
Chapter 11
Simulation Study of Model Predictive
Vibration Control

This chapter presents the results of simulations performed with various model pre-
dictive control (MPC) strategies applied to the state-space model of the active vibra-
tion control (AVC) demonstration device, representing a class of lightly damped
mechanical systems. The simulations have been aimed at evaluating the implemen-
tation properties of MPC algorithms and investigating the issues caused by the lightly
damped nature of the controlled plant, numerical limitations, optimality problems
and others.

The active vibration suppression of lightly damped flexible mechanical systems is
a uniquely difficult control task, in case model predictive control is considered with
stability and feasibility guarantees. As the numerical study in Sect. 11.1 implies, this
is caused by the long horizons necessary to create a sufficiently large region of attrac-
tion for the control law. Using the state-space model of the AVC demonstrator, min-
imal necessary horizons are compared with the largest achievable deflections at the
tip under stabilized infinite horizon dual-mode quadratic programming-based MPC
(QPMPC). Because of the several hundred steps long prediction horizons—necessary
to drive the system state from an initial state caused by a large deformation—the
application of classical QPMPC on lightly damped mechanical systems with fast
sampling is very unlikely. Although multi-parametric MPC is computationally more
efficient than QPMPC, the long prediction horizons may prohibit practical imple-
mentation because of the intractable offline computation times. Amongst others, the
time required to evaluate an MPMPC controller is related to the achieved horizon
length in Sect. 11.2. The number of polyhedral regions in the controller and the size
of the executable to be loaded onto the hardware running the online MPMPC routine
is also evaluated here.

Simulation evaluation of the Newton–Raphson MPC (NRMPC) algorithm shed
light on some serious numerical problems, which may occur in real-time implementa-
tions. Imprecision at the offline optimization stage caused violation of the invariance
condition and by that indirectly the violation of system constraints as demonstrated
in Sect. 11.3. In addition to exhibiting the nature of this difficulty, the effects of
imposing a prediction performance bound are evaluated. As the simulation results
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imply, invariance condition violation is clearly caused by numerical obstacles and
can be partly remedied by increasing solver precision.

Suboptimality is a natural drawback of the NRMPC approach. However, it is well
illustrated in Sect. 11.4 that simulations performed with higher order lightly damped
state-space models are suboptimal beyond all expectations. Both the evolution of
controller outputs in the time domain and state trajectories point out the deficiencies
of NRMPC in comparison with optimal methods. As the trials indicated in Sect. 11.4
suggest, lowering controller output penalization may improve the situation slightly
and allows the actuators to use their full potential. The use of a certain penalization
value is rationalized for second order models of the vibration attenuation example
in this work, and compared to the much lower settings suitable for higher order
examples.

To see the optimality improvement promised by the discussion in Sect. 8.1.2.1,
simulation trials were performed with the alternate NRMPC extensions. Closed-loop
costs are compared for a simple example in Sect. 11.5, and despite their drawbacks,
the several steps ahead extensions show significant improvement in process opti-
mality for certain problem classes. The evolution of perturbation scaling variables
acquired via evaluating for the future membership and feasibility conditions are also
shown. Although promising for certain applications, the simulation carried out with
a fourth order model of the vibrating system shows no significant improvement in
closed-loop cost and performance. The use of alternative NRMPC extensions is not
justified for the problem considered in this work.

Finally, Sect. 11.6 compares the vibration damping performance of quadratic pro-
gramming, multi-parametric programming and based MPC strategies. The results
of this trial show no surprising facts which could not have been deducted from the
theoretical discussion. The NRMPC algorithm respects constraints and behaves as
expected while the QPMPC- and MPMPC-based controllers provide a faster and
better damped response to the same initial condition.

11.1 On the Horizon Length of Stable MPC

A simple second order prediction model for the experimental demonstration device
described in Chap. 5 with a 100 Hz rate would be suitable to use with a quadratic
programming based MPC controller. The optimization task is likely to be tractable,
as higher sampling rates have already been successfully implemented for vibration
control [71, 72]. Neither the model order, nor the sampling rate requires algorith-
mic or special hardware requirements. However, this is only true if constraints are
considered—but no guarantees on stability or feasibility are given.

If system constraints are considered, the set of allowable states or initial conditions
is generally limited to a subset of space given by those constraints—for example box
constraints on the state. The use of an MPC formulation with an a priori stability
guarantee further limits the size (volume) of this set of allowable states. This limited
subset of state-space is called the region of attraction. If the disturbance takes the
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Fig. 11.1 Conceptual illustration of the time tm required to enter the target set, when starting from
a given initial condition in the region of attraction

system state outside this region, the optimization is simply infeasible. Therefore, the
volume of the region of attraction shall be made as large as possible.

Amongst others, the size or volume of the region of attraction depends on the
given MPC strategy. In case it is an optimal strategy such as dual-mode stabilized
QPMPC or optimal MPMPC, the region is a polyhedral set in hyperspace. In case
it is a suboptimal MPC strategy such as NRMPC, or target sets like the ones in
Sect. 7.5 or 7.6 are used, the region of attraction is only a subset of the maximal
possible region of attraction. In addition to the type of MPC strategy, the volume of the
region of attraction is impacted by the choice of state and input penalization matrices
Q and R, the character of the controlled system itself and the length of the prediction
horizon.

The dynamic properties of the controlled system have a great influence on the
relative size of the region of attraction and the target set. For certain systems with
very light damping, such as the AVC demonstrator example, the effect of the actuators
is very small compared to the range of disturbances one might reasonably expect.
In other words, a large region of attraction has to be computed to allow the state to
migrate inside the target set by the end of the prediction horizon. In this light we
may alternatively state that the necessary horizon length for stabilized MPC control
may be understood as the number of steps necessary to drive the system state from
a given initial condition into the terminal set.

This concept is graphically illustrated in Fig. 11.1. The slowly decaying waveform
suggests a lightly damped behavior of the beam tip or possibly other systems where
the settling time is very long in comparison with sampling rate. Such systems have
been discussed earlier in Sect. 5.1.1, where it has been suggested that a class of engi-
neering problems such as manipulators [8, 19, 26, 42, 61, 63, 73, 74, 76], helicopter
rotors [7, 40, 43], wing surfaces [1, 14, 15] and space structures [20, 39, 44, 51, 57]
may have very similar dynamic behavior to the simple vibrating cantilever from the
viewpoint of predictive control.

