
Chapter 7
Stability and Feasibility of MPC

Stability is not merely a distant abstract theoretical feature of feedback controller
systems. An unstable controller may supply inputs to the closed-loop plant to a
point where the actuators fail or even functional damage occurs to the plant. In the
application field of active vibration control, functional damage is easily interpreted
in practical terms: it is structural failure due to excessive stress and strain. In case
instability results in oscillations, the cause of failure may be material fatigue as well.
These dramatic effects imply not only the loss of material goods and damage of
equipment but also potential injury or loss of life.

One of the classic educational toys for the control engineering community is the
so-called Furuta pendulum [1, 19, 24, 63], or inverted rotational pendulum which
is illustrated in Fig. 7.1. This pendulum consists of an electric motor, which drives
an arm rotating in the horizontal plane. The end of this arm is equipped with a
pendulum freely rotating in the vertical plane and is connected to the arm with a
simple joint. The aim is to swing the pendulum to the upright position and keep it
there afterward by the rotational movement of the arm. This system is underactuated,
nonlinear and it is easy to see that the upper equilibrium position of the pendulum is
open-loop unstable. The stability of the closed-loop control scheme is an essential
feature in this demonstration application, while the loss of stable control presents
itself with striking clarity: the pendulum falls down to its stable equilibrium located
at the bottom of its path. Although practical issues with control stability are not so
tangible and evident in all control systems, it is nevertheless important to make sure
that a structure manipulated by model predictive vibration control is guaranteed to
remain stable at all times.

Probably the simplest definition of stability is bounded input–bounded output
(BIBO) stability. As the name implies, BIBO stability means that if a finite (bounded)
input is supplied to the system a finite output response must result. On the contrary, if a
finite response excites the system in a way that an infinite response would theoretically
result, the system is said to be unstable. The stability of traditional control systems
can be guaranteed very easily. In a case of a discrete controller in a closed form, all

G. Takács and B. Rohal’-Ilkiv, Model Predictive Vibration Control, 253
DOI: 10.1007/978-1-4471-2333-0_7, © Springer-Verlag London Limited 2012

254 7 Stability and Feasibility of MPC

Fig. 7.1 The rotational inverted pendulum, or the Furuta pendulum, is a classic example of an
open-loop unstable system. Stability of the MPC (or any other) controller is an essential feature
here as well, since an insufficiently designed control strategy could easily drive the system away
from its unstable equilibrium

poles of the transfer function must lie within the unit circle. However, in the case of
a constrained MPC law this is not so simple anymore.

Given that one assumes no constraints for the model predictive control (MPC)
problem with an infinite horizon cost, the predicted and actual input and state trajec-
tories are identical, 1 and the stability of the process is guaranteed. This is a tractable
problem, as we can readily calculate a fixed feedback matrix based on an infinite
horizon cost. The predicted and actual responses would be theoretically identical in
a constrained MPC problem as well, if one would use an infinitely long prediction

1 Of course assuming no model errors or external disturbances are present.

7 Stability and Feasibility of MPC 255

horizon and the corresponding infinite cost. Although this would also imply a process
with guaranteed stability, an infinitely long horizon would require an infinite number
of optimization variables. This is clearly not possible. Instead of using an infinitely
long horizon, one may utilize a finite horizon with a finite number of optimization
variables in combination with terminal cost replacing the cost contribution up to
infinite time—in other words the dual mode control paradigm introduced in the pre-
vious chapter. Unfortunately, this complicates the question of stability quite a bit as
the constraints are only considered on a finite horizon, while beyond the horizon the
feasibility of the constraints—the match of the predicted and actual trajectories and
thus ultimately stability—is not guaranteed. For certain disturbances, the controller
may produce an input sequence which results in an unstable response, leading to
potentially catastrophic results.

The issue of MPC controller stability is reviewed in this chapter. The ultimate
aim here is to provide the reader with the fundamentals to formulate a modern MPC
control law, which is able to guarantee both system stability and constraint feasibil-
ity while providing maximum performance. Alternative formulations allowing for
stability guarantees are also discussed, while the details of how those may help to
increase computation speeds are left to Chap. 8. To the reader seeking more informa-
tion on stability and alternative formulations; we may recommend the well-known
books of Maciejowski and Rossiter [36, 51] and particularly the seminal work [38].

A brief review of the development of stabilized model predictive control starts our
discussion on the stability of the MPC strategy. After this Sect. 7.2 inspects what the
conditions of stability are for an MPC control law. Calling the well-known Lyapunov
stability analysis to assistance, a very powerful conclusion can be deducted. Consid-
ering the cost as Lyapunov function will imply that if the succession of costs Jk is
monotonically decreasing for the time k → ∞, the controller will remain stable. The
cost will be nonincreasing as long as the elements of the predicted optimal sequence
uk ranging from the discrete time iteration (k +1) up to infinity are feasible. Next the
concept of terminal constraints, and a special region within the state-space called the
target set is introduced. The target set is actually bounded by the process constraints
which are enforced for states ranging from the control horizon nc up to infinity. If the
states are forced to remain in this set, the system will remain feasible and thus stable
as well. Fortunately, one does not have to inspect and force the inputs to conform to
the constraints up to infinite time, instead it can be proved that it is enough to enforce
feasibility of the constraints for an additional constraint checking horizon. The finite
number of additional constraints creates a target set, which is actually identical to the
maximal possible target set thus ensuring an MPC control with optimal performance
while still guaranteeing stability. Based on this discussion, Sect. 7.4 will introduce
the modified dual-mode quadratic programming-based MPC algorithm, which by
utilizing the extra process constraints exceeding the control horizon by the new con-
straint checking horizon guarantees stability at all times. The following two sections
of this chapter discuss alternative formulations, which can ensure the stability of
MPC as well. The maximal invariant target set created by the additional constraints
is a polyhedron of high complexity that further increases the necessary computa-
tional power of the MPC law. To relieve this situation partly, simplifications may be

http://dx.doi.org/10.1007/978-1-4471-2333-0_8

256 7 Stability and Feasibility of MPC

introduced. One such formulation replaces the high complexity polyhedron with a
low complexity one, which is actually just a multidimensional cube in hyperspace.
The other possibility is to replace the maximal invariant target set with a hyper-
ellipsoid, as introduced in Sect. 7.6. A similar ellipsoidal constraint formulation is
used in the upcoming chapter to create a computationally efficient MPC controller.
The chapter is finished by Sect. 7.7, briefly reviewing the issues caused by mutually
incompatible constraints and some strategies to avoid the infeasibility of the MPC
optimization problem.

7.1 Development of MPC with Stability Guarantees

Early MPC formulations could not guarantee the stability of the closed-loop system.
This however did not prevent industrial practitioners from using MPC in practical
applications. The use of open-loop stable plants and long horizons in the absence of
constraints prevented most stability issues; nevertheless, stability guarantees in the
strict theoretical sense could not have been given.

In the beginning, stability has been investigated for finite horizon predictive con-
trollers with a quadratic cost and in the absence of system constraints [20]. Essentially
the effects of the horizon length and parameter choices were evaluated for a given
controller, determining whether it is stabilizing or not. Later this rather basic approach
has been deemed inappropriate [6] as several examples have shown the need for an
a priori method of guaranteeing stability [58].

7.1.1 Equality Terminal Constraints

Stability guarantees for linear plants with constraints have been given later using the
so-called terminal constraints. These terminal constraints posed a requirement on the
controller, namely that the system state must equal to zero in a given number of steps
beyond the horizon. By the end of the horizon nc and beyond, the states are assumed
to be zero (xnc = 0) while inputs assume a zero level as well [33]. Mathematically
this can be translated as:

xi = 0 for i ≥ nc and ui = 0 for i ≥ nc (7.1)

We may consider using an alternative interpretation to define terminal constraints.
Let us require the terminal state xnc and all following states to be a part of a terminal
set xnc ∈ Ω. This terminal set is actually just a zero set Ω = {0}.

It is possible to guarantee stability analytically for linear, unconstrained systems
with an equality terminal constraint and a quadratic cost by proving that the cost
function is nonincreasing. The work of Keerthi and Gilbert [28] has become a de
facto basis for further stable MPC approaches. Their work proposed a constrained
MPC controller based on this idea for nonlinear time varying systems, while pointing

7.1 Development of MPC with Stability Guarantees 257

out that the cost function of the finite horizon MPC controller approaches the infinite
horizon cost if the horizon is increased. Several works have proposed variations and
novel algorithms which essentially make use of the fundamental idea of equality
terminal constraints, such as the works of Clarke and Scattolini [17] and others
[30, 40, 41]. The cost function in these early methods was finite and up to the end of
the horizon Jnc . A terminal cost has not been considered here.

7.1.2 Penalty on the Terminal State

One of the first attempts to ensure the stability of a controller is the use of a terminal
penalty P f . The penalty of the terminal state which is added to the cost function is
JT = xT

nc
P f xnc . As it has been previously introduced in Sect. 6.5, the most logical

choice for this matrix P f is the solution of the Lyapunov equation [48], which will
then ensure stability through a nonincreasing cost J. This choice for P f actually
ensures that the addition of JT = xT

nc
P f xnc to the finite horizon cost has the value of

the cost from nc → ∞, thus overall giving an infinite horizon cost J∞ = Jnc + JT .

Mathematically express this requirement as [27]:

xi → 0 for i → ∞ and ui → 0 for i ≥ nc (7.2)

meaning that the state and the inputs must approach zero as the time progresses
toward infinity. The terminal penalty by itself would require the state to remain in
a terminal set Ω which is infinitely large, that is, equal to the whole state-space
Ω = R

nx ×nx . If the controlled system is unstable, the unstable poles must be equal
to zero by the end of the horizon, while the method is utilized for the rest of the stable
poles.

