

Software and Systems Traceability

Jane Cleland-Huang · Orlena Gotel ·
Andrea Zisman Editors

Software and Systems
Traceability

Foreword by Anthony Finkelstein

123

Editors
Jane Cleland-Huang
DePaul University
School of Computing
243 S. Wabash Avenue
60604 Chicago
USA
jhuang@cs.depaul.edu

Orlena Gotel
New York
NY 10014
USA
olly@gotel.net

Andrea Zisman
City University
School of Informatics
London
United Kingdom
a.zisman@soi.city.ac.uk

ISBN 978-1-4471-2238-8 e-ISBN 978-1-4471-2239-5
DOI 10.1007/978-1-4471-2239-5
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011941143

© Springer-Verlag London Limited 2012
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Requirements and Relationships: A Foreword

Software engineering is a pessimistic discipline. The glass is always half empty
rather than half full. Not surprising really, we are hardened to the grind of improving
quality, painstakingly testing and, never quite, eliminating bugs. Critical review is
of the essence. We know there is “no silver bullet”.

Traceability in software development must however, pessimism set aside, be
marked as a success. We have characterised the problem. We have produced indus-
trial strength tools that relieve a substantial part of the practical difficulties of
managing traceability relations across different documents. We have arrived at
a communal consensus regarding the principal notations to be used in software
development, realised in UML, and characterised the relationships amongst these
notations. These are all significant practical advances.

Research has gone further. One of the key challenges of traceability has been the
return on investment. In essence only a few of the traceability links prove to be of
value, that is are subsequently needed in support of a change. It is difficult to predict
in advance however, which these might be. Given that establishing, documenting
and managing traceability manually is expensive, the balance of costs and bene-
fits is delicate one. It has been shown, convincingly in my view, that off-the-shelf
information retrieval techniques will, with some judicious tuning, yield reasonable
traceability links. I expect this, once industrially hardened and deployed, to drive
cost reduction.

I guess with all this positivity you can sense a “but” coming . . . and you are not
wrong. While we have taken steps to advance the state of the art, the nature of the
requirements challenge has shifted. The context has altered. Agile development has
altered the way that much software is developed (just in case there is any remaining
doubt, it is no longer a phenomenon of the programming fringe – it is mainstream
software engineering). But agile development is really only a particular manifesta-
tion of the underlying trends in which it is becoming clear that it is cheaper to build
software quickly, and change it if it fails to satisfy the emerging requirements, than
to undertake the discipline of trying to get it exactly right at the outset. This is partly
a technical change, the product of improved tools, environments and programming
languages, but may also reflect changing business environments, that move at a pace
set by a dynamic globalised economy. So we start with more change, indeed with

v

vi Requirements and Relationships: A Foreword

constant change, not simply as an unwanted consequence of the inexorable laws of
software evolution but embraced as the essence of software engineering.

More change means a greater need for traceability support. Of course, if you have
adopted an agile approach you could argue that there is less to trace to, after all you
have in large part eschewed documentation. This, I believe, is an error because it
ignores the consequentially altered nature of the requirements task. I will elaborate
below.

We have tended to view requirements as a discrete task in which we engage with
the customer (a sort of shorthand for stakeholders) on an occasional basis. We are
not, any longer, so naive as to believe that requirements elicitation is a one-shot
process, but we still understand it to be something that happens from time to time,
for clearly specified purposes.

Change changes things. Requirements engineering becomes instead a “rela-
tional” process in which the name of the game is continuing customer engagement.
In other words, the developer tries to ensure that their application or service grows
and adapts in sync with, ideally at the leading edge of, the customer’s business. You
could say the software is a manifestation of the relationship achieved through contin-
uous interaction and immersion in the business. Managing this ongoing relationship
and the associated knowledge of the domain is difficult and demands, I suggest,
a different approach on the part of the software developer and a reimagining of
requirements elicitation, specification and validation.

So, where does requirements traceability fit into this picture? It provides the
information management support for these complex multi-threaded customer rela-
tionships and the technical substrate for rapid system evolution. It allows the
developer to understand and account for the consequences of ongoing system
change in terms of the business. It is the core of a new type of “customer relationship
management” system.

I wish I had a better sense of what the new technical demands that follow from
the change of view, sketched above, might be. Many of the colleagues, whose work
makes up this volume, are better equipped than I am to do this.

Of course, there remains a hard core of large systems development characterised
by strong safety and other constraints and bound to the co-development of com-
plex hardware where the agility sketched above has limited impact. Defence and
other mission-critical systems exemplify this. There is a continuing need to address
traceability in this setting and in particular to support navigation of the complex
relationships that arise. Of particular interest, and relevant in the light of the analysis
above, are regulatory and compliance processes that engage a demanding framework
of requirements and shifting body of stakeholders. This still remains at the edge of
what can be practically accomplished and will require further research. This book
sheds strong light on the challenges.

I am certain that the technical achievements marked in this volume are the basis
for addressing these new frontiers for software and systems engineering and that
requirements traceability will be at the forefront of engineering research. Not so
pessimistic, really.

London, UK Anthony Finkelstein

Preface

The importance of traceability is well understood in the software engineering com-
munity and adopted across numerous software development standards. Industries
are often compelled to implement traceability practices by government regulations.
For example, the U.S. Food and Drug Administration (FDA) states that traceability
analysis must be used to verify that a software design implements all of its speci-
fied software requirements, that all aspects of the design are traceable to software
requirements, and that all code is linked to established specifications and estab-
lished test procedures. Other examples are found in the U.S. Federal Aviation
Administration (FAA) that states that software developers need to have ways of
demonstrating traceability between design and requirements, and in the Capability
Maturity Model Integration (CMMI) standard that requires similar traceability
practices.

Traceability supports numerous critical activities. For example, pre-requirements
traceability is used to demonstrate that a product meets the stakeholders’ stated
requirements, or that it complies with a set of government regulations. Traceability
is also used to establish and understand the relationships between requirements and
downstream work products such as design documents, source code, and test cases.
In this context, it supports tasks such as impact analysis which helps developers
understand how a proposed change impacts the current system, and code verifica-
tion which identifies superfluous and unwanted features by tracing all elements of
the source code back to specific requirements. Traceability can also support reuse of
parts of a software system by identifying the parts that match (new) requirements,
and the evolution of software systems.

In practice, traceability links are typically created and maintained either through
the use of a requirements management tool, or else in a spreadsheet or Word docu-
ment directly. However, there are numerous issues that make it difficult to achieve
successful traceability in practice. These issues include social ones related to com-
munication between project stakeholders, as well as technical issues related to
physically creating, maintaining, and using thousands of interrelated and relatively
brittle traceability links. As a result, many organisations struggle to implement and
maintain traceability links, even though it is broadly recognised as a critical element
of the software development life cycle.

vii

viii Preface

In order to overcome the significant challenges in creating, maintaining, and
using traceability, over the last 20 years the research community has been actively
addressing traceability issues through the exploration of topics related to automating
the traceability process, developing strategies for cost-effective traceability, support-
ing the evolution and maintenance of traceability links, visualising traceability, and
developing traceability practices that apply across a wide range of domains such as
product lines, multi-agent systems, safety critical applications, aspect-oriented and
agile software development, and various regulated industries.

Several workshops and symposia have been organised by the traceability commu-
nity to bring together researchers and practitioners in order to address the challenges
and discuss state-of-the-art work in the area of traceability. These events include
the Traceability in Emerging Forms of Software Engineering (TEFSE) workshop
series1; and the workshops funded by NASA (held at NASA’s IV&V facility in
2006) and the NSF (held in Lexington, Kentucky in 2007 in conjunction with
TEFSE 2007) that resulted in the creation of a draft Problem Statement and Grand
Challenges document.

Another effort of the community was the creation of the International Center of
Excellence for Software Traceability (CoEST) in 2005. The main goals of CoEST
are to promote international research collaborations; advance education in the trace-
ability area; bring together researchers, practitioners, and experts in the field; create
a body of knowledge for traceability; develop a repository of benchmarks for trace-
ability research; and develop new technologies to satisfy traceability needs. More
recently, the community has also engaged in the Tracy project, funded by the NSF,
with the focus of building research infrastructure, collecting and organising datasets,
establishing benchmarks, and developing a tool named TraceLab to provide support
for designing and executing a broad range of traceability experiments.

This book complements the current effort of the traceability community by pro-
viding a comprehensive reference for traceability theory, research, and practice and
by presenting an introduction to the concepts and theoretical foundations of trace-
ability. Several topics in this book represent areas of mature work, which have
previously only appeared as research papers in conference proceedings, journals,
or individual book chapters. The book therefore serves as a unifying source of
information on traceability. As such, we expect the book to serve as a reference
for practitioners, researchers, and students. Practitioners reading the book may be
especially interested in the mature areas of traceability research, several of which
have already been demonstrated to work in industry through various pilot studies,
while researchers from all areas of the community may be specifically interested in
the cutting edge nature of several topics and the open research challenges that need
to be addressed in the future. Students new to the topic should start with a review of
the fundamentals in the chapter “Traceability Fundamentals”.

1 TEFSE 2002: Edinburgh, UK; TEFSE 2003: Montreal, Canada; TEFSE 2005: Long Beach, CA;
TEFSE 2007: also known as the Grand Challenges of Traceability, Lexington, Kentucky; TEFSE
2009, Vancouver, Canada; TEFSE 2011: Honolulu, Hawaii.

Preface ix

The book contains 16 chapters organised in five Parts. Part I – Traceability
Strategy describes several traceability terms and concepts, and the activities related
to traceability planning and management. Part II – Traceability Creation presents
a variety of techniques for supporting the creation of trace links. These techniques
include the use of Information Retrieval and rule-based methods, an account of the
factors that impact traceability creation, methods to create traceability together with
the development of software systems, and techniques for traceability creation among
heterogeneous artifacts. Part III – Traceability Maintenance presents approaches
that support traceability in evolving projects in the domains of product line systems
and model-driven engineering, as well as the role of the human in the traceabi-
lity process. Part IV – Traceability Use describes the employment of traceability in
agile projects, aspect-oriented software development, non-functional requirements,
and medical devices. Part V – Traceability Challenges presents the outstanding
challenges for traceability research and practice, based on a community vision for
traceability in 2035, and discusses the open traceability research topics that need to
be addressed in the future.

The book also provides a copy of a glossary of traceability terms created by
members of the traceability community and used in the material described in the
various chapters of the book. The topics presented in these various chapters are
illustrated by two case studies in the areas of electronic health care and mobile
phone product line systems. The book also provides an overview of the Center of
Excellence for Software Traceability and the TraceLab tool. All the above materials
are presented in five different appendices in the book.

This book is the product of several years of effort. Andrea Zisman first conceived
of the idea in early 2009 and the finished product was brought together in its current
form as the result of numerous emails, skype calls, and face-to-face discussions
between all three of the editors.

Obviously, any book of this nature demands the contributions and efforts of many
different people. This book was no different, and we would like to thank members of
the traceability community for their willingness to contribute their time and effort
to make this book possible. The process of collecting material for the book was
initiated by a call for abstracts in June 2010. At that time, we selectively invited
the most promising abstracts for submission as full chapters, and also reached out
to request additional chapters for a few missing topics. All submitted chapters went
through a rigorous peer-review process and, as a result, we selected the chapters
that are presented in this book. We thank the authors of all abstracts and chapters
for their contributions to this process.

Chicago, USA Jane Cleland-Huang
New York, USA Orlena Gotel
London, UK Andrea Zisman

Acknowledgments

We would like to thank the following people for their contributions.
Melissa Huang for her illustrations of Traceability Strategy, Traceability

Creation, Traceability Maintenance, Traceability Use, Traceability Challenges, and
the Appendices, which appear in each of the six sectional headers respectively.

Aleksandra Waliczek for managing the logistics of coordinating the final process
of collecting chapters and supporting material from the authors and for integrating
all of the material into the draft version of the book for delivery to Springer.

John Van Ort for compiling author information.
The US National Science Foundation (NSF) for partially funding community

work on the Grand Challenges of Traceability, CoEST (Center of Excellence for
Software Traceability), and TraceLab under grants CNS 0959924 and 0647443.

The US National Aeronautics and Space Administration (NASA) for providing
initial seed funding for CoEST and for the first workshop on the Grand Challenges
of Traceability under grant NNX06AD02G.

All of the authors who contributed abstracts and/or full chapters as a result of the
initial call for chapters.

The anonymous reviewers, without whom this peer-reviewed book would not be
possible.

xi

Contents

Part I Traceability Strategy

Traceability Fundamentals . 3
Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes,
Andrea Zisman, Alexander Egyed, Paul Grünbacher,
Alex Dekhtyar, Giuliano Antoniol, Jonathan Maletic, and Patrick Mäder

Cost-Benefits of Traceability . 23
Claire Ingram and Steve Riddle

Acquiring Tool Support for Traceability 43
Orlena Gotel and Patrick Mäder

Part II Traceability Creation

Information Retrieval Methods for Automated Traceability Recovery . 71
Andrea De Lucia, Andrian Marcus, Rocco Oliveto, and Denys Poshyvanyk

Factors Impacting the Inputs of Traceability Recovery Approaches . . . 99
Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Automated Techniques for Capturing Custom Traceability
Links Across Heterogeneous Artifacts 129
Hazeline U. Asuncion and Richard N. Taylor

Using Rules for Traceability Creation 147
Andrea Zisman

Part III Traceability Maintenance

Ready-to-Use Traceability on Evolving Projects 173
Patrick Mäder and Orlena Gotel

Evolution-Driven Trace Acquisition in Eclipse-Based Product
Line Workspaces . 195
Wolfgang Heider, Paul Grünbacher, Rick Rabiser, and Martin Lehofer

xiii

xiv Contents

Traceability in Model-Driven Engineering: Efficient
and Scalable Traceability Maintenance 215
Andreas Seibel, Regina Hebig, and Holger Giese

Studying the Role of Humans in the Traceability Loop 241
Alex Dekhtyar and Jane Huffman Hayes

Part IV Traceability Use

Traceability in Agile Projects . 265
Jane Cleland-Huang

Traceability Between Run-Time and Development Time Abstractions . 277
Wouter De Borger, Bert Lagaisse, and Wouter Joosen

Tracing Non-Functional Requirements 299
Mehdi Mirakhorli and Jane Cleland-Huang

Medical Device Software Traceability 321
Fergal Mc Caffery, Valentine Casey, M.S. Sivakumar,
Gerry Coleman, Peter Donnelly, and John Burton

Part V Traceability Challenges

The Grand Challenge of Traceability (v1.0) 343
Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes,
Andrea Zisman, Alexander Egyed, Paul Grünbacher,
Alex Dekhtyar, Giuliano Antoniol, and Jonathan Maletic

Appendices . 411

Appendix A: Glossary of Traceability Terms (v1.0) 413

Appendix B: iTrust Electronic Health Care System Case Study 425

Appendix C: Mobile Phone Product Line Software System Case Study . 439

Appendix D: The Center of Excellence for Software Traceability 483

Appendix E: TraceLab – A Tool for Supporting Traceability Research . 485

Index . 487

Contributors

Nasir Ali DGIGL, École Polytechnique de Montréal, Montréal, QC, Canada,
nasir.ali@polymtl.ca

Giuliano Antoniol École Polytechnique de Montréal, Montréal, QC, Canada,
antoniol@ieee.org

Hazeline U. Asuncion Computing and Software Systems, University of
Washington, Bothell, WA, USA, hazeline@u.washington.edu

John Burton Vitalograph Ireland Ltd., Ennis, Ireland,
John.burton@vitalograph.ie

Valentine Casey Regulated Software Research Group, Lero, Dundalk Institute of
Technology, Dundalk, Ireland, Val.casey@dkit.ie

Jane Cleland-Huang DePaul University, School of Computing, 60604 Chicago,
USA, jhuang@cs.depaul.edu

Gerry Coleman Regulated Software Research Group, Lero, Dundalk Institute of
Technology, Dundalk, Ireland, Gerry.coleman@dkit.ie

Wouter De Borger DistriNet Research Group, K.U. Leuven, B-3001 Heverlee,
Belgium, wouter.deborger@cs.kuleuven.be

Alex Dekhtyar Cal Poly State University, San Luis Obispo, CA, USA,
dekhtyar@calpoly.edu

Andrea De Lucia University of Salerno, Fisciano (SA), Italy, adelucia@unisa.it

Peter Donnelly Regulated Software Research Group, Lero, Dundalk Institute of
Technology, Dundalk, Ireland, Peter@biobusinessni.org

Alexander Egyed Johannes Kepler University, Linz, Austria,
alexander.egyed@jku.at

Anthony Finkelstein University College London, London, UK,
a.Finkelstein@cs.ucl.ac.uk

xv

xvi Contributors

Holger Giese Hasso-Plattner-Institute at the University of Potsdam, 14482
Potsdam, Germany, holger.giese@hpi.uni-potsdam.de

Orlena Gotel New York, NY 10014, USA, olly@gotel.net

Paul Grünbacher Systems Engineering and Automation, Johannes Kepler
University, Linz, Austria, paul.gruenbacher@jku.at

Yann-Gäel Guéhéneuc DGIGL, École Polytechnique de Montréal, Montréal,
QC, Canada, yann-gael.gueheneuc@polymtl.ca

Jane Huffman Hayes University of Kentucky, Lexington, KY, USA,
hayes@cs.uky.edu

Regina Hebig Hasso-Plattner-Institute at the University of Potsdam, 14482
Potsdam, Germany, regina.hebig@hpi.uni-potsdam.de

Wolfgang Heider Christian Doppler Laboratory for Automated Software
Engineering, Johannes Kepler University, Linz, Austria, heider@ase.jku.at

Claire Ingram Newcastle University, NE1 7RU, England, UK,
claire.ingram@ncl.ac.uk

Waraporn Jirapanthong Faculty of Information Technology, Dhurakij Pundit
University, Bangkok 10210, Thailand, waraporn.jir@dpu.ac.th

Wouter Joosen DistriNet Research Group, K.U. Leuven, B-3001 Heverlee,
Belgium, wouter.joosen@cs.kuleuven.be

Bert Lagaisse DistriNet Research Group, K.U. Leuven, B-3001 Heverlee,
Belgium, bert.lagaisse@cs.kuleuven.be

Martin Lehofer Siemens VAI Metals Technologies, Linz, Austria,
martin.lehofer@siemens.com

Patrick Mäder Institute for Systems Engineering and Automation (SEA),
Johannes Kepler University, Linz, Austria, patrick.maeder@jku.at

Jonathan Maletic Kent State University, Kent, OH, USA, jmaletic@cs.kent.edu

Andrian Marcus Wayne State University, Detroit, MI 48202, USA,
amarcus@wayne.edu

Fergal Mc Caffery Regulated Software Research Group, Lero, Dundalk Institute
of Technology, Dundalk, Ireland, Fergal.McCaffery@dkit.ie

Andrew Meneely Department of Software Engineering, Rochester Institute of
Technology, andg@se.rit.edu

Mehdi Mirakhorli Depaul University, Chicago, IL, USA, m.mirakholi@acm.org

Rocco Oliveto University of Molise, Pesche (IS), Italy, rocco.oliveto@unimol.it

Contributors xvii

Denys Poshyvanyk The College of William and Mary, Williamsburg, VA 23185,
USA, denys@cs.wm.edu

Rick Rabiser Christian Doppler Laboratory for Automated Software
Engineering, Johannes Kepler University, Linz, Austria, rabiser@ase.jku.at

Steve Riddle Newcastle University, NE1 7RU, England, UK,
steve.riddle@ncl.ac.uk

Andreas Seibel Hasso-Plattner-Institute, The University of Potsdam, 14482
Potsdam, Germany, andreas.seibel@hpi.uni-potsdam.de

M.S. Sivakumar Regulated Software Research Group, Lero, Dundalk Institute of
Technology, Dundalk, Ireland, Smadh09@studentmail.dkit.ie

Ben Smith Department of Computer Science, North Carolina State University,
Raleigh, NC 27695-8206, USA, bhsmith3@ncsu.edu

Richard N. Taylor Institute for Software Research, University of California,
Irvine, CA, USA, Taylor@ics.uci.edu

Laurie Williams Department of Computer Science, North Carolina State
University, Raleigh, NC 27695-8206, USA, lawilli3@ncsu.edu

Andrea Zisman School of Informatics, City University London, London,
EC1V 0HB, UK, a.zisman@soi.city.ac.uk

Part I
Traceability Strategy

Traceability needs to be planned for and managed if it is to be effective and remain
effective in any particular project context. Stakeholders need to be identified and
requirements determined. A suitable traceability process needs to be designed and
potential support from tooling explored. However, all this initial effort is mute if
there is no clear understanding of the anticipated return on investment from imple-
menting traceability within an organisation. Traceability strategy comprises all those
activities associated with traceability planning and traceability management.

In this first part of the book, the chapter “Traceability Fundamentals” defines a
number of traceability-related terms and concepts, as they will be used through-
out the remainder of the book. A simple process for analysing the cost-benefit
of traceability and selecting a strategy accordingly is described in the chapter
“Cost-Benefits of Traceability”. A cautionary seven-step guide for making informed
decisions about tool acquisition is presented in the chapter “Acquiring Tool Support
for Traceability”. In combination, the chapters “Cost-Benefits of Traceability” and
“Acquiring Tool Support for Traceability” highlight important considerations to
help plan and manage traceability in practice.

Traceability Fundamentals

Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes, Andrea Zisman,
Alexander Egyed, Paul Grünbacher, Alex Dekhtyar, Giuliano Antoniol,
Jonathan Maletic, and Patrick Mäder

1 Introduction

The role of traceability was recognised in the pioneering NATO working conference
held in 1968 to discuss the problems of software engineering (Naur and Randell,
1969). One of the working papers in this conference examined the requirements for
an effective methodology of computer system design and reported on the need to be
able to ensure that a system being developed actually reflects its design. In a critique
of three early projects focused on methodology, each was praised for the emphasis
they placed on making “the system that they are designing contain explicit traces of
the design process” (Randell, 1968).

Traceability was subsequently noted as a topic of interest in one of the earli-
est surveys on the state of the art and future trends in software engineering (Boehm,
1976), and its practice was certainly evident in those domains concerned with devel-
oping early tool support (Dorfman and Flynn, 1984; Pierce, 1978). By the 1980s,
traceability could be found as a requirement in a large number of national and
international standards for software and systems development, such as the high-
profile DOD-STD-2167A (Dorfman and Thayer, 1990). Published research began
to proliferate and diversify in the area of traceability in the late 1990s, spurred some-
what by renewed interest in the topic arising from two newly formed International
Requirements Engineering professional colloquia, with two early papers focusing
on the issues and problems associated with traceability (Ramesh and Edwards,
1993; Gotel and Finkelstein, 1994), the latter providing for the first systematic
analysis of the traceability problem. The topic of traceability continues to receive
growing research attention in the twenty-first century, with a particular focus on
automated trace generation (Cleland-Huang et al., 2007; Hayes et al., 2006) and
with concomitant advances in model-driven development (Aizenbud-Reshef et al.,
2006; Galvao and Goknil, 2007; Winkler and von Pilgrim, 2010).

O. Gotel (B)
New York, NY 10014, USA
e-mail: olly@gotel.net

3J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_1, C© Springer-Verlag London Limited 2012

4 O. Gotel et al.

However, despite the introduction of widely-available commercial tools claiming
to support traceability in the 1980s, and substantive growth in this market through
the 1990s and millennium, the actual practice of traceability remains poorly doc-
umented and, where it is examined (Mäder et al., 2009b), it appears to be little
influenced by research. One confounding factor is inconsistency in the use of trace-
ability terminology and concepts, not only between researchers and practitioners,
but also within each of these communities themselves.

This chapter seeks to provide a resource on traceability fundamentals.1 It defines
the essential traceability terminology in Section 2 and is supplemented by an exten-
sive glossary2 that has been developed and endorsed by members of the traceability
community. This glossary can be found as an appendix to this book and provides
definitions for all the terms that are italicised in this chapter. The chapter also offers
a model of a generic traceability process in Section 3 and describes the basic activi-
ties involved in the life cycle of a trace. This model is used as a frame of reference
for articulating the grand challenge of traceability in the chapter by Gotel et al. of
this book. Section 4 describes the basic types of traceability and explains some key
associated concepts. Section 5 concludes the chapter.

2 Essential Traceability Terminology

At the most fundamental level, traceability is simply the potential to relate data that
is stored within artifacts of some kind, along with the ability to examine this rela-
tionship. The ability to achieve traceability therefore depends upon the creation of
navigable links between data held within artifacts that are otherwise disconnected.
The value of traceability lies in the many software and systems engineering activities
and tasks that the information provided through such interrelations can enable, such
as change impact analysis, coverage analysis, dependency analysis, etc. (Gotel and
Finkelstein, 1994; Lindvall and Sandahl, 1996; Ramesh and Jarke, 2001); tracing
can provide visibility into required aspects of the software and systems develop-
ment process and contribute to a better understanding of the software system under
development.

This section defines two underlying terms, trace artifact and trace link, that are
the building blocks of traceability. It subsequently uses these definitions to clarify
the term trace. Based upon these definitions, the terms traceability and tracing are
then defined.

1 Section 3 of this chapter includes reproduced material from Center of Excellence for Software
Traceability Technical Report #CoEST-2011-001, with permission. Please direct any feedback on
this material via the CoEST website (http://www.coest.org).
2 Version 1.0 of the traceability glossary is provided as an appendix to this book and the latest
version of the glossary is maintained at http://www.coest.org. Please note that all glossary terms
are defined using U.S. English.

http://www.coest.org
http://www.coest.org

Traceability Fundamentals 5

2.1 Trace Artifact

Trace artifacts are traceable units of data. They refer to any residual data or marks
of the software and systems development process that are made amenable to being
traced. The term can apply to a single requirement, a cluster of requirements, or
even to an entire requirements specification document. The term can apply to a
Unified Modeling Language (UML) class diagram, a single class therein, or even to
a particular class operation. For conceptual simplicity, the general term “artifact” is
used to apply to both the object as a whole and to any internal delineation therein.
What this means is that the granularity of a trace artifact is not pre-determined and
may not even be consistent in any one particular project. It is this uncertainty in
the granularity of trace artifacts that can lead to many problems in establishing and
using traceability in practice.

Trace artifact – A traceable unit of data (e.g., a single requirement, a cluster
of requirements, a UML class, a UML class operation, a Java class or even a
person). A trace artifact is one of the trace elements and is qualified as either
a source artifact or as a target artifact when it participates in a trace. The size
of the traceable unit of data defines the granularity of the related trace.

Three terms closely associated with trace artifact include trace artifact type,
source artifact and target artifact. The trace artifact type serves to classify the
nature and function of the artifact, and is usually a recognised and “documented”
by-product of the software and systems development process. The terms source arti-
fact and target artifact serve to characterise the role of a particular trace artifact in a
specified trace.

Trace artifact type – A label that characterizes those trace artifacts that
have the same or a similar structure (syntax) and/or purpose (semantics). For
example, requirements, design and test cases may be distinct artifact types.

Source artifact – The artifact from which a trace originates.

Target artifact – The artifact at the destination of a trace.

2.2 Trace Link

A trace link is a single association forged between two trace artifacts, one com-
prising the source artifact and one comprising the target artifact. This definition of
trace link implies that the link has a primary direction for tracing, from the source
artifact to the target artifact. Directionality between the two trace artifacts provides
for the ability to traverse the trace link, or to follow it, so as to associate the two

6 O. Gotel et al.

Trace link
Primary trace link direction

Reverse trace link direction

Source artifact Target artifact

Fig. 1 Trace link
directionality

pieces of data. It is this juxtaposition that is sought through traceability, rather than
the pure retrieval of one piece of data. In practice, however, every trace link can be
traversed in two directions, so the trace link also has a reverse trace link direction
and is effectively bidirectional, as illustrated in Fig. 1.

Trace link – A specified association between a pair of artifacts, one compris-
ing the source artifact and one comprising the target artifact. The trace link
is one of the trace elements. It may or may not be annotated to include infor-
mation such as the link type and other semantic attributes. This definition of
trace link implies that the link has a primary trace link direction for tracing.
In practice, every trace link can be traversed in two directions (i.e., if A tests
B then B is tested by A), so the link also has a reverse trace link direction
for tracing. The trace link is effectively bidirectional. Where no concept of
directionality is given or implied, it is referred to solely as an association.

The directionality of a trace link is therefore an important concept. Where a
source artifact and a target artifact are defined, the semantics of the directionality
is clear. Whether or not the trace link can physically be navigated in both directions,
however, is usually a matter of implementation. Three terms clarify the direction-
ality inherent in a trace link, the primary trace link direction, the reverse trace link
direction and the concept of a bidirectional trace link.

Primary trace link direction – When a trace link is traversed from its
specified source artifact to its specified target artifact, it is being used in
the primary direction as specified. Where link semantics are provided, they
provide for a way to “read” the traversal (e.g., A implements B).

Reverse trace link direction – When a trace link is traversed from its speci-
fied target artifact to its specified source artifact, it is being used in the reverse
direction to its specification. The link semantics may no longer be valid, so a
change from active to passive voice (or vice-versa) is generally required (e.g.,
if A replaces B then B is replaced by A).

Bidirectional trace link – A term used to refer to the fact that a trace link
can be used in both a primary trace link direction and a reverse trace link
direction.

Two interrelated terms that are closely associated with trace link are trace link
type and link semantics. The trace link type serves to classify the nature and function

Traceability Fundamentals 7

of the trace link. It is usually characterised according to the meaning of the rela-
tionship between the two artifacts that the link associates, so the trace link type is
generally defined in terms of the link’s semantic role. The trace link type is a broader
term that may define a collection of links with the same link semantics.

Trace link type – A label that characterizes those trace links that have the
same or similar structure (syntax) and/or purpose (semantics). For example,
“implements”, “tests”, “refines” and “replaces” may be distinct trace link
types.

Link semantics – The purpose or meaning of the trace link. The link seman-
tics are generally specified in the trace link type, which is a broader term that
may also capture other details regarding the nature of the trace link, such as
how the trace link was created.

The term trace relation is frequently used interchangeably with the term trace
link in many publications. In reviewing the traceability fundamentals and encour-
aging the more consensual use of terminology within the traceability community,
the proposal is to differentiate the two terms in the future. Following from database
theory, a trace relation describes all the trace links that are specified between two
defined artifact types acting as source artifacts and target artifacts. It is the trace
relation that is captured in the commonly used traceability matrix.

Trace relation – All the trace links created between two sets of specified trace
artifact types. The trace relation is the instantiation of the trace relationship
and hence is a collection of traces. For example, the trace relation would be
the actual trace links that associate the instances of requirements artifacts with
the instances of test case artifacts on a project. The trace relation is commonly
recorded within a traceability matrix.

Traceability matrix – A matrix recording the traces comprising a trace
relation, showing which pairs of trace artifacts are associated via trace links.

2.3 Trace

Use of the term trace has led to some misunderstanding in the traceability commu-
nity since it has two distinct meanings dependent upon whether the term is being
used as a noun (i.e., “a mark remaining” (OED, 2007)) or as a verb, (i.e., “tracking
or following” (OED, 2007)). When used in a software and systems engineering
context, the meanings are often used interchangeably whereas they need to be
distinguished. “Trace” can, therefore, be defined in two ways.

8 O. Gotel et al.

Trace (Noun) – A specified triplet of elements comprising: a source artifact,
a target artifact and a trace link associating the two artifacts. Where more
than two artifacts are associated by a trace link, such as the aggregation of
two artifacts linked to a third artifact, the aggregated artifacts are treated as a
single trace artifact. The term applies, more generally, to both traces that are
atomic in nature (i.e., singular) or chained in some way (i.e., plural).

Trace (Verb) – The act of following a trace link from a source artifact to a
target artifact (primary trace link direction) or vice-versa (reverse trace link
direction).

When used as a noun, the term “trace” refers to the complete triplet of trace
elements that enable the juxtaposition of two pieces of data: the source artifact,
the target artifact and the trace link. Additional information, in the form of trace
attributes, may qualify properties of the overall trace or of each of the three ele-
ments. Such traces can either be atomic or chained (see Fig. 2). Where chained,
the trace links are strung together by the source and the target trace artifacts that
they connect, the target artifact for one trace becoming the source artifact for the
subsequent trace, to form a series of data juxtapositions.

Atomic trace – A trace (noun sense) comprising a single source artifact, a
single target artifact and a single trace link.

Chained trace – A trace (noun sense) comprising multiple atomic traces
strung in sequence, such that a target artifact for one atomic trace becomes
the source artifact for the next atomic trace.

Trace element – Used to refer to either one of the triplets comprising a trace:
a source artifact, a target artifact or a trace link.

Trace attribute – Additional information (i.e., meta-data) that characterizes
properties of the trace or of its individual trace elements, such as a date and
time stamp of the trace’s creation or the trace link type.

A trace (atomic)

A trace (chained)

Fig. 2 A trace provided via a
single trace link or via a chain
of trace links

Traceability Fundamentals 9

When used as a verb, the term “trace” (i.e., to trace) is associated with the activity
of tracing (see Section 2.5).

2.4 Traceability

Traceability is the potential for traces (as defined above in the noun sense) to be
established (i.e., created and maintained) and used. The challenge for traceability is
that each of the component elements (i.e., the trace artifacts and trace links) needs
to be acquired, represented and stored, and then subsequently retrieved as a trace
to enable software and systems engineering activities and tasks. Both the time and
the manner in which traces are established and brought together for use will depend
upon the purposes to which the traceability is put. Consequently, traces exist within
their own life cycles and can (ideally) be reused in different contexts. The type and
the granularity of the trace artifacts, and the semantics of the trace link, are therefore
details that are best determined on a project-by-project basis. They could perhaps
even be determined on a moment-to-moment basis in relation to an overarching
traceability strategy. It is this process through which traces come into existence
and eventually expire that influences the definition of a generic traceability process
model in Section 3.

Traceability – The potential for traces to be established and used.
Traceability (i.e., trace “ability”) is thereby an attribute of an artifact or of a
collection of artifacts. Where there is traceability, tracing can be undertaken
and the specified artifacts should be traceable.

Frequently used terms include requirements traceability, software traceability
and systems traceability. These all delineate the artifact types that are the primary
objects of interest for tracing purposes. For example, in the case of requirements
traceability, this focuses explicitly on the potential to establish and use traces that
associate requirements-related artifacts in some way or another. Other more specific
traceability terms are defined in the glossary that accompanies this book.

Requirements traceability – “The ability to describe and follow the life of a
requirement in both a forwards and backwards direction (i.e., from its origins,
through its development and specification, to its subsequent deployment and
use, and through periods of ongoing refinement and iteration in any of these
phases).” (Gotel and Finkelstein, 1994.)

10 O. Gotel et al.

2.5 Tracing

Tracing implies undertaking all those activities required to put traceability in place,
in addition to all those activities that exploit the results.

Tracing – The activity of either establishing or using traces.

Tracing activities demand some form of agency, and leads to the three associ-
ated terms of manual, automated and semi-automated tracing when referring to the
nature of the activity that puts the traceability in place.

Manual tracing – When traceability is established by the activities of a
human tracer. This includes traceability creation and maintenance using the
drag and drop methods that are commonly found in current requirements
management tools.

Automated tracing – When traceability is established via automated tech-
niques, methods and tools. Currently, it is the decision as to among which
artifacts to create and maintain trace links that is automated.

Semi-automated tracing – When traceability is established via a combi-
nation of automated techniques, methods, tools and human activities. For
example, automated techniques may suggest candidate trace links or suspect
trace links and then the human tracer may be prompted to verify them.

3 A Generic Traceability Process Model

Figure 3 depicts a generic traceability process model. It shows the essential activ-
ities that are required to bring traces into existence and to take them through to
eventual retirement. Traces are created, maintained and used, all within the context
of a broader traceability strategy. This strategy provides the detail of stakehold-
ers’ needs, decisions regarding mechanism and automation, and also chains atomic
traces in some agreed way to enable required activities and tasks. Continuous feed-
back is a critical aspect of the entire process to enable the traceability strategy to
evolve over time. The four key activities of this generic traceability process model
are described in the following sub-sections.

Traceability process model – An abstract description of the series of activ-
ities that serve to establish traceability and render it usable, along with a

Traceability Fundamentals 11

Planning and Managing
Traceability Strategy

Creating

Maintaining

Using

Fig. 3 A generic traceability process model

description of the typical responsibilities and resourcing required to under-
take them, as well as their inputs and outputs. Distinctive steps of the process
comprise traceability strategy, traceability creation, traceability maintenance
and traceability use.

3.1 Traceability Strategy

Effective traceability rarely happens by chance or through ad hoc efforts. Minimally,
it requires having retained the artifacts to be traced, having the capacity to estab-
lish meaningful links between these artifacts and having procedures to interrogate
the resulting traces in a goal-oriented manner. Such simple requirements conceal
complex decisions as to the granularity, categorisation and storage of assorted
multi-media artifacts. It also conceals choices as to the approach for generating,
classifying, representing and then maintaining their inter-artifact and intra-artifact
linkages. Additional questions need to be answered, such as: Which of these trac-
ing activities should be manual? Which should be automated? Where should the
responsibilities for these activities lie? When should they be undertaken? There are
many decisions that need to be made and, therefore, an enabling traceability strategy
needs to be built into the engineering and management practices from day one on
a software and systems engineering project. Figure 4 outlines the typical high-level
activities associated with planning and managing a traceability strategy.

12 O. Gotel et al.

Planning and Managing Traceability Strategy

Determining Needs

Implementing

Planned

Needs
identified

Feedback

Resourcing
Requirements
for traceability

changed

Assessing Strategy
and

knowledgebase

Manage traceability requirements

Project
archived

Create
Maintain
Use

Traceability
required

Stakeholders and tasks
Priorities and constraints

Available money, people,
infrastructure, tools
Cost/benefit analysis

Did the traceability
address the needs?

Traceability
information

Planning

Definition of traceability
information model (elements,
granularity and meta-data),
process definition and tooling

Resourced

Updates
and

guidance

On-going
cycle

Fig. 4 Planning and managing a traceability strategy

Traceability strategy – Those decisions made in order to determine the
stakeholder and system requirements for traceability and to design a suit-
able traceability solution, and for providing the control necessary to keep
these requirements and solutions relevant and effective during the life of a
project. Traceability strategy comprises traceability planning and traceability
management activities.

Traceability is concerned with the provisioning of information to help in answer-
ing project-specific questions and in undertaking project-directed activities and
tasks; it is thus a supporting system rather than a goal in its own right. This per-
spective demands understanding those stakeholders who may need the potential for
traceability, what for and when? Acquiring clear-cut answers to these questions
at the start of a project is not straightforward, as both stakeholders and their task
needs will change. Even if these could be articulated exhaustively, building a trace-
ability solution to service all needs is unlikely to be cost-effective, as resources
are generally limited in some finite way. Determining whose needs to satisfy, and
so which traceability-enabled activities and tasks to facilitate, is a value decision
that lies at the heart of a traceability strategy; determining needs and resourcing
constraints is a precursor to any discussion about trace artifacts, trace links and
mechanism.

Traceability Fundamentals 13

Traceability solution – The traceability information model (TIM) and trace-
ability process, as defined, designed and implemented for a particular project
situation, along with any associated traceability tooling. The traceability
solution is determined as a core part of the traceability strategy.

Traceability information model (TIM) – A graph defining the permissible
trace artifact types, the permissible trace link types and the permissible trace
relationships on a project, in order to address the anticipated traceability-
related queries and traceability-enabled activities and tasks. The TIM is an
abstract expression of the intended traceability for a project. The TIM may
also capture additional information such as: the cardinality of the trace arti-
facts associated through a trace link, the primary trace link direction, the
purpose of the trace link (i.e., the link semantics), the location of the trace
artifacts, the tracer responsible for creating and maintaining the trace link,
etc. (See (Mäder et al., 2009a) for more detail.)

Traceability process – An instance of a traceability process model defining
the particular series of activities to be employed to establish traceability and
render it usable for a particular project, along with a description of the respon-
sibilities and resourcing required to undertake them, as well as their inputs
and outputs. The traceability process defines how to undertake traceability
strategy, traceability creation, traceability maintenance and traceability use.

Traceability tool – Any instrument or device that serves to assist or automate
any part of the traceability process.

Traceability-enabled activities and tasks – Those software and systems
engineering activities and tasks that traceability supports, such as verification
and validation, impact analysis and change management.

Ensuring that the traceability is then established as planned, and yet can adapt
to remain effective as needs evolve and as a project’s artifacts change, is also the
province of traceability strategy. Determining how the traceability will be provi-
sioned such that the requisite quality can be continuously assured further demands
analysis, assessment and potential modification of the current traceability solution.
Assessing the quality and the execution of the traceability solution, and implement-
ing a feedback loop to improve it, is a critical part of the traceability strategy for a
project; it needs to develop and leverage historical traceability information.

Traceability information – Any traceability-related data, such as traceability
information models, trace artifacts, trace links and other traceability work
products.

14 O. Gotel et al.

Within the context of a broader traceability strategy, the creation, maintenance
and use of individual traces and their constituent elements all need to be defined and
managed. Given that atomic traces comprise source, target and relational elements,
these data requirements need to be identified. This includes decisions as to meta-
data to associate, dependent upon what kinds of traceability-enabled activities and
tasks the trace is anticipated to participate in and support. Resourcing, planning and
implementation decisions may hence vary on a trace-by-trace basis; for instance,
it is quite possible that a particular trace is not created or maintained until its use
is actually required. Traces thereby inhabit independent life cycles, the constituent
activities of which are examined in the following sections.

3.2 Traceability Creation

When creating a trace, the elements of the trace have to be acquired, represented and
then stored in some way, as illustrated in Fig. 5. Reference models and classifica-
tion schemes characterising different types of trace link and trace artifacts drive the
traceability creation process, as usually defined within the traceability information
model of the overarching traceability strategy.

Creating

Representing Trace

Storing Trace

Validating Trace

Acquiring Trace

Define source artifact

Define target artifact

Create trace link

Trace elements

acquired

Feedback
/ Invalid

Trace represented (logical storage)

Trace stored (physical storage)

Feedback
/ Valid

Planned /
directed

Traceability information

Trace
envisaged

On-going
cycle

Elements associated as
a triplet (i.e., a trace)

Fig. 5 Traceability creation

Traceability Fundamentals 15

Traceability creation – The general activity of associating two (or more)
artifacts, by providing trace links between them, for tracing purposes. Note
that this could be done manually, automatically or semi-automatically, and
additional annotations can be provided as desired to characterize attributes of
the traces.

While project artifacts are generally pre-existing on a project, the links between
them may not yet be defined. Techniques to support the creation of trace links
can range from manual to automated approaches, each with differing degrees of
efficiency and effectiveness. The differentiating factor is often whether the trace
links are created concurrently with the forward engineering process (i.e., trace
capture) or at some point later (i.e., trace recovery). Validation is therefore critical
to the viability of the traceability creation process, regardless of how trace links are
initially created, as it is concerned with determining and assuring the credibility of
the trace as a whole.

Trace capture – A particular approach to trace creation that implies the
creation of trace links concurrently with the creation of the artifacts that
they associate. These trace links may be created automatically or semi-
automatically using tools.

Trace recovery – A particular approach to trace creation that implies the cre-
ation of trace links after the artifacts that they associate have been generated
and manipulated. These trace links may be created automatically or semi-
automatically using tools. The term can be construed to infer that the trace
link previously existed but now is lost.

3.3 Traceability Maintenance

An association made between two artifacts at a moment in time to serve a particular
purpose does not automatically mean that the resulting trace will have a persistent,
useful life. The need for maintenance on a trace can be triggered by changes to any
of the trace’s elements that, in turn, can be triggered by changes to elements within
a chain. Traceability maintenance can also be required following changes to the
requirements and constraints that drive the overarching traceability strategy.

Traceability maintenance – Those activities associated with updating pre-
existing traces as changes are made to the traced artifacts and the traceability
evolves, creating new traces where needed to keep the traceability relevant
and up to date.

16 O. Gotel et al.

Maintaining

Analyzing Trace

Updating Trace

Verifying Trace Update

Trace
retrieved

Feedback/
Invalid

Updates identified for this trace

Trace updated

Feedback/
Valid

Retrieving Trace

Maintenance
planned/
required

New trace(s)
required

Update
required
to other
trace(s)
(propagation)

Storing Trace Update

Update
stored

Rendered visible

Update to source, target
or link (or to meta-data)

Trace
retired

Traceability information

Traceability information

On-going
cycle

Fig. 6 Traceability maintenance

To maintain a trace, it needs to be retrieved and the nature of the change anal-
ysed to determine what update is necessary, as illustrated in Fig. 6. This may
necessitate the propagation of changes and/or the creation of entirely new traces.
Updates need to be performed, where applicable, recorded and verified. Feedback
on the maintenance process is also essential for evolving the overarching traceabil-
ity strategy. As per traceability creation, traces can be maintained continuously or
on-demand.

Continuous traceability maintenance – The update of impacted trace links
immediately following changes to traced artifacts.

On-demand traceability maintenance – A dedicated and overall update of
the trace set (in whole or in part), generally in response to some explicit trigger
and in preparation for an upcoming traceability use.

3.4 Traceability Use

The availability and usefulness of traces has to be ensured to allow for their ongo-
ing use throughout the software and systems development life cycle, potentially

Traceability Fundamentals 17

in a myriad of configurable ways. Here, it is helpful to distinguish between short-
term traceability use during initial product development and long-term traceability
use during subsequent product maintenance. Typical short-term uses for traceabil-
ity include requirements completeness analysis, requirements trade-off analysis
or requirements-to-acceptance-test mapping for final acceptance testing. Typical
examples of long-term uses for traceability include the determination of effects of
changes to a software system or the propagation of changes during its evolution.

Traceability use – Those activities associated with putting traces to use to
support various software and systems engineering activities and tasks, such as
verification and validation, impact analysis and change management.

