

Conquering Complexity

Mike Hinchey � Lorcan Coyle
Editors

Conquering
Complexity

Foreword by Roger Penrose

Editors
Mike Hinchey
Lero, Irish Software Eng Research Centre
University of Limerick
Limerick, Ireland
mike.hinchey@lero.ie

Lorcan Coyle
Lero, International Science Centre
University of Limerick
Limerick, Ireland
lorcan.coyle@lero.ie

ISBN 978-1-4471-2296-8 e-ISBN 978-1-4471-2297-5
DOI 10.1007/978-1-4471-2297-5
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011944434

© Springer-Verlag London Limited 2012
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:mike.hinchey@lero.ie
mailto:lorcan.coyle@lero.ie
http://www.springer.com
http://www.springer.com/mycopy

Today, “complexity” is a word that is much
in fashion. We have learned very well that
many of the systems that we are trying to deal
with in our contemporary science and
engineering are very complex indeed. They
are so complex that it is not obvious that the
powerful tricks and procedures that served us
for four centuries or more in the development
of modern science and engineering will
enable us to understand and deal with
them. . .
. . . We are learning that we need a science of
complex systems and we are beginning to
develop it.
– Herbert A. Simon

Foreword

The year 2012—of publication of this book Conquering Complexity—is particu-
larly distinguished by being the centenary year of Alan Turing, whose theoretical
analysis of the notion of “computing machine”, together with his wartime work in
deciphering German codes, has had a huge impact on the enormous development of
electronic computers, and the consequent impact that these devices have had on our
lives, particularly with regard to science and technology. It is now possible to model
extremely complex systems, whether they be naturally occurring physical processes
or the predicted behaviour of human-constructed machinery. The complexity that
can now be handled by today’s electronic computers has completely transformed
our understanding of many different kinds of physical behaviour, such behaviour
being taken to act in accordance with the known physical laws. The extreme pre-
cision of these laws, as ascertained in numerous delicate experiments, allows us to
have very considerable confidence in the results of these computations, and when
the computations are done correctly, we may have a justified trust in the expectation
of agreement between the computationally predicted outcomes and the details of ob-
served behaviour. Conversely, such agreement between calculated predictions and
actual physical behaviour reflects back as further confirmation on the very accuracy
of the laws that are employed in the calculations.

However, the very possibility of reliably performing calculations of the extreme
complication that is frequently required raises numerous new issues. Many of these
issues would not have been evident before the advent of modern electronic computer
technology, which has rendered it possible—and indeed commonplace—to enact
the vast computations that are frequently needed. Whereas, our modern computers
can be trusted to perform the needed calculations with enormous speed and accu-
racy, the machines themselves have no understanding of what they are doing nor of
the purposes to which the results of these computations are to be put. It is we who
must supply this understanding. Our particular choices of the actual computations
that are to be performed need to be correct ones that do actually reflect the physical
processes that are intended to be simulated. In addition, there are frequently many
different ways of achieving the same ends, and insight and subtle judgements need
to be employed in the decisions as to which procedures are the most effective to be

vii

viii Foreword

deployed. In my own extremely limited experience, in early 1956, when computer
technology was still in its infancy, I obtained some direct experience of the vast
simplification, even then, that could sometimes be achieved by the reformulation of
a particular calculation into a subtly different one. How much greater is the poten-
tial, now, to improve the speed, accuracy—and indeed the very feasibility—of an
intended simulation. The very enormity of the complexity of so many currently re-
quired computations vastly increases the role of such general considerations, these
often leading to reliable computations that might have otherwise appeared not to
be feasible, and frequently providing a much better understanding of what can in-
deed be achieved in practise. Many such matters are considered in this book, which
address the issue of computational complexity from a great many different points
of view. It is fascinating to see the variety of different types of argument that are
here brought to bear on the issues involved, which so frequently indeed provide the
taming of complexity in its multifarious forms.

Roger Penrose

Preface

Software has long been perceived as complex, at least within Software Engineering
circles. We have been living in a recognised state of crisis since the first NATO
Software Engineering conference in 1968. Time and again we have been proven
unable to engineer software as easily/cheaply/safely as we imagined. Cost overruns
and expensive failures are the norm.

The problem is fundamentally one of complexity—translating a problem spec-
ification into a form that can be solved by a computer is a complex undertaking.
Any problem, no matter how well specified, will contain a baseline of intrinsic
complexity—otherwise it is not much of a problem. Additional complexities ac-
crue as a solution to the problem is implemented. As these increase, the complexity
of the problem (and solution) quickly surpasses the ability of a single human to fully
comprehend it. As team members are added new complexities will inevitably arise.

Software is fundamentally complex because it must be precise; errors will be
ruthlessly punished by the computer. Problems that appear to be specified quite eas-
ily in plain language become far more complex when written in a more formal no-
tation, such as computer code. Comparisons with other engineering disciplines are
deceptive. One cannot easily increase the factor of safety of software in the same
way that one could in building a steel structure, for example. Software is typically
built assuming perfection, often without adequate safety nets in case the unthinkable
happens. In such circumstances it should not be surprising to find out that (seem-
ingly) minor errors have the potential to cause entire software systems to collapse.
A worrying consideration is that the addition of additional safety or fault protection
components to a system will also increase the system’s overall complexity, poten-
tially making the system less safe.

Our goal in this book is to uncover techniques that will aid in overcoming com-
plexity and enable us to produce reliable, dependable computer systems that will
operate as intended, and yet are produced on-time, in budget, and are evolvable,
both over time and at run time. We hope that the contributions in this book will aid
in understanding the nature of software complexity and provide guidance for the
control or avoidance of complexity in the engineering of complex software systems.
The book is organised into three parts: Part I (Chaps. 1 and 2) addresses the sources

ix

x Preface

and types of complexity; Part II (Chaps. 3 to 9) addresses areas of significance in
dealing with complexity; Part III (Chaps. 10 to 17) identifies particular application
areas and means of controlling complexity in those areas.

Part I of the book (Chaps. 1 and 2) drill down into the question of how to recog-
nise and handle complexity. In tackling complexity two main tools are highlighted:
abstraction and decomposition/composition. Throughout this book we see these
tools reused, in different ways, to tackle the problem of Controlling Complexity.

In Chap. 1 José Luiz Fiadeiro discusses the nature of complexity and highlights
the fact that software engineering seems to have been in a permanent state of crisis,
a crisis might better be described as one of complexity. The difficulty we have in
conquering it is that the nature of complexity itself is always changing. His senti-
ment that we cannot hope to do more than “shift [. . .] complexity to a place where
it can be managed more effectively” is echoed throughout this book.

In Chap. 2 Michael Jackson outlines a number of different ways of decompos-
ing system behaviour, based on the system’s constituents, on machine events, on
requirement events, use cases, or software modules. He highlights that although
each offers advantages in different contexts, they are in themselves not adequate to
master behavioural complexity. In addition he highlights the potential for oversim-
plification. If we decompose and isolate parts of the system and take into account
only each part’s intrinsic complexities we can easily miss some interactions between
the systems, leading to potentially surprising system behaviour.

Part II of the book outlines different approaches to managing or controlling com-
plexity. Chapters 3 and 4 discuss the need to tackle complexity in safety-critical
systems, arguing that only by simplifying software can it be proven safe to use.
These chapters argue for redundancy and separation of control and safety systems
respectively.

Gerard Holzmann addresses the question of producing defect-free code in
Chap. 3. He argues that rather than focusing on eliminating component failure by
producing perfect systems, we should aim to minimise the possibility of system
failure by focusing on the production of fallback redundant systems that are much
simpler—simple enough to be verifiably correct. In Chap. 4, Wassyng et al. argue
that rather than seeking to tame complexity we should focus our efforts on avoiding
it altogether whenever reliability is paramount. The authors agree with Holzmann
in that simpler systems are more easy to prove safe, but rather than using redundant
systems to take control in the case of component failure they argue for the complete
separation of systems that must be correct (in this case safety systems) from control
systems.

In Chap. 5, Norman Schneidewind shows how it is possible to analyse the trade-
offs in a system between complexity, reliability, maintainability, and availability
prior to implementation, which may reduce the uncertainty and highlight potential
dangers in software evolution. In Chap. 6, Bohner et al argue that change tolerance
must be built into the software and that accepting some complexity today to decrease
the long term complexity that creeps in due to change is warranted.

Chapters 7 to 9 discuss autonomous, agent-based, and swarm-like software sys-
tems. The complexity that arises out of these systems comes from the interactions
between the system’s component actors or agents.

Preface xi

In Chap. 7 Hinchey et al. point out that new classes of systems are introducing
new complexities, heretofore unseen in (mainstream) software engineering. They
describe the complexities that arise when autonomous and autonomic character-
istics are built into software, which are compounded when agents are enabled to
interact with one another and self-organise. In Chap. 8 Mike Hinchey and Roy Ster-
ritt discuss the techniques that have emerged from taking inspiration from biological
systems. The autonomic nervous system has inspired approaches in autonomic com-
puting, especially in self-managing, self-healing, and other self-* behaviours. They
consider mechanisms that enable social insects (especially ants) to tackle problems
as a colony (or “swarm” in the more general sense) and show how these can be
applied to complex tasks. Peña et al. give a set of guidelines to show how com-
plexity derived from interactions in agent-oriented software can be managed in
Chap. 9. They use the example of the Ant Colony to model how complex goals
can be achieved using small numbers of simple actors and their interactions with
each other.

Part III of the book (Chaps. 10 to 17) discusses the control of complexity in dif-
ferent application areas. In Chap. 10, Tiziana Margaria and Bernhard Steffen argue
that classical software development is no longer adequate for the bulk of application
programming. Their goal is to manage the division of labour in order to minimise
the complexity that is “felt” by each stakeholder.

The use of formal methods will always have a role when correct functioning of
the software is critical. In Chap. 11, Jonathan Bowen and Mike Hinchey examine the
attitudes towards formal methods in an attempt to answer the question as to why the
software engineering community is not willing to either abandon or embrace formal
methods. In Chap. 12 Filieri et al. focus on how to manage design-time uncertainty
and run-time changes and how to verify that the software evolves dynamically with-
out disrupting the reliability or performance of applications. In Chap. 13, Wei et
al. present a timebands model that can explicitly recognise a finite set of distinct
time bands in which temporal properties and associated behaviours are described.
They demonstrate how significantly their model contributes to describing complex
real-time systems with multiple time scales. In Chap. 14 Manfred Broy introduces
a comprehensive theory for describing multifunctional software-intensive systems
in terms of their interfaces, architectures and states. This supports the development
of distributed systems with multifunctional behaviours and provides a number of
structuring concepts for engineering larger, more complex systems.

In Chap. 15, John Anderson and Todd Carrico describe the Distributed Intelligent
Agent Framework, which defines the essential elements of an agent-based system
and its development/execution environment. This framework is useful for tackling
the complexities of systems that consist of a large network of simple components
without central control. Margaria et al. discuss the difficulties in dealing with mono-
lithic ERP systems in Chap. 16. As the business needs of customers change the
ERP system they use must change to respond to those needs. The requirements of
flexibility and customisability introduce significant complexities, which much be
overcome if the ERP providers are to remain competitive. In Chap. 17 Casanova et
al. discuss the problem of matching database schemas. They introduce procedures

xii Preface

to test strict satisfiability and decide logical implication for extralite schemas with
role hierarchies. These are sufficiently expressive to encode commonly-used Entity-
Relationship model and UML constructs.

We would like to thank all authors for the work they put into their contributions.
We would like to thank Springer for agreeing to publish this work and in particular
Beverley Ford, for her support and encouragement. We would like to thank all of
our friends and colleagues in Lero.1

Mike Hinchey
Lorcan Coyle

Limerick, Ireland

1This work was supported, in part, by Science Foundation Ireland grant 03/CE2/I303_1 to Lero–
the Irish Software Engineering Research Centre (www.lero.ie).

http://www.lero.ie

Contents

Part I Recognizing Complexity

1 The Many Faces of Complexity in Software Design 3
José Luiz Fiadeiro

2 Simplicity and Complexity in Programs and Systems 49
Michael Jackson

Part II Controlling Complexity

3 Conquering Complexity . 75
Gerard J. Holzmann

4 Separating Safety and Control Systems to Reduce Complexity 85
Alan Wassyng, Mark Lawford, and Tom Maibaum

5 Conquering System Complexity . 103
Norman F. Schneidewind

6 Accommodating Adaptive Systems Complexity with Change
Tolerance . 121
Shawn Bohner, Ramya Ravichandar, and Andrew Milluzzi

7 You Can’t Get There from Here! Large Problems and Potential
Solutions in Developing New Classes of Complex Computer Systems 159
Mike Hinchey, James L. Rash, Walter F. Truszkowski, Christopher A.
Rouff, and Roy Sterritt

8 99% (Biological) Inspiration. 177
Mike Hinchey and Roy Sterritt

9 Dealing with Complexity in Agent-Oriented Software Engineering:
The Importance of Interactions . 191
Joaquin Peña, Renato Levy, Mike Hinchey, and Antonio Ruiz-Cortés

xiii

xiv Contents

Part III Complexity Control: Application Areas

10 Service-Orientation: Conquering Complexity with XMDD 217
Tiziana Margaria and Bernhard Steffen

11 Ten Commandments of Formal Methods. . . Ten Years On 237
Jonathan P. Bowen and Mike Hinchey

12 Conquering Complexity via Seamless Integration of Design-Time
and Run-Time Verification . 253
Antonio Filieri, Carlo Ghezzi, Raffaela Mirandola, and Giordano
Tamburrelli

13 Modelling Temporal Behaviour in Complex Systems with Timebands 277
Kun Wei, Jim Woodcock, and Alan Burns

14 Software and System Modeling: Structured Multi-view Modeling,
Specification, Design and Implementation 309
Manfred Broy

15 Conquering Complexity Through Distributed, Intelligent Agent
Frameworks . 373
John A. Anderson and Todd Carrico

16 Customer-Oriented Business Process Management: Vision and
Obstacles . 407
Tiziana Margaria, Steve Boßelmann, Markus Doedt, Barry D. Floyd,
and Bernhard Steffen

17 On the Problem of Matching Database Schemas 431
Marco A. Casanova, Karin K. Breitman, Antonio L. Furtado,
Vânia M.P. Vidal, and José A. F. de Macêdo

Index . 463

Contributors

John A. Anderson Cougaar Software, Inc., Falls Church, VA, USA,
janderson@cougaarsoftware.com

Steve Boßelmann TU Dortmund, Dortmund, Germany,
steve.bosselmann@cs.tu-dortmund.de

Shawn Bohner Rose-Hulman Institute of Technology, Terre Haute, USA,
bohner@rose-hulman.edu

Jonathan P. Bowen Museophile Limited, London, UK,
jonathan.bowen@lsbu.ac.uk

Karin K. Breitman Department of Informatics, PUC-Rio, Rio de Janeiro, RJ,
Brazil, karin@inf.puc-rio.br

Manfred Broy Institut für Informatik, Technische Universität München, München,
Germany, broy@in.tum.de

Alan Burns Department of Computer Science, University of York, York, UK,
burns@cs.york.ac.uk

Todd Carrico Cougaar Software, Inc., Falls Church, VA, USA,
tcarrico@cougaarsoftware.com

Marco A. Casanova Department of Informatics, PUC-Rio, Rio de Janeiro, RJ,
Brazil, casanova@inf.puc-rio.br

Markus Doedt TU Dortmund, Dortmund, Germany,
markus.doedt@cs.tu-dortmund.de

José Luiz Fiadeiro Department of Computer Science, University of Leicester, Le-
icester, UK, jose@mcs.le.ac.uk

Antonio Filieri DeepSE Group @ DEI, Politecnico di Milano, Milan, Italy,
filieri@elet.polimi.it

xv

mailto:janderson@cougaarsoftware.com
mailto:steve.bosselmann@cs.tu-dortmund.de
mailto:bohner@rose-hulman.edu
mailto:jonathan.bowen@lsbu.ac.uk
mailto:karin@inf.puc-rio.br
mailto:broy@in.tum.de
mailto:burns@cs.york.ac.uk
mailto:tcarrico@cougaarsoftware.com
mailto:casanova@inf.puc-rio.br
mailto:markus.doedt@cs.tu-dortmund.de
mailto:jose@mcs.le.ac.uk
mailto:filieri@elet.polimi.it

xvi Contributors

Barry D. Floyd Orfalea College of Business, California Polytechnic University,
San Luis Obispo, CA, USA, bfloyd@calpoly.edu

Antonio L. Furtado Department of Informatics, PUC-Rio, Rio de Janeiro, RJ,
Brazil, furtado@inf.puc-rio.br

Carlo Ghezzi DeepSE Group @ DEI, Politecnico di Milano, Milan, Italy,
ghezzi@elet.polimi.it

Mike Hinchey Lero—the Irish Software Engineering Research Centre, University
of Limerick, Limerick, Ireland, mike.hinchey@lero.ie

Gerard J. Holzmann Laboratory for Reliable Software, Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA, USA, gholzmann@acm.org

Michael Jackson The Open University, Milton Keynes, UK, jacksonma@acm.org

Mark Lawford McMaster University, Hamilton, ON, Canada,
lawford@mcmaster.ca

Renato Levy Intelligent Automation Inc., Rockville, USA, rlevy@i-a-i.com

José A. F. de Macêdo Department of Computing, Federal University of Ceará,
Fortaleza, CE, Brazil, jose.macedo@lia.ufc.br

Tom Maibaum McMaster University, Hamilton, ON, Canada, tom@maibaum.org

Tiziana Margaria Chair Service and Software Engineering, University of Pots-
dam, Potsdam, Germany, margaria@cs.uni-potsdam.de

Andrew Milluzzi Rose-Hulman Institute of Technology, Terre Haute, USA,
milluzaj@rose-hulman.edu

Raffaela Mirandola DeepSE Group @ DEI, Politecnico di Milano, Milan, Italy,
mirandola@elet.polimi.it

Joaquin Peña University of Seville, Seville, Spain, joaquinp@us.es

James L. Rash NASA Goddard Space Flight Center, Emeritus Greenbelt, MD,
USA, james.l.rash@nasa.gov

Ramya Ravichandar CISCO Inc., San Jose, CA, USA, ramyar@vt.edu

Christopher A. Rouff Lockheed Martin Advanced Technology Laboratories, Ar-
lington, VA, USA, christopher.rouff@lmco.com

Antonio Ruiz-Cortés University of Seville, Seville, Spain, aruiz@us.es

Norman F. Schneidewind Department of Information Science, Graduate School of
Operational and Information Sciences, Monterey, CA, USA, ieeelife@yahoo.com

Bernhard Steffen Chair Programming Systems, TU Dortmund, Dortmund, Ger-
many, steffen@cs.tu-dortmund.de

Roy Sterritt School of Computing and Mathematics, University of Ulster, New-
townabbey, Northern Ireland, r.sterritt@ulster.ac.uk

mailto:bfloyd@calpoly.edu
mailto:furtado@inf.puc-rio.br
mailto:ghezzi@elet.polimi.it
mailto:mike.hinchey@lero.ie
mailto:gholzmann@acm.org
mailto:jacksonma@acm.org
mailto:lawford@mcmaster.ca
mailto:rlevy@i-a-i.com
mailto:jose.macedo@lia.ufc.br
mailto:tom@maibaum.org
mailto:margaria@cs.uni-potsdam.de
mailto:milluzaj@rose-hulman.edu
mailto:mirandola@elet.polimi.it
mailto:joaquinp@us.es
mailto:james.l.rash@nasa.gov
mailto:ramyar@vt.edu
mailto:christopher.rouff@lmco.com
mailto:aruiz@us.es
mailto:ieeelife@yahoo.com
mailto:steffen@cs.tu-dortmund.de
mailto:r.sterritt@ulster.ac.uk

Contributors xvii

Giordano Tamburrelli DeepSE Group @ DEI, Politecnico di Milano, Milan, Italy,
tamburrelli@elet.polimi.it

Walter F. Truszkowski NASA Goddard Space Flight Center, Emeritus Greenbelt,
MD, USA, walter.f.truszkowski@nasa.gov

Vânia M.P. Vidal Department of Computing, Federal University of Ceará, Fort-
aleza, CE, Brazil, vvidal@lia.ufc.br

Alan Wassyng McMaster University, Hamilton, ON, Canada,
wassyng@mcmaster.ca

Kun Wei Department of Computer Science, University of York, York, UK,
kun@cs.york.ac.uk

Jim Woodcock Department of Computer Science, University of York, York, UK,
jim@cs.york.ac.uk

mailto:tamburrelli@elet.polimi.it
mailto:walter.f.truszkowski@nasa.gov
mailto:vvidal@lia.ufc.br
mailto:wassyng@mcmaster.ca
mailto:kun@cs.york.ac.uk
mailto:jim@cs.york.ac.uk

Abbreviations

ABAP Advanced Business Application Programming
ACM Association for Computing Machinery
ADL Architecture Description Language
ADT Abstract Data Type
AE Autonomic Element
ANS Autonomic Nervous System
ANTS Autonomous Nano-Technology Swarm
AOP Aspect Oriented Programming
AOSE Agent-Oriented Software Engineering
APEX Adaptive Planning and Execution
API Application Programming Interface
AUML Agent UML
BAPI Business Application Programming Interface
BB Black-Box
BOR Business Object Repository
BP Business Process
BPEL Business Process Execution Language
BPM Business Process Management
BPMS Business Process Management System
CACM Communications of the ACM
CAS Complex Adaptive System
CASE Computer-Aided Software Engineering
CBD Component-Based Development
CCF Common Cause Failure
CCFDB Common-Cause Failure Data Base
CE Capabilities Engineering
CMDA Cougaar Model-Driven Architecture
COM Computation Independent Model
COP Common Operating Picture
CORBA Common Object Request Broker Architecture
COTS Component Off The Shelf

xix

xx Abbreviations

CPR Core Plan Representation
CSP Communicating Sequential Processes
CTMCs Continuous Time Markov Chains
DARPA Defense Advanced Research Projects Agency
DoD Department of Defense
DL Description Logic
DSL Domain Specific Language
DST Decision Support Tool
DTMCs Discrete Time Markov Chains
EDAM EMBRACE Ontology for Data and Methods
EMBRACE European Model for Bioinformatics Research and Community

Education
EMBOSS European Molecular Biology Open Software Suite
EMF Encore Modelling Language
ER Entity-Relationship
ERP Enterprise Resource Planning
FAST Formal Approaches to Swarm Technologies
FD Function Decomposition
FLG Feature Level Graph
FDR Failures-Divergences Refinement
FIFO First In First Out
FPGA Field-Programmable Gate Array
GB Grey-Box
GCAM General Cougaar Application Model
GCME Graphical Cougaar Model Editor
GDAM General Domain Application Model
GEF Graphical Editing Framework
GPAC General-Purpose Autonomic Computing
GRASP General Responsibility Assignment Software Patterns
GUI Graphical User Interface
HITL Human In The Loop
HOL Higher Order Logic
HPRC High-Performance Reconfigurable Computing
HRSM Hubble Robotic Servicing Mission
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property
IT Information Technology
IWIM Idealised Worked Idealised Manager
jABC Java Application Building Centre
JC3IEDM Joint Consultation, Command and Control Information Exchange

Data Model
JDBC Java Database Connectivity
JDL Joint Directors of Laboratories
JET Java Emitter

Abbreviations xxi

jETI Java Electronic Tool Integration Platform
JVM Java Virtual Machine
JMS Java Message Service
KLOC Thousand (k) Lines of Code
LARA Lunar Base Activities
LOC Lines of Code
LOGOS Lights-Out Ground Operating System
MAPE Monitor-Analyse-Plan-Execute
MAS Multi-Agent System
MBE Model-Based Engineering
MBEF-HPRC Model-Based Engineering Framework for High-Performance

Reconfigurable Computing
MBSE Model-Based Software Engineering
MDA Model-Driven Architecture
MDD Model-Driven Development
MDPs Markov Decision Processes
MDSD Model-Driven Software Development
MGS Mars Global Surveyor
MIL Module Interconnection Language
MIP Multilateral Interoperablity Programme
MLM Military Logistics Model
MPS Meta Programming System
MOF Meta Object Facility
MTBF Mean-Time Between Failure
NASA National Aeronautics and Space Administration
NATO North Atlantic Treaty Organisation
NOS Network Object Space
OASIS Organisation for the Advancement of Structured Information

Standards
OCL Object Constraint Language
OMG Object Management Group
OO Object-Oriented
OOP Object-Oriented Programming
OOram Object Oriented Role Analysis and Modelling
OSMA NASA Office of Systems and Mission Assurance
OTA One-Thing Approach
OWL Web Ontology Language
PAM Prospecting Asteroid Mission
PARSY Performance Aware Reconfiguration of software SYstems
PCTL Probabilistic Computation Tree Logic
PDA Personal Digital Assistant
PIM Platform Independent Model
PLD Programmable Logic Device
PSM Platform Specific Model
PTCTL Probabilistic Timed Computation Tree Logic

xxii Abbreviations

PVS Prototype Verification System
QNs Queueing Networks
QoS Quality of Service
QSAR Quantitative Structure Activity Relationships
R2D2C Requirements-to-Design-to-Code
RC Reconfigurable Computing
RFC Remote Function Call
RMI Remote Method Invocation
RPC Remote Procedure Call
RSL RAISE Specification Language
SASSY Self-Architecting Software SYstems
SBS Service-Based Systems
SC Situation Construct
SCA Service Component Architecture
SCADA Supervisory Control and Data Acquisition
SDE Shared Data Environment
SDR Software-Defined Radio
SIB Service-Independent Building block
SLA Service Level Agreement
SLG Service Level Graph
SNA Social Networking Application
SNS Semantic Network Space
SOAP Simple Object Access Protocol
SOA Service-Oriented Architecture
SOC Service-Oriented Computing
SOS Situational Object Space
SRF Situational Reasoning Framework
SRML SENSORIA Reference Modelling Language
SSA Shared Situational Awareness
SWS Semantic Web Service
TA TeleAssistence
TCO Total Cost of Ownership
TCTL Timed Computation Tree Logic
TCSPM Timed CSP with the Miracle
UID Unique Object Identifier
UML Unified Modelling Language
URL Uniform Resource Locator
UTP Unifying Theories of Programming
VDM Vienna Development Method
VHDL VHSIC hardware description language
VLSI Very-Large-Scale Integration
W3C World Wide Web Consortium
WB White-Box
WBS White-Box Shared
WSDL Web Service Definition Language

Abbreviations xxiii

xADL Extensible Architecture Description Language
XMDD Extreme Model-Driven Development
XMI XML Metadata Interchange
XML Extensible Markup Language
XP Extreme Programming
XPDL XML Process Definition Language
3GL Third Generation Languages

Part I
Recognizing Complexity

Chapter 1
The Many Faces of Complexity in Software
Design

José Luiz Fiadeiro

1.1 Introduction

Complexity, not in the formal sense of the theory of algorithms or complexity sci-
ence, but in the more current meaning of “the state or quality of being intricate or
complicated”, seems to be unavoidably associated with software. A few quotes from
the press over the last 10 years illustrate the point:

• The Economist, 12/04/2001—In an article aptly called “The beast of complex-
ity”, Stuart Feldman, then director of IBM’s Institute for Advanced Commerce,
is quoted to say that programming was “all about suffering from ever-increasing
complexity”

• The Economist, 08/05/2003—A survey of the IT industry acknowledges that
“computing has certainly got faster, smarter and cheaper, but it has also become
much more complex”

• Financial Times, 27/11/2004—The British government’s chief information of-
ficer gives the following explanation for the Child Support Agency IT project
failure: “Where there’s complexity, there will, from time to time, be problems”

• The Economist, 06/09/2007—In an article called “The trouble with computers”,
Steven Kyffin, then senior researcher at Philips, is quote to concede that computer
programmers and engineers are “compelled by complexity”

• Financial Times, 27/01/2009—“It is very easy to look at the IT industry and con-
clude that it is fatally attracted to complexity”

But why are we so bothered about complexity? The following quote from the
Financial Times of 27/01/2009 summarises the point quite effectively:

Complexity is the enemy of flexibility. It entangles us in unintended consequences. It blocks
our attempts to change. It hides potential defects, making it impossible to be sure our sys-
tems will function correctly. Performance, transparency, security—all these highly desirable
attributes leak away in the face of increasing complexity.

J.L. Fiadeiro (�)
Department of Computer Science, University of Leicester, Leicester, UK
e-mail: jose@mcs.le.ac.uk

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_1, © Springer-Verlag London Limited 2012

3

mailto:jose@mcs.le.ac.uk
http://dx.doi.org/10.1007/978-1-4471-2297-5_1

4 J.L. Fiadeiro

In this chapter, we argue that, although the public in general would readily ac-
cept that software is ‘complicated’, complexity in the sense of the quotes above
has lurked under many guises since the early days of programming and software
engineering, which explains why software seems to be in a permanent ‘crisis’. We
also discuss the ways that we, computer scientists, have been devising to tackle “the
beast of complexity”, which we classify into two main activities: abstraction and
decomposition.

1.1.1 Abstraction

Abstraction is an activity that all of us perform on a daily basis without necessarily
realising so. Abstraction is one of the ways we use to go around the complexity of
the world we live in and simplify the way we interact with each other, organisations,
systems, and so on.

Bank accounts provide a rich and mundane example of the way we use abstrac-
tion, as the following ‘story’ illustrates. In “A Visit to the Bank”, Paddington Bear
goes to Floyds Bank to withdraw money for his holiday. He decides to leave the
interest in for a rainy day but is horrified to learn that it only amounts to three pence.
Tension mounts when he finds out that he cannot have back the very same notes that
he deposited in the first place: he knew perfectly well that he had spilled marmalade
over them. . .

We (or most of us) have learnt that an account is not a physical storage of bank
notes that we manipulate through the cashier just as we would do with a safe box
or a piggy bank. However, the advantages (and dangers?) of working with bank ac-
counts as abstractions over the physical manipulation of currency are not restricted
to avoiding handling sticky bank notes (or other forms of ‘laundering’). Indeed, a
bank account is not (just) a way of organising the storage of money, but of our
business interactions: it solves a good part of the complexity involved in business
transactions by decoupling our ability to trade from the manipulation of physical
bank notes.

Much the same can be said about the way we use computers. Abstraction per-
vades computing and much of the history of computer science concerns precisely
the development of abstractions through which humans can make full usage of the
(computational) power made available by the machines we call computers by tack-
ling the complexity of programming them. In the words of Peter Denning [16]:

Most computing professionals do not appreciate how abstract our field appears to others.
We have become so good at defining and manipulating abstractions that we hardly notice
how skilfully we create abstract ‘objects’, which upon deployment in a computer perform
useful actions.

Paddington’s view of his bank account may make us smile because these are
abstractions that we have learnt to live with a long time ago. However when, not
long ago, we tried to organise a transfer from Leicester to Lisbon, it turned out that
providing the clerk with the SWIFT and IBAN codes was not sufficient and that a

1 The Many Faces of Complexity in Software Design 5

full postal address was indispensable. (No, this was not at Floyds Bank but a major
high-street bank in the UK.) What is more, when given a post code that, for some
reason, did not look credible enough to his eyes, the clerk refused to go ahead with
the transfer on the grounds that “the money might get lost in the post”. . .

This example from ‘real life’ shows that the fact that abstraction is such a rou-
tine activity does not mean that we are all equally and well prepared to perform
it in a ‘professional’ way—see [47] for a discussion on how abstraction skills in
computer science require education and training. The following paragraph from the
27/01/2009 article of the Financial Times quoted above can help us understand how
abstraction relates to complexity:

Most engineers are pretty bright people. They can tolerate a lot of complexity and gain a
certain type of power by building systems that flaunt it. If only we could get them to focus
their intellect instead on eliminating it. The problem with this message is that, for all our
best efforts, we almost never eliminate complexity. Most of the time, when we create a system
that appears simple, what we have actually done is shift the complexity somewhere else in
the technology stack.

Indeed, operating systems, compilers and, more recently, all sorts of ‘clever’ mid-
dleware support the layers of abstraction that allow us to program software systems
without manipulating directly the code that the machine actually understands (and
we, nowadays, rarely do). The current emphasis on model-driven development is
another example of this process of abstraction, this time in relation to programming
languages, avoiding that IT specialists spread marmalade over lines of code. . .

Why is it then that, in spite of phenomenal progress in computer science for at
least three decades, which the quote from P. Denning acknowledges, is complexity
still haunting software as evidenced by the articles cited at the beginning of this
section? Expanding the quote from the 08/05/2003 edition of The Economist:

Computing has certainly got faster, smarter and cheaper, but it has also become much more
complex. Ever since the orderly days of the mainframe, which allowed tight control of IT,
computer systems have become ever more distributed, more heterogeneous and harder to
manage. [. . .] In the late 1990s, the internet and the emergence of e-commerce “broke
IT’s back”. Integrating incompatible systems, in particular, has become a big headache. A
measure of this increasing complexity is the rapid growth in the IT services industry. [. . .]

What is the significance of the internet to the complexity of software? In this
chapter, we will be arguing that the reason for the persistence of the ‘complexity
crisis’ is in the change of the nature of complexity, meaning that programming and
software engineering methodology often lags behind advances in more technologi-
cal areas (such as the internet) and, therefore, fails to develop new abstractions that
can be used for tackling the complexity of the systems that are being built.

1.1.2 Decomposition

Although we started this chapter with quotes that have appeared in the press during
the last 10 years, the threat of complexity was the topic of a famous article published

6 J.L. Fiadeiro

in the Scientific American 10 years before that, in 1994, following on the debacle of
the Dallas international airport baggage handling system—glitches in the software
controlling the shunting of luggage forced the airport to sit empty for nine months:

The challenge of complexity is not only large but also growing. [. . .] When a system be-
comes so complex that no one manager can comprehend the entirety, traditional develop-
ment processes break down. [. . .] To keep up with such demand, programmers will have to
change the way that they work. [. . .] Software parts can, if properly standardised, be reused
at many different scales. [. . .] In April [1994], NIST announced that it was creating an Ad-
vanced Technology Program to help engender a market for component-based software.

Nothing very surprising, one could say. Indeed, another way of managing com-
plexity that we use in our day to day is embedded in the Cartesian principle of
divide and conquer—breaking a complicated problem down into parts that are eas-
ier to solve, and then build a solution to the whole by composing the solutions to the
parts.

The literature on component-based software development (CBD) is vast (e.g.,
[10, 15]). Therefore, what happened to component-based software if, according to
the sources quoted by The Economist in 08/05/2003, the challenge of complexity
was still growing in 2003? A couple of years later, an article in the 26-01-2005
edition of the Financial Times reported:

“This is the industrial revolution for software,” says Toby Redshaw, vice-president of infor-
mation technology strategy at Motorola, the US electronics group. He is talking about the
rise of service oriented architectures (SOAs) a method of building IT systems that relies not
on big, integrated programs but on small, modular components.

“Small, modular components”? How is this different from the promise reported
in the Scientific American? What is even more intriguing is that the article in the
Scientific American appeared almost 20 years after Frank DeRemer and Hans H.
Kron wrote [17]:

We distinguish the activity of writing large programs from that of writing small ones. By
large programs we mean systems consisting of many small programs (modules), possibly
written by different people.[. . .] We argue that structuring a large collection of modules
to form a ‘system’ is an essentially distinct and different intellectual activity from that of
constructing the individual modules.

Why didn’t these modules fit the bill given that, in 1994, component-based soft-
ware was being hailed as the way out of complexity? DeRemer and Kron’s article
itself appeared eight years after the term ‘software crisis’ was coined at the famous
1968 NATO conference in Garmisch-Partenkirschen which Douglas McIlroy’s ad-
dressed with a talk on Mass Produced Software Components.

Given that, today, we are still talking about ‘the crisis’ and ‘components’ as a
means of handling complexity, did anything change during more than 40 years?
As argued in the previous subsection, our view is that it is essentially the nature
of the crisis that has been changing, prompting for different forms of decomposi-
tion and, therefore, different notions of ‘component’. Whereas this seems totally
uncontroversial, the problem is that it is often difficult to understand what exactly
has changed and, therefore, what new abstractions and decomposition methods are

1 The Many Faces of Complexity in Software Design 7

required. For example, the fact that component-based development is now a well-
established discipline in software engineering makes it harder to argue for different
notions of component. This difficulty is well apparent in the current debate around
service-oriented computing.

The purpose of this chapter is to discuss the nature of complexity as it arises in
software design, review the progress that we have achieved in coping with it through
abstractions and decomposition techniques, and identify some of the challenges that
still remain. Parts of the chapter have already been presented at conferences or collo-
quia [21–24]. The feedback received on those publications has been incorporated in
this extended paper. Sections 1.2, 1.3 and 1.4 cover three different kinds of program-
ming or software design— ‘programming in-the-small’, ‘programming in-the-large’
and ‘programming in-the-many’, respectively. Whereas the first two have been part
of the computer science jargon for many years, the third is not so well established.
We borrow it from Nenad Medvidović [53] to represent a different approach to de-
composition that promotes connectors to the same status as components (which are
core to programming in-the-large) as first-class elements in software architectures
[65]. Section 1.5 covers service-oriented computing and contains results from our
own recent research [26, 27, 29], therefore presenting a more personal view of an
area that is not yet fully mature.

The chapter is not very technical and does not attempt to provide an in-depth
analysis of any of the aspects that are covered—several chapters of this volume
fulfil that purpose.

1.2 Programming In-the-small

The term programming in-the-small was first used by DeRemer and Kron [17] to dif-
ferentiate between the activity of writing ‘small’ programs from those that, because
of their size, are best decomposed into smaller ones, possibly written by different
people using programming-in-the-small techniques. To use an example that relates
to current programming practice, writing the code that implements a method in any
object-oriented language or a web service would be considered as programming
in-the-small.

Precisely because they are ‘small’, discussing such programs allows us to illus-
trate some of the aspects of complexity in software development that do not relate
to size. For example, the earlier and more common abstractions that we use in pro-
gramming relate to the need for separating the software from the machine that runs
it. This need arises from the fact that programming in machine code is laborious
(some would say complicated, even complex). The separation between program and
code executable on a particular computer is supported by machine-independent pro-
gramming languages and compilers. This separation consists of an abstraction step
in which the program written by the programmer is seen as a higher-level abstraction
of the code that runs on the machine.

High-level programming languages operate two important abstractions in rela-
tion to machine code: control execution and memory. Introduced by E. Dijkstra in

8 J.L. Fiadeiro

the 70s [18], structured programming promoted abstractions for handling the com-
plexity of controlling the flow of execution; until then, control flow was largely
defined in terms of goto statements that transferred execution to a label in the pro-
gram text, which meant that, to understand how a program executed, one had to
chase goto’s across the text and, inevitably, would end tangled up in complex control
flows (hence the term ‘spaghetti’ code). The three main abstractions are well known
to all programmers today—sequence, selection, and repetition. As primitives of a
(high-level) programming language, they transformed programs from line-oriented
to command-oriented structures, opening the way to formal techniques for analysing
program correctness.

Another crucial aspect of this abstraction process is the ability to work with data
structures that do not necessarily mirror the organisation of the memory of the ma-
chine in which the code will run. This process can be taken even further by allowing
the data structures to reflect the organisation of the solution to the problem. This
combination of executional and data abstraction was exploited in methodologies
such as JSP—Jackson Structured Programming [42]—that operate a top-down de-
composition approach. The components associated with such a decomposition ap-
proach stand for blocks of code that are put together according to the executional
abstractions of structured programming (sequential composition, selection and it-
eration). Each component is then developed in the same way, independently of the
other components. The criteria for decomposition derive from the structure of the
data manipulated by the program.

JSP had its own graphical notation, which we illustrate in Fig. 1.1 for a run-length
encoder—a program that takes as input a stream of bytes and outputs a stream of
pairs consisting of a byte along with a count of the byte’s consecutive occurrences
in the input stream. This JSP-diagram includes, at the top level, a box that represents
the whole program—Encode run lengths. The program is identified as an iteration of
an operation—Encode run length—that encodes the length of each run as it is read
from the input. The input is a stream of bytes that can be viewed as zero or more
runs, each run consisting of one or more bytes of the same value. The fact that the
program is an iteration is indicated by the symbol * in the right hand corner of the
corresponding box. This operation is itself identified as the sequential composition
of four more elementary components. This is indicated by the sequence of boxes
that decompose Encode run length. The second of these boxes—Count remaining
bytes—is itself an iteration of an operation—Count remaining byte—that counts
bytes.

An advantage of structured programming is that it simplifies formal verification
of program correctness from specifications, for example through what is known as
the Hoare calculus [40] (see also [39, 59]). Typically, we consider a specification
to be a pair [p,q] of state conditions.1 A program satisfies such a specification if,

1A frame—the set of variables whose values may change during the execution of the program—can
be added as in [59]. For simplicity, we only consider partial correctness in this chapter; techniques
for proving that the program terminates, leading to total correctness, also exist [39, 59].

1 The Many Faces of Complexity in Software Design 9

Fig. 1.1 Example of a JSP-diagram

Fig. 1.2 A program module

whenever its execution starts in a state that satisfies p (called the ‘pre-condition’)
and terminates, the final state satisfies q (called the ‘post-condition’).

In order to illustrate how, together with the Hoare calculus, we can define a notion
of ‘module’ (or component) through which we can define a compositional (bottom-
up) approach to program construction, we introduce another graphical notation that
we will use in other sections to illustrate similar points in other contexts.

An example of what we will call a program module is given in Fig. 1.2. Its mean-
ing is that if, in the program expression C(c1, c2), we bind c1 to a program that sat-
isfies the specification [p1, q1] and c2 to a program that satisfies the specification
[p2, q2], then we obtain a program that satisfies the specification [p,q].

10 J.L. Fiadeiro

Fig. 1.3 An instance of the
assignment schema and one
of iteration

Fig. 1.4 Binding two modules

One can identify [p,q] with the interface that is provided by the module, and
[p1, q1] and [p2, q2] with those of ‘components’ that are required by the module
so that, upon binding, the expression forms a program that meets the specification
[p,q]. Notice that the module does not need to know the inner workings of the
components that implement [p1, q1] and [p2, q2] in order to make use of them,
thus enforcing a form of encapsulation.

Using this notation, we can define a number of module schemas that capture the
rules of the Hoare calculus and, therefore, define the basic building blocks for con-
structing more complex programs. In the Appendix (Fig. 1.30) we give the schemas
that correspond to assignments, sequence, iteration, and selection. Two instances of
those schemas are presented in Fig. 1.3: one for assignment and one for iteration.

Modules can be composed by binding a requires-interface of one module with
the provides-interface of another. Binding is subject to the rules of refinement [59]:
[p,q] � [p′, q ′] iff p′ � p and q ′ � q . That is, [p′, q ′] refines [p,q] if its pre-
condition p′ is weaker than p and its post-condition q ′ is stronger than q . This is
illustrated in Fig. 1.4.

The result of the binding is illustrated in Fig. 1.5: the body of the right-hand-side
module is used to (partially) instantiate the program expression of the left-hand-side
module; the resulting module has the same provides-interface as the left-hand-side

1 The Many Faces of Complexity in Software Design 11

Fig. 1.5 The result of the
binding in Fig. 1.4

Fig. 1.6 The result of
binding the modules in
Fig. 1.3

module, and keeps the unused requires-interface of the left-hand-side module and
the requires-interface of the right-hand-side module. A concrete example is given in
Fig. 1.6 for the binding of the two modules depicted in Fig. 1.3 (notice that, x being
an integer program variable, the condition x > 0 entails x ≥ 1).

These notions of program module and binding are, in a sense, a reformulation
of structured programming intended to bring out the building blocks or component
structure that results from the executional abstractions. Notice that, through those
modules, it is the program as a syntactic expression that is being structured, not the
executable code: there is encapsulation with respect to the specifications as argued
above—the interface (specification) provided by a module derives only from the
interfaces (specifications) of the required program parts—but not with respect to the
executable code: in the second module in Fig. 1.3, one cannot reuse code generated
for c to generate code for while x > 0 do c. Other programming abstractions exist
that allow for code to be reused, such as procedures.

Procedural abstractions are indeed a way of developing resources that can be
reused in the process of programming an application. Resources can be added to
program modules through what we would call a uses-interface. Examples are given
in Fig. 1.7, which correspond to two of the schemas discussed in [59] (see also [39]):
one for substitution by value and the other for substitution by result. Uses-interfaces
are different from requires-interfaces in the sense that they are preserved through
composition, i.e., there is no syntactic substitution like in binding. Like before, the
module does not need to know the body of the procedure in order to make use of it,
just the specification, thus enforcing a form of encapsulation.

JSP-diagrams can be viewed as providing an architectural view (avant la lettre,
as the notion of software architecture emerged only much later) of programs. To
make the connection with other architectural views reviewed in later sections of this
chapter, it is interesting to notice JSP-diagrams can be combined with the notion

12 J.L. Fiadeiro

Fig. 1.7 Two schemas for procedural abstraction (see [59] for details). By A0 we denote the value
of the expression A before the execution of the command (procedure call)

Fig. 1.8 Building JSP-diagrams through program-module composition

of program module that we defined above. Essentially, we can replace the syntactic
expressions inside the modules by JSP-diagrams as illustrated in Fig. 1.8. Binding
expands the architecture so that, as modules are combined, the JSP-architecture of
the program is built.

1.3 Programming In-the-large

1.3.1 Modules and Module Interconnection Languages

Whereas the program modules and JSP-diagrams discussed in the previous section
address the complexity of understanding or developing (correct) executional struc-
tures, they do not address the complexity that arises from the size of programs (mea-

1 The Many Faces of Complexity in Software Design 13

sured in terms of lines of code). This is why the distinction between programming
in-the-small and programming in-the-large was introduced in [17]:

By large programs we mean systems consisting of many small programs (modules), pos-
sibly written by different people. We need languages for programming-in-the-small, i.e.,
languages not unlike the common programming languages of today, for writing modules.
We also need a “module interconnection language” for knitting those modules together into
an integrated whole and for providing an overview that formally records the intent of the
programmer(s) and that can be checked for consistency by a compiler.

Notice that, as made clear by the quote, the term programming in-the-small is
not derogatory: ‘small’ programs whose correctness can be formally proved will
always play an essential role in building ‘large’ software applications that we can
trust to operate safely in mission-critical systems (from avionics to power plants to
healthcare, inter alia). The problem arising at the time was that, as the scope and
role of software in business grew, so did the size of programs: software applications
were demanded to perform more and more tasks in all sorts of domains, growing
very quickly into millions of lines of code. Sheer size compromised quality: delivery
times started to suffer and so did performance and correctness due to the fact that
applications became unmanageable for the lone programmer.

To address this problem, programming in-the-large offered a form of decomposi-
tion that addressed the global structure of a software application in terms of what its
modules and resources are and how they fit together in the system. The main differ-
ence with respect to programming in-the-small is in the fact that one is interested not
in structuring the computational process, but the software-construction (and evolu-
tion) process.2 Hence, the resulting components (modules) are interconnected not
to ensure that the computation progresses towards the required final state (or post-
condition, or output), but that, in the final application, all modules are provided with
the resources they need (e.g., the parsing module of a compiler is connected to the
symbol table). In other words, it is the flow of resources among modules, not of
control, that is of concern.

The conclusions of Parnas’ landmark paper [61] are even clearer in this respect:

[. . .] it is almost always incorrect to begin the decomposition of a system into modules on
the basis of a flowchart. We propose instead that one begins with a list of difficult design
decisions or design decisions which are likely to change. Each module is then designed
to hide such a decision from the others. Since, in most cases, design decisions transcend
time of execution, modules will not correspond to steps in the processing. To achieve an
efficient implementation we must abandon the assumption that a module is one or more
sub-routines, and instead allow subroutines and programs to be assembled collections of
code from various modules.

That is to say, we cannot hope and should not attempt to address the complex-
ity of software systems as products with the mechanisms that were developed for
structuring complex computations. That is why so-called module interconnection

2Procedural abstractions, as mentioned at the end of Sect. 1.2, do offer a way of simplifying pro-
gram construction by naming given pieces of program text that would need to be repeated several
times, but they are not powerful enough for the coarse-grained modularity required for program-
ming in-the-large.

14 J.L. Fiadeiro

Fig. 1.9 An example of a MIL description taken from [62]

languages (MILs) were developed for programming in-the-large [62]. Indeed, the
quote from [17] makes clear that the nature of the abstraction process associated
with programming in-the-large is such that one can rely on a compiler to link all
the modules together as intended by the programmer(s). Hence, MILs offered prim-
itives such as export/provide/originate and import/require/use when designing indi-
vidual modules at the abstract level so as to express the dependencies that would
need to be taken into account at the lower level when “knitting the modules to-
gether”.

Module-interconnection structures are essential for project management, namely
for testing and maintenance support: they enforce system integrity and inter-module
compatibility; they support incremental modification as modules can be indepen-
dently compiled and linked, and thus full recompilation of a modified system
is not needed; and they enforce version control as different versions (implemen-
tations) of a module can be identified and used in the construction of a sys-
tem. Figure 1.9 illustrates the kind of architecture that is described in such lan-
guages. The dependencies between components concern access to and usage of re-
sources.

In order to illustrate how notions of module can be formalised, we use a very
simple example in which modules consist of procedures, variables and variable ini-
tialisations (similar to [59]3). Procedures can be abstract in the sense that they are
not provided with a fully-developed body (code). Some of those procedures or vari-
ables are exported and some are imported (imported procedures are abstract); the
interface of the module consists of the specifications of exported and imported re-
sources. An example, also borrowed from [59], is given in Fig. 1.10 where frames
are added to pre-/post-condition specifications.

3Notions of module were made available in the wave of programming languages that, such as
Modula-2 [70], followed from structured programming.

1 The Many Faces of Complexity in Software Design 15

Fig. 1.10 Example of a
module borrowed from [59]

Fig. 1.11 An interface for the module in Fig. 1.10

Using a diagrammatic notation similar to that used in Sect. 1.2, we could rep-
resent the module Tag and its interface as in Fig. 1.11. We say that a module is
correct if, assuming that resources (e.g., a procedure Choose) are provided that sat-
isfy the specifications that label the import-interfaces, the body of the module (e.g.,
Tag) implements resources (e.g., procedures Acquire and Return) that satisfy the
specifications that label the export-interfaces.

Binding two such modules together consists in identifying in one module some
of the resources required by the other. This process of identification needs to obey
certain rules, namely that the specification that labels the export-interface of one
module refines the specification of the import-interface of the other module. This is

16 J.L. Fiadeiro

illustrated in Fig. 1.12 where the specification of Choose is refined by that of Pick
(Pick will accept a set of natural numbers and return a natural number).

Typically, in MILs, the result of the binding is a configuration as depicted in
Fig. 1.13. In our case, the edge identifies the particular resource that is being im-
ported. In MILs, the link is represented by a direct reference made in the code
inside the module (which is interpreted by the compiler as an instruction to link
the corresponding implementations) and, in diagrams, the edge may be used to rep-
resent other kinds of relationships as illustrated in Fig. 1.9. Notice the similarity
with the program modules defined in Sect. 1.2 where binding defines an operation
over JSP-diagrams, which we can identify with program configurations (or archi-
tectures). The difference between the two notions is that MILs do not operate at the
level of control structures (as JSP-diagrams do) but organisational ones.

Another important aspect of modules is reuse, which can be supported by a
notion of refinement between modules. In the case of our example, and follow-
ing [59] once again, we say that a refinement of a module 〈Exp, Imp,Loc, Init〉—
where Exp, Imp and Loc stand for the sets of exported, imported and local re-
sources, respectively, and Init is an initialisation command—by another module
〈Exp′, Imp′,Loc′, Init′〉 consists of two injective functions exp : Exp → Exp′ and
imp : Imp → Imp′ ∪ Loc′ such that, for every e ∈ Exp (resp. i ∈ Imp), e � exp(e)

(resp. imp(i) � i), and init � init′. Notice that exported interfaces of the refined
module can promise more (i.e., they refine the original exported resources) but the
imported interfaces of the original module cannot require less (i.e., they refine the
corresponding resources in the refined module). Moreover, imported resources of
the original module can be mapped to local resources of the refined one.

1.3.2 Object-Oriented Programming

Object-oriented programming (OOP)4 can be seen to define a specific criterion for
modularising code: objects group together around methods (variables, functions,
and procedures) all the operations that are allowed on a given piece of the system
state—“Object-oriented software construction is the software development method
which bases the architecture of any software system on modules deduced from the
types of objects it manipulates (rather than the function or functions that the system
is intended to ensure)” [56].

This form of state encapsulation offers a mechanism of data abstraction in the
sense that what is offered through an object interface is a collection of operations
that hide the representation of the data that they manipulate. This abstraction mech-
anism is associated with so-called abstract data types [49]—“Object-oriented soft-
ware construction is the building of software systems as structured collections of
possibly partial abstract data type implementations” [56].

4We follow Meyer [56] throughout most of this section and recommend it for further reading not
just on object-oriented programming but modularity in software construction as well.

1 The Many Faces of Complexity in Software Design 17

F
ig

.1
.1

2
B

in
di

ng
m

od
ul

es
th

ro
ug

h
re

fin
em

en
t

18 J.L. Fiadeiro

Fig. 1.13 Linking modules

Fig. 1.14 The interface of the class bankAccount

In OOP, modules are classes. A class interface consists of the specifications as-
sociated with the features that it provides to clients—attributes (A), functions (F),
or procedures (P)—and a set of invariants (I) that apply to all the objects of the
class. A class is correct with respect to its interface if the implementations of the
features satisfy their specifications and the execution of the routines (functions or
procedures) maintains the invariants. An example, using a diagrammatic notation
similar to the one used in previous sections, is given in Fig. 1.14.

As modules, classes do not include an explicit import/require interface mech-
anism similar to the previous examples, which begs the question: how can mod-
ules be interconnected? OOP does provide a mechanism for interconnecting objects:
clientship—an object can be a client of another object by declaring an attribute (or

1 The Many Faces of Complexity in Software Design 19

Fig. 1.15 The interface of the class flexibleBankAccount, which inherits from bankAccount

function) whose type is an object class; methods of the client can then invoke the fea-
tures of the server as part of their code.5 For example, bankAccount could be a client
of a class customer through an attribute owner and invoke owner.addDeposit(i) as
part of the code that executes deposit(i) so as to store the accumulated deposits that
customers make on all the accounts that they own.

The difference in relation to an import (or required) interface is that clientship
is programmed in the code that implements the classes, not established through
an external interconnection language. In a sense, clientship is a more sophisticated
form of procedure invocation in which the code to be executed is identified by means
of a pointer variable. That is, clientship is essentially an executional abstraction in
the sense of programming in-the-small.

Classes do offer some ‘in-the-large’ mechanisms (and therefore behave as mod-
ules) through the mechanism of inheritance. Inheritance makes it possible for new
classes to be defined by adding new features to, or re-defining features of, exist-
ing classes. This mechanism is controlled by two important restrictions: extension
of the set of features is constrained by the need to maintain the invariants of the
source class; redefinition is constrained by the need to refine the specifications of
the features. An example of a class built by inheriting from bankAccount is given
in Fig. 1.15. These restrictions are important for supporting dynamic binding and
polymorphism, which are run-time architectural techniques that are typically ab-

5Import statements can be found in OOP languages such as Java, but they are used in conjunction
with packages in order to locate the classes of which a given class is a client.

20 J.L. Fiadeiro

Fig. 1.16 An example of repeated inheritance borrowed from [56]

sent from MILs (where binding is essentially static, i.e., performed at compile
time).

Formally, inheritance can be defined as a mapping ρ between the interfaces of
the two classes, say 〈A,F,R, I 〉 and 〈A′,F ′,R′, I ′〉, such that

1. for every routine r : [p,q] ∈ F ∪R, if ρ(r) : [p′, q ′] then
a. p′ � ρ(p)

b. q ′ � ρ(p0)⊃ ρ(q)

2. I ′ � ρ(I)

Notice that the first condition is a variation on the notion of refinement used in
Sect. 1.2 in which the post-condition of the redefined routine needs to imply the
original post-condition only when the original pre-condition held before execution.
On the other hand, the original invariant cannot be weakened (it needs to be implied
by the new one). Together, these conditions ensure that an instance of the refined
class can be used where an instance of the original class was expected. Notice the
similarity between this formalisation of inheritance and that of module refinement
discussed in Sect. 1.3.1.

Multiple and repeated inheritance offer a good example of another operation on
modules: composition, not in the sense of binding as illustrated previously, but on
building larger modules from simpler ones. An example of repeated inheritance
(copied from [56]) is shown in Fig. 1.16: repeatedly inherited features that are not
meant to be shared (for example, address) need to be renamed.

Formally, repeated inheritance can be defined over a pair of inclusions C1
l1←−

C
l2−→ C2 between sets of features (inheritance arrows usually point in the reverse

direction of the mappings between features) where C contains the features that are
meant to be shared between C1 and C2; these inclusions give rise to another pair

of mappings C1
ρ1−→ C′ ρ2←− C2 that define an amalgamated union of the original

1 The Many Faces of Complexity in Software Design 21

pair. An amalgamated union is an operation on sets and functions that renames the
features of C1 and C2 that are not included in C when calculating their union. In
relation to the specifications of the shared routines, i.e., routines r ′ : [p′, q ′] ∈ F ′ ∪
R′ such that there is r ∈ F ∪R with r ′ = ρ1(ι1(r))= ρ2(ι2(r)), we obtain:

1. p′ = ρ1(p1)∨ ρ2(p2)

2. q ′ = ρ1(p10 ⊃ q1)∧ ρ2(p20 ⊃ q2)

where ιn(r) : [pn, qn]. These are the combined pre-/post-condition rules of Eiffel,
which give the semantics of interface composition.

The reason we detailed these constructions is that they allow us to discuss the
mathematical semantics of refinement (including inheritance) and composition. We
have already seen that logic plays an essential role in the definition of specifications
and refinement or inheritance. Composition (in the sense of repeated inheritance)
can be supported by category theory, a branch of mathematics in which notions of
structure can be easily expressed and operations such composition can be defined
that preserve such structures. For instance, one can express refinement (or inheri-
tance) as a morphism that preserves specifications (i.e., through refinement map-
pings), from which composition operations such as repeated inheritance result as
universal constructions (e.g., pushouts in the case at hand). Amalgamated union is
an example of a universal construction and so are conjunction and disjunction—
composition (in the sense of repeated inheritance) operates as disjunction on pre-
conditions but as conjunction on post-conditions precisely because the inheritance
morphism is co-variant on post-conditions but contra-variant on pre-conditions.
Several other examples are covered in [20], some of which will be discussed in
later sections.

The use of category theory in software modularisation goes back many years and
was pioneered by J. Goguen—see, for example, [38] for an overview of the use of
category theory in computer science and [12] for one of the first papers in which
the structuring of abstract data type specifications was discussed in mathematical
terms.6 Abstract data types (ADTs) are indeed one of the pillars of object-oriented
programming but it would be impossible to cover in this chapter the vast literature
on ADT specification. See also [37] on how ADTs can be used in the formalisation
of MILs. Finally, it is important to mention that ADTs, specifications (pre-/post-
conditions and invariants) as well notions of abstraction and refinement/reification,
are also at the core of languages and methods such as VDM [43], B [1] and Z [71],
each of which offer their own modularisation techniques.

1.3.3 Component-Based Software Development

The article of the Scientific American quoted in Sect. 1.1.2 offers component-based
software explicitly as a possible way out of the ‘software crisis’. However, one prob-

6See also [36] on the applications of category theory to general systems theory.

22 J.L. Fiadeiro

lem with the term ‘component’ is that, even in computer science, it is highly am-
biguous. One could say that every (de)composition method has an associated notion
of component: ça va de soi. Therefore, one can talk of components that are used
for constructing programs, or systems, or specifications, and so on. In this section,
we briefly mention the specific notion of component-based software that is usually
associated with the work of Szyperski [66]7 because, on the one hand, it does go
beyond MILs and object-oriented programming as discussed in the previous two
sub-sections and, on the other hand, it is supported by dedicated technology (e.g.,
Sun Microsystem’s Enterprise JavaBeans or Microsofts’s COM+) and languages
and notations such as the UML (e.g., [15]), thus offering a layer of abstraction that
is available to software designers.

Indeed, component-based development techniques are associated with another
layer of abstraction that can be superposed over operating systems. So-called com-
ponent frameworks make available a number of run-time layers of services that
enforce properties such as persistence or transactions over which one can rely on
when developing and interconnecting components to build a system. By offering in-
terconnection standards, such frameworks also permit components to be connected
without knowing who designed them, thus promoting reuse.

Components are not modules in the sense of programming in-the-large (cf.
Sect. 1.3): a component is a software implementation that can be executed, i.e., a re-
source; a module is a way of hiding design decisions when organising the resources
that are necessary for the construction of a large system such as the usage of compo-
nents. Components also go beyond objects in the sense that, on the one hand, com-
ponents can be developed using other techniques than object-oriented programming
and, on the other hand, the interconnection mechanisms through which components
can be composed are also quite different from clientship.

More specifically, one major difference between a component model and an
object-oriented one is that all connections in which a component may be involved
are made explicit through provides/exports or requires/imports interfaces that are
external to the code that implements the component—“in a component setting,
providers and clients are ignorant of each other” [66]. In the case of OOP, con-
nections are established through clientship and are only visible by inspecting the
code that implements the objects—the client holds an explicit reference to and calls
the client, i.e., the connections are not mediated by an interface-based mechanism
that is external to the code. That is, one could say that objects offer a white-box
connection model whereas components offer a black-box one.

Whereas components in the sense discussed above are essentially a way of mod-
ularising implementation (and promoting reuse), there is another important aspect
that is often associated with components—their status as architectural elements and
the way they modularise change, i.e., the focus is on “being able to manage the total
system, as its various components evolve and its requirements change, rather than

7“A software component is a unit of composition with contractually specified interfaces and ex-
plicit context dependencies only. A software component can be deployed independently and is
subject to composition by third parties”.

1 The Many Faces of Complexity in Software Design 23

Fig. 1.17 An example of a component specification architecture using UML notation

seeking to ensure that individual components are reusable by multiple component
systems” [15].

From the point of view of complexity, the aspects of component-based software
that interest us are the notions of interface and binding/composition of a component
model. Typically, a component specification is defined in terms of the interfaces
that the component provides (or realises) and those that it requires (or uses), and
any dependencies between them. An interface is, as before, a set of operations, each
specified via pre-/post-conditions, and an ‘information model’ that captures abstract
information on the state of the component and the way the operations relate to it.
Specific notations have been proposed within the UML for supporting the definition
of components or component specifications, including the ‘lollipop’ for provided in-
terfaces and the ‘socket’ for required interfaces. An example is shown in Fig. 1.17,
using the stereotype ‘specification’ to indicate that the architecture applies to com-
ponent specifications, not to instances (implementations) [15].

Connections between components are expressed through ‘assembly connectors’
by fitting balls into sockets—they bind the components together but do not com-
pose them. However, components can have an internal structure that contains sub-
components wired together through assembly connectors. The rules and constraints
that apply to such forms of composition are not always clear, especially in what
relates to specifications.

1.4 Programming In-the-many

We borrow the term ‘programming in-the-many’ from Nenad Medvidović [53] and
use it to mark the difference between the concern for size that is at the core of pro-

24 J.L. Fiadeiro

gramming in-the-large and the complexity that arises from the fact that systems are
ever more distributed and heterogeneous, and that software development requires
the integration and combination of possibly ‘incompatible’ systems. An important
driver for this more modern emphasis comes from the pressures that are put on
systems to be flexible and agile in the way they can respond to change. As put in
[31], “[. . .] the ability to change is now more important than the ability to create [e-
commerce] systems in the first place. Change becomes a first-class design goal and
requires business and technology architectures whose components can be added,
modified, replaced and reconfigured”.

This is not to say that research in component-based development has not ad-
dressed those challenges. For example, design mechanisms making use of event
publishing/subscription through brokers and other well-known patterns [33] have
found their way into commercially available products that support various forms of
agility in the sense that they make it relatively easy to add or remove components
without having to redesign the whole system. However, solutions based on the use of
design patterns are not at the level of abstraction in which the need for change arises
and needs to be managed. Being mechanisms that operate at the design level, there
is a wide gap that separates them from the application modelling levels at which
change is better perceived and managed. This conceptual gap is not easily bridged,
and the process that leads from the business requirements to the identification and
instantiation of the relevant design patterns is not easily documented or made oth-
erwise explicit in a way that facilitates changes to be operated. Once instantiated,
design patterns code up interactions in ways that, typically, requires evolution to be
intrusive because they were not conceived to be evolvable: most of the times, the
pattern will dissolve as the system evolves.

Therefore, the need arises for semantic primitives founded on first princi-
ples through which interconnections can be externalised, modelled explicitly, and
evolved directly, leading to systems that are ‘exoskeletal’ in the sense that they ex-
hibit their configuration structure explicitly [46]. This is why, in this section, we
would like to emphasise a different form of abstraction and decomposition that pro-
motes ‘connectors’ to the same status as components as first-class elements in soft-
ware architectures8 [65].

Connector abstractions [55] and the architectural styles that they promote are
also supported by developments in middleware [57, 58], including the use of reflec-
tion [45]. An important contribution to this area comes from so-called coordination
languages and models [35]. These languages promote the separation between ‘com-
putation’ and ‘coordination’, i.e., the ability to address the computations that need
to take place locally within components to implement the functionalities that they

8As could be expected, the term ‘architecture’ is as ambiguous as ‘component’. We have argued
that every discipline of decomposition leads to, or is intrinsically based on, a notion of part (com-
ponent) and composition. The way we decompose a problem, or the discipline that we follow in
the decomposition, further leads to an architecture, or architectural style, that identifies the way the
problem is structured in terms of its sub-problems and the mechanisms through which they relate
to one another.

1 The Many Faces of Complexity in Software Design 25

advertise through their interfaces separately from the coordination mechanisms that
need to be superposed on these computations to enable the properties that are re-
quired of the global behaviour of the system to emerge. An example is Linda [34],
implemented in Java through JavaSpaces, part of the Jini project (see also IBM’s
TSpaces as another example of coordination middleware). Another example is Man-
ifold [5]. Whereas, in Linda, components communicate over shared tuple-spaces
[7], Manifold is based on an event-based communication paradigm—the Idealized
Worker Idealized Manager (IWIM) model [3].

The importance of this separation in enabling change can be understood when
we consider the complexity that clientship raises in understanding and managing
interactions. For example, in order to understand or make changes to the way ob-
jects are interconnected, one needs to examine the code that implements the classes
and follow how, at run time, objects become clients of other objects. This becomes
very clear when looking at a UML collaboration diagram for a non-trivial system.
In a sense, clientship brings back the complexity of ‘spaghetti’ code by using the
equivalent of goto’s at the level on interactions.

Several architectural description languages (ADLs) have emerged since the 90s
[54]. Essentially, these languages differ from the MILs discussed in Sect. 1.3.1 in
that, where MILs put an emphasis on how modules use other modules, ADLs fo-
cus instead on the organisation of the behaviour of systems of components inter-
connected through protocols for communication and synchronisation. This explains
why, on the semantic side, ADLs tend to be based on formalisms developed for sup-
porting concurrency or distribution (Petri-nets, statecharts, and process calculi, inter
alia). Two such ADLs are Reo [4], which is based on data streams and evolved from
the coordination language Manifold mentioned above, and Wright [2], based on the
process algebra CSP—Communicating Sequential Programs [41].

In order to illustrate typical architectural concepts and their formalisation, we
use the basic notion of connector put forward in [2]: a set of roles, each of which
identifies a component type, and a glue that specifies how instances of the roles
are interconnected. The example of a pipe is given in Fig. 1.18 using the language
COMMUNITY [30] (CSP is used in [2]).

The roles and the glue of the connector are COMMUNITY ‘designs’, which pro-
vide specifications of component behaviour that can be observed over communica-
tion channels and actions. A COMMUNITY design consists of:

• A collection of channels, which can be output (written by the component, read by
the environment), input (read by the component, written by the environment), or
private (local to the component)—denoted O , I and Pc, respectively.

• A collection A of actions. Every action a is specified in terms of
– The set Wa of output and private channels that the action can write into (its

write-frame); for example, the action prod of asender can write into the chan-
nels val and rd, but not into cl, i.e., Wprod = {val, rd}.

– A pair La , Ua of conditions—the lower (or safety) guard and the upper (or
progress) guard—that specify a necessary (La) and a sufficient (Ua) condition
for the action to be enabled, respectively; for example, action close of areceiver
is only enabled when cl is false—Lclose ≡ ¬cl—and is enabled if eof is true

26 J.L. Fiadeiro

Fig. 1.18 An example of a connector (pipe) in CommUnity

and cl is false—Uclose ≡ eof ∧ ¬cl. When the two guards are the same, we
write only one condition as in the case of action get of apipe.

– A condition Ra that describes the effects of the action using primed channels
to denote the value taken by channels after the action has taken; for example,
action signal of apipe sets cl to true—Rsignal ≡ cl′.

Actions can also be declared to be private, the set of which is denoted by Pa.

Each role is connected to the glue of the connector by a ‘cable’ that establishes
input/output communication and synchronisation of non-private actions. Notice that
all names are local, meaning that there are no implicit interconnections based on the
fact that different designs happen to use the same names for channels or actions.
Therefore, the cable that connects apipe and areceiver identifies eof of apipe with
eof of areceiver, o with val, and get with rec. This means that areceiver reads eof
from the channel eof of apipe and val from o, and that apipe and areceiver have to
synchronise to execute the actions get and rec.

Designs can be abstract (as in the examples in Fig. 1.18) in the sense that they
may not fully determine when actions are enabled or how they effect the data made
available on channels. For example, action prod of asender has val in its write-
frame but its effects on val are not specified. Making the upper (progress) guard
false is another example of underspecification: the lower guard defines a necessary
condition for the action to be enabled but no sufficient condition is given. Such
abstract designs can be refined until they are fully specified, in which case the design
is called a program. A program is, essentially, a collection of guarded commands.

1 The Many Faces of Complexity in Software Design 27

Fig. 1.19 A refinement of the design apipe

Non-private actions are reactive in the sense that they are executed together with
the environment; private actions are active because their execution is only under the
control of the component.

An example of a refinement of apipe is given in Fig 1.19. Formally, refinement
consists of two mappings—one on channels, which is co-variant, and the other on
actions, which is contra-variant. In the example, the refinement mapping introduces
a new private channel—a queue—and is the identity on actions. The mappings need
to preserve the nature of the channels (input, output, or private) and of actions (pri-
vate or non-private). Private actions do not need to be refined but non-private ones
do, in which case their effects need to be preserved (not weakened), lower guards
can be weakened (but not strengthened) and upper can be strengthened (but not
weakened), i.e., the interval defined by the two guards must be preserved or shrunk.
For example, for all actions of rpipe, the lower and upper guards coincide. A given
action can also be refined by a set of actions, each of which needs to satisfy the
same constraints. Finally, new actions introduced during the refinement cannot in-
clude output channels of the abstract design in their write frames. A full formal
definition can be found in [30].

COMMUNITY encapsulates one of the principles that have been put forward for
modularising parallel and distributed programs—superposition or superimposition
[14, 32, 44]. Indeed, programming in-the-many arose in the context of the advent of
concurrency and distribution, i.e., changes in the operating infrastructure that em-
phasise cooperation among independent processes. Programmers find concurrency
‘complicated’ and, therefore, a source of complexity in software design. For exam-
ple, it seems fair to say that extensions of OOP with concurrency have failed to
make a real impact in engineering or programming practice, one reason being that
the abstractions available for OOP do not extend to concurrency in an intuitive way.
In contrast, languages such as Unity [14], on which COMMUNITY is based, have
put forward proper abstractions and modularisation techniques that follow on the
principles of structured programming.

In Fig. 1.20 we present a COMMUNITY design for a luggage-delivery cart. The
context is that of a simplified airport luggage delivery system in which carts move
along a track and stop at designated locations for handling luggage. Locations in the
track are modelled through natural numbers modulo the length of the circuit. Pieces
of luggage are also modelled through natural numbers, zero being reserved to model
the situation in which a cart is empty. According to the design cart, a cart is able

28 J.L. Fiadeiro

Fig. 1.20 A COMMUNITY design of an airport luggage-delivery cart

to move, load and unload. It moves by incrementing loc while it has not reached its
destination (the increment is left unspecified). The current destination is available in
dest and is retrieved from the bag each time the cart stops to load, using a function
Dest that we assume is provided as part of a data type (e.g., abstracting the scanning
of a bar code on the luggage), or from the environment, when unloading, using
the input channel ndest. Loading and unloading take place only when the cart has
reached its destination.

In Fig. 1.21 we present a superposition of cart: on the one hand, we distinguish
between two modes of moving—slow and fast; on the other hand, we count the num-
ber of times the cart has docked since the last time the counter was reset. Notice that
controlled_cart is not a refinement of cart: the actions move_ slow and move_fast
do not refine move because the enabling condition of move (which is fully specified)
has changed. Like refinement, superposition consists of a co-variant mapping on
channels and a contra-variant mapping on actions. However, unlike refinement, the
upper guard of a superposed action cannot be weakened—this is because, in the su-
perposed design, actions may occur in a more restricted context (that of a controller
in the case at hand). In fact, superposition can be seen to capture a ‘component-of’
relationship, i.e., the way a component is part of a larger system. Another differ-
ence in relation to refinement is the fact that input channels may be mapped to
output ones, again reflecting the fact that the part of the environment from which
the input could be expected has now been identified. Other restrictions typical of
superposition relations apply: new actions (such as reset) cannot include channels
of the base design in their write-frames; however, superposed actions can extend
their write-frames with new channels (e.g., load and unload now have count in their
write-frames).

COMMUNITY combines the modularisation principles of superposition with the
externalisation of interactions promoted by coordination languages. That is, al-
though superposition as illustrated in Fig. 1.21 allows designs to be extended (in
a disciplined way), it does not externalise the mechanisms through which the ex-
tension is performed—the fact that the cart is subject to a speed controller and a
counter at the docking stations. In COMMUNITY, this externalisation is supported
by allowing designs to be interconnected with other designs. In Figs. 1.22 and 1.23,
we show the designs of the speed controller and the counter, respectively.

Neither the speed controller nor the counter make reference to the cart (as with
refinement, names of channels and actions are treated locally). Therefore, they can
be reused in multiple contexts to build larger systems. For example, in Fig 1.24 we

1 The Many Faces of Complexity in Software Design 29

Fig. 1.21 A superposition of the COMMUNITY design cart shown in Fig. 1.20

Fig. 1.22 A
COMMUNITY design
of a speed controller

Fig. 1.23 A
COMMUNITY design
of a counter

Fig. 1.24 The COMMUNITY architecture of the controlled cart

depict the architecture of the controlled cart as a system of three components inter-
connected through cables that, as in the case of connectors, establish input/output
and action synchronisation.

The design controlled_cart depicted in Fig. 1.21 is the result of the composition
of the components and connections depicted in Fig. 1.24. This operation of compo-
sition can be formalised in category theory [50], much in the same way as repeated
inheritance (cf., Sect. 1.3.2) except that the morphisms in COMMUNITY capture
superposition. The notion of refinement discussed above can also be formalised in
category theory and refinement can be proved to be compositional with respect to
composition—for example, one can refine speed by making precise the increment
on the location; this refinement carries over to the controlled cart in the sense that
the composition using the refined controller yields a refinement of the controlled
cart. Full details of this categorical approach to software systems can be found in
[20].

30 J.L. Fiadeiro

Extensions of COMMUNITY supported by the same categorical formalisations
can be found in [51] for location-aware mobile systems (where location is defined
as an independent architectural dimension) and in [25] for event-based architec-
tures. Notions of higher-order architectural connectors were developed in [52] and
dynamic reconfiguration was addressed in [68].

Finally, notice that, as most ADLs, COMMUNITY does not offer a notion of
module in the sense of programming in-the-large, i.e., it does not provide coarser
structures of designs (though the notion of higher-order architectural connectors
presented in [52] goes in that direction by offering a mechanism for constructing
connectors). Through channels and actions, COMMUNITY offers an explicit notion
of interface through which designs can be connected, but neither channels nor ac-
tions can be seen as provided or required interfaces.

1.5 Programming In-the-universe

Given the tall order that the terms ‘small’, ‘large’ and ‘many’ have created, we
were left with ‘universe’ to designate yet another face of complexity in software
design, one that is more modern and sits at the core of the recent quotes with which
we opened this chapter. The term ‘universe’ is also not too far from the designa-
tion ‘global (ubiquitous) computing’ that is often used for characterising the de-
velopment of software applications that can run on ‘global computers’, i.e., “com-
putational infrastructures available globally and able to provide uniform services
with variable guarantees for communication, co-operation and mobility, resource
usage, security policies and mechanisms” (see the Global Computing Initiative at
cordis.europa.eu/ist/fet/gc.htm). It is in this context that we place service-oriented
architectures (SOA) and service-oriented computing (SOC).

1.5.1 Services vs Components

SOC is a new paradigm in which interactions are no longer based on the exchange
of products with specific parties—clientship as in object-oriented programming—
but on the provisioning of services by external providers that can be procured on the
fly subject to a negotiation of service level agreements (SLAs). A question that, in
this context, cannot be avoided, concerns the difference between component-based
and service-oriented design. Indeed, the debate on CBD vs. SOC is still out there,
which in our opinion reflects that there is something fundamental about SOC that is
not yet clearly understood.

A basic difference concerns the run-time environment that supports both ap-
proaches. Component models rely on a homogeneous framework in which com-
ponents can be plugged in and connected to each other. Services, like components,
hide their implementations but, in addition to components, they do not reveal any
implementation-platform or infrastructure requirements. Therefore, as put in [66],

http://cordis.europa.eu/ist/fet/gc.htm

1 The Many Faces of Complexity in Software Design 31

services are more self-contained than typical components. However, as a conse-
quence, interactions with services are not as efficient as with objects or components,
a point that is very nicely put in [64]: where, in OO, clientship operates through a
direct mapping of method invocation to actual code and, in CBD, invocation is per-
formed via proxys in a slower way but still within a communication environment
that is native to the specific component framework, SOC needs to bridge between
different environment boundaries and rely on transport protocols that are not neces-
sarily as performant.

Indeed, where we identify a real paradigm shift in SOC—one that justifies new
abstractions and decomposition techniques—is in the fact that SOAs provide a layer
of middleware in which the interaction between client and provider is mediated by
a broker, which makes it possible to abstract from the identity of the server or of
the broker when programming applications that need to rely on an external service.
Design patterns or other component-oriented solutions can be used for mediating
interactions but abstraction from identity is a key feature of SOC: as put in [19], ser-
vices respond to the necessity for separating “need from the need-fulfilment mech-
anism”.9

Another difference between components and services, as we see it, can be ex-
plained in terms of two different notions of ‘composition’. In CBD, composition is
integration-oriented—“the idea of component-based development is to industrialise
the software development process by producing software applications by assem-
bling prefabricated software components” [19]; “component-based software engi-
neering is concerned with the rapid assembly of systems from components” [6].
The key aspect here is the idea of assembling systems from (reusable) components,
which derives from the principle of divide-and-conquer.

Our basic stance is that what we are calling programming in-the-universe goes
beyond this assembly view and abandons the idea that the purpose of programming
or design is to build a software system that is going to be delivered to a customer;
the way we see this new paradigm is that (smaller) applications are developed to
run on global computers (like the Web) and respond to business needs by engag-
ing, dynamically, with services and resources that are globally available at the time
they are needed. Because those services may in turn require other services, each
such application will create, as it executes, a system of sub-systems, each of which
implements a session of one of the services that will have been procured.

For example, a typical business system may rely on an external service to supply
goods; in order to take advantage of the best deal available at the time the goods
are needed, the system may resort to different suppliers at different times. Each
of those suppliers may in turn rely on services that they will need to procure. For
instance, some suppliers may have their own delivery system but others may prefer

9Notice that mechanisms that, as SOAP, support interconnections in SOAs, do not use URLs (uni-
versal resource locators) as identities: “there is no built-in guarantee that the URL will indeed refer
back to an object actually live at the sending process, the sending machine, or even the sending
site. There is also no guarantee that two successive resolution requests for the same URL will yield
the same object” [66].

32 J.L. Fiadeiro

to outsource the delivery of the goods; some delivery companies may have their own
transport system but prefer to use an external company to provide the drivers; and
so on. In summary, the structure of an application running on a global computer,
understood as the components and connectors that determine its configuration, is
intrinsically dynamic.

Therefore, the role of architecture in the construction of a service-oriented system
needs to go beyond that of identifying, at design time, components that developers
will need to implement or reuse. Because these activities are now performed by the
SOA middleware, what is required from software architects is that they identify and
model the high-level business activities and the dependencies that they have on ex-
ternal services to fulfil their goals. A consequence of this is that, whereas the notion
of a ‘whole’ is intrinsic to CBD—whether in managing construction (through reuse)
or change (through architecture)—SOC is not driven by the need to build or manage
such a whole but to allow applications to take advantage of a (dynamic) universe of
services. The purpose of services is not to support reuse in construction or manage
change of a system as requirements evolve, but to allow applications to compute
in an open-ended and evolving universe of resources. In this setting, there is much
more scope for flexibility in the way business is supported than in a conventional
component-based scenario: business processes need not be confined to fixed organ-
isational contexts; they can be viewed in more global contexts as emerging from
a varying collection of loosely coupled applications that can take advantage of the
availability of services procured on the fly when they are needed.

1.5.2 Modules for Service-Oriented Computing

A number of ‘standards’ have emerged in the last few years in the area of Web
Services promoted by organisations such as OASIS10 and W3C.11 These include
languages such as WSDL (an XML format for describing service interfaces), WS-
BPEL (an XML-based programming language for business process orchestration
based on web services) and WS-CDL (an XML-based language for describing
choreographies, i.e., peer-to-peer collaborations of parties with a common business
goal).

A number of research initiatives (among them the FET-GC2 integrated project
SENSORIA [69]) have been proposing formal approaches that address different as-
pects of the paradigm independently of the specific languages that are available to-
day for Web Services or Grid Computing. For example, recent proposals for service
calculi (e.g., [9, 13, 48, 67]) address operational foundations of SOC (in the sense of
how services compute) by providing a mathematical semantics for the mechanisms
that support choreography or orchestration—sessions, message/event correlation,
compensation, inter alia.

10www.oasis-open.org.
11www.w3.org.

http://www.oasis-open.org
http://www.w3.org

1 The Many Faces of Complexity in Software Design 33

Whereas such calculi address the need for specialised language primitives for
programming in this new paradigm, they are not abstract enough to address those
aspects (both technical and methodological) that concern the way applications can
be developed to provide business solutions independently of the languages in which
services are programmed and, therefore, control complexity by raising the level of
abstraction and adopting coarser-grained decomposition techniques. The Open Ser-
vice Oriented Architecture collaboration12 has been proposing a number of specifi-
cations, namely the Service Component Architecture (SCA), that address this chal-
lenge:

SCA is a model designed for SOA, unlike existing systems that have been adapted to SOA.
SCA enables encapsulating or adapting existing applications and data using an SOA ab-
straction. SCA builds on service encapsulation to take into account the unique needs asso-
ciated with the assembly of networks of heterogeneous services. SCA provides the means to
compose assets, which have been implemented using a variety of technologies using SOA.
The SCA composition becomes a service, which can be accessed and reused in a uniform
manner. In addition, the composite service itself can be composed with other services [. . .]
SCA service components can be built with a variety of technologies such as EJBs, Spring
beans and CORBA components, and with programming languages including Java, PHP and
C++ [. . .]
SCA components can also be connected by a variety of bindings such as WSDL/SOAP web
services, JavaTM Message Service (JMS) for message-oriented middleware systems and
J2EETM Connector Architecture (JCA) [60].

In Fig. 1.25 we present an example of an SCA component and, in Fig. 1.26, an
example of an SCA composite (called ‘module’ in earlier versions). This compos-
ite has two components, each of which provides a service and has a reference to
a service it depends on. The service provided by component A is made available
for use by clients outside the composite. The service required by component A is
provided by component B . The service required by component B exists outside the
composite.

Although, through composites, SCA offers coarser primitives for decomposing
and organising systems in logical groupings, it does not raise the level of abstraction.
SCA addresses low-level design in the sense that it provides an assembly model and
binding mechanisms for service components and clients programmed in specific
languages, e.g., Java, C++, BPEL, or PHP. So far, SOC has been short of support
for high-level modelling. Indeed, languages and models that have been proposed
for service modelling and design (e.g., [11, 63]) do not address the higher level of
abstraction that is associated with business solutions, in particular the key charac-
teristic aspects of SOC that relate to the way those solutions are put together dy-
namically in reaction to the execution of business processes—run-time discovery,
instantiation and binding of services.

The SENSORIA Reference Modelling Language (SRML) [29] started to be de-
veloped within the SENSORIA project as a prototype domain-specific language for
modelling service-oriented systems at a high level of abstraction that is closer to
business concerns. Although SRML is inspired by SCA, it focuses on providing a

12www.osoa.org.

http://www.osoa.org

34 J.L. Fiadeiro

Fig. 1.25 An example of an SCA component. A component consists of a configured instance of an
implementation, where an implementation is the piece of program code providing business func-
tions. The business function is offered for use by other components as services. Implementations
may depend on services provided by other components—these dependencies are called references.
Implementations can have settable properties, which are data values which influence the operation
of the business function. The component configures the implementation by providing values for
the properties and by wiring the references to services provided by other components [60]

formal framework with a mathematical semantics for modelling and analysing the
business logic of services independently not only of the hosting middleware but also
of the languages in which the business logic is programmed.

In SRML, services are characterised by the conversations that they support and
the properties of those conversations. In particular:

• messages are exchanged, asynchronously, through ‘wires’ and are typed by their
business function (requests, commitments, cancellations, and so on);

• service interface behaviour is specified using message correlation patterns that
are typical of business conversations; and

• the parties engaged in business applications need to follow pre-defined conversa-
tion protocols—requester and provider protocols.

On the other hand, the difference between SRML and more generic modelling
languages is precisely in the fact that the mechanisms that, like message correlation,
support these conversation protocols do not need to be modelled explicitly: they are
assumed to be provided by the underlying SOA middleware. This is why SRML can
be considered to be a domain-specific language: it frees the modeller from the need
to specify aspects that should be left to lower levels of abstraction and concentrate
instead on the business logic.

The design of composite services in SRML adopts the SCA assembly model ac-
cording to which new services can be created by interconnecting a set of elementary

1 The Many Faces of Complexity in Software Design 35

Fig. 1.26 An example of an SCA simple composite. Composites can contain components, ser-
vices, references, property declarations, plus the wiring that describes the connections between
these elements. Composites can group and link components built from different implementation
technologies, allowing appropriate technologies to be used for each business task [60]

components to a set of external services; the new service is provided through an
interface to the resulting system. The business logic of such a service involves a
number of interactions among those components and external services, but is in-
dependent of the internal configurations of the external services—the external ser-
vices need only be described by their interfaces. The actual external services are
discovered at run time by matching these interfaces with those that are advertised
by service providers (and optimising the satisfaction of service level agreement con-
straints).

The elementary unit for specifying service assembly and composition in SRML is
the service module (or just module for short), which is the SRML equivalent to the
SCA notion of composite. A module specifies how a set of internal components and
external required services interact to provide the behaviour of a new service. Fig-
ure 1.27 shows the structure of the module TravelBooking, which models a service
that manages the booking of a flight, a hotel and the associated payment. The service
is assembled by connecting an internal component BA (that orchestrates the service)
to three external services (for booking a flight, booking a hotel and processing the
payment) and the persistent component DB (a database of users). The difference
between the three kinds of entities—internal components, external services and per-
sistent components—is intrinsic to SOC: internal components are created each time
the service is invoked and killed when the service terminates; external services are
procured and bound to the other parties at run time; persistent components are part
of the business environment in which the service operates—they are not created
nor destroyed by the service, and they are not discovered but directly invoked as

36 J.L. Fiadeiro

Fig. 1.27 The structure of the module TravelBooking. The service is assembled by connecting a
component BA of type BookingAgent to three external service instances PA, HA and FA with in-
terface types PayAgent, HotelAgent and FlightAgent (respectively) and the persistent component
(a database of users) DB of type UsrDB. The wires that interconnect the several parties are BP,
BH, BF, and BD. The interface through which service requesters interact with the TravelBooking
service is TA of type TravelAgent. Internal configuration policies (indicated by the symbol) are
specified, which include the conditions that trigger the discovery of the external services. An exter-

nal configuration policy (indicated by the symbol), specifies the constraints according
to which service-level agreements are negotiated (through constraint optimisation [8])

in component-based systems. By TA we denote the interface through which service
requesters interact with TravelBooking. In SRML, interactions are peer-to-peer be-
tween pairs of entities connected through wires—BP, BH, BF and BD in the case at
hand.

Each party (component or external service) is specified through a declaration of
the interactions the party can be involved in and the properties that can be observed
of these interactions during a session of the service. Wires are specified by the way
they coordinate the interactions between the parties.

If the party is an internal component of the service (like BA in Fig. 1.27),
its specification is an orchestration given in terms of state transitions—using
the language of business roles [29]. An orchestration is defined independently
of the language in which the component is programmed and the platform in
which it is deployed; the actual component may be a BPEL process, a C++ or
a Java program, or a wrapped up legacy system, inter alia. An orchestration is
also independent of the parties that are interconnected with the component at
run time; this is because the orchestration does not define invocations of oper-
ations provided by specific co-parties (components or external services); it sim-
ply defines the properties of the interactions in which the component can partici-
pate.

1 The Many Faces of Complexity in Software Design 37

If the party is an external service, the specification is what we call a requires-
interface and consists of a set of temporal properties that correlate the interactions in
which the service can engage with its client. The language of business protocols [29]
is used for specifying the behaviour required of external services not in terms of their
internal workflow but of the properties that characterise the interactions in which the
service can engage with its client, i.e., their interface behaviour. Figure 1.28 shows
the specification of the business protocol that the HotelAgent service is expected to
follow.

The specification of the interactions provided by the module (at its interface
level) is what we call the provides-interface, which also uses the language of busi-
ness protocols. Figure 1.29 shows the specification of the business protocol that
the composite service declares to follow, i.e., the service that is offered by the ser-
vice module TravelBooking. A service module is said to be correct if the properties
offered through the provides-interface can be guaranteed by the (distributed) orches-
tration performed by components that implement the business roles assuming that
they are interconnected to external services that ensure the properties specified in
the requires-interfaces.

Persistent components can interact with the other parties synchronously, i.e.,
they can block while waiting for a reply. The properties of synchronous interac-
tions are in the style of pre/post condition specification of methods as discussed in
Sect. 1.3.2.

The specifications of the wires consist of connectors (in the sense of Sect. 1.4)
that are responsible for binding and coordinating the interactions that are declared
locally in the specifications of the two parties that each wire connects. In a sense,
SRML modules are a way of organising interconnected systems in the sense of pro-
gramming in-the-many, i.e., of offering coarser-grained abstractions (in the sense
of programming in-the-large) that can respond to the need for addressing the com-
plexity that arises from the number of interactions involved in the distributed sys-
tems that, today, operate at the larger scale of global computers like the Web. This
matches the view that services offer a layer of organisation that can be superposed
over a component infrastructure (what is sometimes referred to as a ‘service over-
lay’), i.e., that services are, at a certain level of abstraction, a way of using software
components and not so much a way of constructing software. We have explored
this view in [27] by proposing a formalisation of services as interfaces for an alge-
bra of asynchronous components understood as configurations of components and
connectors.

Through this notion of service-overlay, such configurations of components and
connectors expose conversational, stateful interfaces through which they can dis-
cover and bind, on the fly, to external services or expose services that can be dis-
covered by business applications. That is, services offer an abstraction for coping
with the run-time complexity of evolving configurations. A mathematical semantics
for this dynamic process of discovery, binding and reconfiguration has been de-
fined in [28], again using the tools of category theory: modules are used for typing
configurations understood as graphs; such graphs evolve as the activities that they
implement discover and bind to required services.

38 J.L. Fiadeiro

Fig. 1.28 The specification of the service interface of a HotelAgent written in the language of
business protocols. A HotelAgent can be involved in one interaction named lockHotel that models
the booking of a room in a hotel. Some properties of this interaction are specified: a booking request
can be made once the service is instantiated and a booking can be revoked up until the check-in
date. The specification language makes use of the events associated with the declared interactions:
the initiation event (), the reply event (), the commit event (), the cancellation event () and
the revoke event ()

Fig. 1.29 The specification of the provides-interface of the service module TravelBooking written
in the language of business protocols. The service can be involved in four interactions (login,
bookTrip, payNotify and refund) that model the login into the system, the booking of a trip, the
sending of a receipt and refunding the client of the service (in case a booking is returned). Five
properties are specified for these interactions

1 The Many Faces of Complexity in Software Design 39

An example of this process is shown in the Appendix. Figure 1.31 depicts a
run-time configuration (graph) where a number of components execute business
roles and interact via wires with other components. The sub-configuration encircled
corresponds to a user-interface AUI interacting with a component ant. This sub-
configuration is typed by the activity module A_ANT0 (an activity module is similar
to a service module but offering a user-interface instead of a service-interface). Be-
cause the activity module has a requires-interface, the sub-configuration will change
if the trigger associated with TA occurs. This activity module can bind to the service
module TravelBooking (depicted in Fig. 1.27) by matching its requires-interface
with the provides-interface of TravelBooking and resolving the SLA constraints of
both modules (see Fig. 1.32). Therefore, if the trigger happens and TravelBooking
is selected, the configuration will evolve to the one depicted in Fig. 1.33: an in-
stance AntBA of BookingAgent is added to the configuration and wired to Ant and
DB (no new instances of persistent components are created). Notice that the type of
the sub-configuration has changed: it now consists of the composition of A_ANT0
and TravelBooking. Because the new type has several requires-interfaces, the con-
figuration will again change when their triggers occur.

Typing configurations with activity modules is a form of reflection, a technique
that has been explored at the level of middleware to account for the evolution of
systems [45]. In summary, we can see SOC as providing a layer of abstraction in
which the dynamic reconfiguration of systems can be understood in terms of the
business functions that they implement and the dependencies that those functions
have on external services. This, we claim, is another step towards coping with the
complexity of the systems that operate in the global infrastructures of today.

1.6 Concluding Remarks

This chapter is an attempt to make sense of the persistent claim that, in spite of
the advances that we make on the way we program or engineer software systems,
software is haunted by the beast of complexity and doomed to live in a permanent
crisis. Given the complexity of the task (pun intended), we resorted to abstraction—
we did our best to distill what seemed to us to have been key contributions to the
handling of complexity—and decomposition by organising these contributions in
four kinds of ‘programming’: in-the-small (structured programming), in-the-large
(modules, objects, and components), in-the-many (connectors and software archi-
tectures), and in-the-universe (services). The fact that, to a large extent, these forms
of programming are organised chronologically, is not an accident: it reflects the fact
that, as progress has been made in computer science and software engineering, new
kinds of complexity have arisen. We started by having to cope with the complexity
of controlling execution, then the size of programs, then change and, more recently,
‘globalisation’.

What remains constant in this process is the way we attempt to address com-
plexity: abstraction and decomposition. This is why we insisted in imposing some
degree of uniformity in terminology and notation, highlighting the fact that notions

40 J.L. Fiadeiro

of module, interface, component, or architecture have appeared in different guises
to support different abstraction or decomposition techniques. Although we chose
not to go too deep into mathematical concepts and techniques, there is also some
degree of uniformity (or universality) in the way they support notions of refinement
or composition—for example, through the use of categorical methods—even if they
are defined over different notions of specification—for example, pre/post-conditions
for OO/CBD and temporal logic for SOC.

As could be expected, we had to use a rather broad brush when painting the
landscape and, therefore, we were not exhaustive and left out many other faces of
complexity. For example, as put in the 27/01/2009 edition of the Financial Times,
cloud computing is, today, contributing to equally ‘complex’ aspects such as man-
agement or maintenance:

Cloud computing doesn’t work because it’s simpler than client-server or mainframe com-
puting. It works because we shift the additional complexity to a place where it can be man-
aged more effectively. Companies such as Amazon and Google are simply a lot better at
managing servers and operating systems than most other organisations could ever hope to
be. By letting Google manage this complexity, an enterprise can then focus more of its own
resources on growth and innovation within its core business.

To us, this quote nails down quite accurately the process through which com-
plexity has been handled during the last fifty years or so: “we shift the additional
complexity to a place where it can be managed more effectively”. That is, we ad-
dress complexity by making the infrastructure (or middleware) more ‘clever’ or by
building tools that translate between levels of abstraction (e.g., through compilation
or model-driven development techniques). For example, the move from objects to
components to services is essentially the result of devising ways of handling in-
teractions (or clientship): from direct invocation of code within a process (OO), to
mediation via proxys across processes but within a single component framework
(CBD), and across frameworks through brokers and transport protocols (SOA) [64].

Unfortunately (or inevitably), progress on the side of science and methodology
has been slower, meaning that abstractions have not always been forthcoming as
quickly as they would be needed to take advantage of new layers of infrastructure,
which justifies that new levels of complexity arise for humans (programmers, de-
signers, or analysts) when faced with new technology: notions of module tend to
come when the need arises for managing the complexity of developing software
over new computation or communication infrastructures. The answer to the mystery
of why, in spite of all these advances, software seems to live in a permanent crisis,
is that the beast of complexity keeps changing its form and we, scientists, do take
our time to understand the nature of each new form of complexity and come up with
right abstractions. In other words, like Paddington Bear, we take our time to abstract
business functions from the handling of bank notes (with or without marmalade).

Acknowledgements Section 1.4 contains material extracted from papers co-authored with An-
tónia Lopes and Michel Wermelinger, and Sect. 1.5 from papers co-authored with Antónia Lopes,
Laura Bocchi and João Abreu. I would like to thank them all and also Mike Hinchey for giving me
the opportunity (and encouraging me) to contribute this chapter.

1 The Many Faces of Complexity in Software Design 41

Appendix

Fig. 1.30 Module schemas
for assignment, sequence,
iteration, and selection

42 J.L. Fiadeiro

Fig. 1.31 A configuration, a sub-configuration of which is typed by an activity module

1 The Many Faces of Complexity in Software Design 43

F
ig

.1
.3

2
M

at
ch

in
g

th
e

ac
tiv

ity
m

od
ul

e
of

Fi
g.

1.
31

w
ith

th
e

se
rv

ic
e

m
od

ul
e

Tr
av

el
B

oo
ki

ng

44 J.L. Fiadeiro

Fig. 1.33 The reconfiguration resulting from the binding in Fig. 1.32

1 The Many Faces of Complexity in Software Design 45

References

1. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University Press,
New York (1996)

2. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans. Softw. Eng.
Methodol. 6(3), 213–249 (1998)

3. Arbab, F.: The IWIM model for coordination of concurrent activities. In: Ciancarini, P., Han-
kin, C. (eds.) Coordination. LNCS, vol. 1061, pp. 34–56. Springer, Berlin (1996)

4. Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct.
Comput. Sci. 14(3), 329–366 (2004)

5. Arbab, F., Herman, I., Spilling, P.: An overview of manifold and its implementation. Concurr.
Comput. 5(1), 23–70 (1993)

6. Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R.,
Wallnau, K.: Volume II: technical concepts of component-based software engineering. Tech-
nical report CMU/SEI-2000-TR-008 ESC-TR-2000-007 (2000)

7. Banâtre, J.-P., Métayer, D.L.: Programming by multiset transformation. Commun. ACM 36(1),
98–111 (1993)

8. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimiza-
tion. J. ACM 44(2), 201–236 (1997)

9. Boreale, M., et al.: SCC: a service centered calculus. In: Bravetti, M., Núñez, M., Zavattaro,
G. (eds.) WS-FM. LNCS, vol. 4184, pp. 38–57. Springer, Berlin (2006)

10. Brown, A.W.: Large-Scale, Component Based Development. Prentice-Hall, Upper Saddle
River (2000)

11. Broy, M., Krüger, I.H., Meisinger, M.: A formal model of services. ACM Trans. Softw. Eng.
Methodol. 16(1) (2007)

12. Burstall, R.M., Goguen, J.A.: Putting theories together to make specifications. In: IJCAI,
pp. 1045–1058 (1977)

13. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred programming for
web services. In: De Nicola, R. (ed.) Programming Languages and Systems. LNCS, vol. 4421,
pp. 2–17. Springer, Berlin (2007)

14. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley, Boston
(1988)

15. Cheesman, J., Daniels, J.: UML Components: A Simple Process for Specifying Component-
Based Software. Addison-Wesley, Boston (2000)

16. Denning, P.J.: The field of programmers myth. Commun. ACM 47(7), 15–20 (2004)
17. DeRemer, F., Kron, H.H.: Programming-in-the-large versus programming-in-the-small. IEEE

Trans. Softw. Eng. 2(2), 80–86 (1976)
18. Dijkstra, E.W.: A Discipline of Programming, 1st edn. Prentice-Hall, Upper Saddle River

(1976)
19. Elfatatry, A.: Dealing with change: components versus services. Commun. ACM 50(8), 35–39

(2007)
20. Fiadeiro, J.L.: Categories for Software Engineering. Springer, Berlin (2004)
21. Fiadeiro, J.L.: Software services: scientific challenge or industrial hype? In: Liu, Z., Araki, K.

(eds.) ICTAC. LNCS, vol. 3407, pp. 1–13. Springer, Berlin (2004)
22. Fiadeiro, J.L.: Physiological vs. social complexity in software design. In: ICECCS, p. 3. IEEE

Comput. Soc., Los Alamitos (2006)
23. Fiadeiro, J.L.: Designing for software’s social complexity. Computer 40(1), 34–39 (2007)
24. Fiadeiro, J.L.: On the challenge of engineering socio-technical systems. In: Wirsing, M.,

Banâtre, J.-P., Hölzl, M.M., Rauschmayer, A. (eds.) Software-Intensive Systems and New
Computing Paradigms. LNCS, vol. 5380, pp. 80–91. Springer, Berlin (2008)

25. Fiadeiro, J.L., Lopes, A.: An algebraic semantics of event-based architectures. Math. Struct.
Comput. Sci. 17(5), 1029–1073 (2007)

26. Fiadeiro, J.L., Lopes, A.: A model for dynamic reconfiguration in service-oriented architec-
tures. In: Babar, M.A., Gorton, I. (eds.) ECSA. LNCS, vol. 6285, pp. 70–85. Springer, Berlin
(2010)

46 J.L. Fiadeiro

27. Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. In: Giannakopoulou,
D., Orejas, F. (eds.) FASE. LNCS, vol. 6603, pp. 18–33. Springer, Berlin (2011)

28. Fiadeiro, J.L., Lopes, A., Bocchi, L.: An abstract model of service discovery and binding.
Form. Asp. Comp. 23(4), 433–463 (2011)

29. Fiadeiro, J.L., Lopes, A., Bocchi, L., Abreu, J.: The SENSORIA reference modelling language.
In: Wirsing, M., Hölzl, M.M. (eds.) Rigorous Software Engineering for Service-Oriented Sys-
tems. LNCS, vol. 6582, pp. 61–114. Springer, Berlin (2011)

30. Fiadeiro, J.L., Lopes, A., Wermelinger, M.: A mathematical semantics for architectural con-
nectors. In: Backhouse, R.C., Gibbons, J. (eds.) Generic Programming. LNCS, vol. 2793,
pp. 178–221. Springer, Berlin (2003)

31. Fingar, P.: Component-based frameworks for e-commerce. Commun. ACM 43(10), 61–67
(2000)

32. Francez, N., Forman, I.R.: Superimposition for interacting processes. In: Baeten, J.C.M., Klop,
J.W. (eds.) CONCUR. LNCS, vol. 458, pp. 230–245. Springer, Berlin (1990)

33. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Boston (1995)

34. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang. Syst. 7(1),
80–112 (1985)

35. Gelernter, D., Carriero, N.: Coordination languages and their significance. Commun. ACM
35(2), 96–107 (1992)

36. Goguen, J.A.: Categorical foundations for general systems theory. In: Pichler, F., Trappl, R.
(eds.) Advances in Cybernetics and Systems Research, pp. 121–130. Transcripta Books, Lon-
don (1973)

37. Goguen, J.A.: Reusing and interconneccting software components. Computer 19(2), 16–28
(1986)

38. Goguen, J.A.: A categorical manifesto. Math. Struct. Comput. Sci. 1(1), 49–67 (1991)
39. Gries, D.: The Science of Programming, 1st edn. Springer, Secaucus (1981)
40. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12, 576–580

(1969)
41. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle River

(1985)
42. Jackson, M.A.: Principles of Program Design. Academic Press, Orlando (1975)
43. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall, Upper

Saddle River (1990)
44. Katz, S.: A superimposition control construct for distributed systems. ACM Trans. Program.

Lang. Syst. 15(2), 337–356 (1993)
45. Kon, F., Costa, F.M., Blair, G.S., Campbell, R.H.: The case for reflective middleware. Com-

mun. ACM 45(6), 33–38 (2002)
46. Kramer, J.: Exoskeletal software. In: ICSE, p. 366 (1994)
47. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4), 36–42 (2007)
48. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. In:

De Nicola, R. (ed.) Programming Languages and Systems. LNCS, vol. 4421, pp. 33–47.
Springer, Berlin (2007)

49. Liskov, B., Zilles, S.: Programming with abstract data types. In: Proceedings of the ACM
SIGPLAN Symposium on Very High Level Languages, pp. 50–59. ACM, New York (1974)

50. Lopes, A., Fiadeiro, J.L.: Superposition: composition vs refinement of non-deterministic,
action-based systems. Form. Asp. Comput. 16(1), 5–18 (2004)

51. Lopes, A., Fiadeiro, J.L.: Adding mobility to software architectures. Sci. Comput. Program.
61(2), 114–135 (2006)

52. Lopes, A., Wermelinger, M., Fiadeiro, J.L.: High-order architectural connectors. ACM Trans.
Softw. Eng. Methodol. 12(1), 64–104 (2003)

53. Medvidović, N., Mikic-Rakic, M.: Programming-in-the-many: a software engineering
paradigm for the 21st century

54. Medvidović, N., Taylor, R.N.: A classification and comparison framework for software archi-
tecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93 (2000)

1 The Many Faces of Complexity in Software Design 47

55. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software connectors. In:
ICSE, pp. 178–187 (2000)

56. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Upper Saddle
River (1997)

57. Mikic-Rakic, M., Medvidović, N.: Adaptable architectural middleware for programming-in-
the-small-and-many. In: Endler, M., Schmidt, D.C. (eds.) Middleware. LNCS, vol. 2672,
pp. 162–181. Springer, Berlin (2003)

58. Mikic-Rakic, M., Medvidović, N.: A connector-aware middleware for distributed deployment
and mobility. In: ICDCS Workshops, pp. 388–393. IEEE Comput. Soc., Los Alamitos (2003)

59. Morgan, C.: Programming from Specifications. Prentice-Hall, Upper Saddle River (1990)
60. OSOA: Service component architecture 2007. Version 1.00
61. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun. ACM

15, 1053–1058 (1972)
62. Prieto-Diaz, R., Neighbors, J.M.: Module interconnection languages. J. Syst. Softw. 6, 307–

334 (1986)
63. Reisig, W.: Modeling- and analysis techniques for web services and business processes. In:

Steffen, M., Zavattaro, G. (eds.) FMOODS. LNCS, vol. 3535, pp. 243–258. Springer, Berlin
(2005)

64. Sessions, R.: Fuzzy boundaries: objects, components, and web services. ACM Queue 2, 40–47
(2004)

65. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Upper Saddle River (1996)

66. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn.
Addison-Wesley, Boston (2002)

67. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: a model of service-oriented
computation. In: Drossopoulou, S. (ed.) ESOP. LNCS, vol. 4960, pp. 269–283. Springer,
Berlin (2008)

68. Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software architecture
reconfiguration. Sci. Comput. Program. 44(2), 133–155 (2002)

69. Wirsing, M., Hölzl, M. (Eds.): Rigorous Software Engineering for Service-Oriented Systems.
LNCS, vol. 6582. Springer, Berlin (2011)

70. Wirth, N.: Programming in Modula-2, 3rd corrected edn. Springer, New York (1985)
71. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-Hall, Upper

Saddle River (1996)

Chapter 2
Simplicity and Complexity in Programs
and Systems

Michael Jackson

2.1 Introduction

The topic of this chapter is complexity in an informal sense: difficulty of human
comprehension. Inevitably this difficulty is partly subjective. Some people have
more experience, or more persistence, or simply more intellectual skill—agility,
insight, intelligence, acuity—than others. The difficulty of the subject matter to be
mastered depends also on the intellectual tools brought to bear on the task.

These intellectual tools include both mental models and overt models. An overt
model is revealed in an explicit public representation, textual or graphical. Its pur-
pose is to capture and fix some understanding or notion of its subject matter, making
it reliably available to its original creator at a future time and to other people also.
A mental model is a private possession held in its owner’s mind, sometimes barely
recognized by its owner, and revealed only with conscious effort. A disdain for in-
tuition and for informal thought may relegate a mental model—which by its nature
is informal—to the role of a poor relation, best kept out of sight. Such disdain is
misplaced in software development.

Complexity is hard to discuss. A complexity, once mastered, takes on the appear-
ance of simplicity. In the middle ages, an integer division problem was insuperably
complex for most well-educated Europeans, taught to represent numbers by Roman
numerals; today we expect children in primary school to master such problems.
Taught a better model—the Hindu-Arabic numerals with positional notation and
zero—we learn a fast and reliable route through the maze: its familiarity becomes
so deeply ingrained in our minds that we forget why it ever seemed hard to find.

To master a fresh complexity we must understand its origin and its anatomy.
In software development a central concern is behavioral complexity, manifested at
every level from the behavior of a small program to the behavior of a critical sys-
tem. Behavioral complexity is the result of combining simple behaviors, sometimes

M. Jackson (�)
The Open University, Milton Keynes, UK
e-mail: jacksonma@acm.org

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_2, © Springer-Verlag London Limited 2012

49

mailto:jacksonma@acm.org
http://dx.doi.org/10.1007/978-1-4471-2297-5_2

50 M. Jackson

drawn from such different dimensions as the program invocation discipline imposed
by an operating system, the behavior of an external engineered electromechanical
device, and the navigational constraints of a database.

To master behavioral complexity we must identify and separate its simple con-
stituents, following the second of Descartes’s four rules [3] for reasoned investiga-
tion:

“. . . to divide each of the difficulties under examination into as many parts as possible, and
as might be necessary for its adequate solution.”

But this rule alone is quite inadequate. Leibniz complained [8]:

“This rule of Descartes is of little use as long as the art of dividing remains unex-
plained. . . By dividing his problem into unsuitable parts, the inexperienced problem-solver
may increase his difficulty.”

So we must devise and apply systematic criteria of simplicity, allowing us to
know when we have identified a simple constituent of the complexity that confronts
us. But it is not enough to identify the constituent simplicities. We must also under-
stand the origins and anatomy of their existing or desired combination. Developers
should not hamper their understanding of a problem by assuming a uniform disci-
pline and mechanism of composition, whether derived from a program execution
model or from a specification language.

The complexities to be mastered in software development arise both in tasks of
analysis and of synthesis. In analysis, the task is to tease apart the constituents of a
given complex whole, identifying each distinct constituent and the ways in which
they have been reconciled and brought together. Such analysis may be applied to
an existing program, to a requirement, or to any given subject matter of concern.
In synthesis the task is to construct an artifact to satisfy certain requirements. For
a program, the requirements themselves may be simple and immediately compre-
hensible: synthesis can then proceed directly. For a realistic computer-based system,
requirements are almost always complex, given a priori or to be discovered in a pro-
cess that may be partly concurrent with the synthesis itself. In either case, synthesis
can proceed only to the extent that the relevant complexities of the requirement have
been successfully analysed and understood.

In this chapter we first consider an example of a small integer program, and go
on to discuss small programs that process external inputs and outputs. Then we turn
to a consideration of complexities in computer-based systems. At the end of the
chapter we recapitulate some general propositions about complexities in software
development and techniques for mastering them. The approach throughout is selec-
tive, making no attempt to discuss complexity in all its software manifestations, but
focusing on complexity of behavior. In programming, it is this complexity that sur-
prises us when a program that we had thought was simple produces an unexpected
result. In a realistic computer-based system, behavior is harder to understand, and its
surprises can be far more damaging. In a critical system the surprises can be lethal.

2 Simplicity and Complexity in Programs and Systems 51

Fig. 2.1 A flowchart of a program designed by Alan Turing

2.2 A Small Integer Program

The pioneers of electronic computing in the 1940s recognized the difficulty of the
programmer’s task. Figure 2.1 shows a flowchart designed by Alan Turing, slightly
modified to clarify a minor notational awkwardness. Turing used it as an illustration
in a paper [16] he presented in Cambridge on 24th June 1949.

The program was written for a computer without a multiplier. It calculates
factorial(n) by repeated addition. The value n is set in a local variable before the
program starts; on termination the variable v = factorial(n). Other local variables
are r , s and u. Turing began his talk by asking: “How can one check a routine in
the sense of making sure that it is right?” He recommended that “the programmer
should make assertions about the various states that the machine can reach.” Asser-
tions are made about the variable values at the entries and exits of the named flow
graph nodes. For example, on every entry to node B, u = r!; on exit from C to E,
v = r!, and on exit from C to D, v = n!. The program is correct if the assertion on
entry to the Stop node is correctly related to the assertion “n contains the argument
value” on entry to node A from Start.

Along with the flowchart, Turing presented a table containing an entry for each
marked block or point in the program: the entry shows “the condition of the machine
completely,” including the asserted precondition and postcondition, and the next
step, if any, to be executed. The table entries are fragments which can be assembled
into a correctness proof of the whole program by checking them in sequence while
traversing the flowchart. Further discussion of this program, focusing particularly
on the proof, can be found in [7] and in an interesting short paper [9] by Morris and
Jones.

A careful reading of the flowchart shows that the program is essentially structured
as an initialisation and two nested loops. The outer loop iterates multiplying by each
value from 2 to n; the inner loop iterates to perform each multiplication. However,
the flowchart does not express this structure in any systematic way, and Turing’s
explanation of the program is difficult to follow. Turing no doubt had a clear mental
model of the process executed by his program: “multiply together all the integers
from 1 to n in ascending order”; but his overt model of the computation—that is,
the flowchart—does not show it clearly. We might even be bold enough to criticise
Turing’s program for specific design faults that make it hard to understand. The
roles of the variables u and v are not consistently assigned. On one hand, v is the
result variable in which the final result will be delivered. On the other hand, v is

52 M. Jackson

a parameter of the inner loop, specifying the addend by which the multiplication
develops its product in the variable u. The awkwardness of the exit at block C from
the middle of the outer loop is associated with this ambivalence. A further point,
made in [9], is that the value of factorial(0) is correctly calculated, but this appears
almost to be the result of chance rather than design.

Even after a reading of the formal proof has shown the program to be correct in
that it delivers the desired result, the program remains complex in the sense that it
is hard to understand. One aspect of the difficulty was well expressed by Dijkstra
in the famous letter [4] to the editor of CACM: “we can interpret the value of a
variable only with respect to the progress of the process.” Flowcharts offer little or
no support for structuring or abstracting the execution flow, and hence little help in
understanding and expressing what the values of the program variables are intended
to mean and how they evolve in program execution. This lack of support does not
make it impossible to represent an understandable execution flow in a flowchart.
It means that the discipline inherent in flowcharts helps neither to design a well-
structured flow nor to capture the structure clearly once it has been designed.

Such support and help was precisely what structured programming offered, by
describing execution by a nested set of sequence, conditional and loop clauses in
the form now familiar to all programmers. In the famous letter, Dijkstra argued
that this discipline, unlike unconstrained flowcharting, provides useful “coordinates
in which to describe the progress of the process,” allowing us to understand the
meaning of the program variables and how their successive values mark the process
as it evolves in time. Every part, every variable, and every operation of the program
is seen in a nested closed context which makes it easily intelligible. Each context
has an understandable purpose to which the associated program parts can be seen
to contribute; and this purpose itself can be seen to contribute to an understandable
purpose visible in the text at the next higher level. These purposes and the steps by
which they are achieved are then expressible by assertions that fit naturally into the
structure of the text.

This explanation of the benefits of structured programming is compelling, but
there is more to say. Structured programming brings an additional benefit that is
vital to human understanding. In a structured program text the process, as it evolves
in execution, can become directly comprehensible in an immediate way. It becomes
captured in the minds of the writer and readers of the text, as a vivid mental model.
Attentive contemplation of the text is almost a physical enactment of the process
itself; this comprehension is no less vital for being intuitive and resistant to formal-
isation.

2.3 Programs with Multiple Traversals

The problem of computing factorial(n) by repeated multiplication is simple in an
important respect. The behavior of Turing’s solution program is a little hard to un-
derstand, but this complexity is gratuitous: a more tidily structured version—left as
an exercise for the reader—can be transparently simple. Only one simple behavior

2 Simplicity and Complexity in Programs and Systems 53

need be considered: the behavior of the program itself in execution. This behavior
can be regarded as a traversal of the factors 1,2, . . . , n of n!, incorporating each fac-
tor into the result by using it as a multiplier when it is encountered in the traversal.
The problem world of the program, which is the elementary arithmetic of small in-
tegers, imposes no additional constraint on the program behavior. The argument n,
the result v!, the multipliers, and any local integer values in the other variables can
all be freely written and read at will. The program as designed visits the factors of
n! in ascending numerical order, but descending order is equally possible and other
orders could be considered.

More substantial programs, however, usually demand consideration of more than
one simple behavior. For example, a program computing a result derived from an in-
teger matrix may require to traverse the matrix in both row and column order. Both
the input and output of a program may be significantly structured, and these struc-
tures may restrict the traversal orders available to the program. An input stream
may be presented to the program as a text file, or as a time-ordered stream of in-
terrupts or commands. A collection of records in a database, or an assemblage of
program objects may afford only certain access paths for reading or writing, and the
program must traverse these paths. For example, a program that summarises cell-
phone usage and produces customer bills must read the input data of call records,
perhaps from a database or from a sequential file, and produce the output bills in
a format and order convenient for the customers. The traversal of a program’s in-
put may involve some kind of navigation or parsing, and production of the output
may demand that the records be written in a certain order to build the required data
structure.

Multiple behaviors must therefore be considered for input and output traver-
sals. The behavior of the program in execution must somehow combine the input
and output traversals with the operations needed to implement the input-output
function—that is, to store and accumulate values from the input records as they
are read, and to compute and format the outputs in their required orders. This need
to combine multiple behaviors is a primary potential source of software complex-
ity.

A program encompassing more than one behavior is not necessarily complex if it
is well designed. In the cellphone usage example, each customer’s call records may
be accessible in date order, each giving details of one call; the corresponding output
bill may simply list these calls in date order, perhaps adding the calculated cost of
each call, and appending summary information about total cost and any applicable
discount. It will then be easy to design the program so that it traverses the input,
calculates output values, and produces the output while doing so. The two behaviors
based on the sequential structures of the two data streams fit together perfectly,
and can then be easily merged [6] to give the dynamic structure of the program.
The program text shows clearly the two synchronised traversals, with the operations
on the program’s local variables fitting in at the obviously applicable points. The
program has exactly the clarity, simplicity, and immediate comprehensibility that
are the promised benefits of structured programming.

54 M. Jackson

2.4 Programs with Multiple Structures

Sometimes, however, there is a conflict—in the terminology of [6], a structure
clash—between two sequential behaviors both of which are essential to the pro-
gram. One particular kind of conflict is a boundary clash. For example, in a busi-
ness reporting program, input data may be grouped by weeks while output data is
grouped by months. The behaviors required to handle input and output are then in
conflict, because there is a conflict between weeks and months: it is impossible to
merge a traversal by weeks with a traversal by months to give a single program
structure. In a similar example of a different flavour, variable-length records must
be constructed and written to fixed length disk sectors, records being split if nec-
essary across two or more sectors. The record building behavior conflicts with the
sector handling behavior, because the record structure is in conflict with the sector
structure. The general form of the difficulty posed by such a conflict is clear: no
single structured program text can represent both of the required behaviors in the
most immediate, intuitive, and comprehensible way.

To deal effectively with a complexity it must be divided into its simple con-
stituents. In these small programming examples the criterion of simplicity of a pro-
posed division is clear: each constituent behavior should be clearly described by
a comprehensible structured program text. Now, inevitably, a further concern de-
mands attention: How are the simple constituents to communicate? This concern
has two aspects—one in the requirement world, the other in the implementation
world. One is more abstract, the other more concrete. We might say that one is the
communication between behaviors, while the other is the combination of program
executions. Here we will consider the communication between the conflicting be-
haviors. The combination of program executions will be the topic of the next section.

For the business reporting problem, the conflicting behaviors must communicate
in terms of days, because a day is the highest common factor of a week and a month:
each consists of an integral number of days. Similarly, in the disk sector problem,
communication must be in terms of the largest data elements—perhaps bytes—that
are never split either between records or between sectors. Ignoring much detail, each
problem then has two simple constituent conflicting but communicating behaviors:

• For the business problem: (a) by-week behavior: analysing the input by weeks
and splitting the result into days; (b) by-month behavior: building up the output
by months from the information by days.

• For the disk sector problem: (a) by-record behavior: creating the records and split-
ting them into bytes; (b) by-sector behavior: build up the sectors from bytes.

The communication concern in the requirement world demands further consider-
ation, because the constituent behaviors are not perfectly separable. For example, in
the processing of monthly business data it may be necessary to distinguish working
days from weekend days. The distinction is defined in terms of weeks, but the theme
of the separation is to keep the weeks and the months apart. The concern can be ad-
dressed by associating a working/weekend tag with each day’s data. The tag is set in
the context of the by-week behavior, and communicated to the by-month behavior.

2 Simplicity and Complexity in Programs and Systems 55

Effectively, the tag carries forward with the day’s data an indication of its context
within the week. In the same way, the record behavior can associate a tag with each
byte to indicate, for example, whether it is the first or last, or an intermediate byte
of a record. We will not pursue this detail here.

2.5 Combining Programs
The program combination concern arises because a problem that required a solution
in the form of one executable programmed behavior has been divided into two be-
haviors. Execution of the two corresponding programs must be somehow combined
in the implementation to give the single program execution that was originally de-
manded. Possible mechanisms of combination may be found in the program execu-
tion environment—that is, in programming language features and in the operating
system—or in textual manipulation of the program texts themselves.

The by-week and by-month behaviors for the business reporting problem com-
municate by respectively writing and reading a sequential stream of tagged days.
An obvious combination mechanism introduces an intermediate physical file of day
records on disk or tape. The by-week program is run to termination, writing this
intermediate file; then the by-month program is run to termination, reading the file.
This implementation is primitive and simple, and available in every execution envi-
ronment. But it is also unattractively inefficient and cumbersome: execution time is
doubled; use of backing store resources is increased by one half; and the first output
record is not available until after the last input record has been read.

In a better combination design, the two programs are executed in parallel, each
day record being passed between them to be consumed as soon as it is produced.
Having produced each day record, the by-week program suspends execution un-
til the by-month program has consumed it; having consumed each day record, the
by-month program suspends execution until the by-week program has produced the
next day. The two programs operate as coroutines, a programming construct first
described by Conway as a machine-language mechanism [1], and adopted as a pro-
gramming language feature [2] in Simula 67. In Simula, a program P suspends
its own execution by executing a resume(Q) statement, Q being the name of the
program whose execution is to be resumed. Execution of P continues at the point
in its text following the resume statement when next another program executes a
resume(P) statement.

A restricted run-time form of the coroutine combination is provided by the Unix
operating system. For a linear structure of programs Unix allows the stdout output
stream of a program to be either sent to a physical file or piped to another program;
similarly, the stdin input stream of a program can either be read from a physical
file or piped from another program’s stdout. If the intermediate file of day records
is written to stdout in the by-week program, and read from stdin by the by-month
program, then the Unix shell command:

InW < ByWeek | ByMonth > OutM

specifies interleaved parallel execution of the programs by-week and by-month, the
day records being passed between them in coroutine style.

