(1) ∈ R
(
∏N

k=1,k �=n Mk)×K
. (16.5)

Equation (16.4) is a key relationship that is utilized in the ANLS framework.
The ANLS framework is a block-coordinate-descent method applied to Eq. (16.3).
First, A(2), . . . ,A(N) are initialized with nonnegative components. Then, for n =
1, . . . ,N , the following subproblem is solved iteratively:

minA(n)

∥∥B(n) × (
A(n)

)T − (
X(n)

)T ∥∥2
F

s.t. A(n) ≥ 0.
(16.6)

The convergence property of a block-coordinate-descent method [3] states that if
each subproblem in the form of Eq. (16.6) has a unique solution, then every limit
point produced by the ANLS framework is a stationary point. In particular, if matri-
ces B(n) are of full column rank, each subproblem has a unique solution.

The problem in Eq. (16.6) is in the form of the nonnegativity-constrained least
squares (NNLS) problems, and an efficient algorithm to solve the problem will be
the subject of next section. For now, typical characteristics of the subproblem in Eq.
(16.6) deserves to be noted. Due to the flattening by the Khatri–Rao product, matrix
B(n) in Eq. (16.6) is typically long and thin. Also, as NNCP is often used for low-
rank approximation, matrix (A(n))T in Eq. (16.6) is typically flat and wide. These
properties will be important in designing efficient algorithms for solving Eq. (16.6),
which we now describe.

16.4 Block Principal Pivoting Method

The block principal pivoting method, which we adopt in this work to solve
Eq. (16.6), was earlier proposed by Judice and Pires [12] for a single right-hand
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side case. We will first explain this method and then explain efficient ways to accel-
erate the multiple right-hand side case as proposed in [17].

The motivation of the block principal pivoting method comes from the difficulty
of conventional active set algorithms which occur when the number of variables in-
creases. In the active set method, because typically only one variable is exchanged
per iteration between working sets, the number of iterations until termination heav-
ily depends on the number of variables. To accelerate computation, an algorithm
whose iteration count does not depend on the number of variables is desirable. The
block principal pivoting method manages to do so by exchanging multiple variables
at a time.

For the moment, consider an NNLS problem with a single right-hand side vector:

min
x≥0

‖Vx − w‖2
2 , (16.7)

where V ∈ R
P×Q, x ∈ R

Q×1, and w ∈ R
P×1. The subproblems in Eq. (16.6) are

decomposed to independent instances of Eq. (16.7) with respect to each column
vector of (A(n))T . Hence, an algorithm for Eq. (16.7) is a basic building block of an
algorithm for Eq. (16.6).

The Karush–Kuhn–Tucker (KKT) optimality conditions for Eq. (16.7) are given
as

y = VT Vx − VT w, (16.8a)

y ≥ 0, x ≥ 0, (16.8b)

xqyq = 0, q = 1, . . . ,Q. (16.8c)

We assume that the matrix V has full column rank. In this case, a solution x that
satisfies the conditions in Eqs. (16.8a)–(16.8c) is the optimal solution of Eq. (16.7).

We divide the index set {1, . . . ,Q} into two subgroups F and G where F ∪G =
{1, . . . ,Q} and F ∩G = ∅. Let xF , xG , yF , and yG denote the subsets of variables
with corresponding indices, and let VF and VG denote the submatrices of V with
corresponding column indices. Initially, we assign zeros to xG and yF . Then, by
construction, x = (xF ,xG) and y = (yF ,yG) always satisfy Eq. (16.8c) for any xF
and yG . Now, we compute xF and yG using Eq. (16.8a) and check whether the
computed values of xF and yG satisfy Eq. (16.8b). Computation of xF and yG is
done as follows:

VT
FVFxF = VT

Fw, (16.9a)

yG = VT
G(VFxF − w). (16.9b)

One can first solve for xF in Eq. (16.9a) and use it to compute yG in Eq. (16.9b).
We call the computed pair (xF ,yG) a complementary basic solution.