The initial condition of these systems has to be contained within the region of
attraction, shown in a conceptional manner as the large polyhedron. There is a certain
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point in the course of behavior, where the state of the system enters the given terminal
set—illustrated as the smaller polyhedron on the figure. The minimal necessary
prediction horizon for stable MPC with constraint feasibility guarantees is then the
time tm in samples. Note that here the invariant sets are only for illustration purposes,
and the concepts of state-space and control output course in the time domain are
mixed purely for demonstration.

This indeed suggests that all systems where the effect of the control action is
limited in comparison with the effort necessary to drive the trajectory into equilib-
rium will require lengthy control horizons. The displacement effect of piezoelectric
actuators is small compared to the range they need to cover, when used for the vibra-
tion suppression of very flexible structures. This effect is not limited to piezoelectric
actuators as active vibration attenuation through electrostrictive or magnetostrictive
materials [4, 9, 49, 56, 69], electrochemical materials [2, 30, 46, 58] and possibly
other actuators would create dynamic models with similar properties and issues for
MPC implementation.

The number of samples required to settle the system from its initial condition
gives an indication of extremely long control horizons. In the case of the labora-
tory demonstration model running saturated linear quadratic (LQ) control—the time
necessary to reach near equilibrium from an initial deflection of 15 mm is approxi-
mately around 2 s. This divided by the sampling rate suggests a necessary minimal
prediction horizon of 200 steps if dual-mode QPMPC with polytopic terminal sets
is considered as a controller. The issue is the same with MPMPC, only instead of the
online computational issues, the implementation difficulties would be transferred to
the offline controller computation stage. The majority of the MPC implementations
available in the literature considered no constraints, which neither limits the available
state-space nor creates computational issues [16, 19, 50, 59, 75]. Other researchers
considered constrained MPC that requires online optimization, thus creating certain
implementation issues, however failed to address the question of stability [8, 13, 21,
27, 48, 71, 72]. Unlike these cases the authors of this book considered MPC imple-
mentations with stability guarantees in preliminary works such as in [64–67] and this
will also be the assumption throughout the simulations and experiments presented
in this and the upcoming chapter.

Let us get back to the case of vibrating systems and estimate the necessary pre-
diction horizon based on the settling time of the system. If an exponential decay of
vibration amplitudes is presumed due to the damping, we may easily approximate
the prediction horizon necessary to ensure a feasible and stable MPC run. In case the
system has been let to vibrate freely starting from a given initial condition, ampli-
tudes dt at a given time can be approximated by the following relation [6, 17, 23]:

dt = d0e−ζωn t (11.1)

where d0 is the initial deflection, t is the time in seconds since the initial conditions
had affected the system, ζ is the damping ratio and ωn is the first or dominant natural
frequency of the vibrating system. If MPC control of the system is presumed with
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guaranteed stability, there must be an amplitude level under which the system enters
the target set. In case we denote this level with dts, then by utilizing relation (11.1),
the minimal prediction horizon nmin for initial deflection d0 and smaller can be
approximated by:

nmin = − lg( dts
d0

)

2πζ f0Ts
(11.2)

where f0 is the first or dominant mechanical eigenfrequency, Ts the sampling rate
considered for control and the rest of the variables as defined for (11.1).

11.1.1 Simulating Necessary Horizon Lengths

Two simulations have been designed to determine the relationship between max-
imal allowable deflection at the beam tip and minimal associated prediction hori-
zon. The first algorithm is based on the traditional dual-mode QPMPC formulation
[3, 45, 60, 70], with stability and feasibility guarantees ensured by terminal con-
straints [12, 47]. The mathematical model used in the simulation and its settings
corresponded to the physical laboratory device and the implementation has been
carried out assuming the general workflow introduced earlier in Sect. 10.1.

The choice of method to resolve the minimal control horizon for a given deflection
was to evaluate the online quadratic programming problem. In case the QP problem
was infeasible at any of the steps, the horizon has been increased until a full successful
run has been achieved. This has been repeated for increasing values of tip deflection
and corresponding states. The summary of the algorithm goes as follows:

Algorithm 11.1

1. Increase initial deflection d and corresponding state xk .

2. Perform the minimization minu J (uk, xk) subject to input and terminal con-
straints.

3. If the minimization is infeasible, increase prediction horizon nc and repeat algo-
rithm from step 2.

4. Else note deflection value d and corresponding horizon nc and repeat algorithm
from step 1.

This method is inexact, though it is time efficient compared to the computationally
more intensive search for the extreme points of the maximal admissible set given the
expected horizon lengths.

An alternative algorithm to determine the minimal horizons to ensure a given beam
tip deflection is based on utilizing successive computations of multi-parametric MPC
controllers with varying deflection constraints. The multi-parametric controllers have
been iteratively computed using the MPT Toolbox [31, 34, 35]. This method is slightly
more computationally intensive than Algorithm 11.1, but also more exact:

http://dx.doi.org/10.1007/978-1-4471-2333-0_10
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Fig. 11.2 Maximal allowable beam tip deflection with corresponding minimal stable dual-mode
QPMPC horizon length for different model orders nx

Algorithm 11.2

1. Increase initial deflection d and set deflection constraints to y = −y = d.

2. Compute minimum time multi-parametric MPC controller.
3. If the computed horizon nc is equal to the one in the previous step, repeat from

step 1.
4. Else denote prediction horizon nc and the corresponding deflection d, then repeat

from 1.

Results of simulating minimal prediction horizon lengths using the formerly intro-
duced Algorithms 11.1 and 11.2 are featured in Fig. 11.2. As it is evident from this
analysis, a fairly small deflection measured at the beam end requires a very long
prediction horizon. For the second order prediction models with a 100 Hz sampling
and a modest ymax = 15 mm maximal allowable deflection is approaching nc = 150
steps. If one includes an excess range reserve in order to prevent infeasible states
to enter the optimization procedure, this value is even higher. Considering a higher
order prediction model allowing the control of faster dynamics, one requires a faster
sampling rate. As an example we demonstrate that a 500 Hz sampled model of the
beam would require approximately a nc = 500 steps ahead prediction horizon to
include states resulting from the same deflection.
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Fig. 11.3 Region of attraction in relation to horizon length, plotted for the NRMPC control law
based on a second order model of the physical system. The innermost ellipse drawn with a solid
line denotes nc = 4 steps the dash-dot outer nc = 32 steps ahead prediction

11.1.2 NRMPC and Horizon Length

The original development of the NRMPC algorithm presented by Kouvaritakis et al.
in [28] and [29] assumes a fixed shift matrix T and E. The role of vector E is merely to
select the first perturbation value from the vector of perturbations. This development
of NRMPC assumes a fixed and pre set prediction horizon. Naturally, enlarging the
horizon here implies a larger region of attraction, too.