56 M. Jackson

Fig. 2.2 Three ways of combining two small programs into one

2.6 Transforming a Program

Conway explains the coroutine mechanism [1] in terms of input and output opera-
tions:

“. . . each module may be made into a coroutine; that is, it may be coded as an autonomous
program which communicates with adjacent modules as if they were input or output sub-
routines. . . . There is no bound placed by this definition on the number of inputs and outputs
a coroutine may have.”

From this point of view, the by-week program can regard the by-month program
as an output subroutine, and the by-month program can regard the by-week program
as an input subroutine. If the programming language provides no resume statement
and the operating system provides no pipes, the developer will surely adopt this
point of view at least to the extent of writing one of the two programs as a subroutine
of the other. Another possibility is to write both programs as subroutines, calling
them from a simple controlling program. These possibilities are pictured in Fig. 2.2.

In the diagrams a tape symbol represents a physical file: I is the input data file;
O is the output report file. W and M are the by-week and by-month programs written
as autonomous (or ‘main’) programs; W′ and M′ are the same programs written as
subroutines; CP is the controlling program, which loops, alternately reading a day
record from W′ and writing it to M′. A double line represents a subroutine call, the
upper program calling the lower program as a subroutine.

The behaviors evoked by one complete execution of the main program W and by
one complete sequence of calls to the subroutine W′ are identical. This identity is
clearly shown by the execution mechanisms of Simula and the Unix pipes, which
demand no change to the texts of the executed programs. Even in the absence of
such execution mechanisms, the subroutine W′ is mechanically obtainable from the
program W by a transformation such as program inversion [6], in which a main
program is ‘inverted’ with respect to one of its input or output files: that it, it is
transformed to become an output or input subroutine for that file. Ignoring some
details, the elements of the transformation are these:

• a set of labels identifying those points in the program text at which program
execution can begin or resume: one at the start, and one at each operation on the
file in question;

• a local variable current-resume-point, whose value is initialised to the label at the
start of the program text, and a switch at the subroutine entry of the form “go to
current-resume-point”;

• implementation of each operation on the file in question by the code:

2 Simplicity and Complexity in Programs and Systems 57

current-resume-point:=X; return; label X:

• the subroutine’s local variables, including the stack and the current-resume-point,
persist during the whole of the programmed behavior.

The essential benefit of such a transformation is that the changes to the text are
purely local. The structured text of the original program is retained intact, and re-
mains fully comprehensible. Essentially this transformation was used by Conway
in his implementation of coroutines [1]. Applying the transformation to the devel-
opment of interrupt-handling routines for a computer manufacturer [10] produced a
large reduction in errors of design and coding.

Unfortunately, in common programming practise, instead of recognising that W′
and W are behaviourally identical, the programmer is likely to see them as different.
Whereas the behavior span of W is correctly seen as the complete synchronised be-
havior in which the whole day record file is produced in parallel with the traversal of
the whole input data file, the behavior span of W′ is seen as bounded by the produc-
tion of a single day record. Treating the behavior span of W′ in this way, as bounded
by the production of a single day record, casts the behavior in the form of a large
case statement, each limb of the case statement corresponding to some subset of the
many different conditions in which a day record could be produced. This is the per-
spective commonly known as event-driven programming. Gratuitously, it is far more
complex—that is, both harder to program correctly and harder to comprehend—than
the comprehensible structured form that it mistakenly supplants.

2.7 Computer-Based Systems

The discussion in the preceding sections suggests that behavioral complexities in
small programs may yield to several intellectual tools. One is a proper use of struc-
tured programming in its broadest sense: that is, the capture and understanding of
behavior in its most comprehensible form. Another is the decomposition of a com-
plex behavior into simple constituent parallel behaviors. Another is the careful con-
sideration of communication between separated behaviors by an identified highest
common factor and its capacity to carry any additional detail necessary because the
behaviors can be only imperfectly separated. And another is the recognition that
the task of combining program executions within an operating system environment
is distinct from the task of satisfying the communication requirement between the
separated programmed behaviors.

Computer-based systems embody programs, so the intellectual tools for their
analysis and development will include those needed for programs. The sources of
complexity found in small programs can also be recognized, writ large, in computer-
based systems; but for a realistic system there are major additional sources and
forms of complexity. These arise in the problem world outside the machine—that is,
outside the computing equipment in which the software is executed. The expression
problem world is appropriate because the purposes of the system lie in the world
outside the machine, but must be somehow achieved by the machine through its

58 M. Jackson

Fig. 2.3 Problem diagram of a lift system

interactions with the world. Systems for avionics, banking, power station control,
welfare administration, medical radiation therapy and library management are all of
this kind. The problem is to capture and understand the system requirement, which
is a desired behavior in the problem world, and to devise and implement a behavior
of the computer that will ensure the required behavior of the world.

The problem world comprises many domains: these are the parts of the human
and physical world relevant to the system’s purposes and to their achievement. It
includes parts directly interfaced to the machine through its ports and other commu-
nication devices, parts that are the subject of system requirements, and parts that lie
on the causal paths between them. Together with the computer, the problem domains
constitute a system whose workings are the subject matter of the development. Fig-
ure 2.3 is a sketch of a system to control the lifts in a large building.

The machine is the Lift Controller; plain rectangles represent problem domains;
solid lines represent interaction by such shared phenomena as state and events. The
dashed oval represents the required behavior of the whole system. The dashed lines
link the oval to the problem domains referenced by the requirement; an arrowhead
on a dashed line to a problem domain indicates that the machine must, directly or
indirectly, constrain the behavior of that domain. Here the requirement constrains
only the Lobby Display and the Lift Equipment; it refers to, but does not constrain,
the Users, the Building Manager (who can specify lift service priorities to suit dif-
ferent circumstances), and the Floors. All problem domains are constrained by their
given properties and their interactions with other problem domains. For example:
by the properties of the Lift Equipment, if the lift direction is set up, and the motor
is set on, the lift car will rise in the shaft; by the properties of the Floors domain
the rising car will encounter the floors successively in a fixed vertical sequence. The
requirement imposes further constraints that the machine must satisfy. For example:
if a user on a floor requests lift service, the lift car must come to that floor, the doors
must open and close, and the car must go to the floor desired by the user.

The problem world is an assemblage of interacting heterogeneous problem do-
mains. Their properties and behaviors depend partly on their individual constitu-
tions, but they depend also on the context in which the system is designed to operate.
The context sets bounds on the domain properties and behaviors, constraining them

2 Simplicity and Complexity in Programs and Systems 59

further beyond the constraints imposed by physics or biology. For example, the ver-
tical floor sequence would not necessarily be preserved if an earthquake caused the
building to collapse; but the system is not designed to operate in such conditions. On
the other hand, the system is required to operate safely in the presence of faults in
the lift equipment or the floor sensors. If the system is designed for an office build-
ing, the time allowed for users to enter and leave the lift will be based on empirical
knowledge of office workers’ behavior; in a system designed for an old age home
the expected users’ behavior will be different.

2.8 Sources of Complexity

The system requirements are complex because they combine several functions. The
lift system must provide normal lift service according to the priorities currently cho-
sen by the building manager. Some facility must be provided to allow the building
manager to specify priority schemes, to store them, and to select a scheme for cur-
rent use. The lobby display must be controlled so that it shows the current position
and travel direction of each lift in a clear way. A system to administer a lending
library must manage the members’ status and collect their subscriptions; control
the reservation and lending of books; calculate and collect fines for overdue loans
and lost books; maintain the library catalogue; manage inter-library loans; and en-
able library staff to ensure that new and returned books are correctly identified and
shelved, and can be easily found when needed.

In a critical system fault-tolerance adds greatly to complexity because it demands
operation in different subcontexts within the overall context of the whole system,
in which problem domains exhibit subsets of the properties and behaviors that are
already constrained by the overall context. The lift system, for example, must ensure
safe behavior in the presence of equipment malfunctions ranging from a stuck floor
sensor or a failed request button to a burned-out hoist motor or even a snapped
hoist cable. At the same time, lift service—in a degraded form—must be available,
subject to the overriding requirement that safety is not compromised.

Further complexity is added by varying modes of system operation. The lift con-
trol system must be capable of appropriate operation in ordinary daily use; it must
also be capable of operation according to priorities chosen by the building manager
to meet unusual needs such as use of the building for a conference. It must also be
capable of operating under command of a maintenance engineer, of a test inspector
certifying the lift’s safety, or of fire brigade personnel fighting a fire in the building.

System functions, or features, are not, in general, disjoint: they can interact both
in the software and in the problem domains. In the telecommunications area, fea-
ture interaction became recognized as a major source of complexity in the early
1990s, giving rise to a series [14] of dedicated workshops and conferences. Feature
interaction is also a source of complexity and difficulty in computer-based systems
more generally. The essence of feature interaction is that features whose individ-
ual behaviors are relatively simple in isolation may interfere with each other. Their
combination may be complex, allowing neither to fulfil its individual purpose by

60 M. Jackson

exhibiting its own simple behavior. In principle the potential complexity of feature
interaction is exponential in the number of features: all features that affect, or are
affected by, a common problem domain have the potential to interact.

2.9 Candidate Behaviour Constituents

In a small program, such as the business reporting program briefly discussed in
earlier sections, requirement complexity can be identified by considering the input
stream traversal necessary to parse the input data, the output stream traversal nec-
essary to produce the output in the required order, and the input-output mapping
that the machine must achieve while traversing the input and output streams. If a
structure clash is found, the behavior is decomposed into simpler constituents, their
communication is analysed, and the corresponding programs are combined. Clear
and comprehensible simple constituents reward the effort of considering their com-
munication and combination. The approach can be seen as a separation of higher-
order concerns: we separate the intrinsic complexity of each constituent from the
complexity of composing it with its siblings.

Various proposals have been made for decomposing system behavior, and have
furnished the basis of various development methods:

• Objects: each constituent corresponds to an entity in the problem world, capturing
its behavior and evolving state as it responds to messages and receives responses
to messages it sends to other objects. For example, in the library system one
constituent may capture the behavior of a library member, another constituent the
behavior of a book, and so on.

• Machine events: each constituent corresponds to an event class caused by the
machine and affecting the problem world. For example, in the lift system one
constituent may correspond to switching on the hoist motor, one to applying the
emergency brake, and so on. Each constituent captures an event and the resulting
changes in the problem world state.

• Requirement events: each constituent corresponds to an event or state value
change caused by a problem domain. For example, in the lift system one con-
stituent may correspond to the pressing of a lift button, another to the closing of
a floor sensor on arrival of the lift car, and so on. Each constituent captures an
event and specifies the required response of the machine.

• Use cases: each constituent corresponds to a bounded episode of interaction be-
tween a user and the machine. For example, in the library system one constituent
may capture the interaction in which a member borrows a book, another the in-
teraction in which a user searches for a book in the library catalogue, and so on.
In the lift system one constituent may capture the interaction in which a user
successfully summons the lift.

• Software modules: each constituent corresponds to an executable textual con-
stituent of the machine’s software. For example, in the library system one con-
stituent may capture the program procedure that the machine executes to charge

2 Simplicity and Complexity in Programs and Systems 61

Fig. 2.4 Problem diagram of
a lift system constituent

a member’s subscription to a credit card, another the procedure of adding a newly
acquired book to the library catalogue.

Each of these proposals can offer a particular advantage in some facet or phase of
developing a particular system. They are not mutually exclusive, but neither singly
nor in any combination are they adequate to master behavioral complexity.

2.10 Functional Constituent Behaviours

In the famous phrase of Socrates in the Phaedrus, a fully intelligible decomposition
of system behavior must “carve nature at the joints” [11]. The major joints in a
system’s behavior are the meeting places of the system’s large functions or features.
In a decomposition into functions the constituents will be projections of the system
and of its overall behavior.

Each constituent projection of system behavior has a requirement, a problem
world, and a machine; each of these is a projection of the corresponding part of the
whole system. To illustrate this idea, Fig. 2.4 shows a possible behavior constituent
of the lift control system.

The behavior constituent shown corresponds to a lift control feature introduced
by Elisha Otis in 1852. The lift is equipped with an emergency brake which can im-
mobilise the lift car by clamping it to the vertical steel guides on which it travels. If
at any time the hoist cable snaps, the hoist motor is switched off and the emergency
brake is applied, preventing the lift car from falling freely and suffering a disastrous
impact at the bottom of the shaft. A suitably designed Free Fall Controller might
achieve the required behavior by continually measuring the time from floor to floor
in downwards motion of the lift car, applying the brake if this time is small enough
to indicate a snapped cable or a major malfunction having a similar effect.

A behavioral constituent is not necessarily a subsystem in the sense that implies
implementation by distinct identifiable constituents that will remain recognisable
and distinguishable in the complete developed system. In general, the combination
of separated simple constituents in a computer-based system is a major task, and
must exploit transformations of many kinds. However, for purposes of analysis and
understanding, each simple constituent can be regarded as a closed system in its
own right, to be understood in isolation from other simple constituents, and having
no interaction with anything outside itself. In the analysis, the omitted domains—
the Users, Buttons, Lobby Display and Building Manager—play no part. The other
behaviors of the Lift Controller machine, too, play no part here: although in the

62 M. Jackson

complete system the motion of the lift is under the control of the Lift Controller
machine, here we regard the lift car as travelling autonomously in the lift shaft on
its own initiative.

By decomposing system behavior into projections that take the form of sub-
systems, we bring into focus for each projection the vital question: How can the
machine achieve the required behavior? That is, we are not interested only in the
question: What happens? We are interested also in the question: How does it work?
To understand each behavior projection we must also understand its genesis in the
workings of the subsystem in which it is defined. This operational perspective af-
fords a basis for assessing the simplicity of each behavior projection by assessing the
simplicity of the subsystem that evokes it. We consider each projection in isolation.
We treat it as if it were a complete system, although in fact it is only a projection of
the whole system we are developing. This view is far from new. It was advanced by
Terry Winograd over thirty years ago [17]:

“In order to successfully view a system as made up of two distinct subsystems, they need not
be implemented on physically different machines, or even in different pieces of the code.
In general, any one viewpoint of a component includes a specification of a boundary. Be-
haviour across the boundary is seen in the domain of interactions, and behaviour within the
boundary is in the domain of implementation. That implementation can in turn be viewed
as interaction between subcomponents.”

We will turn in a later section to the interactions between distinct constituents.
Here we consider the intrinsic complexity—or simplicity—of each one considered
in isolation. The criteria of simplicity provide a guide and a check in the decompo-
sition of system behavior.

2.11 Simplicity Criteria

Each behavior constituent, regarded as a subsystem, is what the physical chemist
and philosopher Michael Polanyi calls a contrivance [12]. A contrivance has a set
of characteristic parts, arranged in a configuration within which they act on one
another. For us these are the machine and the problem domains. The contrivance
has a purpose: that is, the requirement. Most importantly, the contrivance has an
operational principle, which describes how the parts combine by their interactions
to achieve the purpose.

Simplicity of a contrivance can be judged by criteria that are largely—though
not, of course—entirely—objective: failure on a simplicity criterion is a forewarning
of a development difficulty. The criteria are not mutually independent: a proposed
constituent failing on one criterion will probably fail on another also. Important
criteria are the following:

• Completeness: The subsystem is closed in the sense that it does not interact with
anything outside it. In the Free Fall projection the behavior of the Lift Equipment
is regarded as autonomous.

2 Simplicity and Complexity in Programs and Systems 63

• Unity of Context: Different contexts of use demand different modes of opera-
tion. An aircraft may be taxiing, taking off, climbing, cruising, and so on. Not
all context differences are relevant to all behaviors: differences between climbing
and cruising are not relevant to the functioning of the public address system. The
context of a simple behavior projection is constant over the span of the projection.

• Simplicity of Purpose: The purpose or requirement of a simple behavior con-
stituent can be simply expressed as a specific relationship among observable phe-
nomena of its parts. The requirement of the Free Fall constituent is that the emer-
gency brake is applied when the lift car is descending at a speed above a certain
limit.

• Unity of Purpose: A behavior projection is not simple if its purpose has the form:
“Ensure P1, but if that is not possible ensure P2.” This kind of cascading struc-
ture may arise in a highly fault-tolerant system. The distinct levels of functional
degradation can be distinct behavior projections.

• Unity of Part Roles: In any behavior constituent each part fulfils a role contribut-
ing to achieving the purpose. In a simple behavior constituent each part’s role,
like the overall purpose, exhibits a coherence and unity.

• Unity of Part Properties: In a simple behavioral constituent each part’s relevant
properties are coherent and consistent, allowing a clear understanding of how the
behavior is achieved. In a Normal Lift Service behavioral projection, the prop-
erties of the Lift Equipment domain are those on which the lift service function
relies.

• Temporal Unity: A simple behavioral constituent has an unbroken time span.
When a behavior comprises both writing and reading of a large data object, it
is appropriate to separate the writing and reading unless they are closely linked
in time, as they are in a conversation. In the lift system, the Building Manager’s
creating and editing of a scheme of priorities should be separated from its use in
the provision of lift service.

• Simplicity of Operational Principle: In explaining how a behavior constituent
works, it is natural to trace the causal chains in the problem diagram. An expla-
nation of the free fall constituent would trace a path over Fig. 2.4:
– From the Lift Equipment domain to the Floors domain: “the lift car moves

between floors;”
– At the Floors domain: “lift car arrival and departure at a floor changes the floor

sensor state;”
– From the Floors domain to the Free Fall Controller machine: “the lift car move-

ment is detected by the machine’s monitoring the floor sensors;”
– At the Free Fall Controller machine: “the machine evaluates the speed of down-

ward movement; excessive speed is considered to indicate free fall”
– From the Free Fall Controller machine to the Lift Equipment: “if the downward

movement indicates free fall the machine applies the brake”.
Satisfaction of the requirement is explained in a single pass over the causal links,
with no backtracking and no fork or join. The complexity of an operational prin-
ciple is reflected in the number and complexity of the causal paths in the problem
diagram that trace out its explanation.

64 M. Jackson

• Machine Regularity: The machine in a simple behavioral constituent achieves its
purpose by executing a regular process that can be adequately understood in the
same way as a structured program.

These criteria of simplicity aim to characterise extreme simplicity, and a devel-
oper’s reaction to the evaluation of simplicity must depend on many factors. It re-
mains true in general that major deviations from extreme simplicity warn of diffi-
culties to come.

2.12 Secondary Decompositions

The simplicity criteria motivate behavioral decompositions beyond those enjoined
by recognising distinct system functions. One important general class is the intro-
duction of an analogic model, with an associated separation of the writer and reader
of the model.

Correct behavior of a computer-based system relies heavily on monitoring the
problem world to detect significant states and conditions to which the machine must
respond. In the simplest and easiest cases the machine achieves this monitoring by
recognising problem world signals or states whose meaning is direct and unambigu-
ous. For example, in the Lift System the Lift Controller can detect directly that the
lift car has arrived at a desired floor by observing that the floor sensor state has
changed to on.

Often, however, the monitoring of the problem world, and the evaluation of the
signals and states it provides, is more complex and difficult, and constitutes a prob-
lem that merits separate investigation in its own right. For example, in an employee
database in a payroll system, information about the hiring, work and pay of each
employee becomes available to the computer as each event occurs. The informa-
tion is stored, structured and summarised in the database, where it constitutes an
analogic model of the employee’s attributes, history, and current state. This model
is then available when needed for use in calculating pay, holiday entitlement, and
pension rights, and also for its contribution to predictive and retrospective analyses.
The model, of course, is not static: it is continually updated during the working life
of the employee, and its changes reflect the employee’s process evolving in time.

For a very different example, consider a system [15] that manages the routing of
packages through a tree structure of conveyors. The destination of each package is
specified on a bar-coded label that is read once on entry at the root of the tree. The
packages are spatially separated on the conveyors, and are detected by sensors when
they arrive at each branch point and when they leave. For each package, the machine
must set the switch mechanism at each branch point so that the package follows the
correct route to its specified destination.

The analogic model is needed because although the sensors at the switches in-
dicate that some package has arrived or left, they cannot indicate the package des-
tination, which can be read only on entry to the tree. In the model the conveyors
are represented as queues of packages, each package being associated with its bar-
coded destination. The package arriving at a switch is the package at the head of the

2 Simplicity and Complexity in Programs and Systems 65

Fig. 2.5 Behaviour decomposition: introducing an analogic model

queue in the incoming conveyor; on leaving by the route chosen by the machine, it
becomes the tail of the queue in the outgoing conveyor.

The upper part of Fig. 2.5 shows the problem diagram of the whole system; the
lower left diagram shows the projection of the system in which the analogic model
is built and maintained; the lower right diagram shows the packages being routed
through the tree using the analogic model. The analogic model is to be understood as
a latent local variable of the Routing Controller machine, exposed and made explicit
by the decomposition of the machine’s behavior.

2.13 The Oversimplification Strategy

A source of system complexity is feature interaction. The complexity of an identi-
fied behavioral constituent has two sources. One is the inherent complexity of the
constituent considered in isolation; the other is the additional complexity due to its
interaction with other constituents. It is useful to separate these two sources. For this
purpose a strategy of oversimplification should be adopted in initially considering
each projection: the projection is oversimplified to satisfy the simplicity criteria of
the preceding section. The point can be illustrated by two behavior constituents in a
system to manage a lending library. The library allows its paying members in good
standing to borrow books, and the system must manage both membership and book
borrowing.

For each member, membership is a behavior evolving in time. Between the mem-
ber’s initial joining and final resignation there are annual renewals of membership.
There are also vicissitudes of payment and of member identity and accessibility:
credit card charges may be refused or disputed; bankruptcy, change of name, change
of address, promotion from junior to senior member at adulthood, emigration, death,
and many other possibly significant events must be considered for their effect on the
member’s standing.

For each book, too, there is a behavior evolving in time. The book is acquired
and catalogued, shelved, sent for repair when necessary, and eventually disposed of.
It can be reserved, borrowed for two weeks, and returned, and a current loan may
be renewed before its expiry date. The book may be sent to another library in an
inter-library loan scheme; equally, a book belonging to another library may be the

66 M. Jackson

Fig. 2.6 Decomposition techniques

subject of a loan to a member. At any point in a book’s history it may be lost, and
may eventually be found and returned to the library.

A projection that handles both membership and book borrowing cannot satisfy
the machine regularity criterion: there is a structure clash between the book and
member behaviors. From reservation to final return or loss a loan can stretch over a
long time, and in this time the member’s status can undergo more than one change,
including membership expiry and renewal. So it is desirable to separate the two
behaviors, considering each in isolation as if the other did not exist. To isolate the
book behavior we may assume that membership status is constant for each member
and therefore cannot change during the course of the member’s interaction with
the book. The membership behavior is isolated by assuming that interaction with
a book process consists only of the first event of the interaction—perhaps reserve
or borrow. Each process can then be studied and understood in isolation, taking
account only of its own intrinsic complexities.

When each behavior is adequately understood, and this understanding has been
captured and documented, their interaction can be studied as a distinct aspect of
the whole problem. The questions to be studied will be those that arise from un-
doing the oversimplifications made in isolating the processes. For example: Can a
book be borrowed by a member whose membership will expire during the expected
currency of the loan? Can it be renewed in this situation? How do changes in a mem-
ber’s status affect the member’s rights in a current loan? How and to what extent is
a resigning member to be relieved of membership obligations if there is still an un-
returned loan outstanding on resignation? What happens to a reservation made by a
member whose status is diminished? The result of studying the interaction will, in
general, be changes to one or both of the behaviors.

2.14 Loose Decomposition

The strategy of oversimplification fits into an approach to system behavior analysis
that we may call loose decomposition. Three classes of decomposition technique are
pictured in Fig. 2.6. Each picture shows, in abstract form, the decomposition of a
whole, A, into parts B, C and D.

Embedded decomposition is familiar from programs structured as procedure hi-
erarchies. A is the procedure implementing the complete program; B, C and D are
procedures called by A. Each called procedure must fit perfectly, both syntactically

2 Simplicity and Complexity in Programs and Systems 67

and semantically, into its corresponding ‘hole’ in the text and execution of the call-
ing procedure A. The conception and design of each of the parts B, C and D must
therefore simultaneously address any complexity of the part’s own function and any
complexity arising from its interaction with the calling procedure A and its indirect
cooperation, through A, with A’s other parts.

Jigsaw decomposition is found, for example, in relational database design. A is
the whole database, and B, C and D are tables within it. Essentially, A has no exis-
tence except as the assemblage formed by its parts, B, C and D. The parts fit together
like the pieces of a jigsaw puzzle, the tabs being formed by foreign keys—that is,
by common values that allow rows of different tables to be associated. The process
decomposition of CSP is also jigsaw decomposition, the constituent processes being
associated by events in the intersection of their alphabets. In jigsaw decomposition,
as in embedded decomposition, both the part’s own function and its interaction with
other parts must be considered simultaneously.

In loose decomposition, by contrast, the decomposition merely identifies parts
that are expected to contribute to the whole without considering how they will make
that contribution or how they will fit together with each other. The identified parts
can then be studied in isolation before their interactions are studied and their recom-
bination designed.

In general, it can be expected, as the picture suggests, that there will be gaps to be
filled in assembling the whole from the identified parts. Further, the decomposition
does not assume that the identified parts can be designed in full detail and subse-
quently fitted, unchanged, into the whole. On the contrary: the primary motivation
for using loose decomposition is the desire to separate the intrinsic complexities of
each part’s own function from any additional complexities caused by its interaction
with other parts. After the parts have been adequately studied, their interactions will
demand not only mechanisms to combine them, but also modifications to make the
combination possible.

2.15 Recombining Behaviours

The purpose of loose decomposition is to separate the intrinsic complexity of each
behavioral projection from the complexity added by its interactions with other pro-
jections. The recombination of the projections must therefore be recognized as a
distinct development task: their interactions must be analysed and understood, and
a recombination designed that will support any necessary cooperation and resolve
any conflicts. In a spatial dimension, two behavioral projections can interact if their
problem worlds include a common domain. In a temporal dimension, they can in-
teract if their behavior spans overlap or are contiguous.

A very well known recombination problem concerns the potential interference
between two subproblem contrivances that interact at a shared problem domain. To
manage this potential interference some kind of mutual exclusion must be specified
at an appropriate granularity. For interference in a lexical domain such as a database,
mutual exclusion is effectively achieved by a transaction structure.

68 M. Jackson

An important class of recombination concern arises when the control of a prob-
lem domain is transferred from one subsystem to another. Consider, for example,
an automotive system in which the required behavior of the car while driven on the
road is substantially different from its required behavior when undergoing a regular
servicing. If the two behaviors have been separated out into two behavior projec-
tions, then at some point when the car is taken in for servicing, or, conversely, taken
back from servicing to be driven on the road, control of the car must pass from one
to the other. The former, currently active, subproblem machine must suspend or ter-
minate its operation, and the latter, newly active, must resume or start. The problem
of managing this transfer of control has been called a switching concern [5].

The focus of a switching concern is the resulting concatenated behavior of the
problem world. This concatenated behavior must satisfy two conditions. First, any
assumptions about the initial problem world state on which the design of the latter
contrivance depends must be satisfied at the point of transfer. For example, in the
automotive system the latter subproblem design might assume that the car is station-
ary with the handbrake on, the engine stopped, and the gear in neutral. Second, the
concatenated behavior must satisfy any requirements and assumptions whose scope
embraces both the former and the latter subproblem.

Two behavior projections’ lifetimes may be coterminous: for example, the free
fall constituent is always in operation and so is the constituent that displays the
current location of the lift car. In general, the operational lifetimes of distinct sub-
problem contrivances are not coterminous. One may begin operation only when a
particular condition has been detected by another that is monitoring that condition:
for example, a contrivance that shuts down the radiation beam in a radiotherapy
system may be activated only when the emergency button is pressed. A set of sub-
problem contrivances may correspond to successive phases in a defined sequential
process: for example, taxi, take-off, climb, and cruise in an avionics system. One
contrivance’s operational lifetime may be nested inside another’s: for example, a
contrivance that delivers cash from an ATM and the contrivance that controls a sin-
gle session of use of the ATM.

In discussing small programs we distinguished the required communication be-
tween separated simple constituents from recombining their execution to fit effi-
ciently into the operational environment. For computer-based systems, the recom-
bining the execution of separated simple behaviors is a large task in its own right,
often characterised as software architecture.

2.16 Some Propositions About Software Complexity

This section recapitulates some propositions about software complexity, summaris-
ing points already made more discursively in earlier sections.

(a) Success in software development depends on human understanding. We per-
ceive complexity wherever we recognise that we do not understand. Complexity
is the mother of error.

2 Simplicity and Complexity in Programs and Systems 69

(b) Behavioral complexity is of primary importance. A complex behavior is a com-
bination of conflicting simple behaviors. In analysis we identify and separate
the constituent simple behaviors. In synthesis we clarify their communication
and recombine the execution of the programs that realise them.

(c) For small programs there are three obvious categories of required behav-
ior: traversing the inputs—that is, parsing or navigating them; traversing the
outputs—that is, producing them in the required order and structure; and com-
puting the output data values from the input.

(d) In each category of required behavior of a small program, a behavior is simple
if it can be represented by a labelled regular expression, as it is in a structured
program text. In general, a structured program is more understandable than a
flowchart.

(e) A structured program is understandable because it localises the demand for un-
derstanding at each level of the nested structure. More importantly, the described
behavior is comprehensible in an intuitive way that is closely related to a mental
enactment of the behavior. The importance of this comprehension is not less-
ened by its intuitive nature, which resists formalisation.

(f) Complexity in a small program can be mastered by separating the conflicting be-
haviors into distinct simple programs. Communication between these programs
demands explicit clarification and design because they may be only imperfectly
separable. This design task is concerned to satisfy the behavior requirement.

(g) The task of combining simple program executions is concerned with implemen-
tation within the facilities and constraints of the programming language and
execution environment. Parallel execution facilities such as coroutines or Unix
pipes may make this task easy.

(h) In the absence of parallel execution facilities the simple programs must often
be combined by textual manipulation. Systematic manipulation can convert a
program into a subroutine with persistent state; this subroutine can then play
the role of an input routine for one of its output files, or an output routine for
one of its input files.

(i) Requirements for a computer-based system stipulate behaviors of the problem
world. The system is an assemblage of interacting heterogeneous parts, or do-
mains, including the machine, which is the computer equipment executing the
software.

(j) The software development problem for a system includes: clarifying and cap-
turing the requirements; investigating and capturing the given properties and
behaviors of the problem domains; and devising a behavior of the machine to
evoke the required behavior in the problem world.

(k) Realistic systems have multiple functions, operating in various modes and con-
texts. These functions, modes and contexts provide a basic structure for under-
standing the system behavior.

(l) Like a complex behavior of a small program, a complex behavior of a system
is a combination of simple behaviors, each a projection of the whole. Each is a
behavior of an assemblage of problem domains and the machine. These simple
behaviors can interact both within the machine and within common problem
domains.

70 M. Jackson

(m) For a system, the behaviors of interest are not input or output streams or com-
puting the values of output from inputs. They are joint behaviors of parts of
the problem world evoked by the machine. They must therefore be understood
as behaviors of contrivances, comparable to the behaviors of such mechanical
devices as clocks and motor cars.

(n) In addition to its interacting parts, a contrivance has a purpose and an oper-
ational principle. The purpose is the behavioral requirement to be satisfied by
the contrivance. The operational principle explains how the purpose is achieved:
that is, how the contrivance works. Understanding of the operational principle is
essentially an informal and intuitive comprehension, resistant to formalisation.

(o) Some criteria of simplicity in a contrivance can be understood as unities: unity
of requirement; unity of the role played by each domain in satisfying the re-
quirement; unity of context in which the contrivance is designed to operate;
unity of domain properties on which the contrivance depends; and unity of the
contrivance’s execution time.

(p) An overarching criterion is simplicity of the operational principle. Any opera-
tional principle can be explained by tracing the operation along causal links in
the configuration of domains and their interactions. An operational principle is
simple if it can be explained in a single pass over the configuration, with no
backtracking and no fork or join.

(q) As in a small program, a criterion of simplicity for a contrivance is that the
behavior of the machine can be adequately represented by a labelled regular
expression, as it is in a structured program text.

(r) The criteria of simplicity enjoin further decompositions. In particular, many sys-
tem functions can be decomposed into the maintenance of a dynamic model of
some part of the problem world, and the use of that model. Similarly, where the
system transports data over time or place or both, the writing should be sepa-
rated from the reading.

(s) Communication between separated behaviors, and combination of the execu-
tions of the machines that evoke them, are a major source of complexity in
systems. Loose decomposition is therefore an effective approach: consideration
of communication and combination is deferred until the constituent behaviors
are well enough understood.

(t) Because separation into simple behaviors can rarely be perfect, understanding of
constituent behaviors usually demands initial oversimplification. The oversim-
plification can be reversed later, when the communication between the simple
behaviors is considered.

(u) For a system, combining the machine executions of constituent behaviors is—
or should be—the goal of software architecture after the constituent behaviors
have been adequately understood.

2.17 Understanding and Formalism

The discussion of software complexity in this chapter has focused on human un-
derstanding and has ignored formal aspects of software development. Formal rea-

2 Simplicity and Complexity in Programs and Systems 71

soning, calculation, and proof are powerful tools, but they are best deployed in the
context of an intuitive, informal, comprehension that provides the necessary struc-
ture and guiding purposes. Polanyi stresses the distinction between science and en-
gineering [13]:

“Engineering and physics are two different sciences. Engineering includes the operational
principles of machines and some knowledge of physics bearing on those principles. Physics
and chemistry, on the other hand, include no knowledge of the operational principles of
machines. Hence a complete physical and chemical topography of an object would not tell
us whether it is a machine, and if so, how it works, and for what purpose.”

A similar distinction applies to software development and formal mathematical
reasoning. The historic development of structured programming illustrates the point
clearly. Rightly, the original explicit motivation was human understanding of pro-
gram executions. Later it proved possible to build formal reasoning on the basis of
the intuitively comprehensible program structure. Correctness proofs exploited this
structure, using loop invariants and other formal techniques. This is the proper role
of formalism: to add strength, precision and confidence to an intuitive understand-
ing. Unfortunately, advocates of formal and informal techniques often see each other
as rivals. It would be better to seek means and opportunities of informed cooperation
in the mastery of software complexity.

References

1. Conway, M.E.: Design of a separable transition-diagram compiler. Commun. ACM 6(7), 396–
408 (1963)

2. Dahl, O.-J., Hoare, C.A.R.: Chapter III: Hierarchical program structures. In: Dahl, O.J., Dijk-
stra, E.W., Hoare, C.A.R. (eds.) Structured Programming, pp. 175–220. Academic Press, San
Diego (1972)

3. Descartes, R.: Discourse on the Method of Rightly Conducting the Reason, and Seeking Truth
in the Sciences (1637)

4. Dijkstra, E.W.: A case against the GO TO statement; EWD215, published as a letter (Go To
statement considered harmful) to the editor. Commun. ACM 11(3), 147–148 (1968)

5. Jackson, M.: Problem Frames: Analysing and Structuring Software Development Problems.
Addison-Wesley, Reading (2001)

6. Jackson, M.A.: Constructive methods of program design. In: Goos, G., Hartmanis, J. (eds.)
1st Conference of the European Cooperation in Informatics, pp. 236–262. Springer, Berlin
(1976)

7. Jones, C.B.: The early search for tractable ways of reasoning about programs. IEEE Ann. Hist.
Comput. 25(2), 26–49 (2003)

8. Leibniz, G.W.: Philosophical Writings (Die Philosophischen Schriften) vol. VI (1857–1890).
Edited by C.I. Gerhardt

9. Morris, F.L., Jones, C.B.: An early program proof by Alan Turing. IEEE Ann. Hist. Comput.
6(2), 139–143 (1984)

10. Palmer, P.F.: Structured programming techniques in interrupt-driven routines. ICL Tech. J.
1(3), 247–264 (1979)

11. Plato: Phaedrus. Oxford University Press, Oxford (2002). Translated by Robin Waterfield
12. Polanyi, M.: Personal Knowledge: Towards a Post-critical Philosophy. Routledge and Kegan

Paul, London (1958), and University of Chicago Press, 1974

72 M. Jackson

13. Polanyi, M.: The Tacit Dimension. University of Chicago Press, Chicago (1966); republished
with foreword by Amartya Sen, 2009

14. Reiff-Marganiec, S., Ryan, M. (eds.): Feature Interactions in Telecommunications and Soft-
ware Systems, ICFI’05, 28–30 June 2005, Leicester, UK, vol. VIII. IOS Press, Amsterdam
(2005)

15. Swartout, W., Balzer, R.: On the inevitable intertwining of specification and implementation.
Commun. ACM 25(7), 438–440 (1982)

16. Turing, A.M.: Checking a large routine. Report of a Conference on High Speed Automatic
Calculating Machines, 67–69 (1949). Also discussed in Refs. [7, 9]

17. Winograd, T.: Beyond programming languages. Commun. ACM 22(7), 391–401 (1979)

Part II
Controlling Complexity

Chapter 3
Conquering Complexity

Gerard J. Holzmann

3.1 Introduction

Outside software engineering, the main principles of reliable system design are com-
monly practiced, and not just for safety critical systems. If, for instance, a kitchen-
sink leaks, one can close a valve that stops the flow of water to that sink. The valve
is there because experience has shown that sinks do occasionally leak, no matter
how carefully they are constructed. If an electrical outlet short-circuits in someone’s
home, a fuse will melt. The fuse is there to prevent greater disaster in case the unan-
ticipated happens. The presence of the fuse or valve does not signify an implicit
acceptance of sloppy workmanship: they are an essential part of reliable system
design.

Most software today is built without any valves and fuses. We try to build per-
fect parachutes or sinks or outlets that do not need backup. When software fails, we
blame the developer for failing to be perfect. It would be wiser to assume from the
start that even carefully constructed and verified software components, like all other
things in life, may fail in sometimes unpredictable ways, and to use this knowl-
edge to construct assemblies of components that provide independently verifiable
system reliability. Studying how this can be accomplished is the focus of this chap-
ter.

3.2 Reliable Systems from Unreliable Parts

Non-critical software applications are often designed in a monolithic fashion. When
the application crashes, for instance when it hits a divide by zero error, the only

G.J. Holzmann (�)
Laboratory for Reliable Software, Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
e-mail: gholzmann@acm.org

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_3, © Springer-Verlag London Limited 2012

75

mailto:gholzmann@acm.org
http://dx.doi.org/10.1007/978-1-4471-2297-5_3

76 G.J. Holzmann

recourse one then has is to restart the application from scratch. This approach is
not adequate to use in the construction of systems that are safety critical, for in-
stance when human life depends on its correct and continued functioning. When,
for instance, a spacecraft experiences an unexpected failure of one of its compo-
nents during a launch or landing procedure, a complete restart of the software may
lead to the loss of the mission. In manned space flight, a few minutes spent in re-
booting the crew’s life support system can have undesired consequences. Systems
like this must be reliable, even if some of their software parts are not. The wise
course is to assume that no software components are fail-proof, not even those
that have been verified exhaustively. Note, for instance, that in software verifica-
tion we can only prove that a system has, or does not have, specific properties. If
we omit a property, or verify the wrong properties, the verification effort will be of
limited value. Alas, in practice we often only realize in retrospect (after a failure
occurs) that the documented and carefully vetted requirements for a system were
incomplete, or too vaguely stated to prevent subtle or even catastrophic problems
later.

3.3 Simplicity and Redundancy

There are two commonly used strategies for achieving system reliability. The first
is to use a design that achieves robustness through simplicity and the second is to
protect against unanticipated failure by using redundancy.

A simple design is easier to understand, easier to verify, and easier to operate
and maintain in good working order. The argument for redundancy in hardware (not
software) components is also readily made. If the probability of failure of individual
components is statistically independent, the chance of having both a primary and a
backup component fail at the same time can be small. If, for instance, all components
have the same independent probability p of failure, then the probability that all N

components fail in an N -redundant system would be pN . The use of simplicity
reduces the value of p, and the use of redundancy increases the value of N . Trivially,
for all values of N ≤ 1 and 0 < p < 1 both techniques can lower the probability of
failure pN for the system.

One of the basic premises used in the redundancy argument is the statistical in-
dependence of the failure probabilities of components. Although this independence
can often be secured for hardware components, it can be very hard to achieve in
software. Well-known are the experiments performed in the eighties by Knight and
Leveson with N -version programming techniques, which demonstrated that dif-
ferent programming teams can make the same types of design errors when work-
ing from a common set of (often imperfect) design requirements [3]. Indepen-
dently, Sha also pointed out that a decision to apply N -version programming is
never independent of budget and schedule decisions. With a fixed budget, each
of N independent development efforts will inevitably receive only 1/N -th of the
project resources. If we compare the expected reliability of N development ef-
forts, each pursued with 1/N -th of the project resources with a single targeted ef-

3 Conquering Complexity 77

fort that can consume all available resources, the tradeoffs can become very differ-
ent [11].

Another commonly used method to improving system reliability is the recovery
block approach [7], in which several alternative systems are constructed, and all are
subjected to a common acceptance test. For a given input, the system attempts each
alternative in turn (possibly in a fixed order), until one of the alternatives produces
a response that passes the acceptance test. In this case, the system must be designed
so that it is possible to rollback the effects of an alternative if its result fails the ac-
ceptance test. While the recovery block approach has the advantage over N -version
programming that only one of the alternatives needs to be correct (as opposed to a
majority of them), it has the same disadvantage that the implementation budget is
divided across several teams.

Redundancy in the traditional sense, in the way that has proven to work well
with hardware systems, therefore, cannot be duplicated easily in safety critical soft-
ware systems. A further complication is that traditional redundancy assumes that
system failures are normally cause by individual component failures. Although
this may be true in relatively small systems, more complex systems tend to fail
in entirely different ways. We will discuss this phenomenon first before we ex-
plore new strategies for reliable system design that can be based on these obser-
vations.

3.4 The Nature of Failure in Complex Systems

In a 1984 book [6], sociologist Charles Perrow wrote about the causes of failure in
complex systems, concluding that they were of a different nature than most people
normally assume. Perrow argued that when seemingly unrelated parts of a larger
system fail in some unforeseen combination, dependencies can become apparent
that are rarely accounted for in the original design. In safety critical systems the po-
tential impact of each possible component or sub-system failure is normally studied
in detail and remedied with backups. But failure combinations are rarely studied
in detail; there are just too many of them and most of them can be shown to have
a very low probability of occurrence. A compelling example in Perrow’s book is
a description of the events leading up to the partial meltdown of the nuclear re-
actor at Three Mile Island in 1979. The reactor was carefully designed with mul-
tiple backups that should have ruled out what happened. Yet a small number of
relatively minor failures in different parts of the system (an erroneously closed
valve in one place and a stuck valve in another) conspired to defeat all protec-
tions and allowed a major accident to occur. A risk assessment of the probability
of the scenario that unfolded would probably have concluded that it had a van-
ishingly small chance of occurring and need not be addressed in the overall de-
sign.

To understand the difficulty of this problem, consider a complex system with
M different components, each of which has a small and independent probability of
failure p. The probability that any one component will fail is p, and we can protect

78 G.J. Holzmann

ourselves against this with a backup. The probability that N arbitrarily chosen com-
ponents fail in combination is pN (assuming 1 ≤N ≤M). Clearly, with increasing
values for N the probability of this event decreases exponentially fast with the value
of N , but at the same time the total number of possible combinations that can trigger
this type of failure rises exponentially fast with N . As a first order approximation,
there are MN possible combinations of N components. For a moderately complex
system with one thousand components, there are close to one million possible com-
binations of two components, and one billion possible combinations of three com-
ponents. It is virtually impossible to test the potential consequences of each possible
(though unlikely) combination of component failures.

Examples of this phenomenon are not hard to find. The loss of contact with the
Mars Global Surveyor (MGS) spacecraft is a recent example that has all the ele-
ments of a Perrow-style failure.

The MGS Spacecraft failure.
The failure scenario started with a routine check of the contents of the RAM
memories in the two CPUs of the dual-redundant control system of the space-
craft. One CPU in the spacecraft is designated the primary CPU, and it con-
trols all functions of the spacecraft. The other CPU is designated as a standby,
ready to take over control when the primary CPU fails. The memory con-
tents of the two CPUs are meant to be identical. In the routine check it was
found that the two memories differed in a few locations. The difference was
of no major consequence, it merely reflected that some flight parameters had
been updated with slightly more precise versions while the standby CPU was
offline, and thus unable to accept the new values.
A correction to this problem was planned for a routine update. One of the
parameters was stored as a double-word value, and erroneously the address
of the parameter was taken to be the second word, instead of the first word.
(Only the second word differed between the two memories.) This meant that
the update of this parameter actually turned out to corrupt the correct value.
The update was done simultaneously in both memories (to make sure the two
memories would now match), which meant that both copies of the param-
eter were now corrupted. This parameter recorded a soft-stop value for the
rotation of the solar-arrays. No harm would be done to the spacecraft if the
soft-stop value was incorrect, though, because there was also a hardware pro-
tection mechanism in case the physical hard-stop was reached. Here then is
the first coincidence of an unsuspected coupling. By coincidence the param-
eter immediately adjacent to the soft-stop parameter was the parameter that
recorded the correct position of the space-craft for earth-pointing. Because
the update of the soft-stop parameter was off by one word, it corrupted not
just that parameter but also the parameter adjacent to it in memory.

3 Conquering Complexity 79

What had gone wrong so far could easily have been caught in routine checks at
any point later. Several months after these events, without these routine checks
having been performed yet, the solar arrays were adjusted from their summer
to their winter position—again a routine operation performed twice each year.
In this case, though, the adjustment triggered a fault, which was caused by
the incorrect value for the soft stop parameter. The fault automatically put
the spacecraft into, what is called, Safe Mode, where all normal operations
are suspended until controllers on earth can determine what happened and
take corrective actions. Even at this point, only a sequence of relatively minor
problems had occurred.
The top two priorities for the spacecraft in Safe Mode are to be power-positive
(i.e., to make sure that the batteries are charged) and to communicate with
earth. The MGS spacecraft could not do both of these functions at the same
time, given the perceived problem with the solar arrays (a conservative ap-
proach, given that the solar arrays had reach a hard-stop unexpectedly). Point-
ing the presumed stuck solar panels at the sun, by rotating the spacecraft itself,
however, also pointed the batteries at the sun—something that had not been
anticipated, and was caused by another hidden coupling, in this case of Safe
Mode priorities and the perceived failure mode of the solar panels. The ex-
posure to the sun quickly overheated the batteries, which the fault protection
software interpreted as a signal that the batteries were overcharging. This is
still not a major problem, until it combines yet again in an unforeseen way
with the remaining problem. Communicating with earth required pointing the
antennas at earth, but that required access to the one extra parameter that
had been corrupted in the original update. Now the cycle was complete: a
series of relatively small problems lined up to cause a big problem that pre-
vented the spacecraft both from communicating with earth and from charg-
ing its batteries. Within a matter of hours the spacecraft exhausted all charge
on its batteries and was lost. Taking away any one of the smaller problems
could have prevented the loss. What makes this example extra interesting is
that some of the dependencies were introduced by the fault protection system
itself—which functioned as designed. The part of the design that was meant
to prevent failure in this case helped to bring it about. This is not uncommon
in complex systems. In a sense, the addition of fault protection mechanisms
increases a system’s complexity. The increase in complexity itself carries risk,
which can in some cases decrease rather than increase a system’s reliability.

Although Perrow’s observations were originally intended primarily for hardware
system designs, they also have relevance to the study of complex software systems.
There are many other examples of the phenomenon that combinations of relatively
small defects can cause large problems in software systems. It is for instance known
that residual software defects (i.e., those defects that escape all phases of testing and
only reveal themselves once a system is in operation) tend to hide most successfully
in rarely executed code. A good example of rarely executed code is error-handling

80 G.J. Holzmann

and fault-protection code: precisely that code that is added for handling the relatively
rare cases where the main application experiences a problem. This means that a
defect in the error-handling code will normally be triggered in the presence of an
unpredictable other type of defect: the classic Perrow combination of two or more
independent failures with often unpredictable results. A misbehaving component
(be it software or hardware) can reveal or even introduce a dependency into the
system that would not exist if the component was behaving as designed, which can
therefore be very hard to anticipate by the designers in their evaluation of the overall
system reliability.

The remedies that follow from Perrow’s analysis will be clear. We can try to
reduce the number of all defects, including what may seem to be benign or minor
defects, we can try to reduce overall system complexity by using simpler designs,
and most of all we can try to reduce opportunities for unrelated problems to combine
by using standard decomposition and decoupling techniques.

Although all observations we have made so far are basic, they are rarely if ever
taken into account in reliable software system design. In the remainder of this chap-
ter we will consider how we can build upon them. One specific issue that we will
consider is how the basic principle of redundancy can be combined with the need
for simplicity.

3.5 Redundancy and Simplicity

One simple method to exploit redundancy that can be used in the design of software
systems is familiar to most programmers, but too often ignored: the aggressive use
of assertions in program text. The assertions are technically redundant, but only if
the program is completely free of defects. It is generally unwise, though, to assume
zero-defect software at any stage of program development, which means that the
use of assertions is one of the best and simplest defenses available to software bugs.

In a sense, an assertion works like the fuse in an electrical circuit. The fuse for-
malizes the claim that current will never exceed a preset level. The fuse is not ex-
pected to melt, because the circuit is designed to keep the current level in check. But
in case of an unexpected defect (a short-circuit), the fuse will detect the anomaly
and protect the system against wider damage by disabling the sub-system with the
malfunctioning component. A software assertion can work in the same manner, al-
though it is not always used as such. First, the assertion formalizes a claim that the
developer intends to hold at specific points in a program text. The assertion can
formalize a pre-condition, a post-condition, or an invariant for key pieces of code.
When the assertion fails it means that the code cannot be executed safely. Often this
is interpreted to mean that the entire program must be aborted, but this is not neces-
sarily the case. It is often sufficient to terminate only the sub-system with the newly
discovered defect, and to allow the system as a whole to continue, to recover from
the mishap, or to develop a work-around for the problem. What the nature of this
work-around can be is explored in the next few sections. A disciplined use of asser-
tions is key to reliable software development. Assertion density has been shown to
be inversely correlated with defect density in large software projects [4].

3 Conquering Complexity 81

Similar to assertions in scope and in ability to recognize erroneous program exe-
cution are property monitors. Monitors are more powerful than assertions, and can
be designed to catch more insidious types of defects. A monitor can be executed as a
special purpose process that is analogous to a hardware fault-monitor; it verifies that
critical system invariants are satisfied during system execution. Property monitors
can follow an execution over a longer period, and can, for instance, be derived from
temporal logic formulae. The main disadvantage of monitors is the runtime over-
head that they could impose on a system. For safety critical systems this is often
justified by the additional protection that is provided. A further exploration of as-
sertions or property monitors should be considered outside the scope of the current
chapter though. Instead, we will focus on methods for handling the defects that are
flagged by failing assertions or monitors, and explore a methodology that is not yet
commonly practiced.

3.6 Architecture

Consider a standard software architecture consisting of software modules with well-
defined interfaces. Each module performs a separate function. The modules are de-
fined in such a way that information flow across module boundaries is minimized.
We will assume, for simplicity but without loss of generality, that modules interact
through message passing, and that the crash of one module cannot affect other mod-
ules in any other way than across its module interface. A failed module can stop
responding, or fail to comply with the interface protocols by sending erroneous re-
quests or responses. We will make a further assumption that module failures can be
detected either through consistency checks that are performed inside a module, or
by peer modules that check the validity of messages that cross module boundaries.
It is, for instance, common in space craft software systems for modules to send peri-
odic heart-beat messages to a health-monitor. The absence of the heart-beat message
can then signal module failure, and trigger counter-measures. Similarly, a health-
monitor can verify the sanity of critical system components by sending queries that
require a specific type of response that can be verified for consistency.

We now provide each software module with a backup, but not a backup that is
simply a copy of the module. The backup is a deliberately simplified version of the
main module that is meant to provide only basic keep-alive functionality. During
normal system operation, this backup module is idle. When a fault is detected in
a module, though, the faulty module is switched offline and the simplified backup
module is used to replace it. Naturally, the backup module can have its own backup,
and so on, in a hierarchical fashion, to provide different layers of system function-
ality and system protection, but we will not pursue this generalization here.

The backup, due to the fact that it is a simplified version of the main module, may
offer fewer services, or it may offer them less efficiently. The purpose of the backup,
though, is to provide a survival and recovery option to a partially failed system. It
should provide the minimally necessary functionality that is required for the system

82 G.J. Holzmann

as a whole to “stay alive” and to maintain basic functionality until the fault can be
repaired.

Note that in a traditional system any failing module is its own backup. Upon
failure one simply restarts the module that failed (possibly as part of a complete
system reboot) and hopes that the cause for failure was transient. We can, however,
defend against a substantially larger class of defects if the backup module is distinct
from the primary module and deliberately constructed to be simpler.

As indicated earlier, if the primary and backup modules are constructed within an
N -version programming paradigm, we do not necessarily gain additional reliability.
This system structure will not adequately defend against design and coding errors.
Some of the same design errors may be made in the construction of both modules,
and if the two modules are of similar size and complexity, they should be expected to
contain a similar number of residual coding defects (i.e., coding defects that escape
code testing and verification). By making the backup modules significantly simpler
than the primary modules we can succeed in more effectively increasing system
reliability.

3.7 Hierarchical Redundancy

The backup modules in the approach we have sketched are constructed as deliber-
ately simplified versions of the primary modules. It is important to note that these
backup modules can be designed and built by the same developers that design and
build the primary modules. The primary module is build for performance and the
backup module is build for correctness. We gain reliability by making sure that the
backup modules are easier to verify. The statistically expected number of residual
defects in a backup module may still not be zero, but it should be lower than that of
the module it is designed to replace.

A simplified backup module is used to guarantee continuity of operation, though
in a possibly degraded state of operation (e.g., slower or with reduced functionality).
The backup gives the system the opportunity to recover from unexpected failures:
the primary module is offline and can be diagnosed and possibly restarted, while the
backup module takes care of the most urgent of tasks in the most basic of ways. If
code is developed in a hierarchical fashion, using a standardized software refinement
approach, the backup module could encapsulate a higher level in the refinement of
the final module: a simpler version of the code that is not yet burdened with all
features, extensions, and optimizations that support the final version, but that does
perform basic duties in the most straightforward and robust way.

Generally, a backup module will be smaller, measured in lines of code, than a
primary module. By virtue of being smaller and simpler, the expected number of
residual defects in its code should also be smaller. We will tacitly assume here that
the number of design and coding defects is proportional to the size of a module,
just like the assumption that the number of syntax and grammar mistakes in En-
glish prose is proportional to the length of that prose. If the primary module has
a probability of failure p and the backup has a probability of failure q , we should

3 Conquering Complexity 83

have 1 > p > q > 0 (ignoring the boundary cases where we have either certainty of
failure or absolute perfection). Because the backup module contains less code, and
implements less functionality, it offers fewer opportunities for defects to hide. The
module with its backup now fails with probability p × q .

3.7.1 Replace and Resume

When a software fault has been detected and the module that caused the fault can
reliably be identified, the next step is to transfer control to its backup module. There
are two possibilities:

• Active: The backup module is already running as a shadow module, either in a
separate thread of control or as a separate process

• Passive: The backup module needs to be initialized and started, either in the same
thread of control as the failed module, or as a separate thread or process.

An active backup strategy simplifies the handoff, since no further processing or ini-
tialization is required. The module interface is reconfigured within the system so
that the backup becomes the active module. The passive approach, on the other
hand, uses fewer resources, but requires the initialization of the backup module to a
state that is consistent with the operation of the primary module up until the point
of failure. There are two possible ways to achieve this. The first is to require all
modules to set checkpoints on their state at regular intervals, and to use these check-
points to initialize a backup module to a valid state. A second method is to design
the modules to be stateless. This is generally the preferred strategy in a distributed
system with many active components, since it avoids the need for initialization and
it avoids the complications of distributed state information.

Once the handoff process has been completed, system execution resumes without
requiring any further action. In special cases, though, it is an explicit notification to
other modules to record that module reset may be needed.

3.8 Synopsis

To achieve software reliability we have argued in this chapter that it is unwise to fo-
cus all our attention on ways to achieve zero-defect code. Instead, we have proposed
to investigate methods that can secure fail-proof systems, despite the possibility of
component failures. Remarkably, this is largely unexplored territory in the design of
reliable software systems.

The principal method of structuring code we have discussed is deliberately sim-
ple and can be summarized as follows. The system is structured into modules that
can fail independently. Modules communicate via well-defined interfaces, and each
critical module is provided with one or more backups that can take over basic op-
erations when the primary module fails. The backup modules are constructed to

84 G.J. Holzmann

be simpler, smaller, and more robust than the primary modules that they support,
possibly performing less efficiently and providing less functionality.

We can recognize this basic mode of operation in hardware design for safety
critical systems, e.g., of spacecraft. Spacecraft typically do not just have redundant
components, but also components of different type and designs providing different
grades of service. Most current spacecraft, for instance, have both a high-gain and a
low-gain antenna. When the high-gain antenna becomes unusable, the more reliable
low-gain antenna is used, be it at a significantly reduced bit-rate. The same princi-
ple can also be found on a more modest scale in the design of certain key software
functions for spacecraft. Spacecraft software is normally designed to support at least
two main modes of operation: the fully functional mode with all features and func-
tions enabled, and a minimal basic mode of operation that has become known as
Safe Mode. Safe mode is automatically engaged on any mission anomaly, though it
typically requires a system reboot as well [9]. The principles we have outlined hold
promise for a much broader routine use in the design of reliable software systems.

Acknowledgements The research described in this chapter was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

References

1. Anderson, T., Barrett, P.A., Halliwell, D.N., Moudling, M.L.: An evaluation of software fault
tolerance in a practical system. In: Fault Tolerant Computing Symposium, pp. 140–145 (1985)

2. Aviz̆ienis, A.A.: Software fault tolerance. In: The Methodology of N-Version Programming,
pp. 23–46. Wiley, New York (1995)

3. Knight, J.C., Leveson, N.G.: An experimental evaluation of the assumption of independence
in multi-version programming. IEEE Trans. Softw. Eng. 12(1), 96–109 (1986)

4. Kudrjavets, G., Nagappan, N., Ball, T.: Assessing the relationship between software assertions
and code quality: an empirical investigation. Tech. rep. MSR-TR-2006-54, Microsoft Research
(2006)

5. Lions, J.-L.: Report of the inquiry board for the Ariane 5 flight 501 failure (1996). Joint Com-
munication, European Space Agency, ESA-CNES, Paris, France

6. Perrow, C.: Normal Accidents: Living with High Risk Technologies. Princeton University
Press, Princeton (1984)

7. Randell, B., Xu, J.: The evolution of the recovery block concept. In: Lyu, M.R. (ed.) Software
Fault Tolerance, pp. 1–21. Wiley, New York (1995)

8. Rasmussen, R.D., Litty, E.C.: A voyager attitude control perspective on fault tolerant systems.
In: AIAA, Alburquerque, NM, pp. 241–248 (1981)

9. Reeves, G.E., Neilson, T.A.: The mars rover spirit FLASH anomaly. In: IEEE Aerospace Con-
ference, Big Sky, Montana (2005)

10. Rushby, J.: Partitioning in avionics architectures: requirements, mechanisms, and assurance.
Technical report, Computer Science Laboratory, SRI (1999). Draft technical report

11. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)
12. Weber, D.G.: Formal specification of fault-tolerance and its relation to computer security.

In: Proceedings of the 5th International Workshop on Software Specification and Design,
IWSSD’89, pp. 273–277. ACM, New York (1989)

Chapter 4
Separating Safety and Control Systems
to Reduce Complexity

Alan Wassyng, Mark Lawford, and Tom Maibaum

4.1 Introduction

This book is about complexity in the context of analyzing, designing and implement-
ing software intensive systems. Actually, there are three different kinds of complex-
ity that are of direct relevance. It is thus important to define the terminology we will
use so that we may be as clear as possible as to exactly what kind of complexity is
under discussion at any one time.

Problem complexity—the inherent complexity of the simplest but still com-
plete and accurate version of the application (problem) to be built.
Programming complexity—the complexity of the implementation of the ap-
plication.
Computational complexity—the performance cost of an algorithm.
Complexity—if we use the generic term, ‘complexity’, we mean both problem
and programming complexity.

At the moment there is a vast difference in what we know about the three kinds
of complexity. There is a growing body of knowledge related to computational com-
plexity, including terminology that describes how complex an algorithm is. There
are also accepted measures of this kind of complexity. Unfortunately, we cannot
claim the same for problem complexity and programming complexity. We speak
about these (related) complexities often. We proclaim that they are an important
cause of software errors. However, we do not even know how to measure them ef-
fectively, which seriously impacts our ability to design experiments to study them.
Even more unfortunate is that, in the context of developing safe and dependable

T. Maibaum (�)
McMaster University, Hamilton, ON, Canada
e-mail: tom@maibaum.org

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_4, © Springer-Verlag London Limited 2012

85

mailto:tom@maibaum.org
http://dx.doi.org/10.1007/978-1-4471-2297-5_4

86 A. Wassyng et al.

systems, it is problem complexity and programming complexity that are of primary
importance.

Complexity is important to Software Engineers because we have anecdotal evi-
dence that systems of high problem complexity are extremely difficult to build so
that they are suitably dependable [15]. And we have enormous amounts of evidence
that systems with high programming complexity are extremely hard to maintain, in
the full general sense of maintenance. Computer Scientists and Software Engineers
have spent years developing techniques for dealing with complexity. The most im-
portant of these techniques are abstraction and modularization (as a specific and
somewhat limited form of separation of concerns).

Abstraction is a common and useful practice which is used to focus attention on
a simplified view of the system/component. The idea is that the view should retain
relevant information but ignore ‘irrelevant’ details that make the system/component
more complex. Abstraction is an essential tool in our toolkit. It helps us understand,
model and analyze complex systems. Problem complexity cannot be reduced by
abstraction, though it, and some related notions, such as views, may help us cope
with complex systems. What is definitely reduced by abstraction is programming
complexity. Abstraction is not unique to the software world. It has been used effec-
tively for ages by anyone who has had to build mathematical models of complex
systems—physicists, engineers, economists, ecologists, and many others. Some-
times, we are so expert in abstraction that we do not notice that we have abstracted
away essential details of the real system! So, abstraction can genuinely reduce com-
plexity, but the reduction is usually temporary. At some stage, most of the details
have to be reintroduced into the solution. However, we should not underestimate the
usefulness of abstraction while we develop our understanding of the system that has
to be built.

Modularization is a special case of separation of concerns. We do this, i.e., mod-
ularize, at many stages in software development. For example, we may modularize
the requirements so that the required behavior is easier to understand. Typically
this is done along functional lines. We can modularize the software design (and the
code) so that it has some desirable properties. For example, information hiding was
postulated by Parnas [21, 22] so that the software design would be easy to maintain
under classes of foreseen changes. And, speaking of ‘classes’, object oriented de-
sign/programming was developed to further enhance our ability to modify existing
design modularization when subjected to change. In all these cases, modularization
has come to mean encapsulation of behavior and/or data in modules. Each module
is relatively simple and the modules communicate with each other through pub-
lic interfaces. This is not only an example of separation of concerns, it is also an
example of an old standby in dealing with complexity—divide-and-conquer. Mod-
ularization lies at the very heart of modern Software Engineering. It has proved to
be extremely effective in providing a mechanism for structuring software designs in
particular.

Modularization has become so useful, in fact, that software experts proclaim that
it is possible to reduce complexity through the use of modularization and other sim-
ilar software engineering techniques and principles. We now think that this view

4 Separating Safety and Control Systems to Reduce Complexity 87

is flawed. There is a very good reason why it is useful to differentiate between
problem complexity and programming complexity. If we are correct in supposing
that there is such a concept as problem complexity, it suggests a principle we can
formulate as conservation of complexity. Simply put, our conjecture is that we can-
not reduce the programming complexity of a system to the extent that it is ‘less
than’ the problem complexity of that system, whatever measure we use for com-
plexity. In the case of modularization, for example, we might say that the indi-
vidual program components are simplified while their interactions are made more
complex. In fact, it is often observed that the (programming) complexity of mod-
ern systems is not in their components, but in the interactions between compo-
nents.

So, if we cannot really reduce the programming complexity of a safety-critical
system below its problem complexity, and if the dependability of the system is
adversely affected by high problem/programming complexity, how can we build
highly dependable safety-critical systems?

There are a number of good answers to this question—and this book contains
many of them. Our answer focuses on an idea that supersedes the concept of mod-
ularization, namely separation of concerns. This approach has provided excellent
solutions in a number of instances in the past. Our suggested approach is an ex-
treme case of separation of concerns. What if we can partition the system so that
we have components with no (or very little) interaction between them? For ex-
ample, Canadian regulations for nuclear power generation state that safety sys-
tems in nuclear power plants have to be completely separated from the control
systems in that plant, and isolated as much as possible from each other (where
there is more than one safety system). Similar regulation is actually common in
other countries [18, 19], as well as in the process control domain. A significant
difference seems to be how strictly the regulation is enforced across countries
and between the domains. A decade or so ago, there was general adherence to
this principle of separation. There is now pressure to relax/remove this restric-
tion. The pressure comes from manufacturers of these systems, not from regula-
tors!

Analogous principles are used in other settings: operating systems kernels, com-
munication kernels, etc. In recent years we have found that there are advantages in
building dynamically adaptive embedded systems. These systems often have to react
to malfunctions and/or changes in the environment. It seems to us that this principle
of separation may be just as important for these systems as it is for many current
safety-critical systems. Many adaptive and reconfigurable embedded systems inte-
grate safety-critical and mixed-criticality components. We believe that these systems
should be designed so that the safety and adaptive components must be separated
for the same reasons that safety and control systems are separated. This could even
cover separation of components such as those for communication from components
corresponding to application features [7].

A recent paper on separation of concerns and its usefulness in relation to de-
pendability of systems makes similar points about the usefulness of separation of
concerns in relation to establishing the dependability of systems. [10]. The paper

88 A. Wassyng et al.

focuses on the idea of simplicity as the underlying basis for the feasibility of es-
tablishing dependability. We revisit a few of the arguments in this paper below and
add our own. Most importantly, we replace the undefinable notion of simplicity (a
call to arms proclaimed for several decades by Tony Hoare [8], and now reissued
by Lui Sha [24] and others), by the definable and scientific concept of problem
complexity.

For the remainder of this chapter we will use separation of safety and control
systems in the context of the nuclear power domain to illustrate the concepts and
principles, referring to other examples as and when necessary. We first introduced
the idea of conservation of complexity in an invited paper [27] specific to adaptive
systems, which served as the basis for this chapter.

4.2 Reducing Complexity

A fundamental reason for separating control and safety systems is that we believe
that, at least in the nuclear domain, fully isolated safety systems are inherently less
complex than are the systems that control the reactor (“fully” here means one ex-
treme of separation, what we might call physical separation). The safety subsystem
is literally isolated from the control system and each safety subsystem (there were
two at Darlington) is totally separated from the other. The disparity in complexity is
even greater between safety systems and integrated safety and control systems. We
also believe that this reduced problem complexity enables us to design, build, and
certify the behavior of the safety system to a level of quality that would be difficult
to achieve for an integrated, and thus more complex, system.

The safety systems at Darlington were of the order of tens of thousands of lines
of code, whereas the control system was of the order of hundreds of thousands. Now,
given extant criticisms of the lines of code metric for complexity, we do not want
to use this essentially qualitative measure for anything other than to emphasize the
difference in size and, therefore, the likely significant difference in programming
complexity—and by inference, problem complexity as well. This order of magni-
tude difference in programming complexity alone indicates the impact on analyz-
ability of the two pieces of software. As we know, more or less any verification
approach (testing based or proof based) suffers from exponential growth in the size
of the search space in relation to ‘size’. Hence, the control system, and similarly
an integrated control and safety system, will not be an order of magnitude more
difficult to analyze, but exponentially harder.

At this point, it may be useful to discuss the principle that we have called the con-
servation of complexity. We assert that systems and their requirements have some
level of inherent complexity. Sometimes, systems are designed so that they are more
complex than necessary, ditto requirements. However, for a particular system, there
is some level below which its complexity cannot be reduced. Principles like modu-
larity do not reduce this inherent complexity; they simply redistribute it. Modularity
may reduce complexity of parts. However, if we want to consider the complexity of
the complete system we must ‘add’ the complexity of interactions between parts.

4 Separating Safety and Control Systems to Reduce Complexity 89

Modularization in the usual sense is taken to mean division into parts in relation
to the functionality or features to be delivered by the application. The divide and
conquer strategy in problem solving is often taken as the pattern on which to base
such functional decompositions. What is often forgotten in such discussions is that
the decomposition of a problem into subproblems that are easier to solve must be
accompanied by a recomposition operation that is not ‘free’. This recomposition in-
volves some level of complexity. The complexity of interaction mentioned above is
a direct reflection of this cost of recomposition. In fact, it has often been observed
that the complexity of modern, large systems is down to the interaction between
components, whilst components themselves tend to be trivial. Very few would ar-
gue that modern large systems are not complex, though some might argue that they
have somehow reduced the complexity of the application. If there is any truth to this
latter claim, it must, in our view, be related to programming complexity: surely no
one would disagree with the assertion that the programming complexity of a modu-
larized design is significantly lower than that of a monolithic design. So, this line of
argument does not provide evidence for having lowered problem complexity in any
way; in fact, our use of the word conservation in this context implies that it cannot
be reduced.

Now, separating safety and control in a system is not an example of modulariza-
tion in the usual sense, because, surely, we are not taming complexity by moving
complexity to interaction. Separation, in this example, creates two independent sys-
tems, at least one of which is going to be inherently lower in problem complexity
than that of the original problem. Of course, the other part, the control system, may
also be inherently less complex than the original requirements, but the two systems,
taken together, are no less complex than the original integrated system because of
the conservation of complexity. This separation is an example of separation of con-
cerns that cuts across functional hierarchies. In fact one might characterize it as
doing the opposite of aspect weaving! It disentangles safety concerns from the var-
ious parts of the system and packages them up in a separate subsystem, never to be
weaved again into the application.

Of course, such a complete separation may not be possible in all systems. Adap-
tive and dynamically reconfigurable systems may be examples of such systems. For
these, we need to develop a better understanding of the separation that is feasible
and how this contributes to a division that still enables the development of greater
confidence in the safety component, because its problem complexity is significantly
lower than that of the original problem and, further, its interactions with the rest
of the system are also of less complexity than the original. The differences in com-
plexity still have to be significant enough to enable the claim of simpler analysis. An
example of such a system, where complete separation is not possible, is that of op-
erating systems and trusted kernels. One of the motivations for building operating
systems using trusted kernels is exactly the issue of low complexity and analyz-
ability. The kernel is significantly simpler than the whole operating system and its
interactions, usually defined through a small interface with the rest of the operating
system, are also significantly less complex than interactions in the other parts of the
operating system.

90 A. Wassyng et al.

4.2.1 The Effect of Reduced Complexity on Quality and
Dependability

In our context, it is the effect of complexity on dependability and the quality of the
software that is of primary interest. Surprisingly perhaps, we have not yet in this
chapter discussed any sort of definition for ‘complex system’. This is not an over-
sight. It seems to be a fact of life that people instinctively know what complexity
means, but defining it has occupied the minds of countless philosophers and re-
searchers from many domains over many years—and we still do not have a widely
accepted definition of what constitutes a complex system. In a very recent paper,
Ladyman, Lambert and Wiesner [14] list many ‘definitions’ of a complex system,
including the following one that we found to be the most appropriate in our context.
This definition originally appeared in [29]:

“In a general sense, the adjective ‘complex’ describes a system or compo-
nent that by design or function or both is difficult to understand and verify.
[. . .] complexity is determined by such factors as the number of components
and the intricacy of the interfaces between them, the number and intricacy of
conditional branches, the degree of nesting, and the types of data structures”.

This statement seems to fit our notion of programming complexity. It is directly
related to the notion of “aggregate complexity”, which ‘concerns how individual
elements work in concert to create systems with complex behavior’ [16]. There have
been many attempts to create practical and representative metrics for programming
complexity, and some of them use the components of this definition (see [6] for
representative examples). However, none has met with any significant success, and
the metric most commonly used in practice is an old and simple one that we referred
to earlier—lines of code (LOC). There are many documented problems with using
LOC as a metric for programming complexity [11], but alternatives seem to fare no
better [5]. This brings us to our first point.

1. Reduction in size. The crucial fact here is that we use the resulting code size of
the system as a measure of programming complexity. Size can be measured in
LOC as discussed above. This assumes that LOC is typically correlated with the
number of system inputs and outputs, the number of classes/modules, and even
the state space of the system. Thus LOC provides us with an indication of pro-
gramming complexity. The specific ‘size’ does not matter. We are interested in
the size merely as an indication of the programming complexity of the system,
and hence the feasibility of using rigorous (mathematical) methods and tools to
complement more typical approaches, and to be able to retain sufficient intel-
lectual control over the design and implementation of the system to achieve the
required dependability. At this stage in the history of software engineering, we
are capable of using formal techniques to specify the requirements and design
of ‘small’ systems, and thus be able to mathematically verify designs against

4 Separating Safety and Control Systems to Reduce Complexity 91

requirements and code against designs with a level of rigor that is not yet pos-
sible for larger systems [26]. One conclusion to draw here is that reduction in
programming complexity may not really be effective unless the resulting system
is small enough to be amenable to a variety of validation and verification meth-
ods, not just testing. Constructing and certifying safety systems that are smaller
than a hundred thousand LOC is a very different task compared with systems
that are hundreds of thousands of LOC, let alone millions of LOC. Note that ver-
ification is just one of the activities adversely affected by the size of the system
(programming complexity of the system), but it is a pivotal one.

Returning to the point at issue: if we can achieve a significant reduction in
the size of the application, we believe that it is possible to reduce the problem
complexity of that application. Put another way, the only way to reduce the size
of an application by a significant amount is to reduce the problem complexity of
the application. There is a trite but important assumption implicit here, and that
is that the application has not been so poorly designed that we could achieve a
significant reduction in programming complexity simply by doing a better job.

We believe that we can reduce the problem complexity of the system in a
number of ways:

• we can scale back the number of features planned for the system;
• we may be able to reduce the number of inputs and/or outputs;
• scaling back efficiency requirements often reduces the complexity inherent in

the system;
• we can require a rudimentary user interface rather than a sophisticated one;
• we can reduce or eliminate concurrency;
• we can restrict or eliminate interfaces to other systems;
• we can remove error handling;
• we can relax timing requirements.

Most readers will be quite familiar with the above list—or one very much like it.
We see some or all of these actions all the time in industry. We may even have
resorted to using these ‘simplifications’ ourselves. If we further examine each
of these ‘cuts’, we can envision quite easily that each of them would result in a
reduction in the size of the implemented system, measured by LOC. This would
seem to confirm that these ‘cuts’ would reduce the problem complexity of the
system. This fits in well with our suggestion that one way to reduce the problem
complexity of a system is to partition the system. If we partition the system into
two parts, for example, and if we can isolate a small, cohesive subset of the orig-
inal requirements into a separate system, then that system will have significantly
fewer features, inputs and/or outputs, than did the original, integrated system.
There are usually two reasons for making the above ‘cuts’ to a system under de-
velopment. The first is that we are far behind schedule and the schedule has to
be met (not always true), so that if we do not reduce the scope of the system,
we will not meet the schedule. The second is that if we try and get everything
done, the quality (correctness, dependability) of the resulting system will be in-
adequate. In other words, experience has taught us that if we are struggling with

92 A. Wassyng et al.

maintaining the quality of the system under development, reducing the number
of features, inputs and/or outputs may allow us to achieve the target quality of
the system. This shows that we have, for years, instinctively linked problem com-
plexity with system dependability. The greater the complexity, the more difficult
it is to achieve the required dependability.

2. Reduction in algorithmic complexity. Simple algorithms and data structures are
easier to construct correctly in the first place, and subsequently are easier to ver-
ify as being correct. Manual verification poses few challenges and automated
verification is often quite straightforward. On the other hand, proving that com-
plex algorithms achieve desired results and that they are implemented correctly,
presents us with significant challenges. This is easy to see when we examine the
progress we have made in certifying scientific computation software packages.
Scientific computation packages (as well as statistical packages) have a long his-
tory, going back to the 1960s. These early versions were surprisingly reliable
in spite of the lack of sophistication regarding their development—by today’s
standards. An advantage that they enjoyed was that each method was based on
strong mathematical knowledge about the algorithms and also about tests that
should be performed to confirm that the methods were working correctly. As sci-
entific computation grew more ambitious, the problem complexity of the pack-
ages grew tremendously. Today, many researchers are deeply concerned about
the dependability of scientific computation [12]. The increase in algorithm com-
plexity has led directly to an increase in problem complexity so that development
and verification of large scientific computation software suites remains an open
and extremely challenging research field [4]. To reduce problem complexity in
a system with considerable algorithmic complexity, it is not sufficient to simply
partition the system into two parts. We have to partition the system in such a way
that one part will have significantly reduced algorithmic complexity. Fortunately
this is possible in many of the systems we are interested in. Later, in Sect. 4.2.3,
we will show why we believe that separation of safety and control is likely to
result in a safety system that has much less algorithmic complexity than either
the associated control system, or the integrated system.

4.2.2 Modularization and Abstraction Cannot Reduce Problem
Complexity

Modularization is often touted as a way of reducing complexity. In fact modulariza-
tion (and abstraction) cannot reduce problem complexity, but may actually increase
programming complexity, in order to, for example, improve maintainability. Still,
“conquering complexity” is a common phrase used to describe how modularization
supposedly makes things simple enough for designers to be able to cope with the po-
tential complexity of an application. The motivation for this comes from the divide
and conquer problem solving techniques used in many areas of mathematics, engi-
neering and science [23]. As noted above, the divide and conquer tactic is intended

4 Separating Safety and Control Systems to Reduce Complexity 93

to reduce the solution of some problem to the solution of several subproblems, each
of which is a ‘simpler’ problem than the original. But an often unstated part of this
tactic is the necessity to find a way of composing the solutions of the subproblems
to provide the solution to the whole problem. So the overall problem complexity
of the solution to the problem is a function of the complexity of the solutions to
the subproblems and the complexity of the composition mechanism used to ‘aggre-
gate’ the overall solution. The same may be said about programming complexity,
though the function used to compute this overall complexity will likely be different
from the one used for problem complexity. This function may differ from problem
to problem and from one composition function to another. In modern large systems,
the ‘composition’ operator on subproblem solutions may be extremely complex, and
inherently so.

In fact, many modern systems may have little programming complexity in any
particular module, but the numbers of modules and the variety of interactions and
behaviors possible as a result of their combination boggle the mind. There is no ob-
vious reduction in overall complexity as compared with the system’s problem com-
plexity. In fact, the real tactic behind the divide and conquer method is to reduce
the solution of an ‘unknown’ to that of a number of known problems and a known
technique for combining their solutions. The overt purpose of the tactic is not reduc-
tion of overall problem complexity, but a reduction in the complexity of the solution
process undertaken to solve the problem—reducing the solution problem to known
patterns of solutions. If (inherent) problem complexity is to mean anything, then
no tactic will have the effect of reducing it. In fact, one might say that engineering
methods address the issue of solution complexity—the problem of finding a solu-
tion to an application problem—by systematizing the tactics used to solve a specific
class of application problems. One might conjecture that programming complexity,
as discussed above, somehow reflects this solution complexity. However, we do not
plan to go further in this direction in this chapter.

In respect of programming complexity, it may be conjectured that modularization
techniques sometimes act to increase it. The pattern of solutions to sub problems and
their composition may well act to introduce ‘artificial complexities’ (non-essential
complexities) in relation to basic problem complexity. This is perhaps best exem-
plified by the problems of entanglement in object oriented implementations. As an
example, in a recent investigation of a three tiered application (database, generic
application software, and company specific application software), three functions of
interest at the database level were potentially called by more than 80,000 functions
at the generic application level, but this was again reduced to five functions at the
company specific level. The enormous numbers associated with the middle layer
were largely the result of the use, perhaps inappropriate, of inheritance structures.
This kind of programming complexity does not appear to be uncommon in the ob-
ject oriented world. We should note here that the problem of analysis in relation
to dependability is clearly more a function of programming complexity than prob-
lem complexity, assuming that the former is always greater than the latter. However,
problem complexity defines a minimum analysis complexity to be expected for the
application.

94 A. Wassyng et al.

We now come to the consideration of abstraction in relation to complexity. While
modularization is often said to reduce complexity by reducing a complex system to
its parts, abstraction is said to reduce complexity by ‘forgetting’ unnecessary details.
Certainly, we would agree with this statement if the complexity referred to in the last
sentence was programming complexity. The ‘unnecessary details’ referred to above
are always intended to be those necessary to make the problem solution executable
on a computer. However, it is not clear to us why abstraction should reduce problem
complexity. An abstract model that captures the essence of a problem must also
inherit its complexity.

Having said that, there may be one abstraction technique (and perhaps others)
that appears to reduce problem complexity, namely the use of views or viewpoints
[17, 20]. A view of an application is a partial specification that not only leaves out
unnecessary details, but also leaves out aspects of the application problem. The view
might be seen as presenting a subproblem, and the inherent problem complexity of
this subproblem may well be less than that of the whole. The analysis of the view
may then indeed be simpler than that of the whole. However, as for modularization,
we may well have difficulties in putting views together and performing the analysis
related to this ‘view composition’. So we find that again, the technique does not
really reduce problem complexity. The use of views is an example of separation
of concerns in the more general sense discussed above. As such, when it comes to
establishing dependability properties of an application, it may be quite efficacious in
reducing the complexity of performing an analysis by dividing the analysis into parts
that may require differing levels of rigor. An example of this will be discussed next:
separating safety subsystems from control subsystems. However, for this to happen,
there also has to be a commensurate reduction in programming complexity related
to the core dependability concerns. If, as is usual in implementing applications, the
views developed at the abstract level have no direct correspondences with parts of
the application, then the programming complexity introduced by the implementation
completely overwhelms the reduced complexity of individual views.

It is possible that a catastrophic example of this kind of complexity leading to
disaster was the integration of patient billing information with the control of clinical
X-ray therapy machines such as those reported in the articles in the New York Times
[1, 2]. We have no written documentation confirming this, but have been told that
this happened. Whether it is accurate or not, the possibility is very real. The medical
device in question had no separate safety system; it was integrated with the control
features. A very serious error occurred when the settings for the shields used to focus
and aim the X-rays were accidentally left fully open leading to a serious overdose
of radiation applied to a patient. Although the machine was regularly checked and
calibrated, because the machine’s software was directly linked to the billing system,
the next time the patient came in for therapy, the device’s software recovered patient
information from the billing system and set the device to the configuration used in
the previous overdose. So, it is possible to conjecture that a serious error imparting
profound harm to the patient, which could have been prevented by a separate safety
system, was compounded as a result of increased problem complexity caused by
linking the device to billing subsystems. The initial error could be said to have been

4 Separating Safety and Control Systems to Reduce Complexity 95

caused by combining safety and control features into a complex whole, resulting in a
highly complex system that was too complex for proper safety analysis. The second
(and subsequent errors) were the result of making the dependability problem even
more complex by introducing the link to the billing system.

4.2.3 Why Control Is More Complex than Safety

The shutdown system in a Canadian nuclear power plant is designed to monitor
whether safety limits are exceeded, and in such cases to initiate the shutdown of the
plant. The shutdown must be irrevocable once started, which simplifies the logic—
but this principle is sometimes relaxed if the additional logic required is minimal.
A nuclear reactor operates by initiating and then controlling a nuclear chain reaction.
This reaction is constantly changing and so the nuclear control system algorithms
initiate actions that are definitely not irrevocable. These control system algorithms
are designed to keep the reactor operating within safe limits, but their purpose is
to maximize productivity by maximizing the power level, and so they are far more
complex than the simple checks against safety limits implemented in the shutdown
systems.

The difference between control and safety systems is reflected in the mathemati-
cal analyses that are performed for these two classes of systems. The nuclear safety
analysis always assumes that trips are taken to completion, and this simplifies the
required behavior. The same assumption is clearly not appropriate for the control
systems. Partly as a result of this assumption, in our experience, almost all the algo-
rithms required in nuclear shutdown systems are extremely simple. This is certainly
not true of the control systems. Note that we are not saying that the mathematical
nuclear safety analyses performed to obtain requirements for the shutdown systems
are simple. They are not, and correctness of the scientific computation code used to
perform these analyses is an ongoing research topic.

There are at least two primary reductions in complexity that we expect to see
in safety systems. The first is a reduction in size, and the second is a reduction in
algorithmic complexity.

1. Reduction in size. The shutdown system is responsible for monitoring reactor
attributes (neutronics, pressure, temperature, flow of coolant, etc), checking them
against pre-determined limits, and initiating a shutdown if necessary. It has to
be able to accept a very limited set of operator inputs, and may have limited
communication functions to perform. If we use the number of lines of source
code as an indication of complexity, we expect that it should be of the order of
tens of thousands, and the number of system inputs and outputs under a hundred
for each. These are then relatively small programs by modern standards, and
tend to be more amenable to the application of rigorous software engineering
techniques in ways and at a level that would not be possible for more complex
systems, which typically require hundreds of thousands of LOC. As an example,
the shutdown systems for the Darlington Nuclear Generating Station in Ontario

96 A. Wassyng et al.

are of the order of 30,000 to 40,000 LOC. The control system for the same plant
is upwards of 500,000 LOC. Alternatively, there may be other measures of size
that are more meaningful in this context and do not correspond directly to LOC,
but relate to complexity of analysis.

2. Reduction in algorithmic complexity. The control systems in nuclear power
plants contain algorithms that are designed to control the nuclear chain reaction
such that the plant operates at maximum power and still maintains all its moni-
tored parameters within safe operating limits. These algorithms are also designed
so that the controlled behavior is stable. By comparison, most of the algorithms in
the shutdown systems are incredibly simple. A huge proportion of the algorithms
implement simple checks of monitored values against predefined limits. Some of
the algorithms have to cope with simple timing behaviors, while others imple-
ment very basic hysteresis behavior, and signal calibrations. The complexity of
these algorithms is demonstrably orders of magnitude less than those required
for the control systems.

As noted above, by reducing both size and algorithmic complexity, we have directly
addressed the two main complicating factors in the analysis of software. By reduc-
ing the size of the program and by reducing algorithmic complexity, we will have
reduced analysis complexity exponentially. In the ongoing battle to build depend-
able systems, this should be considered a signal achievement.

4.3 Separation of Concerns

There is a long-standing principle in software engineering that we can use separa-
tion of concerns to control complexity in software systems. Separation of control
and safety systems can be viewed as a special case of separation of concerns, and
there is at least one recent example in the software literature indicating that people
are recognizing the importance of this [10]. Again, there is a case to be made that this
separation of concerns is not the same as modularization. It is more like the splitting
of the system into parts in a way that does not respect the rules of modularization.
The ideas behind aspects come to mind. It seems to us that work in adaptive and
reconfigurable systems has failed to consider adequately the use of such separation
mechanisms to affect better control of safety functions. There is a real opportunity,
in exploring these ideas, to improve safety mechanisms for this emerging class of
systems.

4.3.1 Physical Separation: Reducing Complexity

A fundamental safety principle is to maintain physical separation and independence
between safety systems and control systems. This helps limit the impact of com-
mon cause failures and systemic errors, and provides protection against sabotage

4 Separating Safety and Control Systems to Reduce Complexity 97

and cyber-attacks. These are important principles that establish the requirements to
assure that high reliability requirements are met. Physical separation as a primary
safety principle has been a standard requirement throughout the process control in-
dustry for decades, and independent protection layers are mandated in international
standards such as IEC 61508 [9]. As noted above, this is also a requirement in the
regulation of nuclear power plants in both Canada and the USA. The only engineer-
ing arguments against this principle come from considerations of efficiency rather
than safety. However, where such an argument arises, safety always trumps effi-
ciency. If a safe system is not efficient enough, design engineers need to find a
different solution. The question of where to draw the line between integration and
strict separation of safety and control systems has gained some traction in recent
years. Some manufacturers of nuclear power station control systems do not wish
to separate safety systems from control systems, and, compounding the problem,
wish to integrate plant management systems and even billing systems into the crit-
ical software controlling the power generation. Others wish to weaken the physical
and logical separation of redundant control systems by allowing communication and
interaction between them, to save cost by reducing the number of parts. As a con-
sequence, there is, unfortunately (in our opinion), a recent and deleterious trend to
weakening the physical separation between shutdown systems, and between shut-
down and control systems. We address this development in Sect. 4.5.

So how does this relate to our discussion on complexity? If we look again at
our opening sentence in Sect. 4.2, we see that we described the separated systems
as ‘fully’ isolated, meaning physically separated. There was a good reason for this.
Physical separation of the systems helps us show that there is minimum, hopefully
zero, interaction along interfaces between the systems. We need to show that any
interaction between the systems is restricted to those interactions possible in their
environments. This is not the same as having to cope with interactions through a
common interface. To achieve this, the systems must be logically separate from
each other. Demonstrating this conclusively is sometimes nontrivial. Actual physical
separation makes this a much easier task. Logical connections are only possible
where there are physical connections, and these would then be clearly visible—or,
even better, non-existent.

As an aside, and not connected to our discussion on complexity, there are addi-
tional reasons that physical and logical separation of safety systems from each other
and from control systems benefits the cause of dependability and safety.

The first of these is related to common cause failures [19]. Common cause fail-
ures occur when more than one component in a system fails due to a single shared
cause. This is clearly not limited to software and has been studied over a signif-
icant period of time. Prevention of common cause failure is a staple of interna-
tional standards and regulations related to high-dependability systems, for example,
the Common-Cause Failure Database and Analysis System: Event Data Collection,
Classification, and Coding [18], and Guidelines on Modeling Common-Cause Fail-
ures in Probabilistic Risk Assessment [19], nuclear regulatory documents published
by the Nuclear Regulatory Commission in the USA. The Common Cause Failure

98 A. Wassyng et al.

Database1 is a data collection and analysis system that is used to identify, code and
classify common cause failures events.

Separation on its own is not enough to prevent common cause design errors.
In this case we need to add diversity and independence to our toolset. Diversity
and independence are sound arguments (for software, enforced diversity [3] should
be preferred), and are reflected in all international standards that apply to high-
dependability systems. Diversity and independence do not make sense unless the
systems are physically and conceptually separated from each other. Any common-
ality between the systems would serve to reduce the efficacy of these principles.

The second reason why standards and regulations mandate separation of control
and safety systems is that future maintenance of an integrated system would be much
more difficult. This is actually somewhat affected by the complexity of the system.
Changes to the system would have to be ‘guaranteed’ not to adversely affect existing
safety functions. If the separation between control and safety is effected through the
software design/logic and not through physical and logical separation, it is much
more difficult to demonstrate/prove that changes to the control system cannot affect
the safety functions. A carefully constructed information hiding design can alleviate
but cannot eliminate this concern. The situation can be made even more difficult if
the control and safety systems are treated as an integrated system. These issues are
particularly pertinent to adaptive and reconfigurable systems, in which the principles
of separation are not well understood.

4.3.2 Ideas for Separate Safety Systems in Other Domains

We have seen that separation of control and safety is not confined to the nuclear
domain. It is enforced throughout the process control industry as well. It seems
clear to us that we should be considering using this principle in domains such as
automotive and medical devices. Microkernels are a good example of a less drastic
separation of safety and other functions. The nucleus keeps the system safe (memory
checks and messaging as core functionalities) and the rest of the operating system
provides the main functionality. Here we do not have physical separation, but design
separation enforced through the mechanisms associated with layered architectures.
Microkernels have been certified and/or verified: QNX certified for SIL3, and seL4
has been verified [13].

We have recently had occasion to consider software-driven radiation machines.
These devices are effective life-savers in the fight against cancer, but they also can
be devastatingly harmful if they malfunction. Two thoughts come to mind with these
devices:

1. Manufacturers/vendors seem to be more concerned with including features that
will help sell the devices rather than with controlling the complexity of the device
so that they can be more confident that the device is fail-safe; and

1The US Nuclear Regulatory Commission’s Common-Cause Failure Data Base (CCFDB):
http://nrcoe.inel.gov/results/index.cfm?fuseaction=CCFDB.showMenu.

http://nrcoe.inel.gov/results/index.cfm?fuseaction=CCFDB.showMenu

4 Separating Safety and Control Systems to Reduce Complexity 99

2. It should be possible to add a low-complexity safety system that will ‘guarantee’
that the device does not deliver an overdose to any patient.

The safety system could, for example, require simple inputs from the doctor that
limit the allowable dosage for a specific patient, and then monitor the radiation to
ensure this dosage is not exceeded. This safety system would be completely inde-
pendent of the control system that ‘drives’ the device. It would also be independent
of any billing system that might compromise safety features, preventing accidents
such as the ones noted above.

There are currently a number of active safety functions included in modern cars.
These include automatic braking, adaptive cruise control, lane departure warning
systems, adaptive high beam and adaptive headlamps. Typically, these are imple-
mented as self-contained, isolated units, although some of them clearly have to be
integrated with other functions—braking for instance. Although the auto industry
seems to have realized that keeping such components as isolated as possible helps
to deal with complexity issues and increases our ability to engineer extremely de-
pendable systems, this objective is undermined by the need to interconnect some
subsystems, e.g., braking and throttle subsystems, and the fact that subsystems may
share processors and communication buses with other subsystems. It may be that we
can further improve the dependability and maintainability of the systems by isolat-
ing safety from control again, rather than by relying on functional modularization.

4.4 Reducing Programming Complexity: The Engineering
Approach

Engineers are continually faced with the issue of problem complexity and its im-
pact on engineering design. For most situations met by engineers in their every day
work, engineers have developed a way of dealing with this issue: the engineering
method, or what Vincenti calls normal design [25]. Over time, as engineers solve
specific problems in some domain, the successful approaches are incorporated into
a standard engineering method specific for those kinds of devices [25]. Devices in
this sense are the subject of normal design methods. Engineers know that if they
follow the prescriptions of the method, including which analyses to do when and
which decision to make in light of results of analysis, they are likely to design a safe
and effective product. As we have noted elsewhere [28], this also forms the basis of
the prescriptive regulatory regimes in classical engineering. Radical design involves
design problems that are not within the normal envelope associated with a normal
design method. Some new element is introduced, e.g., untried technology, or some
new combination of technologies, which takes the design problem outside the incre-
mental improvement normal design supports. This makes the achievement of safe
and effective designs more problematic and requires much more serious attention
to justification of safety properties. From the point of view of problem complexity,
normal design helps to tame this complexity, but not reduce it, by systematizing

100 A. Wassyng et al.

standard solutions to design problems. In analogy with divide and conquer tech-
niques, the motivation behind normal design is not that of reducing problem com-
plexity, but the reduction of programming complexity. This also sheds some light on
the ongoing discussion of process based standards in software certification versus
product based standards [28]. Engineers put a lot of store in normal design methods
providing a higher level of assurance of safety and effectiveness of products. A pro-
cess based standard for software development standardizes the process to be used in
developing a new software product, but does not propose a normal design method
for software, either generally or for a specific domain. This is the missing ingredient
required to enable a process based claim for the product to be safe and/or effective.
Until such process standards evolve to be the equivalent of normal design methods,
we cannot give them much credit for reducing programming complexity, and such
process based claims probably should be mistrusted.

One of the principles we would expect/hope to see in a software process stan-
dard based on normal design, is the guidance for how to separate control and safety
systems so as to reduce the problem complexity of the safety system.

4.5 Conclusion

Separation of control and safety systems can be viewed as a special case of separa-
tion of concerns. This is not the same as modularization. It is a strict partitioning of
the system into at least two parts, one of which contains the safety related behavior.
The idea is that the separated and isolated safety system will have lower problem
complexity than would the integrated system. Unlike the dangerous practice in as-
pect oriented programming, it is not our intention to weave the separated concern
back into the application software.

We believe that separation of control systems and safety systems in the nuclear
power industry is not only a good principle to follow, but that rigorous adherence
to this principle should make it possible to analyze the system to an extent where
we develop much greater confidence in the safety of the plant. The reasons are pre-
sented above, but the primary reason is that the reduction in complexity allows us to
employ techniques that currently would not be possible for more complex systems.
Without these mathematically based techniques we would be reduced to relying on
testing alone to show conformance with requirements and correctness. It would also
be much more difficult to apply techniques such as model checking, to confirm safe
behavior at the requirements level. Recent trends in the nuclear industry would seem
to indicate that manufacturers wish to abandon, at least to some degree, the need for
separation of safety and control functions, and, arguably even worse, they want to
abandon the basic principle of physical and logical separation between replicated
safety functions. This trend is dangerous, because it moves complexity from else-
where in the system, back into the safety function, thus significantly increasing the
complexity of the safety function without significant reduction in the complexity of
the control function. There appears to be no gain here, except an economic one. We
are concerned that manufacturers seem to think that one time cost savings in the

4 Separating Safety and Control Systems to Reduce Complexity 101

original development of these systems would be more important than the increased
assurance we could realize in the dependability and safety of these systems. In fact,
it is quite likely that adherence to this principle of separation will result in a long-
term cost reduction, since the safety components in the overall system will be less
likely to require corrective modification over the life of the system. Other modifi-
cations/enhancements can typically be made with reduced re-verification since the
simpler safety systems can be pre-verified with ranges for constants, and informa-
tion hiding designs on these smaller systems can help us prove the localization of
changes.

The nuclear power domain is but one example domain in which this technique
of separating control and safety should be common practice—preferably mandated
by regulatory authorities. It also seems clear to us, that this same principle can be
applied to building highly dependable, cyber-physical systems, such as medical de-
vices and ‘smarter cars’.

Acknowledgements This work is supported by the Ontario Research Fund, and the National
Science and Engineering Research Council of Canada.

References

1. Bogdanich, W.: Radiation offers new cures, and ways to do harm. The New York Times Online
(2010). Published January 23, 2010. Available online: http://www.nytimes.com/2010/01/24/
health/24radiation.html

2. Bogdanich, W., Rebelo, K.: A pinpoint beam strays invisibly, harming instead of healing.
The New York Times Online (2010). Published December 28, 2010. Available online: http://
www.nytimes.com/2010/12/29/health/29radiation.html

3. Caglayan, A., Lorczak, P., Eckhardt, D.: An experimental investigation of software diversity
in a fault-tolerant avionics application. In: Proceedings Seventh Symposium on Reliable Dis-
tributed Systems, pp. 63–70 (1988)

4. Easterbrook, S., Johns, T.: Engineering the software for understanding climate change. Com-
put. Sci. Eng. 11(6), 65–74 (2009)

5. Fenton, N., Neil, M.: Software metrics: successes, failures and new directions. J. Syst. Softw.
47(2–3), 149–157 (1999)

6. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. PWS
Publishing Co., Boston (1998)

7. Fischmeister, S., Sokolsky, O., Lee, I.: A verifiable language for programming real-time com-
munication schedules. IEEE Transactions on Computers 1505–1519 (2007)

8. Hoare, C.A.R.: The emperor’s old clothes. Commun. ACM 24(2), 75–83 (1981)
9. IEC 61508: Functional safety of electrical/electronic/programmable electronic (E/E/EP)

safety-related systems: Parts 3 and 7. International Electrotechnical Commission (IEC) (2010)
10. Jackson, D., Kang, E.: Separation of concerns for dependable software design. In: Proceedings

of the FSE/SDP Workshop on Future of Software Engineering Research, FoSER’10, pp. 173–
176. ACM, New York (2010)

11. Jones, C.: Software metrics: good, bad and missing. Computer 27(9), 98–100 (1994)
12. Kelly, D.F.: A software chasm: software engineering and scientific computing. IEEE Softw.

24(6), 119–120 (2007)
13. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,

Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: formal
verification of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd Symposium on Op-
erating Systems Principles, SOSP ’09, pp. 207–220. ACM, New York (2009)

http://www.nytimes.com/2010/01/24/health/24radiation.html
http://www.nytimes.com/2010/01/24/health/24radiation.html
http://www.nytimes.com/2010/12/29/health/29radiation.html
http://www.nytimes.com/2010/12/29/health/29radiation.html

102 A. Wassyng et al.

14. Ladyman, J., Lambert, J., Wiesner, K.: What is a complex system? http://philsci-archive.pitt.
edu/8496/ (2011). Preprint

15. Lee, L.: The Day the Phones Stopped. Donald I. Fine Inc., New York (1991)
16. Manson, S.M.: Simplifying complexity: a review of complexity theory. Geoforum 32(3), 405–

414 (2001)
17. Niskier, C., Maibaum, T., Schwabe, D.: A pluralistic knowledge-based approach to software

specification. In: Ghezzi, C., McDermid, J. (eds.) ESEC ’89. Lecture Notes in Computer Sci-
ence, vol. 387, pp. 411–423. Springer, Berlin (1989)

18. NRC Staff: Common-cause failure database and analysis system: event data collection, clas-
sification, and coding. Tech. rep. NUREG/CR-6268, US Nuclear Regulatory Commission
(1998)

19. NRC Staff: Guidelines on modeling common-cause failures in probabilistic risk assessment.
Tech. rep. NUREG/CR-5485, US Nuclear Regulatory Commission (1998)

20. Nuseibeh, B., Kramer, J., Finkelstein, A.: A framework for expressing the relationships be-
tween multiple views in requirements specification. IEEE Trans. Softw. Eng. 20, 760–773
(1994)

21. Parnas, D.: On the criteria to be used in decomposing systems into modules. Commun. ACM
15(12), 1053–1058 (1972)

22. Parnas, D.L., Clements, P.C., Weiss, D.M.: The modular structure of complex systems. IEEE
Trans. Softw. Eng. SE-11(3), 66–259 (1985)

23. Polya, G., Stewart, I.: How to Solve It. Princeton University Press, Princeton (1948)
24. Sha, L.: Using simplicity to control complexity. IEEE Software, 20–28 (2001). http://doi.

ieeecomputersociety.org/10.1109/MS.2001.936213
25. Vincenti, W.G.: What Engineers Know and how They Know It: Analytical Studies from Aero-

nautical History. Johns Hopkins University Press, Baltimore (1993)
26. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of formal meth-

ods in an industrial project. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003: Interna-
tional Symposium of Formal Methods Europe Proceedings. Lecture Notes in Computer Sci-
ence, vol. 2805, pp. 133–153. Springer, Pisa (2003)

27. Wassyng, A., Lawford, M., Maibaum, T., Luxat, J.: Separation of control and safety systems.
In: Fischmeister, S., Phan, L.T. (eds.) APRES’11: Adaptive and Reconfigurable Embedded
Systems, Chicago, IL, pp. 11–14 (2011)

28. Wassyng, A., Maibaum, T., Lawford, M.: On software certification: we need product-focused
approaches. In: Choppy, C., Sokolsky, O. (eds.) Foundations of Computer Software. Future
Trends and Techniques for Development. Lecture Notes in Computer Science, vol. 6028,
pp. 250–274. Springer, Berlin (2010)

29. Weng, G., Bhalla, U., Iyengar, R.: Complexity in biological signaling systems. Science
284(5411), 92 (1999)

http://philsci-archive.pitt.edu/8496/
http://philsci-archive.pitt.edu/8496/
http://doi.ieeecomputersociety.org/10.1109/MS.2001.936213
http://doi.ieeecomputersociety.org/10.1109/MS.2001.936213

Chapter 5
Conquering System Complexity

Norman F. Schneidewind

5.1 Complexity and System Evolution

Software development can be thought of as the evolution of abstract requirements
into a concrete software system. Development, achieved through a successive se-
ries of transformations, is inherently an evolutionary process. Software evolution
is often sub-optimal, because requisite information, like reliability and complexity,
may be missing during the transformations. While some understanding of software
may be reasonably clear at a given time, future dependencies may not be fully un-
derstood or accessible. The clarifications obtained over time make the system more
concretely understood, but there may be loss of relevant information. Some may be
lost due to failure to be fully acquainted with dependencies between various soft-
ware artifacts [6].

As pointed out by Munson and Werries [14], as systems change through suc-
cessive builds, the complexity characteristics of the individual modules that make
up the system also change. Changes to systems are measured to provide indica-
tors of potential problems, or mitigation of problems, introduced by the changes.
For example, the evolution of the elevator system in Fig. 5.1 from undecomposed
to decomposed modules actually results in reduction in complexity and increase in
reliability. In addition, establishing a complexity baseline permits the comparison
of a sequence of successive configurations. The baseline in Fig. 5.1 is the number
of nodes and edges in the undecomposed system that is compared with this metric
for the decomposed modules, thus permitting the reduction in complexity to be as-
sessed. We investigate elevator floor travel distance, as a metric of complexity that
can be mapped to elevator system reliability. When this mapping is achieved with
the desired degree of accuracy, the approach is judged a success [20].

N.F. Schneidewind (�)
Department of Information Science, Graduate School of Operational and Information Sciences,
Monterey, CA, USA
e-mail: ieeelife@yahoo.com

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_5, © Springer-Verlag London Limited 2012

103

mailto:ieeelife@yahoo.com
http://dx.doi.org/10.1007/978-1-4471-2297-5_5

104 N.F. Schneidewind

Fig. 5.1 Elevator system logic diagrams

As Lehman mentions, it is beneficial to determine the number of distinct ad-
ditions and changes to systems and constituent modules of the system per release
in order to assess system volatility. This can assist evolution release planning in a
number of ways, for example by pointing to system areas that are ripe for restruc-
turing because of high defect rates [10]. Some authors have suggested that if the IT
industry used standardized and interchangeable software components, the problem
of unreliable systems would largely disappear [4]. Unfortunately, for one-of-a-kind
space systems that are addressed to solving unique research problems, the COTS
solution will not work. In space systems, reliability and complexity across systems
will show considerable variation. Therefore, complexity reduction efforts cannot be
limited to a single system; it must address multiple systems.

When dealing with complex systems, it is unrealistic to assume that the sys-
tem will be static, as the evolution from undecomposed to decomposed modules

5 Conquering System Complexity 105

in Fig. 5.1 attests. Complex systems evolve over time, and the architecture of an
evolving system will change even at run time, as the system implements self-
configuration, self-adaptation, and meets the challenges of its environment. An
evolving system can be viewed as multiple versions of the same system. That is,
as the system evolves it represents multiple instances of the same system, for ex-
ample, in Fig. 5.1, decomposed modules represent multiple instances of the original
undecomposed system [16]. We consider the evolution of systems as progressing
to the point where a system has met the reliability goal as a function of number of
tests time and can be released for operational usage. As long as this goal is not sat-
isfied, the systems continue to evolve, as the result of continuing testing. Reliability
models are used to assess whether reliability is increasing over operational time and
number of tests.

Software developers can benefit from an early warning of their complexity and
resultant reliability while there is still time to react. This early warning can be built
from a collection of internal and external metrics. An internal metric, such as the
node and edge counts in Fig. 5.1, is a measure derived from the product itself. An
external measure is a measure of a product derived from assessment of the behav-
ior of the system. For example, the number of defects found in test is an external
measure [15].

5.2 Complexity Tradeoffs

Complexity affects functionality, reliability, and cost. In addition, there is design
complexity and operational complexity, with the former leading to the latter. The
greater the complexity, the greater the functionality and cost and the lower the relia-
bility. Therefore, there are tradeoffs among these system attributes. If the user wants
a lot of functionality, it will cost a lot and have lower reliability than with a simpler
system. Interestingly, different users can have different expectations with respect
to complexity. For example, in an elevator system, one mode of operation would
be to go directly to the floor with the oldest request by user x, by passing floors
with a more recent request by user y. This policy would reduce complexity and pro-
vide great functionality for user x, but would result in poor functionality for user y.
Which policy should be used? Manufacturers of general purpose systems, such as
elevator systems, will opt for a great deal of functionality in order to achieve large
market share, whereas specific system providers, such as space system developers,
are motivated to achieve only the functionality required by the application, with
high cost and reliability, because of the limited market served and the willingness
of customers to pay for safety attributes in mission critical applications.

5.3 Complexity Metrics

5.3.1 Program Slicing

There is a plethora of complexity metrics that can be used to increase program com-
prehension and thereby improve reliability. One metric is program slicing that aims

106 N.F. Schneidewind

to increase program comprehension by focusing on a sliver of the program rather
than the complete code [18]. Slices can also be used to increase the understandabil-
ity of specifications [3]. A slice corresponds to the mental abstractions that people
make when they debug a program [25]. If debugging can be improved by using slic-
ing, then this would aid reliability. Slices are useful in identifying changes that may
ripple through to other computations.This is particularly important in maintaining
software, but because changes dominate this function. If software is not maintain-
able, it will not be reliable. Despite these theoretical benefits of slicing, computing
the slice for an arbitrary predicate is known to be intractable in general [12]. Thus,
this is not a useful metric for quantitatively estimating software reliability.

5.3.2 Symbolic Execution

This procedure involves taking a user’s existing code, adding semantic declarations
for some primitive variables, symbolically executing the user’s code, and recog-
nizing code structure from the symbolic expressions generated. This analysis pro-
vides high-level, semantic information and detects errors in a user’s code [23]. Since
we are dealing with the complexity of program configurations as an indicator of
program complexity, it is appropriate to mention how symbolic execution can aid
white-box testing methods based on the analysis of program configuration. For this
method, an important problem is to determine the complexity of configurations by
finding appropriate paths to execute the configurations [26], as shown in Fig. 5.1.

5.4 Design Complexity

Having stated that there are complexity tradeoffs, there are some design approaches
that can achieve desired functionality, accompanied by lower complexity and cost,
and high reliability. We explore these approaches at the system, hardware, and soft-
ware levels.

5.5 System and Software Complexity

For example, consider Fig. 5.1 that compares system configurations for an elevator
system. If we compare the configuration that is not decomposed with the one that
is divided into short software routines that can be called, we see that the latter is
considerably less complex than the former in terms of node and edge counts. Now,
McCabe [11] developed the cyclomatic complexity metric that measures the com-
plexity of a system represented by nodes and edges in a directed graph. While it is
useful for identifying critical paths to test, it does not always yield accurate repre-
sentations of complexity, as Fig. 5.1 attests. According to McCabe, cyclomatic com-
plexity = CC = number of edges (e)− number of nodes (n)+ 2. The calculations

5 Conquering System Complexity 107

of CC in Fig. 5.1 suggest that the undecomposed modules are less complex than the
decomposed ones, but this is clearly not the case. Therefore, we suggest that a bet-
ter quantification of complexity is node count and edge count for each path. Using
this formulation, yields consistent representations of complexity in Fig. 5.1. Thus,
this characterization of complexity can be used in deciding on system configuration
alternatives during the design process.

5.6 Cost of Complexity

Using the complexity quantification developed in the preceding section, the cost of
complexity for a configuration of modules, such as those shown in Fig. 5.1, can be
formulated as follows:

C =
N∑

j=1

(nj ∗ cn)+
E∑

k=1

(ek ∗ ce),

where C is cost of the configuration, nj is the j th node, N is the number of nodes
in the configuration, cn is the cost per node, ek is the kth edge, E is the number of
edges in the configuration, and ce is the cost per edge.

For example, referencing Fig. 5.1 and using the undecomposed Path: 1, 2, 3, 4,
5, 6, 7, with 7 nodes and 6 edges,

C = 7 ∗ cn+ 6 ∗ ce.

Comparing this result with the decomposed Path: 1, 2, 3, 4, 8, with 5 nodes and
4 edges,

C = 5 ∗ cn+ 4 ∗ ce.

Thus even without knowing node and edge cost, configuration complexity-based
costs can be estimated prior to implementation, demonstrating that reduced com-
plexity results in reduced cost.

5.7 Hardware Complexity

De Morgan’s Theorem [7] is used to simplify complex logic equations, which are
used in the design of hardware, and the resultant digital logic. By simplifying the
digital logic complexity, reliability is increased and cost is decreased, as the num-
ber of components is decreased. The theorem is used to simplify relatively simple
expressions, as contrasted with Karnaugh Maps, described in the next section. The
application of this theorem is shown in the following example:

De Morgan’s Theorem: A+B = ĀB̄ and AB = Ā+ B̄

108 N.F. Schneidewind

Table 5.1 Truth table to demonstrate equivalence between F and AB

A B AB (AB)(AB) F = ((AB)(AB)) AB

0 0 1 1 0 0

0 1 1 1 0 0

1 0 1 1 0 0

1 1 0 0 1 1

Table 5.2 K-map for F = ĀB̄C̄ + AB̄C̄ + ĀB̄C + AB̄C. Each of the table entries (in italics)
represents a boolean expression, clockwise from top left they are: ĀB̄C̄, ĀB̄C, AB̄C, and AB̄C̄

Boolean expression B̄C̄ B̄C BC BC̄

Boolean representation 00 01 11 10

Ā 0 1 1

A 1 1 1

Suppose it is required to simplify F = ((AB)(AB)), where F is the digital output
of inputs A and B . Applying the theorem:

AB = Ā+ B̄,

(AB)(AB) = (Ā+ B̄)(Ā+ B̄)

= ĀĀ+ ĀB̄ + ĀB̄ + B̄B̄

= Ā+ ĀB̄ + B̄

= Ā+ (Ā+ 1)B̄

= Ā+ B̄

demonstrate the equivalence

F = (Ā+ B̄)(Ā+ B̄)= (Ā+ B̄)=AB

Then, use Table 5.1 to demonstrate equivalence between F = ((AB)(AB)) and
AB .

A Karnaugh Map (K-map) in Table 5.2 is used to minimize a complex Boolean
expression [17]. Each square of a K-map represents a minterm (i.e., product terms).
The process proceeds by listing the binary equivalents of the terms A and BC on the
axes of Table 5.2, ordering them so that there is only a one bit difference between
adjacent cells. Then, the minimum number of cells is enclosed. Next, minterms are
identified according to terms that are common to all cells in the enclosure. Notice
what a clever method this is. Minimization is achieved by noting the combination
of terms that yields the minimum difference!

Example: Simplify F = ĀB̄C̄ +AB̄C̄ + ĀB̄C +AB̄C.

5 Conquering System Complexity 109

Table 5.3 F function truth table

A B C F = ĀB̄C̄ +AB̄C̄ + ĀB̄C +AB̄C F = B̄

0 0 0 1 1

0 0 1 1 1

0 1 0 0 0

0 1 1 0 0

1 0 0 1 1

1 0 1 1 1

1 1 0 0 0

1 1 1 0 0

Now, simplify F , demonstrating that it reduces to B̄ .

F = ĀB̄C̄ +AB̄C̄ + ĀB̄C +AB̄C

= B̄C̄(Ā+A)+ B̄C(Ā+A)

= B̄C̄ + B̄C

= B̄(C̄ +C)

= B̄

In the K-map, B̄ is common to the enclosed minterms. Therefore, F = B̄ . Ta-
ble 5.3 demonstrates this result. The considerable reduction from the original func-
tion would result in significant savings in circuitry to implement the function.

5.8 Complexity and Reliability

In the NASA Space Shuttle, program size and complexity, number of conflicting
requirements, and memory requirements have been shown to be significantly related
to reliability (i.e., increases in these risk factors are associated with decreases in
reliability) [21]. Therefore, organizations should conduct studies to determine what
factors are contributing to reliability degradation.

One view of complexity that it is the degree to which a system is difficult to an-
alyze, understand, or explain [2]. If a system lacks structure, it will be difficult to
understand, test, and operate. Therefore, complexity has a direct bearing on reliabil-
ity. We bring structure and complexity into our elevator system reliability examples
by designating elevator floor travel distance and time as reliability-dependent com-
plexity metrics.

Why study complexity in relation to reliability? The answer is that complex-
ity breeds bugs. The more complex the system, the harder it is to make it reli-
able [22]. Thus, building a reliability model for predicting the failure-proneness
of systems can help organizations make early decisions on the quality of their

110 N.F. Schneidewind

Fig. 5.2 Elevator floor travel configurations

systems. Such early estimates can be used to help inform decisions on testing,
refactoring, code inspections, design rework, etc. This has been demonstrated by
the efficacy of building failure-proneness models, based on code complexity met-
rics, across the Microsoft Windows operating system [2]. The ability of such
models to estimate failure-proneness and provide feedback on complexity metrics
helps guide the evolution of the software to higher-and-higher plateaus of reliabil-
ity.

The first consideration in developing complexity-based reliability predictions is
to formulate the equations for configuration probability. Configurations for elevator
systems are generated based on the number of distinct combinations of floor lo-
cations (Ni : request floor, Nc: current floor, Nd : destination floor), and their travel
directions. These configurations are representative of complexity because the longer
the elevator traversal distance, the greater the complexity. The possible floor travel
configurations are shown in Fig. 5.2. Configuration operation numbers (1) and (2)
in the list below, and in Fig. 5.2, correspond to the order of floor traversals. Note, if
the elevator is already at the request floor (Nc =Ni), there is zero travel time from
Nc to Ni . Also note that the relative locations of the elevator, the request floor, and
the destination floor, are important in computing the elevator travel distances for the
configurations.

The probability of configuration traversal Pc is proportional to length and direc-
tion of elevator travel, using the differences in floor location values to account for
the relative locations of current floor, request floor, and destination floor, as shown
in the sequence list below. Since we have no prior knowledge of elevator traversal
distances, we generate their values using uniformly distributed random numbers,
multiplied by 100, the assumed number of floors. Then, these values are used in
predicting configuration probability according the following equations:

5 Conquering System Complexity 111

Configuration 1

(1) Elevator goes down from current floor Nc to request floor Ni then (2) goes up
from request floor Ni to destination floor Nd (Nc ≥Ni , Nd ≥Ni):

Pc = Nd −Ni

(Nc −Ni)+ (Nd −Ni)

Configuration 2

(1) Elevator goes up from current floor Nc to request floor Ni then (2) goes up from
request floor Ni to destination floor Nd (Ni ≥Nc, Nd ≥Ni):

Pc = Nd −Ni

(Ni −Nc)+ (Nd −Ni)

Configuration 3

(1) Elevator goes up from current floor Nc to request floor Ni then (2) goes down
from request floor Ni to destination floor Nd (Ni ≥Nc, Ni ≥Nd):

Pc = Ni −Nd

(Ni −Nc)+ (Ni −Nd)

Configuration 4

(1) Elevator goes down from current floor Nc to request floor Ni then (2) goes down
from request floor Ni to destination floor Nd (Nc ≥Ni , Ni ≥Nd):

Pc = Ni −Nd

(Nc −Ni)+ (Ni −Nd)

5.9 Configuration Response Time

The next step in arriving at reliability prediction equations is to quantify configura-
tion response time because this is the time during which the reliability goal must be
achieved. A real-time system is one in which the time of output is significant. This
may be the case because the input occurs while there is movement in the physical
world, and the output has to relate to the same movement. For example, in an ele-
vator system, user input occurs while the elevator is moving, and subsequently, the
resultant output is movement to respond to the user request, as depicted in Fig. 5.1.
The lag from input time to output time (i.e., response time) must be sufficiently
small for acceptable timeliness [9].

Since real-time systems have stringent end-to-end timing requirements [5], we
focus on response time in elevator systems, wherein we consider response time as

112 N.F. Schneidewind

being “end-to-end”: difference between the time of completing a user request to
reach the destination floor and the start time of the request.

The reliability analysis of real-time complex systems is a very important engi-
neering issue for guaranteeing their functional behavior. Most of the critical failures
are generated by the interactions between components. Therefore the analysis of the
system as a whole is not enough and it is necessary to study interactions between
components in order to predict system reliability [8]. Thus, in our elevator system
example, floor traversal configurations are the components whose interactions are
modeled.

The probability, Pc , of configuration c traversal, is combined with single floor
travel time, tf , and door opening and closing time, toc , to produce configuration
c traversal response time, Tc. The response times, corresponding to the travel dis-
tances in the four configurations, are computed as follows:

Configuration 1

Tc = (tf ∗ ((Nd −Ni)+ (Nc −Ni))) ∗ Pc + toc

Configuration 2

Tc = (tf ∗ ((Ni −Nc)+ (Nd −Ni))) ∗ Pc + toc

Configuration 3

Tc = (tf ∗ ((Ni −Nc)+ (Nc −Nd))) ∗ Pc + toc

Configuration 4

Tc = (tf ∗ ((Nc −Ni)+ (Ni −Nd))) ∗ Pc + toc

5.10 Configuration Failure Rate

In order to predict configuration reliability, it is necessary to estimate configura-
tion c failure rate, λc, a parameter that is used in the prediction of configuration c

reliability. This parameter is estimated using the number of failures, nf , which is
assumed to occur during n tests of configuration c, and configuration c response
time, Tc, computed over n tests. A key determinate of configuration failure rate is
whether there are failures in delivering information from source to destination [13],
such as push buttons generating signals that are delivered to the elevator controller
in Fig. 5.1. Thus, this type of failure is included in the assumed failure count nf .

In addition, we postulate that the expected number of failures in configuration
c is proportional to configuration c floor traversal distance for test i, ni , with re-
spect to total floor traversal distance over n tests for configuration c, based on the

5 Conquering System Complexity 113

premise that the larger the floor traversal distance, the higher the probability of fail-
ure. Putting these factors together, we arrive at the following:

λc = nf

(
ni∑n
i=1 ni

)

(
∑n

i=1(Tc))

5.11 Reliability Model and Predictions

5.11.1 Reliability Model

Because a system that lacks structure is likely to have poor reliability, we provide
structure in our elevator design in Fig. 5.1 by using decomposed modules. In order
to identify beneficial system evolutionary steps, as they relate to reliability and com-
plexity, we develop our complexity-based reliability model with the aim of reduc-
ing complexity and thereby increasing reliability. Therefore, we include the effect
of floor traversal complexity in the computation of the above configuration failure
rate.

In developing complex real-time reliability predictions, it is important that the
predictions reflect operational reliability [24]. That is, reliability must be cast in
the context of operational conditions, such as differences in floor traversal times in
the elevator system. Otherwise, the predictions will not represent user requirements.
We adhere to this principle by using configuration response time, which represents
operational conditions, in the formulation of reliability.

The unreliability of configuration c, URc , is predicted by using the probability of
configuration c, Pc , configuration failure rate λc , and sequence c response time, Tc ,
assuming exponentially distributed response time.

URc = Pc(1− e−λcTc)

Then, configuration c reliability Rc can be predicted as follows:

Rc = 1− Pc(1− e−λcTc)

The distinction between normal and complex operations is important in charac-
terizing reliability [19]. Thus, we assume exponentially distributed response time
that is based on the premise that reliability degrades fast with increases in response
time caused by increasing complexity of operations.

Because numerous predictions of reliability are made due to the fact that se-
quences are simulated n times, it is appropriate to predict the mean value of config-
uration c reliability, as follows:

MRc =
∑n

j=1 Rc

n

114 N.F. Schneidewind

Fig. 5.3 Elevator system: configuration 1 predicted reliability Rc vs. configuration response
time Tc

5.11.2 Predictions

Figure 5.3 demonstrates that it is infeasible to achieve both high performance and
high reliability because the higher performing alternative has a much higher mean
failure rate, resulting in lower reliability for this performance alternative. The higher
failure rate results from the assumed single failure occurring over a shorter op-
erational (response) time. Thus, in choosing a system, a decision must be made
between lower performing-higher reliability and higher performing-lower reliabil-
ity alternatives. Interestingly, when reliability is compared by configuration for the
same floor traversal time and assumed number of failures in Fig. 5.4, there is no
significant difference evident. We might expect a difference because, presumably,
different configurations could represent different degrees of complexity. However,
the four configurations in Fig. 5.2 that were used in developing the plots in Fig. 5.4,
exhibit essentially the same complexity. This would not be the case in assessing the
complexity of different web sites, for example, Google and Yahoo. Thus in analyz-
ing reliability by configuration, it is essential to consider configuration characteris-
tics.

