
Chapter 11
On-line Condition Monitoring Using Ensemble
Learning

11.1 Introduction

In Chap. 3 the Multi-Layer Perceptron (MLP) neural network was introduced for
condition monitoring of a population of cylindrical shells. The MLP technique was
explained in detail and after a literature review was conducted the technique was
implemented to identify faults in a population of cylindrical shells. In that chapter,
modal properties and pseudo-modal energies data were applied to classify faults.
The principal component analysis method was applied to reduce the dimensions of
the input data. The multifold cross-validation method was used to select the optimal
number of hidden units amongst the 20 trained pseudo-modal-energy-networks and
the 20 trained modal-property-networks. The pseudo-modal-energy-network and
the modal-property-network were found to give similar accuracy in classifying
faults.

In Chap. 4, two Bayesian multi-layer perceptron neural networks were developed
by applying the hybrid Monte Carlo technique, with one trained using pseudo-modal
energies while the other was trained using modal properties. They were then applied
to the condition monitoring of a population of cylindrical shells. The pseudo-modal-
energy-network gave better results than the modal-property-network.

In Chap. 5, a committee of neural networks technique was presented. It applied
pseudo modal energies, modal properties and wavelet transform data simultaneously
to identify faults in cylindrical shells. The technique was tested to identify faults in
a population of ten steel seam-welded cylindrical shells and could identify faults
better than the three individual methods.

Next, Chap. 6 extracted bearing vibration signals features using time-domain
fractal-based feature extraction. This method applied the Multi-Scale Fractal
Dimension (MFD) which was approximated using the Box-Counting Dimension.
The extracted features were then used to classify faults using the Gaussian Mixture
Models (GMM) and the hidden Markov Models (HMM). The results showed that
the feature extraction method revealed fault specific information. Additionally,
the experiment demonstrated that HMM outperformed GMM. Nonetheless, the
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disadvantage of HMM was that it was more computationally expensive to train
when compared with the GMM. Consequently, it was concluded that the framework
presented gives an improvement in the performance of the bearing fault detection
and diagnosis, but it was recommended that the GMM classifier be used when the
computational effort is a major issue of consideration.

Chapter 7 presented the application of Fuzzy Set Theory (FST) and fuzzy
ARTMAP to diagnose the condition of high voltage bushings. The diagnosis used
Dissolved Gas Analysis (DGA) data from bushings based on IEC60599, IEEE
C57-104, and the California State University Sacramento (CSUS) criteria for oil
impregnated paper (OIP) bushings. FST and fuzzy ARTMAP were compared with
regards to accuracy. Both FST and fuzzy ARTMAP could diagnose the bushings
condition with 98% and 97.5% accuracy respectively.

Chapter 8 applied the rough set method and the ant colony optimization
technique for the condition monitoring of transformer bushings. The theories of
rough set and ant colony optimization technique were described and the presented
system was tested for the condition monitoring of transformer bushings. The rough
set method that was optimized using the ant colony optimization method gave 96.1%
accuracy, using 45 rules while the equal-frequency-bin partition model gave 96.4%
accuracy, using 206 rules.

In Chap. 9 a technique for fault classification in mechanical systems in the
presence of missing data entries was introduced. The technique was based on auto-
associative neural networks where the network was trained to recall the input data
through some non-linear neural network mapping. From the trained network an error
equation with missing inputs as design variables was created. A genetic algorithm
was applied to solve for the missing input values. The presented technique was
tested on a fault classification problem for a population of cylindrical shells. It was
observed that the technique could estimate single-missing-entries to an accuracy of
93% and two-missing-entries to an accuracy of 91%. The approximated values were
then applied to the classification of faults and a fault classification accuracy of 94%
was observed for single-missing-entry cases and 91% for two-missing-entry cases,
while the full database set was able to give a classification accuracy of 96%.

In Chap. 10 feature extraction and condition classification were considered.
The feature extraction methods were fractals, Kurtosis and Mel-frequency Cepstral
Coefficients. The classification approaches that were applied were the support
vector machines (SVM) and extension neural networks (ENN). When applied these
techniques gave good results.