While it is possible to use NRMPC in its original formulation on certain systems,
this may not be the case with the given active vibration attenuation example and
possibly other under-damped physical systems. The size of the region of attraction is
very small for typical prediction horizons—in fact beyond the point of practical use.
This is clearly illustrated in Fig. 11.3. A second order model of the physical system has
been used to plot the region of attraction of the NRMPC law for different horizons.
The intersection of the augmented ellipsoid with the state-space, the target set is
shown as the shaded area.1 The volume of the augmented set projection—which is
actually the region of attraction is shown as the ellipse outlines with growing volume.
The innermost ellipse shows projection assuming 4 steps ahead prediction. Horizon
length was then increased by a factor of two, up to the value of 32 steps shown as
the outermost ellipse. Even the relatively large 32 steps horizon would only allow a
maximal initial beam tip deflection of ±0.5 mm, which is indeed unreasonably small.

1 Simulations show that the intersection (target set) size shrinks with increasing prediction horizon,
although in this case with a visually indistinguishable rate—thus not shown on the figure.
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In the case of NRMPC, the region of attraction can be only the approximation of
the polytopic set created by the exact QPMPC control law. The volume of the set
of stabilizable states will be actually smaller than that of QPMPC. As it has been
demonstrated in Sect. 11.1.1, very long horizons are needed to include the necessary
range of deflections into the vibration control problem, which is also true for the
NRMPC controller.

The volume of the region of attraction can be maximized by optimizing prediction
dynamics as suggested by Cannon and Kouvaritakis in [11] and in a slightly different
approach by Imsland et al. in [22]. In the method also introduced in Sect. 8.1.3 the
matrices T and E will be full and unknown variables in the offline optimization
problem. The horizon will be fixed and equal to the system order. However, this
approach may cause numerical problems when calculating the ellipsoids acting as
parameters for the online algorithm. This effect has been noted when using under-
damped systems, such as the model for the experimental device.

11.2 Properties of MPMPC for Active Vibration Control

A promising stable and computationally efficient MPC control strategy for vibrating
systems is the proven and actively researched MPMPC method [5], briefly introduced
in Sect. 8.2.1. In MPMPC, the controller is formulated as a set of regions in the
state-space with associated affine and fixed structures stored in a lookup table [53].
However, it has been suggested by the simulation results presented in the previous
Sect. 11.1 that the size of the necessary region of attraction for this application may
require very lengthy prediction horizons. As the computational burden of MPMPC is
transferred into the offline computation of the controller regions, generally speaking
systems with more than four states and horizons in the range of ten steps cannot
be recommended for MPMPC. Although numerous efforts have been made to limit
the size of the online lookup table and to shorten search times [24, 36], the offline
computation effort required to realize the simplification procedures themselves may
be prohibitive in some cases.

Narrow-band excitation and small discrepancy between the capabilities of actua-
tors and the disturbance render MPMPC as a good controller choice. Nevertheless,
one must not forget that lightly damped vibrating systems with weak static actuation
are very different. MPMPC has been suggested to use for a vibrating cantilever by
Polóni et al. without stability guarantees in [55] while this work was later expanded to
include a priori stability guarantees in [65] shedding line on the inconvenient offline
properties of MPMPC with lightly damped systems.

It has been long known that the main drawback of the MPMPC approach is its
extensive offline computational need [31, 52]. In this section, several simulation tri-
als are introduced using the MPMPC approach to evaluate the offline computational
properties of the algorithm. Instead of using generic systems with “nice” dynam-
ics we rather assume the characteristic dynamics of lightly damped underactuated
vibrating systems. Since this work is focused on the application of efficient and
stable MPC on systems of vibration suppression, practical questions like whether

http://dx.doi.org/10.1007/978-1-4471-2333-0_8
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the offline calculation time is tractable using current computer hardware were ana-
lyzed. In addition to the very important issue of offline calculation times, this section
investigates the number of regions and controller executable sizes necessary to deploy
stable MPMPC on a real system subject to narrow-band excitation.

11.2.1 MPMPC Computation Time

As it has been implied in Sect. 11.1, in order to cover a broad range of deformations
on a flexible structure, the computationally efficient MPMPC formulation will still
require the same long horizons as QPMPC. While the online computational time
is significantly reduced by the use of the MPMPC formulation, large horizons are
prohibitive for other reasons. Several hundred steps long prediction horizons make
the calculation of the controller intractable, especially with higher order models.
Real life applications necessitate eventual system reconfiguration; changes in the
constraints also call for repeated and extensive controller recomputation.

Simulations have been carried out to determine the properties of MPMPC control,
using a second and fourth order state-space model of the laboratory device. Controller
parameters and requirements have been identical to the QPMPC case presented in
Sect. 11.1. Most importantly the region of attraction of MPMPC matched that of the
QPMPC set. In other words, the controllers were required to cover the same range and
produce the same online response, however with a different method of algorithmic
implementation.

Explicit controllers with growing prediction horizon were evaluated using the
MPT Toolbox [31–33], on a personal computer conforming to current hardware
configuration standards.2 The maximal prediction horizon that could be reliably
computed for a second order system in the offline procedure was 162 steps. Over
this horizon, the solver ran into problems, most likely due to memory issues. The
offline computational times required to perform various tasks in MPMPC controller
evaluation are shown in Fig. 11.4. A real-time implementation necessitates the calcu-
lation of the controller and its compilation from source code; therefore, the minimal
realization time is the sum of these. Using extrapolation from the simulation data, the
time required to evaluate an explicit controller allowing maximal deflections would
take approximately 7 days.

Figure 11.4 also shows the time necessary to perform two non-essential tasks
aimed at complexity reduction in MPMPC. One of them is merging, used to simplify
the controller in order to reduce the number of regions, thereby lowering file size and
search times. This merging procedure is implemented in the MPC Toolbox [38] based
on the optimal region merging method of Geyer et al. [18]. It essentially involves
a complexity reducing procedure, where the regions defining the same control law are

2 AMD Athlon X2 DualCore 4400+ @ 2.00 GHz, 2.93 GB of RAM.
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unified. Using simulation results to extrapolate to higher initial deflections, the time
to simplify regions for a maximal allowable deflection of ±30 mm is estimated to
500 days. In fact, it is well known that optimal region merging performed as a post-
processing operation is prohibitive for systems with state dimensions above nx = 2
due to excessive offline computational demands [35, 37].

