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Foreword

Condition monitoring is a process of monitoring a system by studying certain
selected parameters in such a way that significant changes of those parameters are
related to a developing failure. It is a significant type of predictive maintenance and
permits maintenance to be intelligently managed. The supply of reliable electricity
and machines that are safe to operate are cornerstones of building a caring society.
In this regard, the book Condition Monitoring Using Computational Intelligence
Methods Tshilidzi studies mechanical and electrical systems. It is usually de-
sirable that the condition monitoring process be fully automated. Furthermore,
it is desirable for this automation process to be intelligent. Many techniques
have been developed to capacitate processes with intelligent decision-making and
chief amongst this is artificial intelligence which is also known as computational
intelligence. This paradigm has made it possible to design robots that are not only
able to perform routine tasks but are able to perform tasks that are unexpected. This
has capacitated robots to operate under highly uncertain environments.

The book Condition Monitoring Using Computational Intelligence Methods
introduces techniques of artificial intelligence for condition monitoring of mechan-
ical and electrical machines. It also introduces the concept of on-line condition
monitoring as well as condition monitoring in the presence of sensor failures.
Furthermore, it introduces various signals that can be used for condition monitoring.

This book is useful for graduate students, researchers and practitioners.

Harare Arthur G.O. Mutambara, D.Phil.
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Preface

Condition Monitoring Using Computational Intelligence Methods introduces the
concept of computational intelligence to monitoring the condition of mechanical and
electrical systems. The book implements multi-layer perception neural networks,
Bayesian networks, a committee of neural networks, Gaussian mixture models,
hidden Markov models, fuzzy systems, ant colony optimized rough sets models,
support vector machines, the principal component analysis and extension networks
to create models that estimate the condition of mechanical and electrical systems,
given measured data. In addition, the Learn CC method is applied to create an
on-line computational intelligence device which can adapt to newly acquired data.
Furthermore, auto-associative neural networks and the genetic algorithm are used to
perform condition monitoring in the presence of missing data. The techniques that
used on datasets were pseudo-modal energies, modal properties, fractal dimensions,
mel-frequency cepstral coefficients, and wavelet data.

This book makes an interesting read and opens new avenues and understanding
in the use of computational intelligence methods for condition monitoring.

University of Johannesburg Tshilidzi Marwala, Ph.D.
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Chapter 1
Introduction to Condition Monitoring
in Mechanical and Electrical Systems

1.1 Introduction

A procedure for monitoring and identifying faults in systems is of vital importance
in electrical and mechanical engineering. For instance, aircraft operators must be
sure that their aircrafts are free from cracks. Cracks in turbine blades lead to
catastrophic failure of aircraft engines and must be detected as early as possible.
Bridges nearing the end of their useful life must be assessed for their load-bearing
capacities.

Many techniques have been employed in the past for monitoring the condition
of systems. Some techniques are visual (e.g., dye penetrating methods) and others
use sensors to detect local faults (through acoustics, magnetics, eddy currents,
thermal fields, and radiographs). These methods are time consuming and cannot
show that a structure is fault-free without testing the entire structure in minute detail.
Furthermore, if a fault is buried deep within the structure, it may not be visible or
detectable using these localised techniques. The need to detect faults in complicated
structures has led to the development of global methods, which can use changes
in the measured data of the structure as a basis for fault detection (Doebling et al.
1996; Marwala 1997, 2001).

Yadav et al. (2011) implemented an audio signature for monitoring of the
condition of internal-combustion engines using a Fourier transform and a correlation
approach to categorize whether the engine was healthy or faulty.

He et al. (2009) applied Principal Component Analysis (PCA) for monitoring the
condition of an internal-combustion engine through sound and vibration analysis
of an automobile gearbox. They found that their technique was effective for the
monitoring of machine conditions. Bouhouche et al. (2011) also successfully ap-
plied Principal Component Analysis (PCA) and a self-organization map (SOM) for
monitoring the condition of a pickling process. A comparison of self-organization
maps, the traditional PCA, and the mixture of PCA-SOM was made using the
data obtained from a real pickling process. The hybrid method was better than
the PCA but not better than the SOM. Loutas et al. (2011) applied vibration,

T. Marwala, Condition Monitoring Using Computational Intelligence Methods:
Applications in Mechanical and Electrical Systems, DOI 10.1007/978-1-4471-2380-4 1,
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acoustic emission, and oil debris analysis for the on-line condition monitoring of
rotating machinery. Multi-hour tests were performed on healthy gearboxes until
they were damaged and on-line monitoring methods were examined. A number
of parameters/features were extracted from the time and frequency domain as
well as from wavelet-based signal processing. A PCA was used to condense the
dimensionality of the data, while an independent component analysis was used
to categorize the independent components in the data and correlate them with
the different fault modes of the gearbox. The combination of vibration, acoustic
emission, and oil debris data increased the diagnostic capability and dependability
of the condition monitoring technique.

Park et al. (2011) successfully implemented electro-mechanical impedance-
based wireless for the condition monitoring of the de-bonding of Carbon Fiber Rein-
forced Polymer (CFRP) from laminated concrete structures. The CFRP-reinforced
concrete samples were made and impedance signals were measured from the
wireless impedance sensor node with different de-bonding conditions between
the concrete and the CFRP. Cross correlation data analysis was used to estimate the
changes in impedance measured at the patches due to the de-bonding conditions.
The results indicated that impedance-based wireless Structural Health Monitoring
(SHM) can be implemented successfully for monitoring the de-bonding of CFRP
laminated concrete structures.

Murthy et al. (2011) applied condition monitoring analysis on surveillance videos
of insulators of electric power lines. This was conducted by monitoring both the
voltage and leakage flow. The method applied a Wavelet Coefficient Differentiator
(WCD) to analyze the signal. This method was found to give good results in less
time, when compared to traditional approaches.

Tian et al. (2011) applied a condition monitoring technique in wind turbine
components to decrease the operation and maintenance costs of wind power
generation systems. Their maintenance technique estimated the failure probability
values and a simulated study demonstrated the advantage of the proposed technique
for reducing the maintenance cost.

Al-Habaibeh et al. (2002) applied Taguchi’s method to provide an extensive
experimental and analytical evaluation of a previously presented approach for the
systematic design of condition monitoring systems for machining operations. When
the technique was evaluated on tool faults in end-milling operations, it showed that
it can successfully detect faults. Zhu et al. (2009) applied wavelet analysis (which is
a non-stationary signal processing technique) for the condition monitoring of tools.
This study successfully reviewed five processes; namely; time-frequency analysis of
the machining signal, signal de-noising, feature extraction, singularity analysis for
tool state estimation and density estimation for the classification of tool wear.

Vilakazi et al. (2005) applied condition monitoring to bushings and used Multi-
Layer Perceptrons (MLPs), Radial Basis Functions (RBFs) and Support Vector
Machine (SVM) classifiers. The first level of their framework determined if
the bushing was faulty or not, while the second level determined the type of
fault. The diagnostic gases in the bushings were analyzed using dissolved gas
analysis. The MLP gave better accuracy and training time than SVM and RBF did.
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In addition, an on-line bushing condition monitoring approach, which could adapt
to newly acquired data, was introduced. This approach could accommodate new
classes that were introduced by incoming data. The approach was implemented with
an incremental learning algorithm that used MLP. The testing results improved from
67.5% to 95.8% as new data were introduced and the testing results improved from
60% to 95.3% as new conditions were introduced. On average, the confidence value
of the framework about its decision was 0.92.

Bartelmus and Zimroz (2009) applied features for monitoring the condition
of gearboxes in non-stationary operating conditions. The method used a simple
regression equation to estimate diagnostic features. The technique was found to be
very fast, simple, dynamic, and intuitive.

Vilakazi and Marwala (2007) successfully applied an incremental learning
method to the problem of the condition monitoring of electrical systems. Two
incremental learning methods were applied to the problem of condition monitoring.
The first technique used the incremental learning ability of Fuzzy ARTMAP (FAM)
and explored whether ensemble methods could improve the performance of the
FAM. The second technique used LearnCC that applied an ensemble of MLP
classifiers. Later, Vilakazi and Marwala (2009) applied a novel technique to the
condition monitoring of bushing faults by using FAM. FAM was introduced for
bushing condition monitoring because it has the capability to incrementally learn
information as the information is made available. An ensemble of classifiers was
used to improve the classification accuracy of the systems. The results demonstrated
that a FAM ensemble gave an accuracy of 98.5%. Additionally, the results showed
that a FAM could update its knowledge in an incremental fashion without forgetting
previously learned information.

Nelwamondo and Marwala (2007) successfully applied several methods to
handle missing data, which included a novel algorithm that classifies and regresses
in a condition monitoring problem having missing data.

Miya et al. (2008) applied an Extension Neural Network (ENN), a Gaussian
Mixture Model (GMM) and a Hidden Markov Model (HMM) for condition moni-
toring of bushings. The monitoring process had two-stages: (1) detection of whether
the bushing was faulty or normal and (2) a classification of the fault. Experiments
were conducted using data from a Dissolved Gas-in-oil Analysis (DGA) collected
from bushings and based on the IEEEc57.104; IEC60599 and IEEE production
rates methods for Oil-Impregnated Paper (OIP) bushings. It was observed from
experimentation that there was no difference in major classification between ENN
and GMM in the detection stage with classification rates of 87.93% and 87.94%
respectively, outperforming HMM which achieved only 85.6%. Moreover, the
HMM fault diagnosis surpassed those of ENN and GMM with a classification
success of 100%. For the diagnosis stage, the HMM was observed to outperform
both the ENN and the GMM with a 100% classification success rate. ENN and
GMM were considerably faster at training and classification, whereas HMM’s
training was time-consuming for both the detection and diagnosis stages.
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Booth and McDonald (1998) used artificial neural networks for the condition
monitoring of electrical power transformers while Pedregal and Carnero (2006)
applied state space models that used a Kalman filter and vibration data for the
condition monitoring of turbines.

From the literature review above, there are few key terminologies that are
emerging. These are data measurement, signal processing, and machine learning
(e.g. SVM and neural networks). From these key variables this book constructs a
generalized condition monitoring framework, which is the subject of the following
section.

1.2 Generalized Theory of Condition Monitoring

The generalized theory of condition monitoring is illustrated in Fig. 1.1, with one
device per box. This figure shows in the first box that there is a data acquisition
device, whose primary function is to acquire data from the system. Examples of
these would include measurement devices such as thermometers, accelerometers, or
strain gauges.

The second box in the figure contains the data analysis device, whose function
is to analyze the acquired data. Many methods, some of which will be described in
Chap. 2, have been proposed in this regard. The methods include using wavelets,
the Fourier transform, and the Wagner-Ville distribution.

In the fourth box, feature selection is a process where specific aspects of the data,
which are good indicators of faults in the structure, are identified and quantified.

Data acquisition device 

Data analysis device

Feature selection device

Decision making device

Condition diagnosisFig. 1.1 Condition
monitoring framework



1.3 Stages of Condition Monitoring 5

Methods that have been developed include independent component analysis and the
principal component analysis, which will also be described in Chap. 2.

The decision making device is an infrastructure whose primary function is to
take the features and interpret these features. Methods that have been used include
the Multi-Layer Perceptrons and Radial Basis functions, which will be described in
Chap. 3, a committee of networks which will be described in Chap. 4, a Bayesian
network which will be described Chap. 5, a support vector machine which will be
described in Chap. 6, a fuzzy system which will be described in Chap. 7, and rough
sets system which will be described in Chap. 8. The outcome of the decision making
device is the identification of faults.

In implementing the procedures in Fig. 1.1, Gunal et al. (2009) used the motor
current as the data, notch-filtering in the analysis, with feature devices, and finally,
used popular classifiers as the decision making device to establish whether the
induction motor was healthy or not.

Loutas et al. (2011) applied vibration, oil debris and acoustic emission as the
data acquisition and analysis device, principal component analysis as the feature
extraction device and heuristics rules as the decision making device to monitor
the condition of a rotating machine.

Elangovan et al. (2010) used a continuous acquisition of signals from sensor
systems, extracted features using statistical and histogram methods and used a Bayes
classifier for the condition monitoring of single point carbide tipped tool. Zhou
et al. (2011a) used position sensors for the data acquisition device and an ensemble
empirical mode decomposition method for gearbox condition monitoring. Garcia-
Escudero et al. (2011) used motor line current as data and a Fast Fourier Transform
as the feature selection device with robust quality control based on multivariate
control charts as a decision making device, making early detection of broken rotor
bars in induction motors possible.

1.3 Stages of Condition Monitoring

The aim of the condition monitoring process is to estimate the state of health of
a structure or machine from measured data. The state of health of the structure or
machine can be estimated through the five stages which are shown in Fig. 1.2. The
first stage in fault estimation is the detection of the presence or the absence of a fault.
Zhou et al. (2011b) used feature identification for industrial fault detection, while
Zhang and Huang (2011) successfully detected faults in hybrid fuel cells. Zhu et al.
(2011) detected faults for a class of nonlinear systems, while Hussain and Gabbar
(2011) detected faults for real time gears based on a pulse shape analysis.

The next stage of fault estimation is fault classification which, in this chapter, is
defined as more than just classifying the presence or the absence of fault but includes
the nature of the fault (e.g., extent and type).

Kim et al. (2010a, b) used Support Vector Machines for classifying fault types
in rotating machines, while Lin et al. (2010) applied a hybrid of rough sets and
neural networks for classifying the types of faults in transmission lines. Thai and
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Fault detection

Fault classification

Fault location

Fault quantification

Remaining life estimation

Fig. 1.2 Fault stages

Yuan (2011) applied neuro-fuzzy techniques for classifying the types of transmis-
sion line faults. Abdel-Latief et al. (2003) applied statistical functions and neural
networks for the classification of fault types in power distribution feeders.

The next stage in fault estimation is the identification of the location of the fault.
Jayabharata Reddy and Mohanta (2011) applied a modular method for the location
of arcing and non-arcing faults on transmission lines. Jain et al. (2009) used terminal
data for fault location in double circuit transmission lines while Xie et al. (2009)
applied ant colony optimization for the location of faults and Khorashadi-Zadeh
and Li (2008) applied neural networks to the location of faults on medium voltage
cables.

The next stage in fault estimation is the quantification of the magnitude of
the fault. Treetrong (2011a) applied a higher-order spectrum technique to quantify
the degree of the fault in industrial electric motors. Riml et al. (2010) quantified
the faults arising from disregarding the standardised procedures for photographing
faces, and Sinha (2009) studied trends in fault quantification of rotating machines.

The last stage in fault estimation is to finally estimate the remaining life of the
structure that is being monitored. Zio and Peloni (2011) applied a particle filtering
method to estimate the remaining useful life of nonlinear components, while Butler
and Ringwood (2010) also applied a particle filtering technique for estimating
the remaining useful life of abatement equipment which is used in semiconductor
manufacturing. Yanagawa et al. (2010) estimated the remaining life of the hydro-
turbine in a hydro-electric power station and Kim et al. (2010a, b) applied computer
simulation for estimating the remaining life of a level luffing crane component.
Gedafa et al. (2010) used surface deflection to estimate the remaining service life of
flexible pavements while Garvey et al. (2009) applied pattern recognition methods to
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estimate the remaining useful life of bottomhole assembly tools, and Pandurangaiah
et al. (2008) developed a technique for estimating the remaining life of power
transformers.

1.4 Data Used for Condition Monitoring

There are four main domains in which data may be represented: time domain, modal
domain, frequency domain, or time-frequency domain (Marwala 2001). Raw data
are measured in the time domain. From the time domain, Fourier transforms can be
used to transform the data into the frequency domain. From the frequency domain
data, and sometimes directly from the time domain, the modal properties may be
extracted. All of these domains are reviewed in this chapter. Theoretically, they
contain similar information, but in reality this is not necessarily the case.

1.4.1 Time Domain Data

Time domain data is unprocessed data measured over historical time. Normally
when such data are used, some form of statistical analysis such as variance and
means are used. Tao et al. (2007) applied a time-domain index for the condition
monitoring of rolling element bearings. They presented a new statistical moment,
derived from the Rényi entropy and compared it to other statistical parameters such
as kurtosis and stochastic resonance.

Andrade et al. (2001) applied a new method to the time-domain vibration condi-
tion monitoring of spur gear that used a Kolmogorov-Smirnov test. This technique
was performed by using a null hypothesis that assumed that the Cumulative Density
Function (CDF) of the target distribution is statistically similar to that of a reference
distribution. This demonstrated that, in spite of its simplicity, the Kolmogorov-
Smirnov test is a powerful technique that successfully classifies different vibration
signatures, permitting its safe use as a condition monitoring technique.

Zhang and Suonan (2010) applied the time domain method for fault location
in Ultra High Voltage (UHV) transmission lines, while Haroon and Adams (2007)
applied the time and frequency domain nonlinear system characterization for the
mechanical fault identification in the suspension systems of ground vehicles.

1.4.2 Modal Domain Data

The modal domain data are articulated as natural frequencies, damping ratios and
mode shapes. These will be described in detail in Chap. 2. The most widespread
method of extracting the modal properties is by using modal analysis (Ewins 1995).
This technique has been applied for fault identification. So, in this chapter, both
techniques are reviewed.
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1.4.2.1 Natural Frequencies

The analysis of shifts in natural frequencies caused by the change in condition
of structures or machines has been used to identify structural faults. Because
the changes in natural frequencies caused by average fault levels are of small
magnitudes, an accurate method of measurement is vital for this technique to be
successful. This issue limits the level of fault that natural frequencies can identify
to that of high magnitudes (Marwala 2001).

Cawley and Adams (1979) used changes in natural frequencies to detect the
health condition of composite materials. To calculate the ratio between frequency
shifts for two modes, they implemented a grid between possible fault points and
assembled an error term that related measured frequency shifts to those predicted by
a model based on a local stiffness reduction. Farrar et al. (1994) applied the shifts
in natural frequencies to monitor the condition on an I-40 bridge and observed that
the shifts in the natural frequencies were not adequate to be used for detecting faults
of small magnitudes. To improve the accuracy of the natural frequency technique,
it was realized that it was more feasible to conduct the experiment in controlled
environments where the uncertainties in measurements were relatively low. In one
such experiment, a controlled environment used resonance ultrasound spectroscopy
to measure the natural frequencies and determine the out-of-roundness of ball
bearings (Migliori et al. 1993).

Faults in different regions of a structure may result in different combinations
of changes in the natural frequencies. As a result, multiple shifts in the natural
frequencies can indicate the location of fault. Messina et al. (1996) successfully
used the natural frequencies to locate single and multiple faults in a simulated
31 bar truss and tabular steel offshore platform. A fault was introduced into the
two structures by reducing the stiffness of the individual bars by up to 30%. This
method was experimentally validated on an aluminum rod test structure, where the
fault was introduced by reducing the cross-sectional area of one of the members
from 7.9 to 5.0 mm.

He et al. (2010) applied natural traveling-wave frequencies to locate faults
in electrical systems. They achieved this by analyzing the transient response of
a capacitor voltage transformer and its effect on the spectra of fault traveling
waves. Xia et al. (2010) used changes in natural frequencies to locate faults in
mixed overhead-cable lines. They achieved this by implementing a method based
on natural frequencies and an Empirical Mode Decomposition (EMD) for mixed
overhead-cable line fault identification. They used EMD to decompose a signal
to first identify the necessary part of the travelling wave before extracting the
principal component of natural frequency spectra of the traveling wave. The natural
frequency’s spectra were then analyzed to remove the principal component of
natural frequencies spectra of the faulty traveling wave and thereby identify the
fault locations. A simulated study showed that their technique can reasonably solve
the spectra aliasing problem in a fault location exercise.

Other successful applications of natural frequencies for condition monitoring
include that of Huang et al. (2009) in ultra-high voltage transmission lines and Luo
et al. (2000) in the real-time condition monitoring in machining processes.
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To improve the use of the natural frequencies to detect faults of small magnitude,
high-frequency modes, which are associated with local responses, may be used.
There are two main problems with working with high frequency modes. First of all,
modal overlap is high; and secondly, high frequency modes are more sensitive to
environmental conditions than the low frequency modes are.

1.4.2.2 Damping Ratios

The use of damping ratios to detect the presence of fault in structures has been
applied mostly to composite materials. Lifshitz and Rotem (1969) studied the
changes caused by faults to dynamic moduli and the damping of quartz particle filled
resin specimens having either epoxy or polyester as the binder. They introduced a
fault by applying a static load and observed that damping was more sensitive to the
fault than to the dynamic moduli. Schultz and Warwick (1971) also observed that
damping was more sensitive to faults than the use of natural frequencies in glass-
fiber-reinforced epoxy beams. Lee et al. (1987) studied the damping loss factors for
various types of fault cases in Kevlar/epoxy composite cantilevered beams. They
found that damping changes were difficult to detect when a fault was introduced
by milling two notches of less than 5% of the cross-sectional area. However, they
also found that the damping factors were sensitive when a fault was introduced
through the creation of delamination by gluing together two pieces of glass/epoxy
and leaving particular regions unglued.

Lai and Young (1995) observed that the delamination of graphite/epoxy compos-
ite materials increased the damping ratio of the specimen. They also observed that
the damping ratios decrease significantly when the specimen is exposed to humid
environments for a prolonged period.

1.4.2.3 Mode Shapes

Mode shapes are the properties of the structure that show the physical topology
of a structure at various natural frequencies. They are, however, computationally
expensive to identify; are susceptible to noise due to modal analysis; do not take
into account the out-of-frequency-bandwidth modes; and they are only applicable
to lightly damped and linear structures (Marwala 2001; Doebling et al. 1996).
However, the mode shapes are easy to implement for fault identification; are most
suitable for detecting large faults; are directly linked to the shape of the structure;
and focus on vital properties of the dynamics of the structure (Marwala 2001;
Doebling et al. 1996).

West (1984) applied the Modal Assurance Criterion (MAC) (Allemang and
Brown 1982), a technique that is used to measure the degree of correlation between
two mode shapes, to locate faults on a Space Shuttle Orbiter body flap. A fault was
introduced using acoustic loading. The mode shapes were partitioned and changes
in the mode shapes across various partitions were compared (Marwala 2001).
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Kim et al. (1992) applied the Partial MAC (PMAC) and the Co-ordinate Modal
Assurance Criterion (COMAC) presented by Lieven and Ewins (1988) to identify
the damaged area of a structure. Mayes (1992) used the mode shape changes for
fault localization by using a Structural Translational and Rotational Error Checking
which was calculated by taking the ratios of the relative modal displacements from
faulty and healthy structures as a measure of the accuracy of the structural stiffness
between two different structural degrees of freedom (Marwala 2001).

Salawu (1995) introduced a global damage integrity index, based on a weighted-
ratio of the natural frequencies of faulty to healthy structures. The weights were
used to indicate the sensitivity of each mode to fault.

Kazemi et al. (2010) successfully applied the modal flexibility variation for fault
identification in thin plates. They conducted this experiment by using the variation
of modal flexibility and the load-deflection differential equation of plate combined
with the invariant expression for the sum of transverse load to develop the fault
indicator and a neural network to estimate the fault severity of identified parts.

Furthermore, Kazemi et al. (2011) applied a modal flexibility variation method
and genetic algorithm trained neural networks for fault identification. They showed
the feasibility of the Modal Flexibility Variation method using numerical simulation
and experimental tests carried out on a steel plate. Their results indicated that the
performance of the procedure was good.

Liguo et al. (2009) applied modal analysis for fault diagnosis of machines.
To assess the legitimacy of modal analysis approaches for fault diagnosis of
machines, a simulation study on gearbox was successfully conducted. Ma et al.
(2007a, b) successfully used a modal analysis and finite element model analysis of
vibration data for fault diagnosis of an AC motor. In particular, they applied a modal
analysis technique for the fault identification in an induction motor.

Khosravi and Llobet (2007) presented a hybrid technique for fault detection and
modeling based on modal intervals and neuro-fuzzy systems whereas Zi et al. (2005)
applied modal parameters for a wear fault diagnosis using a Laplace wavelet.

1.4.3 Frequency Domain Data

The measured excitation and response of a structure can be transformed into the
frequency domain using Fourier transforms (Ewins 1995; Marwala 2001). The ratio
of the response to excitation in the frequency domain at each frequency is called the
frequency response function.

Frequency domain methods are difficult to use in that they contain more infor-
mation than is necessary for fault detection (Marwala 2001; Ewins 1995). There is
also no method to select the frequency bandwidth of interest, and they are usually
noisy in the anti-resonance regions. Nevertheless, frequency domain methods have
the following advantages (Marwala 2001; Ewins 1995): the measured data comprise
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the effects of out-of-frequency-bandwidth modes; one measurement offers ample
data; modal analysis is not necessary and consequently modal identification errors
are circumvented; frequency domain data are appropriate to structures with high
damping and modal density.

Sestieri and D’Ambrogio (1989) used frequency response functions to identify
faults while D’Ambrogio and Zobel (1994) applied frequency response functions to
identify the presence of faults in a truss-structure.

Imregun et al. (1995) observed that the direct use of frequency response functions
to identify faults in simulated structures offers certain advantages over the use of
modal properties. Lyon (1995) and Schultz et al. (1996) have promoted the use of
measured frequency response functions for structural diagnostics.

Chen et al. (2011) applied the frequency domain technique to determine the
Total Measurable Fault-Information-based Residual for fault detection in dynamic
systems. A practical DC motor example, with a proportional–integral–derivative
(PID) controller, was used to demonstrate the effectiveness of their method.

Prasannamoorthy and Devarajan (2010) applied the frequency domain technique
for fault diagnosis in an analog-circuits software and hardware implementation. In
both these cases, the signatures were extracted from the frequency response of the
circuit and were found to be successful for the classification of faults.

Yu and Chao (2010) applied frequency domain data for fault diagnosis in squirrel
cage induction motors. It was found that the method was successful in identifying
fault characteristics.

Yeh et al. (2010) successfully applied frequency domain data for the detection
of faults by using both control and output error signals, while Nandi et al. (2009)
applied frequency domain data for the detection of faults in induction motors and
Rishvanth et al. (2009) applied frequency domain data for short distance fault
detection in optical fibers and integrated optical devices.

1.4.4 Time-Frequency Data

Some types of fault, such as cracks caused by fatigue failures, cause linear structures
to become non-linear. In these cases, techniques such as linear finite element
analysis and modal analysis cannot be applied and non-linear procedures are
required (Ewins 1995; Marwala 2001). Non-linear structures give vibration data
that are non-stationary. A non-stationary signal is one whose frequency components
change as a function of time.

Illustrations of non-stationary signal include noise and vibration from an accel-
erating train. In order to analyze the non-stationary signal, the use of a Fast Fourier
Transform (FFT) technique, which only displays the frequency components of the
signal and is satisfactory for analyzing stationary signals, is not adequate here. As a
result, time-frequency approaches that simultaneously show the time and frequency
components of the signals are required. Some of the time-frequency approaches
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that have been used for fault identification are: the Short-Time Fourier Transform
(STFT) (Newland 1993), the Wavelet Transform (WT) (Daubechies 1987), and the
Wigner-Ville Distribution (WVD) (Wigner 1932).

Fundamentally the STFT transforms a small time window into a frequency
domain. The time window is shifted to a new position and the Fourier transform
is recurred. By doing so, a time-frequency spectrum is attained. If the time
window is short, then the time-domain resolution becomes better and the frequency
resolution becomes worse. Alternatively, if the time window is long, then the
frequency-domain resolution becomes better and the time resolution becomes
worse. Consequently, the time-frequency spectrum acquired from the STFT is
limited in that any increase in the frequency resolution is at the cost of the time
resolution. This drawback describes a principle called the Uncertainty Principle,
which is analogous to Heisenberg’s Uncertainty Principle (Wheeler and Zurek
1983), and in the current framework of signal processing may be assumed to be the
result of producing a linear representation of a possibly non-linear signal. The STFT
is said to be linear, as when computing it, the integral comprises a single, linear
function of the signal and it is said to be time-invariant since the time shifted type
of the signal results only in the time shifting of the time-frequency representation.
In addition, the STFT is optimal for signals with a linearly increasing phase.

The WVD was established by Wigner (1932) in the framework of quantum
mechanics and was brought to signal processing by Ville (1948). The WVD is based
on the calculation of a correlation of a signal with itself (autocorrelation) to give an
energy density. The Fourier transform of the calculated energy density gives the
WVD. The WVD is understood to be bilinear because it uses two linear functions
of the signal being analyzed, as opposed to one for the STFT, when calculating it.
It affords an optimal representation of linear frequency modulation signals such as
in a stationary frequency situation. The gains of the WVD are that it is optimized in
both the time and frequency domain and that non-stationary signals display reduced
distortion. The shortcomings of the WVD are that it does not account for the local
behavior of the data at a given time and presents cross-terms when the signal being
analyzed has many frequency components. The other difficulty, as described by
Cohen (1989), is that this distribution spreads noise. It has been revealed that if
there is noise present in a small segment of a signal, it is seen again within the
WVD spectrum and this is related to the interference caused by cross-terms. The
other problem with the WVD is that negative amplitude values may be attained in
the results and this is physically irrelevant, making the results obtained from the
WVD challenging to understand.

The WT decomposes the signal into a series of basis functions known as wavelets
situated at different locations in the time axis in the same manner that the Fourier
transform decomposes the signal into harmonic components. A given wavelet
decays to zero at a distance away from its center. Local features of a signal can
be recognized from the scale, which is similar to frequency, and the position in
the time axis of the wavelets into which it is decomposed. A wavelet analysis
allows the building of orthonormal bases with good time-frequency resolution.
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Wavelets have the benefit in that they can identify local features of a signal from
the frequency and the position in the time axis of the wavelets while the WVD does
not actually describe the character of a signal at a given time. It gives an equal
degree of significance to the far away times and the near times, making it non-local.
The drawback of the wavelet method is that frequency is logarithmically scaled and,
as a consequence, a low resolution is achieved at high frequencies (Barschdorf and
Femmer 1995).

Surace and Ruotolo (1994) applied complex Morlet WTs to identify faults in a
simulated cantilevered beam. The researchers found that for a fault simulated by a
reduction of 20–45% in the beam’s thickness, the amplitude of the WTs exhibited
modulations that were consistent with the opening and closing of the crack.

Prime and Shevitz (1996) studied experimental data from a cantilevered beam
with fatigue cracks of various magnitudes and observed that the ‘harmonic mode
shapes’ are more sensitive to crack depth and location than are conventional
mode shapes. The harmonic mode shapes were calculated using the magnitudes
of harmonic peaks in the cross-power spectra. The researchers observed that the
Wigner-Ville transforms were more sensitive to non-linearity than were the Fourier
transforms.

Treetrong (2011b) applied a time-frequency analysis for the fault prediction of an
induction motor and found that the presented technique provided a good accuracy
in fault prediction and fault level quantification. Qian et al. (2010) successfully
applied the STFT for the fault diagnosis of an air-lift compressor for an offshore
oil and gas platform. Li et al. (2010) applied a Hough transform, which was
adopted to analyze the Wigner-Ville time-frequency distribution, for rolling bearing
fault diagnosis. Pattern recognition techniques were applied and the results showed
that the Hough transform of Wigner-Ville time-frequency image can successfully
classify the rolling bearing faults.

Borghetti et al. (2010) successfully applied time-frequency wavelet analysis for
the fault location of distribution networks. Ma et al. (2009) successfully applied
wavelet analysis to detect oil-film instability faults in rotor systems and Wei et al.
(2009) successfully applied neural network modeling and wavelet processed data
for the fault diagnosis of aircraft power plants.

Ma et al. (2010) also successfully applied a wavelet time-frequency feature
analysis of oil-film instability faults in a rotor system. Vibration signals with two
different types of parameters were gathered by changing the thickness of disc and
shaft length, which was analyzed using a wavelet transform.

One weakness of time-frequency methods is that there are many types, including
WT, WVD and STFT, and there is no methodical technique to select the most
suitable kind for fault identification. Nevertheless, comparative studies have shown
that wavelet transforms are better suited for the fault detection problem than are
the WVD and STFT. Nonetheless, time-frequency methods have the following
advantages: one measurement provides abundant data; and they are effective in
identifying faults that result in the loss of linearity of a structure.
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1.5 Strategies Used for Condition Monitoring

This section explains the most common strategies that have been applied for
condition monitoring in structures using vibration data in many domains. The
three strategies considered are correlation based models, finite element updating
techniques and computational intelligence techniques.

1.5.1 Correlation Based Methods

Correlation based techniques apply vibration data in the frequency or modal
domains to identify faults. They are computationally cheaper to apply than ap-
proaches that use complicated mathematical models. The modal assurance criterion
(MAC) (Allemang and Brown 1982) and the coordinate modal assurance criterion
(COMAC) (Lieven and Ewins 1988), are measures of correlation between mode
shapes, and have been used to identify faults in structures (West 1984; Fox 1992;
Kim et al. 1992; Salawu and Williams 1994; Lam et al. 1995; Marwala 2001).
The curvature was calculated using the central difference approximation technique.
Messina et al. (1998) introduced the multiple fault location assurance criterion,
which applied the correlation between the natural frequencies from faulty and
healthy structures to identify the location and size of faults.

Maia et al. (1997) applied the frequency-response-function-curvature technique
which is the difference between curvatures of faulty and healthy structures to
identify faults. The response-function-quotient technique used quotients between
the frequency response function at different locations for fault detection (Maia et al.
1999). Gawronski and Sawicki (2000) used modal norms to successfully identify
faults in structures. The modal norms were estimated from the natural frequencies,
modal damping and modal displacements at the actuator and sensor locations of
healthy and faulty structures. Worden et al. (2000) applied outlier analysis to detect
fault on various simulated structures and a carbon fiber plate by comparing the
deviation of a transmissibility-function signal from what is considered normal.

Rolo-Naranjo and Montesino-Otero (2005) applied a correlation dimension
approximation for the on-line condition monitoring of large rotating machinery.
This technique was based on a systemic analysis of the second derivative of the
correlation integral obtained from the Grassberger and Procaccia algorithm. The
results revealed the applicability of the technique in vibration-signal analysis based
condition monitoring.

1.5.2 Finite Element Updating Techniques

The finite element model updating technique has been used to identify faults on
structures (Friswell and Mottershead 1995; Maia and Silva 1997; Marwala 2010).
When implementing the finite element updating techniques for identification, it
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is assumed that the finite element model is a true dynamic representation of the
structure. This means that changing any physical parameter of an element in the
finite element model is equivalent to introducing a fault in that region.

There are two techniques used in finite element updating (Friswell and Motter-
shead 1995): direct techniques and iterative methods. Direct methods, which use
the modal properties, are computationally efficient to implement and reproduce the
measured modal data exactly. They do not take into account the physical parameters
that are updated.

Iterative procedures use changes in physical parameters to update finite element
models and produce models that are physically realistic.

Finite element updating approaches are implemented by minimizing the distance
between analytical and measured data. The difference between the updated systems
matrices and original matrices identifies the presence, location and extent of faults.
One way of implementing this procedure is to formulate the objective function
to be minimized and choose an optimization routine (Marwala 2010). Some of
the optimization methods that have been used in the past are particle swarm
optimization, genetic algorithm, simulated annealing and a hybrid of a number
of techniques (Marwala 2010). These procedures are classified as iterative because
they are implemented by iteratively modifying the relevant physical parameters of
the model until the error is minimized.

The approaches described in this subsection are computationally expensive
because they require an optimization method. In addition, it is difficult to find a
global minimum through the optimization technique, due to the multiple stationary
points, which are caused by its non-unique nature (Janter and Sas 1990). Techniques
such as the use of genetic algorithms and multiple starting design variables have
been applied in the past to increase the probability of finding the global minimum
(Mares and Surace 1996; Larson and Zimmerman 1993; Dunn 1998).

Sensitivity based approaches assume that experimental data are perturbations
of design data about the original finite element model. Due to this assumption,
experimental data must be close to the finite element data for these approaches to
be effective. This formulation only works if the structural modification is small.
These approaches are based on the estimation of the derivatives of either the
modal properties or the frequency response functions. Many techniques have been
developed to estimate the derivative of the modal properties and frequency response
functions. Norris and Meirovitch (1989), Haug and Choi (1984) and Chen and
Garba (1980) presented other procedures of computing the derivatives of the modal
properties to ascertain parameter changes. They used orthogonal relations for the
mass and stiffness matrices to compute the derivatives of the natural frequencies
and mode shapes with respect to parameter changes. Ben-Haim and Prells (1993)
proposed selective FRF sensitivity to uncouple the finite element updating problem.
Lin et al. (1995) improved the modal sensitivity technique by ensuring that these
approaches were applicable to large magnitude faults.

Hemez (1993) proposed a technique that assesses the sensitivity at an element
level. The advantage of this technique is its ability to identify local errors. In
addition, it is computationally efficient. Alvin (1996) modified this technique
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to improve the convergence rate by using a more realistic error indicator and
by incorporating statistical confidence measurements for both the initial model
parameters and the measured data.

Eigenstructure assignment methods are based on control system theory. The
structure under investigation is forced to respond in a predetermined manner. During
fault detection, the desired eigenstructure is the one that is measured in the test.
Zimmerman and Kaouk (1992) applied these techniques to identify the elastic
modulus of a cantilevered beam using measured modal data. Schultz et al. (1996)
improved this method by using measured Frequency Response Functions (FRFs).

The one limitation of the methods outlined in this section is that the number
of sensor locations is less than the number of degrees of freedom in the finite
element model. This is especially problematic since it renders the integration of
the experimental data and finite element model � the very basis of finite element
updating fault identification methods � difficult. To compensate for this limitation,
the mode shapes and FRFs are either expanded to the size of the finite element
model or the mass and stiffness matrices of the finite element model are reduced to
the size of the measured data. Among the reduction methods that have been applied
are the static reduction (Guyan 1965; Marwala 2001), dynamic reduction (Paz 1984;
Marwala 2001), improved reduced system and system-equivalent-reduction-process
(O’Callahan et al. 1989; Marwala 2001). Techniques that expand the mass and
stiffness matrices have also been employed (Gysin 1990; Imregun and Ewins 1993;
Marwala 2001).

It has been shown that finite element updating techniques have numerous
limitations. Most importantly, they rely on an accurate finite element model, which
may not be available. Even if the model is available, the problem of the non-
uniqueness of the updated model makes the problem of fault identification using
finite element updating non-unique.

Purbolaksono et al. (2009) successfully applied finite element modeling for
the supplemental condition monitoring of a water-tube boiler. The technique used
empirical formula for approximating the scale thickness developed on the inner
surface of the tube over period of time.

1.5.3 Computational Intelligence Methods

In recent times, there has been increased interest in applying computational artificial
neural networks to identify faults in structures. Neural networks can estimate
functions of arbitrary complexity using given data. Supervised neural networks
are used to represent a mapping from an input vector onto an output vector, while
unsupervised networks are used to classify the data without prior knowledge of the
classes involved. The most common neural network architecture is the Multi-Layer
Perceptron (MLP), trained using the back-propagation technique (Bishop 1995).
An alternative network is the radial basis function (RBF) (Bishop 1995).
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Kudva et al. (1991) used MLP neural networks to identify faults on a plate. The
inputs to the neural network were the readings from a strain gauge, obtained by
applying a static uniaxial load to the structure, while the output was the location
and size of a hole. The fault was modeled by cutting holes of diameters that varied
from 12.7 to 63.5 mm. The authors found that the neural network could predict the
error location without failure, although difficulty was experienced in predicting the
size of a hole. In cases where the neural network successfully identified the size of
a hole, there was approximately a 50% error.

Wu et al. (1992) used an MLP neural network to identify faults in a model of
a three-story building. Faults were modeled by reducing the member stiffness by
between 50% and 75%. The input to the neural network was the Fourier transform
of the acceleration data, while the output was the level of fault in each member. The
network was able to diagnose faults within an accuracy of 25%.

Leath and Zimmerman (1993) applied the MLP to identify faults on a four-
element cantilevered beam, which was modeled by reducing the Young’s modulus
by up to 95%. The inputs to the neural network were the first two natural frequencies
and the output was Young’s modulus. The neural network could identify faults to
within an accuracy of 35%.

Worden et al. (1993) used an MLP neural network to identify faults in a twenty-
member structure, which was modeled by removing each member. The input to
the neural network was the strain in twelve members. The network was trained
using data from the finite element model. When applied to experimental data, the
network usually could detect the location of the fault. Atalla (1996) trained a RBF
neural network using Frequency Response Functions in order to identify faults in
structures.

Widodo and Yang (2007) reviewed the successful application of Support Vector
Machines in machine condition monitoring and fault diagnosis while Bouhouche
et al. (2010) applied online Support Vector Machines and fuzzy reasoning for the
condition monitoring of the hot rolling process.

Aliustaoglu et al. (2009) successfully applied a fuzzy system to tool wear
condition monitoring while Lau and Dwight (2011) successfully applied a fuzzy-
based decision support model for the condition monitoring of water pipelines. Wong
et al. (2010) successfully applied log-polar mapping, quaternion correlation and
max-product fuzzy neural network for a thermal condition monitoring system while
Weidl et al. (2005) applied object-oriented Bayesian networks for the condition
monitoring, root cause analysis and decision support of complex continuous
processes.

The finite element updating methods discussed in Sect. 1.4.2 require the avail-
ability of an accurate finite element model to perform fault identification, which may
not be available. Methods in Sect. 1.4.2 avoid the need for a finite element model
but can mostly only detect faults and do not seem to be able to locate and quantify
faults well. The implementation of computational intelligence methods does not
necessarily require the availability of a finite element model but requires that the
vibration data be available to train the network and can detect, locate and quantify
faults.
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1.6 Summary of the Book

In Chap. 2, the data gathering and processing methods that are used for condition
monitoring in this book are reviewed. Different data gathering techniques for
condition monitoring and the essential elements of data gathering within the context
of condition monitoring are outlined. These include issues such as data type,
measuring instruments, sampling frequencies, leakages and measurement errors.
In particular, Fourier transform, the modal domain data, pseudo-modal energies,
wavelet transform and Mel-frequency data are reviewed. In addition, the method for
data visualization reviewed is the principal component analysis.

In Chap. 3, neural networks methods are introduced for condition monitoring.
In particular, the Multi-Layer Perceptron (MLP) neural network is introduced. It is
trained using the maximum-likelihood technique. The MLP is then applied for fault
identification in a population of cylindrical shells.

In Chap. 4, Bayesian neural networks methods are introduced for condition
monitoring. In particular, the Multi-Layer Perceptron (MLP) neural network, trained
using a hybrid Monte Carlo simulation is introduced. The MLP is then applied for
fault identification in a population of cylindrical shells.

In Chap. 5, a committee of networks is introduced. This committee is made of
three Multi-Layer Perceptrons one with the wavelet data as input, the other one with
modal properties as inputs and the third with pseudo-modal energies as inputs. It is
mathematically and empirically demonstrated that the committee is better than the
individual techniques.

In Chap. 6, Gaussian mixture models and hidden Markov models are applied
for condition monitoring in mechanical structures. These methods are described,
implemented, and compared.

In Chap. 7, fuzzy system methods are applied for condition monitoring. They
are fuzzy logic and the fuzzy ARTMAP and are described implemented for the
condition monitoring.

In Chap. 8, rough systems are explained and applied for the condition monitoring
of transformer bushings, while in Chap. 9, a method for fault classification in
mechanical systems in the presence of missing data entries is introduced. The
method constructed is based on auto-associative neural networks where the network
is trained to recall the input data through some nonlinear neural network mapping
from the trained network with an error equation with missing inputs as design
variables. A genetic algorithm is used to solve for the missing input values. The
presented method is tested on a fault classification problem in a population of
cylindrical shells.

In Chap. 10, condition monitoring using support vector machine and extension
neural networks is introduced. The theories of the support vector machine and
extension neural networks are described, implemented and compared.

In Chap. 11, condition monitoring using incremental learning is presented. The
ability of a classifier to take on new information and classes by evolving the
classifier without it having to be fully retrained is known as incremental learning.
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In the chapter a LearnCC incremental learning algorithms is applied for the
condition monitoring in transformer bushings.