Pan et al. (2008) created a remote online machine condition monitoring system
which was created using Borland CCC and communication via the internet.
A number of signal-processing approaches, for instance time-frequency analysis
and order-tracking for signal analysis and pattern recognition were applied using the
Borland CCC Builder graphical user interface. The machine fault-diagnostic ability
was improved by using the socket application program interface as the transmission
control protocol / Internet protocol. The effectiveness of their remote diagnostic
system was tested by monitoring a transmission-element test rig and good results
were obtained.
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Bouhouche et al. (2010) presented a technique for process condition monitoring
and evaluation which hybridized the online support vector machine regression and
the fuzzy sets approaches. Their technique was based on moving windows so that the
past and new data for the model to adapt to the time dependency. A fuzzy analysis
was then applied for condition monitoring. Their technique was then applied online
to evaluate the quality of a rolling process. The results showed that their technique
was simple and gave good results.

Oberholster and Heyns (2009) presented an online condition monitoring tech-
nique and applied this to axial-flow turbo-machinery blades. They applied the
Eulerian application of laser Doppler vibrometry to accomplish this task. When
the method was tested it was found to be viable for the online blade condition
monitoring when phase angles at reference frequencies were monitored using a non-
harmonic Fourier analysis.

Loutas et al. (2009) presented a condition monitoring system for a single-stage
gearbox with induced gear cracks using on-line vibration and acoustic emission
measurements. Special attention was paid to the signal processing of the measured
vibration and acoustic emission data with the intention of extracting conventional
and novel features of diagnostic value from the monitored waveforms. Wavelet-
based features used the discrete wavelet transform. The evolution of the chosen
features against test time was presented, assessed and the parameters with the most
diagnostic characteristics were selected. The advantages of acoustic emission over
vibration data for the early diagnosis of natural wear in gear systems were presented.

11.2 Ensemble Methods

The online learning technique implemented in this chapter is based on ensemble
learning (Hansen and Salamon 1990; Jordan and Jacobs 1994; Kuncheva et al.
2001). Ensemble learning is a technique where multiple models, such as classifiers,
are intentionally created and combined to solve a particular problem (Rogova 1994;
Polikar 2006). Ensemble learning is usually applied to increase the performance of
a model (Xu et al. 1992; Huang and Suen 1993; Dietterich 2000). In this section
three ensemble learning approaches are described: bagging, stacking, and adaptive
boosting. In particular, the AdaBoost method is described because it was the basis
for the creation of the Learn CC technique, which is the online method adopted for
this chapter.

11.2.1 Bagging

Bagging is a technique which is based on the combination of models fitted to
randomly selected samples of a training data set to decrease the variance of the
prediction model (Efron 1979; Breiman 1996). Bagging basically requires randomly
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selecting a subset of the training data and using this subset to train a model and
repeating this process. Afterwards, all trained models are combined with equal
weights to form an ensemble.

11.2.2 Stacking

In the area of modelling, one can choose from a set of models by comparing them
using the data that was not used to create the models (Polikar 2006). This prior
belief can also be applied to choose a model amongst a set of models, based on a
single data set by using a technique called cross-validation (Bishop 1995). This is
conducted by dividing the data into a training data set, which is used to train the
models, and a test data set. Stacking takes advantage of this prior belief by using the
performance from the test data to combine the models instead of choosing among
them the best performing model when tested on the test data set (Wolpert 1992).

11.2.3 AdaBoost

Boosting is a method that incrementally creates an ensemble by training each new
model with data that the previously trained model misclassified. Then the ensemble,
which is a combination of all trained models, is used for prediction.

Adaptive Boosting (AdaBoost) is an extension of boosting to multi-class prob-
lems (Freund and Schapire 1997; Schapire et al. 1998). There are many types of
AdaBoost, for instance AdaBoost.M1, where each classifier can receive a weighted
error of no more than ½, AdaBoost.M2 for those weak classifiers that cannot achieve
a weighted error of less than ½.

For AdaBoost.M1, samples are drawn from a distribution D that is updated in
such a way that successive classifiers concentrate on difficult cases. This is achieved
by adjusting D in such a way that that the earlier, misclassified cases are likely to be
present in the following sample. The classifiers are then combined through weighted
majority voting. The distribution begins as a uniform distribution so that all cases
have equal probability to be drawn into the first data subset S1.