7.1.3 Target Sets

A terminal constraint in the form of an equality is too strict for most applications,
as it severely limits the pool of possible initial conditions from which it is possible
to steer the system into equilibrium within a finite number of steps. An equality
constraint also causes a controller course with overly aggressive inputs. This strict
equality requirement has been later replaced by the use of so-called terminal sets,
which formulate an additional constraint in the form of an inequality. In this case,
the terminal set Ω is chosen as a finite subset of the state-space Ω = R

nx ×nx . The
aim of the controller was to steer the state into this set in a finite number of steps.
The value of the cost function after the finite part Jnc has been however considered
to be equal to zero for this approach JT = 0.

Inside the set Ω instead of requiring the states and inputs to be zero as in the case
of equality constraints, a local stabilizing control law took over. The course of inputs

http://dx.doi.org/10.1007/978-1-4471-2333-0_6

258 7 Stability and Feasibility of MPC

ui with i ≥ nc was no more equal to zero instead the fixed feedback control law K
then steers the state to the origin as time progresses toward infinity. Mathematically
this can be given as:

xi → 0 for i → ∞ and ui = Kxi for i ≥ nc (7.3)

This concept has been introduced previously in Sect. 6.5 as dual-mode predictive
control, where mode 1 assumes free variables and mode 2 the fixed feedback law.
This approach has been introduced in [60] and later in [39] for continuous nonlinear
systems with constraints. The local stabilizing feedback law K is most frequently
chosen as the linear quadratic gain [55, 56].

7.1.4 Combination of Target Sets and Terminal Penalties

The stable MPC formulation used nowadays is the combination of the concepts
presented in the previous two subsections: that is, terminal penalty P f and target
sets. Here the terminal cost is nonzero, rendering the total predicted cost is equal to
the infinite horizon cost J∞ = Jnc + JT . Moreover, the state is forced to a target
set, where a stabilized fixed feedback law is taking over according to (7.3). This
approach will be expanded in more detail in the rest of the chapter, while the dual-
mode approach has been already considered in Chap. 6. To recapitulate the basics of
modern, constrained MPC approaches with stability guarantees, we may state that
they utilize the concepts of:

• Nominal stabilizing control law ui = Kxi for i ≥ nc also referred to as dual-mode
control; which assumes the use of nonzero inputs beyond the control horizon nc

• Target set Ω defining a state constraint at the end of the control horizon nc, with
the property that this set is contracting, e.g. once the state enters it cannot leave
anymore

• Terminal penalty, JT = xT
nc

P f xnc which allows to take into account a total cost
J∞ = Jnc + JT equivalent to an infinitely long horizon.

In the absence of constraints, choosing a terminal penalty creates an infinite hori-
zon cost which results in an ideal situation, where stability is ensured and online
optimization is not needed. This in fact is the basis of the unconstrained controller
presented previously in Sect. 6.6. However, by introducing input, state, and output
constraints to the system, the predicted cost J∞ diverges from the real cost. To relieve
this situation the idea was to use a finite set Ω around the state-space equilibrium,
in which a local stabilizing law took over, thus the sum of the finite horizon and
terminal cost was in fact equal to the real cost.

The use of a Lyapunov function as a cost to ensure stability for systems without
system constraints has been considered relatively early in [16] by Chen and Shaw.
This approach turned out to be valid and current stable MPC formulations are based
on this idea. Subsequently a Lyapunov function-based stability guarantee has been

http://dx.doi.org/10.1007/978-1-4471-2333-0_6
http://dx.doi.org/10.1007/978-1-4471-2333-0_6
http://dx.doi.org/10.1007/978-1-4471-2333-0_6

7.1 Development of MPC with Stability Guarantees 259

worked out for continuous systems [37], while the first application of this concept
for a discrete constrained system has been presented in [28] and later in [4]. These
works present a general treatment of the stability issue in MPC which is based on
the monotonicity of the decreasing cost function.

7.1.5 State Contractility and Others

Instead of using a Lyapunov cost function, an alternative way to ensure stability
is to require that the two-norm of the state is contracting. Mathematically this is
given as:

‖xk+1‖ ≤ α‖xk‖ where α < 1 (7.4)

Stability is achieved independently of the parameters of the cost function. This
method has been characterized in [44, 45, 64] while it is further expanded for non-
linear systems by de Oliveira [18]. Later Bemporad has proposed an MPC method
with stability guarantees utilizing a quadratic Lyapunov function similarly to the
methods employing target sets [3]. As it turns out, contractility-based methods have
been useful to earn guaranteed stability, albeit with considerable performance loss.
Because the norm of the system state is required to be contracting at all times,
its course is constantly forced to be outside the ideal trajectory. In essence, the con-
tractility condition introduced above is a Lyapunov function, thus suitable for stability
guarantees.

Yet other approaches are based on confining the final state to a terminal set while
requiring this set to be stabilizing [38, 43, 47].

7.2 Closed-Loop Stability of the Infinite Horizon MPC Law

The possible issues with stability of a constrained MPC system are demonstrated if
one plots the evolution of the cost Jk overtime for a system without disturbance and
a perfect model match. The value of the optimal cost function should be decreasing
steadily; however due to nonlinear nature of the closed-loop MPC law the cost can be
increasing, even if the overall response remains stable. This variation indicates that
the closed-loop input trajectory does not follow an optimal predicted trajectory since
the predicted cost does not steadily decrease overtime. Given an otherwise stable
linear time-invariant system, it is possible to choose an initial condition, which will
render the MPC controlled constrained system unstable.

Formally, the stability of the constrained MPC law can be evaluated by considering
the cost function Jk as a Lyapunov function. The aim of the Lyapunov stability
analysis is not to assess stability for each individual controller; on the contrary, the
aim is to establish the conditions under which the MPC control law will be stable

260 7 Stability and Feasibility of MPC

in general. Given the knowledge of these conditions, one may create a modified
MPC controller that does ensure guaranteed stability. As it will be demonstrated,
the stability of the closed-loop system is closely related to the feasibility of the
process. The generic stability analysis for a constrained MPC strategy has been first
introduced by Mayne et al. in [38].

According to the Lyapunov stability theorem [35] which has been applied to
discrete systems by Bertram and Kalman [5], we may define x0 as an equilibrium
point of a system xk+1 = f (x) if and only if f (x0) = x0. The function f (x)

is actually the state equation as defined by (6.2). The natural equilibrium point of
our interest is then x = 0 which is located at f (0) = 0. It is possible to define a
stable equilibrium similarly. The state x = 0 is a stable equilibrium of a system if
for all k > 0 the state remains within an arbitrarily small region of the state-space
containing x = 0 whenever the initial condition x(0) lies sufficiently close to x = 0.

Mathematically this can be given as for all R > 0 exists r > 0 such that for all k > 0
[2, 14, 35]:

‖x(0)‖ < r ⇒ ‖x(k)‖ < R (7.5)

According to Lyapunov’s second method for stability whenever ‖x‖ is sufficiently
small, x = 0 will be a stable equilibrium point if there exists a continuously differ-
entiable scalar function V (x) which [14, 35]:

1. positive definite
2. V (f (x)) − V (x) ≤ 0 holds

and where xk+1 = f (x).

It is possible to define asymptotic convergence in a similar fashion. According to
this l(x) will converge to zero, meaning that as k → ∞ the series l(x) → 0, if V (x)

is a continuously differentiable scalar function and is

1. positive definite
2. V (f (x)) − V (x) ≤ −l(x) ≤ 0 holds

After rearranging the second condition we get the following statement

l(x) ≤ V (xk) − V (xk+1) (7.6)

which after summing both sides k = 0, 1, 2, . . . ,∞ will render to

∞∑

k=0

l(x) ≤ V (x0) − lim
k→∞ V (xk) (7.7)

The right hand side of this equation is finite, which has an important consequence on
the convergence of l(x). The finite nature of the right hand side of the above equation
comes from the fact that the V (xk) ≥ 0 or in other words the function is positive
definite. The second Lyapunov stability gives V (xk) ≥ V (xk+1), meaning that the
function value at the next step is smaller than the previous. This implies that V (xk)

http://dx.doi.org/10.1007/978-1-4471-2333-0_6

7.2 Closed-Loop Stability of the Infinite Horizon MPC Law 261

approaches a finite limit as k → ∞. This is because if the first term on the right
side is finite, the second term must be smaller than the first one, and their difference
is also finite. If the right hand side of the equation is a finite number the value of
l(x) must approach zero with k → ∞. This comes from the fact that if one sums an
infinite series and the sum is a finite value, then the series must converge to zero.

In this light, it is possible to perform a stability analysis for the MPC control
law. Assuming that the MPC problem is feasible, the optimal predicted cost (6.30)
is simply a function of the current state xk, considering the cost function Jk as a
Lyapunov function:

Jk(xk) = V (xk) (7.8)

To fulfill the asymptotic convergence property defined previously, the cost func-
tion has to be positive definite. The optimal predicted cost Jk is a positive definite
function of xk if either of the following two conditions hold [14, 36]:

1. Q is positive definite
2. The pair (A, Q1/2) is observable

where Q = Q1/2T Q1/2. The first condition ensures that the first term and hence the
entire sum in (6.30) is positive definite.

If the terminal weight P f is chosen in a way that Jk is an infinite horizon cost
and the optimal predicted input sequence uk computed at time (k) is feasible for the
optimization problem at (k +1) then the optimal predicted cost is nonincreasing and
satisfies [38]:

Jk+1 − Jk ≤ −
(

xT
k Qxk + uT

k Ruk

)
(7.9)

Given that the optimal predicted input sequence uk is feasible for the problem at
(k + 1), (7.9) holds because the optimal cost at current time (k) must be at least as
small (or smaller) as the cost for the tail of the optimal sequence predicted for the
previous sample. The condition of the nonincreasing cost in (7.9) is also referred to
as the direct stability method and it is utilized to prove the stability of the constrained
MPC law in several works [15, 28, 37, 39, 56].

