
Chapter 4
Algorithms in Active Vibration Control

Significant research effort has been devoted to explore the means and properties of
active vibration attenuation in the last two to three decades. The complex discipline of
active vibration control (AVC) is now leaving the realm of experimental applications
and slowly starting to appear in advanced commercial products. In addition to the
hardware components in AVC, such as the actuators performing changes in system
dynamics and sensors providing feedback information about vibration levels, an
essential unit of this feedback system is the control strategy itself.

The field of engineering concerned with the design of control strategies and algo-
rithms for dynamic systems is called control engineering. Active vibration con-
trol heavily relies on the recent theoretical results of control engineering. Generic
strategies commonly used for dynamic plants ranging from missile cruise control to
washing machines are also applicable to AVC systems. These strategies can be as
simple as multiplying a feedback signal with a constant gain and supplying it back to
the actuator; or may be complex online optimization based on ideas such as the model
predictive control (MPC) algorithm. The aim of this chapter is thus to present a few
essential control algorithms which are commonly used in active vibration control and
to provide examples of their utilization in academic studies. It is by no means our
goal to replicate intricate details and results of control theory such as robustness or
uncertainty. It is not our ambition to list and describe every possible control strategy
either. The current chapter serves mainly as a taste of strategies utilized for AVC
other than MPC. The reader interested in general aspects of control engineering is
referred to feedback control textbooks such as the book on the basics of classical
control theory by Antsaklis and Michel [10]; on state-space control by Williams and
Lawrence [118] and others works [9, 50, 73, 74].

The first section is concerned with classical control methods applied to active
vibration attenuation. These methods are often referred to as position or velocity
feedback where the system simply uses a fixed gain to multiply position, velocity
or acceleration signal in order to compute an input signal, which is in turn sup-
plied to the actuator. Section 4.2 discusses proportional-integral-derivative (PID) con-
trollers, which are very commonly used in all areas of engineering, including AVC.
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Fig. 4.1 An excellent example of the possibilities offered by active vibration control: a modified
F/A-18A test aircraft with active aeroelastic wings [76] is shown with accelerometers visible on the
wing surfaces. In addition, the actuators and sensors the performance of active systems depends on
the choice and design of control algorithms as well (Courtesy of NASA)

The next two sections review slightly more advanced controller strategies: Sect. 4.3
deals with linear quadratic control, while Sect. 4.4 considers H∞ control—both
being basic optimization-based methods. Of these two methods, linear quadratic con-
trol is particularly interesting, since it is used both extensively and effectively in AVC.
Moreover, it can be regarded as a basis for the model predictive control approach.
The last major section of this chapter reviews the more exotic control approaches
that are exciting and potentially powerful, albeit seldom used in the area of active
vibration control due to several practical limitations. These methods are referred to
as soft computing approaches and we will cover the essential basics of neural net-
works, genetic algorithms and fuzzy control here. The former two approaches rely on
ideas borrowed from nature, that is the working principles of the nervous system and
evolutionary processes. The latter, fuzzy control utilizes the idea of fuzzy sets where
complex dynamics can be controlled using common sense and trivial statements.
The reason why we have decided to briefly cover these less common methods is
their potential to control and model highly nonlinear and hysteretic dynamics, such
as magnetorheological (MR) dampers. Finally, Sect. 4.6 will mention some of the
alternative algorithms which can be used in active vibration control in a nutshell.
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This book is first and foremost concerned with the application of model predictive
control to vibration attenuation, therefore this control strategy will be introduced in
a comprehensive detail starting from the next part—Part II. As it has been mentioned
before, the current chapter is only concerned with algorithms other than MPC; hence
we will only give brief description in order to familiarize the reader with the idea.
Model predictive control is an advanced control algorithm where optimal inputs
are calculated based on predictions given by an internal plant model. Model predictive
control belongs to the broader family of algorithms based on optimal control. Unlike
in the case of for instance linear quadratic (LQ) control, MPC does not only generate
optimal inputs but it also actively respects various system constraints. As with every
conceivable real plant, vibration control systems have inherent limitations—such as
actuator saturation and others. These limitations render the system nonlinear, thus
precautions are to be made to guarantee the stability of the control system. As it will be
elaborated later, the application of model predictive control to vibration attenuation
can be a non-trivial task, mainly because of the high sampling rates necessary because
of fast system dynamics.

Books on the topic of vibration mechanics and vibration control start to adapt
to the new trend of AVC and set aside chapters on control theory. In addition to
the material provided by this chapter, an excellent treatment of vibration control
concepts for a single degree of freedom vibrating system is given in the recent book
by Benaroya and Nagurka [13]. For those with minimal or no background in control
theory, parts1 of this publication may give a fast yet still very thorough discussion
on classical transfer function-based control strategy, and state-space control related
to the problem of vibration. Moreover, there is an abundance of excellent literature
discussing control theory from the active vibration control viewpoint such as the
classical book on AVC by Fuller et al. [42] or Inman [55], Preumont [96] and others
[49, 56, 97].

Figure 4.1 illustrates a heavily modified F/A-18A test aircraft equipped with actu-
ators and accelerometers to create a complex control system that is capable of altering
the aerodynamic properties of the plane. Just as in the case of this aircraft with active
aeroelastic wings—or any other control system—the proper choice of hardware in
AVC is not the only important aspect of the design. The overall effectiveness and
safety of the system also depends on a fitting control architecture.

4.1 Classical Feedback Methods

When the vibration signal measured by the sensors is simply amplified by a gain
and fed back to the actuators, we may classify this type of feedback control system
as a classical feedback method. To demonstrate the concept mathematically, let us
consider a vibrating system described as a continuous state-space system or in other
words given by a set of first order differential equations [32]:

1 See Chap. 6 in [13].
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ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(4.1)

where A is the state matrix, B is the input matrix and C is the output matrix. Because
the term Du(t) represents direct input–output feedthrough, it is omitted from our rep-
resentation2. Although it is more common to represent system models in classical
control theory by continuous (Laplace domain) or discrete (Z-domain) transfer func-
tions, the state-space representation will be preferred here, since the model predictive
controllers (MPC) introduced in upcoming chapters will also utilize a state-space
model.

Vibration control literature often uses to the terms position feedback and velocity
feedback [55, 97]. These two very common control methods are a part of classical
feedback-based vibration control. The idea in direct position or velocity feedback
methods is in fact very simple: in direct position feedback, the position signal is
amplified by a gain and fed back to the force actuators, while in direct velocity
feedback the sensor output is differentiated, amplified and fed back to the force
actuators. According to this underlying idea, we may define the input in direct position
feedback as [42]:

u(t) = −Ky(t) (4.2)

where K is the feedback gain matrix. In case the signal is based on velocity mea-
surement, we have a velocity feedback and the input is given by [96, 97]:

u(t) = −Kẏ(t) (4.3)

Furthermore, it is also possible to utilize the acceleration measurement and formulate
control input as

u(t) = −Kÿ(t) (4.4)

but the use of a second order filter to generate a force proportional to the output of
that filter is also a possible strategy when using direct acceleration feedback.

