
Chapter 6
Basic MPC Formulation

Model predictive control (MPC) is an advanced optimization-based control method
that has been in use for applications with slow dynamics, such as petrochemical plants
since the 1980s (Fig. 6.1). Unlike linear quadratic (LQ) control, in addition to pro-
viding an optimal control process, MPC offers the explicit handling of process con-
straints that arise from natural requirements, for example cost effectiveness, safety,
actuator limits and others. In fact due to the active interest of industry, the early
theoretical development of MPC has been influenced greatly by the requirements of
corporate users. A review of the industrial applications for those interested is given in
[35, 43–45]. The design of MPC controllers is nowadays supported by numerous off-
the-shelf commercial packages [45]. These tools typically contain means for model
identification, controller design, controller tuning and controller performance analy-
sis and are intended for the industrial user without a deep knowledge of the theoretical
aspects of MPC.

Control decisions in MPC are computed online using an internal model of the
plant dynamics. The big advantage of MPC over other control strategies is that it
can handle process constraints on an algorithmic level. Unfortunately, the inclusion
of constraints renders the MPC law nonlinear, which has dramatic effects on its
stability properties. Just as in the case of any other well-designed system employing
an arbitrary control law, the closed-loop stability of constrained MPC needs to be
investigated and if possible guaranteed as well.

Given an otherwise stable plant model, it is always possible to conceive a system
state, which can render the MPC controller unstable. A constrained MPC control
law (in its primal, online optimization-based form) does not have an explicit closed-
loop form, therefore stability guarantees can be given only by applying additional
constraints which have a task to ensure future feasibility and stability. The stability
aspects of model predictive control will be discussed in the following chapter, that
is in Chap. 7.

The aim of this chapter is to introduce model predictive control to the reader
who has no or minimal prior knowledge of this advanced control strategy. For this
reason, we are beginning our discussion from the essentials and build a controller
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Fig. 6.1 The petrochemical industry was the first to recognize the merits of MPC and adopt it in
everyday operations [22]

from the grounds up. Fundamental concepts such as prediction, cost and penalization
are explained first in order to introduce the simplest possible MPC control law, which
in the absence of constraints can be expressed in a closed form. By the end of this
chapter, the reader shall be familiar with the theoretical fundamentals of the popular
dual-mode formulation of the quadratic programming-based MPC strategy.

After an introduction of the underlying idea of model predictive control, a his-
toric overview of the development of MPC is presented in the first section. Here the
development from fixed feedback laws based on finite impulse responses up to the
constrained and stable online optimization strategies used today are briefly reviewed.
This is followed by a section discussing how we can predict the evolution of states
based on a state-space model, and how all of this can be given in a compact matrix
notation. Section 6.3 introduces the idea of the cost function, which can give a clear
numerical measure of the performance of a control law formulating the basis of the
optimization task in MPC. Following this, further building blocks of the predictive
strategy are discussed, namely the penalization matrices that help to fine tune the
behavior of the controlled system. The first working MPC control law is derived in
Sect. 6.6, which thanks to the absence of constraints is just a fixed feedback matrix.
As one of the main advantages of using MPC over classical methods is its abil-
ity to handle process constraints, the formulation of constraints is reviewed in the
following section. Following this Sect. 6.8 finally arrives at the central element of
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the predictive strategy: the most common dual-mode constrained MPC law. This
MPC formulation is evaluated online using the mathematical optimization tool called
quadratic programming. The chapter ends with a short section discussing the idea
of different predictive and control horizons while briefly examining the problem of
tracking in state-space systems as well.

The style of presentation and the content of this chapter is aimed at the reader
unfamiliar with model predictive control. The ultimate objective is to present con-
strained MPC based on quadratic programming in a straightforward manner, with-
out distractions leading the reader off-course. This however requires omitting some
aspects of predictive control from the explanation. The theoretical view on stability,
feasibility and efficiency of MPC is discussed in the subsequent chapters. In case
one is interested in MPC formulations based on transfer function models, impulse or
step responses, we suggest to read one of the excellent books discussing the basics
and more advanced concepts of model predictive control, such as the popular books
by Maciejowski [34], Rossiter [48] or several other publications [ 6, 7, 26, 36].

6.1 The MPC Idea

In essence, an MPC controller is based on an iterative, finite horizon (constrained)
optimization of a plant model. At each discrete sampling time (k) the plant is
sampled and the actual state1 xk is measured or estimated using observers.
The performance of the controller is expressed by a so-called cost function. Based
on a dynamic model of the plant, this cost function is formulated in such a way that it
expresses the performance of the MPC controller in the future, given a current plant
state xk and a sequence of future inputs uk . In other words, this predicted cost func-
tion gives a numerical indicator of the quality of control, assuming that the current
plant state is influenced by a certain sequence of past inputs. The question is not what
the performance of the controller will be, but rather what the sequence of inputs uk
is which will produce the best performance. To calculate the optimal sequence of
inputs, one must minimize the cost function at each sampling interval using a numer-
ical optimization algorithm. As in the case of most real plants inputs, outputs and
states can be bounded by physical constraints, which can be easily incorporated into
the numerical minimization task. Of the sequence of future inputs uk only the first
is applied, then the process is repeated based on brand new measured state informa-
tion. This type of repeated measure-predict-optimize-apply cycle is called receding
horizon control.

The model predictive control algorithm is schematically illustrated in Fig. 6.2.
The structure of this scheme illustrates that essentially MPC is a form of a feed-
back control algorithm, where instead of a fixed feedback law a dynamic online
optimization process determines inputs based on the actual measurements.

1 Note that a state xk is a vector, however in our further discussions we will use a scalar notation
xk instead, see Sect. 6.2 in p. 237 for explanation.
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Fig. 6.2 Schematic representation of the model predictive control algorithm

A model predictive controller is based on the following concepts:

• using a mathematical model of the plant dynamics
• predicting future plant dynamics
• expressing process optimality by a cost function
• predicting cost of future plant dynamics
• cost function minimization (optimal control)
• receding horizon control

Figure 6.3 illustrates the concept of the receding horizon model predictive
controller. At the time step (k) the controller measures or observes the current plant
state from the outputs, denoted by the black dot. An optimal course of inputs is
calculated, which is associated with a predicted output course. At time (k) however,
only the first element of the sequence is applied to the plant. At the next step (k + 1)
the whole process is repeated, shifting the horizon one step further.

An interesting view of predictive control is presented by Camacho and Bordons
in [6, 7], where the control process is represented by the analogy of driving a motor
vehicle. While model predictive control represents driving based on the informa-
tion gathered by looking out the front windshield, classical feedback control is
closer to looking out the back window or the rear-view mirror. A real driver uses
an MPC-like approach in steering the car, since it looks forward and chooses an
ideal action based on possible future outcomes, taking the real characteristics of the
car into consideration. A hypothetical driver using a classical control engineering
approach (e.g. PID) would only look out the back window, trying to steer the vehi-
cle based on information about its past behavior. Moreover, our hypothetical driver
would not take into consideration the real limits and boundaries of its vehicle: it
would try to drive through a curve with a semi-truck, assuming it handles just like a
sports car.

While this is an oversimplified approach, the analogy has more to offer. The driver
of a car bases his or her judgments at the current time on predictions of the future.
The driver is familiar with a mental image of the car, knows how it can accelerate,
how fast it can stop and how it handles in general. This mental image of the car is
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Fig. 6.3 Model predictive control demonstrating the receding horizon control idea—new state
measurements (observations) are used to compute a new optimal sequence of inputs shifting the
horizon forward at all times

substituted by a simplified internal mathematical model in MPC. In good visibility,
a driver may see far ahead in the horizon, and thus go fast. If the visibility conditions
are bad, the horizon in front of the driver is also short and one may easily misjudge
the situation. The portion of the road one can see while driving is represented by the
prediction horizon in MPC. Instability may occur in MPC if the prediction horizon
is too short, this would be the equivalent of crashing the car because of entering
an unknown curve too fast in low visibility conditions. A real driver continuously
updates its decisions, it does not make a plan before starting the engine and stick to
it by all means. Similarly, MPC continuously updates the decisions in real-time and
it uses only the most recent one, then repeats this procedure. Since just like the real
driver the MPC law updates its decisions at all times, the MPC horizon is receding
forward in time. Of course, one of the most important aspects of driving is given
by the essential requirement of not leaving the road and crashing the car. We can
think of this as a type of constraint, along with other constraints such as the physical
properties of the vehicle. With a limited portion of the road ahead, one may misjudge
its current actions leaving the road: the trajectory and handling of the car becomes
unstable, leading to dramatic consequences. Similarly, in MPC the mere presence of
constraints can complicate the situation and affect the stability of the control course.

6.1.1 Historical Overview

Historically, we can differentiate between three independent lines of development of
model predictive control [6, 25, 26, 51]:

• model predictive control
• generalized predictive control
• receding horizon control
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The first general category is model predictive control (MPC) which encompasses
for example model algorithmic control (MAC) based on finite impulse response (FIR)
models and dynamic matrix control (DMC) which is based on finite step response
(FSR) models. Successful application of MAC has been introduced in [47], while
DMC has been first characterized and applied to a chemical process in [14]. The
acceptance of these methods in the industry is backed by the use of impulse- and step
response-based models that are very easy and convenient to identify. The drawback
of FIR- and FSR-based models is, however that it is very difficult to generalize
and apply them to more complex systems, moreover they cannot be formulated for
unstable systems.

A second line of development is represented by generalized predictive control
(GPC). GPC methods are based on single-input single-output (SISO) models such
as the ones often utilized in adaptive control. Some of the control approaches falling
under this category are the minimum variance (MV) [2] and the generalized minimum
variance (GMV) [10] methods. Unfortunately, these methods have been sensitive to
modeling errors and could not guarantee stability of non-minimum phase systems.
These problems lead to further development of control theory and the introduction of
GPC [12, 13], long-range predictive control [11], extended horizon adaptive control
[53] and extended prediction self-adaptive control [15]. Later GPC has been formu-
lated for a continuous time system [16] and MIMO models [27, 50] as well. A GPC
predictive controller with guaranteed stability has been presented in [23].

