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12.1 Introduction

This chapter considers the work of George Boole and Charles Babbage who are

considered grandfathers of computing. George Boole was a nineteenth-century

English mathematician who made contributions to logic, probability theory and

the differential and integral calculus. His calculus of logic (Boolean logic) acts as

the foundation of all modern digital computers.

Charles Babbage was a nineteenth-century scientist and inventor who did

pioneering work on calculating machines. He invented the difference engine

(a sophisticated calculator that could be used for the production of mathematical

tables), and he also designed the analytic engine (the world’s first mechanical

computer). The design of the analytic engine included a processor, memory and

a way to input information and output results. However, it was never built in

Babbage’s lifetime.

Babbage intended that the program be stored on read-only memory using punch

cards, and that input and output for the analytic engine be carried out using

punch cards. He intended that the machine would be able to store numbers and

intermediate results in memory where they could then be processed. This machine

would have employed features subsequently used in modern computers such as
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sequential control, branching and looping. He even intended that the machine would

be capable of parallel processing where several calculations could be performed at

once. It would have been the first mechanical device to be Turing complete.

Lady Ada Lovelace became familiar with Babbage’s ideas on the analytic

engine at a dinner party, and she was fascinated by the idea of such a machine.

She wrote what is considered the first computer program and may be considered the

world’s first computer programmer.

12.2 George Boole

George Boole was born in Lincoln, England, in 1815. His father (a cobbler who was

interested in mathematics and optical instruments) taught him mathematics and

showed him how to make optical instruments. Boole inherited his father’s interest

in knowledge and was self-taught in mathematics and Greek. He was taught Latin by

a tutor. Boole taught in various schools near Lincoln and developed his mathematical

knowledge by working his way through Newton’s Principia, as well as applying

himself to the work of mathematicians such as Laplace and Lagrange (Fig. 12.1).

He published regular papers from his early twenties onwards, and these included

contributions to probability theory, differential equations and finite differences.

He developed Boolean algebra which is the foundation for modern computing, and

he is considered (along with Babbage) to be one of the grandfathers of computing.

His work was theoretical; he was not an engineer and never actually built

a computer or calculating machine. However, Boole’s symbolic logic provided

the perfect mathematical model for switching theory and for the design of digital

circuits. Claude Shannon recognised its applicability and applied it successfully to

switching circuits.

Boole was interested in formulating a calculus of reasoning, and he published

a pamphlet titled ‘Mathematical Analysis of Logic’ in 1847 [Boo:48]. This article

developed novel ideas on a logical method, and he argued that logic should

be considered as a separate branch of mathematics, rather than being considered

Fig. 12.1 George Boole
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a part of philosophy. Boole argued that there are mathematical laws to express the

operation of reasoning in the human mind, and he showed how Aristotle’s syllogis-

tic logic could be rendered as algebraic equations. He corresponded regularly on

logic with the British mathematician, Augustus De Morgan1 on logic.

Boole had no formal university qualification, and he had difficulty in obtaining

a university position. However, his publications were recognised as excellent,2 and

he was awarded the position as the first professor of mathematics at the newly

founded Queens College Cork,3 Ireland, in 1849.

Boole’s influential paper on a calculus of logic introduced two quantities

0 and 1. He used the quantity 1 to represent the universe of thinkable objects

(i.e. the universal set), with the quantity 0 representing the absence of any

objects (i.e. the empty set). He then employed symbols such as x, y, z, etc. to
represent collections or classes of objects given by the meaning attached

to adjectives and nouns. Next, he introduced three operators (+, � and �)

that combined classes of objects.

For example, the expression xy (i.e. xmultiplied by y or x � y) combines the two

classes x, y to form the new class xy (i.e. the class whose objects satisfy the

two meanings represented by the classes x and y). Similarly, the expression x + y
combines the two classes x, y to form the new class x + y (that satisfies either the

meaning represented by class x or by class y). The expression x � y combines the

two classes x, y to form the new class x � y. This represents the class that satisfies
the meaning represented by class x but not class y. The expression (1 � x)
represents objects that do not have the attribute that represents class x.

Thus, if x ¼ black and y ¼ sheep, then xy represents the class of black sheep.

Similarly, (1 � x) would represent the class obtained by the operation of selecting

all things in the world except black things, x (1 � y) represents the class of all

things that are black but not sheep and (1 � x) (1 � y) would give us all things that
are neither sheep nor black.

