Chapter 6
Gaussian Mixture Models and Hidden Markov
Models for Condition Monitoring

6.1 Introduction

Rotating machines are widely used in industry for system operation and process
automation. Research shows that the failures of these machines are often linked
with bearing failures (Lou et al. 2004). Bearing faults induce high bearing vibrations
which generate noise that may even cause the entire rotating machine, such as
the electric motor, to function incorrectly. Thus, it is important to include bearing
vibration fault detection and diagnosis in industrial motor rotational fault diagnosis
systems (Lou et al. 2004). As a result, there is a high demand for cost effective
automatic monitoring of bearing vibrations in industrial motor systems.

A variety of fault bearing vibration feature detection techniques exist. These
can be classified into three domains, namely: frequency domain analysis, time-
frequency domain analysis, and time domain analysis (Ericsson et al. 2004).
The frequency domain methods often involve frequency analysis of the vibration
signals and look at the periodicity of high frequency transients. This procedure is
complicated by the fact that this periodicity may be suppressed (Ericsson et al.
2004). The most commonly used frequency analysis technique for detection and
diagnosis of bearing fault is the envelope analysis. More details on this technique
are found in McFadden and Smith (1984). The main disadvantage of the frequency
domain analysis is that it tends to average out transient vibrations and therefore
becomes more sensitive to background noise. To overcome this problem, the time-
frequency domain analysis is used, which shows how the frequency contents of
the signal changes with time. Examples of such analyses are: Short Time Fourier
Transform (STFT), the Wigner-Ville Distribution (WVD) and, most importantly,
the Wavelet Transform (WT). These techniques are studied in detail in the work of
Li et al. (2000).

The last category of the feature detection is the time domain analysis. There are a
number of time domain methods that give reasonable results. These methods include
the time-series averaging method, the signal enveloping method, the Kurtosis
method, and others (Li et al. 2000). Research shows that, unlike the frequency
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domain analysis, this technique is less sensitive to suppressions of the impact of
periodicity (Ericsson et al. 2004; Li et al. 2000). This chapter introduces a new time
domain analysis method, known as fractal dimension analysis, which was originally
used in image processing and has been recently used in speech recognition (Maragos
and Sun 1993; Maragos and Potamianos 1999; Wang et al. 2000). This method is
expected to give enormous improvement to the performance of the bearing fault
detection and diagnosis because it extracts the non-linear vibration features of each
bearing fault. The fractal dimension analysis is based on the Multi-scale Fractal
Dimensions (MFD) of short-time bearing vibration segments, derived from non-
linear theory (Wang et al. 2000).

Once the bearing vibration features are extracted using one of the three domains
mentioned above, then these features can be used for automatic motor bearing fault
detection and diagnosis by applying them to a non-linear pattern classifier. The
most popular classifier used in bearing fault detection is a Neural Network (NN).
Nevertheless, other non-linear classifiers like Gaussian Mixture Model (GMM) and
Hidden Markov Model (HMM) have been shown to outperform NN in a number
of classification problems, in general, and in speech related problems in particular.
Only recently, have researchers such as Purushothama et al. (2005) applied speech
pattern classifiers, such as HMM, to the fault detection of mechanical systems
because of their success in speech recognition.

This chapter presents a comparative study of HMM and GMM, and introduces
time-domain analysis based techniques using fractals to extract the features. Further-
more, the ability of MFD to detect bearing faults was evaluated using both HMM
and GMM non-linear pattern classifiers.

The rest of the chapter is arranged as follows: the next section presents the
different bearing faults studied in this chapter, followed by the mathematical
background to fractal dimensions, HMM, and GMM. Thereafter, the time domain
bearing detection and diagnosis framework is presented.

6.2 Background

This section presents, in detail, the different bearing faults studied in this chapter,
followed by the mathematical background to fractal dimensions, HMM, and GMM.