Any atomic trace is likely to play a role in the context of many use contexts. To
use a trace in isolation, or as a constituent part of a chain, it needs to be retrieved
and rendered visible in some task-specific way, as suggested in Fig. 7. An important
component of the use process is assessing the quality of the traceability that is pro-
vided in terms of the fitness for purpose with respect to the task or activity for which
the traceability is required. Such information provides a feedback loop to improve
the overall traceability strategy.

Using

Rendering Trace

Assessing TraceRecording Trace Use

Trace

retrieved

Use
requested Retrieving Trace

Trace made visible for use

Trace use

feedback

Trace use

assessed Fit for purpose?

Traceability information
According to the task
at hand

Traceability information

On-going
cycle

Fig. 7 Traceability use

18 O. Gotel et al.

4 Basic Types of Traceability and Associated Concepts

Additional terms that delineate different basic types of traceability are highlighted
in the context of Fig. 8 and defined below.

The traceability of Fig. 8 is bidirectional. Forward traceability offers the poten-
tial to link a single requirement statement to those methods of the class designed to
implement it, and subsequently to follow this trace link to reveal the forward engi-
neering process. Backward traceability offers the potential to link the class methods
back to the requirement that they help to satisfy, and subsequently to follow this
trace link to reveal the reverse engineering process. The forward and the back-
ward direction pertain to the logical flow of the software and systems development
process. These are the fundamental and primitive types of tracing.

Forward traceability – The potential for forward tracing.

Forward tracing – In software and systems engineering contexts, the term is
commonly used when the tracing follows subsequent steps in a developmen-
tal path, which is not necessarily a chronological path, such as forward from
requirements through design to code. Note that the trace links themselves
could be used in either a primary or reverse trace link direction, dependent
upon the specification of the participating traces.

Backward traceability – The potential for backward tracing.

Fig. 8 A simplified, but typical, tracing context

Traceability Fundamentals 19

Backward tracing – In software and systems engineering contexts, the term
is commonly used when the tracing follows antecedent steps in a developmen-
tal path, which is not necessarily a chronological path, such as backward from
code through design to requirements. Note that the trace links themselves
could be used in either a primary or reverse trace link direction, dependent
upon the specification of the participating traces.

In Fig. 8, the potential to trace from the requirement through to the code is ver-
tical traceability, linking artifacts at differing levels of abstraction to accommodate
life cycle-wide or end-to-end traceability. Any potential to trace between versions of
the requirement or versions of the code is horizontal traceability, linking artifacts at
the same level of abstraction at different moments in time to accommodate version-
ing and rollback. These two types of tracing, vertical and horizontal, employ both
forward and backward tracing.

Vertical traceability – The potential for vertical tracing.

Vertical tracing – In software and systems engineering contexts, the term
is commonly used when tracing artifacts at differing levels of abstraction so
as to accommodate life cycle-wide or end-to-end traceability, such as from
requirements to code. Vertical tracing may employ both forward tracing and
backward tracing.

Horizontal traceability – The potential for horizontal tracing.

Horizontal tracing – In software and systems engineering contexts, the term
is commonly used when tracing artifacts at the same level of abstraction,
such as: (i) traces between all the requirements created by “Mary”, (ii) traces
between requirements that are concerned with the performance of the sys-
tem, or (iii) traces between versions of a particular requirement at different
moments in time. Horizontal tracing may employ both forward tracing and
backward tracing.

Two additional types of traceability are more conceptual in nature, and these can
employ each of the above tracing types in some combination. Post-requirements
(specification) traceability comprises those traces derived from or grounded in the
requirements, and hence explicates the requirements’ deployment process. Pre-
requirements (specification) traceability comprises all those traces that show the
derivation of the requirements from their sources, and hence explicates the require-
ments’ production process. Only post-requirements traceability is evident in Fig. 8
since the requirement is the earliest development artifact available; this is the most
common form of traceability in practice.

20 O. Gotel et al.

Post-requirements (specification) traceability – The potential for post-
requirements (specification) tracing.

Post-requirements (specification) tracing – In software and systems engi-
neering contexts, the term is commonly used to refer to those traces derived
from or grounded in the requirements, and hence the traceability explicates
the requirements’ deployment process. The tracing is, therefore, forward
from requirements and back to requirements. Post-requirements (specifica-
tion) tracing may employ forward tracing, backward tracing, horizontal
tracing and vertical tracing.

Pre-requirements (specification) traceability – The potential for pre-
requirements (specification) tracing.

Pre-requirements (specification) tracing – In software and systems engi-
neering contexts, the term is commonly used to refer to those traces that
show the derivation of the requirements from their original sources, and hence
the traceability explicates the requirements’ production process. The tracing
is, therefore, forward to requirements and back from requirements. Pre-
requirements (specification) tracing may employ forward tracing, backward
tracing, horizontal tracing and vertical tracing.

Figure 8 also serves to highlight some basic complexities surrounding traceability
and so lends itself to the definition of a number of associated traceability concepts:

• Do we create an atomic trace for each class method or for the cluster of methods
within a class? This is an issue of trace granularity.

Trace granularity – The level of detail at which a trace is recorded and per-
formed. The granularity of a trace is defined by the granularity of the source
artifact and the target artifact.

• Do the three methods in the Display class fully satisfy the requirement? This is
a question related to completeness. Does the trace then lead to the right code?
This is a question of correctness. Is the trace up to date? This depends upon
whether the traced artifacts reflect the latest project status. All of these questions
are associated with the concept of traceability quality.

Traceability quality – A measurable property of the overall traceability at
a particular point in time on a project, such as a confidence score depict-
ing its overall correctness, accuracy, precision, completeness, consistency,
timeliness, usefulness, etc.

Traceability Fundamentals 21

• As Fig. 8 suggests, traces typically associate artifacts that are semantically very
different, so the use of natural language alone to derive a trace link cannot always
be trusted. For example, the play transition in the behavioural Statechart of Fig. 8
does not trace to the play method in the class diagram, or does it? Open issues
in traceability research and practice have led to the formulation of a set of trace-
ability challenges by the traceability community, and work is now underway to
develop a Traceability Body of Knowledge (TBOK).

Traceability community – Those people who are establishing and using
traceability in practice, or have done so in the past or intend to do so in the
future. Also, those people who are active in traceability research or in one of
its many interrelated areas.

Traceability challenge – A significant problem with traceability that mem-
bers of the international research and industrial communities agree deserves
attention in order to achieve advances in traceability practice.

Traceability Body of Knowledge (TBOK) – A proposed resource for the
traceability community, containing traceability benchmarks, good traceability
practices, traceability experience reports, etc.

5 Conclusions

This chapter has defined terminology and concepts that are fundamental to the
discipline of traceability. This includes the essential terms of trace, trace artifact,
trace link, traceability and tracing in Section 2, along with a number of interrelated
and dependent terms. The chapter has also described a generic traceability process
model in Section 3 and characterised the basic activities involved in the life cycle of
a trace. This includes a consideration of the activities comprising traceability strat-
egy, traceability creation, traceability maintenance and traceability use. In Section 4,
the chapter distinguishes between basic types of traceability and explains some key
associated concepts.

The chapter is supplemented by an extensive glossary that has been developed
and endorsed by members of the traceability community. This glossary contains
additional terms and can be found as an appendix to this book.

References

Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM Syst. J.
45(3), 515–526 (2006, July)

Boehm, B.W.: Software engineering. IEEE Trans. Comput. c-25(12), 1226–1241 (1976,
December)

22 O. Gotel et al.

Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., Clark, S.: Best practices for
automated traceability. IEEE Comput. 40(6), 27–35 (2007, June)

Dorfman, M., Flynn, R.F.: ARTS – An automated requirements traceability system. J. Syst. Softw.
4(1), 63–74 (1984, April)

Dorfman, M., Thayer, R.H.: Standards, Guidelines, and Examples on System and Software
Requirements Engineering: IEEE Computer Society Press Tutorial. IEEE Computer Society
Press, Los Alamitos, CA (1990)

Galvao, I., Goknil, A.: Survey of traceability approaches in model-driven engineering. In:
Proceedings of the 11th IEEE International Enterprise Distributed Object Computing
Conference, Annapolis, MD, USA, 15–19 Oct, 2007, pp. 313–324.

Gotel, O., Finkelstein, A.: An analysis of the requirements traceability problem. In: Proceedings of
the 1st IEEE International Conference on Requirements Engineering, Colorado Springs, CO,
USA, 18–22 Apr, 1994, pp. 94–101.

Huffman Hayes, J., Dekhtyar, A., Sundaram, S.: Advancing candidate link generation for require-
ments tracing: The study of methods. IEEE Trans. Softw. Eng. 32(1), pp. 4–19 (2006,
January)

Lindvall, M., Sandahl, K.: Practical implications of traceability. Softw. Pract. Exp. 26(10),
1161–1180 (1996, October)

Mäder, P., Gotel, O., Philippow, I.: Getting back to basics: Promoting the use of a traceability infor-
mation model in practice. In: Proceedings of the 5th International Workshop on Traceability in
Emerging Forms of Software Engineering, Vancouver, BC, Canada, 18 May, 2009a.

Mäder, P., Gotel, O., Philippow, I.: Motivation matters in the traceability trenches. In: Proceedings
of 17th IEEE International Requirements Engineering Conference, Atlanta, GA, USA, 31
Aug–4 Sept, 2009b, pp. 143–148.

Naur, P., Randell, B. (eds.): Software engineering: Report of a conference sponsored by the NATO
Science Committee, Garmisch, Germany, 7–11 October 1968, Brussels, Scientific Affairs
Division, NATO (Published 1969)

The Oxford English Dictionary: Online Version, Oxford University Press, Oxford. http://www.oed.
com. Accessed on January 2007

Pierce, R.: A requirements tracing tool. ACM SIGSOFT Softw. Eng. Notes. 3(5), pp. 53–60 (1978,
November)

Ramesh, B., Edwards, M.: Issues in the development of a requirements traceability model. In:
Proceedings of the IEEE International Symposium on Requirements Engineering, San Diego,
CA, USA, 4–6 Jan 1993, pp. 256–259.

Ramesh B., Jarke M.: Towards reference models for requirements traceability. IEEE Trans. Softw.
Eng. 27(1), 58–93 (2001, January)

Randell, B.: Towards a methodology of computing system design. In: Naur, P., Randell, B. (eds.)
NATO Software Engineering Conference, 1968, Report on a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, pp. 204–208 (7–11 October 1968). Brussels,
Scientific Affairs Division, NATO (Published 1969)

Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering and model-driven
development. Softw. Syst. Model. 9(4), pp. 529–565 (2010, September). Springer (Published
on line December 22, 2009)

http://www.oed.com
http://www.oed.com

Cost-Benefits of Traceability

Claire Ingram and Steve Riddle

1 Introduction

Cost has been cited as a key reason why many projects neglect or abandon trace-
ability efforts without reaping the full range of potential rewards. In this chapter we
introduce some key issues behind maximising the cost-benefit from a traceability
system. Achieving the optimal cost-benefit from traceability is about achieving the
maximum return on the investment (ROI), as well ensuring that traceability data is
sufficient to meet the project goals.

The ultimate purpose of any traceability strategy is to improve the performance of
some future activity. The potential uses of traceability data are discussed elsewhere
in this book, but trace data can be useful for: conducting impact analysis for estimat-
ing change effort; ensuring sufficient test coverage; supporting safety case or some
other third party certification; identifying potential candidates for re-use; tracking
project progress; reconstructing earlier decisions to avoid rework; and controlling
requirements creep. Most projects will need to carry out at least a subset of these
traceability-enabled tasks. If traceability data which adequately supports the task is
available (e.g., this could be a list of components relevant to a requirement, a list of
the reasons why a design decision was made, or a list of people involved in drafting
a requirement), much time can be saved and the task can be completed to a high
standard with more confidence. Ramesh et al. cite an extreme example of a project
forced to back-hire engineers who had left in order to reconstruct the reasons behind
original design rationale (Ramesh et al., 1995); this situation could perhaps have
been avoided if the reasons for decisions had been more easily traceable. Although
this is an extreme case, trace data can generally ensure that future activities like
impact analysis or safety case preparation can be conducted to a sufficiently high
standard in less time than otherwise.

C. Ingram (B)
Newcastle University, NE1 7RU, England, UK
e-mail: claire.ingram@ncl.ac.uk

23J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_2, C© Springer-Verlag London Limited 2012

24 C. Ingram and S. Riddle

The availability of appropriate trace data thus reduces the effort required for
many activities. But at the same time gathering and maintaining such data increases
the initial project cost. There is therefore a trade-off between increasing the cost
of collecting traceability data and reducing the later costs of carrying out these
traceability-enabled activities. We can calculate the financial savings traceability
can bring by estimating the cost of completing tasks such as impact analysis with-
out appropriate traceability data; the cost to complete the same tasks with trace data
(including the cost of creating and maintaining the data); and taking the difference
between the two as the cost-benefit. This is illustrated in Fig. 1, where we represent
two scenarios. The optimal scenario occurs when the combined cost of managing
trace data and consuming it later to perform some traceability-enabled activity is less
than the cost of completing these activities without any traceability data. The worst
case scenario arises when managing and using trace data is actually more expensive
than not using trace data at all. This chapter focuses on strategies for achieving the
optimal scenario, which includes a combination of:

• keeping the cost of managing traceability data (including collecting and updating
it) to a minimum

• ensuring the quality of data collected is of an acceptable quality to meet all project
needs

This chapter addresses issues of controlling costs and trace quality in Sections
2 and 3 before discussing some general issues centering on estimating traceabil-
ity costs in Section 4. In the discussions below we are working towards selecting
the best traceability cost strategies to enable the maximum return on investment.

Traceability Cost Benefit

Worst case scenario

C
o

st

Optimal scenario

Traceability
cost benefit

C
os

t w
ith

ou
t

tr
ac

ea
bi

lit
y

da
ta

C
os

t w
ith

ou
t

tr
ac

ea
bi

lit
y

da
ta

C
os

t w
ith

tr
ac

ea
bi

lit
y

da
ta

C
os

t w
ith

tr
ac

ea
bi

lit
y

da
ta

Cost of managing trace data

Cost of completing tasks with
trace data

Key

Fig. 1 Bar chart comparing the cost of completing tasks with and without traceability data

Cost-Benefits of Traceability 25

We present some possible traceability strategies in Section 5. Finally, in Section 6
we suggest a simple way to conduct a cost analysis during traceability planning.

2 Controlling Traceability Costs

In this section we discuss strategies for minimising the cost of gathering and/or
storing trace data. The maximum return on investment is reached by collecting high-
quality trace data at a low cost. However, there is a natural tension between these
aims, since higher quality data is generally more expensive to collect and to main-
tain. The first step in controlling the costs of a traceability scheme, therefore, is to
ensure that all trace data collected has a definite purpose, and that no effort is wasted
on collecting unusable data.

2.1 Establishing Traceability Goals

Capturing, storing and maintaining all possible data is prohibitively time-
consuming, and likely to result in an unmanageably large dataset. For even a
moderately large project, systematically collecting and subsequently maintaining
unnecessary data introduces a non-trivial overhead. The resultant mass of data also
makes it more difficult to pick out and manage the data which is actually useful.
On the other hand, it would be equally undesirable to discover at a later date that
the trace data which has been collected is inadequate to support specific activities.
Therefore some thought must be given to the subject of traceability at the project
outset, and the purpose of the trace data clearly identified. Traceability systems may
then be tailored appropriately for the individual project’s needs to avoid situations
where too much or too little trace data is created. In particular, if trace data is not
needed in order to meet a specific goal, then it should not be collected and/or stored
(Cleland-Huang et al., 2004).

Any traceability effort should start with the question: what is the main
aim/purpose of the traceability data? The main activities which will later be sup-
ported by traceability, and the tools that will be used, must be identified beforehand.
We outline some key questions to ask in Section 6 in this chapter, which may be
helpful in determining the potential use of traceability data.

Egyed et al. introduce the notion of a threshold of usefulness (Egyed et al., 2005).
That is, the tools and/or processes which will be used will normally dictate a min-
imum quality for the trace data. This threshold must be identified for each type of
trace data. If the data will not meet this threshold then gathering it is a cost that
yields no benefits at all and it should be omitted. In Section 6 of this chapter we
discuss some possible pitfalls. It’s worth noting, however, that there are some sit-
uations in which imperfect traceability data may still be useful – this is discussed
further in Section 3.

Once the traceability aims are clear, the actual collection of data can be
considered.

26 C. Ingram and S. Riddle

2.2 Trace Creation and Evolution

There are two major activities involved in ensuring that trace data is available:

• Trace creation, the act of creating links to link two development artifacts
• Trace maintenance, activities necessary to keep existing traces up to date

It’s generally quicker and more accurate to create trace links between artifacts at the
time that those artifacts are created (Heindl and Biffl, 2005). This is when knowl-
edge of artifacts’ purposes and interactions is at its most keen. Attempting to create
trace links later, after system development has been completed, will most likely take
longer because staff who originally worked on the artifacts may have left, or have
forgotten (and have to search for) small details regarding linkages. There is also
greater chance that useful trace links will be omitted by creating trace data later.

Any data which is captured during trace creation must then be kept up to date
carefully. Anecdotal reports and academic research (for example, (Cleland-Huang,
2006; Cleland-Huang et al., 2003)) have indicated that, without active maintenance
to evolve the trace links, they will gradually become less and less reliable as the
system evolves and the trace links cease to reflect that. Creating more trace data
commits the project to a greater maintenance effort in the future, although tools are
available to support maintenance of links (Cleland-Huang et al., 2003).

2.3 Using Automated Tools

It has been suggested (Cleland-Huang et al., 2004) that a sensible tracing strategy is
to “maximise the usage of dynamic link generation”, such as information retrieval
technology and heuristic traceability. These types of technology may not apply in
all scenarios, however – for example, the precision or recall of a tool may not meet
project requirements. A simple optimisation strategy is to use the tool on all require-
ments, and manually check the links on a subset of prioritised requirements (see
Section 3.1). Egyed et al. automated the checking process, optimising an automated
trace generator using a filter (Egyed, 2005). Their approach involved measuring
the “strength” of each trace link generated; this was calculated as the ratio of the
number of methods implementing a requirement and the number of methods that
two requirements share as part of their implementation. The filter then determines a
threshold of “weak” links, which can be eliminated as they are far more likely to be
false positives. The optimisation proved helpful; they found that the weakest 10%
of trace links contained only 1% of true traces.

3 Trace Quality

In the introduction to this chapter we said that the cost-benefits of traceability are
not reached if data does not reach an acceptable quality for the project’s require-
ments. What is meant by “acceptable quality” varies between different projects.

Cost-Benefits of Traceability 27

For example, an avionics system and an online ordering system may have different
expectations regarding thoroughness of testing coverage.

We can define the “quality” of traceability data as a function of the following
factors:

• the granularity of trace links
• the recall and precision of the links – that is, the number of false positives and/or

false negatives that are retrieved
• the level of coverage they achieve for the system as a whole

These attributes are not fixed: the applicable minimum level can be varied for all or
any of these factors. In general terms, increasing the quality (by making data more
complete, more fine-grained, more accurate or more precise) tends to increase cost.
One way, therefore, to control costs is to define carefully the minimum acceptable
quality threshold for each type of trace data (bearing in mind that different trace-
ability goals and different areas of the system may have differing requirements) and
ensure that data gathered does not exceed it unless there is a clear extra benefit in
doing so.

Varying the granularity of trace links is one way to control costs. For example,
studies have been completed estimating the effort needed to link requirements var-
iously to packages; to class files; and to individual methods (Egyed, 2005; Egyed
et al., 2005, 2007). Increasing the level of granularity of the trace links (e.g., creating
trace links that link to class-level as opposed to package-level) tended to increase
the effort required by an order of magnitude. However, the researchers detected a
decreasing marginal return on investment as the trace links become finer-grained
(Egyed et al., 2007). Heindl and Biffl describe a case study where requirements
were given one of three priorities (Heindl and Biffl, 2005). Trace links created for
level 1 requirements traced from requirements to individual methods, whilst lower-
priority requirements were linked to classes or packages. This approach reduced
effort required by 30–70%, compared to a fully traced system. In many cases, the
reduction in precision was not large, because some classes had few methods, and so
the difference between tracing to methods and tracing to classes was small. For
requirements where trace data will not be needed frequently, collecting detailed
trace links may not yield a good return on investment, because most of the data
gathered will never be needed. Storing some granular links initially and improving
them on demand later can help to reduce wastefulness. Thus it’s important to con-
sider carefully whether a coarse collection of links would be sufficient for some (or
all) traceability purposes.

There are other ways to vary the quality of the trace data which is collected. For
example:

• The coverage of the system can be varied, so that traceability links do not cover
all areas of the system

• The frequency of updates can be varied. Thus the most high-priority trace links
may be re-evaluated and updated each time a change is enacted, whilst lower-
priority links may not be updated at all after they are created, or only re-evaluated
at sparse intervals.

28 C. Ingram and S. Riddle

• The use of automated link generation can be varied (discussed in Section 2.3 of
this chapter).

• The recall and/or precision of links can be varied. Precision is concerned with
achieving a low number of false positives. A false positive is encountered when
a trace link is created that is invalid (in reality, no link should exist). Recall is
concerned with achieving a low number of false negatives, or “missed” links; a
false negative arises where a trace link is not created when a dependency does, in
fact, exist.

Varying the recall and precision of trace data is particularly pertinent when using
automated tools, as many tools can be calibrated to favour one or the other. Recall
and precision frequently exist in a state of mutual tension. For example, 100% recall
can be achieved simply by returning all possible links, but this results in a very low
level of precision (and is not very useful).

For any traceability strategy, managers should consider whether recall or preci-
sion is more important. For safety critical projects, for example, recall will probably
be more important. During many traceability-enabled activities on such a project,
engineers will not want to run the risk that a link is missed, and are prepared to spend
time eliminating false positives. On the other hand, a non-safety critical project with
a tight deadline may prefer to favour precision, assuming that an automated tool is
likely to return the most important links, and the less important can be detected later.

3.1 Ranking Requirements for Selective Traceability

So, significant cost savings can be made by focussing the higher-quality trace
gathering effort on key system areas only. This strategy involves ranking the
requirements. Ranking can be conducted using a variety of criteria, for example:

• Ranking on predicted volatility (Heindl and Biffl, 2005). Change-prone compo-
nents are more likely to be the subject of change impact assessments, which will
be much easier to carry out if good quality trace data is available. However, this
tactic relies on being able to predict change-prone areas of the system. Some
major sources of changes can include: customer expectations; changes to plat-
forms and/or third-party systems; changes to relevant regulations; and market
or organisational changes. Informed stakeholders may be able to predict some
change-prone requirements if they are aware of these factors. Other approaches
for predicting volatility use software metrics which measure complexity or soft-
ware size to determine which components are more likely to change frequently
(Arisholm et al., 2004; Basili et al., 1996; Briand et al., 1999; Chaumun et al.,
1999; Han et al., 2008; Ingram and Riddle, 2011; Li and Henry, 1993; Ratzinger
et al., 2007; Wilkie and Kitchenham, 2000).

• Ranking on predicted risk. This may be calculated see (Cleland-Huang et al.,
2004) as probability multiplied by impact, where probability is an estimate
of a requirement’s likelihood of changing, and impact is an estimate of the
business impact.

Cost-Benefits of Traceability 29

• Ranking on required reliability. Huang and Boehm, for example, assign one of
five categories to requirements: loss of human life; high financial loss; moderate
recoverable loss; low, easily recoverable loss; and slight inconvenience (Huang
and Boehm, 2006). Applying enhanced tracebility to these areas allows critical
parts of the system to benefit from better quality traceability, ensuring that later
tasks can meet higher expectations of accuracy.

• Asking end users to rank requirements in terms of importance to them (Boehm
and Huang, 2006; Heindl and Biffl, 2005). Boehm and Huang suggest using the
DMR group’s “benefits realisation approach”, which provides a framework for
estimating the contributions and initiatives of a requirement.

Once requirements have been prioritised, then decisions can be made as to the mini-
mum quality of trace data needed for differently ranked requirements. In some cases,
reducing the quality of trace data to be collected results in a reduction in effort but
not a commensurate reduction in later cost savings, and these types of compro-
mises may be worth making. We discuss estimations of costs and savings in the
next section.

4 Cost Estimation

Estimating the effort needed for a given traceability strategy and scheduling ade-
quate time is an important factor in achieving the maximum return on investment.
It’s been suggested that traceability is often the first item to be squeezed from a
tight project schedule (Jarke, 1998). This could potentially represent the worst case
scenario for traceability cost benefit; time spent creating links at the project’s out-
set doesn’t result in significantly less effort on later traceability-enabled activities if
traceability is abandoned part-way.

As discussed in Section 3.1 of this chapter, the best traceability strategy for a
given project may be one in which some compromises are made in order to ensure
that other, less acceptable compromises are not necessary. For this reason, esti-
mating the costs of different traceability tactics is important for calculating which
compromises bring worthwhile savings, and which compromises are unacceptable.
Determining which compromises are likely to be worth making involves:

• a good understanding of the relative importance and impact of different project
areas (ranking of requirements is discussed in Section 3.1)

• understanding the cost impacts of various traceability tactics (including the costs
of creating trace links and the potential savings in effort later on) compared with
the costs of activities without trace data

We briefly introduce some key ideas underpinning cost estimation and traceabil-
ity in this section. Cost estimation is a major subject in its own right, however, and
we don’t attempt a full introduction to the subject here.

A number of techniques and models for estimating development effort in gen-
eral have been proposed, although large scale surveys have shown that no model

30 C. Ingram and S. Riddle

is likely to be completely accurate all the time (Kemerer, 1987). Most cost estima-
tion models, for maximum effectiveness, require careful calibration to a particular
organisation’s working culture and problem domain (Kemerer, 1987), since one type
of development and business may have substantially different overheads and mini-
mum quality thresholds than another. Data which can be useful for estimating costs
includes:

• System size, clearly one of the most important determinants of total effort. This is
a basic input used by estimation models such as the COCOMO and SLIM mod-
els (Kemerer, 1987). “Size” can be difficult to measure; some models use lines of
code (LOC) as a metric. “Function points” was developed as an alternative met-
ric (Kemerer, 1987) by Albrecht (1979); Albrecht and Gaffney (1983). Function
points capture features such as the number of input transactions types and the
number of reports to be output. This has the advantage over LOC that it is easy
to determine at the design stage.

• Expert judgement, which is normally provided by someone with similar previous
experience or detailed knowledge of the project at hand. In many cases this may
require a mental “rehearsal” of the steps required to complete the task (Hughes,
1996). However, even a competent, experienced and well-informed developer
on a project may forget (or be unaware of) small aspects that will need to be
investigated.

• Analogy – comparing the new system to be developed to a previous, similar sys-
tem (Hughes, 1996). Good practice should dictate that estimated and actual costs
should be saved from the current project for use in future estimating tasks.

• A selection of “cost drivers” – that is, factors specific to the project that may
affect costs. This can include: team size; the productivity/experience of person-
nel; project complexity; requirements volatility; tools available and so on. Many
cost models use this type of data to “calibrate” a model to a particular working
environment.

Finally, project “cost” can include the addition of some penalty should a task fail
to be carried out to a sufficiently high standard. For example, there are likely to be
either direct or indirect financial consequences of failing to ensure some appropriate
level of testing coverage.

There’s a difference between estimating the effort involved in traceability-related
tasks, and estimating the actual costs. We need to understand the effort required to
create and evolve trace links so that project schedules can be planned realistically.
Traceability costs, however, offset the initial cost of that effort against estimated
future savings and are useful for selecting appropriate traceability optimisations.
We discuss both separately below.

4.1 Estimating Effort for Traceability

Total effort for traceability can be represented by two separate estimates. These can
be adjusted independently. There should be an esimate for the time taken to create

Cost-Benefits of Traceability 31

trace links at the outset, and another estimate for time taken to maintain the links
as the system evolves. These two figures will each have an impact on the overall
costs, since they will affect positively or negatively the effort required to perform
traceeability-enabled activities later. For example, one option is not to perform any
updates on links, or to update very infrequently, but this will require more manual
checking when the trace data is used to support some activity. Whether this is a
worthwhile trade-off will depend on the predicted frequency with which updates
will be required.

There are not many studies showing how much time it takes to create or maintain
trace links. Heindl and Biffl found that generating trace links from requirements to
methods averaged around 45 min per requirement, whilst generating trace links from
requirements to classes required a much lower effort, averaging 10 min per require-
ment (Heindl and Biffl, 2005). They do point out that this data represents time taken
to capture trace links after the project’s duration, and that estimates may be lower
if trace links are generated during the project itself. Cleland-Huang et al. produced
some estimates using a guide figure of 15 min to create a trace link (Cleland-Huang
et al., 2004), although this is a hypothetical figure produced to illustrate costs for
different traceability strategies.

As a more general figure, Heindl and Biffl estimate that tracing effort absorbs
around 5% of the total project costs “as part of quality assurance activities” (Heindl
and Biffl, 2005). Required documentation standards should already be costed in to
the project cost before producing this estimate, as well as project size and duration.
In addition, this figure could be refined as follows:

• volatile requirements will tend to increase traceability maintenance costs, whilst
very stable requirements will reduce them. Well-informed stakeholders may be
able to make some predictions about volatility in requirements to help with this.

• project duration and the estimated length of the maintenance period are likely
to affect the cost estimates. A longer project will need to conduct more updates
on trace links, so trace maintenance estimates should be increased for longer
projects. However, greater savings can potentially be made, as the quantity of
traceability-enabled activities tends to increase over time (for example, a longer
project will see more change requests), so the effort saved can amalgamate.

• using automated techniques (such as information retrieval tools) is likely to
reduce costs for trace creation, but increase costs associated with traceability-
enabled activitites, because data may require some manual refinement at point of
use. Alternatively, extra time could be spent when generating links ensure that
the most important requirements are refined manually at the outset.

• an automated tool which favours recall over precision when creating or search-
ing for trace links is likely to increase the estimate for trace-enabled activities,
since more time will be spent on eliminating the false positives from trace
queries. However, this will likely result in better overall accuracy, so there will be
lower chances of incurring penalties associated with missing any potential links.
Conversely, cost estimates for traceability-enabled activities may be lower for
tools which favour precision, but there may be extra penalties (such as dissatis-
fied customers) incurred from dealing with any false negatives (“missed” trace

32 C. Ingram and S. Riddle

links) at a later date. This may be a cost-effective strategy, however, for products
which require a rapid time-to-market.

• using techniques such as a simple traceability matrix (rather than, for exam-
ple, adopting automated tools) can increase costs of traceability creation and
maintenance (Cleland-Huang et al., 2004).

• more finely-grained trace data will increase trace creation and maintenance costs
but is likely to reduce the time taken to complete traceability-enabled activities
later. This cost could be altered by selectively varying the granularity of trace data
(see Section 3.1). Increasing the granularity of trace data (from package-level to
class-level, or from class-level to method-level) has been estimated to raise the
required effort by 10% (Egyed, 2005; Egyed et al., 2005, 2007).

• updating trace links more regularly increases the estimate for maintenance but
will decrease the estimate for later trace-enabled activities.

Finally, if the requirements are prioritised as suggested in Section 3.1 of this chapter,
separate estimates may be needed for the differently-ranked groups of requirements.
For example, low-priority requirements may have links auto-generated and not
updated, whilst high-priority requirements may be entered manually and updated
frequently.

4.2 Estimating Costs for Traceability

To come up with an estimate of the cost of traceability (as opposed to effort needed
for scheduling), we include the cost of creating and maintaining the links, and factor
in potential savings made by improving performance on future traceability-enabled
activities, as was illustrated in Fig. 1. We can estimate this by looking at:

• the predicted number of times the activities supported by traceability are likely
to be repeated. For example, approximately how many change requests can we
expect, over what expected duration?

• estimates of the time taken to perform a task both with and without access to
updated trace data. For example, a change impact analysis might be expected to
take n person-hours when trace data is available, and m person-hours when it
is not.

This should lead to two figures for estimated duration of later tasks, representing the
effort required when supported and when not supported by trace data. The difference
between the two gives the traceability cost benefit, which can be factored in (as a
saving) to the final traceability cost.

Graphs produced (Cleland-Huang et al., 2004) make clear that the costs of trace
creation and maintenance are generally only repaid after a period of time. This fact
underpins a major problem associated with traceability: the cost of traceability is
very visible up-front, whilst the financial savings made possible by trace data are

Cost-Benefits of Traceability 33

not visible until a much later stage in development. However, from the traceability
costing described here it should be possible to produce a prediction of when the
project can expect to realise benefits from the trace data.

5 Traceability Strategies

Once estimates have been obtained, a traceability strategy can be produced in
iterative stages, refining the trace quality as necessary for differently ranked require-
ments, until an optimal balance of cost and trace quality is achieved. A traceability
strategy can make use of any techniques discussed so far, combining tactics such as:

• partitioning or ranking the system for traceability purposes, and selectively
applying different traceability rules

• varying the granularity of trace links
• adopting tools where possible to create or search trace links, optimising the recall

or precision as appropriate
• varying the coverage of the trace links
• varying the frequency with which trace links are maintained
• varying the application of automated link generation, and/or manual checks of

the results

The costs and potential savings of different tactics can be estimated for the project;
the tactics that are selected will be those that achieve the best balance between
quality and cost. Developing the strategy will therefore be an iterative process (we
describe this further in the next section).

Many projects – intentionally or not – adopt a strategy of generating links on an
ad-hoc basis as and when required. Superficially, this strategy looks inexpensive,
because it does not incur costs on the initial plans, whilst the savings incurred by
completing traceability-enabled activities to a high standard are not visible. Several
studies have suggested that this is in actuality not a very cost-effective strategy.
Heindl and Biffl, for example, determined that, to be viable, the ad-hoc approach
relies on infrequent requests for traceability data, a small project, and a high degree
of domain and product knowledge among developers (Heindl and Biffl, 2005). In
contrast, some studies have found that a strategy that mixes a number of vary-
ing approaches tend to produce a good return on investment. Cleland-Huang et al.,
for example, compared four potential trace strategies (Cleland-Huang et al., 2004),
including:

• tracing and maintaining links using a simple matrix
• not maintaining links (it’s assumed 15% of requirements change per year) and

instead managing changes using “brute force analysis”
• tracing and maintaining links for critical requirements only, and manually tracing

others

34 C. Ingram and S. Riddle

• the latter but with the addition of tools such as event-based traceability and
information retrieval techniques (a “heterogenous” strategy)

The study concluded that the heterogenous strategy produced the lowest costs (for
the provided case study).

6 Conducting a Practical Cost Analysis

In the rest of this chapter we suggest a simple method for conducting cost analysis
to produce a traceability strategy that best meets project needs. The analysis consists
of four steps, designed to fit in with existing traceability and software engineering
practices:

1. Establishing traceability goals (this was discussed in Section 2.1 of this chapter)
2. Identifying the minimum data required to achieve the goals (discussed in

Section 2.1)
3. Prioritising requirements and implementing traceability optimisations (discussed

in Section 3).
4. Estimating effort needed to generate and maintain trace links, and refining

choices from step (3) (cost estimation was discussed in Section 4).

The final two steps are envisaged as an iterative process of suggesting possible com-
promises and estimating which is likely to bring a reduction in traceability costs
without significantly reducing traceability benefits.

The cost-analysis process is summarised in Fig. 2. The steps are designed to
ensure that the maximum benefit can be achieved from the trace data (that the data
is fit for purpose and high quality) whilst the total traceability cost is kept as low as
possible. We discuss these steps in detail below, illustrating how the framework can
be put to use by referring to the iTrust case study.

3 Prioritise
requirements and

implement optimisations

1 Establish
goals

4 Estimate
effort currently

required

2 Identify minimum data
required

Fig. 2 Steps in a simple traceability cost analysis

Cost-Benefits of Traceability 35

6.1 Establish Traceability Goals

Ann is a project manager in charge of a development team working on the
iTrust development, tasked with implementing a cost-effective traceability
strategy.

She begins by ensuring that appropriate questions are asked of the stake-
holders, so that she has enough information to decide what the primary
traceability goals must be. Analysis reveals that iTrust is likely to be a highly
complex project, with numerous different possible roles users can adopt and
potentially a large user base. It’s technically challenging, and performance
issues are likely to be taxing, given that the system is to support multiple
simultaneous connections. Additionally iTrust is affected by strict regulations
governing handling of medical data. As a complex and expensive system to
develop, iTrust is expected to be in active use for a number of years (i.e., it
will have a long maintenance period).

This information leads Ann to conclude that many changes to the system
should be expected over its lifespan. These will be prompted by initial per-
formance issues, general complexity, future changes to regulations and varied
user demands and expectations. Change management should therefore be a
key priority of the project. Strict regulation issues imply that validation and
verification activities for both initial development and any future amendments
will also be a key issue.

With so many potential sources of requirements and an expected long lifes-
pan, Ann is also keen to record some basic requirements rationale for so that
it’s clear to customers as well as future development teams exactly why each
requirement has been included. This will also help the team to identify and
manage situations where users want conflicting features built into the system.

Once identified, the goals will dictate what data will be needed, how it may
be managed and which optimisations will be possible. Traceability goals should
be considered during requirements elicitation, when stakeholders are available to
answer questions on anticipated future use. Some key questions to ask are dis-
cussed below. This is not an exhaustive list, but designed to be a practical starting
point.

6.1.1 Change

Change management is a major factor underlying many traceability efforts. Answers
to these questions are likely to indicate whether methods for improving change
management will be a key traceability goal. Key questions here include:

• Do end users or stakeholders anticipate many requirements changes themselves?
• Are there strong expectations that the end system should be adaptable?

36 C. Ingram and S. Riddle

• Is this a rapidly developing market?
• Are there external laws or regulations affecting the project and how frequently do

they change?
• How many non-functional requirements are there? These can be difficult to

“design” and build into the system, and are often approached with iterative
improvements to system quality.

• How big is the project/how many requirements does it implement/how long is
the project duration? A larger project, or a project with a longer duration, is
increasingly likely to see some requirements changes arise.

• How many stakeholders and/or users are involved with the system? Users are
a major source of changes, as they discover bugs and make requests. A larger
number of users tends to imply that more change requests and/or bug reports can
be expected.

6.1.2 Design and Requirements Rationale

Some projects have discovered great benefit can be gained by capturing and stor-
ing the rationale behind decisions and deliberations. This type of information
can be very helpful for handling major system extensions, refactoring, or prepar-
ing safety cases. Projects with high staff turnover are at particularly high risk of
knowledge loss; trace data and traceability data structures can present a way to
document product knowledge and minimise the loss. Even without staff turnover,
developers and designers tend to forget over a period of time the original reasons
why key decisions were taken. Taking this on board, Gotel and Finkelstein have
suggested a system for recording the people behind major project decisions, par-
ticularly requirements rationale (Gotel and Finkelstein, 1995, 1997). Key questions
to ask:

• Will the system require any kind of certification (such as a safety case)?
• How experienced are the developers with this type of development?
• Is the system expected to experience a long development/maintenance period?
• How complex is the system?
• What is the expected staff turnover? What is the recent rate of staff turnover in

the same organisation?
• How stable (or otherwise) is the project expected to be? (see questions related to

change above)

6.1.3 Requirements Management and Testing Coverage

Demonstrating that all requirements are implemented and tested is another very
common use of trace data. As with issues relating to change management (above),
the presence of many volatile requirements tends to suggest that testing coverage
will need to be revisited frequently as requirements change. Key questions to ask
include:

Cost-Benefits of Traceability 37

• How many requirements does the system implement, and are they stable?
• Are there many sources for requirement – e.g., external regulations or standards?
• Are there conflicts between stakeholders or end users?
• Are there many non-functional requirements? These tend to be cross-cutting

(affecting many areas of the system) and are often implemented iteratively,
presenting challenges for ensuring testing coverage.

• How many stakeholders and/or users are involved with the system?

6.2 Identifying the Minimum Data Needed

Now that the traceability goals have been identified, Ann can begin to identify
the data she needs to capture as part of traceability efforts. Change manage-
ment is a key issue: for this she will record trace links between requirements,
design artifacts, code, test plans and also to requirements sources. These
links will allow her to identify areas that will require revisiting should any
given requirement be altered. Links to requirements sources (including peo-
ple) will allow future teams to track down original decision-makers. In some
cases, there may be good reasons why a requirement shouldn’t be modified
(e.g., regulations mandate it), so linking to requirements sources and/or ratio-
nale will allow developers to identify conflicts quickly and potentially avoid
re-work.

Once traceability goals have been identified, subsequent steps become more
straightforward, because the data needed is dictated by the goal. As we discussed
in Section 2.1 of this chapter, we must aim to store the minimum of information
needed. But we should also ensure that all data meets our minimum threshold of
usability. Egyed et al. have suggested a list of questions that should be asked when
planning a traceability strategy, such as (Egyed et al., 2005):

• is a perfect set of trace links necessary to achieve traceability goals?
• does an increase in quality of trace data justify the cost? (we discussed this point

in Section 3)
• are false positives (i.e., the presence of trace links not correct) or false negatives

(i.e., the absence of trace links which should be recorded) acceptable?
• what are the implications of errors in trace links?

We discussed in Section 3 how trace quality can be varied, and the potential impact
on the ultimate return on investment. Answering the questions suggested by Egyed
et al. should help to determine what quality level is an acceptable minimum for
each proposed usage. This particular list can also be useful for projects employing
automated tools to aid in the creation and/or maintenance of trace links, since tools

38 C. Ingram and S. Riddle

can be calibrated to produce more complete (probably with more false positives) or
more precise (probably with more false negative) sets of trace links.

We provide below a suggested list of link types to be considered. As before, this
list is not exhaustive, but intended to be a practical starting point.

• Testing and requirements coverage goals commonly require (at least) trace links
between requirements and code/test plans

• Re-use goals require links between requirements and code
• Requirements management also requires links between requirements and code –

which can be used to identify where requirements conflict and to control scope
creep

• Change management goals will require links between requirements and any other
artifact that potentially requires updating as a result of a change. This will almost
certainly include requirements, code and test plans. Links to use cases and design
data may also be included

• Requirements rationale goals will need links between requirements and their
sources

• Design rationale goals will need links between designs, decisions made and
rationale behind them, and requirements and/or code affected.

It’s tempting to assume that links between requirements and code components (for
example) can be implemented by two stages: a link from requirements to design;
and a second link from design to code. We might assume that our system could
actually conduct two separate searches to find components linked to requirements:
firstly, design decisions linked to the requirement; and then components linked to the
design decision. This hypothetical set of trace links is illustrated in Fig. 3. However,
a collection of links like this can make it impossible to conduct meaningful searches
for components linked to requirements if there are many requirements and many
components linked to a single design decision. Searching for components linked
to Requirement 1 in Fig. 3 is likely to result in a large number of false positives,
which will take time to weed out, because the design decision which is an inter-
mediary is linked to many components which are not relevant to Requirement 1.

R4
R3

R2
Requirement 1

Decision decision

R4
R3

R2
Component 1

Requirements Code components

Fig. 3 Hypothetical set of trace links between design decision, requirements and componenets,
exhibiting a disparity in granularity

Cost-Benefits of Traceability 39

This type of problem can arise anywhere where there is a disparity in granular-
ity between notations used. These scenarios illustrate the need to consider at this
stage how trace data will be searched, and to ensure that the quality of the links
meets the minimum threshold for usefulness (we discussed this in Section 3 of this
chapter).

6.3 Prioritising Requirements and Implementing Optimisations

Before Ann’s team begin the task of creating and storing trace links Ann
arranges a meeting for key stakeholders to agree a prioritisation of system
requirements. This means determining what “value” each requirement has for
the system. After discussion the stakeholders agree that, firstly, requirements
imposed by medical data regulations are considered to be high priority. Failure
to satisfy these requirements will impact on user trust in the system as well as
raising the issue of legal penalties.

Responsiveness of the system and ease of use is also high priority; users
will not accept the system if it cannot fit into pressured schedules of medical
staff, and this is key to its financial success.

Finally, functional requirements are divided by key stakeholders into major
(required) and minor (ideal) functions, and accorded different priorities as a
result.

Now that the traceability goals, data and priorities are available, Ann can
decide whether any optimisations are appropriate. The business impact of
failing to meet medical data regulations is appreciated by all stakeholders
for iTrust and the cost of assuring that high quality trace data is avail-
able for these requirements is accepted. Ann does not therefore need to
employ traceability optimisations for tracing test coverage of these require-
ments. She adopts a finely-grained system here, creating trace links between
requirements, individual methods in the code and test cases.

For other areas of functionality, some optimisations can be used.
Requirements rationale is stored in free text. For this, Ann asks engineers
to generate coarse trace links between requirements rationale and the require-
ments themselves. Any change to these requirements trigger an alert to the
engineer to go and check for changes.

For functional requirements that were not accorded a high priority Ann
instructs her team to adopt a coarsely-grained traceability approach, linking
requirements to classes instead of methods to reduce the effort expended.

We discussed in Section 3.1 of this chapter some criteria for prioritising areas of the
system so that different traceability techniques can be selectively applied.

40 C. Ingram and S. Riddle

6.4 Estimating Effort and Refining Choices

Ann’s effort estimation overlaps with her work on identifying possible opti-
misations. She has calculated the effort required in tracing legally-mandated
requirements’ testing coverage and justified the cost. However, her estimates
of the effort involved in tracing the rest of the system seem high.

Instead, Ann estimates the cost required to adopt an automated tool to gen-
erate links between requirements and documentation for low-priority areas
instead of asking the team to create the links. She re-calculates the estimated
effort needed to generate the links (very low now that a tool is in place) and
to carry out later traceability-enabled activities (a little higher than before,
since tools are not perfect and links will need some filtering from the engi-
neers). The short-term trace creation costs are low when using the tool, but
she estimates that within 18 months she will start to see medium- and long-
term saving in terms of reduced effort for coping with change requests later.
Ann refines her previous choice and adopts the automated tool for generating
low-priority links.

