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10.1 Introduction

The NATO Science Committee organised two famous conferences on software

engineering in the late 1960s. The first conference was held in Garmisch, Germany,

in 1968, and this was followed by a second conference in Rome in 1969.

The Garmisch conference was attended by over 50 people from 11 countries.

The conferences highlighted the problems that existed in the software sector in

the late 1960s, and the term ‘software crisis’ was coined to refer to these problems.

These included budget and schedule overruns of projects and problems with the

quality and reliability of the delivered software. This led to the birth of software
engineering as a separate discipline, and the realisation that programming is quite

distinct from science and mathematics. Programmers are like engineers in the sense
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that they design and build products; however, they need an appropriate education to

design and develop software.1

The construction of bridges was problematic in the nineteenth century, and many

people who presented themselves as qualified to design and construct bridges did

not have the required knowledge and expertise. Consequently, many bridges col-

lapsed, endangering the lives of the public. This led to legislation requiring an

engineer to be licensed by the Professional Engineering Association prior to

practising as an engineer. These engineering associations identify a core body of

knowledge that the engineer is required to possess, and the licensing body verifies

that the engineer has the required qualifications and experience. The licensing of

engineers by most branches of engineering ensures that only personnel competent

to design and build products actually do so. This in turn leads to products that the

public can safely use. In other words, the engineer has a responsibility to ensure that

the products are properly built and are safe for the public to use.

Parnas argues that traditional engineering be contrasted with the software engi-

neering discipline where there is no licensing mechanism and where individuals

with no qualifications can participate in the design and building of software

products.2 However, the fact that the maturity frameworks such as the CMMI or

ISO 9000 place a strong emphasis on qualifications and training may help to deal

with this.

The Standish Group conducted research in the late 1990s [Std:99] on the extent

of current problems with schedule and budget overruns of IT projects. This study

was conducted in the United States, but there is no reason to believe that European

or Asian companies perform any better. The results indicate serious problems

with on-time delivery.3 Fred Brooks has argued that software is inherently complex,

and that there is no silver bullet that will resolve all of the problems associated

with software such as schedule overruns and software quality problems [Brk:75,

Brk:86].

Poor-quality software can cause minor irritation or it may seriously disrupt the

work of an organisation leading. It has in a very small number of cases led to the

1 Software companies that are following approaches such as the CMM or ISO 9000:2000 consider

the qualification of staff before assigning staff to performing specific tasks. The qualifications and

experience required for the role are considered prior to appointing a person to carry out a particular

role. Mature companies place significant emphasis on the education and continuous development

of their staff and in introducing best practice in software engineering into their organisation. There

is a growing trend among companies to mature their software processes to enable them to deliver

superior results. One of the purposes that the original CMM served was to enable the US

Department of Defense (DOD) to have a mechanism to assess the capability and maturity of

software subcontractors.
2Modern HR recruitment specifies the requirements for a particular role, and interviews with

candidates aim to establish that the candidate has the right education and experience for the role.
3 It should be noted that these are IT projects covering diverse sectors including banking,

telecommunications, etc., rather than pure software companies. Mature software companies

using the CMM tend to be more consistent in project delivery with high quality.
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deaths of individuals, for example, in the case of the Therac-25.4 The Y2K problem,

where dates were represented in a 2-digit format, required major rework for year

2000 compliance. Clearly, well-designed programs would have hidden the repre-

sentation of the date, thereby minimising the changes required for year 2000

compliance. The quality of software produced by mature software companies

committed to continuous improvement tends to be superior.

Mathematics plays a key role in engineering and may potentially assist software

engineers deliver high-quality software products that are safe to use. Several

mathematical approaches that can assist in delivering high-quality software are

described in [ORg:06]. There is a lot of industrial interest in software process

maturity for software organisations, and approaches to assess and mature software

companies are described in [ORg:02, ORg:10].5 These focus mainly on improving

the effectiveness of the management, engineering and organisation practices related

to software engineering.

10.2 What Is Software Engineering?

Software engineering involves multi-person construction of multi-version

programs. The IEEE 610.12 definition of software engineering is:

Definition 10.1 (Software Engineering). Software engineering is the application
of a systematic, disciplined, quantifiable approach to the development, operation,
and maintenance of software; that is, the application of engineering to software,
and the study of such approaches.

Software engineering includes:

1. Methodologies to determine requirements, design, develop, implement and test

software to meet customers’ needs.

2. The philosophy of engineering, that is, an engineering approach to developing

software is adopted. That is, products are properly designed, developed and

tested, with quality and safety properly addressed.

4 Therac-25 was a radiotherapy machine produced by the Atomic Energy of Canada Limited

(AECL). It was involved in at least six accidents between 1985 and 1987 in which patients were

given massive overdoses of radiation. The dose given was over 100 times the intended dose, and

three of the patients died from radiation poisoning. These accidents highlighted the dangers of

software control of safety-critical systems. The investigation subsequently highlighted the poor

software design of the system and the poor software development practices employed.
5 Approaches such as the CMM or SPICE (ISO 15504) focus mainly on the management and

organisational practices required in software engineering. The emphasis is on defining and

following the software process. In practice, there is often insufficient technical detail on

requirements, design, coding and testing in the models, as the models focus on what needs to be

done rather how it should be done.
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3. Mathematics6 may be employed to assist with the design and verification of

software products. The level of mathematics to be employed will depend on the

safety-critical nature of the product, as systematic peer reviews and testing are

often sufficient in building quality into the software product.

4. Sound project management and quality management practices are employed.

Software engineering requires the engineer to state precisely the requirements

that the software product is to satisfy and then to produce designs that will meet

these requirements. Engineers provide a precise description of the problem to be

solved; they then proceed to producing a design and validate the correctness of the

design; finally, the design is implemented, and testing is performed to verify its

correctness with respect to the requirements. The software requirements need to be

unambiguous and should clearly state what is required, and it should also be evident

what is not required.

Classical engineers produce the product design, and then analyse their design

for correctness. Classical engineers will always use mathematics in their analysis

as this is the basis of confirming that the specifications are met. The level of

mathematics employed will depend on the particular application and calculations

involved. The term ‘engineer’ is generally applied only to people who have attained
the necessary education and competence to be called engineers and who base their

practice on mathematical and scientific principles. Often, in computer science, the

term engineer is employed rather loosely to refer to anyone who builds things rather

than to an individual with a core set of knowledge, experience and competence.