He showed that these symbols obeyed a rich collection of algebraic laws and

could be added, multiplied, etc. in a manner that is similar to real numbers.

He showed how these symbols could be used to reduce propositions to equations,

and algebraic rules could be used to solve the equations. The algebraic rules

satisfied by his system included:

1. x + 0 ¼ x (Additive identity)

2. x + (y + z) ¼ (x + y) + z (Associativity)

3. x + y ¼ y + x (Commutativity)

1De Morgan was a nineteenth-century British mathematician based at University College London.

DeMorgan’s laws in set theory and logic state that (A\ B)c ¼ Ac\ Bc and¬ (A∨B)¼¬A∧¬B.
2 Boole was awarded the Royal Medal from the Royal Society of London in 1844 in recognition of

his publications. The Irish Mathematician, Sir Rowan Hamilton (who invented Quaternions), was

another famous recipient of this prize.
3 Queens College Cork is now called University College Cork (UCC) and has about 18,000

students. It is located in Cork city in the south of Ireland.
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4. x + (1 � x) ¼ 1 (Not operator)

5. x 1 ¼ x (Multiplicative identity)

6. x 0 ¼ 0

7. x + 1 ¼ 1

8. xy ¼ yx (Commutativity)

9. x(yz) ¼ (xy)z (Associativity)

10. x(y + z) ¼ xy + xz (Distributive)

11. x(y � z) ¼ xy � xz (Distributive)

12. x2 ¼ x (Idempotent)

13. xn ¼ x

These operations are similar to the modern laws of set theory with the set union

operation represented by ‘+’, and the set intersection operation is represented by

multiplication. The universal set is represented by ‘1’ and the empty by ‘0’.

The associative and distributive laws hold. Finally, the set complement operation

is given by (1 � x).
Boole applied the symbols to encode propositions of Aristotle’s Syllogistic

Logic, and he showed how the syllogisms could be reduced to equations.

This allowed conclusions to be derived from premises by eliminating the middle

term in the syllogism.

Boole refined his ideas on logic further in his book An Investigation of the Laws
of Thought [Boo:58] published in 1854. This book aimed to identify the funda-

mental laws underlying reasoning in the human mind and to give expression

to these laws in the symbolic language of a calculus. He considered the

equation x2 ¼ x to be a fundamental laws of thought. It allows the principle of

contradiction to be expressed (i.e. for an entity to possess an attribute and at the

same time not to possess it):

x2 ¼ x

) x� x2 ¼ 0

) xð1� xÞ ¼ 0

For example, if x represents the class of horses then (1 � x) represents the class
of ‘not horses’. The product of two classes represents a class whose members are

common to both classes. Hence, x (1 � x) represents the class whose members

are at once both horses and ‘not horses’, and the equation x (1 � x) ¼ 0 expresses

that fact that there is no such class whose members are both horses and ‘not horses’.

Another words, it is the empty set.

Boole made contributions to other areas in mathematics including differential

equations and on finite differences.4 He also contributed to the development of

probability theory.

4 Finite differences are a numerical method used in solving differential equations.
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He married Mary Everest in 1855, and they lived in Lichfield Cottage in

Ballintemple, Cork. She was a niece of the surveyor of India, Sir George Everest,

after whom the world’s highest mountain is named. They had five daughters, and

his daughter Ethel Lilian was the author of the novel The Gadfly.5 Boole died from

fever at the early age of 49 in 1864.

Queens College Cork honoured his memory by installing a stained glass window

in the Aula Maxima of the college. This shows Boole writing at a table with

Aristotle and Plato in the background. An annual Boole Prize is awarded by the

Mathematics Department at University College Cork. Des McHale has written an

interesting biography of Boole [McH:85].

Boole’s work on logic appeared to have no practical use. However, Claude
Shannon became familiar with Boole’s work in the 1930s, and his 1937 Masters

thesis showed how Boolean algebra could optimise the design of systems of

electromechanical relays which were then used in telephone routing switches.

He also proved that circuits with relays could solve Boolean algebra problems.

The use of the properties of electrical switches to process logic is the basic

concept that underlies all modern electronic digital computers. All digital

computers today use the binary digits 0 and 1, and Boolean logical operations

may be implemented by electronic AND, OR and NOT gates. More complex

circuits (e.g. arithmetic) may be designed from these fundamental building blocks.