The last two steps – selecting optimisations and estimating effort – are likely to
become an iterative cycle as project planners recalculate the effort required and
select acceptable compromises in order to bring the total costs into acceptable
boundaries. Cost estimations should include both the initial cost of creating trace
links as well as estimating the effort saved on carrying out later traceability-enabled
activities, and a realistic estimate of the expected time-scale before the traceability
system will start to return a saving in effort.

7 Conclusions

In this chapter we have introduced some key issues behind cost-benefits of trace-
ability. In general the return on investment in traceability is maximised by keeping
the quality of the trace data high in areas where it is most needed, and the cost
of generating and maintaining trace data low. By “quality”, we mean the recall,
precision, granularity and suitability of the data for its intended purposes. There
are a number of techniques which may be adopted to reduce the cost of traceabil-
ity with only a minimal impact on quality. A flexible, “heterogeneous” approach
to traceability is likely to achieve the best balance between achieving traceability
benefits and controlling the cost. This strategy involves selecting the best available
technique or strategy to achieve the current goal. Prioritising requirements is an
important step, as it allows a mixture of techniques and optimisations to be selec-
tively applied where they are most appropriate, ensuring the best quality trace data
is applied where needed.

Cost-Benefits of Traceability 41

We’ve suggested a very simple process for analysing the cost benefit of trace-
ability and selecting an appropriate strategy. Any cost analysis of traceability must
ensure that the costs of implementing traceability are offset by the cost savings
which can be incurred at a later stage when carrying out traceability-enabled activi-
ties. Projects with longer durations and/or maintenance periods, for example, might
incur relatively high costs for trace creation, but this should be offset by the
reduction of effort required for repeated change requests over many years.

References

Albrecht, A.J.: Measuring application development productivity. In: Proceedings, IBM
Applications Development Symposium, pp. 14–17. Monterey, CA (1979, October)

Albrecht, A.J., Gaffney, J.E., Jr.: Software function, source lines of code, and development effort
prediction: A software science validation. IEEE Trans. Softw. Eng. SE-9, 639–648 (1983,
November)

Arisholm, E., Briand, L.C., Føyen, A.: Dynamic coupling measurement for object-oriented
software. IEEE Trans. Softw. Eng. 30(8), 491–506 (2004)

Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as quality
indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)

Boehm, B., Huang, L.G.: Value-based software engineering: A case study. IEEE Softw. 36(3),
33–41 (2006)

Briand, L.C., Wüst, J., Lounis, H.: Using coupling measurement for impact analysis in object-
oriented systems. In: Proceedings. IEEE International Conference on Software Maintenance,
(ICSM ’99), pp. 475–482. ICSM, Oxford, England (1999)

Chaumun, M. Ajmal, K., Hind, K., Rudolf K., Lustman, F.: Département IRO, and Université De
Montréal. A change impact model for changeability assessment in object-oriented software sys-
tems. In: Proceedings of the Third Euromicro Working Conference on Software Maintenance
and Reengineering, pp. 130–138 (1999)

Cleland-Huang, J.: Just enough requirements traceability. In: 30th Annual International Computer
Software and Applications Conference (COMPSAC 2006), pp. 41–42 (2006, September)

Cleland-Huang, J., Change, C.K., Christensen, M.: Event-based traceability for managing evolu-
tionary change. IEEE Trans. Softw. Eng. 29(9), 796–810 (2003)

Cleland-Huang, J., Zemont, G., Lukasik, W.: A heterogeneous solution for improving the
return on investment of requirements traceability. In: 12th IEEE International Conference on
Requirements Engineering (RE 2004), pp. 230–239 (2004, September)

Egyed, A.: Determining the cost-quality trade-off for automated software traceability. ASE
2005:360–363 (2005)

Egyed, A., Biffl, S., Heindl, M., Grünbacher, P.: A value-based approach for understanding
cost-benefit trade-offs during automated software traceability. In: Proceedings of the 3rd
International Workshop on Traceability in Emerging Forms of Software Engineering, TEFSE
’05, pp. 2–7. ACM, New York, NY. ISBN 1-59593-243-7 (2005)

Egyed, A., Grünbacher, P., Heindl, M., Biffl, S.: Value-based requirements traceability: Lessons
learned. In: 15th IEEE International Requirements Engineering Conference, RE 2007,
pp. 115–118 (2007)

Gotel, O., Finkelstein, A.: Contribution structures. In: Proceedings of the Second IEEE
International Symposium on Requirements Engineering, pp. 100–107 (1995, March)

Gotel, O., Finkelstein, A.: Extended requirements traceability: Results of an industrial case study.
In: International Symposium on Requirements Engineering (RE97), pp. 169–178. Society
Press, Annapolis, MD (1997)

Han, Ah.-R., Jeon, S.-Uk., Bae, D.-H., Hong, J.-E.: Behavioral dependency measurement for
change-proneness prediction in UML 2.0 design models. In: COMPSAC ’08: Proceedings of

42 C. Ingram and S. Riddle

the 2008 32nd Annual IEEE International Computer Software and Applications Conference,
pp. 76–83. IEEE Computer Society, Washington, DC. ISBN 978-0-7695-3262-2 (2008)

Heindl, M., Biffl, S.. A case study on value-based requirements tracing. In: Proceedings of the
10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 60–69. ISBN 1-59593-
014-0 (2005)

Huang, L., Boehm, B.: How much software quality investment is enough: A value-based approach.
IEEE Softw. 23(5), 88–95 (2006, September/October)

Hughes, R.T.: Expert judgement as an estimating method. Inform. Softw. Technol. 28, 67–75
(1996)

Ingram, C., Riddle, S.: Linking software design metrics to component change-proneness. In:
WeTSOM 2011 – 2nd International Workshop on Emerging Trends in Software Metrics
(WeTSOM 2011). Honolulu, Hawaii (2011)

Jarke, M.: Requirements tracing. Commun. ACM 41(12), 32–36 (1998, December)
Kemerer, C.F:. An empirical validation of software cost estimation models. Commun. ACM 30(5),

416–429 (1987)
Li, W., Henry, S.: Object Oriented Metrics Which Predict Maintainability. Technical Report,

Department of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia (1993, February)

Ramesh, B., Powers, T., Stubbs, C.: Implementing requirements traceability: A case study.
In: Proceedings of the 2nd IEEE International Symposium on Requirements Engineering,
pp. 89–95 (1995, March).

Ratzinger, J., Sigmund, T., Vorburger, P., Gall, H.C.: Mining software evolution to predict refactor-
ing. In: Proceedings of the International Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), pp. 354–363. IEEE Computer Society, Madrid, Spain (2007)

Wilkie, F.G., Kitchenham, B.A.: Coupling measures and change ripples in C++ application
software. J. Syst. Softw. 52(2–3), 157–164 (2000)

Acquiring Tool Support for Traceability

Orlena Gotel and Patrick Mäder

1 Introduction

There are an abundance of commercial tools that claim to support traceability
(INCOSE, 2010). The marketing material for the majority of these tools can entice
the practitioner into believing that they offer a silver bullet when it comes to trace-
ability. The reality is that such tools can both enable and impede traceability in
equal measure. The acquisition of tool support for traceability can have cost ram-
ifications that go well beyond the initial monetary expense — trace artifacts and
trace links, once painstakingly crafted into traces, may not integrate across tool
and organisational boundaries, so anticipated traceability-related queries may be
left unanswerable.

When faced with the task of buying a laundry detergent, the consumer can usually
afford to ask friends for opinions, and then take a trial and error approach to finding
the perfect detergent for their particular needs. A glossy label may lead to a first
purchase, but rarely to a second purchase if the detergent does not clean as well
as expected. It is rarely a costly mistake. When faced with the task of buying a
car, the consumer may seek a more objective perspective, given the escalation in
cost and the risk of a poor decision. Therefore, the consumer may seek advice from
consumer reports, those product reviews and comparisons that have been compiled
as a result of car ownership and use over time. A specific car is predominantly
selected because it fulfils the needs of the future owner and it fits within their price
range; however, features that have been prioritised and compared across models may
act as the differentiating factor. Importantly, there is a huge used car market that can
lessen the pain of a poor decision.

When faced with the task of acquiring tool support for traceability, several imme-
diate challenges confront the consumer: (i) the lack of stand-alone traceability tools

The material in this chapter was the basis for a mini-tutorial presented by the authors at RE’09
(Gotel and Mäder, 2009).

O. Gotel (B)
New York, NY 10014, USA
e-mail: olly@gotel.net

43J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_3, C© Springer-Verlag London Limited 2012

44 O. Gotel and P. Mäder

to select from; (ii) selecting between the broader categories of tooling that actually
are available, that manage the requirements and other artifacts of the software and
systems development life cycle, and provide for traceability in the process; (iii) the
intangible nature of what is being acquired; (iv) the lack of a used tool market to
compensate for a poor decision; and (v) the deceptively inexpensive alternative of
either configuring a general-purpose tool or developing a custom tool to support
needs. Given these challenges, undertaking a trial and error approach in this pro-
curement arena is rarely viable. Not only does it require an investment in time to
find a solution, it also takes time to realise the benefits. Moreover, one organisa-
tion’s rationale for a solution may not fit another’s, so there is also limited value in
simply copying the tool acquisition decisions of others without conducting a more
in-depth enquiry.

Reviews of commercial and open-source tools that purport to support traceability
have been provided by a number of leading consultants, including (Alexander, 2010;
Atlantic Systems Guild, 2010; Wiegers, 1999a), and a feature table through which
to compare tools has been populated by tool vendors themselves (INCOSE, 2010).
However, there is little objective material that has been obtained over time, and
from a wealth of independent consumer use and testing with regard to these tools.
A number of useful resources do exist that are directed towards the practitioner,
such as (Ebert, 2005; Kress et al., 2007; Rupp, 2002, 2007), but these are currently
only provided in German. These resources discuss the traceability functionality and
selection of requirements management tools. While the use of reviews and feature
comparisons can be a starting point for exploring the support offered by potential
tools, tools come and go, and the names of tools and their vendors also change.
Consequently, care needs to be taken when relying upon such material to make
decisions. What really needs to be examined is how well these features can work
together to deliver a required capability or service within a specified context. The
task of acquiring tool support for traceability thus necessitates a systematic enquiry.

This chapter presents a seven-step guide for practitioners to work through to
conduct such an enquiry. It does not claim to provide a turnkey solution to decision
making; rather, it aims to provide a pragmatic framework through which to arrive at
a more informed tooling decision. Instead of proceeding directly to selecting from
among tool offerings, it recommends that the practitioner first understand the wider
requirements management system in which the traceability is likely to play a critical
role within their organisation, and then to design or redesign (hereafter [re]design)
the process as necessary; any tool decisions need to be made to fit squarely within
this context. It offers a more general and complementary approach to those that
delineate the required features of requirements management tools based upon roles
(Hoffman et al., 2004) or rate a tool’s support for requirements management based
upon the value contribution of its features (Heindl et al., 2006).

Since the question of traceability support inevitably becomes one of require-
ments management tooling at present, Section 2 explains the distinction between
traceability and requirements management. These two terms are frequently used
inconsistently and interchangeably. Section 3 outlines the general categories and
capabilities of tool support that is available in this space. The acquisition guide

Acquiring Tool Support for Traceability 45

is then described in Section 4, where the objectives and results of each step are
explained, along with warning signs to attend to. Section 5 concludes the chapter.

2 Traceability and Requirements Management

Many problems with the acquisition and subsequent introduction of tool support for
traceability originate from poor expectation management. The term requirements
traceability is often used in place of traceability and, thereafter, used synony-
mously with requirements management (Young, 2004). Equally, traceability is often
regarded as one of the enabling mechanisms for the various requirements manage-
ment activities (Berenbach et al., 2009). Not only are traceability and requirements
management different things, the term requirements management is itself frequently
used in multiple ways, which can confuse matters. For some practitioners, require-
ments management encompasses all the requirements engineering activities (Davis,
2005), such as the initial requirements elicitation tasks and the specification activi-
ties, while for others it is distinct from developing the requirements in the first place
(Wiegers, 1999b). How practitioners use the different terms obviously influences
what is expected from the associated tool support. Therefore, an important starting
point in any tooling discussion is to agree upon the terminology to be used. This
will determine what is within the scope of the tool support to be acquired and will
help to manage expectations.

2.1 Traceability

In software and systems engineering, a trace is “a specified triplet of elements com-
prising: a source artifact, a target artifact and a link associating the two artifacts” (as
defined in this book’s glossary). In turn, traceability is “the potential for such traces
to be established and used” (also defined in this book’s glossary). The concept of
traceability is, therefore, very simple. However, it is the nature and location of the
artifacts to be linked, the mechanics of creating and maintaining this linkage, and
the kinds of usage that are ultimately required of the resulting traces that presents
the complexity.

Requirements traceability focuses on tracing requirements-related artifacts
(Gotel and Finkelstein, 1994), using links that expose both requirements deriva-
tion and coverage, to enable tasks such as requirements validation and verification.
Software traceability extends the definition to encompass and interrelate any
uniquely identifiable software engineering artifact to any other, extending the life
cycle coverage of the validation and verification activities accordingly. Systems
traceability goes further and interrelates systems engineering artifacts to a broad
range of systems-level components, such as people, processes and hardware mod-
els. This chapter uses the more general term “traceability” throughout and assumes
that it deals with any artifact of the software and systems development life cycle.

46 O. Gotel and P. Mäder

2.2 Requirements Management

Requirements management is “the activity concerned with the effective control of
information related to stakeholder, system and software requirements and, in partic-
ular, the preservation of the integrity of that information for the life of the system
and with respect to changes in the system and its environment” (see this book’s
glossary).

In practice, the engineering assets to be managed within the scope of require-
ments management may extend to any software and systems development artifact.
In addition, the management of these assets may not simply comprise a set of
coordinated activities or processes, but may also refer to the people who have
the power and the responsibility to manage them. This chapter, therefore, regards
requirements management as a wider socio-technical system that depends upon
traceability as its enabling mechanism to interrelate all the artifacts under its con-
trol. The requirements management system comprises people, assuming roles and
undertaking responsibilities, process and tooling. It is rarely a traceability tool that
is desired; rather, it is a tool for managing the artifacts of the software and systems
development process with its embedded support for traceability.

2.3 Where Traceability Fits in Requirements Management

To manage the artifacts of the software and systems development life cycle, it is
necessary to first gain access to these artifacts and then to define the various depen-
dencies that will facilitate their subsequent control. To preserve the integrity of these
artifacts and their dependencies in the face of change, these henceforth need to
be accessible, navigable and modifiable. Requirements management comprises five
fundamental activities that work together to achieve all these capabilities. In the pro-
cess, they serve to create, maintain and use the enabling traceability. These activities
are:

1. Obtain and Store – Obtaining and storing the artifacts to be managed, usually in
a shared physical or virtual repository, so as to place them under control.

2. Augment – Augmenting these artifacts with meta-data, such as unique identi-
fiers and source information, so as to facilitate their subsequent organisation and
retrieval.

3. Organise – Structuring and relating these artifacts, effectively establishing their
traceability.

4. Retrieve – Accessing and reporting on these artifacts, their meta-data and their
inter/intra relationships, effectively using the traceability to create views on to
all these data in response to traceability-related queries.

5. Update – Updating these artifacts, their meta-data and their inter/intra relation-
ships to preserve the integrity of both the traceable artifacts and their actual traces
following change, effectively using the traceability to understand, manage and
propagate change.

Acquiring Tool Support for Traceability 47

These five activities are fundamental to the general control of data and the main-
tenance of data dependencies over time. Irrespective of the target software and
systems development artifacts being managed, this chapter refers to tool support
for such activities as requirements management capability given the prevailing use
of the term in industry and by tool vendors.

3 Tool Support for Requirements Management and Traceability

All the fundamental activities of requirements management can be undertaken man-
ually and using paper, but this can be tedious and error-prone, particularly as the
number of artifacts and stakeholders grows. One area in which the complexity
can grow exponentially is in creating and maintaining the underlying traces upon
which the requirements management depends. It is therefore worth considering
using a tool to support requirements management and traceability when there is a
need to:

• Scale – When the project has many requirements and other engineering artifacts
that need to be managed and traced.

• Distribute – When more than one person, site or organisation is doing the engi-
neering and requirements management work, and where there is a need to share
and align artifacts and traces.

• Associate – When more than one engineering step is necessary to transform the
requirements into the desired product and where there is a need to interrelate all
these interim artifacts.

• Reuse – When requirements and other engineering artifacts, including their
traces, are being used and reused in multiple ways, such as within other projects
and within product families.

• Improve – When there is a desire to learn about and improve the quality of the
requirements management and wider engineering process, based upon gathered
data and metrics.

• Alleviate – When the engineering personnel are under-utilised, such as when
they are performing repetitive and administrative tasks to enable requirements
management; these are tasks that could easily be supported in some way.

• Demonstrate – When there are contractual or legal reasons to use tools to demon-
strate traceability, as often mandated by regulators or when working within
supply chain arrangements.

• Maintain – When a long project or product life is expected, or when there are
many customers with likely change requests to manage.

If one or more of the above are drivers in a particular project and organisational
context, then tools can offer invaluable support for requirements management and
traceability activities. While there are many options on tooling, these fall into three
basic categories:

48 O. Gotel and P. Mäder

1. Dedicated Requirements Management Tools – These tools concentrate specifi-
cally on supporting the fundamental activities of requirements management and
are frequently referred to as traceability tools due to their focused support in
this area. The traceability provided could be quite sophisticated, particularly
with respect to those artifacts generated in the life cycle phases associated
with requirements development. Dedicated requirements management tools are
traditionally used as a component within a wider tool chain.

2. Life Cycle Tools – These tools characteristically support a wide span of the soft-
ware and systems development life cycle and manage its broader artifact types.
Such tools provide for varying levels of capability with respect to the fundamen-
tal requirements management activities and enable traceability between all the
supported artifact types. The traceability provided can be more generic in nature
than with the dedicated tools, though more encompassing of life cycle phases,
and a single life cycle tool may provide for a total tooling solution.

3. General-Purpose Tools and Proprietary Development – Everyday applications
can be configured to support tailored solutions to requirements management and
traceability. There is also the option to develop a proprietary tool completely
from scratch. The nature of the traceability provided, the degree of support
offered and how the result fits into a wider tool chain will all differ from case
to case.

The benefits and limitations associated with each category of tooling are sum-
marised in the following sections.

3.1 Dedicated Requirements Management Tools

Dedicated requirements management tools, such as Borland’s CaliberRM (Borland,
2010), IBM’s Rational DOORS (IBM, 2010a) and IBM’s Rational RequisitePro
(IBM, 2010b), typically support the fundamental activities of requirements man-
agement in the following ways:

1. Obtain and Store – The heart of a dedicated requirements management tool
is its underlying repository. This is usually provided via a database manage-
ment system, so it comes with all the associated functionality. A differentiating
factor will be the diversity of artifact types that the database can handle and
then subsequently trace (e.g., textual requirements, Unified Modeling Language
(UML) diagrams, test plans, change requests, etc.). The artifacts may need to be
imported from third-party tools, requiring data import facilities within the tool.
Alternatively, an editor may be provided to facilitate the artifact creation pro-
cess directly within the tool, supplemented by templates and wizards. Capability
may be provided to perform parsing and linguistic analyses on text-based input
documents to extract requirements and their traces.

2. Augment – Data attributes that are associated with artifacts are regularly used for
organisation and tracing purposes within dedicated requirements management

Acquiring Tool Support for Traceability 49

tools. These are normally specified within an artifact or trace editor and imple-
mented as database fields. The tools may provide varying capability to manually
or automatically capture and validate the attribute values once specified.

3. Organise – Dedicated requirements management tools provide the capability for
either the manual or automated linking of the stored artifacts to create traces.
Manual capability is typically provided via interactive drag and drop interfaces
within editors, directly manipulating and interrelating the artifacts concerned, or
by textual or graphical specification of the traces. Automated capability is emerg-
ing in some tools, using linguistic analyses and information retrieval algorithms
to recover trace links from artifact sets automatically. The particular traceabil-
ity to be used on a project can often be defined with some form of traceability
planning facility within these tools. This may take the form of a traceability
information model (TIM), or similar concept, providing a specification of the
permissible traces for a project. The ability to assess levels of conformance with
respect to a TIM as the traceability is created may also be provided. There is
also, usually, the capability to structure the stored artifacts as needed into groups,
partitions, hierarchies, decompositions, etc.

4. Retrieve – Dedicated requirements management tools generally provide the
capability to create reports about the managed artifacts and their traces.
Visualisation capabilities may augment the reporting in some tools. The kinds of
analyses and reports required should help to define the initial TIM for a project,
so some facility to define the typical traceability-related queries that are to be
supported and their data needs may be provided. To perform the subsequent
traceability-enabled analyses requires basic capabilities for searching, sorting
and filtering the artifacts, their meta-data and their inter/intra relationships, so
these are typically standard within such tools. Data export facilities are also com-
monly provided to disseminate the reports, as well as to exchange artifacts and
traces with third-party tools.

5. Update – Security for editing the managed artifacts and their traces is commonly
provided via the capabilities of the underlying database management system
within dedicated requirements management tools (e.g., via multiple user access
control, the ability to define baselines, version and configuration control, update
notification mechanisms, etc.). The ongoing maintenance of the artifacts and
traces over time depends upon the traceability already implemented, so varying
degrees of support for analysing the quality of the traceability may be provided,
along with analytical or graphical support to explore impact analysis and change
propagation.

In supporting the fundamental activities of requirements management, dedicated
requirements management tools tend to have a distinctive architecture comprising
a database, an editor, a report generator, an import facility and an export facility,
as per Fig. 1. The particular offerings in this space can be differentiated by their
graphical user interface and their modes of interaction for creating, maintaining
and using traces. They may provide different levels of support for the definition
of the requirements management process and TIM that is to be enabled by the tool,

50 O. Gotel and P. Mäder

Import

Database

Editor
Export

Report
Generator

Fig. 1 Typical architecture
of a dedicated requirements
management tool

and the ability to monitor or enforce compliance with these. This may extend to
workflow definition and team working facilities for the collaboration, coordination
and communication of the activities.

The advantage of using a dedicated requirements management tool is that it
focuses exclusively on the fundamental requirements management activities and on
the enabling traceability. The support for traceability can be extensive and com-
prehensive. The traceability is either created as a by-product of using the tool,
according to the defined requirements management process, and any accompany-
ing TIM if supported, which may or may not be configurable; else, the traces are
created manually in an explicit and interactive manner. There is often committed
vendor support for designing the wider requirements management system that is
needed to capitalise upon the full potential of the tool in use, and for configuring the
tool to particular organisational processes and settings.

The use of multiple dedicated tools in a tool chain means that the practitioner can
use very specific solutions for different phases of development and gain dedicated
support in each area. However, this comes at the potential difficulty and expense of
establishing traceability across the tool boundaries to manage the artifacts over time.
The key issue with dedicated requirements management tools is that full end-to-end
traceability throughout the entire software and systems development life cycle can
be problematic. Overcoming this limitation either requires the tool to be truly open
for integration with other tools and their data, or for the integration of the trace-
ability work products to have been planned for carefully within the wider tooling
environment.

3.2 Life Cycle Tools

Life cycle tools provide support for all or many phases of the software and sys-
tems development life cycle (i.e., analysis, design, coding, testing, management,
etc.). Such tools are not usually specialised for requirements management per se, but
can offer differing levels of support for the fundamental requirements management
activities, and so provide support for creating, maintaining and using traceability in
the process. This category of tool includes, but is not limited to, full application life

Acquiring Tool Support for Traceability 51

cycle management tools such as MKS Integrity (MKS, 2010), UML and SysML (the
Systems Modeling Language) modelling tools such as Enterprise Architect (Sparx,
2010), and bug/issue/project tracking tools such as JIRA (Atlassian, 2010).

The advantage of using a single life cycle tool in which all the development arti-
facts are created and managed is that end-to-end traceability is possible, in theory. It
can offer the ultimate promise for achieving ubiquitous traceability (see the chapter
“The Grand Challenge of Traceability (v1.0)”). There can also be benefits from hav-
ing fewer tools to learn to use and to handle. However, it may be necessary to buy
into the full paradigm of the development approach supported within the life cycle
tool, such as model-driven development using the UML, to gain the anticipated
traceability. The other potential compromise is having more generic support for
the individual development activities and the traceability, with fewer configuration
options.

Using multiple tools that support a span of the software and systems develop-
ment life cycle, but provide for requirements management and traceability therein,
requires the same caution as with integrating a dedicated requirements management
tool into a tool chain. The wider tool integration needs to be addressed if the trace-
ability is to be both bidirectional and sustained across any tool boundaries. Where
there is no obvious focal tool for the requirements management in a tool chain, dif-
ferent approaches to the underlying activities and its traceability may need to be
reconciled.

3.3 General-Purpose Tools and Proprietary Development

At the opposite end of the spectrum, text editors, graphic editors, spreadsheet tools,
databases and wikis are all general-purpose tools that can all be configured to allow
previously manual and paper-based requirements management activities to be car-
ried out with some form of tool support. A traditional approach to traceability
is to create a requirements traceability matrix within a spreadsheet application to
link requirements to other derived artifacts or to configure a small database appli-
cation to do similar. While this may require explicit data entry to populate the
requirements artifacts and their trace links, and manual checking of their valid-
ity, this solution may be adequate for a number of projects; it may be sufficient to
assess the traceability and to undertake impact analysis of the requirements if they
change.

More recently, it has become standard practice to build a project wiki to gather
software and systems development artifacts together in one place, capitalising upon
a wiki’s multi-user editing and versioning facilities to manage requirements and
their traceability. This is the approach that has been adopted in the iTrust case study
of this book (see Appendix B). Traceability matrices have been created manually
on the wiki to map each use case in the iTrust requirements to the Java Server
Pages in which the requirements have been implemented within the system. The

52 O. Gotel and P. Mäder

iTrust wiki does not support the user in navigating directly between the artifacts
that have been traced. It has also not been configured to provide full requirements
management and traceability support, such as the automatic notification on change
and the assessment of change impact. The iTrust wiki is mainly communicative in its
traceability support. The sophistication and support offered by a wiki can obviously
vary quite widely.

The advantages of configuring a general-purpose tool for requirements man-
agement and traceability is that such tools are widely available, and many people
already know how to use them. A solution can often be configured that is suitable
for small and short-lived projects with ease. However, what initially may appear
to be an inexpensive proposition could incur a high cost once configured and pop-
ulated, particularly if the demands on the requirements management, traceability
or the context changes. Moreover, it is common to focus on particular aspects of
requirements management, such as creating and communicating the traceability (as
with iTrust), as opposed to providing support for the full range of activities that
may be required to sustain this traceability over time. In the iTrust case, the wider
requirements management system that creates and maintains the traceability is a
manual system.

The ability to configure a general-purpose tool for requirements management
support, or even to develop a tool from scratch, affords the utmost flexibility when it
comes to support for traceability. However, the use of general-purpose tools is prob-
ably best avoided on unpredictable, sizable, distributed or long-term projects, unless
requisite care is given to the wider requirements management system (i.e., the peo-
ple and their process) in both their configuration and use. Moreover, building a fully
functioning tool to support software and systems development is rarely an organisa-
tion’s primary business priority or domain specialty. There are benefits in leveraging
the expertise of those organisations that have made requirements management and
traceability their core business, and also an integral part of their products.

4 Guidelines for Acquiring Tool Support for Traceability

Any decision regarding tool support for traceability will depend upon the require-
ments management system that an organisation employs, as well as its wider
software and systems development life cycle environment. A number of experience
reports provide for a cautionary perspective when undertaking tooling decisions. For
example: (i) how the effort involved in evaluating tools can be somewhat underesti-
mated when attempting to introduce an improved requirements management process
into an organisation (Tvete, 1999); (ii) how it is ineffective to introduce a tool with-
out a process, but likewise difficult to implement a process without a supporting tool
(Higgins et al., 2002); and (iii) the risks to a project of using a tool incorrectly and
the need to bring the various stakeholders together to define tool use before setting
off (Hammer and Huffman, 1998).

Based upon a number of such observations, the following seven steps are
suggested to help guide a systematic enquiry for making tool acquisition decisions:

Acquiring Tool Support for Traceability 53

1. Agree on the Problem and Terminology – Agree there is a traceability-related
problem to be tackled and agree on how this fits within the organisation’s
requirements management system.

2. Understand the Problem and Commit to Tackling it – Understand the particu-
lar requirements management and traceability-related problem(s) to be tackled,
define their success criteria and secure top-level commitment to tackle them.

3. Identify Stakeholders – Identify the various stakeholders for requirements man-
agement and traceability, and secure their buy-in.

4. Determine Requirements and Constraints – Ensure the requirements for require-
ments management and traceability are stakeholder-driven and sensitive to the
context of the organisation.

5. Design the Wider Requirements Management System – [Re]design the require-
ments management process, and clarify both where and how traceability and
potential tooling fits in.

6. Assess and Select Tools – Assess the value of tooling for this new or improved
requirements management system, gather and evaluate data on tooling options,
and select a particular tooling solution if it fits the desired scope and adds value.

7. Plan for Tool Introduction, Adoption and Ongoing Use – Enact the tooling deci-
sion as part of a wider process improvement initiative. Not only does a tool have
to be installed and used, the surrounding process has to be adopted by people if
the requirements management system as a whole is to succeed.

The majority of these steps do not involve a tooling decision per se. The decision
to select a tool needs to arise from a broader analysis of the problem to be tackled
and from within the design of either a new or improved system that tackles the
problem.

4.1 Step 1: Agree on the Problem and Terminology

• Objective – To discuss and agree on the core problem that the organisation hopes
to address by introducing a tool to support traceability.

• Result – The primary business driver is agreed and the stakeholders pursuing the
tool acquisition recognise that they are not simply acquiring a tool to support
traceability, but acquiring a tool to support the wider requirements management
system.

• Warning – When there is the perception that a tool is going to solve all the
requirements and traceability-related problems of an organisation.

Many tool acquisitions fail because there is no clear business driver for the
tool, no unambiguous statement of either the problem to be fixed or the value to
be gained. Together, requirements management and traceability are usually desired
to help maintain agreement on requirements throughout the development process,
so as to increase the probability of delivering a software system that meets these

54 O. Gotel and P. Mäder

requirements. While this can be a partial business driver, the current status with
regard to requirements conformance within an organisation, and the anticipated
business opportunity to be gained from changing the current way of working, also
need to be discussed and captured in some tangible way. There is a concomitant
need to visualise the improved system concept, assuming process changes and tool
introduction.

Step 1 of the enquiry requires understanding the current requirements manage-
ment system in an organisation, and exploring any associated problems with it and
its enabling traceability, albeit at a high-level. This requires consulting any exist-
ing process documentation and the process owners. It also requires gathering data
from those who currently participate in the requirements management process to
gain some preliminary general knowledge. This is necessary to begin to express the
process improvement opportunities and to determine whether tool support is even
worth investigating. Is there actually a traceability problem that demands a tooling
solution?

If the decision is made to proceed with a process improvement initiative and a
potential tool acquisition during this step, then it is critical to ensure that agreement
is reached on the terms requirements management and traceability. This is necessary
to manage expectations before proceeding to further steps, as discussed in Section 2.

4.2 Step 2: Understand the Problem and Commit to Tackling it

• Objective – To explore and define the underlying nature of the problem to be
tackled and to quantify the anticipated improvements that are sought from a new
or improved requirements management system.

• Result – An approved business case for a process improvement initiative that
will [re]design the requirements management process and investigate a potential
tool acquisition, with management sponsorship, leadership and the buy-in of the
project team.

• Warning – When no measurable business goals for a new or improved require-
ments management system are articulated.

While there may be agreement on the key business driver following Step 1, there
are often as many lower-level expectations surrounding requirements management
and traceability as there are stakeholders. These arise from different perceptions
of the problems that stakeholders perceive requirements management and trace-
ability should assist them with, and the full extent of these expectations needs
to be explored in Step 2 to continue to manage expectations. For example, it is
common to assume that improved requirements management and traceability will
lead to: better quality requirements; better planning ability; better estimation, allo-
cation and control of work; better management of changing requirements; better
ability to reuse work; and better ability to meet contracts demonstrably. However,
some expectations may not be the remit of improved requirements management

Acquiring Tool Support for Traceability 55

and traceability, and these limitations need to be highlighted before escalating the
expectations for tool support. For example, improved requirements management and
traceability cannot help the practitioner to gain unambiguous, complete and correct
requirements and, if this is what is perceived by better quality requirements, an
expectation gap will be created; rather, this is the remit of learning to write better
quality requirements and performing more effective reviews.

To explore the underlying nature of the actual problem that will be tackled
requires asking a number of questions in an organisation: What activities and tasks
are the practitioners attempting to undertake that depend upon traceability? What
issues do they currently face in attempting to undertake these activities and tasks?
What issues do they face in creating and maintaining traceability if they actually
undertake traceability at present? Where no requirements management system cur-
rently exists in an organisation, these latter questions still need to be asked of a
projected future system.

It is recommended that a business case (or similar) be developed in Step 2 to
define the nature of the underlying problem in more detail, and to delineate what
is and what is not considered within scope. Metrics for assessing the anticipated
improvement to be gained should also be defined, along with success criteria. The
business case should further articulate what needs to be spent on tackling the prob-
lem, in terms of money, effort and resources, and estimate the projected return on
investment. In addition, a plan for the process improvement initiative and poten-
tial tool acquisition should be formed, identifying the project owner or sponsor, the
project leader and team, the resources that will be available to it, how progress with
the problem is going to be measured and the likely risks. It is the process of consider-
ing all the questions that inform a typical business case that is important during this
step, not the creation of an unwieldy business case document. A one-page project
charter could be wholly sufficient for communication and to secure commitment
within many organisational contexts.

4.3 Step 3: Identify Stakeholders

• Objective – To conduct a systematic analysis of those who have something to gain
or something to lose from a new or improved requirements management system.

• Result – A prioritised list of stakeholders to guide the subsequent requirements
determination and decision-making process.

• Warning – When key stakeholders are not identified and whole stakeholder
constituencies are overlooked.

One of the first areas of exploration in a general requirements engineering process
is the identification of the stakeholders for a proposed system. This is a prerequisite
to discovering their various goals, tasks, contexts of use and constraints in a method-
ical manner. Differing business value will be gained from satisfying the various
stakeholder needs, so it is important to identify the key stakeholders in a particular

56 O. Gotel and P. Mäder

organisational context early on so as to ensure that their needs drive the subsequent
requirements gathering. For example, a business analyst may require support for
impact analysis, a developer may require support for derivation analysis, a designer
may require support for completeness analysis, a customer may require the ability to
assess contract fulfilment and a quality administrator may want to determine unim-
plemented requirements. While it might be ideal to address all these stakeholders’
needs, these need to be prioritised unless the business case has agreed an infinite
budget. Focusing on the root problems to be tackled and the key stakeholders to be
supported can facilitate this. Stakeholder identification and prioritisation is the role
of Step 3.

One way to identify all the potential stakeholders in a systematic manner is to
use the Onion Model of Stakeholders, as described in (Alexander and Beus-Dukic,
2009). The approach considers the various stakeholder roles that would fill generic
slots when the target system is placed at the centre of the model. An example set of
stakeholders for a requirements management system is given in Fig. 2.

Consultant

Financial
Beneficiary

Negative
Stakeholders

Developer

Regulator
Domain-
specific

Political
Beneficiary

Interfacing
Systems

Purchaser

Functional
Beneficiary

Operational
Support

Maintenance
Operator

Normal
Operator

The Wider Environment

The Containing System

The System

The
Product

Requirements
Management System

(with enabling
traceability &
potential tool

support)

Sponsor or
Champion

The Public

Analysts/
engineers

Other engineers
(designers,

developers, testers,
sub-contractors,

etc.)

Chief Process
Officer/project

owner

The
organisation/
procurement
department

Other SDLC
processes &
tools/other
organisations

Other vendors
/organisations

that trouble-shoot
bad projects

The organisation
/tool vendors

The organisation’s SPI team/
tool vendor’s requirements
management & traceability
product development team

/ 3
rdparty SPI
consultant

Mentors/
vendors/SPI

team
Training

System
administrat

or/ SPI
team/

vendors

Vendors/
SPI team

/HR

Consumers of the
organisation’s

software &
systems

The
organisation’s

SPI team/
academics

/those
resistant to

change in the
organisation

Researchers &
practitioners
advocating

requirements
management,
traceability &

SPI

/project & product
managers/QA /
customers

Fig. 2 Example stakeholder roles for a requirements management system

Acquiring Tool Support for Traceability 57

Figure 2 shows: the normal operators of a requirements management system (i.e.,
the business analysts and engineers); the beneficiaries of the functionality that the
requirements management system provides (i.e., other engineers, the managers, the
quality administrators (QA) and customers); the operational support (i.e., the men-
tors, the software process improvement (SPI) team and potential tool vendors); the
wider systems that the requirements management system will need to interface with
(i.e., the other processes and tools that support the software and systems develop-
ment life cycle (SDLC), both within and external to the organisation); the financial
beneficiary of the requirements management system (i.e., a potential tool vendor and
the organisation itself if there is an attractive business case); the negative stakehold-
ers (i.e., those who neither want change nor want a new requirements management
system); etc. These roles need to be instantiated and then prioritised in a particular
organisational context, in the light of the goals and constraints of the business case,
and then used to help direct the requirements determination in Step 4.

4.4 Step 4: Determine Requirements and Constraints

• Objective – To specify the requirements and constraints of those (key) stake-
holders involved with establishing and using the products of requirements
management and traceability.

• Result – A set of detailed scenarios of use for the (key) stakeholders, which high-
light the artifacts that need to be managed and traced, the nature of the traceability
required, the workflow that needs to be supported and the uses to which the traces
need to be put.

• Warning – When only the desirable features of a requirements management
system have been explored in the requirements gathering process.

Step 4 is to determine what the stakeholders identified in Step 3 need to be able
to do that requirements management and traceability can assist them with, and what
the subset of stakeholders (i.e., the normal operators) need to be able to do to allow
for this potential. This is an analysis of stakeholder goals, supporting tasks and
workflow. The artifacts to be managed and traced during these tasks need to be
highlighted during this step, and the nature of the traceability that is required to
enable these tasks needs to be defined. Data need to be gathered to understand the
causes of the current problems and to elicit the requirements for the new or improved
requirements management system. For instance: How is the traceability currently
created and maintained, and by whom? What techniques, methods and tools are
currently employed to do this, when and where?

One recommendation for conducting Step 4 is to first develop use cases for the
(key) stakeholder roles – the most frequent or the most important tasks that these
stakeholders need to undertake that involve the requirements management system –
and to examine the demands for undertaking these tasks on traceability. Example
use cases for some of the potential functional beneficiaries of a requirements

58 O. Gotel and P. Mäder

Developer

Designer

Product Manager

Tester

Customer
Quality

Administrator

View assigned
open

requirements

Trace
requirements

Find
requirement to

test

Find those
responsible for

requirement

Review
requirements

View
requirements

status

View
requirements
with structural

impact

Estimate impact
of changing
requirement

Provide
needs

Sub-contractor

Get
specification

Provide
implementation

status
View untested
requirements

Fig. 3 Example use cases for the functional beneficiary stakeholders

management system are given in Fig. 3. Here: the developer may need to determine
which requirements are not yet coded, which requires forward tracing at the identi-
fier level from requirements through to code; the quality administrator may need to
identify which requirements are not yet tested, which requires forward tracing from
requirements to test cases; and the customer may need to review and provide feed-
back on the requirements to be developed, which requires backward tracing of the
requirements to their sources and traceability between the requirements themselves
to understand their dependencies. The primary tasks in an organisational context and
their associated traceability needs should be investigated systematically in this way.

The use cases can then be detailed via typical and atypical scenarios to uncover
the sequence of activities and artifacts that they involve, and so uncover the further
requirements or constraints they impose on traceability. Figure 4 shows a potential
sequence of activities in a scenario of use for the customer’s review requirements

Acquiring Tool Support for Traceability 59

Lock or baseline all
requirements under

review

Identify and inform
reviewers

Provide access to the
requirements for each

reviewer

Let reviewer
comment on each

requirement

Check each
requirement has

been commented or
viewed by each

reviewer

Provide aggregated
view with all

comments on each
requirement

Store review board
decision on each

requirement

Perform changes to
requirement

Fig. 4 Example scenario of use for the customer’s review requirements use case

use case. If there is a need to trace back to the origin of a requirement when access-
ing the requirements for review, the third activity shown in Fig. 4, then this will
place demands on the types of artifact and the types of traceability that will need to
be supported (i.e., pre-requirements traceability back to the requirements sources).
Most requirements management tools will claim to provide support for the baselin-
ing and notification that is indicated in the scenario of use, so it is important to
examine potential tool support in the context of how the stakeholders would want to
use these features to deliver a required capability or service. There is little point in
having all the requisite features present in a tool if they are unable to work together
to support a specific scenario of use that is required. Generating the scenarios of use,
systematically, for (key) stakeholders and their tasks can help to produce a priori-
tised feature list for tool support in an organisational context; but, the added value
comes from providing an explicit set of test cases for tool evaluation in Step 6.

4.5 Step 5: Design the Wider Requirements Management System

• Objective – To design the new or improved requirements management system
and to establish the scope of any potential tool support within it.

• Result – A systemic solution to requirements management and traceability is
created that weaves together people, process and tools.

• Warning – When the encompassing software and systems development life cycle,
with its supporting tools, is not taken into account in the design process.

To design a new or improved requirements management system, it is important
to understand the organisational setting that the system will be exercised within,
as well as the prevailing motivation underlying the drive for process improvement
and tool acquisition (Mäder et al., 2009). These data are likely to have been
uncovered as a by-product of the previous steps, but need to be examined more

60 O. Gotel and P. Mäder

thoroughly in Step 5 as the system requirements and candidate designs are explored.
Understanding the organisation type, the software and systems development life
cycle process, the hardware platforms used, the available systems and resources,
the existing processes and tools, the process improvement culture, and the char-
acteristics of typical and atypical projects (i.e., team size, distribution, number of
concurrent users, domain, requirements volatility, frequency of change requests,
etc.) all serve as data to inform the potential scope of the new or improved require-
ments management system. For example, there may be security and legal constraints
that the organisation has to comply with on its projects that influence the selection
of permissible supporting tools and vendors.

The scenarios of use from Step 4 need to be analysed in this step to study the
problem areas being tackled, and to demonstrate that any proposed changes are
likely to gain the desired improvements and not introduce significant new prob-
lems. Only once the requirements of the wider requirements management system
have been clarified, and the design options have been specified, can the remit and
nature of the tool support be proposed. If projects are typically distributed across
regional and organisational boundaries, then support for this workflow needs to be
re-examined in the scenarios of use to check for the ramifications on the traceability
and need for support. If artifacts and traces need to be exchanged between organisa-
tions and tools, then the encryption and alignment of databases may be a prevailing
system requirement and design constraint. Therefore, it is necessary to analyse and
design the integral components of a new or improved system in Step 5, comprising:

• People – What roles and responsibilities will be a part of the new or improved
requirements management system? Which stakeholders will assume these roles?
Any changes proposed from the current resourcing and workflow will need
capturing and examining.

• Process – How will each of the fundamental activities of requirements manage-
ment be undertaken in the new or improved system? In particular, how will the
traceability be created, maintained and used? Here it is necessary to define the
intended techniques and methods to use, the roles responsible, and to also delin-
eate any planned changes from the current process. Before and after scenarios of
use may need examining to plan for training, introduction and adoption of the
process changes.

• Tools – Which tasks will be undertaken manually in the new or improved system
and which tasks will be tool supported, or even completely automated? Where
there is a satisfactory role for tool support, the artifact types to be managed and
traced will place demands on its database management system. The manner in
which the artifacts will be created, retrieved and used will place demands on its
import, export, editing and reporting capabilities. The traceability-related queries
to be supported will place demands on the types of TIM that will need to be
specified and implemented. The portfolio of tools used to support the broader
software and systems development life cycle within an organisation will dictate
tooling integration needs and this wider solution architecture should be defined
to clarify where requirements management tooling fits in.

Acquiring Tool Support for Traceability 61

The available resourcing and projected return on investment for tool support
may need to be re-examined during this step. One important question is obviously
whether to buy or to build a tool, or whether to forego a tool acquisition altogether.

4.6 Step 6: Assess and Select Tools

• Objective – To assess which category of tool best supports the new or improved
requirements management system and its organisational context, if any, and to
evaluate and select from among options.

• Result – A decision with respect to tool support for the new or improved
requirements management system.

• Warning – When a tool is selected based on it having the most plentiful or the
most attractive features, or simply because it is open-source and misconstrued as
free.

The driving force for final tooling decisions should be an investigation of their
support for the important scenarios of use in the new or improved requirements
management system and within the wider context of use. The portfolio of tools
used to support software and systems development in an organisation will generally
inform as to the most viable category of tool support for requirements management,
unless the entire process is under [re]design. Data gathering on potential tool support
can and should proceed in parallel with Steps 3 through 5; and, it is worth making a
list of such questions during the earlier steps. Typical traceability questions that can
be asked about candidate tools at any stage in the enquiry are listed below:

1. What priority does the tool give to traceability?
2. What mechanical and analytical support does the tool provide for creating and

maintaining traceability?
3. What kinds of requirements-related information and other artifacts can be made

traceable by the tool? Where and how is this obtained and stored?
4. What types of meta-data can the tool accommodate and use for traceability?

Where and how is this defined?
5. What support is provided for defining the nature of the traceability that is to

be enabled by the tool (i.e., a TIM) and what levels of compliance can be
ascertained with respect to this?

6. To what levels of granularity can traceability be provided within the tool (i.e.,
coarsest through finest that is possible)?

7. What kinds of traceability can be established within the tool (i.e., forward,
backward, vertical, horizontal, pre-requirements, post-requirements, etc.)?

8. Who has to create and maintain the traceability when using the tool?
9. What is the process it demands for both establishing and using the

traceability? (See the generic traceability process model in the chapter
“Traceability Fundamentals”.) Is this configurable?