Note that unlike in the case of linear quadratic (LQ) control, here the input is not
calculated using the state x(t), instead the output y(t) and its derivatives are utilized.
Considering the case of direct position feedback given by (4.2) and substituting the
output equation the input will be rendered to

u(t) = −KCx(t) (4.5)

where the input term can be now substituted back to the original state equation in
(4.1) to get

ẋ(t) = (A − BKC)x(t) (4.6)

2 Matrix D is omitted when accelerometers are not used for measuring output.
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In case the sensors and actuators are co-located, we may assume that C = BT ,

rendering the output equation to y(t) = BT x(t).
In direct velocity feedback, two very common approaches exist. These are [113]:

• constant amplitude velocity feedback (CAVF)
• constant gain velocity feedback (CGVF)

In constant amplitude velocity feedback (CAVF), the gain of the i-th actuator is
the opposite of that of the i-th sensor. This is mathematically denoted as:

u(t) = −K sign(ẏ(t)) (4.7)

One may easily see that this control law is nonlinear and discontinuous. As the
name implies, the feedback voltage amplitude in CAVF is constant. The feedback
gain matrix used in this approach is defined by a diagonal matrix of the individual
constant amplitudes Āi :

K = [0 diag( Ā1 Ā2 . . . Āi . . . ĀN )] (4.8)

where i = 1 . . . N is the number of actuating points. In constant gain velocity
feedback the driving voltage of the i-th actuator is given by the relation introduced
earlier in (4.2). The gain matrix here is simply a diagonal matrix of individual actuator
gains, creating a linear continuous controller:

K = [0 diag(K1 K2 . . . Ki . . . KN )] (4.9)

where i = 1 . . . N is the number of actuating points, and Ki are the associated gains.
Direct position feedback is not to be confused with the different concept of posi-

tive position feedback (PPF) [37, 45]. While in direct position/velocity/acceleration
feedback the use of a position, velocity or acceleration sensor in combination of
force actuator is implied, positive position feedback assumes a strain sensor in com-
bination with a strain actuator [96]. The best-known combination of such a sensor
and actuator pair are the commonly used piezoceramic transducers. The essential
idea behind positive position feedback is to use the position signal in combination
with a second order filter to generate the output for the strain actuator. The second
order filter shall have an increased damping, ultimately attenuating vibrations in the
closed-loop system. Preumont suggests the use of such a system in a decentralized
manner, with co-located sensor and actuator pairs, thereby establishing stability [96].
An advantage of the PPF approach is that it can be designed based on an experimental
transfer function, without a deeper analytical knowledge of the structure [55]. For
a SISO system, the PPF control input is based on the strain signal and its transfer
function can be given by [55, 96, 97]:

G(s) = −K

s2 + 2ζfilωfils + ω2
fil

(4.10)

which combined by the error signal e = r − y = −y and the negative gain −K gives
an overall positive feedback. The variables ζfil and ωfil denote the damping and the
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frequency of the filter tuned to the mode, which is to be damped. If the output of this
second order filter is marked by vfil, the input from the sensors is the displacement
y, then for a MDOF system the controller can be described in terms of the filter
equation and the output equation [55, 96, 97]:

v̈fil(t) + ξfilv̇fil(t) + �filvfil(t) = y(t)

u(t) = Kvfil(t)
(4.11)

where ξfil is a diagonal matrix containing the terms 2ζfil i ωfil i on its main diagonal,
similarly �fil is a diagonal matrix containing the squares of the filter frequencies
ω2

fil i
on its main diagonal, for each individual filter i. The filter in (4.11) may be

augmented by a rectangular matrix Efil that allows using more filters than actuators,
thereby allowing to damp more modes than the number of available actuators:

v̈fil(t) + ξfilv̇fil(t) + �filvfil(t) = Efily(t)

u(t) = ET
filKvfil(t)

(4.12)

Given co-located sensors with the dynamics given by y = BT x and system dynamics
described by the equation Mq̈+Bdq̇+Ksq = Bu, we may couple the PPF controller
with the system to obtain [55]:

[
M 0
0 1

] [
q̈
v̈fil

]
+

[
Bd 0
0 ξfil

] [
q̇
v̇fil

]
+

[
Ks −KB

−KBT Λfil

] [
q
vfil

]
=

[
0
0

]
(4.13)

A review of the stability properties of direct velocity and acceleration feedback,
moreover the stability of PPF assuming co-located sensors and actuators is given
in [96], while the necessary and sufficient condition for the asymptotic stability of
(4.11) has been established by Fanson and Caughey in [37] based on Lyapunov’s
direct method. Since both the augmented mass matrix and the augmented damping
matrix are positive definite, the stability of the closed-loop system in (4.13) will only
depend on the positive definiteness of the augmented stiffness matrix [55].

The control action in classical feedback control is realized through the manip-
ulation of the closed-loop system poles by the feedback gain matrix K. If a well
defined K is used, the original lightly damped poles of the open-loop system A are
transformed into the better damped poles of the closed-loop system (A − BKC)

[113]. Unlike in the case of optimization-based approaches such as linear quadratic
control or H∞ control, here an indirect computation of the feedback matrix K is
employed. We may use several well established methods for the computation of
K such as direct experimentation, strategies based on the pole-zero representation
of the system (root-locus, pole-placement) or frequency domain methods (such as
the Nyquist method) [113]. Although finding a direct fixed static output-feedback
seems simple and intuitive enough, this fundamental control engineering problem is
relatively challenging in terms of computational complexity [15, 16]. For example,
the essential technique of pole-placement is NP-hard even for linear time-invariant
systems [40].
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A comparison of the use of classical feedback control methods with optimal
control for vibration attenuation is discussed by Vasques and Rodrigues in [113].
A delayed position feedback is utilized for the vibration control of a flexible link
manipulator in [59], while others employ position feedback for similar systems as
well [102]. The counter-phased sound signal is employed to attenuate sound in enclo-
sures by Lee et al. in [77], while a similar counter-phase signal is based on a gain
scheduled observer in state-space in [17]. Optical tracking on satellites is ensured by
AVC using a transfer function representation in [83]. Seismic activity is attenuated
on a model using positive acceleration feedback in [99], while rotor vibrations are
damped using PPF in [2]. Other works utilizing position feedback-based vibration
control systems are [26, 53, 62, 71, 95, 106, 114].