If a complementary basic solution (xF ,yG) satisfies xF ≥ 0 and yG ≥ 0, then
it is called feasible. In this case, x = (xF ,0) is the optimal solution of Eq. (16.7),
and the algorithm terminates. Otherwise, a complementary basic solution (xF ,yG)
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is infeasible, and we need to update F and G by exchanging variables for which
Eq. (16.8b) does not hold. Formally, we define the following index set:

H = {q ∈ F : xq < 0} ∪ {q ∈ G : yq < 0} (16.10)

and choose a nonempty subset Ĥ ⊂ H. Then, F and G are updated by the following
rules:

F = (
F − Ĥ

) ∪ (
Ĥ∩G

)
, (16.11a)

G = (
G − Ĥ

) ∪ (
Ĥ∩F

)
. (16.11b)

The number of elements in set Ĥ, which we denote by |Ĥ|, represents how many
variables are exchanged per iteration between F and G. If |Ĥ| > 1, then an algo-
rithm is called a block principal pivoting algorithm; if |Ĥ| = 1, then an algorithm is
called a single principal pivoting algorithm. The active set algorithm can be under-
stood as an instance of single principal pivoting algorithms. An algorithm repeats
this procedure until the number of infeasible variables (i.e., |Ĥ|) becomes zero.

In order to speed up the search procedure, one usually uses Ĥ = H, which we
call the full exchange rule. The full exchange rule means that we exchange all vari-
ables of F and G that do not satisfy Eqs. (16.8a)–(16.8b), and the rule accelerates
computation by reducing the number of iterations. However, contrary to the active
set algorithm in which the variable to exchange is carefully selected to reduce the
residual, the full exchange rule may lead to a cycle and fail to find an optimal so-
lution although it occurs rarely. To ensure finite termination, we need to employ a
backup rule, which uses the following exchange set for Eqs. (16.11a) and (16.11b):

Ĥ = {
q : q = max {q ∈ H}}. (16.12)

The backup rule, where only the infeasible variable with the largest index is ex-
changed, is a single principal pivoting rule. This simple exchange rule guarantees
a finite termination: Assuming that matrix V has full column rank, the exchange
rule in Eq. (16.12) returns the solution of Eqs. (16.8a)–(16.8c) in a finite number
of iterations [12]. Combining the full exchange rule and the backup rule, the block
principal pivoting method for Eq. (16.7) that terminates within a finite number of
iterations is summarized in [12].

Now, let us move on to the multiple right-hand side case:

min
X≥0

‖VX − W‖2
F , (16.13)

where V ∈ R
P×Q, X ∈ R

Q×L and W ∈ R
P×L. One can solve Eq. (16.13) by sep-

arately solving NNLS problems for each right-hand side vector. Although this ap-
proach is possible, we will see that there exist efficient ways to accelerate the multi-
ple right-hand side case employing two important improvements suggested in [17].

Observe that the sets F and G change over iterations, and Eqs. (16.9a) and
(16.9b) has to be solved for varying F and G every time. The first improvement
is based on the observation that matrix V, which corresponds to B(n) of Eq. (16.6),
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Algorithm 16.1: Block principal pivoting algorithm for the NNLS with multi-
ple right-hand side vectors. xFl

and yGl
represents the subsets of lth column of

X and Y indexed by Fl and Gl , respectively

1 Input: V ∈R
P×Q,W ∈R

Q×L

2 Output: X(∈R
Q×L) = arg minX≥0 ‖VX − W‖2

F

1: Compute VT V and VT W.
2: Initialize Fl = ∅ and Gl = {1, . . . , q} for all l ∈ {1, . . . ,L}. Set X = 0,

Y = −VT W, α(∈ R
r ) = 3, and β(∈R

r ) = q + 1.
3: Compute xFl

and yGl
for all l ∈ {1, . . . ,L} by Eqs. (16.9a) and (16.9b)

using column grouping.
4: while any (xFl

,yGl
) is infeasible do

5: Find the indices of columns in which the solution is infeasible:
I = {j : (xFj

,yGj
) is infeasible}.