10. Which parts of the traceability process can be automated by the tool?

62 O. Gotel and P. Mäder

11. What degree of skill and training is required to establish and use the traceability
in the tool?

12. What are the main goals and tasks supported by the traceability that the tool
provides in eventual use?

13. What traceability analyses can be facilitated and reported upon by the tool (e.g.,
traceability completeness and quality assessment)?

14. What is the breadth and longevity of the traceability provided by the tool?
15. Can the traces be extracted and reused outside of the tool?

The quality of a dedicated requirements management tool or life cycle tool can
be perceived, initially, from its marketing literature. If a tool’s website communi-
cates and is up to date, it is a promising first sign. However, a structured Request
For Information (RFI) process should be considered for any short-listed tools to
investigate some of the pertinent topics listed in Fig. 5. For example, the longevity
of the tool and the track record of the tool vendor need to be taken into account,
as these can provide for levels of business confidence in a company and its product
(Schwaber and Sterpe, 2007). If the tool is not a perfect match at present, what is the
longer-term view? Is the tool vendor evolving the product in a promising direction?
Is the tool near end of life? Will support be provided into the future? How easy will
it be to migrate the data if use of the tool is discontinued for any reason? An impor-
tant and often overlooked factor is the total cost of ownership of a tool. There is
not only an initial investment, but costs can be incurred in training, both in the tool
and in the process to be supported, along with ongoing consulting and maintenance

Candidate
vendor list

Short list
candidates

Send RFI

Score
responses

Develop RFI

Candidate
presentations

Finalist
selection

Interview
reference sites

Tool assessment & selection

Vendor details:
Company background & financials
Capabilities & resources

Product details:
Market share
Strategy roadmap & stage in life cycle
Development paradigm supported
Features & traceability questions
Platform & infrastructure requirements
Integration & extensibility

Fit criteria:
Ranked requirements & scenarios of use
Context fit, constraints & prior knowledge

Implementation details:
Project plan – team, preparation,
installation, ongoing…
Service level agreements – training,
consulting…
Total cost of ownership – initial,
operating, recurring…

Reference customers & sites:
Challenges & lessons

Illustrative

Fig. 5 Common topics to consider when evaluating tools

Acquiring Tool Support for Traceability 63

contracts. There may be a particular licensing model per seat when acquiring a
tool and recurring costs to accommodate. Any RFI should include samples of the
scenarios of use to be supported, along with details of the wider organisational
context that lends constraints, in order for the vendor to demonstrate the tool’s
potential support (or not). Furthermore, it is important to evaluate whether the skills
exist, within or external to the organisation, to configure and customise the tool,
if this is potentially needed, along with whether this is even possible to do within
the tool.

It is difficult to fully evaluate a tool from its marketing material and from a ven-
dor’s response to an RFI alone. Exercising a tool is the best way to examine the
actual support it provides for the required scenarios of use and to uncover the pro-
cess assumptions embedded within the tool. Getting an evaluation license for tools,
and the limited duration of such licenses, can be a compounding problem for eval-
uation though. Getting the various tools installed in a timely fashion can also be
problematic. This lead-time needs to be factored into the planning in Step 2. The
perception of a tool’s quality can be influenced by multiple additional factors while
in trial. Does the documentation reflect the latest version of the tool? How often
do major and minor updates appear? Is a concrete change log available for each
version, showing what was added, fixed or omitted? How reactive and useful is the
vendor support? Are there traceable tickets for discovered problems and how long
do they normally take to close? Does an active user community exist for the tool?
Such a checklist to support both tool and vendor assessment should be developed
by an organisation undergoing an evaluation process. Moreover, an examination of
the traceability practices of the vendor with respect to their own tool development
may prove telling.

Where there is not a good fit between the available tool offerings, or where
the cost is prohibitive, the option to configure a general-purpose tool or to build
a custom tool from scratch may be a viable option for an organisation. Much
of the systems analysis and design work that is essential to undertake this in an
informed manner has already been accomplished in Steps 1 through 5. The advan-
tages and disadvantages of taking such a course of action were summarised in
Section 2.

4.7 Step 7: Plan for Tool Introduction, Adoption and Ongoing Use

• Objective – To plan and manage a tool’s introduction, adoption and ongoing
viability as a central part of a new or improved requirements management system.

• Result – The wider environment for tool introduction, adoption and ongoing use
is prepared. People are trained in the process and tool, roles and responsibili-
ties are defined, mentors are assigned, and the stakeholders are motivated and
incentivised.

• Warning – When a tool is introduced on a high-profile project without sufficient
attention paid to preparing the people in the process that is needed to make it
succeed.

64 O. Gotel and P. Mäder

Data Migration

Training

Installation

Pilot

Phased
Rollout

Customisation

Remediation

Maintenance

Acceptance?

Yes

No

Prepare the environment

Measure

Evolve

Configuration

Exit &
migration
strategy?

It’s a project

– treat it like

one

Fig. 6 Example considerations when introducing tool support

If a tool has been selected as an integral component of the new or improved
requirements management system, then this impacts the conduct of the ensuing
process improvement initiative. Focus now needs to turn to a tool’s introduction
and adoption as an enabler of the improvements. The way in which to sustain
the value of the tool acquisition over time also needs to be planned for. Example
considerations to attend to in Step 7 are highlighted in Fig. 6 and summarised
below.

• Installation – Install the database that will manage the artifacts to be traced,
the server application, the client application, any existing plug-ins and the facil-
ities required to ensure the integration with other tools. Keep a record of the
installation details and parameters to aid later trouble-shooting.

• Configuration – Configure the tool according to the stakeholders and scenarios
of use, as identified in Steps 3 and 4, and the requirements management system
components as defined in Step 5. This includes: (i) defining the types of artifact
to be managed and traced, the identification system to use, the required meta-
data, the default values for these meta-data, etc.; (ii) defining the TIM, or similar,
which specifies the types of trace artifact, trace link and permitted traces in the
project according to the intended usage; (iii) configuring the usage properties for
the tool, such as the roles, the views and the access rights, the versioning and
baselining principles, the reports to be produced, the exports to be supported,
etc.; and (iv) configuring the tool to enable its integration with the other tools
used and their data. Keep a record of the entire configuration undertaken for its
tailoring across organisational projects.

Acquiring Tool Support for Traceability 65

• Customisation – Tool customisation only becomes necessary if the configuration
does not allow all the desired support for the stakeholders and their scenarios of
use. Customisation should be used cautiously, however, because of the effort and
cost incurred, so it is important to find out whether the needed functionality is
really not available in the tool before taking this route. Document any customisa-
tion undertaken, as it might need evolution, especially following any updates of
the main tool.

• Data Migration – Migrating artifacts and pre-existing traces into a tool can be
difficult, especially where different concepts for traceability have been used in
legacy tools. These data may need transforming into a standard form for tool use.
This needs to be determined during tool assessment in Step 6 as it can either be
awkward to do or incur unforeseen expense.

• Training – Plan not only for training on the tool, but also for training on the
[re]designed requirements management process to be used with the tool. An
inevitable performance dip needs to be navigated (Nikula et al., 2010), some-
thing that can lead to tool abandonment if not anticipated and planned for, so it
is ill advised to leave the training entirely until the practitioners are on-the-job.
The training required for successful adoption of a tool is often overlooked, so it
is emphasised here.

• Pilot – The goal of a pilot project is to gain evaluation and training in the field
with the tool using real data. Pilot projects require clear objectives, careful design,
support, feedback mechanisms and reviews, and they are likely to trigger fur-
ther configuration changes and additional customisations. Evaluate, remediate
and phase the roll out of the tool when the results are acceptable.

• Maintenance – Continuously measure, sustain and evolve the effectiveness of the
tool in use with regard to the business case of Step 2. Provide detailed and up-to-
date information about the organisation’s requirements management system, with
the process, roles and responsibilities, and the tool set-up for new team members.
Provide examples, project templates and support for new projects and personnel.
Conduct regular reviews of the wider requirements management system and its
tool support, and get feedback from its stakeholders on a regular basis. Analyse
completed projects to get information about the success of the system and its
tool. Plan for obsolescence and future migration also – a terminal solution is
rarely found, and the entire tool acquisition process will eventually start over as
novel traceability-related problems begin to emerge, as innovative tools appear in
the marketplace and as new business opportunities become envisaged.

5 Conclusions

Exactly which traceability tool to invest in is not a question that this chapter can
answer definitively. It is rarely a traceability tool that an organisation actually seeks,
but a system to support a wider process in which the development process is con-
trolled and through which its artifacts are managed over time, a process that is

66 O. Gotel and P. Mäder

enabled by traceability. Support for traceability therefore comes in different forms
and the idiosyncrasies of diverse organisational contexts makes tooling decisions
both difficult and somewhat unique. The most appropriate tool is clearly the one
that is adopted and used by all the required stakeholders in an organisation, in the
way that is intended, yielding the benefits that are anticipated, at an acceptable cost.
These are the driving factors that need to be uncovered first and foremost in any tool
acquisition process.

This chapter has, therefore, cautioned against deciding upon traceability support
without first understanding and designing the wider requirements management sys-
tem in an organisation, and accounting for its more encompassing software and sys-
tems development environment. A problem-oriented stakeholder and requirements-
driven enquiry is encouraged, and this chapter has outlined a seven-step guide to
help practitioners to undertake this:

1. Agree on the Problem and Terminology – Agree there is a traceability-related
problem to be tackled and agree on how this fits within the organisation’s
requirements management system.

2. Understand the Problem and Commit to Tackling it – Understand the particu-
lar requirements management and traceability-related problem(s) to be tackled,
define their success criteria and secure top-level commitment to tackle them.

3. Identify Stakeholders – Identify the various stakeholders for requirements man-
agement and traceability, and secure their buy-in.

4. Determine Requirements and Constraints – Ensure the requirements for require-
ments management and traceability are stakeholder-driven and sensitive to the
context of the organisation.

5. Design the Wider Requirements Management System – [Re]design the require-
ments management process, and clarify both where and how traceability and
potential tooling fits in.

6. Assess and Select Tools – Assess the value of tooling for this new or improved
requirements management system, gather and evaluate data on tooling options,
and select a particular tooling solution if it fits the desired scope and adds value.

7. Plan for Tool Introduction, Adoption and Ongoing Use – Enact the tooling deci-
sion as part of a wider process improvement initiative. Not only does a tool have
to be installed and used, the surrounding process has to be adopted by people if
the requirements management system as a whole is to succeed.

Please note that the steps are not intended to be strictly sequential and the process
is not intended to be document intensive; the guide needs to be used pragmatically
and more as an aid to thinking throughout the acquisition process.

The acquisition of tool support for traceability demands an open and system-
atic process of broader enquiry, balancing well-understood needs with the available
options. While it could lead to a highly automated tooling solution it could equally
lead to a pencil and paper tooling solution; either solution could be optimal for
the organisation and problem at hand. Conducting such an enquiry is also advised
when a tooling solution is imposed upon an organisation; it can highlight potential

Acquiring Tool Support for Traceability 67

problem areas ahead of time and thereby inform the design of mitigating strategies
before they have become irreconcilable problems that have led to a tool’s rejection.

References

Alexander, I.: Requirements tools listing and synopsis. http://easyweb.easynet.co.uk/~iany/other/
vendors.htm. Accessed Dec 2010

Alexander, I., Beus-Dukic, L.: Discovering Requirements: How to Specify Products and Services.
Wiley, Chichester, England (2009)

Atlantic Systems Guild Ltd.: Volere requirements resources: Requirements tools. http://www.
volere.co.uk/tools.htm. Accessed Dec 2010

Atlassian Pty Ltd.: JIRA. http://www.atlassian.com/software/jira/. Accessed Dec 2010
Berenbach, B., Paulish, D.J., Kazmeier, J., Rudorfer, A.: Software and Systems Requirements

Engineering: In Practice, p. 200. Mc-Graw-Hill, New York, NY (2009)
Borland Software Corporation.: CaliberRMTM: Enterprise software requirements management

system. http://www.borland.com/us/products/caliber/. Accessed Dec 2010
Davis, A.M.: Just Enough Requirements Management: Where Software Developing Meets

Marketing, p. 6. Dorset House Publishing, New York, NY (2005)
Ebert, C.: Systematisches Requirements Management. Dpunkt verlag, Heidelberg (2005)
Gotel, O., Finkelstein, A.: An analysis of the requirements traceability problem. In: Proceedings of

the 1st International Conference on Requirements Engineering (ICRE’94), pp. 94–101. IEEE
Computer Society, Colorado Springs, CO (1994, April)

Gotel, O., Mäder, P.: How to select a requirements management tool: Initial steps. In: Proceedings
of the 17th IEEE International Requirements Engineering Conference (RE’09), pp. 365–367.
IEEE Computer Society, Atlanta, GA (2009, August–September)

Hammer, T., Huffman, L.: Automated requirements management – beware HOW you use tools:
An experience report. In: Proceedings of the 3rd International Conference on Requirements
Engineering (ICRE’98), pp. 34–40. IEEE Computer Society, Los Alamitos, CA (1998)

Heindl, M., Reinisch, F., Biffl, S., Egyed, A.: Value-based selection of requirements engineering
tool support. In: EUROMICRO-SEAA, pp. 266–273 (2006)

Higgins, S.A., de Laat, M., Gieles, P.M.C., Geurts, E.M.: Managing product requirements for med-
ical IT products. In: Proceedings of the 10th IEEE International Requirements Engineering
Conference (RE’02), pp. 341–349, IEEE Computer Society, Los Alamitos, CA (2002)

Hoffmann, M., Kuhn, N., Weber, M., Bittner, M.: Requirements for requirements management
tools. In: Proceedings of the 12th IEEE International Requirements Engineering Conference
(RE’04), pp. 301–308. IEEE Computer Society, Washington, DC (2004)

IBM. IBM Rational DOORS. http://www-01.ibm.com/software/awdtools/doors/. Accessed Dec
2010a

IBM. IBM Rational RequisitePro. http://www-01.ibm.com/software/awdtools/reqpro/. Accessed
Dec 2010b

International Council on Systems Engineering (INCOSE): Tools Database Working Group
(TDWG). INCOSE Requirements Management Tools Survey. http://www.incose.org/
ProductsPubs/products/rmsurvey.aspx. Accessed Dec 2010

Kress, A., Stevenson, R., Wiebel, R., Hood, C., Versteegen, G.: Requirements Engineering
Methoden und Techniken, Einführungsszenarien und Werkzeuge im Vergleich. iX Studie
Anforderungsmanagement, 2nd edn. Heise Verlag, Leipzig, Germany (2007). ISBN:
9783936931198

Mäder, P., Gotel, O., Philippow, I.: Motivation matters in the traceability trenches. In: Proceedings
of the 17th IEEE International Requirements Engineering Conference (RE’09), pp. 143–148.
IEEE Computer Society, Atlanta, GA (2009, August–September)

MKS Inc.: MKS integrity. http://www.mks.com/platform/our-product. Accessed Dec 2010

http://easyweb.easynet.co.uk/~iany/other/vendors.htm
http://easyweb.easynet.co.uk/~iany/other/vendors.htm
http://www.volere.co.uk/tools.htm
http://www.volere.co.uk/tools.htm
http://www.atlassian.com/software/jira/
http://www.borland.com/us/products/caliber/
http://www-01.ibm.com/software/awdtools/doors/
http://www-01.ibm.com/software/awdtools/reqpro/
http://www.incose.org/ProductsPubs/products/rmsurvey.aspx
http://www.incose.org/ProductsPubs/products/rmsurvey.aspx
http://www.mks.com/platform/our-product

68 O. Gotel and P. Mäder

Nikula, U., Jurvanen, C., Gotel, O., Gause, D.: Empirical validation of the classic change curve on
a software technology change project. J. Inform. Softw. Technol. 52(6) (2010, June)

Rupp, C.: Requirements-Engineering und -Management, 2nd edn. Hanser Fachbuch-Verlag,
Leipzig, Germany (2002)

Rupp, C.: Requirements-Engineering und -Management: Professionelle, iterative Anforderung-
sanalyse für die Praxis, 4th edn. Carl Hanser Verlag, Leipzig, Germany (2007)

Schwaber, C., Sterpe, P.: Selecting The Right Requirements Management Tool – Or Maybe None
Whatsoever. Forrester Research, Inc., (2007, 28th September)

Sparx Systems Pty Ltd.: Sparx systems enterprise architect. http://www.sparxsystems.com.au/.
Accessed Dec 2010

Tvete, B.: Introducing efficient requirements management. In: Proceedings International Workshop
on Database and Expert Systems Applications. IEEE Computer Society, Los Alamitos, CA
(1999)

Young, R.R.: The Requirements Engineering Handbook, pp. 222–223. Artech House, Norwood,
MA (2004)

Wiegers, K.E.: Automating requirements management. Softw. Develop. 7(7), S1–S5 (1999a, July)
Wiegers, K.E.: Software Requirements: Practical Techniques for Gathering and Managing

Requirements Throughout the Product Development Cycle, p. 19. Microsoft Press, Redmond,
WA (1999b)

http://www.sparxsystems.com.au/

Part II
Traceability Creation

Creating traceability links in a project may appear to be a simple task, but it can be
quite difficult to accomplish in practice. The difficulty arises in large projects where
there may be tens of thousands of regulatory codes, requirements, design compo-
nents, classes and test cases. Under these circumstances, the traceability effort can
be overwhelming in terms of cost and effort, and the resulting traceability links are
often incomplete and inaccurate. To address these challenges, numerous research
teams have been working to automate the process of traceability creation.

This part of the book presents a variety of techniques that are representative
of the state of art with respect to traceability creation. The chapter by De Lucia
et al. presents an overview of “Information Retrieval Methods for Automated
Traceability Recovery” while the chapter by Ali et al. looks at some of the specific
“Factors Impacting the Inputs of Traceability Recovery Approaches”. The chapter
by Asuncion and Taylor presents an alternate approach to instrument a software
development environment and capture traceability links in situ as developers
perform their tasks, “Automated Techniques for Capturing Custom Traceability
Links Across Heterogeneous Artifacts”. Finally, the chapter on “Using Rules for
Traceability Creation” describes a rule-based approach for automatically creating
trace relationships and for identifying missing elements according to previously
defined rules.

Information Retrieval Methods for Automated
Traceability Recovery

Andrea De Lucia, Andrian Marcus, Rocco Oliveto, and Denys Poshyvanyk

1 Introduction

Today’s software systems are extremely large and include a multitude of artifacts,
in addition to the source code. A software system includes artifacts such as: source
code, design documents, requirement documents, test cases, bug reports, commu-
nications between stakeholders, etc. These are created and maintained over long
periods of time by different people. Establishing and maintaining explicit connec-
tions between software artifacts is recognized to be a difficult yet important problem.
This problem is being addressed from multiple angles. Development processes, such
as, model driven or test driven development, address this issue partially. New inte-
grated development environment, such as IBM’s Jazz1 also aim at simplifying this
task. Defect tracking systems, such as, Bugzilla,2 also provide support for this prob-
lem. The few cases, usually in mission critical software or certain companies, where
explicit traceability between artifacts exists, are the exception rather than the norm.
In such cases, this is achieved with very high costs that are prohibitive in commercial
settings. In consequence, due to the absence of integrated solutions and cost effec-
tive commonly accepted practices, the reality is that most of the existing software
systems lack explicit representations of traceability links between artifacts. Legacy
systems suffer even more of this problem. Even in cases where efforts were made
to establish traceability links among artifacts, they are often obsolete, as different
artifacts evolve at different speeds and there are no widespread solutions to maintain
existing traceability links. The need for tools and techniques to recover traceability
links between artifacts in legacy systems is particularly important for a variety of
software evolution tasks. These include general maintenance tasks, impact analysis,
program comprehension, and more encompassing tasks such as reverse engineering
for redevelopment and systematic reuse.

1 http://www-01.ibm.com/software/rational/jazz/
2 http://www.bugzilla.org/

R. Oliveto (B)
University of Molise, Pesche (IS), Italy
e-mail: rocco.oliveto@unimol.it

71J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_4, C© Springer-Verlag London Limited 2012

http://www-01.ibm.com/software/rational/jazz/
http://www.bugzilla.org/

72 A. De Lucia et al.

A major challenge in the recovery of traceability links between software artifacts
is the fact that these artifacts are in different formats and at different abstraction
levels. More than that, sometimes the semantics of such links is interpreted differ-
ently by various people. For example, the main() function of a C++ program can
be considered as relevant to all test cases or to none of them, as it will be executed
in all scenarios. An added challenge is the fact that there is no defined data format
for software engineering data and artifacts, so database and data analysis centered
approaches are impractical. However, there is one type of data present in all soft-
ware artifacts: textual data. Extracting and analyzing this data is essential to the
development of traceability link recovery tools and techniques. In most artifacts the
textual parts are descriptive in nature, that is, they describe the informal semantics
of the artifacts. The assumption is that if the textual content of two artifacts refer
to similar concepts, then the two artifacts are conceptually related and a traceability
link between them could be established.

One solution adopted by researchers and practitioners to extract and analyze
the textual data embedded in software artifacts is the use of Information Retrieval
(IR) techniques (Baeza-Yates and Ribeiro-Neto, 1999; Harman, 1993). IR-based
methods recover traceability links on the basis of the similarity between the text
contained in the software artifacts. The higher the textual similarity between two
artifacts, the higher the likelihood that a link exists between them. A distinct advan-
tage of using IR techniques is that they do not rely on a predefined vocabulary or
grammar. This allows the method to be applied without large amounts of preprocess-
ing or manipulation of the input, which drastically reduces the costs of link recovery.

This chapter introduces a generic process for the use of IR techniques for
the recovery of traceability links between software artifacts. It also describes in
details the most common IR techniques used in this process and the main technical
challenges with such applications and their evaluations.

2 Using IR Methods for Traceability Recovery

The foundation for applying IR-based methods to traceability link recovery is based
on the similarity between the words in the text, which are contained in various soft-
ware artifacts. The conjecture is that if two artifacts have high textual similarity then
they are likely to refer to the same or similar concepts and they are good candidates
to be linked with each other. The underlying principle behind this is that many arti-
facts, such as software documentation, or even source code, contain ample textual
descriptions (Antoniol et al., 2002; Dekhtyar et al., 2004) and most programmers
use meaningful words from the problem domain to name source code entities, such
as identifiers and comments (Antoniol et al., 2002, 2007; Haiduc and Marcus, 2008).

The process for traceability link recovery using IR methods (a.k.a. trace retrieval)
consists of several key steps:

1. document parsing, extraction, and pre-processing;
2. corpus indexing with an IR method;

Information Retrieval Methods for Automated Traceability Recovery 73

3. ranked list generation;
4. analysis of candidate links.

Taken as a whole, the process is organized in a pipeline architecture, where the
output from each step constitutes the input for the next step. In the first step, the
software artifacts are extracted at the given granularity level (e.g., class, method,
or paragraphs), then they are pre-processed and represented as a set of documents
in the resulting corpus. In the second step, the traceability recovery technique uses
an IR method (e.g., Latent Semantic Indexing (Deerwester et al., 1990)) to index
diverse software artifacts and represent them in a homogeneous document space
by extracting information about the occurrences of terms (or words) within them.
This information is used to define similarity measures between various documents
(i.e., software artifacts). In the third step the IR-based traceability recovery method
compares a set of source artifacts (represented as documents) against another set
of target artifacts and uses the defined similarity measure to rank all possible pairs
by their similarities (candidate traceability links). Once these candidate links are
generated, they are provided as a result to software engineers for examination. The
software engineer reviews the candidate links, determines those that are actual links
(confirmed links), and discards the false positives. In order to do this, the soft-
ware engineer examines the text of the software artifacts having a candidate link,
determines the purpose of these artifacts (e.g., the meanings of the requirements or
the functionality of source code), compares the meanings, and makes the decision
based on whether she determines that the meanings of these artifacts are adequately
related. The process of candidate link evaluation is based on human judgment and
thus has all the advantages and disadvantages associated with such activities. The
results (confirmed links and false positives) from the candidate link evaluation step
may also be used to provide feedback to the IR tool to improve the tracing accuracy
(De Lucia et al., 2006b; Di Penta et al., 2002; Hayes et al., 2006). The next sub-
sections describe in details the first three steps of an IR-based traceability recovery
process, while the approaches exploited to analyze the candidate links are presented
in a separate section (Section 4).

2.1 Document Parsing, Extraction and Pre-processing

The majority of IR-based traceability recovery approaches have been applied to
software artifacts, such as requirements,3 source code,4 external documentation,5

3 See e.g., (Antoniol et al., 2000a; 2000b, 2002; Capobianco et al., 2009a, 2009b; Cleland-Huang
et al., 2005, De Lucia et al., 2004, 2006a, 2006b, 2007; Di Penta et al., 2002; Hayes et al., 2003,
2006; Lormans and Van Deursen, 2005, 2006; Lormans et al., 2006, 2008; Marcus and Maletic,
2003; Marcus et al., 2005; Oliveto et al., 2010; Settimi et al., 2004; Zou et al. 2007).
4 See e.g., (Antoniol et al., 1999, 2000a, 2000b, 2002; De Lucia et al., 2004, 2006a, 2006b, 2007;
Capobianco et al., 2009a, 2009b; Di Penta et al., 2002; Marcus and Maletic, 2003; Marcus et al.,
2005; Oliveto et al., 2010; Settimi et al., 2004).
5 See e.g., (Antoniol et al., 1999, 2000a, 2002; Marcus and Maletic, 2003; Marcus et al., 2005).

74 A. De Lucia et al.

design documentation,6 test cases7, defect or bug reports (Yadla et al., 2005), and
emails (Bacchelli et al., 2010).

IR-based traceability recovery approaches extract and represent information from
textual software artifacts using different granularities depending on the type of soft-
ware artifact. Techniques operating on source code artifacts parse these artifacts
using a developer-defined granularity (that is, methods, classes, function, or files).
While several granularities are applicable to source code artifacts, the majority of
recovery methods parse and represent the artifacts at a class level granularity (see
e.g., (Antoniol et al., 2002; De Lucia et al., 2007; Marcus and Maletic, 2003)).
This makes sense in Object-Oriented software systems, as clases are the primary
decomposition unit supported by the programming languages. Traceability recovery
methods using other types of artifacts (e.g., requirements, external documentation,
design documents, bug reports) represent these artifacts using a user-defined granu-
larity level, which varies from application to application and depends on the physical
and logical representation of these artifacts. In such cases, a decision is required on
how to partition these artifacts into atomic documents.

Traceability recovery techniques apply different pre-processing strategies on tex-
tual documents represented in the corpus, before indexing them with a specific IR
method. The frequently used preprocessing steps are:

• text normalization: prunes out white spaces and most non-textual tokens from the
text (i.e., operators, special symbols, some numerals, etc.);

• identifier splitting: splits into separate words terms composed of two or more
words. IR techniques may miss occurrences of concepts if identifiers are not
split. Similarly, incorrect splitting can cause a decrease of the accuracy of
program search techniques (Enslen et al., 2009). To split multi-word identi-
fiers, most existing automatic software analysis tools that use natural language
information rely on coding conventions (Antoniol et al., 2002). When simple
coding conventions, such as camel casing and non-alphabetic characters (e.g.,
“_” and numbers), are used to separate words and abbreviations, automatically
splitting multi-word identifiers into their constituent words is straightforward.
However, there are cases where existing coding conventions break down (e.g.,
SIMPLETYPENAME). In these cases more sophisticated approaches have to be
used (see e.g., (Enslen et al., 2009; Lawrie et al., 2010; Madani et al., 2010)).

• stop word removal: an artifact generally contains common words (i.e., articles,
adverbs, etc.) that are not useful to capture the semantics of the artifact content.
A stop word function and/or a stop word list are applied to discard such words.
The stop word function prunes out all the words having a length less than a fixed

6 See e.g., (Capobianco et al., 2009; De Lucia et al., 2004, 2006a, 2006b, 2007; 2009b; Lormans
and Van Deursen, 2005; 2006; Lormans et al., 2006, 2008; Settimi et al., 2004).
7 See e.g., (Capobianco et al., 2009a, 2009b; De Lucia et al., 2004, 2006a, 2006b, 2007; Lormans
and Van Deursen, 2005, 2006; Lormans et al., 2006, 2008).

Information Retrieval Methods for Automated Traceability Recovery 75

threshold, while the stop word list is used to remove all the words contained in
a given word list. Generally, good results are achieved using both the stop word
function and the stop word list (Baeza-Yates and Ribeiro-Neto, 1999; Harman,
1993). Stop word lists are language specific, for example, English has different
stop words than Italian.

A more complicated document pre-processing is represented by morphological
analysis, like stemming. Stemming is the process of reducing inflected (or some-
times derived) words to their stem, base or root form. The stem need not be identical
to the morphological root of the word. It is usually sufficient that related words map
to the same stem, even if this stem itself is not in a valid root. A stemmer for English,
for example, should identify the string “cats” (and possibly “catlike”, “catty”, etc.)
as based on the root “cat”, and “stemmer”, “stemming”, “stemmed” as based on
“stem”. A stemming algorithm reduces the words “fishing”, “fished”, “fish”, and
“fisher” to the root word, “fish”. There are several existing stemming algorithms,
one of the most popular stemmers for the English language is the Porter stemmer
(Porter, 1980). Not all stemmers work the same. Some stemmers are more conserva-
tive than others and may generate more false positives or false negatives. However,
IR-based traceability link recovery techniques are not very sensitive to the subtle
differences between such algorithms. It is important that the same stemmer is used
when processing all artifacts.

Some of the pre-processing strategies depend upon which IR model is used to
index the artifact corpus. For example, stemming is regularly an optional step while
using LSI, but constantly required when using a VSM (Antoniol et al., 2002; Hayes
et al., 2006; Marcus and Maletic, 2003). An alternative approach, based on search-
ing for n-grams rather than stems, may be used instead. In (Hollink et al., 2004) the
authors investigate the effectiveness of language-dependent (e.g., stemming) and
language-independent (e.g., character n-gramming) approaches to cross-lingual text
retrieval. They show that morphological normalization improves retrieval effective-
ness, especially for languages that have a more complex morphology than English.
The authors also showed that n-gram-base can be a viable option in the absence of
linguistic resources to support a deep morphological normalization (Hollink et al.,
2004). In the context of traceability link recovery the use of 2-grams to compare
the content of software artifacts (phrasing) helps improving the overall recovery
accuracy, especially in the top part of the ranked list (Zou et al., 2006, 2008,
2010).

The terms extracted from the documents are stored in a m × n matrix (called
term-by-document matrix (Baeza-Yates and Ribeiro-Neto, 1999)), where m is the
number of all unique terms that occur within the documents, and n is the number of
documents in the repository. A generic entry wi,j of this matrix denotes a measure
of the weight (i.e., relevance) of the ith term in the jth document (Baeza-Yates and
Ribeiro-Neto, 1999). Various methods for weighting terms have been developed in
the IR field. However, three main factors come into play in the final term weighting
formulation:

76 A. De Lucia et al.

1. Term Frequency (or tf): words that repeat multiple times in a document are con-
sidered salient. Term weights based on tf have been used in the vector space
model since the 1960s.

2. Document Frequency: words that appear in many documents are considered
common and are not very indicative of document content. A weighting method
based on this, called inverse document frequency (or idf) weighting, was
proposed by Sparck-Jones in the early 1970s (Sparck Jones, 1972).

3. Document Length: when collections have documents of varying lengths, longer
documents tend to score higher since they contain more words and word repe-
titions. This effect is usually compensated by normalizing for document lengths
in the term weighting method. In the context of traceability recovery, interest-
ing results have been achieved using the pivot normalization term weighting
approach that allows to specify the normalization factor depending on the
specific collection of artifacts (Settimi et al., 2004).

All these factors can be taken into account while applying both a local and a
global weighting to increase/decrease the importance of terms within or among
documents. Specifically, a generic entry ai, j of the term-by-document matrix can
be calculated as follows:

ai, j = L(i, j) · G(i) (1)

where L(i, j) is the local weight of the ith term in the jth document and G(i) is the
global weight of the ith term in the whole document collection. In general, the local
weight increases with the frequency of the ith term in the jth document, while the
global weight decreases as much as the ith term is spread across the documents
of the document space. For example, each term can be weighted using the tf-idf
indexing mechanism (Baeza-Yates and Ribeiro-Neto, 1999):

ai, j = tfi, j · idfi

where tfi, j and idfi are the term frequency and the inverse document frequency of
the term i, respectively. The term frequency is computed as

tfi, j = ni, j
∑

k nk, j

where ni, j represents the occurrences of term i in the document j. The inverse
document frequency is computed as

idfi = log

(
n

doci

)

where doci is the number of documents where the term i appears.
To better understand the tf-idf weighting schema consider an artifact contain-

ing 50 words wherein the word “doctor” appears 5 times while the word “system”
appears 10 times. Following the previously defined formulas, the term frequency (tf)

Information Retrieval Methods for Automated Traceability Recovery 77

for “doctor” is (5/50) = 0.1, while for “system” is (10/50) = 0.2. Since the num-
ber of occurrences of “system” are higher than those of “doctor” the local weight of
the former word is higher. Now, assume we have 100 artifacts and “doctor” appears
only in 10 of these, while “system” appears in 90 artifacts. Then, the inverse doc-
ument frequency for “doctor” is calculated as log(100/10) = 1 while for “system”
is log(100/90) = 0.05. The tf − idf score is the product of these quantities, i.e.,
0.2 · 0.05 = 0.01 for “system” and 0.1 · 1 = 0.1 for “doctor”. As we can see,
the schema gives a higher weight to “doctor” as it is a more discriminating word
compared to “system”.

A more sophisticated weighting schema has been proposed by Dumais (Dumais,
1991). In this schema the local weight is represented by the term frequency scaled
by a logarithmic factor, while the entropy of the term within the document collection
is used for the global weight:

L(i, j) = log(tfij + 1) G(i) =
n∑

j=1

pijlog(pij)

log(n)
(2)

where tfij is the frequency of the ith term in the jth document and pij is defined as:

pij = tfij
∑n

k=1 tfik
(3)

An advantage of using the entropy of a term to define its global weight is the fact
that it takes into account the distribution of the term within the document space.

The weight of the term could also take into account the importance of the term for
the specific domain. In particular, artifacts could contain critical terms and phrases
that should be weighted more heavily than others, as they can be regarded as more
meaningful in identifying traceability links. These terms can be extracted from the
project glossary (Zou et al., 2006, 2008, 2010) or external dictionaries (Hayes et al.,
2003). The importance of the terms can be derived also from the analysis of their
grammatical nature (Capobianco et al., 2009a). Such an approach is based on the
observation that the language used in software documents can be classified as sec-
torial language,8 where the terms that provide more indication on the semantics of
a document are the nouns, while the verbs tend to play a connection role and have
a generic semantics (Jurafsky and Martin, 2000; Keenan, 1975). Thus, the artifact
content can be pre-processed to filter out all the terms that are not nouns.

8 The language used by people who work in a particular area or who have a common interest
(Jurafsky and Martin, 2000; Keenan, 1975).

78 A. De Lucia et al.

2.2 Corpus Indexing and Ranked List Generation

Based on the term-by-document matrix representation, different IR methods can
be used to rank pairs of source and target artifacts based on their similarities. A
survey of available research papers reveals that probabilistic models (Abadi et al.,
2008; Antoniol et al., 1999; Cleland-Huang et al., 2005), VSM (Baeza-Yates and
Ribeiro-Neto, 1999; Harman, 1993; Salton et al., 1975), and LSI (Deerwester et al.,
1990) are the three most frequently used IR methods for traceability recovery. In
particular, only in few cases different methods have been used to recover traceabil-
ity links between different types of artifacts (Asuncion et al., 2010; Capobianco
et al., 2009b). In (Asuncion et al., 2010) a topic modeling technique, namely Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) is used for traceability link recov-
ery between text-based artifacts (such as requirements and design documents). The
authors monitor the operations (e.g., opening a requirements specification or visit-
ing a Wiki page) performed by the software engineers during software development
identifying a list of potentially related artifacts. Such relationships are then used
to extract a set of topics that can be subsequently used to infer other relationships
between code and documentation. In (Capobianco et al., 2009b) the proposed trace-
ability recovery method models the information contained in a software artifact
by particular interpolation curves of plots mapping terms and their frequency on
the artifact. Then, the similarity between artifacts is computed by calculating the
distance of the corresponding interpolation curves. It is worth noting that a recent
empirical study highlighted that none of these techniques sensibly outperforms the
others (Oliveto et al., 2010).

The most used IR methods for traceability link recovery, i.e., the probabilistic
models and the vector space-based models (VSM and LSI), are described in the fol-
lowing subsections. In the probabilistic model, a source artifact is ranked according
to the probability of being relevant to a particular target artifact. In vector space-
based models, artifacts are represented by vectors of terms. Thus, source artifacts
are ranked against target artifacts by computing a distance function between the
corresponding vectors.

2.2.1 Probabilistic Models

Three different probabilistic models have been proposed to recover links between
software artifacts (Abadi et al., 2008; Antoniol et al., 1999; Cleland-Huang et al.,
2005). The approaches proposed in (Antoniol et al., 1999; Cleland-Huang et al.,
2005) are based on conditioned probability. In particular, this model computes the
ranking scores as the probability that a document Di (target artifact) is related to the
query Q (source artifact):

sim(Di, Q) = Pr(Di|Q) (4)

Applying Bayes’ rule (Bain and Engelhardt, 1992), the conditioned probability
above can be transformed in:

Information Retrieval Methods for Automated Traceability Recovery 79

Pr(Di|Q) = Pr(Q|Di)Pr(Di)

Pr(Q)
(5)

For a given query component, Pr(Q) is a constant and it is possible to further
simplify the model by assuming that all documents have the same probability.
Therefore, for a given query Q, all documents Di are ranked by the conditioned
probabilities Pr(Q|Di).

These conditioned probabilities are computed by estimating a stochastic lan-
guage model (De Mori, 1998) for each document Di. Indeed, due to the hypothesis
that the query and the documents insist on the same vocabulary V, a query Q can
be represented by a sequence of m words w1; w2; · · ·; wm (the words composing the
query) of the vocabulary V and the conditioned probability:

Pr(Q|Di) = Pr(w1; w2; · · ·; wm|Di) (6)

can be estimated on a statistical basis by exploiting a stochastic language model
for the document Di. This model collects statistics about the frequency of the occur-
rences of sequences of words of V in Di that allow to estimate Pr(w1; w2; · · ·; wm|Di)
for any sequence of words w1; w2; · · ·; wm of V. However, the probability above can
be written as:

Pr(w1; w2; · · ·; wm|Di) = Pr(w1|Di)
m∏

k=2

Pr(wk|w1; · · ·; wk−1, Di) (7)

and when m increases the conditioned probabilities involved in the above product
quickly become difficult to estimate for any possible sequence of m words in the
vocabulary. A simplification can be introduced by conditioning the dependence of
each word to the last n − 1 words (with n < m):

Pr(w1; w2; · · ·; wm|Di) ≈ ≈ Pr(w1; · · ·; wn−1|Di)
m∏

k=n

Pr(wk|wk−n+1; · · ·; wk−1, Di)

(8)

This n-gram approximation, which formally assumes a time-invariant Markov pro-
cess (Cover and Thomas, 1991), greatly reduces the statistics to be collected in
order to compute Pr(Q|Di). Clearly, this also introduces an imprecision. However,
n-gram models are still difficult to estimate because, if |V| is the size of the vocab-
ulary, all possible |V|n sequences of words in the vocabulary have to be considered.
Indeed, the estimation can be very demanding even for a 2-gram (bigram) model.9

Moreover, the occurrence of any sequence of words in a document Di is a rare event,
as it generally occurs only a few times and most of the sequences will never occur
due to the sparseness of data. Therefore, in this approach, it is possible to consid-
ered a unigram approximation (n = 1) that corresponds to consider all words wk to

9 In a bigram model, Pr(w1; w2; · · ·; wm|Di ≈ Pr(w1|Di
∏m

k=2 Pr(wk|wk−1Di).

80 A. De Lucia et al.

be independent. Therefore, each document Di is represented by a language model
where unigram probabilities are estimated for all words in the vocabulary and:

sim(Di, Q) = Pr(Q|Di) = Pr(w1; w2; · · ·; wm|Di ≈
m∏

k=1

Pr(wk|Di) (9)

Unigram estimation is based on the term frequency of each word in a document.
However, using the simple term frequency would turn the product

∏m
k=1 Pr(wk|Di)

to zero, whenever any word wk is not present in the document Di. This problem,
known as the zero-frequency problem (Witten and Bell, 1991), can be avoided using
different approaches (see (De Mori, 1998)). A possible approach consists of smooth-
ing the unigram probability distribution by computing the probabilities as follows
(Antoniol et al., 2002):

Pr(wk|Di) (10)

where N is the total number of words in the document Di and ck is the number of
occurrences of words wk in the document Di. The interpolation term is:

λ = n

(N ∗ |V|)β (11)

where n is the number of different words of the vocabulary V occurring in the docu-
ment Di. The value of the parameter is computed according to Ney and Essen (1991)
as follows:

β = n(1)

(n(1) + 2 ∗ n(2))
(12)

where n(j) is the number of words occurring j times in the document Di.
In the context of traceability link recovery, the probabilistic model based on con-

ditioned probability has been used to recover links among requirements (Gibiec
et al., 2010; Cleland-Huang et al., 2010), requirements and UML diagrams (Cleland-
Huang et al., 2005), requirements and source code (Abadi et al., 2008; Antoniol
et al., 2000a, 2000b, 2000c, 2002; Di Penta et al., 2002), and manual pages and
source code (Antoniol et al., 1999, 2000a). In these studies different enhancing
strategies have been also proposed in order to improve recovery accuracy. The first
strategy exploits partial knowledge of a subset of traceability links (Antoniol et al.,
2000b). In particular, a set of previously identified links can be supplied to the
probabilistic network to improve the recovery accuracy.

Knowledge about the structure of the artifacts can also be exploited to improve
the performances of a probabilistic recovery method. In particular, different enhanc-
ing strategies, namely hierarchical modeling, logical clustering of artifacts, and
semi-automated pruning of the probabilistic network, have been proposed to incor-
porate supporting information into a probabilistic retrieval algorithm and improve
the retrieval accuracy (Cleland-Huang et al., 2005). The first enhancing strat-
egy (that is, hierarchical modeling) is based on the observation that artifacts are

Information Retrieval Methods for Automated Traceability Recovery 81

generally arranged in a hierarchical format. This hierarchical structure could be
exploited to better identify the context of each artifacts, since, in general, the words
used to name and describe the higher level artifacts capture the meaning (i.e., con-
text) of their lower-level components. The hierarchical links are then exploited when
computing the probabilities that a target artifact is relevant for a given source arti-
fact. The second strategy is based on the conjecture that links tend to occur in
clusters. Thus, if a link exists between a source artifact and a target artifact, and
if that target artifact is a part of a logical cluster of artifacts, then there would be a
higher probability that additional links should exist between the same source artifact
and other target artifacts in the cluster. It is worth noting that this approach differs
from the previous ones because the enhancement is based on sibling artifacts rather
than on ancestral information. The last enhancing strategy, i.e., pruning of the prob-
abilistic network, aims at attenuating the synonym problem. In particular, a set of
constraints can be automatically added to the probabilistic network exploiting pre-
vious identified links (used as training set). The proposed enhancing strategies are
able to improve the recovery accuracy of a canonical probabilistic recovery method.
An analysis of the improvements provided by each enhancement strategy indicates
significant overlap between the hierarchical and clustering techniques. Instead, the
pruning technique seems to improve different aspects of the probabilistic model. In
particular, while the first two approaches tend to generally improve the precision,
the third strategies tends to specifically attenuate a particular problem, i.e., the syn-
onym problem (Cleland-Huang et al., 2005). Such a result suggests that the pruning
technique could be combined with hierarchical modeling or logical clustering of
artifacts.

Recently, another enhancement strategy has been proposed to improve the recov-
ery accuracy of probabilistic retrieval methods. Such a strategy, called Query Term
Coverage, increases the relevance ranking of links between artifacts that have more
than one unique word in common (Zou et al., 2007, 2010). This approach tends to
reduce the number of incorrectly retrieved links between unrelated pairs of artifacts
that contain only a single matching word, which co-occurs multiple times.

Another probabilistic model has been proposed by Abadi et al. (2008). The pro-
posed approach, referred as JS model, is driven by a probabilistic approach and
hypothesis testing techniques. As well as other probabilistic models, it represents
each document through a probability distribution. This means that an artifact is rep-
resented by a random variable where the probability of its states is given by the
empirical distribution of the terms occurring in the artifact (i.e., columns of the
term-by-document matrix). It is worth noting that the empirical distribution of a
term is based on the weight assigned to the term for the specific artifact (Abadi
et al., 2008). In the JS method the similarity between two artifacts is given by a
“distance” of their probability distributions measured by using the Jensen-Shannon
(JS) Divergence (Cover and Thomas, 1991).

2.2.2 Vector Space-Based Models

In the VSM, an artifact is represented by a vector of terms (Baeza-Yates and Ribeiro-
Neto, 1999; Harman, 1993; Salton et al., 1975). The definition of a term is not

82 A. De Lucia et al.

inherent in the model, but terms in the context of traceability recovery are typically
words. Note that, for example, identifiers are often made of words that are not from
a natural language, yet they are considered valid in his context. If words are chosen
as terms, then every word in the vocabulary becomes an independent dimension in a
very high dimensional vector space. Since any artifact contains a limited set of terms
(the vocabulary can be millions of terms), most artifact vectors are very sparse and
they generally operate in a positive quadrant of the vector space, i.e., no term is
assigned a negative value.