Parnas7 is a strong advocate of the classical engineering approach, and he argues

that computer scientists should have the right education to apply scientific and

mathematical principles to their work. This includes mathematics and design, to

enable them to be able to build high-quality and safe products. Baber has argued

[Bab:11] that mathematics is the language of engineering. He argues that students

should be shown how to turn a specification into a program using mathematics.

Parnas has argued that computer science tends to include a small amount of

mathematics, whereas mathematics is a significant part of an engineering course

and is the language of classical engineering. He argues that students are generally

taught programming and syntax, but not how to design and analyse software.

He advocates an engineering approach to the teaching of mathematics with an

emphasis on its application to developing and analysing product designs.

He argues that software engineers need education on engineering mathematics,

specification and design, converting designs into programs, software inspections

6 There is no consensus at this time as to the appropriate role of mathematics in software

engineering. My view is that the use of mathematics should be mandatory in the safety-critical

and security-critical fields as it provides an extra level of quality assurance in these critical fields.
7 Parnas’s key contribution to software engineering is information hiding which is used in the

object-oriented world. He has also done work (mainly of academic interest) on mathematical

approaches to software quality.
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and testing. The education should enable the software engineer to produce

well-designed programs that will correctly implement the requirements.

Parnas argues that software engineers have individual responsibilities as pro-

fessional engineers.8 They are responsible for designing and implementing high-

quality and reliable software that is safe to use. They are also accountable for their

own decisions and actions9 and have a responsibility to object to decisions that

violate professional standards. Professional engineers have a duty to their clients

to ensure that they are solving the real problem of the client. Engineers need to be

honest about current capabilities, and when asked to work on problems that have no

appropriate technical solution, this should be stated honestly rather than accepting a

contract for something that cannot be done.

The licensing of a professional engineer provides confidence that the engineer

has the right education and experience to build safe and reliable products. Other-

wise, the profession gets a bad name as a result of poor work carried out by

unqualified people. Professional engineers are required to follow rules of good

practice and to object when the rules are violated.10 The professional engineering

body is responsible for enforcing standards and certification. The term ‘engineer’ is

a title that is awarded on merit, but it also places responsibilities on its holder.

Engineers have a professional responsibility and are required to behave ethically

with their clients. The membership of the professional engineering body requires

the member to adhere to the code of ethics of the profession. Most modern

companies have a code of ethics that employees are required to adhere to. It details

the required ethical behaviour and responsibilities.

The approach used in current software engineering is to follow a well-defined

software engineering process. The process includes activities such as project man-

agement, requirements gathering, requirements specification, architecture design,

8 The concept of accountability is not new; indeed, the ancient Babylonians employed a code of

laws ca. 1750 B.C. known as the Hammurabi Code. This code included the law that if a house

collapsed and killed the owner, then the builder of the house would be executed.
9 However, it is unlikely that an individual programmer would be subject to litigation in the case of

a flaw in a program causing damage or loss of life. Most software products are accompanied by a

comprehensive disclaimer of responsibility for problems rather than a guarantee of quality.

Software engineering is a team-based activity involving several engineers in various parts of the

project, and it could be potentially difficult for an outside party to prove that the cause of a

particular problem is due to the professional negligence of a particular software engineer, as there

are many others involved in the process such as reviewers of documentation and code and the

various test groups. Companies are more likely to be subject to litigation, as a company is legally

responsible for the actions of their employees in the workplace, and the fact that a company is a

financially richer entity than one of its employees. However, the legal aspects of licensing software

may protect software companies from litigation including those companies that seem to place little

emphasis on software quality. However, greater legal protection for the customer can be built into

the contract between the supplier and the customer for bespoke software development.
10 Software companies that are following the CMMI or ISO 9000 will employ audits to verify that

the rules have been followed. Auditors report their findings to management, and the findings are

addressed appropriately by the project team and affected individuals.
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software design, coding and testing. Most companies use a set of templates for

the various phases. The waterfall model [Roy:70] and spiral model [Boe:88] are

popular software development life cycles.

The waterfall model (Fig. 10.1) starts with requirements, followed by specifi-

cation, design, implementation and testing. It is typically used for projects where

the requirements can be identified early in the project life cycle or are known in

advance. The waterfall model is also called the ‘V’ life cycle model, with the left-

hand side of the ‘V’ detailing requirements, specification, design and coding and

the right-hand side detailing unit tests, integration tests, system tests and acceptance

testing. Each phase has entry and exit criteria which must be satisfied before the

next phase commences. There are several variations of the waterfall model.

The spiral model (Fig. 10.2) is useful where the requirements are not fully

known at project initiation. There is an evolution of the requirements during

development which proceeds in a number of spirals, with each spiral typically

involves updates to the requirements, design, code, testing and a user review of the

particular iteration or spiral.
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Integration Testing

Acceptance Testing
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Design

Code Unit Testing

Fig. 10.1 Waterfall life cycle
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Fig. 10.2 Spiral life cycle model
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The spiral is, in effect, a reusable prototype, and the customer examines the

current iteration and provides feedback to the development team to be included in

the next spiral. The approach is to partially implement the system. This leads to a

better understanding of the requirements of the system, and it then feeds into the

next cycle in the spiral. The process repeats until the requirements and product

are fully complete.

There are other life cycle models; for example, the Cleanroom approach to

software development includes a phase for formal specification, and its approach

to testing is quite distinct from other models as it is based on the predicted usage of

the software product. Finally, the Rational Unified Process (RUP) has become

popular in recent years.

The challenge in software engineering is to deliver high-quality software on time

to customers. The Standish Group research (Fig. 10.3) on project cost overruns in

the USA during 1998 indicates that 33% of projects are between 21% and 50%

overestimate, 18% are between 51% and 100% overestimate and 11% of projects

are between 101% and 200% overestimate.

Accurate project estimation of cost and effort are key challenges, and

organisations need to determine how good their current estimation process actually

is and to make improvements as appropriate. The use of software metrics allows

effort estimation accuracy to be determined by computing the variance between

actual project effort and the estimated project estimate.

Risk management is a key part of project management, and its objectives are to

identify potential risks to the project, determine the probability of the risks occur-

ring, assess the impact of each risk if it materialises, identify actions to eliminate the

risk or to reduce its probability of occurrence, design contingency plans in place to

address the risk if it materialises and finally, track and manage the risks throughout

the project.