As described by Polikar (2006), at each iteration t, a new training data subset
is sampled, and a weak classifier is trained to create a hypothesis ht. The error
given by this hypothesis with regards to the current distribution is estimated as the
sum of distribution weights of the cases misclassified by ht. AdaBoost.M1 requires
that this error is less than ½, and if this requirement is violated then the procedure
terminates. The normalized error ˇt is then calculated so that the error that is in
the [0 0.5] interval is normalized into the [0 1] interval. The transformed error is
implemented in the distribution update rule, where Dt(i) is decreased by a factor of
ˇt ; 0 < ˇt < 1, if xi is correctly classified by ht, or else it is left unaltered. When
the distribution is normalized so that DtC1(i) is a proper distribution, the weights of
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those instances that are misclassified are increased. This update rule guarantees that
the weights of all instances correctly classified and the weights of all misclassified
instances add up to ½. The requirement for the training error of the base classifier to
be less than ½ forces the procedure to correct the error committed by the previous
base model. When the training process is complete, the test data are classified by
this ensemble of T classifiers, by applying a weighted majority voting procedure
where each classifier obtains a voting weight that is inversely proportional to its
normalized error (Polikar 2006). The weighted majority voting then selects the class
! allocated the majority vote of all classifiers. The procedure for Adaboost is shown
in Algorithm 11.1 (Polikar 2006).

As described by Polikar (2006), the theoretical analysis of the AdaBoost
technique shows that the ensemble training error E is bounded above by:

E < 2T

TY

tD1

p
"t .1 � "t / (11.1)

The "t < 1=2 ensemble error E is reduced when new classifiers are added. The
AdaBoost is resistant to overfitting, a characteristic that is explained by the margin
theory (Schapire 1990; Polikar 2006).

11.3 The LearnCC On-line Method

On-line learning is appropriate for modelling dynamically time-varying systems
where the operating conditions change with time. It is also appropriate when the
data set available is insufficient and does not completely characterize the system.
Another benefit of on-line learning is that it can incorporate new conditions that
may be presented by the incoming data.

An on-line bushing condition monitoring system must have incremental learning
capability if it is to be used for automatic and continuous on-line monitoring.
An on-line bushing monitoring system improves the reliability, diminishes the
maintenance cost and minimizes the out-of-service time for a transformer. The
basis of on-line learning is incremental learning, which has been studied by a
many researchers (Higgins and Goodman 1991; Fu et al. 1996; Yamaguchi et al.
1999; Carpenter et al. 1992). The difficulty in on-line learning is the propensity
of an on-line learner to forget the information learned during the initial stages of
the learning process (McCloskey and Cohen 1989). The on-line learning technique
adopted for this chapter was LearnCC (Polikar et al. 2001).

Vilakazi and Marwala (2007a) applied the on-line incremental learning technique
for monitoring the condition of high voltage bushings. Two incremental learning
techniques were applied to the problem of condition monitoring. The first technique
used was the incremental learning capability of the Fuzzy ARTMAP (FAM),
and they investigated whether the ensemble approach can improve the performance
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Algorithm 11.1 The AdaBoost algorithm.M1

Input:

• Training data X D fx1; x2; :::; xng with correct labels � D fy1; y2; :::; yng
• Weak learn algorithm, known as Weaklearn
• Integer T, speciying the number of classifiers

D1.i/ D 1=nI i D 1; :::; n

For t D 1,2, : : : ,T;

1. Sample a training subset St, according to the distribution Dt

2. Train Weaklearn with St, receive hypothesis ht W X ! �

3. Estimate the error of ht W "t D
nP

iD1

I Œht .xi / ¤ yi � � Dt .i/ D P
tWht .xi /¤yi

Dt .i/ If "t > 1
2

terminate.
4. Estimate the normalized error ˇt D "t = .1 � "t / ) 0 � ˇt � 1

5. Update the distribution Dt: DtC1.i/ D Dt .i/

Zt
�

�
ˇt ; if ht .xi /yi

1; otherwise
where Zt is the normalization

constant so that DtC1 becomes a proper distribution function.