In Chap. 12, the condition monitoring methods described in this book are
compared and then conclusions are drawn. In addition, future and emerging areas in
condition monitoring are identified and emerging opportunities are highlighted.
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Chapter 2
Data Processing Techniques for Condition
Monitoring

2.1 Introduction

As described in Chap. 1, vibration data have been used with varying degrees of
success to identify faults in structures (Marwala 2001). Three types of signals
have been applied to this end: modal domain e.g. the modal properties, frequency
domain e.g. frequency response functions (FRFs) and time-frequency domain e.g.
The wavelet transforms (WTs) (Doebling et al. 1996). Marwala and Hunt (1999)
applied FRFs and modal properties data simultaneously within the context of a
committee of neural networks for fault identification in mechanical structures.
Marwala and Heyns (1998) used both modal properties and FRFs in the context of
finite element model updating for detecting damage in structures. Marwala (2000)
used pseudo-modal energies, modal properties and wavelet data in a committee
of neural network for fault identification in a population of cylindrical shells.
Marwala (2003) later applied pseudo-modal energies for the classification of faults
in structures. Many techniques have been presented that successfully detected faults
in structures (Surace and Ruotolo 1994; Manning 1994; Rizos et al. 1990; Stubbs
et al. 1992).

In this chapter, modal properties, frequency response functions, pseudo-modal
energies, wavelets, mel-frequency cepstral and principal component analysis
method are introduced. The next section describes the generalized data acquisition
system.

2.2 Data Acquisition System

A generalized data acquisition system is shown in Fig. 2.1. Figure 2.1 demonstrates
three main components of the generalized data acquisition system that is imple-
mented in this book for fault identification of faults in a population of cylindrical
shells (Marwala 2001):
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Fig. 2.1 Generalized data acquisition system (Marwala 2001)

1. The excitation mechanism: The aim of the excitation mechanism is to excite the
structure so that its response can be measured. In this book for vibration data
analysis a modal hammer is applied to excite the structure.

2. The sensing mechanism: The sensing mechanism is used to measure the response
from a structure. For example an accelerometer can be applied to measure the
acceleration response.

3. The data acquisition and processing: the data is amplified, filtered, converted
from analogue to digital format (i.e. A/D converter) and finally stored in the
computer.

2.2.1 Accelerometers and Impulse Hammer

The cylindrical shells can be excited using a hand-held modal hammer. The modal
hammer essentially has three main components: a handle, a force transducer and a
hammer tip. The impact of the hammer depends on the mass of the hammer and the
velocity of the impact. When such a modal hammer is applied to hit the structure,
the operator generally controls the velocity of impact instead of the force itself. The
most appropriate technique for fine-tuning the force of the impact is by changing the
mass of the hammer. The range of frequencies excited by the hammer depends on
the mass of the hammer tip and its stiffness. The hammer tip set-up has a resonance
frequency above which it is challenging to deliver energy into the structure and this
resonance frequency may be estimated as (contact stiffness / mass of the tip)0.5.
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For the cylindrical shells examples in this book, the force transducer applied was a
PCB A218 and a plastic hammer tip was selected for the reason that it is found to
provide sufficient energy to excite frequencies within the bounds of our interest. The
sensitivity of the transducer was 4pC/N, and the mass of the head of was 6.6 g. The
responses were measured using a DJB piezoelectric accelerometer with a sensitivity
of 2.6pC/ms�2 and a mass of 19.8 g. A hole of size of 3 mm was drilled into the
cylinder and the accelerometer was attached by screwing it through the hole.

2.2.2 Amplifiers

Signals from the impulse hammer and the accelerometer provide small charges. As
a result the signals needed to be amplified by using a charge amplifier. To achieve
this charge amplifiers were designed (Marwala 2001). The acceleration signal was
amplified by using a charge amplifier with a sensitivity of 14 mV/pC while the
impulse signal was amplified by using a charge amplifier with a sensitivity of
2.0 mV/pC. These amplifiers had a frequency range of 0.44–10 kHz.

2.2.3 Filter

A problem related to modal testing is a problem of aliasing. When a vibration signal
is measured, it must be converted from the analogue into the digital domain as it is
sampled by an analogue to digital (A/D) converter. This necessitates that a sampling
frequency be selected. If the signal has a substantial difference over a short time then
the sampling frequency must be high enough to offer an accurate estimate of a signal
that is being sampled. A substantial variation of a signal over a short period of time
generally indicates that high frequency components are present in the signal. If the
sampling frequency is not high enough, then the high frequency components are not
sampled correctly, resulting in the problem called aliasing, which is a phenomenon
that arises as a result of discretising a signal that was initially continuous. The
discretisation process may misinterpret the high frequency components of the signal
if the sampling rate is too slow, and this may result in high frequencies looking like
low frequencies. During data acquisition, the data were sampled at a rate at least
twice the signal frequency to prevent the problem of aliasing. This method is due to
the Nyquist-Shannon theorem (Maia and Silva 1997). Additionally, an anti-aliasing
filter may be applied before the analogue signal is converted into digital format to
circumvent the aliasing problem. An anti-aliasing filter is a low-pass filter which
only permits low frequencies to pass through. Fundamentally this filter cuts off
frequencies higher than about half of the sampling frequency. For this book, the
experiment was performed with a sampling frequency of 10 kHz and the number of
samples taken was 8,192. The impulse and the response signals were filtered using
a VBF/3 Kemo filter with a gain of 1 and a cut-off frequency of 5 kHz.
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2.2.4 Data-Logging System

The National Instruments DAQCard 1,200 with 12-bits over a ˙5 V analogue-
digital conversion was applied in the cylindrical shell example, to record the impulse
force and the acceleration response. The sampling rate was set to 10 kHz, which is
adequate for the frequency bandwidth of interest (i.e., 0–5 kHz). A Visual Basic
program running on a Daytek desktop computer was used to control the DAQCard.
This program was employed to start the data logging, set the sampling frequencies,
to check the sample saturation and to save the data. After the raw data were
measured and saved, they were then opened using MATLAB and checked as to
whether they were acceptable or not by estimating the frequency response functions.

2.3 Fourier Transform

In this section of the book, the Fourier transform was used to calculate the
frequency response functions. The Fast Fourier Transform (FFT) is basically a
computationally efficient technique for calculating the Fourier transform which
exploits the symmetrical nature of the Fourier transform. If the FFT is applied to
the response, the following expression is obtained (Ewins 1995):

X.!/ D 1

2�

Z 1
�1

x.t/e�i!t dt (2.1)

Similarly, the transformed excitation is (Ewins 1995):

F.!/ D 1

2�

Z 1
�1

f .t/e�i!t dt (2.2)

The FRF ˛ij (!) of the response at position i to the excitation at j is the ratio
of the Fourier transform of the response to the transform of the excitation (Ewins
1995):

˛ij .!/ D Xi.!/

Fj .!/
(2.3)

The FRF matrix is related to the spatial properties by the following expression
(Ewins 1995):

Œ˛.!/� D ��!2ŒM � C j!ŒC � C ŒK�
��1

(2.4)

Here the ˛ is the frequency response function, ! is the frequency, [M] is the
mass matrix, [C] is the damping matrix, [K] is the stiffness matrix and j D p�1.



2.4 Modal Properties 31

105

104

103

102

101

100

10-1

10-2

10-3

10-4

0 500 1000 1500 2000 2500
Frequency (Hz)

In
er

ta
nc

e 
(m

/s
2 /N

)

3000 3500 4000 4500 5000

Fig. 2.2 Measured frequency response function of a population of cylinders

Sufficient data to define the relationship between the changes in physical parameters
and the changes in FRFs must be generated. From this set of data, a functional
mapping between the identity of fault and the FRFs was identified using various
computational intelligence tools that are described in this book. An example of a set
of the FRFs which were obtained from a population of cylindrical shells is shown
in Fig. 2.2 (Marwala 2001).

Sejdic et al. (2011) reviewed the application of the fractional Fourier transform
for signal processing and concluded that the main contributions are in digital
realizations and its applications. Zhang et al. (2011) applied the fractional Fourier
transform to study the propagation properties of Gaussian beams while Harris
(1998) applied a Fourier analysis to study biological transients. Nikravan et al.
(1989) successfully applied Fourier analysis for the identification of the shapes of
simple engineering objects.

2.4 Modal Properties

This section reviews the modal properties which have been applied extensively
in fault identification in mechanical systems (Doebling et al. 1996). The modal
properties are related to the physical properties of the structure. All elastic structures
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may be described in terms of their distributed mass, damping and stiffness matrices
in the time domain through the following expression (Ewins 1995):

ŒM �f ::

Xg C ŒC �f :

Xg C ŒK�fXg D fF g (2.5)

Here fXg, f :

Xg and f ::

Xg are the displacement, velocity and acceleration vectors
respectively. fFg is the applied force. If Eq. 2.5 is transformed into the modal domain
to form an eigenvalue equation for the ith mode, then (Ewins 1995):

�� N!2ŒM � C j N!i ŒC � C ŒK�
� f N�gi D f0g (2.6)

Here j D p�1, N!i is the ith complex eigenvalue with its imaginary part
corresponding to the natural frequency !i and is the ith complex mode shape
vector with the real part corresponding to the normalized mode shape f�gi . The
sensitivities of the modal properties for undamped case can be written to be (Ewins
1995):
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and
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In Eqs. 2.7 and 2.8, N is the number of modes, !i;p D @f!gi
@gp

�i;p D @f�gi
@gp

ŒK�mp D
@ŒK�

@gp
, ŒM �mp D @ŒM�

@gp
and gp represents changes in the pth structural parameters.

Adhikari (1999) has calculated the damped version of Eqs. 2.7 and 2.8. The intro-
duction of fault in structures changes the mass and stiffness matrices. Equations 2.7
and 2.8 show that changes in the mass and stiffness matrices cause changes in the
modal properties of the structure.

Meruane and Heylen (2011) applied modal properties and a hybrid real genetic
algorithm to detect structural faults in a tri-dimensional space frame structure.
Single and multiple faults scenarios were introduced and the results showed a
correct identification of three simultaneous fault locations and gave quantification.
Lacarbonara et al. (2007) successfully applied non-linear modal properties to study
suspended cables while Lim et al. (2011) successfully applied modal properties
to model structural coupling of twin tall buildings with a sky bridge. Eritenel
and Parker (2009) applied modal properties to analyze three-dimensional helical
planetary gears and found that the modal properties held even for configurations
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that were not symmetric about the gear plane. Other applications of modal analysis
were on solid-core photonic band gap fibers (Viale et al . 2006) and Stamataki et al.
(2009) on InGaAsP/InP microring lasers.

2.5 Pseudo-Modal Energies

This book uses pseudo-modal energies for condition monitoring (Marwala 2001).
Pseudo-modal energies are the integrals of the real and imaginary components of
the frequency response functions over the chosen frequency ranges that bracket
the natural frequencies. The frequency response functions may be expressed in
receptance and inertance form (Ewins 1995). A receptance expression of the
frequency response function is defined as the ratio of the Fourier transformed
displacement to the Fourier transformed force; while the inertance expression of
the frequency response function is defined as the ratio of the Fourier transformed
acceleration to the Fourier transformed force. This section expresses the pseudo-
modal energies in terms of receptance and inertance forms in the same way as the
frequency response functions are expressed in these forms.

2.5.1 Receptance and Inertance Pseudo-Modal Energies

The frequency response functions may be expressed in terms of the modal properties
by using the modal summation equation (Ewins 1995). Pseudo-modal energies may
be estimated as a function of the modal properties from the frequency response
functions expressed as a function of modal properties (Marwala 2001). This is
performed in order to deduce the capabilities of pseudo-modal energies to identify
faults from those of modal properties. The frequency response functions can be
expressed in terms of the modal properties using the modal summation equation
(Ewins 1995):

Hki .!/ D
NX

iD1

�i
k�i

l

�!2 C 2j&i !i ! C !2
i

(2.9)

Here Hki is the FRF due to excitation at k and measurement at l and −i is the
damping ratio corresponding to the ith mode. Here it is assumed that the system
is proportionally damped. This assumption is valid if the structure being analyzed
is lightly damped. Proportional damping is defined as the situation where the
viscous damping matrix [C] (see Eq. 2.5) is directly proportional to the stiffness
[K] or mass [M] matrix or to the linear combination of both.
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The Receptance pseudo Modal Energy (RME) is calculated by integrating the
receptance FRF in Eq. 2.9 as follows (Marwala 2001):
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d! (2.10)

In Eq. 2.10, aq and bq represent respectively the lower and the upper frequency
bounds for the qth pseudo-modal energy. The lower and upper frequency bounds
bracket the qth natural frequency. By assuming a light damping (−i�1), Eq. 2.10 is
simplified to give (Gradshteyn and Yyzhik 1994; Marwala 2001)
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The most commonly applied technique to measure vibration data measure the
acceleration response instead of the displacement response (Doebling et al. 1996).
In such a situation, it is better to calculate the Inertance pseudo-Modal Energies
(IMEs) as opposed to the RMEs calculated in Eq. 2.11.

The inertance pseudo-modal energy is derived by integrating the inertance FRF –
see (Ewins 1995) for the definition of inertance – expressed in terms of the modal
properties by using the modal summation equation (Marwala 2001):
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Assuming that the damping is low, Eq. 2.8 becomes (Gradshteyn and Yyzhik
1994; Marwala 2001):

IMEq

kl �
NX

iD1

2
6664�i

k�i
l

�
bq � aq

� � !i �
i
k�i

l j

8̂
ˆ̂<
ˆ̂̂:

arctan

��&i !i � jbq

!i

�
:::

� arctan

��&i !i � jaq

!i

�

9>>>=
>>>;

3
7775
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Equation 2.13 demonstrates that the inertance pseudo-modal energy may be
expressed as a function of the modal properties. The inertance pseudo-modal
energies may be estimated directly from the FRFs using any numerical integration
scheme. This avoids going through the process of modal extraction.
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The advantages of using the pseudo-modal energies over the use of the modal
properties are:

• all the modes in the structure are taken into account, as opposed to using the
modal properties, which are limited by the number of modes identified; and

• integrating the FRFs to obtain the pseudo-modal energies smooths out the zero-
mean noise present in the FRFs.

In this section the pseudo-modal energies were derived mathematically. The next
step is to calculate their sensitivities to structural changes with respect to parameter
changes.

2.5.2 Sensitivities of Pseudo-Modal Energies

This section assesses the sensitivity of pseudo-modal energies to parameter changes.
This offers some insights into how these parameters are affected by the presence
of faults. Because the pseudo-modal energies have been derived as functions of the
modal properties, these sensitivities are calculated as functions of the sensitivities of
the modal properties. The sensitivity of the RMEs are determined by calculating the
derivative of Eq. 2.11 with respect to the pth structural changes to give the following
expression (Marwala 2001):
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Equation 2.10 is obtained by assuming that @&i
ı

@gp
D 0 and that &2

i � 0.

For this chapter, faults were introduced by reducing the cross-sectional area of the
beam and in later chapters by drilling holes in the structures. Introducing faults this
way has been found not to change the damping properties of the structure, thereby
justifying the assumption that damping is independent of faults.

Equation 2.14 demonstrates that the sensitivity of the RME is a function of the
natural frequencies, the damping ratios, the mode shapes and the derivatives of
the natural frequencies and mode shapes. Substituting the derivatives of the modal
properties (Adhikari 1999) into Eq. 2.10 gives the sensitivity of the pseudo-modal
energies in terms of the mass and stiffness matrices, which are directly related to the
physical properties of the structure.
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The derivative of the IME with respect to the ith parameter changes may be
written as follows (Marwala 2001):
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Similarly, Eq. 2.15 may be expressed in terms of the mass and stiffness matrices
by substituting the derivatives of the modal properties (Adhikari 1999) into Eq. 2.15.

In this section the receptance pseudo-modal energies and the inertance pseudo-
modal energies were derived and their respective sensitivities were calculated. It
was shown how these parameters are related to the modal properties as well as the
mass and stiffness matrices. It was found that the sensitivities of the receptance
pseudo-modal energies and the inheritance pseudo-modal energies depend upon
the sensitivities of the modal properties.

By analyzing the pseudo-modal energies it was observed that if the frequency
bandwidth was too narrow, then the energies are dominated by the behavior of
the peaks of the FRFs. This is undesirable because near the peaks, factors such as
damping ratios, which show high degrees of uncertainty, dominate the dynamics of
the pseudo-modal energies. At the same time, if the bandwidth chosen was too wide,
the influences of the anti-resonances, which are sensitive to noise, dominate the
characteristics of the pseudo-modal energies. An optimal bandwidth is one which is
sufficiently narrow to capture the characteristics of the peaks but is wide enough to
smooth out the zero-mean noise in the FRFs. It must not be so wide, however, that
it includes the anti-resonances.

Equations 2.11–2.15 show that the pseudo-modal energies depend on the modal
properties and the frequency bounds chosen. This implies that as long as the
FRF information contains the modal properties, then it does not matter how many
frequency points are included in the calculation of the pseudo-modal energies. Here
it should be noted that the number of frequency points is a separate issue from
the frequency bandwidth. On calculating the pseudo-modal energies, the smallest
number of frequency points must be applied, and this minimizes the errors in the
FRFs that are propagated into the pseudo-modal energies. In other words, for a given
frequency bandwidth used in calculating the pseudo-modal energies, increasing
the number of frequency points in the bandwidth beyond a certain threshold does
not necessarily add any information about the dynamics of the system. It should
be noted that the dynamics of the system is the source of information that indicate
the presence or the absence of faults.
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2.6 Fractal Dimension

Fractal analysis is a technique of describing complex shapes. Many procedures for
approximating fractal dimension have been proposed. Lunga and Marwala (2006)
successfully applied time-series analysis using fractal theory and online ensemble
classifiers to model the stock market while Nelwamondo et al. (2006a) applied
fractals for the early classifications of bearing faults. Nelwamondo et al. (2006b)
applied a multi-scale fractal dimension for a speaker identification system while
(Nelwamondo et al. 2006c) applied fractals for improving speaker identification
rates.

Sanchez and Uzcategui (2011) applied fractal geometry in dentistry. They re-
viewed fractals for treatment and healing monitoring, dental materials, dental tissue,
caries, osteoporosis, periodontitis, cancer, Sjogren’s syndrome, and the diagnosis
of several other conditions. Cross (1994) applied fractal geometric methods for the
analysis of microscopic images while Dougherty and Henebry (2001) applied fractal
signature and lacunarity to the measurement of the texture of trabecular bone in
clinical CT images.

Dathe et al. (2001) applied the fractal dimension method to quantifying soil
structures to attain physically based parameters relevant to transport processes while
Sokolowska and Sokolowski (2000) applied fractals to study the influence of humic
acid on the surface fractal dimension of kaolin.

To define the fractal dimension, let the continuous real-valued function, s.t/; 0 �
t � T represents a short-time vibration signal. Furthermore, let the compact planar
set represent the graph of this function as follows (Falconer 1952; Nelwamondo
et al. 2006b):

F D f.t; s.t/ 2 R2 W 0 � t � T g (2.16)

The fractal dimension of the compact planar set F is called the Hausdorff
dimension and it is generally between one and two (Falconer 1952). The problem
with this dimension is that it is only a mathematical concept and therefore it is
tremendously difficult to calculate. So other methods are applied to approximate
this dimension such as the Minkowski-Bouligand dimension and the Box-Counting
dimension (Falconer 1952). In this book, a fractal dimension is approximated using
the Box-Counting dimension, which is discussed in the next section.

2.6.1 Box-Counting Dimension

The Box-Counting dimension (DB) of, F, is attained by partitioning the plane with a
grid of squares each with side ", and N(") being the number of squares that intersect
the plane, defined as (Falconer 1952; Nelwamondo et al. 2006b):

DB.F / D lim
"!0

ln N."/

ln.1="/
(2.17)
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Assuming a discrete bearing vibration signal, s1; s2; :::; sT then DB is given by
(Wang et al. 2000; Nelwamondo et al. 2006b):
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Here J is the computation resolution and "min � "j � "max with "max and "min

represent the maximum and minimum resolutions of computation. In Eq. 2.18, DB

is equal to the slope obtained by fitting a line using least squares method (Maragos
and Potamianos 1999).

2.6.2 Multi-Scale Fractal Dimension (MFD)

It must be noted that the fractal dimension discussed in the last section is a global
measure and consequently does not characterize all the fractal characteristics of
the vibration signal (Wang et al. 2000). To deal with this problem of information
limitation caused by the global fractal, a Multi-scale Fractal Dimension set is
created. The MFD (D.s; t/) is obtained by computing the dimensions over a small
time window. This MFD set is obtained by dividing the bearing vibration signal into
K frames, then K maximum computation resolutions are set as (Wang et al. 2000;
Nelwamondo et al. 2006b):

"max
k D k:"min.1 � k � K/ (2.19)

Here, as before, "min is the minimum valid resolution of the computation. The
Box-Counting dimension in Eq. 2.18 can then be written as follows (Falconer 1952;
Nelwamondo et al. 2006b):
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To conclude, the corresponding MFD of the vibration signal is given by (Falconer
1952; Nelwamondo et al. 2006b):

MFD.s/ D ˚
D1.s/; D2.s/; ::::; DK .s/

�
(2.21)

Here Dk(s) is the fractal dimension of the kth frame and this is called the
fractogram (Wang et al. 2000).

2.7 Mel-Frequency Cepstral Coefficients (MFCCs)

Mel-frequency Cepstral Coefficients (MFCCs) have been widely applied in the field
of speech recognition and are can represent the dynamic features of a signal as they
extract both linear and non-linear properties. The MFCC can be a useful tool of
feature extraction in vibration signals as vibrations contain both linear and non-
linear features. The MFCC is a type of wavelet in which frequency scales are
placed on a linear scale for frequencies less than 1 kHz and on a log scale for
frequencies above 1 kHz (Wang et al. 2002; Nelwamondo et al. 2006a). The complex
cepstral coefficients obtained from this scale are called the MFCC (Wang et al.
2002). The MFCC contain both time and frequency information from the signal
and this makes them useful for feature extraction. The following types of steps are
involved in MFCC computations. Fahmy (2010) applied Mel-frequency Cepstral
coefficients for palmprint recognition and their experimental results showed that
their technique is robust in the presence of noise. Tufekci et al. (2006) applied
Mel-frequency Discrete wavelet coefficients and parallel model compensation for
noise-robust speech recognition and the showed improvements of 14.6% and 31.8%
error reductions for �6 dB and 0 dB noise levels, respectively.

We transform the input signal, x(n) from the time domain to the frequency
domain by applying the Fast Fourier Transform (FFT), using (Wang et al. 2002;
Nelwamondo et al. 2006a):

Y.m/ D 1
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F�1X
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x.n/w.n/e�j 2�
F nm (2.22)

where F is the number of frames, 0 � m � F �1 and w(n) is the Hamming window
function given by (Nelwamondo et al. 2006a):
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2�n

F � 1

�
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Here 0 � n � F � 1 and ˇ is the normalization factor defined such that the root
mean square of the window is unity (Wang et al. 2002; Nelwamondo et al. 2006a).
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Mel-frequency wrapping is performed by changing the frequency to the mel
using the following equation (Wang et al. 2002; Nelwamondo et al. 2006a):

mel D 2595 � log10

�
1 C fH z

700

�
(2.24)

Mel-frequency warping uses a filter bank, spaced uniformly on the Mel scale.
The filter bank has a triangular band-pass frequency response, whose spacing and
magnitude are determined by a constant Mel-frequency interval. The final step
converts the logarithmic Mel spectrum back to the time domain. The result of
this step is what is called the Mel-frequency Cepstral Coefficients (MFCCs). This
conversion is achieved by taking the Discrete Cosine Transform of the spectrum as
(Wang et al. 2002; Nelwamondo et al. 2006a):
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where 0 � m � L � 1 and L is the number of MFCC extracted from the ith frame
of the signal. Hn is the transfer function of the nth filter on the filter bank. These
MFCCs are then applied as a representation of the signal.

2.8 Kurtosis

There is a need to deal with the occasional spiking of vibration data, which is
caused by some types of faults. To achieve this task, the method of kurtosis
is applied. The kurtosis features of vibration data have also been successfully
applied in tool condition monitoring by El-Wardany et al. (1996). Kollo (2008)
applied multivariate skewness and kurtosis measures in independent component
analysis where the solution of an eigenvalue problem of the kurtosis matrix governs
the transformation matrix. Furthermore, Antoni (2006) applied kurtosis for the
characterising of non-stationary signals while de la Rosa et al. (2010) applied
kurtosis for the non-destructive measurement of termite activity and Boumahdi
(1996) applied kurtosis for the blind identification of a field seismic data. The
success of kurtosis in vibration signals is based on the fact that a system which
is under stress or has defects has vibration signals which differ from those of a
normal system. The sharpness or spiking of the vibration signal changes when there
are defects in the system. Kurtosis is a measure of the sharpness of the peak and
is defined as the normalized fourth-order central moment of the signal (Wang et al.
2001). The kurtosis value is useful in identifying transients and spontaneous events
within vibration signals (Wang et al. 2001) and is one of the accepted criteria in
fault detection. The calculated kurtosis value is typically normalized by the square
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of the second moment. A high value of kurtosis implies a sharp distribution peak
and indicates that the signal is impulsive in nature (Altman and Mathew 2001).

K D 1

N
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.xi � Nx/4

�4
(2.26)

where Nx is the mean and ¢ is the variance.

2.9 Wavelet Transform

Cheng et al. (2011) applied wavelets for the spectroscopic determination of leaf
water content while Magosso et al. (2009) applied a wavelet-based energetic
approach to an electroencephalogram and an electro-oculogram. Other successful
applications of wavelet data include fault detection in frame structures (Ovanesova
and Suarez 2004), hypothesis testing of brain activation maps (Fadili and Bullmore
2004), echocardiographic texture analysis (Kerut et al. 2000), to describe embolic
signals (Aydin et al. 1999) as well as for fault detection of coherent structures
(Gilliam et al. 2000).

The Wavelet Transform (WT) of a signal is an illustration of a timescale
decomposition which highlights the local features of a signal. Wavelets occur in sets
of functions that are defined by dilation, which controls the scaling parameter, and
translation, which controls the position of a single function known as the mother
wavelet w(t). In general, each set of wavelets can be written as follows (Marwala
2000; Newland 1993):

Wab.t/ D 1p
a

w

�
t � b

a

�
(2.27)

Here b D translation parameter, which localizes the wavelet function in the time
domain; a D dilation parameter, defining the analyzing window stretching; and
w D mother wavelet function. The continuous WT of a signal x(t) is defined as
(Marwala 2000; Newland 1993):

W
�
2j C k

� D 2j

Z 1
�1

x.t/w�.2j t � k/dt (2.28)

Here w* D complex conjugate of the basic wavelet function; j is called the level
(scale), which determines how many wavelets are needed to cover the mother
wavelet and is the same as a frequency varying in harmonics and k determines the
position of the wavelet and gives an indication of time. The length of the data in the
time domain must be an integer power of two. The wavelets are organized into a
sequence of levels 2j, where j is from 1 to n-1. Equations 2.27 and 2.28 are valid for
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Fig. 2.3 Wavelet spectrum from one cylinder

0 � k and 0 � k � 2j-1. The WT in this book is from the orthogonal wavelet family
(Daubechie 1991) defined by Newland (1993) as follows (Marwala 2000):

w.t/ D
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ei4�t � ei2�t
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i2�t

(2.29)

The WT may also be formulated by transforming the signal x(t) and the wavelet
function into the frequency domain as follows (Marwala 2000):
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The relationship between the physical properties of the structure and the WT of
the impulse of unit magnitude may be applied to identify faults in structures. Liew
and Wang (1998) applied such WT data to identify faults in structures. A functional
mapping between the identity of a fault and the WT of the response k may be
identified. The transform data for a wavelet is shown in Fig. 2.3 (Marwala 2000).
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2.10 Principal Component Analysis

For this book the principal component analysis (PCA) (Jolliffe 1986) was im-
plemented to reduce the input data into independent components. The PCA
orthogonalizes the components of the input vector so that they are uncorrelated
with each other. When implementing the PCA for data reduction, correlations and
interactions among variables in the data are summarised in terms of a small number
of underlying factors. The PCA was introduced by Pearson (1901) to recast linear
regression analysis into a new framework, and was developed further by Hotelling
(1933) who applied it to Psychometry and it was subsequently generalized by
Loéve (1963). The PCA has been successfully applied to reduce the dimension
of the data (Bishop 1995). Some researchers who have successfully applied this
technique include Partridge and Calvo (1997) who applied the PCA to reduce the
dimensions of two high-dimensional image databases, one of handwritten digits
and one of handwritten Japanese characters. The variant of the PCA used in this
book finds the directions in which the data points have the most variance. These
directions are called principal directions. The data are then projected onto these
principal directions without the loss of significant information from the data. Here
follows a brief outline of the implementation of the PCA adopted in this book. The
covariance matrix can be calculated as follows (Marwala 2001):

† D
PX

pD1

.xp � �/ .xp � �/T (2.31)

Here † is the covariance matrix, T is for transpose, P is the number of vectors
in the training set, � is the mean vector of the data set taken over the number of
training set and x is the input data. The second step is to calculate the eigenvalues and
eigenvectors of the covariance matrix and arrange them from the largest eigenvalue
to the smallest. The first N largest eigenvalues are chosen. In this book the first N
eigenvalues were chosen in such a way that their sum constitutes at least 85% of the
total sum of all the eigenvalues. By so doing at least 85% of the variance of the data
was retained. The data were then projected onto the eigenvectors corresponding to
the N most dominant eigenvalues.

2.11 Examples Used in This Book

This section reports on three examples: a rolling element bearing, a population of
cylindrical shells and transformer bushings.
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2.11.1 Rolling Element Bearing

Vibration measurement is important in an advanced conditioning monitoring of
mechanical systems. Most bearing vibrations are periodical movements. The ge-
ometry of the bearing is shown in Fig. 2.4 (Purushothama et al. 2005; Li et al.
2000; Nelwamondo et al. 2006a; Marwala et al. 2006). Generally, the rolling bearing
contains two concentric rings, which are called the inner and outer raceway (Li et al.
2000). Furthermore, the bearing contains a set of rolling elements that run in the
tracks of these raceways. There are number of standard shapes for the rolling
elements such as the ball, the cylindrical roller, the tapered roller, needle rollers,
the symmetrical and the unsymmetrical barrel roller (Li et al. 2000). For this book,
a ball rolling element was used. Figure 2.4 also shows the cage, which ensures
uniform spacing and prevents mutual contact.

There were three faults studied for this book: an inner raceway fault, an outer
raceway fault and a rolling element fault. A bearing fault increases the rotational
friction of the rotor and therefore each fault generates vibration spectra with
unique frequency components (Ericsson et al. 2004). It should be noted that these
frequency components are a linear function of the running speed. Additionally,
the two raceway frequencies are also linear functions of the number of balls. The
motor-bearing conditioning monitoring systems were implemented by analyzing
the vibration signal of all the bearing faults. The vibration signal was produced
by the impact pulse generated when a ball roller hit a defect in the raceways or each
and every time the defect in the ball hit the raceways (Li et al. 2000).

The database used to validate new bearing fault diagnosis was developed at the
Rockwell Science Center by Loparo (Purushothama et al. 2005; Lou and Loparo
2004) In this database, single point faults of diameters of 7 mils, 14 mils and 21
mils (1 mil D 0.001 in.) were introduced using electro-discharge machining. These
faults were introduced separately at the inner raceway, rolling element (i.e., ball)
and outer raceway. The experiments were performed for each fault diameter and
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Fig. 2.5 Illustration of the cylindrical shell showing the positions of the excitation impulse,
accelerometer, substructures, fault position and supporting sponge

this was repeated for two load conditions, which were 1 and 2 horsepower. The
experimentation was performed for vibration signals sampled at 12,000 samples per
second for the drive-end bearing faults. The vibration signals from this database
were all divided into equal windows of four revolutions. Half of the resulting sub-
signals were used for training and the other half were used for testing.

2.11.2 Population of Cylindrical Shells

The second experiment was performed on a population of cylinders, which were
supported by inserting a sponge rested on a bubble-wrap, to simulate a ‘free-free’
environment (see Fig. 2.5). The impulse hammer test was performed on each of the
20 steel seam-welded cylindrical shells. The impulse was applied at 19 different
locations as indicated in Fig. 2.5. More details on this experiment may be found in
Marwala (2001).

Each cylinder was divided into three equal substructures and holes of 10–15 mm
diameter were introduced at the centers of the substructures to simulate faults. For
one cylinder the first type of fault was a zero-fault scenario. This type of fault was
given the identity [000], indicating that there were no faults in any of the three
substructures. The second type of fault was a one-fault-scenario, where a hole could
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be located in any of the three substructures. Three possible one-fault-scenarios were
[100], [010], and [001] indicating one hole in substructures 1, 2 or 3, respectively.
The third type of fault was a two-fault scenario, where holes were located in two
of the three substructures. The three possible two-fault-scenarios were identified as
[110], [101], and [011]. The final type of fault was a three-fault-scenario, where a
hole was located in all three substructures. The identity of this fault was [111]. Eight
types of fault-cases were considered (including [000]).

Each cylinder was measured three times under different boundary conditions
by changing the orientation of the rectangular sponge inserted inside the cylinder.
The number of sets of measurements taken for undamaged population was 60 (20
cylinders � 3 different boundary conditions). For the eight possible fault types, two
fault types [000] and [111] had 60 occurrences while the rest had 24. It should be
noted that the numbers of one- and two-fault cases were each 72. This was because
as mentioned above, increasing the sizes of holes in the substructures and taking
vibration measurements generated additional one- and two-fault cases.

2.11.3 Transformer Bushings

Bushings are an important component in electricity for transportation. They are used
in substation buildings, transformers, locomotives, and switchgear. Bushings cause
more than 15% of transformer failures in Eskom (van Wyk 1997). Australasian
reliability statistics on transformers over 1970–1995 concluded that bushings
were second to tap changers as the component initially involved in failure and
were amongst the top three contributors to costly transformer failures (Lord and
Hodge 2003). Figure 2.6 shows that the result of collateral damage and personnel
injury is a major concern, warranting the development of new and improved,
affordable, reliable, and flexible diagnostics technologies to allow asset owners
to detect impending failures in a timely manner (Dhlamini and Marwala 2004a).
Sokolov (2001) found that more than 46% of transformer defects were attributable to
bushings, on-load tap changers, and the cooling system. The reliability of bushings
affects the security of supply of electricity in an area and the economical operation
of the area. Transformer failure research shows that bushings are among the top three
most frequent causes of transformer failure (Ward 2000; Lord and Hodge 2003;
Vilakazi et al. 2005). Bushing failure is typically followed by a catastrophic event
such as a tank rupture, violent explosion of the bushing and fire (Lord and Hodge
2003). With such consequences the major concern is collateral faults and personnel
injury. Numerous diagnostic tools exist such as on-line Partial Discharge analysis,
on-line power factor, and infra-red scanning to detect an impending transformer
failure (Mojo 1997). In isolation, few of these approaches can offer all of the data
that a transformer operator needs to decide upon a course of action. Condition
monitoring has many benefits such as: an unexpected failure can be avoided
through the possession of quality information relating to on-line condition of the
plant and the resulting ability to identify faults in incipient levels of development.
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Fig. 2.6 Limited fault due to exploded bushing (Dhlamini 2007)

Computational intelligence methods can be used for bushing condition monitoring.
For this book, approaches based on computational intelligence techniques were
developed and then used for interpreting the data from a Dissolve Gas-in-oil
Analysis (DGA) test. A DGA is the most commonly used diagnostic technique
for transformers and bushings (Dhlamini and Marwala 2004b; Ding et al. 2000).
A DGA is used to detect oil breakdown, moisture presence and PD activity. Fault
gases are produced by the degradation of the transformer and bushing oil and
solid insulation such as paper and pressboard, which are all made of cellulose
(Saha 2003). The gases produced from the transformer and bushing operation are
(Yanming and Zheng 2000; Castro and Miranda 2004; Dhlamini and Marwala
2004b; Vilakazi et al. 2005):

• Hydrocarbons gases and hydrogen: methane (CH4), ethane (C2H6), ethylene
(C2H4), acetylene (C2H2) and hydrogen (H2);

• Carbon oxides: carbon monoxide (CO) and carbon dioxide (CO2); and
• Non-fault gases: nitrogen (N2) and oxygen (O2).

The causes of faults fall into two main groups: partial discharges and thermal
heating faults. Partial discharge faults are further divided into high-energy discharge
and low-energy discharge faults. High-energy discharge is known as arcing and low
energy discharge is referred to as corona. The quantity and types of gases reflect
the nature and extent of the stressed mechanism in the bushing (Zhang 1996). Oil
breakdown is shown by the presence of hydrogen, methane, ethane, ethylene and
acetylene. High levels of hydrogen demonstrate that the degeneration is due to
corona. High levels of acetylene occur in the presence of arcing at high temperature.
Methane and ethane are produced from low- temperature thermal heating of oil but
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high-temperature thermal heating produces ethylene and hydrogen plus methane
and ethane. The low-temperature thermal degradation of cellulose produces CO2

and high temperature heating produces CO.

2.12 Conclusions

In this chapter, the data processing techniques for condition monitoring in mechan-
ical and electrical systems were reviewed. Approaches for acquiring data were
described and procedures for analyzing data were explained. Modal properties,
pseudo-modal energies, wavelet, principal component analysis and Mel-frequency
Cepstral Coefficients methods were described. Cases used in this book were
described: gearbox data, population of cylindrical shells data and transformer
bushing data.
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Chapter 3
Multi-Layer Perceptron for Condition
Monitoring in a Mechanical System

3.1 Introduction

It is important to identify faults before the occurrence of faults in a mechanical
system as it prevents the loss of life and reduces the machine down-time. The
process of fault identification entails the gathering of data, the processing of data
to reveal vital features and the interpretation of the data. For this chapter, vibration
data were measured and were processed as explained in Chap. 2. The data was then
analyzed to identify the faults. The mechanism that was adopted to analyze the data
in this chapter was the Multi-Layer Perceptron (MLP) neural network.

Dimla and Lister (2000) applied the MLP neural network for the monitoring of
the condition of an on-line metal cutting tool. They performed test cuts on an EN24
alloy steel using P15 and P25 coated cemented carbide inserts. Thereafter, cutting
forces and vibration data were measured online. Concurrently the wear sizes on the
cutting boundaries were measured and these as well as the processed data were put
into a multi-layer perceptron neural network that had been trained to identify the
tool state. When the proposed system was tested on a number of cutting types it
was able to classify tool state condition with an accuracy of 90%. However, the
performance worsened when the cutting types were altered considerably.

Mustapha et al. (2007) applied a vector of novelty indices for damage detection
and location in an isotropic plate. Their method was based on the novelty detection
technique, outlier analysis and a multi-layer perceptron neural network. To evaluate
the usefulness of the method, a thin rectangular plate with isotropic behavior was
experimentally assessed. Additionally, a study was made of the scattering effect of
an ultrasonic guided wave on the investigated plate, for both a faulty and a healthy
state of affairs. Wave propagation was successively communicated and measured
by 8 Piezo-electic Transducer (PzT) patches bonded on the plate, creating a sensor
network on the tested isotropic rectangular structure. An 8-channel multiplexer was
included in the small scale, low-cost ‘structural health monitoring’ system to switch
the PzTs task from sensor to actuator. Fault identification software was developed
to obtain the waveform responses. The scattering waveform responses indicating

T. Marwala, Condition Monitoring Using Computational Intelligence Methods:
Applications in Mechanical and Electrical Systems, DOI 10.1007/978-1-4471-2380-4 3,
© Springer-Verlag London Limited 2012
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healthy and faulty conditions were transformed into a set of novelty indices that
eventually define the conditions of the tested structure. The developed novelty
indices indicating the available sensor paths were applied as the inputs to the MLP
neural network to identify faults on the tested isotopic plate.

Herzog et al. (2009) applied the MLP neural network for estimating the residual
life of a machine and its components. They trained and tested numerous neural
network variations with data from two different reliability-related datasets. The first
dataset represented the renewal case where the failed unit was repaired and restored
to a good-as-new condition. Data were collected in the laboratory by subjecting a
series of similar test pieces to fatigue loading with a hydraulic actuator. The average
prediction error of the various neural networks being compared varied from 431
to 841 s on this dataset, where test pieces had a characteristic life of 8971 s. The
second dataset was gathered from a collection of pumps used to circulate a water
and magnetite solution within a plant. The data was obtained from a repaired system
affected by reliability degradation. When optimized, the multi-layer perceptron
neural networks trained with the Levenberg-Marquardt procedure and the general
regression neural network gave a sums-of squares error within 11.1% of each other
for the renewal dataset. The small number of inputs and poorly mapped input space
on the second dataset indicated that much larger errors were verified on some of
the test data. Nevertheless, the prospect of using neural networks for residual life
prediction and the advantage of integrating condition-based data into the model was
demonstrated in both examples.

Rafiee et al. (2007) applied a multi-layer perceptron neural network for the
intelligent condition monitoring of a gearbox. The input to the MLP neural network
consisted of the standard deviations of wavelet packet coefficients of vibration data.
The gear conditions were classified as normal gearbox, slightly-worn, medium-
worn, broken-teeth gear damage and a general bearing fault. The results indicated
an accurate identification of the faults.

Abu-Mahfouz (2003) successfully applied vibration data and multi-layer per-
ceptron neural network for detection and classification of drilling wear. The study
compared several architectures and used a vibration signature as the source of
information from the machining process. Five different drill wear conditions were
simulated and used to train the neural network for fault identification. It was
observed that the frequency domain features were more effective in training the
neural network than were the time domain data.

Kim et al. (2006) applied wavelets with Daubechie’s four functions and multi-
layer perceptron network neural networks to detect the toxic response behavior of
chironomids for water quality monitoring. The variables chosen were based on
the feature coefficients of Discrete Wavelet Transforms and were used as input
for training the MLP network. The trained network capably detected changes
in movement patterns before and after the treatments and it was shown that
the application of the wavelets and artificial neural networks was useful for the
automatic monitoring of water quality.

Marwala and Hunt (1999) presented a committee of neural networks technique,
which employed both frequency response functions and modal data simultaneously
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to identify faults in structures. They tested this technique on simulated data from
a cantilevered beam, which was structured into five regions. It was observed that
irrespective of the noise levels in the data, the committee of neural networks gave
results that had a lower mean-squares error and standard deviation than the two
existing methods. It was found that the method could identify fault cases better
than the two approaches used individually. It was established that for the problem
analyzed, giving equal weights to the frequency-response-based method and modal-
properties-based method minimized the errors in identifying faults.

Bucolo et al. (2002) successfully applied multi-layer perceptron and neuro-fuzzy
systems in predicting models for the corrosion phenomena in pulp and paper plant.
The data was gathered in a Wisaforest pulp mill in Finland.

Caputo and Pelagagge (2002) successfully applied the MLP neural network
approach for piping network monitoring to localize leakages based on pressure and
flow rate information. Elsewhere Yella et al. (2009) successfully applied machine
vision based method for the condition monitoring of wooden railway sleepers.
Furthermore, Kwak et al. (2002) applied a multi-layer perceptron neural network
to recognize the movement tracks of medaka (Oryzias latipes) in response to sub-
lethal treatments of an insecticide.

3.2 Mathematical Framework

In this section, the mathematical background of the multi-layer perceptron neural
networks is explained, including a review of background literature of successful
implementations, an explanation of architectures, and a description of a method that
was implemented to train the MLP.

A neural network is an information processing technique that is inspired by the
way biological nervous systems, like the human brain, process information. It is a
computer based machine, designed to model the way in which the brain performs
a particular function of interest (Haykin 1999). It is an extraordinarily powerful
mechanism that has found successful use in the diverse fields of mechanical
engineering (Marwala and Hunt 1999; Vilakazi and Marwala 2007), civil engi-
neering (Marwala 2000), aerospace engineering (Marwala 2001a; Marwala 2003),
biomedical engineering (Marwala 2007), and finance (Patel and Marwala 2006).
In this chapter, a multi-layer perceptron neural network is viewed as generalized
regression model that can model both linear and non-linear data. The construction
of a neural network involves four main steps (Marwala and Lagazio 2011; Msiza
et al. 2007):

1. the processing units uj, where each uj has a certain activation level aj(t) at any
point in time;

2. weighted inter-connections between a number of processing units. These inter-
connections govern how the activation of one unit leads to the input for another
unit;
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3. an activation rule, which acts on the set of input signals at a processing unit to
produce a new output signal; and

4. a learning rule that stipulates how to fine-tune the weights for a given input or
output (Freeman and Skapura 1991).