6.2.1 The Gaussian Mixture Model (GMM)

A GMM is a weighted sum of M component Gaussian densities, p(x|A) as given by
the equation (Reynolds 1992; Dempster et al. 1977):

M
p(x|2) =) wipi(x) ©6.1)

i=1
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Here, x is a D-dimensional, continuous-valued data vector representing mea-

surements from features, w;, i=1, ... , M, are the mixture weights, with mean

vector u; and covariance matrix X;. The mixture weights, w;, satisfy the constraint
M

Zi:l w; =1

The entire GMM is parameterized by the mean vectors, covariance matrices, and
mixture weights from all component densities and these parameters are together
represented by the notation (Reynolds and Rose 1995; Dempster et al. 1977):

A={w,n, X} (6.3)

Here, A is the model, w, u, ¥ are, respectively, the weights, means, and
covariance of the features. The covariance matrices can be full rank or constrained
to be diagonal but, in this chapter assumes that it is diagonal. The choice of
model architecture, which are the number of components, diagonal covariance
matrices and parameter is usually determined by the amount of data available for
approximating the GMM parameters and how the GMM is applied in a specific
fault identification problem. GMM has the advantage of being able to represent a
large class of sample distributions and to form smooth estimates to indiscriminately
shaped probability densities.

Given a collection of training vectors, the parameters of this model are estimated
by a number of algorithms such as the Expectation-Maximization (EM) algorithm
and K-means algorithm (Dempster et al. 1977; Reynolds et al. 2000). The EM
algorithm was used in this study because it has reasonably fast computational time
when compared to other algorithms. The EM algorithm finds the optimum model
parameters by iteratively refining GMM parameters to increase the likelihood of the
estimated model for the given bearing fault feature vector. More details on the EM
algorithm for training a GMM are in the work of Wang and Kootsookos (1998).

Bordes et al. (2007) applied the EM algorithm to image reconstruction. They
found that the results were within 10% of the experimental data. Dempster et al.
(1977) applied the EM algorithm to missing data, while Ingrassia and Rocci (2007)
generalized the EM algorithm to semi-parametric mixture models that, when tested
on real data, showed that their method was easy to implement and computationally
efficient. Kauermann et al. (2007) used the EM algorithm to recognize polymor-
phism in pharmacokinetic/pharmacodynamic (PK/PD) phenotypes, while Wang
and Hu (2007) improved the EM algorithm’s computational load and successfully
applied this to brain tissue segmentation. Another successful implementation of
the EM algorithm includes binary text classification (Park et al. 2007). Other
improvements of the EM algorithm include accelerating the computational speed by
Patel et al. (2007). Further information on the implementation of the EM algorithm
can be found in Wang et al. (2007), as well as McLachlan and Krishnan (1997).
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The aim of maximum likelihood estimation is to identify the model parameters
which maximize the likelihood of the GMM, given the training data. For a series of
T training vectors X = {x;, ..., x7 }, the GMM likelihood, assuming independence
between the vectors, can be expressed as (Reynolds 1992):

XA = I p(x.2) 64

For the EM algorithms, the re-estimations are calculated until convergence;

and the mixture of weights, means, and variances can, respectively, be written as
(Reynolds 1992):

T
1 .
W= Y P (ilx. ) (6.5)
t=1
T
P (i X A)X,
=" (6.6)
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The posterior probability can thus be written as (Reynolds 1992):

i s 2i
Pilx.A) = -2 P (X |y, %)

m (6.8)
kZ wep (X |, Zi)
=1

The bearing fault detection or diagnosis using this classifier is then achieved by
computing the likelihood of the unknown vibration segment of the different fault
models. This likelihood is given by (Dempster et al. 1977):

K
§ = arg max Zlog p(Xk|A f) (6.9)
k=1

1<f<F

Here F represents the number of faults to be diagonalized, X = {xi, x2, ..., xg }
is the unknown D-dimension bearing fault-vibration segment.
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Fig. 6.1 Markov chain with five states with selected state transitions. Here O is the observation
and a is the transition probability

6.2.2 The Hidden Markov Model (HMM)

The HMM is a statistical Markov model in which the system being modeled
is assumed to be a Markov process with states that are hidden and therefore
cannot be observed. In a conventional Markov model, the state is observable, and
consequently, the transition probabilities are the only parameters to be estimated
while naturally, the output is visible.