Velocity or strain rate-based classical feedback controllers are very commonly
implemented in vibration control applications as well. Aircraft tail vibrations are
damped based on velocity feedback strategies in several works [8, 33, 34]. Other
examples of such controllers are presented in [18, 106, 107, 119, 132]. A modified
acceleration feedback-based method is applied for a cantilever beam in [84].

An even simpler on-off type controller is used in [130] for the control of rotor
vibrations. A variation of this is referred to as bang–bang control. Here the controller
switches between two extreme states depending on the position, velocity or the
combination of the two. Such a controller has been utilized for example by Tzou et
al. in [112] for cantilever vibration control.

Stability in systems controlled through classical feedback methods is guaranteed
through the usual stability tests known in classical continuous or discrete controls.
Moreover, Preumont states that stability in such systems can be guaranteed through
the perfect physical collocation of sensors and actuators [96].

In addition to active systems, semi-active vibration damping gained some inter-
est because of its simple electronics and hardware realization [81]. In the case of
semi-active systems the obvious advantage is that A/D and D/A converters, volt-
age or charge amplifiers, microcontrollers are not needed; therefore making prod-
uct integration simpler and economic. This method takes advantage of a fact that
a circuit—using piezoelectric transducers and other simple electronic components
like resistors and capacitors—may be tuned analogously to a vibration absorber.
The disadvantage of this method is that one absorber may be tuned only to damp
one vibration mode. Semi-active state switched resistive circuits with simple control
logic are the next iteration of this concept. For example in case that the displacement
and velocity at a specific point satisfies Eq. (4.14), the circuit will be switched to
open circuit state. In all other cases, it will be closed circuit. Such a system including
the optimal placement and resistance is discussed in [81]. The state switching law
can be expressed by:

q(x, y, t)q̇(x, y, t) ≥ 0 (4.14)

where q is a displacement depending on coordinates x, y and time t ; and its derivation
is velocity with the same parameters.
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4.2 Proportional-Integral-Derivative Controllers

Proportional-integral-derivative (PID) controllers are widely used in industrial prac-
tice. In the absence of knowledge about the exact underlying process PID is a good
controller choice, since its tuning parameters can be translated into physical changes
on the closed-loop system dynamics. However, using advanced modeling and control
approaches one may develop strategies offering much more than PID does. Among
others, the disadvantages of the PID control strategy are that even though the con-
troller has been tuned very carefully, it still does not guarantee the best possible
control course. This situation can be remedied with the use of optimization-based
algorithms such as LQ. Moreover, as with every real control system, the inputs and
often the outputs are constrained as well. Such constraints are in practice imple-
mented using saturation limits; this however introduces a level of nonlinearity in
the control law. The nonlinearity of the law means that the proofs of stability and
optimality no longer apply. Constraint handling even with guaranteed stability is
successfully solved by the use of model predictive control.

The position or velocity-based classical feedback methods, where the measured
signal is simply multiplied with a fixed gain are in fact not so distant from a PID
controller or its variants. The similarity is clearer in the case if the controlled pant is
a one degree of freedom vibrating system. PID controllers from the active vibration
control viewpoint are reviewed in a very intuitive way by Fuller et al. in [42]. Let
us now imagine a one DOF vibrating system where the amplitudes are measured
and given as q(t). We may devise a controller for this system, which calculates the
control signal from the position coordinate q(t), the velocity coordinate q̇(t) and
the acceleration value q̈(t). In case we could measure these values independently, an
input to the actuators u(t) could be calculated by these signals multiplied by three
independent gains [42]:

u(t) = gdq(t) + gvq̇(t) + gaq̈(t) (4.15)

where gd, gv and ga are gains for the displacement, velocity and acceleration com-
ponent. Due to physical limitations and practical and economic considerations not
all signals can be measured. Let us therefore imagine that we can only measure the
velocity signal q̇(t), and the acceleration is computed using numerical derivation,
while the displacement is computed using a numerical equivalent of integration.
In this case, we could formulate our problem as

u(t) = gd

∫ t

0
q(t)dt + gvq̇(t) + ga

d

dt
q̇(t) (4.16)

This in fact would be nothing else than a simple continuous PID controller. Generally,
the displacement gain gd is called the integral gain (Ki ) in control engineering, since
it is associated with the integral action. Similarly, the gain gv associated with the
unchanged signal is known as the proportional gain (K p) while ga as the derivative
gain (Kd ).
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Fig. 4.2 Block algebra scheme of the inner workings of a PID controller

We will now review the principles of a generic PID controller designed for a single-
input and single-output (SISO) system. Instead of the representation used in (4.15)
and (4.16) focusing on vibrating systems, we will use notation known from control
engineering. As with other feedback controllers, the first step in a PID algorithm is
to calculate an error value e(t) which is a difference between the desired reference
setting r(t) and the actual measured output y(t):

e(t) = r(t) − y(t) (4.17)

The sum of the error value itself e(t), its time integral
∫ t

0 e(t)dt and its derivative
d
dt e(t) multiplied by individual tuning constants creates the input u(t) to the con-
trolled plant. This in fact defines a PID controller. Mathematically we can express
this as

u(t) = K pe(t) + Ki

∫ t

0
e(t)dt + Kd

d

dt
e(t) (4.18)

which is the so-called ideal form of a PID regulator. As the name implies, the
first term is the proportional term where the error is multiplied by the proportional
gain K p. The second term in (4.18) is the integral term, which is multiplied by the
integral gain Ki . This is followed by the derivative term, multiplying the error deriva-
tive by the derivative constant Kd . A block algebra scheme of this process is featured
in Fig. 4.2.

We may try to imagine the meaning of the three components of a PID controller
by relating the error and the practical interpretation of the integration and derivation
operations:

• The proportional term P is related to the current error.
• The integral term I is related to the history of errors or the past, since the integral

expresses the area under the error curve or in discrete terms the sum of all errors.



114 4 Algorithms in Active Vibration Control

• The derivative term D is related to the future of the error, since a derivative expresses
the rate of change or slope of the error curve, creating a kind of prediction about
its upcoming trend.