The other non-essential task is to use a binary search tree, instead of direct region
searching algorithms [25]. This approach has an advantage of decreasing online
search times, albeit it requires additional memory to store the precompiled binary
search tree and data structure. As pointed out previously, the significant offline com-
putational load is the main drawback in this case—not the online performance. The
MPT Toolbox utilizes the method of Tøndel et al. [68] to generate the binary search
tree. The calculation of this tree proved to be the most computationally intensive
task, therefore it has been evaluated only up to horizons nc = 46 steps ahead, taking
over 70 h to complete. Figure 11.4 also illustrates the time necessary to generate this
search tree for different horizons and corresponding maximal deflections. Extrap-
olation suggests extreme calculation times necessary to cover the whole operating
region, similarly to the case of merging.

When a fourth order system has been considered, the multi-parametric calcu-
lation of the controller regions failed when the horizon exceeded a mere nc = 16
steps forward. With this relatively short horizon and low model order, the controller
computational time combined with the executable compilation time approaches 20 h.
An MPMPC controller is clearly intractable for model predictive vibration attenua-
tion applications with broadband excitation.
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11.2.2 MPMPC Regions

The explicitly computed MPC controller will contain a significant number of poly-
topic regions, thus implying issues with on the memory requirements of the controller
hardware and increased search times. Region simplification (merging) reduces the
number of regions and the controller executable size, but also adds to the computa-
tional time.

Figure 11.5 relates the control horizon and thus the maximal allowable tip deflec-
tion to the number of controller regions, which increases at an exponential rate. As
illustrated in the figure, the number of regions is even more rapidly increasing in case
a fourth order system is used. Merging reduces the amount of polytopic controller
regions; however, with increasing horizons computation times become intractable as
illustrated before.

If one considers covering the second eigenfrequency by the controller, the model
order changes to four and at the same time sampling rates will have to increase to
include higher frequency dynamics. Faster sampling requires even longer horizons,
and this in fact will show the drawbacks of MPMPC in such and similar applications.

Simulations performed using the fourth order state-space model of the laboratory
device confirmed this. While the computation of the controller already fails over
nc = 16 due to a solver crash attributed to memory issues, this horizon only yields
a largest allowable deflection of a little over 1 mm. To allow ±20 mm deflections a
400-step ahead horizon is required. This clearly is intractable considering the given
conditions.
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Fig. 11.6 MPMPC controller and compiled executable file size related to prediction horizon

11.2.3 MPMPC Controller Size

The quantity of regions has a direct effect on the controller size as well. The size
of the file containing the raw controller and the C source code of the search tables
is indicated in Fig. 11.6 for a second and fourth order system. When considering a
fourth order system with a horizon length of nc = 16 steps, the executable size grows
up to 60 MBytes.

11.3 Issues with NRMPC Invariance

The dual-mode control law assumes that a fixed feedback law will steer the state into
equilibrium beyond the prediction horizon. Both the feasibility of process constraints
and from this indirectly the stability of the process is guaranteed by enforcing process
constraints beyond the horizon. Enforcing process constraints beyond the horizon
will create a target set which in nature will be invariant, or self-contracting.

In simple terms, invariance of the target set in an MPC strategy with guaranteed
stability means that once the system state enters the target set it cannot leave it
again. This is assuming the state is steered into equilibrium without further outside
disturbance. Naturally, in a real MPC implementation the state may leave the target set
since disturbances may occur at any point of the control course, and thus the controller
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Fig. 11.7 NRMPC simulation run showing violation of the lower output constraints

strategy never “switches” permanently to the LQ mode. Given that the formulation
of the MPC strategy and its implementation is correct, the violation of the invariance
condition in simulation may indicate numerical errors in the implementation. These
problems appear in the state-space representation as the state trajectory entering and
subsequently leaving the target set, but from the viewpoint of input sequences and
possibly outputs, this may materialize as a violation of system constraints.

Violation of both the invariance condition and process constraints has been
observed in numerous simulations involving the NRMPC algorithm with optimized
prediction dynamics. Figure 11.7 shows the evolution of control outputs for a sec-
ond order linear time-invariant state-space model of the active vibrating beam. Here
too the constraints were set to the physical limits of the transducers, ±120 V. Input
penalization was set to R = r = 1E-4, which is based on simulations involving sim-
ple LQ controllers. State penalty has been fixed as Q = CT C. An initial condition
emulating the deflection of the beam has been set, as a disturbance at the beginning
of the simulation. No further disturbance has been assumed in this test.

To illustrate the issues with invariance better, this NRMPC algorithm implemen-
tation was slightly atypical. Normally the algorithm would decide between engaging
NRMPC portion or pure LQ code according to whether current state at sample
k is part of the target set3 or not. Here however, following the essential principles of
invariance, the controller switched permanently to LQ mode in case the state entered
the target set. This approach assumes that simulations involve initial conditions and
no other disturbances are present during the control course. Naturally, this assump-
tion is unacceptable in an experimental implementation, although it serves a clear
diagnostic purpose if invariance is questionable.

The evolution of outputs in Fig. 11.7 seems to be normal until a certain point,
where the lower process constraints are clearly violated. After this, the output diagram
seems to be ordinary again, albeit serious issues are suggested by the fact that the
LQ controller produced outputs exceeding preset limits. Constraint violation occurs

3 Coincident with the intersection of the augmented ellipsoid with original state-space.
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after the LQ controller is engaged, but for some reason the states do not remain in
the target set where a pure linear-quadratic controller could take care of the rest of
the control course.

Figure 11.8 shows a clearer picture on the nature of the problem. Here state-space
is depicted in two dimensions, along with the evolution of the state trajectory. States
are spiraling towards the origin from the initial condition. This is how oscillations
at the output are represented using the state variables. At a certain point, the state
trajectory enters the target set, depicted as the gray shaded ellipse in the middle of
the figure. There is a problem though, after the state entered the target set it leaves
it, which is a clear violation of the invariance condition.

This behavior has been only observed when the dynamics optimization principle
as presented by Cannon and Kouvaritakis in [11] is implemented into the NRMPC
offline optimization algorithm. In case the original NRMPC formulation is consid-
ered, none of these peculiar problems occur. Many signs point to the fact that this
problem is of numerical nature, and can be solved by modifying the offline opti-
mization algorithm or solver settings. Variables of the offline NRMPC optimization
contain both extremely large and small numbers; simple matrix multiplications may
be erroneous and are prone to numerical problems. The optimization process itself
may also cause issues with invariance.
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11.3.1 Performance Bounds

Optimized prediction dynamics in NRMPC makes it possible to recover the maximal
region of attraction under any given fixed feedback law, while only requiring the
horizon equal to that of the model order [11, 22]. While this is theoretically possible,
the previous example demonstrates the practical limits of this approach.