6: Compute Hl for all l ∈ I by Eq. (16.10).
7: For all l ∈ I with |Hl | < βl , set βl = |Hl |, αl = 3 and Ĥl = Hl .
8: For all l ∈ I with |Hl | ≥ βl and αl ≥ 1, set αl = αl − 1 and Ĥl = Hl .

9: For all l ∈ I with |Hl | ≥ βl and αl = 0, set Ĥl by Eq. (16.12).
10: Update Fl and Gl for all l ∈ I by Eqs. (16.11a)–(16.11b).
11: Update xFl

and yGl
for all l ∈ I by Eqs. (16.9a) and (16.9b) using column

grouping.
12: end while

is typically very long and thin. In this case, constructing matrices VT
FVF , VT

Fw,
VT
GVF , and VT

Gw before solving Eqs. (16.9a) and (16.9b) is computationally very
expensive. To ease this difficulty, VT V and VT W can be computed in the beginning
and reused in later iterations. One can easily see that VT

FVF , VT
Fwl , VT

GVF , and
VT
Gwl , l ∈ {1, . . . ,L}, can be directly retrieved as a submatrix of VT V or VT W.

Because the column size of V is small, storage needed for VT V and VT W is also
small.

The second improvement involves exploiting common computations in solving
Eq. (16.9a). Here we simultaneously run the block principal pivoting algorithm for
multiple right-hand side vectors. At each iteration, we have index sets Fl and Gl for
each column l ∈ {1, . . . ,L}, and we must compute xFl

and yGl
using Eqs. (16.9a)

and (16.9b). The idea is to find groups of columns that share the same index sets Fl

and Gl . We reorder the columns with respect to these groups and solve Eqs. (16.9a)
and (16.9b) for the columns in the same group. By doing so, we avoid repeated
Cholesky factorization computations required for solving Eq. (16.9a). When ma-

trix X is flat and wide, which is typically the case for (A(n))T in Eq. (16.6), more
columns are likely to share their index sets Fl and Gl , allowing bigger speed-up.

Incorporating these improvements, a full description of the block principal piv-
oting method for Eq. (16.13) is shown in Algorithm 16.1. Finite termination of Al-
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gorithm 16.1 is achieved by controlling the number of infeasible variables using α
and β . For more details of how it is controlled, see [17, 18].

16.5 Regularized and Sparse NNCP

The ANLS framework described in Sect. 16.3 can be easily extended to formulations
with regularization. In a general form, a regularized formulation appears as

min
A(1),...,A(N)

∥∥X − �
A(1), . . . ,A(N)

�∥∥2
F

+
N∑

n=1

λnφn

(
A(n)

)
,

s.t. A(n) ≥ 0 for n = 1, · · · ,N,

(16.14)

where φn(A(n)) represents a regularization term and λn ≥ 0 is a parameter to be
chosen. A commonly used regularization term is the Frobenius norm:

φn

(
A(n)

) = ∥∥A(n)
∥∥2

F
.

In this case, the subproblem for finding A(n) is modified as

min
A(n)

∥∥∥∥

(
B(n)√

λnIK×K

)
× (

A(n)
)T − (

X(n)
)T

∥∥∥∥
2

F

s.t. A(n) ≥ 0,

(16.15)

where IK×K is a K × K identity matrix. Observe that matrix ( B(n)√
λnIK×K

) is always

of full column rank; hence, when B(n) is not necessarily of full column rank, the
Frobenius norm regularization can be adopted to ensure that the NNLS subproblem
is of full column rank, satisfying the requirement of the convergence property of
a block-coordinate-descent method, mentioned in Sect. 16.3. In addition, the block
principal pivoting method assumes that the matrix V in Eq. (16.13) is of full column
rank, and the Frobenius norm regularization automatically satisfies this condition.