It is not always necessary to use every component of the PID controller. By setting
the appropriate tuning constants to zero, we can create an array of controllers missing
one or two components of the original PID. In practice, however, only the following
combinations are used: P, I, PI, PD. Another common notation expressing a PID
controller is its so-called standard form:

u(t) = K p

(
e(t) + 1

Ti

∫ t

0
e(t)dt + Td

d

dt
e(t)

)
(4.19)

where K p is the proportional constant and Ti and Td are the integral and deriva-
tive time constants. We may also express a PID controller as a Laplace transform,
more suited to numerical simulations in software prototyping environments such as
Matlab/Simulink:

G(s) = K p + Ki

s
+ Kds = Kds2 + K ps + Ki

s
(4.20)

where G(s) is the continuous transfer function of the PID controller and s is the
Laplace operator. An alternative transfer function of a PID controller is given
by [75]:

G(s) = K p

(
1 + 1

Ti s
+ Tds

1 + Td
N s

)
(4.21)

where the additional term 1 + Td/Ns is a low pass filter introduced on the derivative
action. As it has been already noted in (4.16), a PID controller implemented on a
vibrating mechanical system can be interpreted as an analogy of velocity feedback,
where position and acceleration measurement is estimated by numerical methods.

Let us now briefly return to the three independent proportional gain formulation
of (4.15) and investigate how a closed-loop vibrating system will change if we imple-
ment such a simple controller. Remember that for this example we will assume that
all three values of displacement, velocity and acceleration can be directly measured
and the controller is a sum of these three proportional values. The vibrating mechan-
ical system shall be represented by a one degree of freedom system in (2.108) for
which the transfer function is defined as:

H(s) = Q(s)

Fe(s)
= 1

ms2 + bs + k
(4.22)

where Q(s) is the vibration amplitude and Fe is the external disturbance in the
Laplace domain. Here H(s) represents the dynamics of the vibrating system in open-
loop that is, without a controller. Furthermore, let us perform a Laplace transform
on the simple proportional control law given by (4.15) to get:

http://dx.doi.org/10.1007/978-1-4471-2333-0_2
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U (s) = gd Q(s) + gv Q(s)s + ga Q(s)s2 (4.23)

and finally obtain the transfer function of the control law [42]:

G(s) = U (s)

Q(s)
= gd + gvs + gas2 (4.24)

where Q(s) is the measured position and U (s) is the controller input in the Laplace
domain. To calculate the closed-loop response of this system, we must consider
the direct path from the disturbance to the displacement (H(s)) and divide it by the
indirect path (1+ H(s)G(s)) which contains the controller as well. After substituting
for H(s) and G(s) we will get [42]:

F(s) = Q(s)

Fe(s)
= H(s)

1 + H(s)G(s)
= 1

(m + ga)s2 + (b + gv)s + (k + gd)
(4.25)

which is a transfer function describing the new, controlled relationship between
excitation Fe(s) and vibration Q(s). One may easily see that there is a direct and
physically interpretable connection between the individual gains gd , gv and ga which
help to create the new modified mass, stiffness and damping properties of the system:

F(s) = Q(s)

Fe(s)
= 1

m′s2 + b′s + k′ (4.26)

where m′, b′ and k′ are the modified closed-loop mass, damping and stiffness values.
The above discussion is valid to systems with no delays. Unfortunately, delays

are always present in control systems and are caused by imperfect sensor or actuator
dynamics. The digital sampling process itself may introduce delays into the closed-
loop system as well. These delays may cause that the damping properties will change
dramatically if the excitation frequency is much higher than the resonance frequency
of the system. We can model the dynamics of a controller similarly to (4.22), which
also takes delays into account by [42]:

G(s) = U (s)

Q(s)
= e−τd s(gd + gvs + gas2) (4.27)

where τd is delay and e−τd s models this delay in the Laplace domain. Let us assume
that the delay is small and then the frequency response can be expressed by:

e− jωτd ≈ 1 − jωτd (4.28)

which is valid for ωτd << 1. Now the closed-loop frequency response of this system
can be expressed similarly to (4.26) by equivalent mass, damping and stiffness terms:

F(s) = Q(s)

Fe(s)
= 1

ω2m′′ + ωb′′ + k′′ (4.29)
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where the new equivalent effective mass m′′, effective damping b′′ and effective
stiffness k′′ terms can be expressed by [42]:

m′′ = m + ga − τd gv (4.30)

b′′ = b + gv − τd gd + ω2τd ga (4.31)

k′′ = k + gd (4.32)

If we compare k′′ and k′ we can see that the delay has no impact on the effective
stiffness. For lightly damped systems the term τd gv is small when compared to
the mass m, therefore its impact on the effective mass is minimal. The effective
damping is however greatly influenced by both the delay τd and the frequency ω. Let
us assume changing the effective mass and stiffness twice to their relative magnitude
under displacement and acceleration feedback [42]. For a lightly damped system,
the term τd gd is comparable to b if the delay is small compared to the period of
the natural resonant frequency on the system. On the other hand, for frequencies
ω over the damped natural frequency ωd the term ω2τd ga becomes comparable
to b. With a displacement or acceleration-based feedback even a small delay may
dramatically alter the effective damping or even render the system unstable. That is
why in classical feedback control (see Sect. 4.1) velocity-based feedback is preferred.
Velocity feedback will not alter effective mass, stiffness or damping properties of the
system significantly if unmodeled delay is introduced into the closed-loop system.

Although it is possible to create a purely continuous-time PID controller, it is
more common to implement it in a digital control system. For this it is necessary to
replace the integral term with its discrete-time equivalent, summing:

∫ t

0
e(t)dt ≈

k−1∑
i=1

e(i)Ts (4.33)

It is also necessary to compute differences numerically, instead of symbolic differ-
entiation:

de(t)

dt
≈ e(k) − e(k − 1)

Ts
(4.34)

for a sampling time Ts . The resulting controller will be suitable for discrete-time
application. A discrete PID controller is sometimes referred to as a PSD controller,
exchanging the integral term with summation. A so-called velocity form of a discrete
PID (PSD) controller can be expressed as:

uk = u(k−1)

+ K p

[(
1 + Ts

Ti
+ Td

Ts

)
e(k) +

(
−1 − 2Td

Ts

)
e(k − 1) + Td

Ts
e(k − 2)

]

(4.35)
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or alternatively we may write [12]:

uk =

K p

[
e(k) + Ts

Ti

(
e(0) + e(k)

2
+

k∑
i=1

e(i)

)
+ Td

Ts
((e(k) − e(k − 1))

]
(4.36)

where Ts is the discrete sampling period. The discrete-time PID controller may be
expressed after Z-transformation in the Z-domain by [50]:

G(z) = U (z)

E(z)
= K p + Ki

z

z − 1
+ Kd

z − 1

z
(4.37)

There are different methods to tune a PID controller. One of the most widely
used is a simple iterative trial and error process. Other methods include Ziegler-
Nichols, Cohen-Coon, iterative response shaping and others. Note that, as it has
been previously implied, the use of a PID controller neither guarantees stability
of the control loop nor is it optimal in any sense. The available literature on PID
controllers is extensive, therefore we will not discuss the control engineering aspects
and details of this method. The reader shall refer to the relevant publications on the
topic.