A partial remedy to the issue with invariance violation is setting a boundary on
the cost function value [11]. This unfortunately also directly affects the projection
size, thus limiting the region of attraction. There is a performance boundary or cost
limit, which redefines the invariance condition according to (8.57).4 The bound of
the predicted cost is then set by γ, which is enforced for all initial conditions of the
autonomous system in Ez:

J̃ ≤ γ (11.3)

Sacrificing the size of region of attraction may not be an issue with certain model
classes. However, simulations performed using the LTI model of the vibration damp-
ing application showed that the range of allowable vibration deflections was severely
compromised in the interest of numerical stability. A performance bound, deemed
low enough to ensure numerical integrity of the optimization limited the deflec-
tion range under ∼10 mm. This clearly defeats the purpose of optimizing prediction
dynamics, and makes the practical use of NRMPC in this application questionable.

Using a second order model of the physical system, several tests were performed
to approximate the ideal compromise between the size of augmented ellipsoidal set
projection and numerical stability. For a given performance bound γ these tests
varied the initial condition, changing the first element of the state vector from 0 to
decreasing negative values according to x0 = [x11 0]T . For each initial condition,
the evolution of control outputs was calculated, and its maximal value plotted against
the given starting state. The tests utilized penalties R = r = 1E-4, Q = CT C and
output has been constrained within u = −u = 120 V.

As visible in Fig. 11.9, the unrestrained cost bound and maximal region of attrac-
tion produces erroneous results for certain initial conditions, while others involve
evolution of controller output where the maximal value stays within constraints.
This approach is a rough estimation, and has its obvious limitations. Naturally it
does not imply that a given γ necessarily ensures a numerically stable controller for
all initial conditions, but only for the given search direction. The resolution of this
simulation is an additional weak point, where it is possible to imagine a situation
where invariance violation occurs exactly between steps changing initial condition.

Despite the shortcomings of this approach, Fig. 11.9 shows that the given con-
troller is numerically adequate below a γ = 1E5 performance bound, and suggests

4 For detailed mathematical description please refer to [11] or the relevant section in this work:
See: Sect. 8.1.3

http://dx.doi.org/10.1007/978-1-4471-2333-0_8
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that the optimal value might be somewhere around γ = 7E5 which provides a con-
trol process preserving invariance, but still maximizing the range of allowable initial
conditions. Therefore, there must be a performance bound gamma γ over which the
numerical integrity of the offline process is optimized.

An approximate method to estimate this level and to ensure a large region of
attraction let us consider the following algorithm:

Algorithm 11.3
To estimate the maximal level of performance bound γ where the offline NRMPC
optimization remains numerically viable, perform the following algorithm:

• Create a prediction model and evaluate offline NRMPC problem for the cur-
rent performance bound γ. Determine bounds on the set defining the region of
attraction.

• For a given direction in state-space, choose an initial condition and run a simula-
tion. If no constraint violation is detected, repeat with a given resolution of initial
conditions until the edge of region of attraction is reached.

If constraint violation is detected decrease γ and start over, otherwise increase γ.

Stop if pre defined resolution is reached.

In this case, invariance problems were detected according to the previously intro-
duced method: by checking for constraint violation during a given simulation run.
A more sophisticated technique could be determining whether the state trajectory
leaves the target set after entering. Despite the approximate nature of the algorithm,
a good estimate on the performance bound ensuring the maximal safe region of
attraction may be computed.



11.3 Issues with NRMPC Invariance 407

10
−14

10
−12

10
−10

10
−8

10
−6

10
2

10
4

10
6

10
8

SeDuMi precision setting (eps) (−)

C
os

t b
ou

nd
 

 (
−

)

Default

Fig. 11.10 Approximate maximal performance bound γ before invariance violation occurs,
depending on solver precision settings

11.3.2 Solver Precision and Invariance

The violation of the invariance condition experienced throughout simulation trials of
the NRMPC algorithm clearly has a numerical character. This suggests opportunity to
fine-tune the SDP solver parameters in order to increase precision. Although several
possible SDP solvers were considered for the implementation of the offline NRMPC
problem in Sect. 10.3.1 none of them was deemed to be suitable5 for this application
except SeDuMi.

It is possible to redefine some of the default solver parameters in SeDuMi [62].
There are three variables controlling numerical tolerance, although the exact role
of these is unlisted in the manual and customizing them is not recommended [54].
The desired solver accuracy is influenced by setting the pars.eps command structure
to a smaller value. The default numerical accuracy is set to eps = 1E-9, when
this value is reached the optimization terminates. Setting this value smaller means
more precision, although optimization will take longer. Fortunately, given the typical
problem dimensionality in NRMPC, this is not an issue. Setting parameter eps to 0
means that the optimization will continue as long as the solver can make progress.

Figures 11.10 and 11.11 show the results of simulations searching for the connec-
tion between solver precision settings and the size of region of attraction. The simula-
tions have been performed using the NRMPC algorithm, utilizing a second order LTI
model of the laboratory device. Input penalty was maintained at R = r = 1E-4 and
state penalty has been set to Q = CT C. Inputs were constrained to u = −u = 120 V,
which agrees with the piezo transducer physical limits of ±120 V. Algorithm 11.3
has been used to approximate the maximal possible performance bound and the
corresponding volume of the region of attraction before violation of the invariance
condition occurs.

5 See B.3.3 for details.

http://dx.doi.org/10.1007/978-1-4471-2333-0_10
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Solver precision is plotted against the approximate maximal safe performance
bound γ in Fig. 11.10. The corresponding volume of region of attraction for the
given example and settings is shown in Fig. 11.11. The default precision is indi-
cated on the figures as the vertical line at the 1E-9 mark. Superseding the default
tolerance settings and algorithm precision to the obtainable maximum in SeDuMi
increased the level of performance bound γ by more than two orders of magnitude.
The resulting growth in the volume of the region of attraction has been similarly more
than two orders of magnitude. In the light of the practical application, the allowable
deflection range increased about an order of magnitude. A maximal tip deflection
of ±3 mm on the laboratory device is hardly exploitable, however increasing
this to ±30 mm allows the controller to perform its task under any mechanically
viable situation.

These simulation and findings refer to the case with a second order model of the
vibrating beam. We have to note that with other examples, especially higher order
models, this improvement was not so significant. To preserve invariance and prevent
numerical problems, the size of the initial stabilizable set was sacrificed significantly.