12.2.1 Modern Boolean Algebra

Boolean algebra consists of propositions that are either true or false. The proposi-

tion ‘2 + 2 ¼ 4’ is true, whereas the proposition ‘2 � 5 ¼ 11’ is false. Variables

(A, B, etc.) are used to stand for propositions, and propositions may be combined

using logical connectives to form new propositions. The standard logical

connectives are ‘and’, ‘or’ and ‘not’, and these are represented by the symbols

‘∧’, ‘∨’ and ‘¬’, respectively. There are other logical connectives that may be used

such as implication ()) and equivalence (,).

There are several well-known properties of Boolean algebra as described in

Table 12.1.

The Boolean constant ‘True’ is the identity operation for conjunction. In other

words, the conjunction of any operand A with the Boolean value ‘True’ yields the

proposition A. Similarly, the Boolean constant ‘False’ is the identity operation for

disjunction.

Truth tables define the truth values of a compound proposition from its con-

stituent propositions. The conjunction of A and B (A ∧ B) is true if and only if

5 This is a novel about the struggle of an international revolutionary. Shostakovich wrote the score

for the film of the same name that appeared in 1955.
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both A and B are true. The disjunction of A and B (A ∨ B) is true if either A or B is

true. These are defined in Table 12.2.

There are other logical connectives that may be used [ORg:06] such as implica-

tion and equivalence. The ‘not’ operator (¬) is a unary operator such that¬A is true

if A is false and is false if A is true (Table 12.3).

Complex Boolean expressions may be formed from simple Boolean expressions

using the logical connectives.

12.2.2 Switching Circuits and Boolean Algebra

Claude Shannon showed in his influential masters thesis that Boolean algebra was

applicable to telephone routing switches. It could optimise the design of systems of

electromechanical relays, and circuits with relays could solve Boolean algebra

problems.

Modern electronic computers use millions of transistors that act as switches and

can change state rapidly. The use of switches to represent binary values is the

foundation of modern computing. A high voltage represents the binary value 1 with

low voltage representing the binary value 0. A silicon chip may contain thousands

Table 12.1 Properties

of Boolean algebra
Property Example

Commutative A ∧ B � B ∧ A

A ∨ B � B ∨ A

Associative A ∧ (B ∧ C) � (A ∧ B) ∧ C

A ∨ (B ∨ C) � (A ∨ B) ∨ C

Identity A ∧ True � A

A ∨ False � A

Distributive A ∧ (B ∨ C) � (A ∧ B) ∨ (A ∧ C)

A ∨ (B ∧ C) � (A ∨ B) ∧ (A ∨ C)

De Morgan ¬ (A ∧ B) � ¬A ∨ ¬B

¬ (A ∨ B) � ¬A ∧ ¬B

Idempotent A ∧ A � A

A ∨ A � A

Table 12.2 Truth tables for

conjunction and disjunction
A B A ∧ B A B A ∨ B

T T T T T T

T F F T F T

F T F F T T

F F F F F F

Table 12.3 Truth table

for not operation
A ¬A

T F

F T
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of tiny electronic switches arranged into logical gates. The basic logic gates are

AND, OR and NOT. These gates may be combined in various ways to allow the

computer to perform more complex tasks such as binary arithmetic. Each gate has

binary value inputs and outputs.

The example in Fig. 12.2 below is that of an ‘AND’ gate, and this gate produces

the binary value 1 as output only if both inputs are 1. Otherwise, the result will be

the binary value 0.

The example in Fig. 12.3 is of an ‘OR’ gate, and it produces the binary value 1 as

output if any of its inputs is 1. Otherwise, it will produce the binary value 0 as output.

Finally, a NOT gate accepts only a single input which it reverses. That is, if the

input is ‘1’, the value ‘0’ is produced and vice versa. The NOT gate may be

combined with the AND to yield the NAND gate (NOT AND) (Fig. 12.4).

The logic gates may be combined to form more complex circuits. The example

in Fig. 12.5 is that of a half adder of 1 + 0.

Fig. 12.2 Binary AND

operation

Fig. 12.3 Binary OR

operation

Fig. 12.4 NOT operation

Fig. 12.5 Half adder
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The inputs to the top OR gate are 1 and 0, and this yields the result of 1.

The inputs to the bottom AND gate are 1 and 0 which yields the result 0, which

is then inverted through the NOT gate to yield binary 1. Finally, the last AND gate

receives two 1s as input, and the binary value 1 is the result of the addition. The half

adder computes the addition of two arbitrary binary digits, but it does not calculate

the carry for the operation. The half adder may be extended to a full adder that

provides a carry for addition.