To demonstrate the previous statement, let us take the optimal predicted sequence
uk at (k) and take it as a basis for the prediction at the next time step, that is, at
(k + 1):

ũk+1 = [uk+1 uk+2 . . . uk+nc−1 Kxk+nc] (7.10)

where ũk+1 is referred to as the tail of uk and it is illustrated in Fig. 7.2. The last
element of the tail is given by the fixed feedback law in mode 2, therefore it is
according to uk+nc = Kxk+nc .

The cost function Jk in (6.30) expresses an infinite horizon cost. The cost J̃k

associated with the tail ũk+1 is the cost Jk at (k) minus the term which remains to
that time:

http://dx.doi.org/10.1007/978-1-4471-2333-0_6
http://dx.doi.org/10.1007/978-1-4471-2333-0_6
http://dx.doi.org/10.1007/978-1-4471-2333-0_6

262 7 Stability and Feasibility of MPC

Tail ũ k+ 1

Optimal uk

Time

uk

0

k k + 1 . . . k + i . . . k + nc

Receding horizon

Fig. 7.2 The optimal prediction uk at time (k) and its tail ũk+1

J̃k+1 =
nc∑

i=1

(
xT

k+i Qxk+i + uT
k+i Ruk+i

)
+ xT

k+nc+1P f xk+nc+1

=
∞∑

i=1

(
xT

k+i Qxk+i + uT
k+i Ruk+i

)

=
∞∑

i=0

(
xT

k+i Qxk+i + uT
k+i Ruk+i

)
−

(
xT

k Qxk + uT
k Ruk

)

= Jk −
(

xT
k Qxk + uT

k Ruk

)

In reality, the tail ũk+1 will be suboptimal at that time because it is based on the
optimal predictions at the previous step (k). The optimal value at (k + 1) will
satisfy [14]

Jk+1 ≤ J̃k+1 = Jk −
(

xT
k Qxk + uT

k Ruk

)
(7.12)

implying the condition given by (7.9).
The important aspect of this stability analysis helps to formulate algorithms that

do ensure the stability of the closed-loop system. To summarize, the previously
introduced conditions [14]:

If Jk is a positive definite infinite horizon cost, then xk = 0 is a stable equilib-
rium for the closed-loop system and xk converges asymptotically to zero, if the
tail ũk+1 is feasible for all k > 0.

The second method to prove the stability of a constrained MPC law also referred
to as the indirect stability method originates from [16]:

Jk − Jk+1 > 0 for x 	= 0 (7.13)

7.3 Stability Through Terminal Constraints 263

If it is possible to prove that the left side of Eq. (7.13) is positive, the stability of the
control course is proven as well. This approach is discussed in more detail in the
works of Chen and Shaw [16] and others [6, 46].

7.3 Stability Through Terminal Constraints

It has been demonstrated in the Sect. 7.2 that a closed-loop MPC control law will
remain asymptotically stable, given that the tail of the input predictions generated at
time (k) will satisfy constraints at times k = 1, 2, 3, . . . and onwards. Fortunately, it
is not necessary to force the system to comply with the constraints from the present
time all to infinity, since this problem would not be possible to formulate with a finite
number of constraints.

This requirement on the feasibility of the tail ũk+1 is at least partly satisfied by
the problem formulation itself. The constraints will be satisfied for ũk+1 in the first
nc −1 sampling intervals of the nc steps long prediction horizon. This is true because
the optimal predictions at time (k) must satisfy the constraints. However, ũk+1 has
one more element, that is, the nc-th element uk+nc = Kxk+nc as defined by the mode
2 fixed feedback control law.

To guarantee the feasibility of the last element and therefore the whole tail at
(k + 1), we must define an additional constraint at time (k). Constraints additional
to the constraints arising from the problem definition are referred to as terminal
constraints. Terminal constraints are defined in mode 2, where the fixed feedback
law is active and therefore they are defined in terms of the terminal state prediction
that is, xk+nc .

We can define a region of the state-space Ω in which the terminal state prediction
xk+nc must lie in order to satisfy the terminal constraints. If we have a system with
input constraints u ≤ uk ≤ u and state constraints x ≤ xk ≤ x, to ensure that the
tail will satisfy constraints over the whole prediction horizon nc we must include a
terminal constraint in the following form

xk+nc ∈ Ω ⇒ u ≤ Kxk+nc ≤ u
x ≤ xk+nc ≤ x

(7.14)

defining a region in the state-space Ω. The set Ω is a region where we want to steer
the state by the end of the horizon, and it is referred to as the target set. The terminal
constraints must be computed in a way that they ensure the feasibility of the MPC
optimization recursively, that is the tail predictions ensure constraints including the
terminal constraints themselves.

This is however not enough, as the predictions generated by the tail ũk+1 at (k+1)

must also satisfy the next terminal constraint, or in other words the terminal state
xk+nc+1 at (k + 1) must also be a part of the region Ω:

xk+nc+1 ∈ Ω (7.15)

264 7 Stability and Feasibility of MPC

x1

x2

xnc

xk

xk+ i i = 0, 1, . . . , nc − 1

Mode 1 - free variables

Mode 2 - fixed feedback

Fig. 7.3 Illustration of the invariant target set Ω with the state trajectory. The area outside the target
set represents mode 1 predictions, where inputs are free optimization variables. The target set is
mode 2, where the inputs are assumed to be calculated by a fixed feedback law

A target set is illustrated for a two-dimensional state-space in Fig. 7.3. The area
outside the target set is where the inputs are assumed to be free optimization variables,
while inside the target set the inputs are calculated by the fixed feedback law. Once
the state trajectory enters target set Ω it cannot exit it. This is in fact the invariance
property of the set Ω, which can be interpreted in a way that the set is contracting.
If the state is the part of the set at (k) so must be at the next and subsequent times as
well.

To ensure the stability of the closed-loop MPC system, we must ensure the fea-
sibility of the tail ũk+1 at time (k + 1) whenever the MPC optimization is feasible
at time (k). To achieve this we must ensure recursive feasibility. The conditions to
ensure this are

1. system constraints are in Ω

2. Ω is invariant in mode 2

The first condition is simply a restatement of (7.14). Invariance of the region Ω then
means that if the terminal state is part of the region, then so must be its closed-loop
iteration according to the fixed feedback law [8, 9]:

xk+nc ∈ Ω =⇒ (A + BK)xk+nc ∈ Ω (7.16)

The constrained MPC optimization has been defined by Algorithm 6.1 without
stability guarantees. Now we will add the terminal constraints, so that the stability
of the constrained MPC optimization will be now guaranteed. If we would like to
steer system (6.1) into the origin, we may define the following algorithm:

http://dx.doi.org/10.1007/978-1-4471-2333-0_6

7.3 Stability Through Terminal Constraints 265

Algorithm 7.1 To find the solution of the constrained model predictive control
problem with guaranteed stability, perform the following set of operations at each
sampling instant:

• Observe or measure actual system state at sample xk .

• Minimize the following cost function with respect to constraints:

min
uk

J (uk, xk) =
nc−1∑

i=0

(
xT

k+i Qxk+i + uT
k+i Ruk+i

)
+ xT

k+nc
P f xk+nc

where uk = [
uk, uk+1, uk+2, . . . , uk+nc−1

]
, Q = QT ≥ 0 is a state penaliza-

tion matrix, R = RT ≥ 0 is an input penalization matrix, nc is the prediction
horizon and P f is the solution of the unconstrained, infinite horizon quadratic
regulation problem. The typical MPC cost function must be subject to the following
system and terminal constraints:

u ≤ uk+i ≤ u, i = 0, 1, 2, . . . , nc − 1 (7.17)

x ≤ xk+i ≤ x, i = 1, 2, . . . , nc (7.18)

xk+nc ∈ Ω (7.19)

xk+0 = xk (7.20)

xk+i+1 = Axk+i + Buk+i , i ≥ 0 (7.21)

yk+i = Cxk+i , i ≥ 0 (7.22)

uk+i = Kxk+i , i ≥ nc (7.23)

where K is a stabilizing feedback gain.
• Apply the first element of the vector of optimal control moves uk to the controlled

system, and restart the procedure.

If Ω satisfies system constraints and is invariant in mode 2, then a system which is
feasible at k will also remain feasible for k = 1, 2, 3, . . . ,∞.

We may define the region of attraction, which is a subset of the state-space defin-
ing the set of all initial conditions from which is possible to drive the state predic-
tions inside Ω over the nc steps long mode 1 horizon [29]. Let us denote this set
with SΩ, then formally the above statement means that SΩ is a collection of all initial
conditions x0 for which exists a vector of inputs u such that by the end of the horizon
xnc will be a part of the set Ω:

SΩ =
⎧
⎨

⎩

xnc ∈ Ω

x0 : exists uk such that u ≤ uk+i ≤ u
x ≤ xk+i+1 ≤ x

⎫
⎬

⎭ (7.24)

where i = 0, 1, . . . , nc − 1. The region of attraction is the operating region of the
MPC law. No state outside the region of attraction is feasible; therefore, it is in our

266 7 Stability and Feasibility of MPC

x1

x2

Ω
S

xk0

xnc

xk

xk+ i i = 0, 1, . . ., nc − 1

Mode 1 - free variables

Mode 2 - fixed feedback

Infeasible region

Fig. 7.4 Illustration of the region of attraction SΩ, which is a set of all feasible initial states xk .

The target set Ω is illustrated as the smaller dark area and it is a subset of the region of attraction

interest to make it as large as possible. If one chooses to increase the horizon nc

the size of the region of attraction SΩ will also increase as well, since the number
of steps in which is possible to reach the target set is larger. Another approach is to
increase the size of the target set Ω.