Test using majority voting given an unlabeled example z as follows:

1. Count the total vote from the classifiers Vj D P
tWht .z/

log .1=ˇt /j D 1; :::; C

2. Select the class that receives the highest number of votes as the final classification.

of the FAM. The second technique applied was LearnCC that implemented an
ensemble of the multi-layer perceptron classifiers. Both methods were performed
well when tested for transformer bushing condition monitoring.

Mohamed et al. (2007) applied incremental learning for the classification of
protein sequences. They used the fuzzy ARTMAP as an alternative machine
learning system with the ability to incrementally learn new data as it becomes
available. The fuzzy ARTMAP was seen to be comparable to many other machine
learning systems. The application of an evolutionary strategy in the selection and
combination of individual classifiers into an ensemble system, coupled with the
incremental learning capability of the fuzzy ARTMAP was shown to be suitable
as a pattern classifier. Their algorithm was tested using the data from the G-Coupled
Protein Receptors Database and it demonstrated a good accuracy of 83%.

Mohamed et al. (2006) applied fuzzy ARTMAP for multi-class protein sequence
classification. They presented a classification system that used pattern recognition
method to produce a numerical vector representation of a protein sequence and
then classified the sequence into a number of given families. They applied fuzzy
ARTMAP classifiers and showed that, when coupled with a genetic algorithm
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based feature subset selection, the system could classify protein sequences with
an accuracy of 93%. This accuracy was then compared to other classification
techniques and it was shown that the fuzzy ARTMAP was most suitable because
of its high accuracy, quick training times and ability to incrementally learn.

Perez et al. (2010) applied a population-based, incremental learning approach
to microarray gene expression feature selection. They evaluated the usefulness of
the Population-Based Incremental Learning (PBIL) procedure in identifying a class
differentiating gene set for sample classification. PBIL was based on iteratively
evolving the genome of a search population by updating a probability vector, guided
by the extent of class-separability demonstrated by a combination of features. The
PBIL was then compared to standard Genetic Algorithm (GA) and an Analysis of
Variance (ANOVA) method. The procedures were tested on a publically available
three-class leukaemia microarray data set (n D 72). After running 30 repeats of both
GA and PBIL, the PBIL could identify an average feature-space separability of
97.04%, while GA achieved an average class-separability of 96.39%. The PBIL
also found smaller feature-spaces than GA, (PBIL – 326 genes and GA – 2652) thus
excluding a large percentage of redundant features. It also, on average, outperformed
the ANOVA approach for n D 2652 (91.62%), q < 0.05 (94.44%), q < 0.01 (93.06%)
and q < 0.005 (95.83%). The best PBIL run (98.61%) even outperformed ANOVA
for n D 326 and q < 0.001 (both 97.22%). PBIL’s performance was credited to its
ability to direct the search, not only towards the optimal solution, but also away
from the worst.

Hulley and Marwala (2007) applied GA-based incremental learning for opti-
mal weight and classifier selection. They then compared LearnCC, which is an
incremental learning algorithm to the new Incremental Learning Using Genetic
Algorithm (ILUGA). LearnCC demonstrated good incremental learning capabil-
ities on benchmark datasets on which the new ILUGA technique was tested.
ILUGA showed good incremental learning ability using only a few classifiers and
did not suffer from catastrophic forgetting. The results obtained for ILUGA on
the Optical Character Recognition (OCR) and Wine datasets were good, with an
overall accuracy of 93% and 94% respectively showing a 4% improvement over
LearnCC.MT for the difficult multi-class OCR dataset.

Lunga and Marwala (2006a) applied a time series analysis using fractal theory
and on-line ensemble classifiers to model the stock market. The fractal analysis was
implemented as a concept to identify the degree of persistence and self-similarity
within the stock market data. This concept was carried out using the Rescaled range
analysis (R/S) technique. The R/S analysis outcome was then applied to an on-
line incremental algorithm (LearnCC) that was built to classify the direction of
movement of the stock market. The use of fractal geometry in this study provided a
way of determining quantitatively the extent to which the time series data could be
predicted. In an extensive test, it was demonstrated that the R/S analysis provided a
very sensitive technique to reveal hidden long runs and short run memory trends
within the sample data. A time series data that was measured to be persistent
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was used in training the neural network. The results from the LearnCC algorithm
showed a very high level of confidence for the neural network to classify sample
data accurately.