11.4 Issues with NRMPC Optimality

Simulations performed using a second order mathematical model of the vibrating
structure showed the viability of using NRMPC for the model predictive vibration
control of lightly damped structures. The optimality difference between the perfor-
mance of QPMPC experienced both in simulations and experiments proved to be
minor enough to produce an indistinguishable vibratory response. In fact, the Monte
Carlo simulations described by Kouvaritakis et al. in [29] showed no more than
2% increase in closed-loop cost when compared to QPMPC. The paper suggests
that for randomly generated examples with second and fifth order examples and the
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NRMPC extension implemented, closed-loop cost remained only 1% worse in 97%
of the cases.

Unfortunately, the lightly damped example used in this work proves to be a more
difficult case for NRMPC. This is especially evident if the model order is increased
anything above nx = 2. Although from a practical engineering standpoint prediction
dynamics and a controller based on a second order model is satisfactory, one might
argue that a more complex prediction model could also explicitly include higher
order dynamics. This is valid in particular for controllers covering more than one
vibratory modes and a broadband excitation.

A fourth order model considered for the application on the vibrating beam could
explicitly include first and second mode dynamics, thus in this case cover the band-
width of approximately 0–80 Hz. Such a model has been prepared by using the
experimental identification method described in Sect. 5.2. Simulations examining
optimality were performed with this model using 250 Hz sampling, and character-
ized by the following linear time-invariant state-space system:

A =

⎡
⎢⎢⎣

0.97778 −0.52189 −0.13501 0.60563
0.069689 0.94384 −0.4819 −0.45066

−0.0027596 0.10094 0.29177 1.2812
−0.0098709 −0.047971 −0.66151 0.33772

⎤
⎥⎥⎦

B = [
0.00061339 −0.00046246 −0.00043512 −0.00015075

]T

C = [−0.38171 −0.5632 −0.48193 0.40628
]

(11.4)

and with D = 0.

The problems caused by suboptimality of the NRMPC method are clearly illus-
trated in Fig. 11.2, where the evolution of ENRMPC and NRMPC controller outputs
uk are plotted in time domain and compared to the truly optimal QPMPC controlled
system. Here an initial condition x0 = [0.75 0 0 0]T has been considered, which
is equivalent to an initial deflection 1.5 mm at the beam tip. Every effort was made
to create similar circumstances for both controllers. The prediction horizon of the
QPMPC controller was set to nc = 36 steps, the smallest possible for the considered
initial condition. The horizon allowed engaging constraints without requiring too
lengthy computations. Input penalty has been set to R = r = 1E-4 and this time the
state penalty Q was equivalent to the identity matrix of conforming dimensions for
both QPMPC and NRMPC controllers. Process constraints have been engaged only
on inputs, restraining them to ±120 V. Simulations showed no significant improve-
ment when using the extension with the NRMPC controller; neither did optimized
prediction dynamics greatly affect the control outputs.

It is evident that a QPMPC-based controller evolution produces the expected
switching behavior, while NRMPC outputs resemble a smoother sinusoidal curve.
What is more important, the NRMPC controller outputs are far from the constraints
thus not utilizing the full possible potential of the actuators. This is obviously notice-
able in the damping performance of the controller too, although tip vibrations are
irrelevant to the point and not shown here. Using the extension (ENRMPC) as sug-
gested by Kouvaritakis et al. in [29] does not provide satisfactory improvement

http://dx.doi.org/10.1007/978-1-4471-2333-0_5
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Fig. 11.12 Evolution of controller outputs for QPMPC and NRMPC controlled vibrations on a
fourth order system model. Note the high degree of suboptimality for NRMPC

either. This simulation did not make use of optimized prediction dynamics, however
it would not affect the outcome in any way. Due to the minimal difference between
the ENRMPC and NRMPC control outputs, the following state trajectories will not
differentiate between them. The trajectory marked as NRMPC utilizes the extension,
thus presenting the slightly better case.

Figure 11.3 illustrates the projection of the control trajectory in state-space into
the two-dimensional plane defined by x1, x2 and x3 = 0, x4 = 0. Here the cut of the
NRPMPC target set is shown as a shaded ellipsoid, and the cut of QPMPC target set
as the slightly larger polyhedral region. Intersection of the multidimensional plane
defined by constraints with the above-mentioned coordinate system is also depicted.
As suggested by the development of control outputs in Fig. 11.12, the QPMPC control
trajectory is spiraling toward desired equilibrium at a much faster pace than NRMPC.
Furthermore, it is important to note that the NRMPC target set is significantly smaller
than that for QPMPC. In addition, the set is not approaching the region bounded by
the half-spaces defined by constraints close enough.

Given the difficulties visualizing state behavior in a multidimensional system,
projections of trajectories and cuts of target sets defined by the rest of the state
coordinates are also depicted in Fig. 11.14. The volume difference of QPMPC and
NRMPC target sets is significant in each view. It is worth noting that states x1 and x2
are most dominant in the trajectory, the rest of the components play a less vital role
in the overall outcome of the trajectory. This also indicates the dominance of the first
vibration mode in the overall dynamic response.
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11.4.1 Penalization and Optimality

The majority of simulations and experiments in this work assumes identical input
penalty R. The choice of this tuning parameter is in most cases R = r = 1E-4, which
is based on the physical system model behavior using an LQ controller. A simple
simulation6 has been designed to determine ideal input penalization value R, where
a fourth order model with 250 Hz sampling was utilized. State has been penalized
using the identity matrix of conforming dimension; initial condition has been set to
be the equivalent of a 1.5 mm deflection at the beam tip. The physical limits of the
piezoelectric transducers have been kept in mind when determining a suitable R.

Figure 11.5 shows evolution of controller outputs using LQ controllers with dif-
ferent input penalization values. Fixing R at very low values, for example R = r =
1E-7 produces a very aggressive simulation, where output voltages exceed 2500 V.
This is not shown in the figure for clarity; only the range of ±300 V is indicated.
Setting R = r = 1E-4 exceeds the constraints, but if one considers using a saturated
controller, produces a reasonably lively output. On the other hand, with setting an
input penalty of R = r = 7E-4 one will not even reach the constraints, producing a
conservative and slow controller.

Taking into account the previously introduced simulation and weighing, it is easy
to see that R = r = 1E-4 seems to be an ideal setting for the MPC control of
this particular system. With an unspecified constrained MPC controller the same
simulation run would hit the upper, lower and upper constraint again while avoiding
constraints for the rest of the simulation run. This in fact implies an ideal setting, not
sacrificing performance but maintaining a reasonable level of aggressiveness.

Determining controller output penalization has many other implications for both
constrained and unconstrained MPC, although its most visible effect will still be per-
formance. Amongst others, if constrained stable MPC control is considered penalty
settings directly influence the volume of region of attraction and target set. In the
case of NRMPC, these volumes are determined by the volumes of multi-dimensional
augmented ellipsoid projections and intersections with the original state-space.