The concept of process maturity has become popular with the Capability

Maturity Model, and the SEI has collected empirical data to suggest that there is

a close relationship between software process maturity and the quality and the

reliability of the delivered software. However, the main focus of the CMMI is

management and organisation practices rather than on the technical engineering

practices.
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Fig. 10.3 Standish Group report: estimation accuracy
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The implementation of the CMMI helps to provide a good engineering approach,

as it places strict requirements on the processes and their characteristics that

a company needs to have in place to provide a good engineering solution.

The processes required include:

– Developing and managing requirements

– Doing effective design

– Planning and tracking projects

– Building quality into the product with peer reviews

– Performing rigorous testing

– Performing independent audits

There has been a growth of popularity among software developers in lightweight

methodologies such as XP [Bec:00]. These methodologies view documentation with

distaste, and often, software development commences prior to the full specification

of the requirements.

10.3 Early Software Engineering

Robert Floyd was born in New York in 1936 and attended the University of

Chicago. He became a computer operator in the early 1960s, an associate professor

at Carnegie Mellow University in 1963 and a full professor of computer science at

Sanford University in 1969. He did pioneering work on software engineering from

the 1960s and made valuable contributions to the theory of parsing, the semantics of

programming languages, program verification and methodologies for the creation

of efficient and reliable software.

Mathematics and computer science were regarded as two completely separate

disciplines in the 1960s, and software development was based on the assumption

that the completed code would always contain defects. It was therefore better and

more productive to write the code as quickly as possible and to then perform

debugging to find the defects. Programmers then corrected the defects, made

patches and retested and found more defects. This continued until they could no

longer find defects. Of course, there was always the danger that defects remained in

the code that could give rise to software failures.

Floyd believed that there was a way to construct a rigorous proof of the

correctness of the programs using mathematics. He showed that mathematics

could be used for program verification, and he introduced the concept of assertions

that provided a way to verify the correctness of programs.

Flowcharts were employed in the 1960s to explain the sequence of basic steps

for computer programs. Floyd’s insight was to build upon flowcharts and to apply

an invariant assertion to each branch in the flowchart. These assertions state the

essential relations that exist between the variables at that point in the flowchart.

An example relation is ‘R ¼ Z > 0, X ¼ 1, Y ¼ 0’. He devised a general flowchart
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language to apply his method to programming languages. The language essentially

contains boxes linked by flow of control arrows [Flo:67].

Consider the assertion Q that is true on entry to a branch where the condition

at the branch is P. Then, the assertion on exit from the branch is Q∧ ¬P if P is false

and Q ∧ P otherwise (Fig. 10.4).

The use of assertions may be employed in an assignment statement. Suppose x
represents a variable and v represents a vector consisting of all the variables in the

program. Suppose f(x,v) represents a function or expression of x and the other

program variables represented by the vector v. Suppose the assertion S(f(x,v), v) is
true before the assignment x ¼ f(x,v). Then the assertion S(x,v)is true after the

assignment. This is given by (Fig. 10.5):

Floyd used flowchart symbols to represent entry and exit to the flowchart.

This included entry and exit assertions to describe the program’s entry and exit

conditions.

Floyd’s technique showed how a computer program is a sequence of logical

assertions. Each assertion is true whenever control passes to it, and statements

appear between the assertions. The initial assertion states the conditions that must

be true for execution of the program to take place, and the exit assertion essentially

describes what must be true when the program terminates.

His key insight was the recognition that if it can be shown that the assertion

immediately following each step is a consequence of the assertion immediately

preceding it, then the assertion at the end of the program will be true, provided the

appropriate assertion was true at the beginning of the program.

He published an influential paper, ‘Assigning Meanings to Programs’, in 1967

[Flo:67], and this paper influenced Hoare’s work on preconditions and post-

conditions, leading to Hoare logic. This is a formal system of logic used for
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Fig. 10.4 Branch assertions

in flowcharts
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Fig. 10.5 Assignment

assertions in flowcharts
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programming language semantics and for program verification and was originally

published in Hoare’s 1969 paper ‘An axiomatic basis for computer programming’

[Hor:69].

Hoare recognised that Floyd’s approach provided an effective method for

proving the correctness of programs. He built upon Floyd’s work to include all of

the familiar constructs of high-level programming languages. This led to the

axiomatic approach to defining the semantics of every statement in a programming

language with axioms and proof rules. He introduced what has become known as

the Hoare triple, and this describes how the execution of a fragment of code changes

the state. A Hoare triple is of the form:

P Qf gR

where P and R are assertions and Q is a program or command. The predicate P is

called the precondition, and the predicate R is called the post-condition.

Definition 10.2 (Partial Correctness). The meaning of the Hoare triple above is
that whenever the predicate P holds of the state before the execution of the
command or program Q, then the predicate R will hold after the execution of Q.
The brackets indicate partial correctness as if Q does not terminate then R can be
any predicate.

Total correctness requires Q to terminate, and at termination, R is true.

Termination needs to be proved separately. Hoare logic includes axioms and

rules of inference rules for the constructs of imperative programming language.

Hoare and Dijkstra were of the view that the starting point of a project should

always be the specification, and that the proof of the correctness of the program

should be developed hand in hand along with the program itself. That is, one starts

off with a mathematical specification of what a program is supposed to do, and

mathematical transformations are applied to the specification until it is turned into

a program that can be executed. The resulting program is then known to be correct

by construction.

10.4 Software Engineering Mathematics

Mathematics plays a key role in the classical engineer’s work. For example, bridge

designers will develop a mathematical model of a bridge prior to its construction.

The model is a simplification of the reality, and an exploration of the model enables

a deeper understanding of the proposed bridge to be gained. Engineers will model

the various stresses on the bridge to ensure that the bridge design can deal with the

projected traffic flow. The engineer applies mathematics and models to the design

of the product, and the analysis of the design is a mathematical activity.

Mathematics allows a rigorous analysis to take place and avoids an over-reliance

on intuition. The emphasis is on applied mathematics to solve practical problems
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and to develop products that are fit for use. The objective is therefore to teach

students how to use and apply mathematics to program well and to solve practical

problems. There is a rich body of classical mathematics available that may be

applied to software engineering. This includes:

• Set theory

• Relations

• Functions

• Logic

• Calculus

• Functions

• Probability theory

• Graph theory

• Matrix theory

Mathematical approaches to software engineering are described in [ORg:06].