12.3 Charles Babbage

Charles Babbage is considered (along with George Boole) to be one of the

grandfathers of computing. He was born in Devonshire, England, in 1791 and

was the son of a banker. He studied mathematics at Cambridge University in

England and was appointed to the Lucasian Chair in Mathematics at Cambridge

in 1828. He made contributions to several areas including mathematics, statistics,

astronomy, philosophy, railways and lighthouses. He founded the British Statistical

Society and the Royal Astronomical Society (Fig. 12.6).

Babbage was interested in accurate mathematical tables as these are essential for

navigation and scientific work. However, there was a high error rate in the existing

tables due to human error introduced during calculation. His approach to solving

this problem was to investigate a mechanical method to perform the calculations as

this would eliminate errors introduced by human calculation. Pascal and Leibniz

did early work on calculating machines.

He designed the difference engine (no. 1) in 1821 for the production of mathe-

matical tables. A difference engine is essentially a mechanical calculator

Fig. 12.6 Charles Babbage

200 12 Foundations (Boole and Babbage)



(analogous to modern electronic calculators), and it was designed to compute

polynomial functions. It could also compute logarithmic and trigonometric

functions such as sine or cosine as these may be approximated by polynomials.6

The accurate approximation of trigonometric, exponential and logarithmic

functions by polynomials depends on the degree of the polynomials, the number

of decimal digits that it is being approximated to and the error function. A higher

degree polynomial is able to approximate the function more accurately.

Babbage produced prototypes for parts of the difference engine but he never

actually completed it. Babbage’s Engine was intended to operate on sixth-order

polynomials of 20 digits. A polynomial of degree 6 is of the form

pðxÞ ¼ ax6 þ bx5 þ cx4 þ dx3 þ ex2 þ fxþ g.
He also designed the analytic engine (the world’s first mechanical computer).

The design of the analytic engine included a processor, memory and a way to input

information and output results.

12.3.1 Difference Engine

The first working difference engine was built in 1853 by the Swedish engineers

George and Edward Scheutz. They based their plans on Babbage’s design and

received funding from the Swedish government. The Scheutz machine could

compute polynomials of degree 4 on 15-digit numbers. A copy of the third Scheutz

Difference Engine is on display in the Science Museum in London.

This machine was the first to compute and print mathematical tables mechani-

cally. The working engine produced by the Scheutz brothers was accurate, and it

was used by scientists and engineers in their calculations. It showed the potential of

mechanical machines as a tool for scientists and engineers (Fig. 12.7).

The difference engine consists of N columns (numbered 1–N). Each column

is able to store one decimal number, and the numbers are represented by

wheels. The difference engine (no. 1) has seven columns with each column

containing 20 wheels. Each wheel consists of ten teeth, and these represent the

decimal digits. Each column could therefore represent a decimal number with up

to 20 digits. The seven columns allowed the representation of polynomials of

degree six.

The only operation that the difference engine can perform is the addition of the

value of column n + 1 to column n, and this results in a new value for column n.

6 The power series expansion of the sine function is given by sin(x) ¼ x � x3/3! + x5/5! � x7/
7! + . . .. The power series expansion for the cosine function is given by cos(x) ¼ 1 � x2/2! + x4/
4! � x6/6! + . . .. Functions may be approximated by interpolation and the approximation of a

function by a polynomial of degree n requires n + 1 points on the curve for the interpolation. That

is, the curve formed by the polynomial of degree n that passes through the n + 1 points on the

function to be approximated is an approximation to the function.
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Column N can only store a constant and column 1 displays the value of the

calculation for the current iteration. The machine is programmed prior to execution

by setting initial values to each of the columns. Column 1 is set to the value of the

polynomial at the start of computation; column 2 is set to a value derived from

the first and higher derivatives of the polynomial for the same value of x. Each
column n from 3 to N is set to a value derived from the (n � 1) first and higher

order derivatives of the polynomial.

The Scheutz’s difference engine was comprised of shafts, shelves and wheels.

The scientist could set numbers on the wheels7 and turn a crank to start the

computation. Then, by reading down each shaft, he could find the result of

the calculation. The difference engine was able to print out the answers to the

computation. The decimal numbering system was employed, and there was also

a carry mechanism.