The region of attraction SΩ is illustrated in Fig. 7.4 as the larger shaded area. All
states within the region of attraction are feasible, which means that it is possible to
steer them into the target set within nc steps. The target set Ω is a subset of the region
of attraction. States outside the region of attraction are infeasible and would violate
constraints sometime in the future. A state trajectory is denoted with the dotted spiral
shaped line. Mode 1 control is effective within the region of attraction, however the
fixed feedback law in mode 2 is assumed active within the target set.

7.4 Maximal Invariant Terminal Set

For a given horizon length it is necessary to ensure the largest possible region of
attraction, thus enlarging the operating region of the MPC controller. To do this, one
must formulate the terminal constraints in a way that the largest possible target set Ω
is created. The question of maximal admissible sets has been discussed by Gilbert and
Tan in [23], while its ellipsoidal approximation has been given by Mayne et al. [38].

The largest possible target set is ensured if one creates a set of terminal constraints,
which enforce system constraints over a horizon na called the constraint checking
horizon. For an LTI system, the length of this constraint checking horizon is constant
and determined offline.

7.4 Maximal Invariant Terminal Set 267

Recursive feasibility requires that the system constraints are satisfied over the
entire mode 2 horizon. This means that state and input constraints must be enforced
for:

u ≤ uk+i ≤ u, i = nc, nc + 1, nc + 2, . . . ,∞ (7.25)

x ≤ xk+i ≤ x, i = nc, nc + 1, nc + 2, . . . ,∞ (7.26)

from which it is logical to assume that the largest possible target set is defined, if we
enforce system constraints over the mode 2 horizon by assuming that Ω is formulated
as follows:

Ω =
{

x : u ≤ K(A + BK)i x ≤ u, x ≤ (A + BK)i x ≤ x
}

(7.27)

for i = nc, nc + 1, nc + 2, . . . ,∞. Fortunately, instead of having an infinite set of
constraints one may satisfy the constraints over the whole infinitely long mode 2
horizon by an na steps long finite horizon. Therefore, (7.27) will be defined instead
of an infinitely long constraint checking horizon over i = nc, nc +1, . . . , na −1, na .

To prove that a finite steps long constraint checking horizon can ensure system
constraints over the infinite mode 2 horizon, let us assume a case where only input
constraints u and u are considered. Moreover, let us denote Πi as the set of initial
conditions for which the input constraints are satisfied over a certain horizon length
of n steps under a mode 2 fixed feedback law given by u = Kx [14, 36]:

Πi =
{

x : u ≤ K(A + BK)i x ≤ u
}

(7.28)

For this case, we may also assume that the set of initial conditions satisfying system
constraints for the infinitely long mode 2 horizon can be replaced by a set of initial
conditions determined by a finite steps long constraint checking horizon:

Π∞ = Πna (7.29)

The closed-loop system (A+BK) defines a stable matrix with eigenvalues smaller
than the one according to |κ{A+BK}| < 1. As we increase i into infinity, this matrix
term will approach zero:

(A + BK)i → 0 as i → ∞ (7.30)

Let us denote the perpendicular distance of the hyperplane defined by
(A + BK)i x = u from x = 0 by oi . For any given x this distance oi will tend
to infinity as i → ∞ [14]:

oi = u∥∥K(A + BK)i
∥∥

2

→ ∞ as i → ∞ (7.31)

since the term (A+BK)i will tend to zero with increasing i because the closed-loop
matrix is stable. This geometrically means that the upper constraints u and lower

268 7 Stability and Feasibility of MPC

constraints u define hyperplanes associated with the increasing horizon. The strip
between these hyperplanes will increase in size, and will be wider and wider as i
approaches infinity.

For a constrained system, it is always possible to conceive an initial state that
will go over system constraints sooner or later in the future, indicating that mode 2
constraints create a finite set in the overall state-space. This means that constraints
must be violated sometimes in the future if the initial state x0 is large enough, therefore
Π∞ must be actually finite assuming an observable pair (A + BK), K. The strip of
state-space defined by the upper and lower input constraint

{
x : u ≤ K(A + BK)i x ≤ u

}
(7.32)

contains Π∞ for all i > na for a finite na . This implies that a finite horizon na

must exist which ensures system constraint feasibility for the whole infinitely long
mode two horizon. Then according to this, all points located in the finite Πna are
also located in Π∞ .

Let us search for Π∞ = Πna by assuming that increasing the horizon na will even-
tually cause that the next set will be equivalent to the previous and no improvements
can be made in the size or Πna+1 = Πna . Formally we can state that [14]:

Theorem 7.1 Π∞ = Πna if and only if Πna+1 = Πna To see that Theorem 7.1 is
true, let us follow the next line of thought:

Proof Assume that if x ∈ Πna then x is also in the next set x ∈ Πna+1 for some na :

x ∈ Πna =⇒ x ∈ Πna+1 =⇒ u ≤ K(A + BK)na+1x ≤ u (7.33)

Let us replace x with x = (A + BK)x̌ and substitute it to the previous equation
to get

u ≤ K(A + BK)na+1 x̌ ≤ u =⇒ u ≤ K(A + BK)na+2 x̌ ≤ u (7.34)

This means that whenever the state x ∈ Πna+1 it is also x ∈ Πna+2. If we apply this
repeatedly, we can get to the conclusion that Eq. (7.33) also implies that for some na

the state will be in the infinite mode 2 horizon x ∈ Πna+1.

The practical meaning of Theorem 7.1 and Eq. (7.33) is that, in the case of input
constraints it is sufficient to check whether the mode 2 constraints enforced over
na also satisfy constraints over na + 1 steps. If this is true, then na is the constraint
checking horizon. At each iteration, one must check whether the following statement
is true:

u ≤ K(A + BK)i x ≤ u, i = 0, 1, 2, . . . , na =⇒ u ≤ K(A + BK)na+1x ≤ u

(7.35)

For a case with input constraints, the constraint checking horizon algorithm is [13]:

Algorithm 7.2 To compute the constraint checking horizon, initialize with an
na = 0 long horizon in mode 2 and

http://dx.doi.org/10.1007/978-1-4471-2333-0_7

7.4 Maximal Invariant Terminal Set 269

1. Evaluate two linear programs,2 one for the lower constraint u and one for the
upper constraint u subject to constraints:

umax, j = max
x

K j (A + BK)na+1x s.t. u ≤ K(A + BK)i x ≤ u (7.36)

umin, j = min
x

K j (A + BK)na+1x s.t. u ≤ K(A + BK)i x ≤ u (7.37)

where the constraints are formulated for i = 0, 1, 2, . . . , na and for input con-
straints3 j = 1, 2, . . . , nu .

2. Check whether umax, j ≤ u j and umin, j ≥ u j for each j = 1, 2, . . . , nu . If this is
satisfied, terminate the program and note na as the constraint checking horizon,
otherwise continue.

3. Increase na = na + 1 horizon and resume at 2 . . .

In other words, at each iteration (for each constrained input) we check whether
the constraints over the first na steps will also satisfy constraints for the na + 1-th
step. To do this we simply compute the maximal (minimal) input value which would
be possible to compute with the fixed feedback law K(A + BK)na+1x at the next
step at na + 1, given that the computation is constrained from steps i = 0, . . . , na

with u ≤ K(A + BK)i x ≤ u. If the computed maximal (minimal) value is larger
(smaller) than the constraints, the process is repeated and the horizon is increased.
On the other hand, if the constraints are satisfied, the program is terminated and the
current na is the constraint checking horizon. To satisfy constraints over the infinite
mode 2 long horizon, it is enough to solve a finite set of linear programs at each
iteration to get to a finite constraint checking horizon na .

A maximal invariant target set is illustrated for the two-dimensional state-space
(nx = 2) for a system with symmetric input constraints in Fig. 7.5. The terminal
constraints iterated through the constraint checking horizon enclose strips in the
hyperspace. The width of these hyperplanes grows and they will be rotated around
the origin as the constraint checking horizon grows. Finally there will be a set of
strips, which encloses the maximal possible invariant target set Πna = Π∞.

7.4.1 Implementing the Terminal Constraints

With the explicit knowledge of the constraint checking horizon na after performing
Algorithm 7.2 we can change Algorithm 7.1 defining the dual-mode infinite horizon
MPC problem with guaranteed stability to:

Algorithm 7.3 To find the solution of the constrained infinite horizon dual-mode
model predictive control problem with guaranteed stability, perform the following
set of operations at each sampling instant:

2 Each with nu complexity, if the input has nu dimensions.
3 Note that although x is the optimization variable, we are not searching which x maximizes
(minimizes) this function but on the contrary, the value of the function which is not a state but an
input value.

270 7 Stability and Feasibility of MPC

x1

x2

Πna = Π

u K(A + BK)1x u

u K(A + BK)2x u
. . .

. . .

u K(A + BK)na+ 1x u

Fig. 7.5 Illustration of a maximal invariant target set in two-dimensional state-space. The strips
defined by the terminal constraints create a maximal invariant target set Πna = Π∞

• Observe or measure actual system state at sample xk .

• Minimize the following cost function with respect to constraints:

min
uk

J (uk, xk) =
nc−1∑

i=0

(
xT

k+i Qxk+i + uT
k+i Ruk+i

)
+ xT

k+nc
P f xk+nc

where uk = [
uk, uk+1, uk+2, . . . , uk+nc−1

]
, Q = QT ≥ 0 is a state penalization

matrix, R = RT ≥ 0 is an input penalization matrix, nc is the prediction horizon
and P f is the solution of the unconstrained, infinite horizon quadratic regulation
problem, The MPC cost function must be subject to the following system and
terminal constraints:

u ≤ uk+i ≤ u, i = 0, 1, 2, . . . , nc − 1 (7.38)

x ≤ xk+i ≤ x, i = 1, 2, . . . , nc (7.39)

u ≤ K(A + BK)i xk+nc ≤ u, i = 0, 1, 2, . . . , nc, . . . , nc + na (7.40)

x ≤ (A + BK)i xk+nc ≤ x, i = 0, 1, 2, . . . , nc, . . . , nc + na (7.41)

xk+0 = xk (7.42)

xk+i+1 = Axk+i + Buk+i , i ≥ 0 (7.43)

yk+i = Cxk+i , i ≥ 0 (7.44)

uk+i = Kxk+i , i ≥ nc (7.45)

where K is a stabilizing feedback gain, nc is the control and prediction horizon
and na is the control checking horizon.