Because they are capable of extracting meaning from complex data, neural
networks are engaged to extract patterns and detect trends that are too complex
to be identified by many other computer techniques (Hassoun 1995). A trained
neural network can be viewed as an expert in the class of information that it has
been given to analyze (Yoon and Peterson 1990). This expert can then be applied to
offer predictions when presented with new circumstances. Because of their ability
to adapt to non-linear data, neural networks have been applied to model a number
of non-linear applications (Hassoun 1995; Leke et al. 2007).

The architecture of neural processing units and their inter-connections can have a
significant influence on the processing capabilities of neural networks. Accordingly,
there are many different connections that define how data flows between the input,
hidden and output layers. The next section gives details on the architecture of the
multi-layer perceptron neural networks employed in this chapter.

3.2.1 Multi-Layer Perceptrons (MLP) for Classification
Problems

In the past 30 years the MLP neural networks have successfully been applied
to both classification and regression problems. Ikuta et al. (2010) connected a
chaos glial network to the MLP to solve a two-spiral problem and found that their
method performed better than the conventional MLP. Zadeh et al. (2010) used the
MLP to predict the daily flows from the Khosrow Shirin watershed, and observed
that precipitation and discharge with a 1 day time lag best predicted daily flows.
Narasinga-Rao et al. (2010) applied the multi-layer perceptron to predicting the
quality of life in diabetes patients using age, gender, weight, and fasting plasma
glucose as inputs.

Pasero et al. (2010) used the MLP for a time series analysis while Sug (2010)
used a MLP for task classification. Zhang and Li (2009) used a hybrid of the Hidden
Markov Model (HMM) and the MLP for speech recognition and demonstrated that
the hybrid model performed better than the HMM.

He et al. (2009) used the MLP for short-term demand forecasting using graphics
processing units. Bernardo-Torres and Gómez-Gil (2009) used the MLP to forecast
seismograms while Sug (2009) applied the MLP to pilot sampling. Kushwaha and
Shakya (2009) successfully applied the MLP for predicting the helical content of
proteins while Karami et al. (2009) successfully applied it to decoding low-density
parity-check codes.

Other applications for the MLP include the work by Achili et al. (2009) in
robotics, Sancho-Gómez et al. (2009) for decision support systems with missing
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data, Krishna (2009) in an air data system, Hu and Weng (2009) in image processing,
Duta and Duta (2009) in turbo-machinery optimization, Pontin et al. (2009) in
predicting the occurrence of stinging jellyfish, Yazdanmehr et al. (2009) for the
modeling of nanocrystals, Watts and Worner (2009) for predicting the distribution
of fungal crop diseases as well as Yilmaz and Özer (2009) for pitch angle control in
wind turbines above the rated wind speed.

In this book, neural networks are regarded as a broad structure for describing non-
linear mappings between multi-dimensional spaces where the form of the mapping
is overseen by a set of free parameters (Bishop 1995; Mohamed 2003; Mohamed
et al. 2006) which have to be estimated from the data. There are two ways in
which neural networks can be trained: supervised or unsupervised learning. We
consider only supervised learning in this book. In supervised learning, the training
data involves both the input to the neural networks and a corresponding target
output. In this chapter, the input is a set of features that are deemed to influence
the health status of the structure such as vibration data and the output is the identity
of the faults.

3.2.2 Architecture

The multi-layer perceptron neural network architecture was selected for mapping
the relationship between vibration data and the identity of faults. Each connection
between inputs and neurons was weighted by adjustable weight parameters. In
addition, each neuron had an adjustable bias weight parameter which is denoted
by a connection from a constant input x0 D 1 and z0 D 1 for the hidden neurons
and the output neuron, respectively. This group of two-layer multi-layer perceptron
models can approximate any continuous function with arbitrary accuracy, as long as
the number of hidden neurons is sufficiently large (Bishop 1995; Mohamed 2006).

The advantage of the multi-layer perceptron network is the interconnected cross-
coupling that occurs between the input variables and the hidden nodes, with the
hidden nodes and the output variables. If we assume that x is the input to the multi-
layer perceptron and y is the output of the MLP, a mapping function between the
input and the output may be written as follows (Bishop 1995):

y D foutput

0
@ MX

jD1

wj fhidden

 
NX

iD0

wij xi

!
C w0

1
A (3.1)

Here N is the number of inputs units, M is the number of hidden neurons, xi is the ith

input unit, wij is the weight parameter between input i and hidden neuron j and wj is
the weight parameter between hidden neuron j and the output neuron. The activation
function foutput.�/ is sigmoid and can be written as follows (Bishop 1995):

foutput .a/ D 1

1 C e�a
(3.2)
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In this chapter, we apply a neural network to classify the identity of fault. In
modeling complex problems, care must be taken in the choice of the output
activation function. For classification problems, as is the case in this chapter, the
sigmoid function indicated in Eq. 3.2 is ideal (Bishop 1995). The activation function
fhidden.�/ is a hyperbolic tangent which can be written as (Bishop 1995):

fhidden.a/ D tanh.a/ (3.3)

3.2.3 Training of the Multi-Layer Perceptron

Once the activation function is defined and the sizes of the hidden nodes are selected,
what remains is to approximate the network weights. The network weights are
approximated from the observed data through a method called training. There are a
number of critical matters that must be taken into account in training the networks.
These include ensuring that, on identifying the network weights, the resulting
network must not just memorize the data but learn from it. There are methods
that have been presented to deal with this specific matter, and they comprise cross-
validation, early-stopping, and regularization.

Two common methods can be applied to train a neural network. These methods
are the maximum likelihood technique and the Bayesian method. The maximum
likelihood technique estimates the network weights that maximize the capacity of a
trained network to estimate the observed data, while the Bayesian method creates
the probability distribution of the network model given the observed data. It should
be noted here that the maximum likelihood and Bayesian methods are the same and
the only difference is that the maximum likelihood technique identifies the network
vector of weights that is most likely in the posterior probability distribution function.
The first undertaking in identifying a vector of network weights that maximizes
the predictive capacity of the neural network is to build a fitness function in the
evolutionary programming perspective. The fitness function is a measure of the
difference between the approximations of the model and the observed data.

In a two-class classification problem, the fitness function is the difference
between the neural network’s estimated output and the target output, t, given in
Eq. 3.1 for all training patterns. E is the cross-entropy error function given by
(Bishop 1995; Marwala 2009; Marwala and Lagazio 2011):

E D �
PX

pD1

˚
tp ln.yp/ C .1 � tp/ ln.1 � yp/

�
(3.4)

There are many advantages of the cross-entropy function. One of these includes the
fact that it permits the output to be understood probabilistically without the necessity
of invoking a Bayesian method. Neural networks are trained by iteratively adjusting
the weight parameters, w, to minimize the fitness function given by Eq. 3.4. This is
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accomplished by randomly initializing the network weights and then adjusting the
weight parameters using the scaled conjugate gradient technique (Møller 1993). The
scaled conjugate gradient technique was selected over other optimization methods
for the reason that it has efficient convergence properties.

Generalization is the capability of a trained neural network model to classify
input patterns that were not observed during the training of the neural network. Es-
sentially, on pursuing a network that generalizes, one identifies the balance between
the capabilities of a network to remember the training data with the capability of
the network to estimate data not seen. The generalization of performance is a true
reflection of the capacity of a neural network to classify faults. This can simply be
proven by separating the data into training and testing data sets.

Bishop (1995) demonstrated that a minimization of the cross-entropy fitness
function in the neural network training with the activation function of a neural
network results in the output of a neural network approximating the posterior
probability of membership to a specific class, given the input fxg. In the present case
of modeling the identity of faults, the output estimates the posterior probability of a
specific identity of fault. If this class is represented by C1 and the pattern class for
not containing faults is represented by C2, the relations for the posterior probability
of class membership can be written as (Bishop 1995; Tettey and Marwala 2007):

P .C1 jfxg / D y (3.5)

P .C2 jfxg / D 1 � y (3.6)

Equations 3.5 and 3.6 offer a probabilistic interpretation to the neural network
output. On the account of these relationships, it is obvious that the input vector has a
high probability of being an element of class C1 when y is close to 1 and C2 when y
is close to 0. If y is close to 0.5, then there is uncertainty in the class membership of
the input vector. An elementary method to increase the efficacy of the classifier is to
devise an upper and lower rejection threshold to the neural network output (Bishop
1995; Mohamed 2003). This classification decision rule can be expressed as follows
(Mohamed 2003):

Choose C1 if y > �;

choose C2 if y < .1 � �/ ;

otherwise do not classify fxg:
(3.7)

The parameter � sets the level of the rejection threshold and permits the engineer to
choose the level at which a decision can be made.
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3.2.4 Back-Propagation Method

To identify the network weights given the training data, an optimization technique
can be applied, within the context of the maximum-likelihood framework. In
general, the weights can be identified using the following iterative technique
(Werbos 1974):

fwgiC1 D fwgi � �
@E

@fwg .fwgi / (3.8)

In Eq. 3.8, the parameter � is the learning rate while fg represents a vector. The
minimization of the fitness function, E, is achieved by calculating the derivative of
the errors, in Eq. 3.7, with respect to the network weight. The derivative of the error
is calculated with respect to the weight which connects the hidden layer to the output
layer, and can be written using the chain rule as follows (Bishop 1995; Marwala
2009):
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In Eq. 3.9, zj D finner.aj / and ak D PM
jD0 w.2/

kj yj : The derivative of the error with
respect to weight which connects the hidden to the output layer may be written using
the chain rule as (Bishop 1995):
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In Eq. 3.10, aj D
dP

iD1

w.1/
j i xi : The derivative of the fitness function in Eq. 3.4 may

thus be written as:

@E

@ynk

D tnk � ynk

ynk .ynk � 1/
(3.11)

while that of the hyperbolic tangent function is:
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f
0

inner.aj / D sec h2.aj /: (3.12)

The derivative of the logistic activation function is:

f
0

outer .ak/ D f .ak/ .1 � f .ak// (3.13)

Given that it has been determined how to compute the gradient of the error with
respect to the network weights using back-propagation algorithms, Eq. 3.8 can be
applied to update the network weights using an optimization process until some
pre-defined stopping condition is achieved. If the learning rate in Eq. 3.8 is fixed
then this is known as the steepest descent optimization method (Robbins and Monro
1951). Alternatively, since the steepest descent technique is not computationally
efficient an improved technique needs to be developed, and in this chapter the scaled
conjugate gradient method is implemented (Møller 1993), which is the concern of
the next section.

3.2.5 Scaled Conjugate Gradient Method

The technique in which the network weights are inferred from the data is by
applying some non-linear optimization technique (Mordecai 2003), and for this
chapter is the scaled conjugate gradient technique. Before the scaled conjugate
gradient technique is described, it is important to comprehend how it operates.
As described before, the weight vector that gives the minimum error is attained
by taking successive steps through the weight space as shown in Eq. 3.8 until
some stopping criterion is achieved. Different algorithms select this learning
rate differently. In this section, the gradient descent technique will be discussed,
followed by how it can be extended to the conjugate gradient technique (Hestenes
and Stiefel 1952). For the gradient descent technique, the step size is defined as
��@E=@w, where the parameter � is the learning rate and the gradient of the error
is calculated using the back-propagation method described in the previous section.

If the learning rate is adequately small, the value of error decreases at each step
until a minimum value is attained for the error between the model prediction and
training target data. The disadvantage with this method is that it is computationally
expensive when compared to other methods. For the conjugate gradient technique,
the quadratic function of the error is minimized at each iteration over a progressively
expanding linear vector space that includes the global minimum of the error
(Luenberger 1984; Fletcher 1987; Bertsekas 1995).

For the conjugate gradient technique, the following steps are followed (Haykin
1999):

1. Choose the initial weight vector fwg0.
2. Calculate the gradient vector @E

@fwg.fwg0/:
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3. At each step n use a line search to find the �.n/ that minimizes E.�/ which
represents the cost function expressed in terms of � for fixed values of w and
� @E

@fwg.fwng/:
4. Check that the Euclidean norm of the vector � @E

@w .fwng/ is sufficiently less than
that of � @E

@w .fw0g/:
5. Update the weight vector using Eq. 3.8.
6. For wnC1 compute the updated gradient @E

@fwg.fwgnC1/:

7. Use the Polak-Ribiére method to calculate:

ˇ.n C 1/ D rE.fwgnC1/
T .rE.fwgnC1/ � rE.fwgn///

rE.fwgn/
T rE.fwgn/

8. Update the direction vector

@E

@fwg .fwgnC2/ D @E

@fwg .fwgnC1/ � ˇ.n C 1/
@E

@fwg .fwgn/:

9. Set n D n C 1 and go back to step 3.
10. Stop when the following condition is satisfied: @E

@fwg .fwgnC2/ D " @E
@fwg.fwgnC1/

where " is a small number.

The scaled conjugate gradient method differs from the conjugate gradient method
in that it does not involve the line search explained in step 3. The step-size (see step
3) can be calculated directly by using the following formula (Møller 1993):

�.n/ D 2

0
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(3.14)

Here H is the Hessian of the gradient. The scaled conjugate gradient method was
used because it has been found to solve the optimization problems encountered
when training an MLP network to be more computationally efficient than the
gradient descent and conjugate gradient methods (Bishop 1995).

3.3 The Multifold Cross-Validation Method

In the example of cylindrical shells considered in this chapter and described in Chap.
2 (Marwala 2001b), because there is a limited amount of data available, the training
data set was also applied as a validation data set by using a multifold cross-validation
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Partition K Partition 3 Partition 2 Partition 1

Training case  1

Training case  2

Training case  3

Training case  K

Fig. 3.1 The multifold cross-validation technique applied where the network was trained K times,
each time leaving out the data indicated by the shaded area and using the omitted data for validation
purposes. The validation error was acquired by averaging the squared error under validation over
all the trials of the experiment

technique (Stone 1974; Kohavi 1995). The multifold method implemented in the
present study is illustrated in Fig. 3.1 (Marwala 2001b). Each column in Fig. 3.1
demonstrates a partition of the training data set and each row denotes a training
case. The shaded box for a given training case is the partition that is applied for
validation purposes whereas the rest of the boxes in one row are applied to train the
network.

When the multifold cross-validation method is applied, the training data set with
N examples is segmented into K partitions. Here it is assumed that N is divisible
by K and that K > 1. For each training process, the network is trained with the data
from all partitions excluding one and the validation set is the subset that is left out.
The partition that is left out for each training case is a shaded one. For example, in
for Training case 1 the network is trained using Partitions 2 to K and Partition 1 is
used as a validation set. The procedure is repeated for K training cases, by leaving
the shaded partition for validation and using the remaining partitions for training.
It should be noted that the type of the multifold cross-validation technique applied
in this chapter resets the network once in Training case 1. The network-weights
attained after Training case 1 turn into initial network weights for Training case 2
and so on. The performance of the resulting network is assessed by averaging the
mean squared errors or classification error over all the training cases.

If the amount of data is inadequate or stark, then a technique called the leave-one-
out process, was applied, which is a distinct case of the multifold cross-validation
technique, where all examples but one are used to train the network and the
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model is validated on the remaining one. The research directed by Shao and Tu
(1995) advises that the multifold cross-validation technique performs better than
the leave-one-out scheme for approximating generalization errors. This is because
the leave-one-out technique over-fits the data. For each training session there must
be a stopping criterion. For this book, training was stopped after 50 scaled conjugate
gradient iterations had lapsed.

3.4 Application to Cylindrical Shells

For this chapter the multifold cross-validation technique was used to train
and validate the pseudo-modal-energy-network and modal-property-network.
A pseudomodal-energy-network is a Multi-Layer Perceptron neural network that
was trained using pseudo-modal energies while a modal-property-network uses
modal properties which were described in Chap. 2. The fault cases that were used
to train and test the networks are shown in Table 3.1 (Marwala 2001b).

In Table 3.1 the training data set, with 168 fault cases, has an equal number
of fault cases showing that the probabilities of incidence for the eight fault cases
are equal. The remaining 96 fault cases were used to test the networks. The training
data set with 168 fault cases was subdivided into 21 subsets. Each partition had eight
different fault cases. This established that the training set was balanced in terms of
the proportion of fault cases present. The first sets of networks, i.e., the pseudo-
modal-energy-network and the modal-property-network (20 for each method), were
trained with 160 fault cases (from Partitions 2 to 21) and the networks were validated
on the remaining eight fault cases (from Partition 1). The network weights identified
were used as initial weights for Training case 2. The training for this case was
conducted using all partitions apart from Partition 2, which was used to validate
the trained networks. The complete training and validation of the networks were
conducted 21 times until all the validation partitions had been used. As already
revealed, 20 pseudo-modal-energies with the number of hidden units randomly
chosen to fall between 7 and 11 were trained and validated using the multifold cross-
validation process. The same process was used to train 20 modal-property-networks.
From these two sets of 20 trained networks, the pseudo-modal-energy-network and
modal-property-network that gave the least mean squared errors over the validation
partitions were selected. Each validation partition gave a mean squared error. The
average of the mean squared errors of all the partitions was the validation error
was used to select the networks. The pseudo-modal-energy-network and modal-
property-network that had the least mean squared errors had respectively 10 inputs

Table 3.1 Fault cases used to train, cross-validate and test the networks

Fault [000] [100] [010] [001] [110] [101] [011] [111]

Training set 21 21 21 21 21 21 21 21
Test set 39 3 3 3 3 3 3 39
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Table 3.2 Confusion matrix from the classification of fault cases in the test data using the
pseudo-modal-energy-network

Predicted

[000] [100] [010] [001] [110] [101] [011] [111]

Actual [000] 36 0 2 1 0 0 0 0
[100] 0 3 0 0 0 0 0 0
[010] 0 0 3 0 0 0 0 0
[001] 0 0 0 3 0 0 0 0
[110] 0 0 0 0 3 0 0 0
[101] 0 0 0 0 0 3 0 0
[011] 0 0 0 0 0 0 3 0
[111] 0 0 1 0 4 3 6 25

Table 3.3 Confusion matrix from the classification of fault cases in the test data using the
modal-property-network

Predicted

[000] [100] [010] [001] [110] [101] [011] [111]

Actual [000] 35 0 1 3 0 0 0 0
[100] 0 3 0 0 0 0 0 0
[010] 0 0 3 0 0 0 0 0
[001] 0 0 0 3 0 0 0 0
[110] 0 0 0 0 3 0 0 0
[101] 0 0 0 3 0 0 0 0
[011] 0 0 0 0 0 0 3 0
[111] 0 0 0 0 8 1 2 28

and 8 hidden nodes as well as 10 inputs and 9 hidden nodes. The number of input
units was chosen. Here 10 input units were selected using the principal component
analysis as explained by Marwala (2001b).

Fault cases given by a network were rounded off to the nearest whole number,
i.e., 0 and 1. To assess the predictive capabilities of the trained set of networks, a
confusion matrix was applied as shown in Table 3.2. In this table the predicted fault
cases are displayed vertically and the actual fault cases are displayed horizontally.
A row of this matrix indicates all fault cases present in the test data for that
particular fault case. As an example, a row with a fault case [000] in Table 3.2
signifies the number of [000] fault cases used in the test data set. From the confusion
matrix certain information may be derived. The diagonal components of this matrix
demonstrate fault cases classified correctly, while the off-diagonal components of
this matrix represent fault cases classified wrongly. A perfect fault identification
procedure indicates a diagonal matrix with all off-diagonal components equal to
zero. A completely imperfect confusion matrix indicates zero diagonal components
and non-zero off-diagonal components. The results showing the confusion matrices
when the pseudo-modal-energy-network and modal-property-network were used,
are given in Tables 3.2 and 3.3 respectively (Marwala 2001b).
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In Table 3.2, 92.3% of [000] cases; all the one- and two-fault cases; and 64.1%
of [111] cases were correctly classified. Of the three [000] fault cases that were
classified wrongly using the pseudo-modal-energy-network, two were classified as
[010] cases and one as a [001] case. Of the fourteen [111] cases that were classified
wrongly by the pseudo-modal-energy-network, four were classified as [110] cases,
three as [101] cases, six as [011] cases, and one as a [010] case.

The confusion matrix obtained when the modal-property-network was used is
shown in Table 3.3 (Marwala 2001b). This table demonstrates that this network
classifies 89.7% of [000] fault cases correctly; all one and two-fault cases with, the
exception of three [101] cases correctly; and 71.8% of [111] fault cases correctly.
Of the four [000] cases that were classified wrongly by the modal-property-network,
one is classified as a [010] case and three as [001] cases. Of the eleven [111] cases
that were classified wrongly by the modal-property-network, eight were classified
as [110] cases, one as a [101] case and two as [011] cases. The three [101] cases
that were misclassified by the modal-property-network were all classified wrongly
as [001] cases.

The pseudo-modal-energy-network misclassified three cases and the modal-
property-network misclassified four [000] cases. The pseudo-modal-energy-
network classified all the one- and two- fault cases correctly, while the modal-
property-network misclassified all [101] cases. The modal-property-network mis-
classified eleven [111] cases and the pseudo-modal-energy-network misclassified
fourteen [111] cases.

The results indicate that in classifying all fault cases, the pseudo-modal-energy-
network was only marginally better than the modal-property-network. Nevertheless,
if account is taken of the fact that the modal-property-network could not correctly
classify an entire fault case, i.e., [101], where this was never the case for the
pseudo-modal-energy-network, then it can be concluded that the pseudo-modal-
energy-network was better than the modal-property-network.

3.5 Conclusion

In this chapter, modal properties and pseudo-modal energies data as well as the
multi-layer perceptron network were applied to classify faults in a population
of cylindrical shells and were experimentally validated. A principal component
analysis was applied to reduce the dimensions of the input data. The multifold cross
validation technique was applied to choose the optimal number of hidden units
amongst the 20 trained pseudo-modal-energy-networks and the 20 trained modal-
property-networks. The pseudo-modal-energy-network and the modal-property-
network were found to offer similar levels of accuracy on classifying faults.
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Chapter 4
Bayesian Approaches to Condition Monitoring

4.1 Introduction

For this chapter, Bayesian networks were trained using the hybrid Monte Carlo
method with vibration data used for the application of monitoring the condition
of cylindrical shells. Weidl et al. (2005) applied generic object-oriented Bayesian
networks for condition monitoring, root-cause analysis and decision support to the
operation of complex continuous processes. Their technique combined a decision-
theoretic diagnostic with risk assessment of an industrial process control and was
implemented for a pulp digesting and screening process. Their results showed that
the system did perform reasoning under uncertainty and offered remedial actions
to the operators with reasons for the root causes and detailed operators’ activities
for related examples. The Bayesian network models were arranged to execute
sequential learning to increase its diagnostic performance.

Kohda and Cui (2005) applied Bayesian network for the risk-based reconfigura-
tion of a safety monitoring system to avoid an atypical episode from progressing to
an accident. Their safety monitoring system detected indicators of unusual incidents
and mitigated its influence. A case study of a three-sensor system demonstrated
the advantages of their technique.

Marwala (2007) applied Bayesian techniques for training of neural networks
using genetic programming. Bayesian neural network were trained using Markov
Chain Monte Carlo (MCMC) and genetic programming in binary space within
a Metropolis framework. The procedure proposed had the ability to learn using
samples obtained from previous steps merged using concepts of natural evolution
which included mutation, crossover and reproduction. The reproduction function
was the Metropolis framework; binary mutation and simple crossover were also
used. Their algorithm was tested for condition monitoring of structures and the
results were compared to those of a classical MCMC method. The results confirmed
that Bayesian neural networks trained using genetic programming offered a better
performance and efficiency than the classical approach.

T. Marwala, Condition Monitoring Using Computational Intelligence Methods:
Applications in Mechanical and Electrical Systems, DOI 10.1007/978-1-4471-2380-4 4,
© Springer-Verlag London Limited 2012
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Qi and Huang (2011) successfully applied Bayesian techniques for control loop
diagnosis in the presence of temporal dependent evidences. Traditional Bayesian
approaches usually assume that evidences are temporally independent but this
condition does not apply in many engineering cases. By assuming that the evidence
transition information needs to be considered, the temporal information can be
derived within the Bayesian framework to advance diagnosis performance. Qi and
Huang (2011) solved the evidence dependency case by applying a data-driven
Bayesian method with attention to the evidence transition probability.

Katsis et al. (2011) applied a wearable system for the affective monitoring of
car racing drivers during simulated conditions. The wearable device was intended
to gather chosen biological signals, pre-process them and wirelessly transmit them
from the site of the subject to the centralized system. The centralized system was
intended to conduct an assessment of the subject’s emotional state and project a
generic 3D face model where the facial expression of the subject could be observed.
A two stage classification system was used. The system entailed a decision tree to
classify the subject’s emotional state as high stress, low stress and valence as well
as a Tree Augmented Naive Bayesian to classify into two classes: euphoria and
dysphoria. The system was validated using a dataset obtained from ten subjects in
simulated racing conditions and the overall classification rate achieved using tenfold
cross-validation was very good.

Droguett et al. (2008) applied a semi-Markov model with a Bayesian belief
network based human error probability for assessing the availability of down-hole
optical monitoring of oil fields in Brazil. They developed a pressure-temperature
optical monitoring systems by using an availability assessment model where sys-
tem dynamics were described using a continuous-time semi-Markovian process
quantified using probabilities, which was combined with a Bayesian belief network
describing the cause-effect relationships among features influencing the repairman’s
error probability during maintenance.

Kim et al. (2011) successfully applied a Bayesian framework to identify faults
in a partially observable system subject to random failures. The deterioration of a
system was modeled with a hidden 3-state continuous time homogeneous Markov
process with States 0 and 1 not being observable, signifying good and warning
situations respectively, and only State 2 being observable. The model’s parameters
were identified using an Expectation Maximization procedure and a cost-optimal
Bayesian fault prediction scheme was presented. The technique was validated using
real data from a spectrometric analysis of oil samples from the transmission units of
heavy hauler trucks.

Yuen and Kuok (2010) studied the long-term monitoring of a 22-storey rein-
forced concrete building. It is necessary to distinguish the inevitable variations in
ambient conditions resulting from the abnormal changes due to structural damage
and deterioration. A Bayesian framework was implemented to quantify the uncertain
parameters in the modal frequency-ambient condition model. The results showed
that direct attention to the ambient temperature and relative humidity was vital for
long-term structural health monitoring.
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Pollino et al. (2007) investigated conflicts and improved strategies for the
management of an endangered Eucalypt species using Bayesian networks. Their
framework gave a procedure to guide future integrative and iterative monitoring and
research.

Subrahmanya et al. (2010) applied a Bayesian machine learning technique for
sensor choice and fusion in an on-board fault diagnostics process. They presented
a procedure for choosing groups of features during regression and classification.
A hierarchical Bayesian framework introduced grouping for the parameters of a
generalized linear model and the model’s hyper-parameters were approximated
using an empirical Bayes procedure. The performance of the procedure was first
tested on a synthetic regression example and applied to fault detection in diesel
engines.

Willis (2010) applied a logistic Partial Least Squares method for the condition
monitoring of vibrations in the centrifuge of a product treatment plant. A logistic
Partial Least Squares model was obtained using wavelet coefficients to de-correlate
the time series data. The model offered a reference line to assess any development
through kernel techniques. The kernel hypothesis was presented from a Bayesian
viewpoint and applied to create a detector with considerably fewer false positives
and missed detections.

Nebot et al. (2007) applied Bayesian networks for the diagnosis of surface
roughness and cutting tool-wear. They presented a multi-sensor system for indirect
monitoring. Their rationale for using a Bayesian network was its ability to handle
the stochastic characteristics of the machining process. Their results were that
models with a high discretization showed a reliability of 89.5% for the surface
roughness prediction and 97.3% for the cutting tool wear diagnosis, whereas lower
discretizations gave better reliability but worse diagnosis.

Feng and Schlindwein (2009) applied normalized wavelet packets quantifiers
for tool condition monitoring. They used Acoustic Emission signals from faulty
bearings of rotating machines and demonstrated that localized defects and advanced
contamination faults can be successfully identified if a suitable quantifier was
selected. When the Bayesian classifier was applied to quantitatively analyze and
evaluate the performance of their quantifiers it was shown that decreasing the
Daubechies wavelet order or the length of the segment deteriorated the performance
of the quantifiers.

Hu et al. (2010) applied an integrated technique for safety pre-warning in
complex large-scale and industrial systems. They implemented an integrated tech-
nique that combined degradation process modeling, a dynamic Bayesian network,
condition monitoring, safety assessment and prognosis steps, taking into account
the a priori knowledge of the interactions and dependencies among components and
the environment, the relationships between hazard causes and effects, and historical
failure data and online real-time data from condition monitoring. Their application
of the integrated safety pre-warning method to the gas turbine compressor system
revealed how each phase of the proposed technique contributed to the accomplish-
ment of the development of a safety pre-warning system in a systematic manner.



74 4 Bayesian Approaches to Condition Monitoring

Other successful applications of a Bayesian framework include studies in clinical
trials by Daimon (2008), the dynamics of attentional control under conflict (Yu et al.
2009), and in the analysis of plant colonization on an Arctic moraine since the end
of the Little Ice Age (Moreau et al. 2005).

The next section describes the neural network which was used for the fault
identification of this chapter.

4.2 Neural Networks

For this chapter, as for the previous chapter, multi-layer perceptron neural network
models were expressed in the Bayesian context and trained through applying Monte
Carlo methods (Marwala 2001; Marwala and Lagazio 2011). These techniques were
implemented for the classification of faults in a population of cylindrical shells.
Hence this section gives a summary of neural networks within the context of fault
classification problems. For this chapter, a multi-layer perceptron was applied to
map the modal properties and pseudo-modal energies (x) and the fault classification
in a population of cylindrical shells (y). The relationship between the kth identity of
fault, yk, and the pseudo-modal energies or modal properties, x, may be written as
follows (Bishop 1995; Marwala 2009; Marwala and Lagazio 2011):
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Here w.1/
j i and w.2/

kj indicate the weights in the first and second layers, respectively,
going from input i to hidden unit j, M is the number of hidden units, d is the number
of output units, while w.1/

j 0 indicates the bias for the hidden unit j and w.2/

k0 indicates
the bias for the output unit k.

Choosing an appropriate network architecture is an important prerequisite for
model construction. For this chapter, the architecture chosen was the Multi-Layered
Perceptron (MLP), and in Chap. 3 was trained by applying the scaled conjugate
gradient method (Moller 1993). When choosing an appropriate MLP model, another
important decision lies in the choice of the correct number of hidden units (M),
and the class of functional transformations that they accomplish. This is because a
large value of M will produce very flexible networks, which may learn not only
the data configuration but also the noise in the data. Conversely, a small value
of M will produce networks that are unable to model complex relationships. To
identify the optimal MLP structure, the network was trained various times through
applying the scaled conjugate gradient technique. The problem of identifying the
weights and biases in neural networks may be posed in the Bayesian framework as
(MacKay 1991; Bishop 1995; Lagazio and Marwala 2005; Marwala 2009; Marwala
and Lagazio 2011):
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P.wjŒD�/ D P.ŒD�jw/P.w/

P.ŒD�/
(4.2)

Here P(w) is the probability distribution function of the weight-space in the absence
of any data, also called the prior distribution function and [D]�(y1, : : : ,yN) is a
matrix containing the identity of fault data. The expression P(wj[D]) is the posterior
probability distribution function after the data have been observed, P([Djw]) is the
likelihood function and P([D]) is the normalization function, also known as the
“evidence”. For the MLP, Eq. 4.2 may be expanded by applying the cross-entropy
error function to give (MacKay 1992; Bishop 1995; Marwala 2009; Marwala and
Lagazio 2011):
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The cost-entropy error function was applied because of its classification advan-
tages. Also a weight-decay was assumed for the prior distribution as it penalizes
the weights with large magnitudes. In Eq. 4.3, n is the index for the training
pattern, hyper-parameter ˇ is the data contribution to the error, k is the index for
the output units, tnk is the target output corresponding to the nth training pattern
and kth output unit and ynk is the corresponding predicted output. The parameter
’j is another hyper-parameter, which determines the relative contribution of the
regularization term on the training error. In Eq. 4.3, the hyper-parameters may be set
for groups of weights. Equation 4.3 can be solved in two ways: by using the Taylor
expansion and through approximating it as a Gaussian distribution and applying
the evidence framework; or by numerically sampling the posterior probability by
applying approaches such as the Monte Carlo technique, simulated annealing, the
genetic Monte Carlo method, or the hybrid Monte Carlo (Marwala 2010). The
following section describes some of these sampling approaches.

4.3 Sampling Methods

In turn, this section describes the following sampling methods: the Monte Carlo
Method, the Markov Chain Monte Carlo Method, the hybrid Monte Carlo method.
These methods were also described in detail by Marwala and Lagazio (2011).



76 4 Bayesian Approaches to Condition Monitoring

4.3.1 Monte Carlo Method

Monte Carlo approaches are regularly used to simulate complex systems. Monte
Carlo approaches are a type of numerical method that depends on repetitive
random sampling to approximate the results. Due to their dependence on recurrent
computation of random or simulated random numbers, these methods are well suited
for approximate results using computers and are used when it is unrealistic to
approximate a solution using a deterministic method (Marwala and Lagazio 2011).

The Monte Carlo technique is a computational procedure that applies recurrent
random sampling to compute a result (Mathe and Novak 2007; Akhmatskaya et al.
2009; Ratick and Schwarz 2009: Marwala 2009, 2010; Marwala and Lagazio 2011).
Monte Carlo techniques have been applied for simulating physical and mathematical
systems. For instance, Lai (2009) applied the Monte Carlo technique to solving
matrix and integral problems while McClarren and Urbatsch (2009) applied an
adapted Monte Carlo technique for modeling time-dependent radiative transfer with
adaptive material coupling.

Other recent applications of the Monte Carlo technique include its use in
particle coagulation (Zhao and Zheng 2009), in diffusion problems (Liu et al.
2009), for the design of radiation detectors (Dunn and Shultis 2009), for modeling
bacterial activities (Oliveira et al. 2009), for vehicle detection (Jia and Zhang 2009),
for modeling the bystander effect (Xia et al. 2009), and for modeling nitrogen
absorption (Rahmati and Modarress 2009).

Kandela et al. (2010) applied the Monte Carlo technique to study the movement
of tablets in a pan coater by using video imaging. They applied the technique to
track the motion of tablets and used coating variables of circulation time, surface
time, projected surface area and surface velocity of the tablet. These parameters
were derived from video imaging experiments. Other applications of the Monte
Carlo technique include Padilla Cabal et al. (2010) who applied the technique to
approximate the efficiency of an n-type HPGe detector as well as Fefelov et al.
(2009) who applied the Monte Carlo technique to study a self-assembled monolayer
with a number of different orientations for the organic molecules.

Martin and Ayesa (2010) applied the Monte Carlo technique to calibrate water
quality models while Roskilly et al. (2010) applied it to examine the effect of shape
on particle separation. Do et al. (2010) applied Monte Carlo techniques to simulate
the vapor–liquid equilibrium properties of R134a and its liquid microscopic struc-
ture and observed that the simulations agreed with experimental data. Ozaki et al.
(2010) applied the Monte Carlo technique to develop a framework for data analysis,
including a process to link and control data processing modules.

Monte Carlo simulation approaches are advantageous in analyzing systems with
a large number of degrees of freedom and uncertain inputs in varied fields such
as fluid dynamics, materials science, and solid mechanisms (Robert and Casella
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2004). The Monte Carlo technique normally follows the following practice (Robert
and Casella 2004; Marwala and Lagazio 2011):

• Express the input space.
• Randomly create inputs from the input space by applying a selected probability

distribution.
• Apply the produced input for the deterministic calculation.
• Integrate the results of the individual calculations to approximate the final result.

A simple example that has been used many times to explain the Monte Carlo
technique is the approximation of   by drawing a square and putting a circle inside
it. The area of the square is 4r2 while the area of the circle inside it is  r2. The ratio
of the area of the circle to the area of the square is  /4. By applying the Monte Carlo
technique, the input space is any point inside the square. If data points are randomly
produced to be located inside the square, the ratio of the number of points that are
located inside the circle to the ratio of the points that are located inside the square is
equal to  /4. This way, the value of   can be approximated experimentally.

4.3.2 Markov Chain Monte Carlo Method

An additional method of sampling the posterior probability is to use the Markov
Chain Monte Carlo (MCMC) technique, which is a random walk Monte Carlo
routine which is performed through generating a Markov chain to identify an
equilibrium distribution. The MCMC comprises of a Markov process and a Monte
Carlo simulation (Liesenfeld and Richard 2008). After many random walk steps,
the retained states will converge to a desired posterior distribution. Technically,
as the number of steps approach infinity, the accuracy of the estimated probability
distribution becomes ideal. Rodina et al. (2010) applied the MCMC to predict renal
disease, while Drugan and Thierens (2010) presented an evolutionary MCMC where
evolutionary methods were applied to exchange information between states. Wang
et al. (2010) applied the MCMC for spectrum sensing in cognitive radio while Wang
and Harrison (2010) applied the MCMC to describe a water distribution system.

Wong et al. (2011) applied the MCMC for stochastic image de-noising and
found that their technique achieved excellent results in terms of both peak signal-to-
noise ratio and mean structural similarity metrics when compared to other published
approaches.

Nichols et al. (2011) applied the Markov Chain Monte Carlo technique for iden-
tifying cracks in a plate and their results show that this technique can approximate
the state of damage in a cracked plate structure.

Deutch et al. (2011) successfully applied MCMC to play Trivia while Vrugt
(2011) applied an adaptive Markov chain Monte Carlo simulation algorithm to solve
discrete, non-continuous, posterior parameter estimation problems.
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Wu and Drummond (2011) applied the MCMC technique for joint inference of
microsatellite mutation models, population history and genealogies while Wöhling
and Vrugt (2011) applied the MCMC for multi-response multi-layer vadose zone
model calibration.

Jing and Vadakkepat (2009) applied a Markov Chain Monte Carlo technique to
the tracking of maneuvering objects whereas Gallagher et al. (2009) applied the
Markov Chain Monte Carlo procedure to identify optimal models, model resolution,
and model selection for earth science problems. Curran (2008) applied the MCMC
technique in DNA profiling. Other successful applications of the Markov Chain
Monte Carlo technique include its use in environmental modeling (Gauchere et al.
2008), in medical imaging (Jun et al. 2008), in lake-water quality modeling (Malve
et al. 2007), in economics (Jacquier et al. 2007), in statistics (Lombardi 2007), in
decrypting classical cipher texts (Chen and Rosenthal 2011) and in robotics (Wang
et al. 2011).

To apply the MCMC procedure, a system is considered whose evolution is char-
acterized by a stochastic process consisting of random variables fx1, x2, x3, : : : , xig.
A random variable xi occupies a state x at discrete time i. The assembly of all
possible states that all random variables can occupy is called a state space. If the
probability that the system is in state xiC1 at time i C 1 depends completely on the
point that it was in state xi at time i, then the random variables fx1, x2, x3, : : : , xig
form a Markov chain. In the Markov Chain Monte Carlo, the transition between
states is achieved by adding random noise (") to the current state as follows (Bishop
1995; Marwala 2010; Marwala and Lagazio 2011):

xiC1 D xi C " (4.5)

When the current state has been attained, it is either accepted or rejected. In this
chapter the acceptance of a state is decided by applying the Metropolis algorithm
(Bedard 2008; Meyer et al. 2008). This algorithm, developed by Metropolis et al.
(1953) has been applied widely to solve problems in statistical mechanics. Bazavov
et al. (2009) used biased Metropolis algorithms for protein simulation. Other
applications of the Metropolis algorithms were in nuclear power plants (Sacco et al.
2008), in protein chains simulation (Tiana et al. 2007), and for the prediction of
free Co-Pt nano-clusters (Moskovkin and Hou 2007). Restrepo-Parra et al. (2011)
applied the Metropolis algorithm for the magnetic phase diagram simulation of
La1-xCaxMnO3 system by using Metropolis algorithm while Beddard (2011) applied
the Metropolis algorithm to calculate thermodynamic quantities in an undergraduate
computational experiment. Santoso et al. (2011) applied a modified Metropolis-
Hastings procedure with reduced chain correlation for efficient subset simulation for
the reliability estimation of soil slope with spatially variable properties while Zuev
and Katafygiotis (2011) applied a modified Metropolis-Hastings algorithm with
delayed rejection to a subset simulation for computing small failure probabilities
in high dimensions.

In conclusion, in the MCMC implementation, on sampling a stochastic process
fx1, x2, x3, : : : , xig comprised of random variables, random changes to x are
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presented by using Eq. 4.5 and they are either accepted or rejected, according to
the following Metropolis et al. (1953) criterion (Marwala 2009; Marwala 2010;
Marwala and Lagazio 2011):

if Enew < Eold accept state .snew/

else

accept .snew/ with probability

exp f�.Enew � Eold/g (4.6)

Through a careful investigation of Eq. 4.6, it will be seen that states with high
probability form the majority of the Markov chain, and those with low probability
form the minority of the Markov chain.

4.3.3 Hybrid Monte Carlo

This chapter implements the Hybrid Monte Carlo (HMC) technique to estimate the
posterior probability of the weight vectors, given the training data. This Monte
Carlo method implements the gradient of the error that is calculated by applying
a back-propagation technique. The usage of the gradient technique guarantees that
the simulation does sample throughout the regions of higher probabilities and thus
increases the time it takes to converge on a stationary probability distribution
function. This method is regarded as a type of a Markov chain with transition
between states attained by alternating between the ‘stochastic’ and ‘dynamic
moves’. The ‘stochastic’ moves permit the technique to explore states with different
total energy whereas the ‘dynamic’ moves are achieved by applying the Hamiltonian
dynamics and allowing the technique to search for states with the total energy nearly
constant. In its basic form, the HMC technique can be regarded as a combination of
Monte Carlo sampling technique which is steered by the gradient of the probability
distribution function at each state.

Ghoufi and Maurin (2010) implemented the HMC technique to estimate the
structural transitions of a porous Metal-organic framework material and confirmed
that hybridizing the hybrid osmotic Monte Carlo technique with a “phase mixture”
model is an effective technique to estimate the adsorption behavior accurately. Rei
et al. (2010) implemented a hybrid Monte Carlo technique in a single vehicle routing
problem with stochastic demands and their results showed that this technique is
effective. Aleksandrov et al. (2010) implemented the HMC technique to study the
vapor–liquid equilibria of copper and observed that the simulation and experiment
were close. Zhang et al. (2010) implemented a hybrid Monte Carlo technique
to simulate stress-induced texture evolution and used this result to construct an
internal variable rate equation which could calculate the time evolution. Bogaerts
(2009) implemented the HMC technique to study the effects of oxygen addition
to argon glow discharges and Qian et al. (2011) implemented the hybrid Monte
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Carlo technique to estimate the animal population affected by an environmental
catastrophe. Kulak (2009) applied the HMC method to simulate fluorescence
anisotropy decay whereas Suzuki et al. (2010) applied this technique in fluoride
ion-water clusters.

Wendt et al. (2011) applied the hybrid Hybrid Monte Carlo technique in
graphics while Hoefling et al. (2011) applied the hybrid Monte Carlo technique
for modeling structural heterogeneity and quantitative Förster Resonance Energy
Transfer efficiency distributions of polyprolines.

Cheng et al. (2011) applied hybrid Monte Carlo technique to study spacecraft
thermal models and the results proved that it was superior to conventional ap-
proaches and fulfilled the necessities for thermal model correction while Zhang et al.
(2011) applied the hybrid Monte Carlo method in stress-induced texture evolution
with inelastic effects to develop a macroscopic equation that predicted such texture
evolution.

Other applications of the hybrid Monte Carlo technique include its use in
modeling probability distributions in Riemannian space (Paquet and Viktor 2011)
and to estimate an animal population affected by an environmental catastrophe
(Qian et al. 2011).