The machine is unable to perform multiplication or division directly. Once the

initial value of the polynomial and its derivatives are calculated for some value of x,
the difference engine can calculate any number of nearby values using the numeri-

cal method of finite differences. This method replaces computational intensive

tasks involving multiplication or division by an equivalent computation which

just involves addition or subtraction.

7 Each wheel represented a decimal digit (each wheel consisted of ten teeth).

Fig. 12.7 Difference engine no. 2 (Photo public domain)
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12.3.2 Finite Differences

A finite difference is a mathematical expression of the form f(x + h) � f(x).
If a finite difference is divided by h, then the resulting expression is similar to

a differential quotient, except that it is discrete.

Finite differences may be applied to approximate derivatives, and they are often

used to find numerical solution to differential equations. They provide a very useful

way to calculate the value of a polynomial used to approximate a given function.

The method of finite differences is used in the production of tables for

polynomials using the difference engine. Consider the quadratic polynomial

p(x) ¼ 2x2 + 3x + 1 and consider Table 12.4.

The first difference is computed by subtracting two adjacent entries in the

column of p(x). For example, 15 � 6 ¼ 9, 28 � 15 ¼ 13 and so on. Similarly,

the second difference is given by subtracting two adjacent entries in the Difference

1 column; for example, 13 � 9 ¼ 4, 17 � 13 ¼ 4 and so on. The entries in the

second difference column are the constant 4. In fact, for any n-degree polynomial

the entries in the n-difference column are always a constant.

The difference engine performs the computation of the table in a similar manner,

although the approach is essentially the reverse of the above. Once the first row of

the table has been determined, the rest of the table may be computed using just

additions of pairs of cells in the table (Table 12.5).

The first row is given by the cells 6, 9 and 4 which allows the rest of the table to be

determined. The numbers in the table below have been derived by simple calculations

from the first row. The procedure for calculation of the table is as follows:

1. The Difference 2 column is the constant 4.

2. The calculation of the cell in row i for the Difference 1 column is given by Diff. 1

(i � 1) + Diff. 2 (i � 1).

3. The calculation of the cell in row i for the function column is given by f(i � 1)

+ Diff. 1 (i � 1).

Table 12.5 Finite

Differences (In Use)
x f(x) Diff. 1 Diff. 2

1 6 9 4

2 15 13 4

3 28 17 4

4 45 21 4

5 66 25 4

Table 12.4 Finite

Differences (Calculation)
x p(x) Diff. 1 Diff. 2

1 6

2 15 9

3 28 13 4

4 45 17 4

5 66 21 4
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In other words, to calculate the value of a particular cell, all that is required is to

add the value in the cell immediately above it to the value of the cell immediately to

its right. Therefore, in the second row, the calculations 6 + 9 yield 15, and 9 + 4

yields 13, and, since the last column is always a constant, it is just repeated.

Therefore, the second row is 15, 13 and 4, and f(2) is 15. Similarly, the third row

yields 15 + 13 ¼ 28, 13 + 4 ¼ 17 and so on. This is the underlying procedure of

the difference engine.

The initial problem is to compute the first row which allows the other rows to be

computed. Its computation is more difficult for complex polynomials. The other

problem is to find a suitable polynomial to represent the function, and this may be

done by interpolation. However, once these problems are solved, the engine

produces pages and columns full of data.

Babbage received £17 K of taxpayer funds to build the difference engine, but for

various reasons he only produced prototypes of the intended machine. Therefore,

the British government was reluctant to continue funding, and the project was

cancelled in 1842.

The prototypes built by Babbage and his engineer Joseph Clement were limited

to the computation of quadratic polynomials of six-digit numbers. The difference

engine envisaged by Babbage was intended to operate on sixth-order polynomials

of 20 digits.

He designed an improved difference engine (no. 2) in 1849. It could operate on

seventh-order differences (i.e. polynomials of order 7) and 31-digit numbers. The

machine consisted of eight columns with each column consisting of 31 wheels.

However, it was over 150 years later before it was built (in 1991) to mark the 200th

anniversary of his birth. The science museum also built the printer that Babbage

designed, and both the machine and the printer worked correctly according to

Babbage’s design (after a little debugging).

12.3.3 Analytic Engine

The difference engine was designed to produce mathematical tables and required

human intervention to perform the calculation. Babbage recognised its limitations

and proposed a revolutionary solution. His plan was to construct a new machine that

would be capable of executing all tasks that may be expressed in algebraic notation.