• Apply the first element of the vector of optimal control moves uk to the controlled
system, and restart the procedure.

7.4 Maximal Invariant Terminal Set 271

7.4.2 Horizon Length

The inclusion of the terminal constraints in this quadratic programming problem
does not increase the computational cost significantly, since most of the online com-
putation effort is spent on the QP itself. The additional terminal constraints over the
na steps long constraint checking horizon are linear. As it will be demonstrated later,
computational time may be saved by using other types of terminal constraints. This
is not resulting because of the direct online computational savings on the additional
constraints, but rather because alternative constraint formulations may also allow for
alternative formulations of the minimization of the cost itself.

The size of the feasible initial conditions SΩ will increase with an increased
horizon nc. This proves to be essential with lightly damped vibrating systems, as the
large discrepancy between actuator capabilities and expected deformations calls for
a large region of attraction. It is likely that in a vibration attenuation application the
horizon nc will be kept at high values anyways.

In addition to enlarging the region of attraction SΩ, increasing the horizon has
other effects as well. That is the increase of the performance of the closed-loop
system, or the decrease of the closed-loop cost function

J =
∞∑

k=0

(
xT

k Qxk + uT
k Ruk

)
(7.46)

The performance of the MPC law will increase because of the reduction of the
predicted cost.

However, this performance increase has its limits, and there is a certain horizon
nc over which the optimality of the closed-loop system will not improve. This limit
is known as the constrained LQ-optimal performance and it ensures the performance
equivalent to an infinite number of degrees of freedom MPC problem. The reason
why the performance cannot be increased beyond a further limit is given by the fact
that terminal constraints must be inactive for a sufficiently large nc, so there cannot
be any further reduction to the cost. In the problem of active vibration damping the
requirement for a large region of attraction will dominate when the horizon nc is
designed; therefore it is likely that a constrained LQ optimal performance will be
reached anyway. It is possible to perform a simulation analysis, where one calcu-
lates closed-loop performance J for different horizons in order to assess whether an
increased horizon brings an optimality improvement. Alternatively, one may com-
pare the closed-loop cost J to the cost predicted at the initial time J0 and see if they
are identical. If the closed-loop cost is smaller, improvement can be made, but if the
two are identical, the constrained LQ-optimal performance has been already reached.

7.5 Simplified Polyhedral Target Sets

As demonstrated before, the inclusion of a constraint checking horizon na in dual-
mode MPC is the most straightforward way to ensure stability a priori while also
reaching maximum performance. However, polyhedral target sets created by process

272 7 Stability and Feasibility of MPC

constraints may be very complex in certain cases, especially with higher order predic-
tion models. This complexity directly translates to the computational effort necessary
to acquire the evolution of future process inputs at each sampling instant. It is there-
fore sometimes desirable to approximate the complex polytope Πna = Π∞ created
by constraints with a simplified shape. These polyhedral target sets are in fact created
by an assembly of simpler elements: hyperspaces4 and the half spaces bounded by
them [25]. According to this, it is also possible to create an invariant target set that
is bounded by a smaller number of hyperspaces but still ensures the stability of the
MPC law. Several alternative stabilized MPC approaches rely on such simplifica-
tions. The upside is the reduction of the computational effort; however, as the ideal
target set is only approximated with a simplified equivalent, the performance of the
control law will suffer as well.

Let us consider a simple regulation problem where we would like to steer our
system state into zero. For this regulation problem, we are aiming to minimize the
cost function such as in (6.30) with respect to constraints. But, instead of using the
high complexity target set Πna to ensure stability as discussed before, let us imagine
a simplified polyhedral target set Πs instead. The state x shall remain within this set
which shall be defined by:

{x : Vs x ≤ 1} where Vs ∈ R
n×n (7.47)

where Vs is a matrix defining a simplified polyhedral target set. Essentially, this
defines a hypercube and our aim is to determine what matrix Vs will be. The condi-
tions for invariance are defined by the properties of the set, see for example the paper
by Bitsoris [7].

A low complexity polyhedral invariant set is illustrated for a second order system
in Fig. 7.6. If at time (k) the set is defined by |Vs xk | ≤ 1, then at the next time step
(k + 1) should be smaller and described by the following relation:

|Vs xk | ≤ 1 −→ |VsΦxk | ≤ 1 where Φ = (A + BK) (7.48)

It is possible to rewrite this by inserting V−1
s Vs = 1 and obtain

∣∣VsΦV−1
s Vs xk

∣∣ ≤ 1.

Let us denote elements of the product VsΦV−1
s with ki j and elements of the product

Vs xk with l j . The definition of the invariant set (7.47) actually states that in the
worst-case scenario the elements of Vs xk will equal to 1: |l1| = · · · = |ln| = 1. We
can utilize a second order system to illustrate the situation:

max
x∈Πs

|k11l1 + k12l2| = |k11| + |k12| (7.49)

max
x∈Πs

|k21l1 + k22l2| = |k21| + |k22| (7.50)

4 It is also possible to represent polyhedra in a vertex-based representation instead of hyperspaces,
see the book by Ziegler [66].

http://dx.doi.org/10.1007/978-1-4471-2333-0_6

7.5 Simplified Polyhedral Target Sets 273

x1

x2

|kT
1 x| ≤ 1

|kT
2 x| ≤ 1

|Kx| ≤ ū

Πs

Fig. 7.6 Low complexity polyhedral invariant set, where k1 = [k11 k12]T and k1 = [k21 k22]T

then
∣∣∣∣
|k11| |k12|
|k21| |k22|

∣∣∣∣

∣∣∣∣
1
1

∣∣∣∣ =
∣∣∣∣
1
1

∣∣∣∣ (7.51)

From this, it is clear that the condition of invariance may be transformed to a very
convenient form:

∣∣∣VsΦV−1
s

∣∣∣ 1 = 1 (7.52)

In addition to (7.52) which sufficiently defines invariance, feasibility conditions need
to be defined as well. The simplest case is to have symmetric constraints only on the
control input. In this case we have to ensure:

|Kxk | ≤ ū −→ |KV−1
s Vs xk | ≤ ū (7.53)

where V−1
s Vs was inserted to the second equation. Similarly to the invariance con-

dition, the definition of the invariant set ensures that |Vs xk | ≤ 1, therefore in the
worst case |l1| = · · · = |ln| = 1. This simplifies the problem of feasibility to:

|KV−1
s |1 ≤ ū (7.54)

To find our invariant set defined by Vs let us state the eigenvalue problem for the
matrix Φ:

Φ� = �Λ

�−1Φ� = Λ

� = [δ1 δ2 . . . δnc]

Λ =

⎡

⎢⎢⎢⎢⎣

κ1 · · · 0

κ2
...

...
. . .

0 · · · κn

⎤

⎥⎥⎥⎥⎦

(7.55)

274 7 Stability and Feasibility of MPC

where Δ is a matrix of eigenvectors δi ,Λ is a diagonal matrix containing eigen-
values κi . We can utilize the inverse of the eigenvector matrix scaled with αs to
choose a suitable Vs :

Vs = αsΔ
−1 (7.56)

the conditions for invariance will transform to

|αsΔ
−1Φα−1

s Δ|1 ≤ 1 −→ |Λ|1 ≤ 1 (7.57)

Equation (7.57) tells us that the eigenvalues of the closed-loop system need to be real
and from within the unit disk, more formally: |κi | ≤ 1. It is possible to manipulate
the eigenvalues of the closed-loop system by pole placement, although this funda-
mental problem may have a surprisingly large computational complexity [10, 11].
By conforming to the former requirement, it is possible now to rewrite the conditions
for feasibility:

|Kα−1
s Δ| ≤ ū −→ α−1

s |KΔ|1 ≤ ū (7.58)

Finally, the conditions for feasibility will transform into a convenient form:

αs ≥ |KΔ|1/ū (7.59)

We can summarize the algorithm for model predictive control with guaranteed sta-
bility, utilizing simplified polyhedral invariant target sets as follows:

Algorithm 7.4

• Find the multiplier αs using relation (7.59)
• Find Vs defining the simplified polyhedral target set using (7.56)
• Perform the minimization of Jk subject to constraints |uk | ≤ ū and |Vs xnc | ≤ 1

The constraints need to be fed to the quadratic programming solver, mostly in the
form Acuk ≤ b0 + Bcxk . We have an additional constraint, defining the terminal
state −1 ≤ Vs xnc ≤ 1, where xk+nc = Mnc xk + Nnc uk . Generally, we can define
these constraints according to the following relation:

⎡

⎢⎢⎢⎣

1 · · · 0
... 1

...

0 · · · 1
VsNnc

⎤

⎥⎥⎥⎦ uk ≤

⎡

⎢⎢⎢⎣

ū
...

ū
I

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

0 · · · 0
...

. . .
...

0 · · · 0
VsMnc

⎤

⎥⎥⎥⎦ xk (7.60)

State and output constraints may be defined similarly.
A practical issue with the construction of low complexity invariant target sets

is the occurrence of complex eigenvalues κi of the closed-loop matrix Φ. In this
case, the definition matrix of the polyhedral set Γ will contain a pair of complex
conjugate eigenvectors and the set will remain open [27]. To solve this situation and

7.5 Simplified Polyhedral Target Sets 275

close the target set elementary rotation matrices may be used [50], which essentially
break down eigenvectors to their real and imaginary components. Such and similar
operations may cause that the condition of invariance is not met for certain complex
conjugate eigenvalues. Kouvaritakis et al. in their conference article in [31] review for
which eigenvalues is the invariance condition still valid. A formulation for continuous
systems is also possible [49], while its application to the pole-placement of gain
matrices for fixed feedback systems is described by Rusko in [52].