In statistical mechanics, the positions and the momentum of all molecules at
a given time in a physical system is referred to as the state space of the system.
The positions of the molecules describe the potential energy of the system and
the momentum expresses the kinetic energy of the system. In this chapter, what is
referred to in statistical mechanics as the canonical distribution of the ‘potential
energy’ is the posterior distribution. The canonical distribution of the system’s
kinetic energy is (Neal 1993; Bishop 1995; Marwala 2009; Marwala and Lagazio
2011):
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In molecular dynamics, pi is the momentum of the ith molecule. At this juncture, p
is not to be confused with, P, which stipulates the probability. In neural networks,
pi is a fictional parameter that is used to offer the method with molecular dynamics
characteristics. It must be noted that the weight vector, fwg, and momentum vector,
fpg, are of the same dimension and for that reason the superscript W is used in
Eq. 4.3. The sum of the kinetic and potential energy is known as the Hamiltonian
of the system and can be mathematically designated as follows (Neal 1993; Bishop
1995; Marwala 2009; Marwala and Lagazio 2011):

H.w; p/ D ˇ

NX KX
k

fynk � tnkg2 C ˛

2

WX
jD1

w2
j C 1

2

WX
i

p2
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In Eq. 4.8, the first two expressions are the potential energy of the system, which
is the exponent of the posterior distribution, and the last term is the kinetic energy.
The canonical distribution over the phase space, i.e., position and momentum, can
be mathematically designated as follows (Neal 1993; Bishop 1995; Marwala 2009;
Marwala and Lagazio 2011):

P.w; p/ D 1

Z
exp.�H.w; p// D P.wjD/P.p/ (4.9)

By sampling through the weight and momentum space, the posterior distribution of
weight is achieved by overlooking the distribution of the momentum vector, p. The
dynamics in the phase space may be stated in terms of the Hamiltonian dynamics
by articulating the derivative of the ‘position’ and ‘momentum’ in terms of fictional
time 
 . It should be recalled that the expression ‘position’ applied here is identical
to the network weights. The dynamics of the system may thus be expressed through
applying the Hamiltonian dynamics as follows (Neal 1993; Bishop 1995; Marwala
2009; Marwala and Lagazio 2010):

dwi

d 
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@pi
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The dynamics, stated in Eqs. 4.10 and 4.11, cannot be achieved exactly. As a result
these equations are discretized by applying a ‘leapfrog’ technique. The leapfrog
discretization of Eqs. 4.10 and 4.11 may be defined as follows (Neal 1993; Bishop
1995; Marwala 2009; Marwala and Lagazio 2011):
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By applying Eq. 4.12, the leapfrog takes a slight half step for the momentum
vector, fpg, and, applying Eq. 4.13, takes a full step for the ‘position’, fwg,
and, by applying Eq. 4.14, takes a half step for the momentum vector, fpg. The
combination of these three steps produce a single leapfrog iteration that calculates
the ‘position’ and ‘momentum’ of a system at time 
 C " from the network weight
vector and ‘momentum’ at time 
 . The above discretization is reversible in time. It
almost conserves the Hamiltonian, representing the total energy, and preserves the
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volume in the phase space, as required by Liouville’s theorem (Neal 1993). The
volume preservation is achieved since the moves that the leapfrog takes are shear
transformations.

One subject that should be taken into account is that following Hamiltonian
dynamics do not sample through the canonical distribution ergodically because
the total energy stays the same, but at most samples through the micro-canonical
distribution for a given energy. One technique applied to assure that the simulation is
ergodic, is by applying ‘stochastic’ moves by changing the Hamiltonian, H, through
the simulation and this is achieved by substituting the ‘momentum’ vector, fpg,
before the next leapfrog iteration is attained. In this chapter, a normally distributed
vector with a zero-mean alternates for the ‘momentum’ vector. The dynamic steps
described in this section apply the gradient of the error with respect to the ‘position’,
which is the network weight vector. The technique used to move from one state
to another called the hybrid Monte Carlo which applies Hamiltonian dynamics to
achieve dynamic moves and randomly changes the ‘momentum’ vector to attain
stochastic moves. Simulating a distribution by perturbing a single vector, fwg as
is done in the MCMC is not practical because of the high dimensional nature of
the state space and the variation of the posterior probability of the weight vector.
A method that applies the gradient of the Hamiltonian with respect to the weight
vector, fwg, was implemented to improve the Metropolis algorithm.

The Hybrid Monte Carlo method combines the stochastic dynamics model with
the Metropolis algorithm, and in so doing eliminates the bias resulting from the
use of a non-zero step size. The HMC technique operates by taking a series of
trajectories from an initial state, i.e., ‘positions’ and ‘momentum’, and moving in
some direction in the state space for a given length of time and accepting the final
state by applying the Metropolis algorithm. The validity of the hybrid Monte Carlo
rests on three properties of the Hamiltonian dynamics. These properties have been
described by Neal (1993), Bishop (1995), Marwala (2009) as well as Marwala and
Lagazio (2011) as follows:

• Time reversibility: it is invariant under t!-t, p!-p.
• Conservation of energy: the H(w,p) is the same at all times.
• Conservation of state space volumes due to Liouville’s theorem (Neal 1993).

For a given leapfrog step size, "0, and the number of leapfrog steps, L, the
dynamic transition of the hybrid Monte Carlo procedure is conducted as described
by Neal (1993), Bishop (1995), Marwala (2009) as well as Marwala and Lagazio
(2011):

1. Randomly choose the direction of the trajectory, �, to be either �1 for a
backwards trajectory or C1 for forwards trajectory.

2. Starting from the initial state, (fwg, fpg), perform L leapfrog steps with the step
size " D "0.1 C 0:1k/ resulting in state (fwg*, fpg*). Here "0 is a selected fixed
step size and k is a number selected from a uniform distribution and is between
0 and 1.
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3. Reject or accept (fwg*, fpg*) by applying the Metropolis criterion. If the state is
accepted then the new state becomes (fwg*, fpg*). If rejected the old state, (fwg,
fpg), is retained as the new state.

After applying Step 3, the momentum vector is initiated before moving on to
generate the following state. In this chapter, the momentum vector was sampled
from a Gaussian distribution before producing the subsequent state. This ensures
that the stochastic dynamics model samples are not limited to the micro-canonical
ensemble. By altering the momentums, the total energy is allowed to change because
the momentums of the particles are restored.

A note about the HMC method is that it applies the gradient information in
Step 2 above by applying the leapfrog steps. The advantages of using this gradient
information is that the HMC trajectories move in the direction of high probabilities,
resulting in an improved probability that the resulting state be accepted and that
the accepted states are not highly correlated. In neural networks the gradient is
calculated using back-propagation (Bishop 1995).

The number of leapfrog steps, L, must be significantly higher than one to
permit a fast exploration of the state space. The selection of "0 and L affects
the speed at which the simulation converges to a stationary distribution and
the correlation between the states accepted. The leapfrog discretization does not
introduce systematic errors due to occasional rejection of states that result with the
increase of the Hamiltonian. In Step 2 of the application of the HMC method, the
step size " D "0.1 C 0:1k/ where k is uniformly distributed between 0 and 1 is
not fixed. In effect, this ensures that the definite step size for each trajectory is
changed so that the accepted states do not have a high correlation. The same effect
can be achieved by changing the leapfrog steps. In this chapter only the step size
was changed. The application of the Bayesian approach to neural networks results
in weight vectors that have a certain mean and standard deviation. As a result, the
output parameters have a probability distribution. Following the rules of probability
theory, the distribution of the output vector fyg for a given input vector fxg may be
written in the following form as explained in Bishop (1995), Marwala (2009) and
Marwala and Lagazio (2011):

p.fyg
ˇ̌
ˇ̌fxg; D/ D

Z
p.fyg jfxg; fwg/p.fwg jD/d fwg (4.15)

In this chapter, the hybrid Monte Carlo method was implemented to determine the
distribution of the weight vectors, and afterwards, of the output parameters. The
integral in Eq. 4.15 may be estimated as follows (Bishop 1995; Neal 1993; Marwala
2009; Marwala and Lagazio 2011):

I � 1

L

LX
iD1

f .fwgi / (4.16)
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In Eq. 4.16, L is the number of retained states and f is the MLP network. An
application of a Bayesian framework to the neural network results, with the mapping
weight vector between the input and output having a probability distribution.

4.4 Fault Identification of Cylindrical Shells

In Chap. 3 the maximum-likelihood method was used to train the neural networks
which were applied to identify faults in a population of cylindrical shells. In the
same way, the Bayesian-formulated networks which are trained using the HMC
were applied to classify faults in cylindrical shells. The networks were trained and
tested using the data described in Chap. 3 and the architectures of the MLP networks
were the same as those in Chap. 3. On implementing the hybrid Monte Carlo method
to train the neural networks the following parameters were used (Marwala 2001):

• The number of initial states discarded, K, in the hope of reaching a stationary
distribution was set to 100.

• The number of steps in each hybrid Monte Carlo trajectory was set to 100;
• The fixed step size was set to 0.001
• The number of samples retained to form a distribution was set to 500

The number of inputs and hidden units used are the same as those that were used
in Chap. 3. The number of output units corresponds to the number of substructures.
The data contribution to the error function was chosen arbitrarily. The fixed step
size was selected through trial and error by examining how a selected step size
influenced the acceptance rate of the states visited. This step size should be as close
to zero as possible and if the step size is too low, then the dynamics of the hybrid
Monte Carlo technique through the state space takes a long time to converge to a
stationary posterior distribution; while if it is too large, then the process can possibly
miss the stationary distribution.

The ability of the networks to detect the presence of faults and classify fault cases
from the test data set is studied. When the trained networks are used to detect the
presence of fault in the test data set as described in Chap. 3, the results in Tables 4.1
and 4.2 are obtained.

The confusion matrix attained when the pseudo-modal-energy-network was used
is shown in Table 4.1. In this table 94.9% of [000]; all the one- and two-fault-cases;
and 82.1% of [111] cases were correctly classified. The confusion matrix obtained
when the modal-property-network was used is shown in Table 4.2. This table shows
that this network classified 97.4% [000] fault-cases correctly; all the one- and two-
fault-cases; and 66.7% of [111] fault-cases were classified correctly. These results
show that the pseudo-modal-energy-network classifies fault-cases more accurately
than the modal-property-network.
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Table 4.1 Confusion matrix from the classification of fault cases in the test data using the pseudo-
modal-energy-network

Predicted

[000] [100] [010] [001] [110] [101] [011] [111]

Actual [000] 37 2 0 0 0 0 0 0
[100] 0 3 0 0 0 0 0 0
[010] 0 0 3 0 0 0 0 0
[001] 0 0 0 3 0 0 0 0
[110] 0 0 0 0 3 0 0 0
[101] 0 0 0 0 0 3 0 0
[011] 0 0 0 0 0 0 3 0
[111] 0 0 0 0 5 1 1 32

Table 4.2 Confusion matrix from the classification of fault cases in the test data using the
modal-energy-network

Predicted

[000] [100] [010] [001] [110] [101] [011] [111]

Actual [000] 38 0 0 1 0 0 0 0
[100] 0 3 0 0 0 0 0 0
[010] 0 0 3 0 0 0 0 0
[001] 0 0 0 3 0 0 0 0
[110] 0 0 0 0 3 0 0 0
[101] 0 0 0 0 0 3 0 0
[011] 0 0 0 0 0 0 3 0
[111] 0 0 0 0 5 2 6 26

4.5 Conclusion

Two Bayesian formulated neural networks were trained using pseudo-modal en-
ergies and modal properties were successfully used to perform fault identification
in a population of cylindrical shells. The Bayesian networks were identified using
the hybrid Monte Carlo technique. On average, it is found that the pseudo modal
energies detect and classify faults more reliably than the modal properties do.
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Chapter 5
The Committee of Networks Approach
to Condition Monitoring

5.1 Introduction

The identification of faults in mechanical systems at the manufacturing stage offers
considerable economic benefits. By identification, this book means that the fault is
as (1) detected; (2) located; and (3) the extent of the fault is quantified. Vibration
methods are some of the many techniques that have been implemented with varying
degrees of success to identify mechanical faults (Friswell and Mottershead 1995;
Doebling et al. 1996; Marwala 2000). It has been shown that the success of fault
identification methods depends on the type of signal implemented for diagnostics
(Marwala and Heyns 1998; Marwala 2000). There are three types of signals
that may be implemented for fault identification purposes and, as discussed in
Chap. 2, these are the modal properties (mode shapes, as well as damping and
natural frequencies), the Frequency Response Functions (FRFs), and the Wavelet
Transform (WT) data. Modal properties are the easiest to implement, but are
most suitable for detecting large faults. The modal properties approaches are not
successful when used to identify faults in structures that are highly damped. They
also necessitate measurements at many points and do not work well for nonlinear
structural diagnosis. One limitation of FRF data is that they contain a great deal
of extra information between resonance peaks. It is not clear how best to select
the frequency bandwidth of interest. Also, FRF data are normally noisy at the anti-
resonance regions, and there is no technique for choosing how to process FRFs
for a specific problem. Nevertheless, FRF techniques have the following benefits
(Imregun et al. 1995; Marwala 2000):

• Measurements at many points on the structure are not necessarily required.
• Estimated modal properties are further from measured data (in the time domain)

than are FRFs. This is because modal properties are identified from FRFs
using modal analysis. Using FRFs directly avoids errors incurred during modal
analysis.
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92 5 The Committee of Networks Approach to Condition Monitoring

• The FRF approach is applicable to non-modal behavior, for example, in cases of
higher damping and modal density.

• It is possible to check a given solution by generating another one, since the
problem is over determined due to the availability of FRFs at numerous excitation
frequencies. This offers the possibility of using statistical techniques to determine
confidence parameters and to interpret the results obtained.

The main limitation of the wavelet method is that there are many types of
wavelets and there is no systematic technique to select the most suitable WT for
fault identification. Wavelets generate excessive information and may be applied
by monitoring a number of parameters. Wavelet techniques have the following
advantages (Marwala 2000):

• WTs are relatively sensitive to local defects.
• Measurements at many points on the structure are not necessarily required.
• The WT approach is applicable to non-modal behavior, for example, in cases of

higher damping and modal density.
• The problem is over-determined due to WT data at numerous frequencies and

time domains.
• WTs are effective in the identification of damage that results in the loss of

linearity of a structure.

For this chapter, three independent back-propagation (multi-layer perceptron)
neural networks (Bishop 1995) were trained using modal properties, FRFs, and WT
data. These were used in parallel to diagnose faults in a population of cylindrical
shells. It was found that the committee technique was more reliable than using each
method in isolation. The idea of using neural networks in parallel was conceived by
Perrone and Cooper (1993). Levin and Lieven (1998) implemented modal properties
in conjunction with neural networks to identify faults on a cantilevered beam. Atalla
and Inman (1998) implemented FRFs to identify faults in finite-element models.
Marwala and Hunt (1999) implemented modal properties and FRFs simultaneously
to identify faults. Paya et al. (1997) implemented WT data and neural networks to
identify faults on rotating machinery. The committee method is the subject of the
next section.

5.2 A Committee of Networks

For this chapter a committee of networks is applied for classification of fault in
a population of cylinders. Du et al. (2007) successfully implemented a committee
of probabilistic radial basis function neural networks to identify palm prints, while
Marwala et al. (2001) applied a committee of agents and genetic programming to
evolve a stock market prediction system. Anthony (2007) studied the generalization
error of fixed combinations of classifiers, while Sheikh-Ahmad et al. (2007) used
the committee of neural network for force prediction models in a milling process.
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Marwala (2001) applied a probabilistic fault identification process in structures
using a committee of neural networks and vibration data.

Abdel-Aal (2005a) presented a three-member committee of multi-layer
perceptron networks for improving electric load forecasts and observed that the
committee decreases forecasting errors when compared with individual networks.
Furthermore, the author extended the application of the committee of networks
to the problem of modeling medical data, and found that the committee method
offered a decrease in classification errors of up to 20% when compared to stand-
alone networks. In the committee method, it is known that the existence of
diversity within the members of the committee improves the performance of the
committee. Abdel-Aal (2005b) presented diversity by training several members of
the committee with different data.

Karimpouli et al. (2010) applied a committee of neural networks to predict
the permeability of petroleum reservoirs, while Kadkhodaie-Ilkhchi et al. (2009)
applied a committee of neural networks for the prediction of normalized oil content
from logged oil-well data from South Pars Gas Field in the Persian Gulf.

Jafari et al. (2011) applied a committee of neural networks with a fuzzy genetic
algorithm to predict a reservoir parameter in the petroleum industry, while van
Hinsbergen et al. (2009) applied a Bayesian committee of neural networks to predict
travel times.

Other successful implementations of the committee method that revealed im-
provement over individual methods include an application for human face recogni-
tion by Zhao et al. (2004), recognition of the swallow acceleration signal by Das
et al. (2001), choosing salient features by Bacauskiene and Verikas (2004), speaker
verification by Reddy and Buch (2003), automatic fire detection (Fernandes et al.
2004) as well as permeability prediction by Chen and Lin (2006), and missing data
estimation (Marwala 2009).

The committee approach presented in this chapter falls within a family of tech-
niques called ensembles of networks. There are many types of network ensembles,
and these include the Bayes Optimal Classifier, Bayesian model averaging, bagging,
boosting and stacking. Some of these techniques are described in the next section.

5.2.1 Bayes Optimal Classifier

The Bayes Optimal Classifier (BOC) is an optimal classification method which is
an ensemble of all the hypotheses in the hypothesis space and, therefore, no other
ensemble can perform better than it (Bishop 1995). The vote of each hypothesis is
proportional to the likelihood that the training data set is sampled from a system
where that hypothesis is true. To enable training data of finite size, each hypothesis’
vote is also multiplied by the prior probability of that hypothesis. The BOC can then
be mathematically written as follows (Bishop 1995):

y D arg maxcj2C

X
hi2H

P
�
cj

ˇ̌
hi

�
P .T jhi / P .hi / (5.1)
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Here y is the estimated class, C is a full set with all classes, H is the hypothesis
space, P is the probability, and T is the training data set. The BOC denotes a
hypothesis that is not necessarily located in H. The hypothesis characterized by the
BOC is the optimal hypothesis in the ensemble space; however, the BOC can only
be applied to the simplest of problems. There are a number of explanations why the
BOC cannot be practically applied, including the fact that the hypothesis spaces are
too large to iterate over. Many hypotheses give only a predicted class instead of the
probability for each class. Calculating the unbiased estimate of the probability of
the training set, given a hypothesis, is difficult and computing the prior probability
for each hypothesis is not feasible.

5.2.2 Bayesian Model Averaging

Bayesian model averaging is an ensemble method that aims to estimate the
BOC by sampling hypotheses from the hypothesis space and combining these
hypotheses using a Bayes’ framework (Hoeting et al. 1999). As opposed to the
Bayes optimal classifier described in the last section, Bayesian model averaging
can be practically applied using procedures such as Monte Carlo sampling methods
(Marwala 2009). It has been shown that, under certain conditions, when hypotheses
are sampled and averaged according to Bayes’ theorem, this procedure produces an
expected error that is at most twice the expected error of the BOC (Haussler et al.
1994). Nevertheless, Bayesian model averaging has the shortcoming of over-fitting
and performs worse empirically than simple ensembles do, for instance bagging
(Domingos 2000).

Park and Grandhi (2011) successfully applied the Bayesian model averaging to
combine the predictions of a system response into a single prediction and applied
this to a nonlinear spring-mass system, a laser peening process, and a composite
material.

Other successful applications of Bayesian model averaging include the esti-
mation of the mortality risk associated with heat waves (Bobb et al. 2011), the
forecasting of the monthly industrial production output of six countries (Feld-
kircher 2011), the assessment of environmental stressors (Boone et al. 2011),
the analysis of schizophrenia family data (Tsai et al. 2011), quantifying multiple
types of uncertainty in computer simulation (Park and Grandhi 2010), atmospheric
dispersion studies (Potempski et al. 2010) and microarray data survival analysis
(Bichindaritz and Annest 2010).

5.2.3 Bagging

Bagging, which is also called Bootstrap averaging, is a technique based on a
combination of models fitted to bootstrap samples of a training data set to reduce
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the variance of the prediction model (Breiman 1996). Bagging essentially entails
randomly choosing a part of the training data, using this part to train a model and
then repeating this process. Thereafter, all trained models are combined with equal
weights to form an ensemble.

Pino-Mejias et al. (2008) applied a reduced bootstrap aggregating learning
algorithms to simulated classification and regression problems. They applied the
reduced bootstrap for bagging unstable learning algorithms such as decision trees
and neural networks and found that the technique reduced variance.

Kyung and Lee (1999) applied a bootstrap and aggregating classifier for speaker
recognition. Experiments were done on a closed set, text-independent and speaker
identification system using the TIMIT database and their method demonstrated
significantly improved performance over the conventional classifier.

Louzada et al. (2011) applied poly-bagging predictors in classification modeling
of credit scoring. Their bagging technique consisted of combining predictors over
a succession of re-sampling and their results showed that the poly-bagging method
improved the modeling performance measures while retaining a flexible structure
which was easy to apply.

Jia et al. (2011) generalized the selective clustering ensemble procedure and
presented a selective spectral clustering ensemble where the component clustering
of the ensemble system were generated by spectral clustering capable of engender-
ing diverse committees. The random scaling parameter, a Nyström approximation
was applied to perturb spectral clustering for creating the components of the
ensemble system. Subsequent to the production of component clustering, the
bagging method was applied to evaluate the component clustering. The results
showed that the method achieved improved results over the conventional clustering
ensemble methods.

Yu (2011) presented weighted bagging for a regularization technique and applied
this to some real data sets, while Hernandez-Lobato et al. (2011) conducted an
empirical analysis and evaluated approximate techniques for pruning regression
bagging.

Other applications of bagging were for bi-clustering of gene expression data
(Hanczar and Nadif 2011), while Hu et al. (2011) applied bagging in hybrid
modeling for the prediction of leaching rate in a leaching process based on negative
correlation learning, and Osawa et al. (2011) applied bagging in the analysis of
zero-inflated data.

5.2.4 Boosting

Boosting is a technique that incrementally builds an ensemble by training each new
model with data that the previously trained model mis-classified. Then the ensemble,
which is a combination of all trained models, is used for prediction. Jasra and
Holmes (2011) applied stochastic boosting algorithms which used sequential Monte
Carlo methods. It was observed that stochastic boosting provided better predictions
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for classification problems than the conventional boosting algorithm. Leitenstorfer
and Tutz (2011) applied boosting methods to estimate single-index models, while
Baras et al. (2011) applied Bayesian networks for the automatic boosting of cross-
product coverage. Furthermore, Kajdanowicz and Kazienko (2011) studied the
structured output element ordering in boosting-based classification. Khoshgoftaar
et al. (2011) compared boosting and bagging methods by applying these techniques
to noisy and imbalanced data and observed that the bagging methods usually
outperform boosting.

5.2.5 Stacking

The critical prior belief in the scientific method is that one can select from a set
of models by comparing them on data that was not used to create the models. This
prior belief can also be used to select amongst a set of models based on a single data
set by using a technique called cross-validation (Bishop 1995). This is conducted by
dividing the data set into a held-in data set, which is used to create the models, and
a held-out data set which is used to test the created models (Sill et al. 2009).

Stacking takes advantage of this prior belief further by using performance on
the held-out data to combine the models instead of selecting from them the best
performing model when tested on the held-out data. This is done because the
ensemble usually performs better than any single one of the trained models (Wolpert
1992). It has been successfully applied in both supervised learning (regression),
unsupervised learning (density estimation) and to approximate Bagging’s error rate
(Breiman 1996; Smyth and Wolpert 1999; Wolpert and Macready 1999; Rokach
2010). The stacking method has been observed to perform better than the Bayesian
model-averaging technique (Clarke 2003).

Drygajlo et al. (2011) applied a generalized stacking model for adult face
recognition in score-age-quality classification space, while Larios et al. (2011)
applied a stacking in an object-class recognition method to combine scores from
random trees.

Shiraishi and Fukumizu (2011) presented a method for combining binary
classifiers which trained a combining method of binary classifiers using statistical
techniques such as penalized logistic regression, stacking, and a sparsity promoting
penalty. Their method outperformed conventional classifiers and approximated
conditional probability for each class.

Tang et al. (2010) applied re-ranking for stacking ensemble learning where the
predictive scores of the base classifiers were assembled by the meta-learner and
re-ranked according to the scores. Their method could find the best linear combina-
tion of the base classifiers on the training samples. When their method was tested
on a number of public datasets, it was observed that the proposed algorithm outper-
formed the baseline procedures and several state-of-the-art stacking processes.

Homayouni et al. (2010) presented a Lazy Stacking (LS) method for building a
classifier ensemble learner and tested this method against four rival procedures on
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a large suite of ten real-world benchmark numeric datasets. The results obtained
confirmed that LS can outperform other approaches.

Other successful applications of stacking include remote sensing (Huang et al.
2011), credit scoring (Wang et al. 2011), and aging face verification (Li et al. 2010).

5.2.6 Evolutionary Committees

Evolutionary committees are techniques for making the construction of the commit-
tee method adapt in line with the environment. This is usually done through evolving
the weighting function that defines the contribution of each individual method, with
respect to the overall outcome of the committee.

Marwala (2009) introduced committees of networks for missing data estimation.
The first committee of networks was made of Multi-Layer Perceptrons (MLPs),
Support Vector Machines (SVMs), and Radial Basis Functions (RBFs); and entailed
the weighted combination of these three networks. The second, third, and fourth
committees of networks were evolved using a genetic programming method and
used the MLPs, RBFs and SVMs, respectively. The committees of networks
were applied, collectively, with a hybrid particle swarm optimization and genetic
algorithm technique for missing data estimation. When they were tested on an
artificial taster as well as HIV datasets and then compared to the individual
MLPs, RBFs, and SVMs for missing data estimation, the committee of network
approach was observed to give better results than the three approaches acting in
isolation. Nonetheless, this improvement came at a higher computational load than
the individual methods. In addition, it was observed that evolving a committee
technique was a good way of constructing a committee.

Evolving networks has been the topic of study for some time (Marwala 2009).
Rajan and Mohan (2007) applied an evolutionary programming method which was
based on simulated annealing to solve the unit commitment problem, while Basu
(2004) applied an evolutionary programming technique to create an interactive
fuzzy satisfying scheme and applied this to solve a multi-objective short-term
hydrothermal scheduling. Shi and Xu (2001) applied a self-adaptive evolutionary
programming technique and used this to optimize the multi-objective operation
of power systems and Cao et al. (2000) applied an evolutionary programming
technique to a mixed-variable optimization problem.

5.3 Theoretical Background

The dynamics of any structure may be expressed in terms of mass, damping, and
stiffness matrices as well as the acceleration, velocity, and displacement vector
(Ewins 1995). The structure may be excited using an impulse hammer and the
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response can be measured by using an accelerometer. These responses may be
transformed into other properties, such as FRFs, modal properties, and WT data
(Newland 1993; Maia and Silva 1997; Marwala 2000). The mass, damping, and
stiffness matrices depend on physical parameters such as the density, Poisson’s
ratio, and the Young’s modulus of each structural member. Therefore, there
are relationships between physical properties of the structure and the frequency
response functions, modal properties, and wavelet transform (Marwala 1999, 2000).
In the next section these relationships will be identified.

5.3.1 Pseudo Modal Energies Method

The Fast Fourier Transform (FFT) can be applied to both the excitation
(i.e., acceleration) and the response to obtain the FRFs. The FRF is defined as
the ratio of the transformed response to the transformed excitation (Ewins 1995).
The pseudo-modal energies, denoted ˛, are integrals of the real and imaginary
components of the frequency response functions over chosen frequency ranges
that bracket the natural frequencies (Marwala 2001), as explained in Chap. 2.
The pseudo-modal energy matrix is related to the spatial properties of the
structure and if adequate, data that defines the relationship between changes in
physical parameters and changes in pseudo modal energies may be produced.
From this set of data, a functional mapping between the identity of fault y1

and the pseudo modal energy vector ˛ may be represented in the following
form:

y1 D f .˛/ (5.2)

5.3.2 Modal Properties

From the FRF data, modal properties which are natural frequencies and modal
properties may be extracted using a process called modal analysis (Ewins 1995;
Maia and Silva 1997). The modal properties data are related to the spatial properties
of the structure and adequate data that defines the relationship between changes in
physical parameters and changes in modal properties may be produced. Similarly, a
functional mapping between the identity of fault y2 and the modal properties vector
� may be quantified by the following equation:

y2 D f .�/ (5.3)
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5.3.3 Wavelet Transforms (WT)

The wavelet transform of a signal is an illustration of a time-frequency decom-
position, which highlights the local features of a signal (Daubechie 1991) and
was discussed in Chap. 2. The WT in this chapter is from the orthogonal wavelet
family (Daubechie 1991) defined by Newland (1993). The relationship between the
physical properties of the structure and the WT of the impulse of a unit magnitude
may be used to identify faults on structures. Liew and Wang (1998) applied WT
data to identify damage in structures. A functional mapping between the identity of
fault y3 and the WT of the response vector � may be quantified by the following
equation:

y3 D f .�/ (5.4)

5.3.4 Neural Networks

For this chapter, neural networks were viewed as parameterized graphs that make
probabilistic assumptions about data. Learning algorithms were viewed as methods
for finding parameter values that look probable in light of the data. Supervised
learning is the case where the input and the output are available, and neural networks
are used to approximate the functional mapping between the two. The type of neural
network applied for this chapter was the multi-layer perceptron (Jordan and Bishop
1996). The multi-layer perceptron can approximate any continuous function to an
arbitrary accuracy if the number of hidden units is sufficiently large. For this chapter,
the output units represent the identity of faults and the inputs are the pseudo-modal
energies, modal properties or wavelet transform.

5.4 Theory of Committee of Networks

For this chapter, a committee of networks technique, as illustrated in Fig. 5.1, was
introduced. The committee method in this figure comprises three networks and
the output is the weighted average of the outputs of these three networks. The
ideas presented in this section are the adaptation and the addition of the work by
Perrone and Cooper (1993) who introduced the concept of a committee of networks
and it was extended and applied to mechanical systems by Marwala and Hunt
(1999), as well as Marwala (2000). It is confirmed that a committee of networks
provides results that are more reliable than when using networks in isolation for
fault identification.
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Neural
Net. 2
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Y1

Fig. 5.1 Illustration of committee of networks

The mapping of the FRFs, modal properties, and wavelet data to the identities
of faults (y1, y2, and y3) may be written as the desired function plus an error. For
notational accessibility, the mapping functions are assumed to have single outputs
y1, y2, and y3. This can be easily adapted to multiple outputs as follows (Perrone and
Cooper 1993; Marwala 2000):

y1 .˛/ D h .˛/ C e1 .˛/ (5.5)

y2 .�/ D h .�/ C e2 .�/ (5.6)

y3 .�/ D h .�/ C e3 .�/ (5.7)

Here h(�) is approximated mapping function; and e(�) is the error. The mean
square errors (MSE) for model y1 .˛/, y2 .�/, and y3 .�/ may be written as follows
(Perrone and Cooper 1993):

E1 D "
h
fy1 .˛/ � h .˛/g2

i
D "

�
e2

1

�
(5.8)

E2 D "
h
fy2 .�/ � h .�/g2

i
D "

�
e2

2

�
(5.9)

E3 D "
h
fy2 .�/ � h .�/g2

i
D "

�
e2

3

�
(5.10)
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Here " Œ	� indicates the expected value and corresponds to integration over the
input data, and is defined as follows (Perrone and Cooper 1993):

"
�
e2

1

� �
Z

e2
1 .˛/ p .˛/ d˛ (5.11)
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�
e2

2
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Z

e2
2 .�/ p .�/ d� (5.12)

"
�
e2

3

� �
Z

e2
3 .�/ p .�/ d� (5.13)

Here p Œ	� is the probability density function; and d Œ	� is a differential operator.
The average MSE of the three networks acting individually may be written as
follows (Perrone and Cooper 1993):

EAV D E1 .˛/ C E2 .�/ C E3 .�/
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(5.14)

5.4.1 Equal Weights

In this section, the concept of a committee is explained. The output of the committee
is the average of the outputs from the pseudo-modal energies, modal-property, and
WT networks. The committee prediction may be written in the following form by
giving equal weighting functions (Perrone and Cooper 1993):

yCOM D 1

3
.y1 .˛/ C y2 .�/ C y3 .�// (5.15)

The MSE of the committee can therefore be written as follows:
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If it is assumed that the errors (e1, e2, and e3) are uncorrelated then

" Œe1e2� D " Œe1e3� D " Œe2e3� D 0 (5.17)

Substituting Eq. 5.17 in Eq. 5.16, the error of the committee can be related to the
average error of the networks acting individually as follows (Perrone and Cooper
1993):

ECOM D 1
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3
EAV (5.18)

Equation 5.18 demonstrates that the MSE of the committee is one-third of the
average MSE of the individual technique. From Eq. 5.18, it can be deduced that the
MSE of the committee is always equal to or less than the average MSE of the three
methods acting individually.

5.4.2 Variable Weights

The three networks might not essentially have the same predictive capability. This
might be because modal properties are extracted from the FRFs (Ewins 1995), the
WT of the impulse response that is chosen is not ideal, or the parameters chosen
from the pseudo-modal energies are not ideal. To accommodate the strength of
each technique, the network should be given suitable weighting functions. It will
be explained later how these weighting functions will be evaluated when there is no
prior knowledge of the strength of each approach.

The identity of fault may be defined as the combination of the three independent
methods with estimated weighting functions as (a modification of Eq. 5.15):

yCOM D �1y1 .˛/ C �2y2 .�/ C �3y3 .�/ (5.19)

Here �1, �2, and �3 are the weighting functions and �1 C �2 C �3 D 1. The MSE
due to the weighted committee can be written as follows (Marwala 2000):

ECOM D "
h
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(5.20)
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Equation 5.20 may be rewritten in Lagrangian form as follows (Perrone and
Cooper 1993):

ECOM D "
h
.�1e1 C �2e2 C �3e3/

2
i

C � .1 � �1 � �2 � �3/ (5.21)

Here � is the Lagrangian multiplier. The derivative of error in Eq. 5.21 with
respect to �1, �2, �3 and � may be calculated and equated to zero as (Perrone and
Cooper 1993):

dECOM

d�1

D 2e1" Œ.�1e1 C �2e2 C �3e3/� � � D 0 (5.22)

dECOM

d�2
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dECOM

d�3

D 2e3" Œ.�1e1 C �2e2 C �3e3/� � � D 0 (5.24)

dECOM

d�
D 1 � �1 � �2 � �3 D 0 (5.25)

In solving Eqs. 5.21–5.25, the minimum error is obtained when the weights are
(Perrone and Cooper 1993):
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Equations 5.26–5.28 may be generalized for a committee with n-trained networks
and may be written as follows (Perrone and Cooper 1993):
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i
(5.29)

From Eq. 5.29, the following conditions may be derived (Marwala 2000):
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These conditions show that if the predictive capacity of the pseudo-modal energy
network, the modal-property network, and the WT network are equal, then each
method should be given equal weights. If the pseudo modal energy network is better
than the other two, it should be given a higher weight. If the modal-property network
has lower expected errors than the other two networks, it should be given a higher
weight. If the WT network has smaller errors than the other two methods, it should
be given more weight. These conditions are trivial, but they have been derived to
confirm the effectiveness of the presented technique.

Because it is not known which network is more accurate in a given instance, the
weighting functions were determined from the data that was used for training the
networks (prior knowledge) and this is called stacking, as described in the previous
section.

Therefore, it can be concluded that if three independent (uncorrelated) methods
are used simultaneously, the reliability of the combination is at least as good as
when the methods are used individually. Suppose the probabilities of success for the
pseudo-modal energy network, the modal-property network, and the WT network
are P(x1), P(x2), and P(x3), respectively. The reliability of the three methods acting
in parallel can be mathematically written as follows (Marwala 2001):

P .x1 [ x2 [ x3/ D P .x1/ C P .x2/ C P .x3/ � ŒP .x1 \ x2/

C P .x2 \ x3/ P .x1 \ x3/� :::

C P .x1 \ x2 \ x3/

(5.33)

From Eq. 5.33, it can be concluded that the reliability of the committee is always
higher than that of the individual methods.

5.5 Application to Cylindrical Shells

For this section, the committee procedure was applied to identify faults in a
population of cylindrical shells. As described in Chap. 2, an impulse hammer
test was performed on ten steel seam-welded cylindrical shells (1.75 ˙ 0.02 mm
thickness, 101.86 ˙ 0.29 mm diameter, and height 101.50 ˙ 0.20 mm). These
cylinders were resting on bubble wrap to simulate a free-free environment. The
details of this experiment may be found in Marwala (1999).
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Table 5.1 Confusion matrix from the classification of fault cases in the test data using the
pseudo-modal-energy network

Predicted

[000] [100] [010] [001] [110] [101] [011] [111]

Actual [000] 37 2 0 0 0 0 0 0
[100] 0 3 0 0 0 0 0 0
[010] 0 0 3 0 0 0 0 0
[001] 0 0 0 3 0 0 0 0
[110] 0 0 0 0 3 0 0 0
[101] 0 0 0 0 0 3 0 0
[011] 0 0 0 0 0 0 3 0
[111] 0 0 0 0 5 1 1 32

Each cylinder was divided into three substructures, and holes of 12 mm diameter
were drilled into each substructure. For one cylinder, the first type of fault was a
zero-fault scenario, and its identity was [000]. The second type of fault was a one-
fault scenario; if it was located in substructure 1, its identity was [100]. The third
type of fault was a two-fault scenario, and if the faults were located in substructures
1 and 2, the identity of this case was [110]. The final type of fault was a three-fault
scenario, and the identity of this case was [111].

For each fault case, measurements were taken by measuring the acceleration at a
fixed position and roving the impulse position about. One cylinder gives four fault
scenarios and 12 sets of measurements. The structure was vibrated at 19 different
locations, nine on the upper ring of the cylinder and ten on the lower ring of the
cylinder. Each measurement was taken three times to quantify the repeatability of
the measurements. The total number of data points collected was 120.

From the measured data, pseudo-modal energies, modal properties, and wavelet
data were identified and used to train three neural networks. The training process
was done in the same way as in Chap. 3. The WT network was trained using wavelet
data. This network had 18 input parameters, 9 hidden units, and 3 output units. The
committee was applied using the weighting obtained from the validation data.

When the networks were evaluated using the data not used for training, the
results in Tables 5.1, 5.2, 5.3 and 5.4 were obtained. These results indicate that
the committee approach gave the best results followed by the pseudo-modal energy
network, and then the modal-property network. The wavelet-network performed the
worst.

The neural networks were trained using the hybrid Monte Carlo method as
described in Chap. 4. The number of initial states discarded in the hope of reaching
a stationary distribution was set to 100; the number of steps in each hybrid Monte
Carlo trajectory was set to 100; the fixed step size was set to 0.001; and the number
of samples retained to form a distribution was set to 500.
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Table 5.2 Confusion matrix from the classification of fault cases in the test data using the
modal-energy-network

Predicted

[000] [100] [010] [001] [110] [101] [011] [111]

Actual [000] 38 0 0 1 0 0 0 0
[100] 0 3 0 0 0 0 0 0
[010] 0 0 3 0 0 0 0 0
[001] 0 0 0 3 0 0 0 0
[110] 0 0 0 0 3 0 0 0
[101] 0 0 0 0 0 3 0 0
[011] 0 0 0 0 0 0 3 0
[111] 0 0 0 0 5 2 6 26

Table 5.3 Confusion matrix from the classification of fault cases in the test data using the
wavelet-network

Predicted

[000] [100] [010] [001] [110] [101] [011] [111]

Actual [000] 35 0 0 1 0 0 0 0
[100] 0 1 0 0 0 0 0 0
[010] 2 0 3 0 0 0 0 0
[001] 0 2 0 2 0 0 0 0
[110] 0 0 0 0 3 0 0 1
[101] 0 0 0 1 0 3 0 0
[011] 0 0 0 0 0 0 3 0
[111] 1 0 0 0 5 2 6 25

Table 5.4 Confusion matrix from the classification of fault cases in the test data using the
committee-network

Predicted

[000] [100] [010] [001] [110] [101] [011] [111]

Actual [000] 38 1 0 0 0 0 0 0
[100] 0 3 0 0 0 0 0 0
[010] 0 0 3 0 0 0 0 0
[001] 0 0 0 3 0 0 0 0
[110] 0 0 0 0 3 0 0 0
[101] 0 0 0 0 0 3 0 0
[011] 0 0 0 0 0 0 3 0
[111] 0 0 1 0 3 0 1 34

5.6 Conclusions

In this study, the committee of neural networks method was presented and applied
to the structural diagnostics of a population of cylindrical shells. This method
used pseudo-modal energies, modal properties, and used wavelet transform data
to simultaneously identify faults in structures. It was observed that the committee
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approach gave the best results followed by the pseudo-modal energy network
and then the modal-property network, while the wavelet-network performed the
worst.
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Chapter 6
Gaussian Mixture Models and Hidden Markov
Models for Condition Monitoring

6.1 Introduction

Rotating machines are widely used in industry for system operation and process
automation. Research shows that the failures of these machines are often linked
with bearing failures (Lou et al. 2004). Bearing faults induce high bearing vibrations
which generate noise that may even cause the entire rotating machine, such as
the electric motor, to function incorrectly. Thus, it is important to include bearing
vibration fault detection and diagnosis in industrial motor rotational fault diagnosis
systems (Lou et al. 2004). As a result, there is a high demand for cost effective
automatic monitoring of bearing vibrations in industrial motor systems.

A variety of fault bearing vibration feature detection techniques exist. These
can be classified into three domains, namely: frequency domain analysis, time-
frequency domain analysis, and time domain analysis (Ericsson et al. 2004).
The frequency domain methods often involve frequency analysis of the vibration
signals and look at the periodicity of high frequency transients. This procedure is
complicated by the fact that this periodicity may be suppressed (Ericsson et al.
2004). The most commonly used frequency analysis technique for detection and
diagnosis of bearing fault is the envelope analysis. More details on this technique
are found in McFadden and Smith (1984). The main disadvantage of the frequency
domain analysis is that it tends to average out transient vibrations and therefore
becomes more sensitive to background noise. To overcome this problem, the time-
frequency domain analysis is used, which shows how the frequency contents of
the signal changes with time. Examples of such analyses are: Short Time Fourier
Transform (STFT), the Wigner-Ville Distribution (WVD) and, most importantly,
the Wavelet Transform (WT). These techniques are studied in detail in the work of
Li et al. (2000).

The last category of the feature detection is the time domain analysis. There are a
number of time domain methods that give reasonable results. These methods include
the time-series averaging method, the signal enveloping method, the Kurtosis
method, and others (Li et al. 2000). Research shows that, unlike the frequency
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domain analysis, this technique is less sensitive to suppressions of the impact of
periodicity (Ericsson et al. 2004; Li et al. 2000). This chapter introduces a new time
domain analysis method, known as fractal dimension analysis, which was originally
used in image processing and has been recently used in speech recognition (Maragos
and Sun 1993; Maragos and Potamianos 1999; Wang et al. 2000). This method is
expected to give enormous improvement to the performance of the bearing fault
detection and diagnosis because it extracts the non-linear vibration features of each
bearing fault. The fractal dimension analysis is based on the Multi-scale Fractal
Dimensions (MFD) of short-time bearing vibration segments, derived from non-
linear theory (Wang et al. 2000).

Once the bearing vibration features are extracted using one of the three domains
mentioned above, then these features can be used for automatic motor bearing fault
detection and diagnosis by applying them to a non-linear pattern classifier. The
most popular classifier used in bearing fault detection is a Neural Network (NN).
Nevertheless, other non-linear classifiers like Gaussian Mixture Model (GMM) and
Hidden Markov Model (HMM) have been shown to outperform NN in a number
of classification problems, in general, and in speech related problems in particular.
Only recently, have researchers such as Purushothama et al. (2005) applied speech
pattern classifiers, such as HMM, to the fault detection of mechanical systems
because of their success in speech recognition.

This chapter presents a comparative study of HMM and GMM, and introduces
time-domain analysis based techniques using fractals to extract the features. Further-
more, the ability of MFD to detect bearing faults was evaluated using both HMM
and GMM non-linear pattern classifiers.