To better illustrate this fact, Fig. 11.6 shows the relationship between input penalty
R and the volume of region of attraction and the target set. The most noteworthy part
of the diagram is the two volumes converging to the same value, after exceeding a
certain penalization level. After this, the size of the region of attraction is limited to
the size of the target set and the NRMPC controller becomes a simple LQ controller.

As experienced during numerous trials with the NRMPC controller, the level of
input penalty R has a surprisingly considerable effect on optimality and general
usability of NRMPC using a fourth order model of the vibrating system. Initial
conditions have been identical in all cases, emulating a tip deflection of 1.5 mm.
To minimize the chance of encountering numerical problems, performance bounds
were set to γ = 0.5E5 in all cases. States have been penalized by the identity matrix,
actuator limits were constrained to the typical u = −u = 120 V.

6 See 12.1 for an experiment with different input penalty values R.
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Figure 11.7 shows the evolution of inputs uk for simulations utilizing the NRMPC
algorithm with different settings of R. This simulation utilizes a fourth order predic-
tion model to demonstrate the connection between suboptimality of the controller
and penalization. For a fourth order model of the physical system the seemingly ideal
R = r = 1E-4 produces particularly suboptimal outputs. In this case, constraints
are not even invoked and the controller does not make use of the full potential of
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actuators. Decreasing the level of R however brings an improvement, at a certain
point even constraints are invoked.

Contrary to the earlier presented simulation results using LQ controllers, results
demonstrated in Fig. 11.17 imply that much smaller penalization values are required
for higher order examples. Penalization R = r = 1E-4 produces a remarkably
abnormal output while the seemingly too aggressive diminutive penalization at least
make use of the full potential of the transducers. However, the built-in suboptimality
of NRMPC is still significant, further lowering R does not significantly decrease
closed-loop cost.

11.5 Alternate NRMPC Extension

The extension of the NRMPC algorithm introduced in Sect. 8.1.2.1 building on the
optimality improvement of Kouvaritakis et al. in [29] took the concept further by
using several steps ahead extrapolations the augmented state in the hope of a per-
formance improvement. The aim of the NRMPC extension proposed by Li et al.
in [41] is similar, that is to improve the optimality and thus the performance of the
algorithm. Instead of iterating the augmented state zk+1 = Ψ zk several steps forward
and constraining it to the invariant set Ez, Li et al. chose a one step forward iteration
of the state xk which was then constrained to the x-subspace projection Exz of the
invariant ellipsoid Ez .

Simulations have been performed to assess optimality of the NRMPC algorithm
using the modified extension of applying several steps forward iterations of the
augmented state zk constrained into the augmented invariant ellipsoidal set Ez .

A simple second order state-space model has been assumed for each simulation,

http://dx.doi.org/10.1007/978-1-4471-2333-0_8
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Fig. 11.18 Controller output in simulation, showing different NRMPC extensions compared to
truly optimal QPMPC

having the following structure [10, 28]:

A =
[

1 0.1
0 1

]
B =

[
0

0.0787

]

C = [1 0] (11.5)

States have been penalized by matrix Q, set equal to the identity matrix of con-
forming dimensions. Controller outputs have been penalized by R = r = 1E-4.
Prediction horizon for the QPMPC-based controller has been set to nc = 4. The
initial condition of x0 = [−0.5 0] was located on the boundary of the region of
attraction. In the case of NRMPC with fixed prediction matrices, the same require-
ment calls for a horizon of nc = 25 steps forward. State constraints have not been
considered and controller outputs were limited to |u| ≤ 1. In order to make sure that
the invariance condition is not violated due to numerical difficulties, performance
bound has been set to γ = 1E5.

Figure 11.8 shows the evolution of controller outputs for different versions of
the NRMPC controller compared to truly optimal QPMPC. All simulations shown
here use algorithms with optimized prediction dynamics. Understandably, QPMPC
produces the best result, along with the smallest closed-loop cost. The worst evolu-
tion of outputs is acquired trough using the original NRMPC code, since constraints
are not even reached. Simulation marked as NRMPCk+1 is actually an algorithm
implementing ENRMPC—the original extension introduced by Kouvaritakis et al.
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Table 11.1 Comparison of closed-loop costs for the same simulation, using different NRMPC
controllers. Closed-loop cost using QPMPC is JQPMPC = 97.00, OD marks the use of optimized
prediction dynamics

Extension –a 1b 2 3 4

JNRMPC (-) 105.42 105.15 103.81 99.72 -
JNRMPC (OD) (-) 103.69 97.92 97.05 97.04 97.00
a NRMPC—no extension
b ENRMPC—original extension of Kouvaritakis et al.

in [29]. It provides an improvement relative to NRMPC without the extension, how-
ever there is still a possibility approaching optimal QPMPC more closely.

The remainder of simulations indicated in Fig. 11.8 implement extensions to the
NRMPC algorithm, where membership of the augmented state z is assumed not at
the next step (k + 1), but at steps (k + 2) and (k + 3). Improvement in the evolution
of controller outputs is visually distinguishable, where (k + 3) produces nearly the
same output as optimal MPMPC.

To quantify the level of suboptimality in comparison with QPMPC better, closed-
loop costs are indicated in Table 11.1. Costs for the different adaptations of NRMPC
have been calculated using the formerly introduced example and assuming the
same conditions. The truly optimal closed-loop cost obtained via using QPMPC
is JQPMPC = 97.00, the NRMPC costs should ideally be as close to this as possible.
NRMPC algorithms with and without optimized dynamics were evaluated where
OD marked the use of optimized prediction dynamics at the offline stage. From
this, it is implied that optimizing prediction dynamics not only enlarges the size of
region of attraction, but also improves the optimality. The original formulation of
NRMPC [28] produced the worst results. Using the extension and several steps ahead
variations on the extension the costs gradually improve. In fact, the (k + 4) steps
extension ensures the same cost as the QPMPC controller up to numerical precision
differences.

Scalers μ resulting from different membership and feasibility conditions are plot-
ted for the previously discussed example in Fig. 11.19. The original extension calcu-
lates scalers from the membership function for (k + 1) and ensures the feasibility of
constraints at step (k). For each step, the higher of the two scaler values is selected.
On the other hand, much less conservative scalers μ are computed for several steps
ahead alternative extensions. Membership in the previous steps is not regarded, how-
ever the algorithm has to check for the feasibility of constraints for each step ahead.
Thus, for an extension assuming membership at (k + i) steps, scalers are compared
for membership and feasibility from (k) up to (k + i − 1) and the highest value is
used to scale the perturbation vector.