The third and final line of development is called receding horizon control (RHC)
where the research direction has been given on modifications and development of
linear quadratic controllers. Initially the method did not assume the presence of
system constraints. An RHC method minimizing a quadratic criterion with a terminal
equality constraint ensuring stability has been introduced in [30, 31]. Reference
tracking has been added to this formulation later in [29] while [33] has been dealing
with state-space interpretation based closed-loop RHC control.

The different directions of research introduced previously have been evolving
independently at first. Later the more general state-space representation of RHC
allowed the investigation of the connections between the different predictive con-
trol approaches [38, 54]. We may state that receding horizon control is in fact the
most general interpretation containing GPC or MPC as its special cases. In fact, the
one-shot solution of GPC and recursive form of RHC is identical in the absence of
constraints. Moreover, there is an analogy between the state observers used in RHC
and the optimal predictors of GPC. The state-space representation of the predictive
control problem allows the use of MIMO models and more intricate tools in ensuring
stability. This book will assume the use of state-space models for representing vibra-
tion dynamics as well. Although the state-space representation allows more complex
formulations and is now generally accepted in both theoretical and practical works,
the simpler FIR- and FSR-based methods remain popular in the industry.

The difference among MPC, GPC and RHC research directions have been
decreasing with time and predictive control has arrived at a merging point. Cur-
rently, the term predictive control or model predictive control is used in a general
sense, and denotes the same concept. An overview of the connections between the
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different model predictive control interpretations and a unifying view is discussed
for example in [4, 32, 51]. A review and discussion of the current predictive control
methods and issues is presented for example in [34, 48].

6.1.2 Nonlinear Model Predictive Control

The plant models assumed in this work are linear or are linearized. Although in
many cases this is only an approximation of real dynamics, control engineering
practice has demonstrated that plants with complex dynamics can be often controlled
using simplified linearized models. A version of MPC using nonlinear plant models
is referred to as nonlinear MPC or NMPC. In linear MPC, the optimization task
is convex and can be carried out relatively easily. NMPC however creates a non-
convex optimization problem, which not only makes the online optimization task
considerably difficult but also raises many questions associated with stability.

In practice the inherent mathematical properties of NMPC are exploited to
speed up the online solution process, such as the fact that if NMPC problems are
solved in sequence, they tend to be fairly similar to each other. This book does not
deal with nonlinear models or the application of NMPC to vibration attenuation.

6.2 Prediction

Let us consider a linear system described by state-space equation:

xk + 1 = Axk + Buk

yk = Cxk + Duk
(6.1)

where A is the state matrix, B is the input matrix and C is the output matrix of
dimensions A ∈ R

nx×nx , B ∈ R
ny×nx and C ∈ R

ny×nx . Since D represents the direct
input–output feedthrough, it is omitted in most models based on real-life systems.

Vectors and matrices are marked with a bold upright font in this book, for example
the state vector is denoted as xk , in the case of a general multi-input system inputs
are uk and the outputs with yk . To simplify our notation in the upcoming sections
and chapters we will now replace these with italic fonts as in xk , uk and yk . We will
reserve the bold upright notation as in xk,uk and yk rather for future predicted or
computed sequences of the quantities expressed by xk, uk and yk .

In predictive control the state and successively the output of the system is predicted
several time steps ahead of the current time. The idea is simply iterating the state-
space model several times in succession, while always utilizing the new state update
to get the next step. A discrete state-space system is in fact a state predictor, one
step into the future. If our discrete time is marked by (k) and our state at that time is
given by xk we may iterate a one-step ahead prediction of the state using a discrete
state-space model:

xk + 1 = Axk + Buk (6.2)
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While the system output at the current step is defined by the second equation in (6.1),
we can predict the output at the next step as well simply by substituting the actual
predicted state xk + 1:

yk + 1 = Cxk + 1 (6.3)

Let u suppose the current time is marked by the discrete time step (k). At time
(k) we have the state xk based on real readings from the available sensors.2 We may
calculate the predicted state at step (k + 1), that is xk + 1. If we take our predicted state
xk + 1 and perform the previous step once more, we get a prediction at time (k + 2),
that is xk + 2. Therefore, the state is substituted into the basic state-space equation
recursively. The process may be repeated arbitrary times: if we repeat it np times we
have a np steps long prediction horizon:

k xk = xk
k + 1 xk + 1 = Axk + Buk

k + 2 xk + 2 = Axk + 1 + Buk + 1 = A2xk + ABuk + Buk + 1

k + 3 xk + 3 = Axk + 2 + Buk + 2 = A3xk + A2Buk + ABuk + 1 + Buk + 2
...

...

k + np xk + np = Axk + np−1 + Buk + np−1

= Anp xk + Anp−1Buk + · · · + ABuk + np + Buk + np−1

(6.4)

An autonomous system does not assume an input to the system. It is possible
to predict the dynamic behavior of a freely vibrating system subject to an initial
disturbance by simply ignoring the terms featuring input ui:

k + i −→ xk + i = Aixk (6.5)

with i = 0, 1, 2, . . . , np. Figure 6.4 demonstrates that given a good model it is possible
to predict the behavior of a vibrating system quite precisely. In this example, the state
at time step 23 has been observed from the experimentally measured output—the
deflection data of a vibrating cantilever beam. The state and successively the output
have been iterated six steps forward, through using a state-space model as a basis for
the predictions. Continuing this process tens or hundreds of steps onwards, the error
would be likely to build up because of modeling errors and the recursive nature of
the process.

A predictive controller iterates the state-space model several steps ahead in time
to see how the system will behave in the future and adjusts the inputs uk at the current
time accordingly. Naturally, this must be done at each sampling instant, since the
output measurements and the estimated states are always updated in real-time.

To automate the process of recursive iteration into the future the prediction matri-
ces must be defined and constructed. Let us now denote the sequence of future
predicted states at time (k) as an np elements long a row vector xk , the sequence of

2 Or observed through the readings and reconstructive algorithms like the Kalman filter.
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Fig. 6.4 Six (several) steps ahead model prediction of the state and original measured output

planned inputs as uk and the sequence of predicted outputs as yk . The subscript k
denotes that the vector has been last actualized at time (k) and contains the predic-
tions starting from this discrete time point. According to this, these vectors can be
described as follows:

xk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk
xk + 1
xk + 2
...

xk + np−2

xk + np−1

xk + np

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

yk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yk
yk + 1
yk + 2
...

yk + np−2

yk + np−1

yk + np

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

uk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk
uk + 1
uk + 2
...

uk + np−3

uk + np−2

uk + np−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.6)

Note the terms in Eq. (6.4) which are multiplied by xi. As we proceed from time
(k) to the end of the prediction horizon, that is as k = k, k + 1, . . . , k + np −1, k + np

the term in front of xk is simply Ai. Therefore, for an autonomous system the vector
of predicted states can be calculated by:

xk = Mxk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0

A1

A2

...

Anp−2

Anp−1

Anp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xk (6.7)

The prediction matrix3 M for this autonomous system is also valid for systems
with input (the general case), although here we must take care of the terms which are

3 Not to be confused with the identical notation of the mass matrix in Chap. 2.

http://dx.doi.org/10.1007/978-1-4471-2333-0_2
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multiplied by the input ui. Again, if we look at Eq. (6.4) carefully, we may rearrange
its terms so we can get the prediction matrices for a general case:

xk = Mxk + Nuk (6.8)

where N, the second prediction matrix may be intuitively interpreted as the impulse
response matrix which is an example of a convolution matrix. Note that instead of a
direct input u most industrial controllers use a difference in input �u as a degree of
freedom. In that case, the prediction matrix can be interpreted as the step response
matrix. The impulse response matrix N is calculated according to:

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 0 0
B 0 0 . . . 0 0 0

AB B 0 . . . 0 0 0
A2B AB B . . . 0 0 0
...

...
...

. . .
...

...
...

Anp−3B Anp−4B Anp−5B . . . B 0 0
Anp−2B Anp−3B Anp−4B . . . AB B 0
Anp−1B Anp−2B Anp−3B . . . A2B AB B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.9)

Note that the first block row of matrix N is zero in order to get xk as the first element
of xk . For a time-invariant state-space model, we only have to construct the prediction
matrices M and N once. For an adaptive system, these matrices have to be constructed
online. To get the vector of predicted states, we simply substitute for the prediction
matrices and obtain xk .

Let us denote the i-th block row4 of matrix M with Mi according to:

Mi = Ai (6.10)

with M0 = I. Similarly, one may consider the i-th block row section of matrix N as
defined by (6.9) and denote it with Ni

Ni =
[

AiB Ai−1B Ai−2B . . . A2B AB B
]

(6.11)

N0 = [
0 0 0 . . . 0

]
(6.12)

and use it to get the predicted state at any time (k + i), where i = 0, 1, 2, . . . , np by
using the following expression:

xk + i = Mixk + Niuk = Aixk + Niuk (6.13)

By computing the sequence of predicted states, we may also estimate the future
system output by multiplying with Ci + 1 according to:

4 Depending on the size of B. Note that here in the interest of preserving notation customs, the
index i of matrix block rows starts from zero. Thus the zeroth block row of M and N will generate
the current state xk without a change.
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yk + i = Ci + 1xk + i = Ci + 1Aixk + Ci + 1Niuk (6.14)

Of course, it is not possible to calculate the vector of future states or outputs,
unless the sequence of inputs uk is known beforehand. Fortunately, this problem can
be reversed, and instead of asking what the sequence of outputs or states will be,
we can ask what sequence of inputs is necessary to achieve the desired sequence of
outputs or states.