The rest of the chapter is arranged as follows: the next section presents the
different bearing faults studied in this chapter, followed by the mathematical
background to fractal dimensions, HMM, and GMM. Thereafter, the time domain
bearing detection and diagnosis framework is presented.

6.2 Background

This section presents, in detail, the different bearing faults studied in this chapter,
followed by the mathematical background to fractal dimensions, HMM, and GMM.

6.2.1 The Gaussian Mixture Model (GMM)

A GMM is a weighted sum of M component Gaussian densities, p(xj�) as given by
the equation (Reynolds 1992; Dempster et al. 1977):

p.xj�/ D
MX

iD1

wi pi .x/ (6.1)
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with

pi .xt / D 1

.2�/D=2p
†i

exp

�
�1

2
.xk � �i /

t .†i /
�1.xk � �i /

	
(6.2)

Here, x is a D-dimensional, continuous-valued data vector representing mea-
surements from features, wi, i D 1, : : : , M, are the mixture weights, with mean
vector �i and covariance matrix †i. The mixture weights, wi, satisfy the constraintPM

iD1 wi D 1.

The entire GMM is parameterized by the mean vectors, covariance matrices, and
mixture weights from all component densities and these parameters are together
represented by the notation (Reynolds and Rose 1995; Dempster et al. 1977):

� D fw; �; †g (6.3)

Here, � is the model, w, �, † are, respectively, the weights, means, and
covariance of the features. The covariance matrices can be full rank or constrained
to be diagonal but, in this chapter assumes that it is diagonal. The choice of
model architecture, which are the number of components, diagonal covariance
matrices and parameter is usually determined by the amount of data available for
approximating the GMM parameters and how the GMM is applied in a specific
fault identification problem. GMM has the advantage of being able to represent a
large class of sample distributions and to form smooth estimates to indiscriminately
shaped probability densities.

Given a collection of training vectors, the parameters of this model are estimated
by a number of algorithms such as the Expectation-Maximization (EM) algorithm
and K-means algorithm (Dempster et al. 1977; Reynolds et al. 2000). The EM
algorithm was used in this study because it has reasonably fast computational time
when compared to other algorithms. The EM algorithm finds the optimum model
parameters by iteratively refining GMM parameters to increase the likelihood of the
estimated model for the given bearing fault feature vector. More details on the EM
algorithm for training a GMM are in the work of Wang and Kootsookos (1998).

Bordes et al. (2007) applied the EM algorithm to image reconstruction. They
found that the results were within 10% of the experimental data. Dempster et al.
(1977) applied the EM algorithm to missing data, while Ingrassia and Rocci (2007)
generalized the EM algorithm to semi-parametric mixture models that, when tested
on real data, showed that their method was easy to implement and computationally
efficient. Kauermann et al. (2007) used the EM algorithm to recognize polymor-
phism in pharmacokinetic/pharmacodynamic (PK/PD) phenotypes, while Wang
and Hu (2007) improved the EM algorithm’s computational load and successfully
applied this to brain tissue segmentation. Another successful implementation of
the EM algorithm includes binary text classification (Park et al. 2007). Other
improvements of the EM algorithm include accelerating the computational speed by
Patel et al. (2007). Further information on the implementation of the EM algorithm
can be found in Wang et al. (2007), as well as McLachlan and Krishnan (1997).
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The aim of maximum likelihood estimation is to identify the model parameters
which maximize the likelihood of the GMM, given the training data. For a series of
T training vectors X D fx1, : : : , xT g, the GMM likelihood, assuming independence
between the vectors, can be expressed as (Reynolds 1992):

p .X; �/ D T

…
tD1

p .xt ; �/ (6.4)

For the EM algorithms, the re-estimations are calculated until convergence;
and the mixture of weights, means, and variances can, respectively, be written as
(Reynolds 1992):

wi D 1

T

TX
tD1

P .i jxt; � / (6.5)

�i D

TP
tD1

P .i jxt; � /xt

TP
tD1

P .i jxt; � /

(6.6)
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TP
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� �2
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The posterior probability can thus be written as (Reynolds 1992):

P .i jxt ; � / D wi p .xt j�i ; †i /

MP
kD1

wkp .xt j�i ; †i /

(6.8)

The bearing fault detection or diagnosis using this classifier is then achieved by
computing the likelihood of the unknown vibration segment of the different fault
models. This likelihood is given by (Dempster et al. 1977):

Os D arg max
1�f�F

KX
kD1

log p.xkj�f / (6.9)

Here F represents the number of faults to be diagonalized, X D fx1; x2; :::; xK g
is the unknown D-dimension bearing fault-vibration segment.
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Fig. 6.1 Markov chain with five states with selected state transitions. Here O is the observation
and a is the transition probability

6.2.2 The Hidden Markov Model (HMM)

The HMM is a statistical Markov model in which the system being modeled
is assumed to be a Markov process with states that are hidden and therefore
cannot be observed. In a conventional Markov model, the state is observable, and
consequently, the transition probabilities are the only parameters to be estimated
while naturally, the output is visible.

Essentially, HMM is a stochastic signal model. HMMs are referred to as Markov
sources or probabilistic functions of Markov chains (Rabiner 1989). This model has
been applied mostly to speech recognition systems and only recently it has been
applied to bearing fault detection. In HMM, the observation is a probabilistic func-
tion of the state and this means the resulting model is a doubly emended stochastic
process with an underlining stochastic process that is not observable (Rabiner 1989).
Nevertheless, this process can only be observed through another stochastic process
that produces the sequence. There are a number of possible Markov models, but the
left-to-right model is typically applied in speech recognition. The structure of this
model is shown in Fig. 6.1 with five states (Rabiner 1989).

Marwala et al. (2006) used bearing vibration signals features which were
extracted using a time-domain fractal-based feature extraction technique as well
as the HMM and GMM for bearing fault detection. The fractal technique was
the Multi-Scale Fractal Dimension and was estimated using the Box-Counting
Dimension. The extracted features were then applied to classify faults using the
GMM and HMM. The results showed that the HMM outperformed the GMM and
that the HMM was computationally more expensive than the GMM.

Boutros and Liang (2011) applied the discrete HMM for the detection and
diagnosis of bearing and cutting tool faults. Their method was tested and validated
using two situations, tool fracture, and bearing faults. In the first situation, the
model correctly detected the state of the tool and, in the second case; the model
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classified the severity of the fault seeded into two different engine bearings. The
result obtained for fault severity classification was above 95%. In addition to the
fault severity, a location index was developed to determine the fault location and
gave an average success rate of 96%.

Wong and Lee (2010) successfully applied HMM for fault detection in the
shell-and-tube heat exchanger. This method was viewed as a generalization of the
mixture-of-Gaussians method and was demonstrated through a problem.

Lee et al. (2010) applied HMM for online degradation assessment and adaptive
fault detection of multiple failure modes. Their method, together with statistical
process control was used to detect the incidence of faults. This technique permitted
the hidden Markov state to be updated with the identification of new states. The
results for a turning process showed that the tool wear processes can be successfully
detected, and the tool wear processes can be identified.

Calefati et al. (2006) successfully applied HMM for machine faults detection
and forecasting in gearboxes. Elsewhere, Zhou and Wang (2005) applied HMM
and a principal component analysis to the on-line fault detection and diagnosis in
industrial processes, and applied these to case studies from the Tennessee Eastman
process.

Menon et al. (2003) applied HMM for incipient fault detection and diagnosis
in turbine engines and the effectiveness of the HMM method was compared to a
neural network method and a hybrid of principal component analysis and a neural
network approach. Their HMM method was found to be more effective than the
other methods.

Smyth (1994) applied HMM to fault detection in dynamic systems. It was
demonstrated that a pattern recognition system combined with a finite-state HMM
was good at modeling temporal characteristics. The model was validated using
a real-world fault diagnosis problem and was demonstrated to offer substantial
practical advantages.

The complete parameter set needed to define the HMM can be written as (Rabiner
1989; Caelli et al. 2001; Koski 2001):

� D fA; B; �g (6.10)

where � is the model, A D faij g, B D fbij .k/g and � D f�i gare the transition
probability distribution, the observation probability distribution, and initial state
distribution, respectively. For example, if we assume that the distribution can be
represented by the Gaussian mixture model shown in Eq. 6.2, the equation can be
written as:

� D fA; w; �; †; �g (6.11)
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These parameters of a given state, Si, are defined as (Rabiner 1989; Ching et al.
2003; Purushothama et al. 2005; Ching and Ng 2006):

aij D P.qtC1 D Sj jqt D Si /; 1 � i; j � N (6.12)

bij .k/ D P.Okjqt D Si/; 1 � j � N; 1 � k � M (6.13)

and

�i D P.q1 D Si/; 1 � i � N (6.14)

Here, qt is the state at time t and N denotes the number of states. Additionally,
Ok is the kth observation and M is the number of distinct observation.

The HMM can be used to simulate the observed state as follows (Rabiner
1989):

1. Let t D 1.
2. Create Ot D vk 2 V in accordance with the probability bi .k/.
3. Create a transition of hidden state from qt D Si to qtC1 D Sj in accordance with

the transition probability aij.
4. Let t D t C 1 and go to Step 2 if t < T or else terminate the algorithm.

There are three fundamental issues to be solved for this model to be applied in
practice. Firstly, we ought to identify the probability of the observation sequence
O D O1; O2; :::; OT of visible states generated by the model �. Secondly, we need
a decoding process which identifies a state sequence that maximizes the probability
of an observation sequence and this can be realized through the so-called Viterbi
algorithm (Rabiner 1989). Thirdly, we need a training process which adjusts model
parameters to maximize the probability of the observed sequence.

The next step is to calculate the likelihood of the observed sequence as follows
(Rabiner 1989; Ching et al. 2004):

P.O/ D
X

all possible

�q1 bq1.O1/ � �q2 bq2.O2/ � ::: � �qn bqn.On/ (6.15)

To speed up the computation of this, the backward and the forward methods can
be applied (Baum 1972). To do this, we define the following (Baum 1972):

˛T .i/ D P.O1O2:::Ot ; qt D Si / (6.16)

The forward technique can be written as follows (Rabiner 1989; Tai et al.
2009):

1. Initialize as follows:

˛1.i/ D �i bi .O1/ for 1 � i � N
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2. Apply the recursion step as follows:

˛t .j / D bj .Ot /

NX
iD1

˛t�1.i/aij for 2 � t � T and 1 � j � N

3. Terminate as follows:

P.O/ D
NX

iD1

˛T .i/

The backward technique can be written as follows by letting (Rabiner 1989; Tai
et al. 2009):

ˇt .i/ D P.OtC1OtC2:::OT jqt D Si / (6.17)

1. Initialize as follows:

ˇT .i/ D 1 for 1 � i � N

2. Apply the recursion step as follows:

ˇt .i/ D
NX

jD1

aij bj .OtC1/ˇtC1.j / for 1 � t � T � 1 and 1 � j � N

3. Terminate as follows:

P.O/ D
NX

iD1

ˇ1.i/�i bi .O1/

The Baum-Welch estimation procedures with the Maximum Likelihood tech-
nique can be used to approximate the model parameters (Rabiner 1989). To explain
the use of this procedure it is important to state the following definition (Rabiner
1989; Ching et al. 2004):

�t .i; j / D P
�
qt D Si ; qtC1 D Sj jO; A; B; �

�
(6.18)

This is the probability of being in state Si at time t and having a transition to state
Si at time t C 1 given the observed sequence and the model. This can be expanded
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as follows (Rabiner 1989; Ching et al. 2004):

�t .i; j / D ˛t .i/˛ij ˇtC1.j /bj .OtC1/P
i

P
j ˛t .i/˛ij ˇtC1.j /bj .OtC1/

(6.19)

We can also define that (Rabiner 1989; Ching et al. 2004):

�t .i/ D P.qt D Si jO; A; B; �/ (6.20)

This indicates the probability of being in state Si at time t given the observed
sequence and the model. Therefore, we now have (Rabiner 1989; Ching et al. 2004):

�t D
X

j

�t .i; j / (6.21)

This procedure can be written as follows (Baum 1972; Rabiner 1989):

1. Select a set of initial parameters � D fA; B; �g randomly
2. Estimate the parameters using the following equations (Tai et al. 2009)

N�i D �1.i/ for 1 � i � N

Naij D
PT�1

tD1 �t .i; j /PT�1
tD1 �t .i/

for 1 � i � N; 1 � j � N

Nbj .k/ D
PT

tD1 �t .j /IOtDkPT
tD1 �t .j /

for 1 � j � N; 1 � k � M

Here IOtDk D
�

1 if Ot D k

0 otherwise

3. Set NA D fNaij gij , NB D f Nbj .k/gjk and N� D f N�i g
4. Set N� D f NA; NB; N�g
5. If � D N�, end otherwise let � D N� and go to Step 2

A more detailed explanation of HMM training using the Baum-Welch
re-estimation along with other features of HMM is presented by Rabiner (1989).

The estimation of the hidden state can be conducted using the Viterbi algorithm
(Viterbi 1967) to calculate the probability of the hidden states given the HMM
parameters and an observed sequence. To do this we can define the following
(Rabiner 1989; Tai et al. 2009) which is the maximum probability within a single
path:

ıt .i/ D max
q1;q2;:::;qt�1

P .q1; q2; :::; qt ; O1O2:::Ot I qt D Si/ (6.22)
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and define (Tai et al. 2009):

ıt .j / D bj .Ot / � max
i

fıt�1.i/aij g (6.23)

We can therefore solve this problem using dynamic programming as follows
(Rabiner 1989; Tai et al. 2009):

1. Initialize ı1.i/ D �i bi .O1/ and 1.i/ D 0 for 1 � i � N

2. Solve the following recursion step

ıt .j / D max
1�i�N

ıt�1.i/aij bj .Ot / for 2 � t � T and 1 � j � N

and

t .j / D arg max
1�i�N

fıt�1.i/aij g for 2 � t � T and 1 � j � N

3. Terminate

P � D max
1�i�N

ıT .i/ and q�T D arg max
1�i�N

ıT .i/

Here P* is the most likely likelihood and q* is the most likely state at time T.
4. Backtrack:

q�T D tC1.q
�
tC1/ for t D T � 1; T � 2; ::: ; 2; 1

6.2.3 Fractals

For this chapter, fractals were used to analyse the bearing data. A fractal is defined
as a rough geometric shape that can be divided into various segments, each of
which is roughly a reduced-size copy of the whole. This characteristic is known as
self-similarity (Mandelbrot 1982). The theory of fractals was described in detail,
in Chap. 2. The basis of the idea of fractals extends back to the seventeenth
century. There are numerous classes of fractals, characterized as displaying exact
self-similarity, quasi self-similarity or statistical self-similarity (Briggs 1992). Even
though fractals are a mathematical concept, they are seen in nature, and this has led
to their use in the arts they are useful in biomedical sciences, engineering sciences,
and speech recognition. A fractal usually has the following characteristics (Falconer
2003):

• It contains a fine structure at randomly small scales.
• It is too irregular to be described using Euclidean geometry.
• It is approximately self-similar.
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• It has a Hausdorff dimension (this explained in Chap. 2) which is more than its
topological dimension (Pickover 2009).

• It has a basic and recursive description.

Fractals are frequently viewed to be infinitely complex because they look similar
at all levels of magnification (Batty 1985; Russ 1994). Examples of natural objects
that can be approximated by fractals include clouds, mountain ranges, lightning
bolts, and coastlines (Sornette 2004).

Zhang et al. (2010) successfully applied a combined wavelet and fractal method
for the fault detection of the opening fault of power electronic circuits based on the
singularity of the fault signal from the power electronic equipment. Voltage wave
signals were analyzed by applying the wavelet transform and correlative dimensions
of the wavelet transform were estimated using fractals.

Yang et al. (2011) applied a fractal correlation dimension for the fault detection
in the supply air temperature sensors of air handling unit systems and the results
obtained demonstrated that it was more efficient in detecting a relatively small bias
fault under noise conditions.

Ikizoglu et al. (2010) applied a Hurst parameter and fractal dimension for fault
the detection of the bearings in electric motors. The vibration signals were obtained,
analyzed in the frequency domain.

Ma (2009) successfully applied fractal analysis for fault detection in the welding
process while Shanlin et al. (2007) successfully applied wavelet fractal network for
fault detection in a power system generator.

Other successful applications of the wavelet transform in fault detection include
its application for distributed power system short-circuit problems (Song et al.
2007), robotics (Yan et al. 2007), short-circuit faults in low-voltage systems (Kang
et al. 2006), and Direct Current system grounding (Li et al. 2005).

6.3 Motor Bearing Faults

Vibration measurement is important in advanced conditioning monitoring of me-
chanical systems. Most bearing vibrations are periodical movements. In general,
rolling bearing contains two concentric rings, which are called the inner and outer
raceway and these were shown in Chap. 2 (Li et al. 2000). Furthermore, the bearing
contains a set of rolling elements that run in the tracts of these raceways. There is a
number of standard shapes for the rolling elements such as a ball, cylindrical roller,
tapered roller, needle roller, symmetrical and unsymmetrical barrel roller and many
more as described by Ocak and Loparo (2004). In this chapter, a ball rolling element
is used as was done by Ocak and Loparo (2004).

Three faults are studied in this chapter. These are an inner raceway, an outer
raceway, and a rolling element fault. A bearing fault increases the rotational friction
of the rotor and, therefore, each fault gives vibration spectra with unique frequency
components (Ericsson et al. 2004). It should be taken into account that these
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Fig. 6.2 Motor bearing fault detection and diagnosis system

frequency components are a linear function of the running speed and that the two
raceway frequencies are also linear functions of the number of balls. The motor
bearing condition monitoring systems was implemented by analyzing the vibration
signal of all the bearing faults. The vibration signal was produced by Ocak and
Loparo (2004) using the impact pulse generated when a ball roller knocks a defect
in the raceways or when the defect in the ball knocks the raceways (Li et al. 2000).

The studied motor bearing fault detection and diagnosis system is displayed in
Fig. 6.2 (Marwala et al. 2006). The system consists of two major stages after the
vibration signal measurement and these are the pre-processing which includes both
the feature extraction phase and classification phase.

The initial phase of an automatic fault detection and diagnosis system, as
indicated in Fig. 6.3, is signal preprocessing and feature extraction (Marwala et al.
2006). Faults cause a change in the machinery vibration levels and, consequently,
the information regarding the health status of the monitored machine is largely
contained in the vibration time signal (McClintic et al. 2000). Figure 6.4 shows
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that the signal is preprocessed by dividing the vibration signals into T windows of
equal lengths (Marwala et al. 2006). For this technique to be effective, it should
be noted that the width of the window must be more than one revolution of the
bearing to ensure that the uniqueness of each vibration fault signal is captured. The
preprocessing is followed by extraction of features of each window using the Box-
Counting MFD, which forms the observation sequence to be used by the GMM or
the HMM classifier. The time domain analysis extracts the non-linear turbulence
information of the vibration signal and is expected to give enormous improvement
on the performance of the bearing fault detection and diagnosis process.

Due to the large variations of the vibration signal, direct comparison of the
signals is difficult. Hence, non-linear pattern classification methods are used to
classify different bearing fault conditions. The features extracted were used as inputs
to the classification phase of the framework. This chapter compares the performance
of the GMM and the HMM classifiers. For the GMM classifier, the principal
component analysis (PCA), which was described in Chap. 2, was applied to the
feature vector before training to reduce the dimensionality and remove redundant
information (Jolliffe 1986). The principal concept behind PCA is to identify the
features that explain as much of the total variation in the data as possible with as
few of these features as possible. The calculation of the PCA data transformation
matrix is based on the eigenvalue decomposition.

The computation of the principal components was conducted as described below
(Jolliffe 1986):

• Calculate the covariance matrix of the input data.
• Compute the eigenvalues and eigenvectors of the covariance matrix.
• Preserve the largest eigenvalues and their respective eigenvectors which contains

at least 90% of the data.
• Transform the original data into the reduced eigenvectors and, therefore, decrease

the number of dimensions of the data.

For more information on the PCA used here to reduce the dimensionality of the
feature space, the reader is referred to the work of Jolliffe (1986). In Fig. 6.3, the
diagnosis of the motor bearing fault was achieved by calculating the probability of
the feature vector, given the entire previously constructed fault model and then the
GMM or HMM with maximum probability determined the bearing condition.

This section discusses the experimental database used to evaluate the efficiency
of the proposed approach. The performance measure adopted during experimenta-
tion is also briefly discussed. The database used to validate the new bearing fault
diagnosis discussed in the last section was developed at Rockwell Science Centre
by Loparo in 2005. In this data set, single point faults of diameters of 7 mils,
14 mils, and 21 mils (1 mil D 0.001 in.) were introduced using electro-discharge
machining. These faults were introduced separately at the inner raceway, rolling
element and outer raceway. A more detailed explanation of this data set is presented
in (Loparo 2006). The experiments were performed for each fault diameter and this
was repeated for two load conditions, which were 1 and 2 hp. The experiment was
performed for vibration signals sampled at 12,000 samples per second for the drive
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end bearing faults. The vibration signals from this database were divided into equal
windows of four revolutions. Half of the resulting sub-signals are used for training
and the other half were used for testing.

The main concern was to measure the ability of the system to classify the bearing
faults. The performance of the system was measured using the Classification Rate
(CR) which is the proportion of fault cases correctly classified.

The optimum HMM architecture, used in the experiment was a 2 state model
with a diagonal covariance matrix that contained 10 Gaussian mixtures. The GMM
architecture also used a diagonal covariance matrix with three centers. The main
advantage of using the diagonal covariance matrix in both cases was that this de-
correlated the feature vectors. This was necessary because fractal dimensions of
adjacent scales were highly correlated (Maragos and Potamianos 1999).

The first set of experiments measured the effectiveness of the time-domain fractal
dimension based feature-extraction using vibration signal of the faults as shown in
Fig. 6.5 (Marwala et al. 2006).

Figure 6.5 shows the first 2 s of the vibration signals used. It can be clearly seen
that there is fault specific information which must be extracted. Figure 6.6 shows the
MFD feature vector which extracts the bearing’s fault specific information (Marwala
et al. 2006). It should be noted that these features are only for the first second of
the vibration signal. Figure 6.6 clearly shows that the presented feature extraction
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Table 6.1 The classification rate for different loads and fault diameters for
the GMM and HMM classifier

Load 7 mils 14 mils 21 mils Load 7 mils 14 mils

HMM GMM HMM GMM HMM GMM
1 100% 99.2% 100% 98.7% 100% 99%
2 100% 99% 100% 99.1% 100% 99%

method does indeed extract the fault specific features which are used to classify
different bearing faults (Marwala et al. 2006). For this reason, the presented MFD
feature extraction is expected to give enormous improvement to the performance
of the bearing fault detection and diagnosis. Nevertheless, the optimum size of
the MFD must be initially found. Figure 6.6 shows the graph of change of the
system accuracy with the change of the MFD size. The figure shows that the GMM
generally has a large optimum MFD size of 12 compared to 6 for HMM.

Having used the optimum HMM and GMM architecture discussed previously,
the classification accuracy that was found for different bearing loads and different
bearing fault diameters appears in Table 6.1 for the GMM and the HMM classifier.

Table 6.1 shows that the HMM outperforms the GMM classifier for all cases, with
a 100% and 99.2% classification rate for HMM and GMM, respectively. Table 6.1
also shows that changing the bearing load or diameter does not significantly change
the classification rate.
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Using a Pentium IV with 2.4 GHz processor speed, further experimenting
showed that the average training time of HMM was 19.5 s. This was more than
20 times higher than the GMM training time, which was found to be 0.83 s. In
summary, even though HMM gave higher classification rate when compared to
GMM it was time consuming to train the models when compared to GMM. It is
probably worth mentioning that, it was observed that using the PCA dimension
reduction technique does not affect the classification rate. Nevertheless, this reduced
the dimension from 84 to 11, which makes GMM training even more computation-
ally efficient when compared to training the HMM.

This chapter presented the obtained using MFD short time feature extraction.
The results demonstrated that this technique does extract fault specific features.
Furthermore, the results showed that for the GMM classifier using PCA, the
classification rate was not affected; it simply reduced the dimensionality of the input
feature vector which makes the GMM models less complex than the HMM models.
Further experimentation revealed that there was an optimum MFD size which gave
the optimum classification rate. From the results obtained, it was found that the
GMM generally had larger optimum MFD size than the HMM.

The second set of tests that were performed compared the performance of GMM
and HMM in classifying the different bearing faults. The test revealed that the HMM
outperformed the GMM classifier with a classification rate of 100%. Further testing
of these classifiers revealed that, the major disadvantage of the HMM classifier was
that it took longer to train than the GMM classifier, even though GMM had larger
MFD size than HMM. So, it is recommended that one use the GMM classifier when
time is the major issue in that particular application. It was further observed that
changing the bearing load or diameter does not significantly affect the classification
rate of the presented framework.

6.4 Conclusions

A framework that used a time-domain fractal-based feature extraction method
to extract the non-linear turbulent information of the vibration signal has been
presented. Using these features together with HMM and GMM classifiers, the
results showed that the HMM classifier outperformed the GMM classifier with the
HMM giving 100% and the GMM 99.2% classification rate. Nevertheless, the major
drawback of the HMM classifier was that it was computationally expensive, taking
20 times longer than the GMM classifier to train.
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Chapter 7
Fuzzy Systems for Condition Monitoring

7.1 Introduction

Fuzzy set theory (FST) has been successfully applied in a number of applications
in the past (Dhlamini and Marwala 2005; Dhlamini et al. 2006; Dhlamini 2007).
Successful applications of FST include relating operators to chemical plants based
on their skill availability, health and age (Majozi and Zhu 2005), in control systems
(Kubica et al. 1995), in pattern recognition (Flaig et al. 2000), applied FST in
pattern recognition and in the evaluation of state government performance (Ammar
and Wright 2000). The principal advantage of the FST is its capability to model
uncertain data that many systems and environments exhibit. FST enables the
exploration of the interaction of variables which define a system, and how the
variables affect the system’s output.

This chapter applies FST for the condition monitoring of transformer bushings.
In transformer bushings the IEC60599 standard can be applied to evaluate the
range associated with normal, elevated and abnormal concentrations of gas. For this
chapter the FST was applied to evaluate the extent of how high is too high (or too
low) so that the elevated (or depressed) condition must be classified as dangerous
and require the transformer bushing to be decommissioned from service.

In essence, this chapter presents the application of FST to diagnose the condition
of high voltage bushings. This procedure applies Dissolved Gas Analysis (DGA)
data from bushings based on the IEC60599, California State University Sacramento
(CSUS) and IEEE C57-104 criteria for Oil Impregnated Paper (OIP) bushings.
FST was applied to evaluate the interrelations that exist between each bushing’s
identifying attributes, i.e., the dissolved gases in oil. In DGA there is a relationship
between the resulting failure and the concurrent existence of oxygen with other
gases, for instance, hydrogen, methane, ethane, ethylene, acetylene, and carbon
monoxide in a bushing. The incidence of combustible gases and the nonexistence of
oxygen is itself not a sign of imminent failure. Implementing FST on bushing data
is essential because the degree to which the assessment standard is under the cut-
off point for a safe operation is not uniform for each bushing. This inconsistency

T. Marwala, Condition Monitoring Using Computational Intelligence Methods:
Applications in Mechanical and Electrical Systems, DOI 10.1007/978-1-4471-2380-4 7,
© Springer-Verlag London Limited 2012
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can be accounted for in the assessment procedure by applying fuzzy set theory.
Temperature is a vital measure in the evaluation process and denotes both to the
operating temperature of the oil and the difference between the ambient and the oil
temperature.

Bushings that constantly function at temperatures near or above the auto-ignition
temperature of any of the gases or oil have a considerably higher probability of
explosion than those that operate at lower temperatures with the same ratio of
gases (Dhlamini et al. 2006). The auto-ignition temperature of a substance is the
temperature at or above which a material will unexpectedly catch fire in the absence
of an external spark or flame.

Msiza et al. (2011) applied neural networks to the detection of transformer
faults and in particular for evaluating the relevance of the input space parameters.
They applied a multi-layer neural network, initially populated with all the ten input
parameters (10 V-Model). A matrix containing causal information about the possible
relevance of each input parameter was then obtained. The information from this
matrix was proven to be valid through the construction and testing of another two,
separate, multilayer networks. One network’s input space was populated with the
five most relevant parameters (MRV-Model), while the other was populated with
the five least relevant parameters (LRV-Model). The obtained classification accuracy
values were as follows: 100% for the 10 V-Model, 98.5% for the MRV-Model, and
53.0% for the LRV-Model.

Auto-ignition temperature must not be mistaken for flash or fire points, which
are normally a couple of hundred degrees lower (Dhlamini et al. 2006). The flash
point is the lowest temperature at which a liquid can create an ignitable mixture
with air near the surface of the liquid. In this regard, the lower the flash point, the
easier it is to ignite the material. Fire point is the minimum sample temperature at
which vapor is formed at an adequate rate to sustain combustion and it is the lowest
temperature at which the ignited vapor continues to burn for at least 5 s (Dhlamini
et al. 2006).

Flash point is identified by the ASTM D 93 technique known as the “Flash Point
by Pensky-Martens Closed Tester” for fuel oils (Dhlamini et al. 2006) or otherwise
by the ASTM D 92 method known as the “Flash and Fire Points by Cleveland Open
Cup”. At the fire point, the temperature of the flame goes into self-sustainability
in order to continue burning the liquid, whereas at the flash point the flame does
not require to be sustained. The fire point is typically a few degrees above the flash
point.

In this chapter, ten identifying attributes were chosen to develop member-
ship functions and these were the concentrations of hydrogen, oxygen, nitrogen,
methane, carbon monoxide, carbon dioxide, ethylene, ethane, acetylene and total
dissolved combustibles gases.

Boesack et al. (2010) applied genetic algorithm and fuzzy logic for automatic
generation control to rationalize the fuzzy inference rules and the appropriate
selection of the input and output membership functions. They fed the fuzzy logic
controller with certain parameters which can be optimized using a genetic algorithm
to suit the specific application under control.
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Sainz Palmero et al. (2005) applied fuzzy ARTMAP for the detection of faults in
Alternating Current motors. When the system was tested a good level of detection
and classification was obtained. Furthermore, the knowledge extracted had an
acceptable degree of interpretability. Korbicz and Kowal (2007) applied fuzzy
systems to the fault detection of valves in the industrial installation of the Lublin
sugar factory. The results indicated the effectiveness of the technique. Mendonca
et al. (2009) applied a fuzzy system for the detection of faults and isolation of
an industrial valve and could detect and isolate the simulated abrupt and incipient
faults.

Razavi-Far et al. (2009) applied fuzzy systems for fault detection and isolation in
a steam generator while elsewhere D’Angelo et al. (2011) applied fuzzy systems
for the detection of incipient faults in induction machine stator-windings. Chen
et al. (2008) applied fuzzy system for fault detection in railway track circuits and
elsewhere, Evsukoff and Gentil (2005) applied fuzzy system for fault detection
and isolation in nuclear reactors. Other applications of fuzzy systems are in fault
detection of analogue circuits (Catelani et al. 2002), for condition monitoring
of a packaging plant (Jeffries et al. 2001), for tool wear condition monitoring
(Aliustaoglu et al. 2009), for monitoring water pipelines (Lau and Dwight 2011)
and for machine condition monitoring (Javadpour and Knapp 2003a).

7.2 Computational Intelligence

Computational Intelligence has many tools in its toolbox. This section explains the
use of six of these tools: Basic Fuzzy Logic Theory, Membership Functions, Fuzzy
Rules, Decisions Based on Fuzzy Rules, Aggregated Rules and Defuzzification.

7.2.1 Fuzzy Logic Theory

Fuzzy logic is a method of mapping an input space to an output space by means
of a list of linguistic rules that entail the if-then statements (Bih 2006; Marwala
and Lagazio 2011). Basic fuzzy logic is made up of four components: fuzzy sets,
membership functions, fuzzy logic operators, and fuzzy rules (Von Altrock 1995;
Biacino and Gerla 2002; Cox 1994; Marwala and Lagazio 2011).

In classical set theory, an object is either an element or is not an element of a
given set (Devlin 1993; Ferreirós 1999; Johnson 1972; Marwala and Lagazio 2011).
Accordingly, it is conceivable to define if an object is an element of a given set
since a set has distinctive boundaries, providing that such an object cannot take
on fractional membership. An alternate method of seeing this is that an object’s
belonging to a set is either true or false. A characteristic function for a classical set
has a value of one if the object is an element of the set and a value of zero if the
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object is not an element of a set (Cantor 1874). For example, if a set X is defined
to characterize the possible heights of all people, one could define a “tall” subset
for any person who is above or equal to a specific height x, and anyone below x
doesn’t belong to the “tall” subset but belongs to a “short” subset. This is obviously
inflexible as a person just below the boundary is categorized as being short when
they are clearly “almost tall”. Here, vague values such as “reasonably tall” are not
permitted. Furthermore, such clear-cut defined boundaries can be very subjective in
terms of what different people may define as belonging to a specific set.

The crucial aim of fuzzy logic is to allow a more flexible representation of sets
of objects by applying fuzzy sets. A fuzzy set does not have the perfect margins as
does a classical set; the objects are characterized by a degree of membership to a
specific set (Hájek 1995; Halpern 2003; Wright and Marwala 2006; Hájek 1998).
Accordingly, transitional values of objects can be characterized in a way that is
nearer to the way that the human brain thinks, compared to the clear cut-off margins
in classical sets.

A membership function expresses the degree that an object is an element of
a certain set or class. The membership function is a curve that maps the input
space variable to a number between 0 and 1, signifying the degree that a specific
input variable is an element of a specific set (Klir and Folger 1988; Klir et al.
1997; Klir and Yuan 1995). A membership function can be a curve of any shape.
Expanding the example above, there are two subsets: one for tall people and one for
short that overlap. In this way, a person can have a partial participation in each of
these sets, consequently determining the degree to which the person is both tall and
short.

Logical operators are defined to produce new fuzzy sets from the existing fuzzy
sets. In classical set theory, there are three key operators used, permitting logical
expressions to be defined: intersection, union, and the complement (Kosko 1993;
Kosko and Isaka 1993). These operators are also used in fuzzy logic, but have been
modified to deal with partial memberships. The intersection (AND operator) of two
fuzzy sets is given by a minimum operation, and the union (OR operator) of two
fuzzy sets is given by a maximum operation (Novák 1989, 2005; Novák et al. 1999).
These logical operators are used in the rules and determination of the final output
fuzzy set.

Fuzzy rules express the conditional statements which are used to model the
input–output relationships of the system, and are articulated in natural language.
These linguistic rules are in the form of if-then statements which use the logical
operators and membership functions to produce an output. A vital characteristic of
fuzzy logic is the use of linguistic variables. Linguistic variables are variables that
use words or sentences as their values as an alternative to numbers (Zadeh 1965;
Zemankova-Leech 1983; Zimmermann 2001; Marwala and Lagazio 2011). Each
linguistic variable takes on a linguistic value that corresponds to a fuzzy set. The set
of values that it can take on is called the term set. For instance, a linguistic variable
height could have the following term set fvery tall, tall, medium, short, very shortg.
A single fuzzy if-then rule assumes the form
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if x is A then y is B:

Here A and B are linguistic values defined by fuzzy sets on the ranges (universes
of discourse) X and Y, respectively.

Every one of the rules is assessed for an input set, and the corresponding output
for the rule is attained. If an input corresponds to two linguistic variable values then
the rules associated with both these values will be assessed. Moreover, the rest of the
rules will be assessed; nevertheless they will not have an influence on the final result
as the linguistic variable will have a value of zero. Consequently, if the antecedent
is true to some degree, the result will have to be true to some degree (Zadeh 1965).
The degree of each linguistic output value is then calculated by performing a logical
sum for each membership function (Zadeh 1965), after which all the sums for a
specific linguistic variable can be combined. These last phases comprise the use
of an inference technique which will map the result onto an output membership
function (Zadeh 1965).

Lastly the defuzzification process is accomplished where a single numeric output
is produced. One technique for computing the degree of each linguistic output value
is to take the maximum of all rules describing this linguistic output value, the output
is taken as the center of gravity of the area under the affected part of the output
membership function. There are other inference techniques such as averaging and
sum mean square. Figure 7.1 displays the stages involved in generating input–output
mapping using fuzzy logic.

The application of series of fuzzy rules and inference approaches to yields
defuzzified output constitute a Fuzzy Inference System (FIS). The final manner
in which the aggregation process takes place and the technique of defuzzification
differs, depending on the application of the selected FIS. The method explained
below is that of Mamdani (1974).

There are a number of kinds of fuzzy inference systems which differ according
to the fuzzy reasoning and the form of the if-then statements applied. One of
these approaches is the Takagi-Sugeno-Kang neuro-fuzzy technique (Takagi and
Sugeno 1985; Araujo 2008). This method is similar to the Mamdani method
described above, except that the consequent part is of a different form and, as
a result, the defuzzification technique is different. The if-then statement of a
Sugeno fuzzy system expresses the output of each rule as a function of the input
variables (Sugeno and Kang 1988; Sugeno 1985; Takagi and Sugeno 1985; Babuska
1991). Applications of neuro-fuzzy model include its use in modeling liquid-holdup
prediction in horizontal Multiphase flows (El-Sebakhy 2010), in reinforcement
group cooperation-based symbiotic evolution (Hsu and Lin 2009), in gene extraction
for cancer diagnosis (Huang and Kecman 2005), in control of nonlinear system
(Iplikci 2010), for autonomous parallel parking (Demirli and Khoshnejad 2009), for
conflict modeling (Tettey and Marwala 2006), and in constitutive modeling (Cabalar
et al. 2010).
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7.2.2 Membership Functions

Membership functions are the most significant stage in fuzzy set theory applications
and this step takes the most time and should be precise. Membership function
curves that can be used include straight line, the Gaussian function, the sigmoid,
and polynomial functions. Bojadziev and Bojadziev (1995) discussed that triangular
functions accurately represented most memberships. In general, triangular and
trapezoidal membership functions are representative of most cases (Majozi and
Zhu 2005; Zadeh 1973). For this chapter the trapezoidal and triangular membership
functions were chosen to model the safe operating limits for gas contaminants inside
the bushing’s oil and each of the attributes was rated in as being high, medium
or low (Dhlamini 2007). The rating depends on the measured magnitude of the
attribute compared to the reject threshold obtained in the IEC60599 criteria. The
membership functions were concentrations of hydrogen, oxygen, nitrogen, methane,
carbon monoxide, carbon dioxide, ethylene, ethane, acetylene and total dissolved
combustibles gases as given in Eqs. 7.1–7.30 as described by Dhlamini (2007) and
Dhlamini et al. (2006).
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Hydrogen

�Normal .x/ D
�

1 for 0 � x � 135

�0:067x C 10 for 135 � x � 150
(7.1)

�Elevated.x/ D
8<
:

0:067x � 9 for 135 � x � 150

1 for 150 � x � 900

�0:067x C 10 for 900 � x � 1000

(7.2)

�Dangerous.x/ D
�

0:01x � 9 for 900 � x � 1000

1 for x > 1000
(7.3)

The membership function for Eqs. 7.1–7.3 is shown in Fig. 7.2 and Eqs. 7.4–7.30
have similar membership functions.

Methane

�Normal .x/ D
�

1 for 0 � x � 23

�0:5x C 12:5 for 23 � x � 25
(7.4)

�Elevated.x/ D
8<
:

0:5x � 11:5 for 23 � x � 25

1 for 25 � x � 72

�0:125x C 10 for 72 � x � 80

(7.5)

�Dangerous.x/ D
�

0:125x � 9 for 72 � x � 80

1 for x 
 80
(7.6)
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Ethane

�Normal.x/ D
�

1 for 0 � x � 9

�x C 10 for 9 � x � 10
(7.7)

�Elevated.x/ D
8<
:

x � 9 for 9 � x � 10

1 for 10 � x � 32

�0:333x C 11:66 for 32 � x � 35

(7.8)

�Dangerous.x/ D
�

0:333x � 10:66 for 32 � x � 35

1 for x 
 35
(7.9)

Ethylene

�Normal.x/ D
�

1 for 0 � x � 18

�0:5x C 10 for 18 � x � 20
(7.10)

�Elevated.x/ D
8<
:

0:5x � 9 for 18 � x � 20

1 for 20 � x � 90

�0:1x C 10 for 90 � x � 100

(7.11)

�Dangerous.x/ D
�

0:1x � 9 for 90 � x � 100

1 for x 
 100
(7.12)

Acetylene

�Normal.x/ D
�

1 for 0 � x � 14

�x C 15 for 14 � x � 15
(7.13)

�Elevated.x/ D
8<
:

x � 14 for 14 � x � 15

1 for 15 � x � 63

�0:142857x C 10 for 63 � x � 70

(7.14)

�Dangerous.x/ D
�

0:142857x � 9 for 63 � x � 70

1 for x 
 70
(7.15)

Carbon Monoxide

�Normal.x/ D
�

1 for 0 � x � 450

�0:02x C 10 for 450 � x � 500
(7.16)

�Elevated.x/ D
8<
:

0:02x � 9 for 450 � x � 500

1 for 500 � x � 900

�0:01x C 10 for 900 � x � 1000

(7.17)
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�Dangerous.x/ D
�

0:01x � 9 for 900 � x � 1000

1 for x 
 1000
(7.18)

Nitrogen

�Normal .x/ D
�

1 for 0 � x � 0:9

�10x C 10 for 0:9 � x � 1
(7.19)

�Elevated.x/ D
8<
:

10x � 9 for 0:9 � x � 1

1 for 1 � x � 9

�x C 10 for 9 � x � 10

(7.20)

�Dangerous.x/ D
�

x � 9 for 9 � x � 10

1 forx 
 10
(7.21)

Oxygen

�Normal.x/ D
�

1 for 0 � x � 0:09

�100x C 10 for 0:09 � x � 0:1
(7.22)

�Elevated.x/ D
8<
:

100x � 9 for 0:09 � x � 0:10

1 for 0:10 � x � 0:18

�50x C 10 for 0:18 � x � 0:20

(7.23)

�Dangerous.x/ D
�

50x � 9 for 0:18 � x � 0:20

1 for x 
 0:20
(7.24)

Carbon Dioxide

�Normal.x/ D
�

1 for 0 � x � 9000

�0:001x C 10 for 9000 � x � 10000
(7.25)

�Elevated.x/ D
8<
:

0:001x � 9 for 9000 � x � 10000

1 for 10000 � x � 13500

�0:00067x C 10 for 13500 � x � 15000

(7.26)

�Dangerous.x/ D
�

0:00067x � 9 for 13500 � x � 15000

1 for x 
 15000
(7.27)

Total Combustible Gases

�Normal .x/ D
�

1 for 0 � x � 648

�0:01389x C 10 for 648 � x � 720
(7.28)
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�Elevated.x/ D
8<
:

0:01389x � 9 for 648 � x � 720

1 for 720 � x � 4500

�0:002x C 10 for 4500 � x � 5000

(7.29)

�Dangerous.x/ D
�

0:002x � 9 for 4500 � x � 5000

1 for x 
 5000
(7.30)

7.2.3 Fuzzy Rules

Fuzzy rules represent the interrelation between all the inputs. This is a point
where user experience can be integrated in the mathematical modeling. It has been
estimated by many researchers before, that the number of rules is theoretically equal
to the number of fuzzy categories raised to the power of the number of fuzzy criteria.
Fuzzy categories used here were: the membership functions “dangerous”, “elevated”
or “normal”. Fuzzy criteria applied here were the different gases that were present,
i.e., hydrogen, methane, ethane, ethylene, acetylene, carbon monoxide, nitrogen,
oxygen, carbon dioxide and total combustible gases. The rates of change of the
gases were not used because the available data was taken on 1 day only.

Rules have an antecedent and a consequence. Rules can be expressed in the form
(Ammar and Wright 2000; Wang 2000; Mamdani and Assilian 1975):

IF Attribute 1 is A1 AND Attribute 2 is A2 AND : : : AND Attribute N is AN ,
THEN Consequent is Ci,

In the expression, Attribute 1, Attribute 2, : : : , Attribute N collectively form
an Antecedent. Antecedents and Consequents are variables or concepts and A1,
A2; : : : , Ci are linguistic terms or fuzzy sets of these variables, such as, “low”,
“dangerous” or “high”, etc. (Bandemer and Gottwald 1995).