Essentially, HMM is a stochastic signal model. HMMs are referred to as Markov
sources or probabilistic functions of Markov chains (Rabiner 1989). This model has
been applied mostly to speech recognition systems and only recently it has been
applied to bearing fault detection. In HMM, the observation is a probabilistic func-
tion of the state and this means the resulting model is a doubly emended stochastic
process with an underlining stochastic process that is not observable (Rabiner 1989).
Nevertheless, this process can only be observed through another stochastic process
that produces the sequence. There are a number of possible Markov models, but the
left-to-right model is typically applied in speech recognition. The structure of this
model is shown in Fig. 6.1 with five states (Rabiner 1989).

Marwala et al. (2006) used bearing vibration signals features which were
extracted using a time-domain fractal-based feature extraction technique as well
as the HMM and GMM for bearing fault detection. The fractal technique was
the Multi-Scale Fractal Dimension and was estimated using the Box-Counting
Dimension. The extracted features were then applied to classify faults using the
GMM and HMM. The results showed that the HMM outperformed the GMM and
that the HMM was computationally more expensive than the GMM.

Boutros and Liang (2011) applied the discrete HMM for the detection and
diagnosis of bearing and cutting tool faults. Their method was tested and validated
using two situations, tool fracture, and bearing faults. In the first situation, the
model correctly detected the state of the tool and, in the second case; the model



116 6 Gaussian Mixture Models and Hidden Markov Models for Condition Monitoring

classified the severity of the fault seeded into two different engine bearings. The
result obtained for fault severity classification was above 95%. In addition to the
fault severity, a location index was developed to determine the fault location and
gave an average success rate of 96%.

Wong and Lee (2010) successfully applied HMM for fault detection in the
shell-and-tube heat exchanger. This method was viewed as a generalization of the
mixture-of-Gaussians method and was demonstrated through a problem.

Lee et al. (2010) applied HMM for online degradation assessment and adaptive
fault detection of multiple failure modes. Their method, together with statistical
process control was used to detect the incidence of faults. This technique permitted
the hidden Markov state to be updated with the identification of new states. The
results for a turning process showed that the tool wear processes can be successfully
detected, and the tool wear processes can be identified.

Calefati et al. (2006) successfully applied HMM for machine faults detection
and forecasting in gearboxes. Elsewhere, Zhou and Wang (2005) applied HMM
and a principal component analysis to the on-line fault detection and diagnosis in
industrial processes, and applied these to case studies from the Tennessee Eastman
process.

Menon et al. (2003) applied HMM for incipient fault detection and diagnosis
in turbine engines and the effectiveness of the HMM method was compared to a
neural network method and a hybrid of principal component analysis and a neural
network approach. Their HMM method was found to be more effective than the
other methods.

Smyth (1994) applied HMM to fault detection in dynamic systems. It was
demonstrated that a pattern recognition system combined with a finite-state HMM
was good at modeling temporal characteristics. The model was validated using
a real-world fault diagnosis problem and was demonstrated to offer substantial
practical advantages.

The complete parameter set needed to define the HMM can be written as (Rabiner
1989; Caelli et al. 2001; Koski 2001):

A=1{A B x) (6.10)

where A is the model, A = {a;;}, B = {b;;(k)} and m = {mx; }are the transition
probability distribution, the observation probability distribution, and initial state
distribution, respectively. For example, if we assume that the distribution can be
represented by the Gaussian mixture model shown in Eq. 6.2, the equation can be
written as:

A={A,w,pn, X, 7} (6.11)
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These parameters of a given state, S;, are defined as (Rabiner 1989; Ching et al.
2003; Purushothama et al. 2005; Ching and Ng 2006):

aij = P(qi+1=Sjlq. = Si), 1 <i,j =N (6.12)
bij(k) = P(Oklg: = Si),1 <j <N, 1<k <M (6.13)

and
m =Pl =8),1<i<N (6.14)

Here, g; is the state at time ¢ and N denotes the number of states. Additionally,
Oy is the k" observation and M is the number of distinct observation.