Lunga and Marwala (2006b) applied incremental learning for the on-line fore-
casting of stock market movement direction. In particular, they presented a specific
application of the LearnCC algorithm, and investigated the predictability of
financial movement direction with LearnCC by forecasting the daily movement
direction of the Dow Jones. The framework was implemented using the Multi-Layer
Perceptron (MLP) as a weak learner. First, a weak learning algorithm, which tried to
learn a class concept with a single input perceptron, was established. The LearnCC
algorithm was then applied to improve the weak MLP learning capacity and thus
introduced the concept of incremental on-line learning. The presented framework
could adapt as new data were introduced and could classify the data well.

Vilakazi and Marwala (2007b) applied incremental learning to bushing condition
monitoring. They presented a technique for bushing fault condition monitoring
using the fuzzy ARTMAP. The fuzzy ARTMAP was introduced for bushing
condition monitoring because it can incrementally learn information as it becomes
available. An ensemble of classifiers was used to improve the classification accuracy
of the systems. The test results showed that the fuzzy ARTMAP ensemble gave an
accuracy of 98.5%. In addition, the results showed that the fuzzy ARTMAP could
update its knowledge in an incremental fashion without forgetting the previously
learned information.

Nelwamondo and Marwala (2007) successfully applied a technique for handling
missing data from heteroskedastic and non-stationary data. They presented a
computational intelligence approach for predicting missing data in the presence
of concept drift using an ensemble of multi-layered feed-forward neural networks.
Six instances prior to the occurrence of missing data were used to approximate the
missing values. The algorithm was applied to a simulated time series data sets that
resembled non-stationary data from a sensor. Results showed that the prediction
of missing data in a non-stationary time series data was possible but was still a
challenge. For one test, up to 78% of the data could be predicted within a 10%
tolerance range of accuracy.

Other successful implementations of incremental learning techniques include its
use in anomaly detection (Khreich et al. 2009), in human robot interaction (Okada
et al. 2009), for online handwriting recognition (Almaksour and Anquetil 2009), for
predicting human and vehicle motion (Vasquez et al. 2009) and in visual learning
(Huang et al. 2009).

11.3.1 LearnCC

LearnCC is an incremental learning algorithm that was introduced by Polikar and
co-workers (Polikar et al. 2000, 2001, 2002; Muhlbaier et al. 2004; Erdem et al.
2005; Polikar 2006). It is based on AdaBoost and applies multiple classifiers to
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enable the system to learn incrementally. The algorithm operates on the concept of
using many classifiers that are weak learners to give a good overall classification.
The weak learners are trained on a separate subset of the training data and then
the classifiers are combined using a weighted majority vote. The weights for the
weighted majority vote are chosen using the performance of the classifiers on the
entire training dataset.

Each classifier is trained using a training subset that is drawn according to
a specified distribution. The classifiers are trained using a weak learn algorithm
(WeakLearn). The requirement for the WeakLearn algorithm is that it must give a
classification rate of less than 50% initially (Polikar et al. 2002). For each database
Dk that contains training sequence, S, where S contains learning examples and their
corresponding classes, LearnCC starts by initializing the weights, w, according
to a specified distribution DT, where T is the number of hypothesis. Firstly the
weights are initialized to be uniform, thereby giving equal probability for all
cases selected for the first training subset and the distribution is given by (Polikar
et al. 2002):

D D 1=m (11.2)

Here, m represents the number of training examples in S. The training data are
then divided into training subset TR and testing subset TE to ensure the WeakLearn
capability. The distribution is then used to select the training subset TR and testing
subset TE from Sk. After the training and testing subset have been selected, the
WeakLearn algorithm is implemented. The WeakLearner is trained using subset TR.
A hypothesis, ht, obtained from a WeakLearner is tested using both the training and
testing subsets to obtain an error (Polikar et al. 2002):

"t D
X

t Whi .xi /¤yi

Dt .i/ (11.3)

The error is required to be less than 0.5; a normalized error ˇt is computed using
(Polikar et al. 2002):

Bt D "t=1 � "t
(11.4)