For the situation of bushing diagnosis, the amalgamation of the combustible
gases in the absence of oxygen does not generate a failure. With transformer oil,
failure happens when oxygen is present in quantities above 0.2% at temperatures
above 250ıC without any spark being present (auto-ignition) or at 156ıC if a
spark is present (flash point). This condition decreases the number of fuzzy rules
meaningfully, to only 81 fuzzy rules. The amalgamations were modeled in 81
compartments. Two examples of fuzzy rules in written language are (1) If hydrogen
is High only then Low Risk and (2) If hydrogen is High and Oxygen is High then
High Risk.

7.2.4 Decisions Based on Fuzzy Rules

By applying the rules, the bushing is given a risk rating for which certain
maintenance actions must be taken on the plant. For the safe operation of bushings
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it is suggested that for all high risk situations, stop the transformer and remove
the bushing from the transformer. For all medium risk situations, monitor the
bushings more regularly. All low risk situations are allowed operate normally.
From the decision table an aggregated membership is developed using the fol-
lowing equations (Bandemer and Gottwald 1995; Dhlamini et al. 2006; Dhlamini
2007):

�agg D �LR [ �MR [ �HR (7.31)

Here

�LR.x/ D
�

1 for x � 10

�0:01667x C 1 for 10 � x � 60

�MR.x/ D
�

0:01667x � 1 for 10 � x � 60

�0:05x C 4 for 60 � x � 80

�HR.x/ D
�

0:05x � 3 for 60 � x � 80

1 for x 
 80
(7.32)

The graph of the membership functions are shown in Fig. 7.3. The membership
function is asymmetrical so that a decision to omit damaged bushings is stricter than
that of slightly safe bushings. This means that, small alterations in a condition that
is hazardous are underlined by the membership function. A steeper gradient on the
graph permits the user to recognize those components which have small variances
in critical levels of concentrations of hazardous gases.
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7.2.5 Aggregated Rules

The table of fuzzy rules can additionally be streamlined by identifying cells with
features that are common within partitions. This procedure is known as aggregating.
One can improve the following Aggregated Rules (AR) based on the underlined
partition (Dhlamini et al. 2006).

(AR4) IF bushing has ‘Dangerous level of TDCG’ AND ‘NOT Normal Oxygen’
AND ‘Not Normal Methane’, THEN the bushing belongs to ‘Group A (high risk
or dangerous)’.

(AR5) IF bushing has ‘Dangerous TDCG’ AND ‘NOT Normal Oxygen’ AND
‘Normal Methane’, THEN the bushing belongs to ‘Group B (medium risk or
elevated)’.

(AR6) IF bushing has ‘Dangerous TDCG’ AND ‘Normal Oxygen’ AND ‘Not
Normal Methane’, THEN the bushing belongs to ‘Group B (medium risk or
elevated)’.

(AR7) IF bushing has ‘Dangerous TDCG’ AND ‘Normal Oxygen’ AND ‘Normal
Methane’, THEN the bushing belongs to ‘Group C (low risk or normal)’.

In rule AR1, the result is ‘the bushing belongs to Group A’. The truth value of
this consequence (CAR4) is displayed in Eq. 7.33 (Dhlamini 2007).

CAR4 D min .1; 1; 1/ D 1 (7.33)

When all the rules have been applied to a specific bushing, and different truth
values of each consequence obtained, the maximum value of each consequence
among all the rules that result in that consequence is taken as the degree to which that
consequence applies to a given bushing. In the end this gives rise to an aggregated
fuzzy output as shown in Table 7.1 and the following equation (Bandemer and
Gottwald 1995):

AGDi D max .CAR1i \ CAR2i \ � � � \ CARni / (7.34)

Here, AGDi is the aggregated decision for category i, CAR is the consequence of
aggregated rules in a particular category i in a given partition.

7.2.6 Defuzzification

Defuzzification is intended at transforming fuzzy information into crisp data. The
technique used for defuzzification in this chapter is known as the weighted average
of maximum values of membership functions (Majozi and Zhu 2005). The technique
was chosen since it is computationally economical. The result of this technique
offers the rank or level of risk of each bushing.
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For one arbitrary bushing numbered 200323106, the rank as obtained using
Eq. 7.35 and Fig. 7.4 shows the aggregated membership function from which the
values in this equation were obtained (Majozi and Zhu 2005; Dhlamini et al. 2006;
Dhlamini 2007).
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(7.35)

The coefficients shown in Eq. 7.35 are the levels of risk of failure corresponding
to the maximum values of the respective sets.

7.3 Fuzzy ARTMAP

Fuzzy ARTMAP is a neural network structure based on Adaptive Resonance Theory
(ART) that is capable of supervised learning of an arbitrary Mapping of clusters in
the input space and their associated labels. The vital characteristic of this type of
network structure is that it is capable of rapid, online, incremental learning, classifi-
cation and prediction (Carpenter et al. 1992; Marwala 2009). Fuzzy ARTMAP has
been successfully used by Lopes et al. (2005) for electricity load forecasting and Tan
et al. (2008) used a fuzzy ARTMAP for conflict resolution. A fuzzy ARTMAP has
been used in condition monitoring by Javadpour and Knapp (2003b) even though
their application was not online. The Fuzzy ARTMAP structure applied in this
chapter was comprised of two ART modules (ARTa and ARTb) that created stable
recognition categories in response to sequences of the input pattern.

Nelwamondo and Marwala (2007) applied an ensemble of fuzzy ARTMAP for
dealing with missing data without forecasting or estimating the missing values.
Their method was found to be appropriate for online operations of neural networks
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and was used for online condition monitoring. Their method was tested both on
classification and regression problems. An ensemble of fuzzy ARTMAPs was
implemented for classification while an ensemble of multi-layer perceptions was
applied for the regression problem. The results achieved using this ensemble-based
technique were compared to those attained using a combination of auto-associative
neural networks and genetic algorithms and they indicated that this technique
performed up to 9% better in regression problems.

Vilakazi and Marwala (2006) applied a fuzzy ARTMAP method for intrusion
detection and diagnosis. Their method applied a Sequential Backward Floating
Search for feature selection and a fuzzy ARTMAP for detection and diagnosis of
attacks. The optimal vigilance parameter for the fuzzy ARTMAP was chosen using
a genetic algorithm. The reduced set of features decreased the computation time by
0.789 s. A classification rate of 100% and 99.89% was obtained for the detection
stage and diagnosis stage, respectively.

Vilakazi and Marwala (2007a, b) applied a Fuzzy ARTMAP (FAM) for incre-
mental learning for bushing condition monitoring. FAM was introduced since it
can incrementally learn from information as it becomes available. An ensemble
of classifiers was used to improve the classification accuracy of the systems. The
results showed that the FAM ensemble gave an accuracy of 98.5%. Additionally, the
results showed that the fuzzy ARTMAP can update its knowledge in an incremental
fashion without forgetting previously learned information.

Barszcz et al. (2011) applied a fuzzy ART neural network for wind turbines
state classification and Chang et al. (2010b) applied a fuzzy ART for color-based
semantic image retrieval. Wang and Zan (2010) applied a fuzzy ART for statistical
process control while Chen et al. (2010) successfully applied a fuzzy ART for
infrared target detection. Other successful applications of fuzzy ART include its
medical application in the diagnosis of cancer (Hwang et al. 2010), for semantic
image retrieval (Chang et al. 2010a) and for personal credit scoring (Jiang and Lin
2010).

The architecture of the FAM is shown in Fig. 7.5. The two ART modules were
interconnected by a series of weighted connections between the F2 layers. The
connection between the two ART modules formed the Map Field (Carpenter et al.
1992). Various parameters needed to be set for the training process and this was
achieved in the ART Network. The vigilance parameter, �[0,1] is the only user-
specified parameter. The vigilance parameter controls the network resonance. The
second parameter that is adjusted during training is the training rate ˇ[0,1] which
controls the adaptation speed. Here 0 implies a slow speed and 1 implies the fastest.
The parameter ’ acts as a parameter to decide the category class and is always set
such that 0 < ’ < 1.

During supervised learning, an analog signal vector X D (a, ac) was input into the
ARTa input layer F a

0 in the form of a complement code. Both the original input a
and its complement ac were presented to the fuzzy ARTMAP network as explained
by Javadpour and Knapp (2003b).
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Each component in the input vector corresponds to a single node in F a
1 . The key

function of this F a
1 block was to compare the hypothesized class propagated from

the F a
2 to the input signal. Simultaneously, a vector b was presented to ARTb and

this vector contained the desired outputs corresponding to the vector a in the ARTa.
The network then used hypothesis testing to deduce which category the input pattern
should belong to. Mapping was done in two steps. Firstly, the ARTa module allowed
data to be clustered into categories that were mapped to a class in the ARTb side of
the module. The Fuzzy ARTMAP map field mapped the data cluster in the ‘A-side’
to the label cluster in the ‘B-side’. During the learning process, each template from
the ‘A-side’ was mapped to one template on the ‘B-Side’, ensuring a many-to-one
mapping. The weights wAB

jk were used to control the association between the F2
nodes on both sides. When the vectors a and b were presented to ARTa and ARTb
respectively, both models soon entered resonance.

When the vigilance criterion was respected, the map field learned the association
between vectors a and b by modifying its weights following the initial weight.
A fuzzy ARTMAP has an internal controller that ensures autonomous system
operation in real time. The inter-ART module has a self-regulatory mechanism
named match tracking, whose objective was to maximize the generalization and
minimize the network error. A complete description of the Fuzzy ARTMAP is
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Table 7.1 Classification results

Classifier Validation accuracy (%) Test accuracy (%)

Fuzzy set network 98.4 98.0
Fuzzy ARTMAP 98.5 97.5

provided by Carpenter et al. (1992). The vigilance criterion is given by (Carpenter
et al. 1992; Marwala 2009):

ˇ̌
ybƒwab

JK

ˇ̌
yb


 �ab (7.36)

Here the H vigilance criterion was reached by making a small increment in the
vigilance parameter such that a certain category was excluded. This was done until
the moment the active category corresponded to the desired output. After the input
had completed the resonance state by the vigilance criterion, the weight adaptation
was accomplished. The adaptation of the ARTa and ARTb module weights is given
by (Carpenter et al. 1992; Marwala 2009):

wnew
j ˇ.Iƒwold

j / C .1 � ˇ/wold
j (7.37)

7.4 Results

Fuzzy sets technique and fuzzy ARTMAP were implemented to classify faults in
transformer bushings using the dissolved gas analysis data based on the IEC60599,
IEEE C57-104, and the California State University Sacramento (CSUS) criteria for
Oil Impregnated Paper (OIP) bushings, described in Chapter 2 by Vilakazi (2007).
The networks were trained, validated and tested with 1,000 data points that consisted
of 500 faulty and 500 healthy bushings. The results are shown in Table 7.1.

Table 7.1 shows that the fuzzy set network gave marginally better results than the
fuzzy ARTMAP. However, the fuzzy set network was, however, able to factor into
account the user experience through the fuzzy rules.

7.5 Conclusion

In this chapter fuzzy set theory and fuzzy ARTMAP were implemented for fault
identification in transformer bushings based on the dissolved gas analysis (DGA)
data and the IEC60599, IEEE C57-104, and California State University Sacramento
(CSUS) criteria. The results showed that the fuzzy set theory and the fuzzy
ARTMAP gave an accuracy of 98% and 97.5%, respectively. The fuzzy set theory
can incorporate user experience through the use of fuzzy rules.
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Chapter 8
Rough Sets for Condition Monitoring

8.1 Introduction

Rough set theory as put forward by Pawlak (1991) is a mathematical technique
which models vagueness and uncertainty. It permits one to estimate sets that are
difficult to explain even with accessible information. For this chapter, rough sets
were applied to the condition monitoring of transformer bushings based on dissolved
gas analysis data. The advantages of rough sets, as with many other computational
intelligence methods, are that they do not necessitate inflexible a priori assumptions
about the mathematical characteristics of such complex relationships, as normally
required for the multivariate statistical approaches (Machowski and Marwala 2005;
Crossingham et al. 2008; Marwala and Lagazio 2011). Rough set theory is based on
the assumption that the information of interest is associated with some information
from its universe of discourse (Crossingham and Marwala 2008a, b; Tettey et al.
2007; Marwala and Crossingham 2008, 2009; Crossingham et al. 2009).

Wang et al. (2006) applied rough set theory to handle uncertainty and thereby
decreased the redundancy in evaluating the degree of malignancy in brain glioma,
based on Magnetic Resonance Imaging findings as well as the clinical data before
an operation. Their data comprised unsuitable features, uncertainties and missing
values. The rough set rules that were identified from these data were applied to
evaluate the degree of the malignancy. Rough set based feature selection procedures
were used to select features so that the accuracy of classification based on decision
rules could be enhanced. These selected feature subsets were applied to give
decision rules for the classification task. The results obtained showed that their
technique identified reducts that produced decision rules with higher classification
rates than conventional methods.

Xie et al. (2011) used variable precision rough set for land use / land cover
retrieval from remote sensing images. Their results showed a retrieval accuracy of
87.32%. Chen et al. (2011) used a rough set method for the prediction of protein
interaction hot spots. Their results indicated that four features, viz. the change of
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accessible surface area, percentage of the change of accessible surface area, size of
a residue, and atomic contacts were vital in predicting the hot spots.

Salamó and López-Sánchez (2011) used rough sets for selecting features in
Case-Based Reasoning classifiers. Lin et al. (2011) applied a hybrid of rough
set theory and flow network graphs to predict the customer churn in credit card
accounts using 21,000 customer samples equally divided into three classes (survival,
voluntary churn, and involuntary churn). The input data included demographic,
psychographic, and transactional variables for studying and classifying customer
characteristics. Their results indicated that rough sets can forecast customer churn
and offer valuable information for decision-makers.

Other applications of rough set theory include the work by Azadeh et al. (2011)
who applied a rough set technique for assessing the efficiency of personnel, Zhang
et al. (2010) for controlling reagents in an ionic reverse flotation process, Huang
et al. (2011) who used rough sets in patent development with the emphasis on
resource allocation, Zou et al. (2011) who used rough sets for distributor selection
in a supply chain management system, Wang et al. (2010) who used rough sets
and a Tabu search for credit scoring, Gong et al. (2010) for a rare-earth extraction
process, Chen et al. (2010a) for creating a diagnostic system based on Chinese
traditional medicine for the pneumonia in elderly, Yan et al. (2010) for predicting
soil moisture, and Liao et al. (2010) for a model that assessed brand trust. The main
concept of rough set theory is an indiscernibility relation, where indiscernibility
indicates indistinguishable from one another. For knowledge attainment from data
with numerical attributes, special methods are applied. Most commonly a step
called discretization is taken before the main step of rule induction or decision tree
generation is applied (Crossingham and Marwala 2007). A number of approaches to
achieve the goal of discretization are Boolean reasoning, Equal-Width-Bin (EWB)
partitioning and Equal-Frequency-Bin (EFB) partitioning (Jaafar et al. 2006; Fayyad
and Irani 1993).

For this chapter an ant colony optimization method and an EFB partitioning
method was used to discretize the rough set partitions and apply these to condition
the monitoring of transformer bushings (Mpanza and Marwala 2011). Zhao et al.
(2010) applied a fuzzy preference based rough set technique and principal compo-
nent analysis for condition monitoring. They implemented a Principal Component
Analysis (PCA) to reduce the input space. Their method was tested for damage level
detection of an impeller in a slurry pump. Zhang et al. (2008) applied rough sets
and mathematical morphology for intelligent condition monitoring. They used the
theory of image processing to analyze the flank faces and they used tool condition
monitoring through measuring the area of tool wear. Their results indicated that
their method was flexible and fast enough to be applied in real time for the condition
monitoring of tool wear online. Li et al. (2005) applied rough sets for the condition
monitoring of an engine. They created decision tables for each fault case and used a
rough set reduction to conduct intelligent fault diagnosis and obtained good results.

Shen et al. (2000) applied rough set theory for the fault diagnosis of a multi-
cylinder diesel engine. When the reducts from the rough sets theory were analyzed
it was observed that this method was effective for valve fault diagnosis. In addition
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a new discretization technique was presented and was found to be suitable for
discretizing the attributes without a priori knowledge.

Xiang et al. (2009) applied the Walsh transform and rough sets for fault
diagnosis. Data processed by the Walsh transform was discretized and reduced
by the rough sets theory, and diagnosis rules were extracted and used for fault
diagnosis. The results obtained showed a higher accuracy than other methods.

Wang and Li (2004) successfully applied a rough-set based fault-ranking proto-
type system for fault diagnosis and achieved good results. Elsewhere, Tay and Shen
(2003) applied rough set for fault diagnosis in a multi-cylinder diesel engine.

Other applications of rough set theory to the area of condition monitoring include
that for a mono-block centrifugal pump (Sakthivel et al. 2010), for fault line
detection of ineffectually grounded systems (An et al. 2011), nuclear power plants
(Mu et al. 2011), in fault line detection for distribution networks (Pang et al. 2010),
machines (Yu and Han 2010), and in diesel engines (Li et al. 2010).

8.2 Rough Sets

The primary objective of using rough sets is to produce estimates of various concepts
from the acquired data. Contrary to other approaches that are applied to handle
uncertainty, rough set theory has its own exclusive benefits in that it does not
necessitate (Crossingham 2007; Nelwamondo 2008; Marwala and Lagazio 2011):

• any additional information about the experimental training data such as the
statistical probability; and

• basic probability assignment in fuzzy set theory (Pawlak and Munakata 1996).

Rough set theory deals with the estimation of sets that are hard to explain
with the available information (Ohrn 1999; Ohrn and Rowland 2000; Marwala and
Lagazio 2011). It is targeted mainly to the classification of imprecise, uncertain,
or incomplete information. Two estimations, the upper and lower estimation are
developed to handle inconsistent information. The data are represented using an
information table.

Rough set theory is based on a set of rules, which are described in terms of
linguistic variables. Rough sets are of essential significance to artificial intelligence
and cognitive science, and are well applied to the tasks of machine learning
and decision analysis, particularly in the analysis of decisions in which there are
contradictions. Because they are rule-based, rough sets are highly transparent but
they are not as accurate. However, they are not good as universal estimators,
since other machine learning techniques such as neural networks are better in
their predictions. Thus, in machine learning, there is always a trade-off between
prediction accuracy and transparency.

Crossingham and Marwala (2007) presented a method to optimize the partition
sizes of rough set using various optimization methods. Three optimization methods
were applied to perform the granularization process: the genetic algorithm, hill
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climbing, and simulated annealing. These optimization approaches maximize the
classification accuracy of the rough sets. Their rough set partition approaches
were tested on a demographic set. The three methods were compared for their
computational time, accuracy, and number of rules produced and then applied to
a HIV data set. The optimized technique results were then compared to a non-
optimized discretization method, using Equal-Width-Bin (EWB) partitioning. The
accuracies achieved after optimizing the partitions using a genetic algorithm (GA),
hill climbing, and simulated annealing (SA) were 66.89%, 65.84%, and 65.48%,
respectively, compared to the accuracy of the EWB partitioning of 59.86%. In
addition to rough sets providing the plausibility of the estimated HIV status, they
also provided the linguistic rules describing how demographic parameters drive the
risk of HIV.

Rough set theory offers a method of reasoning from vague and imprecise data
(Goh and Law 2003). The method is based on the assumption that some observed
information is in some way associated with some information in the universe
of the discourse (Komorowski et al. 1999; Yang and John 2006; Kondo 2006).
This suggests that if some characteristics of the data are missing, then they
can be approximated from part of the information in the universe of discourse
which is comparable with the observed part of that specific data. Objects with
the same information are indiscernible in the view of the available information.
An elementary set consisting of indiscernible objects forms a basic granule of
knowledge. A union of an elementary set is referred to as a crisp set; or else, the set
is considered to be rough. In the next sub-sections, rough set theory is described.

8.2.1 Information System

An information system (ƒ), is described as a pair (U, A) where U is a finite set
of objects known as the universe and A is a non-empty finite set of attributes as
described as follows (Crossingham 2007; Yang and John 2006; Nelwamondo 2008;
Marwala 2009; Marwala and Lagazio 2011).

ƒ D .U; A/ (8.1)

All attributes a 2 A have values, which are elements of a set Va of the attributes
a (Dubois 1990; Crossingham 2007; Marwala and Lagazio 2011):

a W U ! Va (8.2)

A rough set is described with a set of attributes and the indiscernibility relation
between them. Indiscernibility is explained in the next subsection.
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8.2.2 The Indiscernibility Relation

The indiscernibility relation is one of the central ideas of rough set theory
(Grzymala-Busse and Siddhaye 2004; Zhao et al. 2007; Pawlak and Skowron 2007;
Marwala and Lagazio 2011). Indiscernibility basically suggests similarity (Goh and
Law 2003) and, consequently, these sets of objects are indistinguishable. Given an
information system ƒ and subsetB � A, B the indiscernibility defines a binary
relation I(B) on U such that (Pawlak et al. 1988; Ohrn 1999; Wu et al. 2003; Ohrn
and Rowland 2000; Nelwamondo 2008; Marwala and Lagazio 2011):

.x; y/ 2 I.B/

if and only if

a.x/ D a.y/ (8.3)

for all a 2 A where a(x) symbolizes the value of attribute a for element x.
Equation 8.3 suggests that any two elements that are elements of I(B) should be
identical from the point of view of a. Supposing that U has a finite set of N objects
fx1,x2,..,xNg. Let Q be a finite set of n attributes fq1,q2,..,qng in the same information
system ƒ, then (Inuiguchi and Miyajima; 2007; Crossingham 2007; Nelwamondo
2008; Marwala and Lagazio 2011):

ƒ D hU; Q; V; f i (8.4)

Here f is the total decision function, known as the information function. From the
explanation of the indiscernibility relation, two entities have a similarity relation to
attribute a if they universally have the same attribute values.

8.2.3 Information Table and Data Representation

An information table is applied in rough sets theory as a technique for signifying
the data. Data in the information table are organized, centered on their condition
attributes and decision attributes (D). Condition attributes and decision attributes
are similar to the independent variables and dependent variable (Goh and Law
2003). These attributes are divided into C [ D D Q and C [ D D 0. Data is
indicated in the table and each object is characterized in an Information System
(Komorowski et al. 1999).

8.2.4 Decision Rules Induction

Rough sets also require producing decision rules for a given information table. The
rules are generally based on condition attributes values (Bi et al. 2003; Slezak and
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Ziarko 2005). The rules are presented in an ‘if CONDITION(S)-then DECISION’
format. Stefanowski (1998) applied a rough set technique for inference in decision
rules.

8.2.5 The Lower and Upper Approximation of Sets

The lower and upper approximations of sets are defined on the basis of the
indiscernibility relation. The lower approximation is defined as the collection of
cases whose equivalent classes are confined in the cases that need to be estimated,
while the upper approximation is defined as the collection of classes that are
incompletely contained in the set that need to be estimated (Rowland et al. 1998;
Degang et al. 2006; Witlox and Tindemans 2004). If the concept X is defined as a
set of all cases defined by a specific value of the decision and that any finite union
of elementary set, associated with B called a B-definable set (Grzymala-Busse and
Siddhaye 2004) then set X can be estimated by two B-definable sets, known as the
B-lower estimation denoted by X and B-upper approximation BX: The B-lower
approximation is defined as (Bazan et al. 2004; Crossingham 2007; Nelwamondo
2008; Marwala and Lagazio 2011):

BX D fx 2 U jŒx�B � Xg (8.5)

and the B-upper approximation is defined as (Crossingham 2007; Nelwamondo
2008; Marwala and Lagazio 2011):

BX D fx 2 U jŒx�B \ X ¤ 0g (8.6)

There are other approaches that have been described for defining the lower and
upper approximations for a completely specified decision table. Some of the popular
ones include approximating the lower and upper approximation of X using Eqs. 8.7
and 8.8, as follows (Grzymala-Busse 2004; Crossingham 2007; Nelwamondo 2008;
Marwala and Lagazio 2011):

[ fŒx�B jx 2 U; Œx�B � Xg (8.7)

[ fŒx�B jx 2 U; Œx�B \ X ¤ 0g (8.8)

The definition of definability is revised in situations of incompletely specified
tables. In this case, any finite union of characteristic sets of B is called a B-definable
set. Three different definitions of approximations have been discussed by Grzymala-
Busse and Siddhaye (2004). By letting B be a subset of A of all attributes and R(B)
be the characteristic relation of the incomplete decision table with characteristic
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sets K(x), where x 2 U, the following can be defined (Grzymala-Busse 2004;
Crossingham 2007; Nelwamondo 2008; Marwala and Lagazio 2011):

BX D fx 2 U jKB.x/ � Xg (8.9)

and

BX D fx 2 U jKB.x/ \ X ¤ 0 g (8.10)

Equations 8.9 and 8.10 are known as singletons. The subset lower and upper
approximations of incompletely specified data sets can then be mathematically
defined as (Nelwamondo 2008; Marwala and Lagazio 2011):

[ fKB.x/ jx 2 U; KB.x/ � X g (8.11)

and

[ fKB.x/ jx 2 U; KB.x/ \ X D 0g (8.12)

Additional information on these approaches can be found in (Grzymala-Busse
and Hu 2001; Grzymala-Busse and Siddhaye 2004; Crossingham 2007). It can be
deduced from these properties that a crisp set is only defined if B.X/ D B.X/.
Roughness is consequently defined as the difference between the upper and the
lower approximation.

8.2.6 Set Approximation

A number of properties of rough sets have been presented in the work of Pawlak
(1991). An important property of rough set theory is the definability of a rough
set (Quafafou 2000). This was explained for the situation when the lower and
upper approximations are equal. If this is not the situation, then the target set is
un-definable. Some of the distinctive cases of definability are (Pawlak et al. 1988;
Crossingham 2007; Nelwamondo 2008; Marwala 2009):

• Internally definable set: Here, BX ¤ 0and BX D U . The attribute set B has
objects that certainly are elements of the target set X, even though there are no
objects that can definitively be excluded from the set X.

• Externally definable set: Here, BX D 0 and BX ¤ U . The attribute set B has
no objects that certainly are elements of the target set X, even though there are
objects that can definitively be excluded from the set X.

• Totally un-definable set: Here, BX D 0and BX D U . The attribute set B has no
objects that certainly are elements of the target set X, even though there are no
objects that can definitively be excluded from the set X.
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8.2.7 The Reduct

An additional property of rough sets is the reduct which is a concept that defines
whether there are attributes B in the information system that are more significant to
the knowledge represented in the equivalence class structure than other attributes. It
is vital to identify whether there is a subset of attributes which could be completely
described by the knowledge in the database. This attribute set is known as the reduct.

Beynon (2001) concluded that the elementary feature of the variable precision
rough set model involved an exploration for subsets of condition attributes which
give identical information for classification functions as the complete set of given
attributes. Beynon characterized these subsets as approximate reducts. Beynon
explained these subsets for an identified classification error represented by ˇ and
then identified the particular variances and showed interesting consequences for
identifying ˇ-reducts which ensure a general knowledge similar to that obtained
from the full set of attributes.

Terlecki and Walczak (2007) described the relations between rough set reducts
and emerging patterns. Their study established a practical application for these
observations for the minimal reduct problem, using these to test the differentiating
factor of an attribute set. Shan and Ziarko (1995) properly defined a reduct as a
subset of attributes RED � B such that:

• Œx�RED D Œx�B . That is, the equivalence classes that were induced by reducing
the attribute set RED are equal to the similar class structure that was induced by
the full attribute set B.

• Attribute set RED is minimal because Œx�.RED�A/ ¤ Œx�B for any attribute A 2
RED. Simply, there is no attribute that can be taken away from the set RED
without changing the equivalent classes Œx�B .

Therefore a reduct can be visualized as a suitable set of features that can ade-
quately express the category’s structure. One property of a reduct in an information
system is that it is not unique since there may be other subsets of attributes which
may still preserve the equivalence class structure conveyed in the information
system. The set of characteristics that are common in all reducts is called a core.

8.2.8 Boundary Region

The boundary region, which can be expressed as the difference BX�BX , is a region
which is composed of objects that cannot be included nor excluded as elements of
the target set X. Simply, the lower approximation of a target set is an estimation
which consists only of those objects which can be positively identified as elements
of the set. The upper approximation is a rough approximation and includes objects
that may be elements of the target set. The boundary region is the area between the
upper and lower approximation.
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8.2.9 Rough Membership Functions

A rough membership function is a function �x
A W U ! Œ0; 1� that, when applied

to object x, quantifies the degree of overlap between set X and the indiscernibility
set to which x belongs. The rough membership function is applied to estimate the
plausibility and can be defined as (Pawlak 1991; Crossingham 2007; Nelwamondo
2008; Marwala and Lagazio 2011):

�x
A.X/ D jŒx�B \ X j

jŒx�B j (8.13)

The rough membership function can be understood as a fuzzification within the
context of rough approximation. It confirms the translation from rough approxi-
mation into membership function. The important aspect of a rough membership
function is that it is derived from data (Hoa and Son 2008; Crossingham 2007).

8.3 Discretization Methods

The methods which allow continuous data to be processed involve discretization.
There are several methods available to perform discretization, but the two popularly
ones – Equal-Width-Bin (EWB) partitioning and Equal-Frequency-Bin (EFB)
partitioning – were investigated by Crossingham (2007). Details are given below.

8.3.1 Equal-Width-Bin (EWB) Partitioning

EWB partitioning divides the range of observed values of an attribute intokequally
sized bins (Crossingham et al. 2009). For this chapter, kwas taken as four. One
notable problem of this method is that it is vulnerable to outliers that may drastically
skew the data range. This problem was eliminated through a pre-processing step
involving cleaning of the data. The manner in which data can be discretized
using EWB follows (Grzymala-Busse 2004; Crossingham et al. 2009; Marwala and
Lagazio 2011):

• Evaluate the Smallest and Largest value for each attribute and label these values
S and L.

• Write the width of each interval, W, as:

W D L � S

4
(8.14)

• The interval boundaries can be determined as: S C W, S C 2W, S C 3W. These
boundaries can be determined for any number of intervals k, up to the term
S C .k � 1/W .
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8.3.2 Equal-Frequency-Bin (EFB) Partitioning

EFB partitioning sorts the values of each attribute in ascending order and divides
them intokbins where (givenminstances) each bin contains m/k adjacent values. In
most instances duplicated values will probably exist. The EFB partitioning can be
implemented as follows (Grzymala-Busse 2004; Crossingham 2007; Marwala and
Lagazio 2011):

• Arrange the values of each attribute (va
1; va

2; va
3; :::; va

m) into intervals whereby m
is the number of instances.

• Therefore each interval is made of the following sequential values:

� D m

4
(8.15)

• The cut-off points may be computed using the following equation which is valid
for i D 1, 2, 3 where k intervals can be calculated for i D 1, : : : , k-1:

ci D vi� C vi�C1

2
(8.16)

8.4 Rough Set Formulation

The process of modeling the rough set can be classified into these five stages
(Grzymala-Busse 2004; Crossingham 2007):

1. The first stage is to select the data.
2. The second stage involves pre-processing the data to ensure that it is ready for

analysis. This stage involves discretizing the data and removing unnecessary data
(cleaning the data).

3. If reducts are considered, the third stage is to use the cleaned data to generate
reducts. A reduct is the most concise way in which we can discern object classes.
In other words, a reduct is the minimal subset of attributes that enables the same
classification of elements of the universe as the whole set of attributes. To cope
with inconsistencies, lower and upper approximations of decision classes are
defined in this stage.

4. Stage four is where the rules are extracted or generated. The rules are usually
determined based on condition attribute values. Once the rules are extracted, they
can be presented in an ‘if CONDITION(S)-then DECISION’ format.

5. The fifth and final stage involves testing the newly created rules on a test set. The
accuracy must be noted and sent back into the optimization method used in step 2
and the process will continue until the optimum or highest accuracy is achieved.

The procedure for computing rough sets and extracting rules is given in
Algorithm 8.1 (Crossingham 2007). Once the rules are extracted, they can be tested
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Algorithm 8.1 Procedure to Generate a Rough Set Model

Input: Condition and Decision Attributes
Output: Certain and Possible Rules
1 Obtain the data set to be used;
2 Repeat
3 forconditional attribute 1 to size of training datado
4 Pre-process data to ensure that it is ready for analysis;
5 Discretize the data according to the optimization technique;
6 Compute the lower approximation, as defined in Eq. 8.5;
7 Compute the upper approximation, as defined in Eq. 8.6;

8
From the general rules, calculate plausibility measures for an object x belonging to
set X, as defined by Eq. 8.13;

9 Extract the certain rules from the lower approximation generated for each subset;
10 Similarly, extract the possible rules from the upper approximation of each subset;
11 Remove the generated rules for the purposes of testing on unseen data;
12 Compute the classifier performance using the AUC;
13 End
14 until Optimization technique termination condition;

using a set of testing data. The classification output is expressed as a decision value
which lies between 0 and 1. The accuracy of the rough set is determined using the
Area Under the receiver operating characteristic Curve (AUC).

8.5 Optimized Rough Sets

This section of the chapter uses the ant colony optimization technique to discretize
the rough set partition. The general procedure pursued in this chapter is best
expressed mathematically as follows (Marwala 2009; Marwala and Lagazio 2011):

y D f .x; RP / (8.17)

Here x is the input data � in this chapter it is the dissolved gas analysis data, RP
is the rough set partition and y is the accuracy obtained when the model is tested on
unseen data. For this chapter, the aim of the optimization process was to identify the
RP parameters so that the accuracy y was maximized. To this end, the ant colony
optimization method was applied and is the subject of the next section (Mpanza
2011).

8.5.1 Ant Colony System

Ant Colony Optimization (ACO) is a meta-heuristic optimization technique for
estimating solutions for combinatorial optimization problems (Blum 2005; Mpanza
and Marwala 2011; Mpanza 2011). It is a type of the swarm intelligence group.
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Swarm intelligence is the emergent collective intelligence of groups of simple
agents. Ant colony system was first proposed by Dorigo (1992). It is inspired by the
natural behavior of ants as they work collectively sharing information to identify
the best possible route between their colony and the food source. This autonomy is
achieved by ants depositing pheromone on their trail that acts as a signal for other
ants. In the end, the path with the highest concentration of pheromone deposit is the
optimal path.

ACO is different from other optimization tools in that it explicitly incorporates
prior information on the structure of a good solution with a posteriori information
on the good solution that was attained earlier (Yaseen and AL-Slamy 2008; Mpanza
2011; Mpanza and Marwala 2011). Different to the discretization techniques such as
equal width or equal frequency types (Marwala and Lagazio 2011), ACO is a non-
deterministic procedure. Non-deterministic procedures produce different solutions
for different implementation because of their randomness (Thantulage 2009). ACO
techniques have been applied in estimating solutions for the traveling salesmen
problem (Dorigo and Gambardella 1997; Cheng and Mao 2007), the network
routing problem (Di Caro and Dorigo 1997), flowshop scheduling (Tavares Neto and
Godinho Filho 2011), seismic design (Kaveh et al. 2010), part-machine clustering
(Xing et al. 2010a, b), for missing data estimation (Leke and Marwala 2006),
feature selection (Chen et al. 2010b) and for attribute reduction (Ke et al. 2008).
These applications have demonstrated that ACO is capable of estimating NP-hard
problems.

8.5.2 Artificial Ant

An artificial ant is a computational agent describing the behavior of a real ant by
iteratively constructing a solution for the problem at hand. The current state, i, is an
incomplete solution and an ant follows the pheromone trail to move to the following
state, j, and a more complete solution (Carbonaro and Maniezzo 2003).

8.5.3 Ant Colony Algorithm

An ant colony algorithm tries to solve a problem by constructing a candidate
solution and using the current solution to drive the ant’s path towards a high quality
solution (Dorigo and Blum 2004; Mpanza 2011). The full procedure can be as
follows (Mpanza 2011; Dorigo and Blum 2004):

1. Set the trail pheromone (
) and the heuristic function (�)
2. Estimate the best possible path (T) based on the current £ and �,
3. Update 
 and � based on the best selected path T,
4. Repeat step 1 until the termination condition is attained
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Trail pheromone (
 ij) is an a posteriori desirability of selecting the path between i
and j while heuristic function (�ij) is the attractiveness of selecting the path between
i and j. Parameters 
 ij and �ij are set to equal values to avoid biasing the solution
search.

8.5.4 Ant Routing Table

An ant routing table is an action choice rule. An ant at node i uses this table to
choose the best possible move to the next node j. The probability of ant k at node
i choosing node j as the next node is given by (Mpanza 2011; Dorigo and Blum
2004):

P k
j D

8̂
ˆ̂̂<
ˆ̂̂̂
:


˛
ij �

ˇ
ij

nP
m2N k

i


˛
ij �

ˇ
ij

if j 2 Ni

0 otherwise

(8.18)

Here Ni is the set of nodes available from node i. Parameters � and 
 are tuning
variables. The solution identified by ant k is the path travelled Tk. The path is
assessed by the objective function Lk.

8.5.5 Pheromone Update

The cost of the solution is identified by ant k in path Tk is Lk. This objective function
is applied to update the pheromone trail for reinforcement (Mpanza 2011; Dorigo
and Blum 2004):

�
k
ij D

8̂
<
:̂

1

Lk

if .i; j / 2 Tk

0 otherwise

(8.19)

The effect of updating the pheromone in this manner is so that large objective
functions result in small changes, whereas small objective functions result in
significant changes. This is to bias future searches towards the solution with the
lowest objective function. After all the ants have identified their solution, the
pheromone is updated as follows (Mpanza 2011; Dorigo and Blum 2004):


ij D .1 � �/ 
ij C
mX

kD0


k
ij (8.20)
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Fig. 8.1 Process followed in developing an ant colony optimization based rough set model
(Mpanza 2011; Mpanza and Marwala 2011)

Discretise Data

Min Maxi j

Train and test the RS
Return the AUC

i ∈ [1,98], j ∈ [2,99] and i ≤  j .Fig. 8.2 The ant colony
optimization discretization of
a continuous variable. Here
RS stands for rough sets and
AUC stands for the area under
the receiver operating
characteristics curve (Mpanza
2011; Mpanza and Marwala
2011)

where � is the pheromone evaporation constant. This constant is used to reduce the
pheromone on paths that are not sampled.

Previous studies have shown a number of techniques applied for data discretiza-
tion but none of which applied ant-colony optimization. For this section, a rough set
model was developed from data discretized using the ACO technique. The objective
of this study was to:

1. Establish if ant colony optimization could be applied to discretize data for the
detection of faults in bushings using rough set modeling.

2. Establish if ant colony optimization can contend with other discretization
approaches. Figure 8.1 shows the process for developing an ant colony optimiza-
tion model based on rough sets.

8.5.6 Ant Colony Discretization

Figure 8.2 shows the operation of ant colony optimization discretization (Mpanza
2011; Dorigo and Blum 2004). Discretization in ant colony optimization is
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Algorithm 8.2 Ant Colony Optimized Rough Sets (Mpanza 2011)

multivariate process and Fig. 8.2 shows a continuous variable being discretized in
i and j, integer percentages of the range of a variable. To discretize a variable into
three sections, two division points are needed. These division points ensure that ants
estimate a solution by choosing an (i; j) permutation in each variable that maximizes
the testing accuracy of the model. Algorithm 8.2 demonstrates the ACO rough set
process.

For this chapter the ACO discretization process was compared with the equal-
frequency-bin (EFB) partitioning method as investigated by Crossingham (2007).

8.6 Application to Transformer Bushings

The technique was applied to a set of 2,000 bushings which were divided into
training and testing bushings. The inputs were each discretized into three sections
using the ACO and the EFB. Table 8.1 summarises the model’s performance. EFB
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Table 8.1 Comparison of the
ACO and EFB (Mpanza
2011)

Method Accuracy (%) AUC Number of rules

EFB 96.4 0.964 206
Ant colony 96.1 0.961 45

had an accuracy of 96.4% while the ACO had 96.1% which is approximately the
same (Mpanza 2011). Nevertheless, the number of rules were substantially less in
using the ACO than the EFB. Consequently, the ACO model has roughly the same
degree of accuracy as the EFB, but is more transparent. The EFB surpasses the ACO
in terms of computational time. However, this is barely a disadvantage for the ACO
because training is a once-off process. Invoking Occam’s razor, ACO is simpler and
thus the better of the two classifiers.

8.7 Conclusion

This chapter presented a technique for discretizing input data for rough set modeling
using ant colony optimization, a metaheuristic optimization method. The theories
of rough set and ant colony optimization method were described. The presented
technique was tested for the condition monitoring of transformer bushings. The ant
colony optimization method was then compared to the equal frequency bin model
and was observed to be better in transparency and equal in accuracy even though it
was computationally expensive.
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Chapter 9
Condition Monitoring with Incomplete
Information

9.1 Introduction

Neural networks have been applied in together with vibration data to identify faults
in structures (Doebling et al. 1996; Marwala 2001, 2003, 2004; Zang and Imregun
2001; Waszczyszyn and Ziemianski 2001; Marwala and Chakraverty 2006). Neural
networks estimate functions of arbitrary complexity using training data. Supervised
neural networks are applied to characterize a mapping from an input vector onto
an output vector, whereas unsupervised networks are applied to classify the data
without prior knowledge of the classes involved. One of the the most used neural
network architectures is the multi-layer perceptron (MLP) which is trained using
the back-propagation technique (Marwala 2000; Bishop 1995). Another network
type is the radial basis function or RBF (Bishop 1995). Both the MLP and RBF
have been applied for fault identification in structures but it has been observed that
MLP generally performs better than RBF (Marwala 2000). This is because the RBF
generally requires the application of the pseudo-inverse of a matrix for training,
which is normally singular while the MLP applies optimization approaches that are
stable (Marwala 2000).

Levin and Lieven (1998) used a RBF neural network and modal properties to
identify errors in a finite element model of a cantilevered beam. The technique
was found to give a good identification of the faults even with a limited number
of experimentally measured degrees of freedom and modes.

Wu et al. (1992) applied an MLP neural network to identify the damage in a
model of a three-story building. Damage was modeled by reducing member stiffness
between 50% and 75%. The input to the neural network was a Fourier transform of
the acceleration data and the output was the level of damage in each member. The
network could diagnose damage within 25% accuracy.

Lopes et al. (2000) applied impedance techniques and neural networks for
structural health monitoring. Marwala (2001) applied a probabilistic committee of
neural networks to classify faults in a population of nominally identical cylindrical
shells. The probabilistic neural networks were trained using the hybrid Monte Carlo

T. Marwala, Condition Monitoring Using Computational Intelligence Methods:
Applications in Mechanical and Electrical Systems, DOI 10.1007/978-1-4471-2380-4 9,
© Springer-Verlag London Limited 2012
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(Neal 1993) and an accuracy of 95% was observed in classifying the eight-classes
fault cases. Chen et al. (2003) applied neural networks and response-only data for
the fault diagnosis of structures.

Atalla and Inman (1998) trained a RBF neural network using frequency response
functions to identify faults in structures. Marwala and Hunt (1999) applied multi-
layer perceptron neural networks and finite element models to identify faults in a
cantilevered beam. Atalla and Inman (1998) trained a RBF neural network using
frequency response functions to identify faults in structures. Suresh et al. (2004)
used a modular neural network approach to identify crack location in a cantilever
beam and elsewhere Reddy and Ganguli (2003) used radial basis function neural
networks for a helicopter rotor blade. Pawar and Ganguli (2003) used a genetic
fuzzy system for damage detection in beams and helicopter rotor blades.

When these neural networks are applied in a real life condition, one of the key
problems faced is the issue of sensor failure. If one of the sensors fails, then the
neural network is not capable of making a decision because it only works with a
complete input set. What is normally done is to use the average value of that sensor
calculated over some defined period in the past and hope that the next time around
the sensor will be available.

In the literature there is no method presented thus far that takes account of
the absence of entries of inputs to the neural networks for fault classification in
structures. It must be noted, nevertheless, that the issue of estimating missing data
has been applied in other areas in mechanical systems such as validating the gas-
path sensor data (Lu and Hsu 2002). Consequently this chapter contributes to the
field of structural mechanics a technique that has been applied in gas dynamics.