6.3 Cost Functions

A cost function is an important part of a predictive controller because it is an indicator
of the degree of optimality of a dynamic response, resulting a sequence of control
inputs uk applied to the system. This degree of optimality may express how close
we are to the desired output or state levels including how much effort is needed to
get there, and in MPC this is referred to as the cost. In the controller itself the role of
the cost function is reversed, and we are aiming to calculate the best series of control
inputs uk which results in a minimal cost.

In control engineering we want to keep output as close to the reference as possible.
Reference is often located at zero; this is a common case in vibration attenuation, as
we would like to keep the vibrating structure at equilibrium. We may designate the
difference between the desired level with an error, which can be expressed at any
moment by a numerical indicator. This numerical indicator called the cost does not
necessarily have a physical meaning, and the mathematical way to calculate the cost
is to set up a cost function.

Let us calculate a simple scalar indicator J , a cost describing how good our
control will be in the future: from the next step up to the horizon defined by the pre-
diction horizon np. This indicator only depends on the current measured or observed
state xk and the input sequence uk we will implement at the next step and the time
up to the end of the horizon:

J = f (xk,uk) (6.15)

Theoretically, this function can be arbitrary: for example it may contain numerical
indicators expressing how close is the desired value at any given moment to the
reference or how much input uk is needed to keep it there, etc. Although a cost function
can be arbitrary, it is better to prefer certain constructions for the cost function, as
proper formulations may aid the evaluation and optimization procedures later. The
most common form for the cost function in MPC is a quadratic cost function.

Having a cost, we can use it to calculate the sequence of future control inputs uk
by formulating the following problem:

Given a current state xk what is the sequence of future control inputs, uk which
will keep the cost Jat its minimum?
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In other words, we have to minimize the cost function with the argument uk to get
an optimal sequence of inputs denoted with u∗

k :

u∗
k = arg min

u
J(xk,uk) (6.16)

The above statement defines an optimal control problem.

6.3.1 Building a Quadratic Cost Function

As it has been previously stated, the aim of a control system is to keep the outputs
yk as close to the reference as possible. The difference between the reference value
rk and output yk is called the control error and it is simply defined by:

ek = r − yk (6.17)

where ek is the error vector.5 Let us consider a zero reference since defining a
nonzero r is just a matter of shifting it to the desired tracking level or using a
controller that produces input increments �uk . A zero reference is r = 0, in other
words means that any type of output is an error:

ek = r − yk = 0 − yk = − yk (6.18)

Instead of the relative value of the output it is better to consider the square of the
error, this way negative values are eliminated and deviation from the equilibrium is
penalized with an equal value. The square of the output is in this case a unit-less
indicator of control quality jk at the given sampling time (k). The less its value is,
the better is our control:

jk = yT
k yk (6.19)

Note that due to a simplification in notation yk is still a vector, therefore we are using
yT

k yk instead of y2
k . Since the output in real systems is given by yk = Cxk we may

substitute that into (6.19) and get:

jk = xT
k CT Cxk (6.20)

For a state-space model this is a very good quality indicator, and expresses the cost of
control at a given instant. In addition to removing negative outputs −y from the cost
the square representation has one more advantage. As the state is a column vector,
taking a matrix square results in a scalar valued cost.

When formulating a cost function it is good to take into account the work per-
formed by the actuators, or in other words the effect of control input uk . In certain

5 Similarly as before ek in general denotes a vector, while ek would be a future sequence of errors.
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situations, it is not necessary to limit actuation, nevertheless it may be necessary
to preserve functionality and lengthen the lifetime of actuators. For example, if an
actuator is adjusting the position of a mechanical structure continuously and aggres-
sively, even if there is only a minimal disturbance—this may limit the lifetime of
the actuators itself, the structure or possibly other system components. Aggressive
controller action is another reason to include the effect of actuators into the cost
function. For example, a vibration control system for aircraft or spacecraft shall not
generate actuator inputs, which seriously affect the overall attitude and maneuver-
ability of the system. Finally, the cost function may also express cost in the economic
terms: as energy is needed to drive the actuators, there are financial aspects of every
adjustment. A civil engineering structure requires actuators that may be expensive
to drive: in a normal situation, their action should be minimal, however if the struc-
ture is subjected to an earthquake, the actuators should perform their task as well as
possible. To summarize this paragraph, some of the reasons to include control input
in the cost function are:

• lifetime prolongation
• design
• safety
• economic
• others. . .

In addition to the quadratic effect of the output defined by (6.20) we may therefore
simply add the square of the control input. This will create a numerical indicator,
a cost function for the time step (k):

jk = xT
k CT Cxk + uT

k uk (6.21)

6.4 State and Input Penalization

In a predictive controller, in addition to the prediction or control horizon there are
two more important settings that can affect the overall type and performance of
the controller and its resulting actions. These settings are the so-called penalization
matrices. Let us introduce a matrix R that will affect the contribution of the second
term into the overall cost:

jk = xT
k CT Cxk + uT

k Ruk (6.22)

where R is the so-called input penalization matrix. The value of R always depends on
the application, and it is set by the control engineer. If it is not important to consider
the effect of the work performed by the actuators, it is possible to use R = 0 or a very
low level and the second term will be practically eliminated from the cost function.
On the other hand, the contribution of the second term can be fine tuned by raising
the level of R to higher numbers.
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With a multiple input system—that is having more actuators—by setting some
elements of the matrix R to a higher value, we indicate the need to lower the input to
certain actuators. Their effect will be penalized, as every action will be represented
by a higher cost contribution. On the other hand, if one uses a very low number,
the actuator will not be represented significantly in the overall cost and its actions
are not penalized. R is therefore the input penalization matrix, a tuning parameter
adjustable by the user.

The first part of the expression in (6.21) contains the state vector and its transpose,
which encloses CT C. In predictive control, we may replace this by the so-called
state penalization matrix denoted by Q.

jk = xT
k Qxk + uT

k Ruk (6.23)

The structure of this matrix depends on the given system and on the particular choice
of the control engineer. If one chooses Q = CT C then essentially the states are recal-
culated into outputs yk . An arbitrary Q matrix may be chosen as well. This allows the
control engineer to include or exclude effects of given states. For example consider
the vibration of a system which is modeled by a second order state-space model,
in which the first state describes the position of the structure while the second its
velocity. If the state penalty matrix is constructed in the following way

Q =
[

1 0
0 0

]
(6.24)

then one is penalizing the position, and the velocity does not play a role in the final
cost. On the other hand, if one utilizes the penalization matrix

Q =
[

1 0
0 10

]
(6.25)

the velocity is an order of magnitude more important in the final cost than position.
The possible number of combinations to tune penalization matrices is endless and it
is always up to the given application and the control engineer to choose a suitable Q
and R matrix.

Based on the formerly introduced definition of the cost function it makes natural
sense to use the output in the cost function, that is to choose Q = CT C. If there
is no preference as to which state has to be penalized more (e.g. which is more
important) then it is also common to choose Q to be equal with the identity matrix

Q = I =
[

1 0
0 1

]
(6.26)

for a second order system. The identity matrix I is a matrix of ones on the diagonal
and zeros elsewhere. It is also a square matrix, and its size equals to the model
order nx .

In case of a single input system, if the input contribution of the actuators is not
important in the cost, the input penalization R = r is chosen as a small number
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r = 1E-3. If the input contribution shall be included in the cost more dominantly,
one may increase this value. Analogically, for a multiple input system we may use
the identity matrix or its scalar multiples:

R = Ir (6.27)

where I is again the identity matrix, and r is a tunable scalar multiplier.

6.5 Cost of the Future States and Inputs

Instead of just considering the cost of the current step as in (6.23), a predictive
controller needs to calculate the cost of future inputs, or in other words the predicted
cost. A predicted cost at any time (k) is a sum of individual cost contributions
according to (6.23) from the time (k) up to the end of the prediction horizon, that is
(k + np) [1, 20, 23, 36]:

Jk =
np−1∑
i = 0

jk + i =
np−1∑
i = 0

(
xT

k + iQxk + i + uT
k + iRuk + i

)
(6.28)

Note that while jk is a cost just at the current time, Jk now denotes cost from (k) up to
the end of the prediction (or control) horizon. This is called a finite horizon predicted
cost calculated at the time (k). The cost in (6.28) expresses the cost of control inputs
and its effects up to the prediction horizon.

Figure 6.5 illustrates a finite horizon MPC control law, where the effect of control
inputs is only included in the predicted cost and thus the optimization problem for
the length of the horizon. The effect of inputs is assumed zero beyond this horizon.
The actual zero input level may or may not be ever reached, since the horizon is
receding forward. However, input effects beyond the horizon are excluded from the
optimization altogether.

For a finite horizon cost, there is no guarantee that the control law will achieve
the optimal predicted performance. This situation may be solved by predicting the
cost for an infinite horizon, that is [1, 42]:

Jk =
∞∑

i = 0

(
xT

k + iQxk + i + uT
k + iRuk + i

)
(6.29)

Unfortunately, this would create an optimization problem with an infinite number of
variables within uk . Luckily, it is possible to express the cost of the control inputs
and their effects beyond the prediction horizon in such a way that the number of
optimization parameters still remains finite.