5.12 Maintainability

A key objective of addressing maintainability is to develop maintainability predic-
tions that would be used to anticipate the need for maintenance actions (i.e., pre-
ventive maintenance [1]). Preventive maintenance would also be achieved by re-
ducing system complexity, leading to increasing reliability, assuming that reduced
complexity would not violate customer functionality requirements. Since there are

5 Conquering System Complexity 115

Fig. 5.4 Elevator system: configuration c predicted reliability Rc vs. configuration c response
time Tc

many situations in which the foregoing approach is infeasible, maintainability can
be implemented by performing maintenance actions on configurations that have ex-
perienced failures, with the objective of eliminating or reducing the failures. Since
there is no assurance that maintenance actions will be successful, the probability of
successful maintenance, Pm, for configuration c, is applied to the number of failures,
nc, that occur on configuration c, as follows:

nm = Pmnc,

where nm is the revised failure count on configuration c and Pm and nc are uniformly
distributed random numbers that are used because we have no knowledge a priori
of the probability of successful maintenance or of the incidence of failures on a
configuration. Then, the configuration c failure rate is revised by computing λc =
nm

Tc
. Next, the predicted reliability of configuration c, Rc , is revised by using nm

Tc
as

the failure rate. Once the revised failure count has been estimated, the failure rate
can be revised, and reliability predictions can be repeated.

Figure 5.5 provides dramatic proof of the effectiveness of maintenance actions
in improving reliability for configuration 1 for both performance options. Thus, this
type of plot is useful for predicting in advance of implementation, the likely effect
of maintainability policies, and it could be combined with configuration complexity
reduction, if the latter were feasible from a functionality standpoint.

116 N.F. Schneidewind

Fig. 5.5 Elevator system: comparison of original configuration c reliability Rc with revised relia-
bility due to maintenance Rm vs. configuration c response time Tc

5.12.1 Availability

In order to predict configuration c availability, Ac, we use configuration c response
time, Tc, and maintenance time, Tm, as follows:

Ac = Tc

Tc + Tm

Maintenance time Tm is predicted by considering the two factors that affect it:
revised failure count due to maintenance actions, nm, and configuration c response
time, Tc. The concept is that maintenance time is proportional to both the failure
reduction effort, as represented by nm, and length of response or operational time,
Tc, because the longer this time, the more complex the maintenance action, and,
hence, the longer the required maintenance time. Thus, Tm = nm ∗ Tc.

In addition, we can predict the mean value of availability by using the mean
values of configuration c response time, MTc, and maintenance time MTm:

MAc = MTc

MTc +MTm

The result of applying these principles is Fig. 5.6 that shows the need for more
effective maintenance in the form of reduced maintenance time with respect to op-
erational time (response time). Maintenance time, in turn, can be reduced by in-
creasing reliability through additional fault removal, or reduction in complexity, if
feasible, with respect to customer functionality requirements. The figure also shows

5 Conquering System Complexity 117

Fig. 5.6 Elevator system: configuration availability Ac vs. number of tests n

that, as in the case of reliability, the lower performing alternative achieves higher
availability, due to greater operational time relative to maintenance time.

5.13 Summary

This chapter has shown that there is an intimate relationship among complexity,
reliability, maintainability, and availability. This relationship should be exploited
by reducing complexity, where feasible, to increase reliability, maintainability, and
availability. As we noted, it is not always feasible to reduce complexity because
customers may expect high functionality that results in high complexity. We also
noted that high complexity results in high cost. Thus, there are tradeoffs that must
be analyzed to achieve balance among the competing objectives. We presented a
number of models, using an elevator system example, which can be used prior to
implementation to analyze the tradeoffs.

References

1. Azem, S., Aggoune, R., Dauzère-Pérès, S.: Disjunctive and time-indexed formulations for
non-preemptive job shop scheduling with resource availability constraints. In: IEEE Inter-
national Conference on Industrial Engineering and Engineering Management, pp. 787–791
(2007)

2. Bohner, S.: An era of change-tolerant systems. IEEE Comput. 40(6), 100–102 (2007)

118 N.F. Schneidewind

3. Bollin, A.: The efficiency of specification fragments. In: 11th Working Conference on Reverse
Engineering, pp. 266–275. IEEE Comput. Soc., Washington (2004)

4. Fiadeiro, J.L.: Designing for software’s social complexity. IEEE Comput. 40(1), 34–39 (2007)
5. Fu, X., Wang, X., Puster, E.: Dynamic thermal and timeliness guarantees for distributed real-

time embedded systems. In: 15th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA ’09, pp. 403–412. IEEE Comput. Soc.,
Washington (2009)

6. George, B., Bohner, S.A., Prieto-Diaz, R.: Software information leaks: a complexity perspec-
tive. In: Ninth IEEE International Conference on Engineering Complex Computer Systems,
pp. 239–248 (2004)

7. Greenfield, S.E.: The Architecture of Microcomputers. Winthrop Publishers, Inc., Cambridge
(1980)

8. Guerin, F., Barreau, M., Morel, J.-Y., Mihalache, A., Dumon, B., Todoskoff, A.: Reliability
analysis for complex industrial real-time systems: application on an antilock brake system. In:
Second IEEE International Conference on Systems, Man and Cybernetics (SMC’02), October
6–9, 2002, Hammamet, Tunisia, vol. 7. IEEE Comput. Soc., Los Alamitos (2002)

9. Kurki-Suonio, R.: Real time: further misconceptions (or half-truths) [real-time systems]. IEEE
Comput. 27, 71–76 (1994)

10. Lehman, M.M.: Rules and tools for software evolution planning and management. In: Inter-
national Workshop on Feedback and Evolution in Software and Business Processes (2000).
Revised and extended version in Annals of Software Engineering, vol. 11, Nov. 2001, pp. 15–
44

11. McCabe, T.J.: A complexity measure. In: 2nd International Conference on Software Engineer-
ing, ICSE ’76, p. 407. IEEE Comput. Soc., Los Alamitos (1976)

12. Mittal, N., Garg, V.K.: Computation slicing: techniques and theory. In: 15th International Con-
ference on Distributed Computing, DISC ’01, pp. 78–92. Springer, London (2001)

13. Mizanian, K., Yousefi, H., Jahangir, A.H.: Modeling and evaluating reliable real-time degree
in multi-hop wireless sensor networks. In: 32nd International Conference on Sarnoff Sympo-
sium, SARNOFF’09, pp. 568–573. IEEE Press, Piscataway (2009)

14. Munson, J.C., Werries, D.S.: Measuring software evolution. In: 3rd International Symposium
on Software Metrics: From Measurement to Empirical Results, METRICS ’96, p. 41. IEEE
Comput. Soc., Washington (1996)

15. Nagappan, N.: Toward a software testing and reliability early warning metric suite. In: 26th
International Conference on Software Engineering, ICSE ’04, pp. 60–62. IEEE Comput. Soc.,
Washington (2004)

16. Peña, J., Hinchey, M.G., Resinas, M., Sterritt, R., Rash, J.L.: Designing and managing evolv-
ing systems using a MAS product line approach. Sci. Comput. Program. 66(1), 71–86 (2007)

17. Rafiquzzaman, M.: Fundamentals of Digital Logic and Microcomputer Design. Wiley-
Interscience, New York (2005)

18. Rilling, J., Klemola, T.: Identifying comprehension bottlenecks using program slicing and cog-
nitive complexity metrics. In: 11th IEEE International Workshop on Program Comprehension,
IWPC ’03, p. 115. IEEE Comput. Soc., Washington (2003)

19. Russ, N., Peter, G., Berlin, R., Ulmer, B.: Lessons learned: on-board software test automa-
tion using IBM rational test realtime. In: IEEE International Conference on Space Mission
Challenges for Information Technology, p. 305. IEEE Comput. Soc., Los Alamitos (2006)

20. Schneidewind, N.F.: Requirements risk and software reliability. In: Madhavji, N.H.,
Fernández-Ramil, J.C., Perry, D.E. (eds.) Software Evolution and Feedback, pp. 407–421.
Wiley, New York (2006)

21. Schneidewind, N.F.: Risk-driven software testing and reliability. Int. J. Reliab. Qual. Saf. Eng.
14(2), 99–132 (2007)

22. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)
23. Stewart, M.E.M.: Towards a tool for rigorous, automated code comprehension using sym-

bolic execution and semantic analysis. In: 29th Annual IEEE/NASA on Software Engineering
Workshop, pp. 89–96. IEEE Comput. Soc., Washington (2005)

5 Conquering System Complexity 119

24. Sun, Y., Cheng, L., Liu, H., He, S.: Power system operational reliability evaluation based
on real-time operating state. In: 7th International Power Engineering Conference, Nov. 29–
Dec. 2, 2005, pp. 722–727 (2005)

25. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. 10(4), 352–357 (1984)
26. Zhang, J.: Symbolic execution of program paths involving pointer and structure variables. In:

Fourth International Conference on Quality Software, QSIC ’04, pp. 87–92. IEEE Comput.
Soc., Washington (2004)

Chapter 6
Accommodating Adaptive Systems Complexity
with Change Tolerance

Shawn Bohner, Ramya Ravichandar, and Andrew Milluzzi

6.1 Introduction
Just as complex structures of matter are fundamental to chemistry and physics, com-
plex compositions of software (both from component and language perspectives)
and their response to changes are fundamental to computer science and software
engineering. Complexity in software is a bit like complexity in music. Both soft-
ware and music are languages that get read by another practitioner and executed on
instruments (computing and musical instruments respectively). Both have logical, if
not mathematical, underpinnings. Take a piece of music by Johann Sebastian Bach;
it is complex largely because of the intricacy of the elements woven into the music.
Johann Strauss Jr., on the other hand, has music complex in the abundance of detail
it exhibits. Others such as Wolfgang Mozart have both types of complexity with the
overall level of sophistication in their work. No matter the composer, the properly
orchestrated music fulfills its purpose as it inspires and entertains audiences around
the world.

Similarly, software can be complex for intricacy and abundance of detail. To ex-
amine these, we have posed two projects later in this chapter. The first was to con-
quer intricacy by looking how Model-Based Engineering (MBE) approaches could
be applied to a particularly sophisticated agent-based system called “Cougaar.” The
second was to address the abundance of detail shown in reconfigurable computing
with Field-Programmable Gate Arrays (FPGA). Both projects show how complex-
ity can be dealt with using abstraction, and managing complexity with coupling and
cohesion.

6.1.1 Faces of Software System Complexity

Robert Glass masterfully distinguishes the complexity of the problem from the com-
plexity of the solution—solution complexity increases about four times as fast as the

S. Bohner (�)
Rose-Hulman Institute of Technology, Terre Haute, USA
e-mail: bohner@rose-hulman.edu

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_6, © Springer-Verlag London Limited 2012

121

mailto:bohner@rose-hulman.edu
http://dx.doi.org/10.1007/978-1-4471-2297-5_6

122 S. Bohner et al.

problem complexity [21]. Highly dynamic problem spaces often require intermedi-
ary technologies to reduce the cognitive load of the “many” to allow focus on the
“important.”

The nature of software and its concomitant complexity turned a corner over the
past decade with the advent of agent-based systems, social networking, autonomic
and self-healing systems, reconfigurable computing, web services, and the like [5].
José Luiz Fiadeiro describes this as “social complexity” arising from the number and
intricacy of interactions [16]. Software complexity compounds volume (structure)
and interaction (social) properties as modern applications increasingly use agents
to carry out collaborative tasking and the use of the Internet enables software func-
tionality to be delivered as services. Yet, most technologies that we use to develop
and evolve software systems do little to accommodate these notions of interaction-
oriented complexity and dynamic change.

The range of sophistication in software applications is on the rise. Individually
we use it for everything from doing our taxes to automating our home security to
obtaining news from the web. Collectively, we use it to manage information in cor-
porations (and even across industries) and for collaborative efforts across the web
through online meetings.

Workflow automation in the logistics community has become an exemplar
for large, sophisticated applications. Substantial knowledge about assets flowing
through an organization requires relevant intelligence that must be flexible enough
to respond to complex situations and changing environments [1]. In the small, agents
routinely make decisions about routing and scheduling (relieving humans of these
tasks). In the large, agents augment and expedite key management tasks by acquir-
ing requisite information for corporate decision-makers.

Traditionally, we respond to complexity by decomposing systems into manage-
able parts to accommodate the number of elements and their structure. Collabora-
tive agents are inherently social and interactions stem from a range of dependen-
cies and values. Manifold dependencies involved in sophisticated systems warrant
new ways of structuring the problem space and allowing solutions to evolve and
flex with knowledge introduced after the system is deployed. Agent-based systems
and Service-Oriented Architectures (SOA) reflect the need for flexibility and self-
assembly more than size and structure.

6.1.2 Models Help Conquer Complexity

Software systems are supposed to change—otherwise, we would have put the soft-
ware capabilities in the hardware. While, this is true for the most part, the con-
venience of a software solution for a general processor is often preferred to the
specially designed circuits that render an optimal solution. Why? The precision of
a specific solution induces complexity and time to the solution. That is, the time to
produce an optimal solution exceeds the available resources. Further, today’s com-
puting solutions entail heterogeneous computing platforms with varying configu-
rations (even within the individual processing types). Increasingly, the complexity

6 Accommodating Adaptive Systems Complexity with Change Tolerance 123

of the application domain requires solutions that entail use of even more adaptable
components that the software reflects in the language (e.g., intelligent agents or
adaptable hardware like dynamically reconfigurable hardware). These induce even
more complexity.

How do we accommodate the added complexity that solution approaches might
induce? Part of the answer lies in what principles we use to bring visibility and
predictability to the solution. Model-Based Engineering uses classical complexity
control through abstractions, coupled with provable transformations between the
levels of understanding. Hence, modularity measures like coupling and cohesion
apply.

At its core, system development can be thought of as the systematic progres-
sion from abstract requirements to a concrete system implementation. This process,
achieved through a successive series of transformations (i.e., elaborations and re-
finements), is inherently complex and models are used to understand relevant areas
of concern [19, 31].

It is important to recognize that we use models at each level of abstraction to sep-
arate key concerns and hide unnecessary details that are not relevant to the abstrac-
tion (the elements of the abstraction are balanced in their level of reasoning—e.g.,
reason about problem space objects to the exclusion of design). If a higher-level
representation is overly complex, this is not fixable at subsequent levels without
substantial effort. This means that as we move from analysis, to design, to imple-
mentation, etc. we “accumulate complexities” that impact both the ability to pro-
duce the final product and especially to evolve it. This chapter examines how to,
from a first-principles perspective, control the accumulation of undue complexity.
At the same time, we examine how capturing models as intermediate forms allow
us to accumulate intellectual simplifications that can ease the generation of the sys-
tems specified. These entail formalisms and rigor that at first induce complexity, but
later enable simplifications that outweigh the initial cost as subsequent uses provide
returns.

Again, models provide abstractions that allow us to decompose problems/solu-
tions into manageable pieces, focus on the appropriate level of detail, separate con-
cerns, and formalize solution space for validation. Models enable people working
together to reason about systems using a medium that is convenient for different
disciplines. However, the convenience can lead to losses in precision and recall, as
information is necessarily omitted for various levels of interaction. This must be
managed in order to conquer complexity.

6.1.3 Systems Capabilities and Change Tolerance

Capabilities—functional abstractions that are neither as amorphous as user needs
nor as rigid as system requirements—are intended to assist in architecting systems
to accommodate change [37]. These entities are designed to exhibit desirable char-
acteristics of high cohesion, low coupling, and balanced abstraction levels—criteria

124 S. Bohner et al.

derived from the reconciliation of a synthesis and decomposition approach to capa-
bility definition [38]. Using this approach in the early stages of defining the problem
domain to produce key elements of the computationally independent models can
lead to longer-lived architectural components. We leverage this in our approach as
we move forward towards managing complexity and change-tolerance of systems
that are produced using model-based engineering.

The low coupling, high cohesion, and balanced abstraction levels applies to each
level of detail as we move from analysis to understand the problem domain and spec-
ify the requirements, to architecture and design to specify the solution space, to im-
plementation using appropriate language abstraction so that the design is conveyed
both to the future maintainer as well as the computing platform. In this chapter, we
submit this concept as a key element for understanding and controlling complexity
as software evolves.

A key aspect of software is its capacity or tolerance for change. Inspired by as-
pects of fault tolerance, the term “change tolerance” connotes the ability of software
to evolve within the bounds that it was designed—that software change is inten-
tional [5]. There is a range of ways to reason about the notion of software change.
One can take a maintenance view of corrective, adaptive, and perfective change.
But this doesn’t really deal with managing the variant and invariant nature found in
Bertrand Meyer’s Open/Closed Principle (open for extension, closed for modifica-
tion) or the Lisksov Substitution Principle (notion of a behavioral subtype defines
notion of substitutability for mutable objects). These and others are necessary prin-
ciples to evolve software effectively.

One can design for change at the product level (e.g., reconfigurable computing)
or at the process level (e.g., reuse of models). Industry addresses software change
from top-down model-based engineering (e.g., Object Management Group’s Model-
Driven Architecture) and bottom-up agile method (e.g., Extreme Programming) per-
spectives. Both address risks of producing large volumes of software on shorter
time-lines, but from different perspectives.

From a practical perspective, change tolerance can be reasoned about through
coupling, cohesion, and balance of the abstraction. In this treatment, we examine
the models used to proceed from analysis to architecture in these terms.

6.1.4 Model-Based Engineering (MBE)

We use MBE in the broadest sense to mean those model-based approaches used
in various engineering disciplines to develop products. For most engineering dis-
ciplines that have tangible products, MBE is used largely for simulation and veri-
fication purposes. Note in software, our simulation goes further and becomes op-
erational. In software MBE comes in the forms of Model-Based Software Engi-
neering (MBSE), Model-Driven Architecture (MDA), Model-Driven Development
(MDD), Model-Driven Software Development (MDSD), Domain Specific Lan-
guages (DSL), and the like.

6 Accommodating Adaptive Systems Complexity with Change Tolerance 125

MBE strategies are emerging technologies that show promise to improve pro-
ductivity both during initial development and subsequent maintenance. These ap-
proaches use modeling to abstract and separate concerns about system behaviors
and performance so that they can be reasoned about and conveyed to subsequent
levels of elaboration and refinement. Each transition to a more detailed level must
abide by coupling and cohesion principles to have balanced abstractions and guar-
antees regarding their properties.

The application of model-based strategies on the system, technical, and config-
uration levels can be challenging. With the shift towards distributed systems of
systems, service-oriented architectures, and the like, complex interaction between
control and reactive parts of a system, and the increasing number of variants intro-
duced by product lines, the complexity continues to rise. However, with populated
model repositories containing canonical domain-level capabilities and application-
level components, the complexities can be managed with some level of discipline.
Further, if the components and their integration can be examined in light of cou-
pling, cohesion, and balance of abstraction, we should have a rational model for
understanding adaptive system complexity.

As expressed earlier, we applied an MBE approach to a sophisticated agent-based
collaborative agent architecture that is known to be powerful, but difficult to pro-
gram [8]. The objective was to investigate model-driven architecture [6, 10] as a
means of raising the level of abstraction for development teams and improving pro-
ductivity in the generation of these systems. One important observation from this
empirical exercise was that most of the reusable components were discovered op-
portunistically and the team needed to be mindful to identify elements of the system
that would have high utility and be tolerant of changes that would be imposed on
the system over the system’s lifetime. This led us to explore the concept of capabil-
ities engineering for change tolerant systems and using it as a means for managing
complexity.

Through a series of elaborations and refinements, model-based approaches sys-
tematically move from abstract computationally independent models, to platform
independent models, to concrete platform specific models—organizing knowledge
and leveraging reuse at appropriate levels. The complexities are interactions, map-
pings, and transforms in the populated models repositories that evolve over time.

Armed with an approach for identifying those capabilities that bound relevant
architectural components, we investigated the application of MBE to the Reconfig-
urable Computing (RC) development environment problem. As with the develop-
ment of agent-based systems, the RC development environments are geared for the
RC specialist working on FPGAs and other Programmable Logic Devices (PLD).
The demand for RC applications is growing at a much faster rate than the RC spe-
cialists entering the field and productivity improvement is needed to meet the de-
mand. In some sense, the RC development community is in a very similar position
to software engineering in the mid-1980s. The hardware technologies are progress-
ing at a faster rate than the RC developers can take advantage of them and one way
that this gap can be reduced is to explore ways to move the level of programming
up using model abstractions and reuse.

126 S. Bohner et al.

Building upon the previous work, we took the concepts to the classroom. So-
cial networks are popular among people of many ages and provide an interesting
platform for examining MBE for product-lines. While capabilities of today’s Social
Networking Applications (SNA) are not sophisticated or complex at a detailed level,
they are evolving and growing at an unprecedented rate. So, to examine this com-
plex property of SNAs, we investigated what how the MBE approach would serve in
a project that involved a team of students who were given about six weeks to build
a simple SNA. Complexities of the added scaffolding coupled with the additional
tasking were considered, then an additional version of the application development
environment was developed using a DSL oriented environment, showing consider-
able simplification in the development and change tolerance for future changes.

6.2 Background

The nature of software systems and their concomitant complexity has turned a cor-
ner with the advent of agent-based systems, autonomic and self-healing systems,
reconfigurable computing, web services, and the like. Software complexity has com-
pounded volume (structure) and interaction (social) properties as modern applica-
tions increasingly use agents to carry out collaborative tasking and the use of the
Internet has enabled software functionality to be delivered as services. Unlike our
engineering ancestors, we have a number of technologies that can bring insight into
decisions we make in developing and evolving systems to respond to a changing
environment. We have various adaptive technologies such as software agents that
can sense their situations and alter the behaviors accordingly. We have modeling
technologies that help us understand the structural information about the functional
abstractions for determining the most effective composition of capabilities and de-
composition of components to support them.

To better understand the elements that went into this work, we present a per-
spective on complex engineering, some background on model-based engineering
via MDA, key concepts of Capabilities Engineering, and introduce the challenges
with reconfigurable computing development environments.

6.2.1 Model-Driven Architecture

The projects discussed later in this chapter involved the use of MDA, a software-
oriented variant of MBE. Models are not merely aids for understanding; they are
intermediate forms to implement applications. Using models in the development of
systems has been practiced for decades, and even for centuries in other engineering
disciplines (e.g., mechanical engineering, building architecture). MDA provides a
way to create models, systematically refine and elaborate them, and provide auto-
matic (or semi-automatic) translation to one or more execution platforms. Perhaps

6 Accommodating Adaptive Systems Complexity with Change Tolerance 127

the most telling transition in mindset is how modeling in MDA takes a model (typ-
ically an abstraction of a reality) and creates an executable form through a series
of predictable transformations. Since the computer uses a conceptual medium de-
veloped by a software engineer (i.e., a model or series of models), transforms now
make abstractions of the real world accessible and even executable on a computer.

In some respects, MDA is an advanced perspective on well-known essential sys-
tems development concepts practiced over the years (albeit frequently practiced
poorly). The Object Management Group1 (OMG) promotes MDA advocating Uni-
fied Modeling Language (UML) as the modeling technology at the various lev-
els [23]. MDA endeavors to achieve high portability, interoperability, and reusability
through architectural separation of concerns; hinging on the long-established con-
cept of separating the operational system specification from the details of how that
system implements those capabilities on its respective platform(s). That is, separate
the logical operational models (external view) from the physical design for platform
implementations.

Starting with an often-abstract Computation Independent Model (CIM) such as a
process workflow or functional description, the Platform Independent Model (PIM)
is derived through elaborations and mappings between the original concepts and
the PIM renderings. Once the PIM is sufficiently refined and stable, the Platform
Specific Models (PSM) are derived through further elaborations and refinements.
The PSMs are transformed into operational systems.

The CIM layer is where vernacular specific to the problem domain is defined,
constraints are placed on the solution, and specific requirements illumined. Arti-
facts in the CIM layer focus largely on the system requirements and their environ-
ment to provide appropriate vocabulary and context (e.g., domain models, use case
models, conceptual classes). The CIM layer contains no processing or implementa-
tion details. Instead, it conveys non-functional requirements such as business con-
straints, deployment constraints, and performance constraints as well as functional
constraints.

The PIM provides the architecture, the logical design plan, but not the execu-
tion of the plan in a tangible form. Beyond high-level services, the problem domain
itself must be modeled from a processing perspective. The PIM is where the logi-
cal components of the system, their behaviors, and interactions are modeled. PIM
artifacts focus on modeling what the system should do from an external or logical
perspective. Structural and semantic information on the types of components and
their interactions (e.g., design classes, interaction and state diagrams) are rendered
in UML, the de facto modeling language for MDA.

Mapping from the PIM to the PSM, is a critical element of MDA’s approach.
Mappings from PIM representations to those that implement the features or func-
tions directly in the platform specific technologies are the delineation point where
there is considerable leverage in MDA. This mapping allows an orderly transition
from one platform to another. But the utility does not stop there. Like the PIM,

1The OMG’s MDA website is here: www.omg.org/mda.

http://www.omg.org/mda

128 S. Bohner et al.

there are opportunities to have layers within the PSM to produce intermediate-
transformations on the way to the executable system. These models range from
detailed behavior models to source code used in constructing the system. Each of
these layers offer opportunities to employ change tolerance as a guide for control-
ling complexity.

6.2.2 Capabilities Engineering

In MBE, productivity gains are a direct result of forming models that will be reused
in subsequent development activities and efforts. It has been shown that higher-
level reuse (i.e., analysis and design models) is more likely to result in productivity
increases than lower-level code reuse [18]. Domain analysis has been effectively ap-
plied over the years to ensure that the developed system maps well to the application
domain, reusable concepts are captured, and software change is accommodated [18].
Similarly, Capabilities Engineering (CE) starts at the problem domain engineering
level and using structure and semantics applies rules to determine capabilities in the
needed system that will be change tolerant. For this reason, we explored how CE can
be used to formulate the requisite elements of the system early in the effort so that
change tolerant components will be modeled and used to expresses the architecture.

Lehman’s first law of software evolution [30] asserts that if a system is to func-
tion satisfactorily then it must constantly adapt to change. To key approaches to
reconcile the dynamics of change are to adopt a strategy to minimize it or attempt to
incorporate the change with minimum impact. Traditional requirements engineer-
ing attempts to minimize change by baselining requirements prior to design and
implementation. However, empirical research evidence indicates the failure of this
approach to cope with the attendant requirements evolution when building complex
emergent software-based systems [2, 32]. Consequently, in the case of many sys-
tems today such failures are extremely expensive in terms of cost, time, and human
life [12].

At the other end of the spectrum on this issue, many of today’s software pro-
cesses now accommodate requirements change in one way or another. The Unified
Process uses an iterative strategy to accommodate emerging requirements in vari-
ous releases of the software. Agile methods accommodate changing requirements
by keeping the iterations small and refactoring the product as incongruences arise.
Both of these have challenges trying to establish a good starting point for compos-
ing the component architectures of systems. We believe that the CE approach offers
a substantial solution that can readily be applied in most any process. Further, for
MBEs such as model-driven architecture, this is particularly helpful as canonical
capabilities for a domain can help establish the basis for the architecture.

As expressed earlier, the CE process strives to accommodate change (as opposed
to minimizing it). We deduce that changes can be accommodated with minimum
impact if systems are architected using aggregates that are embedded with change-
tolerant characteristics—we call such aggregates as “capabilities.” Specifically, ca-
pabilities are functional abstractions that exhibit high cohesion, low coupling, and

6 Accommodating Adaptive Systems Complexity with Change Tolerance 129

balanced abstraction levels. The property of high cohesion helps localize the im-
pact of change to within a capability. Also, the ripple effect of change is less likely
to propagate beyond the affected capability because of its reduced coupling with
neighboring capabilities. The ripple effect is the phenomenon of propagation of
change from the affected source to its dependent constituents [27]. An optimum
level of abstraction assists in the understanding of the functionality in terms of its
most relevant details.

Capabilities are determined mathematically from a Function Decomposition
(FD) graph. This is an acyclic directed graph that represents system functionality
that has been implicitly derived from user needs. Thus, capabilities originate after
the elicitation of needs, but prior to the formalization of technical system require-
ments. This unique spatial positioning permits the definition of capabilities to be
independent of any particular development paradigm. More specifically, although
capabilities are derived from user needs, they are imbued with design characteris-
tics of cohesion and coupling. This introduces aspects of a solution formulation. On
the other hand, capabilities are less detailed than entities that belong to the solution
space. Consequently, capabilities fit more naturally in the space in-between—the
transition space. Furthermore, their formulation from the user needs and mapping to
requirements implies that they have the potential to bridge the complexity gap; thus
assisting the traceability between needs and requirements. Moreover, the inherent
ability of capabilities-based systems to accommodate change with minimum impact
enhances the efficacy of traceability; random, unstructured ripple-effects impair the
strength of regular traceability techniques.

Capabilities are generated in a two-phased process. The first phase determines
the change-tolerant capability set that exhibits high cohesion, low coupling, and
balanced abstraction levels. The second phase optimizes these capabilities to ac-
commodate the constraints of technology feasibility and implementation schedule.
Figure 6.1 illustrates the two major phases of the CE process. Phase I implicitly de-
rives expected system functionality from needs and decomposes them to directives;
directives are similar to requirements but have domain information associated with
them. The decomposition activity results in the construction of the FD graph. Then,
the algorithm for identifying capabilities—based on the criteria of cohesion, cou-
pling, and abstraction level—is executed on this graph, as a part of the formulation
activity. The resulting set of capabilities are the required change-tolerant entities.
Phase II employs a multi-disciplinary optimization approach on the capabilities ob-
tained from Phase I to accommodate the constraints of technology and schedule. The
resulting set of capabilities is then transformed into requirements as dictated by an
incremental development process. The final set of capabilities and their associated
requirements constitute the output of the CE process.

While the first phase of capabilities engineering is detailed later in the chapter,
it is important to note at this point that much of this is algorithmic and repeatable.
Hence, when establishing the computationally independent models that will help
form the architecture of the system, a predictable approach can be employed to es-
tablish the base set of model boundaries that will drive the components generated
via the model-based approach. Phase II involves metrics for assessing the sched-

130 S. Bohner et al.

Fig. 6.1 Capabilities engineering phased process

ule/technology trade-offs to arrive at finalized capabilities. These are beyond the
scope of this treatment but can be found in [37, 38].

6.3 Change Tolerance Starts with Capabilities

As expressed earlier, change tolerance can be reasoned about through coupling, co-
hesion, and balance of the abstraction. Traceability models tell us this is true at
most levels of abstraction—needs, capabilities, requirements, architecture, logical
design, physical design, and various levels of implements. Each of these levels of
abstraction represents models when considered from a software engineering per-
spective. Even the source code is a model! This is useful as we consider how to
conquer complexity. In analysis, we tend to capture information about the problem
domain and organize it in domain models and accompanying textual specifications.
We move from the abstract, ambiguous, inconsistent, and incomplete to the more
defined, clarified, consistent, and complete, as we elaborate and refine our under-
standing. Formal methods certainly bring the computer to bear on this problem with
formal specifications and provers [29]. The more dependence and structure infor-
mation that we have, the more we can predict the complexity and potentially control
it.

MBE approaches express the computation independent models early in the de-
velopment as it provides the relevant problem domain structure for the logical mod-
els. This is where we needed a mechanism to define model constructs that would
reflect long-lived elements of the system and begin the characterization of change
tolerance. We exploit the semantics of the functional decomposition (FD) graph to
compute the change-tolerant characteristics of a capability.

Decomposition is the process of recursively partitioning a problem until an
atomic level is reached. We begin with user needs because they help determine
what problem is to be solved; in the context of software engineering this means
what functionality is expected of the system to be developed. Different techniques
such as interviews, questionnaires, focus groups, introspection, and others [22] are

6 Accommodating Adaptive Systems Complexity with Change Tolerance 131

employed to gather information from users. Often, because of the informality of the
problem domain language, needs are expressed at varying levels of abstraction.

A function derived from a need at the highest level of abstraction is the mission
or overarching goal of the system. An abstraction presents information essential to
a particular purpose, ignoring irrelevant details. In particular, a functional abstrac-
tion indicates the functionality expected of the system from a high-level perspective
while ignoring minute details. We use the vertices (or nodes) of an FD graph to
represent functional abstractions of the system, and its edges to depict the relation-
ship between the various functionalities. The construction of this graph is a core
component of the decomposition activity.

High cohesion, low coupling, and balanced abstraction levels are basic charac-
teristics that define change-tolerant capabilities. Recall that change tolerance con-
notes the ability of software to evolve within the bounds that it was designed—that
software change is intentional. Cohesion, coupling, and balanced abstraction offer
reasonable measures to identify change tolerant capabilities. Much in the same way
these concepts have been successfully used in design, the same principles work at
the more abstract levels between the problems space (bounding the needs) and the
solution space (composing the solution). In this subsection, we examine the ratio-
nale underlying this definition of a capability, and subsequently, present measures
that are specifically constructed to compute each criterion. Figure 6.2 depicts an
example of an FD graph of a Course Evaluation System that we use to make more
concrete these concepts.

6.3.1 Cohesion

Cohesion characterizes a stable structure and depicts the “togetherness” of elements
within a unit. Every element of a highly cohesive unit is directed toward achieving a
single objective. For MBE this is important to identify the domain level elements of
the system that can form capabilities. We focus on maximizing functional cohesion,
the strongest level of cohesion [3] among all the other types (coincidental, logical,
temporal, procedural, communicational, and sequential) [45] and therefore, is most
desirable. In particular, a capability has high functional cohesion if all its constituent
elements, viz. directives (later transformed to requirements), are devoted to realizing
the principle function represented by the capability.

By virtue of construction, in the FD graph the function of each child node is
essential to achieving the function of its immediate parent node. Note that, neither
the root nor the leaves of an FD graph can be considered as a capability. This is
because the root indicates the mission or main goal of the system, which is too
holistic, and the leaves symbolize directives, which are too reductionistic in nature.
Both of these entities lie on either extreme of the abstraction scale, and thereby, con-
flict with the objective of avoiding such polarity when developing complex emergent
systems [28]. Hence, only the internal nodes of an FD graph are considered as poten-
tial capabilities. In addition, these internal nodes depict functionalities at different

132 S. Bohner et al.

F
ig

.6
.2

E
xa

m
pl

e
of

an
FD

gr
ap

h
of

a
co

ur
se

ev
al

ua
tio

n
sy

st
em

6 Accommodating Adaptive Systems Complexity with Change Tolerance 133

levels of abstraction, and thereby, provide a representative sample for formulating
capabilities.

We develop the cohesion measure for internal nodes by first considering nodes
whose children are only leaves. We then generalize this measure for any internal
node in the graph.

(a) Measure for Internal Nodes with Only Leaves as Children

Internal nodes with only leaves as children represent potential capabilities that are
linked directly to a set of directives. In Fig. 6.2 example of such nodes are n60, n5,
n3, n41, and n9. Directives are necessary to convey and develop an in-depth under-
standing of the system functionality and yet, by themselves, lack sufficient detail to
dictate system development. Failure to implement a directive can affect the func-
tionality of the associated capability with varying degrees of impact. We reason that
the degree of impact is directly proportional to the relevance of the directive to the
functionality. Consequently, the greater the impact, the more crucial the directive.
This signifies the strength of relevance of a directive and is symptomatic of the asso-
ciated capability’s cohesion. Hence, the relevance of a directive to the functionality
of a unit is an indicator of the unit’s cohesion.

The failure to implement a directive can be interpreted as a risk. Therefore, we
use existing risk impact categories: Catastrophic, Critical, Marginal, and Negligi-
ble [4] to guide the assignment of relevance values. Each impact category is well
defined and has an associated description. This is used to estimate the relevance
of a directive on the basis of its potential impact. For example, negligible impact
is described to be an inconvenience, whereas a catastrophic impact implies com-
plete failure. This signifies that the relevance of a directive with negligible impact is
much lower when compared to a directive with catastrophic impact. Intuitively, the
impact categories are ordinal in nature. However, we conjecture that the associated
relevance values are more than merely ordinal. The issue of determining the natural
measurement scales [42] of cohesion and other software metrics is an open prob-
lem [9]. Therefore, we refrain from subscribing both the attribute in question (i.e.
cohesion) and its metric (i.e. function of relevance values), to a particular measure-
ment scale. Rather than limiting ourselves to permitted analysis methods as defined
by Stevens [42], we let the objective of our measurement—computing the cohesion
of a node to reflect the relevance of its directives—determine the appropriate statis-
tic to be used [44]. We assign values to indicate the relevance of a directive based on
the perceived significance of each impact category; these values are normalized to
the [0,1] scale (e.g., Marginal is a reduction in performance at a relevance of 0.30,
while Negligible is a non-operational impact at a relevance of 0.10). We estimate the
cohesion of an internal node as the average of the relevance values of all its direc-
tives. The arithmetic mean is used to compute this average as it can be influenced by
extreme values. This thereby captures the importance of directives with catastrophic
impact or the triviality of directives with negligible impact, and affects the resulting
average appropriately, to reflect the same.

Every parent-leaf edge is associated with a relevance value Rel(v,n) indicating
the contribution of directive v to the cohesion of parent node n. For an FD graph

134 S. Bohner et al.

G = (V ,E) we denote relevance of a directive d to its parent node n as Rel(d,n)

where d, v ∈ V , (n, d) ∈ E, outdegree(d) = 0 and outdegree(n) > 0. Formally, the
cohesion measure of a potential capability that is directly associated with a set of
directives (i.e. the cohesion measure of an internal node n ∈ V with t leaves as its
children [t > 0]) is given by computing the arithmetic mean of relevance values:

Ch(n)=
∑t

i=1 Rel(di, n)

t

The cohesion value ranges between 0 and 1. A capability with a maximum cohe-
sion of 1 indicates that every constituent directive is of the highest relevance.

(b) Measure for Internal Nodes with only Non-leaf Children

The cohesion measure for internal nodes with only non-leaf children is computed
differently. This is because the relevance value of a directive is valid only for its
immediate parent and not for its ancestors. For example, the functionality of node
n30 in Fig. 6.2 is decomposed into nodes n31 and n32. This implies that the func-
tionality of n30 is directly dependent on the attainment of the functionality of both
n31 and n32. Note that n30 has only an indirect relationship to the directives of the
system. In addition, the degree of influence that n31 and n32 each have on parent
n30 is influenced by their size (number of constituent directives). Therefore, the co-
hesion of nodes that are parents with non-leaf children is a weighted average of
the cohesion of their children. Here, the weight is the size of a child node in terms
of its constituent directives. This indicates the child’s contribution towards the par-
ent’s overall cohesion. The rationale behind this is explained by the definition of
cohesion, which states that a node is highly cohesive if every constituent element is
focused on the same objective, i.e. the node’s functionality.

Formally, the cohesion measure of an internal node n with t > 1 non-leaf children
is:

Ch(n)=
∑t

i=1(size(vi).Ch(vi))∑t
i=1 size(vi)

such that (n, vi) ∈E and,

size(n)=
{∑t

i=1 size(vi) (n, vi) ∈E,outdegree(vi) > 0

1 outdegree(n)= 0

6.3.2 Coupling

Why should capabilities exhibit low coupling? We restate the reasons advanced by
Page-Jones [34] for minimizing coupling, in the context of capabilities. Fewer in-
terconnections between capabilities reduces:

6 Accommodating Adaptive Systems Complexity with Change Tolerance 135

• the chance that changes in one capability affects other capabilities, thus promot-
ing reusability,

• the chance that a fault in one capability will cause a failure in other capabilities,
and

• the labor of understanding the details of other capabilities

Thus, coupling is a measure of interdependence between units [43] and thereby,
is the other indicator of stability of a capability. We desire that units accommodate
change with minimum ripple effect. Ripple effect is the phenomenon of propagation
of change from the affected source to its dependent constituents [27]. Specifically,
the dependency links between units behave as change propagation paths. The higher
the number of links, the greater is the likelihood of ripple effect. Therefore, we strive
to design minimally coupled capabilities.

Capability p is coupled with capability q if a change in q affects p. Note that
Cp(p, q) is the measure that p is coupled with q and so, Cp(p, q) �= Cp(q,p). In
particular, a change in q implies a change in one or more of its constituent direc-
tives. Therefore, the coupling measure for capabilities is determined by the coupling
between their respective directives.

We assume that the coupling between directives is a function of two components:
distance and probability of change.

1. Distance: Directives are associated with their parent capabilities through decom-
position edges; recall, a decomposition edge signifies that the functionality of the
parent is a union of its children. Thus, the directives of a capability are highly
functionally related; this is represented by leaves that share the same parent node.
However, relatedness between directives decreases as the distance between them
increases. We define the distance between directives u,v ∈ V as the number of
edges in the shortest undirected path between them and denote it as dist(u, v).
By choosing the shortest path we account for the worst-case scenario of change
propagation. Specifically, the shorter the distance, the greater the likelihood of
impact due to change propagation.

2. Probability of Change: The other factor that influences the coupling measure is
the probability that a directive will change and thereby, cause a ripple effect.
Minimal interconnections reduce the likelihood of a ripple effect phenomenon.
We know that coupling between capabilities is a function of coupling between
their respective directives. As mentioned earlier, if u and v are directives then
Cp(u, v) can be quantified by measuring the effect on u when v changes. How-
ever, we still need to compute the probability that such a ripple effect will occur.
This requires us to compute the likelihood that a directive might change. There-
fore, Cp(u, v) also needs to factor in the probability of directive v changing:
P(v). We use a simplistic model to determine the probability that a directive
will change. Specifically, we consider the likelihood that exactly one directive
changes among all other directives in a given capability.

Formally, coupling between two directives u and v ∈ V is computed as:

CP(u, v)= P(v)

dist(u, v)

136 S. Bohner et al.

This metric computes the coupling between directives u and v as the probability
that a change in v propagates through the shortest path and affects u. We denote the
set of leaves (directives) associated with an internal node n ∈ V as:

Dn = {x|∃path(n, x);outdegree(x)= 0;n,x ∈ V }
where path(n, x) is a set of directed edges connecting n and x.

Generalizing, the coupling measure between any two internal nodes p,q ∈ V ,
where outdegree(p) > 1, outdegree(q) > 1 and Dp ∩Dq = ϕ is:

Cp(p, q)=
∑

di∈Dp

∑
dj∈Dq

Cp(di, dj)

|Dp||Dq |
where

Cp(di, dj)= P(dj)

dist(di, dj)

and

P(dj)= 1

|Dq |

6.3.3 Abstraction Level

The third criterion requires that capabilities be defined at balanced abstraction lev-
els. Given that holism and reductionism lie on the extremes of the abstraction scale,
we seek a balance that is most desirable from a software engineering perspective.
Specifically, we identify a balanced abstraction level as that point where the node
is of an optimum size (size is the number of associated directives), and at the same
time, whose implementation as an independent entity does not result in increased
dependencies. For example, in Fig. 6.2, n2 representing the functionality Evalu-
ation Authoring is of size 30 (number of associated directives); its children,
Customized Evaluation (n29) and Expert Template (n7), are smaller-
sized nodes. Based on size, let us say we consider the children instead of the parent
as capabilities. This implies that nodes n29 and n7 are independent entities. How-
ever, we see from Fig. 6.2, that the functionality Items (n55) is common to both
these capabilities. This, in some sense, is a manifestation of content coupling, the
least desirable among all types of coupling. Consequently, the dependency between
n29 and n7 is increased by deploying them as separate capabilities, because they
share a common functionality in n55. This trade off between the convenience of de-
veloping smaller sized units and the long-term advantages of reduced dependencies,
characterizes a balanced abstraction level. Thus, based on certain heuristics we use
the level of abstraction to determine which nodes in an FD graph are capabilities.

6 Accommodating Adaptive Systems Complexity with Change Tolerance 137

We are interested in measuring the cohesion, coupling, and abstraction level of
various functional abstractions of a system to identify capabilities. It is generally
observed that as the cohesion of a unit increases the coupling between the units
decreases. However, this correlation is not exact. Therefore, we develop specific
metrics to measure the coupling and cohesion values of the internal nodes in an FD
graph. Most existing coupling and cohesion measures focus on evaluating the qual-
ity of design or code. These measures have access to information regarding function
calls, data parameters and other design or implementation details, which are abun-
dantly available to construct their metric computations. In contrast, measures for
capabilities are based on the fundamental definitions of cohesion and coupling, and
rely on the limited information provided by the FD graph. To determine balanced
abstraction levels, we compute the sizes of nodes and examine the levels in terms
of their distances from the root. In addition, the FD graph helps us visually under-
stand the commonalities between potential capabilities. We use this information to
construct heuristics to evaluate the abstraction levels.

Abstraction is instrumental in successful architecture, design patterns, object-
oriented frameworks, and the like. High abstraction level is key in the development
and evolution of complex emergent systems [6, 36, 39]. As we apply CE in the CIM,
we strive to identify nodes at balanced levels of abstraction as capabilities. Accord-
ing to the FD graph in Fig. 6.2, the node at the highest level is the overall mission.
If we implement this as a capability, then the entire system is composed of exactly
one large-sized capability—a retrograde to the original requirements engineering
approach. Instead, we need to identify capabilities of a size such that its function-
ality is comprehensible by the human mind. For this we consider nodes at lower
levels of abstraction, that depict more specifically, what functionality is expected of
the system.

From the FD graph in Fig. 6.2 we observe that as the abstraction level becomes
lower, the node sizes decrease but the coupling values increase. We estimate the size
of a capability as the number of its associated directives, for example, size(n1)= 43,
and size(n9) = 6. In fact, size estimates determined from non-code entities such as
requirements are known to be fairly representative of the actual functional size.

Given a choice between two nodes of different sizes, we choose to implement the
smaller-sized node as a capability. This is in agreement with Miller’s observation
about the limited processing capacity of the human mind [33] (cf. [35]). A large-
sized capability may encompass too much functionality for a developer to process.
Intuitively, the implementation of a smaller sized Capability is less complex. Like
components, for capabilities the relation between the size and number of defects or
defect density could also be an issue. However, with capabilities that exist in a realm
even prior to requirements specification, the assumption of small-sized capabilities
being less complex and more easily maintainable than their large-sized counterparts
may not be invalid. With insufficient information, it is premature to question funda-
mental principles of modularization.

Two possible scenarios may arise when lowering the abstraction level of a node
in order to decrease its size:

138 S. Bohner et al.

• Common Functionality: In the former case, lowering the abstraction level of the
large capability results in nodes that share a common functionality. For exam-
ple, in Fig. 6.2, the FD graph of the Course Evaluation System, this is illustrated
by decreasing the level of Evaluation Authoring (n2) to Expert Tem-
plate (n7) and Customized Evaluation (n29); both share the common
node Items (n55).

• No Common Functionality: This case involves the reduction of a single aggre-
gate to smaller nodes that have no commonalities.

Thus for each scenario, balanced abstraction levels are determined by examining
the trade-space of two aspects: node size and coupling values. While this treatise
defines the concepts for purposes of this research, the details of the slices and algo-
rithms for analyzing these are detailed in [36]. As indicated earlier, the details of the
phase two can also be found there. However, in the next section we provide a short
overview.

6.3.4 Optimization

Phase II of the CE process (shown in Fig. 6.1) further optimizes change-tolerant
capabilities to accommodate the constraints of schedule and technology. In fact, as-
pects of schedule and technology are closely intertwined, and thus, need to be con-
sidered as different dimensions of a single problem, rather than separate individual
concerns. We discuss our interpretation of schedule and technology constraints.

We examine two possible scenarios when incorporating technology in a system—
obsolescence and infusion. The former involves replacing obsolete technology with
new technology and the latter introduces new technology in the system, as a result of
building new capabilities. The set of capabilities can be optimized to accommodate
different scenarios of technology advancement. For example, if a particular technol-
ogy needed to develop a capability requires additional time to mature then one may
examine alternate configurations where the development of the concerned capability
can be postponed with minimal impact on related entities. In the case of technology
obsolescence, the change-tolerant characteristics of a capability mitigate the effects
of replacing the underlying technology. Specifically, high cohesion implies that the
constituent elements of a capability are strongly tied to the underlying technology.
In addition, the minimal coupling between capabilities reduces the impact relative
to technology replacement.

Scheduling has been empirically identified as a key risk component in software
development [12]. It is often discussed with respect to global project management
aspects such as the distribution of personnel effort, allocation of time, determination
of milestones, and others. However, in the context of the CE process we view sched-
ule as a function of implementation order and time. Order is the sequence in which
capabilities are to be developed. Time is the period within which a capability of the
system is to be delivered. This definition of scheduling capabilities is reflective of
the principle of incremental development, a risk mitigation strategy for large-scale

6 Accommodating Adaptive Systems Complexity with Change Tolerance 139

system development. The permutations of a set of capabilities generate different se-
quences in which capabilities can be developed. Thus, as discussed earlier, in the
case of a necessary delay in implementing a particular capability, one may examine
other potential ordering of nodes.

6.3.5 Transition Space for Change-Tolerant Capabilities

A concept of CE that is key to the MBE approaches is the idea of “transition
space”—the space between user needs in the problem space and system require-
ments in the solution space. Capabilities occupy a position that is neither in the
problem space nor in the solution space. More specifically, although Capabilities
are derived from user needs, they share design characteristics of cohesion and cou-
pling. This introduces aspects of a solution formulation, and thus, discourages the
membership of a Capability in the problem space. On the other hand, Capabilities
are less detailed than entities that belong to the solution space. Consequently, Ca-
pabilities fit more naturally in the transition space. Furthermore, their formulation
from the user needs and mapping to requirements imply that they have the poten-
tial to bridge the complexity gap; thus assisting the traceability between needs and
requirements [39]. Moreover, the inherent ability of Capabilities-based systems to
accommodate change with minimum impact enhances the efficacy of traceability;
random, unstructured ripple-effect impairs the strength of many traceability tech-
niques.

The use of the transition space facilitates the capture of domain information, and
preserves relationships among needs and their associated functionalities during the
progression between spaces. On the other hand, the characteristics of high cohe-
sion and low coupling of Capabilities, support traceability in evolving systems by
localizing and minimizing the impact of change. The ability to trace is unhindered
by the system magnitude when utilizing a capabilities-based development approach
because traceability techniques are embedded into the process.

From an MBE perspective, this early start to establishing boundaries for subsys-
tems and components is very important. Recognizing the structure of the application
domain often dominates the system architecture. Take for example the application
domain for business systems—Enterprise Resource Planning (ERP) systems reflect
the canonical business processes they support. While ERP systems changed the way
that companies worked by reducing the administrative tasks of manually convey-
ing information for business decisions, it retained the key structures of the domain
that it supports (e.g., financial, human resource, and asset management). Similarly,
most applications domains when modeled will have these canonical functional ab-
stractions. While we model them in the CIM, up to this point, we did not have a
mechanism for identifying these aspects that CE terms capabilities. Now, capabili-
ties give way to modeling the logical architecture design in the PIM.

In the transition space, with capabilities defined, we can reason about the ma-
jor subsystems and components that will be comprised in the architecture and ulti-
mately in the design. We can do this while it is still relatively inexpensive to make

140 S. Bohner et al.

Table 6.1 Four layer metamodel architecture

Layer Description Examples

M3: Metametamodel Foundation for a metamodeling architecture. MetaClass,

Defining the language to describe metamodels MetaAttribute,

MetaOperation

M2: Metamodel An instance of a metametamodel. Class, Attribute,

Defining the language to describe models Operation,

Component

M1: Model An instance of metamodel. Defining a language
to describe the information object domain

Product, Unit Price,
Customer, Sale,
Detail

M0: User objects An instance of a model. <Chair>, <Desk>,

Defines specific information domain $100, $200

changes. And we can have a reasonable justification for the capabilities that are
defined both from structural and semantic perspectives.

6.3.6 Coupling and Cohesion in Solution Space Models and MBE

Most treatments of software architecture and design describe and use coupling,
cohesion, and balanced abstraction as key measures for effective software design
[11, 15]. Hence, we will defer to them for detailed discussions. However, here we
want to indicate the importance of these three measures as they pertain to change
tolerance as one moves through the process of elaboration and refinement of the
software system into more detailed representations, ultimately to be generated into
source code. In MBE, this process is described in the Metamodel. For many MDA
projects, this uses a four layer Metamodel Architecture like that shown in Table 6.1
and the Meta Object Facility (MOF) [40] to describe the transition between rep-
resentation forms. Note that a higher-level meta-layer defines the structure of the
lower layer, but is not the abstraction of that layer. Rather, meta-layer relationships
are more like grammar-layer relationships found in transformation systems. This
helps govern the complexity from a transformation standpoint and aids in moving
from manual to automated generation of software.

Software knowledge often starts out as abstract and informal, but the more we
know about the system, the more canonical and formal we can become in our rep-
resentation forms. The more formal the representations, the more likely that trans-
formations from abstract levels to concrete levels can be reliably conveyed through
automation. This is key to conquering complexity. Once the canonical design ele-
ments associated with the capabilities can be captured in a form that is accessible
through a specification and reliably transformable to more concrete form(s), the
computer is then handling the complexity. In a large part, this is what happens with

6 Accommodating Adaptive Systems Complexity with Change Tolerance 141

a compiler and a programming language—complexities of control and data flow
are accommodated in the language and transformed to forms that can be executed
by the computer. Ideally, we would like to have model compilers where the mod-
els map reliably to the application domain and systems would be generated from
specifications that the domain experts would produce.

At this point, it is important to recognize that computing languages are like mod-
els. Arguably, general-purpose languages like Java and C++ provide an abstraction
for software engineers to reason through implementing a solution using a com-
puter. This relatively low-level abstraction was not always considered low. Early
on, micro-coding was the dominant programming approach. As more convenient
machine (processor) structures emerged, assembly languages provided machine ab-
straction that substantially improved productivity by abstracting away the complex
details. Then, as programming domains such as business and scientific applications
were established, third generation languages (3GL) like Cobol and Fortran with
control and data flow abstractions gave way to significant productivity progress.

Moving from assembly to 3GLs is an example of increasing abstraction. More
recently, MBE approaches aim to increase the level of abstraction to manage com-
plexity and improve productivity [13, 41]. For example, in developing Reconfig-
urable Systems with FPGAs, traditional systems required knowledge of low-level
languages like Verilog or VHDL. More recently, we have seen the rise of block
intellectual property (IP) and model based environments like National Instrument’s
LabVIEW FPGA where we see increases in productivity in producing these RC sys-
tems. Moving some of the programming tasks to end-users through key abstractions
reduced the programming load, freeing staff for engineering tasks relevant to their
skills.

A technology that bridges the language oriented programming and model-based
software engineering communities are DSLs. DSLs have been around for a long
time and most practitioners do not realize it! A DSL is a language targeted at an
application domain and expressive in domain terms. Examples of DSLs include
SQL, LaTeX, Pic, HTML, VHDL, Lexx/Yacc, Diesel, and Groovy. Note that the
languages are often small and tailored to the domains.

According to Martin Fowler [17], there are three primary types of DSLs: (1)
External, (2) Internal, and (3) Language Workbenches for building DSLs. External
DSLs use a different syntax than the main language that uses them (e.g., make, flex,
bison, SQL, sed, and awk). These may or may not be embedded in the code and
often can be used separately for their specific domain purpose. Internal DSLs share
the same syntax as the main language that uses them—a subset of the host language
that is congruent with the development environment, but may have some expres-
sivity limitations due to constraints of host language. From a complexity tradeoff
perspective, the internal DSLs do not require a new language to be learned, but they
will not have the expressivity gains of external DSLs.

Language workbenches such as JetBrains Meta Programming System (MPS) and
openArchitectureWare offer yet another perspective much like the use of Software
Refinery in the 1990s. That is, having an environment that provides the framework
and tools to generate a system from components and a specification language can be

142 S. Bohner et al.

very effective and productive since much of the complexity of scaffolding around
building a repository of software artifacts, developing a language to express the
system, and ultimately generating software for a range of applications are all ac-
commodated with a predictable framework. Later in this chapter, we will examine
projects that each developed a small social networking development environment
using a DSL workbench (JetBrains MPS), an existing MBE framework (Eclipse
Modeling Framework), and a team that rolled their own (using Microsoft Visual
Studio without the DSL support). The upshot of using these types of technologies is
that abstraction is used to simplify the reasoning about the system, enable effective
decomposition (divide and conquer—a well-known means of reducing complexity),
and provide cues on how to organize the solution space for making changes in the
future.

6.4 Model-Based Engineering Experience Dealing with
Complexity

Capabilities and change tolerance are effective ways of starting out on the right path
to deal with complexity, and complementary to these are the use of models in the
production of software. In this section, we examine two MBE projects: one sophis-
ticated agent-based system and one with an abundance of detail—a reconfigurable
system. Then we examine three strategies for developing an MBE for a social net-
working system to understand some implications of the approaches discussed in the
previous section. Note that the Capabilities Engineering work was performed sepa-
rately from this, but theoretically, the principles of coupling, cohesion, and balanced
abstraction hold with MBE. The objective in this section is to examine how MBE
could be used to reduce complexity over time for some classes of systems develop-
ment.

6.4.1 Cougaar Model-Driven Architecture (CMDA)

Certain classes of problems lend themselves to the use of collaborative agents.
While DARPA explored them in large-scale logistics programs [1], others have
looked at them in intelligent swarms for BioTracking, unmanned underwater ve-
hicles, and autonomous nanotechnology swarms (ANTS) [29]. Agent-based sys-
tems provide a means to embed complex behaviors in applications where tasking or
decisions are vital. Yet, they are notoriously difficult to program and produce reli-
able implementations [20]. Cognitive Agent Architecture (COUGAAR) is an open-
source, agent architecture framework resulting from almost a decade of research by
DARPA.

What makes Cougaar complex for development is largely the range of capa-
bilities provided and the types of situations that Cougaar is designed to support.

6 Accommodating Adaptive Systems Complexity with Change Tolerance 143

Cougaar systems are usually deployed as agent “societies” where agents collabo-
rate to solve a common class of problems. If a problem can be partitioned, then
subsets of agents, called a “community,” work on partitions of the problem (often
autonomously and opportunistically). The society can directly contain both agents
and communities. While these Cougaar capabilities are designed to aid engineers
in thinking of the problem and solution space more along the lines of collaborative
resources organized to support planning and tasking, the implementation of the sys-
tems using Cougaar agents is complex with an array of agent configurations and
processing rules. The typical Cougaar developer takes months to become proficient
with the facilities and development environment.

The concept of a Cougaar agent is relatively simple, but the details of the behav-
iors and how they are manifest in peer-to-peer interactions between agents through
a blackboard are challenging. A Cougaar agent, a first-class member of a Cougaar
Society, consists of a blackboard, a set of Plugins, and logic providers that are ref-
erentially uncoupled (i.e., they do not know about each other). The blackboard is
a container of objects that adheres to publish/subscribe semantics. Plugins provide
business logic and logic providers translate both incoming and outgoing messages.
The Blackboard serves as the communications backbone connecting the plugins to-
gether. When an agent receives a message, it is published on the blackboard. The
logic provider observes this addition and transforms the message into an object that
plugins can work on. All instance-specific behavior of the agent is implemented
within the plugin. Plugins create subscriptions to get notified when objects of its
interest are added, removed or changed.

The CMDA approach simplifies the development of Cougaar-based applications
by facilitating the generation of key software artifacts using models [7]. The CMDA
partitions the modeling space into domain and applications. The domain level is re-
ferred to as the General Domain Application Model (GDAM), while the application
level is named the General Cougaar Application Model (GCAM).

The domain layer, GDAM, encompasses the representations of domain specific
components found in the domain workflow [24]. The application layer GCAM, en-
compasses the representations of Cougaar, its specifications, and environment [20].
Models are at the center of the approach, with even source code considered as a
model.

Figure 6.3 illustrates the transformations and mappings in the CMDA [6] ab-
straction layers as they reflect the MDA approach. As with MDA, at CIM level, the
user specifies the workflow of the intended Cougaar system. Then the user maps the
workflow of the intended system into its PIM and PSM using GDAM and GCAM
components respectively. An assembly approach is used, whereby the developer
assembles the system and implementation models of the intended system by choos-
ing, configuring, and connecting various predefined GDAM and GCAM compo-
nents [25]. Once completed, the models are fed into a transformer, which then parses
through this assembled set of models to produce the actual software artifacts such
as requirements, design, code, and test cases. The generation of software artifacts is
controlled by predefined mapping rules and template structures.

As the models mature, increasing use of transformations in the generation of
software are employed. An application may not be completely generated from mod-

144 S. Bohner et al.

Fig. 6.3 CMDA abstraction
layers

els and specifications. Earlier in the development, when the repository is not yet
populated with models and components, and the detailed mappings have not been
produced, there is a considerable human-in-the-loop (HITL) element. However, as
development progresses, more of the models and components are reused and/or
evolved systematically—reducing the cycle time and improving productivity. This
was a fundamental finding in CMDA—early models needed to mature along with
the representations that populate the repository of model components. Early mod-
els were often incomplete with only some components and transformation rules.
As the understanding increased, both the fidelity of the models and the transfor-
mations/mappings grew until there was minimal HITL needed. This follows the
iterative nature of development in software.

6.4.1.1 CMDA Environment

We explored relevant ways to automate Cougaar system development so that inter-
disciplinary team of domain experts and Cougaar developers could work effectively
to produce sophisticated agent-based applications. Ideally, this would entail an ex-
clusively transformational architecture as outlined by OMG. However, with healthy
skepticism we embarked on a more pragmatic approach that started with assembly
of mapped components and introduced transformations where there were opportu-
nities to leverage configurations and optimizations. This architecture served us well
as the domain and application models were derived and connected via a common
meta-model.

Strongly leveraging the Eclipse2 IDE, the CMDA framework allows domain ex-
perts to specify the intended Cougaar system using a combination of a custom UML
profile, Object Constraint Language (OCL), and Java Emitter (JET) Templates. The
UML profile is used to delineate the domain and application models of the intended
system. The OCL is used to describe the domain and application specific constraints
that the intended application must adhere. The JET templates form the base struc-
ture for the code and documentation artifacts. In essence, required software artifacts

2The Eclipse main website is here: http://www.eclipse.org/.

http://www.eclipse.org/

6 Accommodating Adaptive Systems Complexity with Change Tolerance 145

are generated by populating the templates with requisite parameters obtained from
the domain and application models of the intended system. The key components in
CMDA architecture are (details of which can be found in [8]):

• Graphical Editor: The Graphical Editing Framework (GEF) based Graphical
Cougaar Model Editor (GCME) allows users to create and edit domain and appli-
cation models of the intended system.

• Component Repository: Manages components with version control and storage
support (SVN). Facilitates a collaborative development environment in which a
user can publish components for use by other users.

• ModelManager: Provides a comprehensive view of all the components in a model.
• OCL Interpreter: Language interpreter for OCL built on top of ANTLR. The in-

terpreter facilitates the validation of constraints specified in the component def-
initions and supports the evaluation of domain and application level constraints
describing system behaviors.

• OCL Profile: Translator taking a configured component, producing OCL expres-
sions for the OCL interpreter.

• OCL Java Generator: Generates Java source code equivalent of OCL constraints.
• Compiler: Translator that converts, with the help of the mapping and OCL pro-

files, the input high-level description language of the intended system into its
equivalent software artifacts.

• Mapping Profile: Translator that takes descriptions of configured components and
produces model artifacts.

6.4.1.2 CMDA Meta-model

As this was an early MDA project, we chose to design our own meta-model. Our
meta-model facilitates easy translation between the GDAM and GCAM layers. Our
meta-model shown in Fig. 6.4 illustrates conceptually how components are instan-
tiated for use by specifying a set of parameters. In order to have smooth translation
between GDAM and GCAM and to facilitate multiple sub-layers within the two
models, the same meta-model was used to define both models. Hence the meta-
model has recursive associations (depicted by the circular arrows in the figure) and
allows the users to specify the intended application as a hierarchy of components.
A component is said to be fully instantiated when it has roles (connections to other
components) and has values defined for its parameters. The leaf components (the
component at the lowest level) have additional mapping profiles that references tem-
plates used by transformer to generate code artifacts.

The meta-model allows smooth translation between the GDAM and GCAM lay-
ers and facilitates multiple sub-layers within them. The meta-model allows the de-
velopers to specify the intended model as a hierarchy of components. Each compo-
nent references instances of other components either at the same or at a lower layer.
The models are strictly hierarchical in nature and care is taken to avoid circular
dependencies. The lowest layer of the application model consists of templates into

146 S. Bohner et al.

Fig. 6.4 The recursive
meta-model

which the system fills in parameters (obtained from top-level components), resulting
in generation of code artifacts.

The CMDA components can range from abstract XPDL-based workflow dia-
grams, UML Domain model classes, and Sequence Diagrams, down to specific code
modules used to populate the JET Templates during final assembly. Everything is
treated as a model to be used in the generation of the application. In this way, we
hold true to the MDA approach. GDAM and GCAM components are developed sys-
tematically as gaps are found in the model transformations. When a subcomponent
does not exist for a higher-level abstraction, an attempt is first made to derive it from
existing models. If that is not possible, then a human in the loop must be employed
to derive the appropriate models.

A key design decision in CMDA was to provide the flexibility through the meta-
model for UML model components as well as code constructs directly. This way,
major portions of existing Cougaar source code could be accessed as relevant ab-
stractions for use in the transformations to generate the Cougaar applications. This
was before MOF was mature and we erred on the side of flexibility. The downside
of this decision is that roundtrip engineering which requires the mappings and trans-
formation for the ability to make changes in one model and it show up in another.
Today, the tools for MDA are far more capable.

We have been more elaborate in this first description of CMDA as it covers many
of the perspectives employed in the Model-Based Engineering Framework for High-
Performance Reconfigurable Computing (MBEF-HPRC) and the ManPages Gener-
ator applications covered in the next two sections. These following explorations
build off of the original project, but exploited newer technologies and leveraged
open-source software for MBE development.

6.4.2 Model-Based Engineering Framework for
High-Performance Reconfigurable Computing

This second MBE effort built off of the CMDA project; however, the target environ-
ment objectives were quite different. Rather than addressing complexity in the appli-
cation sophistication (complexity in the interactions), the MBEF-HPRC focused on

6 Accommodating Adaptive Systems Complexity with Change Tolerance 147

Fig. 6.5 MBE framework for HPRC

the specific implementation details of hardware description languages (complexity
in the abundance of details). In some domains such as high-performance computing
and embedded systems, the rendering of the system is in circuit designs on an FPGA
or other reconfigurable hardware devices.

This project was conducted for the National Science Foundation’s Center for
High-performance Reconfigurable Computing. As FPGAs continue to increase in
logic density (doubling every 18 months), their potential expands to more and more
application domains. However, the ability to program FPGA to address the ever-
increasing capacity in the logic is only growing at a fraction of the rate of logic
density. In short, there is a “productivity gap” hindering the development of recon-
figurable computing applications as the development productivity is not keeping
pace with the growth in logic density. So, this project was to examine how we could
move the abstraction level up for programming FPGAs from low-level circuits to
design components and the eventual integration of capabilities.

There has been progress with C mappers (e.g., Handel-C, Mitrion-C, and
Impulse-C), but these are not productive enough to keep up with the growth in logic
density. The solution we embarked on was to prototype an IDE for reconfigurable
computing that can address the productivity problem. Like software development,
FPGAs and other reconfigurable technologies are programmable. Hence, they can
benefit from software engineering lessons in MBE.

We exploit models that enable systematic elaboration and refinement of spec-
ifications into more and more concrete models that ultimately get converted into
source for FPGAs and other reconfigurable devices. Figure 6.5 illustrates the basic
concept of using models to compose HPRC systems.

While the basic MBE concepts hold for a reconfigurable computing IDE, the de-
tails are specific here to a hardware-design approach. Note that much of the empha-
sis is on the PSM (Application Components Models, Architecture Specific Models,
and High Level Language framed at the bottom). At the top, the specific appli-
cation models reflect the CIM for the Software-Defined Radio (SDR). The CIM

148 S. Bohner et al.

Fig. 6.6 MBE-HPRC
architecture

may have several layers of models but is typically specified in the language of the
problem domain. Application domain models such as digital signal processing in-
corporate elements of computation and are typically specified in terms of platform
independent models (PIM); these are agnostic towards the underlying technology.
The application component model provides the building blocks from which the ap-
plication domain model is constructed, such as digital filters, multiplexers, and the
like. This is where the PIM transitions to the PSM. For this project, we concen-
trated on these transitions as they represent the most challenging aspect of deriving
models for circuit design. The [hardware] architecture specific models specify board
specific requirements for configuration such as ports and levels. These differ above
the FPGA chip level and must often be accommodated in reconfigurable devices.

Ultimately, the component designs are specified in some implementation form
(e.g., VHDL). Note that while the specification decomposes into increasingly de-
tailed elaborations and refinements going from the domain application down to the
implementation language(s), using the models, an application is produced/generated
from the composite elements specified earlier. While difficult to achieve in the first
round, as the CIM, PIM, and PSM are populated at the various levels with more
canonical models, the generation of systems becomes increasingly rapid, improving
design productivity for applications development. Similar to the CMDA, Fig. 6.6
illustrates the MBE-HPRC architecture elements used to specify and generate the
software.

While xADL is still somewhat research oriented, it served our purpose well as
did the open-source versions of OCL. The GEF-based graphical editor captured
the details through a diagram. This included typical blocks like filters, NCO, and
multiplexers. Each block has parameters that can be used to provide configuration
detail, trigger component inclusion, transforms, and mappings.

For the resulting SDR designs, the parameters can also be used for including
specifications such as Carrier frequency, channel bandwidth, modulation index, and
audio response. Additionally, system design parameters for specific FPGA imple-
mentation boards can be specified such as system clock rate, sampling frequency,
and bit precision. We used largely the same meta-model for the MBE-HPRC ap-
proach as we did for the CMDA. Each model consisted of one or more models until

6 Accommodating Adaptive Systems Complexity with Change Tolerance 149

they got down to the template level where the JET templates rendered transforms or
assemblies.

For example, in a radio a received signal must be filtered to separate out noise.
For a hardware engineer, this is solved by a simple low pass filter. In a digital envi-
ronment, the translation from the circuit to discrete time processing can be complex
and forces the engineer to think procedurally. By abstracting out the actual code
to create the filter on a RC system, the engineer is able to design the filter (and
radio) around the common engineering models. Further, algorithms for identifying
efficient placement and sizes for the filters in the signal processing stream can be
simulated in models that ultimately produce the digital design through series of
transformation rules. By simply focusing on the more abstract models, engineers
are able to lower the coupling of the overall RC system applying MBE principals.

The project goals were largely accomplished. In a relatively short time, we were
able to demonstrate that even lower-level representations like those in reconfig-
urable computing could be addressed with MBE and higher-level abstractions pro-
vided similar results in enabling non-FPGA professionals to contribute to devel-
oping SDR applications. Given that FPGA design environments are substantially
below this abstraction level, even without timed comparisons, the evidence is clear
that MBE could improve productivity in this domain. Further, it would enable FPGA
professionals to incorporate technologies that software engineers currently take for
granted. With the complexity in the large and complexity in the small explored in
the CMDA and MBE-HPRC approaches respectively, we now turn to the emergent
domain of social networking applications.

6.4.3 Model-Based Engineering for Social Network Applications

Recently, social networks have been popular among people of many ages. They
offer a platform to stay connected with friends and family. While capabilities of to-
day’s social networking applications (SNA) are not sophisticated or complex at a
detailed level, they are evolving and growing at an unprecedented rate. So, to exper-
iment with this emergent property of SNAs, this project involved a team of students
who were given about six weeks to build a simple SNA called ManPages (based
on a FaceBook-like assignment that Mehran Sihami gave his students at Stanford
University called “Face Pamphlet”), conduct a basic domain analysis to determine
the emerging common capabilities and model them for generation. The application
was first developed, exercised, and then analyzed to understand the extensibility and
change parameters needed for a product-line system.

Rather than starting with the MBE-HPRC IDE, the team explored the available
open-source projects and identified the Eclipse Modeling Project [26]. Figure 6.7
depicts the MBE framework for the ManPages MBE approach.

ManPages is a simple SNA that enables users to stay in touch with their friends.
Users can add and remove friends from their profile, change their profile picture,
update their status to allow their friends to see what they are doing, allow users

150 S. Bohner et al.

Fig. 6.7 MBE-HPRC architecture

to become members of their groups. Users list their friends that they have on the
network.

From the domain perspective, a ManPages profile represents a network entity and
can either be an existing ManPages profile or an empty profile. An existing profile
will have a profile name, picture, status, and list of friends. If the profile is empty,
not all of these components will be present.

Control of a profile is contained within the main display of the system. In Man-
Pages there are three areas of control: Persistence Management, Network Manage-
ment, and Profile Management. ManPages enables a user to save and load a net-
work, which is done through the Persistence Management control panel. The Net-
work Management control panel provides the ability to add or delete users to/from
the network, and look up profiles of other users on the network. When users want
to change their status, change their picture, or add a friend to their list, the Profile
Management control panel provides these capabilities.

The basic design of the MBE for ManPages reflects that of the Eclipse Modeling
Project [26]. There is a graphical editor based on EMF (with the Encore Modeling
Language) and Graphical Modeling Framework as well model parsers for the vari-
ous model levels. For example, once a PIM model has been created in the graphical
editor, the associated XML file is passed to a parser that reads the file (in XMI
format) and generates the abstract classes and interfaces of the system. The parser
generates a list of source files that are contained in the repository so they can be
moved into a new Java project along with the generated files. The model XML file
contains 4 key areas:

1. the location of the source repository,
2. the sources files that instantiate the node objects in the model (e.g., files associ-

ated with an entity are contained in a composedOf tag with a name attribute
manpages:Entity),

6 Accommodating Adaptive Systems Complexity with Change Tolerance 151

3. system communication is provided via requisite interfaces (e.g., communi-
catesBy tags), and

4. a list of files that the network contains, but that are not graphical components or
an interface.

The ManPages IDE parses the XML and produces the PSM (assembly for
nascent components and generated via transforms where the fidelity of the com-
ponents is mature enough to express the variance reliably). Generated components
include all the interfaces required for the event-based assembly of the components
as well as a set of abstract classes for the components that contain the implementa-
tion required for the event-based design. Event-based design relies on the Provider
interface and the Registry interface for each event. Components using a Provider
interface implement the handling and firing of events and components using a Reg-
istry interface act as the listeners for the events. This allows components to be linked
together as specified by associations between the entities in the PIM. The assembly
container instantiates and links all the entities. Generation is performed using JET
templates, which receives parameters from the parser.

While this project was not as meaty at the others, it focused on something impor-
tant from the complexity and productivity perspectives. That is, the ability to take
a common MBE framework and apply it to a new or emerging product-line often
involves considerable scaffolding and infrastructure to produce variants of a product
(albeit a simple SNA). By capturing models and components, pre-conditioning them
for utilization multiple times, and developing a reliable way of generating the SNA,
there is considerable complexity increase to start with along with the associated
productivity impacts. However, for future SNA development, the complexity is sig-
nificantly reduced as crafting the custom applications turns to mass-customization.
Like producing cars, the use of a production facility with the variants of the car pre-
planned, the generation of the various models can be more readily done predictably
and adjusted for normal market changes (i.e., year-to-year styles).

As SNAs mature, there will be more capabilities that become common and need
not be reinvented. Rather, they will be improved as software engineers on multidis-
ciplinary teams work together to capture their respective models and refine them for
future generation. This opens another question—What happens if you introduce a
factory generator for a given product line? If we could constrain the breadth of the
application, the language used to specify the systems could be simplified and an en-
vironment to generate systems could be employed. In the next subsection on DSLs,
we examine briefly that potential to reduce further, the complexities of development
for better productivity.

6.4.3.1 FacePamphlet via a Domain Specific Language

Another version of the FacePamphlet environment was developed using a DSL Lan-
guage Environment by Robert Adams, a student at Rose-Hulman Institute of Tech-
nology. While the student’s thesis work was not yet published at the time of the writ-
ing, the preliminary results are worth mentioning here. Using JetBrains MPS [14],

152 S. Bohner et al.

a version of the FacePamphlet environment was produced with significantly less
effort than the project with five developers reported above. Indeed, one person pro-
duced an equivalent FacePamphlet application generator in less time and with more
resulting flexibility. This was enabled by having a language-oriented programming
environment for DSLs. This DSL toolkit provided facilities that aid in building up
languages, which are then used to specify and generate a domain application.

MPS is a set of tools created to construct a language or set of languages that can
be used for some purpose like a DSL. JetBrains MPS uses three principle compo-
nents (languages) to construct DSLs: a structure language, an editor language, and
a generator language. Each of these is itself a DSL.

The structure language is like the abstract syntax of a language that consists
of concepts for definition. Like objects, concepts can be inherited, can contain
other concepts, and can contain references to other concepts. With this, the DSL-
programmer is able to specify the underlying behaviors, properties, and data ele-
ments of their languages.

The editor language establishes the concrete syntax of a language. It provides
development environment utilities (e.g., as context menus). MPS also provides DSL
code completion, hotkey context menus, and protections against creating malformed
code. Since the definition of DSL is done in the same DSL generation environment
as language creation, all of the capabilities provided for DSL application are avail-
able to the custom-created DSLs, reducing the overhead of defining concrete and
abstract syntaxes.

The generation language provides for creating sets of mappings from concepts
created in the structure language to sets of templates for a lower level language.
Since these are written in MPS, extending these templates, or writing templates
to target any other language is enabled. Building languages like this provides for
building abstraction on abstraction, codifying the complexities of transformations
and making things like portability and interoperability simpler.

6.5 Increasing Today’s Complexity to Decrease Tomorrow’s
Complexity

If we look at the additional complexities induced by developing the environment
to deliver an application, MBE looks more complex for the short term (high over-
head). However, if we examine the knowledge that is codified into that environment
to make simpler the tasks of producing said software systems in future systems, the
complexity in the long run is certainly decreased. This is especially true for situa-
tions where one wants to be responsive to changes and variances that are induced by
the environment (market, economy, etc.). This is one of the key lessons that came
out of the efforts to explore MBE in software development and evolution.

Table 6.2 outlines the basic characteristics of the four efforts described in the last
section to give a baseline for comparison. The staff represents the average number of
people on the project over the duration. The duration is the calendar months, but ef-
fort would be approximately the duration times the staff divided by 4 (working only

6 Accommodating Adaptive Systems Complexity with Change Tolerance 153

Table 6.2 Basic MBE project characteristics

CMDA MBE-HPRC ManPages
MBE

FacePamphlet
DSL

Staff 5 4 5 1

Duration 18 months 9 months 1.4 months 1 month

Size ∼67 KLOC ∼6 KLOC ∼3 KLOC ∼700 LOC

Reuse of domain
components

∼40% from
Cougaar code;
<10%
open-source

<5% from
HPRC code;
<5%
open-source

∼20% from
ManPage
code; <0%
open-source

∼30% from
FacePamplet
code; <0%
open-source

Reuse of MBE
components

<5%
open-source

∼35% from
CMDA; <5%
open-source

0% from
CMDA;
<45%
open-source

0% from
CMDA;
∼70%
open-source

Abstraction High Low Medium High

Process Medium Low/Medium Medium Medium

Automation High Medium Medium High

Assembly ∼65% ∼80% ∼90+% ∼15+%

10 hours a week). The size estimates are based on discussions with the developers
and course counts of code. The reuse of domain components (e.g., Cougaar Agent
code) and MBE components (e.g., code that constituted contributing to the MBE
infrastructure like parsers) are based on module counts (more is better). Process
represent the level of attention paid to codifying the reuse and MBE process activ-
ities (higher is better). Automation represents opinion of how much of the process
was not human-in-the-loop (higher is better). Assembly represents how much of the
model components were assembled instead of transformed for generation (less is
better).

While we started each project with a healthy dose of skepticism that drove us to
take the risk averse assembly approach, we overcame the challenges and ultimately
moved to a more transformation-heavy approach in the CMDA approach. While
the other two projects did not attain a lower-level of assembly, we believe that the
amount of time in the project increases the level of transformation. The more trans-
formation, the more likely the component has a good fit for purpose and less glue
code needed, and better productivity.

In all four cases experience developing components (models at various levels)
and transformation rules lead to patterns and more effective techniques for populat-
ing a project’s repository of components. From an economic perspective, speed with
which one could produce domain applications rose significantly with the growth in
generative components in the repository. Hence, the more populated with high yield
components, the low the complexity and the better the productivity.

154 S. Bohner et al.

With the components and templates developed in CMDA, generating Cougaar
applications was feasible, reliable, and the resulting system was a near match to
the existing open-source Cougaar test code. The CMDA GDAM/GCAM structures
based on a single meta-model appears to provide a reasonably good framework for
implementing the MDA approach. While this was not as specific as the four level
meta-structure of MOF, it was robust and resilient to the changes that were induced
by our explorations. The MBE-HPRC used the same approach with similar results.
The ManPages MBE employed the MOF successfully and was able to demonstrate
better UML-based transformations. The productivity benefit of having the MOF
meta-model is the integration of model artifacts with other projects; hence, gaining
productivity advantages less glue.

The use of a DSL environment provided the language and automation scaffold-
ing to expedite the development process and even when changes like AddNon-
Friend were specified, the changes were made in a fraction of the time that the
other SNA environment was able to achieve.

True Roundtrip engineering is hard to achieve without a full-bidirectional map-
ping of all artifacts. There must be enough markers left on the forward trek through
transformations to find your way back. Also, until debugging moves up in abstrac-
tion (i.e., model level), we believe this will remain a difficult problem except for the
less complex cases. While the MOF meta-model makes this more feasible, we were
unable to demonstrate the efficacy of roundtrip engineering in the ManPages MBE.
Therefore, the potential productivity gains of making changes in the system at any
model level and having them propagate to the relevant components is still untried.

While we would like to claim that CMDA, MBE-HPRC, and ManPages MBE
were all fully automated, our experience indicates that early on most efforts will
require some human in the loop (e.g., verification of domain and system level con-
straints like UML operation contracts). This is especially true for unpopulated repos-
itories and new components. However, this does point to a key element of produc-
tivity with MBE approaches for software—they are expensive to start, but like mo-
mentum in physics, the payoff in reduced complexity and increased productivity is
once the repository is populated and unto speed.

With the more abstract domain components, it was clear that for many appli-
cations, a domain person could generate a Cougaar application with only a little
help from the developer. This was shown true for the MBE-HPRC environment too
as software people could aid in producing SDRs. This promising insight is one of
the key objectives of the first two projects. The domain models and their respective
components provided a reasonable interface for a Cougaar novice to be productive
in generating domain applications. Of course, the population of models in the repos-
itory had a large influence on productivity.

6.6 Conclusions

Software size and complexity continue to increase and the software engineering
community must respond to this ever-present risk. In the past, we have used ab-
straction, reuse, process, and automation to address the productivity concerns that

6 Accommodating Adaptive Systems Complexity with Change Tolerance 155

stem from this, but there is still a productivity gap that is substantially caused by our
inability to conquer complexity in large software systems. Abstraction plays a key
role in our ability to deal with complexity. We presented the capabilities engineering
with change tolerance measures (coupling, cohesion, and balanced abstraction) as
a starting point to get a handle on complexity early on. We then transitioned these
concepts to the models that are produced as one develops a software system—low
coupling, high cohesion, and a balance in the modeling abstractions brings clarity to
the questions answered at each level of abstraction traversed in developing software
models (including coding). To this end, we concentrated on examining model-based
engineering approaches for software like Model-Driven Architecture and Domain
Specification Languages.

We presented three key projects examining three key themes to complexity: So-
phisticated agents with complex interactions, low-level circuit design in reconfig-
urable FPGAs with complexity in the abundance of details, and Social Network
Applications generation with complexity in production. While these three projects
ranged from early research prototypes over a longer period to open-source based
MBEs completed over a short six weeks, the potential to establish a Model-Based
Engineering capability is feasible and potentially beneficial for organizations seek-
ing to get a handle on complexity and improve the productivity of their software
organization. While there is not a great deal of validation in our experience, lessons
learned coupled with the definitions we provide about coupling and cohesion for
change tolerance offer a reasonable substantiation of the leverage that MBE can
bring to a software engineering project.

Much of this book on Conquering Complexity centers on using formal methods
and rigor to govern complexity. While this chapter does not emphasize formalisms,
they are central to the specification and transformation technologies used to generate
software systems from models. Like MBE in other disciplines, MBE for software
provides a valuable measure of early validation and verification, especially when
the models are executable or formal enough for provers. We must not ignore the
potential to reduce software faults and the costly rework to improve productivity.

From the perspective of abstraction reducing complexity and improving produc-
tivity, we believe that this is the greatest lever that MBEs have to offer—the other
three (reuse, process, and automation) stem from it. In some sense, reuse is only
an interim step on the way to the next level of language for expressing systems—
today’s specification language in MBE could be tomorrow’s programming language
as we begin to program in models. This can be seen readily in DSLs.

Abstraction also brings with it the advantage of employing more than software
engineers to develop the system. Complexity can find its way in as a workaround
is introduced due to lack of understanding that someone else may possess, but is
not conveyed. With models as the expression mechanism, domain experts, and staff
from other relevant disciplines can be employed to increase the speed at which we
can clarify specifications and produce software systems. This was especially true in
the CMDA and MBE-HPRC efforts where moving abstraction up opened doors for
better productivity by having the right people involved at the right level—reducing
errors early and expediting the effort.

156 S. Bohner et al.

Reuse has been touted for some time as a key productivity enhancer. While
reused code is helpful, reused concepts and models at the higher levels are even
more precious for productivity. With long-lived systems this is even more potent as
the platforms are apt to become obsolete before the system. Hence, separating plat-
form concerns (CIM, PIM, and PSM) offers a key way to reduce long-term com-
plexity.

MBE involves a disciplined process to gain momentum from reusing artifacts in
the production of software systems. In this process, however, there is some front-
loading needed to establish the infrastructure for reusable components, reuse of the
components, and the modeling underpinnings. Making this happen in an organiza-
tion unaccustomed to the discipline would take longer—at least until the benefits of
better productivity begins to result from the populated model repositories and clients
being able to work with software staff in producing the systems more quickly and
accurately.

Acknowledgements This work has been supported, in part, by the DARPA grant “AMIIE Phase
II—Cougaar Model Driven Architecture Project,” (Cougaar Software, Inc.) subcontract number
CSI-2003-01. We would like to acknowledge the efforts, ideas, and support that we received from
our research team including Michael Hinchey, Todd Carrico, Tim Tschampel, Denis Gracanin,
Lally Singh, and Nannan He. We want to thank students at Rose-Hulman Institute of Technology
who participated in the FacePamphlet projects, and especially Rob Adams, whose work on the
DSL version of FacePamphlet substantiated further our findings.

References

1. Cougaar developers’ guide: Version for cougaar 11.4. Tech. rep., BBN Technologies (2004)
2. Bell, T.E., Thayer, T.A.: Software requirements: are they really a problem? In: ICSE, pp. 61–

68 (1976)
3. Bieman, J.M., Ott, L.M.: Measuring functional cohesion. IEEE Trans. Softw. Eng. 20(8), 644–

657 (1994)
4. Boehm, B.W.: Software Risk Management. IEEE Comput. Soc., New York (1989)
5. Bohner, S.: An era of change-tolerant systems. IEEE Comput. 40(6), 100–102 (2007)
6. Bohner, S., Gracanin, D., George, B., Singh, L., He, N.: Active methods project report and

CMDA system documentation. Virginia Tech Department of Computer Science (2005), p. 77
7. Bohner, S.A., George, B., Gracanin, D., Hinchey, M.G.: Formalism challenges of the cougaar

model driven architecture. In: Formal Approaches to Agent-Based Systems, Third Interna-
tional Workshop, FAABS 2004, Greenbelt, MD, USA, April 26–27, 2004, Revised Selected
Papers, pp. 57–71 (2004)

8. Bohner, S.A., Ravichandar, R., Arthur, J.D.: Model-based engineering for change-tolerant
systems. Innovations Syst. Softw. Eng. 3(4), 237–257 (2007)

9. Briand, L., El-Emam, K., Morasca, S.: On the application of measurement theory in software
engineering. Empir. Softw. Eng. 1(1), 61–88 (1996)

10. Brown, A.: An introduction to model driven architecture: Part I: MDA and today’s systems.
IBM developerWorks (2004). Available from http://www-128.ibm.com/developerworks/
rational/library/3100.html.

11. Card, D.N., Glass, R.L.: Measuring Software Design Quality. Prentice Hall, New York (1990)
12. Charette, R.N.: Why software fails. IEEE Spectr. 42(9), 42–49 (2005)
13. Cuadrado, J.S., Molina, J.G.: Building domain-specific languages for model-driven develop-

ment. IEEE Softw. 24, 48–55 (2007)

http://www-128.ibm.com/developerworks/rational/library/3100.html
http://www-128.ibm.com/developerworks/rational/library/3100.html

6 Accommodating Adaptive Systems Complexity with Change Tolerance 157

14. Dmitriev, S.: Language oriented programming: the next programming paradigm (2004). Jet-
brains. http://www.onboard.jetbrains.com/articles/04/10/lop/

15. Fenton, N.E., Pfleeger, S.L.: Software Metrics. Pws Publishing, Boston (1996)
16. Fiadeiro, J.L.: Designing for software’s social complexity. IEEE Comput. 40(1), 34–39 (2007)
17. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley, Reading (2010)
18. Frakes, W.B., Díaz, R.P., Fox, C.J.: Dare: domain analysis and reuse environment. Ann. Softw.

Eng. 5, 125–141 (1998)
19. George, B., Bohner, S.A., Prieto-Diaz, R.: Software information leaks: a complexity perspec-

tive. In: Ninth IEEE International Conference on Engineering Complex Computer Systems,
pp. 239–248 (2004)

20. George, B., Singh, H.L., Bohner, S.A., Gracanin, D.: Requirements capture for cougaar
model-driven architecture system. In: 29th Annual IEEE/NASA on Software Engineering
Workshop, pp. 109–117 (2005)

21. Glass, R.L.: Facts and Fallacies of Software Engineering. Addison-Wesley, Reading (2002)
22. Goguen, J.A., Linde, C.: Techniques for requirements elicitation. In: First International Sym-

posium on Requirements Engineering (RE’93), San Diego, CA, USA, pp. 152–164 (1993)
23. Gracanin, D., Bohner, S.A., Hinchey, M.G.: Towards a model-driven architecture for auto-

nomic systems. In: 11th IEEE International Conference on the Engineering of Computer-
Based Systems (ECBS 2004), 24–27 May 2004, Brno, Czech Republic, pp. 500–505 (2004)

24. Gracanin, D., Singh, H.L., Bohner, S.A., Hinchey, M.G.: Model-driven architecture for agent-
based systems. In: Hinchey, M.G., Rash, J.L., Truszkowski, W., Rouff, C. (eds.) Formal Ap-
proaches to Agent-Based Systems, Third International Workshop, FAABS 2004, Greenbelt,
MD, USA, April 26–27, 2004, Revised Selected Papers, pp. 249–261 (2004)

25. Gracanin, D., Singh, H.L., Hinchey, M.G., Eltoweissy, M., Bohner, S.A.: A CSP-based agent
modeling framework for the cougaar agent-based architecture. In: 12th IEEE International
Conference on the Engineering of Computer-Based Systems (ECBS 2005), 4–7 April 2005,
Greenbelt, MD, USA, pp. 255–262 (2005)

26. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit. The
Eclipse Series. Addison-Wesley, Reading (2009)

27. Haney, F.M.: Module connection analysis: a tool for scheduling software debugging activities.
In: AFIPS ’72: Proceedings of the December 5–7, 1972, Fall Joint Computer Conference,
Part I (1927)

28. Heylighen, F.: Self-organization, emergence and the architecture of complexity. In: 1st Euro-
pean Conference on System Science, AFCET (1989)

29. Hinchey, M.G., Sterritt, R., Rouff, C.A.: Swarms and swarm intelligence. IEEE Comput.
40(4), 111–113 (2007)

30. Lehman, M.M.: Laws of software evolution revisited. In: Proceedings 5th European Work-
shop, Software Process Technology, EWSPT ’96, Nancy, France, October 9–11, 1996,
pp. 108–124 (1996)

31. Lehman, M.M.: Software’s future: managing evolution. IEEE Softw. 15(1), 40–44 (1998)
32. Lutz, R.R.: Analyzing software requirements errors in safety-critical, embedded systems. In:

First International Symposium on Requirements Engineering (RE’93), San Diego, CA, USA,
pp. 126–133 (1993)

33. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for
processing information. Psychol. Rev. 63(2), 81–97 (1956)

34. Page-Jones, M.: Practical Guide to Structured Systems Design. YOURDON Press, New York
(1980)

35. Qin, S., Chin, W.-N., He, J., Qiu, Z.: From statecharts to verilog: a formal approach to hard-
ware/software co-specification. Innovations Syst. Softw. Eng. 2(1), 17–38 (2006)

36. Ravichandar, R.: Capabilities engineering: promoting change-reduction and constructing
change-tolerant systems. Ph.D. thesis, Computer Science, Virginia Tech. (2008)

37. Ravichandar, R., Arthur, J.D., Bohner, S.A.: Capabilities engineering: constructing change-
tolerant systems. In: 40th Hawaii International Conference on Systems Science (HICSS-40
2007), 3–6 January 2007, Waikoloa, Big Island, HI, USA, p. 278 (2007)

http://www.onboard.jetbrains.com/articles/04/10/lop/

158 S. Bohner et al.

38. Ravichandar, R., Arthur, J.D., Broadwater, R.P.: Reconciling synthesis and decomposition:
a composite approach to capability identification. In: 14th Annual IEEE International Confer-
ence and Workshop on Engineering of Computer Based Systems (ECBS 2007), 26–29 March
2007, Tucson, AZ, USA, pp. 287–298 (2007)

39. Ravichandar, R., Arthur, J.D., Pérez-Quiñones, M.A.: Pre-requirement specification traceabil-
ity: bridging the complexity gap through capabilities. In: International Symposium on Grand
Challenges in Traceability, TEFSE/GC (2007)

40. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Technology, En-
gineering, Management. Wiley, New York (2006)

41. Stensrud, E., Myrtveit, I.: Identifying high performance ERP projects. IEEE Trans. Softw.
Eng. 29(5), 398–416 (2003)

42. Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680 (1946)
43. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured design. IBM Syst. J. 13(2), 115–139

(1974)
44. Velleman, P.F., Wilkinson, L.: Nominal, ordinal, interval, and ratio typologies are misleading.

Am. Stat. 47(1), 65–72 (1993)
45. Yourdon, E., Constantine, L.L.: Structured Design: Fundamentals of a Discipline of Computer

Program and System Design. Prentice Hall, New York (1979)

Chapter 7
You Can’t Get There from Here!
Large Problems and Potential Solutions
in Developing New Classes of Complex
Computer Systems

Mike Hinchey, James L. Rash, Walter F. Truszkowski, Christopher A. Rouff,
and Roy Sterritt

7.1 Introduction

Software has become pervasive. We encounter it in our everyday lives: the average
electric razor contains the equivalent of more than 100,000 lines of code, several
high-end cars contain more software than the onboard systems of the Space Shuttle.
We are reliant on software for our transportation and entertainment, to wash our
clothes and cook our meals, and to keep us in touch with the outside world via the
Internet and our mobile phones.

The Information Technology industry, driven by software development, has made
remarkable advances. In just over half a century, it has developed into a trillion-
dollar-per-year industry, continually breaking its own records [17, 27].

Some breathtaking statistics have been reported for the hardware and software
industries [16, 46]:

• The Price-to-Performance ratio halves every 18 months, with a 100-fold increase
in performance every decade.

• Performance progress in the next 18 months will equal all progress made to date.
• New storage available equals the sum of all previously available storage ever.
• New processing capability equals the sum of all previous processing power.

Simultaneously, a number of flawed assumptions have arisen regarding the way we
build both software and hardware systems [38, 46], which include:

• Human beings can achieve perfection; they can avoid making mistakes during
installation, maintenance and upgrades.

• Software will eventually be bug-free; the focus of companies has been to hire bet-
ter programmers, and the focus of universities is to better train software engineers
in development lifecycle models.

M. Hinchey (�)
Lero—the Irish Software Engineering Research Centre, University of Limerick, Limerick, Ireland
e-mail: mike.hinchey@lero.ie

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_7, © Springer-Verlag London Limited 2012

159

mailto:mike.hinchey@lero.ie
http://dx.doi.org/10.1007/978-1-4471-2297-5_7

160 M. Hinchey et al.

Fig. 7.1 Contrasting
availability of telephone
systems, computer systems,
Internet, and mobile phones

• Mean-time between failure (MTBF) is already very large (approximately 100
years) and will continue to increase.

• Maintenance costs are a function of the purchase price of hardware; and, as such,
decreasing hardware costs (price/performance) results in decreases in mainte-
nance costs.

7.2 Software Problems

With the situation stated this way, many flawed assumptions regarding the IT indus-
try come into view. The situation is even worse if we focus primarily on software.
The Computing industry has failed to avoid software-related catastrophes. Notable
examples include:

• Therac-25, where cancer patients were given lethal doses of radiation during ra-
diation therapy [33].

• Ariane 5, where it was assumed that the same launch software used in the prior
version (Ariane 4) could be reused. The result was the loss of the rocket within
seconds of launch [34].

• The Mars Polar Lander, where failure to initialize a variable resulted in the craft
crash landing on the Martian surface, instead of reverse thrusting and landing
softly [29].

Progress in software regularly lags behind hardware. In the last decade, for ex-
ample, two highly software-intensive applications, namely Internet communications
and mobile phone technology, have suffered reduced availability and increased
down time, while their hardware counterparts, computer hardware and telephony
systems, have continued to improve. Figure 7.1 illustrates this trend [17].

7.2.1 An Historic Problem

The realization that software development has lagged greatly behind hardware is
hardly a new one [6], nor is the realization that our software development processes
have some severe deficiencies.

7 You Can’t Get There from Here! 161

Brooks, in a widely quoted and much-referenced article [7], warns of compla-
cency in software development. He stresses that, unlike hardware development, we
cannot expect to achieve great advances in productivity in software development
unless we concentrate on more appropriate development methods. He highlights
how software systems can suddenly turn from being well-behaved to behaving er-
ratically and uncontrollably, with unanticipated delays and increased costs. Brooks
sees software systems as “werewolves” and rightly points out that there is no single
technique, no Silver Bullet, capable of slaying such monsters [6].

On the contrary, more and more complex systems are run on highly distributed,
heterogeneous networks, subject to strict performance, fault tolerance, and secu-
rity constraints, all of which may conflict. Many engineering disciplines must con-
tribute to the development of complex systems in an attempt to satisfy all of these
requirements. No single technique is adequate to address all issues of complex sys-
tem development; rather, different techniques must be applied at different stages of
development (and throughout the development process) to ensure unambiguous re-
quirements statements, precise specifications that are amenable to analysis and eval-
uation, implementations that satisfy the requirements and various (often conflicting)
goals, re-use, re-engineering and reverse engineering of legacy code, appropriate in-
tegration with existing systems, ease-of-use, predictability, dependability, maintain-
ability, fault tolerance, etc. [6].

Brooks [7] differentiates between the essence (that is, problems that are neces-
sarily inherent in the nature of software) and accidents (that is, problems that are
secondary and caused by current development environments and techniques). He
points out the great need for appropriate means of coming to grips with the con-
ceptual difficulties of software development—that is, for appropriate emphasis on
specification and design, rather than on coding and testing.

In his article [7], he highlights some successes that have been achieved in gain-
ing improvements in productivity, but points out that these address problems in
the current development process, rather than the problems inherent in software it-
self. In this category, he includes: the advent of high-level programming languages,
time-sharing, and unified programming environments. Object-oriented program-
ming, techniques from artificial intelligence, expert systems, automatic program-
ming, program verification, and the advent of workstations, he sees as non-bullets,
as they will not help in slaying the werewolf.

He sees software reuse, rapid prototyping, incremental development, and the em-
ployment of top-class designers as potential starting points for the Silver Bullet, but
warns that none in itself is sufficient.

Brooks’ article has been very influential, and remains one of the classics of soft-
ware engineering. His viewpoint has been criticized, however, as being overly pes-
simistic and for failing to acknowledge some promising developments [6].

Harel, in an equally influential paper, written as a rebuttal to Brooks [19], points
to developments in Computer-Aided Software Engineering (CASE) and visual for-
malisms [18] as potential bullets. Harel’s view is far more optimistic. He writes five
years after Brooks, and has seen the developments in that period. The last forty years
of system development have been equally difficult, according to Harel, and, using

162 M. Hinchey et al.

a conceptual vanilla framework, the development community has devised means of
overcoming many difficulties. As we address more complex systems, Harel argues
that we must devise similar frameworks that are applicable to the classes of system
we are developing.

Harel, along with many others, including the authors of this paper, believes that
appropriate techniques for modeling must have a rigorous mathematical semantics,
and appropriate means for representing constructs. This differs greatly from Brooks,
who sees representational issues as mainly accidental.

7.3 New Challenges for Software Engineering

Clearly there have been significant advances in software engineering tools, tech-
niques, and methods, since the time of Brooks’ and Harel’s papers. In many cases,
however, the advantages of these developments have been mitigated by correspond-
ing increases in demand for greater, more complex functionality, stricter constraints
on performance and reaction times, and attempts to increase productivity and reduce
costs, while simultaneously pushing systems requirements to their limits. NASA,
for example, continues to build more and more complex systems, with impressive
functionality, and increasingly autonomous behavior. In the main, this is essential.
NASA missions are pursuing scientific discovery in ways that require autonomous
systems. While manned exploration missions are clearly in NASA’s future (such
as the Exploration Initiative’s plans to return to the moon and put Man on Mars),
several current and future NASA missions, for reasons that we will explain below,
necessitate autonomous behavior by unmanned spacecraft.

We will describe some of the challenges for software engineering emerging from
new classes of complex systems being developed by NASA and others. We will dis-
cuss these in Sect. 7.3.1 with reference to a NASA concept mission that is exemplary
of many of these new systems. Then, in Sect. 7.4 we will present some techniques
that we are addressing, which may lead towards a Silver Bullet.

7.3.1 Challenges of Future NASA Missions

Future NASA missions will exploit new paradigms for space exploration, heavily
focused on the (still) emerging technologies of autonomous and autonomic sys-
tems. Traditional missions, reliant on one large spacecraft, are being superseded or
complemented by missions that involve several smaller spacecraft operating in col-
laboration, analogous to swarms in nature. This offers several advantages: the ability
to send spacecraft to explore regions of space where traditional craft simply would
be impractical, increased spatial distribution of observations, greater redundancy,
and, consequently, greater protection of assets, and reduced costs and risk, to name
but a few. Planned missions entail the use of several unmanned autonomous vehi-
cles (UAVs) flying approximately one meter above the surface of Mars, covering

7 You Can’t Get There from Here! 163

as much of the surface of Mars in seconds as the now famous Mars rovers did in
their entire time on the planet; the use of armies of tetrahedral walkers to explore
the Mars and Lunar surface; constellations of satellites flying in formation; and the
use of miniaturized pico-class spacecraft to explore the asteroid belt.

These new approaches to exploration missions simultaneously pose many chal-
lenges. The missions will be unmanned and necessarily highly autonomous. They
will also exhibit all of the classic properties of autonomic systems, being self-
protecting, self-healing, self-configuring, and self-optimizing. Many of these mis-
sions will be sent to parts of the solar system where manned missions are simply
not possible, and to where the round-trip delay for communications to spacecraft
exceeds 40 minutes, meaning that the decisions on responses to problems and un-
desirable situations must be made in situ rather than from ground control on Earth.

Verification and Validation (V&V) for complex systems still poses a largely un-
met challenge in the field of Computing, yet the challenge is magnified with in-
creasing degrees of system autonomy. It is an even greater open question as to the
extent to which V&V is feasible when the system possesses the ability to adapt and
learn, particularly in environments that are dynamic and not specially constrained.
Reliance on testing as the primary approach to V&V becomes untenable as systems
move towards higher levels of complexity, autonomy, and adaptability in such envi-
ronments. Swarm missions will fall into this category, and an early concern in the
design and development of swarms will be the problem of predicting, or at least
bounding, and controlling emergent behavior.

The result is that formal specification techniques and formal verification will
play vital roles in the future development of NASA space exploration missions.
The role of formal methods will be in the specification and analysis of forthcoming
missions, enabling software assurance and proof of correctness of the behavior of
these systems, whether or not this behavior is emergent (as a result of composing a
number of interacting entities, producing behavior that was not foreseen). Formally
derived models may also be used as the basis for automating the generation of much
of the code for the mission. To address the challenge in verifying the above missions,
a NASA project, Formal Approaches to Swarm Technology (FAST), is investigating
the requirements of appropriate formal methods for use in such missions, and is
beginning to apply these techniques to specifying and verifying parts of a future
NASA swarm-based mission.

7.3.2 ANTS: A NASA Concept Mission

The Autonomous Nano-Technology Swarm (ANTS) mission will involve the launch
of a swarm of autonomous pico-class (approximately 1 kg) spacecraft that will ex-
plore the asteroid belt for asteroids with certain characteristics. Figure 7.2 gives
an overview of the ANTS mission [47]. In this mission, a transport ship, launched
from Earth, will travel to a point in space where gravitational forces on small objects
(such as pico-class spacecraft) are all but negligible. Objects that remain near such

164 M. Hinchey et al.

Fig. 7.2 NASA’s
Autonomous Nano
Technology Swarm (ANTS)
mission scenario

a point (termed a Lagrangian point) are in a stable orbit about the Sun and will have
a fixed geometrical relationship to the Sun-Earth system. From the transport ship
positioned at such a point, 1000 spacecraft that have been assembled en route from
Earth will be launched into the asteroid belt.

Because of their small size, each ANTS spacecraft will carry just one special-
ized instrument for collecting a specific type of data from asteroids in the belt. As
a result, spacecraft must cooperate and coordinate using a hierarchical social be-
havior analogous to colonies or swarms of insects, with some spacecraft directing
others. To implement this mission, a heuristic approach is being considered that
provides for a social structure to the swarm based on the above hierarchy. Artificial
intelligence technologies such as genetic algorithms, neural nets, fuzzy logic and
on-board planners are being investigated to assist the mission to maintain a high
level of autonomy. Crucial to the mission will be the ability to modify its operations
autonomously to reflect the changing nature of the mission and the distance and
low-bandwidth communications back to Earth.

Approximately 80 percent of the spacecraft will be workers that will carry the
specialized instruments (e.g., a magnetometer, x-ray, gamma-ray, visible/IR, neutral
mass spectrometer) and will obtain specific types of data. Some will be coordinators
(called rulers) that have rules that decide the types of asteroids and data the mission
is interested in, and that will coordinate the efforts of the workers. The third type
of spacecraft are messengers that will coordinate communication between the rulers
and workers, and communications with the Earth ground station, including requests
for replacement spacecraft with specialized instruments as these are required. The
swarm will form sub-swarms under the direction of a ruler, which contains models
of the types of science that it wants to perform. The ruler will coordinate workers
each of which uses its individual instrument to collect data on specific asteroids

7 You Can’t Get There from Here! 165

and feed this information back to the ruler who will determine which asteroids are
worth examining further. If the data matches the profile of a type of asteroid that is
of interest, an imaging spacecraft will be sent to the asteroid to ascertain the exact
location and to create a rough model to be used by other spacecraft for maneuvering
around the asteroid. Other teams of spacecraft will then coordinate to finish the
mapping of the asteroid to form a complete model.

7.3.3 Problematic Issues

7.3.3.1 Size and Complexity

While the use of a swarm of miniature spacecraft is essential for the success of
ANTS, it simultaneously poses several problems in terms of adding significantly to
the complexity of the mission.

The mission will launch 1000 pico-class spacecraft, many of which possibly will
be destroyed by collisions with asteroids, since the craft, having no means of ma-
neuvering other than solar sails, will be very limited in their collision-avoidance
capabilities. The several hundred surviving spacecraft must be organized into effec-
tive groups that will collect science data and make decisions as to which asteroids
warrant further investigation. These surviving spacecraft effectively form a wireless
sensor network [23] tens of millions of miles from Earth. The overhead for commu-
nications is clearly significant.

To keep the spacecraft small, each craft only carries a single instrument. That
is why several craft must coordinate to investigate particular asteroids and collect
different types of science data. Again, while miniaturization is important, the use of
such a scheme has a major drawback: we have no a priori knowledge as to which
instruments will be lost during normal operations (where we expect to regularly lose
craft due to collisions).

The need to identify lost capabilities and instruments, and then replace them,
presents an extremely complex problem. In the case of lost messengers and rulers,
other craft may be promoted to replace them. It is merely the software that differen-
tiates messengers and rulers from other workers, so mobile code serves to overcome
this problem. When an instrument is lost, however, we have a rather different prob-
lem. A worker with a damaged instrument can be reserved for use as a ruler, and
another spacecraft with an identical instrument can replace it.

An alternative would be add more features (instruments) into each spacecraft, but
this would increase both their size (a problem in such a constrained environment)
and their power requirements. The addition of features, of course, also increases
complexity, as identified by Lawson [32].

7.3.3.2 Emergent Behavior

In swarm-based systems, interacting agents (often homogeneous or near homoge-
neous agents) are developed to take advantage of their emergent behavior. Each of

166 M. Hinchey et al.

the agents is given certain parameters that it tries to maximize. Bonabeau et al. [4],
who studied self-organization in social insects, state that “complex collective behav-
iors may emerge from interactions among individuals that exhibit simple behaviors”
and describe emergent behavior as “a set of dynamical mechanisms whereby struc-
tures appear at the global level of a system from interactions among its lower-level
components.”

Intelligent swarms [3] use swarms of simple intelligent agents. Swarms have
no central controller: they are self-organizing based on the emergent behaviors of
the simple interactions. There is no external force directing their behavior and no
one agent has a global view of the intended macroscopic behavior. Though current
NASA swarm missions differ from true swarms as described above, they do have
many of the same attributes and may exhibit emergent behavior. In addition, there
are a number of US government projects that are looking at true swarms to accom-
plish complex missions.

7.3.3.3 Autonomy

Autonomous operation is essential for the success of the ANTS mission concept.
Round trip communications delays of up to 40 minutes, and limited bandwidth on

communications with Earth, mean that effective control from the ground station is
impossible. Ground controllers would not be able to react sufficiently quickly during
encounters with asteroids to avoid collisions with asteroids and even other ANTS
spacecraft. Moreover, the delay in sending instructions to the spacecraft would be
so great that situations would likely have changed dramatically by the time the in-
structions were received.

But autonomy implies absence of centralized control. Individual ANTS space-
craft will operate autonomously as part of a subgroup under the direction of that
subgroup’s ruler. That ruler will itself autonomously make decisions regarding as-
teroids of interest, and formulate plans for continuing the mission of collecting sci-
ence data. The success of the mission is predicated on the validity of the plans
generated by the rulers, and requires that the rulers generate sensible plans that will
collect valid science data, and then make valid informed decisions.

That autonomy is possible is not in doubt. What is in doubt is that autonomous
systems can be relied upon to operate correctly, in particular in the absence of a full
and complete specification of what is required of the system.

7.3.3.4 Testing and Verification

As can be seen from the brief exposition above, ANTS is a highly complex system
that poses many significant challenges. Not least amongst these are the complex in-
teractions between heterogeneous components, the need for continuous re-planning,
re-configuration, and re-optimization, the need for autonomous operation without
intervention from Earth, and the need for assurance of the correct operation of the
mission.

7 You Can’t Get There from Here! 167

As mission software becomes increasingly more complex, it also becomes more
difficult to test and find errors. Race conditions in these systems can rarely be found
by inputting sample data and checking whether the results are correct. These types of
errors are time-based and only occur when processes send or receive data at partic-
ular times, or in a particular sequence, or after learning occurs. To find these errors,
the software processes involved have to be executed in all possible combinations
of states (state space) that the processes could collectively be in. Because the state
space is exponential (and sometimes factorial) to the number of states, it becomes
untestable with a relatively small number of processes. Traditionally, to get around
the state explosion problem, testers have artificially reduced the number of states of
the system and approximated the underlying software using models.

One of the most challenging aspects of using swarms is how to verify that the
emergent behavior of such systems will be proper and that no undesirable behaviors
will occur. In addition to emergent behavior in swarms, there are also a large num-
ber of concurrent interactions between the agents that make up the swarms. These
interactions can also contain errors, such as race conditions, that are very difficult to
ascertain until they occur. Once they do occur, it can also be very difficult to recreate
the errors since they are usually data and time dependent.

As part of the FAST project, NASA is investigating the use of formal methods
and formal techniques for verification and validation of these classes of mission, and
is beginning to apply these techniques to specifying and verifying parts of the ANTS
concept mission. The role of formal methods will be in the specification and analysis
of forthcoming missions, while offering the ability to perform software assurance
and proof of correctness of the behavior of the swarm, whether this behavior is
emergent or not.

7.4 Some Potentially Useful Techniques

7.4.1 Autonomicity

Autonomy may be considered as bestowing the properties of self-governance and
self-direction, i.e., control over one’s goals [15, 26, 43]. Autonomicity is having the
ability to self-manage through properties such as self-configuring, self-healing, self-
optimizing, and self-protecting. These are achieved through other self-properties
such as self-awareness (including environment awareness), self-monitoring, and
self-adjusting [45].

Increasingly, self-management is seen as the only viable way forward to cope
with the ever increasing complexity of systems. From one perspective, self-mana-
gement may be considered a specialism of self-governance, i.e., autonomy where
the goals/tasks are specific to management roles [46]. Yet from the wider context,
an autonomic element (AE), consisting of an autonomic manager and managed com-
ponent, may still have its own specific goals, but also the additional responsibility
of management tasks particular to the wider system environment.

168 M. Hinchey et al.

It is envisaged that in an autonomic environment the AEs communicate to ensure
a managed environment that is reliable and fault tolerant and meets high level speci-
fied policies (where a policy consists of a set of behavioral constraints or preferences
that influences the decisions made by an autonomic manager [10]) with an overar-
ching vision of system-wide policy-based self-management. This may result in AEs
monitoring or watching out for other AEs. In terms of autonomy and the concern of
undesirable emergent behavior, an environment that dynamically and continuously
monitors can assist in detecting race conditions and reconfiguring to avoid damage
(self-protecting, self-healing, self-configuring, etc.). As such, autonomicity becom-
ing mainstream in the industry can only assist in improving techniques, tools, and
processes for autonomy [44].

7.4.2 Hybrid Formal Methods

The majority of formal notations currently available were developed in the 1970s
and 1980s and reflect the types of distributed systems being developed at that time.
Current distributed systems are evolving and may not be able to be specified in the
same way that past systems have been developed. Because of this, it appears that
many people are combining formal methods into integrated approaches to address
some of the new features of distributed systems (e.g., mobile agents, swarms, and
emergent behavior).

Integrated approaches have been very popular in specifying concurrent and
agent-based systems. Integrated approaches often combine a process algebra or
logic-based approach with a model-based approach. The process algebra or logic-
based approach allows for easy specification of concurrent systems, while the
model-based approach provides strength in specifying the algorithmic part of a sys-
tem.

Some recent hybrid approaches include:

• CSP-OZ, a combination of CSP and Object-Z [11]
• Object-Z and Statecharts [8]
• Timed Communicating Object Z [13]
• Temporal B [5]
• Temporal Petri Nets (Temporal Logic and Petri Nets) [1]
• ZCCS, a combination of Z and CCS [14]

These and new hybrid formal methods are being investigated to address swarm
and other complex NASA missions [41].

7.4.3 Automatic Programming

For many years, automatic programming has referred, primarily, to the use of very
high-level languages to describe solutions to problems, which could then be trans-
lated down and expressed as code in more traditional (lower level) programming

7 You Can’t Get There from Here! 169

languages. Parnas [36] implies that the term is glamorous, rather than having any
real meaning, precisely because it is the solution that is being specified rather than
the problem that must be solved. Brooks [7] supports this view, and equally criti-
cizes the field of visual programming, arguing that it will never produce anything of
value.

Writing just five years after Brooks, Harel [19] disagrees, faulting Brooks for
failing to recognize advances in visual formalisms. Now, writing almost two decades
after Brooks, we argue that automatic code generation is not only a viable option, it
is essential to the development of the classes of complex system we are discussing
here, and as exemplified by ANTS.

Autonomous and autonomic systems, exhibiting complex emergent behavior,
cannot, in general, be fully specified at the outset. The roles and behaviors of the
system will vary greatly over time. While we may try to write specifications that
constrain the system, it is clear that not all behavior can be specified in advance.
Consequently, the classes of system we are discussing will often require that code is
generated, or modified, during execution. As a result, the classes of system we are
describing here will require automatic code generation.

Several tools already exist that successfully generate code from a given model.
Unfortunately, many of these tools have been shown to generate code, portions of
which are never executed, or portions of which cannot be justified from either the
requirements or the model. Moreover, existing tools do not and cannot overcome
the fundamental inadequacy of all currently available automated development ap-
proaches, which is that they include no means to establish a provable equivalence
between the requirements stated at the outset and either the model or the code they
generate.

Traditional approaches to automatic code generation, including those embodied
in commercial products such as Matlab [35], in system development toolsets such
as the B-Toolkit [31] or the VDM++ toolkit [28], or in academic research projects,
presuppose the existence of an explicit (formal) model of reality that can be used
as the basis for subsequent code generation. While such an approach is reasonable,
the advantages and disadvantages of the various modeling approaches used in com-
puting are well known and certain models can serve well to highlight certain issues
while suppressing other less relevant details [37]. It is clear that the converse is also
true. Certain models of reality, while successfully detailing many of the issues of
interest to developers, can fail to capture some important issues, or perhaps even the
most important issues.

That is why, we believe, future approaches to automatic code generation must be
based on Formal Requirements-Based Programming [39].

7.4.4 Formal Requirements Based Programming

Requirements-Based Programming refers to the development of complex software
(and other) systems, where each stage of the development is fully traceable back to

170 M. Hinchey et al.

the requirements given at the outset. In essence, Requirements-Based Programming
takes Model-Based Development and adds a front end [40].

The difference is that Model-Based Development holds that emphasis should be
placed on building a model of the system with such high quality that automatic
code generation is viable. While this has worked well, and made automatic code
generation feasible, there is still the large analysis-specification gap that remains
unaddressed. Requirements-Based Programming addresses that issue and ensures
that there is a direct mapping from requirements to design, and that this design
(model) may then be used as the basis for automatic code generation.

There have been calls for the community to address Requirements-Based Pro-
gramming, as it offers perhaps the most promising approach to achieving correct
systems [20]. Although the use of Requirements-Based Programming does not
specifically presuppose the existence of an underlying formalism, the realization
that proof of correctness is not possible without formalism [2] certainly implies that
Requirements-Based Programming should be formal.

In fact, Formal Requirements-Based Programming, coupled with a graphical rep-
resentation for system requirements (e.g., UML use cases) possesses the features
and advantages of a visual formalism described by Harel [18].

7.4.4.1 R2D2C

R2D2C, or Requirements-to-Design-to-Code [22, 39], is a NASA patent-pending1

approach to Requirements-Based Programming.
In R2D2C, engineers (or others) may write specifications as scenarios in con-

strained (domain-specific) natural language, or in a range of other notations (includ-
ing UML use cases). These will be used to derive a formal model (Fig. 7.3) that
is guaranteed to be equivalent to the requirements stated at the outset, and which
will subsequently be used as a basis for code generation. The formal model can be
expressed using a variety of formal methods. Currently we are using CSP, Hoare’s
language of Communicating Sequential Processes [24, 25], which is suitable for
various types of analysis and investigation, and as the basis for fully formal imple-
mentations as well as for use in automated test case generation, etc.

R2D2C is unique in that it allows for full formal development from the outset,
and maintains mathematical soundness through all phases of the development pro-
cess, from requirements through to automatic code generation. The approach may
also be used for reverse engineering, that is, in retrieving models and formal spec-
ifications from existing code, as shown in Fig. 7.3. The approach can also be used
to “paraphrase” (in natural language, etc.) formal descriptions of existing systems.
In addition, the approach is not limited to generating high-level code. It may also be
used to generate business processes and procedures, and we have been experiment-
ing with using it to generate instructions for robotic devices that were to be used on

1Since this paper was originally published, a number of patents have been awarded, including U.S.
Patents 7,668,796, 7,739,671, 7,752,608, 7,765,171, 7,886,273, and 7,979,848.

7 You Can’t Get There from Here! 171

Fig. 7.3 The R2D2C approach, generating a formal model from requirements and producing code
from the formal model, with automatic reverse engineering

Fig. 7.4 The entire process with D1 through D5 illustrating the development approach

the Hubble Robotic Servicing Mission (HRSM), which, at the time of writing, has
not received a final go-ahead. We are also experimenting with using it as a basis for
an expert system verification tool, and as a means of capturing domain knowledge
for expert systems.

7.4.4.2 R2D2C Technical Approach

The R2D2C approach involves a number of phases, which are reflected in the system
architecture described in Fig. 7.4. The following describes each of these phases.

172 M. Hinchey et al.

D1 Scenarios Capture: Engineers, end users, and others write scenarios describing
intended system operation. The input scenarios may be represented in a con-
strained natural language using a syntax-directed editor, or may be represented
in other textual or graphical forms.

D2 Traces Generation: Traces and sequences of atomic events are derived from the
scenarios defined in phase D1.

D3 Model Inference: A formal model, or formal specification, expressed in CSP is
inferred by an automatic theorem prover—in this case, ACL2 [30]—using the
traces derived in phase D2. A deep2 embedding of the laws of concurrency [21]
in the theorem prover gives it sufficient knowledge of concurrency and of CSP
to perform the inference. The embedding will be the topic of a future paper.

D4 Analysis: Based on the formal model, various analyses can be performed, using
currently available commercial or public domain tools, and specialized tools
that are planned for development. Because of the nature of CSP, the model
may be analyzed at different levels of abstraction using a variety of possible
implementation environments. This will be the subject of a future paper.

D5 Code Generation: The techniques of automatic code generation from a suitable
model are reasonably well understood. The present modeling approach is suit-
able for the application of existing code generation techniques, whether using a
tool specifically developed for the purpose, or existing tools such as FDR [12],
or converting to other notations suitable for code generation (e.g., converting
CSP to B [9]) and then using the code generating capabilities of the B Toolkit.

7.4.4.3 Advantages of the R2D2C Approach

We have not yet had an opportunity to apply R2D2C to ANTS, although that is
certainly our plan.

In addition to applying it to the HRSM procedures [39], we have applied R2D2C
to LOGOS, a NASA prototype Lights-Out Ground Operating System, that exhibits
both autonomous and autonomic properties [48, 49]. We illustrate the use of a pro-
totype tool to apply R2D2C to LOGOS in [40], and describe our success with the
approach.

Here, we summarize some benefits of using R2D2C, and hence of using For-
mal Requirements-Based Programming in system development. It is our contention
that R2D2C, and other approaches that similarly provide mathematical soundness
throughout the development lifecycle, will:

• Dramatically increase assurance of system success by ensuring
– completeness and consistency of requirements
– that implementations are true to the requirements
– that automatically coded systems are bug-free; and that
– that implementation behavior is as expected

2“Deep” in the sense that the embedding is semantic rather than merely syntactic.

7 You Can’t Get There from Here! 173

• Decrease costs and schedule impacts of ultra-high dependability systems through
automated development

• Decrease re-engineering costs and delays

7.4.5 Tool Support

John Rushby [42] argues that tools are not the most important thing about formal
methods, they are the only important thing about formal methods. Although we can
sympathize, we do not support such an extreme viewpoint. Formal methods would
not be practical without suitable representation notations, proof systems (whether
automated and supported by tools, or not), a user community, and evidence of suc-
cessful application.