To assign a numeric score to a document (target artifact) for a query (source arti-
fact), the model measures the similarity between the query vector and the document
vector. The similarity between two vectors is once again not inherent in the model.
Typically, the angle between two vectors is used as a measure of divergence between
the vectors, and the cosine of the angle is used as the numeric similarity.10 If

−→
D is

the document vector and
−→
Q is the query vector, then the similarity of document to

query (or score of for) can be calculated as follows (Baeza-Yates and Ribeiro-Neto,
1999; Harman, 1993):

sim(D, Q) =
−→
D · −→

Q

‖−→D ‖ · ‖−→Q ‖
=

∑
ti∈D,Q wtiD · wtiQ

√∑
ti∈D w2

tiD
·
√∑

ti∈Q w2
tiQ

(13)

where wtiQ is the value of the ith component in the query vector
−→
Q , and wtiD is the

ith component in the document vector
−→
D . Since any word not present in either the

query or the document has a wtiQ or wtiD equals to 0, respectively, it is possible to
sum only over the terms common in the query and the document. As an alternative,
the inner-product (or dot-product) between two vectors is often used as a similarity
measure. If all the vectors are forced to be unit length, then the cosine of the angle
between two vectors is the same as their dot-product (Baeza-Yates and Ribeiro-
Neto, 1999; Harman, 1993).

In the context of traceability recovery, the VSM has been used to recover trace-
ability links among requirements (De Lucia et al., 2006b; Hayes et al., 2003, 2006),
requirements and source code (Abadi et al., 2008, Antoniol et al., 2000a, 2002,
De Lucia et al., 2006b; Marcus and Maletic, 2003; Marcus et al., 2005), manual
pages and source code (Antoniol et al., 2000a, 2002; Marcus and Maletic, 2003,
Marcus et al., 2005), UML diagrams and source code (De Lucia et al., 2006b,
Settimi et al., 2004), test cases and source code (De Lucia et al., 2006b), and defect
reports and source code (Yadla et al., 2005).

A common criticism of VSM is that it does not take into account relations
between terms (Deerwester et al., 1990). For instance, having an “automobile” in
one document and a “car” in another document does not contribute to the similarity
measure between these two documents. LSI (Deerwester et al., 1990) was devel-
oped to overcome the synonymy and polysemy problems, which occur with the

10 The cosine has a property indicating 1.0 for identical vectors and 0.0 for orthogonal vectors.

Information Retrieval Methods for Automated Traceability Recovery 83

VSM model. In LSI the dependencies between terms and documents, in addition
to the associations between terms and documents, are explicitly taken into account.
LSI assumes that there is an underlying or “latent structure” in word usage that is
partially obscured by variability in word choice, and uses statistical techniques to
estimate this latent structure. For example, both “car” and “automobile” are likely
to co-occur in different documents with related terms, such as “motor”, “wheel”,
etc. LSI exploits information about co-occurrence of terms (i.e., latent structure) to
automatically discover synonymy between different terms.

LSI defines a term-by-document matrix A as well as VSM. Then it applies
the Singular Value Decomposition (SVD) (Cullum and Willoughby, 1998) to
decompose the term-by-document matrix into the product of three other matrices:

A = T0 · S0 · D0 (14)

where T0 is the m × r matrix of the terms containing the left singular vectors (rows
of the matrix), D0 is the r × n matrix of the documents containing the right singular
vectors (columns of the matrix), S0 is an r × r diagonal matrix of singular values,
and r is the rank of A. T0 and D0 have orthogonal columns, such that:

TT
0 · T0 = DT

0 · D0 = Ir (15)

SVD can be viewed as a technique for deriving a set of uncorrelated indexing
factors or concepts (Deerwester et al., 1990), whose number is given by the rank r
of the matrix A and whose relevance is given by the singular values in the matrix
S0. Concepts “represent extracted common meaning components of many differ-
ent words and documents” (Deerwester et al., 1990). In other words, concepts are
a way to cluster related terms with respect to documents and related documents
with respect to terms. Each term and document is represented by a vector in the
r-space of concepts, using elements of the left or right singular vectors. The product
S0 · D0 (T0 · S0, respectively) is a matrix whose columns (rows, respectively) are
the document vectors (term vectors, respectively) in the r-space of the concepts.
The cosine of the angle between two vectors in this space represents the similarity
of the two documents (terms, respectively) with respect to the concepts they share.
In this way, SVD captures the underlying structure in the association of terms and
documents. Terms that occur in similar documents, for example, will be near each
other in the r-space of concepts, even if they never co-occur in the same document.
This also means that some documents that do not share any word, but share similar
words may nonetheless be near in the r-space.

SVD allows a simple strategy for optimal approximate fit using smaller matrices
(Deerwester et al., 1990). If the singular values in S0 are ordered by size, the first k
largest values may be kept and the remaining smaller ones set to zero. Since zeros
were introduced into S0, the representation can be simplified by deleting the zero
rows and columns of S0 to obtain a new diagonal matrix S, and deleting the corre-
sponding columns of T0 and rows of D0 to obtain T and D respectively. The result
is a reduced model:

84 A. De Lucia et al.

A ≈ Ak = T · S · D (16)

where the matrix Ak is only approximately equal to A and is of rank k < r. The
truncated SVD captures most of the important underlying structure in the associa-
tion of terms and documents, yet at the same time it removes the noise or variability
in word usage that plagues word-based retrieval methods. Intuitively, since the num-
ber of dimensions k is much smaller than the number of unique terms m, minor
differences in terminology will be ignored.

The choice of k is critical: ideally, it is desirable to have a value of k that is large
enough to fit all the real structure in the data, but small enough not to fit the sampling
error or unimportant details. The proper way to make such a choice is an open issue
in the factor analysis literature (Deerwester et al., 1990; Dumais, 1991). In the appli-
cation of LSI to information retrieval, good performances have been achieved using
about 100 concepts on a document space of about 1,000 documents and a vocabu-
lary of about 6,000 terms (Deerwester et al., 1990). With much larger repositories
(between 20,000 and 220,000 documents and between 40,000 and 80,000 terms),
good results have been achieved using between 235 and 250 concepts (Dumais,
1991; Poshyvanyk et al., 2007; Revelle et al., 2010). It is worth noting that software
repositories are not comparable with document collection generally used in the text
retrieval field. This implies that in the context of traceability recovery the size of
the LSI subspace does not significantly influence the recovery accuracy (De Lucia
et al., 2007) and values between 100 and 250 provides acceptable results (De Lucia
et al., 2007; Hayes et al., 2006; Marcus and Maletic, 2003). Nonetheless, the choice
of k in this application is still an open issue.

In the context of traceability recovery, LSI has been used to recover traceability
links between requirements (De Lucia et al., 2006b; Hayes et al., 2006), require-
ments and source code (Abadi et al., 2008; De Lucia et al., 2004; De Lucia et al.,
2006a, 2006b, 2007; Marcus and Maletic, 2003; Marcus et al., 2005), manual pages
and source code (Antoniol et al., 2000a, 2002; Marcus and Maletic, 2003; Marcus
et al., 2005), UML diagrams and source code (De Lucia et al., 2004; 2006a, 2006b,
2007, Settimi et al., 2004), test cases and source code (De Lucia et al., 2004;
De Lucia et al., 2006a, 2006b, 2007; Lormans and Van Deursen, 2005, 2006;
Lormans et al., 2006, 2008).

3 Measuring the Performance of IR-Based Traceability
Recovery Methods

The performances–in terms of retrieval accuracy–of an IR-based traceability recov-
ery method is generally evaluated through a set of retrieved links over a set of
relevant links. The set of retrieved links is obtained by cutting the ranked list pro-
vided by an IR method at a given point and considering only the top links in the
ranked list. The set of relevant links is generally derived by a traceability matrix pro-
vided by original developers of the system at the end of the process (this matrix is

Information Retrieval Methods for Automated Traceability Recovery 85

intended to contain the correct links). Clearly, the set of retrieved traceability links,
in general, does not match exactly the set of relevant links between the artifacts in
the repository. In fact, any IR methods will fail to retrieve some of the relevant links
while, on the other hand, it will also retrieve links that are not relevant (false posi-
tives). This is one of the key reasons why IR-based traceability recovery methods are
semi-automatic and require some degree of interaction between software developers
and a traceability link recovery tool.

By and large, the retrieval performance of IR methods is measured using two met-
rics, namely recall and precision (Baeza-Yates and Ribeiro-Neto, 1999). Recall is
the ratio between the number of links that are successfully retrieved and the number
of links that are relevant (Baeza-Yates and Ribeiro-Neto, 1999):

recall = |{relevant_links} ∩ {retrieved_links}|
|{relevant_links}| (17)

It is easy to note that it is trivial to achieve 100% of recall by returning all links
in response to any query. Therefore, recall alone, is not enough, but one needs to
measure the number of non-relevant links as well. Precision is the fraction of the
links retrieved that are relevant to the source artifact (Baeza-Yates and Ribeiro-Neto,
1999):

precision = |{relevant_links} ∩ {retrieved_links}|
|{retrieved_links}| (18)

Differently from the recall, precision takes all retrieved links into account. It can also
be evaluated at a given cut-off rank, considering only the topmost results returned
by the system. This measure is called precision at n or P@n. Note that the meaning
and usage of “precision” in the field of IR differs from the definition of accuracy and
precision within other branches of science and technology. In particular, in the fields
of science, engineering, industry and statistics, accuracy is a degree of conformity
of a measured or calculated quantity to its actual (true) value, while precision, also
called reproducibility or repeatability, is the degree to which further measurements
or calculations show the same or similar results (Baeza-Yates and Ribeiro-Neto,
1999).

Both measures have values in the interval of [0, 1]. If the recall value is 1, it
means that all relevant links have been recovered, though there could be recovered
links that are not relevant. If the precision is 1, it implies that all recovered links are
relevant, though there could be relevant links that were not recovered. In general,
retrieving a lower number of links results in higher precision, while a higher number
of retrieved links increases the recall.

The recall and precision are orthogonal metrics and measure two different con-
cepts. Often, an aggregate measure, namely F-measure, is used to obtain a balance
between them. The F-measure or balanced F-score is the weighted harmonic mean
of precision and recall:

86 A. De Lucia et al.

F = 2 · (precision · recall)

(precision + recall)
(19)

This is also known as the F1 measure, because recall and precision are evenly
weighted. The general formula for non-negative real α is:

Fα = (1 + α) · (precision · recall)

(α · precision + recall)
(20)

Two other commonly used F-measures are the F2 measure, which weights recall
twice as much as precision, and the F0.5 measure, which weights precision twice as
much as recall.

Another metric used to measure the performances of an IR-based traceability
recovery method is represented by average precision that is defined as the mean of
the precision scores obtained after each correct link is retrieved, using zero as the
precision for correct links that are not retrieved (Cleland-Huang et al., 2010; Gibiec
et al., 2010).

The main role of IR tools consists of reducing the document space, while recover-
ing all the relevant links between artifacts. Without tool support, one must analyze
all artifacts in order to identify the dependencies between them. With a reduced
document space the number of artifacts to analyze is generally much smaller. This
means that high recall values (possibly 100%) should be pursued. Of course, in
this case higher precision values reduce the effort required to discard false positives
(documents that are retrieved, but not relevant to a given query).

To achieve an indication of the benefits of using an IR approach in a traceability
link recovery process, it is possible to use the Recovery Effort Index (REI), defined
as the ratio between the number of documents retrieved and the total number of
documents available (Antoniol et al., 2002):

REIi = |retrieved_artifacts|
|target_artifacts| %

This metric can be used to estimate the percentage of the effort required to manually
analyze the results achieved by an IR tool (and discard false positive), when the
recall is 100%, with respect to a completely manual analysis. For a given software
system, the quantity 1 - REI can be used to estimate the effort savings due to the
use of an IR method to recover traceability links, with respect a completely manual
analysis (Antoniol et al., 2002). The lower the REI, the higher the benefits of the IR
approach.

4 Analysis of Candidate Links

The similarity measures obtained by applying a particular IR method are used to
build a ranked list of candidate links. This list contains all possible pairs of source
and target artifacts ranked according to textual similarities among source and target

Information Retrieval Methods for Automated Traceability Recovery 87

artifacts. This means that the list of candidate links inevitably contains links that
are not correct and have to be discarded by the software engineer. Two different
approaches have been proposed to analyze the ranked list. The first approach is
based on the analysis of the full ranked list of candidate links (Capobianco et al.,
2009b; Cleland-Huang et al., 2005; De Lucia et al., 2006b, 2007; Hayes et al., 2003;
Yadla et al., 2005). However, the list of candidate links contains a higher density of
correct traceability links in the upper part of the list and a much lower density of
such links in the bottom part of the list (De Lucia et al., 2007, 2009a). This means
that in the lower part of the ranked list the effort required to discard false positives
becomes much higher than the effort to validate correct links.

The above considerations suggest the use of some method to cut the ranked list
(e.g., a threshold on the similarity value), thus presenting the software engineer only
the subset of top links in the ranked list (ranked list filtering) (Abadi et al., 2008;
Antoniol et al., 2002; De Lucia et al., 2007; Hayes et al., 2006; Lormans et al.,
2008; Marcus and Maletic, 2003; Settimi et al., 2004; Zou et al., 2007). Different
strategies have been proposed to filter ranked lists. Broadly, these methods can be
classified into cut-point and threshold based strategies. The first category of methods
cut the ranked list regardless of the values of the similarity measure (cut point based
strategy):

1. Constant cut point: this method consists of imposing a threshold on the number
of recovered links (Antoniol et al., 2002; Marcus and Maletic, 2003). In this way,
the top μ links of the ranked list are selected.

2. Variable cut point: this is an extension of the previous method that consists of
specifying the percentage of the links of the ranked list that have to be retrieved
(cut percentage). In this way the cut point depends on the size of the ranked list.

The second category (threshold based strategy) use a threshold ε on a similarity
measure and only the pairs of artifacts having a similarity measure greater than or
equal to ε will be retrieved:

1. Constant threshold: this is the standard method used in the literature. A widely
adopted threshold is ε = 0.70, that for the vector space model (and LSI) approxi-
mately corresponds to a 45◦ angle between the corresponding vectors (Marcus
and Maletic, 2003).

2. Scale threshold: a threshold ε is computed as the percentage of the best similarity
value between two artifacts, i.e., ε = c · MaxSimilarity, where 0 ≤ c ≤ 1
(Antoniol et al., 2002). In this case, the higher the value of the parameter c, the
smaller the set of links returned by a query.

3. Variable threshold: this is an extension of the constant threshold approach. The
constant threshold is projected from the interval [0, 1] into the interval [min simi-
larity, max similarity], where min similarity and max similarity are the minimum
and maximum similarity values in the ranked list (De Lucia et al., 2004, 2006a,
2007).

88 A. De Lucia et al.

It is worth noting that the lower the similarity threshold used, the higher the num-
ber of correct links as well as the number of false positives retrieved and the relative
effort to discard them. Such a limitation of IR-based traceability recovery meth-
ods have encouraged researchers to identify an “optimal” threshold enabling the
retrieval of as many correct links as possible, while keeping low the effort required
to analyze and discard false positives. However, this ideal threshold is not easy to
identify, as it can change together with the type of artifacts and projects (De Lucia
et al., 2007). For this reason, an incremental traceability recovery process has been
proposed (De Lucia et al., 2007) where the similarity threshold is incrementally
decreased to provide the software engineer with the control on the number of correct
links validated and false positives discarded at each iteration. In this way, starting
with a high threshold, the links suggested by the tool can be analyzed and classi-
fied step-by-step and the process can be stopped when the effort of discarding false
positives is becoming much higher than the effort of identifying new correct links.
Clearly, the traceability recovery tool maintains knowledge about the classification
actions performed by the software engineer, thus showing at each iteration only the
new traceability links retrieved.

User studies highlighted that the threshold used to stop the recovery process plays
an important role (De Lucia et al., 2009a). In particular, when the software engi-
neer stops the traceability recovery process using a low threshold, she increases the
number of correct links compared to software engineers stopping the process with
a higher threshold. This situation suggests that a higher number of correct links
could be traced by providing the software engineer with the full ranked list of pos-
sible links ordered by decreasing similarity values (full ranked list contrasted to the
incremental approach). A recent study compared the two approaches through a con-
trolled experiment (De Lucia et al., 2008). The achieved results demonstrated that
the number of correct links retrieved with two different processes is comparable
and that the incremental process significantly reduces tracing errors. Moreover, the
number of links analyzed showing the full ranked list is significantly larger than the
number of links analyzed adopting the incremental process. All these results suggest
that the incremental process reduces the effort required to identify traceability links
using an IR-based traceability recovery tool (De Lucia et al., 2008). This means that
analyzing the lower part of the ranked list only results in a small improvement of
the number of correct links retrieved. Indeed, while in the upper part of the ranked
list the density of correct links is quite good, in the bottom part of the list such a
density decreases in a way that the prioritization made by the IR method does not
help anymore.

The use of the link coverage analysis has been proposed to enrich the set of
correct links identified with one of the approaches described above (De Lucia et al.,
2009b). In particular, after preliminary traceability link recovery sessions performed
using canonical approaches, the software engineer can exploit the information pro-
vided by a link coverage analysis to identify source artifacts poorly traced on the
set of target artifacts. In particular, for a generic artifact a, it is possible to define a
traceability coverage index as follow:

Information Retrieval Methods for Automated Traceability Recovery 89

traceabilityCoveragea = |linksa(targets)|
|targets|

where targets represents the set of target artifacts and linksa(targets) represents the
set of links traced between the artifact a and the artifacts in the set target. Then, all
the source artifacts are ranked (in an increasing order) according to their traceability
coverage index.

The ranked list of source artifacts computed according to the link coverage anal-
ysis can be exploited to guide traceability recovery sessions focusing attention only
on source artifacts with a low traceability coverage index. The conjecture is that the
probability of identifying new correct links is higher when focusing on poorly traced
artifacts. It is worth noting that after the identification of poorly traced artifacts the
software engineer can recover the links using one of the approaches described above.

Once a traceability recovery tool produces a ranked list of candidate links, devel-
opers need to examine all these suggestions starting with the documents having
highest similarity values. For every candidate link, a decision is required as to
whether the link is a correct traceability link between two artifacts. If it is not the
correct link, the user discards that and proceeds to the next suggestion in the ranked
list. The process is continued until all the links in the ranked list are examined.
The size of the ranked list is determined according to one of the strategies (thresh-
old, cut point or combination) described above. The classification performed by the
software engineer can be provided to the tool as a feedback for improving tracing
performances (Antoniol et al., 2000c; Di Penta et al., 2002; De Lucia et al., 2006b;
Hayes et al., 2003, 2006). In general, the user is asked to judge the relevance of
the top few links retrieved by the system. If the user judges a retrieved link as cor-
rect, different strategies can be used to alter the source artifact in order to “move”
it towards relevant artifacts and away from irrelevant artifacts, in the expectation of
retrieving more relevant links and less irrelevant links in next iterations. It is worth
noting that the first adjustment is designed to potentially increase the recall, while
the second adjustment can potentially increase the precision.

5 Trace Retrieval in Action: Recovering Traceability Links
in the iTrust System

This section describes the application of different IR methods to recover links
between software artifacts of the iTrust system. iTrust is a medical application that
provides patients with a means to keep up with their medical history and records
as well as communicate with their doctors, including selecting which doctors to
be their primary caregiver, seeing and sharing satisfaction results, and other tasks.
iTrust is also an interface for medical staff from various locations. It allows the staff
to keep track of their patients through messaging capabilities, scheduling of office
visits, diagnoses, prescribing medication, ordering and viewing lab results, among

90 A. De Lucia et al.

other functions. The iTrust artifacts include use cases, source code, test cases, and
trace matrices. The source code of the iTrust project is available11 on sourceforge
and is accessible through the project’s webpage.

The goals of this empirical study are:

• providing empirical evidence of the accuracy of IR methods when used to recover
links between software artifacts;

• analyzing the accuracy improvement achieved by performing a morphological
analysis on the software artifacts;

• comparing the accuracy of different IR methods.

In the context of the study we employed three widely used IR methods for traceabi-
lity recovery, namely JS (a probabistic model), VSM (a vector space based model),
and LSI (a space reduction based model). These methods have been applied to
recover links between 33 use cases and 47 JSP pages. We focus on this type of
artifacts since the trace matrix of the latest version of the system only include map-
ping between these types of artifacts.12 The matrix is used as an oracle to evaluate
the accuracy of the employed IR-based recovery methods.

For each method, the term-by-document matrix is extracted following the steps
of the process described in Section 2.1, i.e., term normalization, identifier splitting,
and term filtering and weighting. As for the splitting of composite identifiers, a
camel case splitting heuristic was used. For the term filtering process, a canonical
English stop word list13 augmented with HTML keywords is used in combination
with a stop list function aimed at pruning out all the terms with a length less than 3.
Finally, a tf-idf weighting schema is applied on the term-by-document matrix.

To evaluate the accuracy of each recovery method for each traceability recovery
activity we automatically collected the number of correct links and false positives
by using a tool that takes as an input the ranked list of candidate links produced by
the IR method (e.g., VSM) and classifies each link as correct link or false positive
until all the correct links in the original traceability matrix have been recovered.

A first analysis and comparison of the different IR methods is performed by
recall and precision. Figures 1, 2, and 3 show the precision/recall curves achieved
by using the employed IR methods with and without the use of stemming. As we
can see, while the precision of all the methods are acceptable for lower values of
recall (especially for the JS method), when the goal is to recover all the correct links
(100% of recall) the list of candidate links contains a huge number of false posi-
tive resulting in a very low precision (lower than 10%). As mentioned before, this is
one of the main limitation of IR-based traceability recovery methods. Unfortunately,
such a limitation cannot be completely mitigated by using enhancing strategies, such

11 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
12 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=tracing
13 http://www.ranks.nl/resources/stopwords.html

http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=tracing
http://www.ranks.nl/resources/stopwords.html

Information Retrieval Methods for Automated Traceability Recovery 91

Fig. 1 Using JS to recover links between JSP pages and use cases of iTrust. Precision – vertical
axis. Recall – horizontal axis

Fig. 2 Using VSM to recover links between JSP pages and use cases of iTrust. Precision – vertical
axis. Recall – horizontal axis

as stemming and user feedback analysis (De Lucia et al., 2006b). In our experimen-
tation, it looks like there is an upper bound to the performance improvements that
cannot be overcome, even if an advanced artifact pre-processing, like stemming, is
used. This means that IR-based traceability recovery tools should be used to trace
as many as possible correct links keeping low the effort to discard false positives.
Then, focused traceability recovery sessions should be performed to identify links
between untraced artifacts (De Lucia et al., 2009b). Alternatively, manual tracing
activities could be conducted to enrich the set of traced links.

92 A. De Lucia et al.

Fig. 3 Using LSI to recover links between JSP pages and use cases of iTrust. Precision – vertical
axis. Recall – horizontal axis

Regarding the comparison between the employed IR methods, Fig. 4 shows the
average precision achieved by all the methods with and without the use of stem-
ming. As we can seen, the precision of the JS method is better than the precision
of both VSM and LSI by about 10% on average. A more detailed comparison of
the employed method can be obtained through recall/precision curves. Figures 5
and 6 show the comparison of JS, VSM, and LSI with and without the use of
stemming, respectively, through precision/recall curves. As we can see the three

Fig. 4 Comparison of JS, VSM, and LSI using average precision

Information Retrieval Methods for Automated Traceability Recovery 93

Fig. 5 Comparison of JS, VSM, and LSI without stemming tracing use cases onto JSP pages of
iTrust. Precision – vertical axis. Recall – horizontal axis

Fig. 6 Comparison of JS, VSM, and LSI with stemming tracing use cases onto JSP pages of
iTrust. Precision – vertical axis. Recall – horizontal axis

IR methods exhibit almost the same behavior in the two scenarios, i.e., with and
without stemming. The JS method seems to be the more accurate method as com-
pared to VSM and LSI (this confirm the differences in terms of average precision)
on this particular data set. It is impossible to generalize this result to other data sets.
Interestingly, when recall is higher than 50% the three methods provide almost the
same precision.

94 A. De Lucia et al.

6 Conclusion

Traceability links between software artifacts represent an important source of infor-
mation, if available, for different stakeholders, e.g., project managers, analysts,
designers, maintainers, and end users, and provides important insights during differ-
ent phases of software development. Traceability information can also be used when
certifying a safety-critical product to show that all requirements were implemented
and covered by specific tests.

Unfortunately, establishing and maintaining traceability links between software
artifacts is a time consuming, error prone, and person-power intensive task (Ramesh
and Jarke, 2001). Consequently, despite the advantages that can be gained, explicit
traceability is rarely established unless there is a regulatory reason for doing so.
Extensive effort in the software engineering community (both research and commer-
cial) has been brought forth to improve the explicit connection of software artifacts.
Promising results have been achieved using Information Retrieval (IR) techniques
(Baeza-Yates and Ribeiro-Neto, 1999; Deerwester et al., 1990) to recover links
between different types of artifacts (see e.g., (Antoniol et al., 2002; De Lucia et al.,
2007; Hayes et al., 2006; Marcus et al., 2005)). IR-based methods propose a list of
candidate traceability links on the basis of the similarity between the text contained
in the software artifacts. The conjecture is that two artifacts having high textual
similarity share similar concepts, thus they are good candidates to be traced on each
other.

This chapter presented a general process of using IR-based methods for traceabil-
ity link recovery and presented some of them in a greater detail: probabilistic, vector
space, and Latent Semantic Indexing models. Common approaches to measuring the
performance of IR-based traceability methods as well as the latest advances in tech-
niques for analysis of candidate links were also analyzed and presented. An example
on using three IR models to retrieve traceability links between artifacts of the iTrust
system was also presented.

IR based techniques for traceability link recovery among artifacts proved to
be quite successful so far, but the current research and applications also revealed
many areas where improvement is needed and expected. Virtually, all IR techniques
include a series of parameters that influence their performance, as presented in this
chapter. The optimal values for these parameters are usually derived based on the
data model at hand. The IR techniques most commonly used in traceability link
recovery operate with parameters established in natural text retrieval applications.
As mentioned before, the textual data in software artifacts is not the same as in
natural text documents. More than that, there is little evidence that the data in one
software systems has the same characteristics as in another. Future work will have
to address a generic model that can be used for parameter tuning in IR based trace-
ability link recovery application. There is one precondition to this future work:
the creation and dissemination of benchmarks for software artifact traceability link
recovery. These are not only necessary for parameter tuning, but they are also essen-
tial for the investigation of other IR techniques to be used in such applications.
Based on current research, it is unclear which IR technique is best suited for this

Information Retrieval Methods for Automated Traceability Recovery 95

task and whether that depends on the specifics of the software or not. Benchmarks
will help us answer this question. They will also help in the development of new
techniques that address traceability link recovery. Such techniques should improve
on the state of the art results, as established using the future benchmarks.

Acknowledgments We would like to thank the anonymous reviewers for their detailed, construc-
tive, and thoughtful comments that helped us to improve the presentation of the results in this
chapter.

References

Abadi, A., Nisenson, M., Simionovici, Y.: A traceability technique for specifications. In:
Proceedings of 16th IEEE International Conference on Program Comprehension, pp. 103–112.
IEEE CS Press, Amsterdam, The Netherlands (2008)

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A.: Information retrieval models for recovering
traceability links between code and documentation. In: Proceedings of 16th IEEE International
Conference on SoftwareMaintenance, pp. 40–51. IEEE CS Press, San Jose, CA (2000a)

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Tracing object-oriented code
into functional requirements. In: Proceedings of 8th IEEE International Workshop on Program
Comprehension, pp. 79–87. IEEE CS Press, Limerick, Ireland (2000b)

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability links
between code and documentation. IEEE Trans. Softw. Eng. 28(10), 970–983 (2002)

Antoniol, G., Canfora, G., De Lucia, A., Merlo, E.: Recovering code to documentation links in OO
systems. In: Proceedings of 6th Working Conference on Reverse Engineering, pp. 136–144.
IEEE CS Press, Atlanta, GA (1999)

Antoniol, G., Casazza, G., Cimitile, A.: Traceability recovery by modelling programmer behaviour.
In: Proceedings of 7th Working Conference on Reverse Engineering, vol. 240–247. IEEE CS
Press, Brisbane, QLD (2000c)

Antoniol, G., Guéhéneuc, Y.-G., Merlo, E., Tonella, P.: Mining the Lexicon used by program-
mers during sofware evolution. In: Proceedings of the 23rd IEEE International Conference on
Software Maintenance, pp. 14–23. IEEE Press, Paris, France (2007)

Asuncion, Hazeline U., Asuncion, A., Taylor, Richard N.: Software traceability with topic
modeling. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, pp. 95–104. ACM Press, Cape Town, South Africa (2010)

Bacchelli, A., Lanza, M., Robbes, R.: Linking e-mails and source code artifacts. In: Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering, vol. 1, pp. 375–384.
ICSE, Cape Town, South Africa (2010)

Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading, MA
(1999)

Bain, L., Engelhardt, M.: Introduction to Probability and Mathematical Statistics. Duxbury Press,
Pacific Grove, CA (1992)

Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022
(2003)

Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the role of the nouns
in IR-based traceability recovery. In: Proceedings of 17th IEEE International Conference on
Program Comprehension. Vancouver, British Columbia, Canada (2009a)

Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: Traceability recovery
using numerical analysis. In: Proceedings of 16th Working Conference on Reverse Engineering.
IEEE CS Press, Lille, France (2009b)

Cleland-Huang, J., Czauderna, A., Gibiec, M., Emenecker, J.: A machine learning approach
for tracing regulatory codes to product specific requirements. In: Proceedings of the 32nd

96 A. De Lucia et al.

ACM/IEEE International Conference on Software Engineering, pp. 155–164. ICSE, Cape
Town, South Africa (2010)

Cleland-Huang, J., Settimi, R., Duan, C., Zou, X.: Utilizing supporting evidence to improve
dynamic requirements traceability. In: Proceedings of 13th IEEE International Requirements
Engineering Conference, pp. 135–144. IEEE CS Press, Paris, France (2005)

Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York, NY
(1991)

Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigenvalue
Computations, vol. 1, chapter Real rectangular matrices. Birkhauser, Boston, MA (1998)

De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Enhancing an Artifact management system
with traceability recovery features. In: Proceedings of 20th IEEE International Conference on
Software Maintenance, pp. 306–315. IEEE CS Press, Chicago, IL (2004)

De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Can information retrieval effectively support
traceability link recovery? In: Proceedings of 14th IEEE International Conference on Program
Comprehension, pp. 307–316. IEEE CS Press, Athens, Greece (2006a)

De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability link in software Artifacts
management systems using information retrieval methods. ACM Trans. Softw. Eng. Methodol.
16(4), Article 13 (2007)

De Lucia, A., Oliveto, R., Sgueglia, P.: Incremental approach and user feedbacks: A Silver Bullet
for traceability recovery. In: Proceedings of 22nd IEEE International Conference on Software
Maintenance, pp. 299–309. Sheraton Society Hill, Philadelphia, PA. IEEE CS Press (2006b)

De Lucia, A., Oliveto, R., Tortora, G.: IR-based traceability recovery processes: An empirical
comparison of “One-Shot” and incremental processes. In: Proceedings of 23rd International
Conference Automated Software Engineering, pp. 39–48. ACM Press, L’Aquila, Italy (2008)

De Lucia, A., Oliveto, R., Tortora, G.: Assessing IR-based traceability recovery tools through
controlled experiments. Empirical Softw. Eng. 14(1), 57–93 (2009a)

De Lucia, A., Oliveto, R., Tortora, G.: The role of the coverage analysis in traceability recovery pro-
cess: A controlled experiment. In: Proceedings of 25th International Conference on Software
Maintenance. IEEE Press, Edmonton, Canada (2009b)

De Mori, R.: Spoken Dialogues with Computers. Academic, London (1998)
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent

semantic analysis. J. Amer. Soc. Informat. Sci. 41(6), 391–407 (1990)
Dekhtyar, A., Hayes, J.H., Menzies, T.: Text is software too. In: Proceedings of Mining of Software

Repositories Workshop, pp. 22–26. Edinburgh, Scotland (2004)
Di Penta, M., Gradara, S., Antoniol, G.: Traceability recovery in RAD software systems. In:

Proceedings of 10th International Workshop in Program Comprehension, pp. 207–216. IEEE
CS Press, Paris, France (2002)

Dumais, S.T.: Improving the retrieval of information from external sources. Behav. Res. Meth.
Instrum. Comput. 23, 229–236 (1991)

Enslen, E., Hill, E., Pollock, L.L., Vijay-Shanker, K.: Mining source code to automatically split
identifiers for software analysis. In: Proceedings of the 6th International Working Conference
on Mining Software Repositories, pp. 71–80. Vancouver, British Columbia, Canada (2009)

Gibiec, M., Czauderna, A., Cleland-Huang, J.: Towards mining replacement queries for hard-to-
retrieve traces. In: Proceedings of the 25th IEEE/ACM International Conference on Automated
Software Engineering, pp. 245–254. ACM Press, Antwerp, Belgium (2010)

Haiduc, S., Marcus, A.: On the use of domain terms in source code. In: Proceedings of 16th
IEEE International Conference on Program Comprehension, pp. 113–122. IEEE CS Press,
Amsterdam, The Netherlands (2008)

Harman, D.K.: Overview of the first Text REtrieval Conference (TREC-1). In: Proceedings of the
First Text REtrieval Conference (TREC-1), pp. 1–20. NIST Special Publication, Gaithersburg,
MD (1993)

Information Retrieval Methods for Automated Traceability Recovery 97

Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via information
retrieval. In: Proceedings of 11th IEEE International Requirements Engineering Conference,
pp. 138–147. IEEE CS Press, Monterey, CA (2003)

Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation for requirements
tracing: The study of methods. IEEE Trans. Softw. Eng. 32(1), 4–19 (2006)

Hollink, V., Kamps, J., Monz, C., de Rijke, M.: Monolingual document retrieval for European
languages. Inform. Retriev. 7(1–2), 33–52 (2004)

Jurafsky, D., Martin, J.: Speech and Language Processing. Prentice Hall, Englewood Cliffs, NJ
(2000)

Keenan, E.L.: Formal Semantics of Natural Language. Cambridge University Press, Cambridge
(1975)

Lawrie, D.J., Binkley, D., Morrell, C.: Normalizing source code vocabulary. In: Proceedings of
the 17th Working Conference on Reverse Engineering, pp. 3–12. IEEE CS Press, Beverly, MA
(2010)

Lormans, M., Deursen, A., Gross, H.-G.: An industrial case study in reconstructing requirements
views. Empirical Softw. Eng. 13(6), 727–760 (2008)

Lormans, M., Gross, H., van Deursen, A., van Solingen, R., Stehouwer, A.: Monitoring require-
ments coverage using reconstructed views: An industrial case study. In: Proceedings of 13th
Working Conference on Reverse Engineering, pp. 275–284. IEEE CS Press, Benevento, Italy
(2006)

Lormans, M., Van Deursen, A.: Reconstructing requirements coverage views from design and
test using traceability recovery via LSI. In: Proceedings of 3rd International Workshop on
Traceability in Emerging Forms of Software Engineering, pp. 37–42. ACM Press, Long Beach,
CA (2005)

Lormans, M., van Deursen, A.: Can LSI help reconstructing requirements traceability in design
and test? In: Proceedings of 10th European Conference on Software Maintenance and
Reengineering, pp. 45–54. IEEE CS Press, Bari, Italy (2006)

Madani, N., Guerrouj, L., Di Penta, M., Guéhéneuc, Y.-G., Antoniol, G.: Recognizing words
from source code identifiers using speech recognition techniques. In: Proceedings of the 14th
European Conference on Software Maintenance and Reengineering. CSMR, Madrid, Spain
(2010)

Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability links using latent
semantic indexing. In: Proceedings of 25th International Conference on Software Engineering,
pp. 125–135. IEEE CS Press, Portland, Oregon (2003)

Marcus, A., Maletic, J.I., Sergeyev, A.: Recovery of traceability links between software documen-
tation and source code. Int. J. Softw. Eng. Knowl. Eng. 15(5), 811–836 (2005)

Ney, H., Essen, U.: On smoothing techniques for bigrambases natural language modelling. In:
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,
pp. 825–828. IEEE CS Press, Toronto, ON (1991)

Oliveto, R., Gethers, M., Poshyvanyk, D., De Lucia, A.: On the equivalence of information
retrieval methods for automated traceability link recovery. In: Proceedings of the 18th IEEE
International Conference on Program Comprehension, pp. 68–71. Braga, Portugal (2010)

Porter, M.F.: An algorithm for suffix stripping. Program 14(3):130–137 (1980)
Poshyvanyk, D., Gael-Gueheneuc, Y., Marcus, A., Antoniol, G., Rajlich, V.: Feature location using

probabilistic ranking of methods based on execution scenarios and information retrieval. IEEE
Trans. Softw. Eng., 33(6), 420–432 (2007)

Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE Trans. Softw.
Eng. 27:58–93 (2001)

Revelle, M., Dit, B., Poshyvanyk, D.: Using data fusion and web mining to support feature
location in software. In: Proceedings of the 18th IEEE International Conference on Program
Comprehension, pp. 14–23. Braga, Portugal (2010)

Salton, G., Wong, A., Yang, C.S.: A vector space model for information retrieval. Commun. ACM
18(11), 613–620 (1975)

98 A. De Lucia et al.

Settimi, R., Cleland-Huang, J., Ben Khadra, O., Mody, J., Lukasik, W., De Palma, C.: Supporting
software evolution through dynamically retrieving traces to UML Artifacts. In: Proceedings of
7th IEEE International Workshop on Principles of Software Evolution, pp. 49–54. IEEE CS
Press, Kyoto, Japan (2004)

Sparck Jones, K.: A statistical interpretation of term specificity and its application in retrieval.
J. Document. 28, 11–21 (1972)

Witten, I.H., Bell, T.C.: The zero-frequency problem: Estimating the probabilities of novel events
in adaptive text compression. IEEE Trans. Inform. Theory 37(4), 1085–1094 (1991)

Yadla, S., Huffman Hayes, J., Dekhtyar, A.: Tracing requirements to defect reports: an application
of information retrieval techniques. Innov. Syst. Softw. Eng.: A NASA J. 1(2), 116–124 (2005)

Zou, X., Settimi, R., Cleland-Huang, J.: Phrasing in dynamic requirements trace retrieval. In:
Proceedings of the 30th Annual International Computer Software and Application Conference,
pp. 265–272. Chicago, IL (2006)

Zou, X., Settimi, R., Cleland-Huang, J.: Term-based enhancement factors for improving automated
requirement trace retrieval. In: Proceedings of International Symposium on Grand Challenges
in Traceability, pp. 40–45. ACM Press, Lexington, Kentuky (2007)

Zou, X., Settimi, R., Cleland-Huang, J.: Evaluating the use of project glossaries in automated trace
retrieval. In: Proceedings of the International Conference on Software Engineering Research
and Practice, pp. 157–163. Las Vegas, NV (2008)

Zou, X., Settimi, R., Cleland-Huang, J.: Improving automated requirements trace retrieval: A study
of term-based enhancement methods. Empir. Softw. Eng. 15(2), 119–146 (2010)

Factors Impacting the Inputs of Traceability
Recovery Approaches

Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

1 Introduction

Researchers have proposed many approaches based on several techniques: informa-
tion retrieval Antoniol et al. (2002), events Cleland-Huang et al. (2003), hypertext
Maletic et al. (2003); Sherba (2005), scenarios Egyed and Grünbacher (2002), and
rules Spanoudakis et al. (2004), to recover traces among software artifacts. These
proposed approaches use mainly three inputs for traceability recovery (TR): source
documents, target documents, and experts’ opinion. To the best of our knowl-
edge, all the proposed traceability recovery approaches (TRA) have low recall and
precision.

Our main claim in this chapter is that improving traceability recovery approaches
only in themselves cannot help in improving precision and recall; we must also
control the factors that impact the inputs of these approaches. To support this claim,
we report in Table 1 the precision and recall values of some TRA described in the
literature based on the following techniques: Vector Space Model (VSM), Latent
Semantic Indexing (LSI), Rule-based, and Jensen-Shannon similarity (JS). It shows
that, depending on the data sets, precision values vary from 0.9 to 95.9% and recall
values vary from 3 to 99.8%.

Thus, Table 1 sustains our main claim by showing that different approaches using
the same techniques report precision/recall values that vary a lot across data sets. For
example, Sundaram et al. (2005) achieved 1.5–7.9% precision with VSM whereas
Abadi et al. (2008) achieved 50–80% precision with the same techniques. Both
groups of researchers used simple VSM to obtain their results and, therefore, factors
other than the technique, VSM, are causing the variations in precision and recall.

Abadi et al. (2008) and Sundaram et al. (2005) used three different inputs: (1)
source documents, (2) target documents, and (3) experts’ opinion, who manually
created oracles to calculate precision and recall and vetted the automatically-created

N. Ali (B)
DGIGL, École Polytechnique de Montréal, Montréal, QC, Canada
e-mail: nasir.ali@polymtl.ca

99J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_5, C© Springer-Verlag London Limited 2012

100 N. Ali et al.

Ta
bl

e
1

A
ve

ra
ge

pr
ec

is
io

n
an

d
re

ca
ll

ra
ng

e
of

T
R

A
s,

bo
ld

va
lu

es
re

pr
es

en
tt

he
ex

am
pl

e
pr

es
en

te
d

in
1

V
SM

L
SI

JS
R

ul
e-

ba
se

d

D
at

a
se

ts
Pr

ec
is

io
n

R
ec

al
l

Pr
ec

is
io

n
R

ec
al

l
Pr

ec
is

io
n

R
ec

al
l

Pr
ec

is
io

n
R

ec
al

l

SC
A

A
ba

di
et

al
.(

20
08

)
20

–4
3

51
–7

6
14

–2
6

41
–7

8
23

–4
1

57
–7

8
–

–
C

O
R

B
A

A
ba

di
et

al
.(

20
08

)
50

–8
0

68
–8

9
11

–5
0

14
–6

1
43

–6
5

55
–8

1
–

–
M

O
D

IS
Su

nd
ar

am
et

al
.(

20
05

)
7.

9
75

.6
4.

2–
6.

3
63

.4
–9

2.
6

–
–

–
–

C
M

-1
Su

nd
ar

am
et

al
.(

20
05

)
1.

5
97

.7
0.

9
98

.6
–9

8.
8

–
–

–
–

E
as

y
C

lin
ic

O
liv

et
o

et
al

.(
20

10
)

17
–8

0
4–

90
17

–6
0

3–
90

17
–8

0
4–

91
–

–
eT

ou
r

O
liv

et
o

et
al

.(
20

10
)

17
–6

8
5–

47
17

–6
4

4–
46

17
–7

6
5–

47
–

–
M

ob
ile

Ph
on

e
Ji

ra
pa

nt
ho

ng
an

d
Z

is
m

an
(2

00
7)

–
–

–
–

–
–

81
–9

5.
9

65
.4

–9
7.

2
U

C
M

S,
T

V
So

ft
w

ar
e

Sp
an

ou
da

ki
s

et
al

.(
20

04
)

–
–

–
–

–
–

60
–8

1
68

–8
5

Factors Impacting the Inputs of Traceability Recovery Approaches 101

links. Our main claim is that it is the variation in the three different inputs that
mainly caused the observed variations in precision and recall.

Some researchers, e.g., Ali (2011); Antoniol (2003); Hayes and Dekhtyar (2005),
have mentioned factors that impact TRA inputs. However, these factors and their
impact on TRA have not received enough attention so far. Even given a TRA uses a
technique that can return links with high precision and recall, if its inputs have poor
quality, then this approach will produce poor links. Thus, it is important to survey
the factors impacting TRA inputs and report metric/tools to measure these factors
and precautions to control them.

Typical Problematic Scenario. To understand how some factors impact TRA
inputs further, let us consider a scenario where a project manager receives a ver-
ification and validation task. To complete her task, she needs up-to-date traceability
links between requirements and source code. She uses a TRA that produces results
with high precision and recall. She collects TRA inputs, such as experts’ opinion,
requirement specification document (RSD), and source code and asks the help of
the best available resources, i.e., a senior developer of the company with 10 years
of Java and C++ programming experience. The senior developer can understand
source code written in different programming languages; the updated requirements
and latest source code provide traces that represent the actual system.

Let us now further assume that source code is in Perl, source code identifiers’
quality is poor, a non-professional person wrote/updated the RSD. Then, it is likely
that the expert would miss some links and retains erroneous links, because Perl
has a different syntax and structure than Java and C++. The non-professional per-
son would have probably written vague and ambiguous requirements in RSD that
creates confusion while verifying links. The developers have used meaningless
abbreviations for identifiers, thus complexifying the program comprehension activ-
ity. Therefore, the automatically-generated traceability links would be numerous
and the expert would get frustrated and tired while verifying each and every one of
them.

This scenario highlights the importance of TRA inputs in the TR process and of
their analysis to help researchers and practitioners understand the outputs of TRAs.

Objectives and Overall Methodology. Given the importance of TRA inputs,
project managers need guidelines to analyse TRA inputs and their impacting factors
as well as metrics/tools to measure/improve the TRA inputs quality and preventive
measures that must be taken to control the inputs quality. Thus, we define four objec-
tives for this chapter. Objective 1 is to define and document the factors impacting
TRA inputs. Objective 2 is to report metrics/tools to measure/improve the quality of
the inputs by acting on the factors. Objective 3 is to provide preventive measures to
control the factors. Objective 4 is to illustrate our main claim empirically using one
of the identified factors: experts’ programming knowledge.

To achieve our objectives, we follow the methodology depicted in Fig. 1.
In Step 1, we use our own traceability expertise Antoniol et al. (2002, 2008);
Hayes et al. (2008) to define preliminary factors that, to the best of our knowledge,

102 N. Ali et al.

Fig. 1 Main objectives of the
chapter and methodology to
achieve these objectives

could impact TRA inputs. In Step 2, we perform an incremental literature review
(ILR), using these first factors as seeds, to identify and define all the factors impact-
ing TRA inputs and find evidence of their impact. We analyse experimental results
reported in the literature that provide metrics/tools to measure/improve the quality
of TRA inputs. In addition, we also identify and report precautions for the identified
factors found in the literature. In Step 3, we document and report all the gathered
data using a consistent template. The output of this step is reported in Section 3,
which thus achieves our Objectives 1, 2 and 3. In Step 4, we perform an experiment
on one factor that impact experts’ opinion: experts’ programming knowledge. Our
empirical findings support our claim that factors impacting TRA inputs cause low
precision and recall in state-of-the-art TRAs. This last step helps us achieving our
Objective 4.