For this, it is necessary to employ a method which approximates the cost for an
infinite horizon but with a finite number of inputs: the so-called dual-mode control
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Reference

Finite horizon

Time

Output

Input

Zero predicted inputFree variables

xk+ i = 0, i ∞

uk+ i = 0, i > np

k k + 1 . . . k + i . . . k + np

Receding horizonHorizon at (k)

Fig. 6.5 Finite horizon model predictive control. The control law assumes free variables within the
horizon, but predicts zero input afterward. The effect of inputs beyond the horizon is not included
in the predicted cost

Reference

Mode 1: Jnp Mode 2: J∞

Time

Output

Input

Fixed feedback lawFree variables

xk+ i = 0, i ∞

uk+ i = Kxk+ np p, i > n

k k + 1 . . . k + i . . . k + np

Horizon np Mode 2 horizon

Fig. 6.6 Model predictive control demonstrating the receding horizon control idea. New state mea-
surements (observations) are used to compute a new optimal sequence of inputs shifting the horizon
forward at all times

paradigm. In the dual-mode paradigm, the predictive controller calculates the control
explicitly up to a fixed horizon. The cost is calculated up to the very last step of the
horizon, which is up to (k + np − 1). Instead of just considering the cost of the last
state xk + np as usual, this state is used to compute a so-called terminal cost. This
terminal cost can be made equivalent to the cost J∞ ranging from (k + np − 1) up
to infinite time k =∞. To express this cost, one has to use a special penalty matrix
called the terminal weighting matrix denoted as Pf and express the new cost according
to [34, 46, 48, 49]:

Jk =
np−1∑
i = 0

(
xT

k + iQxk + i + uT
k + iRuk + i

)
+ xT

k + np
Pf xk + np (6.30)
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In dual-mode control, not only will the cost be divided into two modes, but the
control inputs as well. The first mode will contain free optimization variables, while
the second mode (associated with the last state) will be steered into equilibrium by a
stabilizing fixed feedback law, usually a linear quadratic control law. The two modes
from the view of the inputs ui are:

ui =
{

free variables i = k, k + 1, . . . , np − 1 Mode 1
Kxk + i i = np, np + 1, . . . ,∞ Mode 2

(6.31)

Since the cost in (6.30) needs to be evaluated explicitly only up to the end of the
horizon, a proper choice for the terminal weighting matrix Pf is necessary. If we
assume that the control moves in mode 2 will be computed by a fixed feedback
law uk + np + i = Kxk + np , then the terminal weighting matrix Pf is the solution of the
following Lyapunov equation [25, 39, 41, 48]:

Pf − (A + BK)T Pf (A + BK)= Q + KT RK (6.32)

where given the LTI system and the calculated fixed stabilizing feedback law K, the
terminal weighting matrix can be easily calculated.

The cost at a given time (k) and onwards up to the infinity is given by (6.30).
Using the notation established earlier in (6.6), we can use a vector of a series of
predicted inputs uk and reformulate the infinite horizon cost to be more suitable
for the optimization task. The cost function in the current sum based form is not
appropriate for an MPC controller, where a compact matrix notation is preferred.
If one substitutes for xk at the current time and uk for all future inputs up to the
end of the horizon, obtains a transformed cost function after rearranging the terms.
This transformed cost function does not use the sum operator anymore, matrix algebra
is necessary to evaluate the cost of control actions uk up to infinity. The transformed
cost will be given by [8, 25, 39]:

Jk = uT
k Huk + 2xT

k GT uk + xT
k Fxk (6.33)

where

H =
np−1∑
i = 0

NT
i QNi + NT

np
Pf Nnp + R (6.34)

G =
np−1∑
i = 0

NT
i QMi + NT

np
Pf Mnp (6.35)

F =
np−1∑
i = 0

MT
i QMi + MT

np
Pf Mnp (6.36)

where i denotes the i-th block row, respectively np denotes the last block row of N
and M. Matrix R is a block matrix having the input penalty R on its main diagonal,
that is:
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R =

⎡
⎢⎢⎢⎣

R 0 . . . 0
0 R . . . 0
...
...
. . .

...

0 0 . . . R

⎤
⎥⎥⎥⎦ (6.37)

Given a linear time-invariant model matrices H, G and F can be computed offline.
If one inspects the cost function in (6.33) closely, finds a vector of future predicted

control inputs uk in the first two terms. In the MPC controller this is the unknown or
free variable, in other words the aim of the controller is to find the optimal uk which
minimizes the cost function (6.33). There is one more variable in the cost function
xk but that is dependent on the actual measured or observed state, and is updated
accordingly at every (k). If everything is constant in (6.33) except the input vector,
then the cost function is in fact a matrix analogy of the scalar quadratic function:

j = au2 + bu + c (6.38)

The cost function is therefore quadratic. From the pure mathematical optimiza-
tion point of view, such a quadratic function has beneficial properties making its
evaluation easier. There is one more fact to note about the formulation in (6.33). The
last part of the expression containing xT

k Fxk does not depend on the inputs uk . The
last part contributes to the final cost a steady amount regardless of the sequence of
planned inputs. Since in MPC we are interested in minimizing the cost, we may just
simply leave out this static part since it does not carry any useful information:

Jk = uT
k Huk + 2xT

k GT uk (6.39)

6.6 Unconstrained Model Predictive Control

The simplest possible formulation of a model predictive controller is a controller
without constraints: in other words without limits on the input, output or the states.
This is actually an exception in the field of MPC, as it can be expressed in a closed
form. If one minimizes the cost function in (6.33) without a regard to constraints,
a closed form expressed by a fixed matrix feedback law is obtained. This feedback
law is explicit and it does not have to be recalculated at each iteration in the case
of an LTI system. Unlike in the absence of constraints, it is not possible to obtain
constrained MPC in a closed form. If constraints are assumed the optimization has to
be performed by a numerical optimization algorithm, online and at every sampling
instant (k).

The aim of an MPC controller can be defined stating that we want to find the
sequence of input values uk which produces a minimal cost function Jk given a
measured or observed state xk at time (k). In this way we get a sequence of optimal
inputs u∗

k or mathematically [34, 48]:
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u∗
k = arg min

uk
Jk(xk,uk) (6.40)

uk = arg min
uk

⎧⎨
⎩

np−1∑
i = 0

(
xT

k + iQxk + i + uT
k + iRuk + i

)
+ xT

k + np
Pf xk + np

⎫⎬
⎭ (6.41)

The quadratic infinite time cost in a simplified collected way has been defined previ-
ously by (6.39). The matrices H, G can be calculated in advance and are not variable
given an LTI system while the optimization task can be computed beforehand as
well, resulting a closed form control law. The optimization task is to minimize:

u∗
k = arg min

uk

(
uT

k Huk + 2xT
k GT uk

)
(6.42)

The gradient of the cost function with respect to u will be [6, 8]:

∇Jk = 2Huk + 2Gxk (6.43)

The minimum of Jk is satisfied at ∇Jk . If H is nonsingular, then the optimization
result is unique and is given by [6, 25]

u∗
k = −H−1Gxk (6.44)

where H and G are according to (6.34) and the actual measured or observed state is
xk . The result is a sequence of optimal inputs uk of which only the first element or
in the case of a multiple input system the first block element is required. An actual
controller uses the first element of uk , then the inputs are re-evaluated based on new
observed states. For an LTI system this reduces to a static control law, which is the
first nu wide block row of −H−1G used in the following fashion:

uk = − K xk = − [ Inu 0 0 . . . 0] H−1Gxk (6.45)

where K is the resulting fixed unconstrained MPC law and Inu is a square matrix of
the size equivalent to the number of inputs nu.

The usual and obvious choice for the mode 2 fixed stabilizing feedback K is the
LQ optimal gain. Because the predictions in the unconstrained MPC law will be
optimal in both modes and the previously formulated cost is equivalent to the cost
used in LQ controllers, the unconstrained MPC gain K will be identical to the LQ
gain K. The future optimal sequence of the outputs u∗

k will be related to the LQ gain
as well.

6.7 Constraint Formulation

The real power of MPC lies in computing optimal control actions for systems, which
incorporate constraints. In this case, however, the feedback law cannot be computed
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beforehand, given a knowledge of the plant model. Instead, the optimization proce-
dure must be performed online, in between samples (k) and (k + 1).

The quadratic cost determined by (6.30) and then subsequently simplified by
(6.33) still holds. What we have in addition is a set of constraints, or limits on the input
variables, output or possibly states. These inputs are defined as follows [1, 8, 39]:

u ≤ uk ≤ u (6.46)

x ≤ xk ≤ x (6.47)

These constraints have to be rewritten in a form suitable for a predictive controller.
This form is more compact than the above notation and collects the constraints in such
a way that they are expressed in terms of the argument, that is uk . The constrained
MPC control law has to be evaluated online using a quadratic programming (QP)
algorithm and most QP solvers process optimization constraints in the following
generic form [5]:

Acuk ≤ b0 (6.48)

where Ac and b0 define the constraints. The input constraints 6.47 can be divided
into the following two equivalent constraints:

u ≤ uk

−u ≤ −uk
(6.49)

If this holds for each input uk then it is necessary to redefine it until the end of
the mode 1 predictions,6 that is for all free variables. The constraints shall cover
uk, uk + 1, . . . , uk + np−1. This can be written in the following equivalent matrix
form:

[
I

−I

]
uk ≤

[
1u

−1u

]
(6.50)

where I is an identity matrix, while 1 is a vector of ones for a single input
system and

[
1 = I I . . . I

]
with nu sized identity matrices if the system has nu

inputs.
State constraints can be similarly rewritten. State constraints from (6.47) have to

be applied not for the current step xk but similarly to the input for the future free
variables xk + 1, xk + 2, . . . , xk + np as well. We can divide the state constraints (6.47)
in two parts and we get

x ≤ xk

−x ≤ −xk
(6.51)

6 In reality, enforcing the constraints only for the free variables creates stability issues. These
problems and a solution to guarantee stability are discussed in the following chapter.
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One must change this direct state formulation, so that the states are expressed in
the terms of the inputs. From the prediction equations it is possible to calculate the
next state xk + 1 = Mixk + Niuk at each i = 1, 2, 3, . . . , np, we can rewrite the state
constraints to obtain the following simplified form [8]:

[
Ni

−Ni

]
uk ≤

[
x

−x

]
+

[−Mi

Mi

]
xk (6.52)

substituting for each block row of Mi and Ni i = 1, 2, . . . , np. Note that i = 0,
or first block row of M and N is missing, since we cannot take into account the
currently measured or observed state xk at the time (k + i), i = 0.

The input and state constraints from (6.50) and (6.52) may be combined, since the
usual QP algorithm accepts constraints on the optimized variables in the following
form:

Acuk ≤ b0 + B0xk (6.53)

where the matrices Ac, b0 and B0 are constant and can be determined offline.