The introduction of non-symmetric constraints u 	= u or rate of change con-
straints
u,
u,
x,
x, and
y,
y, may require more complex formulations
[26, 27, 31].

7.6 Elliptic Invariant Target Sets

The previous section introduced a formulation where the complex polyhedral set
Πna = Π∞ created by the process constraints in the constraint checking horizon of
optimal dual-mode QPMPC were replaced by a simplified invariant target set Πs . An
additional possibility to replace the maximal target set Π∞ with a simpler approxi-
mation is the use of elliptic invariant target sets [38]. Geometric stability guarantees
based on the elliptic invariant set formulation are the cornerstone of the efficient
algorithm considered in Sect. 8.1 of the upcoming chapter. In general, the construc-
tion of ellipsoidal target sets is based on the Lyapunov or Ricatti equation [65] and
linear matrix inequalities (LMI).

The shape of the invariant ellipsoidal target set will be an ellipse in the case of a
second, an ellipsoid for a third order system. For a second order system, an ellipsoidal
set is illustrated in Fig. 7.7. In case the system order is larger than three, we talk about
a hyperellipsoid. Unfortunately, it is difficult to illustrate hyperellipsoids graphically
without creating confusion; therefore, the illustrations will assume a second order
system. Generally, we may describe the target set by the following expression:

Ex =
{

x |xT Γ x ≤ 1
}

(7.61)

The aim is to find the matrix Γ such that the ellipsoid will enclose the largest invariant
target set within the bounds and conforming the constraints. Naturally, it is desirable
to make the target set—this case an ellipsoid—as large as possible. The conditions
for invariance relate to the basic idea of invariant sets. If a system state in a certain
point of time is contained within the ellipsoid, so must it be at the next time step:

xk ∈ Ex → xk+1 ∈ Ex → xk+2 ∈ Ex → . . . (7.62)

This condition may be expressed by stating that the ellipsoid in the next time step
must be smaller or at least equal to the one in the current time steps:

xT
k+1Γ xk+1 ≤ xT

k Γ xk (7.63)

http://dx.doi.org/10.1007/978-1-4471-2333-0_8

276 7 Stability and Feasibility of MPC

Fig. 7.7 Illustration of an
elliptic invariant target set

We can take advantage of the fact that xk+1 = (A+BK)xk, where K is actually KL Q

in dual-mode. Therefore, if (A + BK) is substituted by the closed-loop matrix Φ,

we obtain

xT
k ΦT Γ Φxk ≤ xT

k Γ xk (7.64)

From this, by rearranging we get

−xT
k Γ xk + xT

k ΦT Γ Φxk ≤ 0 (7.65)

The final condition for invariance of the hyperellipsoid is:

Γ − ΦT Γ Φ ≥ 0 (7.66)

In addition to the invariance condition, there are input and possibly state con-
straints present. Let us consider the case of the simple symmetric input constraints,
defined by:

|Kx | ≤ u (7.67)

Utilizing the identity Γ − 1
2 Γ

1
2 = I, we may transform (7.67) to:

|KΓ − 1
2 Γ

1
2 x |2 ≤ u2 (7.68)

which may also be equivalently denoted as:

||KΓ − 1
2 ||2||Γ 1

2 x ||2 ≤ u2 (7.69)

The second term on the left side of (7.69) is simply xT Γ
1
2

T
Γ

1
2 x = xT Γ x . According

to Eq. (7.61) xT Γ x ≤ 1 which implies that the second term can have a value of one
in the worst case. Therefore, we may rewrite the conditions of feasibility:

||KΓ −1KT || ≤ u2 (7.70)

7.6 Elliptic Invariant Target Sets 277

To calculate Γ from the conditions of invariance, one needs to employ semidefinite
programming or SDP as it is often referred to. First, it is necessary to transform the
invariance conditions to a more convenient form using Schur complements. Accord-
ing to Schur complements, the following is valid [13]:

∣∣∣∣
A B
BT C

∣∣∣∣ ≥ 0 ⇐⇒ A − BC−1BT ≥ 0, C > 0

C − BT AB ≥ 0, A > 0
(7.71)

A function in the form F(p) > 0 where F(p) = p11I11 + p12I12 + · · · is called
a linear matrix inequality5 [12]. The invariance condition is (7.66) and in addition
to that it is necessary for the eigenvalues of Γ to be positive, that is, Γ > 0. If we
multiply both sides of the invariance condition by Γ −1 we obtain:

Γ −1(Γ − ΦT Γ Φ)Γ −1 ≥ 0

Γ > 0
⇐⇒ Γ −1 − Γ −1ΦT Γ ΦΓ −1 ≥ 0

Γ > 0
(7.72)

According to Schur complements, it is possible to rewrite this relation to

∣∣∣∣
Γ −1 Γ −1Φ

ΦΓ −1 Γ −1

∣∣∣∣ ≥ 0 (7.73)

Although we have Γ −1 instead of Γ, it is possible to calculate Γ −1 and invert it
afterward. For feasibility, we have

KiΓ
−1KT

i < u2
i

K =

⎡

⎢⎢⎢⎣

K1
K2
...

Knu

⎤

⎥⎥⎥⎦ , ū =

⎡

⎢⎢⎢⎣

u1
u2
...

unu

⎤

⎥⎥⎥⎦

(7.74)

where the index i represents the i-th row of the LQ optimal gain matrix K and the i-th
element of the vector ū for a general multiple-input system. As previously mentioned,
it is necessary to maximize the volume of the hyperellipsoid, or in the case of a second
order system, the area of an ellipse-subject to feasibility and invariance constraints.
If an ellipse is described by (7.61), then its major and minor axes are defined by the
reciprocals of the eigenvalues of the matrix Γ (Fig. 7.8). The area of an ellipse (valid
for a second order system) may be calculated by:

VolEx = π

κ1κ2
= π det Γ −1 (7.75)

5 Most mathematics and optimization-related publications use the notation F(p)�0 to denote the
concept of positive definiteness. This book will denote this concept with simple relation signs.

278 7 Stability and Feasibility of MPC

Fig. 7.8 Major and minor
axes of an ellipsoid Ex
expressed by the reciprocals
of the eigenvalues of the
definition matrix Γ

and the volume of a generic hyperellipsoid is calculated by evaluating:

VolEx = h det Γ −1 (7.76)

where h is an unknown number. Finding Γ is an offline optimization problem:

Algorithm 7.5 Perform the maximization of the determinant according to [62] in
offline mode:

max VolEx = h det Γ −1 (7.77)

Subject to the invariance condition (7.73), feasibility condition (7.74) and possibly
a shape conditioning constraint, for example:

hI < Γ −1 or trace (Γ) < 1 etc . . . (7.78)

The so-called shape conditioning ensures that the hyperellipsoid axes will not be
distorted in a particular direction. That said, it avoids an infinitely thin and long
ellipsoid-which otherwise would have the maximal volume and conform to all the
conditions. To realize this in practice, one needs to deploy a solver for semidefinite
programming (SDP) [42]. For this purpose, a rational choice is the freely available
SeDuMi solver [46, 59]; with an LMI parser called YALMIP [34]. The next problem
to solve is the actual online computation. The online algorithm may be described by:

Algorithm 7.6 Solve the following optimization problem at each time instant:

min
u

Jk = uT
k Huk + 2xT

k Guk + xT
k Fxk

Feasibility: Acuk ≤ b0 + Bcxk

Invariance: xT
nc

Γ xnc ≤ 1

(7.79)

This algorithm presents a quadratic optimization problem with quadratic constraints.
The evaluation of this task in the original form may be formidable. Fortunately, this
formulation may be changed to a second order cone programming (SOCP) problem.
Constraints for a second order cone programming problem are given in the following
form:

7.6 Elliptic Invariant Target Sets 279

||Ax + b||2 ≤ Cx + d (7.80)

where x is the variable to be optimized, and A, b, C and d are given optimization
parameters. The expression on the left side of the equation is in the two norm, also
referred to as Euclidean norm, where

||Ax + b||2 =
[
(Ax + b)T (Ax + b)

] 1
2

(7.81)

In the light of this information, the original definition of ellipse xT
nc

Γ xnc ≤ 1 can be
described equivalently as

||Γ 1
2 xnc ||2 ≤ 1 (7.82)

where xnc denotes the state at the end of the prediction horizon: xnc = Mnc xk+Nnc uk .

The new invariance condition in (7.79) will be

||Γ 1
2 Mnc xk + Γ

1
2 Nnc uk ||2 ≤ 1 (7.83)

The quadratic optimization problem can be transformed into a second order cone
programming form as well:

Jk = (H
1
2 uk + H− 1

2 GT xk)
T (H

1
2 uk + H− 1

2 GT xk)

+ xT
k Fxk − xT

k GH−1GT xk (7.84)

The last two terms of the equation are negligible, since we have a minimization
problem to solve. Therefore, we have a new expression in the following form:

||H 1
2 uk + H− 1

2 GT xk ||2 ≤ h (7.85)

where h is a new scalar optimization variable. The optimization algorithm is trans-
formed to:

Algorithm 7.7 Evaluate the following second order cone programming problem at
each sampling instant:

min
uk ,h

(h) (7.86)

Subject to the transformed invariance condition (7.83) and the feasibility condition.
The new transformed optimization problem is now expressed as an additional con-
straint:

||H 1
2 uk + H− 1

2 GT xk ||2 ≤ h (7.87).

7.7 Infeasibility Handling

There are many kinds of constraints in the MPC formulation that must be taken into
account in practical control applications: safety limitations, physical restrictions,

280 7 Stability and Feasibility of MPC

technological requirements, product quality specifications, etc. The importance of
constraints is also reinforced by the fact that, in practice, the optimal operating point
very often lies on one or more of the boundaries defined by the applied constraints.