Assumption, Limitations, and Organisation. Table 2 shows the compulsory
and complementary inputs for various TRAs gathered from the literature. These
approaches considered, as compulsory inputs, requirements, use-cases, and UML
artifacts as source documents and source code and test-cases as target documents.

Table 2 Compulsory and complementary inputs of TRAs

Approach Compulsory inputs Complementary inputs

Scenario-based Requirements, source code Hypothesized traces
Execution traces (scenarios)

Rule-based RSD, UCD Requirement-to-object-model traceability rule
Analysis object model
Inter-requirement traceability rule

Event-based Requirements, UML
artifacts, and test cases

Hypertext-based Requirements, source code Conformance analysis
IR-based Requirements, UML

artifacts, and test cases
Thesaurus, temporal information (SVN, Bug

reports, mailing lists)
System dynamic information
Experts’ feedback

Factors Impacting the Inputs of Traceability Recovery Approaches 103

Table 3 Template to document TRA inputs, factors, and preventive measures

Attributes Descriptions

TRA input Brief introduction to the TRA input
Factor name Name of the factor impacting the TRA input
Definition Definition of the factor
Scenario A scenario illustrating the impact of the factor
Literature review Literature evidence of the impact of the factor
Preventive measures Metrics, tools, and precautions to measure and control the factor

They also used complementary inputs as well that may vary for every TRA and have
impact on the TRAs results. In the following, we only concentrate on compulsory
inputs, because they are the same for all TRAs.

Thus, in this chapter and without loss of generality, we consider requirements
as source documents and source code as target documents, to make it easier to
describe the factors’ impact on TRA inputs. This choice does not change the fact
that these factors will impact any TRA inputs, if experts are recovering tractability
links among requirements, between test cases and requirements, between scenarios
and source code, and so on. For example, if experts are recovering traceability links
among requirements then requirements would be both source and target documents,
in this kind of situations same factors will impact source and target documents that
impact requirements.

We do not report a systematic literature review but choose to rather perform an
incremental literature review for reason of form and content. A systematic literature
review would have required more space than available to report on all the papers
related to the identified factors. Moreover, a systematic literature would have also
required a set of predefined factors impacting TRA inputs and of formal criteria to
assess these factors, both agreed-upon by the community Kitchenham et al. (2009).
Such factors and criteria, to the best of our knowledge, are not yet available in the
literature and, thus, our incremental literature review of more than 60 papers is a
first step towards identifying such factors and criteria.

The rest of the chapter is organised as follows: Section 2 describes our incremen-
tal literature review and summarises the retained factors that impact TRA inputs.
Section 3 documents the factors, metrics/tools, and precautions for the retained
factors. Section 4 describes our empirical study of the impact of experts’ program-
ming language knowledge on TRAs, its results, and threats to its validity. Section 5
discusses the findings in this chapter. Finally, Section 6 concludes with future work.

2 Identification of Factors and Preventive Measures

In the following, we first define an incremental literature review (ILR). Second,
we perform a first ILR to identify and retain important factors according to our
criteria. Third, we used these factors as input to a second ILR to identify preventive

104 N. Ali et al.

measures. Fourth, we document in Section 3 all the identified factors and preventive
measures to measure/improve the quality of TRA inputs using a consistent template,
described in Table 3.

2.1 Incremental Literature Review

We define an incremental literature review (ILR) to find factors impacting TRA
inputs and evidence supporting their impact as well as preventive measures (metrics,
tools, and precautions). Figure 2 shows the process that we followed in our ILR.

An ILR is a recursive process. It starts from a pool of eleven possible
factors: Ambiguous Requirement, Vague Requirement, Conflicting Requirement,
Granularity Level, Identifiers’ Quality, Domain Knowledge, Programming knowl-
edge, Document Type, Document Language, Work Environment, Project Size, and
Dead Code. We provide the definitions of seven of these factors in Section 4.
We seed one factor to find evidence in the literature of its relevance and identify
related research papers through queries in six software engineering sub-domains:
information retrieval, program comprehension, requirements engineering, reverse
engineering, software artifact traceability, and software maintenance. We use the
same list of search engines for research papers for both ILRs, i.e., IEEExplore,1

Define Search
Queries

Identify related
paper

Criteria

Yes

Document Factor and
Preventive measures

No Discard Factor

FactorSeed a Factor
Pool of factors

START

SE domains

Identify additional
factor

More than one
factor in a paper

Criteria

Add in pool

Yes

Research paper
search engines

More factors?

Yes

Future experiment
pool

STOP

Seed next factor

No

Fig. 2 Incremental literature review process

1 http://ieeexplore.ieee.org/Xplore/guesthome.jsp

http://ieeexplore.ieee.org/Xplore/guesthome.jsp

Factors Impacting the Inputs of Traceability Recovery Approaches 105

ACM Digital Library,2 Springer,3 and Google Scholar.4 We verify if the identified
paper provides evidence for the current factor or not. If the paper discusses more
than one factor, we verify if the other factors also impact TRA inputs and, if they
do, we add them to the pool for the next iteration.

We use two sets of criteria to retain or put aside a factor. In the first iteration of
our ILR, we put aside a factor from our study when we cannot find any evidence in
the literature for that specific factor and–or when we can find only one paper that
is not cited more than one time. In the second iteration of our ILR, we keep all the
factors, even though we may not find papers describing related metrics/tools and–or
precautions to highlight future research directions in Section 5.

We review and apply a set of criteria on the identified papers to answer two
questions: (1) does any paper support the seeded factor? and (2) do the identified
papers mention factors not already in the pool? From decision (1), we document or
put aside the seeded factor for future experiments on their impact. From decision
(2), we add to the pool of factors any missing factor. The process then iterates until
there are no more factors to process. In the following two sub-sections, we perform
and report the results of the two ILRs.

2.2 Identification of Factors

We listed (recall Section 2.1) of eleven factors that, to the best of our knowledge,
could impact TRA inputs. We identified these factors based on our own traceabil-
ity recovery expertise Antoniol et al. (2002, 2008); Hayes et al. (2008) and past
professional experiences performing traceability recovery with private companies.

We performed an ILR for all the eleven factors to find out evidence that these
factors impact TRA inputs. We seeded each factor in our ILR process to discover
evidence in the literature supporting that the factor impact some TRA inputs. We
defined search queries and looked for the papers in the chosen sub-domains using
the chosen search engines. For example, we used the query “identifiers quality” in
Google Scholar to identify the paper “What’s in a Name? A Study of Identifiers”
Lawrie et al. (2006) supporting the factor “Identifiers’ Quality”.

After performing this first ILR, we could not find any research papers that clearly
state that Document Type, Document language, Work Environment, Project size, and
Dead Code and impact TRA inputs. Therefore, following our criteria, we remove
these five factors from our study. Interestingly, we found one more factor during our
ILR, i.e., Granularity Level, which impacts TRA inputs as well as the overall eco-
nomical aspect of traceability. We included this newly-found factor in our identified
factors list. Figure 3 presents the final seven (11 − 5 + 1 = 7) factors.

2 http://portal.acm.org
3 http://www.springer.com
4 http://scholar.google.ca

http://portal.acm.org
http://www.springer.com
http://scholar.google.ca

106 N. Ali et al.

Incorrect/No Link

Expert Opinion

RequirementsSource Code

Identifiers’ Quality

Granularity

Conflicting Requirements
Vague Requirements

Ambiguous Requirements

Programming Language

Domain Knowledge

Fig. 3 Inputs of traceability approach and impacting factors

Figure 3 shows the three TRA inputs and the seven factors impacting these inputs.
Rectangles represent TRA inputs and arrows represent the factors that impact these
inputs. The last rounded rectangle represents the consequences of the factors on
the TR process: incorrect/missed traceability links. We document each factor in
Section 3.

2.3 Identification of Preventive Measures

Each factor can impact the TRA input negatively, yielding low precision and–or
recall. We wanted to identify metrics/tools that can measure/improve the quality of
TRA inputs. We associated some positive properties with each factor. For example,
for Identifiers’ Quality, identifiers must be understandable, complete, and unam-
biguous. Then, we searched for metrics/tools that are useful to measure/improve the
quality of TRA inputs and factor with respect to their properties.

We seeded each retained factor in the ILR process. We followed the same
steps as in the previous ILR. We analysed the metrics/tools reported in the lite-
rature for the measurement/improvement of the identified factors. We combined
literature review and our own expertise to describe precautions for the factors.
We discuss all the identified factors detail with their preventive metrics/tools in
Section 3.

Figure 4 summarises the output of this ILR. It shows, for each factor, its
five main characteristics: input name; factor name, type, property; and, preven-
tive measures (metrics, tools, and precautions). For example, Source code is a
TRA input and Identifiers’ Quality impact source code. Good quality identifiers
must be understandable, complete, and unambiguous. To obtain these properties,
expert may use splitting/expansion Madani et al. (2010) approach to split iden-
tifiers such as cmdpntr into cmd pntr and then expand the resulting words
into command pointer. The results of the splitting/expansion approach have
all the above-mentioned properties of good identifiers. Now, let us assume that an
expert is using an IR-based approach to recover traceability links between require-
ments and source code, the split and expanded identifiers would link to command
pointer-related requirements more likely than the cmdpntr identifier
would.

Factors Impacting the Inputs of Traceability Recovery Approaches 107

Source Code

Identifiers’ Quality

Granularity

PropertiesTRA Inputs Factors

Expert Opinion

Domain Knowledge

Programming
Knowledge

Quality Preventive Measures

Good

Bad

Good

Bad

Good

Bad

Good

Bad

Development

Maintenance

Understandable

Complete

Unambiguous

Ambiguity

Requirements Conflicts

Vagueness Good

Bad

Good

Bad

Good

Bad

Clear

Independent

No Conflict

QALP

Percentage of Identifiers

Splitting/Expansion

Group Meetings

Formal Interpretation

Specific Language
Experience

Fig. 4 Inputs of TRAs; factors, their types, properties, and preventive measures

3 Factors Impacting the Inputs of TRAs

Researchers have proposed various TRA, e.g., Antoniol et al. (2002); Cleland-
Huang et al. (2003); Egyed and Grünbacher (2002); Sherba (2005); Spanoudakis
et al. (2004). To the best of our knowledge, all of these approaches have low recall
and precision. Recall is defined as the number of relevant documents retrieved
divided by the total number of relevant documents:

Recall = |{relevant documents} ∩ {retrieved documents}|
|{relevant documents}|

while precision is defined as the number of relevant documents retrieved divided by
the total number of retrieved documents:

Precision = |{relevant documents} ∩ {retrieved documents}|
|{retrieved documents}|

The low precision and recall of the retrieved links impact the usefulness of the
TRAs. Low precision requires experts to deal with numerous spurious traceability
links while low recall casts doubt in the experts’ minds about missing links and
requires them to analyse by hand artifacts to possibly identify these missing links.

Researchers proposed various methods Gervasi and Zowghi (2010); Ghazarian
(2009); Lawrie et al. (2007a) to improve the precision and recall of TRAs. However,
to the best of our knowledge, there has been little work Antoniol (2003); Hayes
and Dekhtyar (2005); Ali (2011) on the factors that impact TRA inputs. We now

108 N. Ali et al.

document three types of TRA inputs (requirements, source code, and experts’ opin-
ions), factors impacting these inputs, metrics/tools to measure/improve the input
quality, and precautions to control the factors, using the template shown in Table 3.

3.1 Requirements

The precise capture, understanding, and representation of requirements is a cru-
cial step in the development of effective and usable information systems Gibson
and Conheeney (1995). Requirements are often error-prone due to misinterpretation
of natural languages Fabbrini et al. (2001). Requirements are often characterised
as complete and correct. For example, if a requirement is incomplete, such as
change time, it may trace to session time, patient wait-time, or system time; it
would be difficult for an expert to verify its corresponding traceability links. In gen-
eral, completeness and correctness depend on several factors. Hayes (2003a) reports
13 factors, including ambiguous and non-verifiable requirements. In the following,
we only report three factors for which, using our ILR, we could find definitions,
experimental results, and precautions.

3.1.1 Ambiguous Requirements

Definition: Ambiguous requirement are requirements of which two different
experts may have different interpretation Chantree et al. (2006).

Scenario: Ambiguous requirements may result into different interpretation and
implementation. They lead to perplexity and waste of effort during their
understanding. They also impact the TRAs by leading to the creation of
ambiguous links that are complicated to verify. For example, in the require-
ment “each new user shall be part of a group”, the concept of group could be
ambiguous and an expert could interpret this group to manage access privi-
leges, whereas another expert may interpret it as a group of common, shared
interests.

Literature Review: Ambiguity has long been pictured as one of the worst
enemy of experts writing requirements, especially with reference to ambi-
guity in natural language requirements Gervasi and Zowghi (2010). Zisman
et al. (2002) mentioned that the main shortcoming of TRAs is their inabil-
ity to automatically identify and maintain traceability relations involving
natural-language artifacts with ambiguous meanings.

Hayes et al. (2003) showed in their paper that senior analysts at Science
Applications International Corporation missed 17 links during a manual
traceability link recovery activity. The authors’ observations on the missing
links was: (1) it was difficult to do some of the tracing because the docu-
ments/requirements were incomplete, ambiguous and (2) unknown acronyms
hindered the trace recovery process.

Haiduc and Marcus (2008) studied several open-source systems and found
that about 40% of the domain terms are being used in the source code by

Factors Impacting the Inputs of Traceability Recovery Approaches 109

developers. If the domain terms are ambiguous, it will also impact source
code as well.

Hayes (2003a) presented a methodology for requirement-based fault
analysis and its application to NASA software projects. She examined
requirements faults for the International Space Station (ISS) software sys-
tems. She showed that 6.1% of the faults were caused by ambiguity in the
requirements of the ISS.

Preventive Measures: Some approaches Chantree et al. (2006); Gleich et al.
(2010); Kamsties et al. (2001) have been proposed by researchers to iden-
tify ambiguity in and remove them from requirements. Gleich et al. (2010)
presented a tool to detect ambiguities and to explain the sources of these
ambiguities. They claimed that their ambiguity-detection tool yields a sig-
nificant improvement in time and cost and in quality in industrial contexts.
Kamsties et al. (2001) presented an inspection technique for detecting
ambiguities in informal requirements. Their results showed that inspection
techniques yield better results than formal methods in term of the number of
identified ambiguous requirements.

3.1.2 Vague Requirements

Definition: Vague requirements are imprecise natural language statements. If
the statements of the requirements fail to draw an image or bring an under-
standing of what is desired, then they are vague because difficult to interpret
correctly Joseph (2000).

Scenario: For example, the requirement “maintaining patients’ records shall
be good” is vague. The word “good” is not defined. An expert cannot trace
the implementation of “good” patient records into any source code.

Literature Review: Kamsties et al. (1998) conducted case studies with ten dif-
ferent small and medium enterprises (SMEs). They mentioned that SMEs
do not document requirements properly, which cause problems such as
(1) requirements are too vague or prosaic to be testable, (2) requirements
are not traceable, and (3) the domain knowledge implicitly contained in
requirements makes the requirements difficult to understand by developers.

Kasser (2004) stated that vague requirements cause expensive cost and
delay in project schedule. They mentioned that vague requirements are
unverifiable and contain multiple requirements in a single paragraph, which
complicate the traceability of tests to requirements.

Ghazarian (2009) showed that 57.5% of bug reports are due to incorrect
implementations of requirements in the source code. Vague requirements
cause this kind of reports.

Hall et al. (2002) studied the problems experienced by 12 software com-
panies in their requirement process and showed that 48% of their problems
stem from requirements and that vague requirements cause 25% of these
problems.

110 N. Ali et al.

Preventive Measures: Kasser (2004) presented a tool, FRED, to detect vague
requirements and allow an expert to remove the vagueness from the require-
ments. FRED also helps to make requirements traceable by splitting two
combined requirements.

Lee and Kuo (2002) proposed the Requirements Trade-off Analysis tech-
nique to formalise vague requirements. They analysed trade-off among vague
requirements by identifying the relationship between requirements, which
could be either conflicting, irrelevant, cooperative, counterbalance, or inde-
pendent. Fabbrini et al. (2001) proposed a tool, QuARS (Quality Analyzer of
Requirement Specification), based on their natural-language quality model
to detect vague requirements.

3.1.3 Conflicting Requirements

Definition: Conflicting requirements are requirements that are incompatible in
a same or different artifacts Hayes (2003a).

Scenario: During the requirement elicitation process, each stake-holder gives
her wish list without considering conflicts with other stake-holders’ require-
ments Joseph (2000). For example, one stake-holder could ask that the
system shall allow giving bonuses after six months while another stake-
holder could ask that the system gives bonuses every three months. Such
conflict could result into two separate implementations of the requirements
that may then conflict and must be maintained separately. It will also create
problems for the experts verifying whether the system allows bonuses.

Literature Review: It is risky to ignore or stifle conflicting requirements
because they may have serious negative consequences on the software devel-
opment process Grünbacher and Briggs (2001). Many researchers have
highlighted the significance of identifying and analysing conflicting require-
ments for the success of system development Grünbacher and Briggs (2001);
Hayes (2003b); Hausmann et al. (2005); Joseph (2000).

Egyed and Grünbacher (2004); Egyed and Grünbacher (2002) conducted
requirements traceability studies on a video-on-demand system. They found
that some requirements have dependencies with other requirements and that
these dependencies cause conflicts. For example, in order to start playing a
movie, one needs to load the textual information about the movie, which is
allowed to take up to three seconds while 1 second is the required maxi-
mum duration before starting playing a movie. Egyed et al. recommended
that conflicts and dependencies be removed before performing traceability
tasks.

Hayes (2003a) divided conflicting requirements into internal and exter-
nal conflicts Hayes (2003a). She showed that 4.7% of the faults in the ISS
software systems are due to conflicting requirements.

Preventive Measures: Stake-holders must discuss and resolve conflicting
requirements Grünbacher and Briggs (2001); Joseph (2000); Hayes (2003b).

Factors Impacting the Inputs of Traceability Recovery Approaches 111

They can negotiate the conflicting requirements. Egyed (2001); Egyed and
Grünbacher (2002) proposed a tool-supported approach, Trace Analyser,
to analyse dependency among requirements and detect conflicts. Trace
Analyser cannot automatically derive conflicts but, by finding all pos-
sible requirement dependencies, it makes it easier to identify potential
inconsistencies and conflicts.

Hausmann et al. (2005) presented a formal interpretation of use-case
models, which is based on concepts from the theory of graph transfor-
mation. Use-case models allow to define precisely the notions of conflict
and dependency between functional requirements. Then, use-case models
can be statically analysed to identify conflicts and dependencies, which
can then be communicated to the stake-holders by annotating the model.
They also provided an implementation of the static analysis within a graph
transformation tool.

3.2 Source Code

Source code is a common input for of traceability approaches Antoniol et al. (2002);
Marcus and Maletic (2003). The quality of the results of a TRA highly depends on
the quality of the source code Antoniol (2003). For example, if a developer uses
meaningless abbreviations for identifiers, thus use causes low similarity between
requirements and source code Lawrie et al. (2006, 2007b) and creates ambiguity
for an expert when verifying recovered links. Moreover, some techniques, such as
information-retrieval techniques Antoniol et al. (2002); Hayes et al. (2003); Lucia
et al. (2005, 2006), require high-textual similarity to recover traceability links.

Developers normally use identifiers Butler et al. (2009) that are easy to remem-
ber. However, these identifiers possibly do not represent concepts in the source code
and–or system domain. For example, developers usually use i, m, n, and k as variable
names for integer values, but these do not represent any concept. Such identifiers can
result into low textual similarity and poor links. Appropriate use of identifiers does
not only help to improve TR, it also helps in improving the overall software quality
Lawrie et al. (2007a).

Developers also often mix different concepts in the same classes and implement
as much functionality as possible in a single class under time pressure to imple-
ment as quickly as possible new functionalities Marcus and Poshyvanyk (2005);
Moha et al. (2010). This “design choice” or, rater, lack thereof, creates overlapped
links Egyed and Grünbacher (2004) that are difficult for experts to sort and verify
manually.

3.2.1 Granularity Level

Definition: Level of detail considered in the TR. Granularity is generally
divided into three levels: coarse, middle, and fine-grained. As the level of
granularity increases, a TRA would provide more detailed and numerous
links.

112 N. Ali et al.

Scenario: Let us assume that a developer implements different concepts in the
functions of one object-oriented class. Typically, a developer creates one
Patient class and implements all patient-related concepts in that class
in the form of methods, such as adding walk-in patient, adding emergency
patient, and so on. Let us now assume that an expert is recovering links
between the requirements and classes of this system. Then, several require-
ments may link to that one Patient class, which would impede the experts’
verification of the links if the requirements are at the class level.

Literature Review: Egyed et al. (2010) showed that tracing requirements to
method level requires 3–6 times more effort than tracing requirements to
classes. They showed that links at the method-level have no advantage over
links at the class-level in terms of quality.

Bianchi et al. (2000) conducted an exploratory case study to evaluate
the relationship between the granularity of a traceability model and the
effectiveness of the maintenance process. Their case-study results showed
that fine-grained traceability requires greater effort to satisfy maintenance
requests but also provides better accuracy. Therefore, experts must trade
effort for accuracy.

It is equally important to consider the return on investment (ROI) Egyed
et al. (2010) of traceability Egyed et al. (2005) while choosing a granularity
level. Egyed et al. (2005) evaluated the ROI of tracing at lower levels of
granularity. They measured the ROI by the effort needed to recover the links
against the value returned through tracing at different levels of precision.
Their case study showed that a tenfold increase in cost/effort only produces
twofold improvement in precision.

Preventive Measures: It is important to choose the “right” granularity level
Bianchi et al. (2000); Cleland-Huang et al. (2007) before starting a TR pro-
cess. If developers used switches to handle different requirements then it
is important to choose a finer-grain granularity. If the ROI is not high then
the experts may perform refactoring tasks to separate different implementa-
tions of requirements at class level to reduce the number of traceability links.
Developers should implement different requirements in different classes,
if they are working with an object-oriented programming languages, or
in different functions and modules, if they are working with a procedural
programming language.

3.2.2 Identifiers’ Quality

Definition: An identifier is the name of a token in the source code. Software
quality depends on identifiers’ quality Butler et al. (2009) because the
majority of the source code of a software system consists of identifiers
Deissenboeck and Pizka (2006).

Scenario: If a developer used meaningless abbreviations to name identifiers, it
will create problem for any automated or manual TR process. For example,
if the developer has named a method “cd” in a file management system, then

Factors Impacting the Inputs of Traceability Recovery Approaches 113

an expert verifying a traceability link for the create directory requirement,
would not be able to easily distinguish between change directory and create
directory. The expert must consequently have to read the whole source code
to keep or reject the traceability links.

Literature Review: Several studies showed that poor identifiers’ quality impacts
TR Lucia et al. (2010, 2007); De Lucia et al. (2009). Lucia et al. (2010)
used traceability to identify poor quality identifiers. They used a IR-based
traceability approach to build links between source code and high-level doc-
uments. Their approach highlights the identifiers whose understandability
is decreasing due to continuous software maintenance and evolution. Their
studies showed that using meaningless identifiers could result into poor
quality traces.

Butler et al. (2009) analysed the impact of naming conventions on main-
tenance effort, i.e., on code quality. They evaluated the quality of identifiers
in eight open-source Java libraries using twelve naming conventions. They
showed that a statistically-significant relation exists between identifiers and
software quality.

Takang et al. (1996) compared abbreviated identifiers with full-word
identifiers and uncommented code with commented code and empirically
analysed the role played by identifiers and comments on source code
understandability. They showed that (1) commented systems are more under-
standable than non-commented systems and, similarly, that (2) systems
containing full-word identifiers are more understandable than those with
abbreviated identifiers.

Lucia et al. (2007) stored poor links during traceability recovery experi-
ments to analyse them. They found that poor links helped to identify quality
problems in the textual descriptions of the traced artifacts; mainly a poor
description of the artifacts. The expert used these poor links to improve the
textual description of the artifacts. As a result of these changes, over 60% of
the poor links highlighted by the tool improved with a similarity value above
the quality threshold at the end of the project.

Preventive Measures: Improving identifiers’ quality yields an increase in pre-
cision and recall of TRAs. For example, if two concepts are merged in
one identifier, it is important to split this identifier to avoid ambiguity
among identifiers. Researchers have proposed different approaches Binkley
et al. (2007, 2009); Madani et al. (2010) to improve the identifiers’ quality.
Madani et al. (2010) proposed a speech recognition-based approach to split
identifiers and expand them; their approach out-performs the Camel Case
splitter.

QALP Binkley et al. (2009) metrics calculate scores between source
code identifiers’ and comments. High scores highlight a strong relationship
between source code and comments. QALP helps to identify any ambiguity
among different identifiers and comments. Binkley et al. (2007) proposed
an approach based on the percentage of identifiers that violate syntactic
conciseness and consistency rules. Their approach helps to avoid confusing
identifiers.

114 N. Ali et al.

3.3 Experts’ Opinion

The field of human factors research is large and diverse. As of today, no large-
scale study involving human experts has been conducted in TR Cuddeback (2010).
Different studies show the importance of experts’ opinion in TR D. Cuddeback
(2010); Dekhtyar et al. (2007); Eder et al. (1999); Soloway and Ehrlich (1989).
Ghazarian (2009) showed that developers cause 82% of the problems of missed
implementation in some software systems. Hayes et al. (2005) conducted a case
study on experts’ feedback. They asked three experts to perform some traceability
tasks on three different data sets. They give the experts traceability links with low
precision, with high recall, and with high precision and low recall. They showed
that experts were not able to provide better results than the tool. They mentioned
that there may be other factors, such as domain knowledge, impacting the experts’
results.

Expert may analyse false positive links generated by tools but would need lots
of efforts to create missing links by analysing the software artifacts manually. In
addition, if an expert generates incorrect links, there are usually no second verifi-
cation; therefore, it is important to analyse the human factors impacting TR. Below
are some of the main factors that impact an expert’s opinion.

3.3.1 Domain Knowledge

Definition: Domain knowledge characterises an expert’s understanding of the
field in which the analysed software system is being developed.

Scenario: Experts use their domain knowledge to query the software artifacts
for specific concepts. For example, an expert, who does not have Web devel-
opment experience and wants to search for a function that return all the
variable values from a URL, may use keywords such as “URL”, “value”, “get
values from URL”, “URL variable values”, and so on. Thus, the expert wastes
effort, making inaccurate queries; whereas, with appropriate domain knowl-
edge, she would simply use the query “query string” to search the relevant
function.

Literature Review: Hayes et al. (2005) reported that several factors impact the
quality of experts’ opinion, including their domain knowledge.

Taira (2008) conducted an empirical study to identify the impact of
domain knowledge when learning with the help of a search engine. Their
results showed that confusion in Web surfing was caused by a lack of knowl-
edge in the domain of interest. They observed that domain knowledge may
assist an expert in avoiding being confused and in finding suitable Web pages.

Park and Black (2007) performed an experiment to investigate the impact
of domain knowledge on search activities. Their results showed that domain
knowledge impacts the precision of search results.

Preventive Measures: Domain knowledge improves the experts’ opinion dur-
ing traceability tasks. Thus, an expert must acquire adequate domain knowl-
edge before exploring source code and other artifacts. An expert can obtain

Factors Impacting the Inputs of Traceability Recovery Approaches 115

domain knowledge by using the software system Rajlich and Wilde (2002).
An expert must also have enough time to learn and understand the over-
all functionality of the system to consequently be able to recover/verify
traceability links adequately.

3.3.2 Programming Knowledge

Definition: Programming Knowledge relates to an expert’s ability to solve pro-
gramming problems and write quality software in a particular programming
language.

Scenario: An expert in Java may not be able to understand Smalltalk source
code adequately. Indeed, if an expert does not have Smalltalk programming
knowledge, she may find concept in source code that she cannot readily
understand or could misunderstand. For example, if an expert, with Java pro-
gramming experience, queries some Smalltalk source code for “add patient”,
she may find the string “add patient” and think that it has something to do
with the corresponding functionality while quoted strings in Smalltalk are
comments.

Literature Review: Studies Hayes et al. (2003, 2005) showed that experts can
recover false links and skip correct links during TR. However, to the best
of our knowledge, these studies did not consider the experts’ programming
knowledge. It is quite possible that experts who vet the final traceability links
have good programming knowledge experience Soloway and Ehrlich (1989)
but not of the specific language that the current system uses.

Chan (2008) performed an empirical study with 100 undergraduate stu-
dents to measure the effect of domain-specific knowledge and programming
knowledge for software maintenance tasks. Their study showed that both
programming and domain-specific knowledge have a significant impact on
software maintenance productivity. They also discussed that hiring fresh
graduates for maintenance tasks can increase the effort and cost.

Lau and Yuen (2009) conducted an empirical study on 217 secondary
students to measure the effects of gender and learning styles on computer
programming performance. Their results showed that there is no significant
effect of gender on programming performance, but academic ability had a
differential effect on programming knowledge. Sequential learners Gregorc
(1982) in general performed better than random learners Gregorc (1982).

Preventive Measures: Domain knowledge is important to understand a sys-
tem internal workings. Yet, we cannot ignore that general and specific
programming knowledge also matter. It is important that the experts must
be knowledgeable of the programming language that the analysed software
system uses when performing TR. An expert with one-year Smalltalk pro-
gramming experience can understand Smalltalk source code better than an
expert who has 10 years of Java experience, as discussed in Section 4.4.
Expert must be selected based on specific programming language experience
if possible.

116 N. Ali et al.

4 Empirical Study for a Factor Impacting the Inputs of TRAs

Goal. We want to quantify the impact of one identified factor on TRA input.
Quantifying one of the factor’s impact on TRA inputs is one more step towards
improving TR process. We select experts’ programming knowledge because if other
factors impact TRA to create wrong links or miss correct links, then expert could
create/recover that links. However, if experts create wrong links or miss correct links
then these links are likely to be so forever.

Study. We study whether experts without the programming knowledge of a system
under analysis can perform different traceability tasks, such as creating links missed
by TRAs and verifying links recovered by TRAs. We use Java and PHP as program-
ming languages. We use 40 subjects from both industry and academia, divided in
two groups; the first group with good Java knowledge and the second group with
good PHP knowledge. We ask all the subjects to create and verify traceability links
for Java and PHP systems. We measure the subjects’ performance with: (1) the
NASA task load index for their effort; (2) the time that they spent performing their
tasks; and, (3) their percentage of correct answers.

Results. Collected data shows that, in the first group, Java experts’ programming
knowledge positively impacted their results when they performed TR tasks for a
Java system and negatively when they performed TR tasks on a PHP system. In the
second group, for PHP experts and Java and PHP systems, collected data show the
inverse results.

Relevance. Understanding the impact of the factors is important from the point of
view of both researchers and practitioners. For researchers, our results bring fur-
ther evidence to support our claim of the impact of the identified factors on TRA
inputs. For practitioners, our results provide concrete evidence that they should pay
attention to the identified factors to improve their TR process and use the reported
preventive measures to handle these factors. Our results support our claim that it is
also important to control TRA impacting factors to improve precision and recall.

4.1 Experimental Design

Our experiment uses two groups, the subjects in the first group have expertise in
Java but not in PHP whereas those in the second group have expertise in PHP but
not in Java. We use a within-subject design Sheskin (2007) in this experiment. An
advantage of the within-subject experimental design is that confounding variables
due to differences in subjects’ skills are reduced Wake (2003).

4.1.1 Research Question

The goal of our experiment is to analyse how experts’ programming knowledge
supports or hinders experts’ opinion during TR tasks. The experiment addresses

Factors Impacting the Inputs of Traceability Recovery Approaches 117

the following research question: RQ – Experts’ Programming Knowledge: Will
experts with specific programming language experience provide better traceability
results than others?

We try to reject the following null-hypothesis: The presence or absence of
experts’ specific programming language knowledge has no statistically significant
effect on average performance while performing requirement traceability tasks.

4.1.2 Subjects Selection

The subjects are volunteers. Subjects have guaranteed anonymity and all data has
been anonymised. We received the agreement from the Ethical Review Board of
École Polytechnique de Montréal to perform and publish this study. The subjects
were aware that they were going to perform requirement traceability tasks, but do
not know the particular experimental research question.

We recruited subjects from academia and industry to make sure that academic or
industry experience has little impact on our experiment. There are 26 subjects from
academia and 14 from industry. Industrial subjects have between 11 months and 5
years industrial experience whereas academic subjects are M.Sc. and Ph.D. students
at École Polytechnique de Montréal (ÉPM). Industrial subjects are currently work-
ing in industry and academia subjects are currently enrolled at ÉPM. Table 4 shows
the subjects programming experience statistics. We only consider a subject expert
in Java or PHP, if she has more than four months experience in Java or PHP.

In the first group, the subjects have expertise in Java, Eclipse, basic domain
knowledge of content management systems and medical systems, and no exper-
tise in PHP, to qualify for the experiment whereas in the second group, they have
expertise in PHP, Eclipse, basic domain knowledge of content management systems
and medical systems and no expertise in Java.

4.1.3 Source Code Selection

We used several criteria to select the systems used in our experiment. First, we
selected open-source software systems, so that other researchers can replicate our
experiment. Second, we avoided small systems that do not represent systems han-
dled by most developers. Finally, we conducted a pre-experiment survey about the
subjects’ known systems. We selected the systems that subjects did not know to
avoid any learning bias. For the experiment, we used iTrust5 and Joomla.6 iTrust is
developed in Java. It is an online medical record system with 19,604 KLOC, 526
classes, and 3,404 functions. Joomla is a content management system developed in
PHP with 203 KLOC, 737 classes, and 4,834 methods.

5 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
6 http://www.joomla.org

http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
http://www.joomla.org

118 N. Ali et al.

Ta
bl

e
4

A
ve

ra
ge

pr
ec

is
io

n
an

d
re

ca
ll

ra
ng

e
of

T
R

A
s

In
du

st
ry

A
ca

de
m

ia
In

du
st

ry
A

ca
de

m
ia

G
en

er
al

pr
og

ra
m

m
in

g
G

en
er

al
pr

og
ra

m
m

in
g

Ja
va

PH
P

Ja
va

PH
P

G
ro

up
I

1.
03

84
61

53
8

4.
75

0.
50

38
46

15
4

0.
03

84
61

53
8

2.
28

07
69

23
1

0.
30

76
92

30
8

G
ro

up
II

2.
12

21
42

85
7

3.
85

71
42

85
7

0.
04

28
57

14
3

1.
55

07
14

28
6

0.
49

28
57

14
3

0.
63

57
14

28
6

Factors Impacting the Inputs of Traceability Recovery Approaches 119

4.1.4 Links, Tasks, and Questionnaires

The first author created traceability links manually between source code and require-
ments for Joomla and the second author verified these links to avoid bias. For iTrust,
we used the links that iTrust developers provided us. The manually-created links
help to evaluate subjects’ answers. (One of the subject performed a pilot-study
to validate that the requirements used in the experiment are clear and simple. We
excluded this subject and pilot-study from our final results.)

In any traceability task, an expert must verify traceability links created by a TRA
and create new links that the TRA missed. We designed our questionnaire to address
both these tasks. We asked two set of questions to the subjects, in two categories.
In the first category, we asked subjects to create missing traceability links among
requirements and source code. This category contains two questions for each sys-
tem. We used vector space model (VSM) Antoniol et al. (2002) to automatically
create traceability links between requirements and source code. VSM provided true
and false traceability links. In the second category, we asked subjects to verify
requirement traceability links recovered by VSM as true or false. This category
contains three questions for each system. In the second category, the first system
contains 2 true and 1 false traceability links, whereas the second system contains
1 true and 2 false traceability links. Table 5 shows the experimental categories and
questions, the text in bold is a placeholder that we replace by appropriate required
behaviour of the systems.

For example, with Joomla, we replace “this functionality” in Question 1,
Category 1, by “update any article’s contents” and the question reads as: sys-
tem shall allow updating any article’s contents. In Question 3(a), Category 2, we
replace “this functionality” and “class” by “administrator to add different sections
in website” and administrator.components.com_sections.admin.
sections.php and the question reads: “System shall allow administrator to
add different sections in website” links to administrator.components.
com_sections.admin.sections.php.

4.2 Procedure

We divide the experiment into three steps. In the first step, subjects are explained
the systems. We provide basic details of the systems on the answer sheets. In the
second step, we ask the subjects to provide their general Java or PHP industrial and

Table 5 Experimental questionnaire format

Category 1: Recover traceability links
Question 1 & 2 System shall allow this functionality

Category 2: Verify traceability links
Question 3 (a,b,c) System shall allow this functionality, links to this class or method

120 N. Ali et al.

academic programming experience in years. To confirm the subjects’ experience,
we ask them the maximum source code size that they have developed in the past.
We consider that a subject has expertise in a programming language, if she has
more than four months experience and has written more than 5,000 LOCs. We use
four months because in academia a semester duration is four to six months and in
industry it is considered as probation period. Therefore, considering a subject who
is currently studying a programming language subject or industry subject who is
in probation period could bias the results. In the third step, we ask the subjects to
recover and verify traceability links.

For each system, we ask subjects to spend adequate time to explore the code and
perform their traceability tasks. We prepare each of the target system in an Eclipse
Workspace. We provide the subjects with a timer, developed in Java to record the
time that they take to answer a question. We ask subjects to start the timer when they
begin looking for an answer and stop when they find the answer. We ask subjects
not to start the timer when they are reading and understanding a question or writing
an answer.

We measure the subjects’ effort using the NASA Task Load Index (TLX) Hart
and Stavenland (1988). The TLX assesses the subjective workload of subjects. It
is a multi-dimensional measure that provides an overall workload index based on
a weighted average of ratings on six sub-scales, i.e., mental demands, physical
demands, temporal demands, own performance, effort, and frustration. NASA pro-
vides a computer program to collect weights and ratings for the six sub-scales. We
combine all workload factors to compute an average workload for each subject. To
combine all workload factors, each rating is multiplied by the weight given to that
rating by the subject. The sum of the weighted ratings for each task are divided by
15 to get the average workload Hart and Stavenland (1988).

4.3 Analysis Method

We perform the following analysis to answer our research question and attempt
rejecting our null hypothesis. We use programming language knowledge as an
independent variable whereas time, percentage of correct answers, and effort are
dependent variables. We divide the total number of correct answers by the total
number of questions to obtain an average of correct answers for each subject.

We use the Mann-Whitney test to compare the two sets of dependent vari-
ables and assess whether their difference is statistically significant. The two sets
are the subjects’ data that we collected when they answered traceability questions
with or without specific programming expertise. For example, we compute the
Mann-Whitney test to compare the set of average correct answers of Java experts
with non-Java expert for the Java system. Mann-Whitney is a non-parametric test;
therefore, it does not make any assumption about the distribution of the data.

We compute the Cohen’s d impact size Sheskin (2007), which indicates the mag-
nitude of the effect of a treatment on the dependent variables. The effect size is

Factors Impacting the Inputs of Traceability Recovery Approaches 121

considered small for 0.2 < d < 0.5, medium for 0.5 < d < 0.8 and large for
d > 0.8. It is defined as the difference between the means (μ1 − μ2), divided by

the pooled standard deviation
√(

σ 2
1 − σ 2

2

)
/2 of both variables: d = (μ1 − μ2) /σ .

4.4 Experimental Results

After collecting the answer sheets, we compared subjects’ responses with the prede-
termined correct answers to compute the average correct answers for each subject.
Table 6 shows the statistics of the results, all the results’ values are average values.
For example, in the first group with Java expertise, the subjects took an average of
186.04 s to answer a question for the Java system while they took on average 379 s
to answer questions for the PHP system. Table 7 shows the p-values and Cohen’s d
values calculated by comparing the differences between the data collected for each
experiment.

There is statistical significant evidence to reject the null hypothesis. Table 7
shows that the p-values are below the standard significant value, α = 0.05. More-
over, the Cohen’s d values are also high (> 0.8). Subjects with expertise in Java
were able to create/verify more correct links in less time and with less effort than
the subjects who did not have expertise in Java for the Java system and vice-versa
for the PHP experts and the PHP system. We also find some interesting observa-
tions. In both groups, there are 3 subjects who are good in both PHP and Java. They
performed better than other subjects on both systems by spending less effort and
time to find the correct answers.

Thus, we answer the RQ as follows: programming knowledge does impact
experts’ opinion. It is important for an expert to have good knowledge of the specific
programming language in which the system under analysis is written.

Table 6 Experiment result’s statistics

Factor: Expert programming knowledge

Systems Knowledge # of subjects Correct answers Times Efforts

iTrust (Java) Good 26 69.23 186.04s 30.12
Joomla (PHP) Bad 26 30.00 379.00s 60.02
iTrust (Java) Bad 14 44.29 205.93s 39.33
Joomla (PHP) Good 14 80.00 87.57s 49.07

Table 7 Mann Whitney p-values, precision, recall, and Cohen’s d effect size for each experiment

Time Answers Efforts

M.-W. p Cohen d M.-W. p Cohen d M.-W. p Cohen d

Group I 0.000009 2.38 0.000015 2.40 0.000001 2.79
Group II 0.001094 1.89 0.001453 2.43 0.003052 1.62

122 N. Ali et al.

4.5 Threats to Validity

Several threats potentially impact the validity of our experimental results. We
discuss below these threats and how we alleviate or accept them.

Construct validity: The construct validity concerns the relation between theory
and observations. In this experiment, it could be due to measurement errors. The
average correct traceability links created and time spent by a subject, are the main
measure in our study. As the correct answers are predetermined before conducting
the experiment, measuring individual subject’s performance is simply a matter of
comparing each subject’s answers with the expected correct answers.

Internal validity: The internal validity of a study is the extent to which a treat-
ment effects change in the dependent variable. There can be learning threat in our
experiment. We used two different systems and different kinds of requirements’
links to avoid this learning threat. We give subjects an opportunity to ask any ques-
tions that they may have about the material. While answering their question, we
were careful not to reveal any information that could help them to find the correct
answers. We only explained what was already available in the training material. We
also instruct subjects not to discuss the experiment among themselves. The source
code of both systems was not same and we used two groups with different expertises
to avoid source code size effect on our results.

External validity: The external validity of a study relates to the extent to which
we can generalize the results of our studies. To avoid any external validity threat, we
engaged subjects from academic and industry to help generalising our findings to
both contexts. Moreover, we performed our study with 40 (26 for first group and 14
for second) and we used two different systems in different languages, Java and PHP.
Yet, we cannot claim to generalise our results to other programming languages.

There were only five links (two links to recover and three links to verify) in our
experiment, while the traceability links that experts recover or verify in practice are
numerous. One major reason to use few traceability links was experimental control.
Table 7 shows that the results are significant and that, moreover, the magnitude
of the observed effects is large and thus cannot be ignored. Our preliminary study
support the claim that it is important to control the factors that impact traceability
approaches inputs.

Conclusion validity: Conclusion validity threats deals with the relation between
the treatment and the outcome. We paid attention not to violate assumptions made
by statistical tests. Therefore, we used a non-parametric test that does not make any
assumptions about the distribution of data.

5 Discussions

We now discuss four questions related to the discussed factors and our methodology.

How much does controlling all the factors increase an experts’ workload. Using
poor quality TRA inputs will result in large number of false positive and missing

Factors Impacting the Inputs of Traceability Recovery Approaches 123

links. It could be easier for an expert to improve TRA inputs quality than to manually
recover missing links and verify large amount of false positive links. Improving
TRA inputs may also help during program comprehension, maintenance, and reuse.
In future work, we will perform empirical studies to see how much time and effort
can be saved if we control these factors’ effect on TRA inputs.

Is it possible to control all the factors. It might not be possible for an expert to con-
trol all these factors, but controlling the maximum possible number of factors could
still yield better results than using poor quality inputs. Future work includes devel-
oping and assessing the cost model to compute the ROI of controlling the various
factors and combination thereof.

What are the most critical factors. We have not performed a systematic literature
review due to space limitations. However, we performed an ILR and found more
than 60 papers related to our study. The provided list of factors is a starting point
towards traceability improvement by controlling these factors. We will perform in
future work a systematic literature review to attempt identifying all factors and their
impact on TRA inputs.

Are there more factors then these seven identified factors. We excluded five fac-
tors from our study: document type, document language, work environment, project
size, and dead code because we could not find significant evidence in the literature
that these factors impact TRA inputs. Yet, these excluded factors may impact TRA
inputs. For example, if a TRA takes as input some source code and requirement doc-
uments and computes their textual similarity, it is possible that many requirements
would link to dead code and an expert would have to verify these links even though
they are useless. We add these excluded factors in our list of future experiments to
quantify their impact on TRA inputs.

6 Conclusion and Future Work

It is important to develop new and improve existing traceability approaches, but it
is also important to gain a better understanding of and support for the factors that
impact TRA inputs. We claimed in this chapter that some factors impact TRA inputs,
in particular, source code, requirements, and experts’ opinion.

We defined a methodology to identify in the literature factors impacting TRA
inputs as well as their definitions and associated preventive measures. Our method-
ology is based on two incremental literature reviews (ILRs) to identify critical
factors that impact TRA inputs and tools/metrics to measure/improve the quality
of the TRA inputs. We also used the ILRs to collect precautions to control the effect
of the factors. We documented seven factors using a consistent template and rejected
five factors for which we could not find enough supporting evidence.