If it is desired to promote sparsity on factor matrix A(n), l1-norm regularization
can be used:

φn(A(n)) =
Mn∑

j=1

∥∥∥
(
A(n)

)T
(:, j)

∥∥∥
2

1
,

where (A(n))T (:, j) represents the j th column of (A(n))T . See [13, 16] for appli-
cations of this l1-norm regularization in microarray data analysis and clustering. In
this case, the subproblem for finding A(n) is modified as

min
A(n)

∥∥∥∥

(
B(n)√
λn11×K

)
× (A(n))T − (X(n))T

∥∥∥∥
2

F

s.t. A(n) ≥ 0,

(16.16)
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where 11×K is a row vector of ones. Regularization term φn(·) can be separately
chosen for each factor A(n), and if necessary, both of the Frobenius norm and the
l1-norm may be used.

16.6 Implementation and Results

In this section, we describe the details of our implementation, data sets used,
and comparison results. All experiments were executed in MATLAB on a Linux
machine with a 2.66 GHz Intel Quad-core processor and 6 GB memory. The multi-
threading option of MATLAB was disabled. In all the executions, all the algorithms
were provided with the same initial values.

16.6.1 Algorithms for NNCP Used for Comparisons

The following algorithms for NNCP were included in our comparison.

1. (ANLS-BPP) ANLS with the block principal pivoting method proposed in this
chapter

2. (ANLS-AS) ANLS with H. Kim and Park’s active set method [15]
3. (HALS) Cichocki and Phan’s hierarchical alternating least squares algorithm

[7, 8]
4. (MU) Welling and Weber’s multiplicative updating algorithm [29].

We implemented all algorithms in MATLAB. Besides above methods, we also have
tested Friedlander and Hatz’s two-metric projected gradient method [10] using their
MATLAB code;1 however, not only it was much slower than methods listed above,
but it also required so much memory that we could not execute all comparison cases.
We hence do not include the results of Friedlander and Hatz’s method here. In all the
algorithms, once we obtain factors {A(1), . . . ,A(N)}, they are used as initial values
of the next iteration.

16.6.2 Data Sets

We have used three data sets for comparisons. The first data set include dense tensors
using synthetically generated factors. For each of K = 10, 20, 60, and 120, we
constructed A(1), A(2), and A(3) of size 300 × K using random numbers from the
uniform distribution over [0,1]. Then, we randomly selected 50 percent of elements

1http://www.cs.ubc.ca/~mpf/2008-computing-nntf.html.

http://www.cs.ubc.ca/~mpf/2008-computing-nntf.html
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in A(1), A(2), and A(3) to make them zero. Finally, a three way tensor of size 300 ×
300 × 300 is constructed by �A(1),A(2),A(3)�. Different tensors were created for
different K values.

The second data set is a dense tensor obtained from Extended Yale Face Database
B2. We used aligned and cropped images of size 168×192. From total 2424 images,
we obtained a three-way tensor of size 168 × 192 × 2424.

The third data set is a sparse tensor from NIPS conference papers.3 This data
set contains NIPS papers volume 0 to 12, and a tensor is constructed as a four-
way tensor representing author×documents×term×year. By counting the occur-
rence of each entry, a sparse tensor of size 2037 × 1740 × 13649 × 13 was cre-
ated.

16.6.3 Experimental Results

To observe the performance of several algorithms, at the end of each iteration we
have recorded the relative objective value, ‖X − �A(1), . . . ,A(N)�‖F /‖X‖F . Time
spent to compute the objective value is excluded from the execution time. One ex-
ecution result involves relative objective values measured at discrete time points
and appears as a piecewise-linear function. We averaged piecewise-linear functions
from different random initializations to plot figures.

Results on the synthetic data set are shown in Fig. 16.1. This data set was syn-
thetically created, and the value of global optimum is zero. From Fig. 16.1, it can be
seen that ANLS-AS and ANLS-BPP performed the best among the algorithms we
tested. The HALS method showed convergence within the time window we have
observed, but the MU method was too slow to show convergence. ANLS-AS and
ANLS-BPP showed almost the same performance although ANLS-BPP was slightly
faster when k = 120. The difference between these two methods are better shown in
next results.