Next, we consider various formal methods that may be employed to assist in the

development of high-quality software.

10.5 Formal Methods

The term ‘formal methods’ refers to various mathematical techniques used in the

software field for the specification and formal development of software. Formal

methods consist of formal specification languages or notations and employ a

collection of tools to support the syntax checking of the specification, as well as

the proof of properties of the specification. Abstraction is employed, and this allows

questions to be asked about what the system does to be answered independently

of the implementation. Furthermore, the unambiguous nature of mathematical

notation avoids the problem of speculation about the meaning of phrases in an

imprecisely worded natural language description of a system. Natural language is

inherently ambiguous, whereas mathematics employs a precise notation with sound

rules of inference. Spivey [Spi:92] defines formal specification as:

Definition 10.3 (Formal Specification). Formal specification is the use of mathe-
matical notation to describe in a precise way the properties which an information
system must have, without unduly constraining the way in which these properties
are achieved.

The formal specification thus becomes the key reference point for the different

parties involved in the construction of the system. It may be used as the reference

point in the requirements, program implementation, testing and program documen-

tation. The formal specification is a valuable means of promoting a common

understanding for all those concerned with the system. The term ‘formal methods’
is used to describe a formal specification language and a method for the design and

implementation of computer systems.
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The specification is written in a mathematical language, and the implementation

is derived from the specification via stepwise refinement.11 The refinement step

makes the specification more concrete and closer to the actual implementation.

There is an associated proof obligation that the refinement is valid, and that the

concrete state preserves the properties of the more abstract state. Thus, assuming

that the original specification is correct and the proofs of correctness of each

refinement step are valid, then there is a very high degree of confidence in the

correctness of the implemented software. Stepwise refinement is illustrated as

follows: the initial specification S is the initial model M0; it is then refined into

the more concrete model M1, and M1 is then refined into M2, and so on until the

eventual implementation Mn ¼ E is produced:

S ¼ M0 � M1 � M2 � M3 � . . . � Mn ¼ E

Requirements are the foundation from which the system is built, and irrespective

of the best design and development practices, the product will be incorrect if the

requirements are incorrect. The objective of requirements validation is to ensure

that the requirements are correct and reflect what is actually required by the

customer (in order to build the right system). Formal methods may be employed

to model the requirements, and the model exploration yields further desirable or

undesirable properties. The ability to prove that certain properties are true of the

specification is very valuable, especially in safety-critical and security-critical

applications. These properties are logical consequences of the definition of the

requirements, and, if appropriate, the requirements may need to be amended

appropriately. Thus, formal methods may be employed for requirements validation

and in a sense to debug the requirements.

The use of formal methods generally leads to more robust software and to

increased confidence in its correctness. The challenges involved in the deployment

of formal methods in an organisation include the education of staff in formal

specification, as formal specification and the use of mathematical techniques may

be a culture shock to many staff.

Formal methods have been applied to a diverse range of applications, including

the security-critical field, the safety-critical field, the railway sector, microprocessor

verification, the specification of standards and the specification and verification of

programs.

Formal methods have been criticised by Parnas and others on the grounds as

enumerated in Table 10.1.

11 It is questionable whether stepwise refinement is cost effective in mainstream software engi-

neering, as it involves rewriting a specification ad nauseam. It is time-consuming to proceed in

refinement steps with significant time also required to prove that the refinement step is valid. It is

more relevant to the safety-critical field. Others in the formal methods field may disagree with this

position.
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However, formal methods are potentially quite useful and reasonably easy to

use. The use of a formal method such as Z or VDM forces the software engineer

to be precise and helps to avoid ambiguities present in natural language. Clearly,

a formal specification should be subject to peer review to provide confidence in its

correctness. New formalisms need to be intuitive to be usable by practitioners.

The advantage of classical mathematics is that it is familiar to students.

10.5.1 Why Should We Use Formal Methods?

There is a very strong motivation to use best practices in software engineering in

order to produce software adhering to high-quality standards. Flaws in software may

at best cause minor irritations or major damage to a customer’s business including

loss of life. Consequently, companies need to employ best practice to develop high-

quality software, and formal methods are one leading-edge technology which may

Table 10.1 Criticisms of formal methods

No. Criticism

1. Often the formal specification is as difficult to read as the programa

2. Many formal specifications are wrongb

3. Formal methods are strong on syntax but provide little assistance in deciding on what

technical information should be recorded using the syntaxc

4. Formal specifications provide a model of the proposed system. However, a precise

unambiguous mathematical statement of the requirements is what is neededd

5. Stepwise refinement is unrealistic. It is like, e.g. deriving a bridge from the description of

a river and the expected traffic on the bridge. There is always a need for a creative step in

designe

6. Much unnecessary mathematical formalisms have been developed rather than using the

available classical mathematicsf

aOf course, others might reply by saying that some of Parnas’s tables are not exactly intuitive, and

that the notation he employs in some of his tables is quite unfriendly. The usability of all of the

mathematical approaches needs to be enhanced if they are to be taken seriously by industrialists
bObviously, the formal specification must be analysed using mathematical reasoning and tools to

provide confidence in its correctness. The validation of a formal specification can be carried out

using mathematical proof of key properties of the specification, software inspections or specifica-

tion animation
cApproaches such as VDM include a method for software development as well as the specification

language
dModels are extremely valuable as they allow simplification of the reality. A mathematical study

of the model demonstrates whether it is a suitable representation of the system. Models allow

properties of the proposed requirements to be studied prior to implementation
eStepwise refinement involves rewriting a specification with each refinement step producing a

more concrete specification (that includes code and formal specification) until eventually the

detailed code is produced. However, tool support may make refinement easier
fApproaches such as VDM or Z are useful in that they add greater rigour to the software

development process. They are reasonably easy to learn, and there have been some good results

obtained by their use. Classical mathematics is familiar to students, and, therefore, it is desirable

that new formalisms are introduced only where absolutely necessary
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be of benefit to companies in reducing the occurrence of defects in software

products. Brown [Bro:90] argues that for the safety-critical field:

Comment 10.1 (Missile Safety). Missile systems must be presumed dangerous
until shown to be safe, and that the absence of evidence for the existence of
dangerous errors does not amount to evidence for the absence of danger.