We do agree, however, that tool support is vital, and not just for formal methods.
Structured design methods took off when they were standardized, in the guise of
UML. But it is only with the advent of tool support for UML that they became
popular. The situation is analogous to high-level programming languages: while the
community was well convinced of their benefits, it was only with the availability of
commercial compilers that they became widely used.

Tools are emerging for the development of complex agent-based systems such
as Java-based Aglets and tools for autonomic systems. For automatic code genera-
tion and Formal Requirements-Based Programming to be practical, the development
community will need commercial-quality tools.

7.5 Conclusion

The computing industry thrives on the assumption in the marketplace that software
is reliable and correct, but many examples from experience over the decades cast
doubt on the validity of this assumption. There is no automated, general purpose
method for building correct systems that fully meet all customer requirements. This
represents a major gap that has yet to be fully addressed by the software engineer-
ing community. Requirements-based programming has been described along with
new automated techniques recently devised at NASA for ensuring correctness of
the system model with respect to the requirements, as a possible way to close this
gap.

In future mission concepts that involve advanced architectures and capabilities—
such as swarm missions whose individual elements not only can learn from ex-
perience but also must pursue science goals cooperatively—NASA faces system
development challenges that cannot be met with techniques currently available in
the computing industry. The challenges boil down to building reliability and cor-
rectness into mission systems, where complexity, autonomous operation, machine
adaptation, dangerous environments, and remoteness combine to push such mis-
sions far into uncharted territory in systems engineering. With approaches such as

174 M. Hinchey et al.

autonomic computing and automated requirements-based programming, NASA will
have greater possibilities for achieving success with these advanced mission con-
cepts.

Acknowledgements This paper was previously published in Proc. Eighth International Confer-
ence on Integrated Design and Process Technology (IDPT), 2005. Reprinted with permission.

This work is funded in part by Science Foundation Ireland grant 03/CE2/I303_1 to Lero—the
Irish Software Engineering Research Centre (www.lero.ie); by the NASA Office of Safety and
Mission Assurance, under its Software Assurance Research Program project Formal Approaches
to Swarm Technologies (FAST), administered by the NASA IV&V Facility; by the Office of Tech-
nology Transfer, NASA Goddard Space Flight Center; by the NASA Software Engineering Lab-
oratory, NASA Goddard Space Flight Center; and by the University of Ulster Computer Science
Research Institute and the Centre for Software Process Technologies (CSPT), funded by Invest NI
through the Centres of Excellence Programme under the European Union Peace II initiative.

References

1. Bakam, I., Kordon, F., Page, C.L., Bousquet, F.: Formalization of a spatialized multiagent
model using Coloured Petri Nets for the study of an hunting management system. In: Proc.
First International Workshop on Formal Approaches to Agent-Based Systems (FAABS I).
LNAI, vol. 1871. Springer, Greenbelt (2000)

2. Bauer, F.L.: A trend for the next ten years of software engineering. In: Freeman, H., Lewis,
P.M. (eds.) Software Engineering, pp. 1–23. Academic Press, New York (1980)

3. Beni, G., Want, J.: Swarm intelligence. In: Seventh Annual Meeting of the Robotics Society
of Japan, Tokyo, Japan, pp. 425–428. RSJ Press, Germering (1989)

4. Bonabeau, E., Théraulaz, G., Deneubourg, J.-L., Aron, S., Camazine, S.: Self-organization in
social insects. Trends Ecol. Evol. 12, 188–193 (1997)

5. Bonnet, L., Florin, G., Duchien, L., Seinturier, L.: A method for specifying and proving dis-
tributed cooperative algorithms. In: Proc. DIMAS-95 (1995)

6. Bowen, J.P., Hinchey, M.G.: High-integrity System Specification and Design. FACIT Series.
Springer, London (1999)

7. Brooks, Jr., F.P.: No silver bullet: essence and accidents of software engineering. IEEE Com-
put. 20(4), 10–19 (1987)

8. Büssow, R., Geisler, R., Klar, M.: Specifying safety-critical embedded systems with state-
charts and Z: a case study. In: Astesiano, E. (ed.) Proc. International Conference on Funda-
mental Approaches to Software Engineering. LNCS, vol. 1382, pp. 71–87. Springer, Berlin
(1998)

9. Butler, M.J.: Csp2b: a practical approach to combining Csp and B. Declarative Systems and
Software Engineering Group, Department of Electronics and Computer Science, University
of Southampton (1999)

10. Fellenstein, C.: On Demand Computing. IBM Press Series on Information Management. Pren-
tice Hall, Upper Saddle River (2005)

11. Fischer, C.: Combination and implementation of processes and data: from CSP-OZ to Java.
Ph.D. thesis, Universität Oldenburg, Germany (2000)

12. Formal Systems (Europe), Ltd.: Failures-Divergences Refinement: User Manual and Tutorial.
(1999)

13. Gala, A.K., Baker, A.D.: Multi-agent communication in JAFMAS. In: Proc. Workshop on
Specifying and Implementing Conversation Policies, Third International Conference on Au-
tonomous Agents (Agents ’99), Seattle, Washington (1999)

14. Galloway, A.J., Stoddart, W.J.: An operational semantics for ZCCS. In: Hinchey, M., Liu,
S. (eds.) Proc. IEEE International Conference on Formal Engineering Methods (ICFEM-97),
pp. 272–282. IEEE Comput. Soc., Los Alamitos (1997)

http://www.lero.ie

7 You Can’t Get There from Here! 175

15. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Syst. J. 42(1),
5–18 (2003)

16. Gray, J.N.: What next? A few remaining problems in information technology. Turing Award
Lecture (ACM FCRC) (1999)

17. Gray, J.N.: Dependability in the Internet era. In: Proc. High Dependability Computing Con-
sortium Workshop, Santa Cruz, California (2001)

18. Harel, D.: On visual formalisms. Commun. ACM 31(5), 514–530 (1988)
19. Harel, D.: Biting the silver bullet: toward a brighter future for system development. IEEE

Comput. 25(1), 8–20 (1992)
20. Harel, D.: Comments made during presentation at “Formal Approaches to Complex Software

Systems” panel session. ISoLA-04 First International Conference on Leveraging Applications
of Formal Methods (2004)

21. Hinchey, M.G., Jarvis, S.A.: Concurrent Systems: Formal Development in Csp. International
Series in Software Engineering. McGraw-Hill International, London (1995)

22. Hinchey, M.G., Rash, J.L., Rouff, C.A.: Requirements to design to code: towards a fully for-
mal approach to automatic code generation. Technical report TM-2005-212774, NASA God-
dard Space Flight Center, Greenbelt, MD, USA (2004)

23. Hinchey, M.G., Rash, J.L., Rouff, C.A.: Towards an automated development methodology
for dependable systems with application to sensor networks. In: Proc. IEEE Workshop on In-
formation Assurance in Wireless Sensor Networks (WSNIA 2005). IEEE Comput. Soc., Los
Alamitos (2005). Proc. International Performance Computing and Communications Confer-
ence (IPCCC-05) (Reprinted in Proc. Real Time in Sweden 2005 (RTiS2005), the 8th Biennial
SNART Conference on Real-time Systems, 2005)

24. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)
25. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International Series in

Computer Science. Prentice Hall, Englewood Cliffs (1985)
26. Horn, P.: Autonomic computing: IBM’s perspective on the state of information technology.

Presented at agenda 2001, Scotsdale, Arizona, 2001, IBM T. J. Watson Laboratory (October
15, 2001)

27. Horn, P.M.: Meeting the needs, realizing the opportunities. In: Wessner, C.W. (ed.) Capitaliz-
ing on New Needs and New Opportunities: Government—Industry Partnerships in Biotech-
nology and Information Technologies (2001) Board on Science, Technology, and Economic
Policy (STEP), pp. 149–152. The National Academies Press, Washington (2001)

28. IFAD: The VDM++ toolbox user manual. Technical report, IFAD (2000)
29. JPL Special Review Board: Report on the Loss of the Mars Polar Lander and Deep Space 2

missions, Pasadena, California, USA (2000)
30. Kaufmann, M., Manolios, P., Moore, J.: Computer-Aided Reasoning: An Approach. Advances

in Formal Methods Series. Kluwer Academic, Boston (2000)
31. Lano, K., Haughton, H.: Specification in B: An Introduction Using the B-toolkit. Imperial

College Press, London (1996)
32. Lawson, H.W.: Rebirth of the computer industry. Commun. ACM 45(6), 25–29 (2002)
33. Leveson, N.G.: Medical devices: the Therac-25 story. In: Safeware: System Safety and Com-

puters, pp. 515–553. Addison-Wesley, Reading (1995)
34. Lions, J.L.: ARIANE 5: Flight 501 failure, report by the inquiry board (1996)
35. The MathWorks, Inc., Natick, Massachusettes: Getting Started with MATLAB (2000)
36. Parnas, D.L.: Software aspects for strategic defense systems. American Scientist (1985)
37. Parnas, D.L.: Using mathematical models in the inspection of critical software. In: Applica-

tions of Formal Methods. International Series in Computer Science, pp. 17–31. Prentice Hall,
Englewood Cliffs (1995)

38. Patterson, D., Brown, A.: Recovery-oriented computing (Keynote talk). In: Proc. High Perfor-
mance Transaction Systems Workshop (HPTS) (2001)

39. Rash, J.L., Hinchey, M.G., Rouff, C.A., Gračanin, D.: Formal requirements-based program-
ming for complex systems. In: Proc. International Conference on Engineering of Complex
Computer Systems. IEEE Computer Society Press, Shanghai (2005)

176 M. Hinchey et al.

40. Rash, J.L., Hinchey, M.G., Rouff, C.A., Gračanin, D., Erickson, J.D.: A tool for requirements-
based programming. In: Proc. International Conference on Integrated Design and Process
Technology (IDPT 2005). The Society for Design and Process Science, Beijing (2005)

41. Rouff, C.A., Truszkowski, W.F., Rash, J.L., Hinchey, M.G.: A survey of formal methods for
intelligent swarms. Technical report TM-2005-212779, NASA Goddard Space Flight Center,
Greenbelt, Maryland (2005)

42. Rushby, J.: Remarks, panel session on the future of formal methods in industry. In: Bowen,
J.P., Hinchey, M.G. (eds.) Proc. 9th International Conference of Z Users. LNCS, vol. 967,
pp. 239–241. Springer, Limerick (1995)

43. Sterritt, R.: Towards autonomic computing: effective event management. In: 27th Ann.
IEEE/NASA Software Engineering Workshop (SEW), MD, USA, pp. 40–47. IEEE Comput.
Soc., Los Alamitos (2002)

44. Sterritt, R.: Autonomic computing. Innovations in Systems and Software Engineering: a
NASA Journal 1(1) (2005)

45. Sterritt, R., Bustard, D.W.: Autonomic computing: a means of achieving dependability? In:
IEEE Int. Conf. Engineering of Computer Based Systems (ECBS’03), Huntsville, AL, USA,
pp. 247–251 (2003)

46. Sterritt, R., Hinchey, M.G.: Why computer based systems Should be autonomic. In: Proc. 12th
IEEE International Conference on Engineering of Computer Based Systems (ECBS 2005),
Greenbelt, MD, pp. 406–414 (2005)

47. Truszkowski, W., Hinchey, M., Rash, J., Rouff, C.: NASA’s swarm missions: the challenge of
building autonomous software. IT Prof. 6(5), 47–52 (2004)

48. Truszkowski, W.F., Hinchey, M.G., Rash, J.L., Rouff, C.A.: Autonomous and autonomic sys-
tems: a paradigm for future space exploration missions. IEEE Trans. Syst. Man Cybern., Part
C, Appl. Rev. 36(3), 279–291 (2006)

49. Truszkowski, W.F., Rash, J.L., Rouff, C.A., Hinchey, M.G.: Some autonomic properties of
two legacy multi-agent systems—LOGOS and ACT. In: Proc. 11th IEEE International Con-
ference on Engineering Computer-Based Systems (ECBS), Workshop on Engineering Auto-
nomic Systems (EASe), pp. 490–498. IEEE Comput. Soc., Los Alamitos (2004)

Chapter 8
99% (Biological) Inspiration. . .

Mike Hinchey and Roy Sterritt

8.1 Introduction

Thomas Alva Edison described invention as 1% inspiration and 99% perspiration.
This quotation is attributed to him with multiple variations, some describing inven-
tion, others describing genius.1

We cannot possibly hope to match the inventiveness and genius of nature. We can
be inspired by nature and influenced by it, but to attempt to mimic nature is likely
to have very limited success, as early pioneers of flight discovered.

Icarus attempted to escape the Labyrinth in which he was imprisoned with his fa-
ther, Daedalus, by building wings from feathers and wax. Despite Deadalus’s warn-
ing not to fly so low as to get the feathers wet, nor so near the sun as to melt the
wax, Icarus flew too high, the wax did indeed melt, and he fell to his death.

In 1809, a Viennese watchmaker named Degen claimed to have flown with sim-
ilar apparatus. In reality, he only hopped a short distance, and was supported by a
balloon. Early attempts at mechanical flight involved the use of aircraft with wings
that flapped like a bird’s. But clearly, trying to copy birds was not going to work:

Since the days of Bishop Wilkins the scheme of flying by artificial wings has been much
ridiculed; and indeed the idea of attaching wings to the arms of a man is ridiculous enough,
as the pectoral muscles of a bird occupy more than two-thirds of its whole muscular
strength, whereas in man the muscles, that could operate upon wings thus attached, would
probably not exceed one-tenth of his whole mass. There is no proof that, weight for weight,
a man is comparatively weaker than a bird. . . [13].

1The earliest recorded quotation is from a press conference, quoted by James D. Newton in Un-
common Friends (1929): “None of my inventions came by accident. I see a worthwhile need to be
met and I make trial after trial until it comes. What it boils down to is one per cent inspiration and
ninety-nine per cent perspiration.”

R. Sterritt (�)
School of Computing and Mathematics, University of Ulster, Newtownabbey, Northern Ireland
e-mail: r.sterritt@ulster.ac.uk

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_8, © Springer-Verlag London Limited 2012

177

mailto:r.sterritt@ulster.ac.uk
http://dx.doi.org/10.1007/978-1-4471-2297-5_8

178 M. Hinchey and R. Sterritt

It was only when inventors such as Otto Lilienthal, building on the work of Cay-
ley, moved away from directly mimicking nature, and adopted fixed wings, origi-
nally as gliders and later as monoplanes, and eventually as aircraft with wings and
a tail, as Cayley had identified was needed for flight [4], that success was achieved
[13]. Even then, early aircraft had very limited success (the Wright brothers’ historic
first powered flight at Kitty Hawk, North Carolina, in 1903 only lasted 12 seconds
and 120 feet [9]), and required the addition of gas-powered engine for thrust and the
Wright brothers’ identification of an effective means of lateral control, for a feasible
heavier-than-air craft to be possible.

Aircraft as we know them now bear very little resemblance to birds. Flight was
inspired by nature, but hundreds of years were spent trying to copy nature, with little
success. Inspiration was vital—otherwise man would never have attempted to fly.
But direct mimicry was the wrong direction. Similarly we believe that computing
systems may benefit much by being inspired by biology, but should not attempt to
copy biology slavishly.

To invent an airplane is nothing.
To build one is something.
But to fly is everything.
Otto Lilienthal (1848–1896)

8.2 Biologically-Inspired Computing

We’ve discovered the secret of life.
Francis Crick (1916–2004)

The Nobel prize-winning discovery, in 1953, of the double helix structure of DNA
and its encoding was revolutionary. It has opened a whole new world of understand-
ing of biology and the way in which nature works. Simultaneously, it has resulted in
several new fields of scientific research: genetics, genomics, computational biology,
and bioinformatics, to name but a few.

The understanding of how nature encodes biological information and determines
how living organisms will develop and evolve has enabled us to improve the quality
of life, eliminate certain diseases, cure congenital defects in unborn children, and
make significant advances in controlling and eventually eliminating life-threatening
conditions.

This greater understanding of the biology of living organisms has also indicated a
parallel with computing systems: molecules in living cells interact, grow, and trans-
form according to the “program” dictated by DNA. Indeed, the goal of bioinformat-
ics is to develop “in silico” models of in vitro and in vivo biological experiments [6].

Paradigms of Computing are emerging based on modeling and developing
computer-based systems exploiting ideas that are observed in nature. This includes
building self-management and self-governance mechanisms that are inspired by the
human body’s autonomic nervous system into computer systems, modeling evo-
lutionary systems analogous to colonies of ants or other insects, and developing

8 99% (Biological) Inspiration. . . 179

highly-efficient and highly-complex distributed systems from large numbers of (of-
ten quite simple) largely homogeneous components to reflect the behavior of flocks
of birds, swarms of bees, herds of animals, or schools of fish.

This field of “Biologically-Inspired Computing”, often known in other incar-
nations by other names, such as: Autonomic Computing, Organic Computing,
Biomimetics, and Artificial Life, amongst others, is poised at the intersection of
Computer Science, Engineering, Mathematics, and the Life Sciences [12]. Suc-
cesses have been reported in the fields of drug discovery, data communications,
computer animation, control and command, exploration systems for space, under-
sea, and harsh environments, to name but a few, and augur much promise for future
progress [12, 26].

8.3 The Autonomic Nervous System

The nervous system and the automatic machine are fundamentally alike in that they are
devices, which make decisions on the basis of decisions they made in the past.
Norbert Weiner (1894–1964)

Inspiration from human biology, in the form of the autonomic nervous system
(ANS), is the focus of the Autonomic Computing initiative . The idea is that mech-
anisms that are “autonomic”, in-built, and requiring no conscious thought in the
human body are used as inspiration for building mechanisms that will enable a com-
puter system to become self-managing [18].

The human (and animal) body’s sympathetic nervous system (SyNS) deals with
defense and protection (“fight or flight”) and the parasympathetic nervous system
(PaNS) deals with long-term health of the body (“rest and digest”), performing the
vegetative functions of the body such as circulation of the blood, intestinal activity,
and secretion of chemicals (hormones) that circulate in the blood. So too an auto-
nomic system tries to ensure the continued health and well-being of a computer-
based system by sending and monitoring various signals in the system.

The general properties of an autonomic (self-managing) system can be summa-
rized by four objectives: being self-configuring, self-healing, self-optimizing and
self-protecting, and four attributes: self-awareness, self-situated, self-monitoring
and self-adjusting (Fig. 8.1). Essentially, the objectives represent broad system re-
quirements, while the attributes identify basic implementation mechanisms [21].

In achieving such self-managing objectives, a system must be aware of its in-
ternal state (self-aware) and current external operating conditions (self-situated).
Changing circumstances are detected through self-monitoring, and adaptations are
made accordingly (self-adjusting). As such, a system must have knowledge of its
available resources, its components, their desired performance characteristics, their
current status, and the status of inter-connections with other systems, along with
rules and policies of how these may be adjusted. Such ability to operate in a het-
erogeneous environment will require the use of open standards to enable global
understanding and communication with other systems [12].

180 M. Hinchey and R. Sterritt

Fig. 8.1 Autonomic system
properties

These mechanisms are not independent entities. For instance, if an attack is suc-
cessful, this will necessitate self-healing actions, and a mix of self-configuration
and self-optimization, in the first instance to ensure dependability and continued
operation of the system, and later to increase self-protection against similar future
attacks. Finally, these self-mechanisms should ensure that there is minimal disrup-
tion to users, avoiding significant delays in processing.

At the heart of the architecture of any autonomic system are sensors and effectors.
A control loop is created by monitoring behavior through sensors, comparing this
with expectations (knowledge, as in historical and current data, rules and beliefs),
planning what action is necessary (if any), and then executing that action through
effectors. The closed loop of feedback control provides the basic backbone structure
for each system component [21].

The autonomic environment requires that autonomic elements and, in particular,
autonomic managers for these elements communicate with one another concerning
self-* activities, in order to ensure the robustness of the environment. Figure 8.2
depicts that the autonomic manager communications (AM ⇔ AM) also includes
a reflex signal. This may be facilitated through the additional concept of a pulse
monitor—PBM (an extension of the embedded system’s heart-beat monitor, or
HBM, which safeguards vital processes through the emission of a regular “I am
alive” signal to another process) with the capability to encode health and urgency
signals as a pulse [19]. Together with the standard event messages on the autonomic
communications channel, this provides dynamics within autonomic responses and
multiple loops of control, such as reflex reactions among the autonomic managers.
This reflex component may be used to safeguard the autonomic element by commu-
nicating its health to another AE. The component may also be utilized to communi-
cate environmental health information.

An important aspect concerning the reflex reaction and the pulse monitor is the
minimization of data sent—essentially only a “signal” is transmitted. Strictly speak-
ing, this is not mandatory; more information may be sent, yet the additional infor-
mation must not compromise the reflex reaction. For instance, in the absence of

8 99% (Biological) Inspiration. . . 181

Fig. 8.2 Autonomic system environment consisting of autonomic elements

bandwidth concerns, information that can be acted upon quickly and not incur pro-
cessing delays could be sent. The important aspect is that the information must be in
a form that can be acted upon immediately and not involve processing delays (such
as is the case of event correlation) [20].

Just as the beat of the heart has a double beat (“lub-dub”, as it is referred to by
the medical profession) the autonomic element’s pulse monitor may have a double
beat encoded—a self health/urgency measure and an environment health/urgency
measure [25]. These match directly with the two control loops within the AE, and
the self-awareness and environment awareness properties.

8.4 Inspiration from Human Biology

We still do not know one thousandth of one percent
of what nature has revealed to us.
Albert Einstein (1879–1955)

182 M. Hinchey and R. Sterritt

Fig. 8.3 Cycle of cell life—featuring a quiescent cell

8.4.1 New Metaphors

In this emerging field of biologically-inspired computing, we are seeking inspiration
for new approaches from (obviously, pre-existing) biological mechanisms, and in
fact a whole plethora of further self-* properties are being proposed and developed,
leading to the coining of the term selfware.

The biological cell cycle is often described as a circle of cell life and division.
A cell divides into two “daughter cells” and both of these cells live, “eat”, grow,
copy their genetic material and divide again producing two more daughter cells.
Since each daughter cell has a copy of the same genes in its nucleus, daughter cells
are “clones” of each other. This “twinning” goes on and on with each cell cycle.
This is a natural process.

Very fast cell cycles occur during development causing a single cell to make
many copies of itself as it grows and differentiates into an embryo. Some very fast
cell cycles also occur in adult animals. Hair, skin and gut cells have very fast cell
cycles to replace cells that die naturally. Scientists now believe that some forms of
cancer may be caused by cells not dying quickly enough, rather than cycling out of
control.

But there is a kind of “parking spot” in the cell cycle, called “quiescence”. A qui-
escent cell has left the cell cycle; it has stopped dividing (Fig. 8.3). Quiescent cells
may re-enter the cell cycle at some later time, or they may not; it depends on the

8 99% (Biological) Inspiration. . . 183

type of cell. Most nerve cells stay quiescent forever. On the other hand, some quies-
cent cells may later re-enter the cell cycle in order to create more cells (for example,
during pubescent development) [14].

We have been considering self-destruction as a means of providing an intrinsic
safety mechanism against non-desirable emergent behavior from the selfware.

It is believed that a cell knows when to commit suicide because cells are pro-
grammed to do so—self-destruction (sD) is an intrinsic property. This sD is delayed
due to the continuous receipt of biochemical retrieves. This process is referred to as
apoptosis, meaning “drop out”, used by the Greeks to refer to the Autumn dropping
of leaves from trees; i.e., loss of cells that ought to die in the midst of the living
structure. The process has also been nicknamed “death by default” where cells are
prevented from putting an end to themselves due to constant receipt of biochemical
“stay alive” signals.

Further investigations into the apoptosis process have discovered more details
about the self-destruct program. Whenever a cell divides, it simultaneously receives
orders to kill itself. Without a reprieve signal, the cell does indeed self-destruct. It
is believed that the reason for this is self-protection, as the most dangerous time for
the body is when a cell divides, since if just one of the billions of cells locks into
division the result is a tumor, while simultaneously a cell must divide to build and
maintain a body [22–24].

8.4.2 Inspiration

Of course, each of these techniques and mechanisms is useful in achieving auto-
nomicity and in mimicking the autonomic nervous system (ANS). But while the
inspiration comes substantially from that of the human (or animal) body, the tech-
niques are not those that the ANS actually uses.

There are signals sent around the human body in the form of hormones and
pulses, amongst others, in the blood. But in modern computer science and engineer-
ing, we have developed many efficient communication mechanisms that do not rely
on signals flowing through miles of unnecessary channels (veins and arteries), but
may be directly routed or broadcast using wireless communications.

We do not know precisely how apoptosis and quiescence works, nor specifically
their roles. But they certainly offer interesting ideas for future security and safety
mechanisms in computer-based systems [26].

These techniques are inspired by nature, but not necessarily implemented as they
are by nature. In many cases, we can make some optimizations or improvements;
in other cases we simply do not understand enough of how nature works to imple-
ment these directly, but they can certainly inspire interesting metaphors for self-
management and self-governance.

184 M. Hinchey and R. Sterritt

8.5 Swarms

What is not good for the swarm is not good for the bee.
Marcus Aurelius (A.D. 121–180)

We are all familiar with swarms in nature. The mere mention of the word “swarm”
conjures up images of large groupings of small insects, such as bees (apiidae) or
locusts (acridiidae), each insect having a simple role, but with the swarm as a whole
producing complex behavior.

Strictly speaking, such emergence of complex behavior is not limited to swarms,
and we see similar complex social structures occurring with higher order animals
and insects that don’t swarm per se: colonies of ants, flocks of birds, packs of
wolves, etc. These groupings behave like swarms2 in many ways [11].

A swarm consists of a large number of simple entities that have local interactions
(including interactions with the environment) [1]. The result of the combination
of simple behaviors (the microscopic behavior) is the emergence of complex be-
havior (the macroscopic behavior) and the ability to achieve significant results as
a “team” [3]. Basing collaborative computing systems on the concept of a swarm
allows us to build complex systems, with often surprising behavior, from simple
components.

Intelligent swarm technology is based on swarm technology where the individ-
ual members of the swarm also exhibit independent intelligence [2]. Intelligent
swarms may be homogeneous or heterogeneous, or may start out as homogeneous
and evolve as in different environments they “learn” different things, develop new
(different) goals, and eventually become heterogeneous, reflecting different capabil-
ities and a societal structure.

Agent swarms have been used as a computer modeling technique and have also
been used as a tool to study complex systems [10]. Examples of simulations that
have been undertaken include flocks of birds as well as business and economics and
ecological systems.

In swarm simulations, each of the agents is given certain parameters that it tries
to maximize. Swarm simulations have been developed that exhibit unlikely emer-
gent behavior. These emergent behaviors are the sums of often simple individual
behaviors, but, when aggregated, form complex and often unexpected behaviors.

Swarm intelligence techniques (note the slight difference in terminology from
“intelligent swarms”) are population-based stochastic methods used in combinato-
rial optimization problems, where the collective behavior of relatively simple indi-
viduals arises from their local interactions with their environment to give rise to the
emergence of functional global patterns.

Swarm robotics refers to the application of swarm intelligence techniques to the
analysis of swarms where the embodiment of the “agents” is as physical robotic
devices.

2The term “swarm”, as we use it here, refers to a (possibly large) grouping of simple components
collaborating to achieve some goal and produce significant results. The term should not be taken
to imply that these components fly (or are airborne); they may equally well be on the surface of the
Earth, under the surface, under water, or indeed operating on other planets.

8 99% (Biological) Inspiration. . . 185

8.5.1 Swarm Inspiration

The idea that swarms can be used to solve complex problems has been taken up
in several areas of computer science. These include the use of analogies to the
pheromone trails used by ants (to leave trails for the colony to follow to stores of
food) in software to solve the traveling salesman problem, allowing the software to
“find” the shortest route by following the route with the most “digital pheromone”,
meaning it is the shortest (as on longer routes the concentration of pheromone would
be lower due to being spread over a greater distance) [7, 11]. The approach is an ex-
ample of Ant Colony Optimization, a very interesting approach that is inspired by
the social behavior of ants, and uses their behavior patterns as models for solving
difficult combinational optimization problems [8].

Swarm behavior is also being investigated for use in such applications as tele-
phone switching, network routing, data categorizing, and shortest path optimiza-
tions. Swarm radio and “swarmcasting” of television over the internet is an approach
to file-sharing that is inspired substantially by swarms. The approach exploits under-
utilized uplinks to download part of the file to other users and then allow for the
receipt of portions of the file from those users. The result is that streaming video is
possible even without a high-speed internet connection.

Research at Penn State University has focused on the use of particle swarms for
the development of quantitative structure activity relationships (QSAR) models used
in the area of drug design [5]. The research created models using artificial neural
networks and k-nearest neighbor and kernel regression. Binary and niching particle
swarms were used to solve feature selection and feature weighting problems.

Particle swarms have influenced the field of computer animation also. Rather
than scripting the path of each individual bird in a flock, the Boids project [16] elab-
orated a particle swarm with the simulated birds being the particles. The aggregate
motion of the simulated flock is much like that in nature: it is the result of the dense
interaction of the relatively simple behaviors of each of the (simulated) birds, where
each bird chooses its own path.

8.5.2 Swarms for Exploration

NASA is investigating the use of swarm technologies for the development of sus-
tainable exploration missions that will be autonomous and exhibit autonomic prop-
erties [28]. The idea is that biologically-inspired swarms of smaller spacecraft offer
greater redundancy (and, consequently, greater protection of assets), reduced costs
and risks, and the ability to explore regions of space where a single large spacecraft
would be impractical.

ANTS is a NASA concept mission, a collaboration between NASA Goddard
Space Flight Center and NASA Langley Research Center, which aims at the de-
velopment of revolutionary mission architectures and the exploitation of artificial
intelligence techniques and the paradigm of biological inspiration in future space

186 M. Hinchey and R. Sterritt

exploration. The mission concept includes the use of swarm technologies for both
spacecraft and surface-based rovers, and consists of several submissions:

• SARA: The Saturn Autonomous Ring Array will launch 1000 pico-class space-
craft, organized as ten sub-swarms, each with specialized instruments, to perform
in situ exploration of Saturn’s rings, by which to understand their constitution and
how they were formed. The concept mission will require self-configuring struc-
tures for nuclear propulsion and control, which lies beyond the scope of this paper.
Additionally, autonomous operation is necessary for both maneuvering around
Saturn’s rings and collision avoidance.

• PAM: Prospecting Asteroid Mission will also launch 1000 pico-class spacecraft,
but here with the aim of exploring the asteroid belt and collecting data on partic-
ular asteroids of interest for potential future mining operations.

• LARA: ANTS Application Lunar Base Activities will exploit new NASA-
developed technologies in the field of miniaturized robotics, which may form
the basis of remote landers to be launched to the moon from remote sites, and
may exploit innovative techniques to allow rovers to move in an amoeboid-like
fashion over the moon’s uneven terrain.

8.5.3 Inspiration and Improvement

ANTS, although a nice acronym, is actually somewhat of a misnomer—other than
the LARA submission, the concept mission is more inspired by swarms of bees or
flocks of birds than by colonies of ants.

But even then, ANTS is merely inspired by birds and bees. As we discussed in
Sect. 8.1, the pioneers of flight found that directly attempting to mimic avian flight
was the wrong way forward. Similarly, ANTS spacecraft in the PAM and SARA
submissions will not attempt to fly like birds (in any case it would not be practical
to build them with wings, a short tail, a curved sternum and hollow bones, in the
way birds have evolved from Archaeopteryx, a dromaeosaurid from the late Jurrasic
and Cretaceous periods and the earliest known flying creature).

In PAM, illustrated in Fig. 8.4, a swarm of autonomous pico-class (approximately
1 kg) spacecraft will explore the asteroid belt for asteroids with certain characteris-
tics. In this mission, a transport ship, launched from Earth, will travel to a point in
space where gravitational forces on small objects (such as pico-class spacecraft) are
all but negligible. From this point, termed a Lagrangian, 1000 spacecraft, which will
have been assembled en route from Earth, will be launched into the asteroid belt.

Approximately 80 percent of the spacecraft will be workers that will carry the
specialized instruments (e.g., a magnetometer or an x-ray, gamma-ray, visible/IR,
or neutral mass spectrometer) and will obtain specific types of data. Some will be
coordinators (called leaders) that have rules that decide the types of asteroids and
data the mission is interested in and that will coordinate the efforts of the workers.
The third type of spacecraft are messengers that will coordinate communication
between the rulers and workers, and communications with the Earth ground station.

8 99% (Biological) Inspiration. . . 187

Fig. 8.4 ANTS PAM
(prospecting asteroid
mission) scenario

The swarm will form sub-swarms under the control of a ruler, which contains
models of the types of science that it wants to perform. The ruler will coordinate
workers, each of which uses its individual instrument to collect data on specific
asteroids and feed this information back to the ruler, who will determine which
asteroids are worth examining further. If the data matches the profile of a type of
asteroid that is of interest, an imaging spacecraft will be sent to the asteroid to as-
certain the exact location and to create a rough model to be used by other spacecraft
for maneuvering around the asteroid. Other teams of spacecraft will then coordinate
to finish mapping the asteroid to form a complete model.

This is not how birds flock nor bees swarm.3 Birds form flocks in response to
a flocking call issued by one of the birds. Birds in the flock continue in the flight
pattern by “following” another bird. It is thought that collisions are avoided via
flight calls, whereby birds let other birds know where they are via sound. In ANTS,
the spacecraft do not “broadcast” in this way; spacecraft do not communicate with
each other directly, but rather via a messenger that coordinates communications be-
tween the spacecraft and with Earth. Collision-avoidance (both collisions with other
spacecraft and with asteroids) in ANTS is achieved by keeping models of locations,
which will be achieved via various means. Since movement will be enabled only
by simple thrusters, it is anticipated that many of the spacecraft will be lost due to
collisions.

In many senses, this is more efficient than the broadcast mechanism of the flock-
ing calls and flight calls. There is less communication overhead, and the spacecraft
are not continually having to update the information on where other spacecraft are

3Not all species of bee swarm; there are several solitary species.

188 M. Hinchey and R. Sterritt

located relative to them. Of course we can tolerate certain losses of spacecraft (one
of the motivations for a swarm-based approach is to have redundancy and avoid
mission loss due to a single incident), as long as the number of incidents is within
certain boundaries, whereas a flock of birds could not tolerate continual losses due
to collisions.

ANTS spacecraft will also need to have protection mechanisms built in, such as
going into sleep mode to protect solar sails (used for power) during solar storms.
This is analogous to a flock of birds taking shelter in severe weather, but the space-
craft do not have to land and find shelter, they merely have to alter their position and
lower their sails to avoid damage from electrical charges, etc.

Similarly, flocks of birds and swarms of bees do not form sub-swarms as is envi-
sioned in ANTS, nor do they take instructions directly from a leader. While flocks
and swarms in nature do occasionally allow for an alternate to take over a particular
role (e.g., the establishment of a new queen in a hive), this is not so efficient as in
ANTS where a worker with a damaged instrument, instead of becoming useless, can
take over the role of messenger, or even leader.

The ANTS swarm, collaborating to collect science data from the asteroid belt, is
clearly inspired by nature and the biology of birds and bees, but exhibits enhance-
ments over nature by virtue of techniques and approaches known to us from the
fields of computing and engineering.

8.6 Conclusions

The human race has gained much from a greater understanding of biology. Under-
standing how the “program” of life works has made it possible to prevent many
undesirable conditions, cure certain diseases and afflictions, devise new treatments
and drugs and understand better when they can be used, etc. Notwithstanding this
greater understanding of biology, most of these advancements were due to the ex-
ploitation of modern computing technology and its application to biological prob-
lems, and in particular the ability to develop and explore (search) models of reality.
We begin with such models, and enhance them with concepts not seen in nature or
the real world [15], but deriving from advancements in computing and engineering.

Such modeling of biological phenomena and nature has enabled us to better un-
derstand the behavior patterns of insects, birds, and mammals. Simultaneously, an
understanding of biology and nature has enabled the creation of a whole field of
biologically-inspired computing. Ingenuity in nature has sparked imaginations and
inspired ideas for means of developing complex computer systems that reduce com-
plexity, enable the development of classes of system which we could never have
achieved without this inspiration, and move towards self-governance of systems.

Biologically-inspired computing involves looking at biology and nature and
models of it, and then adapting it and improving on it with advances made in com-
puting technology and engineering.

Unlike Edison, at least in this context, we see the inspiration as being 99% of the
effort, and believe that computing can benefit in many ways from biological inspi-

8 99% (Biological) Inspiration. . . 189

ration. We believe that biologically-inspired computing should be 99% (biological)
inspiration, combined with 1% mimicry.

Look deep into nature, and you will understand everything better.
Albert Einstein (1879–1955)

Acknowledgements The chapter is based on a keynote talk given at the IFIP Conference on
Biologically Inspired Cooperative Computing (BICC 2006) at 19th IFIP WCC 2006, Santiago,
Chile, August 2006

First published as: Hinchey, M.G., Sterritt, R., 2006, in IFIP International Federation for In-
formation Processing, Volume 216, Biologically Inspired Cooperative Computing, eds. Pan, Y.,
Rammig, F., Schmeck, H., Solar, M. (Boston: Springer), pp. 7–20. Reprinted with kind permission
of Springer Science and Business Media.

We are grateful to the organizers of BICC 2006 for inviting this talk and associated paper.
Autonomic apoptosis was introduced in [22], and quiescence in [26]. More detailed expositions

of the ANTS concept mission, and specifically the PAM submission, are given in [17, 27, 28].
Part of this work has been supported by the NASA Office of Systems and Mission Assurance

(OSMA) through its Software Assurance Research Program (SARP) project, Formal Approaches
to Swarm Technologies (FAST), and by NASA Software Engineering Laboratory, Goddard Space
Flight Center (Code 581).

This research is partly supported at University of Ulster by the Computer Science Research
Institute (CSRI) and the Centre for Software Process Technologies (CSPT) which is funded by
Invest NI through the Centres of Excellence Programme, under the EU Peace II initiative.

Some of the technologies described in this chapter are patented or patent-pending and assigned
to the United States government.

References

1. Beni, G.: The concept of cellular robotics. In: IEEE International Symposium on Intelligent
Control, pp. 57–62. IEEE Comput. Soc., Los Alamitos (1988)

2. Beni, G., Want, J.: Swarm intelligence. In: Seventh Annual Meeting of the Robotics Society
of Japan, Tokyo, Japan, pp. 425–428. RSJ Press, Germering (1989)

3. Bonabeau, E., Théraulaz, G.: Swarm smarts. Sci. Am. 282(3), 72–79 (2000)
4. Cayley, G.: On aeriel naviation. Nicholson’s Journal (1809)
5. Cedeno, W., Agrafiotis, D.K.: Combining particle swarms and k-nearest neighbors for the

development of quantitative structure-activity relationships. Int. J. Comput. Res. 11(4), 443–
452 (2003)

6. Cohen, J.: Bioinformatics—an introduction for computer scientists. ACM Comput. Surv.
36(2), 122–158 (2004)

7. Dorigo, M., Gambardella, L.M.: Ant colonies for the traveling salesman problem. Biosystems
43, 73–81 (1997)

8. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
9. Gates, B.: The Wright brothers. Time (1999). Monday, Mar. 29

10. Hiebeler, D.E.: The swarm simulation system and individual-based modeling. In: Decision
Support 2001: Advanced Technology for Natural Resource Management, Toronto, Canada
(2001)

11. Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A., Sterritt, R.: Autonomous and
autonomic swarms. In: Autonomic & Autonomous Space Exploration Systems (A& A-SES-1)
at 2005 Int. Conf. Software Engineering Research and Practice (SERP’05), Las Vegas, NV,
27–29 June 2005, pp. 36–42. CREA Press, Gent (2005)

12. Hinchey, M.G., Sterritt, R.: Self-managing software. Computer 39, 107–109 (2006)

190 M. Hinchey and R. Sterritt

13. Lilienthal, O.: Practical experiments for the development of human flight. The Aeronautical
Annual, 7–20 (1896)

14. Love, J.: Science explained: the cloning of Dolly. Workshop publication (1999)
15. Peterson, I.: Calculating swarms. Sci. News 158(20), 314 (2000)
16. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Comput. Graph.

21(4), 25–34 (1987)
17. Rouff, C.A., Hinchey, M.G., Rash, J.L., Truszkowski, W.F.: Experiences applying formal ap-

proaches in the development of swarm-based exploration missions. Int. J. Softw. Tools Tech-
nol. Transf. 8(6), 587–603 (2006)

18. Sterritt, R.: Towards autonomic computing: effective event management. In: 27th Ann.
IEEE/NASA Software Engineering Workshop (SEW), MD, USA, pp. 40–47. IEEE Comput.
Soc., Los Alamitos (2002)

19. Sterritt, R.: Pulse monitoring: extending the health-check for the autonomic GRID. In: IEEE
Workshop Autonomic Computing Principles and Architectures (AUCOPA 2003) at INDIN
2003, Banff, AB, Canada, pp. 433–440 (2003)

20. Sterritt, R., Bantz, D.F.: PAC-MEN: personal autonomic computing monitoring environments.
In: Proc IEEE DEXA 2004 Workshops—2nd Int. Workshop Self-adaptive and Autonomic
Computing Systems (SAACS 04), Zaragoza, Spain (2004)

21. Sterritt, R., Bustard, D.W.: Autonomic computing: a means of achieving dependability? In:
IEEE Int. Conf. Engineering of Computer Based Systems (ECBS’03), Huntsville, AL, USA,
pp. 247–251 (2003)

22. Sterritt, R., Hinchey, M.G.: Apoptosis and self-destruct: a contribution to autonomic agents?
In: FAABS-III, 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems,
26–27 April 2004, Greenbelt, MD. LNCS, vol. 3228. Springer, Berlin (2004)

23. Sterritt, R., Hinchey, M.G.: Biologically-inspired concepts for self-managing ubiquitous and
pervasive computing environments. In: WRAC-II, 2nd NASA/IEEE Workshop on Radical
Agent Concepts, Sept. 2005, Greenbelt, MD. LNCS, vol. 3825. Springer, Berlin (2005)

24. Sterritt, R., Hinchey, M.G.: Engineering ultimate self-protection in autonomic agents for space
exploration missions. In: IEEE Workshop on the Engineering of Autonomic Systems (EASe
2005) at 12th Ann. IEEE Int. Conf. Engineering of Computer Based Systems (ECBS 2005),
Greenbelt, MD, USA, pp. 506–511. IEEE Comput. Soc., Los Alamitos (2005)

25. Sterritt, R., Hinchey, M.G.: SPAACE: Self-properties for an autonomous and autonomic com-
puting environment. In: Software Engineering Research and Practice (SERP’05), Las Vegas,
NV. CREA Press, Gent (2005)

26. Sterritt, R., Hinchey, M.G.: Biologically-inspired concepts for autonomic self-protection in
multiagent systems. In: Safety and Security in Multiagent Systems: Research Results from
2004–2006, pp. 330–341. Springer, Berlin (2009)

27. Truszkowski, W.F., Hinchey, M.G., Rash, J.L., Rouff, C.A.: NASA’s swarm missions: the
challenge of building autonomous software. IT Prof. 6(5), 47–52 (2004)

28. Truszkowski, W.F., Hinchey, M.G., Rash, J.L., Rouff, C.A.: Autonomous and autonomic sys-
tems: a paradigm for future space exploration missions. IEEE Trans. Syst. Man Cybern., Part
C, Appl. Rev. 36(3), 279–291 (2006)

Chapter 9
Dealing with Complexity in Agent-Oriented
Software Engineering: The Importance
of Interactions

Joaquin Peña, Renato Levy, Mike Hinchey, and Antonio Ruiz-Cortés

9.1 Introduction

Complexity has been one of the main problems that science and industry has dealt
with from the beginning of the industrial world. It prevents us from understanding
and controlling reality, and as a result, significant effort of many scientists and prac-
titioners have been expended on conquering it, with the aim of finally, understanding
and controlling our world.

Complexity has been studied by researchers in many fields, ranging from the
Social Sciences to Physics, and of course, Software Engineering. But in all of these
fields, researchers agree that complexity is caused by the interaction between the
parts that conform a system (see Sect. 9.2 for further details). Complex systems
expose a behavior that cannot be predicted since it is the consequence of a long chain
of cause-effects (interactions) where a small change in a component of the systems
affects many others, thus amplifying its effect. This results in an overall behavior
of the system—also called macro-level behavior—which cannot be explained by
the behavior exposed by each of its component parts, its micro-level behavior. For
example, an ant colony is able to feed and protect itself forming a sophisticated
social system while the behavior of individual ants remains quite simple, most of the
time consisting just of interacting with other ants by following trails of pheromones
left by other individuals.

If these ants didn’t interact by means of pheromones, the emergent behavior
would not be possible, and thus, we would have removed complexity. So, in order to
address complexity full-on, we must focus our efforts on studying the interactions,
to subsequently understand how the composition of these interactions brings us to
the macro-level behavior.

However complexity does not always appear at the same level. There are systems
with higher levels of complexity and systems with lower ones, ranging from com-

J. Peña (�)
University of Seville, Seville, Spain
e-mail: joaquinp@us.es

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_9, © Springer-Verlag London Limited 2012

191

mailto:joaquinp@us.es
http://dx.doi.org/10.1007/978-1-4471-2297-5_9

192 J. Peña et al.

plicated systems, to complex systems, to chaotic systems (see Sect. 9.4 for further
details). The level of complexity of a system, however, is not a property derived from
the structure and behavior of the system and its parts, but it depends significantly on
the tools that we use to study them. For instance, the computational complexity for
many algorithms is smaller when using a multi-tape or inductive Turing machines
than when using a Turing machines with a single tape.

The use of appropriate software engineering tools can open the possibility of
understanding and controlling systems that are seen as complex with current tools,
but can be designed as merely complicated with the proper ones [27].

Among these tools, the first must be to focus modelling efforts on the main source
of complexity—interactions—and not on structural properties as is commonly done
in the Software Engineering community, where UML class diagrams or component
diagrams are the most commonly used modelling tools.

Hence, we must pay special attention to interactions when developing software
systems, but especially so when addressing Multi-Agent Systems (MASs). This fo-
cus is possible based on the premise, accepted by researchers of human organiza-
tions [23], and later by researchers in the field of agent technology, that an orga-
nization can be observed from two different viewpoints: functional/interaction and
structural. Roughly speaking, the model of the functional organization is composed
of roles and interactions while the model of the structural organization is composed
of agents and interactions. Despite their close relationship, both types of organiza-
tion views can be modelled independently. This fact allows designers to model the
interaction process while ignoring the organizational structure until it is clearly un-
derstood how it operates. This modelling process reduces the complexity of models
to be managed at the early stages of the software process and eases the comprehen-
sion of complex behaviors (see Sect. 9.3 for further details on modelling in terms of
interactions).

Once we can address the problem in terms of interactions, we find new problems.
For example, the number of interactions to be designed may be huge, and the com-
bination of them required until reaching the required macro-level behavior difficult.
To address this, in Sects. 9.5, 9.6, 9.7, and 9.8 we present the main principles we can
apply in this situation: abstraction, decomposition, composition, reuse, and automa-
tion. All of these can be applied to deal with complexity, but we also need guidelines
that help us to apply them systematically depending on the kind of system we face.
These guidelines and the software process that can be followed to apply these prin-
ciples systematically are presented in Sect. 9.9. In general, two approaches can be
used: a top-down software process where we start at the desired macro-level and
we systematically refine models by applying abstraction and decomposition princi-
ples; and bottom-up, where we start at the micro-level and we apply systematically
composition and abstraction until we reach the desired macro-level behavior.

In addition, in order to show how to apply each principle and how they must be
combined to systematically engineer a complex MAS, we employ a case study on
what has traditionally been seen as a complex system: an Ant Colony. As a result, we
end up showing how this system can be modelled, linking the macro-level behavior
with the micro-level behavior systematically from a software engineering point-of-
view.

9 Dealing with Complexity in Agent-Oriented Software Engineering 193

9.2 Related Work on Focusing on Interactions as the Source
of Complexity

Several authors agree that the complexity of MASs is a consequence of their in-
teractions [17, 24]: Complexity is caused by the collective behavior of many basic
interacting agents.

In fact, many authors point out that the complexity of MASs is the consequence
of those interactions among agents, and that these interactions can vary at execution
time, and cannot be predicted thoroughly at design time, viz., emergent behavior.
The reasons for the emergence can be traced to two features present in MASs: self-
adaptation, and self-organization [13, pp. 20–21], [17, 24]. It is important to observe
that this capability of demonstrating emergent behavior is the key factor that drove
us to implement MAS solutions in the first place, since this key capability is essential
to address solutions to the targeted domains.

The importance of interactions has been already established in the agent literature
as well as in several other fields. In the field of software engineering many authors
have seen interactions as a source of complexity, and thus, many solutions has been
proposed for dealing with it (see also Chaps. 1, 7, 8, and 15). For example, Larman
et al. in [21] presents a set of principles proposed by other authors, from which,
many of them focus on reducing the coupling, that is to say, the interactions, between
different part of the system, namely Demeter’s Law, Liskov’s Principle, GRASPs
Low Coupling, Indirection, Protected Variations, etc.

In addition, some advanced Object-Oriented Software Engineering approaches,
e.g., [32, 35], even traditional sociology, already present a predominant role regard-
ing structural features to interactions, to such a point that all the modelling process
is focused on them.

OOram [32] is a good example of an Object-Oriented approach where the whole
development cycle is focused on interactions. OOram’s authors state that the main
advantages of focusing on interactions is the improvement of reuse, traceability and
the ability to cope with complexity [31].

Furthermore, in sociology, interactions have been also emphasized by important
authors such as the German sociologist Max Weber. Weber in his concept of ideal
bureaucracy emphasizes the form, or in other words, the interrelationships between
the members of an organization. In 1988, Reenskaug, the author of OOram, stated in
[31] that object-orientation was born at the hand of Weber. In this reference, Reen-
skaug concluded that object-oriented methodologies must focus on interactions.

In addition, this fact is also ratified by the research done in other mature fields:
(i) in the component world, Szyperski and D’Souza also emphasized the impor-
tance of focusing on interactions instead of architecture (structure in MAS) in com-
plex systems [34, p. 124], [6]; (ii) in the distributed field, several authors has also
favored approaches that focus on interactions, i.e., Francez who highlight the im-
portance of modelling complex interactions as a singleton and who also work on
functional groups of interacting elements [12]; (iii) the latest version of UML also
provides modelling artifacts to perform interaction-centered modelling, emphasiz-
ing and improving the role concept compared to previous versions.

194 J. Peña et al.

9.3 The Main Tool for Dealing with Complexity: Modelling the
Problem in Terms of Interactions

Given that interactions are the main source of complexity, we conclude that [27]:

if we want to conquer complexity of MASs, we must focus the modelling process on them

In observing any MAS, we can say that no agent is an island, and thus, every
MAS has the potential to become a “complex system”. Since agents are limited to
some environment and have limited abilities, complex problems are usually solved
by a set of agents [4]. Hence, an organization represents a group of agents formed
in the system in order to get benefits from one to another in a collaborative or com-
petitive manner.

Therefore, a sub-organization emerges only when some kind of interaction be-
tween its participants exists, either through direct communication by means of
speech acts or through the environment. The structure of an organization is under-
lined by the nature of their interactions; hence it is vital to clearly understand the
interactions within a MAS system in order to determine its sub-organizations.

The Organization of the Agents in a MAS can be observed from two different
points of views [3, 8, 36]:

The interaction point of view: it describes the organization by the set of interactions
between its roles. The interaction view corresponds to the functional point of view.

The structural point of view: it describes the agents of the system and how they are
distributed into sub-organizations, groups, and teams. In this view, agents are also
organized into hierarchical structures showing the social architecture of the system.

The former is called the Acquaintance Organization, and the later is called the Struc-
tural Organization. Both views are intimately related, but they show the organiza-
tion from radically different points of view.

Since any structural organization must include interactions between its agents
in order to function, it is safe to say that the acquaintance organization is always
contained in the structural organization. Therefore, if we determine first the ac-
quaintance organization, and we define the constraints required for the structural
organization, a natural map is formed between the acquaintance organization and
the corresponding structural organization. This is the process of assigning roles to
agents [36]. Thus, we can conclude that any acquaintance organization can be mod-
elled orthogonally to its structural organization [20].

In Fig. 9.1, we present a simple version of the manufacturing pipeline example
presented in [36, p. 10]. In this example, each stage is performed by an agent and
the main requirement is that the speed of all stages is coordinated. A set of roles
and interactions between them is implied in the Acquaintance Organization. In the
structural organization, these roles can be structured to form several organizational
structures. For example, as shown in Fig. 9.1, we can map the acquaintance organi-
zation into a plain structure, a hierarchical structure, and so on. In addition, starting
the analysis with a certain organizational structure in mind (by means of agents),
even if based on a real organization, will drive the deployment of the MAS. Conse-
quently, the initial subdivision in interactions and roles may not be optimal.

9 Dealing with Complexity in Agent-Oriented Software Engineering 195

Fig. 9.1 Acquaintance vs. structural organization

Real life organizations are known to present less then optimal structures. The
presence of such organizational mistakes has been well studied in economics [23],
hence the field of operational research. Using the real life organization as the initial
drive for the MAS system without further consideration will mimic its mistakes and
may lead to some important misconstructions in terms of agent systems. Some of
the common errors that can be induced are: agents coordinated by more than one
agent, agents introduced to cover the relations between several sub-organizations,
redundant agents with the same profile placed in different sub-organizations, etc.

As we show later, since interactions are the main source of complexity, we should
not bother about organization structure at the initial analysis. This approach facili-
tates the process of understanding the complex behavior of a MAS and minimizes
structural mistakes. Thus, when we consider the relationship between real organiza-
tions and their constraints in the system architecture, we must abstract the organi-
zation and let it be modelled by means of roles and interactions during the analysis
phase. Later, these roles can be mapped into concrete agents and structured as the
real organization trying to fit the real life organization and trying to minimize struc-
tural mistakes.

Interactions and role-to-role relationships are therefore the primary concept of
the engineering process of MASs and structural organization arises because of them.

To exemplify these concepts and the tools for conquering complexity, we are go-
ing to use a typical case study of an emergent system: the ant colony. An ant colony
is defined as a huge number of autonomous agents defined independently. There are

196 J. Peña et al.

many definitions of ant colonies. We have selected the one given by StarLogo.1 The
ants in this implementation follow the set of rules below [24]:

1. Wander randomly.
2. If food is found, take a piece back to the colony and leave a trail of pheromones

that evaporates over time; then go back to rule 1.
3. If a pheromone trail is found, follow it to the food and then go to rule 2.

In the emergent behavior that appears at the macro-level of an ant colony, the
interactions between ants are the key concept. Notice that if ants move randomly
without interacting among each other, no emergent behavior appears. Given this
fact, if we were able to put together all ants in a colony and compose them to find
out their interdependencies, we could provide a macro-level model of the colony.

To perform this model, where interactions are the main feature of interest, we
must focus on the acquaintance organization. Ants are designed to pursue two goals:
“search for food” and “carry food home”. Considering both functional requirements,
two kinds of ants appear, that is to say, ants playing two different roles: explorer and
carrier. An explorer behaves as follows:

1. Wanders randomly.
2. If a pheromone trail is found, follows it, and go to rule 4.
3. If food is found directly, go to rule 4.
4. Becomes a carrier ant.

A carrier should behave as follows:

1. Takes a piece of food back to the colony.
2. Leaves a trail of pheromones that evaporates over time.
3. Becomes an explorer ant.

In addition, we can find two more roles representing the environment. In the
ants’ environment we can find the ground and the anthill as significant from the
interaction point of view. Hence, we can divide the environment into two roles, one
for each of them. We can observe that ants interact with these roles by means of
pheromone trails, which are used to communicate the food position.

9.4 Characterizing Complexity

Although in Sect. 9.2, we show that interactions are seen as the main source of
complexity in MASs, a large MAS is usually composed of many parts which do
not present the same features. Some parts of a MAS could be fully predictable not
presenting any emergent feature, while some other parts of the same MAS could be
highly complex presenting a high-degree of self-adaptation and self-organization.
In the field of enterprise organization, Snowden and Kurtz recognize this fact [33].

1The StarLogo definition is available here: http://education.mit.edu/starlogo/samples/ants.htm.

http://education.mit.edu/starlogo/samples/ants.htm

9 Dealing with Complexity in Agent-Oriented Software Engineering 197

Fig. 9.2 Complexity and
predictability

These authors divide an organization into the following domains whose main fea-
tures are summarized in Fig. 9.2:

(1) Ordered Domain: Stable cause and effect relationships exist. In this domain,
the sequence of events/actions of the organization can be established as a
cause/effect chain. It represents the predictable part of the system. This domain
is further divided into:
(i) Known Domain: In this domain, every relationship between cause and ef-

fect is known. The part of a MAS in this domain is clearly predictable and
can be easily modelled.

(ii) Knowable Domain: This is the domain in which, while stable cause and
effect relationships exist, they may not be fully known. In general, relation-
ships are separated over time and space in chains that are difficult to fully
understand. The key issue is whether or not we can afford the time and re-
sources to move from the knowable to the known domain. In Fig. 9.2 this is
represented by a higher number of future directions given a certain present
state.

(2) Un-ordered: This domain presents unstable cause and effect relationships be-
tween interactions in the system. It represents the unpredictable part of the sys-
tem. This domain is divided into:
(i) Complex Domain: There are cause and effect relationships between the

agents, but both the number of agents and the number of relationships defy
categorization or analytic techniques. Relationships between cause and ef-
fect exist but they are not predictable. This domain presents retrospective
coherence. That is to say, coherence can be only established by analyzing
the past history of the system. Unfortunately, future directions, although
coherent, cannot be predicted. In Fig. 9.2, the past events/actions can be un-
derstood as a single chain of cause/effects, but when we try to extrapolate
and predict future changes the solution space is too wide to be analyzed.

(ii) Chaos Domain: There are no perceivable relationships between cause and
effect, and the system is turbulent; we do not have the response time to in-
vestigate change. Despite some previous work in this area, chaotic domains
are still out of reach from the point of control theory. Agents systems have
been used to model such domains, but strictly limited to simulation.

The Santa Fe Institute2 define complexity as “the condition of the universe that is
integrated and yet too rich and varied for us to understand in simple common ways.

2The Santa Fe Institute’s webpage is here: http://www.santafe.edu/.

http://www.santafe.edu/

198 J. Peña et al.

Fig. 9.3 Domain of a problem depending on the abstraction level of models

We can understand many parts of the universe in these ways, but the larger more
intricately related phenomena can only be understood by principles and patterns;
not in detail.”

As the previous fact shows, problems in the complex or chaos domains can be
only understood by principles and patterns that summarize their features and omit
details; that is to say, that use abstract models. We do not have to know all the details
of a problem, but the level of detail needed depends on our purpose. For example, the
weather report can predict the temperatures, rain, and so forth, accurately enough
for our daily life purposes: for example, to decide whether to pick up the umbrella or
not. The model used to predict the weather can be classified in the known domain,
but not the weather itself, which is so far chaotic. Depending on our purpose when
studying a certain problem, we may need more or fewer details.

Consequently, we can introduce another dimension in the categorization of com-
plexity done in the Cynefin framework: the level of abstraction of models as we have
depicted in Fig. 9.3 [33]. Thus, depending on the level of abstraction with which we
observe a MAS, each subpart of the model can be categorized in the known domain,
using the highest level of abstraction, or even in the chaos domain, using the lowest
level of abstraction.

9.4.1 Characterization of Interaction Complexity

Similarly, the complexity level of an interaction depends on the level of abstrac-
tion in which its features regarding emergence are observed. This principle can be
visualized by the interaction categorization shown in Fig. 9.4.

The complexity of an interaction, or set of interactions, depends on their nature
and on the effort taken in understanding its details, such as, their predictability and
flexibility, and their level of abstraction. Our proposed interaction categorization is
based in the space defined by these two axes. Figure 9.4 shows the classification of
interactions in three categories: known, knowable, and complex interactions.

9 Dealing with Complexity in Agent-Oriented Software Engineering 199

Fig. 9.4 Proposed
interactions taxonomy
regarding complexity

Known interactions are the least flexible; they do not present emergence, and
all their details can be identified. Complex interactions present a higher degree of
flexibility and can only be described with higher-level patterns emphasizing most
important details. Knowable interactions represent a middle point between both of
them.

In addition, agents undertaking complex interactions may present a high degree
of autonomy, proactivity, reactivity, and social abilities. The further a subpart of an
agent system moves from known into complex interactions the further its abilities,
as described above, are intensified. We must observe that the need to describe (and
generate) complex behavior from simpler constructs was the reason that drove us to
agent based systems in the first place; therefore our goal, must be to describe the
system as it is perceived (complex), and increase details until the desired behaviors
can be synthesized.

9.5 Principles to Deal with Complexity

In [17], Jennings adapts to agency the three main principles for managing com-
plexity proposed by Booch in the OO context [1]: Abstraction, Decomposition and
Organization/Hierarchy3:

• Abstraction: is based on defining simplified models of the systems that emphasize
some details while avoiding others. It is interesting since it limits the designer’s
scope of interest and the attention can be focused on the most important details at
a given time.

• Decomposition: is based on the principle of “divide and conquer”. It helps to limit
the designer’s scope to a portion of the problem.

3Notice that hereafter we call it Composition in order to differentiate it from the organization term
in AOSE.

200 J. Peña et al.

Fig. 9.5 Abstraction
principle

• Composition: consists of identifying and managing the inter-relationships be-
tween the various subsystems in the problem. It makes it possible to group to-
gether various basic agents or organizations and treat them as higher-level units
of analysis. It also provides means of describing the high-level relationships be-
tween several units.

In addition, automation and reuse have been presented as two important princi-
ples to overcome complexity [6, 19]:

• Automation: Automating the modelling process results in lower complexity of
models and reduces effort and errors. Some procedures must definitely be carried
out based on the judgment of the human modeller. However, some steps can be
performed using automatic techniques to transform models which can be carried
out by a software tool.

• Reuse: Reuse is based on using previous knowledge in designing MASs. It saves
modellers from redesigning some parts of the system and avoids errors, thus
achieving lower complexity of models. Reuse involves processes, modelling arti-
facts, techniques, guidelines, and models of previous projects.

However, these authors do not focus on managing the main source of complexity,
as we do in this chapter. In the following, we detail each of the previous principles.

9.6 Abstraction

Abstraction consists of defining simplified models of the systems that emphasize
some details, while avoiding others. The power of abstraction comes from limiting
the designer’s scope of interest, allowing the attention to be focused on the most
important details. Abstraction can be applied to interactions that fall in the complex
and knowable domains, enabling us to abstract from how emergence can be obtained
until the designer is ready to address the issue.

As depicted in Fig. 9.5, we can apply abstraction to produce a simple model
of a complex acquaintance organization where most relevant interaction patterns

9 Dealing with Complexity in Agent-Oriented Software Engineering 201

Fig. 9.6 Abstract model of the ant colony

and members of the organization can be abstracted until we bring the model to the
known domain. In this model, most relevant patterns of interaction are abstractedly
represented, while less important relationships, or even internal details of relevant
interaction patterns, are omitted. Abstract interaction patterns, i.e., complex interac-
tions, hide flexibility and emergence of interactions, which take place at lower levels
of abstraction.

Consequently, there are two main modelling artifacts, abstractions that include
the tools to perform simplified models [17, 19]: organization and interaction ab-
stractions.

First, organizational abstractions represent how a system goal or several of them
are achieved by a group of roles/agents. Many authors have worked on recursive
definitions of agents and organizations, e.g., [2, 7, 9, 14–16, 26].

Secondly, but more importantly, interaction abstractions represent a set of in-
teractions between any number of agents/roles. Many authors have proposed these
abstractions, e.g., the protocols of Gaia [36], the interactions of MESSAGE [3], or
joint intentions in the Belief-Desire-Joint-Intention Architecture [18].

If we consider our case study, the ant colony, we can derive a very abstract model,
shown in Fig. 9.6. As shown in the figure, we provide an abstract model where we
only consider the roles used by ants to interact, and just one interaction that abstracts
all the relationships that takes part between the ground, the anthill, the explorers and
the carriers. Given this model, we can observe just the amount of food available in
the environment, the probability of finding food depending on the size of the ground,
and the mean speed to find and carry food, all of them attributes of the roles involved,

202 J. Peña et al.

to provide a model that ensures that our system operates within the requirements of
the system at the macro-level.

Notice that this model is simpler than the one performed based on the structural
organization where we should have modelled every ant in the colony.

9.7 Composition and Decomposition

Composition and Decomposition help us to merge or separate interactions and mod-
els in order to focus just on a part of the system in order to study it in isolation. In
addition, when abstraction is applied to interactions, key for dealing with complex-
ity, these principles help us also to decrease or increase the level of abstraction by
dividing an interaction into several or by grouping several interactions into one.
These tools are crucial for transiting from complex to knowable or known interac-
tions, and thus understanding complexity.

9.7.1 Decomposition

Excessively large problems may become unmanageable. The decomposition princi-
ple helps us to divide large problems and their elements into smaller, more manage-
able chunks. Decomposition consists of the “divide and conquer” principle, helping
to limit the designer’s scope to a portion of the problem. Regarding interactions, it
may help to decompose complex and knowable interactions into finer grain interac-
tions. These finer grain interactions can be augmented with details, which cannot be
applied when more abstract interactions are managed. Hence, using decomposition,
the interactions obtained can be implemented with less effort.

Decomposition techniques can be applied to the main abstractions: interactions
or organizational models, based on roles, organizations, or agents. On the one hand,
as depicted in Fig. 9.7, interaction abstraction can be decomposed to observe them
from a lower level of abstraction. The main approach to decompose interactions
consists of providing an abstract modelling artifact that can be refined by means of
finer grain interaction abstraction, or modelling artifacts designed to provide lower
levels of details, such as AUML sequence diagrams where abstract interactions are
decomposed into messages-based models [25].

On the other hand, an organizational model that becomes too large and complex
can be also decomposed into several models. This allows each sub-problem to be
studied in isolation, ignoring the complexity derived from the interactions between
sub-problems. Notice also that agents can be indeed decomposed. The materializa-
tion of decomposition of agents can be found in the “Role” concept. As depicted
in Fig. 9.7, when a complex organization, formed by agents, is decomposed to ex-
tract some functional aspect, their agents must also be decomposed to extract only
the part that is related with the functionality we desire to observe. Each of these

9 Dealing with Complexity in Agent-Oriented Software Engineering 203

Fig. 9.7 Decomposition principle

Fig. 9.8 Decomposed models of the ants colony

parts represents the role that the agent plays in the achievement of that functionality,
permitting us to observe the acquaintance organization of the system.

For example, we can derive several models of our case study in order to study
each of them separately. As shown in Fig. 9.8, we provide two models: one, on the
left of the figure, where we can observe the interactions between the carrier and the
environment, and another, on the right of the figure, where the interactions between
the explorer and the environment are shown. The designer can focus, for example,
on how the explorer may find food by means of wandering over the ground until
finding it, or by finding a pheromone trail that can follow until reaching the food. In
this way, the designer can focus on this problem not taking into account how carriers
do their work.

204 J. Peña et al.

Fig. 9.9 Composition
principle

9.7.2 Composition

Composition consists of identifying and managing the inter-relationships between
the various subsystems in the problem. It makes it possible to group together vari-
ous basic components and treat them as higher-level units of analysis. Composition
makes it possible to describe the high-level interactions between several units. Com-
position helps to discover subtle interactions between several sub-organizations of
the MAS.

In a sense, composition is the required mechanism in order to recreate the abstract
complex interactions from their simpler components. In addition, the composition of
acquaintance in a sub-organization can be used as the means to build the structural
organization. As the roles of an agent are fused, we can draw a “black box” and
overlook its internals based only on the interfaces (roles) that cross the boundaries
of the box. This process will also help to view a group of agents as a single unit in
itself, and help build the hierarchical structure of the organization.

Figure 9.9 shows that the emergent features that appear at the macro-level are
a consequence of the interactions between agents and sub-organizations. Conse-
quently, when several parts of the system are modelled in isolation, we are ignoring
the interdependencies between them. That is to say, the whole is greater than the sum
of its parts [24]. The lost elements may contain crucial features of the system. For
example, the two models of our case study presented in Fig. 9.8 can be composed,
but when doing so, we discover that the interactions Follow Pheromones and Leave
Pheromones are related. This drives us to discover a new interaction that represents
the fact that carriers communicate the path to find food to explorers. Figure 9.10
shows result of the composition of those models.

The advantage of modelling both problems in isolation abstracts these interac-
tions and makes the modelling process easier. It also improves the reuse of models,
since their interdependencies would limit the reuse of a combined solution only into
systems where both conditions occur. The same principle applies to role composi-
tion. Roles are artifacts that can be combined. These artifacts may result in com-
posed roles, or agents playing several roles. When agents are defined as a result of
composition, the definition of a structural organization begins to be formed.

9 Dealing with Complexity in Agent-Oriented Software Engineering 205

Fig. 9.10 Composition and decomposition of ants case study

9.7.3 Techniques for Decomposition and Composition

Decomposition and composition of the main modelling abstractions requires tech-
niques and guidelines to determine feasible separations and to perform them. There
are two main approaches to establish where to draw the limit.

• Functional Decomposition/Goal-based Decomposition: One of the most direct
ways of determining the frontiers between separable/composable parts is through
functional decomposition. As agents, and sub-organizations, are designed to
achieve their design objectives, a functional subdivision of the system can be
easily used. Functional decomposition, as Jennings argues, and Meyer in the OO
field [22], is more intuitive and easier to produce than that based upon data and
objects. Using this technique, we can analyze an interaction to observe which sub-
goals can be found on it, and determine which decomposed interactions can be
found inside it or which interactions can be grouped to pursue a higher level goal.
Notice that this can be also used to divide a big role model into several smaller
problems or vice-versa. Notice that this kind of decomposition/composition is the
one used in Fig. 9.10.

• Dependency Composition/Decomposition: The other main approach to decompo-
sition/composition is that based on analyzing dependencies between modelling
abstractions [3, 36]. Interactions between roles in a MAS are performed to solve
small parts of the problem. Each of these interactions modifies the state of the
roles participating in it, which is used later to perform further interactions. Thus,
we can say that the results of an interaction are used by the rest of interactions.

206 J. Peña et al.

Fig. 9.11 Intermediate abstraction model of the ant colony by dependency analysis

Given that, we can analyze the dependencies between the state of each role and its
interactions to find feasible decompositions or compositions. This kind of analy-
sis has been studied in the distributed systems field where Francez et al. propose
various techniques to decompose multiparty interactions [11, 12, 28].

This kind of analysis can also be applied to organizational abstractions. As
agents/roles are designed to achieve their design objectives and are limited to a
specific environment, sometimes the nature of the problem requires working with
part of the environment and the capabilities of other agents/roles. Consequently,
the achievement of certain goals is determined by dependencies with other
agents [4, 5]. This shows how roles can be grouped/separated to form organi-
zations and it is also useful to determine how they can be composed/decomposed.

As shown in Fig. 9.10, the model at the bottom is the one obtained directly from
the problem description in terms of the behavior of each individual ant observed
from an interaction point of view. Given that model, we can analyze the dependen-
cies between interactions in the less abstract view, shown at the top of Fig. 9.11,
to build a more abstract view of the same system obtained by means of interaction
composition. From more detailed interactions, we obtain just three of them that ab-
stract the interactions between the explorer and carrier ants with the environmental
roles “anthill” and “ground”. This view is closer to the macro level of the system.

9 Dealing with Complexity in Agent-Oriented Software Engineering 207

9.8 Reuse and Automation Principles

Automating the modelling process results in lower complexity of models and re-
duces effort and errors [19]. Some procedures must be carried out that rely on the
judgment of the human modellers. However, in recent years the technique that better
represents reuse is model driven engineering (MDE) whose goal is to automatically
produce a system from requirements, analysis, and/or design models [10].

Reuse is based on using previous knowledge in designing MASs. It saves mod-
ellers from redesigning some parts of the system and avoids errors, thus achieving
lower complexity of models [6, 19]. Catalysis and OOram are specially concerned
about reuse and, as many authors in the agent field [20], present the role concept as
the most appropriate tool to reuse functionality.

Reuse is strongly related to the bottom-up software process. When a set of al-
ready developed agents or roles are available, e.g., stored in a repository, they can
be reused to cover some of the required aspects of the current project. In these situ-
ations, we have a highly detailed model of the micro-level of the part of the system
implemented by reuse. From the interactions of these reused agents/roles, the re-
quired macro-level may or may not emerge. Using a bottom-up approach has proven
to be appropriate to transit from the micro-level functionality of reused assets to the
macro-functionality required, cf. Assemble process in [6, pp. 512–513].

Regarding reuse, the main techniques appearing in the literature are MAS Prod-
uct Lines, which focus on massive reuse by analyzing common and variable features
of MASs to produce a system with the desired features by reusing common features
and adding, as automatically as possible, variable features [29].

9.9 Applying the Principles—Software Process

Although abstract models can provide us with a coherent and simple model, ab-
stract models do not offer enough detail to reach a code model of the system. This
problem has been solved in traditional software engineering by maintaining a set
of system models structured in several abstraction layers. That is to say, a model of
the same problem that is described using a different level of detail. Layered models
are presented by Karageorgos as one of the main factors for reducing model com-
plexity [19]. In a layered model, top layers show us abstract models that provide
an overview of the system. On the other hand, bottom layers give us the means for
detailing top layers, bringing our model nearer to a code model.

As modelling using several abstraction layers usually produces a large amount
of models, traceability models are especially important to properly manage such an
amount of models as D’Souza shows in [6].

208 J. Peña et al.

9.9.1 Top-Down and Bottom-Up

In layered models, the completion of layers is usually done in an iterative way where
abstract layers are refined to produce bottom layers and bottom layers are abstracted
to produce top layers. That is to say, modelling in a top-down approach or in a
bottom-up approach [30].

Top-down approaches correlate with reductionism, that is, designing by start-
ing at the macro-level [13, 24]. Development starts with abstract models of the
macro-level of the system. This model is refined until all details are discovered.
This approach has some disadvantages. The interactions of systems studied with
this approach should be fully known and fully predictable since, otherwise, we will
not be able to discover all details. In addition, it misses the flexibility and change
adaptation obtained in bottom-up designs.

Bottom-up approaches correlate with emergence, that is, designing by starting at
the micro-level [13, 24]. In emergence, development starts at the micro-level defin-
ing a set of simple agents. Later, in subsequent layers, these agents are successively
grouped into sub-organizations, and the latter into organizations, until reaching the
macro-level of the system. This approach also has some advantages and disadvan-
tages. It does not require modelling all interactions in the system since agents can be
provided with the expertise necessary to decide their interactions with others at run-
time, and thus, the macro-level need not be modelled. However, it requires tuning
the macro-level behavior by changes in the micro-level. Bottom-up is also a cru-
cial tool for reuse since reusing a set of agents to implement a new system requires
reverse engineering to ensure that the goals of the system are met (cf. Sect. 9.8).

We cannot state categorically that one is better than the other; it depends on the
requirements of the software that we intend to develop. Notice also that not all sub-
parts of a system usually fall in the same Cynefin domain, but tend to spread out in
all of them. The best choice in this situation is to apply both, and find a trade-off
between them, as Pressman recommends in [30] and Karageorgos in [19].

Finally, note that decomposition and composition can be used to assist top-down
and bottom-up approaches, respectively, as we show in the following sections.

9.9.2 Top-Down Refinement by Means of Decomposition

Decomposition is presented as a principle that supports reductionism, that is to
say, a top-down software process. Abstraction mechanisms may result insufficient
when we model large and complex MASs since abstract models provide us with
an overview of the problem, but not the details. In these cases, we can decompose
abstract models to obtain a set of simpler ones which can be easily refined [6]. Us-
ing decomposition in this way, we can maintain several layers of abstraction where
higher-level layers abstractly represent complex problems and bottom layers store
detailed descriptions of sub-parts of top layer models obtained by decomposition.

9 Dealing with Complexity in Agent-Oriented Software Engineering 209

9.9.3 Bottom-Up Abstraction by Means of Composition

Composition is the principle that mainly supports emergence, that is to say, it sup-
ports a bottom-up software process. We can find two different ways of applying
emergence in the literature.

On the one hand, in [17], Jennings follows an emergence approach. He presents
bottom-up as a process that is automatically performed by agents at runtime. As
shown previously, they draw MASs as highly decomposed structures where prob-
lems are “automatically” solved by agents or sub-organizations and where interac-
tions between agents/organizations appear naturally at runtime. Thus, Jennings does
not argue for engineers to apply a systematic bottom-up software process to model
the system, but he leaves it to be accomplished by the system itself. However, this
automation is not always possible since the degree of unpredictability exposed by
this kind of designs may be not acceptable for some domain applications, e.g., real-
time systems or critical business applications.

On the other hand, a set of models obtained by the decomposition of sub-parts of
the system offers a tour of the system specification but does not offer the big picture
of it, that is to say, the macro-level behavior [6]. The same problem occurs when
the system is modelled as a set of autonomous, self-organizing agents, where the
emergent behavior of the system is not explicitly modelled. Designers/implementers
must be able to get an overview of it and, at least, have an approximation of the
behavior of the system at the macro-level. Composition can be used to get this
overview. We can compose finest-grain models to represent, in conjunction with
the use of abstraction, the most relevant features in a simple higher-level model
and to discover the emergent features that appear [6, 32]. Hence, model composi-
tion is an important tool to discover such elements when isolated problems have
been properly studied. This reduces the complexity that we are concerned with.
Usually, problems to be composed have been previously studied, making the con-
struction of the composite model less complex, since when modelling it, we have
to manage only the interrelationships between models and not the whole prob-
lem.

9.9.4 Guidelines for Deciding Between Top-Down and Bottom-Up

We can use three criteria to decide which approach must be applied: (i) the nature
of the requirements of the system; (ii) the complexity domain in which each part of
the system falls; and, (iii) the available set of reusable agents and models.

Firstly, requirements can be on the macro-level or on the micro-level. On the
one hand, typical domain applications, where most requirements can be localized at
the macro-level are information systems since requirements show how the overall
system should work. On the other hand, typical systems where requirements deal
with micro-level are simulation systems. In these systems, the requirements show

210 J. Peña et al.

Table 9.1 Summary of criteria for applying top-down and bottom-up

us how individual agents must work, in order to later study the macro-level of the
system.

Secondly, as we showed in Sect. 9.4, a system usually presents parts in several
complexity domains. Depending on the domain that each part falls in, a different
software process will fit better with its features.

Thirdly, the level of reuse in a certain project affects the software process since
some agents or even organizations of agents and their respective models can be
reused to reduce mistakes and time-to-market. When these assets fit with require-
ments, no extra work is needed.

In Table 9.1, we show a summary of these criteria. In the following, we show in
which situations these criteria point to a top-down or a bottom-up approach, or to
both at the same time:

• Top-down: must be applied in MASs where most requirements information is
concerned with the macro-level. In addition, another reason to apply top-down is
that the macro-level required is not usually clear in requirements documents and
therefore must be refined to obtain a more accurate model.

Whenever the requirements scope allows it, top-down should also be applied
to such parts of the system that fall in the known or knowable domains since these
parts can be fully analyzed by refining abstract descriptions.

• Bottom-up: can be used when most requirements information relates to the micro-
level, since bottom-up helps us to discover how different micro-level models work
together to produce the macro-level.

Furthermore, if a repository of yet-to-be implemented agents and their mod-
els has been constructed because of previous projects, we must primarily apply
bottom-up. In this kind of project, the micro-level has to be abstracted to ensure

9 Dealing with Complexity in Agent-Oriented Software Engineering 211

Fig. 9.12 From micro to macro-level of the ant colony by means of bottom-up

that we meet the desired macro-level and this can be done following a bottom-
up approach. That is to say, models or code developed for other projects may
not fit completely within the new system; thus, by means of bottom-up, we can

212 J. Peña et al.

Fig. 9.13 Usage of conceptual tools to manage taxonomy complexity of interactions

integrate it and analyze to determine if the reused chunk produces the desired
macro-behavior.

• Bottom-up in conjunction with top-down: must be applied when the system
presents features that fit with both previous cases. In addition, it must be ap-
plied to the parts of the MAS that fall in the complex domain in order to bridge
the gap between macro-level and micro-level. Following this process strategy, we
can obtain two layered models of the MAS: one set of layered models for the
macro-level and another for the micro-level. Thus, when the least abstract model
of the macro-level and the most abstract model of the micro-level overlap, we
bridge the gap between both levels.

Revisiting our case study, and taking into account previous guidelines, we can
determine that the process that better fits with it is “bottom-up”. The main reason for
this is that we started with requirements at the micro-level of the system and that the
macro-level behavior of it can be seen as complex using the classification provided
in Sect. 9.4. In Fig. 9.12 we show all the models produced in previous sections
by means of compositions of the previous layer until the macro-level behavior of
the system is reached. As can be observed, the principles and techniques provided
allow us to address a complex system systematically from an engineering point of
view.

9.10 Conclusions

As shown, using the proper tools, namely the three principles to deal with complex-
ity, and focusing on the source of complexity, namely interactions, a problem that
can be seen as complex, such as an Ant Colony, can be analyzed systematically to
perform engineering models that fall in the known domain.

9 Dealing with Complexity in Agent-Oriented Software Engineering 213

We have shown the importance of interactions and we have outlined how com-
plexity derived from interactions can be managed from an engineering perspective
giving a set of guidelines. Given the findings shown in this chapter, we can sum-
marize how these principles can be applied to transit between known, knowable,
and complex interactions as shown in Fig. 9.13. As depicted, abstraction is lower
for known interactions since their details can be easily modelled, while the level
of abstraction required for complex interactions is higher, since they can be only
understood when observed by their most important features. In addition, complex
interactions modelled abstractly can be transformed into knowable and known in-
teractions by means of decomposition. In the reverse process, known interactions,
such as those found in code models, can be transformed into knowable and com-
plex interactions by means of composition. The composition process will uncover
emergent behaviors inherent to its internal components. The final resulting complex
interaction can be further abstracted.

Acknowledgements This work has been partially supported by the European Commission
(FEDER) and the Spanish Government under the CICYT project SETI (TIN2009-07366), and
by the Andalusian Government under the projects ISABEL (P07-TIC-2533 and TIC-5906) and
THEOS (TIC-5906).

This work was supported, in part, by Science Foundation Ireland grant 03/CE2/I303_1 to
Lero—the Irish Software Engineering Research Centre (www.lero.ie)

References

1. Booch, G.: Object-Oriented Design with Applications. Benjamin/Cummings, Redwood City
(1990)

2. Bürckert, H.-J., Fischer, K., Vierke, G.: Teletruck: a holonic fleet management system. In:
14th European Meeting on Cybernetics and Systems Research, pp. 695–700 (1998)

3. Caire, G., Coulier, W., Garijo, F.J., Gómez-Sanz, J.J., Pavón, J., Leal, F., Chainho, P., Kear-
ney, P.E., Stark, J., Evans, R., Massonet, P.: Agent oriented analysis using MESSAGE/UML.
In: Proceedings of Agent-Oriented Software Engineering (AOSE’01), Montreal, pp. 119–135
(2001)

4. Castelfranchi, C.: Founding agent’s “autonomy” on dependence theory. In: 14th European
Conference on Artificial Intelligence, pp. 353–357. IOS Press, Amsterdam (2000)

5. Castelfranchi, C., Miceli, M., Cesta, A.: Dependence relations among autonomous agents.
In: Demazeau, I.Y., Werner, E. (eds.) Third European Workshop on Modeling Autonomous
Agents in a Multi-agent World. Decentralized AI 3. Elsevier, Amsterdam (1992)

6. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML: The Catalysis
Approach. Addison-Wesley, Reading (1999)

7. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in
multi-agent systems. In: Third International Conference on Multi-agent Systems (ICMAS’98),
pp. 128–135. IEEE Comput. Soc., Los Alamitos (1998)

8. Ferber, J., Gutknecht, O., Michel:, F.: From agents to organizations: an organizational view of
multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.) IV International Workshop on
Agent-Oriented Software Engineering (AOSE’03). LNCS, vol. 2935, pp. 214–230. Springer,
Berlin (2003)

9. Fischer, K.: Agent-based design of holonic manufacturing systems. Robot. Auton. Syst. 27(1–
2), 3–13 (1999)

10. Fischer, K., Hahn, C., Madrigal-Mora, C.: Agent-oriented software engineering: a model-
driven approach. Int. J. Agent-Oriented Softw. Eng. 1, 334–369 (2007)

http://www.lero.ie

214 J. Peña et al.

11. Francez, N., Forman, I.: Synchrony loosening transformations for interacting processes. In:
Baeten, J., Klop, J. (eds.) Proceedings of Concurr’91: Theories of Concurrency—Unification
and Extension. LNCS, vol. 527, pp. 27–30. Springer, Amsterdam (1991)

12. Francez, N., Forman, I.: Interacting Processes: A Multiparty Approach to Coordinated Dis-
tributed Programming. Addison-Wesley, Reading (1996)

13. Fromm, J.: The Emergence of Complexity. Kassel University Press, Kassel (2004)
14. Gerber, C., Siekmann, J., Vierke, G.: Flexible autonomy in holonic multi-agent systems. In:

AAAI Spring Symposium on Agents with Adjustable Autonomy (1999)
15. Gerber, C., Siekmann, J., Vierke, G.: Holonic multi-agent systems. Technical report RR-99-

03, DFKI, Kaiserslautern, Germany (1999)
16. Giret, A., Botti, V.: Towards an abstract recursive agent. Integr. Comput. Aided Eng. 11(2)

(2004)
17. Jennings, N.: An agent-based approach for building complex software systems. Commun.

ACM 44(4), 35–41 (2001)
18. Jennings, N.R.: Specification and implementation of a belief-desire-joint-intention architec-

ture for collaborative problem solving. Int. J. Intell. Coop. Inf. Syst. 2(3), 289–318 (1993)
19. Karageorgos, A., Mehandjiev, N.: A design complexity evaluation framework for agent-based

system engineering methodologies. In: Omicini, A., Petta, P., Pitt, J. (eds.) Fourth Interna-
tional Workshop Engineering Societies in the Agents World. LNCS, vol. 3071, pp. 258–274.
Springer, Berlin (2004)

20. Kendall, E.A.: Role modeling for agent system analysis, design, and implementation. IEEE
Concurr. 8(2), 34–41 (2000)

21. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process, 2nd edn. Prentice Hall, Upper Saddle River (2001)

22. Meyer, B.: Object-Oriented Software Construction. Prentice Hall, Hertfordshire (1988)
23. Mintzberg, H.: The Structuring of Organizations. Prentice Hall, Upper Saddle River (1978)
24. Odell, J.: Agents and complex systems. J. Object Technol. 1(2), 35–45 (2002)
25. Odell, J., Parunak, H.V.D., Bauer, B.: Representing agent interaction protocols in UML. In:

Proceedings of the 1th Int. Workshop on Agent-Oriented Software Engineering (AOSE’00).
LNCS, vol. 1957. Springer, Limerick (2000)

26. Parunak, H.V.D., Odell, J.: Representing social structures in UML. In: Müller, J.P., Andre, E.,
Sen, S., Frasson, C. (eds.) Proceedings of the Fifth International Conference on Autonomous
Agents, pp. 100–101. ACM Press, Montreal (2001)

27. Peña, J.: On improving the modelling of complex acquaintance organisations of agents.
A method fragment for the analysis phase. PhD thesis, University of Seville (2005)

28. Peña, J., Corchuelo, R., Ruiz-Cortés, A., Toro, M.: Towards an automatic method for detecting
synchrony loosening anomalies in the context of multiparty interactions. In: Actas del II taller
de trabajo sobre Desarrollo de Software Preciso. VI Jornadas de Ingeniería del Software y
Bases de Datos (JISBD’01), Almagro (Ciudad Real, Spain) (2001)

29. Peña, J., Hinchey, M.G., Cortés, A.R.: Multi-agent system product lines: challenges and ben-
efits. Commun. ACM 49(12), 82–84 (2006)

30. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 2nd edn. McGraw-Hill,
New York (1986)

31. Reenskaug, T.: A methodology for the design and description of complex, object-oriented
systems. Technical report, Center for Industrial Research, Oslo, Norway (November 1988)

32. Reenskaug, T.: Working with Objects: The OOram Software Engineering Method. Manning
Publications, Greenwich (1996)

33. Snowden, D., Kurtz, C.: The new dynamics of strategy: sense-making in a complex and com-
plicated world. IBM Syst. J. 42(3), 35–45 (2003)

34. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented Program-
ming, 2nd edn. Addison-Wesley, Reading (2002)

35. Wirfs-Brock, R., McKean, A.: Object-Oriented Design: Roles, Responsibilities, and Collabo-
rations. Addison-Wesley, Reading (1990)

36. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: the GAIA
methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

Part III
Complexity Control: Application Areas

Chapter 10
Service-Orientation: Conquering Complexity
with XMDD

Tiziana Margaria and Bernhard Steffen

10.1 Motivation

Industrial practice of application development and integration is increasingly char-
acterized by vaguely defined but urgent IT needs. Following pressure, external (by
the market or by changed regulations), or internal (by a merger, or for improve-
ment), it is clear that things (be they products, applications, or the own IT landscape)
must be changed, but how? Answering this question is typically impossible before
major parts of a realization are in place. This is due to the fact that only concrete
artifacts provide a sufficiently stable ground for a common understanding between
the involved stakeholders. Moreover, only when the customer has a tangible under-
standing of the options, can he effectively criticize and decide. One observes over
and over again that in today’s practice this kind of criticism starts only after a first
release of a system, and that it continues along the whole life cycle. This observa-
tion makes agility a if not the central requirement for industrial system design. The
problem here is twofold: how to manage the time pressure with adequate early feed-
back to the process owners, and how to manage the evolution of the systems over
a long and very heterogeneous lifetime, where further integration, repurposing, and
retargeting continuously changes the requirements on the fly. To do this, we need a
sort of agile and lean form of “complexity engineering” that should ideally be intrin-
sic in the development method and help align the needs of the business customers
(the process owners—who know the ‘what’) with the resulting implementation (the
‘how’) [31].

10.1.1 Complexity Engineering

Complexity of systems comes in very different flavors and dimension, e.g.,

• sheer size—of the solution itself or of the entities to be processed;

T. Margaria (�)
Chair Service and Software Engineering, University of Potsdam, Potsdam, Germany
e-mail: margaria@cs.uni-potsdam.de

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_10, © Springer-Verlag London Limited 2012

217

mailto:margaria@cs.uni-potsdam.de
http://dx.doi.org/10.1007/978-1-4471-2297-5_10

218 T. Margaria and B. Steffen

• conceptual complexity—the difficulty to understand any potential solution;
• and heterogeneity—the problem of integrating numerous partners, (communica-

tion) technologies, tools, and devices,

all of which can be again individually distinguished in inherent and actual com-
plexity. Here, the inherent complexity is due to the tackled problem, and cannot
be reduced without changing the problem, whereas the actual complexity refers to
the complexity of an actual solution, which often is much higher than the inherent
complexity.

The actually felt complexity may still be quite a different matter: ‘Divide and
Conquer’, or the ‘Separation of Concerns’ may split a global complexity into a
number of aspect-specific complexities, each of which, individually, may well be
comfortably tackled at different times, by different people, with different means, of-
ten exploiting powerful standard solutions. For example, designing a complex busi-
ness process can be done independently of integrating the involved applications and
devices, independently of managing the often thousands of corresponding process
instances on a network, and in particular, independently of the construction of the
Internet, without which worldwide end-to-end processes would be hardly possible.

In this chapter we want to address the importance and the role of the ‘felt’ com-
plexity/ies, which of course is quite subjective: the ‘felt’ complexity of any system
depends on the individual roles sensing it. Usually, the business process designer
does not feel the complexity of the realization and of the enactment, let alone the
complexity of the required infrastructure. Conversely, those responsible for the in-
frastructure may not feel the complexity of the business-critical End-to-End process,
its legal and economic consequences, and its vital implications for the company.

The central issue for a good and informed design of complex applications is
therefore a method that reconciles the subjective views and competencies of the
individual stakeholders into an adequate joint communication and decision-making
framework. The goal is to comfortably manage an adequate division of labor and
allow to easily exploit standards and available solutions in order to minimize the
felt complexity for all stakeholders.

10.1.2 Extreme Model-Driven Development

Extreme Model-Driven Development (XMDD) combines into a coherent paradigm
the decisive traits taken from:

• eXtreme programming, for providing immediate feedback through requirement
and design validation by means of model tracing, simulation, and early testing;

• service orientation, for virtualizing the implementation of functionality;
• aspect orientation, for treating crosscutting as well as role specific concerns mod-

ularly; and
• model-driven design, for controlling the overall development at the modeling

level.

10 Service-Orientation: Conquering Complexity with XMDD 219

Of course, XMDD cannot reduce the inherent complexity, but it can help make
it explicit and thus improve its understanding and its management. Indeed, XMDD
might probably add to the inherent complexity, but with the result that the individu-
ally felt complexities are rather low, due to the leveraging of standards, the division
of labor, and due to the “80/20” principle, i.e. the approach where the majority of
problems can be tackled easily, resorting to standard solutions, while only the few
really specific and tough problems are left for special consideration.

Consider Graphical User Interface (GUI) design: 10–20 years ago building a
GUI was a major project, involving substantial programming effort and pioneering
creativity—it often involved PhD level work. With today’s GUI libraries even begin-
ners can produce quite advanced standard GUIs in a matter of hours. The inherent
complexity of GUI design has not changed, but the advances in the foundational
technologies and standards make today the development of a standard GUI rather
easy. Another example is the development of parsers or compilers: in the 1970s,
writing a compiler was an art. Today most parsers and compilers are easily gener-
ated. Thus an originally major problem turned into commodity without the inherent
complexity being changed. To master unchanged and even increasing inherent com-
plexity of a system in such a way that the felt complexity of the solution is under-
standable, acceptable, and manageable by the different stakeholders is a matter of
adequate management of the actually felt complexity: this is the design space that
we need to be able to explore and adapt to during the creation of a new application
and throughout its lifetime. This is a question of agility and evolution.

10.1.3 Agility and Evolution

Separation of concerns and the lowering of the actually felt complexity are par-
ticularly important when agility is required and the solution must be able to re-
act flexibly and quickly to new requirements and changed frame conditions. This
agility is particularly necessary in areas like business processes, where the ability
to change may be business critical. In the aftermath of the 9/11 terrorist attacks
in 2001, airlines suffered immense losses because they were unable to adapt their
business processes quickly enough to the changed market conditions and demand,
ending in huge operational losses and insolvencies. Of course, situations like this
are special, but they happen more often than one realizes: after 9/11 the same in-
dustry suffered similar crises in the aftermath of the SARS outbreak in 2006, and
the Eyjafjallajokull volcanic eruption in 2010. So, there is no doubt that business
processes are under the continuous pressure of change and in demand of powerful
methods to manage the corresponding process evolution.

We will therefore focus on process modeling, agility, and evolution: How can
large End-to-End processes be seamlessly and immediately adapted to new needs?
Here is where ideas from eXtreme Programming (XP) enter the picture, and where
our One Thing Approach (OTA) has its major impact. We will show how we achieve
(a) application-level control, i.e., the continuous involvement of the customer and

220 T. Margaria and B. Steffen

application/business expert along the entire systems’ life cycle, including software
maintenance and evolution, together with (b) continuous and ongoing quality as-
surance with different means at different levels and phases (requirement valida-
tion, simulation, model checking, data flow analysis, testing, and monitoring), and
(c) specific support to easily and non-invasively integrate new technologies, in a
service-oriented way.

The key to our approach is to view the whole development process simply as a
complex hierarchical and interactive decision process, where each stakeholder, in-
cluding the application expert, is allowed to continuously place his/her decisions in
term of constraints, and each development or evolution step can be regarded sim-
ply as a transformation of this set of constraints. We use constraints to describe all
the pieces of knowledge and information that define and thus restrict the set of be-
haviors of the system. They comprise temporal constraints, loose process models,
symbolic typing, as well as the definition of roles and rights. This allows one to
continuously and globally monitor the consistency of the development and of the
evolution process via varying forms of constraint checking.

In the remainder of the chapter we will elaborate on these ideas in more detail.
Section 10.2 points to the importance of compatibility and interoperability as central
meta-constraints of any system, then Sect. 10.3 summarizes the XMDD approach.
Sections 10.4, 10.5 and 10.6 sketch our technical solution. Finally we will present
some case studies in Sect. 10.7, before we conclude in Sect. 10.8.

10.2 Technical Hurdles: Compatibility and Interoperability

Today’s systems require an unacceptable effort for deployment, which is typically
caused by incompatibilities, feature interactions, and the sometimes catastrophic be-
havior of component upgrades, which no longer behave as expected. This gets even
worse when considering heterogeneous, cross-organizational systems, whose com-
ponents and interfaces typically evolve independently. Thus it is almost impossible
to keep up with the increasing pace of changing market requirements.

This situation arises mainly due to the level on which systems are technically
composed: even though high level languages and even model-driven development
are used for component development, the system-level point of view is not yet ade-
quately supported. In particular, the deployment of a heterogeneous systems is still
a matter of assembly-level search for the reasons of incompatibility, which may be
due to minimal version changes, slight hardware incompatibilities, or simply due
to bugs, which come to surface only in a new, collaborative context of application.
Integration testing and the quest for ‘true’ interoperability are major cost factors and
major risks during a system implementation and deployment.

The hardware industry faced similar problems with even more dramatic conse-
quences a decade ago: hardware is by nature far more difficult to patch, making
failure of compatibility a real disaster. The trend since the late 1990s has been to
move beyond VLSI towards Systems-on-a-Chip in order to guarantee larger inte-
gration in both senses: physically, by compacting complex systems on a single chip

10 Service-Orientation: Conquering Complexity with XMDD 221

Fig. 10.1 The XMDD
process

instead of physically wiring them on a board, but also conceptually, by integrating
the components well before the silicon level, namely already at the design level.
Rather than combining chips (the classical approach), hardware engineers started to
directly combine the component’s designs and to produce (in their terms, synthe-
size) system-level solutions that are homogeneous at the silicon level. Interestingly,
they solve the problem of compatibility by moving it to a higher level of abstraction
and going towards more homogeneous final products.

XMDD is a paradigm for application development that is conceptually closely
related to the sketched SoC approach.

10.3 XMDD: Extreme Model-Driven Development

At the larger scale of system development, moving the problem of compatibility to
a higher level of abstraction means moving it to the modeling level (see Fig. 10.1):
rather than using the models, as is usual in the Component Based Development
paradigm, just as a means of specification, which

• need to be compiled to become a ‘real thing’ (e.g., a component of a software
library),

• must be updated (but typically are not), whenever the real thing changes, and
• typically only provide a local view of a portion or an aspect of a system,

models should be put at the center of the design activity, becoming the first class
entities of the global system design process. In such an approach, as shown on the
right side of Fig. 10.1,

• libraries should be established at the model level: building blocks should be (ele-
mentary) models rather than software components;

• systems should be specified by model combinations (composition, configuration,
superposition, conjunction . . .), viewed as a set of constraints that the implemen-
tation needs to satisfy;

• global model combinations should be compiled (synthesized, e.g., by solving all
the imposed constraints) into a homogeneous solution for a desired environment,
which includes the realization of an adequate technology mapping;

222 T. Margaria and B. Steffen

• system changes (upgrades, customer-specific adaptations, new versions, etc.)
should happen only (or at least primarily) at the model level, with a subsequent
global recompilation (re-synthesis);

• optimizations should be kept distinct from design issues, in order to maintain
the information on the structure and the design decisions independently of the
considerations that lead to a particular optimized implementation.

Using XMDD—which strictly separates compatibility, migration, and optimization
issues from model/functionality composition—it would be possible to overcome the
problem of incompatibility between

• (global) models and (global) implementations, which is guaranteed and later-on
maintained by (semi-)automatic compilation and synthesis, as well as between

• system components, paradigms, and hardware platforms: a dedicated compila-
tion/synthesis of the considered global functionality for a specific platform archi-
tecture avoids the problems of incompatible design decisions for the individual
components.

In essence, delaying the compilation/synthesis until all parameters are known (e.g.,
all compatibility constraints are available), may drastically simplify this task, as
the individual parts can already be compiled/synthesized specifically for the current
global context. In a good setup, this should not only simplify the integration issue
(rather than having to be open for all eventualities, one can concentrate on precisely
given circumstances), but also improve the efficiency of the compiled/synthesized
implementations.

XMDD has the potential to drastically reduce the long-term costs due to version
incompatibility, system migration and upgrading, and lower risk factors like vendor
and technology dependency. Thus it helps protect investment in the software infras-
tructure. We are convinced that this extreme style of model-driven development will
become the development style at least for mass-customized software in the future.

In particular we believe that XMDD, even though drastically different from state
of the art industrial system design—which is itself driven right from the beginning
by the underlying platform—will change the state of the art: technology moves so
fast, and the varieties are so manifold that the classical platform-focused develop-
ment will find its limits very soon.

10.4 Central Issues to be Addressed

In order to fully leverage the XMDD potential, and by this decrease the felt com-
plexity, a number of issues need to be addressed:

• the design of adequate modeling patterns;
• the adaptation of analysis, verification, and compilation techniques and tools to

the XMDD setting; and
• the realization of automatic deployment procedures.

10 Service-Orientation: Conquering Complexity with XMDD 223

10.4.1 Heterogeneous Landscape of Models

One of the major challenges for software engineering is that software is multi-
dimensional: it comprises a number of different (loosely related) dimensions, which
typically need to be modeled in different styles in order to be treated adequately.
Important for simplifying the software/application development is the reduction of
the complexity of this multi-dimensional space, by placing it into some standard
scenario. Such reductions are typically application-specific. Besides simplifying the
application development they also provide a handle for the required automatic com-
pilation and deployment procedures.

Typical among these dimensions—also called views—are the following:

• The (user) process view, which describes the dynamic behavior of the system.
How does it behave under each circumstance?

• The architectural view, which expresses the static structure of the software (de-
pendencies like nesting, inheritance, and references). This should not be confused
with the architectural view of the hardware platform, which may indeed be dras-
tically different. The charm of the OO-style was that it claimed to bridge the gap
to the user/process view.

• The exception view, which addresses the system’s behavior under malicious or
even unforeseen circumstances.

• The timing view, which captures real time aspects.
• The various thematic views concerned with roles, specific requirements, and other

aspect-like points of view.

Of course, UML already tries to address all these facets in a unifying way. How-
ever, UML is currently rather a heterogeneous, expressive sample of languages,
which lacks a clear notion of (conceptual) integration like consistency and the idea
of global dynamic behavior. Such aspects are currently dealt with independently,
e.g., by means of concepts like contracts [1] (or more generally, and more com-
plexly, via business-rules oriented programming like e.g., in JRules.1 The latter
concepts are also not supported by systematic means for guaranteeing consistency.
In contrast, XMDD views these heterogeneous specifications (consisting of essen-
tially independent models) just as constraints which must be respected during the
compilation/synthesis phase (see also [42]).

Another popular approach is Aspect Oriented Programming (AOP) [5, 13]. It has
striking success stories for specific purposes (exception handling, access and tim-
ing control, insertion of assertions, etc.), but becomes rather intricate when used to
solve more general problems. The idea here is to treat different aspects separately
in the code, and then to weave the separate code fragments together. In general this
requires a precise understanding of the weaving mechanism, which may be more
complicated than programming the overall system traditionally. This is due to the
fact that the claimed modularity is only in the file structure—not on the concep-
tual side. In other words, AOP allows one to write down the aspects separately,

1The JRules website is here: http://www.ilog.com/.

http://www.ilog.com/

224 T. Margaria and B. Steffen

but understanding their mutual global impact may require a deep understanding of
weaving, and, even worse, of the result of weaving, which very much reminds of an
interleaving expansion of a highly distributed system.

10.4.2 Formal Methods and Tools

There are numerous formal methods and tools addressing validation, ranging from
methods for correctness-by-construction/rule-based transformation, correctness cal-
culi, model checkers, and constraint solvers to tools in practical use like PVS [41],
Bandera [6], and SLAM [4] to name just a few. On the compiler side there are com-
plex (optimizing) compiler suites, code generators, and controller synthesizers, and
other methods to support technology mapping. A complete account of these meth-
ods is beyond the purpose of this chapter. Here it is sufficient to note that there is a
high potential of available technology waiting to be used.

10.4.3 Automatic Deployment and Maintenance Support

This is the weakest point of the current practice: the deployment of complex sys-
tems on a heterogeneous, distributed platform is typically a nightmare, the required
system-level testing is virtually unsupported, and maintenance and upgrading very
often turn out to be extremely time consuming and expensive, de facto responsible
for the slogan “never change a running system”.

Still, in the same area there is a lot of technology one can build upon: the de-
velopment of Java and the JVM or the .NET activities are well-accepted means
to help getting models into operation, in particular, when heterogeneous hardware
is concerned. Interoperability can be established using CORBA, RMI, RPC, Web
services, complex middleware etc., and there are tools for testing and version man-
agement. Unfortunately, using these tools requires a lot of expertise, time to detect
undocumented anomalies and to develop patches, and this for every application to
be deployed.

XMDD differs radically from classical software development, which in our opin-
ion is no longer adequate for the bulk of application programming, particularly when
it comes to heterogeneous, cross-organizational systems which must adapt to rapidly
changing market requirements. Accordingly, a new approach to system development
needs to be developed.

10.5 The One Thing Approach

In XMDD, elaboration and refinement happen until a level is reached, where the
classical requirement/implementation gap reduces to service-oriented realization

10 Service-Orientation: Conquering Complexity with XMDD 225

of user/application-level functionalities. Thus rather than building highly complex
software architectures, XMDD is characterized by the management of complex hi-
erarchical models that orchestrate/coordinate user/application-level functionalities.

This perspective is now solidified by the One Thing Approach (OTA), which
combines the simplicity of the waterfall development paradigm with a maximum
of agility [34]. Key to OTA is to view the entire development process simply as
a cooperative hierarchical and interactive decision process, which is organized by
building and refining one comprehensive model, the ‘one thing’. Within this model,
each stakeholder, including the application expert, is allowed to continuously place
his/her decisions in term of constraints, and each development or evolution step
can be regarded simply as a transformation of the current constraint set. These con-
straints, which may comprise all kinds of aspects, can e.g. be expressed in terms
of

• (temporal) formulae expressing the intentions of the application, internal policies,
legal constraints or technical frame conditions;

• (loose) process models, specifying the rough distributed workflow from the man-
agement perspective without concern for technicalities like type correctness, lo-
cation or interoperability;

• (symbolic) type information, sufficient to imply executability (later to be enforced
by our synthesis technology);

• definitions of roles and rights, timing and localization constraints, and exception
handling, which are to be integrated during code generation in an aspect-oriented
fashion.

In this view, the waterfall character of the development process is no longer a
matter of development phase or a ‘before/after’, but rather a matter of the chosen de-
cision hierarchy: who can decide/modify what, what is the binding power of which
decisions, and how should conflicts be resolved. This approach, conceptually, allows
one (1) to monitor globally the consistency of the development or evolution process
simply via constraint checking, and (2) to impose a kind of decision hierarchy by
mapping areas of competencies to roles of individuals, in order to identify required
actions in case of constraint violation.

Like XP for programming in the small, this approach revolutionizes the pro-
cess/application development process. It replaces the typically long (interaction-
free) intervals between contract-and-requirements time and delivery-and-acceptance
time, with all its pitfalls, with a continuous, cooperative development process. Mis-
conceptions are revealed and can dealt with as they arise, and the understanding of
the application under construction (the user experience) naturally builds up along
the way. The new cooperative development and evolution style supports the agile
adjustment by

• keeping the customer continuously up to date: the impact of each design decision
on the application logic becomes apparent via the shared model, ‘One Thing’,
which provides the customer with a continuously updated user experience;

• focusing on the application logic, which allows one to repair and modify right at
the same level as where the need appears;

226 T. Margaria and B. Steffen

Fig. 10.2 The XMDD
process in the jABC

• following the service-oriented paradigm making it is easy to exchange/integrate
(third party) functionality in a non-invasive fashion.

10.6 The jABC as an XMDD Environment

The jABC [47, 48] is a framework designed to support systematic development
according to the XMDD paradigm within the One Thing Approach. Developed at
METAFrame Technologies in cooperation with the TU Dortmund, it is intended to
promote the XMDD-style of development in order to move the responsibility and
control of application development for certain classes of applications towards the
application expert. In its current version2 the jABC supports an agile and coopera-
tive development of service-oriented systems along the lines of the One-Thing Ap-
proach. Technically it comprises the three features discussed above (cf. Fig. 10.2):

1. Heterogeneous landscape of models: the central model structure of the jABC
are hierarchical Service Logic Graphs (SLGs) [30, 43]. SLGs are flowchart-
like graphs. They model the application behavior in terms of the intended pro-
cess flows, based on coarse granular building blocks called Service-Independent
Building blocks (SIBs). These are intended to be understood directly by the ap-
plication experts [43] i.e., independently of the structure of the underlying code,
which in our case is typically written in Java/C/C++. The component models
(SIBs or hierarchical subservices called GraphSIBs), the feature-based service
models—called Feature Logic Graphs (FLGs)—and the Global SLGs modeling
applications are all hierarchical SLGs.
The jABC also supports model specification in terms of
a. modal logics, to abstractly and loosely characterize valid behaviors: semantic

linear time logic (SLTL) [32, 44] is used for synthesis and the branching time
logic modal μ-calculus [14] for model checking,

2We refer to version 3.5 of jABC here.

10 Service-Orientation: Conquering Complexity with XMDD 227

b. a classification scheme for building blocks and types, and
c. high level type specifications, used to specify compatibility between the build-

ing blocks of the SLGs.
The granularity of the building blocks is essential here, as it determines the
level of abstraction all the subsequent reasoning is based upon: the verification
tools directly consider the SLGs as formal models, the names of the (parameter-
ized) building blocks as (parameterized) events, and the branching conditions as
(atomic) propositions. Thus the jABC focuses on the level of component (SIB)
composition rather than on component construction: its compatibility, its type
correctness, and its behavioral correctness are under formal methods’ control
[30].

2. Formal methods and tools: the jABC comprises a high-level type checker, two
model checkers, a model synthesizer, a compiler for SLGs, an interpreter, and a
view generator. The model synthesizer, the model checkers, and the type checker
take care of the consistency and compatibility conditions expressed by the four
kinds of constraints/models mentioned above.

3. Automatic deployment and maintenance support: an automated deployment pro-
cess, system-level testing [39], regression testing, version control, and online
monitoring [7] support the phases following initial deployment. In particular the
automatic deployment service needs some meta-modeling in advance; that has
been realized using the jABC itself. Likewise the testing services and the on-
line monitoring are themselves strong formal methods-based [40] and have been
realized via the jABC.

The jABC can be regarded as a first framework for XMDD. It is designed to
continuously involve the customer/application expert throughout the whole systems’
life cycle according to the OTA [34].

10.7 XMDD Case Studies in jABC

The XMDD paradigm has been successfully used in several contexts, at dif-
ferent abstraction levels. We will now illustrate how the jABC uniformly sup-
ports all the abstraction levels, from the requirements/design by non-IT experts in
Sect. 10.7.1, to application design in Sect. 10.7.2, to middleware-level configura-
tions in Sect. 10.7.3, complex, semantic web-enhanced processes in bioinformatics
in Sect. 10.7.4, and the application to the construction of a family of re-targetable
compilers in Sect. 10.7.5.

10.7.1 Requirements and Specification: Supply Chain
Management

In [8] we concentrate on the collaborative design of complex embedded systems in
the jABC, that has proven to be effective and adequate for team cooperation with

228 T. Margaria and B. Steffen

non-IT personnel. We show how our approach to model-driven collaborative de-
sign was applied to the requirement and specification phase of part of IKEA’s P3
Document Management Process (part of a new Supply Chain Management system),
where it complemented the Rational Unified Process development process already
in use. The central contribution of our approach is two-dimensional support of con-
sistency at the user process level:

• vertical consistency of models, e.g., across abstraction layers, as well as
• horizontal model consistency, which is needed, e.g. across organizational borders

within a same abstraction level.

In this particular case we had to bridge between various business process speci-
fications provided by business analysts on one side and use case/activity diagram
views needed as specifications by the IT designers on the other side. Based on
OTA, horizontal consistency was guaranteed by maintaining the global perspective
throughout the refinement process, down to the code level, and vertical consistency
by the simple discipline for refinement.

10.7.2 Application Construction: The SWS Challenge Mediation
Scenario

A case study that demonstrates a wide span of XMDD features, from the design by
modeling to the deployment and test, is our solution with jABC of the Mediation
scenario of the Semantic Web Service (SWS) Challenge, as described in [16].

There, we show how we solved the Mediation task (a benchmark scenario of
the Challenge, described in [23]) in a model driven, service oriented fashion using
the jABC framework for model driven development and its jETI extension [44] for
seamless integration of remote (Web) services. In particular we illustrate:

• how atomic services and orchestrations are modeled in the jABC;
• how legacy services and their proxies are represented within our framework, and

how they are imported into our framework;
• how the mediators arise as orchestrations of the testbed’s remote services and of

local services;
• how vital properties of the Mediator are verified via model checking in the jABC;

and
• how jABC/jETI orchestrated services are exported as Web services.

Besides providing a solution to the mediation problem, this also illustrates the
agility of jABC-based solutions, since in the Challenge each scenario comprises a
set of problems that come in different levels that build on top of each other. One
of the central assessments is the ability of a methodology and of the corresponding
technologies and tools to leverage on the first-level solutions to accommodate the
changes/extensions required by the subsequent levels with minimal intrusion (in the
solution and platforms) and effort (of a modeler/programmer).

10 Service-Orientation: Conquering Complexity with XMDD 229

The flexibility of the approach has been recently shown in two orthogonal direc-
tions:

• the flexibility of the automatic service composition via orchestration synthesis,
which had been shown in [29, 32, 44] and demonstrated on the concrete case of
the mediation scenario with a number of different construction principles, tools
and algorithms in [15, 26];

• the flexibility in coping with changed platform realities—as is common in busi-
ness evolution—that has been shown in [36] along two different directions of
migration/extension of the underlying ERP platform.

10.7.3 Middleware Services: MaTRICS

In [3] we present how we realize in jABC the remote configuration and fault tol-
erance of the Online Conference Service [24] with our service oriented framework
MaTRICS [2]. MaTRICS is our model-based service-oriented platform for remote
intelligent configuration and management of systems and services. It is built on top
of the jABC, thus it inherits the XMDD perspective. One of the central services of-
fered by MaTRICS is the provision of low-overhead high-availability mechanisms
for complex applications that run on distributed platforms. Our solution leaves the
services untouched and uses the open source cluster management software, heart-
beat3 [38], to provide the high availability features. We showed there how jABC’s
XMDD approach supports the management services at, or close to, the middleware
and operating system level, providing a user-friendly level of service models (im-
plemented as SLGs according to the XMDD paradigm) for the monitoring (sens-
ing of correct functionality) and the reconfiguration/service migration (actuating the
changes on the cluster by steering heartbeat functionality). This is in contrast with
the usual, script-based, heartbeat working manner, which is strictly code-based.

Reexamining the six issues mentioned in Sect. 10.1, in this case study:

• we structure the high-availability solution from the application perspective, for
an application-level definition and management of the high-availability services
well above the scripting level (user-centric modeling);

• we enable the model-level validation of the application logic (animation-based
requirement validation and model checking), opposed to the sole testing possible
in a script-based solution;

• we find an adequate, higher, and more declarative level, where application mod-
eling is handed over to the implementation of (elementary) services. The library
of services provided by MaTRICS has been extended by a new, reusable collec-
tion that internally uses heartbeat. This establishes a higher-level domain-specific
language and service library for high-availability monitoring and enforcement;

3The Linux high-availability software website is here: http://www.linux-ha.org.

http://www.linux-ha.org

230 T. Margaria and B. Steffen

• we automatically deploy the new services, which are complex aggregations and
enhanced compositions of the middleware services they embed;

• the new high-availability services and test cases are themselves monitorable at
run time; and

• they are easily adaptable according to new requirements and to new platforms.

10.7.4 Bioinformatics Processes: Bio-JETI

Applying XMDD in the field of bioinformatics workflows led to the development
of Bio-jETI [25] as a service platform for interdisciplinary work on biological ap-
plication domains. The following advantages of the approach became evident for
bioinformatics workflow management:

• Integration of heterogeneous resources into a homogeneous environment. With
GeneFisher-P [20], for instance, we built a process-based variant of a software
for Polymerase Chain Reaction (PCR) primer design.4 Within GeneFisher-P we
reuse several standard web services and a number of legacy tools that have been
integrated with the help of the jETI technology [27] using the jABC modeling
framework as the behavioral integration and interoperability layer. Within Bio-
jETI, both these remote services and locally available auxiliary functionality (for
tasks like file handling) have a uniform appearance (as SIBs) and can be used in
the same fashion for workflow/process development.

• Agility of workflow design. With XMDD, even complex heterogeneous workflows
can be easily changed or extended at the graphical level. In [17] we built several
variations of workflows for the frequently needed multiple sequence alignment
computation. We provided a set of preconfigured services and workflow snippets
on a canvas, so that variations of an alignment workflow, for instance reading
the input sequences either from a local file or from a remote database, or call-
ing an alignment service either at the European Bioinformatics Institute or at the
Bielefeld Bioinformatics Server, can be built by simply redirecting the branches
between the services according to the intended workflow.

• Deployment to different target platforms. Using the Genesys code generation
framework [9], Bio-jETI models can be compiled into different target languages.
We translated a bioinformatics worfklow (performing a homology search and sub-
sequently a multiple sequence alignment with the obtained sequences) into differ-
ent flavors of native Java code and compared the execution times of the resulting
applications, showing that the overhead that is introduced by the model-driven
development process is negligible [18].

Moreover, the application of formal methods to support the development pro-
cess is intended within OTA and has also become part of Bio-jETI: Model check-
ing supports the detection of conceptual errors as well as of type inconsistencies,

4PCR primers are small nucleic acids that are required for initiating the amplification of DNA
fragments.

10 Service-Orientation: Conquering Complexity with XMDD 231

Fig. 10.3 From MDD to
XMDD: no round trip
engineering

whereas process synthesis methods can be applied to fill gaps within workflows au-
tomatically [19]. The bioinformatics community has made significant progress in
equipping their services with metadata in terms of Semantic Web technology, and is
thus often already providing the information that is needed for proper application of
our synthesis techniques. For example, the European Molecular Biology Open Soft-
ware Suite (EMBOSS) comprises around 350 biological sequence analysis tools,
and the EMBRACE Ontology for Data and Methods (EDAM) ontology provides
a controlled vocabulary for bioinformatics types and services. We showed in dif-
ferent case studies that (semi-)automatic workflow composition (of EMBOSS tools
according to the EDAM ontology) delivers excellent results [18, 21] and can be ex-
ploited in practice within the XMDD concept, in what we call a loose programming
approach [22].

10.7.5 Code Generation: The Genesys Framework

In contrast to the previous application areas, Genesys does not just profit from the
XMDD approach, but is itself an important constituent of it: its fully automatic code
generation capability allows the users of the jABC to design, control, and modify
their process models at the application level, without any need for code-level mod-
ification, and consequently, without the burden of round-trip engineering [49] (see
Fig. 10.3). Thanks to Genesys, generated code can be considered a “by-product”
that must never be touched manually, as it can readily be obtained by full code
generation.

Genesys [9, 10, 12] is a framework for the high-level engineering of code gen-
erators in XMDD fashion [30, 33, 35]: code generators are modeled as SLGs based
on a model and service library that is specifically adapted for the domain of code
generation. This library is constantly growing, as any newly developed artifact may
immediately contribute to the library, which does not only comprise individual code

232 T. Margaria and B. Steffen

Fig. 10.4 Excerpt of the Genesys product line

generation functionalities, but also complex reusable features like error handling
or code beautification, or even entire (models of) code generators. This is a conse-
quence of the fact that SLGs can be truly hierarchical, which grants high reusability
not only of the building blocks, but also of the models themselves, independent of
their size [45].

Genesys also profits from jABC’s clear support of service orientation [37], which
allows one to seamlessly integrate third party functionality via SIBs [28]. This
could be exploited to enhance Genesys’ process-oriented modeling power with An-
droMDA’s5 strength for modeling static aspects [11].

The close synergy between jABC and Genesys is best illustrated when looking
at Genesys-generated code generators, which target Java, C#, Ruby, Objective-C, as
well as BPEL, Lego Mindstorms, Android, iPhone, and more. Figure 10.4 shows
an excerpt of this code generation ‘product line’, which can be extended and main-

5The AndroMDA website is here: http://www.andromda.org/.

http://www.andromda.org/

10 Service-Orientation: Conquering Complexity with XMDD 233

tained within the jABC. This provides the means to validate the code generators at
the model-level with respect to an increasing set of temporal properties expressing,
e.g., the completeness of the applied tool chain or of the treatment of all involved
artifacts, like parameters, local variables, and sub-models [9, 10, 46]. Experience
shows that this approach significantly accelerates the development of new code gen-
erators by facilitating reuse of SIBs, models, and properties in a way that allows code
generators to seamlessly evolve from each other [9, 35, 36].

10.8 Conclusions and Perspectives

We have advocated with XMMD a new direction for mastering of complexity in the
service-oriented design of complex applications by combining ideas taken from eX-
treme programming, model-driven design, as well as aspect and service orientation.
Central is here the ‘One-Thing Approach’, which works by successively enriching
and refining one single artifact, which, throughout the whole life-cycle, maintains a
direct link between user-centric high-level models and the corresponding evolving
running application. This approach is tailored to address the need for agile and lean
development, which is particularly evident when it comes to heterogeneous, cross
organizational systems which must adapt to rapidly changing market requirements.
We have sketched the impact of this lightweight and cooperative development style
that puts the user process at the center of development and the application expert in
control of the process evolution by means of a number of case studies that indicate
the breadth of applicability.

XMDD is not intended to replace genuine software development, as it assumes
techniques to be able to solve problems (like synthesis or technology mapping)
which are undecidable in general. On the other hand, more than 90% of the software
development costs that arise worldwide concern a rather elementary software devel-
opment level—as during routine application programming or software updates—
where there are no technological or design challenges. There, the major problem
faced is the management and control of software quantity, as it arises, e.g., through
fast-evolving product lines, or instant solutions to solve an immediate but short-term
need. XMDD is intended to address (a significant part of) this 90% ‘niche’.