To empirically support our claim, we conducted an empirical study to measure
the experts’ programming knowledge impact on experts’ opinion. We showed that

124 N. Ali et al.

a group of Java experts could not perform well traceability-related tasks on a PHP
system, while PHP experts could, and vice-versa for PHP and Java experts on a
Java systems. These results support our claim that expert’s programming language
knowledge impacts TRA inputs. Thus, the expert must be knowledgeable about the
programming language(s) that the system under analysis uses.

In future work, we will perform a systematic literature review to identify more
factors and their effect on TRA inputs. We will perform more experiments on all
other remaining factors to assess their impact on TRA inputs. We will provide a
priority list for project managers so that they can find which factors can impact
their inputs more. We also want to provide a TR process that automatically handles
potential factors impacting any TRA inputs.

References

Abadi, A., Nisenson, M., Simionovici, Y.: A traceability technique for specifications. In: The
16th IEEE International Conference on Program Comprehension (ICPC’08), pp. 103–112.
Amsterdam, The Netherlands (2008)

Ali, N.: Trustrace: Improving automated trace retrieval through resource trust analysis. In: ICPC
’11: Proceedings of the International Conference on Program Comprehension (ICPC’11), p. 4.
IEEE Computer Society, Washington, DC (2011)

Antoniol, G.: Recovery of traceability links in software artifacts and systems. PhD Thesis,
Montreal, QC (2003)

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability links
between code and documentation. IEEE Trans. Softw. Eng. 28(10), 970–983. Piscataway, NJ
(2002). ISSN:0098-5589

Antoniol, G., Hayes, J., Guéhéneuc, Y.G., di Penta, M.: Reuse or rewrite: Combining textual, static,
and dynamic analyses to assess the cost of keeping a system up-to-date. In: IEEE International
Conference on Software Maintenance (ICSM’08), Beijing, China (2008)

Bianchi, A., Fasolino, A., Visaggio, G.: An exploratory case study of the maintenance effective-
ness of traceability models. In: Proceedings of the 8th International Workshop on Program
Comprehension (IWPC 2000), pp. 149–158. IEEE Computer Society, Los Alamitos, CA (2000)

Binkley, D., Feild, H., Lawrie, D., Pighin, M.: Software fault prediction using language pro-
cessing. In: Testing: Academic and Industrial Conference Practice and Research Techniques-
MUTATION, 2007. TAICPART-MUTATION 2007, IEEE, pp. 99–110. Windsor, UK (2007)

Binkley, D., Feild, H., Lawrie, D., Pighin, M.: Increasing diversity: Natural language measures for
software fault prediction. J. Syst. Softw. 82(11), 1793–1803 (2009)

Butler, S., Wermelinger, M., Yu, Y., Sharp, H.: Relating identifier naming flaws and code quality:
An empirical study. IEEE Comput. Soc. 0, pp. 31–35, Los Alamitos, CA (2009)

Chan, T.: Impact of programming and application-specific knowledge on maintenance effort: A
hazard rate model. In: IEEE International Conference on Software Maintenance (ICSM’08),
pp. 47–56. IEEE, Orlando, FL (2008)

Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying nocuous ambiguities in natu-
ral language requirements. In: 14th IEEE International Conference Requirements Engineering,
pp. 59–68. Minneapolis, MN (2006)

Cleland-Huang, J., Chang, C.K., Christensen, M.: Event-based traceability for managing evolu-
tionary change. IEEE Trans. Softw. Eng. 29(9), 796–810 (2003)

Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best practices for
automated traceability. Computer 40, 27–35 (2007)

Factors Impacting the Inputs of Traceability Recovery Approaches 125

Cuddeback, D., JHH, Dekhtyar, A.: Automated Requirements Traceability: The Study of Human
Analysts. IEEE Computer Society, Los Alamitos, CA (2010)

De Lucia, A., Oliveto, R., Tortora, G.: Assessing IR-based traceability recovery tools through
controlled experiments. Empirical Softw. Eng. 14, 57–92 (2009)

Deissenboeck, F., Pizka, M.: Concise and consistent naming. Softw. Qual. J. 14, 261–282 (2006)
Dekhtyar, A., Hayes, J., Larsen, J.: Make the most of your time: How should the analyst work

with automated traceability tools? In: International Workshop on Predictor Models in Software
Engineering (PROMISE’07: ICSE Workshops 2007), pp. 1–4. Minneapolis, MN (2007)

Eder, J., Panagos, E., Rabinovich, M.: Time constraints in workflow systems. In: Proceedings of the
11th International Conference on Advanced Information Systems Engineering, pp. 286–300.
Springer, London, CAiSE ’99 (1999)

Egyed, A.: A scenario-driven approach to traceability. In: Proceedings of the 23rd International
Conference on Software Engineering (ICSE’01), pp. 123–132. Toronto, ON (2001)

Egyed, A., Grünbacher, P.: Automating requirements traceability: Beyond the record & replay
paradigm. In: ASE’02: Proceedings of the 17th IEEE international conference on Automated
software engineering, p. 163. IEEE Computer Society, Washington, DC (2002)

Egyed, A., Grünbacher, P.: Identifying requirements conflicts and cooperation: How quality
attributes and automated traceability can help. Softw. IEEE 21(6), 50–58 (2004)

Egyed, A., Biffl, S., Heindl, M., Grünbacher, P.: A value-based approach for understanding
costbenefit trade-offs during automated software traceability. In: Proceedings of the 3rd
International Workshop on Traceability in Emerging Forms of Software Engineering, pp. 2–7.
ACM, New York, NY, TEFSE ’05 (2005)

Egyed, A., Graf, F., Grünbacher, P.: Effort and quality of recovering requirements-to-code
traces: Two exploratory experiments. In: IEEE International Conference on Requirements
Engineering, pp. 221–230. IEEE Computer Society, Los Alamitos, CA (2010)

Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: The linguistic approach to the natural language
requirements quality: Benefit of the use of an automatic tool. In: Proceedings of the 26th Annual
NASA Goddard, Software Engineering Workshop, pp. 97–105. IEEE Computer Society, Los
Alamitos, CA (2001)

Gervasi, V., Zowghi, D.: On the role of ambiguity in requirement engineering. In: REFSQ,
pp. 248–254.Springer, Berlin/Heidelberg (2010)

Ghazarian, A.: A design-rule-based constructive approach to building traceable software. PhD
Thesis, Toronto, ON (2009)

Gibson, M.D., Conheeney, K.: Domain knowledge reuse during requirements engineering.
In: Proceedings of the 7th International Conference on Advanced Information Systems
Engineering, pp. 283–296. Springer, London (1995)

Gleich, B., Creighton, O., Kof, L.: Ambiguity Detection: Towards a Tool Explaining Ambiguity
Sources. Requirements Engineering: Foundation for Software Quality, pp. 218–232. Essen,
Germany (2010)

Gregorc, A.: An Adultâs Guide to Style. Gregorc Associates, Inc., Columbia, CT (1982)
Grünbacher, P., Briggs, R.: Surfacing tacit knowledge in requirements negotiation: Experiences

using easywinwin. In: Proceedings of the 34th Annual Hawaii International Conference on
System Sciences, 2001, p. 8 (2001)

Haiduc, S., Marcus, A.: On the use of domain terms in source code. In: The 16th IEEE International
Conference on Program Comprehension (ICPC’08), pp. 113–122 (2008)

Hall, T., Beecham, S., Rainer, A.: Requirements problems in twelve software companies: an
empirical analysis. Softw. IEE Proc. 149(5), 153–160 (2002)

Hart, S.G., Stavenland, L.E.: Development of NASA-TLX (Task Load Index): Results of empiri-
cal and theoretical research. In: Hancock, P.A., Meshkati, N. (eds) Human Mental Workload,
chap. 7, pp. 139–183. Elsevier, Amsterdam (1988)

Hausmann, J., Heckel, R., Taentzer, G.: Detection of conflicting functional requirements in a
use case-driven approach. In: Proceedings of the 24rd International Conference on Software
Engineering (ICSE’02), pp. 105–115. IEEE, Washington, DC (2005)

126 N. Ali et al.

Hayes, J.: Building a requirement fault taxonomy: Experiences from a NASA verification and vali-
dation research project. In: 14th International Symposium on Software Reliability Engineering,
(ISSRE’03). pp. 49–59. Denver, CO (2003a)

Hayes, J.H.: Building a requirement fault taxonomy: Experiences from a NASA verification and
validation research project. In: Proceedings of the 14th International Symposium on Software
Reliability Engineering. IEEE Computer Society, Washington, DC, ISSRE ’03 (2003b)

Hayes, J.H., Dekhtyar, A.: Humans in the traceability loop: Can’t live with ’em, can’t live without
’em. In: Proceedings of the 3rd International Workshop on Traceability in Emerging Forms of
Software Engineering, pp. 20–23. ACM, New York, NY. TEFSE ’05, doi: http://doi.acm.org/
10.1145/1107656.1107661 (2005)

Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via information retrieval.
In: RE ’03: Proceedings of the 11th IEEE International Conference on Requirements
Engineering, p. 138. IEEE Computer Society, Washington, DC (2003)

Hayes, J.H., Dekhtyar, A., Sundaram, S.: Text mining for software engineering: how analyst feed-
back impacts final results. In: Proceedings of the 2005 International Workshop on Mining
Software Repositories, pp. 1–5. ACM, New York, NY, MSR ’05 (2005)

Hayes, J.H., Antoniol, G., Guéhéneuc, Y.G.: Prereqir: Recovering pre-requirements via cluster
analysis, vol. 0, pp. 165–174. IEEE Computer Society, Los Alamitos, CA (2008)

Jirapanthong, W., Zisman, A.: Xtraque: Traceability for product line systems. Softw. Syst. Model.
8(1), 117–144 (2007)

Joseph, J.C.: Requirements engineering and management: The key to designing quality com-
plex systems. In: The TQM Magazine, vol. 12, pp. 400–407. MCB UP Ltd., Bradford, West
Yorkshire (2000)

Kamsties, E., Hormann, K., Schlich, M.: Requirements engineering in small and medium
enterprises. Req. Eng. 3(2), 84–90 (1998)

Kamsties, E., Berry, D., Paech, B.: Detecting ambiguities in requirements documents using
inspections. In: Workshop on Inspections in Software Engineering, pp. 68–80. Paris, France
(2001)

Kasser, J.: The first requirements elucidator demonstration (FRED) Tool. Syst. Eng. 7(3), 243–256
(2004)

Kitchenham, B., Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Systematic litera-
ture reviews in software engineering – A systematic literature review. Inform. Softw. Technol.
51, 7–15 (2009)

Lau, W., Yuen, A.: Exploring the effects of gender and learning styles on computer program-
ming performance: Implications for programming pedagogy. Brit. J. Educat. Technol. 40(4),
696–712 (2009)

Lawrie, D., Feild, H., Binkley, D.: Quantifying identifier quality: An analysis of trends. Empirical
Softw. Eng. 12, 359–388 (2007a)

Lawrie, D., Morrell, C., Feild, H., Binkley, D. : What’s in a name? A study of identifiers. In:
Proceedings of the 14th IEEE International Conference on Program Comprehension, pp. 3–12.
IEEE Computer Society, Washington, DC (2006)

Lawrie, D., Morrell, C., Feild, H., Binkley, D.: Effective identifier names for comprehension and
memory. Innov. Syst. Softw. Eng. 3, 303–318 (2007b)

Lee, J., Kuo, J.: New approach to requirements trade-off analysis for complex systems. Knowl.
Data Eng. IEEE Trans. 10(4), 551–562 (2002)

Lucia, A.D., Fasano, F., Oliveto, R., Tortora, G.: Adams Re-Trace: A Traceability Recovery Tool,
vol. 0, pp. 32–41. IEEE Computer Society, Los Alamitos, CA (2005)

Lucia, A.D., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in software artifact
management systems using information retrieval methods. ACM Trans. Softw. Eng. Methodol.
16, 1301–1350 (2007)

Lucia, A.D., Penta, M.D., Oliveto, R.: Improving source code lexicon via traceability and
information retrieval. IEEE Trans. Softw. Eng. 99, 205–227 (2010)

http://doi.acm.org/10.1145/1107656.1107661
http://doi.acm.org/10.1145/1107656.1107661

Factors Impacting the Inputs of Traceability Recovery Approaches 127

Lucia, A.D., Penta, M.D., Oliveto, R., Zurolo, F.: Coconut: Code Comprehension Nurturant Using
Traceability, pp. 274–275. IEEE Computer Society, Los Alamitos, CA (2006)

Madani, N., Guerrouj, L., Di Penta, M., Guéhéneuc, Y.G., Antoniol, G.: Recognizing words from
source code identifiers using speech recognition techniques. In: Proceeding of the Conference
on Software Maintenance and Reengineering, pp. 69–78. IEEE, Madrid, Spain (2010)

Maletic, J., Munson, E., Marcus, A., Nguyen, T.: Using a hypertext model for traceability link
conformance analysis. In: Proceedings of the 2nd International Workshop on Traceability in
Emerging Forms of Software Engineering, pp. 47–54. Montreal, Canada (2003)

Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability links using latent
semantic indexing. In: ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, pp. 125–135. IEEE Computer Society, Washington, DC (2003)

Marcus, A., Poshyvanyk, D.: The conceptual cohesion of classes. In: Proceedings of the 21st IEEE
International Conference on Software Maintenance, pp. 133–142. IEEE Computer Society,
Washington, DC (2005)

Moha, N., Guéhéneuc, Y.G., Duchien, L., Le Meur, A.F.: Decor: A method for the specification
and detection of code and design smells. Softw. Eng. IEEE Trans. 36(1), 20–36 (2010)

Oliveto, R., Gethers, M., Poshyvanyk, D., De Lucia, A.: On the equivalence of information retrieval
methods for automated traceability link recovery. In: Proceedings of the 2010 IEEE 18th
International Conference on Program Comprehension, pp. 68–71. IEEE Computer Society,
Washington, DC, ICPC ’10 (2010)

Park, Y., Black, J.: Identifying the impact of domain knowledge and cognitive style on webbased
information search behavior. J. Educat. Comput. Res. 36(1), 15–37 (2007)

Rajlich, V., Wilde, N.: The role of concepts in program comprehension. In: Proceedings of the
10th International Workshop on Program Comprehension, p. 271. IEEE Computer Society,
Washington, DC, IWPC ’02 (2002)

Sherba, S.A.: Towards automating traceability: An incremental and scalable approach. PhD Thesis,
Boulder, CO (2005)

Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn.
Chapman & Hall/CRC, London (2007)

Soloway, E., Ehrlich, K.: Empirical Studies of Programming Knowledge, pp. 235–267. ACM, New
York, NY (1989)

Spanoudakis, G., Zisman, A., Pérez-Minana, E., Krause, P.: Rule-based generation of requirements
traceability relations. J. Syst. Softw. 72(2), 105–127 (2004)

Sundaram, S.K., Hayes, J.H., Dekhtyar, A.: Baselines in requirements tracing. In: Proceedings of
the 2005 Workshop on Predictor Models in Software Engineering, pp. 1–6, ACM, New York,
NY (2005)

Taira, M.: The influence of domain knowledge and task requirement on the selection of learning
strategies in the internet. Int. J. Creativ. Probl. Solv. 18(1), 45–53 (2008)

Takang, A.A., Grubb, P.A., Macredie, R.D.: The effects of comments and identifier names on
program comprehensibility: An experimental investigation. J. Program. Lang. 4(3), 143–167
(1996)

Wake, W.C.: Refactoring Workbook. Addison-Wesley Longman Publishing Co. Inc., Boston, MA
(2003)

Zisman, A., Spanoudakis, G., Pérez-Miñana, E., Krause, P.: Towards a traceability approach for
product families requirements. In: Proceedings of 3rd ICSE Workshop on Software Product
Lines: Economics, Architectures, and Implications, Orlando, FL (2002)

Automated Techniques for Capturing Custom
Traceability Links Across Heterogeneous
Artifacts

Hazeline U. Asuncion and Richard N. Taylor

1 Motivation

The goal of software traceability is to identify relevant relationships between arti-
facts produced in a software life cycle. When fully realized, traceability enables
the efficient retrieval of related artifacts, which is useful in a variety of software
engineering tasks such as software maintenance, system comprehension and sys-
tem debugging (Anderson et al., 2002; Ramesh et al., 1995; Richardson and Green
2004). Meanwhile, software development projects are increasingly becoming more
distributed, decentralized, and dependent on third party software, motivating the
need for effective traceability techniques.

Ideally, we are interested in providing traceability support for a wide range of
scenarios. For instance, an architect may want to capture links between the sys-
tem design and the rationale embedded in different artifacts (e.g., requirements
documents, screen mockups, use cases). A developer may then need to navigate
from code to its rationale to better understand how to implement the system. As
another example, a QA engineer may need to capture verification traceability links
from test cases and test reports to requirements. However, current automated trace-
ability approaches (Marcus and Maletic, 2003; Spanoudakis et al., 2004) fall short
of supporting these scenarios. For example, difficulties exist in tracing across tool
boundaries (Ramesh et al., 1995); moreover, the automated capture of traceability
link information is often limited to text-based artifacts (Spanoudakis et al., 2004).
Varied stakeholder interests in traceability (Gotel and Finkelstein, 1994) also require
customization support, such as tailoring the granularity of trace capture and the
types of artifacts to trace.

In this chapter, we present our set of trace capture techniques and our tool support
for these usage scenarios. The techniques presented in this chapter are part of our
Architecture-Centric Traceability for Stakeholders (ACTS) framework (Asuncion
and Taylor, 2011). We capture traceability links prospectively by analyzing user

H.U. Asuncion (B)
Computing and Software Systems, University of Washington, Bothell, WA, USA
e-mail: hazeline@u.washington.edu

129J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_6, C© Springer-Verlag London Limited 2012

130 H.U. Asuncion and R.N. Taylor

interactions with the artifact within the context of a particular development task,
such as analyzing requirements, creating or editing design documents, or writing
code. Thus, we capture traceability links in situ, while artifacts are generated or
modified. It is different from (but complementary with) trace recovery techniques
that identify candidate traceability links retrospectively from existing artifacts, by
using information retrieval or machine learning techniques to analyze text-based
documents (De Lucia et al., 2011; Grechanik et al., 2007; Kagdi et al., 2007;
Marcus and Maletic, 2003). In addition, since we can capture temporal or contextual
relationships between artifacts, we can use this information to link together het-
erogeneous artifacts. Moreover, our set of techniques can be combined with other
methods, such as those used in trace recovery. We show later in the chapter how
we combine our trace capture technique with third party search tools. In previous
work, we have also combined prospective trace capture with a machine learning
technique known as topic modeling, to guide trace capture and to semi-automate
the post-analysis of captured traceability links (Asuncion et al., 2010).

Our techniques use open hypermedia concepts (Anderson et al., 2000) and cus-
tomizable rules as the underlying mechanisms. Open hypermedia concepts support
capturing traceability links across tool boundaries and rendering artifacts at dif-
ferent levels of granularity. In addition, customizable rules enable users to choose
the artifacts to trace and to specify traceability link information, such as the trace
relationship.

This chapter is organized as follows. In the next section, we discuss our tech-
niques using the mobile phone case study in Appendix C. Section 3 covers the
limitations of our techniques. In Section 4, we compare our techniques to related
traceability approaches.

2 Techniques for Automating the Trace Capture

In this section, we illustrate how our traceability techniques can be incorporated into
a software development context. Our tool support, referred to as the ACTS traceabil-
ity system, or simply ACTS, is implemented on top of ArchStudio (Dashofy et al.,
2007), a mature environment for architecture-centric development that is integrated
with Eclipse. ACTS is designed to focus all the traceability links to one central arti-
fact, which we refer to as the primary artifact. The primary artifact used in ACTS
is the structural architecture, although it is also possible to relate artifacts to other
primary artifacts such as requirements or test cases.

Using the mobile phone case study, we illustrate the main features of our tech-
niques: trace capture across heterogeneous artifacts, easy access to these traced
artifacts, maintenance of captured links, and usage of off-the-shelf search tools to
guide the trace capture. This case study consists of artifacts of various file types,
such as Word documents, PDF files, PowerPoint files, Excel spreadsheets, web
pages, and structural designs of the mobile phone. We also show how trace capture
can be performed at different levels of granularity.

The following subsections are organized as follows. We first present a usage
scenario and we explain how the ACTS tool can support the scenario. We cover

Automated Techniques for Capturing Custom Traceability Links Across . . . 131

the usage scenarios of integrating third-party tools into a traceability system, incor-
porating custom rules, capturing traceability links, combining trace capture with
third-party search tools, and maintaining traceability links over time. We then pro-
vide a “behind the scenes” look into how our techniques perform these traceability
tasks. An in-depth technical discussion of our techniques can be found in (Asuncion
and Taylor, 2011).

2.1 Integrating Third-Party Tools

In this scenario, we will examine how we can cross tool boundaries in capturing
traceability links.

2.1.1 Usage Scenario

Let us follow the scenario of a maintenance engineer trying to understand the mobile
phone product line in order to modify the Messaging Subsystem of the phone. The
maintenance engineer would like to capture traceability links to artifacts that are
generated by different tools. This is a common scenario in software development,
since a development team often uses different tools to generate various artifacts over
the course of a development life cycle.

We can support such a scenario by integrating third-party tools into the ACTS
tool through open hypermedia adapters (discussed in the next section). The adapters
can be used to capture possible traceability links, display traced artifacts within the
third-party tool, or check for link updates. Once the adapters are built, they can be
integrated into the ACTS tool through the Preferences user interface. The current
implementation of ACTS has tool-specific adapters for MS Word 2007, MS Excel
2007, MS PowerPoint 2007, Mozilla Firefox 3, Adobe Acrobat 9, and ArchStudio
4 running on Eclipse 3.4.2.

2.1.2 Techniques Behind the Scenes

The field of open hypermedia provides techniques for managing relationships
between heterogeneous artifacts and tools (Anderson et al., 2000). Third-party tools
can be incorporated into the ACTS traceability system by building open hypermedia
adapters for these tools. These adapters, referred to as viewers in hypermedia sys-
tems (Anderson et al., 2000), are used to render, or display, the traced information
at a specified location within a specified tool (e.g., display a specific page in Adobe
Acrobat). In addition to the concept of rendering adapters, we created recording
and notification adapters. Recording adapters capture user interactions and notifi-
cation adapters detect changes to traced artifacts. We will discuss these specialized
adapters in more detail in the next sections.

Tool-specific adapters are built independently of the ACTS traceability system.
These adapters use the third-party tool’s public application programming interfaces
(APIs) to perform their various functions. While an adapter is an executable invoked
by the ACTS traceability system, it has no awareness of the ACTS tool. This design

132 H.U. Asuncion and R.N. Taylor

Fig. 1 Recorded events when a comment is added in Adobe Acrobat

simplifies the construction of adapters—they do not need to know anything about
how the ACTS tool is implemented or how it functions. They simply need to capture
user interactions, record the interactions using a uniform event model (discussed
below), render a traced artifact, and detect changes to traced artifacts. Because of
this loose-coupling, control flow always goes from ACTS to the adapters. Once the
adapters finish execution, ACTS resumes execution. Any data that is passed back
to ACTS is through a shared location that can be specified in the Preferences user
interface of the ACTS tool.

To facilitate linking across tool boundaries, the recorded user interactions must
follow a uniform event model (see Fig. 1). The event model, which is independent
of the third party tool and is represented in XML, contains a log of actions, with
each action containing the type of event, the resource, and a timestamp of the event.
The partial event log in Fig. 1 shows the recorded user actions of adding a popup
comment and typing a comment. The resource provides the full path to the traced
artifact, including a specific location within the artifact as indicated by the “#”. In
this case, the “#” sign indicates the page number of the artifact.

2.2 Incorporating Custom Rules

In the previous section, we showed how third-party tools can be integrated into
a traceability system. In this section, we will show how to create custom rules,
represented as XSL Transformations (XSLT), to analyze the recorded events and
to transform them into traceability links.

2.2.1 Usage Scenario

Let us suppose that our maintenance engineer wants to tailor the granularity of
the traceability link capture as well as to automatically assign a relationship to the
captured traceability link.

With regards to the granularity of trace capture, our engineer is only interested
in capturing traceability links at the granularity of cells for spreadsheet artifacts. To

Automated Techniques for Capturing Custom Traceability Links Across . . . 133

Fig. 2 Record rule that filters Excel events occurring in non-cell locations

support this scenario, we can create a record rule that discards all potential links to
a spreadsheet file, indicated by a .xls file, that do not link to a cell or group of cells.
Line 34 in Fig. 2 shows the check for this condition: if the artifact being examined
is an Excel spreadsheet, check if it also points to cell(s), which is indicated by a “$”;
however, if this latter condition is not met, filter out the current artifact and proceed
to examine the next artifact, as indicated by the call to the nextObject template;
otherwise create a traceability link to this artifact.

With regard to specifying the traceability link relationship, we can support this
scenario by creating an add relationship rule. One example is to assign a relationship
type based on the artifact that will be traced. This rule will first extract specific
words from the path of the artifact and then it will assign a relationship based on the
extracted words. For instance, if a resource path contains the keyword “process”,
then assign the relationship as “behavior”. Figure 3 shows some of the relationships
assigned based on keywords.

2.2.2 Techniques Behind the Scenes

Rules are used to process captured user interactions and transform them into trace-
ability links. Because these rules are external to the ACTS tool, users can apply their

Fig. 3 Partial add relationship rule based on keywords on the artifact’s path

134 H.U. Asuncion and R.N. Taylor

own heuristics in determining valid traceability links. Rules may also be used to
automatically assign traceability link information, such as traceability relationship
type.

As you saw, rules are expressed as XSLT and we use Xalan as our rule engine.
An XSLT specifies how to transform a portion of an event log in XML (see Fig. 1)
that matches a given pattern. The current implementation includes a set of sample
rules that users may take and customize for their use. To start using a newly created
rule, users simply specify the rule’s path in the ACTS Preferences user interface. In
our scenarios, we showed you examples of two types of rules: record rules and add
relationship rules.

Record rules are rules that determine valid traceability links. Record rules ana-
lyze user events for a matching pattern of interaction to create traceability links
between accessed artifacts. Record rules are also used to minimize noise by filter-
ing unnecessary user interactions (such as jitters (Singer et al., 2005) and duplicate
pointers to the same artifact). Since traceability links can have multiple endpoints,
rules are also used to determine which set of endpoints can be grouped together as
one traceability link.

Add relationship rules are used to assign traceability relationship based on the
context in which the artifacts are traced. In our scenario, the relationship was based
on the presence of words on the artifact path. Relationships may also be assigned
based on a pattern of access. For example, if a requirements document is con-
currently accessed with the software architecture, traceability links captured may
automatically be assigned a “rationale” relationship.

2.3 Capturing Traceability Links

The previous sections covered how to incorporate tool adapters and custom rules
into the ACTS tool. This section will illustrate the process of capturing traceability
links across different artifacts.

2.3.1 Usage Scenario

Let us follow the scenario of a maintenance engineer going through various doc-
uments for the purpose of understanding the mobile phone product line. These
documents include structural designs in ArchStudio, descriptions of the messaging
subsystem in Adobe Acrobat, process models in PowerPoint, and a list of pro-
cesses in Excel. Since the maintenance engineer wants to refer back to these visited
artifacts, the engineer captures traceability links using the ACTS tool.

Prior to a recording session, the engineer indicates whether to apply the rules
interactively or in the background. In interactive rule application, the tool will
prompt the user for the rules to apply after each recording session. After a rule
is applied, a dialog box shows the status of the transformation. Background rule
application enables users to pre-specify a set of rules to apply after each recording
session. While interactive rule application may require more time from users, this

Automated Techniques for Capturing Custom Traceability Links Across . . . 135

mode is useful when determining if the rules are correctly specified. When the users
are comfortable with the rules, they can then switch to background application. We
found that some users prefer the control that interactive rule application provides
over the background rule application (Asuncion and Taylor, 2011). In this scenario,
the engineer uses the interactive rule application.

Figure 4 shows ArchStudio with the ACTS tool on the right side of the screen.
The Outline View on the left shows the various structural designs created for the
mobile phone system. The current selection, SubsystemModules, shows the top
level structure of the modules in the mobile phone product line. The Mobile Internet
Subsystem and the Messaging Subsystem both have substructures or subarchitec-
tures and one can focus on these structures by selecting the MobileInternet_Module
or the SMS_Module. Elements of the substructures are also selectable and viewable
(by zooming in) within the top level view. Because ArchStudio can model many
levels of substructure design, artifacts can be traced to these different levels.

After the engineer specifies how to apply the rules, in this case interactively,
the engineer starts recording via the Start Record button. The status indicator then
shows that the tool is in record mode (highlighted in Fig. 4). Links to the Messaging
Subsystem and its internal components are captured first. To capture links to arti-
facts, they are opened through the browse button next to the Stop Recording button.
After the recording session, the tool displays the captured user interaction events

Fig. 4 ACTS, on the right side of the screen, is built on top of ArchStudio. Various structures of
the mobile phone are listed in the outline view on the left

136 H.U. Asuncion and R.N. Taylor

and checks with the user whether to transform these events into traceability links. If
the user indicates yes, the tool prompts the user to select a rule to apply.

The engineer can verify whether a rule behaves as expected by examining the
transformed event logs displayed in ACTS. After applying the record rule, the engi-
neer can see that pointers to spreadsheets are limited to cell locations. Applying the
add relationship rule also assigned the traceability relationships “behavior” to the
artifacts that contain the word “process” and “description” to artifacts that contain
the words “MobilePhone”.

After the events are transformed into traceability links, they are then added to
the linkbase and displayed in a table in ACTS (see the highlighted table in Fig. 5).
The figure shows that the rules are indeed working properly. Other traceability link
information, such as capture mode, timestamp, and author of the link, are also shown
in the table.

Once the traceability links are shown in the table, they may be deleted or navi-
gated. Traceability links may be deleted by selecting “Delete Link” in the context
menu.

2.3.2 Techniques Behind the Scenes

We now discuss the techniques used in this scenario: recording adapters, first-class
traceability links, and independent linkbase.

Fig. 5 Navigating the traceability links renders the artifacts within their native editor and at the
appropriate location within the artifact

Automated Techniques for Capturing Custom Traceability Links Across . . . 137

Recording adapters. We capture potential traceability links via recording
adapters. Recording adapters detect user’s interactions with artifacts within the
context of the tool editor. Recording adapters use either the tool’s public APIs or
the tool’s built-in history log (e.g. web browser) to extract the user interaction.
Recording adapters may also selectively listen to specific events, instead of cap-
turing all user interactions, to reduce noise. The recorded user interactions, such
as those recorded in our first scenario (Fig. 1), are processed by rules to determine
valid traceability links.

In order to minimize noise, recording adapters are invoked explicitly by the user
when the user switches to the record mode and opens artifacts through the ACTS
interface. For instance, if an .xls file is selected, the recording adapter for MS Excel
is invoked and will capture user interaction events until the user decides to close the
file. To further minimize the noise, traceability links can only be captured across
tools with built adapters.

First-class traceability links. Traceability links are first class objects, i.e., they
are represented as separate and independent entities from the artifacts they connect
(Anderson et al., 2000). This first class representation enables capturing additional
information, such as the user who captured the traceability link (referred to as
author), timestamp of trace capture, traceability relationship, capture mode, link sta-
tus, and action(s) to take when navigating a traceability link. Relationship indicates
the traceability relationship type. Capture mode indicates whether the traceability
link was recorded, recovered (via third party search tools), or manually specified
by the user, since the trace tool integrates various means of generating traceability
links. Link status indicates whether the traced artifact changed (see Section 2.6).
An action is another operation that the tool may perform when a traceability link
is navigated. Thus, an action may point to scripts or executables that will be
invoked when accessing a traced artifact. An example of an action is highlight-
ing a traced paragraph when it is rendered. Raising the status of traceability links as
first class objects also facilitates modeling, querying and visualizing traceability link
information.

Traceability links are n-ary, that is they can have multiple endpoints.
Consequently, artifacts that have a point of commonality can be grouped together
into one traceability link. In addition, the endpoints can themselves be traceability
links, enabling hierarchical modeling of traceability links and the composition of
multiple traceability links. Hierarchical representation of traceability links can be
useful when tracing course-grained to fine-grained artifacts (e.g. high level to low
level requirements).

Independent linkbase. Traceability links are also stored outside the artifacts
they connect, in an independent traceability linkbase, in contrast to the link repre-
sentation used by the WWW. There are several advantages to managing traceability
links through this model. It is possible to link together read-only third-party arti-
facts. Traceability links may also be accessed and manipulated by a variety of tools
(i.e., not tied to a particular technology) while maintaining a consistent data model.
Additionally, traceability link maintenance is possible. If an anchor is removed, all
the pointers to that anchor will also be removed.

138 H.U. Asuncion and R.N. Taylor

2.4 Accessing Captured Traceability Links

In this section, we show how the captured traceability links can be accessed.

2.4.1 Usage Scenario

Let us suppose that our maintenance engineer wants to revisit the artifacts that were
traced by the ACTS tool. Once the traceability links are shown in the table, they may
be accessed by double-clicking each traceability link. Doing so opens the files at the
specified location within their native editors. Figure 5 shows that we can access
artifacts at different levels of granularity, a page in an Adobe Acrobat file, a slide in
a PowerPoint file, and a group of cells in an Excel file.

2.4.2 Technique Behind the Scenes

We facilitate access to artifacts via rendering adapters. Rendering adapters display
the captured traceability links within its default tool. Thus, when a user navigates
a traceability link, the ACTS traceability system invokes the appropriate adapter.
The rendering adapter receives the full path of the artifact to display, invokes the
default tool, and directs the tool to open the artifact. If a specific location within the
artifact has been included in the path, the adapter will direct the tool to render at
the specified location. Depending on the artifact, this location might be an anchor
in a web page, a cell within a worksheet within a spreadsheet, or a page within
a document. Because the rendering adapters are tool-specific, they understand the
level of granularity being specified by the “#”. In the example, the PDF rendering
adapters understand that “#6” means page 7 because the Adobe Acrobat API starts
page numbers with “0”. Thus, the granularity of the traceability link endpoints can
be flexibly specified. This flexibility is useful when linking to course-grained arti-
facts, such as a voluminous document, and it is unclear which portion of the artifact
is traced.

2.5 Combining Trace Capture with Integrated Search Tools

In this section, we show how our trace capture technique can leverage the features
of search tools in identifying traceability links.

2.5.1 Usage Scenario

Let us suppose that our maintenance engineer wants to capture traceability links to
online documentation, but is unable to recall the URL of the documentation. Our
engineer decides to use a search engine, which happens to be Google, to help find
the online documentation. In Fig. 6, for example, Google is used to look for pos-
sible web resources related to the Camera module in Product Member 1 (Step 1).

Automated Techniques for Capturing Custom Traceability Links Across . . . 139

Fig. 6 Steps in combining a search tool with our traceability capture

Once Google’s search results are obtained (Step 2), record mode is engaged (Step 3),
certain Google links are traversed (Step 4), and sites that the user selects from the
search results and navigates to are captured (Steps 5 & 6 in Fig. 7). After record-
ing, ACTS adds the traceability links to these web resources in the table (Step 7).
Thus, recording user selections from a set of possible traceability links provided by
a search tool can be used to capture traceability links.

Fig. 7 Continuation of steps in combining a search tool with our traceability capture

140 H.U. Asuncion and R.N. Taylor

2.5.2 Technique Behind the Scenes

Trace capture can be combined with third party search tools. We integrated into
ACTS the Google search engine.

To use off-the-shelf search tools like Google, the recover functionality simply
creates a traceability link with an endpoint to the Google site and the parameters
to include the search term, which is automatically assigned to the component that
is selected. Once we start recording, our browser adapter simply tracks the pages
that were visited and includes them in the event log. After the recording session, the
rules transform the visited sites into traceability links.

2.6 Maintaining Traceability Links

Over time, traced artifacts may change and pointers to the artifacts may become
obsolete. In ACTS, notification adapters check for changes to artifacts and per-
form appropriate updates to traceability link locations and-or to traceability link
status.

2.6.1 Usage Scenario

Let us suppose that our maintenance engineer modifies the traced artifacts. Figure 8
(highlighted box) shows the status of Messaging Controller’s traceability link to cell

Fig. 8 Blank status in the traced artifacts indicates no change has occured

Automated Techniques for Capturing Custom Traceability Links Across . . . 141

Fig. 9 The modified traced artifact, ProcessModels

location, A3, in the ProcessModels.xlsx Table 6 Worksheet. It shows that the status
is blank, indicating that the traceability link has not been changed. Similarly, the
module Connecting has a link to another cell location, A4, in the same worksheet.
Now suppose the ProcessModels file is modified such that the contents of cell A3
are deleted and a row is inserted between rows 3 and 4. The modified artifact is
shown in Fig. 9. These changes result in deleted and moved traceability links.

At some later time, our maintenance engineer can check and update the status
of the traceability links. By invoking “Update Links” and “Refresh,” the status of
Messaging Controller’s traceability link to A3 is changed to “deleted.” In addition,
the status of Connecting’s traceability link to A4 is changed to “moved” and the link
now points to cell A5 (see Fig. 10).

2.6.2 Technique Behind the Scenes

We maintain traceability links using notification adapters. Notification adapters
check whether the traced artifact has been deleted, moved, or revised. Notification
adapters run heuristics to determine which of these updates has been performed. For
instance, if a traced file is no longer found in the current location, the adapter will
run a search for the file within a specified scope, such as within a directory in a file
server. If the file is still not found within this scope, the status of the traceability
link will be specified as “deleted”. If the file is found, the status of the traceability
link will be notated as “moved” and the traceability link will be updated to the first
found location. On the other hand, if the file is found in the original location, the
adapter will run heuristics to determine whether the file has been modified. If so,
the status will be updated to “revised”. If the file has not been modified, the status

142 H.U. Asuncion and R.N. Taylor

Fig. 10 Updated status of the traced artifacts

is left blank to indicate that no change has occurred. Moreover, since we capture
traceability links at different levels of granularity, we use different types of heuris-
tics to determine updates at these different levels. For example, if a traceability link
is specified at the slide level in PowerPoint, the search for the slide will only be
limited within the context of the PowerPoint file.

In our scenario, the tool was able to find the new location of the traceability
link by searching through the file for a cell that contains the string “Connecting”.
If the content of the cell was not captured, the traceability link would continue to
point to the same location, cell A4, since the tool could not determine whether the
traceability link had actually moved. In essence, the captured content of the cell
acts as a traceability link anchor. While this example is quite simplistic, the idea is
applicable to other artifacts, such as documents.

When handling updates at the file level, the space in which to search for the file
(e.g., local machine, local server, local network) must be specified. Determining
if the artifact has changed may also require techniques other than string match-
ing, such as comparing the artifact’s previous snapshot with the current version or
checking the logs of a configuration management system.

Notification adapters are invoked explicitly by users. When “Update Links” has
been invoked, ACTS will go through each traceability link, invoking the appropriate
adapters. For example, if the tool encounters a Word document file, it invokes the
notification adapter for MS Word. The adapter runs its heuristics and determines the
status of the traced artifact.

Automated Techniques for Capturing Custom Traceability Links Across . . . 143

3 Limitations

To integrate third party tools into the ACTS traceability system, each tool must pro-
vide a means for detecting user interactions, in the form of public APIs or built-in
history logs. If a tool does not have these capabilities, then the technique cannot cap-
ture traceability links to the artifact created by that tool. While this problem exists
for some proprietary tools, more tools are now providing open APIs that enable user
customization (Eclipse Foundation, 2011; Microsoft Corporation, 2011; Mozilla,
2011). The growing usage of open source tools also indicates that our approach is
feasible in many development contexts (Alspaugh et al., 2009).

The current implementation of rules requires an expert technical user who is
responsible for creating and modifying rules for other users. This is perhaps not an
unreasonable expectation, since current off-the-shelf traceability tools also require
a tool administrator (Asuncion et al., 2007). More work is needed to make the rules
more accessible to a broader audience.

Scaling the approach to large-scale software development projects is another
interesting avenue for future work. The current implementation of rules and noti-
fication adapters may incur performance overhead when processing large numbers
of user interaction events and traceability links. To address this, more sophisticated
rule engines may be used and processing may be scheduled offline.

4 Rationale and Related Work

Manually capturing traceability links is a labor intensive and time consuming task.
Without any automated support, capturing traceability links is typically infeasible
in practice, especially for large-scale projects. Consequently, various automated
approaches have been proposed to minimize human intervention in generating trace-
ability links. Trace recovery techniques (De Lucia et al., 2011; Grechanik et al.,
2007; Kagdi et al., 2007; Marcus and Maletic, 2003) often use data mining or
machine learning techniques to generate candidate traceability links among an
existing set of software artifacts that are textually represented.

Our trace capture technique, in contrast, automatically captures traceability links
while a stakeholder interacts with the various artifacts. This technique offers the
following features: in situ trace capture, trace capture across heterogeneously rep-
resented artifacts, and trace capture across different levels of granularity. Our
technique also facilitates traceability link maintenance.

In situ trace capture. Since traceability links are created in the background
while users are performing their usual development tasks, effort in trace capture
is minimized. One reason important information is often left untraced is the lack of
time and resources for capturing traces (Gotel and Finkelstein, 1994); thus, trac-
ing in an online fashion is desirable, but current tool support has been lacking
(von Knethen and Paech, 2002). Some trace capture techniques are heavyweight,
requiring explicit modeling of the development process (Pohl, 1996) or formal spec-
ification of relations between objects (Pinheiro and Goguen, 1996) prior to recording

144 H.U. Asuncion and R.N. Taylor

traceability links. Our technique does require some setup overhead, such as creat-
ing tool-specific adapters and rules prior to recording traceability links. However,
once these adapters and rules are in place, users can continue to work with their
usual development tools and follow their development process. The development of
adapters and rules are limited to tools and heuristics users choose to employ.

Another set of prospective trace capture techniques are transformation and trans-
lation techniques. Transformation techniques, which are often used in model-driven
development, generate traceability links based on the transformations of two adja-
cent models (Richardson and Green, 2004). This technique is limited to tracing
between structured or semi-structured artifacts. Translation techniques meanwhile
translate heterogeneous artifacts into a homogeneous format (Anderson et al., 2002).
Traceability links can then be automatically generated. This technique is also limited
to text-based artifacts.

Trace capture across heterogeneous artifacts. Current automated techniques
also have difficulties with tracing across large unstructured documents as well
as tracing artifacts with different formats (Hayes and Dekhtyar, 2006). Our tech-
nique can capture traceability links across heterogeneously represented artifacts
with tool-specific recorders, provided that third-party tools have public application
programming interfaces to detect user interactions or have history logs.

Trace capture across different levels of granularity. Since the level of granu-
larity of linking varies from one situation to another (Hayes and Dekhtyar, 2007), it
is important to flexibly link at different levels of granularity. Existing tools support
linking across predefined levels of granularity: between concerns in the architecture
and source code (Nistor, 2009) and between tasks and source code (Kersten and
Murphy, 2005). Our approach captures traceability links at different levels of gran-
ularity, e.g. page level, or element level. Moreover, users can choose the granularity
of trace capture by tailoring the recording adapter to only record events at a specified
granularity or by creating rules to filter the linked artifacts.

Trace maintenance. Current techniques to maintaining traceability links include
using events to notify traced artifacts of changes (Cleland-Huang et al., 2003), ana-
lyzing source code commits (Ratanotayanon et al., 2009), and using rules to analyze
transformations from one model to another (Mäder et al., 2008). Our approach uses
notification adapters, which encapsulates heuristics specific to an artifact type, to
determine whether traced artifacts have changed.

5 Conclusion

This chapter presented a set of general automated techniques for linking together
heterogeneous software artifacts at various levels of granularity. With our set of
techniques, traceability links can be captured in situ and can be effectively main-
tained over time. Moreover, third party tools can be incorporated into our approach
and custom heuristics can be represented as rules, enhancing accessibility and
customizability. While several areas of future work remain, such as improving scala-
bility, and incorporating more sophisticated maintenance techniques, our techniques

Automated Techniques for Capturing Custom Traceability Links Across . . . 145

provide a practical step towards effectively managing distributed and heterogeneous
information found in many software development projects.

Acknowledgments The authors would like to thank S. Cutler, D. Kwok, C. Leu, A. Marron,
J. Meevasin, H. Pham, D. Purpura, and A. Rahnemoon for tool development. This research has
been supported by grants from the National Science Foundation IIS-0808783 and CCF-0917129.