It is quite possible that a software company may be sued for software which

injures a third party, and this suggests that companies will need a quality assurance

program that will demonstrate that every reasonable practice was considered to

prevent the occurrence of defects.

There is some evidence to suggest that the use of formal methods provides

savings in the cost of the project. For example, a 9% cost saving is attributed to

the use of formal methods during the CICS project; the T800 project attributes a

12-month reduction in testing time to the use of formal methods. These are

discussed in more detail in chapter one of [HB:95].

10.5.2 Applications of Formal Methods

Formal methods have been employed to verify correctness in the nuclear power

industry, the aerospace industry, the security technology area and the railroad

domain. These sectors are subject to stringent regulatory controls to ensure safety

and security. Several organisations have piloted formal methods with varying

degrees of success. These include IBM, who developed VDM at its laboratory in

Vienna; IBM (Hursley) piloted the Z formal specification language in the CICS

(Customer Information Control System) project.

The mathematical techniques developed by Parnas (i.e. requirements model and

tabular expressions) have been employed to specify the requirements of the A-7

aircraft as part of a research project for the US Navy.12 Tabular expressions have

also been employed for the software inspection of the automated shutdown software

of the Darlington nuclear power plant in Canada.13 These are two successful uses of

mathematical techniques in software engineering.

There are examples of the use of formal methods in the railway domain, and

examples dealing with the modelling and verification of a railroad gate controller

and railway signalling are described in [HB:95]. Clearly, it is essential to verify

safety-critical properties such as ‘when the train goes through the level crossing,
then the gate is closed’.

12 However, the resulting software was never actually deployed on the A-7 aircraft.
13 This was an impressive use of mathematical techniques, and it has been acknowledged that

formal methods must play an important role in future developments at Darlington. However, given

the time and cost involved in the software inspection of the shutdown software, some managers

have less enthusiasm in shifting from hardware to software controllers [Ger:94].

158 10 History of Software Engineering



10.5.3 Tools for Formal Methods

One key criticism of formal methods is the lack of available or usable tools to

support the software engineer in writing the formal specification or in doing the

proof. Many of the early tools were criticised as not being of industrial strength.

However, in recent years, more advanced tools to support the software engineer’s

work in formal specification and formal proof have become available, and this is

likely to continue in the coming years.

The tools include syntax checkers to check that the specification is syntactically

correct, specialised editors to ensure that the written specification is syntacti-

cally correct, tools to support refinement, automated code generators to generate

a high-level language corresponding to the specification, theorem provers to dem-

onstrate the presence or absence of key properties and to prove the correctness of

refinement steps and to identify and resolve proof obligations and specification

animation tools where the execution of the specification can be simulated.

TheB-Toolkit fromB-Core is an integrated set of tools that supports theB-Method.

These include syntax and type checking, specification animation, proof obligation

generator, an auto-prover, a proof assistor and code generation. Thus, in theory,

a complete formal development from initial specification to final implementation

may be achieved, with every proof obligation justified, leading to a provably correct

program.

The IFAD Toolbox14 is a support tool for the VDM-SL specification language,

and it includes support for syntax and type checking, an interpreter and debugger to

execute and debug the specification and a code generator to convert from VDM-SL

to C++. It also includes support for graphical notations such as the OMT/UML

design notations.

10.5.4 Model-Oriented Approach

There are two key approaches to formal methods, namely, the model-oriented

approach of VDM or Z and the algebraic or axiomatic approach. The latter includes

the process calculi such as the calculus communicating systems (CCS) or commu-

nicating sequential processes (CSP).

A model-oriented approach to specification is based on mathematical models.

A mathematical model is a mathematical representation or abstraction of a physical

entity or system. The representation or model aims to provide a mathematical

explanation of the behaviour of the system or the physical world. A model is

considered suitable if its properties closely match the properties of the system,

14 The IFAD Toolbox has been renamed to VDM Tools as IFAD sold the VDM Tools to CSK in

Japan. The tools are expected to be available worldwide and will be improved further.
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and if its calculations match and simplify calculations in the real system and if

predictions of future behaviour may be made. The physical world is dominated by

models, for example, models of the weather system, that enable predictions of the

weather to be made, and economic models that enable predictions of the future

performance of the economy may be made.

It is fundamental to explore the model and to consider the behaviour of the

model and the behaviour of the physical world entity. The adequacy of the model is

the extent to which it explains the underlying physical behaviour and allows

predictions of future behaviour to be made. This will determine its acceptability

as a representation of the physical world. Models that are ineffective will be

replaced with newer models which offer a better explanation of the manifested

physical behaviour. There are many examples in science of the replacement of

one theory by a newer one. For example, the Copernican model of the universe

replaced the older Ptolemaic model, and Newtonian physics was replaced by

Einstein’s theories on relativity. The structure of the revolutions that take place in

science is described in [Kuh:70].

The model-oriented approach to software development involves defining an

abstract model of the proposed software system. The model acts as a representa-

tion of the proposed system, and the model is then explored to assess its suitability.

The exploration of the model takes the form of model interrogation, that is, asking

questions and determining the effectiveness of the model in answering the questions.

The modelling in formal methods is typically performed via elementary discrete

mathematics, including set theory, sequences, functions and relations.

The modelling approach is adopted by the Vienna Development Method (VDM)

and Z. VDM arose from work done in the IBM laboratory in Vienna in formalising

the semantics for the PL/1 compiler, and it was later applied to the specification of

software systems. The Z specification language had its origins in work done at

Oxford University in the early 1980s.

10.5.5 Axiomatic Approach

The axiomatic approach focuses on the properties that the proposed system is

to satisfy, and there is no intention to produce an abstract model of the system.

The required properties and behaviour of the system are stated in mathematical

notation. The difference between the axiomatic specification and a model-based

approach is may be seen in the example of a stack.

The stack includes operators for pushing an element onto the stack and popping

an element from the stack. The properties of pop and push are explicitly defined in

the axiomatic approach. The model-oriented approach constructs an explicit model

of the stack, and the operations are defined in terms of the effect that they have on

the model. The specification of the pop operation on a stack is given by axiomatic

properties, for example, pop(push(s,x)) ¼ s.
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Comment 10.2 (Axiomatic Approach). The property-oriented approach has the
advantage that the implementer is not constrained to a particular choice of
implementation, and the only constraint is that the implementation must satisfy
the stipulated properties.