References

1. Andrade, L., Fiadeiro, J.L.: Architecture based evolution of software systems. In: Formal
Methods for Software Architectures. Lecture Notes in Computer Science, vol. 2804, pp. 148–
181. Springer, Berlin (2003)

2. Bajohr, M., Margaria, T.: MaTRICS: a service-based management tool for remote intelligent
configuration of systems. Innovations Syst. Softw. Eng. 2, 99–111 (2006)

3. Bajohr, M., Margaria, T.: High service availability in MaTRICS for the OCS. In: Margaria,
T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation.
Communications in Computer and Information Science, vol. 17, pp. 572–586. Springer, Berlin
(2009)

234 T. Margaria and B. Steffen

4. Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software predicate
abstraction. In: Tools and Algorithms for the Construction and Analysis of Systems, 10th
International Conference, TACAS 2004, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29–April 2, 2004.
Lecture Notes in Computer Science, vol. 2988, pp. 388–403. Springer, Berlin (2004)

5. Colyer, A., Clement, A., Harley, G., Webster, M.: Eclipse Aspectj: Aspect-Oriented Program-
ming with Aspectj and the Eclipse Aspectj Development Tools. Addison-Wesley, Reading
(2004)

6. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Robbie: Bandera: a source-level interface for model
checking Java programs. In: ICSE, pp. 762–765 (2000)

7. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated regular ex-
trapolation. In: Kutsche, R.-D., Weber, H. (eds.) Fundamental Approaches to Software Engi-
neering, 5th International Conference, FASE 2002, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8–12, 2002.
Lecture Notes in Computer Science, vol. 2306, pp. 80–95. Springer, Berlin (2002)

8. Hörmann, M., Margaria, T., Mender, T., Nagel, R., Steffen, B., Trinh, H.: The jABC approach
to rigorous collaborative development of SCM applications. In: Margaria, T., Steffen, B. (eds.)
Leveraging Applications of Formal Methods, Verification and Validation, Third International
Symposium, ISoLA 2008, Porto Sani, Greece, October 13–15, 2008. Communications in
Computer and Information Science, vol. 17, pp. 724–737. Springer, Berlin (2008)

9. Jörges, S., Margaria, T., Steffen, B.: Genesys: service-oriented construction of property con-
form code generators. Innovations Syst. Softw. Eng. 4(4), 361–384 (2008)

10. Jörges, S., Margaria, T., Steffen, B.: Assuring property conformance of code generators via
model checking. Form. Asp. Comput. 1–18 (2010). doi:10.1007/s00165-010-0169-9

11. Jörges, S., Steffen, B.: Leveraging service-orientation for combining code generation frame-
works. In: 16th Annual IEEE International Conference on the Engineering of Complex Com-
puter Systems (ICECCS), pp. 198–207 (2011)

12. Jörges, S., Steffen, B., Margaria, T.: Building code generators with Genesys: a tutorial intro-
duction. In: 3rd International Summer School Conference on Generative and Transformational
Techniques in Software Engineering III. GTTSE’09, pp. 364–385. Springer, Berlin (2011)

13. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., Irwin, J.:
Aspect-oriented programming. In: ECOOP, pp. 220–242 (1997)

14. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–354 (1983)
15. Kubczak, C., Margaria, T., Steffen, B.: Mashup development for everybody: a planning-based

approach. In: 3rd Int. Worksh. on Service Matchmaking and Resource Retrieval in the Seman-
tic Web, Colocated with ISWC-2009, Washington, DC, USA. CEUR Workshop Proceedings,
vol. 525 (2009)

16. Kubczak, C., Margaria, T., Steffen, B., Nagel, R.: Service-oriented mediation with jABC/jETI.
In: Petrie, C., Margaria, T., Zaremba, M., Lausen, H. (eds.) Semantic Web Services Challenge:
Results from the First Year, pp. 71–99. Springer, Berlin (2009)

17. Lamprecht, A.-L., Margaria, T., Steffen, B.: Seven variations of an alignment workflow—an
illustration of agile process design and management in Bio-jETI. In: Mandoiu, I.I., Sunderra-
man, R., Zelikovsky, A. (eds.) Bioinformatics Research and Applications, Fourth International
Symposium, ISBRA 2008, Atlanta, GA, USA, May 6–9, 2008. Lecture Notes in Computer
Science, vol. 4983, pp. 445–456. Springer, Berlin (2008)

18. Lamprecht, A.-L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-based ser-
vice composition. BMC Bioinform. 10(S-10), 8 (2009)

19. Lamprecht, A.-L., Margaria, T., Steffen, B.: Supporting process development in Bio-jETI by
model checking and synthesis. In: SWAT4LS-2009, Semantic Web Applications and Tools for
Life Sciences. Proceedings of the Workshop on Semantic Web Applications and Tools for Life
Sciences, Amsterdam, The Netherlands, November 20, 2009. CEUR Workshop Proceedings,
vol. 559 (2009)

20. Lamprecht, A.-L., Margaria, T., Steffen, B., Sczyrba, A., Hartmeier, S., Giegerich, R.:
GeneFisher-P: variations of genefisher as processes in Bio-jETI. BMC Bioinform. 9(S-4)
(2008). doi:10.1186/1471-2105-9-S4-S13

http://dx.doi.org/10.1007/s00165-010-0169-9
http://dx.doi.org/10.1186/1471-2105-9-S4-S13

10 Service-Orientation: Conquering Complexity with XMDD 235

21. Lamprecht, A.-L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based composition of
EMBOSS services. J. Biomed. Semant. 2(Suppl 1), 5 (2011)

22. Lamprecht, A.-L., Naujokat, S., Steffen, B., Margaria, T.: Constraint-guided workflow com-
position based on the EDAM ontology. CoRR arXiv:1012.1640 (2010)

23. Lausen, H., Künster, U., Petrie, C., Zaremba, M., Komazec, S.: SWS challenge scenarios. In:
Semantic Web Services Challenge Results from the First Year. Springer, Berlin (2009)

24. Margaria, T., Karusseit, M.: Community usage of the online conference service: an experience
report from three CS conferences. In: Monteiro, J.L., Swatman, P.M.C., Tavares, L.V. (eds.)
Towards the Knowledge Society: eCommerce, eBusiness, and eGovernment, the Second IFIP
Conference on E-Commerce, E-Business, E-Government (I3E 2002), Lisbon, Portugal, Octo-
ber 7–9, 2002, pp. 497–511 (2002)

25. Margaria, T., Kubczak, C., Steffen, B.: Bio-jETI: a service integration, design, and provi-
sioning platform for orchestrated bioinformatics processes. BMC Bioinform. 9(S-4) (2008).
doi:10.1186/1471-2105-9-S4-S12

26. Margaria, T., Meyer, D., Kubczak, C., Isberner, M., Steffen, B.: Synthesizing semantic web
service compositions with jMosel and Golog. In: Bernstein, A., Karger, D.R., Heath, T.,
Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) 8th International Seman-
tic Web Conference, ISWC 2009, Chantilly, VA, USA, October 25–29, 2009. Lecture Notes
in Computer Science, vol. 5823, pp. 392–407. Springer, Berlin (2009)

27. Margaria, T., Nagel, R., Steffen, B.: jETI: a tool for remote tool integration. In: Halbwachs, N.,
Zuck, L.D. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, 11th
International Conference, TACAS 2005, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, 4–8 April 2005, pp. 557–562
(2005)

28. Margaria, T., Nagel, R., Steffen, B.: Remote integration and coordination of verification tools
in JETI. In: 12th IEEE International Conference on the Engineering of Computer-Based Sys-
tems (ECBS 2005), Greenbelt, MD, USA, 4–7 April 2005, pp. 431–436 (2005)

29. Margaria, T., Steffen, B.: Backtracking-free design planning by automatic synthesis in
metaframe. In: FASE, pp. 188–204 (1998)

30. Margaria, T., Steffen, B.: Lightweight coarse-grained coordination: a scalable system-level
approach. Int. J. Softw. Tools Technol. Transf. 5(2–3), 107–123 (2004)

31. Margaria, T., Steffen, B.: From the how to the what. In: Meyer, B., Woodcock, J. (eds.) Verified
Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference, VSTTE 2005,
Zurich, Switzerland, October 10–13, 2005, Revised Selected Papers and Discussions, pp. 448–
459 (2005)

32. Margaria, T., Steffen, B.: LTL guided planning: revisiting automatic tool composition in ETI.
In: 31st Annual IEEE / NASA Software Engineering Workshop (SEW-31 2007), Loyola Col-
lege, Columbia, MD, USA, 6–8 March 2007, pp. 214–226 (2007)

33. Margaria, T., Steffen, B.: Agile IT: Thinking in user-centric models. In: Margaria, T., Steffen,
B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation, Third In-
ternational Symposium, ISoLA 2008, Porto Sani, Greece, October 13–15, 2008, pp. 490–502
(2008)

34. Margaria, T., Steffen, B.: Business process modelling in the jABC: the one-thing approach. In:
Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on Business Process Modeling,
pp. 1–26. IGI Global, Hershey (2009)

35. Margaria, T., Steffen, B.: Continuous model-driven engineering. IEEE Comput. 42(10), 106–
109 (2009)

36. Margaria, T., Steffen, B., Kubczak, C.: Evolution support in heterogeneous service-oriented
landscapes. J. Braz. Comput. Soc. 16(1), 35–47 (2010)

37. Margaria, T., Steffen, B., Reitenspieß, M.: Service-oriented design: the roots. In: Benatallah,
B., Casati, F., Traverso, P. (eds.) Service-Oriented Computing—ICSOC 2005, Third Interna-
tional Conference, Amsterdam, The Netherlands, December 12–15, 2005. Lecture Notes in
Computer Science, vol. 3826, pp. 450–464 (2005)

38. Marowsky-Brée, L.: A new cluster resource manager for heartbeat. In: UKUUG LISA/Winter
Conf. on High-Availability and Reliability, Bournemouth (UK) (2004)

http://arxiv.org/abs/arXiv:1012.1640
http://dx.doi.org/10.1186/1471-2105-9-S4-S12

236 T. Margaria and B. Steffen

39. Niese, O., Margaria, T., Hagerer, A., Nagelmann, M., Steffen, B., Brune, G., Ide, H.-D.: An
automated testing environment for CTI systems using concepts for specification and verifica-
tion of workflows. Annu. Rev. Commun. 54, 927–936 (2001)

40. Niese, O., Steffen, B., Margaria, T., Hagerer, A., Brune, G., Ide, H.-D.: Library-based de-
sign and consistency checking of system-level industrial test cases. In: Proceedings of the 4th
International Conference on Fundamental Approaches to Software Engineering. FASE ’01,
pp. 233–248. Springer, London (2001)

41. Shankar, N., Owre, S.: Principles and pragmatics of subtyping in PVS. In: Bert, D., Choppy,
C., Mosses, P.D. (eds.) Recent Trends in Algebraic Development Techniques, 14th Interna-
tional Workshop, WADT ’99, Château de Bonas, France, September 15–18, 1999, Selected
Papers, pp. 37–52 (1999)

42. Steffen, B.: Unifying models. In: Reischuk, R., Morvan, M. (eds.) STACS 97, 14th Annual
Symposium on Theoretical Aspects of Computer Science, Lübeck, Germany, February 27–
March 1, 1997, pp. 1–20 (1997)

43. Steffen, B., Margaria, T.: METAFrame in practice: design of intelligent network services.
In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design, Recent Insight and Advances,
pp. 390–415, (to Hans Langmaack on the occasion of his retirement from his professorship at
the University of Kiel) (1999)

44. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform: concepts and
design. Int. J. Softw. Tools Technol. Transf. 1(1–2), 9–30 (1997)

45. Steffen, B., Margaria, T., Braun, V., Kalt, N.: Hierarchical service definition. Annu. Rev. Com-
mun. 51, 847–856 (1997)

46. Steffen, B., Margaria, T., Claßen, A., Braun, V.: Incremental formalization: a key to industrial
success. Softw. Concepts Tools 17(2), 78 (1996)

47. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-driven development with
the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) Hardware and Software, Verification and Testing,
Second International Haifa Verification Conference, HVC 2006, Haifa, Israel, October 23–26,
2006. Revised Selected Papers. Lecture Notes in Computer Science, vol. 4383, pp. 92–108.
Springer, Berlin (2006)

48. Steffen, B., Narayan, P.: Full life-cycle support for end-to-end processes. IEEE Comput.
40(11), 64–73 (2007)

49. Steffen, B., Wagner, C., Margaria, T.: Round-trip engineering vs. one-thing approach. In: La-
plante, P.A. (ed.) Encyclopedia of Software Engineering. Auerbach Publications, Boca Raton
(2010)

Chapter 11
Ten Commandments of Formal Methods. . .
Ten Years On

Jonathan P. Bowen and Mike Hinchey

11.1 Introduction

More than a decade ago, in “Ten Commandments of Formal Methods,” [2], we
offered practical guidelines for projects that sought to use formal methods. Over
the years, the article, which was based on our knowledge of successful industrial
projects [7], has been widely cited and has generated much positive feedback. How-
ever, despite this apparent enthusiasm, formal methods use has not greatly increased,
and some of the same attitudes about the infeasibility of adopting them persist.

In 1995, Bertrand Meyer stated that the advancement of software requires a more
mathematical approach [12]. Likewise, formal methodists believe that introducing
greater rigor will improve the software development process and yield software with
better structure, greater maintainability, and fewer errors [6].

But while many acknowledge the existence of formal methods and their contin-
ued application in software engineering [9], the software engineering community as
a whole remains unconvinced of their usefulness. The myths and misconceptions
[1, 4] that surrounded formal methods when we wrote our original article in large
part still abound.

One misconception is the basic justification for formal methods—that they are
essential to avoid design flaws because software is bad, unique, and discontinuous,
and testing is inadequate. Michael Holloway, a proponent of formal methods at
NASA, argues that the justification is far simpler: Software engineers want to be real
engineers. Real engineers use mathematics. Formal methods are the mathematics of
software engineering. Therefore, software engineers should use formal methods.

Yet even with this elegant simplicity, most projects hold formal methods at arm’s
length unless they involve the design and maintenance of critical systems [15]. Some
formal techniques such as program assertions are reasonably popular, but they rep-
resent only a tiny slice of the vast formal methods pie.

J.P. Bowen (�)
Museophile Limited, London, UK
e-mail: jonathan.bowen@lsbu.ac.uk

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_11, © Springer-Verlag London Limited 2012

237

mailto:jonathan.bowen@lsbu.ac.uk
http://dx.doi.org/10.1007/978-1-4471-2297-5_11

238 J.P. Bowen and M. Hinchey

Oddly, despite their spotty application, formal methods continue to appear in the
trade literature [16]. Apparently, the software engineering community is not willing
to abandon formal methods, given the slight increase in formal methods projects [8],
but neither is it willing to embrace them.

Perhaps revisiting our commandments might explain this curious stalemate. Not
all our colleagues agreed with our final commandment choices, arguing that some
would not stand the test of time. Would a retrospective prove that our colleagues
were right?

11.2 I. Thou Shalt Choose an Appropriate Notation

Notations are a frequent complaint. . . but the real problem is to understand the meaning
and properties of the symbols and how they may and may not be manipulated, and to gain
fluency in using them to express new problems, solutions and proofs. Finally, you will
cultivate an appreciation of mathematical elegance and style. By that time, the symbols will
be invisible; you will see straight through them to what they mean. – C.A.R. Hoare

Many blame the use of mathematical notation for formal methods’ slow uptake and
believe it inhibits industrial application. The common view is that mathematical
expressions are beyond normal comprehension. In reality, the mathematics of formal
methods is based on notations and concepts that should be familiar to anyone with
a computing background, such as set theory and propositional and predicate logics.
Of course, customers and end users would need some training and explanation, but
the point is that formal methods notations are accessible or can be made that way.

But the first commandment addresses a larger issue than user comprehension.
“Appropriate” means that the notation has to fit the system it is meant to describe,
which can be tricky because some systems are quite large and complex. The more
popular notations—B, Calculus of Communicating Systems, Communicating Se-
quential Processes, and Z, for example—apply to a wide range of systems, but they
are not inclusive.

Thus, larger applications often require a combination of languages. Indeed, many
argue that no single notation will ever address all aspects of a complex system, im-
plying that future systems will require combinations of methods. Process algebras
and logics will become particularly important as systems become more sophisti-
cated.

As Table 11.1 shows, the trend over the past decade seems to support the aug-
menting of notations. The table gives just a flavor of the myriad hybrid formal meth-
ods that have emerged, strongly indicating the acceptance of combining notations
to address specific system aspects. We see three categories of these combinations:

• Viewpoints. In this loose coupling, different notations present different system
views, with each notation emphasizing a particular system aspect, such as timing
constraints.

• Method integration. In a closer coupling, several notations (both formal and in-
formal or semiformal) combine with manual or automatic translation between

11 Ten Commandments of Formal Methods. . . Ten Years On 239

Table 11.1 A sampling of hybrid formal methods since 1995

Name Combines Advantage

CSP-OZ Z, CSP Combines Z and CSP

Object Z Z, object-oriented principles,
temporal logic

Adds object orientation to Z

PiOz Object-Z, π-calculus Adds π-calculus style dynamic communication
capabilities to Object-Z

Temporal B B, temporal logic Adds time to the B method

Timed CSP CSP, time Adds time to CSP

TLZ Z, TLA Adds temporal aspects plus fairness constraints to Z
specification

WSCCS CCS, probability Adds probabilistic constraints to CCS specifications

ZCCS Z, CCS Combines CCS process algebra and state based
aspects of Z

Notes: CCS: Calculus of Communicating Systems; CSP: Communicating Sequential Processes;
OZ: Object-Z; PiOZ: π -calculus Object-Z; TLA: Temporal Logic of Actions; WSCCS: Weighted
Synchronous CCS

notations. The idea is to provide an underlying semantics for the less formal no-
tations, to enable well-understood graphical (or other) presentations, and to offer
the benefits of formal verification.

• Integrated methods. In a tight coupling, multiple notations combine within a sin-
gle framework (such as propositional logic) to give a uniform semantics to each
notation.

A decade ago, method integration was hot, and it seemed that integrated methods
would become equally popular. Although we see progress in integrated methods
[14], the viewpoints approach is the only one that seems to have gained ground.
Perhaps this is because of industry’s reluctance to take up full formal proofs, which
the more tightly coupled approaches would support. But it could also be its general
unwillingness to become preoccupied with semantic details.

This unwillingness underlines another misconception—in reality, an appropriate
notation can hide unnecessary detail and complexity, and this is a major benefit
of formal methods, not a liability. Developers are not only free to concentrate on
the essential issues, but they also gain a richer understanding of the system to be
developed.

Because formal specifications will often be significantly shorter than their imple-
mentation, they are likely to be more understandable. Some argue that a formal spec-
ification must be significantly shorter, but we disagree. The use of formal methods
and formal specification techniques can highlight problems or issues that developers
might not see at the coding level. In this case, even a longer formal specification is
valuable.

240 J.P. Bowen and M. Hinchey

Table 11.2 Formalization levels

Level Name Involves

0 Formal specification Using formal notation to specify requirements only;
no analysis or proof

1 Formal development/verification Proving properties and applying refinement
calculus

2 Machine-checked proofs Using a theorem prover or checker to prove
consistency and integrity

11.3 II. Thou Shalt Formalize but not Over-formalize

Strange as it seems, no amount of learning can cure stupidity, and formal education posi-
tively fortifies it. – Stephen Vizinczey

In our original article, we advised projects to distinguish between using formal
methods appropriately and formalization just for the sake of it. In some areas, such
as user interface design, projects could apply formal methods, but doing so might
not be the best choice.

In fact, a prominent myth (and one we listed in [1]) is that formal methods people
always use formal methods. In reality, many highly publicized projects proclaimed
as great formal methods successes formalized only 10 percent or less of the system.

Ten years ago, we noted the dearth of toolsets for most formal methods. Not
much has changed, although PerfectDeveloper by Escher Technologies and Atelier-
B from ClearSy are attempts to develop such tools.

Escher Technologies has even partially applied PerfectDeveloper to the tool’s
own redevelopment (for all but the graphical user interface), proving around 95 per-
cent of the approximately 130,000 verification conditions the tool generated. For
development of simpler systems, it has been used to achieve 100 percent proof
checking of the verification conditions. Mistakes are often found to be caused by
under-specification in practice. The Spark toolset from Praxis High Integrity Sys-
tems (http://www.altran-praxis.com/spark.aspx) is another example of applying an
industrial formal methods tool to itself.

The formal methods community seems to have taken the warning not to overfor-
malize somewhat to heart, and there is now more widespread belief that it’s best to
use formal methods as needed, mainly for key product parts. Cliff Jones introduced
“formal methods light,” which approximates Level 0 of the three formalization lev-
els in Table 11.2 (taken from [1]).

Even Level 0 formality can accrue many benefits because the importance of get-
ting requirements right at the outset cannot be overstated. Figure 11.1 shows a graph
of investment in the requirements phase of NASA projects and missions plotted
against the cost of project overruns. The obvious “demand curve” emphasizes that
getting requirements right has major payback later—or, conversely, that not getting
requirements right will come back to haunt you.

The use of mathematically based approaches has great potential to help eliminate
errors early in the design process. It is cheaper than trying to remove them in the

http://www.altran-praxis.com/spark.aspx

11 Ten Commandments of Formal Methods. . . Ten Years On 241

Fig. 11.1 Costs during the
requirements phase of NASA
projects vs. project overrun
costs. The curves show the
savings of getting
requirements right and the
price of getting them wrong.
Courtesy of W. Gruhl, NASA
Comptroller’s Office

testing phase or, worse, after deployment. Consequently, it is true that using formal
methods in the initial stages of the development process can help to improve the
quality of the later software, even if formal methods are not used in subsequent
phases of development.

11.4 III. Thou Shalt Estimate Costs

I think that God in creating Man somewhat overestimated his ability. – Oscar Wilde

When asked what they’d charge a customer for a software project, software en-
gineers often joke, “As much as we can possibly get away with.” Although that’s
meant to be humor, it reflects a certain mindset that carries over into estimating
development costs, where the strategy is often to make the best (usually highest)
estimate and then double it.

In the draft of [1], we had “guesstimate costs” instead of “estimate,” a term we
liked because a hybrid of “guess” and “estimate,” more closely captures the im-
precision of the exercise. (It did not survive the more precise art of copy editing,
however.) Even with several established models, among them CoCoMo II, cost es-
timation is far from a science. Development costs sometimes grandly exceed esti-
mates: The Darlington power plant and Space Shuttle software had cost overruns
that were significantly more than anyone could have foreseen. It was for that reason
that we strongly advocated both initial and continuous cost estimation—and we still
do.

Research shows that organizations spend 33 percent to 50 percent of their total
cost of ownership (TCO) preparing for or recovering from failures [11]. Hardware
costs continue to fall, yet TCO continues to rise, and system availability (and hence
reliability) is taking a hit. In this light, any cost estimates could be unrealistic, un-
derstated, or even unrealistically understated.

242 J.P. Bowen and M. Hinchey

However, we still firmly believe in having a cost estimate as well as some idea of
anticipated costs if a team elects to forego formal methods. A cost estimate is essen-
tial for convincing the development communities—both software and hardware—
that formal methods can indeed produce better systems for less.

11.5 IV. Thou Shalt Have a Formal Methods Guru on Call

An expert is a person who has made all the mistakes that can be made in a very narrow field.
– Niels Bohr

Part of what we found in our initial research is that most successful projects had
regular access to a formal methods expert. Many had several gurus to guide and
lead the formal development process and advise on complex aspects. Occasionally,
such experts were able to compensate for the development team’s lack of experience
in applying formal methods.

But access to an expert outside the team is not enough to ensure success. All
team members must understand the applicability of formal methods and contribute
to rather than inhibit their application. It is too easy for team members, on either the
management or technical side, to prevent effective formalization.

Formal methods require the right mix of effort, expertise, and knowledge. Al-
though not every team member needs the same formalization proficiency, at the
very least, all must appreciate what formal methods can achieve.

A formally verified program is only as good as its specification. If the specifica-
tion does not describe what the team truly wants, even a fully formally developed
system will be little more than useless. A team that doesn’t understand formal meth-
ods has only a notion of what they specified using a formal notation and is unclear
about how to refine the development process will almost certainly sink the project.
Perhaps this is why some quarters are skeptical about the benefits of formal meth-
ods.

So we stand by this commandment, although if we were writing the article today,
we might tweak it a bit to read, “Thou shalt have both a formal methods guru and
a domain expert from the outset.” Our experience with industrial projects over the
past decade has highlighted the importance of having both kinds of experts early
on [6].

11.6 V. Thou Shalt not Abandon Thy Traditional Development
Methods

A great many of those who ‘debunk’ traditional. . . values have in the background values of
their own which they believe to be immune from the debunking process. – C.S. Lewis

The software engineering community persists in embracing fads. Each new notation
or technique seems to have the unwritten guarantee of painless success. This is a

11 Ten Commandments of Formal Methods. . . Ten Years On 243

dangerous mindset, particularly when the notational flavor of the month becomes an
additional source of problems, not a magical solution. The Unified Modeling Lan-
guage, which has become ubiquitous in industrial applications over the past decade,
is a case in point. UML has some serious flaws, such as its lack of formality and
scant guidance on applying the newer graphical notations.

Fortunately, the UML community has recognized the need to address the first
flaw. Formal methods research has spent some time considering formalization in the
context of UML, which has led to the formation of the precise UML (pUML) group.
There is also work at the University of Southampton on the tool-based integration
of the B-Method, a formal approach, and UML. Such improvements are likely to
show up in future UML developments.

Another caveat to using UML is that it essentially standardizes several existing
and emerging graphical notations for system specification. Many of these notations
have been around since the 1970s, with only slight variations in their representation,
but a wide variety of new graphical notations have recently joined the list. Some
of these are there for good reason; others, because they had support from particu-
lar quarters. Unfortunately, UML tends to deemphasize the particular development
method, so although it provides a range of notations, it gives no guidance for what
notations fit best with which system types, which notations conflict when combined,
and which notations are good complements.

To be fair, most formal methods and most formal approaches to software or hard-
ware development also fail to address development’s methodological aspects. Be-
cause they have a specification notation and a reasoning mechanism, formal meth-
ods are truly formal. However, they are not truly methodical because they don’t
offer defined ordered steps and guidance for moving between them. Recent formal
approaches like the B-Method have addressed this issue to some extent.

Object-oriented techniques are also popular, and research has produced OO ex-
tensions to formalisms, such as Object-Z for the Z notation. Formal methods tools,
such as PerfectDeveloper, also target OO development. Software engineers who de-
velop systems with languages such as Java might find such a tool attractive.

Other research at NASA Goddard Space Flight Center [5] is addressing how
to increase formality in model-based development and in requirements-based pro-
gramming. The latter approach aims to transform requirements into executable code
systematically and has many of automatic programming’s advantages, while avoid-
ing its major deficiency of specifying a solution rather than the problem to be solved.

11.7 VI. Thou Shalt Document Sufficiently

I have always tried to hide my own efforts and wished my works to have the light-
ness and joyousness of a springtime which never lets anyone suspect the labors it cost.
– Henri Matisse

Matisse was a master of abstraction. While most artists prepared rough preliminary
drawings for their works and then added detail, Matisse took the opposite approach,
making his preliminary drawings extremely detailed. After he had finished working,

244 J.P. Bowen and M. Hinchey

he would have his assistant photograph what he had done so that he had a record of
his decisions and the work he had completed. The next morning he would destroy
the work, undoing most (sometimes all) of what he had added the previous day.
Consequently, Matisse’s final works are often highly abstract, with few lines, but all
of what’s there is essential to the representation. Perhaps the most compelling ex-
ample of this is the 1935 edition of James Joyce’s Ulysses, which Matisse illustrated
without even having read it (using Homer’s Odyssey as a basis instead).

In an attempt to combine abstract documentation with concrete programs, Donald
Knuth introduced the idea of literate programming. Using this style, programmers
connect code fragments to relevant documentation in a way that justifies coding
(and hence design) decisions. Literate programming would seem to be an excellent
fit with the use of formal methods, since it could also associate code with the rel-
evant formal specification fragments, as well as the requirements that drive those
fragments. However, industry did not act on that association. Instead, attempts to
build literate programming tools led to the development of eXtreme Programming
(XP), which provides little documentation and emphasizes product development and
frequent releases.

Formal methods demand quality documentation, some of which can be auto-
mated, but someone must fully explain formal specifications so that they are un-
derstandable to both nonspecialists and those working on the specification after its
initial development. Someone must also record the reasons for various specification,
design, and decomposition decisions as a courtesy to future developers.

In addition to the benefits of abstraction, clarification and disambiguation, which
accrue from the use of formal methods at Level 0 in Table 11.2, using formal meth-
ods at the formal specification level provides invaluable documentation. Experience
has shown that quality documentation can greatly assist future system maintenance.
In fact, several collaborative European projects have involved the documentation of
legacy systems or reverse engineering.

All development involves iteration, and documentation must reflect that. Often,
when engineers change the system implementation, they neither record that change
nor update the related documentation. True formal development would use formal
methods to help avoid such inconsistencies since the formal specification is part of
the documentation.

Properly documenting decisions during the formal specification process is also
important, which is why we have always advocated augmenting formal specifica-
tions with natural language narrative. A proper paper trail is critical. Without it, the
organization loses the benefits of abstraction and might even lose useful informa-
tion.

11.8 VII. Thou Shalt not Compromise Thy Quality Standards

If people knew how hard I worked to get my mastery, it wouldn’t seem so wonderful at all.
– Michelangelo Buonarroti

11 Ten Commandments of Formal Methods. . . Ten Years On 245

According to the National Institute of Standards & Technology, 2002 losses from
poor software quality amounted to more than $60 billion [13]. Software quality is
still a huge issue that no one has yet addressed adequately. The ISO 9000 quality
standards have been in force since 1994, and ISO even revised them in 2000, yet
poor software quality still plagues users. Standards could be crucial in changing this
destructive trend.

Standards are also critical in high-integrity areas like safety- and security-critical
applications. For example, the IEC 61508-3 International Standard on Software Re-
quirements for Safety-Related Systems covers software design, development, and
verification. Obviously, formal methods can be part of this process, but most stan-
dards merely suggest that a project could use such methods—they don’t mandate
use. The onus is on the developer to demonstrate that using formal methods makes
sense and is worthwhile.

Safety and security standards continue to drive formal methods use at the highest
levels of integrity, and this trend is likely to continue. In the UK, for example, the
two-part Defence Standard 00-55 from the Ministry of Defence, which regulates
defense contracts, has a mandate in the “Requirements” section of part 1 (italics are
ours): “Assurance that the required safety integrity has been achieved is provided by
the use of formal methods in conjunction with dynamic testing and static analysis.”
The standard also mandates formal methods use for safety-related software: “The
methods used in the SRS development process shall include . . . : a) formal methods
of software specification and design; . . . ” Finally, the “Guidance” section in part 2
mentions formal methods in many places and includes an explicit section under
“Required Methods.”

However, even standards that mandate formal methods use are not enough to
ensure quality. Formal methods practitioners must also adhere to quality standards
in the development processes—not only standards for various specification nota-
tions (such as Z), but also standards that reflect best practice in software develop-
ment. Following such standards is the best way to ensure correctness, regardless of
whether someone deems that software critical. Formal methods are meant to com-
plement existing quality standards, not supplant them.

Standards documentation itself can use formality, as does the documentation for
Prolog, and even formal notations can have associated standards—there are ISO
standards for LOTOS, VDM and Z, for example. ISO approved the Z standard in
2002 after nearly a decade of production. Progress was slow and painstaking in part
because much effort centered on formalizing a revised version of Z notation. On the
other hand, the process did reveal some semantic inconsistencies, so at least in that
context it was a success. Regardless of viewpoint, there are lessons for any future
efforts to produce a formal method standard.

11.9 VIII. Thou Shalt not Be Dogmatic

. . . And I am unanimous in that! – Mollie Sugden, a.k.a. Mrs. Slocombe, in “Are You Being
Served?” BBC TV (1972–1993)

246 J.P. Bowen and M. Hinchey

Perhaps one of the worst misconceptions about formal methods is that they can
guarantee correctness [1]. They can certainly offer greater confidence that an orga-
nization has correctly developed the software or hardware, but that’s all. In fact, it
is absurd to speak of correctness without referring to the system specification [1].
If the organization has not built the right system (validation), no amount of build-
ing the system right (verification) can overcome that error. In an investigation of
failed safety-critical systems, one study found nearly 1,100 deaths attributable to
computer error [10]. Many of these errors stemmed from poor or no specifications,
not an incorrect implementation.

The danger for many projects is the analysis-specification gap—the space be-
tween what is in the procurer’s mind (real world entities) and the writing of the
specification (notation software professionals choose, either formal or informal).
Formal methods—with only a few exceptions—offer very little or no methodologi-
cal support to close this gap.

The solution for some is to use less formal methods or formal methods aug-
mented with methods that offer greater development support. The argument is that
such adaptations would be more intuitive to users. Model-based development aims
to address this by placing great emphasis on getting an appropriate model of real-
ity. Likewise, requirements-based programming is attempting to fully integrate re-
quirements in the development process. Both these approaches reduce the analysis-
specification gap by ensuring that what is specified (and ultimately implemented) is
a true reflection of real-world requirements.

11.10 IX. Thou Shalt Test, Test, and Test Again

I believe the hard part of building software to be the specification, design and testing of
this conceptual construct, not the labor of representing it and testing the fidelity of the
representation. – Frederick P. Brooks, Jr.

Largely because of formal methods research in the 1960s (before the community had
even coined the term), most programs include assertions. The intent of assertions
was to prove programs correct, and, at that time, most people believed this was all
that formal methods were supposed to do [1]. Now, testers use assertions to check
if a program’s state is correct during runtime. Promising research, centered on the
Java Modeling Language, is attempting to broaden the use of assertions to include
formal verification as well.

Perhaps some day, a verifying compiler, such as the one Tony Hoare proposed,
will be able to verify assertions at compile-time rather than at runtime, eliminating
the need to use assertions in testing. A current computer science Grand Challenge
proposes the development of such a compiler over the long term.

For the near term, the use of formal methods to improve testing has much po-
tential. A formal specification can aid automatic test-case generation, but the time
required to produce a formal specification could be far greater than the time saved at
the testing stage. In the UK, researchers are using the Fortest (Formal Methods and
Testing) network as a framework (www.fortest.org.uk) to investigate the tradeoffs.

http://www.fortest.org.uk

11 Ten Commandments of Formal Methods. . . Ten Years On 247

Formal methods also have potential use in clarifying test criteria. The MC/DC
(Modified Condition/Decision Coverage) is a criterion in many safety-related ap-
plications and standards recommendations, such as the RTCA/DO-178B, Software
Considerations in Airborne Systems and Equipment Certification. The criterion is
normally defined informally, but the Centre for Applied Formal Methods at London
South Bank University has investigated its meaning formally using Z notation and
has developed an even stricter criterion.

Although we see formal methods making some inroads into software testing,
application is challenging because software is unique in many ways:

• Even very short programs can be complex and difficult to understand.
• Software does not deteriorate with age. In fact, it improves over time because

engineers discover and correct latent errors, but the same error correction can
introduce defects.

• Changes in software that appear to be inconsequential can result in significant
and unexpected problems in seemingly unrelated parts of the code.

• Unlike hardware, software cannot give forewarnings of failure. Many latent errors
in software might not be visible until long after the organization has deployed the
software.

• Software lends itself to quick and easy changes.

The last characteristic does not translate into quick and easy error location and
correction. Rather, organizations must use a structured, well-documented develop-
ment approach to ensure comprehensive validation. We would never claim that for-
mal methods can or even should eliminate testing. Quite the contrary: The use of
formal methods can reduce the likelihood of certain errors or help detect them, but
formal methods must partner with appropriate testing.

11.11 X. Thou Shalt Reuse

The biggest difference between time and space is that you can’t reuse time. – Merrick Furst

Traditionally, organizations have encouraged reuse as a way to reduce costs and
boost quality. The idea is to then spend more time improving the quality of compo-
nents targeted for reuse. Both OO and component-based paradigms exploit the idea
of reuse.

Theoretically, formal methods can and should aid in promoting software reuse.
One inhibitor to the uptake of software reuse is the inability to identify suitable
components in a library and to develop libraries of components that are large enough
to give a reasonable return, yet small enough to be broadly reusable.

For some time, practitioners have recognized that they can make searching more
effective by having formal specifications of components or at the very least of their
pre- and postconditions. (Preconditions specify when to apply the component; post-
conditions describe the results of using it.) Supplying such conditions lets the com-
ponent remain a black box, which in turn means that the component is much larger
and therefore could have a more significant payoff in reuse.

248 J.P. Bowen and M. Hinchey

Fig. 11.2 The size explosion as development progresses (numbers are hypothetical)

There are significant returns in applying reuse at the formal specification level.
Formal specifications are typically shorter than the equivalent implementation in
a programming language. Figure 11.2 provides a comparison of the potential size
explosion as development proceeds from specification to hardware implementation.
It is obviously easier to search for larger components, while simultaneously getting
a sufficient return. Along the same lines, formal specifications could help identify
reusable design patterns.

Another way formal specifications can support reuse is in generating implemen-
tations on various platforms. This approach essentially reuses the effort expended at
earlier development stages and thereby reduces overall cost. The literature reports
the successful application of formal specification techniques to developing software
product lines—systems (or products) with that have only slight variations. More-
over, formal methods generally result in a cleaner architecture, making a system
more efficient and more easily maintainable.

Reusing and porting software is not without pitfalls, however. Ariane 5 is a prime
example. Its developers assumed that they could reuse the launch software from
Ariane 4. Their assumption resulted in a rocket loss within seconds of launch.

The Therac-25 incidents are arguably the most significant failure of software as-
surance in a medical or biological application. Therac-25 was a dual-mode linear
accelerator that could deliver either photons at 25 MeV or electrons at various en-
ergy levels. It was based on Therac-20, which in turn was based on the single-mode
Therac-6. The Therac-20 included hardware interlocks for safety, but in Therac-25
these interlocks were software-based. Despite several Therac-25 machines operat-
ing, reportedly correctly, for up to four years at various US installations, in six sep-
arate incidents the device administered lethal doses of radiation to patients.

Subsequent investigations of both Therac-20 and Therac-25 revealed a software
error that caused the machines to act erratically. Students at a radiology school had
creatively set parameters that caused the Therac-20 machines to shut down after
blowing fuses and breakers. The failures were bothersome, but certainly not life-
threatening. However, when the same error perpetuated to Therac-25, which did not
have mechanical interlocks, the problem became fatal. If the developers of Therac-
25 had fully checked the software using formal methods, possibly, they might have
realized the significance of this error.

11 Ten Commandments of Formal Methods. . . Ten Years On 249

11.12 Conclusions

Ten years later, we are surprised to find that the original formal methods com-
mandments are still valid. The use of formal methods is not as prevalent as we had
hoped, but we are more certain that formal approaches will always have a niche in
computer-based systems development, especially when correct functioning is crit-
ical [3]. As the final section describes, the next 10 years should see some signifi-
cant progress in integrating formal methods and traditional development practices.
Like any approach, formal methods work best when applied judiciously. It makes
the most sense to use them for the software that performs critical operations, but
any application should be part of sound engineering judgment that considers both
technical feasibility and economics. For such efforts, well-trained personnel of the
highest quality will always be needed.

The rewards can be considerable with the right combination of knowledge
and expertise, but formal methods are not a panacea. Some, especially those in
academia, have oversold formalism’s ability. Given that people must apply formal
methods, they will never be completely reliable. The logical models must relate to
the real world in an informal leap of faith both at the high-level requirements or
specification end and at the low-level digital hardware end (which requires belief in
Maxwell’s equations, for example).

More effort must be devoted to evaluating the effectiveness of formal methods in
the software development and maintenance. Hopefully, we have raised issues that
others will find worth exploring. Because of the somewhat tarnished reputation of
formal methods, largely due to misunderstandings and inappropriate use, a demon-
stration of how and where formal methods are effective would be well worth the
effort.

There are continuing success stories in the industrial use of formal methods [15]
and the approach remains in the eye of the press [16]. Studies will help practitioners
understand how to ensure that the introduction of formal methods has a positive
impact on the software development and maintenance process by reducing overall
costs.

Above all, formal methodists must have patience. Sculptor Théophile Gautier
once said, “L’ouvre sort plus belle, d’une forme au travail rebelled vers,” which
translates roughly to “The work is more beautiful from a material that resists the
process.” If that is true, then formal methods use will eventually emerge in near-
perfect form.

11.13 Looking Ahead

Industrial-strength tools for formal methods have always been lacking. A few exist
but the demand for a range of compatible tools is growing. In the future, tool sup-
port for formal methods will become increasingly important. Some efforts in this
direction include:

250 J.P. Bowen and M. Hinchey

• Alloy Community based around the Alloy Analyzer (alloy.mit.edu);
• CZT Community Z Tools initiative (czt.sourceforge.net);
• HOL4 Higher Order Logic theorem prover (hol.sourceforge.net);
• Perfect Developer for object-orient software development

(www.eschertech.com);
• Rodin Platform, a development environment based on Event B

(www.event-b.org);
• Spin model checker (spinroot.com).

Hopefully, tool advances will make formal methods easier to justify and use in
an industrial context. Online documentation provides important support. For ex-
ample, the Formal Methods Wiki (formalmethods.wikia.com), including the Vir-
tual Library formal methods online directory established in the 1990s, continues
to be a central resource for formal methods information. Wikipedia, the online
encyclopedia, has included increasingly useful and detailed information on for-
mal methods and related topics. Wiki-based resources could be the best path for
a repository of collaboratively maintained online information, including for exam-
ple a Formal Methods Body of Knowledge (FMBoK). Formal Methods Europe
(FME, www.fmeurope.org) is the main international organization concerned with
formal methods and continues to organize the FM International Symposium on For-
mal Methods every 18 months that acts as a regular focus for the formal methods
community.1

Acknowledgements We are grateful to our many colleagues and friends who provided us with
valuable feedback and reactions to our original article. We also acknowledge the contributions of
the formal methods community as a whole and thank them for providing us with material on which
to base the original commandments. In particular, we thank David Atkinson, Jin Son Dong, Cliff
Jones, Tiziana Margaria, Jim Rash, Chris Rouff, Roy Sterritt, and Bernhard Steffen, for their input.

Special thanks go to Tiziana Margaria and Mieke Massink, co-chairs of FMICS 2005, and
George Eleftherakis, chair of SEEFM 2005, for inviting earlier conference presentations of this
material, in the former case rather aptly to coincide with the tenth anniversary of FMICS.

References

1. Bowen, J.P., Hinchey, M.G.: Seven more myths of formal methods. IEEE Softw. 12(4), 34–41
(1995)

2. Bowen, J.P., Hinchey, M.G.: Ten commandments of formal methods. IEEE Comput. 28(4),
56–63 (1995)

3. Bowen, J.P., Hinchey, M.G.: Ten commandments revisited: a ten-year perspective on the in-
dustrial application of formal methods. In: 10th International Workshop on Formal Methods
for Industrial Critical Systems (FMICS ’05), pp. 8–16. ACM, New York (2005)

4. Hall, J.A.: Seven myths of formal methods. IEEE Softw. 7(5), 11–19 (1990)
5. Hinchey, M.G., Rash, J.L., Rouff, C.A.: Requirements to design to code: towards a fully for-

mal approach to automatic code generation. Technical report NASA Technical Monograph
TM-2005-212774, NASA Goddard Space Flight Center (2005)

1Section 11.13, Looking Ahead, was updated by the authors in March 2011.

http://alloy.mit.edu
http://czt.sourceforge.net
http://hol.sourceforge.net
http://www.eschertech.com
http://www.event-b.org
http://spinroot.com
http://formalmethods.wikia.com
http://www.fmeurope.org

11 Ten Commandments of Formal Methods. . . Ten Years On 251

6. Hinchey, M.G.: Confessions of a formal methodist. In: Lindsay, P. (ed.) Seventh Australian
Workshop Conference on Safety Critical Systems and Software 2002, vol. 15, Adelaide, Aus-
tralia. Conferences in Research and Practice in Information Technology Series, vol. 139,
pp. 17–20. Australian Computer Society, Darlinghurst (2002)

7. Hinchey, M.G., Bowen, J.P. (eds.): Applications of Formal Methods. Prentice Hall, Upper
Saddle River (1995)

8. Hinchey, M.G., Bowen, J.P. (eds.): Industrial-Strength Formal Methods in Practice. FACIT
Series. Springer, Berlin (1999)

9. Lau, K.-K., Banach, R. (eds.): Formal Methods and Software Engineering, Proceedings 7th
International Conference on Formal Engineering Methods, ICFEM 2005, Manchester, UK,
November 1–4, 2005. Lecture Notes in Computer Science, vol. 3785. Springer, Berlin (2005)

10. MacKenzie, D.: Mechanizing Proof: Computing, Risk, and Trust. MIT Press, Cambridge
(2001)

11. Patterson, D.A., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J., Enriquez, P.,
Fox, A., Kiciman, E., Merzbacher, M., Oppenheimer, D., Sastry, N., Tetzlaff, W., Traupman,
J., Treuhaft., N.: Recovery-oriented computing (ROC): motivation, definition, techniques,
and case studies. Technical report Computer Science Technical Report UCB//CSD-02-1175,
March 15, 2002, UC Berkeley (2002)

12. Power, D., Meyer, B., Grimes, J., Potel, M., Vetter, R., Laplante, P., Pree, W., Pomberger, G.,
Hill, M.D., Larus, J.R., Wood, D.A., El-Rewini, H., Weide, B.W.: Where is software headed?
A virtual roundtable. Computer 28(8), 20–32 (1995)

13. Research Triangle Institute: The Economic Impacts of Inadequate Infrastructure for Software
Testing. Ed. Dr. Gregory Tassey. RTI Project No. 7007.011. National Institute of Standards
and Technology, Washington, DC, May 2002

14. Romijn, J., Smith, G., van de Pol, J. (eds.): Integrated Formal Methods, Proceedings 5th In-
ternational Conference, IFM 2005, Eindhoven, The Netherlands, November 29–December 2,
2005. Lecture Notes in Computer Science, vol. 3771. Springer, Berlin (2005)

15. Ross, P.E.: The exterminators. IEEE Spectr. 42(9), 36–41 (2005)
16. Sharpe, R.: Formal methods start to add up again. Computing (2004). 08 Jan 2004. Available

online: http://www.computing.co.uk/ctg/feature/1836071/formal-methods-start-add

http://www.computing.co.uk/ctg/feature/1836071/formal-methods-start-add

Chapter 12
Conquering Complexity via Seamless
Integration of Design-Time and Run-Time
Verification

Antonio Filieri, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli

12.1 Introduction

Software is the driving engine of modern society. Most human activities—including
critical ones—are either software enabled or entirely managed by software. Exam-
ples range from healthcare and transportation to commerce and manufacturing to
entertainment and education. As software is becoming ubiquitous and society in-
creasingly relies on it, the adverse impact of unreliable or unpredictable software
cannot be tolerated. Software systems are required to be dependable, to avoid dam-
aging effects that can range from loss of business to loss of human life.

At the same time, the complexity of modern software systems has grown enor-
mously in the past years with users always demanding new features and better qual-
ity of service. Software systems changed from being monolithic and centralized
to modular, distributed, and dynamic. They are increasingly composed of hetero-
geneous components and infrastructures on which software is configured and de-
ployed. When an application is initially designed, software engineers often only
have a partial and incomplete knowledge of the external environment in which the
application will be embedded at run time. Design may therefore be subject to high
uncertainty. This is further exacerbated by the fact that the structure of the appli-
cation, in terms of components and interconnections, often changes dynamically.
New components may become available and published by providers for use by
potential clients. Some components may disappear, or become obsolete, and new
ones may be discovered dynamically. This may happen, for example, in the case of
Web service-based systems [8]. This also happens in pervasive computing scenarios
where devices that run application components are mobile [20]. Because of mobility,
and more generally context change, certain components may become unreachable,
while others become visible during the application’s lifetime. Finally, requirements
also change continuously and unpredictably, in a way that is hard to anticipate when

A. Filieri (�)
DeepSE Group @ DEI, Politecnico di Milano, Milan, Italy
e-mail: filieri@elet.polimi.it

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_12, © Springer-Verlag London Limited 2012

253

mailto:filieri@elet.polimi.it
http://dx.doi.org/10.1007/978-1-4471-2297-5_12

254 A. Filieri et al.

systems are initially built. Because of uncertainty and continuous external changes
the software application is subject to continuous adaptation and evolution. All this
is challenging our ability to achieve the required levels of dependability. F.P. Brooks
anticipated this when he said, Complexity is the business we are in and complexity
is what limits us [16].

This chapter focuses on how to manage design-time uncertainty and run-time
changes and how to verify that the software evolves dynamically without disrupting
the dependability of applications. We refer to dependability as broadly defined by
the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance1 as:

[. . .] the trustworthiness of a computing system which allows reliance to be justifiably
placed on the service it delivers [. . .]

Dependability thus includes as special cases such attributes as reliability, availabil-
ity, performance, safety, security. In this chapter we focus our attention on two main
dependability requirements that typically arise in the case of decentralized and dis-
tributed applications: namely, reliability and performance. Both reliability and per-
formance depend on environment conditions that are hard to predict at design time,
and are subject to a high degree of uncertainty. For example, performance may de-
pend on end-user profiles, on network congestion, on load conditions of external
services that are integrated in the application. Similarly, reliability may depend on
the behavior of the network and of the external services that compose the application
being built.

Our approach to the development and operation of complex and dynamically
evolvable software systems is rooted in the use of formal models. Hereafter we dis-
cuss how uncertainty and anticipation of future changes can be taken into account
when the system is initially designed. In particular, we focus on the formal models
that can be built at design time to support an initial assessment that the application
satisfies the requirements. We also show that models should be kept alive at run
time and continuously verified to check that the changes with respect to the design-
time assumptions do not bring to requirements violations. This requires seamless
integration of design-time and run-time verification. If requirements violations are
detected, appropriate actions must be undertaken, ranging from off-line evolution to
on-line adaptation. In particular, much research is currently investigating the extent
to which the software can respond to predicted or detected requirements violation
through self-managed reactions, in an autonomic manner. These, however, are out
of the scope of this chapter, which only focuses on design-time and run-time verifi-
cation.

Our contribution is structured as follows. Section 12.2 introduces a running ex-
ample, which is inspired by a Web-service based e-Health application, called Tele-
Assistance (TA). Section 12.3 surveys the main formal notations we use to model
applications and reason about compliance of its design with respect to its non-
functional requirements. We then discuss (Sect. 12.4) how design-time require-
ments verification may be accomplished in presence of uncertainty. This will be

1http://www.dependability.org/wg10.4/.

http://www.dependability.org/wg10.4/

12 Seamless Integration of Design-Time and Run-Time Verification 255

done by first providing high-level models of the running TA example and then by
formally verifying requirements satisfaction under some assumptions about the run-
time environment in which TA will be embedded. Section 12.5 focuses on monitor-
ing the run-time behavior and performing continuous run-time verification. Finally,
Sect. 12.7 provides pointers to on-going work and draws some conclusions.

12.2 A Running Example

This section illustrates the running example adopted in this chapter to illustrate the
proposed design and run-time approach. An e-Health application, initially studied
in [7] and then further used as a case-study in [29], is designed as a distributed sys-
tem for medical assistance. The application is built by composing a number of exist-
ing Web services. Web-service compositions (and service-oriented architectures in
general [27]) make an excellent case for the need to keep models alive at run time.
A Web-service composition is an orchestration of Web services aimed at building
a new service by exploiting a set of existing ones. The orchestration is performed
through the BPEL workflow language [1]. A BPEL composition is, in turn, a service
that can be composed with other services in a recursive manner. BPEL instances co-
ordinate services that are typically managed by independent organizations, other
than the owner of the service composition. This distributed ownership implies that
the final functional and non-functional properties of the composed service rely on
behaviors of third-party components that influence the obtained results, as we will
discuss hereafter.

The running example, called TeleAssistance (TA), focuses on a composite ser-
vice supporting remote assistance of patients who live in their homes. Figure 12.1
illustrates the TA composite service through a graphical notation into which BPEL
constructs are mapped. The mapping between BPEL constructs and the correspond-
ing graphical notation is described in Table 12.1. The reader who wishes to read
more about BPEL may find a brief summary in the Appendix at the end of the chap-
ter.

The process starts as soon as a Patient (PA) enables the home device supplied by
TA, which sends a message to the process’ receive activity startAssistance. Then, it
enters an infinite loop: every iteration is a pick activity that suspends the execution
and waits for one of the following three messages: (1) vitalParamsMsg, (2) pBut-
tonMsg, or (3) stopMsg. The first message contains the patient’s vital parameters
that are forwarded by the BPEL process to the Medical Laboratory service (LAB)
by invoking the operation analyzeData. The LAB is in charge of analyzing the data
and replies by sending a result value stored in a variable analysisResult. A field of
the variable contains a value that can be: changeDrug, changeDoses or sendAlarm.
The latter message triggers the intervention of a First-Aid Squad (FAS) composed
of doctors, nurses, and paramedics, whose task is to visit the patient at home in case
of emergency. To alert the squad, the TA process invokes the operation alarm of the
FAS. The message pButtonMsg caused by pressing a panic button also generates an
alarm sent to the FAS. Furthermore, the message stopMsg indicates that the patient
may decide to cancel the TA service.

256 A. Filieri et al.

F
ig

.1
2.

1
TA

B
PE

L
pr

oc
es

s

12 Seamless Integration of Design-Time and Run-Time Verification 257

Table 12.1 BPEL graphical notation

The system should be designed to satisfy a number of requirements concerning
the Quality of Service (QoS), among which:

• R1: The probability P1 that no failures ever occurs is greater than 0.7
• R2: If a changeDrug or a changeDoses has occurred the probability P2 that the

next message received by the TA generates an alarm which fails (i.e., the FAS is
not notified) is less than 0.015

• R3: Assuming that alarms generated by pButtonMsg have lower priority than the
alarms generated by analyzeData, the probability P3 that a high priority alarm
fails (i.e., it is not notified to the FAS) is less than 0.012

• R4: The average response time of the Alarm service (RTAlarm) must be less than
1 second

• R5: The utilization of the AnalyzeData (UAnalyzeData) must be less than 90%
• R6: The average number of pending requests (i.e., the queue length) to the FAS

service (QLFAS) must be less than 60

Notice that requirements R1–R3 refer to the system’s reliability. Conversely, R4–R6
refer to performance.

In the sequel, we will discuss how formal models can support design-time ver-
ification that the system being designed satisfies the requirements, under certain
assumptions about the behavior of the environment. We will then show how the
models can be kept alive at run time to support continuous verification that require-
ments are not violated despite changes in the assumptions under which the system
was initially verified.

12.3 Non Functional Models for Complex Systems

This section provides an introduction to the non-functional models we adopt to ex-
press QoS properties. As previously introduced, we focus on reliability and perfor-
mance. As non-functional models we rely respectively on Discrete Time Markov
Chains (DTMCs) ands Queueing Networks (QNs). Let us first introduce Markov
models in general and then describe DTMCs and QNs [15].

258 A. Filieri et al.

12.3.1 Markov Models

Several approaches exist in the literature for model-based quality analysis and pre-
diction, spanning the use of stochastic Petri nets, queueing networks, layered queue-
ing network, stochastic process algebras, Markov processes, fault trees, statistical
models and simulation models (see [2] for a recent review and classification of mod-
els for software quality analysis).

In this work, we focus on Markov models, which are a very general evaluation
model that can be used to reason about performance and reliability properties. Fur-
thermore, Markov models include other modeling approaches as special cases, such
as queueing networks, stochastic Petri nets [57] and stochastic process algebras [26].

Specifically, Markov models are stochastic processes defined as state-transition
systems augmented with probabilities. Formally, a stochastic process is a collec-
tion of random variables X(t), t ∈ T all defined on a common sample (probability)
space. X(t) is the state at time t , where t is a value in a set T that can be either
discrete or continuous. In Markov models, states represent possible configurations
of the system being modeled. Transitions between states occur at discrete or con-
tinuous time-steps and the probability of making transitions is given by exponential
probability distributions. The Markov property characterizes these models: it means
that, given the present state, future states are independent of the past. In other words,
the description of the present state fully captures all the information that could in-
fluence the future evolution of the process. The most used Markov models include:

• Discrete Time Markov Chains (DTMCs), which are the simplest Markovian
model where transitions between states happen at discrete time steps;

• Continuous Time Markov Chains (CTMCs), where the value associated with each
outgoing transition from a state is intended not as a probability but as a parameter
of an exponential probability distribution (transition rate);

• Markov Decision Processes (MDPs) [62], which are an extension of DTMCs al-
lowing multiple probabilistic behaviors to be specified as output of a state. These
behaviors are selected non-deterministically. MDPs are characterized by a dis-
crete set of states representing possible configurations of the system being mod-
eled and transitions between states occur in discrete time-steps, but in each state
there is also a non-deterministic choice between several discrete probability dis-
tributions over successor states.

The solution of Markovian models aims at determining the system behavior as
time t approaches infinity. It consists of the evaluation of the stationary probability
π s of each state s of the model.

The analytical solution techniques for Markov models differ according to the
specific model and to the underlying assumptions (e.g., transient or non-transient
states, continuous vs. discrete time, etc.). For example, the evaluation of the sta-
tionary probability π s of a DTMC model requires the solution of a linear system
whose size is given by the number of states. The exact solution of such a system
can be obtained only when the number of states is finite or when the matrix of tran-
sition probabilities has a specific form. DTMCs including transient and absorbing

12 Seamless Integration of Design-Time and Run-Time Verification 259

states necessitate a more complex analysis for the evaluation of the average number
of visits and absorbing probabilities. The detailed derivation is discussed in [15].
A problem of Markov models, which similar evaluation models also face, is the ex-
plosion of the number of states when they are used to model real systems [15]. To
tackle this problem tool support (e.g., PRISM [52]) with efficient symbolic repre-
sentations and state space reduction techniques [45, 53] like partial-order reduction,
bisimulation-based lumping and symmetry reduction are required.

Given a Markov model it is possible to represent QoS requirements as non-
ambiguous properties expressed in an appropriate logic, such as probabilistic tempo-
ral logics PCTL (Probabilistic Computation Tree Logic) [40], PCTL* [4], PTCTL
(Probabilistic Timed CTL) [54] and CSL (Continuous Stochastic Logic) [5]. The
significant benefits of using logic-based requirements specifications include the abil-
ity to define these requirements concisely and unambiguously, and to analyze them
using rigorous, mathematically-based tools such as model checkers. Furthermore,
for logic-based specification-formalism the correct definition of QoS properties is
supported with specification patterns [28, 37, 38, 49] and structured English gram-
mars [38, 49, 70].

Markov models are widely used at design time to derive performance and/or
reliability metrics. For example, the work presented in [36] discusses in depth the
problem of modeling and analyzing the reliability of service-based applications and
presents a method for the reliability prediction of service compositions based on the
analysis of the implied Markovian models. The analysis of a CTMC implied by a
BPEL process is also used in [66] as a way to derive performance and reliability
indices of a service composition.

12.3.1.1 Discrete Time Markov Chains

DTMCs are specifically used to model reliability concerns. As introduced before,
DTMCs are defined as state-transition systems augmented with probabilities. States
represent possible configurations of the system. Transitions among states occur at
discrete time and have an associated probability. DTMCs are discrete stochastic
processes with the Markov property, according to which the probability distributions
of future states depend only upon the current state.

Formally, a (labeled) DTMC is a tuple (S, s0,P ,L), where

• S is a finite set of states
• S0 ⊆ S is a set of initial states
• P : S × S → [0,1] is a stochastic transition matrix (

∑
s′∈S P (s, s′) = 1 ∀s ∈ S).

An element P(si, sj) represents the probability that the next state of the process
will be sj given that the current state is si .

• L : S → 2AP is a labeling function which assigns to each state the set of Atomic
Propositions a ⊆AP holding in s. As discussed in [51], AP formally is a fixed,
finite set of atomic propositions used to label states with the properties of interest
which can be verified by a stochastic model checker.

260 A. Filieri et al.

A DTMC evolves from the initial state by executing a transition at each discrete
time instant. Being at time i in a state s, at time i + 1 the model will be in s′ with
probability P(s, s′). The transition can take place only if P(s, s′) > 0.

A state s ∈ S is said to be an absorbing state if P(s, s)= 1. If a DTMC contains
at least one absorbing state, the DTMC itself is said to be an absorbing DTMC.
Furthermore, we assume that every state in the DTMC is reachable from the initial
state, that is there exists at least a sequence of transitions from the initial state to
every other state.

In an absorbing DTMC with r absorbing states and t transient states, rows and
columns of the transition matrix P can be reordered such that P is in the following
canonical form:

P =
(

Q R

0 I

)

where I is an r by r identity matrix, 0 is an r by t zero matrix, R is a nonzero t by
r matrix and Q is a t by t matrix.

Consider now two distinct transient states si and sj . The probability of moving
from si to sj in exactly 2 steps is

∑
sx∈S P (si, sx) ∗ P(sx, sj). Generalizing the

process for a k-steps path and recalling the definition of matrix product, it comes
out that the probability of moving from any transient state si to any other transient
state sj in exactly k steps corresponds to the entry (si , sj) of the matrix Qk . By
generalization, the probability of moving from si to sj in 0 steps is 1 iff si = sj , that
is Q0.

Due to the fact that R must be a nonzero matrix, and P is a stochastic matrix, Q

has uniform-norm strictly less than 1, thus Qn → 0 as n →∞, which implies that
eventually the process will be absorbed with probability 1.

In the simplest model for reliability analysis, the DTMC modeling a task will
have two absorbing states, one representing the correct accomplishment of the task,
the other representing the failure of the system. The use of absorbing states is com-
monly extended to represent different failures. For example, a failure state may be
associated with each invocation of an external service that may fail. A basic feature
of a reasoning system in this framework is to provide an estimate for the probabil-
ity of reaching an absorbing state or the ability to state whether the probability of
reaching an absorbing state associated with a failure is less than a certain threshold.

12.3.2 Queueing Networks

For performance models we exploit QNs. As introduced before, they can be reduced
to a Markov model and the solution of a QN might be obtained by solving the
underlying Markov process. However, for some classes of QNs, efficient analytical
solution techniques exist to determine the average values of the performance metrics
(e.g., average response time, utilization, etc.) or, in some cases, also the percentile
distribution of the metric of interest.

12 Seamless Integration of Design-Time and Run-Time Verification 261

QNs [15, 55] are a widely adopted modeling technique for performance analysis.
QNs are composed by a finite set of: (1) Service Centers, (2) Links, (3) Sources and
Sinks, and (4) Delay Centers.

Service centers model system resources that process customer request. Each ser-
vice center is composed of a Server and a Queue. Queues can be characterized by
a finite or an infinite length. In this work we focus on service centers with infinite
queues. Service centers are connected through Links that form the network topol-
ogy. Servers process jobs—hereafter we refer to requests interchangeably with the
term jobs—retrieved from their queue following a specific policy (e.g., FIFO). Each
processed request is then routed to another service center through connections pro-
vided by links. More precisely, each server, contained in every service center, picks
the next job from its queue (if not empty), processes it, and selects one link that
routes the processed request to the queue of another service center. It is possible to
specify a policy for link selection (e.g., probabilistic, round robin, etc.). The time
spent in every server by each request is modeled by continuous distributions such as
exponential or Poisson distributions. Jobs are generated by source nodes connected
with links to the rest of the QN. Source nodes are also characterized by continuous
time distributions that model request inter-arrival times. Sink nodes represent the
points where jobs leave the system. Finally, delay centers are nodes of the QN con-
nected with links to the rest of the network exactly as service centers, but they do not
have an associated queue. Delay centers are described only by a service time, with
a continuous distribution, without an associated queue. They correspond to service
centers with infinite servers.

After modeling a software system as a queueing network, the model has to be
evaluated in order to determine quantitative performance metrics, such as:

• Utilization: the ratio between the server’s busy time over the total time.
• Response Time: the interval between submission of a request into the QN and

output of results.
• Queue Length: the average queue length for a given service center.
• Throughput: the number of requests processed per unit of time.

The above measures are defined for a single service center, but they can also ap-
ply to the whole network. A first step in the evaluation of a QN can be achieved
by determining the system bounds; specifically, upper and lower bounds on system
throughput and response time can be computed as functions of the system work-
load intensity (number or arrival rate of customers). Bounds usually require very
little computational effort, especially for simple kinds of QN, like single-class net-
works [22, 48].

More accurate results can be achieved by solving the equations which govern the
QN behavior. Solution techniques can be broadly classified as analytical methods
(which can be exact or approximate) and simulation methods. Analytical methods
determine functional relations between model parameters and performance metrics.
Queueing networks satisfying the BCMP theorem assumptions (see [10] for further
details) are an important class of models also known as product-form models. Such
models are the only ones that can be solved efficiently, while the solution time of

262 A. Filieri et al.

the equations governing non-product-form queueing network grows exponentially
with the size of the network. Hence, in practical situations the time required for
the solution of non-product-form networks becomes prohibitive and approximate
solutions have to be adopted. Analytical solutions often provide only the average
values of the performance metrics (e.g., average response time, utilization, etc.).
Detailed solutions can be obtained by solving the Markov process underlying the
queueing network model (details about the derivation of the Markov process can be
found in [15]).

For non-product-form QNs very often simulation is used to evaluate performance
metrics. Simulation is a very general and versatile technique to study the evolution
of a software system, which is described by a simulation program that mimics the
dynamic behavior of the system by representing its components and interactions in
terms of functional relations. Non-functional attributes are estimated by evaluating
the values of a set of observations gathered in the simulation runs. Simulation re-
sults are then obtained by performing statistical analyses of multiple runs [44]. With
simulation it is possible to obtain very accurate results but at the cost of a higher
computational effort with respect to the analytical solution of QNs.

12.3.2.1 Modeling Complex Systems with Queueing Networks

In modern complex systems, components may fall into different categories. First,
they may differ in the way they are used (use mode). Their use may be exclusive;
that is, the component is only used by the currently designed application. In this
case, the component may be modeled as a service center, since we have full control
of the flows of requests into its input queue. In other cases, the component is shared
among different applications, which we may not know, although they concurrently
access it. The component cannot be modeled as service center because other jobs,
which we cannot control, also can access the service. In such a case, the component
can be more simply—but less accurately—modeled as a delay center.

As an example of these two cases, consider a component which provides func-
tionalities for video encoding and decoding. In case it is a component-off-the-shelf
(COTS), which is deployed within the current application and it is used exclusively
by it, the designer has full control and visibility of its activations, and thus it can be
modeled by a service center. If, however, the tool is offered by a provider as a Web
service, it is potentially accessed by many clients, and the designer has no control
nor visibility of the queues of requests.

Another key factor that must be considered by the modeler is visibility of the in-
ternals of the component. Both accuracy and trust of the component’s performance
characteristics depend on how detailed the designer’s knowledge is of the compo-
nent’s internals. If an accurate description of the component’s architecture is avail-
able, its performance can be predicted quite accurately, for example using a design-
time tool like Palladio [12]. If instead the component is a black-box, like in the case
of Web services, the designer must rely on less trustable figures published by the
service provider or inferred by past observations. Note that visibility is often related

12 Seamless Integration of Design-Time and Run-Time Verification 263

Table 12.2 QN notation for open systems

to ownership. If one owns a component, then normally one also has full access to
its internals, and conversely. Furthermore, it is also related with stability. Whenever
a component is owned, it only evolves under control of the owner. If an accurate
model of the component is available, there is no need to monitor the component at
run time for possible deviations and, consequently, to update the model.

The above discussion leads to the following main component categories:

• White-Box (WB) components. Their internal architecture is fully visible and un-
derstood by the designer; for example, they have been developed in-house. In
addition, their use is exclusive to the current application.

• Grey-Box (GB) components. Their use is exclusive, but their internals are not
known; only the executable version of the component is available. COTS are a
typical example.

• White-Box Shared (WBS) components. The designer has full visibility of the com-
ponent, which however is not used exclusively within the application being de-
veloped. An example is an in-house developed Web-service that is used by the
current application, but is also exported for use by others.

• Black-Box (BB) components. The designer has no visibility of the internals of
the component, whose use is shared with other unknown clients. An example is
an externally developed Web service developed by third parties that is available
on-line.

Table 12.2 summarizes the previous discussion by showing the main categories
of components, the choices we made for modeling them via QNs, and the graphical
notation we use.

12.4 Design-Time Modeling and Verification of the TA System

Hereafter we apply the formalisms discussed in the previous section in the initial
design and verification of the TA system. The first step of our approach consists of
developing models that can be used to reason about our non-functional properties

264 A. Filieri et al.

of interest (reliability and performance). To do so, we identify the parts that are
subject to uncertainty and which may change in the value of quality attributes. We
especially focus on two major sources of uncertainty and volatility: user profiles,
which describe how system functions will be used by user transactions, and exter-
nal components (services), which may change their quality of service over time in
an unexpected and uncontrolled manner. These may be viewed as black-box compo-
nents, accessible via an abstract interface that only provides visibility of the stable
information upon which we can rely.

We assume that uncertain information can be expressed in probabilistic terms.
This may be difficult in practice, but it is a necessary step in our approach if we want
to be able to predict and assess non-functional properties at design time. Several
practical guidelines may be followed as a guidance through this step. For example,
initial estimates may be provided by the designer based on past experience with
similar systems. In the case where external components (services) managed by third
parties are integrated into the current system, the estimate may be provided by the
service-level agreement subscribed by the provider or by ad-hoc tests performed by
client stubs.

The next section shows how we model reliability of the TA system via DTMCs.
We then show how performance can be modeled by exploiting QNs. Finally we
discuss how an initial assessment of requirements satisfaction may be obtained by
analyzing the models.

12.4.1 DTMCs at Work

Figure 12.2 illustrates the result obtained by modeling the TA running example in-
troduced in Sect. 12.2. The modeling activity consists of identifying relevant states
of the system, assigning probabilities to branches, and failure probabilities to ser-
vice invocations. Notice that failure states are highlighted in gray. In this example,
we adopted numerical values chosen for illustrative purposes; real-world medical
applications usually require lower failure probabilities. Usage profiles are also rep-
resented in Fig. 12.2 as probabilities associated with transitions. As an example,
consider the transitions exiting state 0. With probability 0.3 the user pushes a button
to generate an alarm, whose notification to the first-aid squad fails with probability
0.04.

The DTMC derivation can be done either manually or through automatic trans-
formation techniques. Several contributions that appeared in the literature proposed
techniques to derive DTMC starting from a formal description of the system’s be-
havior (e.g., [31, 36, 66]).

12.4.2 QNs at Work

Figure 12.3 illustrates the result obtained by modeling the TA example with a QN.
Notice that transition probabilities among service centers are consistent with values

12 Seamless Integration of Design-Time and Run-Time Verification 265

Fig. 12.2 TeleAssistance DTMC model

Table 12.3 QN additional
parameters Component Parameter Value

Source 0 Arrival rate Exponential with λ= 0.5

Source 1 Arrival rate Exponential with λ= 0.1

startAssistance Service time Exponential with λ= 1

startAssistance Queue ∞
stopMsg Service time Exponential with λ= 1

stopMsg Queue ∞
FAS Service time Exponential with λ= 1.45

FAS Queue ∞
Alarm Service time Exponential with λ= 1.5

AnalyzeData Service time Exponential with λ= 2.5

changeDoses Service time Exponential with λ= 1.2

changeDrug Service time Exponential with λ= 1.2

used in Fig. 12.2. Before applying the concepts and the taxonomy illustrated in
Sect. 12.3.2, we need to take into consideration some performance data describing
the behavior of the components part of the TA system. Such data, as for transition
probabilities in DTMCs, might be provided by domain experts or other existing
systems. Table 12.3 summarizes this information set.

Concerning the components and services part of the TA system, we assumed
the changeDrug, changeDoses and sendAlarm service centers as Web services pro-

266 A. Filieri et al.

vided by third-party organizations. Conversely, we considered the FAS service as a
service owned by the same organization of the TA system but potentially used by
other healthcare functions. According to these assumptions, we model the former as
Black-box centers and the latter as White-Box Shared.

To facilitate the software engineer’s task, several methodologies can be found in
the literature to support transformation techniques that can derive QN-based models
(both product and non-product) starting from software models. Some of the pro-
posed methods are reviewed in [6, 11, 71].

12.4.3 Design-Time Verification

Once the models of the application under design are available, they can be analyzed
to verify requirements satisfaction. Let us start our discussion from reliability and
let us consider the reliability model illustrated in Fig. 12.2.

The reliability requirements R1–R3 can be proven to hold for the composite ser-
vice. Several instruments are in place to verify stochastic properties on DTMCs,
with different pros and cons. The most basic approach is based on probability the-
ory’s formulas, which can be solved by means of numerical methods [64]; these ap-
proaches are typically fast and very accurate, but most often used for simple proper-
ties such as the probability of reaching a certain state. The most popular verification
tools nowadays are the probabilistic model checkers. The two most widely adopted
are PRISM [42] and MRMC [46]. Model-checkers come with logics expressive
enough to assert complex properties over the set of all possible paths through a
DTMC, but they typically make use of iterative methods which provide a finite ac-
curacy (though this can be arbitrarily high at the price of a polynomially longer
computation time). For very large systems which are hard to be analyzed by means
of mathematical methods, it is also possible to apply some verifiers which adopt
Monte-Carlo simulation [67].

For example, by using the DTMC probabilistic model checker PRISM [42], we
obtain: P 1 = 0.7421, P 2 = 0.0147, P 3 = 0.0048. As we discussed earlier, model
parameters (i.e., transition probabilities) might be provided by: (1) domain experts,
(2) similar existing systems, or (3) previous versions of the system under design.
In any case, such parameters represent only estimates and run-time analyses are in
charge of refining them together with a continuous verification of the compliance
with the system’s requirements, as illustrated later on in Sect. 12.5.

Let us now consider performance and the QN model illustrated in Fig. 12.3.
By relying on parameters listed in Table 12.3 and exploiting a QN solver such
as JMT [14] we can evaluate the performance requirements R4–R6 and prove
to hold for the composite service. In particular, we obtained: RTAlarm = 0.6667,
UAnalyzeData = 0.8906, QLFAS = 53.4771. Notice that model parameters might be
retrieved as previously mentioned for DTMCs transition probabilities.

12 Seamless Integration of Design-Time and Run-Time Verification 267

Fig. 12.3 TeleAssistance QN model

12.5 Supporting Run-Time Verification

After an application is developed, it is deployed in the target environment to interact
with the real world. Regrettably, at run time reality may subvert the assumptions
made by software engineers at design time. For example, user profiles may differ
from the expected values, or may later change during operation. Likewise, the per-
formance of an external service integrated in the application may change, due for
example to the deployment of a new version of the service which provides addi-
tional features. Similarly, a service’s reliability may unexpectedly decrease, due to
the upload of a new, buggier release. For these reasons, it is necessary that verifica-
tion continues after the application’s delivery, to check if changes cause a violation
of requirements. If they do, the application must also change.

We distinguish between two kinds of change: adaptation and evolution [20].
Adaptation refers to the actions taken at run time and affecting the architectural
level, to react to the changing environment in which the application operates. In fact,
changes in the physical context may often require the software architecture to also
change. As an example, a certain service used by the application may become un-
accessible as a new physical context is entered during execution. Conversely, a new
service may become visible. It may also happen that a certain service is changed
unexpectedly by its owner and the change is found to be incompatible with its use
from the current application. Evolution instead refers to changes in the application
that are the consequence of changes in the requirements. For example, a new feature
is added to the TA system to support medical diagnosis remotely via video interac-
tion with the patient. Adaptation must be increasingly supported in an autonomic
way. We use the term self-adaptation in this case.

268 A. Filieri et al.

In our approach, evolution and (self) adaptation are triggered by run-time verifi-
cation, whenever a requirements failure is detected [35]. To support run-time veri-
fication, the application’s model has to be alive at run time and it must be fed with
updated values of the parameters, which reflect the detected changes in environ-
ment conditions. To detect changes—in turn—suitable run-time monitors must be
activated to collect the relevant data from the environment [9, 33]. In the TA exam-
ple, a monitor should detect changes in the usage profiles and in the reliability and
performance characteristics of the external services. To do so, the data observed at
run time must be converted into probabilities that are used to annotate the DTMC
and the QN models of the TA example. The conversion can be performed by learn-
ing algorithms, typically based on a Bayesian approach, as shown in [29].

In the TA example, let us consider the effect of the following situations that may
be occur at run time.

• The service providing the FAS functionality is discontinued for some time (it
fails with probability 1). The verification procedure for reliability requirements
(a probabilistic model checker) detects a run-time violation of requirement R1.

• The notifyPA operation, which was supposed to be completely reliable (failure
probability equal to 0) is found out to fail with probability 0.01. The model
checker in this case detects a run-time violation of requirement R2.

• The distribution of reactions to analyzeData is found to be quite different
from the one assumed at design time. The probability discovered at run-time
that changeDoses is diagnosed is 0.20 instead of 0.45, the probability that
changeDrug is diagnosed is 0.31 instead of 0.41, the probability that alarm is
generated is 0.47 instead of 0.12, while the probability that a failure is expe-
rienced has exactly the value hypothesized by the designer (0.20). The model
checker detects a run-time violation of requirement R3.

Performance requirements can also be checked for possible violation at run time.
Hereafter we provide a few examples of cases where the environment’s behavior dif-
fers from the assumptions made during design and this would lead to requirements
violations, detected by the QN analyzer:

• Assuming that due to contextual issues the alarm is able to answer to an average
of 0.9 requests per second, instead of the value 1.5 expected, the average response
time of the service growths from 0.667 to 1.111, violating requirement R4.

• If from monitoring data the actual measured request processing rate of the data
analyzer is 2 requests/sec, slower than the value expected at runtime (2.5), then
the utilization of the analyzer becomes 1.1135. Such a value, being larger than
90%, leads to the violation of the requirement R5.

• The FAS component is shared with third parties. Their usage of the component
is modeled by Source 1. If those entities, beyond the control of the Tele Assis-
tance company, increase their request rate from 0.1 to 0.2 requests per second,
the waiting queue of the FAS saturates (in this model, the number of enqueued
requests growths indefinitely) and begins to lose incoming requests. This violates
requirement R6 because QLFAS tends to ∞.

12 Seamless Integration of Design-Time and Run-Time Verification 269

12.6 Related Work

In the last years, QoS prediction has been extensively studied in the context of
traditional software systems. In particular, there has been much interest in model
transformation methodologies for the generation of analysis-oriented target models
(including performance and reliability models) starting from design-oriented source
models, possibly augmented with suitable annotations. Several proposals have been
presented concerning the direct generation of performance analysis models. Each of
these proposals focuses on a particular type of source design-oriented model and a
particular type of target analysis-oriented model, with the former spanning UML,
Message Sequence Chart, Use Case Maps, formal language as AEmilia, ADL lan-
guages such as Acme, and the latter spanning Petri nets, queueing networks, layered
queueing network, stochastic process algebras, Markov processes (see [6] for a thor-
ough overview of these proposals and the WOSP conference series [71] for recent
proposals on this topic). A systematization of the current approaches in the frame-
work of MDD and interesting insights on future trends on this topic can be found
in [2]. Some proposals have also been presented for the generation of reliability
models. All the proposals we are aware of start from UML models with proper an-
notations, and generate reliability models such as fault trees, state diagrams, Markov
processes, hazard analysis techniques and Bayesian models (see [13, 43] for a recent
update on this topic).

More recently, with the increasing interest in the topic of reconfigurable and self-
adaptive computing systems [25], several papers appeared in the literature dealing
with self-adaptation of software systems to guarantee the fulfillment of QoS re-
quirements. Hereafter, we present a short summary of existing work that makes use
of models to perform this step. GPAC (General-Purpose Autonomic Computing),
for example, is a tool-supported methodology for the model-driven development
of self-managing IT systems [17]. The core component of GPAC is a generic au-
tonomic manager capable of augmenting existing IT systems with a MAPE [47]
autonomic computing loop. The GPAC tools and the probabilistic model checker
PRISM [42] are used together successfully to develop autonomic systems involving
dynamic power management and adaptive allocation of data-center resources [18].
KAMI [29] is another framework for model evolution by runtime parameter adapta-
tion. KAMI focuses on Discrete Time Markov Chain models that are used to reason
about non-functional properties of the system. The authors adapt the QoS properties
of the model using Bayesian estimations based on runtime information, and the up-
dated model allows the verification of QoS requirements. The approach presented
in [63] considers the QoS properties of a system in a web-service environment. The
authors provide a language called SLAng, which allows the specification of QoS to
be monitored.

The Models@Run.Time approach [61] proposes to leverage software models and
to extend the applicability of model-driven engineering techniques to the runtime
environment to enhance systems with dynamic adapting capabilities. In [68], the
authors use an architecture-based approach to support dynamic adaptation. Rain-
bow [32] also updates architectural models to detect inconsistencies and in this way

270 A. Filieri et al.

it is able to correct certain types of faults. A different use of models at runtime for
system adaptation is taken in [56]. The authors update the model based on execu-
tion traces of the system. In [73] the authors describe a methodology for estimation
of model parameters through Kalman filtering. This work is based on a continuous
monitoring that provides run-time data feeding a Kalman filter, aimed at updating
the performance model.

In [65], the authors propose a conceptual model dealing with changes in dynamic
software evolution. Besides, they apply this model to a simple case study, in order
to evaluate the effectiveness of fine-grained adaptation changes like service-level
degrading/upgrading action considering also the possibility to perform actions in-
volving the overall resource management. The approach proposed in [58] deals with
QoS-based reconfigurations at design time. The authors propose a method based on
evolutionary algorithms where different design alternatives are automatically gener-
ated and evaluated for different quality attributes. In this way, the software architect
is provided with a decision making tool enabling the selection of the design al-
ternatives that best fits multiple quality objectives. Menascé et al. [60] developed
the SASSY framework for generating service-oriented architectures based on qual-
ity requirements. Based on an initial model of the required service types and their
communication, SASSY generates an optimal architecture by selecting the best ser-
vices and potentially adding patterns such as replication or load balancing. In [59]
an approach for performance-aware reconfiguration of degradable software systems
called PARSY (Performance Aware Reconfiguration of software SYstems) is pre-
sented. PARSY tunes individual components in order to maximize the system utility
with the constraint of keeping the system response time below a predefined thresh-
old. PARSY uses a closed Queueing Network model to select the components to
upgrade or degrade.

In the area of service-based systems (SBS), devising QoS-driven adaptation
methodologies is of utmost importance in the envisaged dynamic environment in
which they operate. Most of the proposed methodologies for QoS-driven adapta-
tion of SBS address this problem as a service selection problem (e.g., [3, 19, 72]).
Other papers have instead considered service-based adaptation through workflow
restructuring, exploiting the inherent redundancy of SBS (e.g., [24, 39, 41].) In [21]
a unified framework is proposed where service selection is integrated with other
kinds of workflow restructuring, to achieve a greater flexibility in the adaptation.

12.7 Conclusions and Future Work

In this chapter we focus on complex, evolvable, and adaptable software applica-
tions that live in highly dynamic environments and yet need to provide service in
a dependable manner. These requirements affect the way software is designed and
operated at run time. The most striking consequence is that models should be kept
alive at run time to support a verification activity that extends to run time.

We envision three important directions for future work. First, it is important
to investigate how detected requirements violations at run time may drive self-
adaptation, to achieve autonomic behavior. In our research group, we achieved some

12 Seamless Integration of Design-Time and Run-Time Verification 271

preliminary results for restricted cases of self-adaptation in [23, 34], but much re-
mains to be done.

Another important research direction should investigate the methods that fit the
specific requirements of run-time verification. In this chapter, we assumed that the
same verification procedures that are used at design time can also be used at run
time. This is of course often an unrealistic assumption. Because run-time reactions
that lead to self-adaptation are triggered by failures in requirements verification, the
time consumed by the verification procedure must be compatible with the time limits
within which a reaction must take place. The model checkers available for require-
ments verification are not designed for on-line use, but rather to explore design-time
tradeoffs. Efficient verification algorithms need to be developed to fully support
run-time verification. An initial step in this direction is explored in [30].

A third research direction in which we are currently engaging concerns the mech-
anisms that must support the run-time reconfigurations that are produced as a result
of self-adaptation. Dynamic reconfiguration must occur dynamically, as the appli-
cation is running and providing service. The goal is to preserve correctness and at
the same time perform the change in a timely manner, without disrupting the ser-
vice. Our work is focusing on extending previous work by Kramer and Magee [50],
which was further extended by [69].

Acknowledgements This research has been partially funded by the European Commission, Pro-
gramme IDEAS-ERC, Project 227977-SMScom.

Appendix: BPEL Overview

BPEL, the Business Process Execution Language, is an XML-based workflow lan-
guage conceived for the definition and the execution of service compositions. BPEL
processes comprise variables, with different visibility levels, and the workflow logic
expressed as a composition of elementary activities. Activities comprise tasks like:
Receive, Invoke, and Reply that are related to the interaction with other services.
Moreover it is possible to perform assignments (Assign), throw exceptions (Throw),
pause (Wait) or stop the process (Terminate).

Branch, loop, while, sequence, and switch constraints manage the control flow
of BPEL processes. The pick construct is peculiar to the domain of concurrent and
distributed systems, and waits for the first out of several incoming messages, or
timer alarms to occur, to execute the activities associated with such an event. Each
scope may contain the definition of the several handlers: (1) an Event Handler that
reacts to an event by executing a specific activity, (2) a Fault Handler catches faults
in the local scope, and (3) a Compensation Handler aimed at restoring the effects
of a previously unsuccessful transaction. For a complete description of the BPEL
language see [1] and the Organization for the Advancement of Structured Informa-
tion Standards (OASIS) website.2 The graphical representation used in this paper is
described earlier in Sect. 12.2.

2The OASIS website is here: http://www.oasis-open.org.

http://www.oasis-open.org

272 A. Filieri et al.

References

1. Alves, A., Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Sterling,
König, D., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web services business
process execution language version 2.0. OASIS Committee Draft (2006)

2. Ardagna, D., Ghezzi, C., Mirandola, R.: Rethinking the use of models in software architec-
ture. In: 4th International Conference on the Quality of Software-Architectures, QoSA 2008.
LNCS, vol. 5281, pp. 1–27. Springer, Berlin (2008)

3. Ardagna, D., Mirandola, R.: Per-flow optimal service selection for web services based pro-
cesses. J. Syst. Softw. 83(8), 1512–1523 (2010)

4. Aziz, A., Singhal, V., Balarin, F.: It usually works: the temporal logic of stochastic systems.
In: Wolper, P. (ed.) Proc. 7th International Conference on Computer Aided Verification, CAV
95. LNCS, vol. 939, pp. 155–165. Springer, Berlin (1995)

5. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate symbolic model checking of continuous-
time Markov chains. In: Baeten, J.C.M., Mauw, S. (eds.) Proc. 10th International Confer-
ence on Concurrency Theory, CONCUR 99. LNCS, vol. 1664, pp. 146–161. Springer, Berlin
(1999)

6. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction
in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–310 (2004)

7. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web service com-
positions. IET Softw. 1(6), 219–232 (2007)

8. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: issue and challenges. Com-
puter 39(10), 36–43 (2006)

9. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: Proceedings of
the 2nd International Conference on Service Oriented Computing, ICSOC ’04, pp. 193–202.
ACM, New York (2004)

10. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks of
queues with different classes of customers. J. ACM 22(2), 248–260 (1975)

11. Becker, S., Grunske, L., Mirandola, R., Overhage, S.: Performance prediction of component-
based systems—a survey from an engineering perspective. In: Architecting Systems with
Trustworthy Components. LNCS, vol. 3938, pp. 169–192. Springer, Berlin (2006)

12. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with the Palladio
component model. In: WOSP ’07: Proceedings of the 6th International Workshop on Software
and Performance, pp. 54–65. ACM, New York (2007)

13. Bernardi, S., Merseguer, J., Petriu, D.: Adding dependability analysis capabilities to the
MARTE profile. In: Model Driven Engineering Languages and Systems, Proceedings 11th
International Conference, MoDELS 2008, Toulouse, France, September 28–October 3, 2008.
LNCS, vol. 5301, pp. 736–750. Springer, Berlin (2008)

14. Bertoli, M., Casale, G., Serazzi, G.: The JMT simulator for performance evaluation of non-
product-form queueing networks. In: Annual Simulation Symposium, pp. 3–10. IEEE Com-
puter Society, Norfolk (2007)

15. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications. Wiley-
Interscience, New York (1998)

16. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering. Pearson Education,
London (1975)

17. Calinescu, R.: General-purpose autonomic computing. In: Denko, M.K., Yang, L.T., Zhang,
Y. (eds.) Autonomic Computing and Networking, pp. 3–30. Springer, Berlin (2009)

18. Calinescu, R., Kwiatkowska, M.: Using quantitative analysis to implement autonomic it sys-
tems. In: ICSE ’09: Proceedings of the 31st International Conference on Software Engineer-
ing, pp. 100–110. IEEE Computer Society, Washington (2009)

19. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A framework for QoS-aware binding
and re-binding of composite web services. J. Syst. Softw. 81(10), 1754–1769 (2008)

12 Seamless Integration of Design-Time and Run-Time Verification 273

20. Caporuscio, M., Funaro, M., Ghezzi, C.: Architectural issues of adaptive pervasive systems.
In: Graph Transformations and Model-Driven Engineering, pp. 492–511 (2010)

21. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: QoS-driven runtime
adaptation of service oriented architectures. In: Proceedings ESEC/FSE 2009, pp. 131–140.
ACM, New York (2009)

22. Casale, G., Muntz, R., Serazzi, G.: Geometric bounds: a noniterative analysis technique for
closed queueing networks. IEEE Trans. Comput. 57(6), 780–794 (2008)

23. Cavallaro, L., Di Nitto, E., Pelliccione, P., Pradella, M., Tivoli, M.: Synthesizing adapters
for conversational web-services from their WSDL interface. In: ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS ’10, pp. 104–113. ACM, New
York (2010)

24. Chafle, G., Doshi, P., Harney, J., Mittal, S., Srivastava, B.: Improved adaptation of web service
compositions using value of changed information. In: ICWS, pp. 784–791. IEEE Comput.
Soc., Los Alamitos (2007)

25. Cheng, B., de Lemos, R., Giese, G., Inverardi, P., Magee, J. (eds.): Software Engineering for
Self-Adaptive Systems [outcome of a Dagstuhl Seminar]. LNCS, vol. 5525. Springer, Berlin
(2009)

26. Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic process algebras. In: 7th Intern.
School on Formal Methods, SFM. LNCS, vol. 4486, pp. 132–179. Springer, Berlin (2007)

27. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M.P., Pohl, K.: A journey to highly dy-
namic, self-adaptive service-based applications. Autom. Softw. Eng. 15(3–4), 313–341 (2008)

28. Dwyer, M.B., Avrunin, J.S., Corbett, J.C.: Property specification patterns for finite-state veri-
fication. In: Proc. 21th International Conference on Software Engineering (ICSE99), pp. 411–
420. ACM, New York (1999)

29. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time param-
eter adaptation. In: Proc. 31st International Conference on Software Engineering (ICSE09),
pp. 111–121. IEEE Comput. Soc., Los Alamitos (2009)

30. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model checking. In:
Taylor, R.N., Gall, H., Medvidovic, N. (eds.) ICSE, pp. 341–350 (2011)

31. Gallotti, S., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Quality prediction of service com-
positions through probabilistic model checking. In: QoSA, Quality of Software Architecture.
LNCS. Springer, Berlin (2008)

32. Garlan, D., Cheng, S.-W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-
based self-adaptation with reusable infrastructure. IEEE Comput. 37(10), 46–54 (2004)

33. Ghezzi, C., Guinea, S.: Run-time monitoring in service-oriented architectures. In: Test and
Analysis of Web Services, pp. 237–264. Springer, Berlin (2007)

34. Ghezzi, C., Motta, A., Manna, V.P.L., Tamburrelli, G.: QoS driven dynamic binding in-the-
many. In: Heineman, G.T., Kofron, J., Plasil, F. (eds.) Research into Practice—Reality and
Gaps, 6th International Conference on the Quality of Software Architectures, QoSA 2010,
Prague, Czech Republic, June 23–25, 2010, pp. 68–83. Springer, Berlin (2010)

35. Ghezzi, C., Tamburrelli, G.: Reasoning on non-functional requirements for integrated services.
In: RE ’09: Proceedings of the 17th International Conference on Requirements Engineering,
Atlanta, USA (2009)

36. Grassi, V.: Architecture-based reliability prediction for service-oriented computing. In: Work-
shop on Architecting Dependable Systems, WADS. LNCS, vol. 3549, pp. 279–299. Springer,
Berlin (2004)

37. Gruhn, V., Laue, R.: Patterns for timed property specifications. Electron. Notes Theor. Com-
put. Sci. 153(2), 117–133 (2006)

38. Grunske, L.: Specification patterns for probabilistic quality properties. In: Robbie (ed.) 30th
International Conference on Software Engineering (ICSE 2008), pp. 31–40. ACM, New York
(2008)

39. Guo, H., Huai, J., Li, H., Deng, T., Li, Y., Du, Z.: ANGEL: optimal configuration for high
available service composition. In: IEEE International Conference on Web Services (ICWS
2007), pp. 280–287. IEEE Comput. Soc., Los Alamitos (2007)

274 A. Filieri et al.

40. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Form. Asp. Comput.
6(5), 512–535 (1994)

41. Harney, J., Doshi, P.: Speeding up adaptation of web service compositions using expiration
times. In: World Wide Web (WWW), pp. 1023–1032. ACM, New York (2007)

42. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: Prism: a tool for automatic verification
of probabilistic systems. In: Proc. 12th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’06), vol. 3920, pp. 441–444 (2006)

43. Immonen, A., Niemelä, E.: Survey of reliability and availability prediction methods from the
viewpoint of software architecture. Softw. Syst. Model. 7(1), 49–65 (2008)

44. Jain, R.: The Art of Computer Systems Performance Analysis—Techniques for Experimental
Design, Measurement, Simulation, and Modeling. Wiley-Interscience, New York (1991)

45. Katoen, J.-P., Kemna, T., Zapreev, I.S., Jansen, D.N.: Bisimulation minimisation mostly
speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems TACAS 2007, Proceedings. LNCS,
vol. 4424, pp. 87–101. Springer, Berlin (2007)

46. Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: QEST, pp. 243–
244. IEEE Comput. Soc., Los Alamitos (2005)

47. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36(1), 41–50
(2003)

48. Kerola, T.: The composite bound method for computing throughput bounds in multiple class
environments. Perform. Eval. 6(1), 1–9 (1986)

49. Konrad, S., Cheng, B.: Real-time specification patterns. In: Roman, G.-C., Griswold, W.G.,
Nuseibeh, B. (eds.) 27th International Conference on Software Engineering (ICSE 05), pp.
372–381. ACM, New York (2005)

50. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change management.
IEEE Trans. Softw. Eng. 16, 1293–1306 (1990)

51. Kwiatkowska, M.: Quantitative verification: models, techniques and tools. In: 6th Joint Meet-
ing of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE), pp. 449–458. ACM Press, New
York (2007)

52. Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic symbolic model checking with
PRISM: a hybrid approach. Int. J. Softw. Tools Technol. Transf. 6(2), 128–142 (2004)

53. Kwiatkowska, M.Z., Norman, G., Parker, D.: Symmetry reduction for probabilistic model
checking. In: Ball, T., Jones, R.B. (eds.) Computer Aided Verification, Proceedings 18th In-
ternational Conference, CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer, Berlin (2006)

54. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilis-
tic timed automata using digital clocks. Form. Methods Syst. Des. 29(1), 33–78 (2006)

55. Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System Performance:
Computer System Analysis Using Queueig Network Models. Prentice Hall, New York (1984)

56. Maoz, S.: Using model-based traces as runtime models. IEEE Comput. 42(10), 28–36 (2009)
57. Marsan, M.A.: Stochastic petri nets: an elementary introduction. In: Advances in Petri Nets,

pp. 1–29. Springer, Berlin (1989)
58. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software architec-

ture models for performance, reliability, and cost using evolutionary algorithms. In: 1st Joint
WOSP/SIPEW International Conference on Performance Engineering, pp. 105–116. ACM,
New York (2010)

59. Marzolla, M., Mirandola, R.: Performance aware reconfiguration of software systems. In:
Computer Performance Engineering—Proceedings 7th European Performance Engineering
Workshop, EPEW 2010, Bertinoro, Italy, September 23–24, 2010. LNCS, vol. 6342, pp. 51–
66. Springer, Berlin (2010)

60. Menascé, D.A., Ewing, J.M., Gomaa, H., Malek, S., Sousa, J.P.: A framework for utility-based
service oriented design in sassy. In: Proc. First Joint WOSP/SIPEW Int. Conf. on Performance
Engineering, pp. 27–36. ACM, New York (2010)

61. Morin, B., Barais, O., Jézéquel, J.-M., Fleurey, F., Solberg, A.: Models@ run.time to support
dynamic adaptation. IEEE Comput. 42(10), 44–51 (2009)

12 Seamless Integration of Design-Time and Run-Time Verification 275

62. Puterman, M.L.: Markov Decision Processes. Wiley, New York (1994)
63. Raimondi, F., Skene, J., Emmerich, W.: Efficient online monitoring of web-service slas. In:

SIGSOFT FSE, pp. 170–180. ACM, New York (2008)
64. Ross, S.M.: Stochastic Processes. Wiley, New York (1996)
65. Salehie, M., Li, S., Asadollahi, R., Tahvildari, L.: Change support in adaptive software: a

case study for fine-grained adaptation. In: EASE ’09: Proc. Sixth IEEE Conf. and Workshops
on Engineering of Autonomic and Autonomous Systems, pp. 35–44. IEEE Comput. Soc.,
Washington (2009)

66. Sato, N., Trivedi, K.S.: Stochastic modeling of composite web services for closed-form analy-
sis of their performance and reliability bottlenecks. In: ICSOC. LNCS, vol. 4749, pp. 107–118.
Springer, Berlin (2007)

67. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic systems. In:
Etessami, K., Rajamani, S.K. (eds.) Computer Aided Verification. LNCS, vol. 3576, pp. 266–
280. Springer, Berlin (2005)

68. Taylor, R.N., Medvidovic, N., Oreizy, P.: Architectural styles for runtime software adaptation.
In: WICSA/ECSA, pp. 171–180. IEEE Press, New York (2009)

69. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: a low disruptive alternative
to quiescence for ensuring safe dynamic updates. IEEE Trans. Softw. Eng. 33(12), 856–868
(2007)

70. Wang, L., Dingle, N.J., Knottenbelt, W.J.: Natural language specification of performance trees.
In: Thomas, N., Juiz, C. (eds.) Proceedings of the 5th European Performance Engineering
Workshop, EPEW 2008. LNCS, vol. 5261, pp. 141–151 (2008)

71. WOSP International Workshops on Software and Performance. ACM, New York (1998–2008)
72. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware

middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)
73. Zheng, T., Woodside, M., Litoiu, M.: Performance model estimation and tracking using opti-

mal filters. IEEE Trans. Softw. Eng. 34(3), 391–406 (2008)

Chapter 13
Modelling Temporal Behaviour in Complex
Systems with Timebands

Kun Wei, Jim Woodcock, and Alan Burns

13.1 Introduction

Complex real-time systems exhibit dynamic behaviours on many different time lev-
els. For example, circuits have nanosecond speeds for computation in a component,
whereas slower functional units may take seconds to achieve their goals; moreover,
the involvement of human activities related to calendar units such as days, weeks,
months and even years may take more time. To cope with a wide range of time
scales, many approaches [10, 23] have introduced time granularity, so that system
specifications and requirements could be naturally described within the best suit-
able time granularity. However, they usually transform or project all descriptions
into the finest granularity in the end. This results in cumbersome formulae and fails
to recognise the distinct role that time is taking in the structuring of the system.
For example, it is unnecessary to measure the start of a meeting in a millisecond
time scale. In fact, most people are usually tolerant of starting a meeting five min-
utes early or late. Traditional approaches dealing with time granularity sacrifice the
separation of concerns in the analysis of complex real-time systems.

To overcome the above weakness when traditional approaches model dynamic
temporal behaviours of a system, Burns and Hayes [5] propose a timebands model
in which a system is decomposed to reveal different behaviours in different time
bands. Apart from defining time bands by granularities, a key aspect of the time-
bands framework is that events are considered to be instantaneous in a band, and
then in a finer band they can be mapped into activities that have duration. For ex-
ample, to express a statement that every month we have a meeting which lasts one
hour, we model the meeting as an instantaneous event in a month band and subse-
quently map it into an activity in an hour band. This clearly allows dynamic temporal
behaviours to be partitioned, but not to be isolated from each other. The mapping

K. Wei (�)
Department of Computer Science, University of York, York, UK
e-mail: kun@cs.york.ac.uk

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_13, © Springer-Verlag London Limited 2012

277

mailto:kun@cs.york.ac.uk
http://dx.doi.org/10.1007/978-1-4471-2297-5_13

278 K. Wei et al.

between different bands leads to more distinct features. For example, precision is in-
troduced to represent the measure of accuracy of events within a band; accordingly,
events are simultaneous only if, when viewed from a finer band, their corresponding
activities are within the precision. Activities may overlap even though their corre-
sponding events in a coarser band are well-ordered. As a result, a formal model
of the timebands framework is needed to allow consistency to be asserted between
different temporal descriptions that are specified in different time bands.

The concept of time granularity has been well defined in the literature [8, 16]
and many approaches have focused on time granularity in different areas of com-
puter science, such as temporal databases, data mining, formal specification and so
on. General speaking, the basic idea of time granularity is to partition a universal
time domain into differently-grained granules, and a granularity is a set of indexed
granules, any one of which is a set of time instants. The choice for time domain is
typically between continuous (dense) and discrete. We focus on developing a natural
specification language which is able to describe the behaviour of a real-time system
whose components engage in different time scales. In other words, we attempt to
embed time granularity in a logical specification language. However, adding time
granularity to a formalism may give rise to semantic issues like problems of assign-
ing a proper meaning to statements with different time domains and of switching
from one domain to a coarser/finer one. So far, most work has been focused on
embedding time granularity in temporal logic languages. For example, early explo-
ration [10, 23] consists of translation mechanisms that map a formula associated
with different time constraints to the finest granularity. They [7] later revise the sim-
ple approach by extending the basic logic language with contextual and projection
operators, so that the enhanced semantics can express more general and complete
properties. Subsequently, more work [9, 12] uses linear time logic to model and
reason about time granularity.

For manipulating the unique feature of mapping events into activities, process
algebra approaches are potential candidates for formalising the timebands model.
However, there is little work on embedding time granularity in process algebra lan-
guages, though there have been many papers [19, 28, 29] on timed process alge-
bra approaches. To formalise the timebands model, we have proposed a new timed
model of CSP, called timed CSP with the miracle (TCSPM), which is an extension to
timed CSP [28] but whose semantics is based on Unifying Theories of Programming
(UTP) [15]. This new model uses a complete lattice with respect to the implication
order (or the reverse order of the refinement order), which is rather different from
previous models such as the complete partial order of CSP [14, 25, 28]. The seman-
tics of the timebands model is built upon TCSPM , fully applying the miracle (the top
element of the complete lattice) to express those brand-new features such as simul-
taneous events and mappings. In this chapter, we use a mine pump example to show
how naturally to verify different temporal properties using the timebands model at
different time scales. The idea and informal description of the timebands framework
has been given in [5], and the formal semantics of the framework is developed in
this chapter.

The chapter is structured as follows. We begin with a brief introduction of
TCSPM in Sect. 13.2. Section 13.3 presents how to use the new timed model to

13 Modelling Temporal Behaviour in Complex Systems with Timebands 279

formalise the timebands model and how to formally express these distinct features.
Then, by means of a rather complex example, we demonstrate how significantly the
timebands model contributes to describing a complex real-time system with multi-
ple time scales in Sect. 13.4. Section 13.5 concludes this chapter.

13.2 Timed CSP with the Miracle

Recently, we have proposed a new timed model [32] of Circus [26, 33] which is a
combination of CSP, Z [34] and the refinement calculus so as to define both data
and behavioural aspects of a system. In fact, our timed Circus is a compact exten-
sion of Circus in that it inherits only the CSP part in order to reduce the difficulty
of implementing Circus programs in practice. Although it does not have the same
capability of handling data as the original Circus language does, our timed Circus
preserves local variables for each process that still contains a considerable power to
express the change of states. To formalise the timebands model, we further simplify
timed Circus to TCSPM by adopting discrete time.

Simply speaking, TCSPM can also be considered an extension to Schneider’s
timed CSP [28], but its UTP-style semantics uses a complete lattice in the impli-
cation ordering which is different from the complete partial order of timed CSP.
With the application of the miracle (the top element of the model), TCSPM turns
out to be able to express some surprising behaviours which, moreover, cannot be
described in timed CSP. Additionally, TCSPM violates some axioms of the standard
failures-divergences model of CSP, e.g., traces are not prefix closed any more.

In UTP, Hoare and He use the alphabetised relational calculus to give a denota-
tional semantics that can explain a wide variety of programming paradigms. Hence,
the alphabet of a process P in TCSPM consists of undashed variables (a, b, . . .) and
dashed variables (a′, x′, . . .). The former, written as inαP , stands for initial obser-
vations, and the latter as outαP for intermediate or final observations. The relation
is then called homogeneous if outαP = inαP ′, where inαP ′ is simply obtained by
putting a dash on all the variables of inαP . Thus, an observation in TCSPM is a
tuple consisting of tr, ref , ok, wait, t , v and their dashed counterparts, in which tr
and tr′ are timed traces, ref and ref ′ are refusals, ok is a boolean variable expressing
whether a process has started or not (ok′ whether the process has terminated or not),
wait′ denotes whether the process is in an intermediate state, t is the starting time of
the observation (t ′ is the finishing time), and v and v′ denote a set of local variables
of the process.

A timed trace is a sequence of timed events which are pairs drawn from Z
+ ×�,1

e.g., 〈(1,pump.on), (3,pump.off)〉 is a timed trace. A refusal is simply a set of
events, other than a set of time events in timed CSP, since other variables can assist
in representing enough information of when those events are refused. The ok and
wait observations (and their dashed variables) describe whether a process is started

1� denotes the universal set of events.

280 K. Wei et al.

(or finished) in a stable state. If ok′ is false, the process diverges. If ok′ is true, the
state of the process depends on the value of wait′. If wait′ is true, the process is in
an intermediate state, otherwise it successfully terminates. Similarly, the values of
undashed variables represent the states of the process’s predecessor.

Except for the deadline and assignment operators, the syntax of TCSPM is similar
to the one of timed CSP, as described by the following grammar:

P :: = �R | ⊥R | SKIP | STOP | a → P | P1;P2 | x :=A e | g&P |
P1 � P2 | P1 � P2 | P1 |[A]|P2 | P \A | WAIT d | P1 � {d}P2 |
P � d | P1�{a}P2 | μX.P

13.2.1 Primitive Processes

The miracle �R is the top element in the implication ordering, however it cannot be
executed since it expresses that a process has not started yet. Of course, an unstarted
process satisfies any requirement. The bottom element ⊥R is called Abort which
can do absolutely anything. The process STOP is deadlocked and its only behaviour
is to allow time to elapse. The process SKIP simply terminates immediately.

13.2.2 Sequential

The sequential composition P1 ;P2 behaves as P1 until P1 terminates, and then
behaves as P2. In the meanwhile the final state of P1 is passed on as the initial state
of P2. The prefix process a → P is able to execute the event a (a ∈ �) and then
behaves as P . This process can also be represented by a composition of a simple
prefix and P itself, written as (a → SKIP) ;P . The process g&P has a boolean
expression g, which must be satisfied before P starts.

The notation (x :=A e) represents that a process simply assigns the value of an
expression e to a process variable x, and any other variable in the alphabet A remains
unchanged. In practice, we often use a shorthand for the assignment operator. For
example, P(x + 1) is actually defined as (x := x + 1 ;P).

13.2.3 Choice

The process P1 � P2 behaves either like P1 or P2, but the first event of which can
resolve the choice. Compared with this external choice, the internal choice P1 � P2
can also behave either like P1 or like P2, but it is out of control of its environment.
Both external and internal choices have indexed choices. For example, if I is a

13 Modelling Temporal Behaviour in Complex Systems with Timebands 281

finite indexing set such that Pi is defined for each i ∈ I , written as �i∈I
Pi . The

indexing external choice is also used to define the input operator. For example, if c is
a channel name of type T and v is a particular value, the process c!v → P outputting
v along the channel c is equal to c.v → P . The inputting process c?x : T → P(x)

describes a process that is ready to accept any value x of type T , and it is defined as
�x∈T

c.x → P(x).

13.2.4 Parallel

The process P1 |[A]|P2 is the process where all events in the set A must be syn-
chronised, and the events outside A can execute independently. The parallel process
terminates only if both P1 and P2 terminate, and it becomes divergent after either
one of P1 and P2 does so. An interleaving of two processes, P1 ||| P2, executes each
part independently and is equivalent to P1 |[∅]|P2.

13.2.5 Abstraction and Recursion

The hiding operator P \A makes the events in the set A become invisible or internal
to the process. The process P1�{a}P2 behaves as P1, but at any stage before its ter-
mination the occurrence of a will interrupt P1 and pass the program control to P2.
The recursive process μX.P behaves like P with every occurrence of the system
variable X in P representing a recursive invocation. For example, to express a sim-
ple recursive process P = a → P , we have a monotonic function F , a variable X,
and an equation F(X) = a → X; and then P is actually represented by μX.F(X)

which stands for the least fixed point of the above equation.

13.2.6 Timed Operators

The delay process WAIT d does nothing except that it allows d time units to pass.
The timeout operator P1 � {d}P2 resolves the choice in favour of P1 if P1 is able
to execute observable (external) events by d time units, otherwise executes P2. This
operator is defined by the combination of the external choice and hiding operators:

P1 � {d}P2 = ((P1 ; e → SKIP) � (WAITd ; e → P2)) \ {e}

which uses the event e to resolve the external choice, if no external event happens
in P1 by d or P1 does nothing but terminates before d . Also, e is not included in the
alphabet of P1 and P2.

282 K. Wei et al.

The deadline operator � is similar to the timeout operator, but it uses the miracle
to force that P must execute observable events by d :

P � d = (((P ; e1 → SKIP) � (WAIT d ; e2 → STOP)) \ {e2}
� WAIT d ;�R) \ {e1}

where the role of e1 (e1 /∈ αP) is to resolve both external choices when P quietly
terminates before d , and the event e2 (e2 /∈ αP) is used to resolve the first external
choice if P does nothing when d is due. Of course, the miracle (�R) forces P to
execute external events, otherwise the whole process will behave like the miracle.
More detailed explanation of the deadline operator will be found in Sect. 13.2.9
after some algebraic laws are introduced. This is really a very strong requirement in
which there is no alternative but to meet the deadline, otherwise P will never start.

Note that our deadline operator is different from the one defined in timed CSP
which, in fact, indicates that a process becomes deadlocked if events cannot occur
by d . The deadline operator in TCSPM insists that the process will not start at all if
the deadline is missed. In other words, events in P must occur by d , or the process
behaves as �R .

13.2.7 Refinement

Suppose that P1 and P2 have the alphabet A of variables. If every observation that
satisfies P1 also satisfies P2, it is expressed by ∀v :A • P1 ⇒ P2, or [P1 ⇒ P2]. Be-
cause the refinement order is the reverse order of implication, it can also be written
as P2 � P1. The miracle is an unstarted process so that its observation obviously
satisfies any other process in the model, i.e., [�R ⇒ P] or P ��R .

13.2.8 The Difference from Timed CSP

Although TCSPM inherits assumptions of timed CSP such as maximal parallelism
and maximal progress, the introduction of the miracle makes TCSPM different from
timed CSP in many aspects. The miracle itself is a very ‘strange’ process since
it can never be executed in practice. However, it is very useful as a mathematical
abstraction in reasoning about properties of a system. The semantics of �R in
TCSPM is defined as follows:

�R = (tr ≤ tr′ ∧ t ≤ t ′ ∧ ¬ok)∨ (wait ∧ ok′ ∧ II)

where II is called relational identity which simply means that all dashed variables in
the alphabet are equivalent to correspondingly undashed variables. The observation
of the miracle consists of two parts: the left part of the disjunction states that, since

13 Modelling Temporal Behaviour in Complex Systems with Timebands 283

ok is false, its predecessor diverges and the miracle is in an unstable state; the second
one states that the miracle is waiting for its predecessor’s termination (e.g., wait is
true) but in a stable state (e.g., ok′ is true). However, in both cases, the miracle has
not started yet.

The miracle gives rise to some very strange processes, each of which violates
one of axioms of the standard CSP failures-divergences model. For example, we
combine the miracle with a simple prefix, and then get the following miraculous
process:

a →�R =̂R(true � tr′ = tr ∧ a /∈ ref ′ ∧wait′ ∧ v′ = v) (13.1)

Let us concentrate on the expression after the symbol �, which describes the
behaviour if a process starts from a stable state. The reader who is interested in R, �
and proof is referred to [31, 32]. The process (13.1) states that, if the process starts
stably, then it will wait for interaction with its environment (wait′ is true), but never
actually perform any event (tr′ = tr) even if the event a has been offered (a /∈ ref ′).
This process violates an axiom of the CSP failures-divergences model [25, 28],

F3. (s,X) ∈ F ∧ ∃a ∈ Y • s � 〈a〉 /∈ traces⊥(P)⇒ (s,X ∪ Y) ∈ F

saying if at a state an event is not in the refusal set then the process is willing to
execute the event.

Another strange process is that the external choice of the miracle with a simple
prefix:

(a → SKIP) ��R =R(true � ¬wait′ ∧ tr′ = tr � 〈(t ′, a)〉 ∧ v′ = v) (13.2)

In an untimed model this process performs the event a and terminates immediately.
There is no state in which the process is waiting for the environment to offer a. It
simply occurs instantly; in other words, no empty trace exists for such a process.
Obviously, it violates another important axiom of the standard failures-divergences
model of CSP where traces are prefix closed. In our timed model, this process re-
veals more interesting features. Because there is no constraint on timing in (13.2),
the event a will occur when the environment is willing to interact with it. However,
there is still no state between the start of the process and the occurrence of a, or the
time before the occurrence of a has become invisible.

13.2.9 Distinct Features

The combination of the miracle and other operators can further assist us in under-
standing the role of the miracle. In fact, the key role of the miracle in a process is
that the program control should never meet the miracle if the process has started.

284 K. Wei et al.

This idea can be applies to intuitively get the following laws2:

L1. �R ;P =�R

L2. SKIP ;�R =�R

L3. STOP ��R =�R

L4. SKIP ��R = SKIP

L5. P ��R = P

L6. P |[{A}]|�R =�R

For example, the left part in L2 should not start and therefore behaves as �R

since SKIP allows the program control to meet the miracle immediately if the pro-
cess starts. Similarly, the process in L4 must behave as SKIP to discard the miracle.
The process in L6 states that the parallel of the miracle with any process is the mir-
acle, because all processes engaged in the parallel must start together, however, the
miracle cannot start so that the whole parallel cannot too.

13.2.9.1 Deadline

The deadline operator in TCSPM is different from the one defined in timed CSP.
It can be used to specify a property that something must occur, rather than that
something should occur otherwise the process is deadlocked. For example, (a →
SKIP) � 1 means that a must occur within one time unit, or the process will not
start if the deadline cannot be satisfied. An easy way to understand this property
is to note that the process will backtrack to the unstarted state if a cannot happen
within the deadline.

We can further clarify how the deadline operator works from its definition. For
example, there are three cases in which P � d will behave: the first one is that
P executes external events before d , another two are that P does nothing by d

and P does nothing but terminates by d respectively. The first and third cases are
straightforward to implement in the definition of � since the external events and e1
will resolve both external choices. We focus on the second case and use a simple
example to prove its correctness.

(WAIT 2) � 1 = (((WAIT 2 ; e1 → SKIP) � (WAIT 1 ; e2 → STOP)) \ {e2}
� WAIT 1 ;�R) \ {e1}

= WAIT 1 ; (((WAIT 1 ;e1 → SKIP) � (e2 → STOP)) \ {e2}
��R) \ {e1}

= WAIT 1 ; ((e2 → STOP) \ e2) ��R

2These laws have been formally proved and the reader is referred to [31].

13 Modelling Temporal Behaviour in Complex Systems with Timebands 285

= WAIT 1 ; (STOP ��R)

= WAIT 1 ;�R

The result is very interesting. As our previous conclusion that a program control
should never meet the miracle during any execution, WAIT 1 ;�R actually means
that the process will behave like the miracle unless it can be interrupted before one
time unit. As a result, the above example proves that if a process cannot execute
external events by the deadline, it behaves as the miracle. In other words, if the
process can then it must do so.

13.2.9.2 Atomic Events

In modelling a complex system, it is very convenient to impose a collection of events
to happen together. For example, RAISE Specification Language (RSL) [13, 35] has
an interlock operator which can prevent the interlocked processes from communicat-
ing with other processes until one of them terminates. Of course, the communication
can take place between the locked processes if they are able to. Promela/SPIN [17,
18] can define atomic sequences which encapsulate a fragment of code to be exe-
cuted uninterruptedly and individually. In the interleaving of process executions, no
other process can execute statements from the moment that the first statement of an
atomic sequence is executed until the last one has completed. Unfortunately, to our
best knowledge, neither of the two operators has denotational semantics probably
because of the insufficient capability of current languages to express the property
that something must occur.

Such ‘atomic’ events can also be easily defined by the deadline operator with
well-defined denotational semantics. For example, setting the value of the deadline
as zero can make a process or an event become instant. For the sake of convenience,
we use the following abbreviations as a shorthand to represent instant events or
processes:

‡P =̂ P � 0

P1‡P2 =̂ P1 ; (P2 � 0)

a‡b =̂ (a → SKIP)‡(b → SKIP)

Here the instantaneity operator squeezes the ‘distance’ of events and processes to
zero. In addition, none of instant events can happen individually. Moreover, we can
define uninterrupted events by means of the instantaneity operator. For example,
(a → WAIT 1)‡(b → SKIP) means that a can happen only if b can even if there
is one time unit delay between them. Such events are extremely useful for dealing
with explicit clock-tick events in Sect. 13.3.3.

286 K. Wei et al.

13.2.10 Discussion

TCSPM is a discrete-time version of timed Circus, which is also considered an ex-
tension to timed CSP. Its denotational semantics is based on UTP by embedding the
theory of designs in the theory of reactive systems. More detailed introduction to its
semantics can be found in [31, 32]. To prove the correctness and consistency of the
model, we have done a shallow embedding [30] of the semantics of our timed Cir-
cus in the theorem prover PVS. The behaviours of our strange processes have been
proved by hand and also by PVS. The ongoing work is focusing on the operational
semantics of the timed model and the development of efficient tool support.

13.3 Semantics of the Timebands Model

In consideration of the nature of the timebands model, we intend to use TCSPM to
express its semantics. The newly explored process, the miracle, plays a crucial role
in the construction of the timebands model to link all time bands as a whole. First,
we use a lecture example to explain how to view a simple system in the timebands
model. Suppose that one week a lecturer has a lecture which takes two hours and
has a five-minute break. To model it, we define three time bands, Week, Hour and
Minute, which are given in an increasing finer order and illustrated in Fig. 13.1. In
Band Week, event lecture does not take any time to execute, but it is mapped into
activity L with duration in Band Hour. Furthermore, event break in activity L is
mapped into another activity B in Band minute. Thus, instead of mapping all events
or activities into the finest band, we use some key events (or signature events) to
link and integrate different bands into a whole. Meanwhile, the timebands model
preserves consistency and coordination of the system in the multiple time scales.
The timebands model is developed in a number of stages in this section including
time bands, granularity and precision, simultaneous events and durative activities,
and mappings between bands.

13.3.1 Time Bands

A system in the timebands model recognises a finite set of distinct time bands, and
it always has the highest and the lowest bands that give a temporal system boundary.
Each band is defined by a granularity, representing the basic unit of time in that band.
This is different from temporal logic approaches which can represent a possibly
infinite set of time bands.

The timebands model adopts discrete time, usually represented by non-negative
integers. A granule is simply a set of time points and a granularity is a mapping
G from integers to a granule. One healthiness condition [4] that granularity must
satisfy is

G1 : ∀i, j : Z | i < j ∧G(i) �= ∅ ∧G(j) �= ∅ • (∀t :G(i), u :G(j) • t < u)

13 Modelling Temporal Behaviour in Complex Systems with Timebands 287

Fig. 13.1 Mapping between different time bands

which states that any two granules of a granularity have no overlap and the elements
of granules are ordered the same as their index order. A granule G(i) can be com-
prised of a single time unit, a set of contiguous units, or even a set of non-contiguous
units. For example, the bank holidays for 2009 in England, defined as a collection
of several days from different months, can be used as a granule.

Thus, the time bands in the lecture example can be defined as follows:

TBI = {Minute,Hour,Week}
Granularity(Hour,Minute)= {60}
Granularity(Week,Hour)= {7 ∗ 24}

The set TBI is a collection of the timeband identities. The function Granularity de-
fines conversion factors of different time bands’ granularities. These factors can be
multiple. For example, a year may have 365 days or 366 days. In addition, the func-
tion Granularity also satisfies ‘finer than’ relations of different time bands. A granu-
larity G is finer than a granularity H if for each index i, there exists an index j such
that G(i)⊆H(j). Conversion factors between two bands must be natural numbers,
and therefore time bands are not always comparable. For example, a week band is
not comparable to a month band.

13.3.2 Events and Precision

Events are instantaneous, but depend on which band they are defined. For exam-
ple, an event defined in the week band does not take any time to execute, however
it might take several hours in the hour band. Indeed, there are a few relationships

288 K. Wei et al.

between events within a band such as instant events defined in Sect. 13.2.9. Instan-
taneity is the strongest constraint that is used especially to link different time bands
via events and activities.

In specification of a system, events may cause an immediate response. For exam-
ple, we consider such a requirement like ‘when the fridge door opens the light must
come on immediately’. It actually means that the two events, door.open and light.on,
occur simultaneously but with an order. That is, the response is within the precision
of the band. Precision, representing the measure of accuracy of events within that
band, can only be expressed using the granularity of finer bands. Accordingly, two
simultaneous events must, when viewed from a finer band, be within the precision of
the current band. In respect to the finite number of time bands in the model, the finest
(lowest) band has no precision. Due to precision, two simultaneous events cannot be
exactly distinguished because the ‘gap’ between them is too small to be considered.
Here the small gap also results in tolerance of the behaviours when mapping the two
events into the corresponding activities of a finer band. For instance, considering the
lecture example with three bands, precision can be defined as follows:

Precision(Week,Hour)= 2

Precision(Hour,Minute)= 5

If event break is supposed to happen in the middle of a lecture, the precision of
the hour band restricts the maximal duration of a break to be five minutes, other-
wise break cannot be considered an instantaneous event in the hour band. Also, the
precision allows the break to happen five minutes early or late.

Therefore, similar to the definition of instant events, the simultaneous operator is
defined as follows:

P1
−→
P2 =̂ P1 ;(P2 � ρ)

where ρ is the precision of that band. Two simultaneous events, e.g., a and b, are
expressed as either a is before b or b is before a, but they must occur within the
precision. We also use the following abbreviations to represent simultaneous events:

a
−→
b = (a → SKIP)

−→
(b → SKIP)

a#b = a
−→
b � b

−→
a

where # denotes that a and b are simultaneous, and
−→
that they are simultaneous

but with an order. This abbreviation is applied to all simultaneous events in this
chapter.

Simultaneity is also a very strong constraint which is similar to instantaneity.
That is, either simultaneous events occur together or none of them occurs individ-
ually. The difference is that two simultaneous events allow one of them to occur
within the precision after the other has occurred, even though such a short delay is
too small to be considered in this band. Simultaneous events are the same as instant
events if these events are not mapped.

13 Modelling Temporal Behaviour in Complex Systems with Timebands 289

We cannot distinguish two simultaneous events in the current band; however, the
interval between simultaneous events will be revealed in the form of precision when
mapping these events to corresponding activities in a finer band. As a result, the
precision basically plays two roles in a band: one is to measure accuracy of events
such as simultaneous events, the other is to restrict the duration of activities. Un-
fortunately, simultaneity is not transitive, i.e., the fact that a and b are simultaneous
and so are b and c, does not imply that a and c are simultaneous. This also ele-
gantly explains that a sequence of consecutively simultaneous pairs or repeatedly
fast-moving events can be observing durative behaviours. We might not recognise
any pair of them because the interval between them is less than the precision, but
the whole duration may take a long time.