The HMM can be used to simulate the observed state as follows (Rabiner
1989):

1. Letr=1.

2. Create O; = v; € V in accordance with the probability b; (k).

3. Create a transition of hidden state from g; = S; to ¢;+1 = §; in accordance with
the transition probability a;;.

4. Lett=1t+ 1 and go to Step 2 if r < T or else terminate the algorithm.

There are three fundamental issues to be solved for this model to be applied in
practice. Firstly, we ought to identify the probability of the observation sequence
O = 04, 0,, ..., Or of visible states generated by the model A. Secondly, we need
a decoding process which identifies a state sequence that maximizes the probability
of an observation sequence and this can be realized through the so-called Viterbi
algorithm (Rabiner 1989). Thirdly, we need a training process which adjusts model
parameters to maximize the probability of the observed sequence.

The next step is to calculate the likelihood of the observed sequence as follows
(Rabiner 1989; Ching et al. 2004):

PO)= > 144 (01) X 74,b4,(0) X ... X 74, by, (Oy) (6.15)
all possible

To speed up the computation of this, the backward and the forward methods can
be applied (Baum 1972). To do this, we define the following (Baum 1972):

ar(i) = P(010,..0:.q9: = Si) (6.16)

The forward technique can be written as follows (Rabiner 1989; Tai et al.
2009):

1. Initialize as follows:

a1(i) = mbi(O1) for1 <i <N
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2. Apply the recursion step as follows:

N
o (j) =b;j(0)Y o i(i)ajfor2 <t <Tandl < j <N

i=1
3. Terminate as follows:
N
P(0) =) ar(i)
i=1

The backward technique can be written as follows by letting (Rabiner 1989; Tai
et al. 2009):

Bi(i) = P(01410:42...07 |q: = Si) (6.17)

1. Initialize as follows:
Br(i)=1forl <i <N
2. Apply the recursion step as follows:
N
Bi(i) = aijhj(Ory)Biri(j)for 1 <t <T —land1 < j <N
j=1

3. Terminate as follows:

N

P(0) =) Bi(i)mibi (Oy)
i=1

The Baum-Welch estimation procedures with the Maximum Likelihood tech-
nique can be used to approximate the model parameters (Rabiner 1989). To explain
the use of this procedure it is important to state the following definition (Rabiner
1989; Ching et al. 2004):

§&@.j)=P(q = Si.qi+1=1S5;10,4,B,7) (6.18)

This is the probability of being in state S; at time ¢ and having a transition to state
S; at time 74 1 given the observed sequence and the model. This can be expanded
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as follows (Rabiner 1989; Ching et al. 2004):

o (1)atij Bir1(j)bj (Or41)

£, J) = - . (6.19)
f 0 X, ey B (/)b (Orir)
We can also define that (Rabiner 1989; Ching et al. 2004):
v (i) = P(q: = Si |0, A, B, ) (6.20)

This indicates the probability of being in state S; at time ¢ given the observed
sequence and the model. Therefore, we now have (Rabiner 1989; Ching et al. 2004):

yi=Y & j) (6.21)
J

This procedure can be written as follows (Baum 1972; Rabiner 1989):

1. Select a set of initial parameters A = {A, B, =} randomly
2. Estimate the parameters using the following equations (Tai et al. 2009)

7 =yi1(i) for1<i <N

D Sy A ()

aij = T—1 K
Zt=l Vl‘(l)

T .
- Io,=

Zt—lTyt(]) .Ot kforlijN,lkaM
2=1v:(J)

0 otherwise

forl<i <N, 1<j<N
bj(k) =

Here 1o, =

3. Set A = {ay }yj, B = {b;(k)}jx and @ = {7;}
4. SetA ={A, B, 7} B
5. If A = A, end otherwise let A = A and go to Step 2

A more detailed explanation of HMM training using the Baum-Welch
re-estimation along with other features of HMM is presented by Rabiner (1989).
The estimation of the hidden state can be conducted using the Viterbi algorithm
(Viterbi 1967) to calculate the probability of the hidden states given the HMM
parameters and an observed sequence. To do this we can define the following
(Rabiner 1989; Tai et al. 2009) which is the maximum probability within a single
path:
8:(1) = o1 nax 1P (9192, .. q:, 0105...0;:q; = S) (6.22)

154254t —
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and define (Tai et al. 2009):

8:(j) = b;(O) x ml?lx{(gt—l(i)aij} (6.23)