This chapter explains a technique for approximating missing entries in the
database that is based on auto-associative models (Kramer 1992) combined with
genetic algorithm for data estimation and subsequently fault identification in
structural mechanics (Marwala and Chakraverty 2006). This technique was tested
on a classification of faults in a population of nominally cylindrical shells.

9.2 Mathematical Background

The mathematical background to neural networks and auto-associative networks
with Missing Data is explained in this section.

9.2.1 Neural Networks

This chapter we applied neural networks to construct auto-associative neural
networks. These are networks with inputs and output being the same (Kramer
1992; Marwala and Chakraverty 2006). There are different types of neural network
topologies but this chapter focuses on the MLP. The MLP network implemented
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in this chapter contains a hyperbolic tangent basis function in the hidden units and
linear basis functions in the output units (Bishop 1995). The relationship between
the output y and input x be written as follows (Bishop 1995):

yk D
MX

jD0

w.2/

kj tanh

 
dX

iD0

w.1/
j i xi

!
(9.1)

where w.1/
j i and w.2/

kj indicate weights in the first and second layer, respectively, going
from input i to hidden unit j, M is the number of hidden units, and d is the number
of output units.

The MLP model can take into account the intrinsic dimensionality of the data.
Models of this nature can estimate any continuous function to arbitrary accuracy if
the number of hidden units M is adequately large. A training of the neural network
identifies the weights in Eq. 9.1. A cost or objective function must be selected to
identify the weights in Eq. 9.1. A cost function is a mathematical representation of
the overall objective of the problem. In this chapter, the main objective is to construct
the cost function that identifies a set of neural network weights given the measured
data. If the training set D D fxk; tkgN

kD1 is used, and assuming that the targets y are
sampled independently given the inputs xk and the weight parameters, wkj, then the
cost function, E, may be written using the sum-of-squares of errors cost function
(Bishop 1995):

E D
NX

nD1

KX
kD1

ftnk � ynkg2 (9.2)

here t is the target data, N is the number of training examples and K is the number
of outputs.

Before network training is performed, the network architecture needs to be
created by selecting the number of hidden units, M. If M is too small, the neural
network will be inadequately flexible and will give a poor generalization of the data
because of high bias. Contrariwise, if M is too large, the neural network will be
unnecessarily flexible and will give a poor generalization due to the phenomenon
known as over-fitting caused by high variance. In this study to minimize the
equation, the scaled conjugate gradient technique was applied in conjunction
with back-propagation (Møller 1993; Bishop 1995). The scaled conjugate gradient
technique is an optimization method that is based on the conjugate gradient
technique but uses optimized mathematical expressions to reduce the computational
intensity of the conjugate gradient method. It must however be noted that there is
no material difference in accuracy of the results of the scaled conjugate gradient,
conjugate gradient and other gradient based optimization methods. The only
difference between these methods is the computational efficiency and so the scaled
conjugate gradient method was selected because of its computational efficiency.
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9.2.2 Auto-Associative Networks with Missing Data

Auto-associative networks are models where the network is trained to recall its
inputs. This means that whenever an input is presented to the network the output
is the predicted input. These networks have been used in a number of applications
including novelty detection, feature selection and data compression (Hines et al.
1998; Kramer 1991; Upadhyaya and Eryurek 1992; Jensen et al. 2001; Reed and
Marks II 1999).

There has been an increased interest in handling the missing data problem by
estimation or imputation (Nelwamondo and Marwala 2007; Abdella and Marwala
2006). The combination of the auto-associative neural network and the genetic al-
gorithm (GA) has been demonstrated to be a successful method to estimate missing
data (Nelwamondo 2008; Abdella and Marwala 2006). The efficient and effective
estimation of missing data relies on the extraction and storage of the relationships
or correlations between the variables that make up the dataset (Nelwamondo 2008).
Auto-associative neural networks allow this to be conducted well (Kramer 1991)
Nevertheless, other methods such as a standard principal component analysis (PCA)
can also be used successfully.

Other applications of auto-associative network includes its use in structural
damage detection (Zhou et al. 2011), in autonomous single-pass end-member
approximation (Ritter et al. 2009), in spoken cued recall (de Zubicaray et al. 2007)
and in fault identification in rotating machinery (Sanz et al. 2007). Also, Amiri et al.
(2008) analyzed the dynamical behaviour of a feedback auto-associative memory.

It must be borne in mind that on applying auto-associative neural networks for
data compression, the network has fewer nodes in the hidden layer. However, it
must be noted that for missing data estimation it is crucial that the network be as
accurate as possible and that this accuracy is not necessarily realized through few
hidden nodes as is the case when these networks are used for data compression.
It is consequently vital that some process for identifying the optimal architecture
must be used. By using Eq. 9.1 in an auto-associative memory network, as shown
in Fig. 9.1, an auto-associative memory network may be formulated by setting the
input x to be equal to the output y. Equation 9.1 may thus be re-written in simplified
form as (Marwala 2009; Abdella and Marwala 2006):

fyg D f .fwg; fxg/ (9.3)

Here fyg is the output vector, fxg is the input vector, f is a function, and fwg is the
mapping weight vector. Given the fact that fxg D fyg, Eq. 9.3 may thus be re-written
as follows (Marwala 2009; Abdella and Marwala 2006):

fxg D f .fwg; fxg/ (9.4)
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Fig. 9.1 An auto-associative MLP network having two layers of adaptive weights

For a perfectly mapped system, Eq. 9.4 holds. Nevertheless, for a realistic
mapping there will be some error, and thus Eq. 9.4 may be re-written as (Marwala
2009; Abdella and Marwala 2006):

feg D fxg � f .fwg; fxg/ (9.5)

The sum of squares of both the left hand side and the right hand side of Eq. 9.5
will give (Marwala 2009; Abdella and Marwala 2006):

E D
cX

iD1

.fxg � f .fwg; fxg//2 (9.6)

Here c is the size of the input vector. For a situation when not all the inputs are
known, the input data may be divided into known xkw and unknown components xu

and thus Eq. 9.6 may be written as follows (Marwala 2009; Abdella and Marwala
2006):
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(9.7)

From Eq. 9.7, the unknown component data xu is estimated from the known
component xkw by minimizing the error in Eq. 9.7. It is essential that a global
minimum error be achieved because a local minimum error results from the incorrect
estimation of the unknown component xu. For this chapter a global optimum
technique, genetic algorithm, was applied to identify the global optimum solution
(Holland 1975). The next section thus explains the genetic algorithm.
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9.3 Genetic Algorithms (GA)

The condition monitoring procedure presented in this chapter used a genetic
algorithm to estimate the missing data by minimizing Eq. 9.7. Different to various
optimization procedures, a genetic algorithm technique has a higher probability
of converging to a global optimal solution than does a gradient-based method
(Marwala 2010). A genetic algorithm is a population-based, probabilistic method
that operates to find a solution to a problem from a population of possible solutions
(Goldberg 1989; Holland 1975; Kubalı́k and Lazanský 1999; Marwala 2009).
It is applied to identify approximate solutions to difficult problems through the
analogy of the principles of evolutionary biology to computer science (Michalewicz
1996; Mitchell 1996; Forrest 1996; Vose 1999; Tettey and Marwala 2006). It
was inspired by Darwin’s theory of evolution where members of the population
compete to survive and reproduce whereas the weaker are eliminated from the
population. Every individual is allocated a fitness value according to how well
it satisfies the objective of solving the problem. New and more evolutionary-fit
individual solutions are produced during a cycle of generations, where selection
and recombination operations take place, similar to how gene transfer happens to
the current individuals. This continues until a termination condition is satisfied, after
which the best individual thus far is considered to be the estimation for missing data.
This chapter describes the application of a genetic algorithm to optimize Eq. 9.7.

Applications of genetic algorithm include those in structures (Marwala 2002),
in helicopter rotor-blade design (Akula and Ganguli 2003), in artificial boundary
conditions (Tu and Lu 2008) and for material model parameter identification
for low-cycle fatigue (Franulović et al. 2009). Other recent applications of GA
include Balamurugan et al. (2008) who evaluated the performance of a two-stage
adaptive genetic algorithm, enhanced with island and adaptive features for structural
topology optimization. Elsewhere, Kwak and Kim (2009) used a hybrid genetic
algorithm, improved by a direct search for optimum design of reinforced concrete
frames. Canyurt et al. (2008) approximated the strength of a laser hybrid welded
joint using a genetic-algorithm technique.

Perera et al. (2009) used a GA to evaluate the performance of a multi-
criteria damage-identification system. Almeida and Awruch (2009) applied a GA
to optimally design composite laminated structures. Their GA was adapted with
particular operators and variables codification for the definite class of composite
laminated structures.

Li and Du (2012) applied a method for handling the inequality constraint in
Gas, using a boundary simulation method. Elsewhere, Gladwin et al. (2011) applied
GA for hardware-in-the-loop experimentation. Mosalman Yazdi and Ramli Sulong
(2001) applied a GA to the optimization of Off-Centre bracing, while Balin (2011)
applied a GA in non-identical parallel machine scheduling, and Musharavati and
Hamoud (2011) applied a modified GA for manufacturing process planning in
manufacturing lines making multiple parts.



9.3 Genetic Algorithms (GA) 177

Crossover

Mutation

Fitness function
calculation

reproduction

Stop

Does this satisfy the stopping

Initialization
Fig. 9.2 Flow chart of the
genetic algorithm method

Additional applications of a genetic algorithm for optimization structures include
Paluch et al. (2008) as well as Roy and Chakraborty (2009). In addition, GA has also
been proven to be successful in a variety of applications including:

• finite-element analysis (Marwala 2003, 2010);
• selecting optimal neural-network architecture (Arifovic and Gençay 2001);
• training hybrid fuzzy neural networks (Oh and Pedrycz 2006);
• solving job-scheduling problems (Park et al. 2003);
• remote sensing (Stern et al. 2006);
• missing-data estimation (Abdella and Marwala 2006; Marwala 2009); and
• combinatorial optimization (Zhang and Ishikawa 2004).

Additionally, GA has been proven to be successful in complex optimization prob-
lems such as wire-routing, scheduling, adaptive control, game-playing, cognitive
modeling, transportation problems, traveling salesman problems, optimal control
problems and database-query optimization (Pendharkar and Rodger 1999; Marwala
et al. 2001; Marwala and Chakraverty 2006; Marwala 2007; Crossingham and
Marwala 2007; Hulley and Marwala 2007). The MATLAB

®
implementation of a

GA as described in Houck et al. (1995) was used as the GA in this chapter. To apply
a GA, the following steps are followed as shown in Fig. 9.2: initialization, crossover,
mutation, selection, reproduction, and termination.
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In this chapter, the GA viewed learning as a competition between populations of
evolving candidate problem solutions. A fitness function, which in this chapter is
represented by Eq. 9.4, evaluates each solution to decide whether it will contribute
to the next generation of solutions. Through operations analogous to gene transfer in
sexual reproduction, the algorithm creates a new population of candidate solutions
(Goldberg 1989). The three most important aspects of using a genetic algorithm are
the:

• definition of the objective function;
• implementation of the genetic representation; and
• implementation of the genetic operators.

The details of genetic algorithms are illustrated in Fig. 9.2.

9.3.1 Initialization

In the beginning, a large number of possible individual solutions are randomly
generated to form an initial population. This initial population is sampled so that
it covers a good representation of the updating solution space. Within the context of
this chapter, the size of the population should depend on the nature of the problem.

9.3.2 Crossover

The crossover operator fuses genetic information in the population by cutting pairs
of chromosomes at random points along their length and swapping the cut sections
over. This has a potential for assembling successful operators (Gwiazda 2006).

Crossover occurs with a certain probability. In many natural systems, the prob-
ability of crossover occurring is higher than the probability of mutation occurring.
An example is a simple crossover technique (Banzhaf et al. 1998; Goldberg 1989).

For simple crossover, one crossover point is chosen, a binary string from the
beginning of a chromosome to the crossover point is copied from one parent, and
the rest is copied from the second parent. For instance, if two chromosomes in
binary space a D 11001011 and b D 11011111 undertake a one-point crossover at
the midpoint, then the resulting offspring is c D 11001111. For arithmetic crossover,
a mathematical operator is performed to make an offspring. For example, an AND
operator can be executed on a D 11001011 and b D 11011111 to create an offspring
11001011.

9.3.3 Mutation

The mutation operator chooses a binary digit in the chromosomes at random and
inverts it. This has a potential of adding new information to the population, and
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in so doing avoids the GA simulation from being trapped in a local optimum
solution. Mutation takes place with a certain probability. In many natural systems,
the probability of mutation is low (i.e., less than 1%). For this chapter, binary
mutation was applied (Goldberg 1989). When binary mutation is applied, a number
written in binary form was selected and one bit value was inverted. For instance: the
chromosome 11001011 may become the chromosome 11000011.

Non uniform mutation operates by increasing the probability of mutation such
that it will approximate 0 as the generation number increases adequately. It avoids
the population from stagnating in the early stages of the evolution process, and then
allows the procedure to improve the solution in the end stages of the evolution.

9.3.4 Selection

For each generation, a selection of the proportion of the existing population is
selected to breed a new population. This selection is accomplished by using the
fitness-based procedure, where solutions that are fitter, as measured by Eq. 9.7, are
given a higher probability of being chosen. Some selection approaches rank the
fitness of each solution and select the best solutions, whereas other techniques rank
a randomly selected sample of the population for computational efficiency.

Numerous selection functions have a tendency to be stochastic in nature and
are therefore designed such that a selection procedure is performed on a small
proportion of less fit solutions. This ensures that diversity of the population of
possible solutions is preserved at a high level and, consequently, avoids convergence
on poor and incorrect solutions. There are numerous selection techniques. These
include roulette-wheel selection (Mohamed et al. 2008).

Roulette-wheel selection is a genetic operator applied for selecting potentially
valuable solutions in a GA optimization process. In this technique, each possible
technique is assigned the fitness function that is applied to map the probability of
selection with each individual solution. Supposing the fitness fi is of individual i in
the population then the probability that this individual is selected is:

pi D fi

,
NP

jD1

fj
(9.8)

Here N is the total population size.
This procedure guarantees that candidate solutions with a higher fitness have a

lower probability so that they may eliminate those with a lower fitness. In the same
way, solutions with low fitness have a low probability of surviving the selection
process. The advantage of this step is that although a solution may have low fitness,
it may still have some components that may be beneficial in the future.

The process explained results in the following generation of a population of
solutions that is different from the parent generation and that has an average fitness
that is higher than the preceding generation.
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Algorithm 9.1 An Algorithm for Implementing a Genetic Algorithm

1. Choose the initial population
2. Calculate the fitness of each chromosome in the population using Eq. 9.7
3. Repeat

a. Select chromosomes with higher fitness to reproduce
b. Produce a new population using crossover and mutation to create offsprings
c. Calculate the fitness of each offspring
d. Subsitute the low fitness section of the population with offspring

4. Repeat until termination

9.3.5 Termination

The procedure explained is recurred until a termination criterion has been realized,
either because a desired solution that meets the objective function in Eq. 9.7 was
identified or because a stated number of generations has been achieved or the
solution’s fitness has converged (or any combination of these).

The procedure explained can be expressed in pseudo-code, as described in Algo-
rithm 9.1 (Goldberg 1989; Marwala 2010). For instance, for a GA representation, a
choice has to be made between a binary and a floating-point representation. For the
initialization procedure, a choice has to be made for the population size.

9.4 Missing Entry Methodology

The missing data methodology applied in this chapter combined the auto-associative
neural networks and with the optimization technique, viz. the genetic algorithm. The
technique is shown in Fig. 9.3. It was applied by determining the number of missing
data and calling this number N. Then, the missing entry objective function with
N variables was constructed using Eq. 9.7. A Genetic algorithm was then applied
to minimize the missing entry objective function and the optimum solution is the
approximated values of the missing variables. The missing entry objective function
in the equation can also be solved using a gradient-based method because the
gradient of the error function can be calculated simply by using back-propagation.
Nevertheless, the gradient-based techniques are not global procedures and so were
not used for this chapter although they can be used to adjust the solution given
by the genetic algorithm. Nonetheless, it has been observed that fine-tuning the
genetic algorithm solution does not offer any advantage in the estimation of the
missing entries nor in the accuracy of fault classification (Marwala and Chakraverty
2006).
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Fig. 9.3 A diagram
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9.5 Dynamics

In this chapter, modal properties i.e., natural frequencies and mode shapes wee
applied for the fault classification of the population of cylinders which were
described in Chap. 2. Consequently these parameters are surveyed only briefly in
this section. Modal properties are related to the physical properties of the structure.
All elastic structures may be defined in terms of their distributed mass, damping
and stiffness matrices in the time domain through the following expression (Ewins
1995; Marwala 2010):

ŒM �fX 00g C ŒC �fX 0g C ŒK�gfXg D fF g (9.9)
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Here [M], [C] and [K] are the mass, damping and stiffness matrices respectively,
and fXg, fX0g and fX00g are the displacement, velocity and acceleration vectors,
respectively. Finally fFg is the applied force vector. If Eq. 9.9 is transformed into the
modal domain to form an eigenvalue equation for the ith mode, then (Ewins 1995;
Marwala 2010):

.�!2
i ŒM � C j!i ŒC � C ŒK�/f'gi D f0g (9.10)

wherejDp�1, !i is the ith complex eigenvalue, with its imaginary part correspond-
ing to the natural frequency !i, f0g is the null vector, and f'gi is the ith complex
mode shape vector with the real part corresponding to the normalized mode shape
f�gi. From Eq. 9.10 it may be assumed that changes in the mass and stiffness
matrices cause changes in the modal properties of the structure. Consequently, the
modal properties can be identified through the identification of the correct mass and
stiffness matrices.

9.6 Example: A Cylindrical Structure

In this section the technique presented in this chapter was experimentally validated.
The experiment was performed on a population of cylinders, which were supported
by inserting a sponge rested on bubble-wrap plastic sheet, to simulate a ‘free-free’
environment. The particulars of this may be obtained in Marwala (2001) and was
described in Chap. 2.

As described by Marwala (2001), each cylinder was divided into three equal
substructures and holes 10–15 mm in diameter were introduced at the centers of
the substructures to simulate faults. For one cylinder, the first type of fault was a
zero-fault scenario. This type of fault was given the identity [0 0 0], indicating that
there were no faults in any of the three substructures. The second type of fault was a
one-fault-scenario, where a hole might be located in any of the three substructures.
The three possible one-fault-scenarios were [1 0 0], [0 1 0], and [0 0 1] indicating
one hole in substructures 1, 2, or 3 respectively. The third type of fault was a two-
fault scenario, where a hole was located in two of the three substructures. The three
possible two-fault-scenarios were [1 1 0], [1 0 1], and [0 1 1]. The final type of fault
was a three-fault-scenario, where a hole was located in all three substructures, and
the identity of this fault was [1 1 1]. There were eight different types of fault-cases
considered (including [0 0 0]).

Because the zero-fault scenarios and the three-fault scenarios are over-
represented, 12 cylinders were picked at random and additional one- and two-fault
cases were measured after increasing the magnitude of the holes. This was done
before the next fault case was introduced to the cylinders. The reason why zero-fault
and three-fault scenarios are over-represented was because all cylinders tested give
these fault-cases, whereas not all cylinders tested give all 3 one-fault and 3 two-fault
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cases. Only a few fault-cases were selected because of the limited computational
storage space available. For each fault-case, acceleration and impulse measurements
were taken. The types of faults that were introduced (i.e., drilled holes) do not
influence damping.

Each cylinder was measured three times under different directions by changing
the orientation of a rectangular sponge inserted inside the cylinder. The number
of sets of measurements taken for undamaged population was 60 (20 cylinders � 3
different directions).

The impulse and response data were processed using the Fast Fourier Transform
to convert the time domain impulse history and response data into the frequency
domain. The data in the frequency domain was used to calculate the FRFs. The
FRF results from an ensemble of 20 undamaged cylinders indicated that the mea-
surements were generally repeatable at low frequencies and were not repeatable at
high frequencies. Axi-symmetric structures such as cylinders have repeated modes
due to their symmetry (Royston et al. 2000). In the work for this chapter, the
presence of an accelerometer and the imperfection of cylinders destroy the axi-
symmetry of the structures. Therefore, the problem of repeated natural frequencies
was neatly avoided thereby making the process of modal analysis easier (Maia and
Silva 1997). The problem of uncertainty of high frequencies was avoided by only
using frequencies under 4,000 Hz.

From the measured data, 10 parameters were selected using the principal
component analysis described in Chap. 2. An auto-associative network with 10
inputs and 10 outputs was constructed and several numbers of hidden units were
used as shown in Fig. 9.4 (Marwala and Chakraverty 2006). As shown in this
figure, it was found that 10 hidden units was the optimal network that gives the best
prediction of the input data. However it must be noted that it is generally assumed
that the best auto-associative network is the one that has the lowest possible number
of hidden units. However, in this study, i.e., the case of missing data estimation, this
factor was not taken for granted and it is recommended that a separate study, like
the one conducted here, be used to determine the optimal auto-associative network.
This is because for missing data estimation it was found that the success of the
procedure was determined by how accurate the networks were and the accuracy did
not necessarily only occur when the size of hidden nodes was small. As indicated
before, the auto-associative network was trained using the scaled conjugate method.

The first experiment consisted of cases where one of the input to the neural
network was assumed to be unknown and then estimated using a genetic algorithm
method. To apply a genetic algorithm, an arithmetic cross-over, non-uniform
mutation and normalized geometric selection were used. On applying the arithmetic
cross-over, a number of parameters had to be selected. These were bounds and
the probability of cross-over. The bounds were determined from the maxima and
minima of historical values of the particular data point, while the probability of
cross-over was selected to be 0.75 as suggested by Holland (1975). On implement-
ing the mutation the parameters that needed to be chosen were the bounds, and
these were chosen as for cross-over, and the probability of mutation, was chosen
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Fig. 9.4 The prediction error versus the number of hidden nodes

to be 0.0333 as recommended by Goldberg (1989). The Genetic algorithm had a
population of 20 and was run for 25 generations.

The presented method for the case of one missing data per input set, estimated
the missing value to the accuracy of 93%. When the method was tested for the
case with two missing data per input set, the accuracy of the estimated values was
91%. The estimated values together with the accurate values are also indicated in
Fig. 9.5 (Marwala and Chakraverty 2006). This figure illustrates that the missing
data estimator gave results that are consistent and accurate. In fact the data in this
figure shows that the correlation between the estimated data and the correct data
was 0.9.

In many cases the estimated values were intended for a particular reason. In this
chapter they were intended to fulfill the goal of fault classification in a population of
cylinders. The estimated values were, therefore, used for the classification of faults
in a population of cylindrical shells and the fault classification accuracy of 94%
was observed for a one-missing-entry case and 91% for the two-missing-entry case.
When the complete database was used, a fault classification accuracy of 96% was
achieved.

The sources of errors in the experiment were measurement errors, modal analysis
and neural network training. To minimize these errors, reliable instruments were
used for measuring data, reliable software was used for signal processing and modal
analysis and standard procedures were used for training, generalization and testing
of neural networks. The impact of these errors on the quality of results was to such
a small degree that it did not compromise the quality of the results.
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Fig. 9.5 The measured and estimated missing value

9.7 Conclusion

In this chapter, a technique based on auto-associative neural networks and genetic
algorithms was presented to approximate missing entries in data. This technique was
tested on a population of cylindrical shells. The technique could approximate single-
missing-entries to an accuracy of 93% and two-missing-entries to an accuracy of
91%. Furthermore, a fault classification accuracy of 94% was obtained for single-
missing-entry cases and 91% for two-missing-entry cases whereas the full database
set gave a classification accuracy of 96%.
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Chapter 10
Condition Monitoring Using Support
Vector Machines and Extension Neural
Networks Classifiers

10.1 Introduction

The condition monitoring of machines is very important in industry because of the
necessity to improve machine reliability and reduce the possible loss of production
from machine breakdowns. Condition monitoring is conducted when it is essential
to classify the state of a machine and to establish whether it is faulty through ob-
servation and analysis (William et al. 1992; Marwala and Vilakazi 2007). Condition
monitoring is a method of monitoring the operating characteristics of a machine so
that the changes and movements of the monitored signals can be used to predict the
need for maintenance before a breakdown does happen. Condition monitoring has
become progressively more vital in areas such as aerospace engineering where an
unpredicted fault can result in a serious accident. Another application of condition
monitoring is in manufacturing where manufacturers must identify methods to avoid
failures, decrease maintenance costs, minimize downtime, and increase the lifetime
of their equipment.

With a reliable condition monitoring procedure, machines can be employed
in a more optimal fashion. A maintenance plan follows a schedule to select
when maintenance must be performed. This leads to inefficiencies because the
maintenance process may be performed unnecessarily early or a failure may occur
prior to scheduled maintenance taking place. However, condition monitoring can be
applied for condition based maintenance or for predictive maintenance.

Rotating machinery is employed in a number of industrial applications. A com-
mon component of a modern rotating machinery is the rolling element bearing. In
fact most machine failures are related to bearing failure (Lou and Loparo 2004),
which frequently result in protracted downtimes that have economic consequences.
As a result, an increasing amount of condition monitoring data are measured and
presented to engineers for analysis. However, because of the complexity and mass
of data generated relating to all plant items and their health, it is problematic for
engineers to handle such data. Because the identification of the vital information
from such data is difficult, a reliable and automated diagnostic method permitting
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fairly unskilled operators is necessary to take significant decisions without the need
for a condition monitoring specialist. One of the most frequently applied condition
monitoring techniques is the vibration-based condition monitoring procedure which
is grounded on the principle that all systems produce vibrations. When a machine
is operating appropriately, the vibrations are small and constant; however, when
faults progress and several dynamic processes change, the vibration spectrum also
changes (Marwala 2001).

The robustness of a classification system depends on the usefulness of the
extracted features and the reliability and effectiveness of a condition monitoring
classification system. This chapter presents three feature selection methods applied
for bearing fault diagnosis (Nelwamondo et al. 2006a). These methods are the
Mel-frequency Cepstral Coefficients (MFCC) technique, which is a time-frequency
domain technique; kurtosis which is the time-domain procedure and a fractal
dimension analysis which is also time-domain method that has been of benefit.
This chapter also assesses the usefulness of the extracted features for bearing fault
diagnosis using the Support Vector Machine (SVM) and the Extension Neural
Network (ENN) classifiers. The SVM was selected because it has been applied
successfully in many fault complex applications (Msiza et al. 2007; Patel and
Marwala 2009; Marivate et al. 2008) and the ENN was selected because of its
success in pattern recognition of complex systems (Vilakazi and Marwala 2006;
Mohamed et al. 2006).

10.2 Features

The success of a classification system depends on the usefulness of the extracted
features that represent a specific machine condition. Previously, substantial research
has been conducted into the development of a number of feature extraction methods
and condition monitoring systems. Feature extraction methods can be categorized
into three domains: the frequency, time-frequency and time-domains (Ericsson et al.
2004). The frequency domain techniques usually include a frequency analysis of the
vibration signals and investigate the periodicity of high frequency transients. In this
regard, frequency domain approaches explore a train of repetitions arising at any of
the frequencies from the faulty regime (Ocak and Loparo 2004). This technique
becomes complicated because the periodicity of the signal may be suppressed.
These frequency domain methods include the frequency averaging procedure,
adaptive noise cancellation and the High Frequency Resonance Technique (HFRT).
The HFTR has been used widely for bearing fault detection and diagnosis (Ocak
and Loparo 2004). The shortcoming of the HFTR method is that it requires
several impact tests to identify the bearing resonance frequency and thus it is
computationally expensive (Ocak and Loparo 2004).

McFadden and Smith (1984) presented an envelope analysis, which is a fre-
quency domain method for the detection and diagnosis of bearing faults. The
shortcoming of the frequency domain analysis is that it tends to average out transient



10.2 Features 191

vibrations. As a result it becomes more sensitive to background noise. To overcome
this problem, the time-frequency domain analysis was applied, which expresses
how the frequency content of the signal varies with time. Time-frequency domain
analysis methods include the Short Time Fourier Transform (STFT), the Wigner-
Ville Distribution (WVD) and Wavelet Transform (WT). These techniques are
studied in detail in Li et al. (2000).

Time domain approaches normally involve indices that are sensitive to impulsive
oscillations, such as peak level, root mean square value, crest factor analysis,
Kurtosis analysis, shock pulse counting, time series averaging techniques, and signal
enveloping routines (Ocak and Loparo 2004; Li et al. 2000). Ericsson et al. (2004)
and Li et al. (2000) demonstrated that the time-domain analysis is less sensitive to
suppressions of the periodicity.

A number of feature extraction methods have been applied to vibration-based
condition monitoring. Ocak and Loparo (2004); Lou and Loparo (2004), as well as
Nikolaou and Antoniadis (2002) have applied wavelet transforms to detect and clas-
sify different faults in bearings. Elsewhere, Rojas and Nandi (2006) implemented
spectral and statistical features for the classification of bearing faults. Peng et al.
(2005) compared the Hilbert-Huang transform with the wavelet transform for a
bearing fault diagnosis. Junsheng et al. (2006) presented a feature extraction tech-
nique based on empirical mode decomposition process and autoregressive model
in roller bearings diagnosis. Baillie and Mathew (1996) applied an autoregressive
modeling that does not only classify, but also offers a one-step-ahead prediction of
the vibration signal using the previous outputs. H. Yang et al. (2005) implemented
a basis pursuit and obtained better results than with wavelet transforms. Altman
and Mathew (2001) also applied the discrete wavelet packet analysis to improve the
detection and diagnostic effectiveness of rolling element bearing faults. Prabhakar
et al. (2002) demonstrated that the Discrete Wavelet Transform (DWT) can be
applied to enhance the detection of bearing faults and elsewhere, Antoni and Randall
(2006) applied spectral kurtosis to the vibratory surveillance and diagnostics of
rotating machines.

The other vital component of a condition monitoring process is a classification
system that identifies the operating status of the machine as well as the type of
failure. Such a classification system can be categorized into two groups: knowledge-
based and data-based models.

Knowledge-based models depend on human-like knowledge of the process and
its faults. Knowledge-based models (such as expert systems or decision trees)
implement human-like knowledge of the process for fault diagnosis. In fault diag-
nostics, the human expert could be a person who operates the machine and who has
expertise in different categories of faults. The knowledge base can be constructed
by conducting interviews with a human operator about fault incidences in the
diagnosed machine. Expert systems are normally appropriate for such problems,
where the human expert can linguistically explain the solution. Characteristically,
human knowledge is imprecise, and how to treat such information has frequently
been a problem with traditional expert systems. For instance, the precise limit when
the temperature in a sauna is too high is vague in human minds. In fact, it is very
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difficult to attain sufficiently representative data for the complex and highly non-
linear behavior of faulty system to make quantitative models. Knowledge-based
models may be applied collectively with simple signal-based diagnostics, if the
expert knowledge for the process is available. Nevertheless, it is frequently difficult
even for a human expert to differentiate faulty operation from healthy operation.
Furthermore, multiple information sources may be needed for reliable decision-
making. Therefore, data-based models are the most flexible method for automated
condition monitoring.

Data-based models are implemented when the process model is unknown in an
analytical form and expert knowledge of the procedure performance under faults
is absent. Data-based models can be produced in numerous ways. Neural network
based models like the Multilayer Perceptron (MLP) and the Radial Basis Function
(RBF) have been applied extensively for bearing condition monitoring. Samanta and
Al-Bushi (2003) applied neural networks with time-domain features for the detec-
tion of rolling element bearing faults. Elsewhere Yang et al. (2004) implemented the
ART-KOHONEN technique for the fault diagnosis of rotating machinery. Kernel-
based classifiers such as the Support Vector Machine (SVM) have been applied for
bearing fault diagnosis. In this regard, Jack and Nandi (2002) compared support
vector machines and neural networks, enhanced by genetic algorithms for fault
detection. Samanta (2004) implemented both Artificial Neural Networks (ANN)
and SVM with genetic algorithm for bearing fault detection. B.S. Yang et al. (2005)
applied multi-class SVM for fault diagnosis of rotating machinery while Rojas and
Nandi (2006) applied the SVM for the detection and classification of faults in rolling
element bearings. Hu et al. (2007) applied a wavelet transform and SVM ensemble
for the fault diagnosis of rotating machines. Furthermore, data-based statistical
methods have achieved success in speech recognition and have recently been applied
for condition monitoring. Ertunc et al. (2001) applied the Hidden Markov model
(HMM) in wear studies of drill bits in a drilling process. Ocak and Loparo (2004),
Purushotham et al. (2005), Miao and Makis (2006) and Nelwamondo et al. (2006a)
applied the HMM for bearing fault diagnosis.

10.3 Feature Extraction

This section describes a number of features that were extracted from vibration
signals of bearing elements: fractal analysis, Mel-frequency cepstral coefficients
and kurtosis.

10.3.1 Fractal Dimension

As described in Chap. 2, a fractal dimension is a rough geometric shape that
can be divided into parts, each of which is nearly a reduced copy of the whole
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and this characteristic is known as self-similarity. Vibration signals are mostly
periodic movements with some level of turbulence. To detect different bearing faults
these non-linear, turbulence features must be identified. The non-linear turbulence
features of the vibration signal may be quantified using a fractal model (Maragos
and Potamianos 1999). The fractal dimension of a compact planar set F, also
known as the Hausdorff dimension, has its value ranging between 1 and 2. It can
be approximated using techniques such as the Minkowski-Bouligand dimension
and Box-Counting dimension (Maragos and Potamianos 1999). Fractals have been
successfully applied to condition monitoring (Cui and Xu 1999).

Li et al. (2005) applied fractal theory in direct current system grounding
fault detection. Elsewhere, Zhao and Guo (2005) applied the fractal dimension
technique for detecting a single-phase-to-earth faults. Other applications of the
fractal technique were in phase selection (D. Yang et al. 2005), and in aircraft fault
detection (Zhang et al. 2001). For this chapter the Box-Counting dimension was
used as described in Chap. 2.

10.3.2 Mel-Frequency Cepstral Coefficients (MFCCs)

The Mel-frequency Cepstral Coefficients (MFCCs) are coefficients that are derived
from a sort of cepstral representation of the signal. They extract both linear and
non-linear properties. The frequency bands are evenly spread out on the mel scale
and this estimates the human auditory system’s response closer than linearly-spaced
frequency bands would.

The MFCCs have been applied to fields such as speech recognition and condition
monitoring (Marwala and Vilakazi 2007; Nelwamondo et al. 2006b; Mahola et al.
2005; Chen et al. 2011a). The MFCC used features extracted from vibration signals.
It can be viewed as a category of wavelet in which frequency scales are put on a
linear scale for frequencies less than 1 kHz and on a log scale for frequencies above
1 kHz (Wang et al. 2002). The complex cepstral coefficients attained from this scale
are known as the MFCC (Wang et al. 2002). The MFCCs are represented in both
time and frequency domains.

Sáenz-Lechón et al. (2011) applied the mel-frequency cepstral analysis for an
objective evaluation of perceived roughness and breathiness while Arias-Londoño
et al. (2011) applied the mel-frequency cepstral coefficients for the automatic
detection of pathological voices. Other applications of the mel-frequency cepstral
coefficients were for the classification of spoken letters (Rozali et al. 2011), and in
the low bit-rate coding of speech (Boucheron et al. 2011).

10.3.3 Kurtosis

Kurtosis is the quantification of the “peakedness” in the probability distribution of
a real-valued, random variable. In this chapter, kurtosis is intended to deal with
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the occasional spiking of vibration data caused by some types of faults. Kurtosis
features of vibration data have been applied in the monitoring of tool condition by
El-Wardany et al. (1996). Elsewhere, Cai et al. (2011) successfully applied kurtosis
in detecting roller bearing faults. Immovilli et al. (2009) successfully applied
kurtosis for the detection of generalized-roughness bearing faults. Elsewhere, Tao
et al. (2008) applied Kurtosis for the detection of faults for one class of bearings.
Finally, kurtosis was applied for fault detection and diagnosis in rolling element
bearings by Sawalhi et al. (2007).

The success of using kurtosis in vibration signals is a consequence of the fact that
the vibration signals of a system under stress or having defects are different from
those of a normal system. The spiking of the vibration signal changes when there
are faults in the system. Kurtosis is a quantification of the sharpness of the peak and
is defined as the normalized fourth-order central moment of the signal (Wang et al.
2001). The kurtosis value is beneficial in identifying transients and spontaneous
events within vibration signals (Wang 2001) and is an accepted criterion for fault
detection. The kurtosis value is computed as the normalized square of the second
moment. A high value of kurtosis indicates a sharp distribution peak and shows that
the signal is impulsive in nature (Altman and Mathew 2001).

10.4 Classification Techniques

For this chapter two classification techniques were applied, together with the
features described in the previous section for the detection of faults in bearings.
These classification techniques are described in this section viz., the support vector
machines and extension neural networks.

10.4.1 Support Vector Machines (SVMs)

Support vector machines are supervised learning approaches applied mostly for
classification. They are derived from the theory of statistical learning and were
first proposed by Vapnik (1995). Shen et al. (2005) applied a SVM-based color
image watermarking method that operated by applying the information supplied
from the reference positions and the watermark, which was adaptively embedded
into the blue channel of the host image, taking the human visual system into account.
Other implementations of SVMs to model complicated systems include Marwala
et al. (2006) who applied SVMs in the fault classification of mechanical systems,
Msiza et al. (2007) who used SVMs in forecasting a water-demand time-series and
Marwala and Lagazio (2011) who applied SVMs in the modeling of militarized
interstate conflict.

Chen et al. (2011b) used SVMs to approximate monthly solar radiation and their
results demonstrated that SVMs perform better than traditional approaches (such as
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neural networks) in predicting solar radiation. Yeh et al. (2011) applied SVMs in the
recognition of counterfeit banknotes. Each banknote was separated into segments
and the luminance histograms of the segments were used as the inputs to the SVM
model with each segment was paired with its own kernels. When the technique was
tested on Taiwanese banknotes, they showed that their technique performed better
than methods such as the single-kernel SVM.

Tellaeche et al. (2009) used support vector machines and computer vision for
weed identification. Elsewhere, Lin et al. (2011) applied SVMs to predict business
failures based on previous financial data. Their results showed that their method
gave a good classification rate. Li-Xia et al. (2011) implemented SVMs and particle
swarm optimization for tax forecasting and their results showed that the SVM model
performs well.

The application of SVMs has also been extended to regression analysis problems,
thus resulting in the term Support Vector Regression (SVR) (Gunn 1997; Chuang
2008). Pires and Marwala (2004) applied SVMs for option pricing and extended
these with a Bayesian framework. Elsewhere, Gidudu et al. (2007) used SVMs in
image classification.

Thissen et al. (2004) applied SVMs for spectral regression cases, and Üstün et al.
(2007) visualized and interpreted SVM models. Other applications of SVMs include
the prediction of jet penetration depth (Wang et al. 2010), tool wear identification
(Tao and Tao 2010), ozone concentration (Ortiz-Garcı́a et al. 2010), the identifi-
cation of people (Palanivel and Yegnanarayana 2008), chemical compound analysis
(Zhou et al. 2006), response modeling (Kim et al. 2008), and the real-time prediction
of order flow times (Alenezi et al. 2007).

For SVMs, a data point is conceptualized as a p-dimensional vector. The
objective is to separate such points with a p-1-dimensional hyperplane, known as
a linear classifier. There are many hyperplanes that can be created. Some of these
include the one that exhibits the largest separation, also called the margin, between
the two classes. The selected hyperplane can be chosen so that the distance from
it to the nearest data point on both sides is maximized. This is then known as
the maximum-margin hyperplane. The classification problem can then be stated
as estimating a function f W RN ! f�1; 1g dependent on input-output training
data, where an independently distributed, unknown probability distribution P(x, y)
is chosen such that f can classify unseen (x, y) data (Müller et al. 2001; Habtemariam
2006; Marwala and Lagazio 2011). The ideal function minimizes the expected error
(risk) and can be expressed mathematically as follows (Vapnik 1995; Habtemariam
2006; Habtemariam et al. 2005; Marwala and Lagazio 2011):

RŒf � D
Z

l.f .x/; y/dP.x; y/ (10.1)

Here, l indicates a loss function (Müller et al. 2001). Since the fundamental
probability distribution P is unknown, Eq. 10.1 cannot be solved implicitly.
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The best route is to identify an upper bound for the risk function which is given
mathematically as follows (Vapnik 1995; Müller et al. 2001; Marwala and Lagazio
2011):

RŒf � D RŒf �emp C
s

h
�
ln 2n

h
C 1

� � ln
�

ı
4

�
n

(10.2)

Here h 2 NC is the Vapnik-Chervonenkis (VC) dimension of f 2 F and • > 0.
The VC dimension of a function class F is defined as the biggest number of h
coordinates that can be divided in all possible ways by means of functions of that
class (Vapnik 1995). The empirical error R[f ]emp is a training error given by (Vapnik
1995; Habtemariam 2006; Marwala and Lagazio 2011):

RŒf �emp D 1

n

nX
iC1

l.f .xi /; yi / (10.3)

This assumes that the training sample is linearly separable by a hyperplane of the
form (Vapnik 1995; Habtemariam 2006; Marwala and Lagazio 2011):

f .x/ D hw; xi C b with w 2 �; b 2 < (10.4)

Here h:; :i denotes the dot product, w is an adjustable weight vector and b is an
offset (Müller et al. 2001). The objective of the learning process, as propounded by
Vapnik and Lerner (1963) is to identify the hyperplane with the maximum margin of
separation from the class of dividing hyperplanes. Nonetheless, since practical data
usually exhibit complex properties which cannot be divided linearly, more complex
classifiers are essential. To circumvent the complexity of the nonlinear classifiers,
the concept of linear classifiers in a feature space can be introduced. SVMs attempt
to identify a linear separating hyperplane by initially mapping the input space into a
higher dimensional feature space F. This suggests that each training example xi be
substituted with (xi) to give (Vapnik 1995; Habtemariam 2006):

Yi .w:ˆ.xi / C b/ ; i D 1; 2; :::; n (10.5)

The VC dimension,h, in the feature space F is constrained subject to h �
jjW jj2R2 C 1 where R is the radius of the smallest sphere around the training data
(Müller et al. 2001; Habtemariam 2006). Consequently, minimizing the expected
risk can be expressed as an optimization problem as follows (Burges 1998; Müller
et al. 2001; Schölkopf and Smola 2003; Marwala and Lagazio 2011):

Minimize .W; b/
1

2
jjwjj2 (10.6)
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subject to:

ci .w; xi � b/ 
 1; i D 1; :::; n (10.7)

Equations 10.6 and 10.7 are jointly called the quadratic programming problem
because it is the problem of optimizing a quadratic function of a number of variables
subject to linear constraints on these variables (Schölkopf and Smola 2003). From
the expressions:

kwk2 D w:w (10.8)

w D
nX

iD0

˛i ci xi (10.9)

it can be shown that the dual nature of the support vector machines can, by
maximizing of ˛i, be written in Lagrangian form as follows (Schölkopf and Smola
2003):

L .˛/ D
nX

iD1

˛i � 1

2

X
i;j

˛i ˛j ci cj xT
i xj

D
nX

iD1

˛i � 1

2

X
i;j

˛i ˛j ci cj k
�
xi ; xj

�
; i D 1; :::; n

(10.10)

Subject to:

˛i 
 0; i D 1; :::; n (10.11)

and to the constraint from the minimization in b:

˛i 
 0; i D 1; :::; n (10.12)

and subject to the following constraints:

nX
iD1

˛i ci D 0 (10.13)

Here the kernel is (Müller et al. 2001):

k
�
xi ; xj

� D xi � xj (10.14)
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10.4.1.1 Soft Margin

Cortes and Vapnik (1995) presented an improved maximum margin idea that
incorporated mislabeled data points. If there is no hyperplane that can exactly divide
the “yes” and “no” data points, the Soft Margin technique will select a hyperplane
that divides the data points as efficiently as possible, still maximizing the distance to
the nearest, neatly divided data points. The method incorporates slack variables, � i

which quantify the degree of misclassification of the data point as follows (Cortes
and Vapnik 1995):

ci .w � xi � b/ 
 1 � �i ; 1 � i � n (10.15)

A function which penalizes non-zero ”i augments the objective and, conse-
quently, the optimization exhibits a compromise between a large margin and a small
error penalty. If a linear penalty function is assumed, the optimization problem can
then be written by minimizing w and ”i through the following function (Cortes and
Vapnik 1995):

1

2
kwk2 C C

nX
iD1

�i (10.16)

subject to:

ci .w � xi � b/ 
 1 � �i ; �i 
 0; i D 1; :::; n (10.17)

In Eq. 10.16, C is the capacity. Equations 10.16 and 10.17 can be expressed in a
Lagrangian form by optimizing the following equation in terms of w, ”, b, ’ and ˇ

(Cortes and Vapnik 1995):

min
fwg;�;b

max
˛;ˇ(

1

2
kwk2 C C

nX
iD1

�i �
nX

iD1

˛i Œci .w � xi � b/ � 1 C �i � �
nX

iD1

ˇi �i

)
(10.18)

Here ˛i ; ˇi 
 0. The advantage of a linear penalty function is that the slack
variables are removed from the dual problem. As a result, C only appears as a
supplementary constraint on the Lagrange multipliers. The application of non-linear
penalty functions to reduce the impact of outliers on the classifier has been applied
in the past, but it makes the optimization problem non-convex and it is difficult to
identify a global solution.
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10.4.1.2 Non-Linear Classification

To apply the linear SVM technique for producing non-linear classifiers, the kernel
trick was applied (Aizerman et al. 1964) to the maximum-margin hyperplanes
(Boser et al. 1992). In this method the dot product is substituted with a non-linear
kernel function to fit the maximum-margin hyperplane in a transformed feature
space. Although this dot product transformation may be non-linear, the transformed
space may be of high dimensions. For instance, when a Gaussian radial basis
function kernel is applied, the resultant feature space is a Hilbert space of infinite
dimension. Some useful kernel functions include (Vapnik 1995; Müller et al. 2001;
Marwala and Lagazio 2011):

The Radial Basis Function,

k
�
xi ; xj

� D exp


��
xi � xj

2
�
; � > 0 (10.19)

The Polynomial (homogeneous),

k
�
xi ; xj

� D �
xi � xj

�d
(10.20)

The Polynomial (inhomogeneous),

k
�
xi ; xj

� D �
xi � xj C 1

�d
(10.21)

The Hyperbolic tangent,

k
�
xi ; xj

� D tanh
�
"xi � xj C b

�
; " > 0I b < 0 (10.22)

The variables of the maximum-margin hyperplane can be identified by opti-
mizing the objective equation through applying an interior point technique that
identifies a solution for the Karush-Kuhn-Tucker (KKT) conditions of the primal
and dual problems (Kuhn and Tucker 1951; Karush 1939). To avoid solving a linear
system, including the large kernel matrix, a low rank approximation to the matrix
can be applied to apply the kernel trick. The Karush–Kuhn–Tucker conditions are
necessary to optimize a non-linear programming problem, for the satisfaction of a
particular regularity condition. For the given problem listed below:

Minimize W f .x/ (10.23)

subject to:

gi .x/ � 0I hj .x/ D 0 (10.24)

Here, gi is the ith inequality constraint and hi is the ith equality constraint. The
Karush–Kuhn–Tucker method allows the inequality constraints by generalizing
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the technique of Lagrange multipliers which allow only equality constraints. The
necessary conditions for the KKT are (Kuhn and Tucker 1951; Karush 1939;
Marwala and Lagazio 2011):

Stationary,

rf
�
x�
�C

mX
iD1

�i rgi

�
x�
�C

lX
jD1

�j rhj

�
x�
� D 0; i D 1; :::; mI j D 1; :::; l

(10.25)

Primal and dual feasibility as well as complementary slackness,

gi

�
x�
� � 0; i D 1; :::; m

hj

�
x�
� D 0I j D 1; :::; l

�i 
 0; i D 1; :::; m

�i gi

�
x�
� D 0; i D 1; :::; m (10.26)

The KKT method can be viewed as a generalized form of the Lagrangian method
obtained by setting m D 0. In some cases, the necessary conditions are also sufficient
for optimization. Nevertheless, in many circumstances the necessary conditions are
not sufficient for optimization and additional information, for instance the second
derivative, is necessary. The necessary conditions are sufficient for optimization if
the cost function f and the inequality constraints gj are continuously differentiable,
convex functions and the equality constraints gj are functions which have constant
gradients.