13.3.3 Punctual Clock-Tick Event

In modelling of real-time systems, we often employ ‘clocks’ to aid scheduling and
coordination. We represent a default abstract clock in a band by defining each gran-
ule as a ‘clock-tick’ event, which is modelled just like any other event. However
these clock-tick events are forced to happen at same intervals by the deadline oper-
ator. When necessary, more abstract clocks can be defined by the basic unit of time
in the band. For example, the clock called business days is placed in the day band;
however, it is different from the default day clock.

Timed CSP is unlikely to explicitly represent clock-tick events because it can
never guarantee that an event is able to happen precisely at a specific time point.
The occurrence of events in timed CSP depends on their environment’s interaction
even if the timeout operator is applied. However, this situation is entirely changed if
we use the deadline operator. For example, we may simply define a punctual clock
as follows:

C = ((tick → SKIP) � 0) ;WAIT 1 ;C
where the clock-tick event tick must occur precisely every time unit otherwise the
punctual clock will not start.

We define clock-tick events for every time band, e.g., the clock-tick events for
the lecture example given in previous section can be defined as follows:

Event : Minute mtick

Event : Hour htick

Event : Week wtick

An intuitive way to understand a clock-tick event is that it denotes a start point
of a new time unit or the end point of the previous time unit. Therefore, for different
clock-tick events in different time bands such as mtick and htick, we say that the time
interval between two hticks in the hour band contains 60 mticks, rather than that an
htick can be mapped to an activity in the minute band which includes 60 clock-tick

290 K. Wei et al.

events. That is to say, if a mapping is necessary, a clock-tick event in a higher band
is mapped to an activity in a lower band which contains only one clock-tick event.

Punctual clock-tick events provide us with extensive convenience to express
clock-related properties. For example, if tick is a clock-tick event representing 1:00,
tick ‡ a denotes that a must happen precisely at 1:00 even if we observe it in a finer
band; tick#a means that a must occur at 1:00 too, but a is allowed to happen early
or late within the bound of the precision; tick → a → SKIP states that a occurs
only if its environment provides the offer, and a occurs exactly at 1:00 only if its
environment is friendly.

Note that clock-tick events are just ordinary events and they become meaningful
only if we let them happen precisely at intervals of one time unit. Therefore, we
attach a local timer to any processes during their life cycles. For example, a process
with a timer is defined as follows:

PT = ((P ; e → SKIP) |[{tick, e}]|Timer � {e}SKIP) \ {e}
Timer = tick → Timer′

Timer′ = WAIT 1 ‡ (tick → SKIP) ;Timer′

where the event e (e /∈ αP) is used to stop the timer by the interrupt operator when
P terminates, and one time unit in WAIT is a local time unit depending on which
band the process is defined in. Notice that such a timer does not record the dura-
tion of its whole life cycle, while it starts only if the first clock-tick event of the
process starts. By comparison with a globally punctual clock in a band, local timers
to processes are able to effectively avoid the deadlock caused by synchronisation
of clock-tick events.3 For the sake of convenience, we directly define a process as
usual and subsequently its timer is attached automatically.

We usually use a clock-related process to express a very strong constraint that
‘something must occur at certain time points’. For example, a process tick → a →
tick → SKIP means that a must occur between two clock-tick events. Hence, a
well-defined clock-related process is one in which all clock-tick events cannot be
blocked. For example, a counterexample can be as follows:

P = tick → tick → (WAIT 2 ; (tick → SKIP))

where obviously the third tick cannot occur such that the local timer blocks the
occurrence of all clock-tick events.

3One of the approaches to model-check a timed CSP process is to translate it into an untimed CSP
one in the form of timewise refinement [27]. This idea is quite powerful, but at the cost of dropping
all WAIT d terms [24] because of the complexity of synchronising clock-tick events in parallel.
However, the mechanism of local timers in our model does not require the synchronisation of all
clock-tick events so as to avoid an unnecessary deadlock.

13 Modelling Temporal Behaviour in Complex Systems with Timebands 291

13.3.4 Activities

An activity is a special process with clock-tick events. Activities are detailed expla-
nations of events of higher bands, and hence, to maintain consistency of a system,
‘qualified’ activities must satisfy the following three requirements:

1. An activity must start and also finish with clock-tick events.
2. An activity must have one or more signature events.
3. Duration of an activity must be no longer than the precision of a higher band in

which its corresponding event is placed.

Requirement 1 states that an activity should be well placed in the band. If the
activity cannot start or finish with clock-tick events, it is supposed to be replaced in
a finer time band. For example, an activity may be defined as follows:

A= tick#a1 ; tick#a2 ; tick#a3

which means that the events such as a1, a2 and a3 are simultaneous with clock-tick
events, and the duration of the activity is two time units. Note that a1 may actually
occur before the event tick in tick#a1, but we consider that A still starts with the
clock-tick event since tick and a1 cannot be distinguished in this time band. The
duration of A is counted from the occurrence of the first tick, and not from the start
of the activity. That is, the activity may initially wait in silence until the coming of
an explicit clock-tick event, and its duration is actually determined by how many
clock-tick events it involves.

As Requirement 2, each activity must have one or more signature events, which
is not only the major observation of the activity, but also the linking to the corre-
sponding event in a higher band. For example, a2 is a signature event in the activity
A and an overhead line is used to make it different from other ordinary events. An
activity can have more than one signature event, which must be linked to the same
event of a coarser band and only one of which can happen during the life cycle of the
activity. For example, making a drink by a vending machine may have two choices,
tea or coffee, which can be described as follows:

Drink = (tick#hotwater ; tick#milk ; tick → tick#tea)

� (tick#hotwater ; tick#milk ; tick#coffee)

The duration of an activity should be no longer than the precision of a higher
band; otherwise it cannot be considered an event of the higher band. This imperative
requirement will be fulfilled when the activity is mapped, since the precision for
the activity is not yet decided until the link with the event in the higher band has
been established. For example, there are two activities, A and B , in a day band, but
A and B are linked to two events in a month band and a year band respectively;
consequently, their precisions might be different.

When mapping events of a higher band to activities of a lower band, well-defined
activities are crucial in maintaining consistency between different time bands. The

292 K. Wei et al.

following three examples are not well-defined activities which violate Require-
ments 1–3, respectively:

A1 = a → tick → b → SKIP

A2 = tick → a → tick → b → tick → SKIP

A3 = tick → a →A3

Because an activity is a clock-related process, we can control when the activity
will happen by fixing any event of the activity to happen at a specific time. That
is, the events in the activity are uninterrupted events, as introduced in Sect. 13.2.9.
For example, if we impose the signature event a2 of the above activity A to happen
at 10:00, a1 must then happen at 9:00 and A must finish at 11:00. In fact, A starts
from the beginning of the system; however a1, very similar to the event of (13.1) in
Sect. 13.2.8, can occur only if the other event must occur later.

13.3.5 Mapping Between Bands

In the components of the model considered so far, all behaviours have been confined
to a single band. The essence of the timebands model is to describe the behaviour of
each component of a system in a best suitable time band, and compose the multiple-
band behaviours regarding the properties to be verified. To achieve this goal, events
in one band may need to be mapped into activities in finer bands.

Activities become useful only when they are linked with events in higher time
bands. Processes defined in different time bands have no intersection except for the
linking of events and activities. Those links are the one and only channel to integrate
all behaviours of the timebands model. The establishment of the links is achieved by
means of imposing the events and the signature events of the activities to be instant
events, so that they are constrained to occur together at all time.

The linked pair of an event and an activity can affect each other to decide when
they will occur in their own bands. Recall the lecture example illustrated in Fig. 13.1.
Activity B can be given the following behaviour:

Event : Minute c1, c2

Activity : Minute B = c1#mtick ;mtick → mtick → mtick → mtick → c2#mtick

This activity actually means that students have to take a 5-minute break and any
shorter or longer break is not allowed. If we insist that event break in the hour band
must occur in the middle of the lecture, e.g., around 10:00 (event break and the
clock-tick event are simultaneous), and then event c1 in activity B can only happen
between 9:50 and 10:00, on account of the five-minute precision. That is to say, the
signature event c2 can happen only between 9:55 and 10:05. We can also set the
time when c2 in activity B occurs in the minute band, which alternatively results

13 Modelling Temporal Behaviour in Complex Systems with Timebands 293

in the time when event break must occur in the hour band. For example, if we say
that c2 occurs at 9:50, and then break in the hour band must occur between 9:00 and
10:00.

To maintain consistency and coordination between different time bands, we sim-
ply make events and the signature events of corresponding activities instant. For
example, the mapping in the lecture example can be defined as the following pro-
cesses:

Link1 = lecture ‡ l2

Link2 = break ‡ c2

And then these processes are synchronised with other processes in the system on all
events of the alphabets of Link1 and Link2.

Finally, we use the lecture example, illustrated in Fig. 13.1, to demonstrate the
integration of time bands. Granularity, precision and clock-tick events have been
defined in previous sections. In the week band, we specify that a lecture must occur
within a week:

Event : Week lecture

LECTURE = wtick → lecture → wtick → SKIP

And activity L, expressing a two-hour lecture with a break, is defined in the hour
band as follows:

Event : Hour l1, l2,break

Activity : Hour L= htick#l1;htick#break;htick#l2

Before events and activities are linked together, processes defined in different
time bands have no interaction at all. Thus, the system before mapping is expressed
by an interleaving process:

S = LECTURE ||| L ||| B
And then the integrated system is constructed by linking events lecture and break
with activities L and B respectively:

SYS = S |[{lecture, l2}]|Link1 |[{break, c2}]|Link2

In practice, the assumption of maximal progress enables events to occur as soon
as possible. For example, the process LECTURE in the week band specifies that
lecture may happen anytime within a week, but without a constraint from other
processes or bands it always happens at the beginning of the week. With respect
to Fig. 13.1,4 if the lecture example starts, wtick, htick and l1 will initially start

4The clock-tick events are not directly given in this figure, whereas the reader can easily find out
where these events should be placed by the description of the system.

294 K. Wei et al.

together; lecture cannot happen immediately because it is coordinated with l2 or
the third htick in the hour band; c1 in the minute band cannot happen because it
depends on break or the second htick in the hour band. Subsequently, after one
time unit of the hour band, break happens; however, c2 has occurred five time units
(within the precision) of the minute band earlier, since break and the second htick
are simultaneous. Consequently, another hour later, l2 and lecture happen together.

13.3.6 Discussion

The revolution of the timebands model is to use a mapping between instantaneous
events and durative activities to integrate different behaviours described in different
time scales into a whole system. The key idea of the mapping is to use instantaneity
of the events and the signature events of the corresponding activities, and integrity
(uninterrupted events) of the activities to locate right positions for mapped entities.
The above two distinct properties are achieved through applying the unique process,
the miracle.

The time system of the timebands model is a combination of implicit time and
explicit clock-tick events. Here implicit time, similar to time in timed CSP, is a
global clock whose granularity is the basic time unit of the finest time band. How-
ever, processes themselves do not have read-access to the clock which is rather used
in the semantic framework for the analysis and description of processes. A clock-
tick event is an observation of a single precise time of the global clock and it can
be accessed by any process. Because clock-tick events are punctual, we can specify
clock-related events which must occur at specific time points.

Every clock-related process has a local timer (a clock with clock-tick events),
which turns out to be able to interfere with the accuracy of its local clock. We do
not require that the local clock of a process must be synchronised with the global
clock. For example, we let htick‡a to express that a must happen at the beginning
of an hour such as 1:00, while we make the signature event (such as a′) of the
corresponding activity simultaneous with mtick in the minute band. Thus, a′ must
happen at 1:00 because it is instant to a, but mtick#a′ allows its local clock, relative
to the clock of the hour band, to quick or slow a little bit within the precision of
the minute band. Of course, the local clock of a process can be easily synchronised
with the global clock. This property is very useful in modelling the behaviour of a
distributed system where components may have asynchronous clocks.

The advantage of the timebands model is the separation of concerns in dealing
with different properties with different time scales. Many properties in the time-
bands model involve only few time bands rather than all of time bands. Obviously,
apart from a better description of a complex system, proving such properties is more
efficient in the timebands model than the traditional model with a single flat time.
In the following section, by means of a complicated example, the mine pump, we
demonstrate how significantly the timebands model contributes to describing com-
plex real-time systems with multiple time scales.

13 Modelling Temporal Behaviour in Complex Systems with Timebands 295

13.4 Case Study

The mine pump example was first proposed by Kramer et al. [20] and later used
by Burns and Lister [6] as case study for developing dependable systems. The mine
pump system is used to control a pump to pump out the water which is collected in a
sump. The mine has two sensors to detect when water is above a high level or below
a low level. A pump controller switches the pump on when the water level becomes
high and off when it goes below the low level. The system also monitors the level
of methane, since a pumping operation during a dangerous methane level will cause
explosion. Reading from all sensors, the operations of the mine pump should satisfy
the following safety requirements:

1. The pump can be used only when the methane level is safe.
2. The pump must be switched on within an interval since the water level has be-

come high.
3. The pump must be switched off within an interval whenever the methane level

becomes dangerous.

In a mine, water and methane come from the environment. We assume that the
change of the water level is slow, and the methane level is stable in most of the
time but can incidentally change very fast. Therefore, we use two time bands, a
minute band and a second band, to describe the slow changing of the water level
and the dramatic changing of the methane level respectively. For example, a delay
of few seconds may have no influence on the change of the water level, while it
could be crucial for switching the pump off when the methane level suddenly be-
comes dangerous. Granularity and precision between the two bands are defined as
follows:

TBI = {Minute,Second}
Granularity(Minute,Second)= {60}
Precision(Minute,Second)= 5

To simplify the modelling of the mine pump, we abstract the state of the water
level as Fig. 13.2 by combining the values of two sensors for detecting the water
level. That is, the state of the water level is low until water passes the high level,
and it stays high until below the low level. This abstraction is reasonable since
it is a practical decision to keep the pump on until the water level becomes low,
though sometimes the pump has to be switched off due to the dangerous methane
level.

We also assume that each component takes some time to react, e.g., updating
values of sensors may takes a few seconds, the pump may take some time units to
start working and the sampling frequency also brings delay to update fresh values of
states. As a result, reaction time will be considered in the light of how much impact
it causes on the safety requirements of the system.

296 K. Wei et al.

Fig. 13.2 Sample timing diagram for water level

13.4.1 A Pump Controller

Depending on the states of the water and methane levels, a pump controller exe-
cutes actions on the pump. Therefore, in the following implementation defined in
the minute band, the system is basically decomposed into two components: one for
monitoring the behaviour of water and the other for the behaviour of methane.

Event :Minute water.high,water.low,pump.on,pump.off ,

methane.safe,methane.danger,mtick

WATERlow = water.high → (wl := false ;WATERhigh)

� pump.off → WATERlow (13.3)

WATERhigh = water.low → (wl := true ;WATERlow)

� pump.on → WATERhigh

�¬ms&pump.off → WATERhigh (13.4)

METHANEsafe = methane.danger → METHANEdanger

� pump.on → METHANEsafe

� pump.off → METHANEsafe (13.5)

METHANEdanger = methane.safe → METHANEsafe

� pump.off → METHANEdanger (13.6)

We here remove any time constraint from these components in order to make
it become a purely logic judgement for proper operations. For example, process

13 Modelling Temporal Behaviour in Complex Systems with Timebands 297

WATERlow in (13.3) states that the water level initially stays at the low level, and
it can become high through event water.high and still remain low if executing
pump.off . In addition, ms and wl are two state variables to denote the safe methane
and low water respectively. In the process WATERhigh, the event pump.off can still
happen only if the methane level is dangerous.

These components must agree on when the pump is to be switched on or off.
For example, before reaching the low water level during the pumping operation, the
pump might be switched off due to the dangerous methane level. Afterwards, the
pump has to be switched on again until the water level is below the low level.

CONTROL = WATERlow |[{pump.on,pump.off }]|METHANEsafe (13.7)

Without considering the timing issues, the above implementation CONTROL
clearly shows that event pump.on can occur only when the water level is high and
the methane level is safe (because pump.on is executed from processes WATERhigh

and METHANEsafe). This satisfies the first safety requirement of the system. How-
ever, to make this system closer to reality, we will verify the other two more refined
properties, which are going to be modelled in different time bands because of the
different behaviours when the water and methane levels are changing.

13.4.2 Behaviour of Water and Methane in the Minute Band

Suppose that the change of the water level is slow and hence its behaviour is cap-
tured in the minute band. The methane level is stable for most of the time, but can
change very fast; e.g., it can reach the dangerous level in just few seconds. Obvi-
ously, such a dramatic change of methane is best described in a finer time band
such as the second band. In the following modelling, we will specify the different
behaviours of the two components in the two time bands, depending on different
scenarios.

For modelling the change of the water and methane levels, we use worst-case
execution time to describe the worst situations. As illustrated in Fig. 13.3, the worst
situation for water is that the water level has reached the high level but the pump
cannot be switched on because the methane level just becomes dangerous. Hence,
it is unnecessary to consider any operation when the water level is between the low
and high levels if the worst case has satisfied the safety requirements. In practice,
we always give a good safety margin to the value of the high level in case the pump
cannot be switched on immediately. For example, the pump must be on within t1
time units after the water level becomes high, otherwise the mine fails. And the
pump can take the water level below the high level if it has continuously worked
for t2 time units. If assuming that r1 and r2 are the rates of change respectively at
which water enters and leaves the mine, we can easily get the equation: r1 ∗ t1 =
(r2 − r1) ∗ t2.

298 K. Wei et al.

Fig. 13.3 Assumptions on the change of water and methane

Thus, the time constraint of the behaviour of water and the related pump opera-
tions in the minute band is modelled as follows:

TCW = water.high → HIGH(l1) (13.8)

HIGH(t1)= IF t1 == 0 THEN (pump.on → ON(l1)

� flooding → STOP)

ELSE (WAIT 1 ;HIGH(t1 − 11)

� pump.on →ON(l1 − t1)) (13.9)

ON(t)= OFF(t ∗ r1/(r2 − r1)) (13.10)

OFF(t2)= IF t2 == 0 THEN pump.off → water.low → TCW

ELSE (WAIT 1 ;OFF(t2 − 11)

� pump.off → HIGH(l1 − t2 ∗ (r2 − r1)/r1)

(13.11)

where t, t1 and t2 are time variables, and l1, r1 and r2 are constants, e.g., l1 is the
maximal value of the bound of t1. The operator, IF b THEN P ELSE Q, is actually
a convenient shorthand of a guarded process, b&P �¬b&Q.

The implementation in (13.9) states that pump.on should happen within some
time units if the water level is high. The value of t1 in HIGH(t1) is the deadline that
pump.on must satisfy. If pump.on happens before the deadline, the net water level
over the high level is recorded and passed to ON(t) in the form of time. Thus, the
equation in (13.10) calculates how long the pump can lower the water level below
the high level in line with the value from ON(t). The implementation in (13.11)
denotes that the pump might be switched off before water is below the high level
because of the dangerous methane level. If the pump is switched off earlier, the
program has to go to HIGH again to wait for the occurrence of pump.on. However,
the maximal interval to make the mine fail obviously becomes shorter or is less
than l1.

13 Modelling Temporal Behaviour in Complex Systems with Timebands 299

Accordingly, the timed behaviour of water and the pump is defined by the fol-
lowing parallel composition:

A= {pump.on,pump.off ,water.low,water.high}
TWATER = WATERlow |[A]|TCW (13.12)

The behaviour of methane in the minute band is relatively simple. Under the
circumstance of worst-case execution time, we also assume two constants, l3 and l4,
to be the maximal values of two time variables, t3 and t4, as illustrated in Fig. 13.3,
to denote the maximal duration of the dangerous methane level and the minimal
duration of the safe level respectively.

TCM = methane.danger

→ WAIT l3 ; (methane.safe � 0) ;WAIT l4 ;TCM (13.13)

TMETHANE = METHANEsafe |[{methane.safe,methane.danger}]|TCM (13.14)

And then, the system in the minute band can be finally modelled as follows:

TCONTROL = TWATER |[{pump.on,pump.off }]|TMETHANE (13.15)

Recall the safety properties which are introduced in the beginning of this sec-
tion. Property 1 can be proved even under the untimed environment. The proof of
Property 2 depends on the relationship among those constants. For example, l1 is
obviously greater than l3, otherwise the mine will fail since the pump cannot be
switched on in time. Ideally, l4 is greater than l2 or l1 ∗ r1/(r2 − r2) so that water
can be lowered below the high level once the pump is switched on. However, this
requirement is too strict to accommodate many patterns of methane’s behaviour,
e.g., the frequent oscillation around the dangerous level of methane does not satisfy
this requirement. Therefore, it is more reasonable to satisfy a looser requirement
that l3/l4 is less than l1/l2 within any interval (whose length should be greater than
l1 + l2).

13.4.3 Behaviour of Methane in the Second Band

Unfortunately, Property 3 is unsuitable to be verified in the minute band. We know
that pump.off will happen after methane.danger if the pump is on, and this logi-
cal order can be nicely proved in the minute band. However, in fact, Property 3 is
interpreted as a statement that methane.danger and pump.off must occur simulta-
neously. To measure the simultaneous actions of two events, we have to consider
the influence of various reaction delays such as transmission delay, reaction delay
of the pump and so on, whose behaviours can only be captured in the second band.
To model and verify Property 3, we need to explore more details in related events of
the minute band.

300 K. Wei et al.

First of all, we specify precision of the minute band to be 5 seconds, which
directly determines the definition of simultaneity and the maximal duration of an
activity. The delay of updating the state of water is ignored in the minute band,
but it is considered in the second band. We assume the delay to be 2 seconds, and
water.high and water.low are mapped into two activities, WHs and WLs , in the
second band respectively:

Activity : Second WHs = stick#high ; stick → stick#whe (13.16)

Activity : Second WLs = stick#low ; stick → stick#wle (13.17)

where stick is a clock-tick event of the second band, whe and wle denote the end
of the two activities respectively, and low and high are two signature events. In
addition, the activities are annotated for convenience.

Moreover, on account of the costing time on updating states and sampling fre-
quency, methane.danger is mapped into the following activity:

Activity : Second MDs = stick#danger ; stick → stick → stick#mde (13.18)

And then, with regard to reaction delay, pump.off is mapped as well:

Activity : Second PFs = stick#command_off ; stick

→ stick#action_off (13.19)

where the event action_off denotes the genuine time when this command takes ef-
fect.

Furthermore, we impose a constraint on all of these activities so that none of
them can overlap each other because changing states presumably involves some
computation:

ACTs = (WHs ;ACTs) � (WLs ;ACTs)

� (MDs ;ACTs) � (PFs ;ACTs) (13.20)

To verify Property 3 in the second band, the activities in the above implemen-
tation are integrated with the minute band by making their signature events instant
with the corresponding events of the minute band. For the sake of simplicity, ACTs

is integrated with CONTROL, rather than TCONTROL with time constraints, be-
cause the ‘micro’ relation of methane.danger and pump.off is irrelevant with those
assumptions on how water and methane change.

CONTROLsecond = (CONTROL ||| ACTs)

|[{water.high,high}]|Link3

|[{water.low, low}]|Link4

|[{methane.danger,danger}]|Link5

|[{pump.off , commmand_off }]|Link6 (13.21)

13 Modelling Temporal Behaviour in Complex Systems with Timebands 301

Note that these linking processes are just similar to Link1 and Link2 introduced
in Sect. 13.3.5. Even without the mechanised proof, intuitively, we recognise that
Property 3 can be satisfied only if no other event in the minute band occurs between
methane.danger and pump.off , since the total duration of the two events in the sec-
ond band is 5 seconds. That is, when executing the real program code, the program
should directly implement pump.off when the methane level is dangerous instead of
wasting time on updating the state of water.

13.4.4 Verification

To prove the three properties of the mine pump example by hand is error-prone since
a number of obligations are discharged by obvious and intuitive assumptions where
security breaches and system holes are usually hidden. However, establishing the
mechanical proof in theorem provers is time-consuming, such as PVS [30] in which
the semantics of TCSPM has been embedded and ProofPower [36] in which various
theories in UTP are mechanised. The model checker FDR [1] is very successful
in efficiently verifying both safety and liveness properties of a system modelled in
CSP. Therefore, timed CSP specifications can be implemented by FDR if they are
translated into untimed ones. However, regardless of its expressiveness, the miracle
cannot be expressed in FDR.

Timed automata [2, 22] are powerful in designing real-time models with explicit
clock variables, and a number of tools have been proved to be successful like the
popular UPPAAL [21]. Timed automata are transition systems consisting of a set of
states along with a set of edges to connect these states, and hence it is potential to
express the miracle simply as an unstarted state. The idea of using timed automata
to implement TCSPM or the timebands model is highly inspired by the work [11]
in which they define a set of composable timed automata patterns so that timed
CSP can be translated to timed automata. Even if it is possible to represent the
miracle in timed automata, the mechanism of the timebands model still involves
a massive amount of work. For example, we need to develop a sound operational
semantics of TCSPM which is usually described as a labelled transition system.
We also have to explore a trace-back technique for executing the model, since the
fact that a process will not start if the deadline cannot be satisfied means that the
process will go back to the unstarted state if the execution cannot go ahead. In
the meantime, the observations which have happened during the execution will be
erased, and the process just behaves like it has never started. All in all then, the
work of fully analysing the timebands model in timed automata is in progress, and
therefore the following verification of the mine pump example in UPPAAL simply
provides a flavour to show how it will be possible to prove properties in a model
checking approach.

The model checker UPPAAL is based on the theory of timed automata and
its modelling language provides expressive features such as urgent edges or loca-
tions. The query language of UPPAAL is a subset of TCTL (timed computation tree

302 K. Wei et al.

Fig. 13.4 The pump controller without time constraints

logic) [3]. More explanations of UPPAAL will be given along with the modelling of
the mine pump example. First, the process CONTROL in (13.7) is modelled as two
timed automata in Fig. 13.4. Locations (or states) of a timed automaton are graphi-
cally represented by circles where the overlapped circle is the initial location. Each
location has an invariant which is an expression of conditions, and the program con-
trol can stay on this location only if its invariant is satisfied. A transition is a jump
from one location to another through an edge which usually consists of three parts:
guard, synchronisation and update. For example, illustrated in the left automaton of
Fig. 13.4, starting from the location WH (WATERhigh), event pumpoff is synchro-
nised (or fired) with another one in the right automaton only if the methane level is
dangerous. As a result, Property 1 holds if the following query is satisfied:

A[] METHANE.MS and WATER.WH imply ms==true

which means that for all reachable locations, being in the locations METHANE.MS
and WATER.WH implies that ms==true. Since pumpon can be fired only from
the locations MS and WH, the fact that the methane level is always safe guarantees
Property 1.

The behaviour of water and methane in the minute band, TCW and TCM, are
represented by another two automata in Fig. 13.5. Note that x in both automata is
a local clock that can be reset in the update part of an edge and used in a guard
or an invariant. For example, x is reset during the transition from location TCW to
location HIGH. Unfortunately, the value of a clock is not allowed to be assigned
to any variable in UPPAAL, and that is why we define two integral variables, c1
and c2, to record how long the program control stays on the same location. UP-
PAAL provides pair-wise synchronisation (one sender and one receiver) via regular
channels and broadcast synchronisation (one sender and an arbitrary number of re-
ceivers) via broadcast channels. However, a receiver in a broadcast channel can miss
the synchronisation if it is not ready yet. Obviously, this is not same as the parallel
in timed CSP or TCSPM . For example, in the mine pump example, the synchronisa-
tion on pump.on and pump.off involving three different processes cannot be directly
expressed in UPPAAL. The solution is to use a shared variable (e.g. on and off
in Fig. 13.5) that is increased on the edges leading to a location where those events
are ready to happen and is decreased when leaving the location. When the program
stays on a location where all events are ready, a sender can be triggered. For exam-
ple, the senders for pump.on and pump.off are defined as two independent automata
in Fig. 13.6.

13 Modelling Temporal Behaviour in Complex Systems with Timebands 303

Fig. 13.5 The behaviour of water and methane in the minute band

Fig. 13.6 The senders in a
multicast synchronisation

In addition, urgent (labelled with U) and committed (labelled with C) locations
are used in Fig. 13.5. Time is not allowed to pass when the program is in any of
the two locations, but an urgent location can engage in an interleaving. Notice that
the approach to calculate the values of t1 and t2 in Fig. 13.5 is different from the
one in (13.10) and (13.11) because a recursive process in the timebands model is
measured by a descending order. To prove Property 2, we simply need to show the
automata can never reach location STOP or event flooding can not be fired if
l1 > l3 and l2 < l4. Such a query can be expressed as follow:

A[] not TCW.STOP

which means that it is impossible to reach the location TCW.STOP.

304 K. Wei et al.

Fig. 13.7 Activities in the second band

Fig. 13.8 The linking
processes in the mapping

To verify Property 3, we should mechanise the miracle so as to express those pro-
cesses and operators defined by the miracle. However, the embedding of the miracle
in UPPAAL is still in progress. Here, regarding the mapping only in the mine pump
example, we use an informal scheme to make sure coordination of events and activ-
ities in different bands. For example, the process ACTs , a collection of all activities
in the second band, in (13.20) is described as a timed automaton in Fig. 13.7. The
starting of each activity is guarded by a state variable which denotes whether the
event in the minute band is ready to happen. For example, the bottom loop (corre-
sponding to MDs) in Fig. 13.7 states that danger can happen only if ms==true,
and then the automaton waits three time units and finishes the activity with event
mde. The safe methane level means that the program control is staying on loca-
tion MS as Fig. 13.4, and hence methanedanger is ready to occur. The linking
processes like Link 3–Link 6 are expressed as another automaton in Fig. 13.8. The
instantaneity of events and the signature events of activities is expressed by com-
mitted locations which, however, cannot exactly describe this property because a
committed location just means that time is not allowed to reside and an edge must
be fired immediately. If the guard of the edge is not satisfied yet, the automaton is
deadlocked.

We add a new location with a guard in the automaton of METHANEsafe in order
to prove Property 3, as illustrated in Fig. 13.9. The guard on the edge to location

13 Modelling Temporal Behaviour in Complex Systems with Timebands 305

Fig. 13.9 The linking
processes in the mapping

STOP means if the pump has not been switched off within five time units since the
methane level becomes dangerous, the edge can lead to this location. Obviously, we
need to prove the following query to be satisfied:

A[] not METHANE.STOP

The verifier of UPPAAL shows that the above query holds if we impose a constraint
to exclude any other events between methane.danger and pump.off .

13.5 Conclusion

In this chapter we have formalised the timebands model using a new timed model
(TCSPM) and shown how significantly the model contributes to describing dynamic
behaviours of complex real-time systems at many different time scales. Viewing
a system as a collection of behaviours within a finite set of bands and integrating
these behaviours through linking events and corresponding activities are a natural
and effective approach to separate concerns and identify inconsistencies between
different time bands of the system. We have also demonstrated the potential to use
timed automata to implement the timebands model. Of course, it is still a long way
to go for fully mechanising the timebands model. In future work we will apply
the timebands framework to the analysis of more complex systems such as socio-
technical systems. We believe that the modelling with a time-based hierarchy is able
to help develop a comprehensive foundation to dependable systems.

Acknowledgements We would like to thank Ana Cavalcanti, Leo Freitas, Andrew Butterfield
and Pawel Gancarski for discussions on the role of reactive miracles in programming logic, and
thank Cliff Jones and Ian Hayes for discussion on the timebands model and possible approaches
to formalisation. This work was partially supported by INDEED project funded by EPSRC:Grant
EP/E001297/1.

References

1. Roscoe A.W.: Model-checking CSP. In: A Classical Mind: Essays in Honour of C.A.R. Hoare.
Prentice Hall, New York (1994). Chap. 21

2. Alur, R.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)

306 K. Wei et al.

3. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In: LICS,
pp. 414–425 (1990)

4. Bettini, C., Dyreson, C.E., Evans, W.S., Snodgrass, R.T., Wang, X.S.: A glossary of time
granularity concepts. In: Temporal Databases, Dagstuhl, pp. 406–413 (1997)

5. Burns, A., Hayes, I.J.: A timeband framework for modelling real-time systems. Real-Time
Syst. 45(1–2), 106–142 (2010)

6. Burns, A., Lister, A.M.: A framework for building dependable systems. Comput. J. 34(2),
173–181 (1991)

7. Ciapessoni, E., Corsetti, E., Montanari, A., San Pietro, P.: Embedding time granularity in
a logical specification language for synchronous real-time systems. In: 6IWSSD: Selected
Papers of the Sixth International Workshop on Software Specification and Design, pp. 141–
171. Elsevier, Amsterdam (1993)

8. Clifford, J., Rao, A.: A simple, general structure for temporal domains. In: Temporal Aspects
in Information Systems, pp. 23–30. AFCET, Paris (1987)

9. Combi, C., Franceschet, M., Peron, A.: Representing and reasoning about temporal granular-
ities. J. Log. Comput. 14(1), 51–77 (2004)

10. Corsetti, E., Montanari, A., Ratto, E.: Time granularity in logical specifications. In: Proceed-
ings of the 6th Italian Conference on Logic Programming, Pisa, Italy (1991)

11. Dong, J.S., Hao, P., Qin, S., Sun, J., Yi, W.: Timed automata patterns. IEEE Trans. Softw. Eng.
34, 844–859 (2008)

12. Franceschet, M., Montanari, A.: Temporalized logics and automata for time granularity. The-
ory Pract. Log. Program. 4(5–6), 621–658 (2004)

13. Group, T.R.L.: The RAISE Specification Language. Prentice Hall, Upper Saddle River (1993)
14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International, Englewood

Cliffs (1985)
15. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall International,

Englewood Cliffs (1998)
16. Hobbs, J.: Granularity. In: Proceedings of the Ninth International Joint Conference on Artifi-

cial Intelligence, Los Angeles, California, pp. 432–435 (1985)
17. Holzmann, G.: Spin Model Checker, the Primer and Reference Manual. Addison-Wesley,

Reading (2003)
18. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997)
19. Jifeng, H.: From CSP to hybrid systems. In: A Classical Mind: Essays in Honour of C.A.R.

Hoare, pp. 171–189. Prentice Hall International, Hertfordshire (1994)
20. Kramer, J., Magee, J., Sloman, M., Lister, A.: CONIC: an integrated approach to distributed

computer control systems. IEE Proc. E, Comput. Digit. Tech. 130(1), 1–10 (1983)
21. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: Uppaal—a tool suite

for automatic verification of real-time systems. In: Hybrid Systems III. LNCS, vol. 1066,
pp. 232–243. Springer, Berlin (1995)

22. Lynch, N., Vaandrager, F.: Action transducers and timed automata. In: Formal Aspects of
Computing, pp. 436–455. Springer, Berlin (1992)

23. Montanari, A., Ratto, E., Corsetti, E., Morzenti, A.: Embedding time granularity in logical
specifications of real-time systems. In: Proceedings of the Third Euromicro Workshop on
Real-Time Systems, Paris, France (1991)

24. Ouaknine, J., Schneider, S.: Timed CSP: a retrospective. Electron. Notes Theor. Comput. Sci.
162, 273–276 (2006)

25. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall International, Engle-
wood Cliffs (1998)

26. Sampaio, A., Woodcock, J., Cavalcanti, A.: Refinement in Circus. In: FME ’02, pp. 451–470.
Springer, London (2002)

27. Schneider, S.: Timewise refinement for communicating processes. Sci. Comput. Program. 28,
43–90 (1997)

28. Schneider, S.A.: Concurrent and Real-Time Systems: The CSP Approach. Wiley, New York
(1999)

13 Modelling Temporal Behaviour in Complex Systems with Timebands 307

29. Sherif, A., He, J.: Towards a time model for Circus. In: ICFEM ’02: Proceedings of the 4th
International Conference on Formal Engineering Methods, pp. 613–624. Springer, London
(2002)

30. Wei, K., Woodcock, J., Burns, A.: Embedding the timed Circus in PVS. Technical report.
Available at http://www-users.cs.york.ac.uk/~176kun/, University of York (2009)

31. Wei, K., Woodcock, J., Burns, A.: Formalising the timebands model in timed Circus. Technical
report. Available at http://www-users.cs.york.ac.uk/~kun/, University of York (2010)

32. Wei, K., Woodcock, J., Burns, A.: A timed model of Circus with the reactive design mira-
cle. In: 8th International Conference on Software Engineering and Formal Methods (SEFM),
pp. 315–319, IEEE Comput. Soc., Pisa (2010).

33. Woodcock, J., Cavalcanti, A.: The semantics of Circus. In: ZB ’02: Proceedings of the 2nd
International Conference of B and Z Users on Formal Specification and Development in Z and
B, pp. 184–203. Springer, London (2002)

34. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice Hall, Upper
Saddle River (1996)

35. Yong, X., George, C.: An operational semantics for timed RAISE. In: FM ’99: Proceedings
of the Wold Congress on Formal Methods in the Development of Computing Systems—
Volume II, pp. 1008–1027. Springer, London (1999)

36. Zeyda, F., Cavalcanti, A.: Mechanical reasoning about families of UTP theories. Electron.
Notes Theor. Comput. Sci. 240, 239–257 (2009)

http://www-users.cs.york.ac.uk/~176kun/
http://www-users.cs.york.ac.uk/~kun/

Chapter 14
Software and System Modeling: Structured
Multi-view Modeling, Specification, Design
and Implementation

Manfred Broy

14.1 Introduction

In this chapter, we develop a theory supporting the structuring of multifunctional
systems implemented by networks of distributed components operating concur-
rently partly in a real time mode with emphasis on interface, architecture, and state.
We base our approach on the FOCUS theory—a modular approach to the logical
description of distributed interactive systems (see [15]) by their interface behaviors
given by relations between their input and output streams.

14.1.1 Central Notion: System

The notion of system is essential both in systems engineering and software engi-
neering. We consider discrete systems. These are systems that interact with their
environment via discrete actions and events. In our case we model these actions and
events in terms of streams of data elements, called messages.

Our approach uses a specific concept of discrete system with the following no-
tions and principles.

• A discrete system has a well-defined boundary that determines its interface.
• Everything outside the system boundary is called the system’s environment.

Those parts of the environment that are relevant for the system are called the
system’s context.

• The syntactic interface defines the set of actions that can be performed in inter-
action with a system. In our case syntactic interfaces are defined by the set of
input and output channels together with their types. The input channels define the

M. Broy (�)
Institut für Informatik, Technische Universität München, München, Germany
e-mail: broy@in.tum.de

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_14, © Springer-Verlag London Limited 2012

309

mailto:broy@in.tum.de
http://dx.doi.org/10.1007/978-1-4471-2297-5_14

310 M. Broy

input actions for a system while the output channels define the output actions for
a system.

• By a system’s interface it is indicated in which way the system interacts with its
context.

• We distinguish between syntactic interface, also called static interface, which
describes the set of input and output actions, which can take place over the system
boundary and of interface behaviour (also called dynamical interfaces), which
describes the system’s functionality; the interface behaviour is captured by the
causal relationship between streams of actions captured in the input and output
histories.

• The behaviour of systems can be described by logical expressions, called inter-
face assertions, by state machines or it can be further decomposed into architec-
tures.

• A system has an internal structure. This structure is described by its state space
with state transitions and/or by its decomposition in sub-systems forming its ar-
chitecture in case the system is decomposed into a number of subsystems, which
interact and also provide the interaction with the system’s context. The state ma-
chine and the architecture associated with a system are called its state view and
its structural view respectively.

• Complementary, the behaviour of a system can be described by a set of traces,
which is a set of scenarios of input and output behaviour of a system. We distin-
guish between finite and infinite scenarios.

Moreover, systems operate in time. In our case we use discrete time, which
seems, in particular, adequate for discrete systems. Sub-systems operate concur-
rently within architectures.

Especially in software engineering a lot of work is devoted to concepts of soft-
ware architecture (see [3, 20, 21]) as a principle for structuring systems into a
family of sub-systems called components (see [19, 26]) for a development method
where software systems are composed from prefabricated components. The idea is
that main parts of systems can be obtained from appropriate new configurations of
reusable software solutions. Thus they do not have to be re-implemented over and
over again. Key issues for this approach are precisely specified and well-designed in-
terfaces and system reference architectures. System architectures describe the struc-
ture of distributed systems, composed of components. For handling them, a clean
and clear concept using a mathematical model of a system is indispensable.

In software engineering literature the following informal definition of system is
found:

“A system is a physical encapsulation of related functions according to a published specifi-
cation.”

According to this definition we work with the idea of discrete systems that encapsu-
late either a local state or a set of sub-systems forming a distributed architecture and
providing certain functions via its interface. We suggest a logical way to write spec-
ifications of system functions. We relate these notions to “glass box views”, where
systems are described by architectures and state machines, to the derived interface
abstractions and to system specifications.

14 Software and System Modeling: Structured Multi-view Modeling 311

We introduce the mathematical notion of a system and on this basis a concept of a
system specification. A system specification is a description of a system’s syntactic
interface and a logical formula that relates input to output histories.

A powerful semantic concept of a system interface is an essential basis for key
issues in system development such as well-structured system construction (software
and hardware), clear interfaces of systems, proper system architecture, and system-
atic systems engineering.

In the following we introduce a minimalist’s mathematical concept of a system
and a syntactic form to describe it by using logic. We show how basic notions of
software development such as specification and refinement of systems can be based
on this concept. Furthermore, we suggest techniques for specifying, refining, verify-
ing, and implementing systems as well as a framework in which all these activities
can be carried out in a model-based way.

Our goal is to have a tight integration between the described views onto a system
namely the interface view, the architectural view, and the state view. We provide the
following description techniques:

• data models are described by axiomatic data types, type declarations or entity/re-
lationship diagrams

• sets of typed input and output channels together with their types describe syntactic
interfaces

• interface assertions specify interface behaviour
• state transition diagrams describe state machines, state transition assertions spec-

ify properties of state machines
• graphs with components as nodes and channels as arcs describe architectures;

their behaviour is captured by the specification of the interface behaviours of their
components; traces (that can be represented by interaction diagrams or message
sequence charts) describe the interaction between the components.

These views are related by the following concepts

• interface abstractions for state machines and architectures
• composition of interface behaviour, state machines, and architectures
• refinement to relate system behaviours.

The concepts observe the following principles:

• interface abstraction is modular for system composition
• system composition forms architectures
• architectures with all components modeled by state machines are state machines

themselves
• refinement relations relate behavioural views.

For an engineering approach we use the following concepts and views:

• A data model describes all used data types
• The system functionality is described

– by a context model that fixes the syntactic interface and how the system is
connected to which objects of its environment; the relevant context properties
are captured by assumptions, the system behaviours by promises

312 M. Broy

– the functionality is described by a function hierarchy that contains all the sub-
functions offered by a system

– feature interactions between functions are captured with the help of a mode
model

• The architecture is captured by a decomposition of the system into sub-systems.

We first introduce the basic foundations and afterwards introduce a logical approach
where system properties are captured for all the views introduced earlier finally we
study engineering issues with emphasis on structured descriptions such that large
systems can be captured by the approach and scaling is achieved.

14.1.2 Background, Goals and Structure of the Chapter

Systems are composed of interacting components working concurrently and ex-
changing messages via communication lines with communication traffic modeled
by data streams. FOCUS provides a modular technique for the specification of such
systems in terms of their interface behavior and for structuring systems that are
composed of components. Each system can be a component of a larger system.
We introduce a formal model of comprehensive system functionality structured in
terms of functions along the lines of [12] where a theoretical basis for the concept
of a function is introduced to form function-oriented architectures (see also [10]).
This concept is taken as a basis for specifying functional requirements.

The overall goal of this chapter is to work out semantic models of system func-
tionality, architecture, and state machine in terms of functions, composition, state,
and their relationships. The goal of this theory is to provide a first basis for an engi-
neering method for the specification of system functionalities, architecture design,
and implementation in terms of state machines. For this purpose, the chapter inte-
grates material from a number of publications [6–9, 12, 14] with some more recent
results into a more comprehensive approach.

The remainder of the chapter is organized as follows. First, we give an introduc-
tion into mathematical models of systems. This includes a simple basis for describ-
ing data models on which three fundamental forms of system modeling are based,
interface, architecture, and state. For each of the modeling concepts we introduce
description techniques based on logic such as interface assertions or state transition
tables. This way a mathematical and logical basis is provided that allows us to rea-
son about all three description techniques using predicate logic. We briefly illustrate
these techniques by simple examples. In a system development we start by function
interface behavior and some basic techniques to specify interfaces, continue by the
design of architectures, and finally support their implementation by state machines.

Interface models, composition, and state transition are essential since they sup-
port an abstract interface view on systems describing the interface behaviours. Op-
erators for composition of interface behaviour serve as a basis for describing archi-
tectures. State transition models describe implementations. All three modeling tech-
niques are related to the notion of a syntactic interface, which is the key to modular-
ity and information hiding. For all three concepts models and description techniques

14 Software and System Modeling: Structured Multi-view Modeling 313

are introduced such as interface assertions for describing interfaces, graphical nota-
tions for describing architectures, and state diagrams as well as state transition rules
for describing implementations.

For a more engineering oriented approach for dealing with this different views
onto systems we introduce context models and functional hierarchies for specifi-
cation purposes, hierarchical architectures with assumption/promise reasoning for
describing component architectures of systems, and state transition diagrams and
transition tables for describing state machines from which code is generated.

Finally, it is shown how seamless comprehensive system development by these
models can be achieved including concepts of refinement, verification, and tracing.

For the presented approach a tool prototype called AutoFocus is available [11]
(see http://autofocus.in.tum.de).

14.2 Basic Models of Systems

First, we briefly repeat the concepts on which we will base the theory for model-
ing multifunctional systems. We are dealing with models of discrete systems. We
closely follow the FOCUS approach as described in [15]. A discrete system is a
technical or organizational unit with a clearly specified boundary. It interacts with
its environment over its boundary by exchanging messages in discrete events. In
the case of FOCUS messages are exchanged via channels. In this section we briefly
introduce the syntactic and semantic notion of a system, its interface and that of a
function. This theoretical framework is in line with [12].

14.2.1 Data Models—Data Types

Data models define a set of data types. A (data) type T is a name for a data set. Let
TYPE be the set of all data types.

A data type can be specified by an algebraic specification of the following form:

SPEC STACK =
{ type S t a c k α,

e s t a c k : S t a c k α,

append : α, S t a c k α → S t a c k α,

i s e s t a c k : S t a c k α → Bool ,
r e s t : S t a c k α → S t a c k α,

f i r s t : S t a c k α → α,

S t a c k α generated_by e s t a c k , append ,

i s e s t a c k (e s t a c k) = t r u e ,

i s e s t a c k (append (d, s)) = f a l s e ,

r e s t (append (d, s)) = s ,

f i r s t (append (d, s)) = d
}

http://autofocus.in.tum.de

314 M. Broy

Fig. 14.1 Data model (data
dictionary) as screenshot
from the tool AutoFocus

It can be implemented (and also directly described) by type declarations of the form:

type S t a c k α = append (f i r s t : α , r e s t : S t a c k α) | e s t a c k

Data types provide data elements that are used as messages between systems or as
attributes of states. The state space � of a state machine is fixed by typed state
attributes as in object orientation. Given a set V of typed state attributes, for every
state σ ∈ � and every state attribute v ∈ V of type T , σ(v) denotes the value of
attribute v in the state σ . A state space then is described by a set of declarations of
its attributes, together with their types.

Large state spaces are described by structured data models along the lines of
entity relationship diagrams. Figure 14.1 shows a data model as implemented in our
tool AutoFocus.

14.2.2 Syntactic Interfaces

Systems have syntactic interfaces that are described by their sets of input and out-
put channels attributed by the type of messages that are communicated over them.
Channels are used to connect systems to be able to transmit messages between them.
A set of typed channels is a set of channels with a type given for each of its channels.

Definition 14.1 (Syntactic interface) Let I be the set of typed input channels and
O be the set of typed output channels. The pair (I,O) characterizes the syntactic
interface of a system. The syntactic interface is denoted by (I � O).

14 Software and System Modeling: Structured Multi-view Modeling 315

Fig. 14.2 Graphical
representation of a system F

as a data flow node

Fig. 14.3 System interface as screenshot from the tool AutoFocus

Figure 14.2 shows the syntactic interface of a system F in a graphical repre-
sentation by a data flow node with its syntactic interface consisting of the input
channels x1, . . . , xn of types S1, . . . , Sn and the output channels y1, . . . , ym of types
T1, . . . , Tm. Figure 14.3 shows a similar representation from the tool AutoFocus.

To structure functionality, we introduce some auxiliary notions. A fundamental
notion is the sub-type relationship between syntactic interfaces.

An input action of a system F with syntactic interface (I � O) is a pair (m, c)

where c ∈ I is an input channel and m is a message of the type associated with
channel c. An output action of a system F with syntactic interface (I � O) is a pair
(m, c) where c ∈O is an output channel and m is a message of the type associated
with channel c. By Act(C) we denote the actions of a typed channel set C.

A typed channel set C1 is called a sub-type of a typed channel set C2 if the
following formula holds (we assume that all types stand for non-empty sets of ele-
ments):

Act(C1)⊆ Act(C2)

We write then

C1 subtype C2

Thus, a sub-type C1 of a set C2 of typed channels carries only a subset of the channel
identifiers from C2 and for each of the channels in C1 only a subset of the messages
it carries in C2. The idea of sub-types is mainly used for relating functions.

Sub-typing, as introduced, is extended schematically from channel sets to inter-
faces.

Definition 14.2 (Sub-types between interfaces) If for syntactic interfaces (I1 � O1)

and (I2 � O2) both I1 subtype I2 and O1 subtype O2 hold, we call the syntactic
interface (I1 �O1) a sub-type of the interface (I2 � O2) and write:

(I1 � O1) subtype (I2 � O2)

316 M. Broy

This means that (I1 � O1) includes only a subset of the input and output actions of
(I2 � O2).

This definition is chosen to study sub-behaviors working on subsets of input
and output actions and stands in contrast to the notions of sub-typing as defined
in object-oriented languages. There a functional sub-type requires that its domain
type may be increased while its range type may be decreased. Then the usage of
functions with sub-types instead of original types does not lead to type errors.

14.2.3 Interface Behavior

Discrete systems show an interface behavior which is modeled by functions map-
ping the streams of messages received on the system’s input channels onto streams
of messages sent on its output channels. We call this the black box behavior or the
interface behavior of discrete systems.

14.2.3.1 Streams

In FOCUS, a system encapsulates a state and is connected to its context exclusively
by its interface given by its typed input and output channels.

Definition 14.3 ((Non-timed) Streams) Given a set M , by M∗ we denote the set of
finite sequences of elements of M , by M∞ the set of infinite sequences of elements
of the set M ; infinite sequences are formally represented by functions

s :N\{0}→M.

By Mω we denote the set M∗ ∪M∞, called the set of finite and infinite (non-timed)
streams.

In the following, we work with streams that include discrete timing information.
Such streams represent histories of communications of data messages transmitted
within a fixed time frame. To keep the time model simple we choose a concept
of discrete time where time is represented by an infinite sequence of finite time
intervals of equal length.

Definition 14.4 (Timed Streams) Given a message set M of data elements of type
T , we represent a timed stream s of type T by a mapping

s :N\{0}→M∗

In a timed stream s a sequence s(t) of messages is given for each time interval
t ∈ N\{0}. In each time interval an arbitrary, but finite number of messages may be
communicated. By (M∗)∞ we denote the set of timed streams.

14 Software and System Modeling: Structured Multi-view Modeling 317

Special cases of timed streams are of the form

s :N\{0}→M

and (let “–” stand for the empty slot)

s :N\{0}→M ∪ {“–”}

They represent special cases of timed streams where exactly one message (rep-
resented by a one element sequence) or at most one message (where the empty slot
is represented by the empty sequence) are communicated in a time interval. In a
number of examples of systems, which we consider in the following, we deal, for
simplicity, only with streams with sequences of messages that contain at most one
element.

Throughout this chapter we work with a few basic operators and notations for
streams that are briefly summarized as follows:

〈〉 empty sequence or empty stream
〈m〉 one-element sequence containing m as its only element
a ˆb concatenation of the sequences of streams a and b

s(t) t th element of the stream s (which is a sequence in the case of timed streams)
s ↓ t prefix of length t ∈N of the stream s (which is a sequence of length t carrying

finite sequences as its elements in the case of a timed stream)
T ©x stream obtained from stream x by deleting all messages in x that are not

members of T

#x number of elements in stream or sequence x

A (timed) channel history for a set of typed channels C assigns to each channel
c ∈ C a timed stream of messages communicated over that channel.

Definition 14.5 (Channel History) Let C be a set of typed channels; a (total) chan-
nel history x is a mapping (let M be the universe of all messages)

x : C → (N\{0}→M
∗)

such that x(c) is a timed stream of messages of the type of channel c ∈ C. %C denotes
the set of all total channel histories for the channel set C.

For each history z ∈ %C and each time t ∈ N the expression z ↓ t denotes the
partial history (the initial communication behavior on the channels) of z until time
t . z ↓ t yields a finite history for each of the channels in C represented by a mapping

C → ({1, . . . , t}→M
∗)

z ↓ 0 denotes the history with empty sequences associated with each of its channels.

318 M. Broy

Fig. 14.4 Example of system interface as screenshot from the tool AutoFocus

14.2.3.2 Interface Behavior Model

The behavior of a system with syntactic interface (I � O) is defined by a mapping
that maps the input histories in %I onto output histories in %O . This way we get a
functional model of a system interface behavior.

Definition 14.6 (Causal Behavior) For a mapping

F : %I → ℘(%O)

we define the set

dom(F)= {x : F(x) �=∅}
called the domain of F . F is called total, if dom(F) = %I , otherwise F is called
partial.

The mapping F is called causal, if (for all t ∈N and all input histories x, z ∈ %I):

x, z ∈ dom(F)∧ x ↓ t = z ↓ t ⇒ {y ↓ t : y ∈ F(x)} = {y ↓ t : y ∈ F(z)}
F is called strongly causal, if (for all t ∈N and all input histories x, z ∈ %I):

x, z ∈ dom(F)∧x ↓ t = z ↓ t ⇒ {y ↓ t+1 : y ∈ F(x)} = {y ↓ t+1 : y ∈ F(z)}
Causality (for an extended discussion see [15]) indicates a consistent time flow

between input and output histories in the following sense: in a causal mapping input
messages received at time t do influence future output only after time t ; this output
is given by messages communicated via output channels at times ≥ t (in the case
of strong causality at times > t , which indicates that there is a delay of at least one
time step before input has any effect on output).

Definition 14.7 (I/O-Behavior) A causal mapping F : %I → ℘(%O) is called an I/O-
behavior. By F[I � O] we denote the set of all (total and partial) I/O-behaviors with
syntactic interface (I � O) and by F the set of all I/O-behaviors.

Interface behaviors model system functionality. For systems we assume that their
interface behavior is total. Behaviors F may be deterministic (in this case, the set
F(x) of output histories has at most one element for each input history x) or non-
deterministic.

14 Software and System Modeling: Structured Multi-view Modeling 319

Fig. 14.5 Composition
F1 ⊗ F2

14.2.4 Composition

In this section we describe the composition of systems in terms of their interface
behavior. We show how to calculate the interface behavior of a composed system
from the interface behaviors of its components.

Definition 14.8 (Composable Interfaces) Two syntactic interfaces (I1 � O1) and
(I2 �O2) are called composable, if

• the sets I1 and I2 of input channels are pairwise disjoint,

I1 ∩ I2 =∅

• the sets of output channels O1 and O2 are pairwise disjoint,

O1 ∩O2 =∅

• the types of the channels I1, I2, O1, and O2 are consistent in the sense that equal
channel names have equal types.

If channel names are not consistent for a pair of systems to be composed we
simply may rename the channels to make them consistent.

Definition 14.9 (Syntactic Composition) Given two syntactic interfaces (I1 � O1)
and (I2 � O2) that are composable we define the syntactic composition by syntactic
interface (I � O), where

I = (I1 ∪ I2)\(O1 ∪O2) denotes the set of input channels,
D = (O1 ∪O2) denotes the set of generated channels,
O =D\(I1 ∪ I2) denotes the set of output channels,
D\O denotes the set of internal channels,
C = (I1 ∪ I2)∪ (O1 ∪O2) denotes the set of all channels.

By (I � D) we denote the syntactic internal interface and by (I � O) we denote
the syntactic external interface of the composition of syntactic interfaces (I1 � O1)
and (I2 � O2).

A syntactic architecture forms a directed graph with its components as nodes and
its channels as directed arcs as illustrated in the case of two systems in Fig. 14.5.

320 M. Broy

Fig. 14.6 System composition as screenshot from the tool AutoFocus

Fig. 14.7 Concrete example of system composition as screenshot from the Tool AutoFocus

Definition 14.10 (Composition of Systems in Terms of Interface Behavior) Given
two causal interface behaviors F1 ∈ F[I1 � O1] and F2 ∈ F[I2 � O2], with com-
posable syntactic interfaces we define the composition of F1 and F2 involving the
feedback channels

C1 =O1 ∩ I2 and C2 =O2 ∩ I1

by the expression

F1 ⊗ F2

The interface behavior F1 ⊗ F2 ∈ F[I � O] of the composed system is defined as
follows. Let all definitions of channel sets be as in the definition of composable
interfaces. For x ∈ %I we define (for a channel valuation z ∈ %C and a subset B ⊆ C

of channels we denote by z|B the restriction of z to the channels in B):

(F1 ⊗ F2)(x) = {y ∈ %O : ∃z ∈ %C : x = z|I ∧ y = z|O ∧ z|O1 ∈ F1(z|I1)∧ z|O2

∈ F1(z|I2)}
The composition of systems interface behavior and thus the systems’ functional-

ities as defined above is graphically illustrated in Fig. 14.5.
The composition ⊗ works well, in particular, for strongly causal systems and

also for composition without feedback (where C1 =∅ or C2 =∅).
In a composed system F1 ⊗ F2, the channels in channel sets C1 and C2 are used

for internal communication.
The composition of systems with disjoint sets of input channels and disjoint sets

of output channels is commutative:

F1 ⊗ F2 = F2 ⊗ F1

as well as associative:

(F1 ⊗ F2)⊗ F3 = F1 ⊗ (F2 ⊗ F3)

The proof of this these equations is straightforward.

14 Software and System Modeling: Structured Multi-view Modeling 321

14.2.5 State Machines by State Transition Functions

State machines with input and output describe system implementations in terms of
states and state transitions. A state machine is defined by a state space and a state
transition.

Definition 14.11 (State Machine with Syntactic Interface (I � O)) Given a state
space �, a state machine (�,) with input and output according to the syntactic
interface (I � O) consists of a set ⊆ � of initial states as well as of a nondeter-
ministic state transition function

� : (� × (I →M∗))→ ℘(� × (O →M∗))

For each state σ ∈� and each valuation a : I →M∗ of the input channels in I by
sequences of input messages every pair (σ ′, b) ∈ �(σ,a) defines a successor state
σ ′ and a valuation b : O → M∗ of the output channels consisting of the sequences
produced by the state transition. (�,) is a Mealy machine with possibly infinite
state space. If in every transition the output b depends on the state σ only but never
on the current input a, we speak of a Moore machine.

14.2.6 Channel Traces

One way to study the behavior of systems are traces. Traces are histories of system
channels. As specified, a history is a valuation of a set of typed channels.

Definition 14.12 (Trace of a Set of Channels) A trace for set C of typed channels
is given by a valuation z ∈ %C.

For a system with syntactic interface (I � O) a trace z ∈ %C with Z = I ∪ O

trace denote runs of the system. Traces z ∈ %C of systems with interface behavior
F are this way very close to pairs (x, y) input and output histories x ∈ %I , y ∈ %O
with y ∈ F(x) provided x = z|I and y = z|O . A set of traces describes properties
of systems. Finite traces z ↓ t can be used to describe test cases.

14.3 Specifying Basic System Views

In this section we show how the basic system views are specified. We introduce both
logical techniques and graphical techniques to specify system views.

14.3.1 Specifying Interface Behavior

Interface behavior is described by its properties. We use predicate logic.

322 M. Broy

Fig. 14.8 Graphical
representation of a function
interface with the set of input
channels I and the set of
output channels O

14.3.1.1 Systems and Their Functionality

Systems interact with their contexts via the channels of their interfaces. We identify
both systems by names. A system named k has an interface, consisting of a syntactic
interface (Ik � Ok) and an interface behavior

Fk : %Ik → ℘(%Ok)

The behavior may be a combination of a larger number of more elementary sub-
function behaviors. Then we speak of a multifunctional system.

Let SID be the set of system names. A system named k ∈ SID is called statically
interpreted if only a syntactic interface (Ik � Ok) is given for k and dynamically
interpreted if an interface behavior Fk ∈ F[Ik � Ok] is specified for k.

From a methodological point of view, the concept of a function offered by a
system is closely related to the idea of a use case (see [18]) as suggested for object-
oriented analysis for illustrating one way of using the system for a particular purpose
(e.g., using a mobile phone for taking a digital photo). The use case is described by
a set of interaction scenarios (for instance of taking photos) represented by traces.

14.3.1.2 System Interface Behaviour: Specification by Interface Assertions

The interface behaviour of a system can be specified in a descriptive logical style
using interface assertions.

Definition 14.13 (Interface Assertion) Given a syntactic interface (I � O) with a
set I of typed input channels and a set O of typed output channels, an interface
assertion is a logical formula with channel identifiers in I and O as free logical
variables denoting streams of the respective types.

We specify the behaviour FS for a system with name S with syntactic interface
(I �O) and an interface assertion P by a scheme:

S

in I

out O

P

The scheme specifies the interface behaviour FS by

∀x ∈ %I , y ∈ %O : y ∈ FS(x) ⇔ P(x, y)

14 Software and System Modeling: Structured Multi-view Modeling 323

where P(x, y) results from P by replacing all channels c occurring in assertion P

by streams x(c) or y(c) respectively.

Notation Throughout the chapter we use the following notation: Given a predicate

p : %C → B

we specify for every time t ∈N

p(x ↓ t)≡ ∃x′ ∈ %C : x ↓ t = x′ ↓ t ∧ p(x′)

In other words, assertion p(x ↓ t) holds if there exists some history x′ for which p

holds and which is equal to x till time t . This notation is easily extended to n-ary
predicates and histories.

This notation can also be understood as a way to extend a predicate on histories
to finite prefixes of histories.

Causality can be also defined for interface predicates and assertions.

Definition 14.14 (Causal Interface Assertion) Interface assertion P(x, y) for the
syntactic interface (I � O) is called causal if for all x, x′ ∈ %I and all t ∈N

x ↓ t = x′ ↓ t ⇒ ∀y ∈ %O : P(x, y ↓ t) ⇔ P(x′, y ↓ t)

and strongly causal if

x ↓ t = x′ ↓ t ⇒ ∀y ∈ %O : P(x, y ↓ t + 1) ⇔ P(x′, y ↓ t + 1)

We give a first example of a specification.

Example (A Specification Example) This example illustrates the specification of a
simple but relevant example of a concurrent system that is difficult to describe in a
procedural programming style. The system offers the function of concurrent reading
from and writing to a variable where it is guaranteed that the actions of reading and
writing do not mutually constrain each other.

Typically, there are a number of applications where data generated and provided
by some source are to be read by some other computing unit, thereby always the
freshest value is to be delivered.

This example leads to a typical read/write conflict for a von Neumann type pro-
gramming style. The value is stored in a storage cell where reading and updating
are done in a synchronized atomic mutually exclusive way. Usually, semaphores are
used to exclude conflicts. The critical question is not so much the synchronization of
concurrent access. The critical question is that by writing read actions are postponed
for a long time or by reading updating is not enabled and thus the read values may
be out of date.

We treat the example of a system called Fresh that always delivers the newest
value of the data on stream x. Figure 14.9 shows its syntactic interface.

324 M. Broy

Fig. 14.9 Syntactic interface

We first define the involved message sets:

Write = {d ∈ Data}
Get = {get}
Val = {d ∈ Data}

The logical specification of Fresh is defined as follows:

Fresh

in x : Write, z : Get
out y : Val

∀t : z(t)= get ⇒ y(t + 1)= last(x, t)

z(t)= “–” ⇒ y(t + 1)= “–”

Let d0 be some fixed initial value:

last(x,0)= d0

last(x, t + 1)= if x(t) �= “–” then x(t) else last(x, t) fi

Note that this system is very difficult to describe by synchronized access to shared
variables. The reason is that for shared variables interleaving and synchronization
as well as timely update is required.

In shared memory system models, reading and writing actions usually cannot be
done synchronously but have to be interleaved. However, when interleaving them
with the help of semaphores or the concept of indivisible actions we run into the
difficulty that due to the restriction to interleaving a high number of writes might
block reading for a while and a high number of reading may block writing for a
while. Without fairness assumptions, reading or writing may even be blocked out
forever. But even under fairness assumption there is no guarantee that the reading of
a value is to be carried out within a certain amount of time and that the read value is
fresh in the sense that it is not older than a guaranteed amount of time.

Note that the specifying assertion of the example is strongly causal. The specified
behaviour is therefore strongly causal, too.

Example (Transmission, Merge and Fork) As simple but quite fundamental exam-
ples of systems we specify a merge component MRG, a transmission component
TMC, and a fork component FRK. In the examples let T 1, T 2, and T 3 be types
(recall that in our case types are simply sets) where T 1 and T 2 are assumed to
be disjoint and T 3 is the union of the sets of elements of type T 1 and T 2. The
specification of the merge component MRG (actually the specification relies on the

14 Software and System Modeling: Structured Multi-view Modeling 325

assumption that T 1 and T 2 are disjoint, which should be made explicit in the spec-
ification in a more sophisticated specification approach) reads as follows:

MRG

in x : T 1, y : T 2
out z : T 3

x̄ = T 1©z̄∧ ȳ = T 2©z̄

In this specification nothing is specified about the time flow and therefore the
specification refers only to the time abstractions of the involved streams denoted by
the operator x̄. The causality of the time flow is considered in detail in the following
subsection.

We specify interface assertion x ∼ y for timed streams x and y of arbitrary type
T ; x ∼ y is true if the messages in x are a permutation of the messages in y. For-
mally we define it by the following logical equivalence:

x ∼ y ≡ (∀m ∈ T : {m}©x̄ = {m}©ȳ)

Based on this definition we specify the component TMC.
Often it is helpful to use certain channel identifiers both for input channels and for

output channels. These are then two different channels, which might have different
types. To distinguish these channels in interface assertions, we use a well-known
notational trick. In an interface specification, we write for a channel c that occurs
both as input and as output channel simply c to denote the stream on the input
channel c and c′ to denote the stream on the output channel c. Accordingly in the
following specification z is the external name of the output channel z and z′ is its
internal name.

TMC

in z : T 3
out z : T 3

z∼ z′

This simple specification says that every input message occurs eventually also as
output message, and vice versa. Nothing is specified about the timing of the mes-
sages. In particular, messages may be arbitrarily delayed and overtake each other.
The specification does not exclude that output messages might even be produced
earlier than they are received. This paradox is excluded by causality.

The following component FRK is just the “inversion” of the component merge.

FRK

in z : T 3
out x : T 1, y : T 2

x̄ = T 2©z̄

∧ȳ = T 2©z̄

326 M. Broy

Note that the merge component MRG as well as the TMC component and the
fork component FRK as they are specified here are “fair” in the following sense.
Every input is eventually processed and reproduced as output.

Based on the interface assertion given in a specification of an interface behavior
F we may prove properties about F .

14.3.2 Specifying Architectures

In this section, we describe how to form architectures from sub-systems, called the
components of the architecture. Architectures are concepts to structure systems. Ar-
chitectures contain precise descriptions for systems in terms of their sub-systems
and how the composition of their sub-systems takes place. In other words, architec-
tures are described by the sets of systems forming their components together with
mappings from output to input channels that describe internal communication and
form a data flow network.

14.3.2.1 Syntactic Architectures

In the following we assume that each system used in an architecture as a component
has a unique identifier k. Let K be the set of identifiers for the components of an
architecture.

Definition 14.15 (Set of Composable Interfaces) A set of component names K with
a finite set of interfaces (Ik � Ok) for each identifier k ∈K is called composable, if
the following propositions hold:

• the sets of input channels Ik, k ∈K , are pairwise disjoint,
• the sets of output channels Ok, k ∈K , are pairwise disjoint,
• the channels in {c ∈ Ik : k ∈K} ∩ {c ∈Ok : k ∈K} have consistent channel types

in {c ∈ Ik : k ∈K} and {c ∈Ok : k ∈K}.

If channel names and types are not consistent for a set of systems to be used as
components we simply may rename the channels to make them consistent.

Definition 14.16 (Syntactic Architecture) A syntactic architecture A= (K, ξ) with
interface (IA � OA) is given by a set K of component names with composable
syntactic interfaces ξ(k)= (Ik � Ok) for k ∈K .

IA = {c ∈ Ik : k ∈ K}\{c ∈ Ok : k ∈ K} denotes the set of input channels of the
architecture,
DA = {c ∈Ok : k ∈K} denotes the set of generated channels of the architecture,
OA =DA\{c ∈ Ik : k ∈K} denotes the set of output channels of the architecture,
DA\OA denotes the set of internal channels of the architecture,
CA = {c ∈ Ik : k ∈K} ∪ {c ∈Ok : k ∈K} denotes the set of all channels.

14 Software and System Modeling: Structured Multi-view Modeling 327

By (IA � DA) we denote the syntactic internal interface and by (IA � OA) we
denote the syntactic external interface of the architecture.

A syntactic architecture forms a directed graph with its components as its nodes
and its channels as directed arcs. The input channels in IA are ingoing arcs and the
output channels in OA are outgoing arcs for that graph.

Definition 14.17 (Interpreted Architecture) An interpreted architecture (K,ψ) for
a syntactic architecture (K, ξ) associates an interface behavior ψ(k) ∈ F[Ik � Ok],
where ξ(k)= (Ik � Ok), with every component k ∈K .

An architecture can be specified by a syntactic architecture and an interface spec-
ification for each of its components.

14.3.2.2 Describing the Behavior of Architectures

Behavioral scenarios of architectures can be described by trace sets for the channels
of architectures. A logical description can be given by trace assertions.

Definition 14.18 (Architecture Specification) An architecture specification (K,χ)

consists of a syntactic architecture (K, ξ) where χ provides an interface assertion
χ(k) for the syntactic interface (Ik � Ok) for every component k ∈K .

In the following sections we define an interface behavior for interpreted architec-
tures by composing the behaviors of the components.

14.3.3 Specifying State Machines

State machines are described by state transition diagrams or by state transition ta-
bles. We start with a simple example of a system and its specification. We specify
a queue. It is a simple basic example out of a rich class of systems for storing and
retrieving data. To keep the examples simple, we consider only input histories with
at most one (relevant) message per channel in each time interval. For sequences s of
messages of length > 1, only their last elements last(s) are considered relevant.

To specify systems, we work with specification templates. A function specifica-
tion consists of a graphical description of a data flow node that specifies the name
of the function, its state attributes including their initial values, and the input and
output channels with their types. In addition, a table describes the state transitions.

Example (Queue) A Queue allows us to store elements of type Data and to request
them in a first in, first out (FIFO) fashion. A typical application of a device offering
such a function might be a PDA that offers the option to store a queue of tasks or
dates. We specify the data types involved as follows (req is the signal for an output
request):

328 M. Broy

Table 14.1 The system
queue as a state transition
table

q a q ′ b

s d s ˆ〈d〉 −
〈d〉ˆs req s d

Fig. 14.10 The system queue
as data flow node

type QIn = { r e q } ∪ Data
type QOut = Data

Based on these data types we formulate the specification of the function Queue
in Table 14.1.

The specification consists of a state transition table and a data flow node. The
data flow node describes the input and output channels, their types, as well as the
state attributes and their initial values. The entry “−” in the table indicates empty
output (or input) for that channel. The rows in the table describe the state changes.
q ′ denotes the value of the state attribute q after the state transition. For instance, the
first row in Table 14.1 represents the state transition rule described by the following
formula:

(σ ′, β) ∈�(σ,α) ⇐ σ(q)= s ∧ last(α(a))= d ∧ β(b)= 〈〉 ∧ σ ′(q)= s ˆ〈d〉

There may be different state machines that fulfill the state transition rules. With a
table we associate the inclusion-least state transition function that fulfills the rules
of the table.

The given table, in fact, is an example of a specification of a partial behavior. If
the input stream a has for instance the shape (let d1, d2 ∈ Data)

a = 〈〈req〉〉ˆ〈〈d1〉〉ˆ〈〈req〉〉ˆ〈〈req〉〉ˆ〈〈d2〉〉ˆ〈〈req〉〉ˆ . . .

then the transition rules for input stream a do not apply, since in the initial state q is
empty and thus the set of output histories is empty.

For details of how tables describe state machines and how state machine descrip-
tions relate to interface behaviors, see [15].

Figure 14.11 shows a state transition diagram of a nondeterministic state ma-
chine representing a storage cell. Arcs represent state transition, labeled by input
and output actions and state changes. If the input message is empty represented by
“–” the output is “–” and the system remains in its state.

Figure 14.12 shows two state transition diagrams as shown in the tool AutoFocus.

14 Software and System Modeling: Structured Multi-view Modeling 329

Fig. 14.11 State machine with local attribute v of type data described by a state transition diagram

Fig. 14.12 State transition diagrams as screenshot from the tool AutoFocus

14.3.3.1 Specifying Properties of State Machines

Logical properties of state machines are captured by specific formulas of predicate
logic. Traditionally temporal logic is used to formulate properties about state tran-
sition systems represented by state machines. Usually, in temporal logic state ma-
chines without input and output are considered such that the formulas of temporal
logic specify properties for the infinite streams of states generated as computations
by these state machines. There are several variations of temporal logic including

330 M. Broy

so-called linear time temporal logic which talks about the state traces of a state ma-
chine and branching-time temporal logic which considers the tree of computations
defined by a state machine.

Since we are not mainly interested in the states but rather in input and output
histories of computations, classical temporal logic is not the right choice for us.
Moreover, temporal logic is limited in its expressive power. Although we could
introduce a version of temporal logic that talks about input and output of compu-
tations, we prefer to talk about the interface behavior in terms of more general and
more expressive interface assertions.

14.3.3.2 Assertions About State Machines

Let Q be an interface interval assertion which is a formula in predicate logic with
x and y as free identifiers for channel valuations that associate messages or finite
sequences of messages with each channel; the identifiers s and s′ stand for states;
we get a kind of temporal logic if we define (for a given system interface with input
channels x and output channels y) the classical two operators of linear time temporal
logic

♦Q≡ ∃t ∈N+ :Q[x(t)/x, y(t)/y,σ (t − 1)/s, σ (t)/s′]
�Q≡ ∀t ∈N+ :Q[x(t)/x, y(t)/y,σ (t − 1)/s, σ (t)/s′]

This way every system assertion written in temporal logic is translated into a sys-
tem assertion in classical predicate logic. This is illustrated for a simple formula
in temporal logic for a system with an input channel a and an output channel b as
follows:

�(x(a)= 〈〉 ⇒ y(b)= 〈〉)≡ ∀t ∈N+ : (x(t)(a)= 〈〉 ⇒ y(t)(b)= 〈〉)
This demonstrates how temporal logic is translated into general predicate logic. This
way every formula in temporal logic is translated into an interface assertion.

For better readability we rather write channel names a instead of x(a) and at-
tributes v instead of s(v) in formulas. This way we may write a formula about the
queue:

�(a ∈ Data ⇒ q ′ = q ˆ〈a〉 ∧ b = “–”)

�(a ∈ req∧ #q > 0 ⇒ q = 〈b〉ˆq ′)
For the state machine in Fig. 14.11 we may formulate the property (assuming x

as input channel, y as output channel and two state predicates s ∈ empty, full, d ∈
Data):

�(x = write(d)∧ s = empty∧ y = AckWri ⇒ s′ = full∧ v′ = d)

This results in specification techniques close to Lamport’s TLA (see [1, 2]).

14 Software and System Modeling: Structured Multi-view Modeling 331

Fig. 14.13 Interaction diagram (message sequence) chart as screenshot from the tool AutoFocus

14.3.4 Specifying Traces

An interaction diagram (also called message sequence chart) describes a trace. The
properties of as trace can be captured by a trace assertion along the lines of interface
assertions.

A trace assertion over a channel set C is a formula in predicate logic that contains
the channels from C as identifiers for streams. The formula may be written also in
temporal logic as shown in the previous section.

14.4 Relating System Views

In this section we relate the three basic views: interface behavior, state machines
and architectures.

14.4.1 Relating Architectures with Interfaces and Traces

Given a specification of an architecture, which consists of the description of the syn-
tactic network of the architecture as well as the description of the components, we
get a description of the behaviour of the architecture. Depending on how the compo-
nents are described we get different models for views onto the composed system. In
particular, if all the components of a particular architecture are described by inter-
face assertions we derive an interface assertion for the composed architecture since

332 M. Broy

the approach we are presenting is modular. For architectures the components may
also be represented by state machines or again by architectures.

14.4.1.1 Glass Box Views onto Interpreted Architectures

We first define the composition of composable systems. It is the basis for giving se-
mantic meaning to architectures. We start at the glass box view onto an architecture
given by a set of traces for all channels.

Definition 14.19 (Composition of Systems—Glass Box View) For an interpreted
architecture A with syntactic internal interface (IA � DA) we define the glass box
interface behavior [×]A ∈ F[IA � DA] by the equation (let ψ(k)= Fk):

([×]A)(x)= {y ∈ %DA : ∃z ∈ %CA : x = z|IA∧y = z|DA∧∀k ∈K : z|Ok ∈ Fk(z|Ik)}

where the operator | denotes the usual restriction operator. Internal channels are
not hidden by this composition but the streams on them are part of the output. The
formula defines the result of the composition of the k behaviors Fk by defining the
output y of the architecture [×]A with the channel valuation z of all channels. The
valuation z carries the input provided by x expressed by x = z|IA fulfills all the
input/output relations for the components expressed by z|Ok ∈ Fk(z|Ik). The output
of the composite system is given by y which is the restriction z|DA of z to the set
DA of output channels of the architecture [×]A.

For two composable systems Fk ∈ F[Ik � Ok], k = 1,2, we write

F1 × F2

for [×]{Fk : k = 1,2}. Composition of composable systems is commutative

F1 × F2 = F2 × F1

and associative

(F1 × F2)× F3 = F1 × (F2 × F3)

The proof of this equation is straightforward. We also write therefore with K =
{1,2,3, . . .}

[×]{Fk ∈ F[Ik � Ok] : k ∈K} = F1 × F2 × F3 × . . .

The glass box view is related to the trace view below by associating with an archi-
tecture traces over all its internal and external channels. From the glass box view we
can derive the black box view as demonstrated in the following section.

14 Software and System Modeling: Structured Multi-view Modeling 333

14.4.1.2 Interface Views onto Architectures

The interface view of an architecture is an abstraction of the glass box view.

Definition 14.20 (Composition of Systems—Interface View) Given an interpreted
architecture A with syntactic external interface (IA � OA) and glass box interface
behavior [×]A ∈ F[IA � DA] we define its interface behavior FA ∈ F[IA � OA] by

FA(x)= (F (x))|OA

Internal channels are hidden by this composition and in contrast to the glass box
view not part of the output.

For an interpreted architecture with syntactic external interface (IA � OA), we
obtain the interface behavior FA ∈ F[IA � OA] specified by

FA(x)= {y ∈ %OA : ∃z ∈ %CA : x = z|IA ∧ y = z|OA ∧ ∀k ∈K : z|Ok ∈ Fk(z|Ik)}

and write

FA =
⊗

{Fk ∈ F[Ik � Ok] : k ∈K}
We also write therefore with K = {1,2,3, . . .}

⊗
{Fk ∈ F[Ik � Ok] : k ∈K} = F1 ⊗ F2 ⊗ F3 ⊗ . . .

The idea of the composition of systems as defined above is shown in Fig. 14.5
with C1 = I2 ∩ O1 and C2 = I1 ∩ O2. For properties of the algebra, we refer the
reader to [5, 15]. In a composed system, the internal channels are used for internal
communication.

14.4.1.3 Interface Assertions for Architectures

Given a syntactic architecture A= (K, ξ) and specifying interface assertions Sk for
the sub-systems k ∈K , the specifying assertion for the glass box behavior is given
by ∀k ∈K : Sk , and for the black box behavior by ∃c1, . . . , cj : ∀k ∈K : Sk , where
{c1, . . . , cj } denotes the set of internal channels

The set of systems together with the introduced composition operators form an
algebra. The composition of systems (more precisely of their behavior in terms of
strongly causal stream processing functions) yields systems and the composition of
functions yields functions.

Composition is a partial function on the set of all system behaviors. It is only
defined if the syntactic interfaces are composable. Syntactic interfaces fit together if
there are no contradictions in the channel names and types.

334 M. Broy

14.4.1.4 Renaming

So far we defined the composition using the names of components to connect them
only for sets of components that are composable in the sense that their channel
names and types fit together. Often, the names of the components may not fit. Then
renaming may help.

Definition 14.21 (Renaming System Channels) Given a system behavior F ∈
F[I � O] a renaming is a pair of mappings α : I ′ → I and β : O → O ′ where
the types of the channels are consistent in the sense that c and α(c) as well as e and
β(e) have the same types for all c ∈ I and all e ∈ O . By a renaming ρ = (α,β) of
F we obtain a component ρ[F] ∈ F[I ′ � O ′] such that for x ∈ %I ′

ρ[F](x)= β(F (α(x)))

where for x ∈ %I ′ the history α(x) ∈ %I is defined by

α(x)(c)= x(α(c))

for c ∈ I .

Note that by a renaming, a channel in I ′ or O may be used in several copies
in I or O ′. Given an interpreted architecture A= (K,ψ) with a set of components
ψ(k)= Fk ∈ [Ik �Ok] for k ∈K and a set of renamings R = {ρk : k ∈K} where ρk

is a renaming of Fk for all k ∈K , we call (A,R,ψ) an interpreted architecture with
renaming if the set {ρk[Fk] : k ∈K} is well defined and composable. The renamings
R define the connections that make A an architecture.

14.4.2 From State Machines to Interface Behaviors

By interface abstraction we may associate an interface behavior with each state
machine.

14.4.2.1 Interface Behavior of State Machines

State machines show a particular interface behavior.

Definition 14.22 (Interface Behavior of State Machines) Given a state machine
(�,) with syntactic interface (I � O) we define its interface abstraction which
relates an interface behavior

IA(�,) ∈ F[I � O]

14 Software and System Modeling: Structured Multi-view Modeling 335

with machine (�,) as follows (let � be the state space for (�,), x ∈ %I)

IA(�,)(x) = {y : ∃σ :N→� : σ(0) ∈∧ ∀t ∈N : (σ (t + 1), y(t + 1))

∈�(σ(t), x(t + 1))}
Note that in computations we start to count states by 0 such that the initial state is
σ(0) while we count the time intervals starting with 1 such that x(1) and y(1) are
the sequences of messages exchanged in interval 1. IA(,) is called the interface
behavior or the interface abstraction of the state machine (�,).

By construction IA(�,) is causal. If (�,) is a Moore machine then IA(�,) is
strongly causal.

Given a state machine we may perform an interface abstraction. It is given by the
step from the state machine to its interface behavior.

Definition 14.23 (Black Box Behavior and Specifying Assertion) Given a state
machine SM = (�,) with interface behavior IASM the interface assertion that is
equivalent to the proposition y ∈ IASM(x) is called the specifying assertion.

IASM is causal by construction. If SM is a Moore machine (that is, the output
depends on the state only) then IASM is strongly causal.

14.4.2.2 The Set of Input/Output Histories of State Machines

With each state machine with input and output we easily associate its set of in-
terface histories. These sets characterize the interface behavior of state machines.
It provides an abstraction for computations from the states. Given a state machine
(�,), where ⊆� is the set of initial states and

� : (� × (I →M∗))→ ℘(� × (O →M∗))

is the state transition function, we define the predicate

IC : %I × %O ×� → B

that characterizes the set of interface histories in terms of computations for a given
state σ ∈� as follows:

IC(x, y, σ) = ∀φ :N→� : φ(0)= σ ∧ ∀t ∈N : (φ(t + 1), y(t + 1))

∈�(φ(t), x(t + 1))

To prove that for some input history x and some output history y the proposition
IC(x, y, σ) holds we have to construct a stream of states explicitly according to this
characterization.

336 M. Broy

14.4.2.3 Composing State Machines

A syntactic architecture represents a state machine if for each of its components a
state machine is specified.

Definition 14.24 (Architecture Implemented by State Machines) An architecture
(K, ζ) of a syntactic architecture (K, ξ) that associates a state machine ζ(k) =
(�k,k) ∈ SM[Ik � Ok] with every k ∈K , where ξ(k)= (Ik �Ok), defines a state
machine for the architecture.

In the following sections we define an interface behavior for interpreted architec-
tures by composing the behaviors of their components.

Definition 14.25 (Composition of State Machines—Glass Box View) For an im-
plemented architecture R = (K, ζ) for a syntactic architecture A = (K, ξ) we de-
fine the composition (�R,R) ∈ SM[IA � DA] by the following equations (let
ζ(k)= (�k,k) with state space �k):

The state space �R is defined by the direct product (let for simplicity K =
{1,2,3, . . .}) of the state spaces

�R =�1 ×�2 ×�3 × . . .

the initial state set is defined by the direct product of the sets of initial states

R =1 ×2 ×3 × . . .

and the state transition function � is defined by

�R(σ,a) = {(σ ′, b) : ∃z : C →M∗ : b = z|DA ∧ a = z|IA ∧ ∀k ∈K : (σ ′
k, z|Ok)

∈�k(σk, z|Ik)}

Internal channels are not hidden by this composition but their messages on them are
part of the output.

If the composed state machines are Moore machines, their composition is a
Moore machine, too.

14.4.2.4 Architectures as State Machines

If each component of an architecture is given by a state machine, the architecture it-
self defines a state machine that is the result of the composition of the state machines
given for its components. Its state space is the direct product of the state spaces of
its components.

14 Software and System Modeling: Structured Multi-view Modeling 337

Fig. 14.14 Interaction diagram (message sequence) chart as screenshot from the tool AutoFocus

14.4.3 Traces of Interfaces, State Machines, and Architectures

Traces are histories of system channels.

Definition 14.26 (Trace of an Interface) A trace for a syntactic interface (I � O)

is given by a valuation z ∈ %C of channels C = I ∪ O . For an interface behavior
F ∈ F[I � O] the trace z ∈ %C is called correct if z|O ∈ F(z|I).

A finite trace can be used to represent a test case. Systems may be described by
sets of traces and illustrated by a finite set of representative traces.

Definition 14.27 (Trace of a State Machine) A trace (z, σ) for a state machine with
state space � and syntactic interface (I � O) is given by a valuation z ∈ %C of
channels C = I ∪O and a stream of states σ : N→ �. A state machine (�,) is
called correct for the trace if σ(0) ∈ and (σ (t +1), y(t +1)) ∈�(σ(t), x(t +1)).

Properties of traces of state machines may be described by temporal logic.

Definition 14.28 (Trace of an Architecture) A trace for a syntactic architecture A=
(K, ξ) is given by a valuation z ∈ %C of channels

C =
⋃

k∈K

(Ik ∪Ok)

For an interpreted architecture (K,ψ) the trace z ∈ %C is called correct if z|Ok ∈
ψ(k)(z|Ik) for all k ∈K , where ξ(k)= (Ik � Ok).

Traces of architectures include a trace for each of their component. They can be
described by interaction diagrams (see Fig. 14.14). Such traces are snapshots of the
glass box view of an architecture.

338 M. Broy

14.5 Refinement and Verification: Reasoning About System
Views

In our approach we formalize the following basic ideas of refinement:

• property refinement—enhancing requirements—allows us to add properties to a
specification,

• glass box refinement—designing implementations—allows us to decompose a
system into a distributed system or to give a state transition description for a
system specification,

• interaction refinement—relating levels of abstraction—allows us to change the
representation of the communication histories, in particular, the granularity of the
interaction as well as the number and types of the channels of a system (see [4]).

In fact, these notions of refinement describe the steps needed in an idealistic view of
a strict hierarchical top down system development. The three refinement concepts
mentioned above are formally defined and explained in detail in the following.

14.5.1 System Development by Refinement

In requirements engineering and in the design phase of system development many
issues have to be addressed, such as requirements elicitation, conflict identification
and resolution, information management as well as the selection of a favorable soft-
ware architecture (see [20, 21]). These activities are connected with development
steps. Refinement relations (see [4]) are the medium to formalize development steps
(see [13]) and in this way the development process.

14.5.1.1 Property Refinement

Property refinement is a well-known concept in structured programming. It allows
us to replace an interface behavior with one having additional “refused” properties.
This way a behavior is replaced by a more restricted one. In FOCUS an interface
behavior

F : %I → ℘(%O)

is refined by a behavior

F ′ : %I → ℘(%O)

if

F ≈> F ′

This relation stands for the proposition

∀x ∈ %I : F ′(x)⊆ F(x)

14 Software and System Modeling: Structured Multi-view Modeling 339

Obviously, property refinement is a partial order and therefore reflexive, asymmet-
ric, and transitive. Moreover, the inconsistent specification logically described by
false refines everything.

A property refinement is a basic refinement step adding requirements as it is done
step-by-step in requirements engineering.

In the process of requirements engineering, typically the overall functionality of
a system is specified. Requiring more and more sophisticated properties for systems
until a desired behavior is specified, in general, does this.

Example A specification of a system that transmits its input from its two input chan-
nels to its two output channels (but does not necessarily observe the order) is speci-
fied as follows.

TM2

in x : T 1, y : T 2
out x : T 1, y : T 2

x′ ∼ x ∧ y′ ∼ y

We refine this specification to the simple specification of the time permissive
identity TII that reads as follows:

TII

in x : T 1, y : T 2
out x : T 1, y : T 2

x̄′ = x̄ ∧ ȳ′ = ȳ

TII is a property refinement of TM2, formally expressed

TM2 ≈> TII

A proof of this relation is straightforward (see below).
The verification conditions for property refinement are easily generated as fol-

lows. For given interface specifications S1 and S2 with interface assertions �1 and
�2, the specification S2 is a property refinement of S1 if the syntactic interfaces of
S1 and S2 coincide and if for the interface assertions �1 and �2 the proposition

�1 ⇐ �2

holds. In our example the verification condition is easily generated. It reads as fol-
lows:

x′ ∼ x ∧ y′ ∼ y ⇐ ȳ′ = ȳ ∧ x̄′ = x̄

The proof of this condition is obvious. It follows immediately from the definitions
of the time abstraction x̄ and x′ ∼ x. For an implementation of the calculus in the
interactive proof assistant Isabelle (see [22]) see [25].

The property refinement relation is verified by proving the logical implication
between the interface assertions.

340 M. Broy

Property refinement is useful to relate composed systems to systems specified by
logical formulas (see also glass box refinement in Sect. 14.5.1.3). For instance, the
following refinement relation

TII ≈> (MRG ◦ FRK)

holds. Again the proof is straightforward.
Property refinement is characteristic for the development steps in requirements

engineering. It is also used as the baseline of the design process where decisions
being made introduce further system properties.

14.5.1.2 Compositionality of Property Refinement

For FOCUS, the proof of the compositionality of property refinement is straight-
forward. This is a consequence of the simple definition of composition. The rule of
compositional property refinement reads as follows:

F1 ≈> F ′
1 F2 ≈> F ′

2

F1 ⊗ F2 ≈> F ′
1 ⊗ F ′

2

The proof of the soundness of this rule is straightforward due to the monotonicity
of the operator ⊗ with respect to set inclusion. Compositionality is often called
modularity in system development. Modularity allows for a separate development
of systems.

Modularity guarantees that separate refinements of the components of a system
lead to a refinement of the composed system.

Example For our example the application of the rule of compositionality reads as
follows. Suppose we use a specific component MRG1 for merging two streams. It is
defined as follows (recall that T 1 and T 2 form a partition of T 3):

MRG1

in x : T 1, y : T 2
out z : T 3

z= 〈〈〉〉ˆf (x, y)

where
∀s ∈ T 1∗, t ∈ T 2∗, x ∈ (T 1∗)∞, y ∈ (T 2∗)∞ : f (〈s〉ˆx, 〈t〉ˆy)= 〈s ˆ t〉ˆf (x, y)

Note that this merge component MRG1 is deterministic and not time indepen-
dent. According to the FOCUS rule of compositionality and transitivity of refine-
ment, it is sufficient to prove

MRG ≈> MRG1

to conclude

MRG ◦ FRK ≈> MRG1 ◦ FRK

14 Software and System Modeling: Structured Multi-view Modeling 341

and by the transitivity of the refinement relation

TII ≈> MRG1 ◦ FRK

This shows how local refinement steps that are refinements of subcomponents of a
composed system and their proofs are schematically extended to global proofs.

The composition operator and the relation of property refinement leads to a de-
sign calculus for requirements engineering and system design. It includes steps of
decomposition and implementation that are treated more systematically in the fol-
lowing section.

14.5.1.3 Glass Box Refinement

Glass Box Refinement is a classical concept of refinement used in the design phase.
In this phase, we typically decompose a system with a specified interface behavior
into a distributed system architecture or represent (implement) it by a state transition
machine. In other words, a glass box refinement is a special case of a property
refinement that is of the form

F ≈> F1 ⊗ F2 ⊗ . . .⊗ Fn design of an architecture for a system with interface

behavior F or of the form

F ≈> IA(,) implementation of system with interface behavior F by a state

machine

where the interface behavior IA(�,) is defined by a state machine (�,) (see also
[15]) with as its initial states.

Glass box refinement means the replacement of a system F by a property re-
finement that represents a design step. A design is given by a network of systems
F1 ⊗F2 ⊗· · ·⊗Fn or by a state machine (�,) with behavior IA(�,). The design
is a property refinement of F provided the interface behavior of the net or of the
state machine respectively is a property refinement of behavior F .

Accordingly, a glass box refinement is a special case of property refinement
where the refining system has a specific syntactic form. In the case of a glass box
refinement that transforms a system into a network, this form is a term shaped by
the composition of a set of systems. The term describes an architecture that fixes the
basic implementation structure of a system.

These systems have to be specified and we have to prove that their composition
leads to a system with the required functionality.

Again, a glass box refinement can be applied afterwards to each of the systems Fi

in a network of systems. The systems F1, . . . ,Fn can be hierarchically decomposed
again into a distributed architecture in the same way, until a granularity of systems
is obtained which is not to be further decomposed into a distributed system but
realized by a state machine. This form of iterated glass box refinement leads to a
hierarchical top down refinement method.

342 M. Broy

Fig. 14.15 Glass box refinement of a system by an architecture as screen shot from tool AutoFocus

Example A simple instance of such a glass box refinement is already shown by the
proposition

TII ≈> MRG ◦ FRK

It allows us to replace the system TII by a network of two systems.
Note that a glass box refinement is a special case of a property refinement.
It is not in the center of this chapter to describe in detail the design steps leading

from an interface specification to distributed systems or to state machines. Instead,
we take a purist’s point of view. Since we have introduced a notion of composition
we consider a system architecture as being described by a term defining a distributed
system by composing a number of systems.

14.5.1.4 Interaction Refinement

In FOCUS interaction refinement is the refinement notion for modeling develop-
ment steps between levels of abstraction. For a system, interaction refinement allows
us to change for a system

• the number and names of its input and output channels,
• the types of the messages on its channels determining the granularity of the mes-

sages.

A pair of two mappings describes an interaction refinement for two sets C and
C′ of channels

A : %C′ → ℘(%C) R : %C → ℘(%C′)

that relate the interaction on an abstract level with corresponding interaction on the
more concrete level. This pair specifies a development step that is leading from
one level of abstraction to the other as illustrated by Fig. 14.16. Given an abstract

14 Software and System Modeling: Structured Multi-view Modeling 343

Fig. 14.16 Communication
history refinement

Fig. 14.17 Interaction
refinement (U−1-simulation)

history x ∈ %C each y ∈ R(x) denotes a concrete history representing x. A is called
the abstraction and R is called the representation. Calculating a representation for
a given abstract history and then calculating its abstraction yields the old abstract
history again. Using sequential composition, this is expressed by the requirement:

R ◦A= Id

Let Id denote the identity relation. A is called the abstraction and R is called the
representation. R and A are called a refinement pair. For non-timed systems we
weaken this requirement by requiring R ◦A to be a property refinement of the time
permissive identity formally expressed by the equation(for all histories x ∈ %C)

(R ◦A)(x)= {x̄}
Choosing the system MRG for R and FRK for A immediately gives a refinement
pair for non-timed systems.

Interaction refinement allows us to refine systems, given appropriate refinement
pairs for their input and output channels. The idea of an interaction refinement is
visualized in Fig. 14.17 for the so-called U−1-simulation. Note that here the systems
(boxes) AI and AO are no longer definitional in the sense of specifications, but
rather methodological, since they relate two levels of abstraction. Nevertheless, we
specify them as well by the specification techniques introduced so far.

Given refinement pairs

AI : %I2 → ℘(%I1) RI : %I1 → ℘(%I2)

AO : %O2 → ℘(%O1) RO : %O1 → ℘(%O2)

344 M. Broy

Fig. 14.18 Graphical
representation of an
interaction refinement
(U -simulation)

for the input and output channels we are able to relate abstract to concrete channels
for the input and for the output. We call the interface behavior

F ′ : %I2 → ℘(%O2)

an interaction refinement of the interface behavior

F : %I1 → ℘(%O1)

if the following proposition holds:

AI ◦ F ◦RO ≈> F ′ U−1-simulation

This formula essentially expresses that F ′ is a property refinement of the system
AI ◦ F ◦RO . Thus for every “concrete” input history x′ ∈ %I2 every concrete output
y′ ∈ %O2 can be also obtained by translating x′ onto an abstract input history x ∈
AI (x

′) such that we can choose an abstract output history y ∈ F(x) such that y′ ∈
RO(y).

There are three further versions of interaction refinement. A more detailed dis-
cussion of the mathematical properties of U−1-simulation is found in [4].

Example For the time permissive identity for messages of type T 3 a system speci-
fication reads as follows:

TII3

in z : T 3
out z : T 3

z̄= z̄′

We obtain

TII ≈> MRG ◦ TII3 ◦ FRK

as a simple example of interaction refinement by U -simulation with is reverse to
U−1-simulation. The proof is again straightforward.

Figure 14.18 shows a graphical description of this refinement relation.

14 Software and System Modeling: Structured Multi-view Modeling 345

The idea of interaction refinement is found in other approaches to system specifi-
cation like TLA, as well. It is used heavily in practical system development, although
it is hardly ever introduced formally there. Examples are the communication proto-
cols in the ISO/OSI hierarchies (see [17]).

Interaction refinement formalizes the relationship between layers of abstractions
in system development. This way interaction refinement relates the layers of proto-
col hierarchies, the change of data representations for the messages or the states as
well as the introduction of time in system developments.

Example In a property refinement, if we replace the component TII3 by a new com-
ponent TII3′ (for instance along the lines of the property refinement of TII into
MRG ◦ FRK), we get by the compositionality of property refinement

TII ≈> MRG ◦ TII3′ ◦ FRK

from the fact that TII3 is an interaction refinement of TII.
Interaction refinement is formulated with the help of property refinement. In fact,

it can be seen as a special instance of property refinement. This guarantees that we
can freely combine property refinement with interaction refinement in a composi-
tional way.

14.5.2 Proving Properties about Interface Behaviors

Proofs over interface behaviors specified by interface assertions are straightforward
using higher order predicate logic.

14.5.3 Proving Properties about Architectures

Given a description of an architecture in terms of composable components with
specified interface behaviors we can derive the specification of the interface behav-
ior of the architecture along the following lines in a modular way.

14.5.3.1 Modularity of Composition

The property of modularity of interface specifications may be characterized as fol-
lows. Given two system specifications, where Pk are the interface assertions for
systems Fk, k = 1,2:

Fk

in Ik

out Ok

Pk

346 M. Broy

we obtain the specification of the composed system F1 ⊗ F2 as illustrated in
Fig. 14.5:

F1 ⊗ F2

in I1\C2 ∪ I2\C1
out O1\C1 ∪O2\C2

∃C1,C2 : P1 ∧ P2

The interface assertion of F1 ⊗F2 is derived in a modular way from the interface
assertions of its components by logical conjunction and existential quantification
over channels denoting internal channels.

14.5.3.2 Deriving Interface Specifications from Architecture Specifications

Given an architecture specification (K,χ) for the syntactic architecture (K, ξ)

where χ provides an interface assertion χ(k) for the syntactic (Ik � Ok) for every
component k ∈K we get an interface specification for the architecture A described
by the specification (let all the channel sets be as in the definition of syntactic inter-
faces)

A

in IA

out OA

∃DA\OA :∧k∈K χ(k)

Recall that IA denotes the set of input channels of the architecture, OA denotes
the set of output channels, and DA\OA denotes the set of internal channels of the
architecture.

14.5.4 Proving Properties About State Machines

Proving properties about state machines can be tricky and difficult as proving prop-
erties about implementations is never easy. State machines basically represent im-
plementations of systems in terms of state transition functions. We can use classical
techniques for proving properties about state machines such as invariants. More so-
phisticated ones are described in [10], where we distinguish between safety and
liveness properties. As it is shown, safety properties basically can be proved us-
ing invariant techniques, showing that all final prefixes of histories show required
properties. Liveness properties can be much more difficult to prove as analyzed in
[10].

14 Software and System Modeling: Structured Multi-view Modeling 347

14.5.5 Proving Properties About Traces

Properties about traces are described by trace assertions. For trace assertions we can
use classical predicate logic to work out proofs, similar to interface assertions.

14.5.6 Testing Systems

Verification for systems cannot only be done by proving properties but also by test-
ing properties. A sophisticated test approach for testing the introduced system model
is given in [14]. Traces, in particular final traces, can be used to represent test cases.
The definition of how test cases are related to system descriptions and how state
machines and architectures can be tested is described in [14].

14.6 Engineering Systems: Structuring System Views

In this section we study ways of structuring the interface and the architectural views.
We introduce the idea of assumption/promise specifications and that of function
hierarchies.

14.6.1 Assumption/Promise Specifications

Specific systems are often only used in restricted contexts. Then the contexts of
systems are assumed to fulfill certain properties. Assumptions are properties of the
context we can assume about the input along the channels to the system and also
about the reactions of the context to outputs produced by the system under consid-
eration (for an extensive presentation, see [9]).

14.6.1.1 Contracts as Interface Assertions by Assumption/Promise

Given a syntactic interface (I � O), an interface assertion is a Boolean expression
p(x, y) where p is a predicate

p : %I × %O → B

and x ∈ %I and y ∈ %O are input and output histories. Figures 14.19 and 14.20 graph-
ically illustrate the composition. We assume here that context E and system S are
composable.

With this modeling the key question is the definition of composition and how we
model systems, their properties, their attributes and their behaviour.

348 M. Broy

Fig. 14.19 Closed
composition S ⊗E of S with
internal channels x′ and y′

Fig. 14.20 Open
composition S ×E of S with
the context E

Both Figs. 14.19 and 14.20 illustrate the composition of a system S with con-
text E. Both cases result in composite systems for which the messages on the chan-
nels or histories x and y are observable.

An assumption/promise specification (A/P-specification for short) is given by an
assumption about the context, which is an interface assertion, and a specification
of the system’s interface behaviour, which is an interface assertion that holds pro-
vided the assumption holds. An A/P-specification is given by a specification of an
assumption about the context E

Asu(E)

and by some promise of the form

Pro(E ⊗ S)

or

Pro(E × S)

about the system S if used in a context with property Asu(E). If we understand that
the cooperation between context E and system S is captured exclusively in terms of
the messages exchanged via the input channels in set I and the output channels in
set O then the property Asu(E) of the context can be expressed by an assertion

asu(x, y)

on histories x ∈ %I and y ∈ %O , while Pro(E × S) has can be expressed by some
assertion

pro(x, y)

Of course, we assume that assertion pro(x, y) speaks solely about properties of
system S if used in the context E. Assertion asu(x, y) has to be a specification
indicating which input x is possibly generated by the context E for the system S

given some output history y.

14 Software and System Modeling: Structured Multi-view Modeling 349

14.6.1.2 From A/P-Contracts to Logical Implication

A very useful way to understand A/P-specifications is to see them as special forms
of implication. This leads to a very clear and crisp semantic interpretation of A/P-
specification formats and allows us to use all of the FOCUS theory in connection
with A/P-specifications.

The basic idea is as follows: we write specifications using interface assertions
structured into the following pattern:

assume: asu(x, y)

promise: pro(x, y)

with the following meaning: if the context fulfills the specification given by the
assumption

asu(x, y)

then the system fulfills the promised assertion

pro(x, y)

This means that the assertion asu(x, y) is an interface specification for the context
and has to follow the rules of system specifications. In fact, asu(x, y) is a specifica-
tion for the context E. We require of context E the assumption specified by

Asu(E)≡ [∀x, y : x ∈E(y) ⇒ asu(x, y)]
and of the system S and its context E the promise specified by

Pro(E,S)≡ [∀x, y : y ∈ (E × S)(x) ⇒ pro(x, y)]
The combination of these predicates then specifies a contract

Con(S)≡ [∀E : Asu(E) ⇒ Pro(E,S)]
This equation defines the meaning of a functional contract. Note that the promise
speaks about the properties of the system composed with the context while the
promise speaks only about properties of the context.

14.6.2 System Use Case Specification: Structuring System
Functionality

In the following we study relationships and dependencies between behaviors that
are sub-functions of multifunctional systems. Furthermore, we introduce the basic
relation between functions called sub-function relations.

350 M. Broy

14.6.2.1 Projections of Histories and Functions

Based on the sub-type relation between sets of typed channels as introduced in
Sect. 14.2.2, we define the concept of a projection of a history. It is the basis for
specifying the sub-function relation.

Definition 14.29 (History Projection) Let C and G be sets of typed channels with
C subtype G. We define for history x ∈ %G its projection x|C ∈ %C to the channels
in the set C and to the messages of their types. For channel c ∈ C with type T we
specify the projection by the equation:

(x|C)(c)= T ©x(c)

where for a stream s and a set M we denote the stream derived from s by deleting
all messages in s that are not in set M by M©s. x|C is called projection of history
x to channel set C.

To obtain the sub-history x|C of x by projection, we keep only those channels
and types of messages in the history x that belong to the channels and their types
in C.

Definition 14.30 (Projection of Behaviors) Given syntactic interfaces (I ′ � O ′) and
(I � O) where (I ′ � O ′) subtype (I � O) holds, we define for a behavior F ∈
F[I � O] its projection F†(I ′ � O ′) ∈ F[I ′ � O ′] to the syntactic interface (I ′ �
O ′) by the following equation (for all input histories x′ ∈ %I ′):

F†(I ′ � O ′)(x′)= {y|O ′ : ∃x ∈ %I : x′ = x|I ′ ∧ y ∈ F(x)}
In a projection, we delete all input and output messages that are not part of the

syntactic interface (I ′ � O ′) and concentrate on the subset of the input and output
messages of a system in its syntactic sub-interface (I ′ � O ′). The idea is to derive
less complex sub-behaviors that, nevertheless, allow us to conclude properties about
the original system.

The following definition characterizes projections that do not introduce addi-
tional nondeterminism, since the input deleted by the projection does not influence
the output.

Definition 14.31 (Faithful Projection of Behaviors) Let all definitions be as in the
definition above. A projection F†(I ′ � O ′) is called faithful, if for all input histories
x ∈ dom(F) the following formula holds:

F(x)|O ′ = (F†(I ′ � O ′))(x|I ′)
In a faithful projection, the sets of histories produced as outputs on the channels

in O ′ do depend only on the messages of the input channels in I ′ and not on other
inputs for F outside I ′. A faithful projection is a projection of a behavior to a sub-
function that forms an independent sub-behavior, where all input messages in I are
included that are relevant for the considered output messages.

14 Software and System Modeling: Structured Multi-view Modeling 351

14.6.2.2 Sub-functions and Their Dependencies

In the following, we discuss the question, how a given function F ′ ∈ F[I ′ � O ′]
that is to be offered by some system with interface behavior F ∈ F[I � O] where
(I ′ � O ′) subtype (I �O), relates to the projection F†(I ′ � O ′). This leads to the
concept of a sub-function.

A given and specified function behavior F ′ is offered as a sub-function by a
multifunctional system with behavior F , if in F all the messages that are part of the
function behavior F ′ are as required in F ′. This idea is captured by the concept of a
sub-function.

Definition 14.32 (Sub-function Relation) Given (I ′ � O ′) subtype (I � O), func-
tion F ′ ∈ F[I ′ � O ′] is a sub-function of a behavior F ∈ F[I � O], if for all histo-
ries x ∈ %I ′

F ′ = (F†(I ′ � O ′))

We say that “system with behavior F offers the function F ′” and that “F ′ is a sub-
function of F”. We write F ′ ←sub F .

The sub-function relation forms a partial order.
A system behavior may have many sub-functions. The sub-function relation is

significant from a methodological point of view, since it is the dominating relation
for function hierarchies.

14.6.2.3 Restricted Sub-functions

The sub-function relation ←sub introduced so far is rather straightforward. Often,
however, functions are actually not sub-functions but only somewhat close to that.
Therefore we study weaker relationships between functions F ′ ∈ F[I ′ � O ′] and
the projection F†(I ′ � O ′) of a multifunctional system with behavior F .

Let (I ′ � O ′) subtype (I � O) hold; in the remainder of this section we study
situations in which the relation

F ′ ←sub F

actually does not hold.
Nevertheless, even in such cases we want to say that the function F ′ ∈ F[I ′ �

O ′] is offered by a super-system F ∈ F[I � O], if we restrict the input to F to an
appropriate sub-domain R ⊆ %I of F that excludes the problematic input histories
that show dependencies between messages not in I but do influence output on O ′.

Definition 14.33 (Restricted Sub-Function Relation) Given behaviors F ′ ∈ F[I ′ �
O ′] and F ∈ F[I � O] where (I ′ � O ′) subtype (I � O) holds, behavior F ′ is
called a restricted sub-function of behavior F if there exists a subset R ⊆ %I such
that

F ′ ←sub F |R

352 M. Broy

Here the partial mapping F |R ∈ F[I � O] denotes as usual the restriction of map-
ping F to subset R of histories in %I with (F |R)(x)=∅, if x �∈ R, and (F |R)(x)=
F(x), if x ∈R. If R is the largest set for which the relationship F ′ ←sub F |R holds
then R is called the domain of F ′ in F .

Obviously, if F ′ ←sub F holds, then F ′ is a restricted sub-function of F . The
reverse does not hold, in general. The key question in the restricted sub-function
relation is, how to get a reliable access to the function F ′ offered by F . To get
access in F to the function described by F ′, we must not only follow the input
patterns in dom(F ′) but also make sure that the histories are in R. The restricted
sub-function relation is a partial order, as well. The restricted sub-function relation
as introduced here is weaker and thus more flexible than the sub-function relation.

14.6.2.4 Dependency and Independency of Sub-functions

In this section we specify what it means that a sub-function is independent of another
sub-function within a multifunctional system.

For a multifunctional system with behavior F ∈ F[I � O] and syntactic sub-
interface (I1 � O1), projection F†(I1 � O1) provides an abstraction of F . If the
projection is faithful, then there are no input actions in set Act(I)\Act(I1), which
influence the output actions of O1 in F . Now we consider the case, where some
input action (m, c), with channel c ∈ I but c �∈ I1 has influence on output actions of
F on channels of set O1.

Definition 14.34 (Independency of Projections of Messages) Let channel sets I2
and O1 as well as behavior F ∈ F[I � O] be given with I2 subtype I and O1
subtype O; the output actions of channel set O1 are called independent of the input
actions of I2 within F if for all input histories x, x′ ∈ %I we have

x|I ′ = x′|I ′ ⇒ F(x)|O1 = F(x′)|O1

where I ′ is the channel set with Act(I ′)=Act(I)\Act(I2).

If the projection F†(I1 � O1) is faithful for each set of input channels I2 with
Act(I1) ∩Act(I2) =∅ we get that for system F channel set O1 is independent of
channel set I2.

Definition 14.35 (Dependency and Independency of Functions) Let sub-functions
F1 ∈ F[I1 � O1], F2 ∈ F[I2 � O2] of F ∈ F[I � O] be given with (I1 � O1) sub-
type (I � O) and (I2 � O2) subtype (I � O); function F1 is called independent
of the function F2 in system F , if the output actions of the channel set O1 are inde-
pendent of the input actions of I2 within F . If F1 is dependent of the input actions
in I2 within F we write

F2 →dep F1 in F

14 Software and System Modeling: Structured Multi-view Modeling 353

Dependency is not a symmetric relation. Function F1 may be dependent of func-
tion F2 in F , while the function F2 is independent of the function F1 in F .

14.7 Models at Work: Seamless Model-Based Development

In the previous sections we introduced a comprehensive set of modeling concepts for
systems. We now put them together in an integrated system description approach.
In a system specification we capture the interface behaviour of a system. In general,
if systems get large the interface behaviour is very difficult to describe because it
contains a lot of complexity and therefore, it is practically impossible to describe it
in one monolithic way.

If we manage to structure the sub-functions of a system by function hierarchy
either in terms of interface assertions, state machines or just by scenarios this is
very useful for simulation, validation, or to define test cases for functional tests. We
can define both test cases for functional tests but also test cases for testing critical
issues for feature interactions.

In architecture design we decompose the system into a syntactic architecture,
which results in a network of components and the data flow in that network.

In the component specification each of the components given as a subsystem is
specified again. We can use the different types of specifications of components being
interface assertions, state machine or a set of traces in terms of scenarios or even
informally. A particular interesting way of describing the interface of a component
is to give scenarios by traces that are derived from the traces of the architecture of
the super-system by projection.

Implementation of components is provided by state machines, from which code
can be generated. In addition, we may derive test cases for tests and verification of
components. If components are in addition described by interface assertions they
can be the basis for verification, either by tests, inspection, or logical verification.

In the integration we use a system integration plan by studying the syntactic ar-
chitecture. Then for each of the components we may define in which order they are
integrated (see [14]). Following this, we can define the integration plan. The inte-
gration test can be derived from the architecture description and the incorporation
of dummies can also be done by providing test cases for the architecture in terms
of traces or by generating test cases from state machines. If interface assertions are
given for the components we can derive interface assertions for the channels, which
allow us checking certain properties through simulation.

Finally, the test and verification of the system can be based on the function hi-
erarchy applying the tests on the singular function but also by applying tests for
testing the feature interactions.

When building a system, in the ideal case we carry out the following steps that
we will be able to support by our modeling framework:

• System specification
– Context Model

354 M. Broy

– Function Hierarchy
– Definition of Test Cases for System Test.

• Architecture Design
– Decomposition of the System into a Syntactic Architecture
– Component specification (enhancing the syntactic to an interpreted architec-

ture)
– Architecture verification
– Specification of Test Cases for Component and Integration Test.

• Implementation of the components
– (Ideally) Code Generation
– Component (module) Test and Verification.

• Integration
– System Integration Plan
– Component Entry Test
– Integration Test and Verification.

• System Test and Verification.

A system specification is given by a syntactic interface (I � O) and an interface
assertion S (i.e., a set of properties) which specifies a system interface behavior
F ∈ F[I � O].

An architecture specification is given by a composable set of syntactic interfaces
(Ik � Ok) for component identifiers k ∈ K and a component specification Sk for
each k ∈ K . Each specification Sk specifies a behavior Fk ∈ F[Ik � Ok]. In this
manner we obtain an interpreted architecture.

The architecture specification is correct w.r.t. the system specification F if the
composition of all components results in a behavior that refines the system specifi-
cation F . Formally, the architecture is correct if for all input histories x ∈ %I ,

⊗
{Fk : k ∈K}(x)⊆ F(x)

Given an implementation Rk for each component identifier k ∈K , the implementa-
tion Rk with interface abstraction F ′

k is correct if for all x ∈ %Ik we have:

F ′
k(x)⊆ Fk(x)

(note that it does not matter if F ′
k was generated or implemented manually). Then

we can integrate the implemented components into an implemented architecture

F ′ =
⊗

{F ′
k : k ∈K}

The following basic theorem of modularity is easily proved by the construction of
composition (for details see [15]).

Theorem 14.1 (Modularity) If the architecture is correct (i.e., if
⊗{Fk : k ∈

K}(x) ⊆ F(x)) and if the components are correct (i.e., F ′
k(x) ⊆ Fk(x) for all k),

then the implemented system is correct:

F ′(x)⊆ F(x) for all x ∈ %I .

14 Software and System Modeling: Structured Multi-view Modeling 355

Hence, a system (and also a subsystem) is hence called correct if the interface
abstraction of its implementation is a refinement of its interface specification.

It is worthwhile to stress that we clearly distinguish between

• the architectural design of a system, and
• the implementation of the components of an architectural design.

An architectural design consists of the identification of components, their specifi-
cation and the way they interact and form the architecture. If the architectural design
and the specification of the constituting components is sufficiently precise, then we
are able to determine the result of the composition of the components of the archi-
tecture, according to their specification, even without providing an implementation
of all components! If the specifications address behaviour of the components and
the design is modular, then the behaviour of the architecture can be derived from
the behaviour of the components and the way they are connected. In other words, in
this case the architecture has a specification and a—derived—specified behaviour.
This specified behaviour can be put in relation with the requirements specification
for the system, and, as we will discuss later, also with component implementations.

The above process includes two steps of verification, component verification and
architecture verification. These possibilities reveal component faults (of a compo-
nent/subsystem w.r.t. its specification) and architecture faults (of an architecture
w.r.t. the system specification). If both verification steps are performed sufficiently
carefully and the theory is modular, which holds here (see [15]), then correctness of
the system follows from both verification steps.

The crucial point here is that architecture verification w.r.t. the system specifica-
tion is enabled without the need for actual implementations of the components. In
other words, it becomes possible before the implemented system exists. The precise
implementation of the verification of the architecture depends of course on how its
components are specified. If the specification consists of state machines, then the
architecture can be simulated, and simulation results can be compared to the system
specification. In contrast, if the component specifications are given by descriptive
specifications in predicate logic, then deductive verification becomes possible.

Furthermore, if we have a hierarchical system, then the scheme of specification,
design, and implementation can be iterated for each sub-hierarchy. An idealized
top-down development process then proceeds as follows. We obtain a requirement
specification for the system and from this we derive an architectural design and
specification. This results in specifications for components that we can take as re-
quirements specifications for the subsequent step in which the components are de-
signed and implemented. Given a specified architecture, test cases can be derived
for integration tests.

Given component specifications, we implement the components with the speci-
fications in mind and then verify them with respect to their specifications. This of
course entails some methodological problems if the code for the components has
been generated from the specification in which case only the code generator and/or
environment assumptions can be checked, as described in earlier work [23].

Now, if we have an implemented system for a specification, we can have either
errors in the architecture design—in which case the architecture verification would

356 M. Broy

fail—or we can have errors in the component implementation. An obvious question
is that of the root cause of an architecture error. Examples of architecture errors
include

• connecting an output port to an incorrect input port and to forget about such a
connection;

• to have a mismatch in provided and expected sampling frequency of signals;
• to have a mismatch in the encoding;
• to have a mismatch in expected and provided units (e.g., km/h instead of m/s).

One fundamental difference between architecture errors and component errors of
course is liability: in the first case, the integrator is responsible, while in the second
case, responsibility is with the supplier.1

Assume a specified architecture to be given. Then a component fault is a mis-
match between the component specification, which is provided as part of an archi-
tecture, and the component implementation. An architecture fault is a mismatch
between the behaviour as defined by the architecture and the overall system specifi-
cation. This way, we manage to distinguish between component faults and architec-
ture faults in an integrated system.

With the outlined approach we gain a number of valuable options to make the
entire development process more precise and controllable. First of all, we can pro-
vide an architecture specification by a model, called the architecture model, where
we provide a possibly non-deterministic state machine for each of the components.
In this case, we can even simulate and test the architecture before actually imple-
menting it. Thus, we can on the one hand test the architecture by integration tests in
an early stage, and we can moreover generate integration tests from the architecture
model to be used for the integration of the implemented system. Given state ma-
chines for the components we can automatically generate hundreds of test cases as
has been shown in [24]. Within slightly different development scenarios this leads
to a fully automatic test case generation procedure for the component implementa-
tions.

A more advanced and ambitious idea would be to provide formal specifications
in terms of interface assertion for each of the components. This would allow us
to verify the architecture by logical techniques, since the component specifications
can be kept very abstract at the level of what we call a logical architecture. Such
a verification could be less involved than it would be, if it were performed at a
concrete technical implementation level.

14.7.1 System Specification

In the system specification we specify the syntactic interface of a system, its context
model as well as its functionality structured in terms of a function hierarchy.

1Both architecture and component errors can be a result of an invalid specification and an incorrect
implementation. This distinction touches the difference between validation and verification.

14 Software and System Modeling: Structured Multi-view Modeling 357

Fig. 14.21 Context model as screenshot from the tool AutoFocus

14.7.1.1 Context Model

A context model defines a syntactic interface and those parts of the environment to
which the channels of the system are connected with. A context model additionally
introduces all the agents and systems in the environment that are connected to the
syntactic interface. This gives a very illustrative view onto the syntactic interface
because now we do not only speak of abstract channels, but we also speak of systems
of the environment. In addition to the information to which systems the channels
are connected we can also provide properties of the context, which we call context
assumptions or for short just assumptions. Therefore, we start with a context model,
which gives some ideas about the syntactic interface and how the system input and
output is connected to agents, users and systems of the environment.

To specify the properties of the context we use assumptions. The specification
of the system consists then of promises, which hold only for the cases where the
assumptions apply.

Then in the function hierarchy we break down the syntactic interface into sub-
interfaces, which characterize, in particular, functionalities. In principle, such func-
tionalities could also be nicely captured informally by use cases. In the end, a func-
tion hierarchy is therefore a structured formalized view onto a use case description.

14.7.1.2 Function Hierarchies

A multifunctional system offers a family of functions. The overall interface behavior
of the system is modeled by a function F ∈ F[I � O] where the sets I and O

may contain many channels carrying a large variety of messages. In this section we
show how the functionality and functions offered by F are arranged into function
hierarchies. In function hierarchies, names of sub-functions are listed and syntactic
interfaces are associated with them where each sub-function uses only a subset of
the channels and messages of its super-function.

First we introduce a syntactic concept of a function hierarchy that provides func-
tion names and syntactic function interfaces. Based on the concept of a syntactic
function hierarchy, we work out interpreted hierarchies where behaviors are associ-
ated with the function names.

To begin with, a hierarchy is a simple notion based on graph theory.

358 M. Broy

Definition 14.36 (Function Hierarchy) Let SID be the set of function names.
A function hierarchy for a finite set K ⊆ SID of function names is an acyclic di-
rected graph (K,V) where V ⊆ K × K represents the sub-function relation. For
every function with name k ∈ K the set {k′ ∈ K : (k, k′) ∈ V } of function names
is called its syntactic sub-function family. The nodes in a function hierarchy with-
out successor nodes are called the names of basic functions in the hierarchy. Their
sub-function families are empty.

We denote the reflexive transitive closure of the relation V by V ∗. On K the
relation V ∗ represents a partial order. Using specific names for the functions of a
hierarchy, we get an instance of a function taxonomy, which is a family of function
names related by the sub-function relation.

Definition 14.37 (Syntactic Interface Function Hierarchy) A syntactic interface
function hierarchy is a function hierarchy (K,V) with a syntactic interface (Ik �
Ok) associated with each function name k ∈ K in the hierarchy such that for all
function names k ∈ K we have: for every function h in the sub-function family of
function k the relationship (Ih � Oh) subtype (Ik �Ok) holds.

If there is a path in a syntactic function hierarchy from node k to node h then
(Ih � Oh) subtype (Ik � Ok) holds, since the subtype relation is transitive.