PID controllers are utilized by Fung et al. in [43] to control the vibrations of a
flexible beam actuated through an electromagnet. Semi-active suspensions can be
also controlled via PID [35]. The use of the PID strategy for earthquake-induced
vibration control in civil engineering structures is suggested by Carotti and Lio; and
Guclu in [21, 47]. Yet another possible application of PID in vibration control is for
the AVC of flexible link mechanisms as described in [62] and other similar vibration
control systems [6, 60, 111].

4.3 Linear Quadratic Control

Linear quadratic control belongs to the broader family of algorithms based on optimal
control. In optimal control, a cost function indicating a performance index is chosen
which is then minimized to obtain an optimal input u(k) [55].

Let us consider a continuous, linear time-invariant state-space system as defined by
(4.1). The cost function in the continuous linear quadratic optimal control problem
can be chosen to be quadratically dependent on the control input and the state or
output response:

J = 1

2

∫ t f

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt + 1

2
xT (t f )P f x(t f ) (4.38)

where Q is a state weighting matrix, R is an input weighting matrix and P f is a
terminal weighting matrix. All these weighting factors or penalty matrices can be
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chosen by the control engineer to fine-tune the behavior of the controller, according
to the particular needs of the plant.

A linear quadratic (LQ) regulator (LQR) is a special case of the generic linear
quadratic control problem. Contrary to the general case described above, the weight-
ing matrices in the LQR problem are constant. Moreover, the control horizon t f is
assumed to approaching infinity. The matrix Q is positive semidefinite, while matrix
R is positive definite. The generic LQ optimal control problem is expressed as the
minimization of the following cost function [42, 97]:

J = 1

2

∫ ∞

t0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (4.39)

We may interpret the above formulation as an attempt to minimize the overall control
energy measured in a quadratic form. In fact, the LQR controller is an automated
way to find an optimal fixed feedback matrix. The final control law then assumes the
form of a constant matrix state feedback gain in the form [10, 97]:

u(t) = −Kx(t) (4.40)

rendering the continuous-time state-space representation in (4.1) to:

ẋ(t) = (A − BK)x(t) (4.41)

which is the closed-loop state equation of the continuous system with an LQ fixed
feedback law.

The matrix gain K can be expressed as [10]:

K = R−1BT P (4.42)

where P is the solution of the differential Ricatti equation given as [42, 118]:

Ṗ = −PA − AT P + PBR−1BT P − Q (4.43)

which for the infinite horizon LQR problem is replaced by the so-called algebraic
Ricatti equation (ARE) defined as

0 = −PA − AT P + PBR−1BT P − Q (4.44)

For a discrete time-invariant state-space system, we may define the LQR controller
as the fixed matrix feedback gain K, which minimizes the following infinite horizon
cost function [50]:

J =
∞∑

k=0

(
xT

k Qxk + uT
k Ruk

)
(4.45)

The output voltage at the actuators is then:
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uk = −Kxk (4.46)

and the discrete linear time-invariant state-space system will be rendered to

xk+1 = (A − BK)xk = Φxk (4.47)

where Φ expresses the state dynamics of the closed-loop system controlled through
a fixed LQ gain. The LQR feedback gain may be calculated from

K = (R + BT PB)−1BT PA (4.48)

where P is the solution of the discrete-time algebraic Ricatti equation (DARE)
defined by

P = Q + AT
(

P − PB
(

R + BT PB
)−1

BT P
)

A (4.49)

LQ controllers are extensively used both in general industrial applications and in
vibration control. To list some of the applications, the LQ strategy has been suggested
for the active vibration control of buildings during an earthquake [85, 97], semi-
active control for vehicle suspensions and mounts platforms [24, 39, 60], in a hybrid
feedforward-feedback setup for active noise control in [66], in optical drives [22]
and in numerous other academic studies aimed at vibration control [1, 43, 51, 52,
59, 67, 88].

4.4 H2 and H∞ Control

Just like the previously introduced linear quadratic control scheme, H-infinity or
as it is commonly denoted in the literature H∞ (H∞) controllers are a subclass
of optimization-based control methods too. H∞ control methods are often utilized
with the aim to create a robust and stabilizing control system [72]. Similarly to
LQ controllers, one of the biggest disadvantage of H∞ controllers is their general
inability to handle constraints, such as saturation limits or naturally occurring process
constraints. The advantage of H∞ controllers is the possibility to control multi-
variable systems and robust control formulations.

In essence, the H∞-optimization of control systems is based on the minimization
of the peak value of closed-loop frequency functions [72]. Let us consider a simple
problem involving a SISO system plant with a disturbance, which is illustrated on
Fig. 4.3. Here we have a plant P(s) and a controller H∞(s). The output of the system
is denoted by y(s), while the system is also subjected to an outside disturbance v(s).
The reference value is denoted by w(s), let us keep it at zero for now. We can denote
the Laplace transform of the plant output as:

y(s) = v(s) − P(s)H∞(s)y(s) (4.50)
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Fig. 4.3 Formulating the sensitivity function in H∞ control: general SISO control loop with a
reference and outside disturbance

from this it follows that

y(s) = S (s)v(s) (4.51)

where S (s) is the so-called sensitivity function according to

S (s) = 1

1 + P(s)H∞(s)
(4.52)

or in matrix terms

S (s) = [I + P(s)H∞(s)]−1 (4.53)

and we may also define the complementary sensitivity function

T (s) = [I + P(s)H∞(s)]−1P(s)H∞(s) (4.54)

The sensitivity function characterizes the sensitivity of the system output to distur-
bances and its value is in the ideal case S (s) = 0. One may regard the sensitivity
function as a performance indicator, similarly to the cost function that is used in LQ
control or in MPC control as well. A low sensitivity function value implies a low
tracking error, thus ultimately increasing the controller performance.

Alternatively for no outside disturbance v(s) = 0 but for a given reference tracking
w(s) �= 0 we may define that [31]:

y(s) = P(s)H∞(s)[w(s) − y(s)]
= [I + P(s)H∞(s)]−1P(s)H∞(s)w(s)

= T w(s) (4.55)

Similarly to the output of the plant, for the control error we may define

e(s) = [w(s) − y(s)]
= [I − T (s)]w(s)

= S (s)w(s) (4.56)
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Fig. 4.4 Peak value ||S ||∞ of the sensitivity function S ( jω)

Our aim is to make the closed-loop feedback system stable and find a controller
H∞(s) which minimizes the peak value of the sensitivity function in the frequency
domain: S ( jω) [124, 125]. The peak value of the sensitivity function can be defined
as the infinite norm of the function S ( jω) given by:

||S ||∞ = max
ω

|S ( jω)| (4.57)

The maximal or peak value of the sensitivity function in the frequency domain as
defined by (4.57) is graphically illustrated in Fig. 4.4.