The emphasis is on the identification and expression of the required properties of

the system, and implementation issues are avoided. The focus is on the specification

of the underlying behaviour, and properties are typically stated using mathematical

logic or higher-order logics. Mechanised theorem-proving techniques may be

employed to prove results.

One potential problem with the axiomatic approach is that the properties

specified may not be satisfiable in any implementation. Thus, whenever a ‘formal

axiomatic theory’ is developed, a corresponding ‘model’ of the theory must be

identified, in order to ensure that the properties may be realised in practice. That is,

when proposing a system that is to satisfy some set of properties, there is a need to

prove that there is at least one system that will satisfy the set of properties.

10.5.6 Proof and Formal Methods

The word proof has several connotations in various disciplines; for example,

in a court of law, the defendant is assumed innocent until proven guilty. The

proof of the guilt of the defendant may take the form of certain facts in relation

to the movements of the defendant, the defendant’s circumstances, the defendant’s

alibi, statements taken from witnesses, rebuttal arguments from the defence and

certain theories produced by the prosecution or defence. Ultimately, in the case of

a trial by jury, the defendant is judged guilty or not guilty depending on the extent

to which the jury has been convinced by the arguments made by the prosecution

and defence.

A mathematical proof typically includes natural language and mathematical

symbols, and often, many of the tedious details of the proof are omitted. The

strategy of proof in proving a conjecture is often a divide and conquer technique,
that is, breaking the conjecture down into subgoals and then attempting to prove

the subgoals. Most proofs in formal methods are concerned with cross-checking

on the details of the specification or are concerned with checking the validity of

refinement steps or proofs that certain properties are satisfied by the specification.

There are often many tedious lemmas to be proved, and theorem provers15 are

essential in assisting with this. Machine proof needs to be explicit, and reliance on

some brilliant insight is avoided. Proofs by hand are notorious for containing

errors or jumps in reasoning, while machine proofs are often extremely lengthy

and unreadable.

15Most existing theorem provers are difficult to use and are for specialist use only. There is a need

to improve the usability of theorem provers.
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A mathematical proof consists of a sequence of formulae, where each element

is either an axiom or derived from a previous element in the series by applying a

fixed set of mechanical rules. One well-known theorem prover is the Boyer/Moore

theorem prover [BoM:79]. There is an interesting case in the literature concerning

the proof of correctness of the VIPER microprocessor16 [Tie:91], and the actual

machine proof consisted of several million formulae.

Theorem provers are invaluable in resolving many of the thousands of proof

obligations that arise from a formal specification, and it is not feasible to apply

formal methods in an industrial environment without the use of machine assisted

proof. Automated theorem proving is difficult, as often mathematicians prove a

theorem with an initial intuitive feeling that the theorem is true. Human intervention

to provide guidance or intuition improves the effectiveness of the theorem prover.

The proof of various properties about a program increases confidence in its

correctness. However, an absolute proof of correctness17 is unlikely except for the

most trivial of programs. A program may consist of legacy software which is

assumed to work; it is created by compilers which are assumed to work correctly.

Theorem provers are programs which are assumed to function correctly. The best

that formal methods can claim is increased confidence in correctness of the software

rather than an absolute proof of correctness.

10.5.7 The Future of Formal Methods

The debate concerning the level of use of mathematics in software engineering is

still ongoing. Most practitioners are against the use of mathematics and avoid its

use. They tend to employ methodologies such as software inspections and testing

to improve confidence in the correctness of the software. They argue that in the

current competitive industrial environment where time to market is a key driver, the

use of such formal mathematical techniques would seriously impact the market

opportunity. Industrialists often need to balance conflicting needs such as quality,

cost and delivering on time. They argue that the commercial necessities require

methodologies and techniques that allow them to achieve their business goals.

The other camp argues that the use of mathematics helps in the delivery of high-

quality and reliable software, and that if a company does not place sufficient emphasis

on quality will pay a price in terms of a poor reputation in the marketplace.

16 This verification was controversial with RSRE and Charter overselling VIPER as a chip design

that conforms to its formal specification.
17 This position is controversial with others arguing that if correctness is defined mathematically,

then the mathematical definition (i.e. formal specification) is a theorem, and the task is to prove

that the program satisfies the theorem. They argue that the proofs for non-trivial programs exist,

and that the reason why there are not many examples of such proofs is due to a lack of

mathematical specifications.
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It is generally accepted that mathematics and formal methods must play a role

in the safety-critical and security-critical fields. Apart from that, the extent of the

use of mathematics is a hotly disputed topic. The pace of change in the world

is extraordinary, and companies face competitive forces in a global marketplace.

It is unrealistic to expect companies to deploy formal methods unless they have

clear evidence that it will support them in delivering commercial products to the

marketplace ahead of their competition, at the right price and with the right quality.

Formal method needs to prove that it can do this if it wishes to be taken seriously in

mainstream software engineering. The issue of technology transfer of formal

methods to industry is discussed in [ORg:06].

10.6 Propositional and Predicate Calculus

Propositional calculus associates a truth value with each proposition and is widely

employed in mathematics and logic. There are a rich set of connectives employed in

the calculus for truth functional operations, and these include A) B, A∧ B, A∨ B
which denote, respectively, the conditional of A and B, the conjunction of A and B
and the disjunction of A and B. A truth table may be constructed to show the results

of these operations on the binary values of A and B. That is, A and B have the binary

truth values of true and false, and the result of the truth functional operation is to

yield a binary value. There are other logics that allow more than two truth values.

These include, for example, the logic of partial functions which is a 3-valued logic.

This logic allows a third truth value (the undefined truth value) for the proposition

as well as the standard binary values of true and false.

Predicate calculus includes variables, and a formula in predicate calculus is built

up from the basic symbols of the language. These symbols include variables;

predicate symbols, including equality; function symbols, including the constants;

logical symbols, for example, ∃, ∧, ∨, ¬, etc.; and the punctuation symbols, for

example, brackets and commas. The formulae of predicate calculus are built from

terms, where a term is a key construct and is defined recursively as a variable or

individual constant or as some function containing terms as arguments. A formula

may be an atomic formula or built from other formulae via the logical symbols.