The relatively simple implementation of equality or inequality constraints into the
task of minimizing the criterion function in predictive control [see e.g. the generic
QP problem in Eq. (6.61)] may introduce very significant problems related to their
compatibility. Incompatible constraints can cause that the optimization problem may
be insolvable, respectively the given optimization problem is infeasible. The term
infeasibility can be defined as an inability to satisfy all the constraints simultaneously.
These problems arise when the restrictions on the relevant variables define an empty
area and the optimization problem of minimizing the criterion function does not
provide an adequate solution. An infeasible set of constraints may occur as a result
of disturbances, operator failure, actuator or control system failure, bad design; ulti-
mately causing the optimization problem to become incompatible in certain steps.
It may also happen that the numerical algorithm minimizing the criterion leads the
system outside the feasible region. The problem of feasibility is often referred to as a
compatibility problem or the realization problem of the constraints. A general solu-
tion to the feasibility problem does not exist and therefore the issue needs attention
in a real control application. In general, the constraints in MPC algorithms can be
interpreted as [51]:

• Hard constraints are constraints that must always be satisfied. For example, hard
constraints may be physical limits on actuators or safety limits. A control scheme
ideally shall not use tactics to violate hard constraints, as this is either physically
impossible or would lead to catastrophic results. If hard constraints would be
violated, a mismatch between the predicted and actual closed-loop plant would
occur leading to serious consequences and even loss of stability.

• Soft constraints are those, which should be satisfied only if possible. It is assumed
that if necessary, soft constraints can be violated (ignored). Soft constraints are
usually enforced on output or state variables, although they could also be applied
to inputs. In a practical sense, the constraints are nonessential, only preferred.

• Terminal constraints are somewhat artificial in a sense that they arise from the
stability guarantee conditions of the control algorithm, which have been discussed
in detail previously. They can be defined in the form of equality or inequality
conditions given on terminal state and terminal region. In fact, they represent a
mixture of hard and soft constraints.

We may distinguish two types of infeasibility problems for various incompatible
constraint configurations [53]:

• Type I infeasibility is caused by incompatibility between equality and inequality
constraints, e.g. the inequality constraints define a nonempty region Φin 	= 0 and
Φin ∩ Φeq ≡ 0, where Φeq is the region created by the equality constraints

• Type II infeasibilities are caused by incompatibility between the inequality con-
straints because they define an empty region Φin ≡ 0, e.g. uk ≤ 1 and yk ≥ 2
when the process has unity DC gain

http://dx.doi.org/10.1007/978-1-4471-2333-0_6

7.7 Infeasibility Handling 281

u1

u2

in

eq

(a) Type I infeasibility

u1

u2

in

(b) Type II infeasibility

Fig. 7.9 Illustration of the two main types of infeasible constraint configurations for an input
constrained problem with two elements. a Type I infeasibility. b Type II infeasibility

The issue of Type I infeasibilities is very important since some earlier MPC
stabilizing strategies (such as CRHPC, SGPC or SIORHC) rely on the end point
equality constraints in Eq. (7.1) to ensure stability. It can be shown that, if at least
one inequality constraint is imposed, it is always possible to find a set-point sequence
causing this type of incompatibility. Careful design of constraints cannot guarantee
feasibility; hence, there are situations when such a stabilizing control is infeasible.
Type II infeasibilities usually arise because of either poor design, or the nature of
the plant and the presence of disturbances. The resulting mismatch between the
predicted and actual plant behavior can than lead to serious consequences in online
control. A simple example of the both types of infeasibilities is illustrated in Fig. 7.9,
where incompatible constraint configurations of Type I and II are given for a two-
dimensional input vector u = [u1 u2]T.

One may see that there is a possibility that the minimization problem of the MPC
cost function subject to design constraints may not have a solution at all. This is
why it is necessary to devise procedures for the effective handling of infeasibility.
All practical MPC implementations should have means to recover from infeasibility,
shall that occur during the real-time control process.

Let us briefly discuss some typical techniques for avoiding infeasibility. One way
of handling (Type I) infeasibilities is the set point management technique [21, 22].
An obvious case of infeasibility is due to rapid set point changes. This implies a
large change in the terminal constraint set (due to a shift in steady-state values) and
hence these may become inconsistent. The key philosophy of set point management
algorithms is to establish a set point different from the true one, when changes in
true set point would otherwise cause infeasibility. The controller set point therefore
implements slower changes in the value than the true set point would necessitate.
Simple algorithms implementing this set point change strategy can be found in [51].

The next two techniques referred to as constraint removal and constraint soften-
ing can be applied for handling infeasibilities of both types. The idea is, when an

282 7 Stability and Feasibility of MPC

infeasibility arises, control is continued as unconstrained. Feasibility is checked at
every sample and a full set of constraints are reintroduced back as soon as they
become feasible. If the set of constraints is found to be inconsistent, then some
constraint must be either relaxed or removed. A simple process-dependent removal
strategy could be developed using the following logic [51]:

Algorithm 7.8 At each sampling instant, perform the following algorithm:

• Test for feasibility, if found infeasible then

1. relax (or remove) the least important soft constraint, test for feasibility
2. if the remaining set of constraints is feasible, pass on to the MPC algorithm and

start optimization
3. else repeat the cycle again from step 1

• else pass on full set of constraints to the MPC algorithm and start the optimization.

Naturally, the algorithm relates to those constraints that are predicted to be vio-
lated, relaxing nonactive constraints will change nothing. The hope is that once
enough soft constraints have been relaxed, the whole constraint set will become fea-
sible and one can continue. The decision-making process is taken by a supervisory
controller level, before the constraints are downloaded to the MPC algorithm. A more
subtle variant is a hierarchical strategy [32], where the user is asked to assign a pri-
ority index to each group of constraints at the design stage. This index expresses the
relative importance of a particular group. At every sample, the full set of constraints
is checked for compatibility. At the time of infeasibilities, the supervisory controller
level uses the priority indices to determine a set of low priority constraints, which
must be removed to reestablish feasibility. These constraints are then reintroduced
into the control law as soon as possible. An important modification is manipulation
with the lower constraint horizon, where the removal of constraints is performed by
increases made in the value of the horizon. At the time of infeasibilities, the con-
flict between constraints is resolved by defining a new value of the lower constraint
horizon such that the set of constraints is feasible.

The technique of constraint softening involves removing certain constraints at
times of infeasibilities and adding a term to the cost function that penalizes violations
of temporarily discarded constraints. Similar to the removal strategy, a hierarchical
constraint softening can be introduced.

The topic of feasibility and handling infeasible constraint configurations is an
essential one, since the MPC algorithm is defined well only when constraints are
feasible. More techniques and procedures concerning feasibility issues and the main-
tenance of feasibility can be found in works by Scokaert et al. and others [51, 53, 54,
57, 61].

References 283

References

1. Åstrom K, Furuta K (2000) Swinging up a pendulum by energy control. Automatica 36(2):287–
295. doi:10.1016/S0005-1098(99)00140-5, http://www.sciencedirect.com/science/article/pii/
S0005109899001405

2. Belavý C (2009) Teória Automatického Riadenia II: Návody na cvičenia, Slovenská vysoká
škola technická v Bratislave: Strojnícka Fakulta, 1st edn. Bratislava, (Theory of automatic
control II: seminar guide) in Slovak language

3. Bemporad A (1998) A predictive controller with artificial Lyapunov function for linear systems
with input/state constraints. Automatica 34(10):1255–1260

4. Bemporad A, Chisci L, Mosca E (1994) On the stabilizing property of the zero terminal state
receding horizon regulation. Automatica 30(12):2013–2015

5. Bertram JE, Kalman RE (1960) Control systems analysis and design via second method of
Ljapunov. Trans ASME, J Basic Eng 82:371–400

6. Bitmead RR, Gevers M, Wertz V (1990) Adaptive optimal control: the thinking man’s GPC.
Prentice Hall, Englewood Cliffs

7. Bitsoris G (1988) On the positive invariance of polyhedral sets for discrete-time systems. Syst
Control Lett 11(3):243–248

8. Blanchini F (1994) Ultimate boundedness control for uncertain discrete-time systems via set-
induced Lyapunov functions. IEEE Trans Autom Control 39(2):428–433

9. Blanchini F (1999) Set invariance in control. Automatica 35(11):1747–1767
10. Blondel V, Tsitsiklis JN (1996) NP-hardness of some linear control design problems. SIAM J

Control Optim 35:2118–2127
11. Blondel VD, Tsitsiklis JN (2000) A survey of computational complexity results in systems

and control. Automatica 36(9):1249–1274. doi:10.1016/S0005-1098(00)00050-9, http://www.
sciencedirect.com/science/article/pii/S0005109800000509

12. Boyd S, Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in systems and
control theory, 1st edn. Society for Industrial and Applied Mathematics, Philadelphia

13. Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and
control theory. Studies in Applied Mathematics, SIAM, Philadelphia

14. Cannon M (2005) Model predictive control, lecture notes. Michaelmas Term 2005 (4 Lectures),
Course code 4ME44. University of Oxford, Oxford

15. Chen H, Allgöver F (1998) A quasi-infinite horizon nonlinear model predictive control scheme
with guaranteed stability. Automatica 34(10):1205–1217

16. Chen CC, Shaw L (1982) On receding horizon feedback control. Automatica 18:349–352
17. Clarke DW, Scattolini R (1991) Constrained receding-horizon predictive control. IEE Proc Part

D 138(4):347–354
18. de Oliveira SL (1996) Model predictive control for constrained nonlinear systems. PhD thesis,

California Institute of Technology, Pasadena
19. Furuta K (1992) Swing-up control of inverted pendulum using pseudo-state feedback. J Syst

Control Eng 206(14):263–269. doi:10.1243/PIME_PROC_1992_206_341_02
20. Garcia CE, Prett DM, Morari M (1989) Model predictive control: theory and practice—a survey.