Although the maximum of the absolute value of the sensitivity function is a very
intuitive way to define its peak, it is not always logically feasible. This is because for
some functions the peak value is not assumed at all for a finite frequency ω. Instead,
one may replace the maximum with supremum or at least an upper bound, so (4.57)
will change to:

||S ||∞ = sup
ω

|S ( jω)| (4.58)

We would like to minimize the peak of the sensitivity function, since in case this
peak is small, then so is the magnitude of S for all frequencies. This implies that the
disturbances are attenuated uniformly well over the whole frequency range [72]. The
minimization of ||S ||∞ is a worst-case optimization procedure, since it minimizes
the effect of the worst disturbance on the output. For a physical vibrating system
this may be understood as minimizing the effect of a harmonic disturbance on the
closed-loop controlled system in its resonance—that is where the sensitivity function
|S | has its peak value.

In order to provide a mathematically more detailed interpretation of H∞ con-
trollers in general, let us define what the H∞ norm means: if H∞ is a space of
matrix-valued functions bounded in the right-half of the complex space, the value of
the H∞ norm is the maximal singular value of the function over that space [97]. In
other words, the H∞ norm is the maximal gain in any direction and frequency for
a SISO system, or as it has been previously pointed out, the maximal magnitude of
the frequency response.

Let us now define a controlled plant P(s) that has two inputs: w(s) is the ref-
erence signal containing disturbances, while u(s) is the controlled input to the plant.
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The plant has two outputs as well, namely e(s), which is the error signal we aim
to minimize and y(s) which is the measurable plant output. Unlike in the previ-
ous case our system is not SISO anymore, but MIMO therefore the variables u(s),
e(s), y(s) and w(s) are vectors while H∞ and P are matrices of transfer functions.

For this system we desire to find a matrix H∞ (or essentially a feedback
matrix K), which will generate the optimal input u(s) based on the measured sig-
nal y(s)—see Fig. 4.5 for illustration. This augmented system can be described by
[46, 58, 104]:

[
e(s)
y(s)

]
= P(s)

[
w(s)
u(s)

]
=

[
P11(s) P12(s)
P21(s) P22(s)

] [
w(s)
u(s)

]
(4.59)

u(s) = H∞(s)y(s) (4.60)

We may express the dependence of error e(s) on the reference w(s) by a term very
similar to (4.56) using the sensitivity function to express the error based on the
reference. For this, we substitute (4.60) into (4.59) and separate the matrix expression
into two equations to get:

e(s) = P11(s)w(s) + P12(s)H∞(s)y(s) (4.61)

y(s) = P21(s)w(s) + P22(s)H∞(s)y(s) (4.62)

Expressing y(s) from the second equation yields

y(s) = [I + P22(s)H∞(s)]−1P21(s)w(s) (4.63)

which after substituting into the first equation yields

e(s) = P11(s) + P12(s)H∞(s)[I − P22(s)H∞(s)]−1P21(s)w(s) (4.64)

= F	(P,H∞)w(s) (4.65)

where the operator F	 is known as the lower linear fractional transformation and it
expresses the sensitivity function.

The objective of H∞ control for the system defined above is to find such a
feedback matrix H∞(s), which minimizes the lower linear fractional transformation
or the F	 part of (4.64) according to the H∞ norm. The same definition also applies
for H2 control. The infinity norm for a general MIMO system can be expressed as
the peak value of the largest singular value taken as a function of frequency [46, 97]:

||F	(P,H∞)||∞ = sup
ω

σ̄s(F	(P,H∞)( jω)) (4.66)

where σ̄s is the maximal singular value of the matrix F	(P,H∞)( jω).
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Fig. 4.5 Controlled plant and H∞ controller

H∞ control is utilized in [14] to control the vibration of rotor blades in a helicopter
individually. Time-invariant but linear nature of the forward helicopter flight is solved
through gain scheduling of the H∞ control laws. Other applications of H∞ based
vibration control systems are for example active seats for the automotive industry or
spacecrafts [109], active magnetic suspensions for rotors [58], active noise control
[20] and active seismic vibration control in buildings [63, 97].

4.5 Soft Computing Approaches

The use of control approaches based on genetic algorithms, artificial neural networks
and fuzzy control is fairly atypical for active vibration control. The reason for this
is that soft computing control systems are rather suited for plants and phenomena,
which are difficult if not impossible to model using exact mathematical, respectively
numerical approaches. However, the dynamic behavior of vibrating mechanical sys-
tems can be easily characterized using ordinary or partial differential equations. This
process then results in transfer function or state-space based models. By the aid of
these models, exact hard control rules can be formulated.

Direct vibration control through genetic algorithms, neural networks or fuzzy con-
trol is rare. These somewhat “exotic” methods may however be utilized to tune more
traditional controllers or to define the physical size or distribution of sensors and
actuators. Other vibration control related applications in which the above-mentioned
control methods are useful are the ones with large actuator hysteresis or other sig-
nificant nonlinearities, such as magnetorheological dampers. The following sections
will briefly characterize these soft computing methods.

4.5.1 Neural Networks

Artificial neural networks (ANN) mimic the behavior of biological neural networks
found in nature by using programming constructs that resemble neurons and their
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Fig. 4.6 Schematic
illustration of a simple
feedforward artificial neural
network. The nodes denote
programming modules
mimicking neurons in a
biological neural network.
Synapses or connections
between the individual
neurons are denoted by
arrows

Input

Hidden

Output

interconnections. Just as in nature, the structure of an ANN changes and adapts
according to the inflowing information emulating the learning process.

Biological neurons are replaced by nodes3 in an artificial neural network and they
are represented by the shaded circle in Fig. 4.6. The simplest ANN has three layers,
as denoted in Fig. 4.6 consisting of an input, a hidden and an output layer. The input
nodes or neurons send data via synapses to the second hidden layer, which in turn
sends data to the output layer via other synapses. The synapses are denoted as arrows
on the figure and in practice they store weighting parameters used to manipulate the
transferred data.

For practical reasons, real life implementations of artificial neural networks rely on
statistical and signal processing ideas more heavily than exact biological principles.
However, what ANN and a real biological neural network have in common is their
adaptive, distributed, nonlinear and parallel processing nature.