6.7.1 Hard Saturation Versus Constraint Handling

One might wonder why we need constrained MPC if natural actuator boundaries
can be effectively incorporated into a control law by using simple saturation limits.
Saturation is a commonly used technique, where the real inputs computed by an
arbitrary control strategy are clipped to the allowable level according to:

uk = uk if u < uk < u
uk = u if uk ≥ u
uk = u if uk ≤ u

(6.54)

In case the controller computes an input in between the lower and upper bounds,
the input is directly used in the closed-loop system as intended. As soon as the
input exceeds the lower or upper limits, it is clipped to the allowable level by hard
saturation limits. This is the essential technique used by most traditional controllers to
incorporate constraints imposed by physical or technological limits of the actuators.

The use of saturation limits creates a discrepancy between the inputs computed
by the controller (assumed to be ideal or even optimal), and the real ones which
are simply clipped to the allowable maximal or minimal level. The closed-loop
system acquires a completely different set of inputs than it was originally intended
by the controller. By clipping the inputs using saturation, we also introduce a level
of nonlinearity into the control law. All of this essentially creates two very serious
problems with:
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• optimality
• stability.

Let us use the linear quadratic controller introduced earlier in Sect. 4.3 to illustrate
the problems with saturation limits. LQ is an ideal controller to compare with MPC,
since a properly formulated infinite horizon unconstrained MPC law is essentially
equivalent to its LQ analogy. If one designs an LQ controller without the constraints
in mind, but then imposes saturation limits on the inputs, eventually ends up with an
completely different control law than originally intended. This different and nonlinear
control law may not work as planned and may perform much less efficiently. More-
over,
traditional closed-loop stability guarantees will not be valid anymore, as a funda-
mentally different nonlinear strategy is taking over the plant instead of the initial
design. It is also possible to take into account the saturation limits right at the stage
of control system design. If the LQ controller is penalized enough in order not to
invoke constraints too often, there is a greater chance that the closed-loop system will
remain stable, although stability still cannot be guaranteed beforehand. Nevertheless,
this conservativeness implies a great loss of efficiency and performance.

A constrained MPC control law with stability guarantees works in a completely
different manner. Inputs are not simply clipped to the level of constraints, but actively
considered at the online optimization task. Thanks to the unique formulation of the
MPC law, at each sampling interval inputs are computed in a manner that they are
as optimal as possible while still guaranteeing closed-loop stability. As one may
clearly see, not even an input saturated LQ (or other) control law shall be directly
compared to constrained MPC, since the essential methodology of manipulating with
input limits is entirely different. Saturated LQ is simply not equivalent to constrained
MPC, imposing hard saturation limits is a separate concept to constraint handling
through online optimization.

Note that the performance difference between saturated LQ (or any other saturated
control law) and constrained MPC with stability guarantees is likely to manifest with
increasing problem dimensionality and plant complexity. Although the performance
loss of a saturated LQ law in comparison with MPC is only barely detectable in the
simple SISO case introduced in the upcoming chapters, a MIMO system with several
inputs and outputs is much more likely to demonstrate the advantages of constrained
MPC. We are not interested in making a point that constrained MPC is better than
a simple saturated law, as this point has been made by numerous authors before
us [34, 48]. What is more important, industrial users have clearly taken a stance
with implementing numerous MPC controllers in MIMO plants with slow dynamics
[43–45], ultimately gaining a performance advantage over saturated control strate-
gies. After all, what is advantageous for a slow plant shall also be favorable for active
vibration control.

http://dx.doi.org/10.1007/978-1-4471-2333-0_4
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6.8 Constrained Quadratic Programming-Based MPC

The unconstrained model predictive control law can be expressed in a closed form as
demonstrated previously in Sect. 6.6. For this, it is enough to perform differentiation
on the matrix cost function and we obtain a fixed feedback matrix as a result, which
in the case of a linear time-invariant system can be used at each sampling interval.
With the addition of constraints, the problem cannot be expressed explicitly in closed
form as before, and the optimization procedure has to be performed at every sampling
interval repeatedly.

Once again, our aim is to minimize the quadratic cost function, only this time
with constraints. The minimization of a quadratic function with constraints is known
in mathematics as a quadratic programming problem. The general logic of the MPC
algorithm will stay the same, only the means and the method of the optimization task
will be changed.

Let us now assume that we would like to steer the system state of (6.1) into the
origin so that we drive our vibrating system into equilibrium. Furthermore, let us
assume that the problem requires the implementation of constraints as well. We may
define the following MPC algorithm [8, 26]:

Algorithm 6.1 To find the solution of the constrained model predictive control
problem, perform the following set of operations at each sampling instant:

• Observe or measure actual system state at sample xk .
• Minimize the following cost function with respect to constraints:

min
uk

J(uk, xk)=
nc−1∑
i = 0

(
xT

k + iQxk + i + uT
k + iRuk + i

)
+ xT

k + nc
Pf xk + nc

where uk = [
uk, uk + 1, uk + 2, . . . , uk + nc−1

]
, Q = QT ≥ 0 is a state penalization

matrix, R = RT ≥ 0 is an input penalization matrix, nc is both the prediction and
control horizon7 and Pf is the solution of the unconstrained, infinite horizon
quadratic regulation problem. The typical MPC cost function must be subject
to the following constraints:

u ≤ uk + i ≤ u, i = 0, 1, 2, . . . , nc − 1 (6.55)

x ≤ xk + i ≤ x, i = 1, 2, . . . , nc (6.56)

xk + 0 = xk (6.57)

xk + i + 1 = Axk + i + Buk + i, i ≥ 0 (6.58)

7 In this book, we will use a prediction horizon with a length equal to the number of free optimiza-
tion variables. In other words, the length of the prediction horizon will be identical to the length of
the control horizon. Generally, the prediction and control horizons do not necessarily need to have
equal lengths.
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yk + i = Cxk + i, i ≥ 0 (6.59)

uk + i = Kxk + i, i ≥ nc (6.60)

where K is a stabilizing feedback gain.
• Apply the first element of the vector of optimal control moves uk to the controlled

system, and re-start the procedure.

6.8.1 Quadratic Programming

The core of algorithm 6.1 defined above is the minimization of the cost function
with subject to constraints. The quadratic cost function can be rewritten in a compact
matrix form as introduced by (6.33), while the constraints can be collected by (6.53).
This minimization task is referred to as a quadratic programming (QP) optimization
in mathematics.

In general, a quadratic programming optimization problem minimizes a multi-
variable quadratic function, which is subject to linear constraints on the variables.
Let us assume u is in general a vector containing the optimization variables, while H
is a symmetric matrix and G is a vector. A quadratic programming problem is then
defined by [5, 28]:

minimize f (u)= 1
2 uT Hu + GT u

subject to Acu ≤ b0
Aeu = be

(6.61)

where the first constraint is a so-called inequality constraint and the second is an
equality constraint. If H is a positive semidefinite matrix, then the function f (u) is
convex and it has a global minimizer, if there exists a feasible vector u. Feasibility
means that the variable u satisfies all constraints. Given a positive definite H and a
feasible u the global minimizer of the QP is unique.

6.8.1.1 Geometric Representation of QP

One may interpret the definition of the quadratic programming problem in an intuitive
geometrical representation as well. Instead of presenting a generic treatment of the
geometrical representation of the QP problem, we will use an example to illustrate the
idea of quadratic programming. In order to preserve the clarity of the presentation, let
us imagine an optimization variable u which is defined in a two-dimensional space,
having only two elements. To illustrate the various aspects of quadratic program-
ming, let us choose a simple quadratic cost function: f (u)= f (u1, u2). This function
depends on variables u1 and u2 for which we will try to find the minimum:
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Fig. 6.7 Surface and contour plot of the cost function in quadratic programming

f (u)= f (u1, u2)= u2
1 + 9u2

2 − 10u1 − 54u2 (6.62)

This cost function has different values for different combinations of u1 and u2 and
it can be plotted in a three-dimensional space. The surface created by this example
is illustrated in Fig. 6.7 where the different contours of the function are shown as
well. Without constraints, the minimum of our function is the “bottom” of the three-
dimensional surface. In mathematical terms, the minimum of the unconstrained cost
function is found if we find where the partial derivative equals zero with respect to
all of the variables:

∇uf (u)= 0 (6.63)

∂f (u1, u2)

∂u1
= 0 (6.64)

∂f (u1, u2)

∂u2
= 0 (6.65)

Evaluating the partial differentiation with respect to u1 yields 5, while with respect
to u2 yields 3, meaning that the unconstrained minimum of this cost function is to
be found at the coordinates u� = [5 3]T . In absence of constraints it is trivial to
find the minimum of a quadratic function, but the addition of constraints creates a
quadratic programming problem.

Let us confine the pool of valid solutions for our minimization problem in (6.62)
in the u-space by a set of linear constraints:
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u1 ≥ 0

u2 ≥ 0

u2 ≤ 4 − u1

(6.66)

and let us not consider equality constraints for our example. In the two-dimensional
space these constraints form lines, while in a general multidimensional space con-
straints form hyperplanes. The first constraint here is coincident with the horizontal
axis, the second with the vertical axis and the third is simply a diagonal line. The
constraints and the feasible space from which it is possible to select the optimization
variables u1 and u2 are shown in Fig. 6.8. The shaded area represents the feasi-
ble subspace of u, while the thick black lines illustrate the linear constraints given
by (6.66).