If the error is greater than 0.5, the hypothesis is discarded and a new training and
testing subsets are selected according to a distribution DT and another hypothesis
is computed. All classifiers generated are then combined using weighted majority
voting to obtain the composite hypothesis, Ht (Polikar et al. 2002):

Ht D arg max
y2Y

X

t Wht .x/Dy

log
�
1=ˇt

�
(11.5)
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Weighted majority voting gives higher voting weights to a hypothesis that
performs well on the training and testing data subsets. The error of the composite
hypothesis is computed as follows (Polikar et al. 2002):

Et D
X

t WHi .xi /¤yi

Dt .i/ (11.6)

If the error is greater than 0.5, the current hypothesis is discarded and the new
training and testing data are selected according to the distribution DT . Otherwise, if
the error is less than 0.5, then the normalized error of the composite hypothesis is
computed as follows (Polikar et al. 2002):

Bt D Et=1 � Et
(11.7)

The error is used in the distribution update rule, where the weights of the
correctly classified case are reduced, consequently increasing the weights of the
misclassified instances. This ensures that the cases that were misclassified by
the current hypothesis have a higher probability of being selected for the subsequent
training set. The distribution update rule is given by the following equation (Polikar
et al. 2002):

wtC1 D wt .i / � B
1�ŒjHt .xi /¤yi j�
t (11.8)

After the T hypothesis has been created for each database, the final hypothesis is
computed by combining the hypotheses using weighted majority voting as described
by the following equation (Polikar et al. 2002):

Ht D arg max
y2Y

KX

kD1

X

t WHt .x/Dy

log
�
1=ˇt

�
(11.9)

The LearnCC algorithm is represented diagrammatically in Fig. 11.1.

11.3.2 Confidence Measurement

A technique is used to estimate the confidence of the algorithm about its own
decision. A majority of hypotheses agreeing on given instances can be interpreted
as an indication of confidence on the decision proposed. If it is assumed that a total
of T hypotheses are generated in k training sessions for a C-class problem, then for
any given example, the final classification class, the total vote class c receives is
given by (Muhlbaier et al. 2004):
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Fig. 11.1 Block diagram of a LearnCC algorithm

�c D
X

t Wht .x/Dc

‰t (11.10)

where ‰t denotes the voting weights of the t th, hypothesis ht.
Normalizing the votes received by each class can be performed as follows

(Muhlbaier et al. 2004):

�c D �c

CP
cD1

�c

(11.11)

Here, �c can be interpreted as a measure of confidence on a scale of 0–1. A high
value of �c shows high confidence in the decision and conversely, a low value of
�c shows low confidence in the decision. It should be noted that the �c value does
not represent the accuracy of the results, but the confidence of the system in its own
decision.
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11.4 Multi-Layer Perceptrons

The architecture considered in this chapter to create the WeakLearn was the multi-
layer perceptron (MLP) as described in great detail in Chap. 3. The MLP can be
defined as a feed-forward neural network model that approximates the relationship
between a set of input data and a set of appropriate output data. Its foundation is the
standard linear perceptron. It makes use of three or more layers of neurons usually
with non-linear activation functions. This is because it can distinguish data that are
not linearly separable, or separable by a hyper-plane. The multi-layer perceptron
has been used to model many complex systems in areas such as mechanical and
aerospace engineering as well as for modelling interstate conflict (Marwala 2007;
Marwala 2009; Marwala 2010; Marwala and Lagazio 2011).

The MLP neural network consists of multiple layers of computational units,
usually inter-connected in a feed-forward way (Bishop 1995). Each neuron in
one layer is directly connected to the neurons of the subsequent layer. A fully
connected two-layered MLP architecture was used for this chapter. A two-layered
MLP architecture was used because of the universal approximation theorem, which
states that a two-layered architecture is adequate for MLP and, consequently, it can
approximate data of arbitrary complexity (Bishop 1995).