Let us represent the neural network with a function f (x), which takes x as
its input. The function f (x) is a composition of other functions gi which in turn
may be a composition of yet other sets of function. This functional dependency
is represented in Fig. 4.7. The dependency of functions can be interpreted in a
so-called functional view, which is predominantly associated with optimization tasks.
If we assume the set of functions gi to be a vector g = [g1 g2 . . . gi . . . gn], then
from the functional view the input x is transformed into a three-dimensional vector
h which is in turn transformed into the two-dimensional vector g and finally to f.
Another equivalent view of the artificial neural network is the so-called probabilistic
view, which is commonly used in the context of graphical models.

The neural networks represented in Figs. 4.6 and 4.7 are of the feedforward type,
without cycles. It is possible to include cycles in ANN, in that case we are talking
about a recurrent network.

The use of neural networks in magnetorheological (MR) damper-based semi-
active control systems is justified by the large hysteretic and nonlinear behavior
of MR dampers. An MR damper actuated semi-active vehicle suspension that is

3 Nodes are also referred to as neurons, processing elements or units.
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Fig. 4.7 Schematic illustration of the dependency of an artificial neural network. Input data x is
mapped through a series of functions hi and gi to the final neural network f (x)

indirectly controlled by artificial neural networks has been proposed by Zapaterio
et al. in [126]. A neural network is used as an inverse model of the MR damper: the
desired force acts as an input, which is used to calculate the voltage needed to generate
that force. The voltage level is then input into a controller acquired via traditional
methods [126]. A neural network approach is used for the control of semi-active
vehicle suspensions by Eski at al. in [35] as well. The control system is contrasted to
a traditional PID controller in simulation. Eski et al. combine a PID controller with
a novel ANN-based dynamics predictor.

Chen et al. combine different artificial neural network methods to attenuate
acoustic signals with a voice-coil actuator in [23]. The ANN methods provide means
to tune the parameters of traditional transfer function-based controllers adaptively.
Adaptive vibration control is implemented similarly using ANN in [68], where the
authors suggest that an ANN-based adaption method can be computationally less
intensive than traditional adaptation methods. ANN has been used in [133] as well
to create models for a predictive controller-based vibration flexible link manipulator
vibration suppression system.

Neural networks are used to suppress vibrations in a permanent magnet linear
motor in [123], rotor system in [3] and in other vibration control applications [7, 27,
64, 121, 122, 127, 129].

4.5.2 Genetic Algorithms

Similar to the artificial neural networks presented previously, genetic algorithms
(GA) mimic nature’s behavior. Instead of emulating the working principles of a
nervous system, genetic algorithms copy the evolutionary selection process. In fact,
genetic algorithms belong to the larger class of evolutionary algorithms and are often
utilized in optimization and search problems.
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The candidate solutions of a GA problem are represented by the individuals4 and
these individuals carry encoded genetic information represented by chromosomes.5

The population of such chromosome carrying individuals is the genetic algorithm
itself, which is gradually evolving toward an optimal solution through several gen-
erations. Naturally, in GA the genetic information is represented by binary or other
type of strings instead of the DNA. We may describe the steps of a genetic algorithm
in a simplified manner:

• initialization
• selection
• reproduction
• termination

At the initialization stage, a population of individuals with random genetic infor-
mation is generated. Typically, a population consists of several hundreds or thousands
of individual “creatures”, covering the range of all possible solutions. It is also pos-
sible to insert individuals with possible optimal genetic material, so to aid the speed
and succession of the selection process.

Just as in nature, the fitter individual survives. In the next stage of the genetic
algorithm, a sub-set of the original population is selected based on fitness to survive
and allowed to reproduce. Naturally, the fitness function is a measure of solution
quality and is based on the desired type of solution, what is better for the individual
changes according to the problem type. The selection process also contains a random
element, so genetic information from individuals with a smaller fitness level can also
enter the next generation. This helps to diversify the population.

The individuals surviving the selection process can reproduce to create the succes-
sive generation. This selection process also emulates the natural selection process.
The genetic information of the “parents” is combined by genome crossover and a
degree of randomness is also introduced by mutation. The process is repeated until
a population with the desired size is created and the process continues with the
next iteration of the selection process. With each new generation, a pool of genetic
material is created which is different from that of the previous generation.

The genetic algorithm is usually terminated after a pre-set number of generations
has evolved, or is terminated based on the fitness of the population.

Genetic algorithms for complex problems require extensive computation time.
The computation of a complex fitness function for each individual in the population
is the main limiting factor of GA. Another drawback is that the GA tends to converge
toward local optima, instead of the global optimum. Certain techniques exist to
diversify the population and prevent this, but no guarantee for the global optimum
can be given.

The schematic representation of a simple genetic algorithm is featured in Fig. 4.8.
The shaded circles represent the individuals, while the column of circles is the actual
generation. The genetic information here is the color of the circle, which of course

4 Also referred to as phenotypes or creatures.
5 Also referred to as genomes, genotypes and strings.
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Generation:
G en. 1 Gen. 2 Gen. 3 Gen. i Gen. N

I SSS RRR GG T

Fig. 4.8 Simplified schematic representation of the progression of a genetic algorithm. I is for
initialization, S is for selection, R for reproduction G denotes the next generation and T is for
termination

could be represented very easily by a binary string. The fitness function here is the
darkest shade, we can state that the fittest is the darkest individual because it could
hide well against a dark background and thus survive to pass on its genes. At an
initialization stage (I) a population is generated with random genetic information,
after this selection takes place (S). Selection includes fitness evaluation, where the
lighter shades are removed from the population and some random “deaths” also
occur—the unfavorable mutations are selected against. The rest of the population
may reproduce (R) and the new generation appears (G). The reproduction happens
through the crossing of the genetic information of the parents and possibly random
mutations. The favorable mutation is more likely to survive and reproduce. After
a satisfactory population fitness or generation number is reached, the algorithm is
terminated (T).

It is clear that the nature of GA is more suited to supplementary optimization in
vibration control, such as the optimal placement of actuators and sensors. It is possible
to use GA as an adaptation feature, augmenting the function of other control systems.
The direct utilization of GA in vibration control is not recommended because of the
possible computational burden or the occurrence of local minima. Despite of its
limitations, GA has been used in active vibration control applications.

The most popular way to utilize GA in the field of vibration control is to perform
a geometric design optimization and therefore passively reach a better vibration
response [65, 89]. A certain application of this principle is the optimal sizing and
placement of actuators and sensors for active control [19, 86, 100, 120]. Tuning
parameter optimization for traditional control systems can be carried out with the
help of GA as well [5, 100, 120].
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True (1)

False (0)

Equilibrium Medium Heavy

Current state Vibration level

Fig. 4.9 Example fuzzy rules describing the measured vibration levels

4.5.3 Fuzzy Control

Fuzzy control allows creating intricate nonlinear controllers, based on a set of sim-
pler heuristic laws. These heuristic control laws may come from the experience of
an engineer, common sense actions or may be a result of extensive mathematical
simulation and optimization.