We can therefore solve this problem using dynamic programming as follows
(Rabiner 1989; Tai et al. 2009):

1. Initialize §1(i) = 7;b; (O1) and 6,(i) =0for1 <i < N
2. Solve the following recursion step

8:(j) = lma)§v8,_1(i)a,-jbj(0,)f0r2 <t<Tandl1<j <N

and

0i(j) = arg max {§—i()ay}for2<t=Tandl=j=<N

3. Terminate

. . * .
P* = lrﬁr}egv 8r(i) and q7 = arglrﬁr}egv&(z)

Here P" is the most likely likelihood and ¢" is the most likely state at time 7.
4. Backtrack:

q;i = 9;+1(q;k+1)f0}’l =T-1,T-2,..,2,1

6.2.3 Fractals

For this chapter, fractals were used to analyse the bearing data. A fractal is defined
as a rough geometric shape that can be divided into various segments, each of
which is roughly a reduced-size copy of the whole. This characteristic is known as
self-similarity (Mandelbrot 1982). The theory of fractals was described in detail,
in Chap. 2. The basis of the idea of fractals extends back to the seventeenth
century. There are numerous classes of fractals, characterized as displaying exact
self-similarity, quasi self-similarity or statistical self-similarity (Briggs 1992). Even
though fractals are a mathematical concept, they are seen in nature, and this has led
to their use in the arts they are useful in biomedical sciences, engineering sciences,
and speech recognition. A fractal usually has the following characteristics (Falconer
2003):

It contains a fine structure at randomly small scales.
e Itis too irregular to be described using Euclidean geometry.
It is approximately self-similar.
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e It has a Hausdorff dimension (this explained in Chap. 2) which is more than its
topological dimension (Pickover 2009).
It has a basic and recursive description.

Fractals are frequently viewed to be infinitely complex because they look similar
at all levels of magnification (Batty 1985; Russ 1994). Examples of natural objects
that can be approximated by fractals include clouds, mountain ranges, lightning
bolts, and coastlines (Sornette 2004).

Zhang et al. (2010) successfully applied a combined wavelet and fractal method
for the fault detection of the opening fault of power electronic circuits based on the
singularity of the fault signal from the power electronic equipment. Voltage wave
signals were analyzed by applying the wavelet transform and correlative dimensions
of the wavelet transform were estimated using fractals.

Yang et al. (2011) applied a fractal correlation dimension for the fault detection
in the supply air temperature sensors of air handling unit systems and the results
obtained demonstrated that it was more efficient in detecting a relatively small bias
fault under noise conditions.

Ikizoglu et al. (2010) applied a Hurst parameter and fractal dimension for fault
the detection of the bearings in electric motors. The vibration signals were obtained,
analyzed in the frequency domain.

Ma (2009) successfully applied fractal analysis for fault detection in the welding
process while Shanlin et al. (2007) successfully applied wavelet fractal network for
fault detection in a power system generator.

Other successful applications of the wavelet transform in fault detection include
its application for distributed power system short-circuit problems (Song et al.
2007), robotics (Yan et al. 2007), short-circuit faults in low-voltage systems (Kang
et al. 2006), and Direct Current system grounding (Li et al. 2005).

6.3 Motor Bearing Faults

Vibration measurement is important in advanced conditioning monitoring of me-
chanical systems. Most bearing vibrations are periodical movements. In general,
rolling bearing contains two concentric rings, which are called the inner and outer
raceway and these were shown in Chap. 2 (Li et al. 2000). Furthermore, the bearing
contains a set of rolling elements that run in the tracts of these raceways. There is a
number of standard shapes for the rolling elements such as a ball, cylindrical roller,
tapered roller, needle roller, symmetrical and unsymmetrical barrel roller and many
more as described by Ocak and Loparo (2004). In this chapter, a ball rolling element
is used as was done by Ocak and Loparo (2004).