Results on YaleB and NIPS data sets are shown in Fig. 16.2. Similarly to the
results in Fig. 16.1, ANLS-AS and ANLS-BPP showed the best performance. In
Fig. 16.2, it can be clearly observed that ANLS-BPP outperforms ANLS-AS for
k = 60 and k = 120 cases. Such a difference demonstrates a difficulty of the active-
set method: Since typically only one variable is exchanged between working sets,
the active-set method is slow for a problem with a large number of variables. On
the other hand, the block principal pivoting method quickly solves large problems
by allowing exchanges of multiple variables between F and G. The convergence of
HALS and MU was slower than ANLS-AS and ANLS-BPP. Although the conver-
gence of HALS was faster than MU in the YaleB data set, the initial convergence of
MU was faster than HALS in the NIPS data set.

2http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
3http://www.cs.nyu.edu/~roweis/data.html.

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://www.cs.nyu.edu/~roweis/data.html
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Fig. 16.1 Relative objective value (‖X − �A(1), . . . ,A(N)�‖F /‖X‖F ) vs. execution time on the
synthetic tensors. Average results of 5 different random initializations are shown. Top row: k = 10
and k = 20, bottom row: k = 60 and k = 120

Lastly, we present more detailed information regarding the executions of ANLS-
AS and ANLS-BPP in Fig. 16.3. In Fig. 16.1 and Fig. 16.2, we have observed that
ANLS-BPP clearly outperforms ANLS-AS for large k’s. Because both of the meth-
ods solve each NNLS subproblem exactly, solutions after each iteration from the
two methods are the same up to numerical rounding errors. Hence, it suffices to
compare the amount of time spent at each iteration. In Fig 16.3, we showed average
execution time of each iteration of the two methods. It can be seen that the time
required for ANLS-BPP is significantly shorter than the time required for ANLS-
AS in early iterations, and their time requirements became gradually closer to each
other. The types of NNLS problem in which ANLS-BPP accelerates ANLS-AS
is the case that there is much difference in the zero and nonzero pattern between
the initial value and the final solution of the NNLS problem. As iteration goes
on, factors {A(1), . . . ,A(N)} do not change much from one iteration to the next;
hence there are little differences between the computational costs of the two meth-
ods.
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Fig. 16.2 Relative objective value (‖X − �A(1), . . . ,A(N)�‖F /‖X‖F ) vs. execution time on the
YaleB and NIPS data sets. Average results of 5 different random initializations are shown. Left:
NIPS data set, right: YaleB data set, top row: k = 10, middle row: k = 60, and bottom row: k = 120

16.7 Conclusions and Discussion

We have introduced an efficient algorithm for nonnegative CP (NNCP). The new
method is based on the block principal pivoting method for the nonnegativity-
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Fig. 16.3 Execution time of each iteration of the active set (ANLS-AS) and the block principal
pivoting method (ANLS-BPP) for k = 120 cases of each data set. Average results of five different
random initializations are shown. Left: synthetic data set, center: YaleB data set, right: NIPS data
set

constrained least squares (NNLS) problems. The block principal pivoting method
accelerates the classical active-set method by allowing exchanges of multiple vari-
ables per iteration. We have presented ideas for improving the block principal
method for the NNLS problems with multiple right-hand sides. Computational com-
parisons showed the state-of-the-art performance of the proposed method for NNCP.

A drawback of an NNCP algorithm based on the active set or the block principal
pivoting method is that the methods assume that the Khatri–Rao product in Eq.
(16.5) is of full column rank for all n ∈ {1, . . . ,N} throughout iterations. To alleviate
this concern, as noted in Sect. 16.5, Frobenius norm-based regularization can be
used to avoid rank-deficient cases. In practice, the algorithms performed well in our
experiments without the regularization.

An interesting direction of future work is to investigate the conditions in which
HALS performs better than the block principal pivoting method. In nonnegative ma-
trix factorization, which can be considered as a special case of NNCP discussed in
this chapter, we have observed that the HALS method converges very quickly [18].
In our results for NNCP in this chapter, however, HALS showed slower convergence
than the block principal pivoting method.
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