Automatica 25(3):335–348
21. Gilbert EG, Kolmanovsky I (1995) Discrete-time reference governors and the non-linear control

of systems with state and control constraints. Int J Robust Nonlinear Control 5:487–504
22. Gilbert EG, Kolmanovsky I (1999) Fast reference governors for systems with state and control

constraints and disturbance inputs. Int J Robust Nonlinear Control 9:1117–1141
23. Gilbert EG, Tan KT (1991) Linear systems with state and control constraints: the theory and

application of maximal output admissible sets. IEEE Trans Autom Control 36(9):1008–1020
24. Iwase M, Astom KJ, Furuta K, Akesson J (2006) Analysis of safe manual control by using Furuta

pendulum. In: Computer aided control system design, 2006 IEEE international conference on
control applications, 2006 IEEE international symposium on intelligent control, 2006 IEEE,
pp 568–572. doi:10.1109/CACSD-CCA-ISIC.2006.4776708

http://dx.doi.org/10.1016/S0005-1098(99)00140-5
http://www.sciencedirect.com/science/article/pii/S0005109899001405
http://www.sciencedirect.com/science/article/pii/S0005109899001405
http://dx.doi.org/10.1016/S0005-1098(00)00050-9
http://www.sciencedirect.com/science/article/pii/S0005109800000509
http://www.sciencedirect.com/science/article/pii/S0005109800000509
http://dx.doi.org/10.1243/PIME_PROC_1992_206_341_02
http://dx.doi.org/10.1109/CACSD-CCA-ISIC.2006.4776708

284 7 Stability and Feasibility of MPC

25. Jirstrand M (1998) Constructive methods for inequality constraints in control. PhD thesis,
Department of Electrical Engineering, Linköping University, Linköping

26. Karas A (2002) Stabilizujúce prediktívne riadenie systémov s obmedzeni-
ami. PhD thesis, Slovak University of Technology in Bratislava, Bratislava
(Stabilizing predictive control of systems with constraints.) in Slovak language

27. Karas A, Rohal’-Ilkiv B, Belavý C (2007) Praktické aspekty prediktívneho riadenia, 1st edn.
Slovak University of Technology in Bratislava / Slovenská E-Akadémia, n.o., Bratislava (Prac-
tical aspects of predictive control) in Slovak language

28. Keerthi SS, Gilbert EG (1988) Optimal, infinite horizon feedback law for a general class
of constrained discrete time systems: stability and moving-horizon approximations. J Optim
Theory Appl 57:265–293

29. Kerrigan EC (2000) Robust constraint satisfaction: invariant sets and predictive control. PhD
thesis, Control Group, Department of Engineering, University of Cambridge, Cambridge

30. Kouvaritakis B, Rossiter JA, Chang AOT (1992) Stable generalised predictive control: an
algorithm with guaranteed stability. IEE Proc Part D 139(4):349–362

31. Kouvaritakis B, Cannon M, Karas A, Rohal’-Ilkiv B, Belavý C (2002) Asymmetric constraints
with polyhedral sets in MPC with application to coupled tanks system. In: IEEE 2002 confer-
ence on decision and control, Las Vegas, pp 4107–4112. doi:10.1109/CDC.2002.1185011

32. Kuznetsov AG (1996) Constrained predictive control: a brief survey. Journal A (Benelux pub-
lication of the Belgian Federation of Automatic Control) 37(2):3–8

33. Kwon WH, Pearson AE (1978) On feedback stabilization of time-varying discrete linear sys-
tems. IEEE Trans Autom Control 23:479–481

34. Lofberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Pro-
ceedings of the CACSD conference, Taipei

35. Lyapunov AM (1893) Problème général da la stabilité du mouvement. Academic Press, New
York (reprinted in 1966)

36. Maciejowski JM (2000) Predictive control with constraints, 1st edn. Prentice Hall, Upper
Saddle River

37. Mayne DQ, Michalska H (1990) Receding horizon control of non-linear systems. IEEE Trans
Autom Control 35(5):814–824

38. Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predictive control:
stability and optimality. Automatica 36(6):789–814

39. Michalska H, Mayne DQ (1993) Robust receding horizon control of constrained nonlinear
systems. IEEE Trans Autom Control 38(11):1623–1633

40. Mosca E, Zhang J (1992) Stable redesign of predictive control. Automatica 28(6):1229–1233
41. Mosca E, Lemos JM, Zhang J (1990) Stabilising I/O receding-horizon control. In: Proceedings

of 29th IEEE conference on decision and control, Honolulu
42. Nesterov Y, Nemirovskii A (1994) Interior-point polynomial methods in convex programming,

Studies in applied mathematics. vol 13, SIAM, Philadelphia
43. Nevistić V, Primbs JA (1997) Finite receding horizon linear quadratic control: a unifying theory

for stability and performance analysis. Technical report CIT-CDS 97-001, California Institute
of Technology, Pasadena

44. Polak E, Yang TH (1993) Moving horizon control of linear systems with input saturation and
plant uncertainty: part 1: robustness. Int J Control 58(3):613–638

45. Polak E, Yang TH (1993) Moving horizon control of linear systems with input saturation and
plant uncertainty—part 2: disturbance rejection and tracking. Int J Control 58(3):639–663

46. Pólik I (2005) Addendum to the SeDuMi user guide version 1.1. Technical report, McMaster
University, Advanced Optimization Lab, Hamilton, Ontario. http://sedumi.ie.lehigh.edu/

47. Primbs JA, Nevistić V (1997) Constrained finite receding horizon linear quadratic control.
Technical report CIT-CDS 97-002, California Institute of Technology, Pasadena

48. Rawlings JB, Muske KR (1993) The stability of constrained receding horizon control. IEEE
Trans Autom Control 38(10):1512–1516

http://dx.doi.org/10.1109/CDC.2002.1185011
http://sedumi.ie.lehigh.edu/

References 285

49. Rohal’-Ilkiv B (2004) A note on calculation of polytopic invariant and feasible sets for linear
continuous-time systems. Annu Rev Control 28:59–64

50. Rohal’-Ilkiv B, Belavý C, Karas A (2001) Stable infinite-horizon predictive control with ampli-
tude and rate input constraints. In: 13th international conference on process control-process
control ’01, Štrbské Pleso, Vysoké Tatry, Slovak Republic, CD-ROM

51. Rossiter JA (2003) Model-based predictive control: a practical approach, 1st edn. CRC Press,
Boca Raton

52. Rusko M (2004) A note to LQ / H2 optimal sector pole placement. In: 6th international
scientific-technical conference on process control 2004, Kouty nad Desnou, conference CD,
paper R251

53. Scokaert POM (1994) Constrained predictive control. Technical report OUEL 2023/94, Depart-
ment of Engineering Science, Oxford University, Parks Road, Oxford

54. Scokaert POM, Clarke DW (1994) Stabilising properties of constrained predictive control. IEE
Proc Part D 141(5):295–304

55. Scokaert POM, Rawlings JB (1996) Infinite horizon linear quadratic control with constraints.
In: Proceedings of IFAC’96 world congress, San Francisco, vol 7a-04-1, pp 109–114

56. Scokaert POM, Rawlings JB (1998) Constrained linear quadratic regulation. IEEE Trans Autom
Control 43(8):1163–1169

57. Scokaert POM, Rawlings JB (1999) Feasibility issues in model predictive control. AIChE J
45(8):1649–1659

58. Soeterboek R (1992) Predictive control-a unified approach. Prentice Hall, New York
59. Sturm JF (2001) SeDuMi 1.05 R5 user’s guide. Technical report, Department of Economics,

Tilburg University, Tilburg. http://sedumi.ie.lehigh.edu/
60. Sznaier M, Damborg MJ (1987) Suboptimal control of linear systems with state and control

inequality constraints. In: Proceedings of the 26th IEEE conference on decision and control,
pp 761–762

61. Vada J, Slupphaug O, Johansen TA, Foss BA (2001) Linear mpc with optimal prioritized
infeasibility handling: application, computational issues and stability. Automatica 37:1835–
1843

62. Wu SP, Vandenberghe L, Boyd S (1996) MAXDET-software for determinant maximization
problems-user’s guide. Information Systems Laboratory, Electrical Engineering Department,
Stanford University

63. Xu Y, Iwase M, Furuta K (2001) Time optimal swing-up control of single pendulum.
J Dyn Syst Meas Control 123(3):518–527. doi:10.1115/1.1383027, http://link.aip.org/link/?
JDS/123/518/1

64. Zheng ZQ, Morari M (1995) Stability of model predictive control with mixed constraints. IEEE
Trans Autom Control 40(10):1818–1823

65. Zhou K, Doyle J, Glover K (1994) Robust optimal control. Prentice-Hall, Englewood Cliffs
66. Ziegler MG (1995) Lectures on polytopes. Springer, New York

http://sedumi.ie.lehigh.edu/
http://dx.doi.org/10.1115/1.1383027
http://link.aip.org/link/?JDS/123/518/1
http://link.aip.org/link/?JDS/123/518/1

	7 Stability and Feasibility of MPC
	7.1 Development of MPC with Stability Guarantees
	7.1.1 Equality Terminal Constraints
	7.1.2 Penalty on the Terminal State
	7.1.3 Target Sets
	7.1.4 Combination of Target Sets and Terminal Penalties
	7.1.5 State Contractility and Others

	7.2 Closed-Loop Stability of the Infinite Horizon MPC Law
	7.3 Stability Through Terminal Constraints
	7.4 Maximal Invariant Terminal Set
	7.4.1 Implementing the Terminal Constraints
	7.4.2 Horizon Length

	7.5 Simplified Polyhedral Target Sets
	7.6 Elliptic Invariant Target Sets
	7.7 Infeasibility Handling
	References