Three faults are studied in this chapter. These are an inner raceway, an outer
raceway, and a rolling element fault. A bearing fault increases the rotational friction
of the rotor and, therefore, each fault gives vibration spectra with unique frequency
components (Ericsson et al. 2004). It should be taken into account that these
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Fig. 6.2 Motor bearing fault detection and diagnosis system

frequency components are a linear function of the running speed and that the two
raceway frequencies are also linear functions of the number of balls. The motor
bearing condition monitoring systems was implemented by analyzing the vibration
signal of all the bearing faults. The vibration signal was produced by Ocak and
Loparo (2004) using the impact pulse generated when a ball roller knocks a defect
in the raceways or when the defect in the ball knocks the raceways (Li et al. 2000).

The studied motor bearing fault detection and diagnosis system is displayed in
Fig. 6.2 (Marwala et al. 2006). The system consists of two major stages after the
vibration signal measurement and these are the pre-processing which includes both
the feature extraction phase and classification phase.

The initial phase of an automatic fault detection and diagnosis system, as
indicated in Fig. 6.3, is signal preprocessing and feature extraction (Marwala et al.
20006). Faults cause a change in the machinery vibration levels and, consequently,
the information regarding the health status of the monitored machine is largely
contained in the vibration time signal (McClintic et al. 2000). Figure 6.4 shows
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that the signal is preprocessed by dividing the vibration signals into 7 windows of
equal lengths (Marwala et al. 2006). For this technique to be effective, it should
be noted that the width of the window must be more than one revolution of the
bearing to ensure that the uniqueness of each vibration fault signal is captured. The
preprocessing is followed by extraction of features of each window using the Box-
Counting MFD, which forms the observation sequence to be used by the GMM or
the HMM classifier. The time domain analysis extracts the non-linear turbulence
information of the vibration signal and is expected to give enormous improvement
on the performance of the bearing fault detection and diagnosis process.

Due to the large variations of the vibration signal, direct comparison of the
signals is difficult. Hence, non-linear pattern classification methods are used to
classify different bearing fault conditions. The features extracted were used as inputs
to the classification phase of the framework. This chapter compares the performance
of the GMM and the HMM classifiers. For the GMM classifier, the principal
component analysis (PCA), which was described in Chap. 2, was applied to the
feature vector before training to reduce the dimensionality and remove redundant
information (Jolliffe 1986). The principal concept behind PCA is to identify the
features that explain as much of the total variation in the data as possible with as
few of these features as possible. The calculation of the PCA data transformation
matrix is based on the eigenvalue decomposition.

The computation of the principal components was conducted as described below
(Jolliffe 1986):

e Calculate the covariance matrix of the input data.

e Compute the eigenvalues and eigenvectors of the covariance matrix.

* Preserve the largest eigenvalues and their respective eigenvectors which contains
at least 90% of the data.

* Transform the original data into the reduced eigenvectors and, therefore, decrease
the number of dimensions of the data.

For more information on the PCA used here to reduce the dimensionality of the
feature space, the reader is referred to the work of Jolliffe (1986). In Fig. 6.3, the
diagnosis of the motor bearing fault was achieved by calculating the probability of
the feature vector, given the entire previously constructed fault model and then the
GMM or HMM with maximum probability determined the bearing condition.

This section discusses the experimental database used to evaluate the efficiency
of the proposed approach. The performance measure adopted during experimenta-
tion is also briefly discussed. The database used to validate the new bearing fault
diagnosis discussed in the last section was developed at Rockwell Science Centre
by Loparo in 2005. In this data set, single point faults of diameters of 7 mils,
14 mils, and 21 mils (1 mil=0.001 in.) were introduced using electro-discharge
machining. These faults were introduced separately at the inner raceway, rolling
element and outer raceway. A more detailed explanation of this data set is presented
in (Loparo 2006). The experiments were performed for each fault diameter and this
was repeated for two load conditions, which were 1 and 2 hp. The experiment was
performed for vibration signals sampled at 12,000 samples per second for the drive
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Fig. 6.5 MFD feature extraction comparison for the normal, inner, outer and ball fault for the 1 s
vibration

end bearing faults. The vibration signals from this database were divided into equal
windows of four revolutions. Half of the resulting sub-signals are used for training
and the other half were used for testing.

The main concern was to measure the ability of the system to classify the bearing
faults. The performance of the system was measured using the Classification Rate
(CR) which is the proportion of fault cases correctly classified.