To evaluate this constrained minimization problem, we will utilize the quad-
prog quadratic programming solver, which is a part of the Matlab Optimization
Toolbox [52]. First, it is necessary to convert the problem formulation so that it
resembles the general formulation of (6.61). We may write the cost function (6.62)
in a matrix form by expressing it as:

f (u)= f (u1, u2)= 1

2

[
u1 u2

] [
2 0
0 18

] [
u1
u2

]
+ [−10 −54

] [
u1
u2

]

= 1

2
uT Hu + GT u (6.67)

The constraints may also be rearranged to the form given by (6.61) by changing
them to:

−u1 ≤ 0

−u2 ≤ 0

u1 + u2 ≤ 4

(6.68)

which in a matrix form will be rendered to
⎡
⎣

−1 0
0 −1
1 1

⎤
⎦

[
u1
u2

]
≤

⎡
⎣

0
0
4

⎤
⎦

Acu ≤ b0

(6.69)

Passing the matrices and vectors defined by H,G,Ac and b0 to the quadprog solver
in Matlab using the syntax

[u_ast, f ] =quadprog(H,G,Ac, b0)

will yield in the optimal solution u∗ = [
1.4 2.6

]T in merely two iterations. Figure 6.9
illustrates this process in the space of the variables u. The optimal solution for
the unconstrained case u� is visible as the center point of the contour lines of the
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Fig. 6.8 The shaded triangular area illustrates the restricted space in which the choice of variables
u are limited by the linear constraints represented by the black lines. The constraints are presented
in (a) in the u space, a view of the quadratic cost surface in the space of u2 is depicted in (b), while
the constraints are shown with the cost function f (u) in (c) in three dimensions

cost function f (u). Because the problem is constrained, this solution is not feasible
anymore and the algorithm has to choose from the inside of (including the boundaries)
the triangular space enclosed by the constraints. The optimal solution u∗ lies on the
third constraint and the contour-line encompassing it is also illustrated. Different
methods and algorithms may be used to solve a quadratic programming problem,
including [5, 8, 34]:

• active set
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Fig. 6.9 Quadratic programming example showing the contour lines of the cost function f (u) (dash-
dot), the constraints (continuous), the unconstrained solution u� (triangle) and the constrained QP
solution u∗ (asterisk) and the contour line containing the solution (dashed)

• interior point
• conjugate gradient
• gradient projection
• variations of the simplex algorithm
• others.

6.8.1.2 Active Set Quadratic Programming Method

One of the best-known quadratic programming algorithms is referred to as the active
set (AS) algorithm [20]. In essence, the active set algorithm finds the optimal solution
of the constrained QP optimization by evaluating problems involving only equality
constraints. The active set QP algorithm is used with medium-scale optimization
problems, which are typical for model predictive control. The big advantage of the
active set algorithm is that it can be warm started. Warm starting means that, due to
the nature of the MPC problem, it is possible to find the solution much faster at time
step (k + 1) if the algorithm can use knowledge gained from the solution evaluated
at previous time (k).

Let us have a look at the general inequality constraint formulation in (6.61) again.
Each row of the matrix inequality formulation is an individual linear constraint,
which we can denote with a simple sequential number i. Therefore, we may separate
the individual constraints if we denote the rows of Ac with Ai

c and the rows of b0
with bi

0 to get Ai
cu ≤ bi

0 for each constraint. A certain constraint is said to be inactive
if the term Ai

cu∗ < bi
0 holds. However, in case the term Ai

cu∗ = bi
0 holds, then the
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Fig. 6.10 Illustration of the
active set in the active set
quadratic programming
method. Two constraints are
inactive, while one is active.
The inactive constraints can
be removed from the
problem, leaving only a
constrained quadratic
minimization problem to
be solved
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i-th constraint is said to be active. It is also possible for the active set to be empty if
none of the inequality constraints are in effect at the solution [34].

If we number the constraints (6.69) in our previous example with the sequen-
tial number i, we will get three constraints, which can be either active or inactive.
Figure 6.10 illustrates the solution for our example, from which it is clear that two
constraints are inactive (1, 2) while number 3 is active for u∗. It is possible to
remove the inactive constraints without affecting the solution [8]. The optimal solu-
tion of the problem is the solution of an equality constrained problem where only the
active equality constraints are considered while the rest is discarded. We can denote
this by:

minimize f (u)= 1
2 uT Hu + GT u

subject to Ai
cu = bi

0, i ∈ a∗ (6.70)

where a∗ = {i : Ai
cu∗ = bi

0} is the configuration of the active constraints at the solution
of the quadratic programming problem [8].

Naturally, one does not know in advance the ideal combination of the active and
inactive constraints a∗ which eventually leads to an optimal solution u∗. However,
it is possible to devise a strategy in which the equality problem associated with the
current active set yields an improved solution at each iteration, while determining
optimality and managing the active set at the same time. In a well-designed active
set QP algorithm the active sets are not selected randomly, various strategies exist
which help to avoid the necessity to test a large number of active/inactive constraint
permutations. For example, it is possible to select successive sets in a way that the
value of the cost function f (u) will be decreased at each successive iteration.

The rough outline of an active set quadratic programming algorithm may be given
by [5, 8, 19, 34]:
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Algorithm 6.2 To solve a quadratic programming problem (given a feasible initial
solution u0 and an active set a0), at each iteration p perform the following procedure:

• solve the equality problem corresponding to the active set ap given by (6.70)
• test the optimality of the solution

– if the solution is optimal (up = u∗), terminate
– if the solution is not optimal, continue

• find which constraint i violated feasibility and add it to the active set to create a
new active set ap + 1. Repeat the procedure to find an improved solution up + 1.

Let us now focus on the subproblem described by the second item in
Algorithm 6.2, namely determining whether the solution of the equality problem
is really the global solution of the QP. The optimality of the partial solution with a
certain active set can be determined from the Lagrange multipliers of the associated
equality problem. To verify the optimality in an unconstrained optimization problem
defined by:

minimize f (u) (6.71)

we have to test whether its gradient equals zero, that is whether

∇uf (u∗)= 0 (6.72)

holds. In general, a constrained optimization problem with m constraints can be
expressed by the following formulation:

minimize f (u)
subject to gi(u)= 0, i = 1, . . . ,m

(6.73)

which is also true for a given active set a and the corresponding equality problem
of (6.70), where m constraints are given by gi(u)= Ai

cu − bi
0. To test the optimality

of the solution after evaluating the equality problem it is not sufficient to fulfill the
gradient condition (6.72) anymore. Instead, this gradient condition is augmented by
the effect of the constraints. For a single constraint (m = 1) the optimality condition
would be transformed to:

∇uf (u∗)= − λ∇ug(u∗) (6.74)

meaning that the direction of the gradient of the minimized function at u∗ must be
exactly opposite to the direction of the gradient of the constraint. The scalar λ is
a Lagrange multiplier and it is necessary in the formulation because, although the
directions of the gradients are opposite, their magnitude is not necessarily the same.

This concept is illustrated in Fig. 6.11 on the example discussed before. Here
constraints number 1 and 2 can be removed from the active set without affecting the
solution, only constraint 3 is considered. After the equality problem (6.70) is solved,
we have to make sure whether the trial solution is truly the optimal solution. As we
are following the contour line of the constraint g(u) the value of the cost function
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Fig. 6.11 Illustration of the
gradients of the minimized
function f (u) and the active
equality constraint g(u) = 0.
At the optimal solution, the
direction of the gradients is
opposite, their magnitude is
scaled by the Lagrange
multiplier λ

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

u1

u2

u

f (u)

ug(u )

u f (u )

g(u)

may vary, the contour lines of g(u) cross the constraint at several points. The value
of the cost function is neither increased, nor decreased only when the contour lines
touch but do not cross. In other words, when the constraint touches the contour lines
of the cost function tangentially we have found our solution u∗. Mathematically
expressed, the two function contours touch when the tangent vectors of the contours
are parallel. The gradients of a function are perpendicular to the contour line, thus
we may equivalently say that the gradients of functions f (u) and g(u) are parallel
but with magnitudes different by a scalar value λ.

This constrained optimality condition can be easily converted into a multi con-
straint formulation as well. If for the actual active set ap at iteration p the variable
up = u∗ is really the solution of the constrained equality problem given by (6.70),
then we can find Lagrange multipliers λ∗

i , i = 1, 2, . . . ,m which will satisfy [9]:

∇uf (u∗)+
m∑

i = 1

λ∗
i ∇ugi(u∗)= 0, i = 1, 2, . . . ,m

gi(u∗)= 0, i = 1, 2, . . . ,m

(6.75)

In other words, if we can find a set of λ∗
i for the trial solution which fulfills the

condition above, the trial solution is in fact the solution of the QP problem.
The optimality condition of (6.75) can be extended to a case of n additional

equality constraints given by h(u)= Aeu − be as well. The necessary and sufficient
conditions for u∗ to be the global optimum are given by the so-called Karush–Kuhn–
Tucker (KKT) conditions [5, 19]:
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∇uf (u∗)+ ∑m
i = 1 λ

∗
i ∇ugi(u∗)+ ∑n

i = 1 v∗
i ∇uhi(u∗)= 0, i = 1, 2, . . . ,m

i = 1, 2, . . . , n
gi(u∗)= 0, i = 1, 2, . . . ,m
hi(u∗)= 0, i = 1, 2, . . . , n

(6.76)

According to the KKT conditions if vectors of Lagrange multipliers λ ≥ 0 and v
exist, then u∗ is the global optimizer. After substitution and differentiation, the KKT
conditions for the quadratic cost function f (u), inequality and equality constraints
defined by (6.61) will be reduced to [34]:

Hu + AT
c λ+ AT

e v = − G (6.77)

Acu = b0 (6.78)

Aeu = be (6.79)

where the elements of λ corresponding to the inactive inequality constraints must
remain zero (this can be ensured by an additional complementary condition). To put
it differently, only elements corresponding to the active set need to be evaluated and,
if all of them are nonnegative, then the solution u is the global optimum of the QP
problem.