10.4.2 Extension Neural Networks

An Extension Neural Network (ENN) is a classification system that is based on
concepts from neural networks and extension theory as shown in Fig. 10.1 (Wang
and Hung 2003; Mohamed et al. 2006; Vilakazi and Marwala 2006). Lu (2010)
successfully applied ENN for fault diagnosis, while Zhang et al. (2010) applied
extension neural networks for the condition monitoring of the equipment. Wang
et al. (2009) applied extension neural networks for the classification of brain MRI
while Chao et al. (2009) applied ENN for tracking the maximum power point. Other
applications of ENN were in infringement lawsuits (Lai and Che 2009), in intelligent
traffic light control (Chao et al. 2008) and in the condition monitoring of transformer
bushings (Miya et al. 2008).

The extension theory implements a distance measurement for classification
processes, and the neural network entrenches the relevant features of learning
capability. The classifier is ideal for classification problems where there are patterns
with an extensive range of continuous inputs and a discrete output indicating which
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Fig. 10.1 Extension neural network

class the pattern is an element of. ENN encompasses an input layer and an output
layer. The input layer nodes accept an input feature pattern and use a set of weighted
parameters to produce an image of the input pattern. There are two connection
weights between input nodes and output nodes: one connection represents the lower
bound for this classical domain of features and the other represents the upper bound.
The complete network is therefore represented by a matrix of weights for the upper
and lower limits of the features for each class. These are WU and WL, respectively.
A third matrix representing the cluster centers is also defined as (Wang and Hung
2003):

z D Wu C Wl

2
(10.27)

The ENN applies supervised learning, which tunes the weights of the ENN
to attain a good clustering performance by minimizing the clustering error. The
network is trained by adjusting the network weights and recalculating the network
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centers for each training pattern, subject to reducing the extension distance (ED) of
that pattern to its labelled cluster. Each training pattern adjusts the network weights
and the centers by quantities that depend on the learning rate. Generally, the weight
update for a variable xi is (Wang and Hung 2003):

wnew D wold � �.xi � wold/ (10.28)

Here, � is the learning rate and w can either be the upper or the lower weight
matrices of the network centers. It can be shown that for t training patterns for a
particular class C, the weight is given by (Mohamed et al. 2006):

wc.t/ D .1 � �/wc.0/ � �
X

.1 � �/t�1xi
c (10.29)

This equation reveals how each training pattern reinforces the learning in the
network by having the most recent signal govern only a fraction of the current value.
This equation demonstrates that there is no convergence of the weight values, as
the learning process is adaptive and reinforcing and indicates the significance of
the learning rate, �. Small values of � necessitate many training iterations, while
high values may cause an oscillatory behavior of the network weights, causing poor
classification performance.

10.5 Example Vibration Data

The work for this chapter was based on the data obtained from the Case Western
Reserve University website (Loparo 1998). The set-up for the corresponding
experiment was made up of a Reliance Electric 2HP IQPreAlert connected to a
dynamometer. Faults of size 0.007, 0.014, 0.021 and 0.028 in. were introduced into
the drive-end bearing of a motor using the Electric Discharge Machining (EDM)
technique. These faults were introduced separately at the inner raceway, rolling
element and outer raceway. An impulsive force was applied to the motor shaft and
the resulting vibration was measured using two accelerometers, one mounted on the
motor housing and the other on the outer race of the drive-end bearing. All signals
were recorded at a sampling frequency of 12 kHz.

10.6 Application to Bearing Condition Monitoring

Figure 10.2 shows samples of bearing vibration signals for the four bearing
conditions (Marwala and Vilakazi 2007). Features were then extracted to classify
faults.
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The optimal classifier parameters were identified using trial and error. The
optimum SVM architecture applied a polynomial kernel function with a degree of 5.
The ENN architecture with an optimal learning rate of 0.219 was used.

The first set of investigations assessed the effectiveness of the time-domain frac-
tal dimension based feature-extraction using vibration signal condition monitoring.
Figure 10.3 shows the Multi-scale Fractal Dimension (MFD) feature vector which
shows the bearing’s fault-specific information. Figure 10.3 shows that the presented
feature extraction method does indeed extract fault defining features which can be
applied to classify the different bearing conditions. Nonetheless, the optimum size
of the MFD must be found.

Figure 10.4 shows the change of the system accuracy with a change to the
MFD size. This figure shows that the size of MFD does not affect the classification
accuracy of SVM and ENN.

Using the optimum SVM and ENN architecture together with MFD, the confu-
sion matrix that was obtained for different bearing faults is presented for the SVM
and ENN classifiers in Table 10.1.

In further investigating the use of MFCC with SVM and ENN, it was observed
that varying the number of MFCCs has no impact on the classification rate of the
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Table 10.1 The confusion matrix for the SVM, HMM, GMM, and ENN classi-
fiers used with fractal features

SVM ENN

Normal Inner Outer Ball Normal Inner Outer Ball

Normal 100 0 0 0 100 0 0 0
Inner 0 100 0 0 0 100 0 0
Outer 0 0 100 0 0 0 100 0
Ball 0 0 0 100 0 0 0 100

Table 10.2 The confusion matrix for the SVM and ENN classifiers used with
MFCC features

SVM ENN

Normal Inner Outer Ball Normal Inner Outer Ball

Normal 100 0 0 0 100 0 0 0
Inner 0 100 0 0 0 100 0 0
Outer 0 0 100 0 0 0 100 0
Ball 0 0 0 100 0 0 0 100

Table 10.3 Summary of
classification results

SVM (%) ENN (%)

Fractal features 100 100
MFCC 100 100
MFCCC kurtosis 100 100

classifiers, as shown Fig. 10.4. It was also observed that 13 MFCCs gave optimal
results and that increasing the number of MFCC above 13 did not improve the
classification results Table 10.2.

The overall classification results are summarized in Table 10.3.

10.7 Conclusion

The chapter investigated two vital requirements for an automated condition monitor-
ing system. The first requirement was for a feature-extraction procedure that could
successfully extract the condition specific features. The second requirement was
for a classification system that could effectively classify the machine conditions.
This chapter gave a review of three feature extraction methods that are used for
condition monitoring. These methods are fractal analysis, mel-frequency cepstral
coefficients and kurtosis. The effectiveness of the extracted features were tested
using two classifiers. These were support vector machines and the extension neural
network. The presented system gave very good results for the fault diagnosis of
bearings.
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Chapter 11
On-line Condition Monitoring Using Ensemble
Learning

11.1 Introduction

In Chap. 3 the Multi-Layer Perceptron (MLP) neural network was introduced for
condition monitoring of a population of cylindrical shells. The MLP technique was
explained in detail and after a literature review was conducted the technique was
implemented to identify faults in a population of cylindrical shells. In that chapter,
modal properties and pseudo-modal energies data were applied to classify faults.
The principal component analysis method was applied to reduce the dimensions of
the input data. The multifold cross-validation method was used to select the optimal
number of hidden units amongst the 20 trained pseudo-modal-energy-networks and
the 20 trained modal-property-networks. The pseudo-modal-energy-network and
the modal-property-network were found to give similar accuracy in classifying
faults.

In Chap. 4, two Bayesian multi-layer perceptron neural networks were developed
by applying the hybrid Monte Carlo technique, with one trained using pseudo-modal
energies while the other was trained using modal properties. They were then applied
to the condition monitoring of a population of cylindrical shells. The pseudo-modal-
energy-network gave better results than the modal-property-network.

In Chap. 5, a committee of neural networks technique was presented. It applied
pseudo modal energies, modal properties and wavelet transform data simultaneously
to identify faults in cylindrical shells. The technique was tested to identify faults in
a population of ten steel seam-welded cylindrical shells and could identify faults
better than the three individual methods.

Next, Chap. 6 extracted bearing vibration signals features using time-domain
fractal-based feature extraction. This method applied the Multi-Scale Fractal
Dimension (MFD) which was approximated using the Box-Counting Dimension.
The extracted features were then used to classify faults using the Gaussian Mixture
Models (GMM) and the hidden Markov Models (HMM). The results showed that
the feature extraction method revealed fault specific information. Additionally,
the experiment demonstrated that HMM outperformed GMM. Nonetheless, the
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disadvantage of HMM was that it was more computationally expensive to train
when compared with the GMM. Consequently, it was concluded that the framework
presented gives an improvement in the performance of the bearing fault detection
and diagnosis, but it was recommended that the GMM classifier be used when the
computational effort is a major issue of consideration.

Chapter 7 presented the application of Fuzzy Set Theory (FST) and fuzzy
ARTMAP to diagnose the condition of high voltage bushings. The diagnosis used
Dissolved Gas Analysis (DGA) data from bushings based on IEC60599, IEEE
C57-104, and the California State University Sacramento (CSUS) criteria for oil
impregnated paper (OIP) bushings. FST and fuzzy ARTMAP were compared with
regards to accuracy. Both FST and fuzzy ARTMAP could diagnose the bushings
condition with 98% and 97.5% accuracy respectively.

Chapter 8 applied the rough set method and the ant colony optimization
technique for the condition monitoring of transformer bushings. The theories of
rough set and ant colony optimization technique were described and the presented
system was tested for the condition monitoring of transformer bushings. The rough
set method that was optimized using the ant colony optimization method gave 96.1%
accuracy, using 45 rules while the equal-frequency-bin partition model gave 96.4%
accuracy, using 206 rules.

In Chap. 9 a technique for fault classification in mechanical systems in the
presence of missing data entries was introduced. The technique was based on auto-
associative neural networks where the network was trained to recall the input data
through some non-linear neural network mapping. From the trained network an error
equation with missing inputs as design variables was created. A genetic algorithm
was applied to solve for the missing input values. The presented technique was
tested on a fault classification problem for a population of cylindrical shells. It was
observed that the technique could estimate single-missing-entries to an accuracy of
93% and two-missing-entries to an accuracy of 91%. The approximated values were
then applied to the classification of faults and a fault classification accuracy of 94%
was observed for single-missing-entry cases and 91% for two-missing-entry cases,
while the full database set was able to give a classification accuracy of 96%.

In Chap. 10 feature extraction and condition classification were considered.
The feature extraction methods were fractals, Kurtosis and Mel-frequency Cepstral
Coefficients. The classification approaches that were applied were the support
vector machines (SVM) and extension neural networks (ENN). When applied these
techniques gave good results.

Pan et al. (2008) created a remote online machine condition monitoring system
which was created using Borland CCC and communication via the internet.
A number of signal-processing approaches, for instance time-frequency analysis
and order-tracking for signal analysis and pattern recognition were applied using the
Borland CCC Builder graphical user interface. The machine fault-diagnostic ability
was improved by using the socket application program interface as the transmission
control protocol / Internet protocol. The effectiveness of their remote diagnostic
system was tested by monitoring a transmission-element test rig and good results
were obtained.



11.2 Ensemble Methods 213

Bouhouche et al. (2010) presented a technique for process condition monitoring
and evaluation which hybridized the online support vector machine regression and
the fuzzy sets approaches. Their technique was based on moving windows so that the
past and new data for the model to adapt to the time dependency. A fuzzy analysis
was then applied for condition monitoring. Their technique was then applied online
to evaluate the quality of a rolling process. The results showed that their technique
was simple and gave good results.

Oberholster and Heyns (2009) presented an online condition monitoring tech-
nique and applied this to axial-flow turbo-machinery blades. They applied the
Eulerian application of laser Doppler vibrometry to accomplish this task. When
the method was tested it was found to be viable for the online blade condition
monitoring when phase angles at reference frequencies were monitored using a non-
harmonic Fourier analysis.

Loutas et al. (2009) presented a condition monitoring system for a single-stage
gearbox with induced gear cracks using on-line vibration and acoustic emission
measurements. Special attention was paid to the signal processing of the measured
vibration and acoustic emission data with the intention of extracting conventional
and novel features of diagnostic value from the monitored waveforms. Wavelet-
based features used the discrete wavelet transform. The evolution of the chosen
features against test time was presented, assessed and the parameters with the most
diagnostic characteristics were selected. The advantages of acoustic emission over
vibration data for the early diagnosis of natural wear in gear systems were presented.

11.2 Ensemble Methods

The online learning technique implemented in this chapter is based on ensemble
learning (Hansen and Salamon 1990; Jordan and Jacobs 1994; Kuncheva et al.
2001). Ensemble learning is a technique where multiple models, such as classifiers,
are intentionally created and combined to solve a particular problem (Rogova 1994;
Polikar 2006). Ensemble learning is usually applied to increase the performance of
a model (Xu et al. 1992; Huang and Suen 1993; Dietterich 2000). In this section
three ensemble learning approaches are described: bagging, stacking, and adaptive
boosting. In particular, the AdaBoost method is described because it was the basis
for the creation of the Learn CC technique, which is the online method adopted for
this chapter.

11.2.1 Bagging

Bagging is a technique which is based on the combination of models fitted to
randomly selected samples of a training data set to decrease the variance of the
prediction model (Efron 1979; Breiman 1996). Bagging basically requires randomly
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selecting a subset of the training data and using this subset to train a model and
repeating this process. Afterwards, all trained models are combined with equal
weights to form an ensemble.

11.2.2 Stacking

In the area of modelling, one can choose from a set of models by comparing them
using the data that was not used to create the models (Polikar 2006). This prior
belief can also be applied to choose a model amongst a set of models, based on a
single data set by using a technique called cross-validation (Bishop 1995). This is
conducted by dividing the data into a training data set, which is used to train the
models, and a test data set. Stacking takes advantage of this prior belief by using the
performance from the test data to combine the models instead of choosing among
them the best performing model when tested on the test data set (Wolpert 1992).

11.2.3 AdaBoost

Boosting is a method that incrementally creates an ensemble by training each new
model with data that the previously trained model misclassified. Then the ensemble,
which is a combination of all trained models, is used for prediction.

Adaptive Boosting (AdaBoost) is an extension of boosting to multi-class prob-
lems (Freund and Schapire 1997; Schapire et al. 1998). There are many types of
AdaBoost, for instance AdaBoost.M1, where each classifier can receive a weighted
error of no more than ½, AdaBoost.M2 for those weak classifiers that cannot achieve
a weighted error of less than ½.

For AdaBoost.M1, samples are drawn from a distribution D that is updated in
such a way that successive classifiers concentrate on difficult cases. This is achieved
by adjusting D in such a way that that the earlier, misclassified cases are likely to be
present in the following sample. The classifiers are then combined through weighted
majority voting. The distribution begins as a uniform distribution so that all cases
have equal probability to be drawn into the first data subset S1.

As described by Polikar (2006), at each iteration t, a new training data subset
is sampled, and a weak classifier is trained to create a hypothesis ht. The error
given by this hypothesis with regards to the current distribution is estimated as the
sum of distribution weights of the cases misclassified by ht. AdaBoost.M1 requires
that this error is less than ½, and if this requirement is violated then the procedure
terminates. The normalized error ˇt is then calculated so that the error that is in
the [0 0.5] interval is normalized into the [0 1] interval. The transformed error is
implemented in the distribution update rule, where Dt(i) is decreased by a factor of
ˇt ; 0 < ˇt < 1, if xi is correctly classified by ht, or else it is left unaltered. When
the distribution is normalized so that DtC1(i) is a proper distribution, the weights of
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those instances that are misclassified are increased. This update rule guarantees that
the weights of all instances correctly classified and the weights of all misclassified
instances add up to ½. The requirement for the training error of the base classifier to
be less than ½ forces the procedure to correct the error committed by the previous
base model. When the training process is complete, the test data are classified by
this ensemble of T classifiers, by applying a weighted majority voting procedure
where each classifier obtains a voting weight that is inversely proportional to its
normalized error (Polikar 2006). The weighted majority voting then selects the class
! allocated the majority vote of all classifiers. The procedure for Adaboost is shown
in Algorithm 11.1 (Polikar 2006).

As described by Polikar (2006), the theoretical analysis of the AdaBoost
technique shows that the ensemble training error E is bounded above by:

E < 2T

TY
tD1

p
"t .1 � "t / (11.1)

The "t < 1=2 ensemble error E is reduced when new classifiers are added. The
AdaBoost is resistant to overfitting, a characteristic that is explained by the margin
theory (Schapire 1990; Polikar 2006).

11.3 The LearnCC On-line Method

On-line learning is appropriate for modelling dynamically time-varying systems
where the operating conditions change with time. It is also appropriate when the
data set available is insufficient and does not completely characterize the system.
Another benefit of on-line learning is that it can incorporate new conditions that
may be presented by the incoming data.

An on-line bushing condition monitoring system must have incremental learning
capability if it is to be used for automatic and continuous on-line monitoring.
An on-line bushing monitoring system improves the reliability, diminishes the
maintenance cost and minimizes the out-of-service time for a transformer. The
basis of on-line learning is incremental learning, which has been studied by a
many researchers (Higgins and Goodman 1991; Fu et al. 1996; Yamaguchi et al.
1999; Carpenter et al. 1992). The difficulty in on-line learning is the propensity
of an on-line learner to forget the information learned during the initial stages of
the learning process (McCloskey and Cohen 1989). The on-line learning technique
adopted for this chapter was LearnCC (Polikar et al. 2001).

Vilakazi and Marwala (2007a) applied the on-line incremental learning technique
for monitoring the condition of high voltage bushings. Two incremental learning
techniques were applied to the problem of condition monitoring. The first technique
used was the incremental learning capability of the Fuzzy ARTMAP (FAM),
and they investigated whether the ensemble approach can improve the performance
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Algorithm 11.1 The AdaBoost algorithm.M1

Input:

• Training data X D fx1; x2; :::; xng with correct labels � D fy1; y2; :::; yng
• Weak learn algorithm, known as Weaklearn
• Integer T, speciying the number of classifiers

D1.i/ D 1=nI i D 1; :::; n

For tD 1,2, : : : ,T;

1. Sample a training subset St, according to the distribution Dt

2. Train Weaklearn with St, receive hypothesis ht W X ! �

3. Estimate the error of ht W "t D
nP

iD1

I Œht .xi / ¤ yi � � Dt .i/ D P
tWht .xi /¤yi

Dt .i/ If "t > 1
2

terminate.
4. Estimate the normalized error ˇt D "t = .1� "t /) 0 � ˇt � 1

5. Update the distribution Dt: DtC1.i/ D Dt .i/

Zt
�
�

ˇt ; if ht .xi /yi

1; otherwise
where Zt is the normalization

constant so that DtC1 becomes a proper distribution function.

Test using majority voting given an unlabeled example z as follows:

1. Count the total vote from the classifiers Vj D P
tWht .z/

log .1=ˇt /j D 1; :::; C

2. Select the class that receives the highest number of votes as the final classification.

of the FAM. The second technique applied was LearnCC that implemented an
ensemble of the multi-layer perceptron classifiers. Both methods were performed
well when tested for transformer bushing condition monitoring.

Mohamed et al. (2007) applied incremental learning for the classification of
protein sequences. They used the fuzzy ARTMAP as an alternative machine
learning system with the ability to incrementally learn new data as it becomes
available. The fuzzy ARTMAP was seen to be comparable to many other machine
learning systems. The application of an evolutionary strategy in the selection and
combination of individual classifiers into an ensemble system, coupled with the
incremental learning capability of the fuzzy ARTMAP was shown to be suitable
as a pattern classifier. Their algorithm was tested using the data from the G-Coupled
Protein Receptors Database and it demonstrated a good accuracy of 83%.

Mohamed et al. (2006) applied fuzzy ARTMAP for multi-class protein sequence
classification. They presented a classification system that used pattern recognition
method to produce a numerical vector representation of a protein sequence and
then classified the sequence into a number of given families. They applied fuzzy
ARTMAP classifiers and showed that, when coupled with a genetic algorithm
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based feature subset selection, the system could classify protein sequences with
an accuracy of 93%. This accuracy was then compared to other classification
techniques and it was shown that the fuzzy ARTMAP was most suitable because
of its high accuracy, quick training times and ability to incrementally learn.

Perez et al. (2010) applied a population-based, incremental learning approach
to microarray gene expression feature selection. They evaluated the usefulness of
the Population-Based Incremental Learning (PBIL) procedure in identifying a class
differentiating gene set for sample classification. PBIL was based on iteratively
evolving the genome of a search population by updating a probability vector, guided
by the extent of class-separability demonstrated by a combination of features. The
PBIL was then compared to standard Genetic Algorithm (GA) and an Analysis of
Variance (ANOVA) method. The procedures were tested on a publically available
three-class leukaemia microarray data set (n D 72). After running 30 repeats of both
GA and PBIL, the PBIL could identify an average feature-space separability of
97.04%, while GA achieved an average class-separability of 96.39%. The PBIL
also found smaller feature-spaces than GA, (PBIL – 326 genes and GA – 2652) thus
excluding a large percentage of redundant features. It also, on average, outperformed
the ANOVA approach for n D 2652 (91.62%), q < 0.05 (94.44%), q < 0.01 (93.06%)
and q < 0.005 (95.83%). The best PBIL run (98.61%) even outperformed ANOVA
for n D 326 and q < 0.001 (both 97.22%). PBIL’s performance was credited to its
ability to direct the search, not only towards the optimal solution, but also away
from the worst.

Hulley and Marwala (2007) applied GA-based incremental learning for opti-
mal weight and classifier selection. They then compared LearnCC, which is an
incremental learning algorithm to the new Incremental Learning Using Genetic
Algorithm (ILUGA). LearnCC demonstrated good incremental learning capabil-
ities on benchmark datasets on which the new ILUGA technique was tested.
ILUGA showed good incremental learning ability using only a few classifiers and
did not suffer from catastrophic forgetting. The results obtained for ILUGA on
the Optical Character Recognition (OCR) and Wine datasets were good, with an
overall accuracy of 93% and 94% respectively showing a 4% improvement over
LearnCC.MT for the difficult multi-class OCR dataset.

Lunga and Marwala (2006a) applied a time series analysis using fractal theory
and on-line ensemble classifiers to model the stock market. The fractal analysis was
implemented as a concept to identify the degree of persistence and self-similarity
within the stock market data. This concept was carried out using the Rescaled range
analysis (R/S) technique. The R/S analysis outcome was then applied to an on-
line incremental algorithm (LearnCC) that was built to classify the direction of
movement of the stock market. The use of fractal geometry in this study provided a
way of determining quantitatively the extent to which the time series data could be
predicted. In an extensive test, it was demonstrated that the R/S analysis provided a
very sensitive technique to reveal hidden long runs and short run memory trends
within the sample data. A time series data that was measured to be persistent
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was used in training the neural network. The results from the LearnCC algorithm
showed a very high level of confidence for the neural network to classify sample
data accurately.

Lunga and Marwala (2006b) applied incremental learning for the on-line fore-
casting of stock market movement direction. In particular, they presented a specific
application of the LearnCC algorithm, and investigated the predictability of
financial movement direction with LearnCC by forecasting the daily movement
direction of the Dow Jones. The framework was implemented using the Multi-Layer
Perceptron (MLP) as a weak learner. First, a weak learning algorithm, which tried to
learn a class concept with a single input perceptron, was established. The LearnCC
algorithm was then applied to improve the weak MLP learning capacity and thus
introduced the concept of incremental on-line learning. The presented framework
could adapt as new data were introduced and could classify the data well.

Vilakazi and Marwala (2007b) applied incremental learning to bushing condition
monitoring. They presented a technique for bushing fault condition monitoring
using the fuzzy ARTMAP. The fuzzy ARTMAP was introduced for bushing
condition monitoring because it can incrementally learn information as it becomes
available. An ensemble of classifiers was used to improve the classification accuracy
of the systems. The test results showed that the fuzzy ARTMAP ensemble gave an
accuracy of 98.5%. In addition, the results showed that the fuzzy ARTMAP could
update its knowledge in an incremental fashion without forgetting the previously
learned information.

Nelwamondo and Marwala (2007) successfully applied a technique for handling
missing data from heteroskedastic and non-stationary data. They presented a
computational intelligence approach for predicting missing data in the presence
of concept drift using an ensemble of multi-layered feed-forward neural networks.
Six instances prior to the occurrence of missing data were used to approximate the
missing values. The algorithm was applied to a simulated time series data sets that
resembled non-stationary data from a sensor. Results showed that the prediction
of missing data in a non-stationary time series data was possible but was still a
challenge. For one test, up to 78% of the data could be predicted within a 10%
tolerance range of accuracy.

Other successful implementations of incremental learning techniques include its
use in anomaly detection (Khreich et al. 2009), in human robot interaction (Okada
et al. 2009), for online handwriting recognition (Almaksour and Anquetil 2009), for
predicting human and vehicle motion (Vasquez et al. 2009) and in visual learning
(Huang et al. 2009).

11.3.1 LearnCC

LearnCC is an incremental learning algorithm that was introduced by Polikar and
co-workers (Polikar et al. 2000, 2001, 2002; Muhlbaier et al. 2004; Erdem et al.
2005; Polikar 2006). It is based on AdaBoost and applies multiple classifiers to
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enable the system to learn incrementally. The algorithm operates on the concept of
using many classifiers that are weak learners to give a good overall classification.
The weak learners are trained on a separate subset of the training data and then
the classifiers are combined using a weighted majority vote. The weights for the
weighted majority vote are chosen using the performance of the classifiers on the
entire training dataset.

Each classifier is trained using a training subset that is drawn according to
a specified distribution. The classifiers are trained using a weak learn algorithm
(WeakLearn). The requirement for the WeakLearn algorithm is that it must give a
classification rate of less than 50% initially (Polikar et al. 2002). For each database
Dk that contains training sequence, S, where S contains learning examples and their
corresponding classes, LearnCC starts by initializing the weights, w, according
to a specified distribution DT, where T is the number of hypothesis. Firstly the
weights are initialized to be uniform, thereby giving equal probability for all
cases selected for the first training subset and the distribution is given by (Polikar
et al. 2002):

D D 1=m (11.2)

Here, m represents the number of training examples in S. The training data are
then divided into training subset TR and testing subset TE to ensure the WeakLearn
capability. The distribution is then used to select the training subset TR and testing
subset TE from Sk. After the training and testing subset have been selected, the
WeakLearn algorithm is implemented. The WeakLearner is trained using subset TR.
A hypothesis, ht, obtained from a WeakLearner is tested using both the training and
testing subsets to obtain an error (Polikar et al. 2002):

"t D
X

t Whi .xi /¤yi

Dt .i/ (11.3)

The error is required to be less than 0.5; a normalized error ˇt is computed using
(Polikar et al. 2002):

Bt D "t=1 � "t
(11.4)

If the error is greater than 0.5, the hypothesis is discarded and a new training and
testing subsets are selected according to a distribution DT and another hypothesis
is computed. All classifiers generated are then combined using weighted majority
voting to obtain the composite hypothesis, Ht (Polikar et al. 2002):

Ht D arg max
y2Y

X
t Wht .x/Dy

log


1=ˇt

�
(11.5)
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Weighted majority voting gives higher voting weights to a hypothesis that
performs well on the training and testing data subsets. The error of the composite
hypothesis is computed as follows (Polikar et al. 2002):

Et D
X

t WHi .xi /¤yi

Dt .i/ (11.6)

If the error is greater than 0.5, the current hypothesis is discarded and the new
training and testing data are selected according to the distribution DT . Otherwise, if
the error is less than 0.5, then the normalized error of the composite hypothesis is
computed as follows (Polikar et al. 2002):

Bt D Et=1 � Et
(11.7)

The error is used in the distribution update rule, where the weights of the
correctly classified case are reduced, consequently increasing the weights of the
misclassified instances. This ensures that the cases that were misclassified by
the current hypothesis have a higher probability of being selected for the subsequent
training set. The distribution update rule is given by the following equation (Polikar
et al. 2002):

wtC1 D wt .i / � B
1�ŒjHt .xi /¤yi j�
t (11.8)

After the T hypothesis has been created for each database, the final hypothesis is
computed by combining the hypotheses using weighted majority voting as described
by the following equation (Polikar et al. 2002):

Ht D arg max
y2Y

KX
kD1

X
t WHt .x/Dy

log


1=ˇt

�
(11.9)

The LearnCC algorithm is represented diagrammatically in Fig. 11.1.

11.3.2 Confidence Measurement

A technique is used to estimate the confidence of the algorithm about its own
decision. A majority of hypotheses agreeing on given instances can be interpreted
as an indication of confidence on the decision proposed. If it is assumed that a total
of T hypotheses are generated in k training sessions for a C-class problem, then for
any given example, the final classification class, the total vote class c receives is
given by (Muhlbaier et al. 2004):
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Fig. 11.1 Block diagram of a LearnCC algorithm

�c D
X

t Wht .x/Dc

‰t (11.10)

where ‰t denotes the voting weights of the t th, hypothesis ht.
Normalizing the votes received by each class can be performed as follows

(Muhlbaier et al. 2004):

�c D �c

CP
cD1

�c

(11.11)

Here, �c can be interpreted as a measure of confidence on a scale of 0–1. A high
value of �c shows high confidence in the decision and conversely, a low value of
�c shows low confidence in the decision. It should be noted that the �c value does
not represent the accuracy of the results, but the confidence of the system in its own
decision.
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11.4 Multi-Layer Perceptrons

The architecture considered in this chapter to create the WeakLearn was the multi-
layer perceptron (MLP) as described in great detail in Chap. 3. The MLP can be
defined as a feed-forward neural network model that approximates the relationship
between a set of input data and a set of appropriate output data. Its foundation is the
standard linear perceptron. It makes use of three or more layers of neurons usually
with non-linear activation functions. This is because it can distinguish data that are
not linearly separable, or separable by a hyper-plane. The multi-layer perceptron
has been used to model many complex systems in areas such as mechanical and
aerospace engineering as well as for modelling interstate conflict (Marwala 2007;
Marwala 2009; Marwala 2010; Marwala and Lagazio 2011).

The MLP neural network consists of multiple layers of computational units,
usually inter-connected in a feed-forward way (Bishop 1995). Each neuron in
one layer is directly connected to the neurons of the subsequent layer. A fully
connected two-layered MLP architecture was used for this chapter. A two-layered
MLP architecture was used because of the universal approximation theorem, which
states that a two-layered architecture is adequate for MLP and, consequently, it can
approximate data of arbitrary complexity (Bishop 1995).

11.5 Experimental Investigation

A dissolved gas analysis is used to estimate the faulty gases in bushing oil. The
information from the dissolved gas analysis reflects the states of the transformer
and bushing. Ten diagnostic gases are extracted: CH4, C2H6, C2H4, C2H2, H2,
CO, CO2, N2, O2 and total dissolved combustible gases. The total dissolved
combustible gas is given by the sum of methane, hydrogen, acetylene, ethane,
ethylene and hydrogen. The faulty gases are analyzed using the IEEE C57.104
standards. Data pre-processing is an integral part of neural network architecture.
Data pre-processing makes it easier for the network to learn. Data are normalized to
fall within 0 and 1.

The first experiment evaluated the incremental capability of the LearnCC
algorithm using a first-level fault diagnosis, which was aimed at classifying the
presence or the absence of faults in transformer bushings. The data used were
collected from bushings over a period of 2.5 years from bushings in service. The
algorithm was implemented with 1,500 training examples and 4,000 validation
examples. The training data were divided into five databases each with 300 training
instances. In each training session, LearnCC was provided with each database and
20 hypotheses were generated. The WeakLearner used an MLP with 10 input layer
neurons, 5 hidden layer neurons and one output layer neuron. To ensure that the
technique retained previously learned data, the previous database was tested at each
training session.
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Table 11.1 Performance of
LearnCC for first level
online condition monitoring
(Key: SD dataset)

Dataset S1 S2 S3 S4 S5

S1 89.5 85.8 83.0 86.9 85.3
S2 – 91.4 94.2 93.7 92.9
S3 – – 93.2 90.1 91.4
S4 – – – 92.2 94.5
S5 – – – – 98.0
LearnCC 65.7 79.0 85.0 93.5 95.8
Testing (%)

Fig. 11.2 Performance of LearnCC on training data against the number of classifiers

The first row of Table 11.1 shows the performance of LearnCC on the training
data for different databases. On average, the WeakLearner gave 60% classification
rate on its training dataset, which improved to 98% when the hypotheses were
combined.

These results show the performance improvement of LearnCC with a single
database. Each column shows the performance of current and previous databases.
This is to indicate that LearnCC did not forget the previously learned information
when new data were introduced.

The classifiers’ performance on the testing dataset steadily increased from
65.7% to 95.8% as new databases became available, demonstrating the incremental
capability of LearnCC as shown in Fig. 11.2.

A second experiment was performed to evaluate whether the frameworks can
accommodate new classes. The results appear in Table 11.2. The faulty data
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Table 11.2 Performance of
LearnCC for second stage
bushing condition monitoring

Dataset S1 S2 S3 S4 S5

S1 95.0 95.2 94.6 95.7 95.1
S2 – 96.3 96.0 96.8 95.3
S3 – – 97.0 96.4 96.5
S4 – – – 97.8 96.8
S5 – – – – 99.2
LearnCC 60.0 65.2 76.0 83.0 95.3
Testing (%)

were divided into 1,000 training examples and 2,000 validation examples, which
contained all three classes. The training data were divided into five databases,
each with 200 training instances. The first and second databases contained training
examples of partial discharges and thermal faults.

The data with unknown faults were introduced in training session three. In each
training session, LearnCC was provided with each database and 20 hypotheses
were generated. The classifiers performance increased from 60% to 95.3% as
new classes were introduced in subsequent training datasets. The final experiment
addressed the problem of bushing condition monitoring using a MLP network that
was trained using batch learning. This was done to compare the classification rate
of LearnCC with that of a MLP.

A MLP with the same set of training example as LearnCC was trained and the
trained MLP was tested with the same validation data as LearnCC. This test was
conducted for the first and second levels of fault classification. In the first level fault
diagnosis, the MLP gave a classification rate of 97.2% whereas the second level
MLP gave a classification rate of 96.0%. This was when the classifier had seen
all the fault classes a priori. If the classifier had not seen all the fault cases, the
performance decreased from 65.7% for database 1–30.0% for databases 2–3 for the
first level fault classification.

11.6 Conclusion

This chapter presented an on-line bushing condition monitoring approach, which
can adapt to newly acquired data. This technique was capable of factoring into
account new classes that were introduced by incoming data and was implemented
using an incremental learning algorithm that used the MLP called LearnCC. The
test results improved from 67.5% to 95.8% as new data were introduced and
improved from 60% to 95.3% as new conditions were introduced. On average, the
confidence value of the framework about its decision was 0.92.
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Chapter 12
Conclusion

12.1 Introduction

In Chap. 1, condition monitoring methods in mechanical and electrical systems were
reviewed. A condition monitoring framework was discussed which entailed the do-
main in which the data were visualized and in particular the time, modal, frequency
and time-frequency domains. A generalized condition monitoring framework which
encompasses the data acquisition device, data analysis device, feature selection
device, and decision making device was presented. Techniques for decision making
devices were introduced: finite element models, correlation based methods and
computational intelligence techniques.

Chapter 2 reviewed data processing methods for condition monitoring in me-
chanical and electrical systems. Approaches for acquiring data were described
and techniques for analyzing data were explained. In particular, modal properties,
pseudo-modal energies, wavelet and Mel-frequency Cepstral Coefficients tech-
niques were described. Furthermore, the principal component analysis technique
was described. In conclusion, examples that were followed for this book were
described. These examples were gearbox data, a population of cylindrical shells
data and transformer bushing data. Additionally, Bayesian neural networks were
implemented using the hybrid Monte Carlo method and trained using pseudo-modal
energies and modal properties data. The pseudo-modal-energy-network was found
to offer better results than the modal-property-network.

In Chap. 3 the multi-layer perceptron neural network was introduced for con-
dition monitoring of a population of cylindrical shells. The multi-layer perceptron
method was explained in detail and a literature review of the pertinent literature was
presented and applied to identify faults in a population of cylindrical shells. The
modal properties and pseudo-modal energies data were used to classify faults and a
principal component analysis was applied to reduce the dimensions of the input data.
The pseudo-modal-energy-network and the modal-property-network were found to
give similar levels of accuracy in classifying faults.

T. Marwala, Condition Monitoring Using Computational Intelligence Methods:
Applications in Mechanical and Electrical Systems, DOI 10.1007/978-1-4471-2380-4 12,
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In Chap. 4, two Bayesian multi-layer perceptron neural networks were developed
by applying the hybrid Monte Carlo technique with one trained using the pseudo-
modal energies while the other trained using the modal properties. They were then
applied for condition monitoring of a population of cylindrical shells. The pseudo-
modal-energy-network gave better results than the modal-property-network.

In Chap. 5, a committee of neural networks method applied the pseudo modal
energies, modal properties and wavelet transform data simultaneously to identify
faults in cylindrical shells. When tested to identify faults it could identify faults
better than the three individual methods.

In Chap. 6, bearing vibration signals features were extracted using the time-
domain fractal-based feature extraction and the extracted features were then applied
to classify faults using Gaussian Mixture Models (GMMs) and hidden Markov
Models (HMMs). The HMM was found to out-perform GMM.

In Chap. 7, the Fuzzy Set Theory (FST) and fuzzy ARTMAP was applied to
diagnose the condition of high voltage bushings. Both FST and fuzzy ARTMAP
could diagnose the bushing’s condition.

In Chap. 8, the rough set technique and ant colony optimization methods
were applied for the condition monitoring of transformer bushings. The rough set
optimized using the ant colony optimization method gave better results than the
equal-frequency-bin partition model.

In Chap. 9, a method was introduced for fault classification in mechanical
systems in the presence of missing data entries, based on auto-associative neural
networks and a genetic algorithm. The approximated values were then applied for
the classification of faults. A fault classification accuracy of 94% was observed
for single-missing-entry cases and 91% for two-missing-entry cases, while the full
database set gave a classification accuracy of 96%.

In Chap. 10, feature extraction methods: fractals, Kurtosis and Mel-frequency
Cepstral Coefficients were used as inputs to the Support vector machine (SVM) and
extension neural network (ENN) and then applied for condition monitoring. When
tested for condition monitoring they were observed to give good results.

In Chap. 11, an on-line bushing condition monitoring technique was introduced,
which was capable of adapting to newly acquired data. This method could accom-
modate new classes that were introduced by incoming data. It was implemented
using an incremental learning algorithm that used the multi-layered perceptron. The
testing results improved from 67.5% to 95.8% as new data were introduced and the
testing results improved from 60% to 95.3% as new conditions were introduced.

12.2 Future Studies

A multi-agent system uses intelligent software that can learn, adapt and act
independently to solve complex problems. For example, Marwala and Hurwitz
(2009) applied a multi-agent system to design software that can bluff. Elsewhere,
Pereira et al. (2001) applied a multi-agent system to simulate a trading system.
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Marwala et al. (2001) applied a multi-agent system for stock market prediction
while Abramov et al. (2001) studied the ontological basis of a multi-agent system.
Teweldemedhin et al. (2004) applied a multi-agent system to study the infection
characteristics of the HIV epidemic. Elsewhere, Marivate et al. (2008) applied a
multi-agent system for designing a neural network based recommender system.
In the future an integrated study on how the multi-agent systems can be used in
condition monitoring should be explored.

The ability of a classifier to take on new information and classes by evolving
the classifier system without it having to be fully retrained is known as incremental
learning. In this book an incremental learning system, known as LearnCC, was
successfully applied to condition monitoring. For future studies a new method called
Incremental Learning Using a Genetic Algorithm (ILUGA) which was successfully
applied to Optical Character Recognition (OCR) and Wine datasets could be applied
to condition monitoring and be compared to the LearnCC system (Hulley and
Marwala 2007).

In this book, a committee of learning networks was applied to condition
monitoring and was found to perform better than the individual methods. For future
studies, a committee method should be adapted with the ability to autonomously
evolve (Marwala 2009, 2010).

In this book, rough sets theory was applied for condition monitoring. For future
work a neuro-rough model can be a combination of neural networks with rough
set theory for condition monitoring (Marwala and Crossingham 2008; Marwala
and Lagazio 2011). This model will naturally combine the accuracy of the neural
network with the transparency of the rough set model.
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