Fuzzy controllers are based on fuzzy logic, derived from fuzzy set theory.
In contrast to binary logic where a statement can have either true (1) or false (0)
values, in fuzzy logic the statements can assume values in between these two
extremes [128]. Fuzzy controllers may use so-called linguistic variables to describe
the control laws [87]. For example, instead of assigning certain acceleration values
to the vibration of a mechanical system, in fuzzy control we can replace these by
terms like “in equilibrium”, “medium vibrations” and “heavily vibrating”. Control
laws and functions can be associated with these linguistic terms to create a fuzzy con-
troller. Figure 4.9 illustrates a simple set of three rules, describing the vibration level
of a mechanical structure. Let us take a look at the dashed line which represents the
measure of our current vibration level. It is certainly not heavily vibrating and close
to the equilibrium—the value of this statement is about 60% true or 0.6. The actual
level is also a little into medium vibration levels, the value of the statement that we
have medium vibrations is about 30% or 0.3. In linguistic terms, we can say that our
structure is slightly vibrating.

Similarly, it is possible to associate the actuator actions with an analogous set
of rules and linguistic descriptors [87]. Let us imagine three different rules for an
actuator: “no action”, “medium action” and “intense action”. Let us now formulate
a set of rules based on these vibration levels and actuator actions, for example in
linguistic terms we may logically define:

• if vibration is in equilibrium then take no action
• if vibration is medium then take medium action
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• if vibration is heavy then take intense action

The shape of the membership functions featured in Fig. 4.9 may be completely
changed or altered by the designer, and one may use various logical statements and
operators in addition to the if-is-then construct [94]. The example illustrated above
is very simple, but it is always possible to add more rules and insert other logical
twists and turns into the control law. In contrast to genetic algorithms or neural
networks, the fuzzy control laws can be interpreted in a way that a human operator
or designer can easily understand. For those interested in the theoretical basics of
fuzzy sets, fuzzy logic and the design of fuzzy controllers, books by Michels et al.
[87] and others [36, 94, 128] can be recommended. An interesting connection is made
between multi-parametric programming based MPC (MPMPC) and the control of
systems described modeled by a set of fuzzy laws by Kvasnica et al. in [69, 70],
where the explicit minimum-time MPC controllers are proposed for Takagi-Sugeno
fuzzy systems.

Fuzzy control is more suited to direct vibration control than for example artificial
neural networks or genetic algorithms. Although it is possible to use fuzzy control
to tune the parameters in classical controllers [80], fuzzy control systems may be
used alone for vibration attenuation. Fuzzy control is combined with a (moving)
sliding mode controller by Sung et al. in [110], while a fuzzy control-based vehicle
suspension is suggested in [108] by Sun and Yang. The performance of a fuzzy
controller is contrasted to a simple PD controller in by Guclu and Yazici in [48] for
the active control of earthquake-induced vibrations. Fuzzy control is also suggested
for the use on space borne robotic manipulator arms in [116].

Fuzzy control is often utilized for the active vibration control of active and semi-
active vehicle suspension systems [82, 110] because of its ability to emulate and
control the highly hysteretic and nonlinear behavior of MR dampers. The fuzzy
strategy is also employed in civil engineering [48, 91] and in other works [23, 29,
54, 79, 92, 117, 129].

4.6 Other Approaches

The creativity of the human mind is limitless, and this is also true for designing
control strategies which can be used in active vibration control. Minor or major alter-
ations of algorithms introduced previously are abundant in the academic literature.
Furthermore, several works discuss the combination of two methods, for example
using soft computing techniques to turn classical methods into more advanced adap-
tive or robust control systems. Here we will list briefly some of the approaches used
in AVC that have not been explicitly mentioned before.

Sliding mode control (SMC) applies a state switching strategy to alter the dynam-
ics of the control system. The control law is not a continuous function of time,
instead it is a nonlinear system of alternate structures, which are switched based on the
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current state [11]. The main advantage of SMC is robustness, moreover if bang-bang
control is required; the SMC strategy can be even optimal.

Examples of state-space representation-based control laws other than the ones
presented here are dynamic response shaping, eigenvalue placement and minimum
energy control [118]. In a different state-space-based approach Bohn et al. utilizes
an observer to attenuate engine-induced vibrations in [17]. This observer is used to
reconstruct the original disturbance signal, which is then fed back with a negative
sign as a control input. Due to the ever changing speed of the engine, the observer
gains are scheduled based on a speed signal.

Optimization-based control methods may take different aspects of the vibra-
tion engineering task into account, such as the minimization of deflections [98],
velocities, accelerations [115], maximizing resonant frequencies [103] and
minimizing vibration or acoustic energy [41]. Optimization may be used as a tool
to find the ideal placement and number of sensors and actuators offline and in com-
bination with traditional controllers online [19, 44, 90, 103]. Moreover, as it has
been previously mentioned, various optimization-based methods can be used offline
to tune the parameters of traditional controllers based on a cost function [41, 115].
Examples of direct optimization-based vibration control approaches in addition to
the ones presented here can be found in [25, 78, 98] and other works.

Feedback loops are not the only way to control vibrating systems; numerous
studies use the feedforward approach to attenuate mechanical disturbances. In
fact, feedforward is often preferred over feedback in active noise cancellation systems
[42, 105]. If there is no information available about the disturbance acting on the sys-
tem, a feedback loop must be used. In case the type and character of the disturbance
is known a priori, feedforward may be a very good choice. Such scenarios include
periodic oscillations caused by rotating machines [93], or structures where a sensor
may be placed in between the transmission path of the source and the primary point
of actuation. In the case of feedforward control, sensors are not used to directly affect
the response of the controller, they are employed as a type of adaptive measure to
tune the feedforward controller and monitor its performance instead [42]. One of the
common strategies in feedforward control is the use of the so-called filtered-x LMS
algorithm, which is used to tune a FIR filter adaptively. Feedback control-based on
the H∞ method is contrasted to feedforward control in the work of Seba et al. [101]
for a car engine vibration attenuation system. Feedforward-based vibration control
has been applied to a single-link manipulators in [4, 38], while noise attenuation and
control applications for windows [57], loudspeakers [131], heating ventilation and
air conditioning (HVAC) [30] and other systems [28, 61] are also very common.
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