The following two properties characterize useful concepts for function hierar-
chies:

• A syntactic interface function hierarchy is called complete if for each function
name k ∈ K each input action in channel set Ik occurs as input action in at least
one function of its syntactic sub-function family and each output action in channel
set Ok occurs as output action in at least one function of its sub-function family.

• A syntactic interface function hierarchy is called strict if for each non-basic func-
tion name k ∈ K each input action in channel set Ik occurs as input action in at
most one function of its sub-function family and each output action in channel set
Ok occurs as output action in at most one function of its sub-function family.

In complete syntactic interface function hierarchies we only have to provide the
syntactic interfaces for the basic functions and then the syntactic interfaces for the
non-basic functions can be uniquely derived bottom-up from the basic ones.

In strict syntactic function interface hierarchies every input and every output is
owned by exactly one basic function.

Function hierarchies define the decomposition of functions into sub-functions.
Syntactic interface function hierarchies associate channels and messages with each
function.

14.7.1.3 Structuring Function Specifications by Modes

In this section we introduce a technique to describe sub-functions of a system in
a modular way, even in cases where they are not faithful projections. We consider

14 Software and System Modeling: Structured Multi-view Modeling 359

F
ig

.1
4.

22
Fu

nc
tio

n
hi

er
ar

ch
y

as
sc

re
en

sh
ot

fr
om

th
e

to
ol

A
ut

oF
oc

us

360 M. Broy

a system behavior F ∈ F[I � O] and a sub-interface (I ′ � O ′) where (I ′ � O ′)
subtype (I � O) and the projection F†(I ′ � O ′) is not faithful. Let for simplicity

I = I ′ ∪ I ′′, O =O ′ ∪O ′′

(where the sets I ′ and I ′′ as well as the sets O ′ and O ′′ are disjoint) and the types
of the channels in I and I ′ as well as O and O ′ be identical. In other words, in the
sub-interface (I ′ � O ′) we keep certain channels from (I � O) with the identical
types. Furthermore we assume that the projection F†(I ′′ � O ′′) is faithful.

In this case, we cannot describe the sub-function offered by system F over sub-
interface (I ′ �O ′) exactly by projection. In fact, we can specify the unfaithful pro-
jection F†(I ′ � O ′), but it does not give a precise description of the behavior of
the sub-function over sub-interface (I ′ � O ′). To get a precise specification of the
sub-function behavior as offered by system F over sub-interface (I ′ �O ′) we need
a way to capture the dependencies between the input actions in I ′′ that influence this
sub-function, but are not in I ′, and the function over sub-interface (I ′ � O ′).

One option to express the influence is the introduction of a channel cm between
the over sub-interface (I ′ � O ′) in F and the rest of F to capture the dependencies
explicitly (see Fig. 14.23). Let the channel cm occur neither in channel set I nor in
channel set O . We define

I+ = I ′ ∪ {cm}, O+ =O ′′ ∪ {cm}
Our idea is to decompose the interface behavior F into two behaviors with a
precise description of their behavioral dependencies. We specify two behaviors
F+ ∈ F[I+ � O ′] and F # ∈ F[I ′′ � O+] such that for all histories x ∈ %I , y ∈ %O
the following formula is valid:

y ∈ F(x) ⇔ ∃x+ ∈ %I+, y+ ∈ %O+ :x|I = x+|I ∧ y|O ′′ = y+|O ′ ∧ x+(cm)

= y+(cm)

∧ y+ ∈ F #(x|I ′′)∧ y|O ′ ∈ F+(x+)

This means that F #(x|I ′′) provides on “mode” channel cm exactly the information
that is needed from the input on channels in I ′′ to express the dependencies on
messages in I ′′ for the sub-function on sub-interface (I ′ � O ′) in F . We call cm

a mode channel and the messages transmitted over it modes. In the following we
explain the idea of modes in more detail. Later we study the more general situation
where both projections F†(I ′ � O ′) and F†(I ′′ � O ′′) are not faithful and mode
channels in both directions are introduced.

Modes are a generally useful way to structure function behavior and to specify
dependencies between functions. Modes are used to discriminate different forms of
operations for a function. Often mode sets consist of a small number of elements—
such as enumerated types. An example would be the operational mode of a car being
“moving_forward”, “stopped”, or “moving_backward”. Nevertheless, arbitrary sets
can be used as mode types. So we may have a mode “Speed” which may be any
number in {−30, . . . ,250}.

14 Software and System Modeling: Structured Multi-view Modeling 361

Fig. 14.23 Refinement of
two functions to prepare for
composition

Formally a mode is a data element of a data type T where T defines a set of
data elements. Each type T can be used as a mode set. For a given type T , we write
Mode T to express that we use T as a mode type. We simply assume that type Mode
T has the same elements as type T . Each element of type Mode T is called a mode.

A mode (type) can be used for attributes of the state space as well as for input or
output channels. For a function we may use several modes side by side.

Example (Modes of a Mobile Phone) A mobile phone is, for instance, in a number
of operating modes characterized by Mode Operation:

Mode Operation = {SwitchedOff ,StandBy,Connected}
Another mode set may reflect the energy situation:

Mode Energy = {BatteryDead,LowEnergy,HighEnergy}
Both examples of modes are helpful to gain structured views for the functions of a
mobile phone.

For functions we use types that are designated as being modes to indicate which
channels and attributes carry modes. We use modes in the following to indicate how
the messages in a larger system influence the sub-function that do not correspond
to faithful projections. This way we eliminate the nondeterminism caused by a non-
faithful projection.

We use modes as follows:

• as attributes in state spaces to structure the state machine description of
functions—more precisely to structure the state space and also the state tran-

362 M. Broy

sitions; then we use state attributes with mode types called mode attributes. We
speak of internal modes

• to specify how functions influence each other; then mode types occur as types of
input or output channels called mode channels. We speak of external modes.

For mode channels we assume that in each time interval the current mode is trans-
mitted.

External modes serve mainly for the following purpose: they propagate signifi-
cant state information from one function to the other functions of the system. If a
function outputs a mode via one of its output channels, the function is called the
mode master, if it receives the mode via one of its input channels the function is
called a mode slave. Since in a system, each channel can be the output of only one
sub-system, there exists at most one mode master for each mode channel.

To describe the modes of a larger system we need a mode model. A mode model
is a data model that captures all the mode types that are inside the system. This can
be a very large data model, which nevertheless is still an abstraction of the state
model.

14.7.1.4 Interpreted Function Hierarchies

In this section we introduce function hierarchies where interface behaviors are spec-
ified for each function in the hierarchy. We speak of interpreted function hierarchies.

Definition 14.38 (Interpreted Function Hierarchy) Given a syntactic interface func-
tion hierarchy (K,V) where for each k ∈ K the syntactic interface associated with
k is (Ik � Ok); an interpreted function hierarchy is a pair ((K,V),φ), where φ is a
function φ :K → F that associates a function behavior φ(k) ∈ F[Ik � Ok] with ev-
ery function name k ∈K . The interpreted function hierarchy is called well-formed,
if for every pair (e, k) ∈ V the function behavior φ(k) is a restricted sub-function of
φ(e).

This form of function hierarchy does not indicate on which messages other than
the input messages Ik the restricted sub-function φ(k) depends. This information is
included in an annotated function hierarchy.

Definition 14.39 (Dependency Annotated Function Hierarchy) For an interpreted
function hierarchy ((K,V),φ) with root r and a dependency relation D ⊆ K ×
K,((K,V),φ,D) is called annotated function hierarchy, if for function names
k, k′ ∈K with (k, k′) �∈ V ∗ we have

(k, k′) ∈D ⇔ φ(k)→dep φ(k′) in φ(r)

The relation D documents all dependencies between functions in the function hi-
erarchy. If for a function k there do not exist functions k′ with (k, k′) ∈ D, then

14 Software and System Modeling: Structured Multi-view Modeling 363

function k is required to be faithful. Note that there can be several dependencies for
a function in a function hierarchy.

To give a more precise specification how in a function hierarchy a sub-function
influences other functions we use the concept of mode channels that allow us to
specify the dependencies of functions in detail.

Definition 14.40 (Function Hierarchy Annotated with Modes) For an annotated
function hierarchy H = ((K,V),φ,D) the pair (H,ψ), where ψ :K → F, is called
function hierarchy annotated with modes if

• for each pair (k, k′) ∈ D a mode type Tk,k′ and a fresh channel cmk,k′ with this
type that serves as a mode channel is given.

• the syntactic interfaces (Ik � Ok) of the functions φ(k) are extended by the mode
channels to syntactic interfaces (I+k �O+

k) of ψ(k), where

I+k = Ik ∪ {cmk,k′ : (k, k′) ∈D}, O+
k =Ok ∪ {cmk′,k : (k′, k) ∈D}

In an annotated function hierarchy with modes, there is a mode channel cmk,k′
for each dependency (k, k′) ∈D from the function with name k′ to the function with
name k. In the following section we describe how to decompose the sub-functions
via their mode channels.

Relation V is called vertical, relation D horizontal for the hierarchy. An exam-
ple of a horizontal relation in a function hierarchy is independency. In a horizontal
relationship between two functions F1 and F2 we do not deal with sub-function re-
lations (neither F1 is a super-function of F2 nor vice versa) but with functions that
are either mutually independent or, where supposed to be, there exist specific feature
interactions (for the notion of feature interactions see [16]) between these functions
that may be specified in terms of modes.

The key idea of the concept of a function hierarchy is that it is useful to de-
compose the functionality of the system into a number of sub-functions that are
specified and validated in isolation. Then dependencies are identified and specified
by the horizontal dependency relation and labeled by modes that are used to specify
the dependencies.

14.7.1.5 Function and Context

Function hierarchies help to structure large system functionalities in a hierarchy of
functions with leaves that are small enough to be specified. In the projection leading
to those functions we consider also the context model. This way we get context
models for the basic functions where in addition to the channels connected to the
context the mode channels are included. In the context model they are connected to
the functions being the mode masters—and, if the considered atomic function is a
mode master itself, the channels lead to functions that are the mode slaves.

364 M. Broy

14.7.2 Logical Component Architectures

We describe a logical component architecture by defining a syntactic architecture
first. This way components with their names and syntactic interfaces are introduced.
In a next step we define the traces of the syntactic architecture (glass box view).
This can be done by providing a set of finite traces in terms of interaction diagrams
illustrating use cases for the architecture.

We use trace assertions to describe the set of traces of the architecture. The next
step is to derive component specifications in terms of interface assertions. These
specification have to be chosen such that they are fulfilled by the traces.

The logical component architecture is given by a set K of components together
with their interface specifications. It defines the specifications for its components
as well as a interface behavior for the overall system. As shown in the following
paragraph this leads to the notion of the correctness of an architecture for a system
interface specification (specifying the system’s required functionality) and the cor-
rectness of the component implementations as a basis for component verification.

14.8 Seamless Modeling in System Development

The techniques introduced earlier can be used in a seamless model-based develop-
ment. This approach is outlined in the next sections.

14.8.1 Combining Functions into Multifunctional Systems

In this section we study sub-function based specifications of multifunctional sys-
tems aiming at a structured construction and description of the interface behavior
of systems from a user’s and requirements engineer’s point of view. A structured
specification is essential in requirements engineering. The structuring is provided
mainly in terms of relations between functions.

Multifunctional systems incorporate large families of different, largely indepen-
dent functions. Functions are formal models of use cases of systems. Furthermore,
we outline how to work out a multifunctional system in a sequence of development
steps resulting in a function hierarchy as follows:

(0) Describe a set of use cases informally, identify all sub-functions by introducing
names and informal descriptions for them.

(1) Specify (a not interpreted) function hierarchy for the functions identified in (0).
(2) Incorporate all the channels of the system and its functions together with their

types (to specify input and output actions) into the hierarchy extending it to a
syntactic interface function hierarchy.

14 Software and System Modeling: Structured Multi-view Modeling 365

Fig. 14.24 Refinement of
two functions to prepare for
composition

(3) Give behavior descriptions by interaction diagrams, by specifications through
assertions, or by state machines for each function; function behaviors are ex-
plicitly defined either for the basic function names in the hierarchy or for their
parent nodes; in the latter case the behaviors of the sub-functions are derived by
projection.

(4) Identify dependencies and introduce the horizontal dependency relation; define
mode sets for each of the dependencies. Extend the function specifications for
the modes.

(5) Combine the basic functions via their modes into the overall system behavior.

The overall idea is to reduce the complexity of functional specifications of sys-
tems by describing each of its basic functions independently by simple state ma-
chines. In a first step we do not take into account feature interactions. Only later we
combine the specified functions into a function hierarchy and specify relationships
between functions by introducing modes to express how the functions influence or
depend on each other. Typically, some of the functions are completely independent
and are just grouped together into a system. Other functions may depend on each
other, often with often just small, not very essential side effects on other functions,
while some functions may heavily rely on other functions that influence their be-
haviors in very significant and often subtle ways.

Understanding the overall functionality of a multifunctional system requires the
understanding of its individual functions, but also how they are related and mutually
dependent. Functions that are to be combined might not be independent but actually
may interfere with each other. This leads to the question of how to handle dependen-
cies between functions and still take advantage of their combination. We illustrate
our idea of a systematic combination by Figs. 14.24 and 14.25.

366 M. Broy

Fig. 14.25 Function
combination by composition

Figure 14.24 shows refinements (for this extended notion of refinement, see [8])
of two functions F1 and F2 by introducing additional mode channels. Figure 14.25
shows how they are composed subsequently. Formally, we require that F ′

1 and F ′
2

offer the functions F1 and F2 as sub-functions—at least in a restricted form. To
combine functions from sub-functions the channels in C1 and C2 carry only mode
types.

Figure 14.24 illustrates the construction starting with functions Fk ∈ F[Ik � Ok],
k = 1,2, and refining these functions by introducing additional channels

F ′
1 ∈ [(I1 ∪C2) � (O1 ∪C1)]

F ′
2 ∈ [(I2 ∪C1) � (O2 ∪C2)]

such that F1 and F2 are restricted sub-functions of F ′
1 and F ′

2 controlled by the
messages (being elements of mode types) in the channel sets C1 and C2.

Actually our goal is that both F1 and F2 are sub-functions or at least restricted
sub-functions of the composed function

F = F ′
1 ⊗ F ′

2

In this construction the functions may influence each other and thus depend on each
other.

Definition 14.41 (Correct Function Hierarchy Annotated with Modes) A mode-
annotated function hierarchy H = (((K,V),φ,D),ψ) is called correct, if for all
k ∈K :

φ(k)←sub

⊗
ψ

In other words every function φ(k) is a sub-function of the architecture interface
behavior

⊗
ψ . If the φ(k) are restricted sub-functions of

⊗
ψ then we speak of

restricted correctness.

In the case of restricted correctness more sophisticated conditions are required
that make use of logical properties of the streams on the mode channels to derive
the set R to restrict the input histories to prove the relationship φ(k)←sub ψ(k)|R
of restricted sub-functions.

As the example demonstrates, multifunctional systems can be specified by spec-
ifying their basic functions in isolation and combining them into the overall sys-
tem functions interacting via mode channels. Accordingly, a function hierarchy

14 Software and System Modeling: Structured Multi-view Modeling 367

((K,V),φ,D) annotated with modes is called correct, if for each non-basic node
k ∈K its interface behavior φ(k) is the composition of the interface behaviors φ(k′)
of the nodes k′ in its sub-function family {k′ ∈K : (k, k′) ∈ V }.

14.8.2 Tracing

By tracing in system development the connections and dependencies between re-
quirements, functional specifications, and architectures with their components is
addressed. The main goal is to understand for a given functional requirement by
which system function it is covered and vice versa. Moreover, we want to under-
stand which of the components contribute to which functions and vice versa. Given
this information we can determine the impact of a change of a requirement on the
functional specification and the architecture and vice versa.

In this section we define the concept of traces between system level requirements,
functional requirements specification, and the component architecture specification.
To do that the logical representations of requirements, functional specification, and
architectures are used.

14.8.2.1 Logical Representation of Requirements, Specifications and
Architectures

According to the modeling of a system, we have the following specifications that all
can be represented by a set of logical assertions.

System level requirements (functional requirements) are given by a set {Ri : 1 ≤
i ≤ n} of requirements. Together they form the requirements specification R as fol-
lows

R =
∧

{Ri : 1 ≤ i ≤ n}
The system level functional specification is given by the functional decomposition
of the system behaviour into a set of sub-functions. The system interface behaviour
F as specified by the system requirements specification R is structured into a set
of sub-interfaces for sub-functions F1, . . . ,Fk that form the leaves in the function
hierarchy and are specified independently by introducing a number of mode chan-
nels to capture feature interactions. Each Fi sub-function is described by a syntactic
interface and an interface assertion Qi such that

Q ⇒ R

where the functional specification is given by

Q=
∧

{Qi : 1 ≤ i ≤m}

368 M. Broy

The logical component architecture is given by a family of components with inter-
face specifications Ci . The architecture specification is given by

C =
∧

{Ci : 1 ≤ i ≤ k}
where each interface assertion Ci specifies a component. Based on these logical
specifications we define the logical dependencies.

14.8.2.2 Correctness

The functional specification is correct with respect to the requirements specification
if the following formula is valid:

Q ⇒ R

The component architecture (let be m1, . . . mode channels) is correct if the following
formula is valid:

C ⇒ ∃m1, . . . ,mi :Q
The refinement relations between the requirement specification and the functional
specification as well as between the functional specification and the architecture
specification define correctness.

14.8.2.3 Relating Logical Views

Let p be a property and R be a set of properties; a subset R′ ⊆R is called guarantor
for p in R if

∧
R′ ⇒ p

A guarantor R′ for p is called minimal, if every strict subset of R′ is not a guarantor.
A minimal guarantor is called unique if there does not exist a different minimal
guarantor. A property q ∈R is called weak guarantor for p in R if it occurs in some
minimal guarantor of p in R. A property q ∈ R is called strong guarantor for p in
R if it occurs in every guarantor of p in R (cf. the notion of Primimplikanten a la
Quine).

14.8.2.4 Defining Links for Tracing

The relationship between the system level requirements specification and the func-
tional specification in terms of tracing is obtained by the relationship between the
requirements Ri and the function specifications Qi .

In a similar manner we define the relationship between the function specifica-
tions Qi and the components contained in the architecture specified by assertions

14 Software and System Modeling: Structured Multi-view Modeling 369

F
ig

.1
4.

26
R

el
at

io
ns

hi
ps

be
tw

ee
n

re
qu

ir
em

en
ts

,f
un

ct
io

na
ls

pe
ci

fic
at

io
n

gi
ve

n
by

a
fu

nc
tio

n
hi

er
ar

ch
y,

an
d

co
m

po
ne

nt
ar

ch
ite

ct
ur

e

370 M. Broy

Ci . We get a logical relationship between requirements, functional specifications,
and components of an architecture as shown in Fig. 14.26. An arrow leading from
requirement Ri to function specification Fj expresses that Fj is a weak guarantor
for property Ri . An arrow leading from requirement Ri to component specification
Cj expresses that Cj is a weak guarantor for property Ri .

14.9 Summary and Outlook

We have introduced a comprehensive theory for describing systems in terms of their
interfaces, architectures and states. Starting with basic notions of interfaces, state
machines, and composition we have shown how we can form architectures and how
to get more structured descriptions of systems step-by-step.

14.9.1 Basics: What Is Needed for Seamless Model Based
Development

To describe systems in engineering, pragmatic techniques are needed that provide
graphical description techniques and also bring in additional structuring mecha-
nisms. However, these techniques have to be based on firm scientific theories. In
our case the technique to decompose the functionality of a system into a number
of sub-functions with interactions described by modes, is a way to structure the
functionality of systems.

Context models help to gain a more intuitive understanding of the role of the
syntactic interface. Then step-by-step by decomposition architectures are formed
consisting of a number of sub-systems which in turn can be described by traces, in-
terface specifications, state machines or again by architectures. This gives a highly
flexible approach, which supports all kinds of methodologies for the design of sys-
tems.

We have introduced a set of basic terms and notions and a theory to capture those.
But more has to be done. Modeling theory is needed for capturing following notions

• systems
• interface specifications
• architectures
• quality
• comprehensive architecture
• levels of abstraction
• relationships between levels (tracing)
• artefact model
• structure of work products
• tailoring
• tool support

14 Software and System Modeling: Structured Multi-view Modeling 371

• artefact based
• automation of development steps

When dealing with typically complex, multifunctional software-intensive systems,
the structured specification of their multi-functionality is a major goal in require-
ments engineering. This task is not sufficiently well supported by appropriate mod-
els, so far. In practice today, functional requirements are documented mainly by
text. Models are not available and therefore not used. Use cases are applied but not
formalized fully by models and not structured in hierarchies.

14.9.2 Further Work

What we have provided aims at a quite comprehensive approach to the seamless
model based specification, design, and implementation of systems. It supports the
development of distributed systems with multifunctional behaviours including time
dependency. It provides a number of structuring concepts for engineering larger
systems. Scaling, however, is still an open issue.

There is a large variety of possibilities to support the seamless model-based de-
velopment by tools. This includes the construction of repositories to capture the
models during the seamless development process as well as classical techniques to
deal with such repositories in updating and refining models. Many ways of automa-
tion can be included for analysis generation, validation, and verification of models
in the repository. The approach is by tools as already done by the prototyping tool
AutoFocus.

Further work will be done and has to be done to extend the approach to contin-
uous functions over time where systems can be described by differential equations
such as in control theory. This way discrete streams are extended to continuous
streams represented by continuous functions.

Another open issue is the question as to what extent the described approach is
able to cover not only software and software based functionality of systems but also
systems with a rich structure in mechanics and electronics.

Acknowledgements Many members of our Munich software & systems engineering working
group have contributed to the material of this chapter. In particular, Sebastian Eder and Andreas
Vogelsang have helped with the screenshots and by careful reading draft version and giving feed-
back. Thanks go to Georg Hackenberg for careful proof reading. Moreover, it is a pleasure to thank
Bernhard Rumpe and Alex Pretschner for helpful comments.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Tech. rep., Digital Systems
Research Center, SRC Report 29 (1988)

2. Abadi, M., Lamport, L.: Composing specifications. Tech. rep., Digital Systems Research Cen-
ter, SRC Report 66 (1990)

372 M. Broy

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley, Read-
ing (1997)

4. Broy, M.: Compositional refinement of interactive systems. Tech. rep., DIGITAL Systems
Research Center, SRC 89 (1992). Also in: J. ACM 44(6), 850–891 (1997)

5. Broy, M.: The ‘grand challenge’ in informatics: engineering software-intensive systems. IEEE
Comput. 39(10), 72–80 (2006)

6. Broy, M.: Model-driven architecture-centric engineering of (embedded) software intensive
systems: modeling theories and architectural milestones. Innovations Syst. Softw. Eng. 3, 75–
102 (2007)

7. Broy, M.: A logical basis for component-oriented software and systems engineering. Comput.
J. 53(10), 1758–1782 (2010)

8. Broy, M.: Multifunctional software systems: structured modeling and specification of func-
tional requirements. Sci. Comput. Program. 75, 1193–1214 (2010)

9. Broy, M.: Towards a theory of architectural contracts: schemes and patterns of assump-
tion/promise based system specification. Marktoberdorf Summer School (2010)

10. Broy, M.: Verifying of interface assertions of infinite state mealy machines (2011). To appear.
11. Broy, M., Huber, F., Schätz, B.: Autofocus – ein werkzeugprototyp zur entwicklung eingebet-

teter systeme. Inform. Forsch. Entwickl. 14(3), 121–134 (1999)
12. Broy, M., Krüger, I.H., Meisinger, M.: A formal model of services. ACM Trans. Softw. Eng.

Methodol. 16(1) (2007)
13. Broy, M., Möller, B., Pepper, P., Wirsing, M.: Algebraic implementations preserve program

correctness. Sci. Comput. Program. 7(1), 35–53 (1986)
14. Broy, M., Pretschner, A.: A model based view onto testing: criteria for the derivation of entry

tests for integration testing (2011). To appear
15. Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus on

Streams, Interfaces, and Refinement. Springer, New York (2001)
16. Calder, M., Magill, E.H. (eds.): Feature Interactions in Telecommunications and Software

Systems VI, May 17–19, 2000, Glasgow, Scotland, UK. IOS Press, Amsterdam (2000)
17. Herzberg, D., Broy, M.: Modeling layered distributed communication systems. Form. Asp.

Comput. 17(1), 1–18 (2005)
18. Jacobson, I.: Use cases and aspects-working seamlessly together. J. Object Technol. 2(4), 7–28

(2003)
19. Leavens, G.T., Sitaraman, M. (eds.): Foundations of Component-Based Systems. Cambridge

University Press, New York (2000)
20. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.: Specification and

analysis of system architecture using rapide. IEEE Trans. Softw. Eng. 21, 336–355 (1995)
21. Moriconi, M., Qian, X., Riemenschneider, R.A.: Correct architecture refinement. IEEE Trans.

Softw. Eng. 21, 356–372 (1995)
22. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order

Logic, LNCS, vol. 2283. Springer, Berlin (2002)
23. Pretschner, A., Philipps, J.: Methodological issues in model-based testing. In: Broy, M., Jon-

sson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems, Advanced Lectures [The volume is the outcome of a research seminar that was held
in Schloss Dagstuhl in January 2004]. LNCS, vol. 3472, pp. 281–291. Springer, Berlin (2005)

24. Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M., Sostawa, B., Zölch,
R., Stauner, T.: One evaluation of model-based testing and its automation. In: Roman, G.-C.,
Griswold, W.G., Nuseibeh, B. (eds.) 27th International Conference on Software Engineering
(ICSE 2005), 15–21 May 2005, St. Louis, Missouri, USA, pp. 392–401. ACM, New York
(2005)

25. Spichkova, M.: Refinement-based verification of interactive real-time systems. Electron. Notes
Theor. Comput. Sci. 214, 131–157 (2008)

26. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn.
Addison-Wesley, Boston (2002)

Chapter 15
Conquering Complexity Through Distributed,
Intelligent Agent Frameworks

John A. Anderson and Todd Carrico

15.1 Introduction

New technologies continually emerge and mature as people, organizations, and op-
erational disciplines rapidly adapt to the technology infusion. Innovations are con-
stantly and unpredictably being adopted, rapidly evolving from novelties to conve-
niences to essential elements of our society and economy. The onset of the Internet,
virtual ubiquitous connectivity, and global access to data and people has signifi-
cantly increased the complexity of individual, commercial, government and military
operations. As systems and sensors proliferate on the networks across the world,
people are inundated with an ever increasing deluge of information and conflicting
considerations for making critical decisions. At exponential rates, our lives, respon-
sibilities and environments are becoming increasingly more complex. Those that
can manage or even conquer complexity will remain competitive and survive; those
that cannot will perish—either metaphorically or literally.

For an entity to remain competitive, whether that organizational entity is an in-
dividual, a business organization, a government agency, or a military operation, it
must manage the complexities of its environment and rapidly adapt to the changes
imposed. Conquering this complexity challenge can be achieved through the appli-
cation of frameworks that will support the understanding and organization of the
elements along with their individual and/or collective behavior, and their adaptation
within that environment.

The frameworks to be applied to conquer complexity will leverage two funda-
mental concepts in complex systems theory: The concept of organized complexity
and the application of complex adaptive systems (CAS) in information technology.
For the sake of this treatise, an informal definition of a complex adaptive system is
a large network of relatively simple components with no central control, in which
emergent complex behavior is exhibited. ‘Complex Systems’ is a term appropriately

J.A. Anderson (�)
Cougaar Software, Inc., Falls Church, VA, USA
e-mail: janderson@cougaarsoftware.com

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_15, © Springer-Verlag London Limited 2012

373

mailto:janderson@cougaarsoftware.com
http://dx.doi.org/10.1007/978-1-4471-2297-5_15

374 J.A. Anderson and T. Carrico

Fig. 15.1 Complex Adaptive System Behavior. This classical diagram illustrates the interaction
among entities with simple self-organized relationships can result in collective emergent behav-
ior, and that the society of entities can collectively adapt to respond to changes in the external
environment

attributed to elements of the organic real world as well as hardware and software-
based information systems.

As early as the 1940’s, Weaver [11] perceived and addressed the problem of com-
plexity management, in at least a preliminary way, by drawing a distinction between
“disorganized complexity” and “organized complexity”. Disorganized complexity
results from a system having a very large number of parts, where the interaction of
the parts is viewed as largely random, but the properties of the system as a whole
can be understood using probability and statistical methods. In contrast, organized
complexity is non-random (or correlated) interaction between the parts. These cor-
related relationships create a differentiated structure that can act as a system in itself,
and interact with other systems (i.e., existing as a system of systems within a larger
system of systems context). At all levels, the systems will manifest properties not
necessarily determined by their individual parts (i.e., emergent behavior).

The relationships between individual, self-organized interacting entities and the
resultant emergent behavior (which may not be predictable) is illustrated in the
‘classical’ diagram depicted in Fig. 15.1.1 As each individual entity exists and op-
erates, it exhibits its own behavior, potentially interacting with and consequently
contributing to or responding to changes in its external environment. The changes
detected by any individual entity may or may not be a direct result of its interaction
with other specific entities. When viewed as a collective system, the behavior of the

1This diagram has appeared in presentations and literature for several years, but its original
source is unknown to the authors. In addition to its availability in http://commons.wikimedia.org/
wiki/File:Complex-adaptive-system.jpg, it is referenced in a variety of settings including [2].

http://commons.wikimedia.org/wiki/File:Complex-adaptive-system.jpg
http://commons.wikimedia.org/wiki/File:Complex-adaptive-system.jpg

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 375

individual entities, whether they are directly interacting or not, will result in a com-
plex behavior that may adapt to changes in the external environment. Treated as an
organized society, this adaptability can be the critical success criterion for survival.

A CAS is a dynamic network of many agents (which may represent cells, species,
individuals, firms, nations) acting in parallel, constantly acting and reacting to what
the other agents are doing. The control of a CAS tends to be highly dispersed and
decentralized. If there is to be any coherent behavior in the system, it has to arise
from competition and cooperation among the agents themselves. The overall behav-
ior of the system is the result of a huge number of decisions made every moment by
many individual agents [10].

In Weaver’s view, organized complexity results from the nonrandom, or corre-
lated, interaction among the parts. These parts and their correlated relationships
create a differentiated structure which can, as a system, interact with other systems.
The coordinated system manifests properties not carried by, or dictated by, individ-
ual parts. Thus, the organized aspect of this form of complexity is said to “emerge”.

Conquering complexity in information systems can be achieved by merging the
concepts of CAS and organized complexity. Since any system can potentially be
a CAS in itself, and typically operates as a component within a system of systems
that is itself complex (and thus may be a CAS at another higher level of abstraction),
frameworks are needed to understand, model and manage the organized complexity
among the systems at multiple levels of abstraction. A set of mental, organizational
and system frameworks can be established that will enable a systems engineer to
model entities in the real world, including the interaction among the parts, as natu-
rally as possible. The basic goal for the frameworks is to support the development
of complex adaptive information systems that will help users manage the complex
adaptive systems that surround them in the environment within which they live and
operate.

15.2 Frameworks for Managing Complexity

A variety of frameworks are needed to think about, model, and build such systems.
A basic Distributed Intelligent Agent Framework is needed to define the concepts
and to specify the structure, organization and behavior of the individual agents, their
relationships, and the resulting complex systems at all levels. Such a framework
must address the external and internal structure of the agents, and how they will be
able to sense, reason, respond and otherwise interact with their environment. The
framework must also provide mechanisms for monitoring the resultant emergent
behavior of the complex adaptive system as a whole, and for responding to situations
that require intervention (that is, allowing the behavior of individual parts to be
modified over time—either autonomously or via direct intervention).

The primary framework that will be used for managing complexity and for de-
veloping complex adaptive systems is the Distributed Intelligent Agent Framework.
Several other complementary frameworks are discussed within the context of the

376 J.A. Anderson and T. Carrico

Distributed Intelligent Agent Framework to address specific aspects of agent be-
havior, situational reasoning, and systems engineering. The following subsections
describe the essential elements of those frameworks and provide references to ex-
amples from research and industry. Key topics that the complementary frameworks
address include: knowledge representation, situational reasoning, knowledge bases,
distributed integrated data environment, and unifying concepts for developing dis-
tributed collaborative decision support environments. Each of these framework de-
scriptions incorporate and leverage key elements of the Distributed Intelligent Agent
Framework and its properties that support agent definition, emergent behavior, and
adaptability.

15.2.1 Distributed Intelligent Agent Framework

It is no coincidence that the terminology for a Distributed Intelligent Agent Frame-
work corresponds to the terms used to define complex adaptive systems. Intelligent
agent concepts emerged from the application of complexity theory within the infor-
mation technology field.

15.2.1.1 Distributed Agent-Based Concepts

The Distributed Intelligent Agent Framework must provide the building blocks and
capabilities necessary for agents to be defined in a manner that will support local-
ized reasoning within the agents and collaboration among the agents. Further, the
framework must also support the agents in their communication and collaboration,
whether they occur within a single node of the environment or distributed across a
network. Further, just as the model of CAS emergent behavior illustrates, the agents
(collectively or individually) must be able to interact with entities outside of the
system.

To address the specific elements of the framework, some basic concepts related
to distributed systems [4] and software agents must also be addressed, all of which
should be supported by the system development and deployment environments.

A Distributed System consists of a collection of autonomous computers, con-
nected through a network and distribution middleware, which enables computers to
coordinate their activities and to share the resources of the system, so that users per-
ceive the system as a single, integrated computing facility. The system is comprised
of multiple autonomous components that are not shared by all users. Software runs
in concurrent processes on (potentially) different processors.

Components access and update shared resources (e.g., variables, databases, de-
vice drivers); and the system (or its environment) must be able to coordinate data
updates across concurrent processes to ensure the integrity of the system is not vi-
olated (e.g., lost updates and inconsistent analysis). The system may have multiple
points of control and multiple points of failure. Fault tolerance can be achieved by

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 377

designing in fault detection and recovery capabilities as well as building redundancy
into the system.

Complementing the distributed system concepts are the characteristics of a Soft-
ware Agent. Bradshaw [3] describes a software agent as a software entity which
functions continuously and autonomously in a particular environment. A software
agent is able to carry out activities in a flexible and intelligent manner that is respon-
sive to changes in the environment. Ideally, software agents are able to learn from
their experience, able to communicate and cooperate with other agents and pro-
cesses in its environment, and potentially able to move from place to place within
its environment.

An agent’s responsibilities are defined by the behaviors that have been built into
it; and agents carry out their activities in a flexible and intelligent manner that is re-
sponsive to changes in the environment. Agents can adjust behavior dynamically to
fit the current situation, determining how their actions and behaviors should change
as events change. Agent-based systems represent the next major advancement in
network computing and leverage the strengths of object-oriented, peer-to-peer and
service-oriented architectures while providing a process-centric design. The value
proposition is that intelligent reasoning occurs at each level of the system to re-
duce overall system load and increase quality, control, and responsiveness. The key
benefits of agent technology come in these areas:

• Dynamic Re-planning—The ability to develop and modify distributed workflows
using rules and domain knowledge that is appropriate to the current situation.
This benefit allows enterprises to create more accurate and appropriate plans and
to react more quickly and appropriately when conditions change.

• Advanced Data Mediation—The ability to gather and process data from multiple
diverse sources into a single environment so that it is appropriate for the current
situation.

• Situational Awareness—The ability to build and maintain a virtual world repre-
sentation of the current situation on which intelligent reasoning can occur.

• Collaborative Information Management—The ability to easily share information
and coordinate changes across your enterprise.

• Intelligent Reasoning—The ability to emulate the way humans observe, reason,
plan, act, and monitor at computer speeds.

• Scalable, Distributed Computing—The ability to handle massive amounts of data
across the enterprise while providing more efficient processing.

• Business Process Adaptation/Evolution—The ability to allow significant business
changes to be implemented quickly and dynamically by actual users who can
easily manage adjustments to the business rules or policies—without engaging
consultants to significantly alter their systems. This benefit allows enterprises to
be agile and adaptive as conditions change, thus saving valuable costs in process
re-engineering.

Thus, the characteristics of a distributed system and software agents correspond
with the agent concepts defined in the CAS emergent model. This association was
highlighted by Franklin and Graesser [5] in their description of an autonomous

378 J.A. Anderson and T. Carrico

Table 15.1 Properties of intelligent agents

Property Other names Meaning

Reactive Sensing and acting Responds in a timely fashion to changes in the
environment

Autonomous Exercises control over its own actions

Goal-oriented Pro-active/purposeful Does not simply act in response to the environment

Temporally
continuous

Is a continuously running process

Communicative Socially able Communicates with other agents, perhaps including
people

Learning Adaptive Changes its behavior based on its previous experience

Mobile Able to transport itself from one machine to another

Flexible Actions are not scripted

Character Believable “personality” and emotional state

Fig. 15.2 Reflex (Reactive) Agent. Example agent structure reflecting its internal processing and
interaction with the environment

agent, which spans both domains: An autonomous agent is a system situation within
and a part of an environment that senses that environment and acts on it, over time,
in pursuit of its own agenda and so as to effect what it senses in the future. The
properties of autonomous (or intelligent) agents include those listed in Table 15.1.

Russell and Norvig [9] address Artificial Intelligence in terms of a study of agents
that receive percepts from the environment, reason over the data input, and perform
actions. The basic structure of an agent emerges from several variations on this
theme. For example, Fig. 15.2 illustrates the logical elements of a relatively sophis-

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 379

ticated reflex (or reactive) agent, all of which must be addressed by the framework.
The agent:

• Can sense a change to the environment
• Can maintain internal states and data
• Can evaluate and reason over conditions related to the environment and the state

data maintained
• Can select from multiple potential actions
• Can reason over which actions are appropriate
• Can change the environment based on the input and its internal logic (i.e., execute

actuators, including updating data in the external environment).

15.2.1.2 Framework Constructs

The Distributed Agent-Based Concepts described above delineate requirements for
a system development and deployment environment. The Distributed Intelligent
Agent Framework must support the requirements while establishing a foundation
for change management and scalability. The system environment must enable, or
more properly, facilitate the development and management of distributed intelligent
systems. To ground the discussion, the description will leverage constructs from the
Open Source Cougaar (Cognitive Agent Architecture)2 and the ActiveEdge Plat-
form3 by Cougaar Software, Inc., both of which are Java-based environments.

System Structure and Agent Definition Of course, the primary component of
the framework is the agent. Developers must be able to define the elements of a
system and their interaction in terms of agents. Agents are composed from Plugin
components, each providing a small piece of business logic or functionality. Plugins
can be defined to respond to various stimuli and can execute independent of one
another, allowing the agent’s behavior to emerge from the composed pieces.

Communities of agents can be defined to present a simple interface to other
agents, hiding the internal structure and complexity, and can be composed of multi-
ple potentially collaborating agents and smaller communities. Agents may discover
communities within a system, send messages to members of a community, or join
and leave a community. Agents within a community can take on specialized roles
that help maintain order within the community, including Member, Manager, and
Owner.

To fully support the concept of distributed agents, the Framework supports the
concept of a Node, which is an abstraction of the services and structure required

2The Cougaar website is here: http://www.cougaar.org/.
3ActiveEdge® is Cougaar Software, Inc.’s software development and execution management plat-
form for building complex, distributed, intelligent decision support applications. ActiveEdge ex-
tends Open Source Cougaar to provide a more complete and robust framework for building large-
scale distributed intelligent decision support applications, simplifying application development,
increasing agent functionality, and providing enhanced system capabilities.

http://www.cougaar.org/

380 J.A. Anderson and T. Carrico

to support one or more agents in a single memory space (or Java Virtual Machine
(JVM)). Note the Node is a logical construct—it does not necessarily correspond
with a particular hardware platform. In fact, a platform may host several nodes from
the same system. Nodes can be defined to model logical groupings of agents corre-
sponding to aspects of the application domain, or can be defined to ensure equitable
sustainable sharing of computer resource requirements. In some cases, agents from
different communities will share a single machine and node to be efficiently col-
located near a shared data source. (This concept reinforces the flexibility of the
Community concept—agents can be associated with the same community without
regard to their location across the network.)

A society, the structural concept with the broadest scope within the framework, is
a collection of agents that interact to collectively solve a particular problem or class
of problems. In most cases, the society corresponds with the overall distributed sys-
tem that is under consideration. However, a “system of systems” can be achieved
with multiple societies, with cross-society interaction achieved using external inter-
face mechanisms.

Agent Communication—Publish/Subscribe Communication and information
sharing is accomplished via a two-tier concept—agent-to-agent and plugin-to-
plugin. Each agent is associated with a blackboard—the blackboard can be viewed
as a partitioned distributed collection of objects that may or may not be of interest
to any particular plugin. Plugins publish and subscribe to objects on a blackboard.
Plugins within an agent can add, change or remove objects from the blackboard and
can subscribe to local add, change, or remove notifications. Each agent owns its
blackboard and its contents are visible only to that agent. Publish/subscribe facili-
tates flexibility and promotes scalability for the systems by decoupling senders of
messages from their recipients. Thus, plugins can be modified or added to an agent
and share data through the blackboard without necessarily requiring modification of
existing code.

The blackboard of an agent is part of the distributed blackboard managed by
the whole society. Sharing of the blackboard state across agent boundaries is done
by explicit push-and-pull of data through inter-agent tasking and querying. Agents
communicate with each other as peers, hiding the internal business logic and allow-
ing loosely-coupled, asynchronous, and widely distributed problem solving. A Mes-
sageTransport and NameServer is available that provides an API for sending mes-
sages to arbitrary agents by name and for registering a client with the Transport so
that it can receive messages from other sources. Each agent works independently
and asynchronously on messages passed from one another, and responds indepen-
dently and asynchronously on responses received. Cougaar and ActiveEdge incor-
porate specific inter-agent communication mechanisms including the concept of a
Tasking directive, a Relay, and AttributeBaseAddresses. When an agent allocates a
task to another agent, a link between blackboard objects in each agent is established,
enabling data to be shared and reasoned over by both participants in the relation-
ship. Relays provide a general mechanism for blackboard objects of one agent to
have manifestations on the blackboard of other agents. AttributeBaseAddresses al-
low messages to be sent to agents based on their attributes rather than their names,

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 381

which is especially useful for specifying the recipients of a multicast message based
on the attributes of the agents within a community (such as a role).

Registration/Discover Services Registry/Discovery services are provided so that
resources can be dynamically bound with an appropriate service, instead of hard-
wiring direct calls to specific agents. Society components, communities and service
providers can be registered so that they can be discovered and utilized throughout the
society. Services are provided to allow registration and lookup of agent addresses,
allowing agents to be discovered by any other agent (within the constraints of the
security profile) regardless of the network node upon which either resides. A “Yel-
low Pages” service supports attribute-based queries, permitting agents to register
themselves based on their application’s capabilities, and allows agents to discover
other agents and their services based upon queries for those capabilities. The service
discovery mechanism is an alternative to explicitly specifying customer/provider re-
lationships by name. Agents can search and discover a service provider with which
to form a relationship.

The Registry/Discovery capability also provides a robust, distributed, and secure
environment for defining and managing communities of interest within a society that
may contain agents and other communities. Using Registry/Discovery with commu-
nities permits agents to be dynamically associated, facilitates resource sharing and
control, and allows policies to be apply within controlled contexts.

Inference Rules Engine To assist in implementation of the reasoning that will
be incorporated in the intelligent agents, the Framework includes support from an
inference engine. The Framework leverages licensed JESS4 technology to provide a
simple forward-chaining rule engine for identifying patterns in objects on an agent’s
blackboard or within a situational construct. The Framework supports actions to
create rules, group them, and assign them to agents based on scopes.

Interoperability and External Communication As discussed in the introduc-
tion, any CAS can be viewed collectively as a single entity in a higher-level CAS.
A system developed with the Distributed Intelligent Agent Framework cannot be
managed as an island unto itself—it must be viewed as a component of a constantly
changing environment with which it will interact. Modern systems must assume that
they will need to operate in a heterogeneous system-of-systems context, leveraging
a wide variety of systems and services and interfacing with contemporary and/or
other emerging systems.

Interface standards provide clean separation of internal components within a sys-
tem’s architecture and clean integration channels for talking to external systems and
components. Internally, the framework supports standards such as:

• JSR-94: Java™ Rule Engine API: provides a clean interface layer between the
rule engine component and the rest of the architecture, so should a developer

4The website for the JESS Rule Engine is here: http://www.jessrules.com/.

http://www.jessrules.com/

382 J.A. Anderson and T. Carrico

wish to use a rule engine other than the provided JESS engine, they are free to
use any engine supporting the API standard.

• JSR-168 and JSR-268: Java™ Portlet Specifications: provides a clean interface
specification for any portlet component.

Externally, the framework supports widely supported integration standards in-
cluding:

• Simple Object Access Protocol (SOAP) 1.2/Web Services Description Language
(WSDL) 2.0 Specification: provides a clean way for systems to perform trans-
actions using standard protocols against published interface specifications with
standard XML content payloads.

• Java Message Service (JMS) 1.1 Standard: provides a queue or topic based mes-
sage interface for passing serialized objects.

• Extensible Markup Language (XML): provides a structured way of representing
data structures, usually schema-based, in machine and human readable forms;
often used as a payload inside other message protocols.

• HTTP 1.1/HTML5: provides a standard web-based data exchange, enabling infor-
mation render with a standard browser or other browser compatible systems.

• Remote Method Invocation (RMI) API: provides a standard invocation protocol
for other java-based systems using a payload of serialized objects.

• Java Database Connectivity (JDBC) API 4.0: provides a standard means of in-
terfacing with databases and data systems; supported by all the major database
providers.

Support for internal and external standards provides significant benefits in de-
velopment and integration, including reduced learning curve, maturity, tools, and
standard usage patterns.

15.2.1.3 Framework Features

Having the capability to define agents and plug-ins, communities, and societies so
that they can detect and interpret changes in their environment, reason over informa-
tion, and collaborate to solve a problem are necessary yet insufficient requirement
set for the Distributed Intelligent Agent Framework. The framework must address
operational concerns related to the deployment and execution of the agents that will
collectively define the system. This section describes some of the key features the
development and execution environment must support.

Persistence The Distributed Intelligent Agent Framework must include the capa-
bility for the agent and its data to persist. Persistence differentiates an agent from a
simple subroutine: code is not invoked on demand, but runs continuously. This con-
cept allows the agent to keep track of variables over repeated calls, and permits the
agents to decide for themselves when they need to perform activities. Persistence
allows software agents to be called in a “fire and forget” relationship. Persistence is
also essential for system robustness and survivability.

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 383

Scalability Solutions developed with Distributed Intelligent Agent Framework
are highly extensible and scalable. The component model, coupled with the agent
design approach, allows the easy introduction and upgrade of components and
agents, even while the system is running. Additional capabilities, interfaces and be-
haviors can be introduced into the system to support the evolution of its functionality
in the face of a changing environment.

The framework is designed from the bottom up to support applications to a mas-
sive scale. Encapsulation and information hiding concepts are designed into each
of the constructs described above. By encouraging encapsulation, data hiding, and
fine grained information management, coupling among components is minimized,
and the information passed between agents can be limited to a bare minimum. The
plugin construct leveraging publish/subscribe paradigm through the blackboard al-
lows for building large software systems with much more manageable maintenance
and integration costs than traditional architectures. By leveraging peer-to-peer inter-
agent communications, exponential growth of interdependencies and interactions
among different agents can be avoided.

An effective set of deployment infrastructure and execution management tools
should be available to facilitate system deployment and administration. The tools
should make it easy to configure how the agents will be deployed across the net-
work and platforms, deploy the societies and/or recall configurations across the
network. Such a suite of tools allows agent software to be pushed to available
machines, standing up or reconfiguring complex multi-node system configurations
straightforwardly. In addition, Agent, community and society configurations should
be able to change without impacting other components of the society—supporting
both dynamic reconfiguration and a capability for long-term evolution of function-
ality.

Robustness and Survivability Distributed systems can be designed to be highly
robust and survivable. Leveraging capabilities of the Distributed Intelligent Agent
Framework, the system design can utilize redundancy, dynamic monitoring, dy-
namic reconfiguration and other tools. These tools allow the development of re-
silient designs which can meet specified failure, recovery and performance require-
ments.

Ultimately, the system can be designed and provisioned to provide continued op-
eration in the face of hardware, system and network failures and to ensure a level of
availability and performance prescribed by the requirements. To that end, the frame-
work constructs and the environment in which they operate must allow systems to
be designed in a manner that will allow them to survive the temporary outage of
a single Agent, node, or sets thereof. Agents can be configured to persist their in-
ternal state, which can be subsequently restored as the Agent is restarted. Other
agents in the society may need to be designed to tolerate a long-term absence of
a given agent from the society (e.g., due to components being disconnected from
the network, agent failure or network outage). The agent logic can be designed to
determine the availability of an asset, and to select from various alternatives when a
particular resource is unavailable (e.g., time-out and move on with other processing,

384 J.A. Anderson and T. Carrico

choose an alternative resource, or wait indefinitely to reconnect appropriately as the
unavailable resource rejoins the society).

A distributed system’s health can be determined by evaluating the state of all
of the nodes in a system. To be fully functional, a Distributed Intelligent Agent
Framework must have the capability to query the status of each node of the system
and components thereon. Further, there may be a need to manipulate the software
assigned to each node to reconfigure the system in response to some changes in the
environment or to improve performance.

In the Distributed Intelligent Agent Framework, nodes are actually implemented
as distinguished agents, and thus, they may be addressed as message targets, may
load additional management logic (via plugins), and may be probed by user inter-
faces. While most application developers seldom need to focus on the node-level
services, many of the robustness and security aspects of highly survivable applica-
tions are implemented via NodeAgent components and plugins.

The NodeAgent has the task of providing node-level lifeline and management
services to the node. While it does not in itself contain the root objects of the com-
ponent hierarchy, it does have full control over those objects. Since NodeAgents are
true agents, they have a blackboard that may be persisted. Thus, they can retain state
across host failures.

Security The Distributed Intelligent Agent Framework must support a significant
degree of commercial-grade security, ensuring that all inter-agent communications
are assured to be snoop-proof and tamper-proof. Further, the infrastructure core soft-
ware, the Plugin modules and configuration information are all designed to be cer-
tifiably intact and secure. No properly configured application should be vulnerable
to traffic interception, rogue agents or corrupted configuration baseline.

The Framework includes a specific Authentication and Authorization subsystem
that is designed to facilitate communications among users in a society by guar-
anteeing several properties of that communication, providing mechanisms to vali-
date users, encrypt communication, and provide general object permissions man-
agement.

The user access control service manages a distributed database of users that can
access the system. The service mediates every attempt by a user to access the sys-
tem, therefore ensuring that only valid and authorized users gain access. Before
users can perform an operation, they must provide appropriate credentials, such
as a password, certificate or smart card. Password authentication can leverage an
underlying certificate-to-user account mapping mechanism. Once users have been
authenticated, the user access control service checks whether the user has the priv-
ilege to perform the requested operation. If the mediation is successful, the user is
allowed to perform the operation.

The Framework allows agent solutions to identify users either through its own
identification services or by integrating with other trusted identification services.
The system will support simple sign-on such as ID and password, as well as physical
and dynamic data tokens, and may also include the capability to support various
biometric systems.

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 385

Execution Management and Dynamic Reconfiguration To manage an agent-
based complex adaptive system, it is necessary to be able to monitor the health of its
components and be able to intervene (manually or autonomously) when conditions
call for it. The development and execution environment must provide the infras-
tructure to monitor status and configuration of components (society, nodes, agents,
communities, plugins, etc.) throughout a society, monitor external resources tied to
a society, and affect changes to said components and external resources, all in near
real time. These services need to implemented and operate efficiently in all soci-
eties so that society runtime data can be collected without unreasonable impact on
the system.

A robust environment will also facilitate user interaction with these services. In
addition to the status data collection mechanisms and distribution mechanisms used
to affect changes in the deployment configuration, user interfaces and report gener-
ation should be available to offer different ways for users to interact with a society
when necessary to effectively audit and manage a running society. To support ei-
ther autonomic or human execution management and control, the infrastructure will
require an events management capability. Events of interest can be published and
agents can subscribe to them so that the proper analysis, routing and processing can
be assured. The events management capability should be able to notify agents and
integrate with user interfaces and external devices so that humans can be notified
when necessary for awareness or intervention.

15.2.2 Cognitive Framework for Reasoning

A foundational concept for distributed agent-based system design is to have each
agent perform a small logical part of the functionality so that their collective behav-
ior satisfies the requirements for the system. Because each agent has a focused role
in the system, changes required for adaptation can be localized to a small part of the
system without disrupting the rest. (This is in contrast to a monolithic system that
requires human intervention to shut down the system and code changes each time
the system requires modification.)

While the Distributed Intelligent Agent Framework provides the essential ele-
ments to develop and maintain an agent-based system, it provides maximum flex-
ibility for system component definition. A framework that characterizes appro-
priately sized components within an overall context would be extremely helpful
to system designers and agent developers. Since agents often perform functions
on behalf of humans, a model of the human reasoning process has been defined
upon which to base agent designs. The Cognitive Framework for Reasoning de-
fines a structure for describing and modeling the human cognitive model of rea-
soning and planning. The components of the Cognitive Framework define patterns
for common agent functions that comprise distributed intelligent agent systems.
This framework can be used to identify key functions and roles for agents in a
CAS.

386 J.A. Anderson and T. Carrico

Fig. 15.3 Cognitive Framework for Reasoning. Characterizes the elements of reasoning, many of
which can be supported by intelligent agents

15.2.2.1 Concept

Developing intelligent agent-based systems involves the development of agents with
reasoning components that emulate elements of human cognitive processes. The
Cognitive Framework for Reasoning captures the various activities that humans do
when they observe, reason, plan, and act. By decomposing these processes into a
reference framework, individual elements can be used to define common models
and patterns for intelligent agent design. These elements can be considered when
designing a system. The Distributed Intelligent Agent Framework can then be used
to implement the agents and their interaction. Combining the Cognitive Framework
with implementation using the Distributed Intelligent Agent Framework allows ap-
plications to emulate the complex processes humans do everyday more realistically
and robustly than other traditional technologies.

15.2.2.2 Organizational Structure

Figure 15.3 depicts the Cognitive Framework for Reasoning and its organiza-
tion into three major processes: Observe/Understand, Decide/Plan/Act, and Ana-
lyze/Learn. These processes are comprised of various concurrent and interdepen-
dent activities described below. In actuality, humans perform these activities con-
tinuously and concurrently on various levels. After we observe and understand an
event, we may be making other observations while reacting to the first and/or ana-
lyzing other perceptions.

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 387

Observe/Understand In order for people to reason about their condition or their
environment, they must use their senses to gather data and information. Correspond-
ingly, for agents to perceive the conditions in their environment, they must intake
data and reason over it. A common role for agents in most systems is simply to
collect or monitor data sources, whether that process involves tying agents to actual
sensors or to databases or to external systems.

Once the data is made available, the first level of reasoning can occur. Data is
transformed into actionable information about activities of particular actors by ap-
plying business rules to correlated normal and expected activities and their relation-
ships to the dimensions of the potential mission. As data streams in, the activities
can be reasoned over and patterns of behavior can be identified. The first focused
activity is data fusion.

The Joint Directors of Laboratories (JDL) Data Fusion Working Group created
a process model for data fusion which is intended to be very general and useful
across multiple application areas. It identifies the processes, functions, categories of
techniques, and specific techniques applicable to data fusion. The model is a two-
layer hierarchy. At the top level, the data fusion process is conceptualized by sensor
inputs, human-computer interaction, database management, source preprocessing,
and six key subprocesses [7]:

• Level 0 processing (subobject data association and estimation) is aimed at com-
bining pixel or signal level data to obtain initial information about an observed
target’s characteristics.

• Level 1 processing (object refinement) is aimed at combining sensor data to ob-
tain the most reliable and accurate estimate of an entity’s position, velocity, at-
tributes, and identity (to support prediction estimates of future position, velocity,
and attributes).

• Level 2 processing (situation refinement) dynamically attempts to develop a de-
scription of current relationships among entities and events in the context of their
environment. This entails object clustering and relational analysis such as force
structure and cross-force relations, communications, physical context, etc.

• Level 3 processing (significance estimation) projects the current situation into the
future to draw inferences about enemy threats, friend and foe vulnerabilities, and
opportunities for operations (and also consequence prediction, susceptibility, and
vulnerability assessments).

• Level 4 processing (process refinement) is a meta-process that monitors the over-
all data fusion process to assess and improve real-time system performance. This
is an element of resource management.

• Level 5 processing (cognitive refinement) seeks to improve the interaction be-
tween a fusion system and one or more user/analysts. Functions performed in-
clude aids to visualization, cognitive assistance, bias remediation, collaboration,
team-based decision making, course of action analysis, etc.

As the diagram indicates, data fusion in this component of the Cognitive Frame-
work is limited to Levels 1–3; the other levels are included in this section for ref-
erence and are achieved across the full continuum of the Cognitive Framework for

388 J.A. Anderson and T. Carrico

Reasoning. Based on the fused data, humans (and agents) can build an understand-
ing of the “world” (or at least the part of the world being represented by that data),
or in terms of the model, the situation. People learn to recognize significant events
and conditions based on patterns. Pattern recognition and extraction is a key concept
in situational understanding.

Decide/Plan/Act The Decide/Plan/Act process addresses how the human (or
agent) reacts to the environment, or at least the situations of interest within the envi-
ronment. Planning is a process that associates tasks to be executed with conditions
and policies. If the appropriate combination of conditions within the situation cor-
relates to particular policies and constraints, an appropriate response (task) can be
selected. Meta-planning is the process of combining and associating situational con-
ditions, policies, constraints and tasks. (In essence, meta-planning is determining in
advance, that if X occurs, then task Y should be performed.)

Based on the actual data entering the system (note the reference to monitoring),
active planning can occur. The dynamics of a changing world preclude knowing
all possible outcomes of a task; therefore, once a situation is presented in reality,
the outcomes of applying various alternative courses of action are often projected.
Based on that analysis, a decision is made to select a course based on some sort of
criteria.

Based on this analysis, the course of action (a selected set of tasks) is executed.
Particular controls (actuators) may be directed to be changed, or other processes
(effectors) may be invoked. As the tasks are executed, the results of those actions
are monitored and the process cycle continues.

Analyze/Learn The Analyze/Learn process of the Cognitive Framework differ-
entiates the human cognitive capabilities from traditional systems and machines.
Humans can be retrospective of their actions and relationship with their environ-
ment, learn from their successes and mistakes. Humans (and agents) can review
the efficacy of their rules, policies, and tasks and adapt accordingly. Alternative ap-
proaches can be defined; policies and thresholds can be adjusted; and new rules
determined and incorporated into all of the cognitive processes.

15.2.2.3 Application

If one considers the dynamics of a team responsible for an area of operation, there
may be a significant number of inputs, conditions of interest, or data sources that
need to be collectively monitored and evaluated; multiple actions that need to be
planned and executed concurrently; and several areas that require reporting or anal-
ysis. Despite its complexity, virtually all of the individual functions of such an en-
vironment can be characterized in terms of an element of the Cognitive Framework
for Reasoning. Agents designed to perform the individual simple activities within
the Cognitive Framework for Reasoning become the building blocks for sophisti-
cated systems engineering. With each agent of the system taking on its assigned

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 389

role in accordance to this model, the behavior of the overall system can emerge.
These building blocks can be combined to achieve more sophisticated objectives,
and once built, can themselves be building blocks to address even more complex
problems. The rest of the frameworks in this treatise are actually examples of this
incremental compilation approach.

15.2.3 Knowledge Base Framework

The Knowledge Base Framework provides transparent and seamless access to dif-
ferent types of knowledge to client components. In a constantly changing network-
centric world, not only can the source of information in a system change, but there
can be multiple sources of related information available that should be considered.
Each of the information sources may have different data formats, and data from
multiple sources may need to be fused to determine the facts to be input as a piece
of knowledge.

The Knowledge Base Framework provides knowledge access and storage capa-
bilities, irrespective of the location, format and the access mechanism for the knowl-
edge providers. Using the Knowledge Base Framework, knowledge access can be
directed (and redirected) without coupling the clients’ process logic to the specific
location and format of the data being evaluated or stored. Systems can remain opera-
tional despite the need to rehost information sources or to reformat files or databases.
As systems and logic mature, answers to knowledge queries may be composed by
combining and perhaps reasoning over information from multiple heterogeneous
data sources.

The Knowledge Base Framework provides an infrastructure that encircles the
support of knowledge, the handling of knowledge providers and registrations based
on objects that implement the interface with the data sources. The Knowledge Base
Framework integrates processing related to data source association, data access, data
transformation (i.e., extract/transform/load) between the formats of the data sources
and the representations within the system, and access controls. Business rules may
be applied to select from multiple data sources based on such criteria as proximity,
availability, or provenance.

15.2.4 Integrated Distributed Data Environment Framework

An Integrated Distributed Data Environment provides services to facilitate data ex-
change and collaboration among agents within a single node of a system, across
nodes of a defined society of agents, and across system boundaries. An integrated
data environment addresses constancy and availability in a distributed environment
and allows authorized users to quickly access and aggregate information from any-
where in the system without waiting for linear processing and transmission of

390 J.A. Anderson and T. Carrico

reports. The environment must be database technology agnostic and sensitive to
network bandwidth limitations. Autonomously or on command, intelligent agents
search across the data environment to locate resources that correspond to their de-
mands. The environment provides data services within the various elements of the
system to support both the needs of the node as well as the movement (sharing) of
data among nodes.

15.2.5 Situational Reasoning Framework

The ActiveEdge Situational Reasoning Framework (SRF) is a proven commer-
cial intelligent agent-based framework for constructing and maintaining distributed
knowledge networks of complex interdependent information. SRF is a complex
framework built upon the constructs of the Distributed Intelligent Agent Frame-
work that provides significant value to the development and management of intelli-
gent agent-based systems by encapsulating and organizing logic applicable to most
CAS: managing a near-realtime understanding of the environment and the objects of
interest therein. Our ever expanding network environment provides access to more
and more diverse data inputs, all of which may need to be evaluated and worked into
a consistent knowledge model representing “ground truth.”

Many operational environments are challenged to monitor conditions of interest
and to simply detect and resolve subtle inconsistencies among data from different
sources. Raising the level of complexity, systems may be expected to monitor and
analyze vast streams of data from multiple sources and to rapidly recognize and
raise alerts related to significant events or indicators. When performed manually,
these common and relatively mundane activities can consume the bandwidth of lit-
erally armies of analysts, and often the processes are error-prone and mind-numbing.
Delegating these processes to intelligent agents can significantly improve the speed
and quality of the analysis and release vital resources to address more significant
challenges.

15.2.5.1 Concept

SRF provides a distributed infrastructure for reasoning about real world scenarios. It
combines the strengths of standard Java object models, graph and distributed game
theory, and semantic technologies to provide new mechanisms of deep situational
reasoning about real world scenarios. This capability utilizes intelligent agents to
create a dynamic, intelligent decision support capability that leverages a combina-
tion of reasoning, knowledge-based situational representation and simulation anal-
ysis to empower decision-makers with information, options and recommendations.

The SRF is used to build a virtual representation of the current situation from
various incoming data event streams whether they are random or predictable. This
resulting situational model is a rich, object representation of the state of current op-
erations similar to the virtual world representation in a modern video game. Thus,

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 391

Fig. 15.4 Situational Reasoning Framework (SRF) Situational Construct (SC). This notional
model of a Situational Construct illustrates the three component models that must be maintained
in concert to monitor and reason over changing situations: the Situational Objects, MetaData Net-
works, and Semantic Network

the system is able to identify and reason on whether data updates entering the system
are redundant, conflict with the information from other data streams, or provide new
information that will enrich the model. From mediated and pedigree-tagged data, an
understandable, real-time representation of the current situation is created, enabling
advanced event management, execution monitoring, and collaborative decision sup-
port.

15.2.5.2 Organizational Structure

The core unit of processing defined by the SRF is a “scenario” managed within a
“Situational Construct,” the subsystem implemented using the SRF that encapsu-
lates all of the reasoning and provides an API for clients. A “Situation Construct”
(SC), as illustrated in Fig. 15.4, is created to manage the changes associated with a
particular set of knowledge constructs. (A sophisticated distributed system may have
multiple SCs corresponding with a variety of information domains, events, contexts,
etc.) The instance models are configured with reasoners that incorporate and process
any new data or information with respect to the current ‘understanding’ of the sit-
uation. The intelligent agents and reasoners in the SRF correlate data updates and
resolve interdependencies among the model instances to ensure a consistent view of
the situation.

Situational reasoning and representation is more than icons or tracks on a map;
it is the union of many aspects of a situation constructed and maintained from the
real-time data supporting those aspects, enabling reasoning over the information
and their interrelationships. SRF allows system developers to define knowledge net-
works in terms of three complementary “spaces”: the object model (characterizing
the state of the objects in the operational environment), a metadata network model
(characterizing the metadata about the objects and their class definitions), and the
ontological network model (characterizing the business rules that define inferences
that can be determined based on relationships between objects of particular classes).
Intelligent agents managing the object space and internal networks use efficient

392 J.A. Anderson and T. Carrico

graph theory techniques to maintain relationships and consistency among entities
in the situation.

Each object space is managed by its own agent, known as an object space
controller. Registered with each object space controller are reasoning components
which do the bulk of the interesting work of the SRF Situational Construct. (The
SRF can be incrementally upgraded over time by adding plug-ins to define addi-
tional business rules and nuances among the elements of the operational environ-
ment and addressing expanded data availability and refined reasoning.)

The Situational Object Space (SOS) The Situational Object Space represents
the collection of entities of interest that exist in the operating environment. This
includes all physical objects as well as abstract concepts and information relevant
to the objects and Actors. Scenario actions (e.g., status updates) are validated and
manifested as manipulations of objects within this space; information queries result
from evaluation of the state of the objects. The SOS contains little, if any, rules. The
rules that govern the access and manipulation of objects within this space often rise
from reasoning residing in other components within the framework.

The Network Object Space (NOS) The Network Object Space is a graphical
structure layered on top of the SOS. It forms edges representing relationships be-
tween SOS objects. The purpose of the NOS is to provide an efficient data structure
that makes it a simple task to quickly determine the relationships between sets of
SOS objects. The NOS represents the various relationships among the objects in
the SOS. SRF components responsible for updating and transmitting portions of the
SOS utilize the NOS instead of exhaustive searches through the SOS. The NOS
may have one or more instances of graph edges among objects in the NOS (e.g.,
one denoting distance relationship between the nodes, one denoting parent-child re-
lationship, etc.). Each node in the NOS graph holds a reference to its corresponding
original SOS object so that actual retrieval of an asset is possible in future. This is
done via using a Unique Object Identifier—UID.

Besides this reference, the NOS also maintains some meta-information about the
actual data object, which helps in answering various queries efficiently instead of an
exhaustive, potentially expensive search over the SOS space.

Semantic Network Space (SNS) The SNS provides the strong reasoning and in-
ferencing power from the ontology perspective. The semantic networks, which use
Semantic Web concepts and technologies, provide a common ontology for repre-
senting and reasoning over domain knowledge. Semantics and data ontologies are
essential, providing an understanding of the conceptual meaning of aspects of a
situation versus a one-dimensional understanding of individual objects. Thus, sit-
uational software permits reasoning over the concepts of the application domain,
rather than just the instance—critical for making inferences such as detecting de-
graded capabilities or assessing alternate resource substitution.

The SNS is very similar in structure to the NOS in that it too has a graph-like
structure denoting relationships between various nodes. In the SNS, the nodes repre-
sent instances of ontology concepts and the edges denote the property relationships

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 393

between those instances. In short, the SNS holds an ontology model of the envi-
ronment characterizing the business rules about the objects in the situation. As the
state of objects change, the SNS determines the corresponding rippling effects of
those changes, potentially by examining the interrelationships defined in the NOS.
In the Distributed Intelligent Agent Framework, this can be easily triggered if the
controller is a plug-in that has subscribed to the blackboard and gets invoked when
the object that it monitors changes.

The agents managing each SC will perform functions like:

• Updating the knowledge network when new data is received from data sources,
• Projecting consequences within the simulation model on demand or when in-

coming data causes the data values to cross specified thresholds (e.g., indicating
resources have exceeded expected operational ranges),

• Packaging and providing information to the visualization layer of an application
for rendering and user interaction,

• Manifesting decision actions and decision events into the SC, as well as deter-
mining the implication and effects of those decisions on the situation,

• Maintaining the linkages across SCs where there are constraints, dependencies,
allocations or other relationships between elements in different SCs.

15.2.5.3 Application

Functional applications and other intelligent agents within a system subscribe to the
situation and associated conditions of interest. Functional applications can use the
situation and other services to recognize changes in the environment and respond
accordingly. Thus, they can react to changes in the situation to spawn processes,
share information, and/or alert other parts of the system or environment that some-
thing significant has occurred. In some cases, the process can be cyclic. For instance,
in automated supervisory control and data acquisition (SCADA) systems, business
rules and processes may be invoked that alter the conditions in the environment
(e.g., adjust controls or parameters), which in turn will be detected by the SC(s) and
correspondingly recognized by the rest of the system. The agents can evaluate the
efficacy of the control adjustments invoked, and respond accordingly (e.g., invoke
additional processes such as further adjustment of controls, continue monitoring if
within appropriate ranges, or alert operators of exceptional conditions). In a self-
regulating system, software agents can even adjust the business rules and processes
based on rule patterns and their ability to learn from prior actions.

15.3 Unifying Architectural Frameworks for Developing
Distributed Decision Support

Architectural frameworks provide general organizational structures that can be ap-
plied to the development of complex systems and their components which will facil-
itate their design, deployment, and/or management within the operational environ-
ment. An architectural framework for complex adaptive systems using distributed

394 J.A. Anderson and T. Carrico

intelligent agents should structure the organization of the agents (and/or groups of
collaborating agents) within the system, classifying the roles and/or functionality
of various agents and establishing the groundwork for system management. An ar-
chitectural framework facilitates system design and system maintenance, allowing
the architect to build in the flexibility for expanding the number of data sources,
for modifying interfaces to support additional or alternative user classes, encapsu-
lating transient features of the solution, etc. This section features two architectural
frameworks designed by Cougaar Software, Inc. to support agent-based complex
adaptive systems that have proven useful: the Shared Situational Awareness (SSA)
Architecture Framework and the Adaptive Planning Framework. The descriptions
characterize the concepts within the architectural framework, as well as identify the
other frameworks that may have been leveraged.

15.3.1 Shared Situational Awareness Architectural Framework

One of the greatest challenges of complex systems is the management of and reason-
ing over diverse data that is intimately related, and establishing a common aware-
ness (or better, understanding) of the situation as it relates to a variety of users with
different roles.

15.3.1.1 Concept

The core concepts behind the SSA Architectural Framework relate to knowledge
management; that is, the transformation from raw data to information and eventu-
ally knowledge. Distributed intelligent agents collaborate to collect and share data
(tagged with metadata), fuse that data into information (possibly analyzing the data
to determine ground truth), and disseminate the information to appropriate commu-
nities of interest. In addition to simply managing information for dissemination, the
framework also recognizes the variety of roles and contexts of the user communities.
Similar user classes at different organizational echelons perform similar functions
but operate over different data sets, and/or manage changes at different scopes or
levels of authority. Additionally, different user groups reason differently over simi-
lar data sets. The SSA Architecture Framework must address both challenges.

15.3.1.2 Organizational Structure

As depicted in Fig. 15.5, the SSA Architecture Framework is organized into a four-
layer concept, each layer of which includes sets of collaborative intelligent agents.
The organization of the agents is only conceptual—it does not imply any constraints
related to allocation of agents to any particular physical or virtual node of the de-
ployed system(s). Any number of agents may correspond with a layer or construct
within the SSA Architecture Framework. The following paragraphs highlight the
purpose of each layer of the framework.

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 395

Fig. 15.5 The Shared Situational Awareness Architecture Framework. Establishes logical cate-
gories for the roles of various intelligent agents across a society to collect, fuse, disseminate and
reason over changes in the real world in order to support decision making

Data Level—Raw Data Access to/from Sensors & Systems The lowest layer
in the diagram corresponds with the data interface layer of the architecture. At this
level, data and systems are monitored and/or accessed. Data may be found and ex-
tracted from support databases, external systems, sensors, knowledge bases, and/or
physical system platforms. Distributed intelligent agents can be attached directly to
these sources or connected to them via local network devices. The agents continually
monitor (i.e., sense) changes to the environment (i.e., changes to the platform states,
sensor information, or values in the external systems), tag that data with metadata
indicating context and pedigree, and asynchronously update the shared situational
model at the level above. In addition to passively monitoring and passing on data
updates, agents at this level can monitor the responsiveness of a system by incor-
porating intelligence based on business processes, policies and rules. Such informa-
tion can determine system component health and potentially signal that alternative
sources or systems should be used. Alternatively, the agents in this data layer may
also update system databases, share information with other external systems, and/or
interface with system actuators. In the case where actuators are being managed, the

396 J.A. Anderson and T. Carrico

agents can report on the responsiveness of changes to those systems to help deter-
mine the efficacy of the request, which may lead to further refined responses.

Virtual Common Model—Integrated Common Situational Representation
The Virtual Common Model is an integrated common representation of the situa-
tion that collectively represents all of the information of interest within the scope of
the complex system. Information is fused from the mediated and pedigree-tagged
data collected from the Data Level to establish an understandable data representa-
tion of the current situation. The representation is created in near real-time, enabling
advanced event management, execution monitoring, and collaborative decision sup-
port. The Virtual Common Model is not a centralized database, but a virtual concept
composed of information maintained across the network. Agents in this layer have
the primary responsibility to detect changes to the situation (based on notifications
from the Data Level), normalize that information with other inputs, and forward
meaningful status updates to subscribing communities of interest (at the next vir-
tual layer). The Situational Reasoning Framework (SRF) is leveraged to manage
the multitude of disparate data inputs that contribute to managing a shared under-
standing of the situation. The information may actually be managed within Situa-
tional Constructs (SCs) corresponding with more than one particular community of
interest (described at the next higher level in the SSA Architectural Framework).
As changes to elements of the situation are detected, the SCs share the data and
inferences with other agents across all of the communities of interest to maintain
consistent awareness and to empower effective response.

Communities of Interest Situational Models—Distributed Partitioned Situa-
tional Representations Agents at this layer establish and maintain various spe-
cialized representations of information which correspond with views for specific
communities of interest (e.g., particular roles and/or decision makers). Agents dis-
tribute key information across the network to be shared among these communities,
offering the right information to the right users at the right time. This information
is provided to/accessed by the decision support applications and represent tailored
subsets of the situation which are maintained in concert with the rest of the situa-
tional information in the Virtual Common Model.

Decision Support—Specialized Intelligent Decision Support Tools (DSTs)
The operational environment (made up of organizations and functions, users, an-
alysts and other decision makers) is reflected at the upper-most level along with
the specific decision support tools that support their operations. Planners, analysts,
managers and other users in each user class within the communities of interest are
assisted by visualization and decision support provided by specialized portal and
desktop applications. These decision support tools can reason over the situational
updates and orchestrate appropriate analysis and response based on the user’s par-
ticular role. Applications and portals provide decision support and analytics, data
mining, knowledge discovery, and pattern extraction/alerts to the system operators,
displaying that information in a format appropriate for their roles. Contrary to the

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 397

typical notion of a Common Operating Picture (COP) being a common display of
status information shared by all (which implies a ‘one size fits all’ display design),
agents can provide the information in a specialized format appropriate to the par-
ticular user. The agents collectively support situational monitoring and analysis, re-
lieving the cognitive burden from the operator. In some operational environments,
operators continue to play a key role in selecting from proposed courses of actions,
establishing rules, policies and processes, and making key operational and strategic
decisions. In some cases, the support tools can actually initiate actions on behalf of
the users.

15.3.1.3 Application

Although the architecture framework is described primarily in terms of data flow
from the data sources to the operators, the collaboration and information sharing
flows in both directions. As decisions are made, directives determined and action
is required, that knowledge is shared with others within a community of interest,
and relevant information is automatically shared with other communities—human
plans, decision and directives are part of the shared situational awareness as well!
Just as the event data propagated itself from source to users, plans, decision and
directives can be automatically shared across users, translated into data that must
be stored, or transformed into system commands and pushed to the device de-
sired.

The SSA Architecture Framework must be considered a notional structure. In
some systems, it may be sufficient to have all of the situational reasoning occur in
the Communities of Interest layer. In that case, the communities of interest are tied to
their specific data sources directly. Information sharing occurs among communities
of interest as described above, but the Virtual Common Model is truly notional,
it corresponds with the collective information managed by the communities in the
society and relies on the communities themselves to maintain appropriately shared
awareness.

The primary objective of the framework is to define a society of agents that can
effectively remove the human from the low-level processing required to monitor
events and data streams, fuse related data into meaningful information, analyze
events of interest, and disseminate alerts – allowing operators to reallocate their time
from data and event handling to analysis and decision making where necessary. The
second, and perhaps as significant objective is to establish an architecture that can
be managed in a continuously changing operational environment. As data sources
change over time, they can easily be tied to the Virtual Common Model through
additional subscriptions and modification of reasoners. Alternative decision support
tools can be added to the environment without significant impact on the rest of the
system. Thus the architecture framework can be used to structure the design and
maintenance of the system as well as facilitate adaptation in the face of continuous
change.

398 J.A. Anderson and T. Carrico

15.3.2 Adaptive Planning Framework

The Adaptive Planning Framework (APF) is designed to provide a rich, flexible suite
of tools supporting the full range of planning functions from initial planning through
plan execution and assessment. The APF supports a broad set of planning roles
and allows particular users to have specialized interfaces tailored to their specific
organizational needs. These tools support deep, multi-faceted collaborative analysis
and planning, and can work together with other tools to form complex, adaptive
process chains.

The Adaptive Planning Framework is consistent with the U.S. Department of
Defense (DoD) Adaptive Planning and Execution (APEX) concept [1]. The five es-
sential elements of APEX are written specifically to address DoD challenges, but
can be generalized for any multi-echelon collaborative planning and execution op-
erational domain5:

1. Clear strategic guidance and frequent dialog between senior leaders and plan-
ners to promote an understanding of and agreement on planning assumptions,
considerations, risks, Courses of Action (COA), and other key factors.

2. Cross-Organizational Connectivity. The APEX concept features early, robust,
and frequent discourse between an organization’s planners and their external
counterparts throughout the planning process.

3. Embedded options, branches and sequels identified and developed as an integral
part of the base plan that anticipates significant changes in key planning vari-
ables.

4. Parallel planning in a net-centric, collaborative environment across multiple or-
ganizational levels and functional areas.

5. “Living Plans” maintained continuously within a networked, collaborative en-
vironment with access to current operational, intelligence, logistics and re-
sourcing force management and readiness data and information with auto-
matic triggers linked to authoritative sources that alert leaders and planners to
changes in critical conditions, which warrant a reevaluation of a plan’s con-
tinuing relevancy, sufficiency, or risk that provide for transition to crisis plan-
ning.

15.3.2.1 Concept

Figure 15.6 illustrates the key components of an operational system based on the
Adaptive Planning Framework. The left side of the figure represents a hierarchical
organizational structure with planning teams on each echelon. Teams of decision
makers can collaboratively compose plans, execute them, and assess their effective-
ness, all of which may be occurring concurrently. A plan may be put into execu-

5Based on DoD, Adaptive Planning Concept of Operations, Version 3.0 (DRAFT), 15 January
2009. (Paraphrase of significantly longer descriptions in Adaptive Planning Roadmap II.)

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 399

Fig. 15.6 Adaptive Planning Framework. Establishes the structure for collaborative planning and
execution across organizational and/or geographical boundaries. Leverages the Shared Situational
Awareness Architectural Framework to ensure effective dynamic information exchange among
interdependent teams

tion while the next phase is being developed. Assessments may occur throughout
plan development (e.g., feasibility assessments and simulations), or during execu-
tion (e.g., comparing the actual accomplishments to planned outcomes or evaluating
the demand and consumption of resources). An organizational team may work to-
gether to develop a plan, and can delegate portions of the planning to lower-echelon
organizations within their command structure (e.g., a commander may delegate lo-

400 J.A. Anderson and T. Carrico

gistics planning to a logistics team, or a contractor may delegate the details of part
of a plan to a subcontractor).

The Adaptive Planning Framework links individual decision support tools
(DSTs) with data from a variety of sources, tying together sensor data, historical
information, status data, and intelligence. As represented in the upper right hand
corner of the figure, Shared Situational Awareness data is tagged with meta-data
at its source to maintain its provenance, fuses it with other related data to establish
and maintain information for the user community, and offers the data/information to
DSTs at all echelons and functions across the community. That information is fur-
ther analyzed and situated by DSTs to support collaborative analysis and planning
by decision makers and staff at operational nodes throughout the network. Each
node of the planning environment facilitates collaborative Planning, Execution and
Assessment (designated as P, E, and A) supported by specialized DSTs and tailored
interfaces.

The system infrastructure ensures virtually seamless shared situational aware-
ness among planning staff at all echelons, ensuring the right information is de-
livered to the right person at the right time in the appropriate context to their
function. The situation knowledge shared across the communities consist of more
than just operational data tied to the environment, it includes the planning data
being produced by analysts and decision makers at each operational node. The
Adaptive Planning Framework ensures an appropriate level of visibility at each
echelon; planners and analysts share processes and information appropriate for
their function and echelon without being overloaded by detail from across the
network. The framework facilitates the information sharing to support collab-
orative planning and operations among interdependent functions at each eche-
lon, while leveraging situated knowledge from lower echelons within their com-
mands.

All of the organizations are supported by a Shared Data Environment (SDE)
concept that ensures that the proper information is transported to and from the ap-
propriate nodes via services and publish/subscribe mechanisms. As segments of
shared knowledge are updated by one of the operator nodes, the SDE propagates the
changes to all the users that participate in the sharing of that knowledge network. It
is not unusual to have key knowledge networks, typically representing major plan
components or key mission context, to be shared by a large number of users. As il-
lustrated in the figure, these segments of shared knowledge form knowledge spheres,
shown using classical Venn fashion, which overlap with the data shared by other unit
clusters.

As illustrated in Fig. 15.7, when a planning team tasks another organization with
an activity, the request and associated data are logically sent along these command
and support channels. Organizations can be tasked to “expand” the plan by per-
forming detailed planning and provide the results back up to the leader who made
the assignment. Or organizations may be tasked to “assess” aspects of a plan, which
may include feasibility or efficacy assessments. Physically the task is translated to a
set of messages to convey them to the target parties in a secure, reliable and surviv-
able manner.

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 401

Fig. 15.7 Hierarchical tasking. Planners at any level can collaborate and share information with
other organizations by delegating planning details and assessments

15.3.2.2 Organizational Structure

The Adaptive Planning Framework is a complex structure that is used to establish
decision support tools that enable collaborative planning and plan execution, all
the while maintaining share situational awareness of the operating environment and
shared planning activities.

Situational Management As may be expected, the Shared Situational Aware-
ness Architectural Framework is leveraged to maintain a shared understanding of
both the operational environment and the plans that are being produced. Implement-
ing an environment supporting shared situational awareness for either of these will
be dependent upon a rich data model that represents the information of interest.6

Both of these situational data models must include some common elements of in-
terest oriented to the plan. The basic elements of a plan have been analyzed for
several decades and have been refined into several standard interchange formats
(e.g., Joint Consultation, Command and Control Information Exchange Data Model
(JC3IEDM)).7 For discussion purposes, a basic model for planning such as that de-
fined in the Core Plan Representation (CPR) [8] is helpful. The CPR model includes:

6Cougaar Software, Inc. maintains their Military Logistics Model (MLM) that represents many
aspects of military operations, organizations, and battlefield assessments.
7General information about the Multilateral Interoperablity Programme (MIP) is available here:
https://mipsite.lsec.dnd.ca/Pages/Default.aspx.

https://mipsite.lsec.dnd.ca/Pages/Default.aspx

402 J.A. Anderson and T. Carrico

• Basic concepts such as Actors, Objective, Resource, and Action, Domain Objects,
etc.

• Related information that can be associated with those basic concepts such as Con-
straints, SpatialPoints, Timepoints, and EvaluationCriterion

• Key associative relationships such as those that associate Plans with Objectives
and Actions with Actors, Resources and Spatial and Time Points

• Hierarchical relationships that define the composition (and decomposition) of
plan constructs such as Plans and subplans, Objectives and subobjectives, Actors
and subactors (i.e., subordinate organizations)

• Additional modifiers that further illuminate a plan such as Annotations, levels of
Uncertainty, levels of Precision, etc.

Once an appropriate knowledge reference model has been established, the SSA
Architectural Framework can be leveraged to build Situational Constructs to manage
the planning and environment situational information. Agents can be designed to
manage the specific content of various elements of the plan (e.g., Actors and their
status related to readiness, task allocation, resources etc.; Plans and subplans; Tasks,
subtasks and associated required resources, etc.)

From a functional point of view, several agent-based applications need to be built
to support the plan composition, assessment and execution processes. The Adaptive
Planning Framework builds upon the following general applications that when prop-
erly configured, work together to establish a planning environment for each user:

Task Planner Application TaskPlanner is an application with an intuitive graph-
ical user interface for users to develop, assess, and execute various plans for a divers
set of actors managed by the system and to handle collaboration among multiple
planning agents. The major components of the TaskPlanner focus on the views of
the plan from different perspectives including:

• Model Tree Viewer: The Model Tree Viewer is the main model view of the dif-
ferent Actions (or tasks) and the Actors (i.e., organizations or force elements)
to which the actions have or may be assigned. The Force-Centric View provides
an interface to the hierarchical organization of the actors that can be used to ac-
complish a plan, and reflects peer and superior/subordinate relationships. The
Task-Centric View displays the task/subtask relationships among Actions, any of
which can be assigned to the forces in the Force-centric view.

• Gantt Chart: The Gantt Chart is the main view of the Task Planner that graphically
displays the task breakdown with their start date and duration. Users can interact
with this display to adjust the scheduling of tasks.

• Properties and Status Panels: These components highlight the characteristics and
continually changing current and projected status of the tasks and forces. When
configured with appropriate assessors, these panels may be configured to indi-
cate that a particular force is not capable of performing assigned tasks, or that a
particular task is at risk.

• Collaboration: While the PlanService handles most of the data communication
among the groups of planners, the Collaboration component of the TaskPlanner
handles the communication among different users affecting the same plan.

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 403

• Event Notification: The Event Notification component displays messages that can
be filtered by type, priority, keyword or timestamp. Events of interest can relate
to a variety of planning challenges, e.g.: changes in the status of forces (e.g.,
indicating insufficient readiness status for the task assigned), changes in resource
availability, or changes in the task assignments in the plans themselves.

Force Builder Application The Force Builder allows leaders to design and model
the various operational units and reporting structures that will perform the tasks that
are being planned using the APF. Planners can define force units and their rela-
tionships (e.g., subordinate relationships, command/reporting relationships, force
levels), as well as associate assets or resources assigned or available to them.

When coupled with its visualizer, the Force Builder presents a panel reflecting
the force elements available for the effort, from which the user can assemble his
force structure using a drag and drop feature. The force structure can specify a num-
ber of command relationships such as supporting vs. supported organizations, and
superior vs. subordinates. The new force structure created will carry with it all the
responsibilities associated with that force element. Security settings are associated
with each of the command elements; when appropriate, a ‘commander’ can enable
or disable aspects of visibility for each command element, or specify which roles
can see specific details. The same tool also allows the users to view the status of the
force elements during mission execution—identifying the tasks being executed by
them, what’s in the pipeline, etc. Thus, this application provides a single view of all
the command elements and their operations.

Plan Service (Agent) The Plan Service’s responsibility is to create, provide,
maintain, persist and dispose of plans in response to different stimulus in the sys-
tem. The Plan Service acts as a broker between clients and the Plan Knowledge Base
Provider, ensuring that requests are valid for a specified agent. The major compo-
nents of the Plan Service include:

• Plan KnowledgeBase Provider: An instantiation of the Knowledge Base Frame-
work for distributed management of the persistence of plans, subplans, and parts
thereof. Utilizing the Knowledge Base Framework allows multiple disparate Plan
Service consumers to maintain a globally consistent local object model of the
Plan.

• Support Plugins: Abstract plugins are defined for Assessors (which have access
to plans, but cannot change the plans in any fashion); Expanders (which support
task expansion in response to a person or agent in the system asking for expansion
(e.g., when a leader delegates planning to a subordinate); and Exporters, which
allow for plans or parts of a plan to be exported into external formats such as
excel spreadsheets, images, etc.

15.3.2.3 Application

The Adaptive Planning Framework provides the organizational structure for multi-
echelon planning and execution monitoring. To instantiate the system, data sets and

404 J.A. Anderson and T. Carrico

reasoner plugins need to be configured together with the Task Planner and Plan Ser-
vice. Task hierarchies and organizational structures need to be defined based on the
knowledge representation model, and incorporated into the system (Task Planner
and Force Builder applications can be provided or data can be input via spread-
sheets or other external means). Role-based access rules need to be established and
associated with the user authorization capabilities in the environment. Based on
business rules for organizational and role-based authority, the rules for delegating
(expanding) tasking and read/write access need to be defined and integrated into the
Plan Service plugins. Plan, Task Force structure and Situational Awareness agents
can be implemented to detect and respond to changes in operational environment or
planning activities. Finally, the Task Planner application can be configured to lever-
age the data and controls that have been incorporated into the other segments of the
planning system.

15.4 Conclusions

We live in a very complex world in which we are bombarded by ever-increasing
volumes of interdependent information. Our minds and current IT systems are in-
capable of managing all of the inputs and responsibilities, let alone effectively re-
sponding to significant changes in our environment. To conquer this complexity and
remain competitive, we must be able to effectively adapt to changes in our environ-
ment, including having our IT system investments rapidly conform to and support
such changes. We can consider this a challenge to establish Complex Adaptive Sys-
tems that can respond to changes in the environment with minimal impact.

To meet this challenge, the artificial intelligence concept of distributed agent-
based systems has been leveraged to define the Distributed Intelligent Agent Frame-
work, which defines the essential elements of an agent-based system and its devel-
opment/execution environment. While an agent-based framework is a substantially
powerful foundation, additional frameworks can complement the development of
adaptive systems.

The Cognitive Framework for Reasoning establishes a basic model of human rea-
soning and planning that defines the fundamental roles that agents take on when they
are part of a larger system. This framework establishes patterns for the composition
of agents that will become the building blocks of more sophisticated agent-based
systems. The Knowledge Base Framework and Integrated Distributed Data Envi-
ronment Framework provide general structures for knowledge storage, retrieval and
sharing that decouples location, format, and potentially analysis logic from the core
business logic of the system, allowing systems to be resilient to data migration. The
Situational Reasoning Framework (SRF) provides the infrastructure for detecting,
reasoning about and responding to changes in an operational environment.

Building upon all of the basic frameworks, system complexity and change man-
agement are further facilitated by architectural frameworks describing common
agent-based application domains. The Shared Situational Awareness (SSA) Archi-
tectural Framework leverages the SRF to define the overall system organization for

15 Conquering Complexity Through Distributed, Intelligent Agent Frameworks 405

collection, fusion, analysis and dissemination of situational information across a
network environment. This architectural framework recognizes the diversity of data
sources and users that must collaborate over related information, and can be applied
in a variety of applications from reconnaissance, to business operations management
to SCADA. The Adaptive Planning Framework constitutes an expanded case of ap-
plying the SSA Architectural Framework to support collaborative decision making
(in this case planning), integrated with shared situational awareness.

Intelligent agents are ideal tools for managing change in a rapidly evolving
network-centric world. This chapter focused on the most prominent intelligent agent
frameworks available today. Other frameworks will continue to emerge as the chal-
lenges to network-centric computing are solved and common patterns and building
blocks are identified.

15.5 Dictionary of terms

Table 15.2 Dictionary of terms

Term/acronym Definition

Common Operational
Picture (COP)

A single identical display of relevant information shared by more than
one command. A common operational picture facilitates collaborative
planning and assists all echelons to achieve situational awareness [6]

Decision Support Tool
(DST)

Any functional application or tool employed by one or more user(s) of the
S&RL integrated system to collaboratively recognize a given problem, to
perform automated analysis and recommendations, and to develop a
practical solution through assessment, planning, and execution processes

Software agent A software entity which functions continuously and autonomously in a
particular environment. A software agent is able to carry out activities in
a flexible and intelligent manner that is responsive to changes in the
environment. Ideally, software agents are able to learn from their
experience, able to communicate and cooperate with other agents and
processes in its environment, and potentially able to move from place to
place within its environment [3]

Living plan A plan that is maintained continuously within a collaborative
environment to reflect changes in guidance or the strategic environment.
Automatic triggers linked to authoritative sources, assumptions, and key
capabilities will alert leaders and planners to changes in critical
conditions that warrant a reevaluation of a plan’s continuing relevancy,
feasibility, sufficiency, or risk. Living plans provide a solid foundation for
transition to crisis action planning [1]

Operator node Consists of all the DST components on a user’s computer or device. This
includes the DST environment, cached data and a suite of local DST tools
appropriate to the particular function of the user

Shared Data
Environment (SDE)

The set of data, information and knowledge shared by a set of users. Can
be distributed across multiple platforms

406 J.A. Anderson and T. Carrico

Acknowledgements The authors wish to acknowledge the contributions of Mr. Kirk Deese. His
graphic designs and engineering, as well as technical discussions and review, were instrumental in
developing this chapter.

References

1. Adaptive Planning Executive Committee, Office of the Principal Deputy Under Secretary of
Defense for Policy PDUSD (P): Adaptive planning roadmap II, March 8, 2008

2. Andrus, D.C.: Toward a complex adaptive intelligence community: the Wiki and the blog.
Studies in Intelligence 49(3) (2005)

3. Bradshaw, J.M. (ed.): Software Agents. AAAI Press, Menlo Park (1997)
4. Emmerich, W.: 1997 Distributed System Principles. Lecture Notes, University College

of London, 1997. Downloaded from http://www.cs.ucl.ac.uk/staff/ucacwxe/lectures/ds98-99/
dsee3.pdf on December 7, 2010.

5. Franklin, S., Graesser, A.C.: Is it an agent, or just a program? A taxonomy for autonomous
agents. In: Müller, J.P., Wooldridge, M., Jennings, N.R. (eds.) Intelligent Agents III, Agent
Theories, Architectures, and Languages, ECAI ’96 Workshop (ATAL), Budapest, Hungary,
August 12–13, 1996, pp. 21–35. Springer, Berlin (1996)

6. Joint Education and Doctrine Division, J-7, Joint Staff: Joint Publication 1-02, Dod dictionary
of military and associated terms 08 November 2010, as Amended Through 31 January 2011

7. Liggins, M.E., Hall, D.L., Llinas, J. (eds.): Handbook of Multisensor Data Fusion: Theory and
Practice, 2nd edn. CRC Press, Boca Raton (2009)

8. Pease, R.A., Carrico, T.M.: JTF ATD core plan representation. In: Technical Report SS-97-06,
p. 95. AAAI Press, Menlo Park (1996)

9. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall,
Upper Saddle River (2003)

10. Waldrop, M.M.: Complexity: The Emerging Science at the Edge of Order and Chaos. Penguin,
Baltimore (1994)

11. Weaver, W.: Science and complexity. Am. Sci. 36, 536 (1948)

http://www.cs.ucl.ac.uk/staff/ucacwxe/lectures/ds98-99/dsee3.pdf
http://www.cs.ucl.ac.uk/staff/ucacwxe/lectures/ds98-99/dsee3.pdf

Chapter 16
Customer-Oriented Business Process
Management: Vision and Obstacles

Tiziana Margaria, Steve Boßelmann, Markus Doedt, Barry D. Floyd,
and Bernhard Steffen

16.1 Motivation

A truly customer-oriented Business Process Management (BPM) approach has
been widely acknowledged for several years as an important candidate for driv-
ing progress in businesses and organizations. For example, companies such as SAP
have spent significant effort in designing more flexible products to serve the market
of small and medium enterprises. Products such as MySAP and, more recently, the
Business ByDesign on-demand solution are advances in this direction. However,
more effort needs to be expended to reach a truly flexible custom solution; one that
is really in the hands of the customers. Leaving the market leaders for large and
medium enterprises aside (where product life-cycle management reasons may lead
the products to not follow the emerging markets so quickly), we see that there are
several developing markets for radically different solutions. These solutions come
with different needs and motivations:

• Small enterprises and even more microenterprises have radically different and
sometimes peculiar ways of conducting their business that need to be reflected in
the BPM software; such users striving for innovation cannot sacrifice their com-
petitive advantage by adapting their business models and processes to standards
enforced by some rigid system infrastructure. For these organizations, far reach-
ing inexpensive and easy customization is a necessary requirement.

• Businesses and organizations in emerging sectors and markets increasingly
choose not to adopt one of the ERP market leaders. This decision happens for
reasons of high cost on one side, but also for fear of entering vital dependency
relations with products and product management strategies that are outside their
own control and have proven critical in the past. For example, Oracle and SAP
changed their philosophies underlying the licensing fee models for their own

T. Margaria (�)
Chair Service and Software Engineering, University of Potsdam, Potsdam, Germany
e-mail: margaria@cs.uni-potsdam.de

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_16, © Springer-Verlag London Limited 2012

407

mailto:margaria@cs.uni-potsdam.de
http://dx.doi.org/10.1007/978-1-4471-2297-5_16

408 T. Margaria et al.

products and for products of companies they had acquired, resulting in undesir-
able changes to their clientele. In some cases the user base succeeded in reaching
significant amendments to those licensing fee models, but the shock was deep
and exposed the vulnerability of the customer. In these fast-growth situations the
desire is for a flexible and adaptable solution that does not harness and constrain
the organization, but adapts to each customer’s shifting requirements and needs
as they grow. For creative organizations in sectors and markets still in the course
of establishment, potential independence and ease of migration are thus central
assets.

• Other organizations, typically in the public sector, are concerned and even reluc-
tant to adopt as their technological platforms software products from foreign pro-
ducers. Some countries that did not have their own world-class solutions strove to
migrate to open source operating systems a few years ago. It is also well known
that in the BRIC countries1 as well as in several smaller emerging economies
this concern is present for any infrastructure-like kind of software, ERP included.
Here, independence and sovereignty are an issue. There is an understandable fear
of undisclosed features that might allow information leaks to foreign authorities.
These political and performance requirements lead to a diffident attitude towards
black boxes, due to the wish to control the information flow boundaries and a
fear of unknown unknowns. Empowerment is here reached either through open
source solutions, when existing and suitable, or through own local development
of suitable alternatives.

In this chapter we look at two major streams of business process development: an
aggressive new style of ad-hoc business process development, which is reminiscent
of the similar movement in software construction for agile application development
like eXtreme Programming [3] and Scrum [11], and the above-mentioned more tra-
ditional, largely ERP-dominated business process management. We examine salient
aspects from the perspective of the felt complexity as discussed in Chap. 10. The
point of this investigation is to help align the BP development process to the (busi-
ness) critical need of agility in an economic way. Unfortunately, both considered
streams fail to adequately address the wishes we sketched above. The former be-
cause its characteristic lack of structure impairs scalability both in size and along
the life-cycle, and the latter because the traditional rigid structure of development
impairs agility. Accordingly, the alignment we envision is about combining these
two streams in such a way that the outcome retains as much as possible of their in-
dividual strengths while overcoming the inherent weaknesses in each. Emphasizing
the user perspective, which is a key message of XP and typically underrepresented in
classical system design, we consider here how one could enhance the design by do-
ing paradigm, which is appealing and successful in the small, with formal-methods
based modeling and validation technology so that it becomes better structured, scal-
able in size, and maintainable and robust along its whole life-cycle.

1In economics, BRIC is a grouping acronym for the emerging markets of Brazil, Russia, India, and
China.

16 Customer-Oriented Business Process Management: Vision and Obstacles 409

This combination leads to a new form of continuous model-driven engineer-
ing [26], based on the eXtreme Model-Driven Development (XMDD) paradigm (see
also, Chap. 10 [12, 23]), itself based on organizing the whole process/application
life-cycles along one single modeling artifact: the one thing of the One-Thing Ap-
proach (OTA) [25]. The OTA is in fact designed to provide all stakeholders with
adequate views tailored to concisely inform them in real time whenever their input
is required.

Seen from a conceptual perspective, XMDD leads to an incremental model of de-
sign: the gradually arising one-thing incorporates and documents all the decisions
and efficiently propagates conflicts to the responsible stakeholders for discussion
and re-decision. This communication discipline improves the classical cyclic devel-
opments processes by focused communication between the involved stakeholders in
real time, continuously obeying the typically hierarchical responsibility structure,
which maintains a waterfall-like organization of priorities in decision. In daily prac-
tice though, this same strategy of tight communication and quick feedback closely
resembles the pair-programming and ‘customer on the lap’ philosophy of eXtreme
programming, which drastically reduces the felt complexity of BP development be-
cause of the agility gained at the development process level. An agile development
process effectively helps avoid the costly over-engineering that in the traditional
style of development is typically employed as a built-in protection against the con-
sequences of misunderstandings or changing requirements. Because agility is now
intended and supported in the development process, it no longer needs to be re-
flected in complex software architectures. Rather, the development should always
focus on the currently known requirements, without the central preoccupation of
guarding against possible or potential change requests, which typically then turn
out to be quite different than foreseen. This new approach drastically reduces the
felt complexity of the actual development and eases adaptation. Because the soft-
ware architecture is much simpler, so is its one-thing-oriented change management:
maintaining the consistency of the various requirements is inherently supported, and
the points of required action for each change are made much more explicitly appar-
ent.

In the following, we first discuss the new style of ad-hoc business process devel-
opment: this helps us develop our vision in Sect. 16.2 at a global and more concep-
tual level, and to present XMDD as a way to enhance this style with formal methods-
based technology. Subsequently, we look at the state of the art of ERP-centric BPM,
which almost naturally exposes typical obstacles of realization in current state of
the art environments. In Sect. 16.4 we examine the state of the art of API design.
The chapter closes with a brief discussion and statement of future research goals.

16.2 Design by Doing—A Vision for Adaptive Process
Management

Modern business process management (BPM) increasingly focuses on enabling
ad-hoc changes of running process instances, addressing the need for reacting to

410 T. Margaria et al.

changes in business environments in a quick and flexible way. Meanwhile these
thoughts have led to a basically different perspective on the engineering of pro-
cesses, striding away from the traditional two-phased approach of first modeling
process templates and afterwards creating process instances for case handling. The
new perspective considers processes as being fluent in a metaphorical sense, mean-
ing that they are continuously adapted and reshaped to optimally fit the respective
concrete case at hand. Consequentially, the more ambitiously this approach is pur-
sued the more the boundary between engineering and use of processes blurs. The
overall goal is to empower business users to create and adapt processes on-the-fly.

These ideas bring a shift from a top-down approach that aims at total control
of the workflow by the management towards a bottom-up approach that empowers
the process users to align the process models to the actual case at hand [21] and
produces new process variants that best suit the actual situation. Ideally, whenever
adaptation is needed, managers re-define the needed outcomes, process owners ad-
just the intersection points, and each process team is able to immediately work in
the new, adapted way.

In a sense, this is a form of self-management that is built-in in the new process
design philosophy. As desired for self-managed systems, unforeseen exceptions are
no longer to be considered as detrimental deviations from the desired canonical
workflow. They are rather accepted as an essential part of the variance in every-
day business life, and thus considered the new normal case that a good (process)
environment must be able to deal with.

Design by doing leads to a process design philosophy which considers changes
as welcome variations that ensure response to competitiveness and foster sustain-
able success. In fact design by doing overcomes the ‘classical’ burden to foresee
and model every potential exception in advance, a goal which is doomed to fail:
business changes too rapidly. Moreover, it is exactly the unforeseen changes that
typically have the largest impact and the greatest potential for competitive advan-
tage, in particular, when they reflect the customer’s perception directly.

Unfortunately, existing approaches based on analyzing the as-is process and un-
dergoing the whole stack of BPM life-cycle spanning modeling, simulation, imple-
mentation, monitoring, and optimization for one or more to-be variants often require
too much bureaucratic overhead and implementation time if carried out in business
practice. This way of changing often requires a project with business and IT consul-
tants where the task of identifying the as-is takes so long that the knowledge gained
is obsolete before it can be used to define the to-be, resulting in a systematic waste
of time and resources. Thus, the investments (costs and response time) are so high
that organizations typically afford it only for unavoidable cases such as when laws
and regulations mandate new compliances.

16.2.1 Following Recipes Does not Make Good Cooks

Gartner fellow Janelle Hill predicts that

16 Customer-Oriented Business Process Management: Vision and Obstacles 411

“new BPM technologies will enable the management of more unstructured and dynamic
processes to deliver greater business efficiencies and competitive advantage.”2

Focusing on dynamic and unstructured work results in a process management per-
spective that is basically different from the traditional focus on routine, i.e. pre-
dictable and sequential processes. As Pink [28] observes, predictable, prescribable
routines are (in his terminology) algorithmic, and can therefore be scripted, codified
in precise processes and then automated or equivalently delegated without running
extensive risks. These project types are ones that are well handled by the traditional
BPM design approaches. Complex knowledge- and experience-intensive work is on
the contrary unpredictable. The underlying processes might even appear chaotic!
At minimum they are very sensitive to initial and environmental conditions. This
is the realm of the much feared It depends. . . answers, which require creative so-
lutions, and creativity thrives with freedom. Working along a predefined process
template implies squeezing and twisting each different case to force it into a stan-
dardized way of treatment. This is not the best way to handle creative tasks. Despite
the harmonization-oriented advantage of predictability within this approach, forced
standardization of knowledge-intensive work reduces business agility instead of in-
creasing it, often resulting in the delivery of significantly less value. In his book
“Mastering the Unpredictable” Tom Shepherd concludes that

“traditional applications, even BPMSs, don’t deal well with variability, and it is the knowl-
edge workers that often suffer as a result. [. . .] We need to move past assembly-line thinking,
where we try to eliminate every variation, and focus on how to deal with the reality of work
that changes from one situation to the next” [31].

To support creative processes we need a consistent yet adaptive approach that
facilitates a variety of process variants and learns from each special case for future
application. Even if a particular case will never be repeated exactly the same way, it
contains knowledge that might help solve similar problems still to arise. However,
it is a challenge to identify and extract the knowledge that is best suitable to help
improve problem solving in future cases. Extracting such knowledge has to do a
lot with listening. It is about supporting business users in handling diversity and
adapting to customers’ needs while at the same time learning from each individual
solution and providing it to others as an effective process variant. It is also about
creating processes iteratively without the need for a-priori analysis. Gartner fellow
Jim Sinur shortly describes it as Design by Doing in contrast to the mainstream
approach that might rather be seen as Doing by Design [32].

Being adaptive is not about predicting a set of variants for how a process will be
executed: for realistic processes it is impossible to agree beforehand on all possible
alternatives. Instead it is about empowering business users to freely change or create
processes on demand within an agreed range, moving from prescriptive control to a
form of loose supervision, so that the resulting process is consistent with applicable
business rules and well-defined goals. Figure 16.1 shows the main ingredients of an

2From “Five Predictions for How BPM Will Evolve”, 2011, available at: http://www.
documentmedia.com.

http://www.documentmedia.com
http://www.documentmedia.com

412 T. Margaria et al.

Fig. 16.1 Balancing top-down control and empowerment of process teams

adaptive BPM environment. There, the need of control/supervision and the freedom
to adapt, cooperate in a meet in the middle strategy that reconciles both top down
and bottom up driving forces. Centrally managed business rules make a process as
adaptive or rigid as desired, guiding the range of acceptable variance according to
stated principles of governance.

From an abstract perspective, both the traditional and the adaptive approach are
goal-driven in the sense that they both aim to provide processes for reaching a par-
ticular business goal. This is evident in the traditional setting, where every process
is developed for achieving a clearly stated outcome. It is true, however, also for the
adaptive approach which does not prescribe in detail how a certain workflow should
proceed, but only what has to be achieved in terms of strategic objectives set by
executives and the operational targets proposed by management, that are translated
to specific goals by process owners.

Thus the difference between prescriptive and adaptive process management ap-
proaches is that the what-oriented adaptive approach is more flexible to accom-
modate change than the how-oriented traditional approaches, as what-style speci-
fications, in contrast to how-style specifications, do not enforce premature design
decisions. This gives the business process users that carry out a process the neces-
sary degree of freedom in how to achieve their process goals by empowering them
to change activity sequences as long as this does not conflict with applicable busi-
ness rules [8]. More generally, a formal specification of process goals and business
rules creates a clear framework for user-driven adaptation of processes with which

16 Customer-Oriented Business Process Management: Vision and Obstacles 413

to comply. This formal specification approach facilitates both the adaptation of pre-
defined process templates during execution as well as the autonomous creation of
sub-processes wherever needed and authorized. This way certain parts of the model-
ing phase are shifted to the execution phase, leveraging the fact that the actor knows
best how to carry out a particular process step to achieve a certain goal. Hence,
iterative adaptation transforms a less ordered process state to a structured one by
aligning activities that best fit the problem to solve.

The adaptive approach does not search for the one right process that fits all future
cases but aims to create alternatives to choose from and to provide guidance for
users that might be less experienced. Still, when evaluating performance indicators
and the quality of each process’ outcome, it is possible to identify and establish
guidelines in the form of best practices such as identifying process variants that
have proven to be most effective for a certain situation.

16.2.2 Basic Requirements

The set of recommended traits of the proposed approach to adaptive processes can
be summarized as follows:

• Empower authorized business users to apply on-the-fly changes to process in-
stances during execution. This empowerment includes user-driven creation of
new sub-processes.

• Facilitate the definition of role-based authority to control process change and of
creation as well as execution rights.

• Collect, analyze and learn from on-the-fly changes of process instances in order
to create knowledge that might influence the execution of upcoming process in-
stances immediately.

• Facilitate the formal specification of business rules to be applied to processes
and triggered by certain events during process execution. Business rules are con-
straints that steer decisions and limit user actions. They enforce compliance to
regulations and business principles of user-created processes. They also define
the sphere of autonomy within which the processes can be acceptably defined.

• Facilitate the formal definition of goals to replace prescriptive process refinement
to the utmost detail. Instead of rigid activity recipes, these goals are the real pro-
cess drivers because business users will push the concrete process execution to-
wards achieving the required goal.

• Allow process execution to be completed if all process goals are achieved instead
of requiring a rigid sequence of activities to be executed.

• Facilitate the partitioning of goals into formally specified achievements.
• Link achievements directly to real-world outcomes so as to be observable as

closely to the desired result as possible. Ideally, they should rely on customer
feedback instead of statistical extrapolation of abstract performance indicators.

• Facilitate process optimization based on achievements to ensure compliance with
any Service Level Agreement (SLA) or the cheapest way of process execution
according to some applicable measurement of cost or preference.

414 T. Margaria et al.

• Implement real-time or near-time process analysis to facilitate immediate reac-
tion to deviations in the expected process outcomes. This real-time analysis in-
duces a self-monitoring component that helps alert and react in a timely fashion.

• Link processes with process owners and process teams that span departmental
boundaries, thus fostering a collaborative and open culture in the organization.

• Provide change management functionality for process-related entities like busi-
ness rules, contextual data and process content. Nothing is fixed forever, even
strategies change, thus an adaptive BPM system needs to be easily evolvable it-
self.

This process of incremental but continuous explicitation of the tacit knowledge
of the actors and of the implicit rules of the context is aligned with the idea of
an ideal enterprise physics paradigm [24], that helps organizations and enterprises
know themselves and their ecosystem in a more systematic way and needs support
by adequate process management tools and frameworks that support this incremen-
tal formalization style [34].

16.2.3 Challenges

As the adaptive approach gains first ground in industry, some enthusiasts of the
first hour like Max J. Pucher—called the Guru of Adaptive by the adaptivity
community—postulate a radical break from tradition and the transition to a fun-
damentally different approach of managing processes in organizations in order to
leverage an adaptive paradigm. Being less dogmatic and more pragmatic, one might
appreciate the advantages of an appropriate integration of both concepts, the tra-
ditional approach driven by process-templates as well as the adaptive approach
empowering business users. Customers of Business Process Management Systems
(BPMS) should not be forced to make an either-or decision, as most processes would
best be specified as hybrids between the two worlds comprising structured and un-
structured parts and features. The challenge for organizations is to find the right
balance between forcing control top-down and empowering business users to adapt
processes bottom-up.

The challenge for research—especially in software development—is to create a
methodology as well as architectural solutions and behavioral models that provide
the required capability, flexibility, and structured guidance in finding this balance.
By now, despite the anticipated capabilities, there is little research about an ap-
propriate methodology, although the idea of continuously adapting predefined pro-
cesses has had proposers for a long time.

The ADEPT2 system [29] focuses on process schema evolution and change prop-
agation to already running instances, which addresses the need of process migration
on the fly for long running processes. ADEPT2 processes are modeled by applying
high-level change operations with pre- and post-conditions that ensure structural
correctness-by-design of the resulting process model. A model-driven approach for
the assertion and preservation of semantic constraints has been proposed [18].

16 Customer-Oriented Business Process Management: Vision and Obstacles 415

Process mining techniques have been used to support business process discov-
ery [9]. They analyze historical information from log files of existing business ap-
plications in order to mine actual business processes that might be unknown and
hidden.

Finally, process mining techniques have been also incorporated in the ADEPT2
system to mine log files of executing processes for harmonization purposes, in or-
der to extract a single process model from a set of different variants resulting from
user-driven changes of existing templates. However, the basic assumptions underly-
ing process mining techniques are that there is a single exact process buried under a
bunch of more or less structured information in log files, and that these log files are
complete and reliable. This is usually not the case even for prescriptive processes
designed and enforced in the traditional way. Too many exceptions and variants that
in practice are unavoidable and coded into the “canonical” best practice processes
implemented in industrial solutions, blur the picture one can extract from real exe-
cution logs. Thus,

“process mining, in order to become more meaningful, and to become applicable in a wider
array of practical settings, needs to address the problems it has with unstructured pro-
cesses” [9].

By now, the effort of applying process mining on a set of process variants still pre-
sumes a single reference model instead of allowing multiple concurrent process
variants of equal value [17].

In order to handle highly adaptive or even ad-hoc processes that gain their struc-
ture only at execution time we need research on (automated) learning of complex
systems and on reasoning methodologies that can use the information so gained
to inform correction or optimization. As depicted in Fig. 16.1 on the right, the as-
sessment of achievements with respect to the goals, produces useful feedback. This
information should be learned, and inform the use of flexibility for future cases. As
we see in the figure, we propose to do this both from the perspective of business
management as well as from the perspective of process actors. This learning and
feedback cycle is a self-management loop, and is at the very heart of an adaptive
process management approach. In order to deal with it, research has to find inno-
vative ways to capture barely tangible interrelations between process variations and
complex business transactions/events. The problems to be solved comprise asking
for the reason for changing a particular process, how to determine whether a change
is significant or even crucial, and what are the consequences for prevailing process
variants.

16.3 Towards Automated Integration to a Virtual Service
Platform

Every business process needs to be adapted at some point in time. This has been
the reason for introducing a pro-active management of the process life-cycle in
classical BPM approaches. However, maximum benefit of the adaptive approach

416 T. Margaria et al.

can be achieved in dynamic business environments, especially if individual services
are carried out in a custom-tailored or project-driven manner. In this setting inno-
vative processes are crucial for business success. Unfortunately, because of their
less-structured nature processes of this kind are barely supported by rigid enterprise
systems. On the other hand, these systems are considered essential whenever orga-
nizations need to manage complex business processes. Thus Enterprise Resource
Planning (ERP) is the key IT system of today’s business solutions.

The concerns of ERP users summarized in the motivation are still insufficiently
addressed by the large suppliers as well as by smaller ERP vendors. Moreover, open
source products run well behind the state of the art of modern software development
techniques in their development. Specifically, the three techniques we consider most
promising in the context of a future generation of ERP products are as follows:

• plugin architectures at the platform level, that help realize a product-line like
collection of features

• service-orientation for the production and provision of customer-driven and
community-specific functionality, combined with

• a declarative approach to software assembly and company-level customization.

The three techniques, taken in combination, have the potential to radically change
the way ERP systems are conceived, provisioned, and deployed in individual busi-
nesses. In particular, as the typical system landscape in enterprises can be extremely
heterogeneous, such techniques are even more desirable. This landscape often com-
prises one or more ERP systems together with many other legacy systems, custom
made products, or even spreadsheets, e.g. used as planning and decision making
tools. Service-oriented architectures can help in composing all these systems into
heterogeneous applications [4, 6, 13, 14, 19, 20, 33] tailored to the particular needs
of the users.

The potential of Service Oriented Architectures combined with a declarative ap-
proach to software assembly becomes apparent in the XMDD approach [23] (see
also, Chap. 10). Corresponding plugin-architecture-oriented development frame-
works like the jABC3 [35] directly support ‘safe’ user-driven process adaptation
by automatic service orchestration from high-level declarative specifications [5, 15,
16, 22].

16.3.1 Import of Third Party Services

Taking SAP-ERP as an example of an ERP system with a large installed base and
not designed for business process agility, we show here two ways of integrating
SAP services into a business-level service-oriented platform that correspond to the
traditional and to the agile approaches of service platform integration, respectively.

3The jABC Developers’ Website is here: http://www.jabc.de.

http://www.jabc.de

16 Customer-Oriented Business Process Management: Vision and Obstacles 417

Fig. 16.2 Architecture of the
communication between the
SIBs and SAP-ERP

The way to access SAP’s functionalities is via a proprietary protocol called
Remote Function Call (RFC). The SAP-ERP system plays the role of the service
provider (server) and is accessible by a corresponding C library (client). Figure 16.2
shows on the right the SAP-ERP system; for our purposes it can be seen as a
database that is surrounded by specialized functionalities that are implemented us-
ing the SAP-specific programming language ABAP. SAP-ERP can be used as is by
means of the SAP native GUI (as shown on the bottom), or it can be made available
to other programming environments by means of specific adaptation/transformation
chains, as shown in the variant that goes over RFC and JCo to a service.

We consider now the concrete example of how to define a simple service that adds
new material to the ERP system, and we compare two ways of providing access to
SAP as a service along the upper tool chain.

16.3.2 The State-of-the-Art Approach to Native Service Integration

The usual way to extend SAP-ERP’s native functionalities is by means of program-
ming extensions to it (called ‘SAP customization’ in the terminology of the many
companies that provide this service). This is done by encapsulating the native SAP-
ERP services with manually written wrapper code. The wrapped native service can
be used directly inside other programs, or deployed as a web service to be orches-
trated, for example, by a Business Process Execution Language (BPEL)4 engine.
Adding material to SAP-ERP is a multi-step process: it requires the use of several
native SAP-ERP services and the programming of a suitable business logic (actually
a small business process) that organizes these steps. The modern way of following
the traditional approach requires therefore coding for the wrappers, that encapsulate
the native API calls via RFC and make them available for a C or Java or Web service
environment, and then additional coding for the workflow (a C or Java program), or
a BPEL service orchestration. Assuming that a Java integration is wished, we use
the Java Native Interface (JNI) as a middle layer to encapsulate the C code: this is
the Java Connector in the middle of Fig. 16.2.

Figure 16.3 shows the (simplified) Java code for calling the Business Application
Programming Interface (BAPI) of SAP-ERP’s method to add new material.

4The BPEL TC website is here: http://www.oasis-open.org/committees/wsbpel/.

http://www.oasis-open.org/committees/wsbpel/

418 T. Margaria et al.

Fig. 16.3 The Java code to call a BAPI method

Writing such code is a technical task; the Java Connector works at a quite low
application level, however, the depicted code is still much simpler than what would
be needed when using this functionality inside a real service implementation.

As one can see, many steps are repeated while invoking a BAPI method (e.g.,
the creation of the connection, the repository, and the usage of the FunctionTem-
plate). For the function call itself, the programmer needs concrete knowledge of all
the names and acronyms of the parameters as well as all possible values. It is this
knowledge and understanding of a cryptical API that makes SAP IT consultants so
valuable and integration projects so complicated and costly. In this simple example
we need the knowledge that the input data is divided into head data and client data,
and that the acronym for the material type is called MATL_TPYE.

Unfortunately, once a method is invoked there is no direct feedback, more pro-
gramming is needed to analyze the return parameter(s). In case of an error the return
parameters contain an error code and a related description. This analysis code is the
same for each BAPI method call to invoke.

The global picture of how to provide external access to the SAP functionalities in
this setting thus needs low-level programming towards a ‘historically grown’ API,
and repetitive code structures that basically consist of a series of invocations and
subsequent checks of the returned items.

16 Customer-Oriented Business Process Management: Vision and Obstacles 419

16.3.3 The Automated Approach to Service Integration:
The Import Wizard

Instead of resorting to programmers to create the function calling code by hand on a
case-by-case basis, we can leverage the observation that this code performs the same
tasks over and over again, and that the SAP system provides useful meta-information
about itself and its functions.

To create a business-level service palette that uses the SAP-ERP native function-
alities we can instead apply the XMDD approach to service integration, organize the
integration into a dedicated process, and ultimately provide a service that automates
these steps and guides the business expert through the import process of a service
functionality using a graphical user interface.

The code of Fig. 16.3 can be seen as a kind of pattern collection. It has quite a few
technical functions that are generic in the sense that they suffice to reach all goals
needed for integration of single functionalities, but which are tedious to manually
implement. Ideally, this code should be automatically compiled from something
more abstract, and once generated, it should be widely retargetable and reusable.
This can be achieved in jABC by generating parametrized SIBs for each BAPI call.5

To generate SIBs with the appropriate parameters, the user only has to be aware of
the high-level BAPI layer which is much more familiar than dealing with the low
level technicalities of the RFC/JCo view. This means that it suffices that a business
expert knows which parameters should be used in order to generate SIB compo-
nents.

To do so, jABC provides a wizard that exploits the type of service to be en-
capsulated to support the service import. This wizard collects from the user all the
necessary information and generates the SIBs needed to invoke BAPI calls or to
show GUI windows that ask for interactive input information or display the feed-
back information. In our example, if we invoke the method to add new material,
the corresponding SIBs should query the user for the material number, type, and
description. A screenshot of the wizard’s GUI is shown in Fig. 16.4.

Thus, through the use of jABC, no programming is needed; the user enters the
name of the BAPI function to be integrated, then the user can access the corre-
sponding help text obtained directly from the SAP-ERP system, and decide about
the fields of the business object and the input parameters of interest. In the following
steps the user can choose in detail which parts of the export parameters should be
taken into account. The output GUI is then configured and the SIBs are generated
during the final step. As a result, the business expert obtains the set of ready SIBs
that perform all the necessary tasks. The user can now employ them to orchestrate
in a relatively simple fashion the processes needed and run these processes within
jABC’s execution environment as shown in the next section.

The control flow depicted in Fig. 16.5 shows in more detail how the wizard
works. By default the wizard creates three SIBs for each BAPI function: one for

5BAPI is the SAP-specific business-level API, that describes the native business objects.

420 T. Margaria et al.

Fig. 16.4 Selection of the BAPI method in the import wizard

an input GUI, one to call the native function and one for the output GUI. Once the
wizard has established a connection to the ERP system a concrete BAPI function
can be selected and the wizard loads the needed metadata from the Business Object
Repository (BOR) of the ERP system. On the first wizard screen the user provides
a name and a description for the new SIB. On the second screen the user selects all
the relevant parameters of the function and defines for each parameter details like a
name and a help text, this whenever the wording from the BOR is either too cryptic
or incomplete. The next screen defines the GUI for the input SIB, e.g., the order of
the fields or to split them on different tabs. After selecting the output parameters
the user can define the user interface for the output SIB. Finally, the generation of
the SIB code starts, and the generated code is automatically compiled and loaded
into the jABC. The code generation is performed by a Velocity template engine that
combines the data provided by the user with static data from a set of code templates
and then produces the code for the SIBs.