The optimum HMM architecture, used in the experiment was a 2 state model
with a diagonal covariance matrix that contained 10 Gaussian mixtures. The GMM
architecture also used a diagonal covariance matrix with three centers. The main
advantage of using the diagonal covariance matrix in both cases was that this de-
correlated the feature vectors. This was necessary because fractal dimensions of
adjacent scales were highly correlated (Maragos and Potamianos 1999).

The first set of experiments measured the effectiveness of the time-domain fractal
dimension based feature-extraction using vibration signal of the faults as shown in
Fig. 6.5 (Marwala et al. 2006).

Figure 6.5 shows the first 2 s of the vibration signals used. It can be clearly seen
that there is fault specific information which must be extracted. Figure 6.6 shows the
MFD feature vector which extracts the bearing’s fault specific information (Marwala
et al. 2006). It should be noted that these features are only for the first second of
the vibration signal. Figure 6.6 clearly shows that the presented feature extraction
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Table 6.1 The classification rate for different loads and fault diameters for

the GMM and HMM classifier

Load 7 mils 14 mils 21 mils Load 7 mils 14 mils
HMM GMM HMM GMM HMM GMM

1 100% 99.2% 100% 98.7% 100% 99%

2 100% 99% 100% 99.1% 100% 99%

method does indeed extract the fault specific features which are used to classify
different bearing faults (Marwala et al. 2006). For this reason, the presented MFD
feature extraction is expected to give enormous improvement to the performance
of the bearing fault detection and diagnosis. Nevertheless, the optimum size of
the MFD must be initially found. Figure 6.6 shows the graph of change of the
system accuracy with the change of the MFD size. The figure shows that the GMM
generally has a large optimum MFD size of 12 compared to 6 for HMM.

Having used the optimum HMM and GMM architecture discussed previously,
the classification accuracy that was found for different bearing loads and different
bearing fault diameters appears in Table 6.1 for the GMM and the HMM classifier.

Table 6.1 shows that the HMM outperforms the GMM classifier for all cases, with
a 100% and 99.2% classification rate for HMM and GMM, respectively. Table 6.1
also shows that changing the bearing load or diameter does not significantly change
the classification rate.
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Using a Pentium IV with 2.4 GHz processor speed, further experimenting
showed that the average training time of HMM was 19.5 s. This was more than
20 times higher than the GMM training time, which was found to be 0.83 s. In
summary, even though HMM gave higher classification rate when compared to
GMM it was time consuming to train the models when compared to GMM. It is
probably worth mentioning that, it was observed that using the PCA dimension
reduction technique does not affect the classification rate. Nevertheless, this reduced
the dimension from 84 to 11, which makes GMM training even more computation-
ally efficient when compared to training the HMM.

This chapter presented the obtained using MFD short time feature extraction.
The results demonstrated that this technique does extract fault specific features.
Furthermore, the results showed that for the GMM classifier using PCA, the
classification rate was not affected; it simply reduced the dimensionality of the input
feature vector which makes the GMM models less complex than the HMM models.
Further experimentation revealed that there was an optimum MFD size which gave
the optimum classification rate. From the results obtained, it was found that the
GMM generally had larger optimum MFD size than the HMM.

The second set of tests that were performed compared the performance of GMM
and HMM in classifying the different bearing faults. The test revealed that the HMM
outperformed the GMM classifier with a classification rate of 100%. Further testing
of these classifiers revealed that, the major disadvantage of the HMM classifier was
that it took longer to train than the GMM classifier, even though GMM had larger
MEFD size than HMM. So, it is recommended that one use the GMM classifier when
time is the major issue in that particular application. It was further observed that
changing the bearing load or diameter does not significantly affect the classification
rate of the presented framework.

6.4 Conclusions

A framework that used a time-domain fractal-based feature extraction method
to extract the non-linear turbulent information of the vibration signal has been
presented. Using these features together with HMM and GMM classifiers, the
results showed that the HMM classifier outperformed the GMM classifier with the
HMM giving 100% and the GMM 99.2% classification rate. Nevertheless, the major
drawback of the HMM classifier was that it was computationally expensive, taking
20 times longer than the GMM classifier to train.
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