11.5 Experimental Investigation

A dissolved gas analysis is used to estimate the faulty gases in bushing oil. The
information from the dissolved gas analysis reflects the states of the transformer
and bushing. Ten diagnostic gases are extracted: CH4, C2H6, C2H4, C2H2, H2,
CO, CO2, N2, O2 and total dissolved combustible gases. The total dissolved
combustible gas is given by the sum of methane, hydrogen, acetylene, ethane,
ethylene and hydrogen. The faulty gases are analyzed using the IEEE C57.104
standards. Data pre-processing is an integral part of neural network architecture.
Data pre-processing makes it easier for the network to learn. Data are normalized to
fall within 0 and 1.

The first experiment evaluated the incremental capability of the LearnCC
algorithm using a first-level fault diagnosis, which was aimed at classifying the
presence or the absence of faults in transformer bushings. The data used were
collected from bushings over a period of 2.5 years from bushings in service. The
algorithm was implemented with 1,500 training examples and 4,000 validation
examples. The training data were divided into five databases each with 300 training
instances. In each training session, LearnCC was provided with each database and
20 hypotheses were generated. The WeakLearner used an MLP with 10 input layer
neurons, 5 hidden layer neurons and one output layer neuron. To ensure that the
technique retained previously learned data, the previous database was tested at each
training session.
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Table 11.1 Performance of
LearnCC for first level
online condition monitoring
(Key: S D dataset)

Dataset S1 S2 S3 S4 S5

S1 89.5 85.8 83.0 86.9 85.3
S2 – 91.4 94.2 93.7 92.9
S3 – – 93.2 90.1 91.4
S4 – – – 92.2 94.5
S5 – – – – 98.0
Learn CC 65.7 79.0 85.0 93.5 95.8
Testing (%)

Fig. 11.2 Performance of LearnCC on training data against the number of classifiers

The first row of Table 11.1 shows the performance of LearnCC on the training
data for different databases. On average, the WeakLearner gave 60% classification
rate on its training dataset, which improved to 98% when the hypotheses were
combined.

These results show the performance improvement of LearnCC with a single
database. Each column shows the performance of current and previous databases.
This is to indicate that LearnCC did not forget the previously learned information
when new data were introduced.

The classifiers’ performance on the testing dataset steadily increased from
65.7% to 95.8% as new databases became available, demonstrating the incremental
capability of LearnCC as shown in Fig. 11.2.

A second experiment was performed to evaluate whether the frameworks can
accommodate new classes. The results appear in Table 11.2. The faulty data
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Table 11.2 Performance of
LearnCC for second stage
bushing condition monitoring

Dataset S1 S2 S3 S4 S5

S1 95.0 95.2 94.6 95.7 95.1
S2 – 96.3 96.0 96.8 95.3
S3 – – 97.0 96.4 96.5
S4 – – – 97.8 96.8
S5 – – – – 99.2
Learn CC 60.0 65.2 76.0 83.0 95.3
Testing (%)

were divided into 1,000 training examples and 2,000 validation examples, which
contained all three classes. The training data were divided into five databases,
each with 200 training instances. The first and second databases contained training
examples of partial discharges and thermal faults.

The data with unknown faults were introduced in training session three. In each
training session, LearnCC was provided with each database and 20 hypotheses
were generated. The classifiers performance increased from 60% to 95.3% as
new classes were introduced in subsequent training datasets. The final experiment
addressed the problem of bushing condition monitoring using a MLP network that
was trained using batch learning. This was done to compare the classification rate
of LearnCC with that of a MLP.

A MLP with the same set of training example as LearnCC was trained and the
trained MLP was tested with the same validation data as LearnCC. This test was
conducted for the first and second levels of fault classification. In the first level fault
diagnosis, the MLP gave a classification rate of 97.2% whereas the second level
MLP gave a classification rate of 96.0%. This was when the classifier had seen
all the fault classes a priori. If the classifier had not seen all the fault cases, the
performance decreased from 65.7% for database 1–30.0% for databases 2–3 for the
first level fault classification.

11.6 Conclusion

This chapter presented an on-line bushing condition monitoring approach, which
can adapt to newly acquired data. This technique was capable of factoring into
account new classes that were introduced by incoming data and was implemented
using an incremental learning algorithm that used the MLP called LearnCC. The
test results improved from 67.5% to 95.8% as new data were introduced and
improved from 60% to 95.3% as new conditions were introduced. On average, the
confidence value of the framework about its decision was 0.92.
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