A valid strategy to implement the rough algorithm outlined in Algorithm 6.2 [34]
can be created by modifying our original cost function in (6.70) by replacing absolute
values of the solution up at iteration p with increments up + �u. Substituting this
into Algorithm 6.2 in f (u) yields a new incremented cost:

f (up + �u)= 1

2
(up + �u)T H(up + �u)+ GT (up + �u) (6.80)

which after factoring out and simplification can be reduced to

f (up + �u)=f (up)+ 1

2
�uT H�u + (GT + uT

p H)�u (6.81)

and the equality constrained minimization problem (6.70) can be equivalently stated
by the new cost function f (�u):

minimize f (�u)= 1
2�uT H�u + GT

p �u
subject to Ai

c�u = 0, i ∈ a∗ (6.82)

where GT
p = (GT + uT

p H). Note that the inequality constraints in this new formulation

have also changed, bi
0 has been removed. This can be explained by substituting the

new incremental optimization variable up + �u into the equality constraint in (6.70)
to get:

Ai
cup + Ai

c�u = bi
0 (6.83)
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from which we only have to ensure that gi(�u)= Ai
c�u = 0 in order to maintain the

validity of the original equality constraint.
Let us now use this new equality constraint g(�u) with the cost function f (�u)

and substitute it back to the conditions of optimality in (6.75), with using a new
vector of Lagrange multipliers �λ:

∇f (�u)+ �λ∇ga(�u)= 0

ga(�u)= 0
(6.84)

where subscript a marks that only equality constraints from the active set ap at
iteration p is utilized. After substitution and differentiation with respect to �u this
will be reduced to [5, 34]:

H�u + Aa
c

T �λ= − Gp (6.85)

Aa
c�u = 0 (6.86)

which can be easily expressed in a matrix form:

[
H Aa

c
T

Aa
c 0

] [�u
�λ

]
=

[−Gp

0

]
(6.87)

The equality optimization problem expressed by (6.82) thus can be conveniently
expressed with the above matrix equation. The problem may be expanded for a
general quadratic programming case with both equality and inequality constraints
by using the Karush-Kuhn-Tucker conditions in (6.76) to get [5, 20, 34]:

H�u + Aa
c

T �λ+ Aa
e

T �v = − Gp (6.88)

Aa
c�u = 0 (6.89)

Aa
e�u = 0 (6.90)

which can be expressed in a matrix form as well:

⎡
⎣

H Aa
c

T Aa
e

T

Aa
c 0 0

Aa
e 0 0

⎤
⎦

⎡
⎣

�u
�λ
�ν

⎤
⎦ =

⎡
⎣

−Gp

0
0

⎤
⎦ (6.91)

A new active set strategy using these ideas can be outlined [34]:

Algorithm 6.3 To solve a quadratic programming problem (given a feasible initial
solution u0 and an initial active set a0), at each iteration p perform the following
procedure [34]:

• given up solve the modified equality problem (6.70) corresponding to the active
set ap by evaluating (6.87) to get a solution improvement up + �u
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• test the feasibility of this improved solution up + �u by evaluating Acup ≤ b0 and

– if the solution is feasible, accept as an improved optimization variable at the
next iteration up + 1 = up + �u and maintain the current active set ap = ap + 1

– if the solution is infeasible perform a line search pointing in the direction of �u
and locate the point up + 1 = up +αl�u at which the feasibility is lost (where
0 < αl < 1). Add this new active constraint to the active set, creating ap + 1

• determine the optimality of the improved solution up + 1 by checking the Lagrange
multipliers according to (6.75) and then

– if it is not the constrained optimum of the QP, restart the procedure
– if it is the constrained optimum of the QP, terminate the procedure

Let us review the procedure of Algorithm 6.3 once more on the simple example
familiar from our previous discussion and illustrate the steps in Fig. 6.12. Without
going into details, suppose that we have a feasible initial solution u0 at our disposition
and an empty active set a0 = [

0 0 0
]T . In the first step p = 1(a) the matrix expression

(6.87) is evaluated, obtaining an improvement �u1 in the solution. As the active
set is empty, the new solution is equivalent to the unconstrained optimum of the
cost function. The feasibility of this new solution u1 = u� = u0 + �u0 must be
then determined. By evaluating Acu1 ≤ b0 the solution is clearly infeasible, thus
u1 
= u0 + �u0. A line search is made in the direction of u0 to determine where
feasibility has been lost. The line search coefficient αl determines the new partial
solution at iteration p = 1 (b) which is given by u1 = u0 +αl�u0. A new active set
is created by adding constraint number 3, resulting in a1 = [

0 0 1
]T . We have to see

whether this solution is the global optimum of the quadratic programming problem,
by computing the Lagrange coefficients of the problem at u1 according to (6.75). As
it turns out this is not the global optimum of the QP, so one more iteration p = 2 is
initiated.

By evaluating (6.87) utilizing the new solution improvement u1 and the next
active set a1 we arrive at the solution u2 = u1 + �u1. This solution is feasi-
ble, as Acu2 ≤ b0 holds. Testing the optimality of the solution by computing the
Lagrange multipliers according to (6.75) shows that this new solution is the global
optimum. As no further improvement is possible u∗ = u2 and the sequence is termi-
nated.8

6.8.1.3 Interior Point Quadratic Programming Method

The interior point (IP) quadratic programming algorithm [37, 40] is mostly used for
large-scale problems in the range of hundreds of optimization variables. Although it
is a more recent algorithm, it is not necessarily better than active set methods [34].
Unlike the active set algorithm the interior point algorithm cannot be warm started,

8 The above example evaluated with the active set solver in quadprog terminates in two iterations
as well.
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Fig. 6.12 Illustration of the iterations in an active set quadratic programming method. The solution
for this simple problem is found in merely two iterations of the algorithm

in other words, we cannot reduce computational load by applying prior knowledge
on the previous solution. The advantage of interior point methods is that their com-
putational complexity is generally a polynomial function of parameters (for example
3nx + nu) whereas active set and most other algorithms require a computational
time which grows exponentially depending on the problem parameters (for example
nx + nu

3) [34]. The use of interior point algorithms in model predictive control is
less typical for this reason.

The idea behind the interior point algorithm is to convert the QP problem
into an unconstrained optimization problem by augmenting the cost function by a
so-called barrier function. The role of the barrier function is to supply a finite value
to the minimized function, when the solution satisfies the constraints. The value of
the boundary function tends to infinity, whenever solution approaches the constraint
boundary. This can be expressed mathematically as [9, 34]:

minimize μ[f (u) = 1

2
uT Hu + GT u)] +ψ(u) (6.92)

where f (u) is the quadratic cost, ψ(u) is the boundary function based on the con-
straints and μ is a scalar value. In case we have constraints formed as Ai

cu = bi
0 a

typical choice for a barrier function could be:
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ψ(u)=
m∑

i = 1

− log(bi
0 − AiT

c u) (6.93)

although other formulations are also possible. As it has been previously noted, the
value ofψ(u) approaches infinity as the solution u approaches the constraint bound-
aries. The solution of the unconstrained interior point minimization problem (6.93)
will satisfy constraints for any given scalarμ. In other words, by minimizing f (u) the
solution will always remain within the feasible region, because the barrier function
prevents the search from leaving it [34].

As we increase μ the solution will tend to get closer and closer to the optimal
solution u∗:

u −→ u∗ as μ −→ ∞ (6.94)

If an initial feasible solution can be found in the vicinity of u0, then this solution
can be continually improved by increasing μ until the difference between the partial
solution u and the real optimal solution u∗. An interior point algorithm therefore
successively increases the value of μ until the constraints are met within a given
tolerance [8]:

Algorithm 6.4

• increase the value of μ
• minimize the unconstrained problem (6.93)
• if solution meets constraints within tolerance terminate, otherwise restart the pro-

cedure

The initial point of the algorithm u0 is known as the analytic center of the constraints,
while the path traced out by the successively improving partial solutions u is known
as the central path [34].

While iterations of the active set algorithm search along the points on the boundary
of the feasible region, as the name implies interior point algorithms search in the
interior of this region. This approach requires an initial feasible solution but will
remain feasible through all iterates. This strategy is not the most efficient and the
iterates of modern IP algorithms are not always feasible, that is until the end of the
search [34].

A central problem to active set algorithms is the possible numerical
ill-conditioning caused by the logarithmic nature of the barrier function. As we
are successively increasing the value of μ to get better and better solutions, the
value of the barrier function starts to rise very rapidly, thus rendering the optimiza-
tion problem (6.92) numerically ill-conditioned. This may cause that the algorithm
results infeasible or sub-optimal solutions. A well-designed interior point algorithm
is relatively complicated and amongst others contains algorithmic tools to prevent
the problem described above. Currently the most effective interior point algorithms
referred to as primal-dual are based on solving the convex optimization problems
and their dual problems simultaneously [5].
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Fig. 6.13 The iterations of an interior point quadratic programming algorithm are shown in (a)
while sub optimal and infeasible solutions due to numerical ill-conditioning are demonstrated in
(b). The figures show the analytical center (square), the solution of an active set algorithm (triangle)
the iterations of the interior point QP algorithm (cross), constraints (thick black line), contours of
the original cost (dashed gray line), contour of the active set solution (thin black line), contour of
the interior point solution (thin dashed black line)

Figure 6.13 illustrates a very simple interior point algorithm solving the demon-
stration example familiar from our previous discussion on quadratic programming.
The algorithm starts from the analytic center of the feasible region, located at
u0 = [4/3 4/3]. The original cost function is augmented by the barrier function,
and the new unconstrained cost function (6.93) is minimized. To solve our simple
example in Matlab the new cost function (6.93) has been programmed as a function
objfun, which is then minimized by a derivative-free method through the built-in
fminsearch algorithm. The syntax to minimize the objective function is:

[u,fval] =fminsearch (f,u0)

where u is the solution of the interior point algorithm and u0 is the analytical
center of the feasible region. The central path is generated by supplying this prob-
lem with different values of μ, spanning a logarithmic space from 0.001 to 100 in
40 steps. The algorithm starts from the analytic center and the solutions marked
with a cross are improving with increasing μ along the central path. The solutions
get very close to the optimal solution marked with a triangle, as computed previ-
ously by the active set algorithm implemented in quadprog. The two solutions match
very closely, the contour lines of f (u) corresponding to the different algorithms are
practically indistinguishable.