The analytic engine envisioned by Babbage consisted of two parts (Table 12.6).

Babbage intended that the operation of the analytic engine would be analogous to

the operation of the Jacquard loom.8 The latter is capable of weaving (i.e. executing

8 The Jacquard loom was invented by Joseph Jacquard in 1801. It is a mechanical loom which used

the holes in punch cards to control the weaving of patterns in a fabric. The use of punch cards

allowed complex designs to be woven from the pattern defined on the punch card. Each punch card

corresponds to one row of the design, and the cards were appropriately ordered. It was very easy to

change the pattern of the fabric being weaved on the loom, as this simply involved changing cards.
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on the loom) a design pattern that has been prepared by a team of skilled artists.

The design pattern is represented by punching holes on a set of cards, and each card

represents a row in the design. The cards are then ordered and placed in the

Jacquard loom, and the exact pattern is produced by the loom.

The Jacquard loom was the first machine to use punch cards to control

a sequence of operations. It did not perform computation, but it was able to change

the pattern of what was being weaved by changing cards. This gave Babbage the

idea to use punch cards to store programs to perform the analysis and computation

in the analytic engine.

The use of the punch cards in the analytic engine allowed the formulae to be

manipulated in a manner dictated by the programmer. The cards commanded

the analytic engine to perform various operations and to return a result. Babbage

distinguished between two types of punch cards:

– Operation cards

– Variable cards

Operation cards are used to define the operations to be performed, whereas the

variable cards define the variables or data that the operations are performed upon.

This planned use of punch cards to store programs in the analytic engine is similar

to the idea of a stored computer program in von Neumann architecture. However,

Babbage’s idea of using punch cards to represent machine instructions and data was

over 100 years before digital computers. Babbage’s analytic engine is therefore an

important step in the history of computing.

The analytic engine was designed in 1834 as the world’s first mechanical

computer [Bab:42]. It included a processor, memory and a way to input information

and output results. However, the machine was never built as Babbage was unable to

receive funding from the British Government.

Babbage intended that the program be stored on read-only memory using punch

cards, and that the input and output would be carried out using punch cards.

He intended that the machine would be able to store numbers and intermediate

results in memory that could then be processed. There would be several punch card

readers in the machine for programs and data. He envisioned that the machine

would be able to perform conditional jumps as well as parallel processing where

several calculations could be performed at once (Fig. 12.8).

Lady Ada was introduced into Babbage’s ideas on the analytic engine at a dinner

party. She was a mathematician and the daughter of Lord Byron. She was fascinated

by the idea of the analytic engine and communicated regularly with Babbage with

ideas on its applications. She predicted that such a machine could be used

Table 12.6 Analytic engine

Part Function

Store This contains the variables to be operated upon as well as all those quantities which have

arisen from the result of intermediate operations

Mill The mill is essentially the processor of the machine into which the quantities about to be

operated upon are brought
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to compose music, produce graphics as well as solving mathematical and scientific

problems. She suggested to Babbage that a plan be written for how the engine

would calculate Bernoulli numbers. This plan is considered to be the first computer

program, and Lady Ada Lovelace is therefore considered to be the first computer

programmer. The Ada programming language is named in her honour.

12.4 Review Questions

1. Describe how Boole’s symbolic logic is used in digital circuit design.

2. Explain how finite differences are used to produce tables in the difference

engine.

3. Describe the analytic engine and compare/contrast to von Neumann

architecture.

12.5 Summary

This chapter considered the contribution of George Boole and Charles Babbage

who are considered to be the grandfathers of the computing field.

Boole was a nineteenth-century English mathematician who made contributions

to logic, probability theory and calculus. His calculus of logic (Boolean logic)

introduced two quantities (i.e. 0 and 1) and is the foundation of all modern digital

computers. It was Claude Shannon who recognised the applicability of Boolean

logic to circuit design in his influential 1937 masters thesis. He showed that Boole’s

symbolic logic provided the perfect mathematical model for switching theory and

for the design of digital circuits.

Fig. 12.8 Lady Ada

Lovelace
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Babbage was a nineteenth-century scientist and inventor who did pioneering

work on calculating machines. He invented the difference engine (a sophisticated

calculator that could be used for the production of mathematical tables), and he

designed the analytic engine (the world’s first mechanical computer). The design of

the analytic engine included a processor, memory and a way to input information

and output results.
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