The optimal QPMPC controller output has been compared to the original and
alternate NRMPC extensions for a vibration suppression example. Higher order
models provide better conditions to assess optimality differences, therefore a fourth
order state-space model of the vibrating beam has been considered for each trial.
Figure 11.20 demonstrates the results of these simulations. A very low input penalty
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Fig. 11.20 Controller output for different alternate NRMPC extensions, using a model of the vibrat-
ing beam

has been used for the NRMPC controllers, according to the findings presented in
Sect. 11.4. Controller output was constrained to ±120 V.

As implied from the figure, alternate extensions of the NRMPC algorithm do
not provide significant improvement in comparison with the original one. Two- and
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three-step ahead alternate extensions (k + 2) and (k + 3) produce slightly higher
output voltages, theoretically being better than their original counterpart. The level
of improvement is visually indistinguishable. For this reason the system output,
in this case beam tip vibration is not presented here. Closed-loop costs quantify
minor improvements in process optimality, where the strictly optimal QPMPC cost
is J = 133.48. Original extended NRMPC produces a cost of J(k+1) = 195.76, a
two-step ahead modification J(k+2) = 191.09, while three steps lowers the cost to
J(k+2) = 187.66. Two-steps ahead extension provides an optimality improvement
compared to the original extension of only 2.4%, and still remains far from ideal.
Even the three steps ahead alternate extension NRMPC code produces 40% worse
closed-loop costs than QPMPC.7

Considering the formerly introduced simulation results, we may state that given
the typical models used in the problem area of active vibration suppression, alterna-
tive extensions to the original NRMPC problem do not present a viable method of
optimality enhancement. The gain in optimality does not justify questionable invari-
ance properties, and the likely issues connected with model uncertainty. Although
speed decrease is slight and the algorithm remains computationally efficient, several
steps ahead extensions do require more computational time because of the additional
feasibility conditions.

Alternate NRMPC extensions may not be suitable for improving optimality in
vibration suppression, however it is possible to imagine certain models and appli-
cations where even the small optimality increase is advantageous. The simulation
results presented by Li et al. in [41] suggest a similar conclusion from the viewpoint
of the AVC of lightly damped systems: the optimality improvement is mainly sig-
nificant with models where the effect of actuation is large, those with large input
penalties R. Although the improvement of Li et al. does match the optimality of this
modified NRMPC algorithm to QP-based MPC under a percent for the majority of
randomly generated models, the results are valid for large R. Neither the iterated
augmented state Ψ zk nor the iterated state-based algorithm of Li et al. has been later
considered for the active vibration attenuation trial on the demonstrator hardware.

11.6 Comparison of QPMPC, MPMPC and NRMPC
in Simulation

Beam tip vibration suppression performance through various MPC strategies has
been compared in simulation and contrasted to the free response. The strategies were
QPMPC, optimal MPMPC and NRMPC all with a priori stability guarantees. For this
simulation study, an initial deflection of 5 mm has been considered to allow a tractable
computation of the MPMPC controller structure, and shorter QPMPC simulation
times. This simulation pointed out latent issues with the implementation of QPMPC

7 This is a quite significant suboptimality especially that [29] states that for randomly generated
examples, the error never rose above 2% and remained under 1% for 97% of the examples.
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Fig. 11.21 Comparison of the vibration response in millimeters, measured at the beam tip (a) and
the controller output (b) generated by the QPMPC, MPMPC and NRMPC algorithms in Volts.
Simulated disturbance is identical initial deflection of the beam tip

and MPMPC on the real system, while at the same time validated functionality of the
NRMPC algorithm. All necessary steps were taken to create as identical conditions
to all three controllers as possible.

A second order model of the vibrating system has been assumed to generate
predictions, sampled by 100 Hz which sufficiently includes the first vibration mode
and exceeds the requirements of Shannon’s theorem [23]. All simulations started with
the same initial condition of x0 = [− 7 − 1.6073]T , emulating a 5 mm deflection at
the beam tip. The system response was simulated by the same state-space model,
thus not considering model uncertainty. To avoid numerical difficulties, performance
of the NRMPC controller has been bounded to γ = 1E5—affecting the size of the
region of attraction. Inputs have been penalized by R = r = 1E-4, while states used
the identity matrix for Q. System constraints were set to the typical physical limit
of transducers, a maximal ±120 V. No other process constraints were engaged. The
minimal QP-based stable MPC horizon to ensure the inclusion of the given initial
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Fig. 11.22 Detail of the input and output of the MPC controllers contrasted to the free response
between samples 10 and 30. The detailed beam tip deflections are shown in (a), while (b) shows
the simulation response of the control inputs

condition into the region of attraction required a prediction horizon of nc = 40
steps. This same horizon was also required by the MPMPC controller, implemented
as described in Chap. 10.2.

Illustrated in the example shown in Fig. 11.21, the best response is ensured by
QPMPC control as it is logically expected. The controller drives actuators hard into
saturation, as assumed from the physical properties of the system. QPMPC provides
a strictly optimal control run with a closed-loop cost serving as an ideal lowest in
comparison with suboptimal NRMPC. The QPMPC controller assumes the same
quadratic cost function as the rest of the controllers, and safeguards for constraint
feasibility using a constraint checking horizon. Despite the best possible response,
the lengthy simulation times forecast issues at the real-time implementation.

In the case of MPMPC control, the tip vibration and the controller output is nearly
indistinguishable. Essentially both controllers produce the same output, since they
only differ with QPMPC only in the method of implementation. The response is
very favorable, driving actuators to saturation as expected. Online simulation times
are surprisingly short, however offline precomputation of the controller has been
somewhat lengthy even for the limited region of attraction. Details of this example
are shown in Fig. 11.22, illustrating the input and output responses between samples
10 and 30 (0.1–0.3 s).

Due to the built-in suboptimality of the formulation NRMPC performs slightly
worse than the former two. This is an expected behavior, and it is visible on both
figures. Increase in cost function value in MPMPC is insignificant and only due to
numerical effects, while the drawback of NRMPC is a quite significant cost increase
of ∼15% when compared to both QPMPC and MPMPC. As discussed in Sect. 11.4,

http://dx.doi.org/10.1007/978-1-4471-2333-0_10
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higher order models perform worse, the optimality difference can reach 40% even
with the NRMPC extension8 implemented and enabled.

Although there are some minor differences in performance, all the investigated
MPC methods decrease the settling time of the beam into equilibrium significantly,
ultimately improving the natural damping properties of the structure. The simula-
tion results also suggest that the piezoceramic actuators, which contribute only very
modest deflections in the static mode, considerably increase the natural damping
near resonance.
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