The possible numerical issues with simple interior point algorithms are demon-
strated in Fig. 6.13b where the detail in the neighborhood of the solution is shown.
As it is clear from the figure, even this very basic interior point algorithm yields
good approximations of the optimal u∗. Note, however, that certain solutions for
increasing μ tend to be very suboptimal, while some are even infeasible. This is
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caused by the previously mentioned numerical ill-conditioning of the unconstrained
optimization problem. There is for example a point u0 =[1.59 2.41] which is not
only suboptimal but also outside the feasible region.

6.8.2 MPC and Quadratic Programming

Now, it is clear that the cost function in (6.33) and the constraints (6.53) in fact
formulate a quadratic programming problem, which is given by [48]:

minimize Jk(uk) = uT
k Huk + 2xT

k GT uk
subject to Acuk ≤ b0 + B0xk

(6.95)

where H and G are the predetermined prediction matrices, Ac, b0, and B0 define the
constraints, xk is the actually measured or observed state and uk is the optimization
variable—that is the unknown sequence of future optimal control inputs.

To solve the quadratic programming problem given by the MPC formulation
(6.95) in Matlab, we can use the built-in quadprog function, which at each time step
will solve the QP given by the following syntax9:

u=quadprog (H,G ∗ x,Ac,b0+B0 ∗ x)
where x is the actual measured or observed state, H and G are prediction matrices,
Ac, b0 and B0 are given by the constraints and u is the optimal input trajectory of
which only the first element is utilized. The function quadprog is only usable in the
Matlab environment, and cannot be employed in a real-time environment. For the
online optimization task in traditional QP based MPC (QPMPC) a dedicated solver
is required, preferably a C language version of either generic quadratic programming
software or one which is optimized for MPC usage. Such a solver is for example
qpOASES developed by Ferreau et al. [17–19] which is utilized as a benchmark for
traditional optimal MPC in the upcoming chapters.

Quadratic programming solvers specifically designed to solve MPC problems
utilize some of the unique properties of the QP problem arising due to the predictive
control formulation. These properties are [34]:

• the QP problem is sparse
• it is possible to warm start

After reordering the variables in the QP problem arising from the MPC formu-
lation the problem becomes sparse, meaning that the matrices are mainly populated
with zeros. The second condition comes from the fact that unless there are excessive

9 Note that unlike the cost function in the MPC formulation given by (6.95), the solver quad-
prog minimizes the function Jk(uk)= 1

2 uT
k Huk + xT

k GT uk . Because only half of H is assumed by
quadprog, the number “2” in front of the second part of the original cost function is omitted in the
syntax.
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disturbances acting on the controlled plant, the successive solutions at times (k) and
(k + 1) are very much alike. For this reason, it is possible to warm start the algo-
rithm based on the previous solution to save on computational time. The MPC tuned
implementations of active set algorithms are more common; however, examples of
interior point algorithms utilizing the structure and properties of MPC exist as well.

6.9 Prediction and Control Horizon

In the previous sections, the prediction horizon—that is the point in the future up
to which predictions are made—was identical to the control horizon. The control
horizon can be understood as a point in the future up to which control moves are
calculated.

Let us denote the control horizon by nc and the prediction horizon as np as illus-
trated in Fig. 6.14. The control and prediction horizon can be equivalent, though they
are often different: the cost is predicted further into the future, but in order to reduce
the number of free variables the control horizon nc is considered to be shorter than
the prediction horizon np. A common approach is when the controller computes the
control moves in such a manner that it assumes that the control inputs will remain
on the same level after the control horizon ends. The control input may vary up to
the end of nc. The control input vector will have two different domains:

uk = [ uk uk + 1 . . . uk + nc uss uss uss ]T (6.96)

where uss is the steady-state control input. If we take a simple regulation example
where the output needs to be driven to zero, we can divide the prediction matrix N
to two parts: one for the control moves which may vary, and one which is assumed
to be steady-state:

xk = Mxk + Nuk

= Mxk + N1[u0 . . . unc ]T + N2[1 . . . 1]T uss

= Mxk + Ñ[u0 . . . unc uss]T (6.97)

In most predictive control applications the control horizon nc actually equals the
prediction horizon np. Similarly, the ongoing discussion will not differentiate these
two concepts. From now on it will be assumed that nc = np and the control horizon
will be simply marked by nc, expecting predictions to be computed up to this point
in time as well and vice versa.
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Fig. 6.14 The control horizon nc may be shorter than the prediction horizon np, however it is very
common to choose these two horizons to have equal lengths

6.10 Fixed Target Tracking

The problem statement has to be slightly changed if the goal of the control application
is to keep the output at a predetermined level, instead of keeping it at zero. The
formulation is similar, but the zero is shifted toward the new required value. The
desired output will be designated as yd and the corresponding control input as ud .
When the system reaches yd it will be true:

xd = Axd + Bud

yd = r = Cxd
(6.98)

From this, the reference state and the required steady-state input can be calculated:

xd = (I − A)−1Bud

r = C(I − A)−1Bud
(6.99)

The term C(I − A)−1B is often referred to as the DC gain. If we denote the
difference between the actual and the desired state as xe = x−xd , and also ue = u−ud
the model may be modified to:

xe(k + 1)= Axe(k)+ B(u − ud) (6.100)

Using this notation to create and evaluate a cost function results a calculated
set of future control differences ue. One must use ue instead of u, and similarly
xe instead of x. The control move must be recalculated properly as well, before it can
be applied to the system. For example a controller may take a form of u = Kxe and
the required output shall be u = Iud + Kxe.

Problems arise with calculating the required steady-state values. Since no model
can be perfectly correct, there will always be some challenges. If the desired
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steady-state values are incorrect, offset-free tracking is not possible. There are several
techniques to overcome this problem and ensure offset-free regulation.

The most common control aim in active vibration control is to steer the structure
into equilibrium and to keep it there. This equilibrium point is the origin of the state-
space system. Alternatively, the system model can be transformed and shifted to have
the origin as an equilibrium point. Further discussion in this book will not assume
the use of tracking (fixed target or any other sort), the systems will rather be steered
into the origin of the state-space formulation, which is coincident with the physical
equilibrium of the mechanical system.

6.11 Integral Action

In this work, we will assume that the control input uk will be computed by the
predictive controller in its absolute form. However, this is not the only way to
produce inputs to the plant. Just as PID controllers often use an incremental or
velocity10 input [3], we may also define an MPC controller in a similar way. Instead
of computing the absolute level of the input uk , only its changes will be computed
which are given by �uk . This formulation is also referred to as discrete-time inte-
gration formulation [34]. The reason to use a controller formulation with integral
action is to get offset-free tracking. To achieve offset-free tracking, the minimum of
the cost function J must be consistent with zero tracking errors in steady-state and
the predicted control move must also be zero to maintain zero tracking [48].

There are several valid ways to express the controller input in its incremental,
integrating form. All of the methods involve augmenting the state vector with an
additional block of elements. Let us therefore consider a new augmented state, which
is denoted by:

x̃k =
[

xk
uk−1

]
(6.101)

where our new augmented vector11 will be denoted by xk and it will contain the
original state vector xk and the previous value of the input uk−1 at time (k − 1). The
next iteration of this vector at time k + 1 would be [34]:

[
xk + 1
uk

]
=

[
A B
0 I

] [
xk
uk−1

]
+

[
B
I

]
�uk (6.102)

where the dimensionality of the zero matrix 0 and I depend on the number of inputs.
Similarly, the outputs can be defined by:

10 The term velocity in the velocity formulation does not refer to the physical interpretation of the
concept, it merely denotes the differentiation (difference) of an absolute variable.
11 Note that in this book we have used a scalar notation for xk , uk , yk , despite their general vector
nature in order to reserve the bold notation for vectors of predicted sequences.
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MPC algorithm Real plant

MPC plant

Real controller

uk ukz

z−1

Fig. 6.15 The boundary between the actual controller and plant depends on our view. A real plant
augmented by an integration operation may be controlled by an algorithm computing input incre-
ments �uk

yk = [
C 0

] [
xk
uk−1

]
(6.103)

Figure 6.15 illustrates the boundary between the actual MPC controller and the
controlled plant. It is often convenient to consider the discrete-time integration oper-
ation to be a part of the plant dynamics. This integration operator computes the
absolute value of the inputs uk from the increments �uk , thus creating an augmented
MPC plant. In this way we may utilize an MPC controller producing an incremental
input �uk , which may be used to control the plant augmented by the discrete-time
integration operation.

A slightly less intuitive way to create a discrete-time integration formulation of
the predictive controller is to augment the state-space equation in the following
way [34]:

x̃k =
[�xk

yk

]
(6.104)

where �xk is simply the first difference of the state �xk = xk − xk−1 and x̃k is the
augmented state. Considering a simple state-space system given by 1 for time (k)
and (k − 1) we will get

xk + 1 = Axk + Buk (6.105)

xk = Axk−1 + Buk−1 (6.106)

and subtracting these will yield the state difference �xk according to

�xk + 1 = A�xk + B�uk (6.107)

From the second output equation in (6.1) we can also deduct:

yk + 1 = Cxk + 1 (6.108)

= C[�xk + 1 + xk] (6.109)
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= C[A�xk + B�uk] + yk (6.110)

so the new state-space representation will be changed to
[�xk + 1

yk + 1

]
=

[
A 0

CA I

] [�xk
yk

]
+

[
B

CB

]
�uk (6.111)

yk = [
0 I

] [
�xk yk

]
(6.112)

References

1. Agachi PS, Nagy Z, Cristea MV, Imre-Lucaci A (2006) Model based control: case studies in
process engineering, 1st edn. Wiley-VCH, Weinheim

2. Åström KJ, Wittenmark B (1973) On self tuning regulators. Automatica 9:185–199
3. Belavý C (2009) Teória Automatického Riadenia II: Návody na cvičenia, 1st edn.
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