Other logical symbols are then defined as abbreviations of the basic logical symbols.

An interpretation gives meaning to a formula. If the formula is a sentence (i.e. it

does not contain any free variables), then the given interpretation is true or false.

If a formula has free variables, then the truth or falsity of the formula depends on

the values given to the free variables. A formula with free variables essentially

describes a relation say, R(x1,x2,. . ., xn) such that R(x1,x2,. . ., xn) is true if

(x1,x2,. . ., xn) is in relation R. If a formula with free variables is true irrespective

of the values given to the free variables, then the formula is true in the interpretation.

A valuation function is associated with the interpretation, and this gives meaning

to the formulae in the language. Thus, associated with each constant c is a constant
cS in some universe of values S; with each function symbol f, we have a function
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symbol fS in S; and for each predicate symbol P, we have a relation PS in S.
The valuation function, in effect, gives a semantics to the language of the predicate

calculus L. The truth of a proposition P is then defined in the natural way, in terms

of the meanings of the terms, the meanings of the functions, predicate symbols and

the normal meanings of the connectives.

Mendelson [Men:87] provides a rigorous though technical definition of truth in

terms of satisfaction (with respect to an interpretationM). Intuitively, a formula F is

satisfiable if it is true (in the intuitive sense) for some assignment of the free

variables in the formula F. If a formula F is satisfied for every possible assignment

to the free variables in F, then it is true (in the technical sense) for the interpretation
M. An analogous definition is provided for false in the interpretation M.

A formula is valid if it is true in every interpretation; however, as there may be

an uncountable number of interpretations, it may not be possible to check this

requirement in practice. M is said to be a model for a set of formulae if and only if

every formula is true in M.

There is a distinction between proof theoretic and model theoretic approaches in

predicate calculus. Proof theoretic is essentially syntactic, and we have a list of

axioms with rules of inference. In this way, the theorems of the calculus may be

logically derived (written as |- A). In essence, the logical truths are a result of the

syntax or form of the formulae rather than the meaning of the formulae. Model
theoretical, in contrast, is essentially semantic. The truths derive essentially from

the meaning of the symbols and connectives rather than the logical structure of the

formulae. This is written as |- M A.
A calculus is sound if all the logically valid theorems are true in the interpretation,

that is, proof theoretic)model theoretic. A calculus is complete if all the truths in an

interpretation are provable in the calculus, that is, model theoretic) proof theoretic.

A calculus is consistent if there is no formula A such that |- A and |- ¬A.

10.7 Unified Modelling Language

The unified modelling language (UML) is a visual modelling language for software

systems, and it facilitates the understanding of the architecture of the system and in

managing the complexity of large systems. It was developed by Jim Rumbaugh,

Grady Booch and Ivar Jacobson [Jac:99a] as a notation for modelling object-

oriented systems.

It allows the same information to be presented in several different ways, and

there are UML diagrams for alternate viewpoints of the system. Use cases describe

scenarios or sequences of actions for the system from the user’s viewpoint.

For example, typical user operations at an ATM machine include the balance

inquiry operation, the withdrawal of cash and the transfer of funds from one account

to another. These operations can be described with UML use case diagrams.

Class and object diagrams are a part of UML, and the concept of class and

objects is taken from object-oriented design. The object diagram is related to the
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class diagram in that the object is an instance of the class. There will generally be

several objects associated with the class. The class diagram describes the data

structure and the allowed operations on the data structure. Two key classes are

customers and accounts for an ATM system, and this includes the data structure

for customers and accounts and also the operations on customers and accounts.

The operations include adding or removing a customer and operations to debit or

credit an account. The objects of the class are the actual customers of the bank and

their corresponding accounts.

Sequence diagrams show the interaction between objects/classes in the system

for each use case. UML activity diagrams are similar to flowcharts. They are used

to show the sequence of activities in a use case and include the specification of

decision branches and parallel activities. State diagrams (or state charts) show the

dynamic behaviour of a class and how different operations result in a change of

state. There is an initial state and a final state, and the different operations result in

different states being entered and exited.

UML offers a rich notation to model software systems and to understand the

proposed system from different viewpoints. The main advantage of UML includes

the fact that it is an expressive visual modelling language that allows a study of the

proposed system prior to implementation. It allows the system to be visualised from

different viewpoints and provides an effective mechanism to communicate the

proposed behaviour of the software system.

10.8 Software Inspections and Testing

Software inspections and testing play a key role in building quality into software

products and verifying that the products are of high quality. The Fagan Inspection

Methodology was developed by Michael Fagan of IBM in the mid-1970s [Fag:76].

It is a seven-step process that identifies and removes errors in work products. There

is a strong economic case for identifying defects as early as possible, as the cost of

correction increases the later a defect is discovered in the life cycle. The methodol-

ogy mandates that requirement documents, design documents, source code and test

plans are all formally inspected by independent experts to ensure quality.

There are several roles defined in the process including the moderator who

chairs the inspection; the reader’s responsibility is to read or paraphrase the

particular deliverable; the author is the creator of the deliverable and has a special

interest in ensuring that it is correct; and the tester role is concerned with the testing
viewpoint.

The inspection process will consider whether a design is correct with respect to

the requirements and whether the source code is correct with respect to the design.

There are seven stages in the inspection process [ORg:02]:

• Planning

• Overview

10.8 Software Inspections and Testing 165



• Prepare

• Inspect

• Process improvement

• Rework

• Follow-up

The errors identified in an inspection are classified into various types, and mature

organisations record the inspection data in a database for further analysis. Measure-

ment allows the effectiveness of the organisation in identifying errors in phase and

detecting defects out of phase to be determined and improved. Tom Gilb has

defined an alternate inspection methodology [Glb:94].

Software testing plays a key role in verifying that a software product is of high

quality and conforms to the customer’s quality expectations. Testing is both a

constructive activity in that it is verifying the correctness of functionality, and it is

also a destructive activity in that the objective is to find asmany defects as possible in

the software. The testing verifies that the requirements are correctly implemented as

well as identifies whether any defects are present in the software product.

There are various types of testing such as unit testing, integration testing, system

testing, performance testing, usability testing, regression testing and customer

acceptance testing. The testing needs to be planned to ensure that it is effective.