16.3.4 Practical Impact: Orchestrating SAP Services in an XMDD
Style

Using a SIB is fundamentally different than using a Web service (e.g., in BPEL).
Using SIBs means choosing ready-to-use business components from a provided
collection, whereas using a Web service in a process model means choosing an
invoke-activity and then connecting this activity with a certain partner link from

16 Customer-Oriented Business Process Management: Vision and Obstacles 421

Fig. 16.5 Control flow of the import wizard

some WSDL which can be found at some URI. The latter is still similar to the inte-
gration of native APIs just discussed, and not what business users want to do.

Seen from a behavioral point of view, the conceptual mismatch between the two
perspectives becomes obvious: a Web service offers a functionality that can be ac-
cessed via a conversation with its operations. The conversation requires one or more
calls (invoke operations) to it and corresponding answers. The business user, on the
contrary, uses a Web service from within the own native context. The user is faced
with potentially a series of data adaptation and process mediation steps before the
original native request is formulated in a way consumable by the Web service. For
each call and answer, this transformation chain strikes. Therefore, the business user
does not see in reality the Web service as a single and directly usable unit. Rather

422 T. Margaria et al.

Fig. 16.6 Example process “add material”

he perceives every interaction individually, and sees it as a distant thing at the end
of a translation chain. The granularity of the service consumption is thus typically
provider-centric: the user sees the calls, not the service in its entirety.

As an example of an overarching process spanning different (service) platforms
that an empowered business expert may like to be able to define and execute, we con-
sider the case where a shop owner would like to add new material to shop owner’s
ERP system, then generate a new list of all materials and notify a colleague that this
addition has happened. Figure 16.6 shows the jABC process that implements this on
the basis of an SAP-ERP SIB palette generated with the import wizard, OpenOffice
to generate and print the report, and the notification services of the IMS Open-
SOA platform at Fraunhofer FOKUS in Berlin. The process has a typical structure

16 Customer-Oriented Business Process Management: Vision and Obstacles 423

and consists of two subprocesses, one (shown in the figure) to orchestrate the ac-
cess to SAP and one within OpenOffice. The last SIB notifies the supervisor of the
user via Short Message Service (SMS). Analogously to the SAP integration, also
the orchestrated OpenOffice process uses SIBs that are imported third party service
components to remotely control the software.

The subprocess of adding the material begins with several SIBs which retrieve
data from the SAP system: a list of all industry sectors followed by all material
types, the units of measurement and the material groups. All this data is used to
prepare the drop-down entries in the GUI which comes as next step and displays
this form to the user. Here the domain expert can input all necessary data, and also
specify whether the material number should be input manually or generated auto-
matically by the SAP system. This information can be provided here all at once,
while in the original SAP-ERP GUI it would be necessary to move around between
several masks to find and fill up each field individually. For automatic number gener-
ation the SIB automatic material number generation proceeds towards the SIB which
asks the SAP system for the next free material number. The last SIB in this process,
finally, is the one that actually performs the call of the desired BAPI method.

The following section presents an analysis of native APIs of ERP systems. If
these APIs are intended to provide the foundation for the development of services,
then it is clear that there are more stringent requirements needed in the definition
and design of these APIs than if the designers relied on the intuition and knowledge
held by human programmers working to tease out a functional understanding. The
perspective of using APIs in an automated, service-oriented environment has led us
to identifying a set of domain-independent characteristics that we believe are useful
to assess the quality of an ERP’s APIs [7].

16.4 Technical Requirements to ERP APIs

The dire status in the ERP commercial product landscape is illustrated in the de-
tailed analysis of ERP APIs for three major ERP vendors done in [7], which we
discuss in this section. That analysis concerns market leaders in the segments for
large, middle, and small businesses. The authors found, in general, a lack of com-
prehensiveness and organization both between and within vendor APIs. While much
work has been accomplished in designing development rules and guidelines for the
user interface, no such guidelines direct the development of APIs so that such re-
sources can be drawn on in a move to a plug-in oriented architecture. The evaluation
concerned the APIs of five different solutions: SAP BAPI; SAP eSOA; Microsoft
Dynamics NAV Web services; and two versions of Intuit Quickbooks, the online and
the desktop edition; along 18 requirements that cover the access provision to 8 key
business objects. Other than the work usually done on API analysis, which concerns
the adequacy to be dealt with by programmers, this evaluation considers the entire
API ecosystem in a systemic and holistic perspective. This work thus includes the
aspects of service provisioning, ease of integration and automation, propagation of
information to the user.

424 T. Margaria et al.

Fig. 16.7 Requirement
categories (from [7])

The four categories of requirements are depicted in Fig. 16.7. The core require-
ments in the center are the most important category. They are the central require-
ments for an enterprise API to support a truly service-oriented development. Us-
ability features are grouped together under API design, everything regarding to the
underlying technology belongs to technology issues and the category additional in-
formation concerns the possibilities of providing additional data and documentation.
These requirements reflect the experience made during the implementation of tools
for (semi-) automatic SIB-generation, the feedback and observations from lectures
at TU Dortmund University and Potsdam University as well as from the experiences
drawn in [10] and [1].

Core requirements A Registry for service discovery (RSD) in order to systemati-
cally get hold of the services (resp. to provide them) is an obvious must for any
service provider, as is the Soundness and Completeness of Service definitions
(SCS). Without Full Accessibility of Business objects (FAB) the service-oriented
design is restricted to the parts made available. Violating the Stability of Ser-
vice Definitions (SSD) drastically impairs the acceptance of provided services:
version changes should not break previously working functionality. In contrast,
Input Data Validation (IDV) is not really a must but still an important feature,
in particular for solutions like the SAP solutions, where the formats are ‘histori-
cally’ grown. While the first four requirements of this category are without doubt
necessary preconditions for a successful service-oriented development, the last
is of lesser importance but still a major factor for gaining acceptance.

API design An Intuitive and Consistent Naming (ICN) certainly supports effi-
ciency, in particular in cases where no automatic input validation is supported.
The same applies to Clear and Simple Structure (CSS), and to Complete and
Sound Documentation (CDS). These three requirements are not really a must,
but still of major importance to achieve acceptance.

Technology issues Technology issues concern Platform Independency through the
use of Standards (PIS), API Acess Security (AAS), Easy Authentication Mecha-
nism (EAM), and Speed resulting from Latency and Throughput (SLT—not eval-
uated here). While AAS may be easily considered a must, the other requirements
are less stringent but certainly characterize features one would expect from a
professional solution.

Additional information This class of requirements marks good design and prac-
tice: Documentation Available per API (DAA) denotes the ability to provide API

16 Customer-Oriented Business Process Management: Vision and Obstacles 425

Table 16.1 Evaluation
overview (from [7]). A plus
(+) indicates that the
requirement is met, a circle
(◦) a partial satisfaction, and
a minus (−) a full failure

BAPI eSOA NAV QBOE | QBDE

RSD − + ◦ ◦
SCS ◦ + + ◦
FAB − ◦ + −
IDV + + + +
SSD + + − −
ICN ◦ ◦ + +
CSS ◦ − + +
CSD − ◦ − ◦
PIS ◦ + ◦ ◦ −
AAS ◦ ◦ ◦ + ◦
EAM + + + − ◦
DAA + − − ◦
VAA + − + +
DOP − + + +
VRA/GIS/ISN − − − −

documentation via the API itself. Value offers Available per API (VAA) refers to
structured ways of data selection beyond text input fields, like drop down menus,
in order to free the user from dealing with syntactical details. Declaration of Op-
tional Parameters (DOP) means transparency of required vs. optional input.

The Validation Rules available per API (VRA), Graphical Icons symbolizing the
Services (GIS), and Internationalized Service Names (ISN) requirements are not met
by any of the evaluated APIs, but still mark features that would ease the API’s use.

16.4.1 Evaluation Profiles

Table 16.1 summarizes the results. It is surprising how far all solutions are from
meeting all the requirements, a situation probably due to their individual business
profiles.

Looking at the two SAP solutions, the move from the proprietary RFC protocol to
platform independent Web services was an important step forward. The number of
provided services grew enormously, even though it is incomplete. On the other hand
some changes made automation more difficult, e.g., the change to free text input
parameters where a menu-driven choice among alternatives would be more suitable
(cf. requirement VAA). The overall poor coverage of business object access opera-
tions in the SAP solutions witnesses the need to extend the collection of services in
a customization phase. Customization is often time-consuming and expensive, and

426 T. Margaria et al.

is typical for the SAP business model. Not surprisingly, new SAP services are bet-
ter implemented on the basis of eSOA, in particular because of the documentation
facilities provided by the enterprise service registry and the ES-Wiki.

The Dynamics NAV solution scores with its good coverage of basic CRUD op-
erations on business objects, which makes it a good basis for less demanding cus-
tomers that can live with the services provided by this ERP-system. On the other
hand, Dynamics NAV provides little support for people wanting to develop their
own services, which confirms the common opinion that this ERP-system addresses
small and medium enterprises with standard requirements.

Quickbooks is Windows-based, and not designed for scale. Its good service doc-
umentation API make it nevertheless an attractive and economic solution for small
companies with little demand.

It is obvious that none of the evaluated systems is ready yet for truly agile BP
development. This is not too surprising for the Quickbooks solution, and the weak-
nesses the other solutions seem to reflect the current underlying business model.
Still, it is possible to build on both SAP’s eSOA and Dynamics NAV. For the for-
mer the main hurdle is to extend the coverage of the APIs (cf. requirement FAB),
whereas Dynamics NAV mostly suffers from lacking stability (cf. SSD). The other
weaknesses may be comfortably covered by a surrounding development framework
like the jABC.

16.5 Conclusion

We have discussed two major streams of business process development, the ag-
gressive new style of ad-hoc business process development, reminiscent of simi-
lar movements for agile application development like eXtreme Programming and
Scrum, and the more traditional, largely ERP-dominated business process manage-
ment. We have argued that both these streams fail to adequately address vital re-
quirements; the former, because the lack of structure hampers scalability, both in
size and along the lifecycle, and the latter, because their rigid structure inhibits
agility. In addition we have seen that market leading solutions have severe short-
comings concerning their APIs which reflect fundamental failings in the way ERP
systems are delivered to the customer.

However, the unacceptably long latency of change with traditional ERP systems
is too high to compete with the rapid changes in common business environments.
For example, a lot of benefit and value that would be deliverable by small, adap-
tive day to day changes (akin to a Kanban-style approach [2]) go wasted, because
the micro-steps of incremental adaptations are ignored by the traditional holistic
approaches.

Research in ERP implementation success point to high failure rates. For example,
the Robbins-Gioia Survery (2001) [30] found that 51% of the companies viewed
their ERP implementation as unsuccessful and 46% of those companies with ERP
systems in place felt that they did not fully understand how to use their systems. In
an article analyzing the current status of ERP systems [27], Patrick Marshall states

16 Customer-Oriented Business Process Management: Vision and Obstacles 427

“The leading cause of ERP angst, some analysts say, is the implicit notion that one
system can fit all needs.” Marshall reports on a study by IDC’s Software Business
Solutions Group that found that “in some cases 80 percent of staff members’ time
is spent working around the system.” For example, in an implementation we have
been involved with, the software allowed end-users to store finished products within
only one location in inventory. Work-arounds to deal with the issue were painful. In
an agile environment users that know the business process stream could implement
a revised version allowing multiple locations and give value to the organization. As
noted, the current culture of end users is to not adapt to system constraints but to find
a way to continue to do business in the way they believe is important and to work
around any inherent system constraints. Such statistics validate the proposal that a
change is mandatory in how ERP systems are constructed and implemented. We
believe that available technology in terms of service orientation and model driven
development taken in combination have the potential to radically change the way
BPM is conceived, provisioned, and deployed in individual businesses and would
lead to better success.

Our proposal of putting more emphasis on system development and execution
directly into the hands of the key stakeholders, the person responsible for the work
and those performing the work, resonates with the current understanding of ERP
failure due to excessive system complexity and lack of training and education.6

Users wish to find ways to make systems simpler and more understandable so that
they are able to perform specific tasks as tailored to their needs as possible. They also
wish to understand how decisions are made. Both of these concerns are fundamental
to the notion of empowerment and are present in our proposal.

The complete bottom-up process definition strategy proposed by ad-hoc methods
may however not be the best: while single workers are close to what happens and can
be essential in optimizing an existing process, once it is broadly defined, the scope
of the entire process is defined at a managerial or strategic level. Thus it is there
that the responsibility, the decision power, and the coarse-grain definition need to be
homed. As in mission critical software, one distinguishes the goal, the strategic, the
tactical, and the operational levels: this is a clear guideline for the organization of
autonomy, competence, and design level that matches well the proposed one-thing
approach. Clearly such an understanding of the new agile business world requires
the ERP industry to master new flexible application environments that support co-
innovation to an unprecedented extent.

References

1. Ackermann, A.: Automatische Generierung von Softwarebausteinen zur Modellierung ERP-
System übergreifender Geschäftsprozesse. Diploma thesis, Universität Potsdam (2010). In
German

6The Site for Open Source ERP examines the real reasons for failure of ERP systems here:
http://www.open-source-erp-site.com/failure-of-erp.html.

http://www.open-source-erp-site.com/failure-of-erp.html

428 T. Margaria et al.

2. Anderson, D.J.: Kanban: Successful Evolutionary Change for Your Technology Business.
Blue Hole Press, Belize (2001)

3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading
(2000)

4. Borovskiy, V., Zeier, A., Koch, W., Plattner, H.: Enabling enterprise composite applications on
top of ERP systems. In: Kirchberg, M., Hung, P.C.K., Carminati, B., Chi, C.-H., Kanagasabai,
R., Valle, E.D., Lan, K.-C., Chen, L.-J. (eds.) APSCC, pp. 492–497. IEEE Press, New York
(2009)

5. Braun, V., Margaria, T., Steffen, B., Yoo, H., Rychly, T.: Safe service customization. In: IEEE
Communication Soc. Workshop on Intelligent Network, Colorado Springs, CO (USA), vol. 7,
p. 4. IEEE Comput. Soc., Los Alamitos (1997)

6. Kubczak, C., Margaria, T., Steffen, B.: Mashup development for everybody: a planning-based
approach. In: SMR2, Proc. 3rd Int. Worksh. on Service Matchmaking and Resource Re-
trieval in the Semantic Web, Colocated with ISWC-2009, Washington, DC, USA, CEUR-WS,
vol. 525 (2009)

7. Doedt, M., Steffen, B.: Requirement-driven evaluation of remote ERP-system solutions: a
service-oriented perspective. In: Proc. SEW 2011. IEEE Comput. Soc., Washington, USA (to
appear) (2011)

8. Grässle, P., Schacher, M.: Agile Unternehmen Durch Business Rules – Der Business Rules
Ansatz. Springer, Berlin (2006)

9. Günther, C.W., Van Der Aalst, W.M.P.: Fuzzy mining: adaptive process simplification based
on multi-perspective metrics. In: Proc. of the 5th Int. Conf. on Business Process Management,
pp. 328–343. Springer, Berlin (2007)

10. Karla, D.: Automatische Generierung von Softwarebausteinen zur Anbindung von SAP-
Diensten an ein Business-Prozess-Management-System. Diploma thesis, Technische Univer-
sität Dortmund (2009). In German

11. Ken Schwaber, M.B.: Agile Software Development with Scrum. Prentice Hall, New York
(2001)

12. Kubczak, C., Jörges, S., Margaria, T., Steffen, B.: eXtreme model-driven design with jABC.
In: Proc. of the Tools and Consultancy Track of the 5th European Conference on Model-Driven
Architecture Foundations and Applications (ECMDA-FA), vol. WP09-12 of CTIT Proceed-
ings, pp. 78–99. CTIT, Enschede (2009)

13. Kubczak, C., Margaria, T., Steffen, B., Nagel, R.: Service-oriented mediation with jABC/jETI.
In: Jain, R., Sheth, A., Petrie, C., Margaria, T., Lausen, H., Zaremba, M. (eds.) Semantic Web
Services Challenge. Semantic Web and Beyond, vol. 8, pp. 71–99. Springer, New York (2009)

14. Lamprecht, A.-L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-based ser-
vice composition. BMC Bioinform. 10(10), S8 (2009)

15. Lamprecht, A.-L., Naujokat, S., Margaria, T., Steffen, B.: Constraint-guided workflow com-
position based on the EDAM ontology. In: SWAT4LS 2010, Proc. 3rd Worksh. on Semantic
Web Applications and Tools for Life Sciences (2010)

16. Lamprecht, A.-L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based composition of
EMBOSS services. J. Biomed. Semant. 2(Suppl 1), 5 (2011)

17. Li, C., Reichert, M., Wombacher, A.: Mining business process variants: challenges, scenarios,
algorithms. Data Knowl. Eng. 70(5), 409–434 (2011)

18. Ly, L., Rinderle-Ma, S., Göser, K., Dadam, P.: On enabling integrated process compliance
with semantic constraints in process management systems. Inf. Syst. Front. (2010). doi:10.
1007/s10796-009-9185-9

19. Margaria, T., Kubczak, C., Steffen, B.: Bio-jETI: a service integration, design, and provi-
sioning platform for orchestrated bioinformatics processes. BMC Bioinform. 9(S-4) (2008).
doi:10.1186/1471-2105-9-S4-S12

20. Margaria, T., Nagel, R., Steffen, B.: Remote integration and coordination of verification tools
in jETI. In: ECBS’05. 12th IEEE Int. Conf. and Workshops on the Engineering of Computer-
Based Systems, pp. 431–436. IEEE Comput. Soc., Los Alamitos (2005)

21. Margaria, T., Steffen, B.: Service Engineering: Linking Business and IT. IEEE Comput.
39(10), 45–55 (2006)

http://dx.doi.org/10.1007/s10796-009-9185-9
http://dx.doi.org/10.1007/s10796-009-9185-9
http://dx.doi.org/10.1186/1471-2105-9-S4-S12

16 Customer-Oriented Business Process Management: Vision and Obstacles 429

22. Margaria, T., Steffen, B.: LTL guided planning: revisiting automatic tool composition in ETI.
In: Proc. SEW 2007, 31st IEEE Annual Software Engineering Workshop, Loyola College,
Baltimore, MD, USA, pp. 214–226. IEEE Comput. Soc., Los Alamitos (2007)

23. Margaria, T., Steffen, B.: Agile IT: thinking in user-centric models. In: Margaria, T., Steffen,
B. (eds.) ISoLA. Communications in Computer and Information Science, vol. 17, pp. 490–
502. Springer, Berlin (2008)

24. Margaria, T., Steffen, B.: An enterprise physics approach for evolution support in heteroge-
neous service-oriented landscapes. In: 3G ERP Workshop, Copenhagen, DK (2008)

25. Margaria, T., Steffen, B.: Business process modeling in the jABC: the one-thing approach. In:
Cardoso, J., Van Der Aalst, W. (eds.) Handbook of Research on Business Process Modeling.
IGI Global, Hershey (2009)

26. Margaria, T., Steffen, B.: Continuous Model-Driven Engineering. Computer 42, 106–109
(2009)

27. Marshall, P.: ERP, piece by piece (2010). In GCN, Government Computing News, June 17,
2010. http://gcn.com/Articles/2010/06/21/ERP-evolve-or-die.aspx?Page=1&p=1

28. Pink, D.H.: Drive. Riverhead Books, New York (2009)
29. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management with adept2.

In: Proc. of the 21st Int. Conf. on Data Engineering (ICDE ’05), pp. 1113–1114. IEEE Com-
put. Soc., Washington (2005)

30. Robbins-Gioia LLC: ERP Survey Results Point to Need For Higher Implementation Success
(2002). Press Release, January 28, 2002, Alexandria, Virginia, USA

31. Shepherd, T.: Moving from anticipation to adaptation. In: Swenson, K.D. (ed.) Mastering the
Unpredictable: How Adaptive Case Management Will Revolutionize the Way That Knowledge
Workers Get Things Done. Meghan-Kiffer Press, Tampa (2010)

32. Sinur, J.: BPM is shifting into high gear. Gartner Blog Network, April 22 (2010)
33. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform: concepts and

design. Int. J. Softw. Tools Technol. Transf. 1, 9–30 (1997)
34. Steffen, B., Margaria, T., Claßen, A., Braun, V.: Incremental formalization: a key to industrial

success. Softw. Concepts Tools 17(2), 78 (1996)
35. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-driven development with

the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) Haifa Verification Conference. Lecture Notes in
Computer Science, vol. 4383, pp. 92–108. Springer, Berlin (2006)

http://gcn.com/Articles/2010/06/21/ERP-evolve-or-die.aspx?Page=1&p=1

Chapter 17
On the Problem of Matching Database Schemas

Marco A. Casanova, Karin K. Breitman, Antonio L. Furtado,
Vânia M.P. Vidal, and José A. F. de Macêdo

17.1 Introduction

The problem of satisfiability is often taken for granted when designing database
schemas, perhaps based on the implicit assumption that real data provides a con-
sistent database state. However, this implicit assumption is unwarranted when the
schema results from the integration of several data sources, as in a data warehouse or
in a mediation environment. When we have to combine semantically heterogeneous
data sources, we should expect conflicting data or, equivalently, mutually incon-
sistent sets of integrity constraints. The same problem also occurs during schema
redesign, when changes in some constraints might create conflicts with other parts
of the database schema. Naturally, the satisfiability problem is aggravated when the
schema integration process has to deal with a large number of source schemas, or
when the schema to be redesigned is complex.

We may repeat similar remarks for the problem of detecting redundancies in a
schema, that is, the problem of detecting which constraints are logically implied by
others. The situation is analogous if we replace the question of satisfiability by the
question of logical implication.

A third similar, but more sophisticated problem is to automatically generate the
constraints of a mediated schema from the sets of constraints of export schemas.
The constraints of the mediated schema are relevant for a correct understanding of
what the semantics of the external schemas have in common.

With this motivation, we focus on the crucial challenge of selecting a sufficiently
expressive family of schemas that is useful for defining real-world schemas and yet
is tractable, i.e., for which there are practical procedures to test the satisfiability
of a schema, to detect redundancies in a schema, and to combine the constraints
of export schemas into a single set of mediated schema constraints. The intuitive
metrics for expressiveness here is that the family of schemas should account for

M.A. Casanova (�)
Department of Informatics, PUC-Rio, Rio de Janeiro, RJ, Brazil
e-mail: casanova@inf.puc-rio.br

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_17, © Springer-Verlag London Limited 2012

431

mailto:casanova@inf.puc-rio.br
http://dx.doi.org/10.1007/978-1-4471-2297-5_17

432 M.A. Casanova et al.

the commonly used conceptual constructs of OWL, UML, and the ER model. By a
practical procedure, we mean a procedure that is polynomial on the size of the set
of constraints of the schema.

As an answer to this challenge, we first introduce a family of schemas that we
call extralite schemas with role hierarchies. Using the OWL jargon, this family
supports named classes, datatype and object properties, minCardinalities and max-
Cardinalities, InverseFunctionalProperties, which capture simple keys, class subset
constraints, and class disjointness constraints. Extralite schemas with role hierar-
chies also support subset and disjointness constraints defined for datatype and ob-
ject properties (formalized as atomic roles in Description Logics). We then introduce
the subfamily of restricted extralite schemas with role hierarchies, which limits the
interaction between role hierarchies and cardinality constraints.

Testing satisfiability for extralite schemas with role hierarchies turns out to be
EXPTIME-hard, as a consequence of the results in [1]. However, for the restricted
schemas, we show how to test strict satisfiability and logical implication in polyno-
mial time. Strict satisfiability imposes the additional restriction that the constraints
of a schema must not force classes or properties to be always empty, and is more ad-
equate than the traditional notion of satisfiability in the context of database design.

The syntax and semantics of extralite schemas is that of Description Logics to
facilitate the formal analysis of the problems we address. However, we depart from
the tradition of Description Logics deduction services, which are mostly based on
tableaux techniques [3]. The decision procedures outlined in the chapter are based
on the satisfiability algorithm for Boolean formulas in conjunctive normal form with
at most two literals per clause, described in [2]. The intuition is that the constraints
of an extralite schema can be treated much in the same way as Boolean implica-
tions. Furthermore, the implicational structure of the constraints can be completely
captured as a constraint graph. The results also depend on the notion of Herbrand
interpretation for Description Logics.

The notion of constraint graph is the key to meet the challenge posed earlier. It
permits expressiveness and decidability to be balanced, in the sense that it accounts
for a useful family of constraints and yet leads to decision procedures, which are
polynomial on the size of the set of constraints. This balancing is achieved by a
careful analysis of how the constraints interact.

Constraint graphs can be used to help detect inconsistencies in a set of constraints
and to suggest alternatives to fix the problem. They help solve the query contain-
ment and related problems in the context of schema constraints [10]. They can also
be used to compute the greatest lower bound of two sets of constraints, which is
the basic step of a strategy to automatically generate the constraints of a mediated
schema from the sets of constraints of the export schemas [8]. The appendix il-
lustrates, with the help of examples, how to use constraint graphs to address such
problems.

The main contributions of the chapter are the family of extralite schemas with
role hierarchies, the procedures to test strict satisfiability and logical implication,
which explore the structure of sets of constraints, captured as a constraint graph,
and the concept of Herbrand interpretation for Description Logics. The results in

17 On the Problem of Matching Database Schemas 433

the chapter indicate that the procedures are consistent and complete for restricted
extralite schemas with role hierarchies, and work in polynomial time. These results
extend those published in [8] for extralite schemas without role hierarchies.

There is a vast literature on the formal verification of database schemas and on the
formalization of ER and UML diagrams. We single out just a few references here.
The problem of modeling conceptual schemas in DL is discussed in [4]. DL-Lite
is used, for example, in [5, 6] to address schema integration and query answering.
A comprehensive survey of the DL-Lite family can be found in [1]. Techniques
from Propositional Logic to support the specification of Boolean and multivalued
dependencies were addressed in [9].

When compared with the DL-Lite family [1], extralite schemas with role hier-
archies are a subset DL− LiteHN

core with role disjunctions. The restricted schemas

in turn are a subset of DL− Lite(HN)
core with role disjunctions only, which limits the

interaction between role inclusions and cardinality constraints. We emphasize that
restricted extralite schemas are sufficiently expressive to capture the most familiar
constructs of OWL, UML, and the ER model [4], and yet come equipped with useful
decision procedures that explore the structure of sets of constraints.

The chapter is organized as follows. Section 17.2 reviews DL concepts and intro-
duces the notion of extralite schemas with role hierarchies. Section 17.3 shows how
to test strict satisfiability and logical implication for restricted extralite schemas with
role hierarchies. It also outlines proofs for the major results of the chapter, whose
details can be found in [7]. Section 17.4 contains examples of the concepts intro-
duced in Sects. 17.2 and 17.3, and briefly discusses two applications of the results
of Sect. 17.3. Finally, Sect. 17.5 contains the conclusions.

17.2 A Class of Database Schemas

17.2.1 A Brief Review of Attributive Languages

We adopt a family of attributive languages [3] defined as follows. A language L in
the family is characterized by an alphabet A, consisting of a set of atomic concepts,
a set of atomic roles, the universal concept and the bottom concept, denoted by �
and ⊥, respectively, and the universal role and the bottom role, also denoted by �
and ⊥, respectively.

The set of role descriptions of L is inductively defined as

• An atomic role and the universal and bottom roles are role descriptions
• If p is a role description, then the following expressions are role descriptions

p−: the inverse of p

¬p: the negation of p

The set of concept descriptions of L is inductively defined as

• An atomic concept and the universal and bottom concepts are concept descrip-
tions

434 M.A. Casanova et al.

• If e is a concept description, p is a role description, and n is a positive integer,
then the following expressions are concept descriptions
¬e: negation
∃p: existential quantification
(≤ np): at-most restriction
(≥ np): at-least restriction

An interpretation s for L consists of a nonempty set �s , the domain of s, whose
elements are called individuals, and an interpretation function, also denoted s,
where:

s(�)=�s if � denotes the universal concept
s(�)=�s ×�s if � denotes the universal role
s(⊥)=∅ if ⊥ denotes the bottom concept or the bottom role
s(A)⊆�s for each atomic concept A of A
s(P)⊆�s ×�s for each atomic role P of A
The function s is extended to role and concept descriptions of L as follows

(where e is a concept description and p is a role description):

s(p−)= s(p)−: the inverse of s(p)
s(¬p)=�s ×�s − s(p): the complement of s(p) with respect to �s ×�s

s(¬e)=�s − s(e): the complement of s(e) with respect to �s

s(∃p) = {I ∈ �s/(∃J ∈ �s)/(I, J) ∈ s(p)}: the set of individuals that s(p) re-
lates to some individual
s(≥ np) = {I ∈ �s/|{J ∈ �s/(I, J) ∈ s(p)}| ≥ n}: the set of individuals that
s(p) relates to at least n distinct individuals
s(≤ np) = {I ∈ �s/|{J ∈ �s/(I, J) ∈ s(p)}| ≤ n}: the set of individuals that
s(p) relates to at most n distinct individuals

A formula of L is an expression of the form u� v, called an inclusion, or of the
form u|v, called a disjunction, or of the form u ≡ v, called an equivalence, where
both u and v are concept descriptions or both u and v are role descriptions of L. We
also say that u� v is a concept inclusion iff both u and v are concept descriptions,
and that u� v is a role inclusion iff both u and v are role descriptions; and likewise
for the other types of formulas.

An interpretation s for L satisfies u � v iff s(u) ⊆ s(v), s satisfies u|v iff
s(u) ∩ s(v) = ∅, and s satisfies u ≡ v iff s(u) = s(v). A formula σ is a tautol-
ogy iff any interpretation satisfies σ . Two formulas are tautologically equivalent iff
any interpretation s that satisfies one formula also satisfies the other.

Given a set of formulas Σ , we say that an interpretation s is a model of Σ iff s

satisfies all formulas in Σ , denoted s |= Σ . We say that Σ is satisfiable iff there is
a model of Σ . However, this notion of satisfiability is not entirely adequate in the
context of database design since it allows the constraints of a schema to force atomic
concepts or atomic roles to be always empty. Hence, we define that an interpretation
s is a strict model of Σ iff s satisfies all formulas in Σ and s(C) �= ∅, for each
atomic concept C, and s(P) �=∅, for each atomic role P ; we say that Σ is strictly
satisfiable iff there is a strict model for Σ . In addition, we say that Σ logically
implies a formula σ , denoted Σ |= σ , iff any model of Σ satisfies σ .

17 On the Problem of Matching Database Schemas 435

17.2.2 Extralite Schemas with Role Hierarchies

An extralite schema with role hierarchies is a pair S = (A,Σ) such that

• A is an alphabet, called the vocabulary of S.
• Σ is a set of formulas, called the constraints of S, which must be of one the forms

(where C and D are atomic concepts, P and Q are atomic roles, p denotes P or
its inverse P−, and k is a positive integer):
– Domain Constraint: ∃P � C (the domain of P is a subset of C)
– Range Constraint: ∃P− � C (the range of P is a subset of C)
– minCardinality constraint: C � (≥ kp) (p maps each individual in C to at least

k individuals)
– maxCardinality constraint: C � (≤ kp) (p maps each individual in C to at

most k individuals)
– Concept Subset Constraint: C �D (C is a subset of D)
– Concept Disjointness Constraint: C|D (C and D are disjoint atomic concepts)
– Role Subset Constraint: P �Q (P is a subset of Q)
– Role Disjointness Constraint: P |Q (P and Q are disjoint atomic roles)

We say that a formula of one of the above forms is an extralite constraint, the
concept subset and disjointness constraints of S are the concept hierarchy of S, and
the role subset and disjointness constraints of S are the role hierarchy of S.

We normalize a set of extralite constraints by rewriting:

∃P � C as (≥ 1P)� C

∃P− � C as (≥ 1P−)� C

C � (≤ kP) as C �¬(≥ k + 1P)

C � (≤ kP−) as C �¬(≥ k + 1P−)

C|D as C �¬D

P |Q as P �¬Q

The formula on the right-hand side is called the normal form of the formula on
the left-hand side. Observe that: a formula and its normal form are tautologically
equivalent; the normal forms avoid the use of existential quantification and at-most
restrictions; negated descriptions occur only on the right-hand side of the normal
forms; inverse roles do not occur in role subset or role disjoint constraints.

Furthermore, we close the set of extralite constraints by also considering as an
extralite constraint any inclusion of one of the forms

C �⊥ (≥mp)�⊥ (≥mp)� (≥ nq)

P �⊥ (≥mp)�¬C (≥mp)�¬(≥ nq)

where C is an atomic concept, P is an atomic role, p and q both are atomic roles or
both are the inverse of atomic roles, and m and n are positive integers.

Finally, a restricted extralite schema with role hierarchies is a schema S =
(A,Σ) that satisfies the following restriction:

436 M.A. Casanova et al.

Restriction (Role Hierarchy Restriction) If Σ contains a role subset constraint of
the form P � Q, then Σ contains no maxCardinality constraints of the forms C �
(≤ k Q) or C � (≤ k Q−), with k ≥ 1.

Note that the normalization process will rewrite the above constraints as C �
¬(≥ k + 1 Q) and C �¬(≥ k + 1 Q−), with k ≥ 1.

17.3 Testing Strict Satisfiability and Logical Implication

This section first introduces the notion of constraint graph. Then, it defines Her-
brand interpretations for Description Logics. Finally, it states results that lead to
simple polynomial procedures to test strict satisfiability and logical implication for
restricted extralite schemas with role hierarchies.

17.3.1 Representation Graphs

Let Σ be a finite set of normalized extralite constraints and Ω be a finite set of
extralite constraint expressions, that is, expression that may occur on the right- or
left-hand sides of a normalized constraint. The alphabet is understood as the (finite)
set of atomic concepts and roles that occur in Σ and Ω .

We say that the complement of a non-negated description c is ¬c, and vice-
versa. We denote the complement of a description d by d̄ . Proposition 17.1 states
properties of descriptions that will be used in the rest of this section.

Proposition 17.1 Let e, f and g be concept or role descriptions, P and Q be
atomic roles, and p be either P or P−. Then, we have:

(i) (≥ np)� (≥mp) is a tautology, where 0 < m < n.
(ii) e � f is tautologically equivalent to f̄ � ē.

(iii) If Σ logically implies e � f and f � g, then Σ logically implies e � g.
(iv) If Σ logically implies P � Q, then Σ logically implies (≥ kP) � (≥ k Q)

and (≥ kP−)� (≥ k Q−).
(v) If Σ logically implies (≥ 1P) � ¬(≥ 1 Q) or (≥ 1P−) � ¬(≥ 1 Q−), then

Σ logically implies P �¬Q.
(vi) If Σ logically implies e � f and e �¬f , then Σ logically implies e �⊥.

(vii) If Σ logically implies (≥ 1P)�⊥ or (≥ 1P−)�⊥, then Σ logically implies
P �⊥.

(viii) If Σ logically implies P � ⊥, then Σ logically implies (≥ mP) � ⊥, (≥
mP−)�⊥, �� (≤ nP) and �� (≤ nP−), where m > 0 and n≥ 0.

In the next definitions, we introduce graphs whose nodes are labeled with expres-
sions or sets of expressions. Then, we use such graphs to create efficient procedures

17 On the Problem of Matching Database Schemas 437

to test if Σ is strictly satisfiable and to decide logical implication for Σ . Finally, it
will become clear when we formulate Theorem 17.2 that the definitions must also
consider an additional set Ω of constraint expressions.

To simplify the definitions, if a node K is labeled with an expression e, then K̄

denotes the node labeled with ē. We will also use K →M to indicate that there is a
path from a node K to a node M , and K � M to indicate that no such path exists;
we will use e → f to denote that there is a path from a node labeled with e to a
node labeled with f , and e � f to indicate that no such path exists.

Definition 17.1 The labeled graph g(Σ,Ω) that captures Σ and Ω , where each
node is labeled with an expression, is defined in four stages as follows:

Stage 1:
Initialize g(Σ,Ω) with the following nodes and arcs:

(i) For each atomic concept C, g(Σ,Ω) has exactly one node labeled with C.
(ii) For each atomic role P , g(Σ,Ω) has exactly one node labeled with P , one

node labeled with (≥ 1P), and one node labeled with (≥ 1P−).
(iii) For each expression e that occurs on the right- or left-hand side of an inclusion

in Σ , or that occurs in Ω , other than those in (i) or (ii), g(Σ,Ω) has exactly
one node labeled with e.

(iv) For each inclusion e � f in Σ , g(Σ,Ω) has an arc (M,N),where M and N

are the nodes labeled with e and f , respectively.

Stage 2:
Until no new node or arc can be added to g(Σ,Ω),

For each role inclusion P �Q in Σ ,
For each node K ,

(i) If K is labeled with (≥ kP), for some k > 0, then add a node L labeled with
(≥ k Q) and an arc (K,L), if no such node and arc exists.

(ii) If K is labeled with (≥ kP−), for some k > 0, then add a node L labeled with
(≥ k Q−) and an arc (K,L), if no such node and arc exists.

(iii) If K is labeled with (≥ k Q), for some k > 0, then add a node L labeled with
(≥ kP) and an arc (L,K), if no such node and arc exists.

(iv) If K is labeled with (≥ k Q−), for some k > 0, then add a node L labeled with
(≥ kP−) and an arc (L,K), if no such node and arc exists.

Stage 3:
Until no new node or arc can be added to g(Σ,Ω),

(i) If g(Σ,Ω) has a node labeled with an expression e, then add a node labeled
with ē, if no such node exists.

(ii) If g(Σ,Ω) has a node M labeled with (≥ mp) and a node N labeled with
(≥ np), where p is either P or P− and 0 < m < n, then add an arc (N,M), if
no such arc exists.

(iii) If g(Σ,Ω) has an arc (M,N), then add an arc (N̄, M̄), if no such arc exists.

438 M.A. Casanova et al.

Stage 4:
Until no new node or arc can be added to g(Σ,Ω),

for each pair of nodes M and N such that M and N are labeled with (≥ 1P)

and ¬(≥ 1 Q), respectively, and there is a path from M to N

add arcs (K,L) and (L̄, K̄), where K and L are the nodes labeled with P

and
¬Q, respectively, if no such arcs exists.

Note that Stage 2 corresponds to Proposition 17.1(iv), Stage 3(ii) to Proposi-
tion 17.1(i), Stage 3(iii) to Proposition 17.1(ii), and Stage 4 to Proposition 17.1(v).

Definition 17.2 The constraint graph that represents Σ and Ω is the labeled graph
G(Σ,Ω), where each node is labeled with a set of expressions, defined from
g(Σ,Ω) by collapsing each clique of g(Σ,Ω) into a single node labeled with the
expressions that previously labeled the nodes in the clique. When Ω is the empty
set, we simply write G(Σ) and say that G(Σ) is the constraint graph that represents
Σ .

Note that Definition 17.2 reflects Proposition 17.1(iii).

Definition 17.3 Let G(Σ,Ω) be the constraint graph that represents Σ and Ω . We
say that a node K of G(Σ,Ω) is a ⊥-node with level n, for a non-negative integer
n, iff one of the following conditions holds:

(i) K is a ⊥-node with level 0 iff there are nodes M and N , not necessarily distinct
from K , and a positive expression h such that M and N are respectively labeled
with h and ¬h, and K →M and K →N .

(ii) K is a ⊥-node with level n+ 1 iff
(a) There is a ⊥-node M of level n, distinct from K , such that K →M , and M

is the ⊥-node with the smallest level such that K →M , or
(b) K is labeled with a minCardinality constraint of the form (≥ kP) or of the

form (≥ kP−) and there is a ⊥-node M of level n such that M is labeled
with P , or

(c) K is labeled with an atomic role P and there is a ⊥-node M of level n such
that M is labeled with a minCardinality constraint of the form (≥ 1P) or of
the form (≥ 1P−).

Note that cases (i) and (ii-a) of Definition 17.3 correspond to Proposition 17.1(vi),
case (ii-b) to Proposition 17.1(viii), and case (ii-c) to Proposition 17.1(vii).

Definition 17.4 A node K is a ⊥-node of G(Σ,Ω) iff K is a ⊥-node with level
n, for some non-negative integer n. A node K is a �-node of G(Σ,Ω) iff K̄ is a
⊥-node.

To avoid repetitions, in what follows, let g(Σ,Ω) be the graph that captures
Σ and Ω and G(Σ,Ω) be the graph that represents Σ and Ω . Proposition 17.2
lists properties of g(Σ,Ω) that directly reflect the structure of the set of con-
straints Σ . Proposition 17.3 applies the results in Proposition 17.2 to obtain proper-
ties of G(Σ,Ω) that are fundamental to establish Lemma 17.1 and Theorems 17.1

17 On the Problem of Matching Database Schemas 439

and 17.2. Finally, Proposition 17.4 relates the structure of G(Σ,Ω) with the logical
consequences of Σ .

Proposition 17.2 For any pair of nodes K and M of g(Σ,Ω):

(i) If there is a path K → M in g(Σ,Ω) and if M is labeled with a positive ex-
pression, then K is labeled with a positive expression.

(ii) If there is a path K → M in g(Σ,Ω) and if K is labeled with a negative ex-
pression, then M is labeled with a negative expression.

Proposition 17.3

(i) G(Σ,Ω) is acyclic.
(ii) For any node K of G(Σ,Ω), for any expression e, we have that e labels K iff

ē labels K̄ .
(iii) For any pair of nodes M and N of G(Σ,Ω), we have that M →N iff N̄ → M̄ .
(iv) For any node K of G(Σ,Ω), one of the following conditions holds:

(a) K is labeled only with atomic concepts or minCardinality constraints of
the form (≥mp), where p is either P or P− and m≥ 1, or

(b) K is labeled only with atomic roles, or
(c) K is labeled only with negated atomic concepts or negated minCardinality

constraints of the form ¬(≥ mp), where p is either P or P− and m ≥ 1,
or

(d) K is labeled only with negated atomic roles.
(v) For any pair of nodes K and M of G(Σ,Ω),

(a) If there is a path K →M in G(Σ,Ω) and if M is labeled with a positive
expression, then K is labeled only with positive expressions.

(b) If there is a path K →M in G(Σ,Ω) and if K is labeled with a negative
expression, then M is labeled only with negative expressions.

(vi) For any node K of G(Σ,Ω),
(a) If K is a ⊥-node, then K is labeled only with atomic concepts or minCar-

dinality constraints of the form (≥ mp), where p is either P or P− and
m≥ 1, or K is labeled only with atomic roles.

(b) If K is a �-node, then K is labeled only with negated atomic concepts or
negated minCardinality constraints of the form ¬(≥mp), where p is either
P or P− and m≥ 1, or K is labeled only with negated atomic roles.

(vii) Assume that Σ has no inclusions of the form e � ¬(≥ kP) or of the form
e �¬(≥ kP−). Let M be the node labeled with ¬(≥ kP) (or with ¬(≥ kP−)).
Then, for any node K of G(Σ,Ω), if there is a path K →M in G(Σ,Ω), then
K is labeled only with negative concept expressions.

Proposition 17.4

(i) For any pair of nodes M and N of G(Σ,Ω), for any pair of expressions e and
f that label M and N , respectively, if M →N then Σ |= e � f .

(ii) For any node K of G(Σ,Ω), for any pair of expressions e and f that label K ,
Σ |= e ≡ f .

440 M.A. Casanova et al.

(iii) For any node K of G(Σ,Ω), for any expression e that labels K , if K is a
⊥-node, then Σ |= e �⊥.

(iv) For any node K of G(Σ,Ω), for any expression e that labels K , if K is a
�-node, then Σ |= �� e.

17.3.2 Herbrand Interpretations and Instance Labeling Functions

To prove the main results, we introduce in this section the notion of canonical Her-
brand interpretation for a set of constraints. The definition mimics the analogous
notion used in automated theorem proving strategies based on Resolution.

Definition 17.5

(i) A set Φ of distinct function symbols is a set of Skolem function symbols for
G(Σ,Ω) iff Φ associates:
(a) n distinct unary function symbols with each node N of G(Σ,Ω) labeled

with (≥ nP), denoted f1[N,P], . . . , fn[N,P] for ease of reference;
(b) n distinct unary function symbols with each node N of G(Σ,Ω) labeled

with (≥ nP−), denoted g1[N,P], . . . , gn[N,P] for ease of reference;
(c) a distinct constant with each node N of G(Σ,Ω) labeled with an atomic

concept or with (≥ 1P), denoted c[N] for ease of reference.
(ii) The Herbrand Universe �[Φ] for Φ is the set of first-order terms constructed

using the function symbols in Φ . The terms in �[Φ] are called individuals.

In the next definition, recall that use Q→ P to indicate that there is a path from
a node Q to a node P in G(Σ,Ω).

Definition 17.6

(i) An instance labeling function for G(Σ,Ω) and �[Φ] is a function s′ that
associates a set of individuals in �[Φ] to each node of G(Σ,Ω) labeled with
concept expressions, and a set of pairs of individuals in �[Φ] to each node of
G(Σ,Ω) labeled with role expressions.

(ii) Let N be a node of G(Σ,Ω) labeled with an atomic concept or with (≥ kP).
Assume that N is not a ⊥-node. Then, the Skolem constant c[N] is a seed term
of N , and N is the seed node of c[N].

(iii) Let NP be the node of G(Σ,Ω) labeled with the atomic role P . Assume that
NP is not a ⊥-node. For each term a, for each node M labeled with (≥ mP),
if a ∈ s′(M) and there is no node K labeled with (≥ k Q) such that m ≤ k,
Q→ P and a ∈ s′(K), then
(a) the pair (a, fr [M,P](a)) is called a seed pair of NP triggered by a ∈

s′(M), for r ∈ [1,m],
(b) the term fr [M,P](a) is a seed term of the node L labeled with (≥ 1P−),

and L is called the seed node of fr [M,P](a), for r ∈ [2,m], if a is of the

17 On the Problem of Matching Database Schemas 441

form gi[J,P](b), for some node J and some term b, and for r ∈ [1,m],
otherwise.

(iv) Let NP be the node of G(Σ,Ω) labeled with the atomic role P . Assume that
NP is not a ⊥-node. For each term b, for each node N labeled with (≥ nP−),
if b ∈ s′(N) and there is no node K labeled with (≥ k Q−) such that n ≤ k,
Q→ P and b ∈ s′(K), then
(a) the pair (gr [N,P](b), b) is called a seed pair of NP triggered by b ∈

s′(N), for r ∈ [1, n], and
(b) the term gr [N,P](b) is a seed term of the node L labeled with (≥ 1P),

and L is called the seed node of gr [N,P](b), for r ∈ [2, n], if b is of the
form fi[J,P](a), for some node J and some term a, and for r ∈ [1, n],
otherwise.

Intuitively, the seed term of a node N will play the role of a unique signature of
N , and likewise for a seed pair of a node NP .

Definition 17.7 A canonical instance labeling function for G(Σ,Ω) and �[Φ] is
an instance labeling function that satisfies the following restrictions, for each node
K of G(Σ,Ω):

(a) Assume that K is a concept expression node, and that K is neither a ⊥-node
nor a �-node. Then, t ∈ s′(K) iff t is a seed term of a node J and there is a path
from J to K .

(b) Assume that K is a role expression node and is neither a ⊥-node nor a �-node.
Then, (t, u) ∈ s′(K) iff (t, u) is a seed pair of a node J and there is a path from
J to K .

(c) Assume that K is a ⊥-node. Then, s′(K)=∅.
(d) Assume that K is a concept expression node and is a �-node. Then, s′(K) =

�[Φ].
(e) Assume that K is a role expression node and is a �-node. Then, s′(K) =

�[Φ] ×�[Φ].

Proposition 17.5 Let s′ be canonical instance labeling function for G(Σ,Ω) and
�[Φ]. Then

(i) For any pair of nodes M and N of G(Σ,Ω), if M →N then s′(M)⊆ s′(N).
(ii) For any pair of nodes M and N of G(Σ,Ω) that both are concept expression

nodes or both are role expression nodes, s′(M)∩ s′(N) �=∅ iff there is a seed
node K such that K →M and K →N .

(iii) For any node NP of G(Σ,Ω) labeled with an atomic role P , for any node M of
G(Σ,Ω) labeled with (≥mP), for any term t ∈ s′(M), either s′(NP) contains
all seed pairs triggered by t ∈ s′(M), or there are no seed pairs triggered by
t ∈ s′(M).

(iv) For any node NP of G(Σ,Ω) labeled with an atomic role P , for any node N

of G(Σ,Ω) labeled with (≥ nP−), for any term t ∈ s′(N), either s′(NP) con-
tains all seed pairs triggered by t ∈ s′(N), or there are no seed pairs triggered
by t ∈ s′(N).

442 M.A. Casanova et al.

Recall that the alphabet is understood as the (finite) set of atomic concepts and
roles that occur in Σ and Ω . Hence, in the context of Σ and Ω , when we refer to
an interpretation, we mean an interpretation for such alphabet.

Definition 17.8 Let s′ be a canonical instance labeling function for G(Σ,Ω) and
�[Φ]. The canonical Herbrand interpretation induced by s′ is the interpretation s

defined as follows:

(a) �[Φ] is the domain of s.
(b) s(C) = s′(M), for each atomic concept C, where M is the node of G(Σ,Ω)

labeled with C (there is just one such node).
(c) s(P)= s′(N), for each atomic role P , where N is the node of G(Σ,Ω) labeled

with P (again, there is just one such node).

17.3.3 Strict Satisfiability and Logical Implication for Extralite
Schemas with Restricted Role Hierarchies

We now ready to prove the main results of the chapter that lead to efficient decision
procedures to test strict satisfiability and logical implication for restricted extralite
schemas with role hierarchies.

In what follows, let Σ be a finite set of normalized extralite constraints and Ω

be a finite set of extralite constraint expressions. Let G(Σ,Ω) be the graph that
represents Σ and Ω .

Lemma 17.1 Assume that Σ satisfies the role hierarchy restriction. Let s′ be a
canonical instance labeling function for G(Σ,Ω) and �[Φ]. Let s be the canonical
Herbrand interpretation induced by s′. Then, we have:

(i) For each node N of G(Σ,Ω), for each positive expression e that labels N ,
s′(N)= s(e).

(ii) For each node N of G(Σ,Ω), for each negative expression ¬e that labels N ,
s′(N)⊆ s(¬e).

Proof Sketch Let s′ be a canonical instance labeling function for G(Σ,Ω) and
�[Φ]. Let s be the interpretation induced by s′.
(i) Let N be a node of G(Σ,Ω). Let e be a positive expression that labels N .
First observe that N cannot be a �-node. By Proposition 17.3(vi-b), �-nodes are
labeled only with negative expressions, which contradicts the assumption that e is a
positive expression. Then, there are two cases to consider.
Case 1: N is not a ⊥-node.
We have to prove that s(e)= s′(N). By the restrictions on constraints and constraint
expressions, since e is a positive expression, there are four cases to consider.
Case 1.1: e is an atomic concept C.
By Definition 17.8(b), s(C)= s′(N).
Case 1.2: e is an atomic role P .
By Definition 17.8(c), s(P)= s′(N).

17 On the Problem of Matching Database Schemas 443

Case 1.3: e is of the form (≥ nP).
Let NP be the node labeled with P . Then, NP is not a ⊥-node. Assume otherwise.
Then, by Definition 17.3(ii-b) and Definition 17.4, the node L labeled with (≥ 1P)

would be a ⊥-node. But, by construction of G(Σ,Ω), there is an arc from N (the
node labeled with (≥ nP)) to L. Hence, N would be a ⊥-node, contradicting the
assumption of Case 1. Furthermore, since NP is labeled with the positive atomic
role P , by Proposition 17.3(vi-b), NP cannot be a �-node.

Then, since NP is neither a ⊥-node nor a �-node, Definition 17.7(b) applies to
s′(NP).

Recall that N is the node labeled with (≥ nP) and that N is neither a ⊥-node
nor a �-node. We first prove that

(1) a ∈ s′(N) implies that a ∈ s((≥ nP))

Let a ∈ s′(N). Let K be the node labeled with (≥ kP) such that a ∈ s′(K) and k

is the largest possible integer greater than n. Since a ∈ s′(K) and k is the largest pos-
sible, there are k pairs in s′(NP) whose first element is a, by Proposition 17.5(iii).
By Definition 17.8(c), s(P) = s′(NP). Hence, by definition of minCardinality,
a ∈ s((≥ kP)). But again by definition of minCardinality, s((≥ kP))⊆ s((≥ nP)),
since n≤ k, by the choice of k. Therefore, a ∈ s((≥ nP)).

We now prove that

(2) a ∈ s((≥ nP)) implies that a ∈ s′(N)

Since Σ satisfies the role hierarchy restriction, there are two cases to consider.
Case 1.3.1: Σ defines no subroles for P .
Let a ∈ s((≥ nP)). By definition of minCardinality, there must be n distinct pairs
(a, b1), . . . , (a, bn) in s(P) and, consequently, in s′(NP), since s(P) = s′(NP), by
Definition 17.8(c).

Recall that NP is neither a ⊥-node nor a �-node. Then, by Definition 17.7(b)
and Definition 17.6(iii), possibly by reordering b1, . . . , bn, we then have that there
are nodes L0,L1, . . .Lv such that

(3) (a, b1) is a seed pair of NP of the form (gi0[L0,P](u),u) , triggered by u ∈
s′(L0), where L0 is labeled with (≥ l0P

−), for some i0 ∈ [1, l0]
or

(4) (a, b1) is a seed pair of NP of the form (a, f1[L1,P](a)), triggered by a ∈
s′(L1), where L1 is labeled with (≥ l1P)

and

(5) (a, bj) is a seed pair of NP of the form (a, fwj [Li,P](a)), triggered by a ∈
s′(Li), where Li is labeled with (≥ liP), j ∈ [(∑i−1

r=1 lr) + 1,
∑i

r=1 lr], with
wj ∈ [1, li] and i ∈ [2, v]

Furthermore, li �= lj , for i, j ∈ [2, v], with i �= j , since only one node is labeled
with (≥ liP). We may therefore assume without loss of generality that l1 > l2 >

· · · > lv . But note that we then have that a ∈ s′(Li) and a ∈ s′(Lj) and li > lj , for

444 M.A. Casanova et al.

each i, j ∈ [1, v], with i < j . But this contradicts the fact that (a, fwj [Lj,P](a)) is
a seed pair of NP triggered by a ∈ s′(Lj) since, by Definition 17.6(iii), there could
be no node Li labeled with (≥ liP) with li > lj and a ∈ s′(Li). This means that
there is just one node, L1, that satisfies (5).

We are now ready to show that a ∈ s′(N).
Case 1.3.1.1: n= 1.
Case 1.3.1.1.1: a is of the form gi0[L0,P](u).
Recall that NP is not a ⊥-node. Then, by Definition 17.6(iv), gi0[L0,P](u) is a seed
term of the node labeled with (≥ 1P), which must be N , since n = 1 and there is
just one node labeled with (≥ 1P). Therefore, since N is not a ⊥-node or a �-node,
by Definition 17.7(a), a ∈ s′(N).
Case 1.3.1.1.2: a is not of the form gi0[L0,P](u).
Then, by (4) and assumptions of the case, a ∈ s′(L1). Since, L1 is labeled with
(≥ l1P) and N with (≥ 1P), either n = l1 = 1 and N = L1, or l1 > n = 1 and
(L1,N) is an arc of G(Σ,Ω), by definition of G(Σ,Ω). Then, s′(L1)⊆ s′(N), us-
ing Proposition 17.5(i), for the second alternative. Therefore, a ∈ s′(N) as desired,
since a ∈ s′(L1).
Case 1.3.1.2: n > 1.
We first show that n ≤ l1. First observe that, by (5) and n > 1, s′(NP) contains a
seed pair (a, fwj [L1,P](a)) triggered by a ∈ s′(L1). Then, by Proposition 17.5(iii),
s′(NP) contains all seed pairs triggered by a ∈ s′(L1). In other words, we have
that a ∈ s((≥ nP)) and (a, b1), . . . , (a, bn) ∈ s′(NP) and (a, b1), . . . , (a, bn) are
triggered by a ∈ s′(L1). Therefore, either (a, b1), . . . , (a, bn) are all pairs triggered
by a ∈ s′(L1), in which case n = l1, or (a, b1), . . . , (a, bn), (a, bn+1), . . . , (a, bl1),
in which case n < l1. Hence, we have that n≤ l1.

Since L1 is labeled with (≥ l1P) and N with (≥ nP), with n≤ l1, either n= l1
and N = L1, or l1 > n and (L1,N) is an arc of G(Σ,Ω), by definition of G(Σ,Ω).
Then, s′(L1) ⊆ s′(N), using Proposition 17.5(i), for the second alternative. There-
fore, a ∈ s′(N) as desired, since a ∈ s′(L1).

Therefore, we established that (2) holds. Hence, from (1) and (2), s′(N)= s((≥
nP)), as desired.
Case 1.3.2: Σ defines subroles for P .
Since Σ satisfies the role hierarchy restriction and defines subroles for P , then Σ

has no constraint of the form e �¬(≥ 1P) or of the form e �¬(≥ 1P−). The proof
of this case is a variation of that of Case 1.3.1.
Case 1.4: e is of the form (≥ nP−).
The proof of this case is entirely similar to that of Case 1.3.
Case 2: N is a ⊥-node.
We have to prove that s(e) = s′(N) = ∅. Again, by the restrictions on constraints
and constraint expressions, since e is a positive expression, there are four cases to
consider.
Case 2.1: e is an atomic concept C.
Then, by Definition 17.8(b), we trivially have that s(C)= s′(N)=∅.
Case 2.2: N is an atomic node P .
Then, by Definition 17.8(c), we trivially have that s(P)= s′(N)=∅.

17 On the Problem of Matching Database Schemas 445

Case 2.3: e is a minCardinality constraint of the form (≥ np), where p is either P

or P− and 1 ≤ n.
We prove that s((≥ np))=∅, using an argument similar to that in Case 1.3. Let NP

be the node labeled with P .
Case 2.1.2.1: NP is a ⊥-node
Then, by Definition 17.7(c) and Definition 17.8(c), s(P) = s′(NP) = ∅. Hence,
s((≥ np))=∅.
Case 2.1.2.2: NP is not a ⊥-node.
By Proposition 17.3(vi-b), NP cannot be a �-node. Then, Definition 17.7(b) applies
to s′(NP).

We proceed by contradiction. So, assume that s((≥ np)) �= ∅ and let a ∈ s((≥
np)).

By definition of minCardinality and since s(P) = s′(NP), there must be n dis-
tinct pairs (a, b1), . . . , (a, bn) in s′(NP). Using an argument similar to that in
Case 1.3, there are nodes L0 and L1 such that

(6) (a, b1) is a seed pair of NP of the form (gi0[L0,P](u),u), triggered by u ∈
s′(L0), where L0 is labeled with (≥ l0P

−), for some i0 ∈ [1, l0]
or

(7) (a, b1) is a seed pair of NP of the form (a, f1[L1,P](a)), triggered by a ∈
s′(L1), where L1 is labeled with (≥ l1P)

and

(8) (a, bj) is a seed pair of NP of the form (a, fwj [L1,P](a)), triggered by a ∈
s′(L1), where L1 is labeled with (≥ l1P), with j ∈ [2, l1]

We are now ready to show that no such a ∈ s((≥ np)) exists. Recall that n > 1.
We first show that n ≤ l1. First observe that, by (8) and n > 1, s′(NP) contains a
seed pair (a, fwj [L1,P](a)) triggered by a ∈ s′(L1). Then, by Proposition 17.5(iii),
s′(NP) contains all seed pairs triggered by a ∈ s′(L1). In other words, we have
that a ∈ s((≥ nP)) and (a, b1), . . . , (a, bn) ∈ s′(NP) and (a, b1), . . . , (a, bn) are
triggered by a ∈ s′(L1). Therefore, either (a, b1), . . . , (a, bn) are all pairs triggered
by a ∈ s′(L1), in which case n = l1, or (a, b1), . . . , (a, bn), (a, bn+1), . . . , (a, bl1),
in which case n < l1. Hence, we have that n ≤ l1. Since L1 is labeled with (≥
l1P) and N with (≥ nP), with n ≤ l1, either n = l1 and N = L1, or l1 > n and
(L1,N) is an arc of G(Σ,Ω), by definition of G(Σ,Ω). Then, s′(L1) ⊆ s′(N),
using Proposition 17.5(i), for the second alternative. Therefore, a ∈ s′(N), since
a ∈ s′(L1). But this is impossible, since s′(N)=∅.

Hence, we conclude that s((≥ np))=∅.
Therefore, we have that, if N is a ⊥-node, then s′(N)= s(e)=∅, for any posi-

tive expression e that labels N .
Therefore, we established, in all cases, that Lemma 17.1(i) holds.

(ii) Let N be a node of G(Σ,Ω). Let ¬e be a negative expression that labels N .
First observe that N cannot be a ⊥-node. By Proposition 17.3(vi-a), ⊥-nodes are
labeled only with positive expressions, which contradicts the assumption that ¬e is
a negative expression. Then, there are two cases to consider.

446 M.A. Casanova et al.

Case 1: N is not a �-node.
We have to prove that s′(N)⊆ s(¬e).
Case 1.1: N is a concept expression node.
Suppose, by contradiction, that there is a term t such that t ∈ s′(N) and t /∈ s(¬e).

Since t /∈ s(¬e), we have that t ∈ s(e), by definition. Let M be the node labeled
with e. Hence, by Lemma 17.1(i), t ∈ s′(M). That is, t ∈ s′(M)∩ s′(N).

Note that M and N are dual nodes since M is labeled with e and N is labeled
with ¬e. Therefore, since N is neither a ⊥-node nor a �-node, M is also neither a
�-node nor a ⊥-node, by definition of �-node.

Since Σ satisfies the role hierarchy restriction, there are two cases to consider.
Case 1.1.1: ¬e is not of the form ¬(≥ nP) or ¬(≥ nP−).
Then, by Definition 17.7(a), t ∈ s′(N) iff t is a seed term of a node J and there is
a path from J to K . Furthermore, by Proposition 17.5(ii), there is a seed node K

such that K → M and K → N and t ∈ s′(K). But this is impossible. We would
have that K → M and K → N , M is labeled with e, and N is labeled with ¬e,
which implies that K is a ⊥-node. Hence, by Definition 17.7(c), s′(K)=∅, which
implies that t /∈ s′(K). Therefore, we established that, for all terms t , if t ∈ s′(N)

then t ∈ s(¬e).
Case 1.1.2: ¬e is of the form ¬(≥ nP) or ¬(≥ nP−).
Case 1.1.2.1: Σ defines no subroles for P .
Follows as in Case 1.1.1, again using Definition 17.7(a) and Proposition 17.5(ii).
Case 1.1.2.2: Σ defines subroles for P .
Since Σ satisfies the role hierarchy restriction, Σ has no constraint of the form
h � ¬(≥ nP) or of the form h � ¬(≥ nP−). Then, by Proposition 17.3(vii), for
any node K , if K →N , then K is labeled only with negative concept expressions.
Therefore, there could be no seed node K such that K → N . Hence, by Defini-
tion 17.7(a), there is no term t such that s′(N)=∅, which contradicts the assump-
tion that t ∈ s′(N).

Therefore, in all cases, we established that, for all terms t , if t ∈ s′(N) then
t ∈ s(¬e).
Case 1.2: N is a role expression node.
Follows likewise, using Proposition 17.5(ii) again and Definition 17.7(b).

Thus, in both cases, we established that s′(N)⊆ s(¬e), as desired.
Case 2: N is a �-node.
Let N̄ be the dual node of N . Since N is a �-node, we have that N̄ is a ⊥-node.
Furthermore, since ¬e labels N , e labels N̄ . Since e is a positive expression, by
Lemma 17.1(i), s′(N̄)= s(e)=∅.
Case 2.1: N is a concept expression node.
By Definition 17.7(d) and definition of s(¬e), we have s′(N) = �[Φ] = s(¬e),
which trivially implies s′(N)⊆ s(¬e).
Case 2.2: N is a role expression node.
By Definition 17.7(e) and definition of s(¬e), we then have s′(N) = �[Φ] ×
�[Φ] = s(¬e), which trivially implies s′(N)⊆ s(¬e).

Therefore, we established that, in all cases, Lemma 17.1(ii) holds. �

We are now ready to state the first result of the chapter.

17 On the Problem of Matching Database Schemas 447

Theorem 17.1 Assume that Σ satisfies the role hierarchy restriction. Let s be the
canonical Herbrand interpretation induced by a canonical instance labeling func-
tion for G(Σ,Ω) and �[Φ]. Then, we have

(i) s is a model of Σ .
(ii) Let e be an atomic concept or a minCardinality constraint of the form (≥ 1P).

Let N be the node of G(Σ,Ω) labeled with e. Then, N is a ⊥-node iff s(e)=
∅.

(iii) Let e be a minCardinality constraint of the form (≥ kP), with k > 1. Assume
that G(Σ,Ω) has a node labeled with e. Then, N is a ⊥-node iff s(e)=∅.

(iv) Let P be an atomic role. Let N be the node of G(Σ,Ω) labeled with P . Then,
N is a ⊥-node iff s(P)=∅.

Proof Sketch Let Σ be a set of normalized constraints and Ω be a set of constraint
expressions. Let G(Σ,Ω) be the graph that represents Σ and Ω . Let Φ be a set
of distinct function symbols and �[Φ] be the Herbrand Universe for Φ . Let s′ be a
canonical instance labeling function for G(Σ,Ω) and �[Φ] and s be the interpre-
tation induced by s′.
(i) We prove that s satisfies all constraints in Σ .
Let e � f be a constraint in Σ . By the restrictions on the constraints in Σ , e must
be positive and f can be positive or negative. Therefore, there are two cases to
consider.
Case 1: e and f are both positive.
Then, by Lemma 17.1(i), s′(M) = s(e) and s′(N) = s(f), where M and N are
the nodes labeled with e and f , respectively. If M =N , then we trivially have that
s′(M)= s′(N). So assume that M �=N . Since e � f is in Σ and M �=N , there must
be an arc (M,N) of G(Σ,Ω). By Proposition 17.5(i), we then have s′(M)⊆ s′(N).
Hence, s(e)= s′(M)⊆ s′(N)= s(f).
Case 2: e is positive and f is negative.
Then, by Lemma 17.1(i), s′(M) = s(e). and, by Lemma 17.1(ii), s′(N) ⊆ s(f),
where M and N are the nodes labeled with e and f , respectively. Since negative
expressions do not occur on the left-hand side of constraints in Σ , e and f can-
not label nodes that belong to the same clique in the original graph. Therefore,
we have that M �= N . Since e � f is in Σ and M �= N , there must be an arc
(M,N) of G(Σ,Ω). By Proposition 17.5(i), we then have s′(M) ⊆ s′(N). Hence,
s(e)= s′(M)⊆ s′(N)⊆ s(f).

Thus, in both cases, s(e) ⊆ s(f). Therefore, for any constraint e � f ∈ Σ , we
have that s |= e � f , which implies that s is a model of Σ .
(ii) Let e be an atomic concept or a minCardinality constraint of the form (≥ 1P).
By Stage 1 of Definition 17.1, G(Σ,Ω) always has a node N labeled with e. Since
e is positive, by Lemma 17.1(i), s(e)= s′(N).

Assume that N is a ⊥-node. Then, by Lemma 17.1(i) and Definition 17.7(c),
s(e)= s′(N)=∅.

Assume that N is not a ⊥-node. Note that N cannot be a �-node, since N is
labeled with the positive expression e. Then, N is neither a ⊥-node nor a �-node.

448 M.A. Casanova et al.

By Definition 17.6(ii) and Definition 17.7(a), the seed term c[N] of N is such that
c[N] ∈ s′(N). Hence, trivially, s(e)= s′(N) �=∅.
(iii)–(iv) Follows as for (ii). �

Based on Theorem 17.1, we can then create a simple procedure to test strict
satisfiability, which has polynomial time complexity on the size of Σ :

17.3.4 SAT(Σ)

input: a set Σ of extralite constraints that satisfies the role hierarchy restriction.
output: “YES—Σ is strictly satisfiable”

“NO—Σ is not strictly satisfiable”

(1) Normalize the constraints in Σ , creating a set Σ ′.
(2) Construct the constraint graph G(Σ ′) that represents Σ ′.
(3) If G(Σ ′) has no ⊥-node labeled with an atomic concept or an atomic role,

then return “YES—Σ is strictly satisfiable”;
else return “NO—Σ is not strictly satisfiable”.

From Theorem 17.1, we can also prove that:

Theorem 17.2 Assume that Σ satisfies the role hierarchy restriction. Let σ be a
normalized extralite constraint. Assume that σ is of the form e � f and let Ω =
{e, f }. Then, Σ |= σ iff one of the following conditions holds:

(i) The node of G(Σ,Ω) labeled with e is a ⊥-node; or
(ii) The node of G(Σ,Ω) labeled with f is a �-node; or

(iii) There is a path in G(Σ,Ω) from the node labeled with e to the node labeled
with f .

Proof Sketch Let Σ be a set of normalized constraints. Assume that Σ satisfies the
role hierarchy restriction. Let e � f be a constraint and Ω = {e, f }. Let G(Σ,Ω)

be the graph that represents Σ and Ω . Observe that, by construction, G(Σ,Ω) has
a node labeled with e and a node labeled with f . Let M and N be such nodes,
respectively.

(⇐) Follows directly from Proposition 17.4.
(⇒) We prove that, if the conditions of the theorem do not hold, then Σ �|= e � f .

Since e � f is a constraint, we have:

(1) e is either an atomic concept C, an atomic role P or a minCardinality of the
form (≥ kp), where p is either P or P−, and

(2) f is either an atomic concept C, a negated atomic concept ¬D, an atomic role
P , a negated atomic role Q, a minCardinality constraint of the form (≥ kp), or
a negated minCardinality constraint of the form ¬(≥ kp), where p is either P

or P−.

17 On the Problem of Matching Database Schemas 449

Assume that the conditions of the theorem do not hold, that is:

(3) The node M labeled with e is not a ⊥-node; and
(4) The node N labeled with f is not a �-node; and
(5) There is no path in G(Σ,Ω) from M to N .

To prove that Σ �|= e � f , it suffices to exhibit a model r of Σ such that r �|=
e � f . Recall that r �|= e � f iff (i) if e and f are concept expressions, there is an
individual t such that t ∈ r(e) and t /∈ r(f) or, equivalently, t ∈ r(¬f); (ii) if e and
f are role expressions, there is a pair of individuals (t, u) such that (t, u) ∈ r(e) and
(t, u) /∈ r(f) or, equivalently, (t, u) ∈ r(¬f);

Recall that, to simplify the notation, e → f denotes that there is a path in
G(Σ,Ω) from the node labeled with e to the node labeled with f , and e � f

to indicate that no such path exists.
Since e � f is a constraint, e must be non-negative and f can be negative or not.

Hence, there are two cases to consider.
Case 1: e and f are both positive.
Let s′ be a canonical instance labeling function for G(Σ,Ω) and s be the interpre-
tation induced by s′. By Theorem 17.1, s is a model of Σ . We show that s �|= e � f .
Case 1.1: N is a ⊥-node.
Since N is a ⊥-node, by Proposition 17.4(iii), we have that Σ |= f � ⊥, which
implies that s(f)=∅, since s is a model of Σ .

By (1), e is either an atomic concept C, an atomic role P or a minCardinality of
the form (≥ kp), where p is either P or P−. By (3), M is not a ⊥-node. Hence, we
have that s(e) �=∅, by Theorem 17.1(ii), (iii) and (iv). Hence, we trivially have that
s �|= e � f .
Case 1.2: N is not a ⊥-node.
Observe that M and N are neither a ⊥-node nor a �-node. By assumption of the
case and by (4), N is neither a ⊥-node nor a �-node. Now, by (3), M is not a ⊥-
node. Furthermore, by Proposition 17.3(iv-b), since M is labeled with a positive
expression e, M cannot be a �-node.

By Lemma 17.1(i), since e is positive by assumption, by Definition 17.6(ii), (iii)
and (iv), and by Definition 17.7(a) and (b), since M is neither a ⊥-node nor a �-
node, we have

(6) s′(M)= s(e). and there is a seed term c[M] ∈ s′(M), if M is a concept expres-
sion node s′(M) = s(e). and there is a seed pair (t, u) ∈ s′(M), if M is a role
expression node

By definition of canonical instance labeling function, we have:

(7) For each concept expression node K of G(Σ,Ω) that is neither a ⊥-node nor a
�-node, c[M] ∈ s′(K) iff there is a path from M to K For each role expression
node K of G(Σ,Ω) that is neither a ⊥-node nor a �-node, (t, u) ∈ s′(K) iff
there is a path from M to K

By (5), we have e � f . Furthermore, N is neither a ⊥-node nor a �-node.
Hence, by (7), we have:

450 M.A. Casanova et al.

(8) c[M] /∈ s′(N), if N is a concept expression node
(t, u) /∈ s′(N), if N is a role expression node

Since f is positive, by Lemma 17.1(i), s′(N)= s(f). Hence, we have

(9) c[M] /∈ s(f), if f is a concept expression
(t, u) /∈ s(f), if f is a role expression

Therefore, by (6) and (9), s(e) �⊆ s(f), that is, s �|= e � f , as desired.
Case 2: e is positive and f is negative.
Assume that f is a negative expression of the form ¬g, where g is positive.
Case 2.1: e → g.
Let s′ be a canonical instance labeling function for G(Σ,Ω) and s be the inter-
pretation induced by s′. By Theorem 17.1(i), s is a model of Σ . We show that
s �|= e � f .

By Proposition 17.4(i) and (ii), and since s is a model of Σ , we have that s |=
e ≡ g, if e and g label the same node, and s |= e � g, otherwise. Hence, we have
that s �|= e �¬g. Now, since f is ¬g, we have s �|= e � f , as desired.
Case 2.2: e � g.
Construct Φ as follows:

(10) Φ is Σ with two new constraints, H � e and H � g, where H is a new atomic
concept, if e and g are concept expressions, or H is a new atomic role, if e and
g are role expressions

Let r ′ be a canonical instance labeling function for G(Φ,Ω) and r be the in-
terpretation induced by r ′. By Theorem 17.1(i), r is a model of Φ . We show that
r �|= e � f .

We first observe that

(11) There is no expression h such that e → h and g →¬h are paths in G(Σ,Ω)

By construction of G(Σ,Ω), g → ¬h iff h → ¬g. But e → h and h → ¬g

implies e →¬g, contradicting (5), since f is ¬g. Hence, (11) follows.
We now prove that

(12) There is no positive expression h such that H → h and H →¬h are paths in
G(Φ,Ω)

Assume otherwise. Let h be a positive expression such that H → h and H →¬h

are paths in G(Φ,Ω).
Case 2.2.1: H → e → h and H → g →¬h are paths in G(Φ,Ω).
Then, e → h and g →¬h must be paths in G(Σ,Ω), which contradicts (11).
Case 2.2.2: H → e →¬h and H → g → h are paths in G(Φ,Ω).
Then, e →¬h and g → h must be paths in G(Σ,Ω). But, since g → h iff ¬h →
¬g, we have e →¬h→¬g is a path in G(Σ,Ω), which contradicts (5), recalling
that f is ¬g.
Case 2.2.3: H → e → h and H → e →¬h are paths in G(Φ,Ω).
Then, e → h and e →¬h must be paths in G(Σ,Ω), which contradicts (3), by
definition of ⊥-node.

17 On the Problem of Matching Database Schemas 451

Case 2.2.4: H → g → h and H → g →¬h are paths in G(Φ,Ω).
Then, g → h and g →¬h must be paths in G(Σ,Ω). Now, observe that, since ¬g

is f , that is, f and g are complementary expressions, g labels N̄ , the dual node of
N in G(Σ,Ω). Then, g → h and g →¬h implies that N̄ is a ⊥-node of G(Σ,Ω),
that is, N is a �-node, which contradicts (4).

Hence, we established (12).
Let K be the node of G(Φ,Ω) labeled with H . Note that, by construction of Φ ,

K is labeled only with H . Then, by (12), K is not a ⊥-node.
By Theorem 17.1(i), r is a model of Φ . Furthermore, by Theorem 17.1(ii) and

(iv), and since K is not a ⊥-node, we have

(13) r(H) �=∅

Since H � e and H � g are in Φ , and since r is a model of Φ , we also have:

(14) r(H)⊆ r(e) and r(H)⊆ r(g)

Therefore, by (13) and (14) and since f =¬g

(15) r(e) ∩ r(g) �= ∅ or, equivalently, r(e) �⊆ r(¬g) or, equivalently, r(e) �⊆ r(f)

or, equivalently, r �|= e � f

But since Σ ⊆ Φ , r is also a model of Σ . Therefore, for Case 2.2, we also
exhibited a model r of Σ such that r �|= e � f , as desired.

Therefore, in all cases, we exhibited a model of Σ that does not satisfy e � f , as
desired.

Based on Theorem 17.2, we can then create a simple procedure to test logical
implication:

IMPLIES (Σ, e � f)

input: a set Σ of constraints satisfies the role hierarchy restriction,
and a constraint e � f

output: “YES—Σ logically implies e � f ”
“NO—Σ does not logically imply e � f ”

(1) Normalize the constraints in Σ , creating a set Σ ′.
(2) Normalize e � f , creating a normalized constraint e′ � f ′.
(3) Construct G(Σ ′, {e′, f ′}).
(4) If the node of G(Σ ′, {e′, f ′}) labeled with e′ is a ⊥-node, or the node of

G(Σ ′, {e′, f ′}) labeled with f ′ is a �-node, or there is a path in G(Σ ′, {e′, f ′})
from the node labeled with e′ to the node labeled with f ′,

then return “YES—Σ logically implies e � f ”;
else return “NO—Σ does not logically imply e � f ”.

Note that IMPLIES has polynomial time complexity on the size of Σ ∪
{e � f }. �

452 M.A. Casanova et al.

Fig. 17.1 ER diagram of the PhoneCompany1 schema (without cardinalities)

Fig. 17.2 Formal definition of the constraints of the PhoneCompany1 schema

17.4 Examples

17.4.1 Examples of Extralite Schemas

In this section, we introduce examples of concrete, albeit simple extralite schemas
with role hierarchies to illustrate how to capture commonly used ER model and
UML constructs as extralite constraints.

Example 17.1 Figure 17.1 shows the ER diagram of the PhoneCompany1 schema.
Figure 17.2 formalizes the constraints: the first column shows the domain and range
constraints; the second column depicts the cardinality constraints; and the third col-
umn contains the subset and disjointness constraints.

The first column of Fig. 17.2 indicates that:

• number is an atomic role modeling an attribute of Phone with range String
• duration is an atomic role modeling an attribute of Call with range String
• location is an atomic role modeling an attribute of Call with range String
• placedBy is an atomic role modeling a binary relationship from Call to
Phone

• mobPlacedBy is an atomic role modeling a binary relationship from Mobile-
Call to MobilePhone

The second column of Fig. 17.2 shows the cardinalities of the PhoneCompany1
schema:

17 On the Problem of Matching Database Schemas 453

• number has maxCardinality and minCardinality both equal to 1 w.r.t. Phone
• duration has maxCardinality and minCardinality both equal to 1 w.r.t. Call
• location has maxCardinality and minCardinality both equal to 1 w.r.t. Mo-
bileCall

• placedBy has maxCardinality and minCardinality both equal to 1 w.r.t. Call
• (placedBy− has unbounded maxCardinality and minCardinality equal to 0

w.r.t. Phone, which need not be explicitly declared)
• mobPlacedBy has maxCardinality and minCardinality both equal to 1 w.r.t.
MobileCall

• (mobPlacedBy− has unbounded maxCardinality and minCardinality equal to
0 w.r.t. MobilePhone, which need not be explicitly declared)

The third column of Fig. 17.2 indicates that

• MobilePhone and FixedPhone are subsets of Phone
• MobilePhone and FixedPhone are disjoint
• MobileCall is a subset of Call
• mobPlacedBy is a subset of placedBy

Note that the constraints saying that MobilePhone is a subset of Phone and
that MobileCall is a subset of Call do not imply that mobPlacedBy is a
subset of placedBy. In general, concept inclusions do not imply role inclusions,
as already discussed at the end of Sect. 17.2.1.

Example 17.2 Figure 17.3 shows the ER diagram of the PhoneCompany2 schema,
and Fig. 17.4 formalizes the constraints, following the same organization as that in
Fig. 17.2). Note that:

• MobilePhone and Phone are disjoint atomic concepts
• MobileCall and Call are disjoint atomic concepts
• PlacedBy is an atomic role modeling a binary relationship from Call to
Phone

• mobPlacedBy is an atomic role modeling a binary relationship from Mobile-
Call to MobilePhone

• the constraints of the schema imply that PlacedBy and mobPlacedBy are
disjoint roles, by the disjunction-transfer rule introduced at the end of Sect. 17.2.1
(see also Example 17.3(b)).

17.4.2 Examples of Representation Graphs

In this section, we illustrate representation graphs and their uses in the decision
procedures of Sect. 17.3.3.

Example 17.3 Let Σ be the following subset of the constraints of the PhoneCom-
pany2 schema, introduced in Example 17.2 (we do not consider all constraints to
reduce the size of the example):

454 M.A. Casanova et al.

Fig. 17.3 ER diagram of the PhoneCompany2 schema (without card and disjunctions)

Fig. 17.4 Formal definition of the constraints of the PhoneCompany2 schema

(1) ∃placedBy� Call normalized as: (≥1 placedBy)� Call
(2) ∃placedBy− � Phone normalized as: (≥1 placedBy−)� Phone
(3) ∃mobPlacedBy � MobileCall normalized as: (≥ 1 mobPlacedBy) �

MobileCall
(4) ∃mobPlacedBy− � MobilePhone normalized as: (≥ 1mobPlacedBy−)

� MobilePhone
(5) Call� (≤1 placedBy) normalized as: Call�¬(≥2 placedBy)

(6) MobilePhone|Phone normalized as: MobilePhone�¬Phone
(7) MobileCall|Call normalized as: MobileCall�¬Call

Figure 17.5 depicts G(Σ), the graph that represents Σ , using the normalized
constraints. In special, the dotted arcs highlight the paths that correspond to the
conditions of Stage 4 of Definition 17.1, and the dashed arcs indicate the arcs that
Stage 4 of Definition 17.1 requires to exist, which capture the derived constraint:

(8) mobPlacedBy|placedBy normalized as: mobPlacedBy�¬placedBy
Since G(Σ) has no ⊥-node labeled with an atomic concept or an atomic role, Σ

is strictly satisfiable, by Theorem 17.1. However note that (≥2 placedBy) is a
⊥-node of G(Σ).

17 On the Problem of Matching Database Schemas 455

Fig. 17.5 The graph representing Σ

Example 17.4 Let Σ be the following subset of the constraints of the PhoneCom-
pany1 schema, introduced in Example 17.1 (again we do not consider all constraints
to reduce the size of the example):

(1) ∃placedBy� Call normalized as: (≥1 placedBy)� Call
(2) ∃placedBy− � Phone normalized as: (≥1 placedBy−)� Phone
(3) Call� (≤1 placedBy) normalized as: Call�¬(≥2 placedBy)

(4) MobileCall� Call
(5) mobPlacedBy� placedBy

Let Ψ be defined by adding to Σ a new atomic concept, ConferenceCall,
and two new constraints:

(6) ConferenceCall� Call
(7) ConferenceCall� (≥2 placedBy)

These new constraints intuitively say that conference calls are calls placed by
at least two phones. However, this apparently correct modification applied to the
PhoneCompany1 schema forces ConferenceCall to always have an empty in-
terpretation. Example 17.5(c) will also show that (6) is actually redundant.

Figure 17.6 depicts G(Ψ), the graph that represents Ψ , using the normalized con-
straints. Note that there is a path from ConferenceCall to¬ConferenceCall
. Also note that there are paths from the node labeled with ConferenceCall

456 M.A. Casanova et al.

Fig. 17.6 The graph representing Ψ

to nodes labeled with Call and ¬Call, as well as to nodes labeled with (≥2
placedBy) and ¬(≥2 placedBy) and nodes labeled with (≥1 placedBy)

and ¬(≥1 placedBy). The arcs of all such paths are shown in dashed lines in
Fig. 17.6.

Hence, the node labeled with ConferenceCall is a ⊥-node of G(Ψ), which
implies that Ψ is not strictly satisfiable, by Theorem 17.1. Any interpretation s that
satisfies Ψ is such that s(ConferenceCall) ⊆ s(¬ConferenceCall) holds,
which implies that s(ConferenceCall)=∅.

Example 17.5 This example illustrates the three cases of Theorem 17.2. Let Ψ be
the set of constraints considered in Example 17.4 and G(Ψ) be the graph represent-
ing Ψ , shown in Fig. 17.6.

(a) Let σ be the constraint ConferenceCall � (≥1 placedBy−). Note
that σ is of the form e � f , where e = ConferenceCall and f =
(≥1 placedBy−). Then, G(Ψ, {e, f }) is equal to G(Ψ), since G(Ψ) already
contains nodes labeled with ConferenceCall and with (≥1 placedBy−).
Recall from Example 17.4 that the node labeled with ConferenceCall is a
⊥-node of G(Ψ), and hence of G(Ψ, {e, f }). Then, by Theorem 17.2(i), we
trivially have

Ψ |= ConferenceCall� (≥1 placedBy−)

(b) Let σ be the constraint Phone�¬ConferenceCall. Note that σ is of the
form e � f , where e = Phone and f =¬ConferenceCall. Since the node
labeled with ConferenceCall is a ⊥-node of G(Ψ, {e, f }), the node la-
beled with ¬ConferenceCall is �-node of G(Ψ, {e, f }). Hence, by The-
orem 17.2(ii), we have

Ψ |= Phone�¬ConferenceCall

17 On the Problem of Matching Database Schemas 457

(c) Let σ be the constraint ConferenceCall� Call. Note that σ is of the form
e � f , where e = ConferenceCall and f = Call. Since there is a path in
G(Ψ ∪ {e, f }) from the node labeled with ConferenceCall to the node
labeled with Call passing through the nodes labeled with (≥2 placedBy)

and (≥1 placedBy), by Theorem 17.2(iii), we have

Σ |= ConferenceCall� Call

Hence, constraint (6) in Example 17.4 is actually redundant.

17.4.3 Two Applications of Representation Graphs

In this section, we briefly discuss two applications of representation graphs. The
first application explores how to use representation graphs to suggest changes to a
strictly unsatisfiable schema until it become strictly satisfiable.

Example 17.6 Consider again the modified set of constraints Ψ of Example 17.4.
To simplify the discussion, given an expression e, when we refer to node e, we mean
the node labeled with e. Recall that Fig. 17.6 shows the graph representing Ψ . Also
recall that the sources of the strict unsatisfiability of Ψ are the paths shown in dashed
lines in Fig. 17.6.

Note that the arc from node (≥2 placedBy) to node (≥1 placedBy) is
in G(Ψ) by virtue of the semantics of these minCardinality expressions and,
hence, it cannot be dropped (and likewise for the arc from ¬(≥1 placedBy) to
¬(≥2 placedBy)). Therefore, the simplest ways to break the faulty paths are:

(a) Drop the arc from node ConferenceCall to node (≥2 placedBy)

(and consequently the dual arc from node ¬(≥2 placedBy) to node
¬ConferenceCall).

(b) Drop the arc from node Call to node ¬(≥2 placedBy) (and consequently
the dual arc from node (≥2 placedBy) to node ¬Call).

Note that the strict satisfiability of the schema would not be restored by dropping
just the arc from node ConferenceCall to node Call (and its dual arc), or the
arc from node (≥1 placedBy) to node Call (and its dual arc).

The representation graph is neutral as to which arc to drop. Thus, we must base
our decision on some schema redesign heuristics. Both options are viable, but they
obviously alter the semantics of the schema. Option (a) amounts to dropping con-
straint (7) of Example 17.4, which requires ConferenceCall to be a subset of
(≥2 placedBy). This option is not reasonable since it obliterates the very pur-
pose of the redesign step, which was to model conference calls as calls placed by at
least two phones. Option (b) means dropping constraint (3), which would alter the
semantics of Call. However, it is consistent with the purpose of the redesign step
and is better than Option (a).

458 M.A. Casanova et al.

A third option would be to create a second specialization of Call, say, non-
ConferenceCall, and alter constraint (3) of Example 17.4 accordingly. The con-
straints of Example 17.4 would now include:

(8) (≥1 placedBy)� Call
(9) (≥1 placedBy−)� Phone

(10) MobileCall� Call
(11) mobPlacedBy� placedBy
(12) ConferenceCall� Call
(13) ConferenceCall� (≥2 placedBy)

(14) nonConferenceCall� Call
(15) nonConferenceCall�¬(≥2 placedBy)

In view of (13) and (15), note that it would be redundant to include a constraint to
force ConferenceCall and nonConferenceCall to be mutually exclusive.
From the point of view of schema redesign practice, this would be the best alter-
native since it retains the information that there are calls with just one originating
place.

The second application we briefly discuss is how to integrate two schemas,
S1 and S2, which use the same concepts and properties, but differ on their con-
straints [8]. More precisely, denote by T h(σ) the set of all constraints which
are logical consequences of a set of constraints σ . Let Σ1 and Σ2 be the sets
of (normalized) constraints of two schemas, S1 and S2, respectively. The goal
now is to come up with a set of constraints Γ that conveys the common seman-
tics of S1 and S2, that is, a set of constraints Γ such that T h(Γ) = T h(Σ1) ∩
T h(Σ2).

Example 17.7 Let G(Σ1) and G(Σ2) be the graphs that represent the sets of con-
straints Σ1 and Σ2. Denote their transitive closures by G∗(Σ1) and G∗(Σ2). Based
on Theorem 17.2, we illustrate in this example how to use G ∗ (Σ1) and G ∗ (Σ2)

to construct a set of constraints Γ such that T h(Γ)= T h(Σ1)∩ T h(Σ2).
Suppose that Σ1 is the following subset of the normalized constraints of the

Phone-Company1 schema of Example 17.1 (again we do not consider all constraints
to reduce the size of the example; we also abbreviate the names of the atomic con-
cepts and roles in an obvious way, i.e., pc stands for placedBy, etc.):

(1) (≥1 pc)� C
(2) (≥1 pc−)� P
(3) C�¬(≥2 pc)

(4) (≥1 mpc)� MC
(5) (≥1 mpc−)� MP
(6) MC� C
(7) MP� P
(8) mpc� pc

Suppose that Σ2 is the following subset of normalized constraints of the Phone-
Company2 schema of Example 17.2:

17 On the Problem of Matching Database Schemas 459

(9) (≥1 pc)� C
(10) (≥1 pc−)� P
(11) C�¬(≥2 pc)

(12) (≥1 mpc)� MC
(13) (≥1 mpc−)� MP
(14) MC�¬C
(15) MP�¬P

For i = 1,2, let G(Σi) be the graph that represents Σi (Fig. 17.5 depicts G(Σ2)).
We systematically construct Γ such that T h(Γ) = T h(Σ1) ∩ T h(Σ2) as follows.
Tables 17.1(a) and 17.1(b) show the arcs of G ∗ (Σ1) and G ∗ (Σ2). Note that a
tabular presentation of the arcs, as opposed to a graphical representation, is much
more convenient since we are working with transitive closures. For example, line
3 of Table 17.1(a) indicates that G ∗ (Σ1) has an arc from the node labeled with
(≥1 pc) to the nodes labeled with C and ¬(≥2 pc).

In this specific example, Table 17.1(c) induces Γ as follows:

• Lines 10, 15 and 16 are discarded since they correspond to arcs in just G ∗ (Σ2).
• Lines 1, 5, 6, 9 and 12 are discarded since they have a negated expression on the

left-hand side cell.
• Line 4 corresponds to a special case of a ⊥-node (cf. Theorem 17.2(i)).
• The other lines retain just the arcs that are simultaneously in G ∗ (Σ1) and G ∗

(Σ2).

Table 17.1 shows the final set of constraints in Γ :

(16) C �¬(≥2 pc) from line 2
(17) (≥1 pc)� C from line 3
(18) (≥1 pc)�¬(≥2 pc) from line 3
(19) (≥2 pc)�⊥ from line 4
(20) MC�¬(≥2 pc) from line 7
(21) (≥1 mpc)� MC from line 8
(22) (≥1 mpc)�¬(≥2 pc) from line 8
(23) (≥1 pc−)� P from line 11
(24) (≥1 mpc−)� MP from line 14

Note that it is not entirely obvious that constraints (18), (19), and (22) are in
T h(Σ1)∩ T h(Σ2). We refer the reader to [8] for a detailed proof that this construc-
tion leads to a set of constraints Γ such that T h(Γ)= T h(Σ1)∩T h(Σ2). Roughly,
it corresponds to the saturation strategy in binary resolution.

17.5 Conclusions

We first introduced extralite schemas with role hierarchies, which are sufficiently
expressive to encode commonly used ER model and UML constructs, including
relationship hierarchies. Then, we showed how to efficiently test strict satisfiability

460 M.A. Casanova et al.

Table 17.1 Construction of the set of constraints Γ that generates Σ�Φ

and logical implication for restricted extralite schemas with role hierarchies. The
procedures have low time complexity, and they retain and explore the constraint
structure, which is a useful feature for a number of problems, as pointed out in the
introduction.

Finally, as future work, we plan to investigate the problem of efficiently testing
extralite schemas with role hierarchies for finite satisfiability [11].

17 On the Problem of Matching Database Schemas 461

Acknowledgements This work was partly supported by CNPq, under grants 473110/2008-3
and 557128/2009-9, by FAPERJ under grant E-26/170028/2008, and by CAPES under grant NF
21/2009.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-lite family and rela-
tions. J. Artif. Intell. Res. 36, 1–69 (2009)

2. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain
quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

3. Baader, F., Nutt, W.: Basic description logics. In: Baader, F., Calvanese, D., McGuinness,
D.L., Nardi, D., Patel-Schneider, P.F. (eds.) The Description Logic Handbook, pp. 43–95.
Cambridge University Press, New York (2003)

4. Borgida, A., Brachman, R.J.: Conceptual modeling with description logics. In: Baader, F., Cal-
vanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) The Description Logic
Handbook, pp. 349–372. Cambridge University Press, New York (2003)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R., Ruzzi, M.:
Data integration through DL-Lite-A ontologies. In: Proceedings of the Third International
Workshop on Semantics in Data and Knowledge Bases (SDKB 2008), pp. 26–47 (2008)

6. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and
efficient query answering in description logics: the DL-Lite family. J. Autom. Reason. 39,
385–429 (2007)

7. Casanova, M.A., Furtado, A.L., Macedo, J.A., Vidal, V.M.: Extralite schemas with role hier-
archies. Tech. rep. MCC09/10, Department of Informatics, PUC-Rio (2010)

8. Casanova, M.A., Lauschner, T., Leme, L.A.P.P., Breitman, K.K., Furtado, A.L., Vidal, V.M.:
Revising the constraints of lightweight mediated schemas. Data Knowl. Eng. 69(12), 1274–
1301 (2010). Special issue on 28th International Conference on Conceptual Modeling (ER
2009)

9. Hartmann, S., Link, S., Trinh, T.: Constraint acquisition for entity-relationship models. Data
Knowl. Eng. 68, 1128–1155 (2009)

10. Lauschner, T., Casanova, M.A., Vidal, V.M.P., de Macêdo, J.A.F.: Efficient decision proce-
dures for query containment and related problems. In: Brayner, A. (ed.) XXIV Simpósio
Brasileiro de Banco de Dados, 05–09 de Outubro, Fortaleza, Ceará, Brasil, Anais, pp. 1–15
(2009)

11. Rosati, R.: Finite model reasoning in DL-Lite. In: Proceedings of the 5th European Semantic
Web Conference on the Semantic Web: Research and Applications, ESWC’08, pp. 215–229.
Springer, Berlin (2008)

Index

0–9
1968 NATO Conference on Software

Engineering, 6

A
Abstraction, 86, 192, 199–202

Views, 94
Adams, Robert, 151
Adaptive Planning and Execution (APEX), 398
Agile Software Development, 128

Extreme Programming (XP), 124, 218,
219, 225, 233, 244, 408, 426

Scrum, 408, 426
Alphabet

Attributive Language, 433
Analogic Model, 64, 65
Architectural Description Languages

COMMUNITY, 25, 27–30
Reo, 25
Wright, 25

Ariane 5 Flight 501 Software Failure, 160, 248
Aspect Oriented Programming

Versus Separation of Concerns, 89, 100
Aspect Oriented Programming (AOP), 223
At-Most Restriction, 434
Atomic Concepts, 433
Atomic Negation, 434
Atomic Roles, 433
Attributive Language, 433

Alphabet, 433
At-Most Restriction, 434
Atomic Negation, 434
Atomic Role, 433
Axiom

Equality, 434
Inclusion, 434

Bottom Concept, 433

Concept Description, 433
Full Existential Quantification, 434
Interpretation, 434
Terminological Axiom, see Axiom
Universal Concept, 433

Aurelius, Marcus, 184
Automation, 200, 207
Autonomous Agents, 378
Axiom

Equality, 434
Inclusion, 434

B
Bach, Johann Sebastian, 121
Bear, Paddington, 4, 40
Belief-Desire-Joint-Intention Architecture, 201
Biologically-Inspired Computing, 179, 182

Apoptosis, 183, 189
Autonomic Computing, 179
Quiescence, 182, 183, 189

Bohr, Niels, 242
Booch, Grady, 199
Bottom Concept, 433
Bradshaw, Jeffrey M., 377
Brooks Jr., Frederick P, 161, 162, 169, 246,

254
Buonarroti, Michelangelo, 244
Business Process Execution Language

(BPEL), 255–257, 271, 417, 420

C
Cognitive Agent Architecture (Cougaar),

142–146, 153, 154, 379, 380
ActiveEdge Platform, 379, 380, 390

Cohesion, 131–134
Common Cause Failures, 97
Complex Adaptive System (CAS), 373,

375–377, 381, 385, 390, 404

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5, © Springer-Verlag London Limited 2012

463

http://dx.doi.org/10.1007/978-1-4471-2297-5

464 Index

Complexity
Accumulating Complexities, 123
and Cloud Computing, 40
Characterization, 196
Computational Complexity, 85
Conversation of Complexity, 87–89
Definition of, 85
Definition of Complex, 90
Dimensions of, 217
Disorganized Complexity, 374
in Music, 121
Interactions, 192, 193, 198
Managing Complexity

Abstraction, see Abstraction
Automation, see Automation
Composition, see Composition
Decomposition, see Decomposition
Modularization, see Modularization
Reuse, see Reuse

Organized Complexity, 373–375
Problem Complexity, 85
Programming Complexity, 85
Reducing Problem Complexity, 91

Complexity Crisis, 5
Composition, 9, 11, 12, 20–24, 29, 31, 35, 39,

40, 191, 192, 199, 200, 202–206,
209

Computer-Aided Software Engineering
(CASE), 161

Concept Description, 433, 434
Interpretation, 434

Coordination Languages
Linda, 25
Manifold, 25

Coupling, 134–136
Content Coupling, 136

Crick, Francis (1916–2004), 178
Cyclomatic Complexity, 106
Cynefin Framework, 198, 208

D
Dallas International Airport Baggage Handling

System
Software Problems, 6

De Morgan’s Theorem, 107
Decomposition, 192, 199, 202–206, 208, 209

Embedded Decomposition, 66
Jigsaw Decomposition, 67
Loose Decomposition, 67

Denning, Peter, 4
DeRemer, Frank, 6, 7
Descartes, René, 50
Dijkstra, Edsger W., 7, 52
Distributed Systems, 376

Domain, 434
Domain Specific Languages, 141, 142
D’Souza, Desmond, 193, 207

E
Einstein, Albert, 181, 189
Emergent Behavior, 191, 193, 196, 204, 209,

213
Entanglement, 93
Equality, 434
Event-Driven Programming, 57
Exports Interface, 15, 22

F
Face Pamphlet, 149, 151–153
Feature Interaction, 59
Feldman, Stuart, 3
Fiadeiro, José Luiz, 122
Formal Methods

Tool Support, 249
Fowler, Martin, 141
Francez, Nissim, 193, 206
Full Existential Quantification, 434
Furst, Merrick, 247

G
Gaia Methodology, 201
Gautier, Théophile, 249
Glass, Robert, 121
Goguen, Joseph A., 21

H
Harel, David, 161, 162, 169, 170
He, Jifeng, 279
Hill, Janelle, 410
Hoare, C.A.R., 88, 238, 246, 279
Hoare calculus, 10
Holloway, Michael, 237

I
Ideal Bureaucracy, 193
Imports Interface, 15, 22
Inclusion, 434
Individual

Attributive Language, 434
Inheritance, 19–21, 29
Intelligent Agents

Properties of, 378
Interpretation, 434

Domain, 434
Individual, 434
Interpretation function, 434
Satisfies

Axiom, 434

Index 465

J
Jackson Structured Programming (JSP), 8
James Joyce’s Ulysses, 244
Jennings, Nicholas R., 199, 205, 209
JetBrains MPS, 151
Johann Strauss Jr., 121
Joint Directors of Laboratories (JDL) Data

Fusion Working Group, 387
Jones, Cliff, 240

K
Karageorgos, Anthony, 207, 208
Karnaugh Map, 107–109
Knight, John C., 76
Knuth, Donald, 244
Kron, Hans H., 6, 7
Kurtz, Cynthia F., 196
Kyffin, Steven, 3

L
Ladyman, James, 90
Lambert, James, 90
Larman, Craig, 193
Lehman, Meir M., 104, 128
Leibniz, Gottfried, 50
Leveson, Nancy Gail, 76
Lewis, C.S., 242
Lilienthal, Otto, 178
Lisksov Substitution Principle, 124
Literate Programming, 244

M
Markov Models, 258–260
Marmalade Stains

Bank Note, 4
Source Code, 5

Marshall, Patrick, 426
MAS Product Line, 207
Matisse, Henri, 243
McCabe Sr., Thomas J., 106
McIlroy, Douglas, 6
Mealy Machine, 321
Medvidović, Nenad, 7, 23
MESSAGE Agent Oriented Software

Engineering Methodology, 201
Meyer, Bertrand, 16, 124, 205, 237
Miller, George A., 137
Model-Driven Development (MDD), 220, 222,

230, 231
Modeling

Bottom-Up, 208, 209
Top-Down, 208

Modularization, 86–89, 92–95
Moore Machine, 321, 335, 336

Mozart, Wolfgang Amadeus, 121
Munson, John C., 103

N
NASA

ANTS Application Lunar Base Activities
(LARA), 186

Autonomous Nano-Technology Swarm
(ANTS) Concept Mission, 142,
163–167, 169, 172, 185–189

Formal Approaches to Swarm Technology
(FAST) Project, 163, 167, 174, 189

Hubble Robotic Servicing Mission
(HRSM), 171

Lights-Out Ground Operating System
(LOGOS), 172

Mars Global Surveyor (MGS), 78, 79
Prospecting Asteroid Mission (PAM), 186,

187, 189
Saturn Autonomous Ring Array Mission,

186
Space Shuttle, 109

O
Operational Reliability, 113
Otis, Elisha, 61

P
Page-Jones, Meilir, 134
Parnas, David Lorge, 13, 86, 169
Perrow, Charles, 77–80
Physical Separation

Diversity, 98
Independence, 98

Pink, Daniel H., 411
Polanyi, Michael, 62, 71
Pre/Post Conditions, 9, 10, 14, 20, 21, 23, 37,

40
Pressman, Roger S., 208
Program Design

Assertions, 80
Property Monitors, 81

Program Inversion, 56
Program Slicing, 105
Programming Constructs

Coroutine, 55
Programming Languages

Eiffel, 21
Modula-2, 14
Unity, 27

Provides Interface, 10, 22, 37, 39
Pucher, Max J., 414

Q
Queueing Networks, 260–263

466 Index

R
Redshaw, Toby, 6
Reductionism, 208
Reenskaug, Trygve, 193
Refinement, 10, 16, 17, 20, 21, 27–29, 40
Requirements-to-Design-to-Code (R2D2C)

Approach, 170–172
Requires Interface, 10, 11, 22, 37, 39
Reuse, 200, 207
Rushby, John, 173

S
Selfware, 182, 183
SENSORIA Reference Modelling Language

(SRML), 32, 33–35, 37
Service Component Architecture (SCA),

33–35
Service Orientation, 218, 224, 226, 228, 229,

232, 233
Sha, Lui, 76, 88
Shepherd, Tom, 411
Sihami, Mehran, 149
Simon, Herbert A., v
Sinur, Jim, 411
Snowden, David J., 196
Social Complexity, 122
Software Crisis, 4, 6, 21
Sugden, Mollie, 245
Superposition, 27–29
Swarm Intelligence, 142, 184

Agent Swarms, 184
Boids, 185
Emergent Behavior, 165, 167
Inspiration, 185
Particle Swarms, 185
Robotics, 184
Self-Organization, 166
Simulations, 184
Swarms for Exploration, 185

Switching Concern, 68
Symbolic Execution, 106
Synthesis, 222, 225, 226, 229, 231, 233

Szyperski, Clemens Alden, 22, 193

T
TCSPM

Deadline Operator, 282, 284
Event, 287
Instant Event, 285
Miracle, 280, 282
Timed Trace, 279
Uninterrupted Event, 285

Terminological Axiom, see Axiom
Therac-25 Software Failure, 160, 248
Three Mile Island Accident, 77
Time Bands, 286

Activity, 291
Precision, 288
Signature Event, 291
Simultaneous Event, 288

Turing, Alan, 51, 52

U
Unified Software Development Process, 128
Universal Concept, 433
Uses Interface, 11
UTP

Homogeneous Relation, 279
Miracle, 280, 282

V
Verification and Validation, 163
View Composition, 94
Vincenti, Walter G., 99
Vizinczey, Stephen, 240

W
Weaver, Warren, 374, 375
Weber, Max, 193
Weiner, Norbert, 179
Werries, Darrell S., 103
Wiesner, Karoline, 90
Wilde, Oscar, 241
Winograd, Terry, 62

	Conquering Complexity
	Foreword
	Preface
	Contents
	Contributors
	Abbreviations

	Part I: Recognizing Complexity
	Chapter 1: The Many Faces of Complexity in Software Design
	1.1 Introduction
	1.1.1 Abstraction
	1.1.2 Decomposition

	1.2 Programming In-the-small
	1.3 Programming In-the-large
	1.3.1 Modules and Module Interconnection Languages
	1.3.2 Object-Oriented Programming
	1.3.3 Component-Based Software Development

	1.4 Programming In-the-many
	1.5 Programming In-the-universe
	1.5.1 Services vs Components
	1.5.2 Modules for Service-Oriented Computing

	1.6 Concluding Remarks
	Appendix
	 References

	Chapter 2: Simplicity and Complexity in Programs and Systems
	2.1 Introduction
	2.2 A Small Integer Program
	2.3 Programs with Multiple Traversals
	2.4 Programs with Multiple Structures
	2.5 Combining Programs
	2.6 Transforming a Program
	2.7 Computer-Based Systems
	2.8 Sources of Complexity
	2.9 Candidate Behaviour Constituents
	2.10 Functional Constituent Behaviours
	2.11 Simplicity Criteria
	2.12 Secondary Decompositions
	2.13 The Oversimpliﬁcation Strategy
	2.14 Loose Decomposition
	2.15 Recombining Behaviours
	2.16 Some Propositions About Software Complexity
	2.17 Understanding and Formalism
	 References

	Part II: Controlling Complexity
	Chapter 3: Conquering Complexity
	3.1 Introduction
	3.2 Reliable Systems from Unreliable Parts
	3.3 Simplicity and Redundancy
	3.4 The Nature of Failure in Complex Systems
	3.5 Redundancy and Simplicity
	3.6 Architecture
	3.7 Hierarchical Redundancy
	3.7.1 Replace and Resume

	3.8 Synopsis
	 References

	Chapter 4: Separating Safety and Control Systems to Reduce Complexity
	4.1 Introduction
	4.2 Reducing Complexity
	4.2.1 The Effect of Reduced Complexity on Quality and Dependability
	4.2.2 Modularization and Abstraction Cannot Reduce Problem Complexity
	4.2.3 Why Control Is More Complex than Safety

	4.3 Separation of Concerns
	4.3.1 Physical Separation: Reducing Complexity
	4.3.2 Ideas for Separate Safety Systems in Other Domains

	4.4 Reducing Programming Complexity: The Engineering Approach
	4.5 Conclusion
	 References

	Chapter 5: Conquering System Complexity
	5.1 Complexity and System Evolution
	5.2 Complexity Tradeoffs
	5.3 Complexity Metrics
	5.3.1 Program Slicing
	5.3.2 Symbolic Execution

	5.4 Design Complexity
	5.5 System and Software Complexity
	5.6 Cost of Complexity
	5.7 Hardware Complexity
	5.8 Complexity and Reliability
	5.9 Conﬁguration Response Time
	5.10 Conﬁguration Failure Rate
	5.11 Reliability Model and Predictions
	5.11.1 Reliability Model
	5.11.2 Predictions

	5.12 Maintainability
	5.12.1 Availability

	5.13 Summary
	 References

	Chapter 6: Accommodating Adaptive Systems Complexity with Change Tolerance
	6.1 Introduction
	6.1.1 Faces of Software System Complexity
	6.1.2 Models Help Conquer Complexity
	6.1.3 Systems Capabilities and Change Tolerance
	6.1.4 Model-Based Engineering (MBE)

	6.2 Background
	6.2.1 Model-Driven Architecture
	6.2.2 Capabilities Engineering

	6.3 Change Tolerance Starts with Capabilities
	6.3.1 Cohesion
	6.3.2 Coupling
	6.3.3 Abstraction Level
	6.3.4 Optimization
	6.3.5 Transition Space for Change-Tolerant Capabilities
	6.3.6 Coupling and Cohesion in Solution Space Models and MBE

	6.4 Model-Based Engineering Experience Dealing with Complexity
	6.4.1 Cougaar Model-Driven Architecture (CMDA)
	6.4.1.1 CMDA Environment
	6.4.1.2 CMDA Meta-model

	6.4.2 Model-Based Engineering Framework for High-Performance Reconﬁgurable Computing
	6.4.3 Model-Based Engineering for Social Network Applications
	6.4.3.1 FacePamphlet via a Domain Speciﬁc Language

	6.5 Increasing Today's Complexity to Decrease Tomorrow's Complexity
	6.6 Conclusions
	 References

	Chapter 7: You Can't Get There from Here! Large Problems and Potential Solutions in Developing New Classes of Complex Computer Systems
	7.1 Introduction
	7.2 Software Problems
	7.2.1 An Historic Problem

	7.3 New Challenges for Software Engineering
	7.3.1 Challenges of Future NASA Missions
	7.3.2 ANTS: A NASA Concept Mission
	7.3.3 Problematic Issues
	7.3.3.1 Size and Complexity
	7.3.3.2 Emergent Behavior
	7.3.3.3 Autonomy
	7.3.3.4 Testing and Veriﬁcation

	7.4 Some Potentially Useful Techniques
	7.4.1 Autonomicity
	7.4.2 Hybrid Formal Methods
	7.4.3 Automatic Programming
	7.4.4 Formal Requirements Based Programming
	7.4.4.1 R2D2C
	7.4.4.2 R2D2C Technical Approach
	7.4.4.3 Advantages of the R2D2C Approach

	7.4.5 Tool Support

	7.5 Conclusion
	 References

	Chapter 8: 99% (Biological) Inspiration…
	8.1 Introduction
	8.2 Biologically-Inspired Computing
	8.3 The Autonomic Nervous System
	8.4 Inspiration from Human Biology
	8.4.1 New Metaphors
	8.4.2 Inspiration

	8.5 Swarms
	8.5.1 Swarm Inspiration
	8.5.2 Swarms for Exploration
	8.5.3 Inspiration and Improvement

	8.6 Conclusions
	 References

	Chapter 9: Dealing with Complexity in Agent-Oriented Software Engineering: The Importance of Interactions
	9.1 Introduction
	9.2 Related Work on Focusing on Interactions as the Source of Complexity
	9.3 The Main Tool for Dealing with Complexity: Modelling the Problem in Terms of Interactions
	9.4 Characterizing Complexity
	9.4.1 Characterization of Interaction Complexity

	9.5 Principles to Deal with Complexity
	9.6 Abstraction
	9.7 Composition and Decomposition
	9.7.1 Decomposition
	9.7.2 Composition
	9.7.3 Techniques for Decomposition and Composition

	9.8 Reuse and Automation Principles
	9.9 Applying the Principles-Software Process
	9.9.1 Top-Down and Bottom-Up
	9.9.2 Top-Down Reﬁnement by Means of Decomposition
	9.9.3 Bottom-Up Abstraction by Means of Composition
	9.9.4 Guidelines for Deciding Between Top-Down and Bottom-Up

	9.10 Conclusions
	 References

	Part III: Complexity Control: Application Areas
	Chapter 10: Service-Orientation: Conquering Complexity with XMDD
	10.1 Motivation
	10.1.1 Complexity Engineering
	10.1.2 Extreme Model-Driven Development
	10.1.3 Agility and Evolution

	10.2 Technical Hurdles: Compatibility and Interoperability
	10.3 XMDD: Extreme Model-Driven Development
	10.4 Central Issues to be Addressed
	10.4.1 Heterogeneous Landscape of Models
	10.4.2 Formal Methods and Tools
	10.4.3 Automatic Deployment and Maintenance Support

	10.5 The One Thing Approach
	10.6 The jABC as an XMDD Environment
	10.7 XMDD Case Studies in jABC
	10.7.1 Requirements and Speciﬁcation: Supply Chain Management
	10.7.2 Application Construction: The SWS Challenge Mediation Scenario
	10.7.3 Middleware Services: MaTRICS
	10.7.4 Bioinformatics Processes: Bio-JETI
	10.7.5 Code Generation: The Genesys Framework

	10.8 Conclusions and Perspectives
	 References

	Chapter 11: Ten Commandments of Formal Methods… Ten Years On
	11.1 Introduction
	11.2 I. Thou Shalt Choose an Appropriate Notation
	11.3 II. Thou Shalt Formalize but not Over-formalize
	11.4 III. Thou Shalt Estimate Costs
	11.5 IV. Thou Shalt Have a Formal Methods Guru on Call
	11.6 V. Thou Shalt not Abandon Thy Traditional Development Methods
	11.7 VI. Thou Shalt Document Sufﬁciently
	11.8 VII. Thou Shalt not Compromise Thy Quality Standards
	11.9 VIII. Thou Shalt not Be Dogmatic
	11.10 IX. Thou Shalt Test, Test, and Test Again
	11.11 X. Thou Shalt Reuse
	11.12 Conclusions
	11.13 Looking Ahead
	 References

	Chapter 12: Conquering Complexity via Seamless Integration of Design-Time and Run-Time Veriﬁcation
	12.1 Introduction
	12.2 A Running Example
	12.3 Non Functional Models for Complex Systems
	12.3.1 Markov Models
	12.3.1.1 Discrete Time Markov Chains

	12.3.2 Queueing Networks
	12.3.2.1 Modeling Complex Systems with Queueing Networks

	12.4 Design-Time Modeling and Veriﬁcation of the TA System
	12.4.1 DTMCs at Work
	12.4.2 QNs at Work
	12.4.3 Design-Time Veriﬁcation

	12.5 Supporting Run-Time Veriﬁcation
	12.6 Related Work
	12.7 Conclusions and Future Work
	Appendix: BPEL Overview
	 References

	Chapter 13: Modelling Temporal Behaviour in Complex Systems with Timebands
	13.1 Introduction
	13.2 Timed CSP with the Miracle
	13.2.1 Primitive Processes
	13.2.2 Sequential
	13.2.3 Choice
	13.2.4 Parallel
	13.2.5 Abstraction and Recursion
	13.2.6 Timed Operators
	13.2.7 Reﬁnement
	13.2.8 The Difference from Timed CSP
	13.2.9 Distinct Features
	13.2.9.1 Deadline
	13.2.9.2 Atomic Events

	13.2.10 Discussion

	13.3 Semantics of the Timebands Model
	13.3.1 Time Bands
	13.3.2 Events and Precision
	13.3.3 Punctual Clock-Tick Event
	13.3.4 Activities
	13.3.5 Mapping Between Bands
	13.3.6 Discussion

	13.4 Case Study
	13.4.1 A Pump Controller
	13.4.2 Behaviour of Water and Methane in the Minute Band
	13.4.3 Behaviour of Methane in the Second Band
	13.4.4 Veriﬁcation

	13.5 Conclusion
	 References

	Chapter 14: Software and System Modeling: Structured Multi-view Modeling, Speciﬁcation, Design and Implementation
	14.1 Introduction
	14.1.1 Central Notion: System
	14.1.2 Background, Goals and Structure of the Chapter

	14.2 Basic Models of Systems
	14.2.1 Data Models-Data Types
	14.2.2 Syntactic Interfaces
	14.2.3 Interface Behavior
	14.2.3.1 Streams
	14.2.3.2 Interface Behavior Model

	14.2.4 Composition
	14.2.5 State Machines by State Transition Functions
	14.2.6 Channel Traces

	14.3 Specifying Basic System Views
	14.3.1 Specifying Interface Behavior
	14.3.1.1 Systems and Their Functionality
	14.3.1.2 System Interface Behaviour: Speciﬁcation by Interface Assertions
	Notation

	14.3.2 Specifying Architectures
	14.3.2.1 Syntactic Architectures
	14.3.2.2 Describing the Behavior of Architectures

	14.3.3 Specifying State Machines
	14.3.3.1 Specifying Properties of State Machines
	14.3.3.2 Assertions About State Machines

	14.3.4 Specifying Traces

	14.4 Relating System Views
	14.4.1 Relating Architectures with Interfaces and Traces
	14.4.1.1 Glass Box Views onto Interpreted Architectures
	14.4.1.2 Interface Views onto Architectures
	14.4.1.3 Interface Assertions for Architectures
	14.4.1.4 Renaming

	14.4.2 From State Machines to Interface Behaviors
	14.4.2.1 Interface Behavior of State Machines
	14.4.2.2 The Set of Input/Output Histories of State Machines
	14.4.2.3 Composing State Machines
	14.4.2.4 Architectures as State Machines

	14.4.3 Traces of Interfaces, State Machines, and Architectures

	14.5 Reﬁnement and Veriﬁcation: Reasoning About System Views
	14.5.1 System Development by Reﬁnement
	14.5.1.1 Property Reﬁnement
	14.5.1.2 Compositionality of Property Reﬁnement
	14.5.1.3 Glass Box Reﬁnement
	14.5.1.4 Interaction Reﬁnement

	14.5.2 Proving Properties about Interface Behaviors
	14.5.3 Proving Properties about Architectures
	14.5.3.1 Modularity of Composition
	14.5.3.2 Deriving Interface Speciﬁcations from Architecture Speciﬁcations

	14.5.4 Proving Properties About State Machines
	14.5.5 Proving Properties About Traces
	14.5.6 Testing Systems

	14.6 Engineering Systems: Structuring System Views
	14.6.1 Assumption/Promise Speciﬁcations
	14.6.1.1 Contracts as Interface Assertions by Assumption/Promise
	14.6.1.2 From A/P-Contracts to Logical Implication

	14.6.2 System Use Case Speciﬁcation: Structuring System Functionality
	14.6.2.1 Projections of Histories and Functions
	14.6.2.2 Sub-functions and Their Dependencies
	14.6.2.3 Restricted Sub-functions
	14.6.2.4 Dependency and Independency of Sub-functions

	14.7 Models at Work: Seamless Model-Based Development
	14.7.1 System Speciﬁcation
	14.7.1.1 Context Model
	14.7.1.2 Function Hierarchies
	14.7.1.3 Structuring Function Speciﬁcations by Modes
	14.7.1.4 Interpreted Function Hierarchies
	14.7.1.5 Function and Context

	14.7.2 Logical Component Architectures

	14.8 Seamless Modeling in System Development
	14.8.1 Combining Functions into Multifunctional Systems
	14.8.2 Tracing
	14.8.2.1 Logical Representation of Requirements, Speciﬁcations and Architectures
	14.8.2.2 Correctness
	14.8.2.3 Relating Logical Views
	14.8.2.4 Deﬁning Links for Tracing

	14.9 Summary and Outlook
	14.9.1 Basics: What Is Needed for Seamless Model Based Development
	14.9.2 Further Work

	 References

	Chapter 15: Conquering Complexity Through Distributed, Intelligent Agent Frameworks
	15.1 Introduction
	15.2 Frameworks for Managing Complexity
	15.2.1 Distributed Intelligent Agent Framework
	15.2.1.1 Distributed Agent-Based Concepts
	15.2.1.2 Framework Constructs
	System Structure and Agent Deﬁnition
	Agent Communication-Publish/Subscribe
	Registration/Discover Services
	Inference Rules Engine
	Interoperability and External Communication

	15.2.1.3 Framework Features
	Persistence
	Scalability
	Robustness and Survivability
	Security
	Execution Management and Dynamic Reconﬁguration

	15.2.2 Cognitive Framework for Reasoning
	15.2.2.1 Concept
	15.2.2.2 Organizational Structure
	Observe/Understand
	Decide/Plan/Act
	Analyze/Learn

	15.2.2.3 Application

	15.2.3 Knowledge Base Framework
	15.2.4 Integrated Distributed Data Environment Framework
	15.2.5 Situational Reasoning Framework
	15.2.5.1 Concept
	15.2.5.2 Organizational Structure
	The Situational Object Space (SOS)
	The Network Object Space (NOS)
	Semantic Network Space (SNS)

	15.2.5.3 Application

	15.3 Unifying Architectural Frameworks for Developing Distributed Decision Support
	15.3.1 Shared Situational Awareness Architectural Framework
	15.3.1.1 Concept
	15.3.1.2 Organizational Structure
	Data Level-Raw Data Access to/from Sensors & Systems
	Virtual Common Model-Integrated Common Situational Representation
	Communities of Interest Situational Models-Distributed Partitioned Situational Representations
	Decision Support-Specialized Intelligent Decision Support Tools (DSTs)

	15.3.1.3 Application

	15.3.2 Adaptive Planning Framework
	15.3.2.1 Concept
	15.3.2.2 Organizational Structure
	Situational Management
	Task Planner Application
	Force Builder Application
	Plan Service (Agent)

	15.3.2.3 Application

	15.4 Conclusions
	15.5 Dictionary of terms
	 References

	Chapter 16: Customer-Oriented Business Process Management: Vision and Obstacles
	16.1 Motivation
	16.2 Design by Doing-A Vision for Adaptive Process Management
	16.2.1 Following Recipes Does not Make Good Cooks
	16.2.2 Basic Requirements
	16.2.3 Challenges

	16.3 Towards Automated Integration to a Virtual Service Platform
	16.3.1 Import of Third Party Services
	16.3.2 The State-of-the-Art Approach to Native Service Integration
	16.3.3 The Automated Approach to Service Integration: The Import Wizard
	16.3.4 Practical Impact: Orchestrating SAP Services in an XMDD Style

	16.4 Technical Requirements to ERP APIs
	16.4.1 Evaluation Proﬁles

	16.5 Conclusion
	 References

	Chapter 17: On the Problem of Matching Database Schemas
	17.1 Introduction
	17.2 A Class of Database Schemas
	17.2.1 A Brief Review of Attributive Languages
	17.2.2 Extralite Schemas with Role Hierarchies

	17.3 Testing Strict Satisﬁability and Logical Implication
	17.3.1 Representation Graphs
	17.3.2 Herbrand Interpretations and Instance Labeling Functions
	17.3.3 Strict Satisﬁability and Logical Implication for Extralite Schemas with Restricted Role Hierarchies
	17.3.4 SAT(Sigma)

	17.4 Examples
	17.4.1 Examples of Extralite Schemas
	17.4.2 Examples of Representation Graphs
	17.4.3 Two Applications of Representation Graphs

	17.5 Conclusions
	 References

	Index