Test cases will need to be prepared and executed, the results reported and any issues

corrected and retested. The test cases will need to be appropriate to verify the

correctness of the software. The quality of the testing is dependent on the maturity

of the test process, and a good test process will include:

• Test planning and risk management

• Dedicated test environment and test tools

• Test case definition

• Test automation

• Formality in handover to test department

• Test execution

• Test result analysis

• Test reporting

• Measurements of test effectiveness

• Postmortem and test process improvement

Metrics are generally maintained to provide visibility into the effectiveness of

the testing process. Testing is described in more detail in [ORg:02, ORg:10].

10.9 Process Maturity Models

The Software Engineering Institute (SEI) developed the Capability Maturity Model

(CMM) in the early 1990s as a framework to help software organisations to improve

their software process maturity and to implement best practice in software and
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systems engineering. The SEI believes that there is a close relationship between the

maturity of software processes and the quality of the delivered software product.

The CMM applied the ideas of Deming [Dem:86], Juran [Jur:00] and Crosby

[Crs:79] to the software field. These quality gurus were influential in transforming

manufacturing companies with quality problems to effective quality-driven

organisations with a reduced cost of poor quality (Fig. 10.6).

They recognised the need to focus on the process, and software organisa-

tions need to improve their software development processes as well as the product.

Watt Humphries did early work on software process improvement at IBM

[Hum:89], and he moved to the SEI in the late 1980s. This led to the first version

of the CMM in 1991. It is now called the Capability Maturity Model Integration

(CMMI®) [CKS:11] (Fig. 10.7).

Fig. 10.6 W. Edwards

Deming (Courtesy of

W. Edwards Deming

Institute)

Fig. 10.7 W. Joseph Juran

(Courtesy of Juran Institute)
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The CMMI consists of five maturity levels, with each maturity level (except

level 1) consisting of several process areas. Each process area consists of a set of

goals that must be satisfied for the process area to be satisfied. The goals for the

process area are implemented by practices related to that process area, and the

implementation of these practices leads to an effective process. Processes need to

be defined and documented. The users of the process need to receive appropriate

training to enable them to carry out the process, and processes need to be enforced

by independent audits (Fig. 10.8).

The emphasis on level 2 of the CMMI is on maturing management practices

such as project management, requirements management, configuration manage-

ment and so on. The emphasis on level 3 of the CMMI is to mature engineering

and organisation practices. This maturity level includes peer reviews and testing,

requirements development, software design and implementation practices and so

on. Level 4 is concerned with ensuring that key processes are performing within

strict quantitative limits and adjusting processes, where necessary, to perform

within these defined limits. Level 5 is concerned with continuous process improve-

ment which is quantitatively verified.

Maturity levels may not be skipped in the staged implementation of the CMMI.

There is also a continuous representation of the CMMI which allows the organisation

to focus on improvements to key processes. However, in practice, it is often necessary

to implement several of the level 2 process areas before serious work can be done on

implementing a process at a higher maturity level. The use of metrics [Fen:95,

Glb:76] becomes more important as an organisation matures, as metrics allow the

performance of an organisation to be objectively judged. The higher CMMI maturity

levels set quantitative levels for processes to perform within.

The CMMI allows organisations to benchmark themselves against other similar

organisations. This is done by formal SEI approved SCAMPI appraisals conducted

by an authorised SCAMPI lead appraiser. The results of a SCAMPI appraisal are

generally reported back to the SEI, and there is a strict qualification process to

become an authorised SCAMPI lead appraiser. An appraisal is useful in verifying

that an organisation has improved, and it enables the organisation to prioritise

improvements for the next improvement cycle.

Fig. 10.8 Watts Humphrey

(Courtesy of Watts

Humphrey)
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The time required to implement the CMMI in an organisation depends on the

current maturity and size of the organisation. It generally takes 1–2 years to

implement maturity level 2, and a further 1–2 years to implement level 3.

10.10 Review Questions

1. Describe the crisis in software in the 1960s and the birth of software

engineering.

2. Describe waterfall and spiral life cycle models including their advantages

and disadvantages.

3. Discuss Floyd’s contribution to software engineering and how it led to

Hoare’s axiomatic semantics.

4. Describe the mathematics that is potentially useful in software

engineering.

5. Describe formal methods and their applications to software engineering.

Explain when their use should be considered in software engineering.

6. Discuss any tools to support formal methods that you are familiar with.

7. Discuss the similarities and differences between Z and VDM.

8. Discuss the similarities and differences between the model-oriented

approach and the axiomatic approach to formal methods.

9. Discuss UML and its applicability to software engineering.

10. Discuss the applicability of software inspections and testing to software

engineering.

11. Discuss the Capability Maturity Model and its applicability to software

engineering.

10.11 Summary

This chapter considered a short history of some important developments in software

engineering from its birth at the Garmisch conference in 1968. It was recognised

that there was a crisis in the software field, and there was a need for sound

methodologies to design, develop and maintain software to meet customer needs.

Classical engineering has a successful track record in building high-quality

products that are safe for the public to use. It is therefore natural to consider

using an engineering approach to developing software, and this involves identifying

the customer requirements, carrying out a rigorous design to meet the requirements,

developing and coding a solution to meet the design and conducting appropriate

inspections and testing to verify the correctness of the solution.
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Mathematics plays a key role in engineering to assist with design and verification

of software products. It is therefore reasonable to apply appropriate mathematics

in software engineering (especially for safety-critical systems) to assure that the

delivered systems conform to the requirements. The extent to which mathematics

will need to be used is controversial with strong views on both sides. In many cases,

peer reviews and testing will be sufficient to build quality into the software product.

In other cases, and especially with safety and security-critical applications, it is

desirable to have the extra assurance that may be provided by mathematical

techniques.

Various mathematical approaches were considered including Z, VDM, pro-

positional calculus and predicate calculus. The nature of mathematical proof and

supporting theorem provers were discussed.

There is a lot more to the successful delivery of a project than just the use of

mathematics or peer reviews and testing. Sound project management and quality

management practices are essential, as a project that is not properly managed will

suffer from schedule, budget or cost overruns as well as problems with quality.

Maturity models such as the CMMI can assist organisations in maturing key

management and engineering practices that are essential for the successful delivery

of high-quality software. The use of the CMMI helps companies in their goals to

deliver high-quality software systems that are consistently on time and consistently

meet business requirements.
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