References

Alspaugh, T.A., Asuncion, H.U., Scacchi, W.: Intellectual property rights requirements
for heterogeneously-licensed systems. In: Proceedings of the International Requirements
Engineering Conference (2009)

Anderson, K.M., Sherba, S.A., Lepthien, W.V.: Towards large-scale information integration. In:
Proceedings of the International Conference on Software Engineering (2002)

Anderson, K.M., Taylor, R.N., Whitehead, E.J.Jr.: Chimera: Hypermedia for heterogeneous
software development environments. ACM Trans. Inf. Syst. 18(3), 211–245 (2000)

Asuncion, H., François, F., Taylor, R.N.: An end-to-end industrial software traceability tool. In:
Proceedings of the Joint Meeting of the European Software Engineering Conference and the
SIGSOFT International Symposium on the Foundations of Software Engineering. (2007)

Asuncion, H.U., Asuncion, A.U., Taylor, R.N.: Software traceability with topic modeling. In:
Proceedings of the International Conference on Software Engineering (2010)

Asuncion, H.U., Taylor, R.N.: Architecture-Centric Traceability for Stakeholders: Technical
Foundations. Technical Report UCI-ISR-11-2, University of California, Irvine, CA (2011)

Cleland-Huang, J., Chang, C.K., Christensen, M.: Event-based traceability for managing evolu-
tionary change. Trans. Softw. Eng. 29(9), 796–810 (2003)

Dashofy, E.M., Asuncion, H., Hendrickson, S.A., Suryanarayana, G., Georgas, J.C., Taylor, R.N.:
ArchStudio 4: An architecture-based meta-modeling environment. In: Proceedings of the
International Conference on Software Engineering, volume Informal Research Demonstrations
(2007)

De Lucia, A., Di Penta, M., Oliveto, R.: Improving source code lexicon via traceability and
information retrieval. Trans. Softw. Eng. 37(2), 205 –227 (2011)

Eclipse Foundation: Eclipse. http://www.eclipse.org (2011)
Gotel, O., Finkelstein, A.: An analysis of the requirements traceability problem. In: Proceedings

of the International Conference on Requirements Engineering (1994)
Grechanik, M., McKinley, K.S., Perry, D.E.: Recovering and using use-case-diagram-to-source-

code traceability links. In: Proceedings of the Joint Meeting of the European Software
Engineering Conference and the SIGSOFT International Symposium on the Foundations of
Software Engineering (2007)

Hayes, J., Dekhtyar, A.: Grand challenges for traceability. Technical Report COET-GCT-06-01-0.9,
Center of Excellence for Traceability, http://www.coest.org (2006)

Kagdi, H., Maletic, J.I., Sharif, B.: Mining software repositories for traceability links. In:
Proceedings of the International Conference on Program Comprehension (2007)

Kersten, M., Murphy, G.C.: Mylar: A degree-of-interest model for IDEs. In: Proceedings of
International Conference on Aspect-oriented Software Development (2005)

Mäder, P., Gotel, O., Philippow, I.: Rule-based maintenance of post-requirements traceability
relations. In: Proceedings of the International Requirements Engineering Conference (2008)

Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability links using latent
semantic indexing. In: Proceedings of the International Conference on Software Engineering
(2003)

Microsoft Corporation: Microsoft Office. http://office.microsoft.com (2011)
Mozilla: Firefox. http://www.mozilla.com/en-US/firefox/ (2011)

http://www.eclipse.org
http://www.coest.org
http://office.microsoft.com
http://www.mozilla.com/en-US/firefox/

146 H.U. Asuncion and R.N. Taylor

Nistor, E.: Concern-driven software evolution. Ph.D. Thesis. (Info & Computer Science), UC,
Irvine (2009)

Pinheiro, F.A.C., Goguen, J.A.: An object-oriented tool for tracing requirements. Software 13(2),
52–64 (1996)

Pohl, K.: PRO-ART: Enabling requirements pre-traceability. In: Proceedings of the International
Conference on Requirements Engineering (1996)

Ramesh, B., Powers, T., Stubbs, C., Edwards, M.: Implementing requirements traceability: A case
study. In: Proceedings of the International Symposium on Requirements Engineering (1995)

Ratanotayanon, S., Sim, S.E., Raycraft, D.J.: Cross-artifact traceability using lightweight links.
In: Proceedings of the Workshop on Traceability in Emerging Forms of Software Engineering
(2009)

Richardson, J., Green, J.: Automating traceability for generated software artifacts. In: Proceedings
of the International Conference on Automated Software Engineering (2004)

Singer, J., Elves, R., Storey, M.-A.: NavTracks: Supporting navigation in software maintenance.
In: Proceedings of the International Conference on Software Maintenance (2005)

Spanoudakis, G., Zisman, A., Pérez-Miñana, E., and Krause, P.: Rule-based generation of
requirements traceability relations. J. Syst. Softw. 72(2), 105–27 (2004)

von Knethen, A., Paech, B.: A survey on tracing approaches in practice and research. Technical
Report IESE-Report Nr. 095.01/E, Fraunhofer Institut Experimentelles Software Engineering,
Fraunhofer Gesellschaft (2002)

Using Rules for Traceability Creation

Andrea Zisman

1 Introduction

Several approaches have been proposed to support traceability creation. These
approaches can be classified as manual (DOORS; Kaindl, 1992; Rational Rose,
2010; RTM), semi-automatic or fully-automatic (Antoniol et al., 2002; Cleland-
Huang et al., 2002, 2005; Egyed and Grünbacher, 2002; Egyed, 2003; Marcus et al.,
2005; Pohl, 1996b; Pinheiro, 2000; Ramesh and Dhar, 1992; RTM) approaches.
One group of approaches advocates the use of rules to support automatic creation of
trace relationships between artifacts generated during the development life cycle of
software systems. We call these approaches as rule-based traceability approaches.

The main motivation for the rule-based traceability approaches is to support auto-
matic traceability creation in various types of documents generated during different
phases of the software development life cycle. Manual establishment of traceabil-
ity is error-prone, difficult, time-consuming, expensive, and complex. Moreover,
existing manual approaches are limited on expressiveness given the fact that the
relationships are mainly hyperlinks without semantic meanings. Other motivations
are concerned with (a) the need to support creation of different types of trace rela-
tionships with semantic meanings instead of plain hyperlinks; and (b) the existence
of large number of heterogeneous artifacts representing different aspects of a soft-
ware system, specified with different levels of abstraction and granularity, produced
by different stakeholders, and created independently by non-interoperable tools.

In this chapter, we describe a summary of the rule-based traceability cre-
ation framework. The framework has been used in three different contexts:
object-oriented software systems (Spanoudakis et al., 2004), product line systems
(Jirapanthong and Zisman, 2005, 2007), and multi-agent systems (Cysneiros and
Zisman 2004, 2007a, 2007b, 2008). The framework assumes the documents repre-
sented in XML and different types of trace relationships. The trace relationships are
identified based on pre-defined traceability rules expressed in XQuery (2010). The

A. Zisman (B)
School of Informatics, City University London, London, EC1V 0HB, UK
e-mail: a.zisman@soi.city.ac.uk

147J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_7, C© Springer-Verlag London Limited 2012

148 A. Zisman

traceability rules are created based on different aspects, namely (a) the semantic of
artifacts being traced, (b) the types of trace relationships concerned with the arti-
facts, (c) the grammatical roles of words in textual artifacts, and (d) synonyms and
other associations of the words in the textual artifacts. We have developed prototype
tools to demonstrate the framework. The framework was evaluated in terms of recall
and precision measures in various case studies.

The remaining of this chapter is structured as follows. In Section 2 we describe
the rule-based traceability creation framework using object-oriented and product
line system contexts. In Section 3 we discuss the application of the framework for
multi-agent systems. In Section 4 we discuss implementation aspects and results
of the evaluation of the framework. Finally, in Section 5 we discuss directions for
future work.

2 Rule-Based Traceability Framework

We propose a rule-base traceability framework to support automatic creation of
trace relationships and identification of missing elements in heterogeneous software
documents created during the development life cycle of software systems. The gen-
erated trace relationships have different semantics depending on the types of related
artifacts (source and target). In order to support the heterogeneity of documents
and various tools that may be used during the software development life cycle, we
assume documents represented in XML format.

The framework uses an extended version of XQuery (2010) to represent trace-
ability rules. XQuery is an XML-based query language that has been widely used
for manipulating, retrieving, and interpreting information from XML documents.
Apart from the embedded functions offered by XQuery, it is possible to add new
functions and commands. We have extended XQuery to support representation of
the consequence part of the rules, i.e, the actions to be taken when the conditions
are satisfied; and to support extra functions to cover some of the trace relationship
types and identification of missing elements in the artifacts.

The framework also uses part-of-speech assignments to specify grammatical
roles of textual parts of the artifacts to be traced. The textual sentences in the XML
documents are annotated with part-of-speech assignments by using general-purpose
grammatical taggers like CLAWS (2010).

Figure 1 presents an overview of the architecture of our rule-base traceability
framework. As shown in the figure, the framework has three main components:
Grammatical Tagger, Document Translator, and Traceability Engine.

The Grammatical Tagger is responsible for annotating textual sentences in soft-
ware artifacts with part-of-speech (POS) assignments by using a general-purpose
grammatical tagger. It is important to consider the grammatical roles of the words
in the textual parts of the artifacts because of the names given by software engi-
neers for the main elements in certain artifacts. For example, it is a common
approach to avoid the use of articles, co-ordinating and subordinating conjunctions,

Using Rules for Traceability Creation 149

Fig. 1 Rule-based traceability framework architecture

or comparative and superlative adjectives, for the main elements in class, sequence,
and statechart diagrams. Therefore, these part-of-speech elements are not consid-
ered when trying to relate a requirement statement with a class that represents the
requirements.

The Document Translator is responsible for generating the documents in XML
format based on XML schemas for the specific types of documents and the POS
tags generated by CLAWS tagger. The generated POS tags are converted into XML
POS-tags. In order to illustrate, consider Fig. 2 with part of the Feature Model
of the mobile phone case study in XML format with POS-tags. As shown in the
figure, the name of the feature Text Message is composed of two nouns repre-
sented by POS-tags <NN1> and <NN2>. The description text of the feature is
also composed of articles (<ATTO>), nouns (<NN1>, <NN2>), verbs in differ-
ent tenses (<VVI> <VMO>), adjectives (<AJO>), punctuation marks (<SC>), and
conjunctions (<CJC>).

The Traceability Engine is responsible for (a) creating trace relationships
between the artifacts, and (b) identifying missing elements in the documents based
on traceability rules. It uses WordNet (2010) to support the identification of syn-
onyms between the names of artifacts, and extra functions to support the traceability
rules. As shown in Fig. 1, the created trace relationships are also used by the
Traceability Engine to generate other trace relationships; i.e., the trace relationships
that depend on the existence of other relationships. Information about identified
missing elements is used to amend the documents and new versions of the docu-
ments can be used to support creation of trace relationships involving the added
elements.

150 A. Zisman

<Feature_Model>
 <Feature>
 <Feature_name> <NN1> Text </NN1> <NN2> Messages </NN2> </Feature_name>

<Description> <AT0> The </AT0> <NN1> phone </NN1> <VM0> can </VM0>
<VVI> edit </VVI> <SC>,</SC> <VVI> send </VVI> <SC>,</SC>
<CJC> and </CJC> <VVI> receive </VVI> <AT0> a </AT0>

 <AJ0> short </AJ0> <NN1> text </NN1> <NN1> message </NN1>
 <SC>.</SC> </Description>
<Issue_and_decision> <NN1> Text </NN1> <NN1> message </NN1> <II> over </II>
 <JJ> mobile </JJ> <NN1> phone </NN1> <VBZ> is </VBZ> <AT1> a</AT1>
 <NN1> way </NN1> <IO> of </IO> <NN1> communication </NN1>
</Issue_and_decision>

 <Type>Application capability</Type>
 <Existential>Mandatory</Existential>
 <Relationship Type="composed_of">

<Rel_feature> <VVG> Sending </VVG> <NN1> Text </NN1>
 <NN2> Messages </NN2> </Rel_feature>

 <Rel_feature> <VVG> Receiving </VVG> <NN1> Text </NN1>
 <NN2> Messages </NN2> </Rel_feature>
 <Rel_feature> <VVG> Editing </VVG> <NN1> Text </NN1>
 <NN2> Messages </NN2> </Rel_feature>

 </Relationship>
 <Allocated_to_subsystem><NN1> Messaging </NN1>
 </Allocated_to_subsystem>

</Feature> … </Feature_Model>

Fig. 2 Extract of feature model in XML format with POS-Tags

Fig. 3 Example of trace relationship

As an example consider the mobile phone case study with a use case UC4: Taking
Picture and a class diagram with class CameraZoom2X with operation takePhoto(),
as shown in Fig. 3. A trace relationship of type implements is created between use
case UC4 and operation takePhoto() because the operation allows for the execution
of the use case. In this situation, a traceability rule stating that words that appear
in the description of a use case and match the names (or their synonyms) of an
operation and the class containing the operation, would cause a relationship of type
implements to be created between the use case and the operation.

Using Rules for Traceability Creation 151

2.1 Traceability Information Model

The rule-based traceability framework supports traceability creation between differ-
ent types of software artifacts and different types of trace relationships. The different
types of trace relationships were identified based on our study and experience with
software traceability (Spanoudakis and Zisman, 2003), the types of trace relation-
ships proposed in the literature (Bayer and Widen 2002; Marcus et al., 2005; Pohl,
1996a; Ramesh and Jarke, 2001), and the semantics of the documents and their
artifacts in various contexts.

In the context of object-oriented systems, the rule-based traceability frame-
work supports trace creation for (a) requirements artifacts including requirements
statement documents and use case documents, and (b) analysis object models.
The types of trace relationships identified for the above artifacts are overlaps,
requires_execution_of, requires_ feature_in, and can_partially_realise relation-
ships. Table 1 shows a summary of the Traceability Information Model (TIM) for
object-oriented systems supported by the framework, and Table 2 describes the
meaning of each of the relationship types in an informal way. A more detailed
definition of the relationship types can be found in (Spanoudakis et al., 2004). In
Table 1, the cells contain the different types of relationships between the artifacts
represented in the row and column of that cell. The direction of the relationship is
represented from a column [i] to a row [j]. Thus, a relationship type rel_type in a
cell [i][j] signifies that “[i] is related to [j] though rel_type”.

As an example of a Requires_execution_of relationship consider the mobile
phone case study. This relationship holds between the sequence of terms “function
for taking a photo” in the pre-condition of use case UC4: Taking a Picture and the
operation takePhoto() in class Camera in the case study.

For the development of product line systems, the framework assumes a feature-
based object-oriented engineering and uses an extension of the FORM (Feature-
Oriented Reuse Method) methology (Kang et al., 1998), due to its simplicity, matu-
rity, practicality, and extensibility characteristics. More specifically, the framework

Table 1 TIM for object-oriented systems

Requirement Use case

Requirements Requires_feature_in Requires_feature_in
Can_partially_realise

Use case Overlaps
Requires_feature_in

–

Class Overlaps Overlaps
Attribute Overlaps Overlaps
Association Overlaps Overlaps
Association
End

Overlaps Overlaps

Operation Requires_execution_of Requires_execution_of

152 A. Zisman

Table 2 Types of trace relationships for object-oriented systems

Relationship type Description

Requires_feature_in It denotes that parts of use cases cannot be realized without the
existence of requirement statements, or that requirement
statements refer to other requirement statements

Requires_execution_of It denotes that sequence of terms requires the execution of
associated operations

Overlaps It denotes that connected elements refer to common features of the
system or its domain

Can_partially_realise It denotes that the execution of use cases can realise part of
requirement statements

uses artifacts generated by the FORM methodology such as feature, subsystem, pro-
cess, and module models for the product line level; and object-oriented artifacts such
as use case specifications, class, statechart, and sequence diagrams for the product
members, as defined in the chapter of the mobile phone product line case study.

The framework supports nine different types of trace relationships, namely sat-
isfiability, dependency, overlaps, evolution, implements, refinement, containment,
similar, and different. Table 3 presents a summary of the Traceability Information
Model for product line systems and Table 4 summarises the meaning of the different
types of trace relationships. A more formal definition for the relationship types can
be found in (Jirapanthong and Zisman, 2007; Lamb et al., 2011).

In Table 3, the cells contain the different types of trace relationships that may
exist between the documents described in the row and column of that cell. In the
table, we do not represent the exact artifacts that are related in the different doc-
uments, but instead we represent the types of the documents. The direction of the
relationships is represented from a row [i] to a column [j]. Thus, a relationship
type rel_type in a cell [i][j] signifies that “[i] is related to [j] though rel_type”
(e.g. “subsystem model satisfies feature model”). The trace relationships that are bi-
directional appear in two correspondent cells for that relationship (e.g., “subsystem
model overlaps feature model” and “feature model overlaps subsystem model”).

As an example of a similar relationship type, consider the mobile phone case
study. As shown in Fig. 4, a similar relationship holds between use case UC4:
Sending Message and use case UC2: Transmitting Messages, given that both use
cases hold a containment relationship with feature Text Messages. A containment
relationship is created between use case UC1 and the feature by a rule since a syn-
onym (send) of verb <VVG> Sending </VVG> and noun <NN1> Message </NN1>
appear in the description of the feature in the same sentence; i.e., a sequence of
a conjunction of verbs (<VVI> send </VVI> <SC>,</SC>, <CJC>and</CJC>,
<VVI> receive</VVI>), followed by a qualifier of the noun message (<AT0>
a</AT0> <AJ0>short</AJ0> <NN1> text </NN1>), separate the words send and
message. Similarly, a containment relationship also exists between use case UC2
and the feature.

Using Rules for Traceability Creation 153

Table 3 TIM for product line systems

Feature model Subsystem model Process model Module model

Feature model Overlaps Overlaps Overlaps
Subsystem model Satisfies

Depends_on
Refines
Overlaps

Process model Satisfies
Depends_on
Refines
Overlaps

Refines

Module model Satisfies
Depends_on
Refines
Overlaps

Refines

Use case Contains
Depends_on

Class diagram Satisfies
Depends_on
Overlaps
Implements

Refines
Depends_on

Refines
Depends_on

Refines
Depends_on

Statechart diagram Satisfies
Depends_on
Overlaps
Implements

Refines
Depends_on

Refines
Depends_on

Sequence diagram Satisfies
Depends_on
Overlaps
Implements

Refines
Depends_on

Refines
Depends_on

Use case Class diagram Statechart diagram Sequence diagram

Feature model Overlaps Overlaps Overlaps
Subsystem model Contains
Process model Contains Contains Contains
Module model Contains
Use case Similar

Different
Evolves

Overlaps Overlaps Overlaps

Class diagram Satisfies
Depends_on
Overlaps
Implements
Refines

Similar
Different
Evolves

Overlaps Overlaps

Statechart diagram Satisfies
Depends_on
Overlaps
Implements
Refines

Depends_on
Overlaps
Contains

Similar
Different
Evolves

Overlaps
Refines

Sequence diagram Satisfies
Depends_on
Overlaps
Implements
Refines

Depends_on
Overlaps
Refines
Contains

Overlaps Similar
Different
Evolves

154 A. Zisman

Table 4 Types of trace relationships for product line systems

Relationship type Description

Satisfiability An element e1 satisfies an element e2 if e1 meets the expectation and
needs of e2

Dependency An element e1 depends on an element e2 if the existence of e1 relies
on the existence of e2, or if changes in e2 have to be reflected in e1

Overlaps An element e1 overlaps with an element e2 (and an element e2
overlaps with an element e1) if e1 and e2 refer to common aspects
of a system or its domain

Evolution An element e1 evolves to an element e2 if e1 has been replaced by e2
during the development, maintenance, or evolution of the system

Implements An element e1 implements an element e2 if e1 executes or allows for
the achievement of e2

Refinement An element e1 refines an element e2 when e1 specifies more details
about e2

Containment An element e1 contains an element e2 when e1 is a document, or an
element in a document, that uses an element e2, or a set of elements
from a different document

Similar A similar relationship between elements e1 and e2 depends on the
existence of a relationship between e1 and another element e3 and a
relation between e2 and element e3. For example, a use case uc1 is
similar to a use case uc2 if both uc1 and uc2 hold a containment
relationship with a feature f1

Different A different relationship between an element e1 and e2 depends on the
existence of a relationship between e1 and another element e3, and
a relationship between e2 and another element e4, where e3 and e4
are variants of the same variability point (e.g. subclasses of the
same superclass, sibling features of the same parent feature). For
example, a use case uc1 is different from a use case uc2 when there
are two subclasses c1 and c2 of the same parent class c, where c1
implements uc1 and c2 implements uc2

Fig. 4 Example of a similar relationship

Using Rules for Traceability Creation 155

2.2 Traceability Rules and Traceability Creation Process

The trace relationship types can be automatically created by the framework based on
the use of traceability rules. In general, rules assist and automate decision making,
allow for standard ways of representing knowledge that can be used to infer data,
facilitate the construction of traceability creators for large data sets, and support
representation of dependencies between elements in the documents. In addition,
the use of rules allows for the creation of new relationships based on the existence
of other relationships, supports the heterogeneity of artifacts being compared, and
supports data inference in similar applications.

In the framework, the rules take into consideration several aspects:

(a) The semantics of the artifacts being compared: for example, in the case of fea-
ture and use cases, it may be necessary to traverse a feature hierarchy to identify
the specific feature.

(b) The various types of trace relationships: for example, evolution relationships
exist for artifacts in documents of the same type for the same product member
in the case of product line systems.

(c) The grammatical roles of the words in the textual parts of the artifacts: for
example the lack of articles, conjunctions, and adjectives in certain artifacts.

(d) Synonyms and distance of words in a text: for example, the existence of two
or more words in a paragraph does not imply that the text in the paragraph
is concerned with these words, in particular if the words appear in different
sentences in the paragraph.

The traceability rules can be direct, when they support the generation of trace rela-
tionships that do not depend on the existence of other relationships; or indirect,
when they support the generation of trace relationships that depend on the existence
of other relationships. Examples of direct relationships for product line systems are
satisfiability, dependency, overlaps, evolution, implements, refinement, and contain-
ment; and examples of indirect relationships for product line systems are similar
and different.

Figure 5 shows a general template for direct and indirect traceability rules for
product line systems. In the template in Fig. 5, elements between square brackets
(“[“ ,“]”) are optional, and fi(fi+1. . .(fi+j(•)). . .) are embedded XQuery functions or
extra functions that we have developed. The rules are composed of three parts as
described below.

RULE_IDENTICATION: It is concerned with the identification of the rule and the
documents to be compared by the rule. It contains a unique RuleID, a description of
the type of the rule (RuleType), and descriptions of the types of documents associ-
ated with the rule (DocType1, DocType2). The rule type is the same as the type of
the trace relationship to be generated by the rule.

QUERY: It is concerned with the conditions of the rule. It is represented by element
<Query> and consists of XQuery statements. It is composed of three other subparts,

156 A. Zisman

TRACE_RULE RuleID = R_ID
 RuleType = R_Type
 DocType1 = DocTypeName
 DocType2 = DocTypeName
 QUERY
 [DECLARE Namespace]
 [DECLARE Function]
 [DECLARE Variable]
 for $variable_name1 in doc(DocType1Placeholder)//XPathExpression
 $variable_name2 in doc(DocType1Placeholder)//XPathExpression

where fi(fi+1…(fi+j(.))…)
QUERY_END
ACTION

 RELATION RuleID = R_ID
 RelType = R_Type

 DocType1 = DocTypeName
 DocType2 = DocTypeName
 ELEMENT Document = DocName [ElementType1]$variable_name1
 [/XpathExpression] [ElementType2]
 ELEMENT Document = DocName [ElementType1]$variable_name2
 [/XpathExpression] [ElementType2]
 [RelationType {XpathExpression}{XpathExpression}]
 [RelationType {XpathExpression}{XpathExpression}]

ACTION_END
TRACE_RULE_END

Fig. 5 Template for traceability rules

namely: (i) declare, which is optional and contains declarations of namespaces, vari-
ables, or extra functions used by the rule; (ii) for, which identifies elements of the
documents (DocType1 and DocType2) to be compared and binds these elements
to variables; and (iii) where, which describes the condition part of the rule that
should be satisfied in order to create a trace relationship. The condition part can use
a sequence, conjunction, or disjunction of XQuery in-built functions (e.g., some,
contains, satisfies), or of the extra XQuery or Java functions that we have imple-
mented. Depending on the rule, the condition part also takes into consideration the
XML POS-tags in the textual parts of the documents.

ACTION: This part describes the consequence of the rule and is represented by
element (<Action>). It specifies the action(s) to be taken if the conditions in the
QUERY part are satisfied. The consequence part describes the type of trace relation-
ship to be created (attribute Type) and the elements that should be related through
it in the documents described in the for-part of the rule (element <Element>). The
content of element <Action> is used to compose the return part of XQuery. The
implementation of an action consists of writing the information in the <Action>
part in a separated document in XML format.

An example of a traceability rule for a containment trace relationship between
use cases and feature models is shown in Fig. 6. As shown in Fig. 6, the rule verifies
if the words, or their set of synonyms, in the title of a use case appear in the same
sentence in the description of a feature, by using the function checkDistanceCon-
trol. The checkDistanceControl function identifies if two words are associated in a

Using Rules for Traceability Creation 157

<TraceRule RuleID="R1" RuleType="containment"
 DocType1=”Use Case” DocType2=”Feature Model”>

 <Query>
declare namespace s="java:synonym.s";

 declare namespace d="java:distanceControl.d";
for $item1 in doc("file:///c:/UseCase_UC1.xml")//Use_Case,

 $item2 in doc("file:///c:/Feature_MP.xml")//Feature_Model/Feature
 where

d:checkDistanceControl($item2/Description,
 s:setof(s:findSynonym($item1/Title/VVI),
 s:findSynonym($item1/title/VVB),
 s:findSynonym($item1/Title/VV0),
 s:findSynonym($item1/Title/VVG)),
 s:setof(s:findSynonym($item1/Title/NN0),
 s:findSynonym($item1/Title/NN1),
 s:findSynonym($item1/Title/NP0),
 s:findSynonym($item1/Title/NN2)))</Query>
<Action>
 <Relation RuleID=“R1” RelType=”containment”
 DocType1=”Use Case” DocType2=”Feature Model”>
 <Element Document=“file:///c:/UseCase_UC1.xml”{$item1/Title}
 </Element>
 <Element Document=“file:///c:/Feature_MP.xml”>{$item2/Feature_name}
 <Description/> </Element>
 </Relation> </Action>
</TraceRule>

Fig. 6 Example of a containment traceability rule

<TraceRule RulID="R2" RuleType="similar"
 DocType1=”XML-Based-Rel” DocType2=”XML-Based-Rel”>
 <Query>
 for $item1 in doc("file:///c:/Direct_TraceRel.xml")//
 Relation[@type=”containment”],
 $item2 in doc("file:///c:/Direct_TraceRel.xml")//
 Relation[@type=”containment”]
 where
 $item1/@DocType1=”Use Case” and $item1/@DocType2=”Feature Model”
and $item2/@DocType1=”Use Case” and $item2/@DocType2=”Feature Model”
and string($item1/Element[2]) = string($item2/Element[2])
and $item1/Element[1]/@Document != $item2/Element[1]/@Document
 </Query>
 <Action>
 <Relation RuleID=”R2” RelType = "similar”
 <Element>{$item1/Element[1]/@Document} {$item1/Element[1]/Title}
 </Element>
 <Element>{$item2/Element[1]/@Document} {$item2/Element[1]/Title}
 </Element>
 <Containment>{$item1/Element[2]/@Document}
 {$item1/Element[2]/Feature_name} </Containment>
 </Relation> </Action>
</TraceRule>

Fig. 7 Example of similar traceability rule

158 A. Zisman

<Relation_Document>
 <Relation RuleID=“R1” Type=”containment”
 DocType1=”Use Case” DocType2=”Feature Model”>
 <Element Document=”file:///c:/UseCase_UC1.xml”>

<Title> <VVG>Sending</VVG> <NN1>Message</NN1> </Title>
 </Element>
 <Element Document=”file:///c:/Feature_MP.xml”>
 <Feature_name> <NN1>Text</NN1> <NN2>Messages</NN2>
 </Feature_name> /Element> </Relation>
 <Relation RuleID=“R1” Type=”containment”
 DocType1=”Use Case” DocType2=”Feature Model”>
 <Element Document=”file:///c:/UseCase_UC2.xml”>

<Title> <VVG>Transmitting</VVG> <NN2>Messages</NN2> </Title>
 </Element>
 <Element Document=”file:///c:/Feature_MP.xml”>
 <Feature_name> <NN1>Text</NN1> <NN2>Messages</NN2>
 </Feature_name> </Element> </Relation>
 <Relation RuleID = "R2" Type ="similar”>
 <Element Document="file:///c:/UseCase_UC1.xml">

<Title> <VVG>Sending</VVG> <NN1>Message</NN1> </Title>
 </Element>
 <Element Document="file:///c:/UseCase_UC2.xml">

<Title> <VVG>Transmitting</VVG> <N N2>Messages</NN2> </Title>
 </Element>
 <Containment Document="file:///c:/Feature_MP.xml">
 <Feature_name><NN1>Text</NN1><NN2>Messages</NN2>
 </Feature_name> … </Relation> . . .
<Relation_Document>

Fig. 8 Example of results for traceability rule

textual paragraph, depending on how distant the words are in a sentence. The rule
checks for synonyms by using WordNet (2010). It also checks for any possible form
of the main verb and the noun of the verb-phrase in the title of a user case.

An example of a traceability rule for a similar trace relationship is shown in
Fig. 7. In this case, the rule verifies if there are two relationships of type contain-
ment in the results document between a use case and a feature model such that the
feature names are the same and the use cases are different. The elements represent-
ing feature names and use cases are identified by using XPath (2010) expressions.
The rules in Figs. 6 and 7 exist for the use case and feature model shown in Fig. 4.
The results of these traceability rules is shown in Fig. 8.

3 Multi-Agent Systems

The rule-based traceability framework has also been used in the context of multi-
agent systems to support the creation of trace relationships and identification of
missing elements in documents generated during the development life cycle of these
systems. In this context, the framework concentrates on documents generated when
using Prometheus methodology (Padgham and Winikoff, 2004), goals and business
models represented in i∗ (Yu, 1995), and code specified in JACK (Winikoff, 2005).

Using Rules for Traceability Creation 159

The Prometheus methodology provides several diagrams and descriptors to rep-
resent the design of multi-agent systems such as goal diagram, role diagram,
use cases, system overview diagram, agent overview diagram, capability diagram,
process diagram, and protocol diagram. The rationale for using the Prometheus
methodology is due to its large acceptance in both academia and industrial set-
tings and its support for the majority of the phases in the software engineering
development life cycle. The rationale for using i∗ is to complement Prometheus
methodology and to provide support for early requirements phase. The use of JACK
is also due to its large acceptance in industrial settings and the fact that it includes
all components of Java programming language.

The framework supports seven different types of trace relationships for multi-
agent systems, namely overlaps, contribution, dependency, usability, satisfiability,
creation, and composition. Tables 5 and 6 present a summary of the traceability
information model for multi-agent systems, while Table 7 summarises the meaning
of the different types of trace relationships. In Tables 5 and 6, the cells contain
the trace relationship types that may exist between the artifacts. The direction of a
relationship is represented from a row [i] to a column [j]. Some of these relationship
types are common for product line systems.

Table 5 TIM for multi-agent systems

i∗\Prometheus SD goal SD resources SD tasks Actor

Goal Overlaps – Overlaps Depends
Role Contributes Uses Contributes Contributes
Agent Satisfies Uses Satisfies Contributes
Capability Contributes Uses Contributes Contributes
Plan Contributes Uses Contributes Creates
Percept – Overlaps – –
Data Contributes – Contributes Contributes
Scenario Depends Composes Depends Depends

i∗\Prometheus SD goal SD resources SD tasks

Goal Overlaps – Overlaps
Role Satisfies Uses

Creates
Overlaps
Satisfies

Agent Satisfies Uses
Creates

Satisfies

Capability Satisfies Uses
Creates

Satisfies

Plan Satisfies Uses
Creates

Overlaps

Action – – Overlaps
Data Uses Overlaps Uses
Scenario Composes Uses

Creates
Composes

160 A. Zisman

Table 6 TIM for multi-agent systems

Jack\
Prometheus Method Agent Plan Belief Set Capability

BDI goal
event

BDI MSG
event

Goal Contributes Satisfies Satisfies Uses
Creates

Satisfies Overlaps –

Role Contributes Uses Uses Uses Contributes Satisfies –
Agent Contributes Overlaps Uses Uses Uses Satisfies Uses

Creates
Capability Contributes Uses Uses Uses Overlaps Satisfies Uses

Creates
Plan Depends Uses Overlaps Uses Uses Satisfies –
Percept Depends Uses Uses – Uses Depends –
Action Overlaps Creates Creates – Uses – –
Message – Uses

Creates
Uses
Creates

Uses – – Overlaps

Data – Uses
Creates

Uses
Creates

Overlaps Uses – Uses

Table 7 Types of trace relationships for agent-oriented systems

Relationship type Description

Overlaps An element e1 overlaps with an element e2 (and an element e2
overlaps with an element e1) if e1 and e2 refer to common aspects
of a system or its domain

Contribution An element e1 contributes to an element e2 if e1 assists with the
achievement or accomplishment of another element e2

Dependency An element e1 depends on an element e2 if the existence of e1 relies
on the existence of and e2, or if changes in e2 have to be reflected
in e1

Usability An element e1 uses an element e2 if e1 requires the existence of e2 in
order to achieve its objectives

Satisfiability An element e1 satisfies an element e2 if e1 meets the expectation and
needs of e2

Creation An element e1 creates an element e2 if e1 generates element e2
Composition An element e1 is composed of an element e2 if e1 is a complex

element formed by element e2

As an example of a satisfiability relationship, consider an electronic BookStore
multi-agent system, which supports the main tasks of buying and delivering books.
Figure 9 shows part of the i∗ SR model and Prometheus role diagram for the elec-
tronic BookStore system. As shown in Fig. 9, a satisfiability relationship holds
between a task in the i∗ SR model (Organise Delivery) and a role in the Prometheus
role diagram (Delivery Handling). This relationship exists because there is an over-
laps relationship between task Organise Delivery in the SR model and goal Arrange
delivery associated with the role.

A general template for traceability rules for multi-agent systems in shown in
Fig. 10. In this case, the template is different from the one for traceability rules

Using Rules for Traceability Creation 161

Fig. 9 Example of a satisfiability relationship

TRACE_RULE RuleID = R_ID
 RuleType = R_Type
 ETypeA = ElementTypeName
 ETypeB = ElementTypeName
 QUERY
 [DECLARE Namespace][DECLARE Documents][DECLARE Sequences]
 for $elema in $seqa . . . $elemn in $seqn
 CONDITION fi(fi+1…(fi+j(.))…)

ACTION
 RELATION RuleID = R_ID
 RelType = Relation_Type
 DegreeOfCompleteness = DegreeOfCompleteness
 [ELEMENT Document = DocumentPath
 ElemType = ElementType
 ElemName = ElementName
 ElemID = ElementID

MISSING ELEMENT
 DocSource = DocumentPath
 TypeSource = ElementType
 NameSource = ElementName
 IDSource = ElementID
 TypeTarget = ElementType
 [MISSING ELEMENT …]

ACTION_END
QUERY_END
TRACE_RULE_END

Fig. 10 Template for multi-agent traceability rules

for product line systems (see Section 2.2) in order to provide support not only to the
identification of trace relationships, but also to the identification of missing elements
in the documents being compared. As in the case of product line systems, in the
template in Fig. 10, elements between square brackets (“[”, “]”) are optional, and

162 A. Zisman

fi
(
fi + 1 . . .

(
fi + j (•)

)
. . .

)
represents a composition of functions and if statements

used in the rules.

RULE_IDENTICATION: It contains the identification of the rules and the artifacts
to be compared by the rule.

QUERY: This part consists of XQuery statements and is formed by other sub-
parts, namely: (i) declare, which contains declarations of namespaces, documents,
and sequence of elements used by the rule; (ii) for, which iterates elements of the
sequences and binds these elements to variables; and (iii) condition, which defines
the condition part of the rule that should be satisfied.

ACTION: This part specifies the consequence part of the rule when the conditions
are satisfied. It describes trace relationships (RELATION) and missing elements
(MISSING ELEMENTS), if any. The missing elements associated with the source
or target elements in a trace relationship are described as sub-elements of the
respective element.

An example of a traceability rule for overlaps relationships between SR tasks in
i∗ and goals in Prometheus, and for identifying missing SR tasks and goals elements
is shown in Fig. 11. In this example, a nested if-statement is used in the condition
part. The more external if-expression checks if the name of the task in the SR model

<TraceRule RuleID="R3" RuleType=“overlaps" ETypeA=”SRTask”
ETypeB=”Goal”>
<Query> <!CDATA[

 declare namespace sin="java:synonymous";
 declare namespace cc="java:completenesschecking";…
 let $istarDoc:=doc("file://C:/users//ElectronicBookStore.tropos")

 let $prometheusDoc:=doc("file://C:/workspace/ElectronicBookshop.pd") …
 for $SRTask in $SRTasks, $prometheusGoal in $prometheusGoals
 return

 if(syn:isSynonym($SRTask /@name,$prometheusGoal/base/field
 [@name='name']/text())) then

if (sim:clr() and sim:isPositiveSimilar(sim:getPrometheusSubEl
 ($prometheusGoal,"subGoals"), sim:getSubGoalsAndTask

 ($SRTask), 50.0,"elemB")) then
 <TraceRelationship ruleID=“R3" type="overlaps"

 degreeOfCompleteness="{cc:getDegreeOfCompletenessB()}">
 <Element doc="c:/users/by916/ElectronicBookshop.tropos“

 type="SRTask" name="{ $SRTask/@name}"
 id="{$SRTask/@xmi:id}"> {

 for $i in (0 to cc:getNumberOfMissingElementsA())
return <MissingElement
 typeSource="{cc:getTypeOfMissingElementA($i)}"
 idSource="{cc:getIDMissingElementA($i)}"

 nameSource="{cc:getNameMissingElementA($i)}”
 docSource="{cc:getDocSourceMissingElementA($i)}"
typeTarget="{cc:getTypeTargetMissingElementA($i)}"
 docTarget="{cc:getDocT argetMissingElementA($i)}">
 </MissingElement> } </Element>…</TraceRelationship>else ….]]>
</Query> </TraceRule>

Fig. 11 Example on an overlaps traceability rule

Using Rules for Traceability Creation 163

is a synonym of the name of the goal in Prometheus (function isSynonym). If the
condition is satisfied, the next internal if-statement checks if a goal G in Prometheus
is similar to a task T in i∗. Here, the notion of similar is given by the situation in
which the number of the names of sub-tasks of T and sub-goals of G are greater
than a certain threshold. For this case, we assume a threshold of 50%. As shown
in Fig. 11, this is verified by function isPositiveSimilar. In this case, an overlaps
relationship will be created for G and T.

In the case were the names of G and T are not synonyms, although the elements
refer to common aspects of the system, the trace relationship can be used by the
designer to indicate this situation so that the designer may decide to change the
names of these elements to more consistent names.

The result of executing the traceability rule in Fig. 11 for the artifacts in Fig. 9 is
shown in Fig. 13. In this case, an overlaps trace relationship is created between ele-
ments “Organise Delivery” and “Arrange Delivery” with a degree of completeness
of 66.7%. The degree of completeness is identified by function getDegreeofCom-
pletenessB in Fig. 11. In this example, the degree of completeness is 66.7% since
“Arrange Delivery” has three sub-goals (i.e., Get delivery options, Log outgoing
delivery and Calculate delivery), while “Organise Delivery” has two sub-tasks (i.e.,
Delivery Options and Compute Delivery Time Estimates) and these sub-tasks are
related to two of the three sub-goals of “Arrange Delivery” (i.e., Get delivery options
and Calculate delivery, respectively), as shown in Fig. 12. A sub-task concerned with
sub-goal Log Outgoing Delivery is missing and the degree of completeness in this
case is 2/3 = 66.7% (two out of three sub-goals are related to the sub-tasks). The
identified missing artifacts are represented in Fig. 13.

Overlaps

Fig. 12 Examples of trace relationship

164 A. Zisman

<TraceRelationship ruleID=“R3 type="overlaps“
 degreeOfCompleteness="66,7">
 <Element doc="c:/users/ElectronicBookshop.tropos"
 type="SR Task“ name="Organize Delivery“ id="_103”>
 <MissingElement
 docSource=="c:/users/ElectronicBookStore.pd"
 typeSource="Goal"

 nameSource=“Log Outgoing Delivery"
 idSource="98 "
 typeTarget="SR Task or SR Goal"/>
 </Element>
 <Element doc="c:/users/ElectronicBookStore.pd"
 type="Goal“ name="Arrange delivery“ id="104”>
 <MissingElement

 docSource=="c:/users/by916/ElectronicBookshop.tropos"
 typeSource=”Task"
 nameSource=“Place Delivery Request"
 idSource=”78 "
 typeTarget=”SubGoal"/>
 </Element> </TraceRelationship>

Fig. 13 Examples of overlaps relationship

4 Implementation and Evaluation

We have developed prototype tools to support the creation of trace relationships
between artifacts generated during the development life cycle of object-oriented,
product line, and multi-agent systems. The tools have been implemented in Java
and uses SAXON (2010) to evaluate XQuery (2010).

In the context of object-oriented systems, the prototype tool supports the main
functionality of creating the four types of trace relationships described in Section 2.
In the context of product-line systems, the prototype tool supports the main func-
tionalities of (a) specifying the documents to be traced; (b) specifying the types of
relationships to be created; (c) creating the nine types of trace relationships based
on the input given in (a) and (b); (c) visualising the documents containing trace rela-
tionships generated in (c); and (d) testing new traceability rules. The tool uses 21
extra functions that we have developed to support the traceability rules for product
line systems.

In the context of multi-agent systems, the prototype tool supports the main func-
tionalities of (a) specifying the documents to be traced; (b) creating the seven types
of trace relationships; (c) specifying the missing elements in the documents; (d)
visualising the documents with trace relationships, (e) creating new traceability
rules; and (f) visualising the traceability rules. The tool uses 38 extra functions that
we have developed to support the traceability rules for multi-agent systems.

The framework has been evaluated in terms of recall and precision of the created
relationship types. More specifically, we have used the standard definition of recall
and precision given in (Faloutsos and Oard, 1995):

Precision = |ST ∩ UT| / |ST| Recall = |ST ∩ UT/ |UT||, where

Using Rules for Traceability Creation 165

• ST is the set of trace relationships detected by XTraQue;
• UT is the set of trace relationships which are identified by the user, and
• |X| denotes the cardinality of a set X (viz. |ST ∩ UT| , |ST| , and |UT|).

The evaluation of the object-oriented artifacts was conducted for two systems,
namely (i) TV-System: a family of software intensive TV systems, and (ii) UCM-
System: a university course management system. In both of these systems we
used requirements documents and analysis object models. The evaluation used 26
traceability rules in five different cases, as summarised in Table 8, and compared
trace relationships created by the rules with trace relationships manually created
by three different users with substantial experience in object-oriented modelling.
Table 9 describes the number of artifacts used for the evaluation and Table 10
shows the results of recall and precision for each of the five cases and users that
participated in the evaluation. More details of this evaluation can be found in
(Spanoudakis et al., 2004).

Table 8 Summary of evaluation cases

Case Description

Case1 Requirements of audio function of TV-System
Case2 Use cases for audio function and analysis object model of TV-System
Case3 Requirements of video function and analysis object model of TV-System
Case4 Use cases for video function and analysis object model of TV-System
Case5 Requirements and analysis object models for UCM-System

Table 9 Summary of
Artifacts used in the
evaluation of OO systems

Number of Artifacts

Artifact types TV-System UCM- System

Requirements
statements

178 31

Use cases 113 –
Classes 108 47
Attributes 70 90
Associations 191 58
Operations 277 128

Table 10 Results of recall
and precision measurements Recall Precision

Case1 User1 0.81 0.68
User2 0.81 0.74

Case2 User2 0.95 0.94
User3 0.79 0.67

Case3 User1 0.51 0.86
Case 4 User1 0.64 0.92

User3 0.46 0.52
Case 5 User1 0.60 0.85

166 A. Zisman

The evaluation of the product line artifacts was conducted for the mobile phone
case study. We conducted five sets of experiments related to five different scenarios
concerned with product line engineering. More specifically, these scenarios include
(S1) the creation of a new product member for an existing product line, (S2) the cre-
ation of a product line system from already existing product members, (S3) changes
to a product member in a product line system, (S4) changes at the product line level,
and (S5) impact of changes at the product line level to a product member. More
details of these scenarios can be found in (Jirapanthong and Zisman, 2007). For
each of these scenarios we have identified the stakeholders involved in the process,
the types of documents and trace relationships that are related to the scenarios, and
evaluated the scenarios in terms of recall and precision measurements. The eval-
uation used 63 traceability rule templates that were instantiated depending on the
artifacts used in each scenario and the types of trace relationships to be identified.
Table 11 shows a summary of the number of artifacts and traceability rules used in
each scenario. Table 12 presents the results of recall and precision for each of the
five scenarios used in the evaluation.

The evaluation of the multi-agent artifacts was conducted for two different case
studies, namely (i) air-traffic control system (ATC) and (ii) electronic bookstore
system (e-BookStore). Both systems are composed of i∗ (Yu, 1995), Prometheus
(Padgham and Winikoff, 2004), and JACK (Winikoff, 2005) artifacts. The ATC sys-
tem controls arrival schedules at an airport. More specifically, it attempts to find the
best landing time for an aircraft in order to alleviate congestion and its associated
delays. The e-Bookstore system supports the main tasks of buying and delivering
books. For both systems, the main objectives of the evaluation was to (a) measure
recall and precision, (b) identify missing elements in the documents, (c) amend the
documents and measure new recall and precision for the new amended documents.
More details of the evaluation can be found in (Cysneiros and Zisman 2007a, 2007b,
2008). Table 13 shows the results of recall and precision for the evaluation of ATC
and e-BookStore systems, and the number of traceability rules.

Overall, the average precision and recall results in our experiments for the differ-
ent types of systems are encouraging. Although the data sets used in our work are
different from the data sets used in other approaches that support automatic trace
creation (Antoniol et al., 2002; Hayes et al., 2006; Marcus and Maletic, 2003), our
precision results are better than the results achieved in those approaches, while our

Table 11 Summary of Artifacts and traceability rules

S1 S2 S3 S4 S5

N. of documents 15 20 12 6 2
N. of direct traceability rule templates 17 15 11 7 2
N. of indirect traceability rule templates 8 11 5 0 0
N. of instantiated direct traceability rule templates 100 192 80 11 2
N. of instantiated indirect traceability rule templates 8 11 5 0 0
Total number of instantiated traceability rules 108 203 85 11 5

Using Rules for Traceability Creation 167

Table 12 Results of recall and precision measurements

S1 S2 S3 S4 S5 Average

No. of direct
trace
relationships
detected

By the users |UT|
By XTraQue |ST|

519
525

1076
1090

128
136

26
21

6
6

–
–

No. of indirect
trace
relationships
detected

By the users |UT|
By XTraQue |ST|

333
341

1412
1418

126
130

0
0

0
0

–
–

Total no. of trace
relationships
detected

By the users |UT|
By XTraQue |ST|

852
866

2488
2508

254
266

26
21

6
6

–
–

Precision Direct relations 0.956 0.959 0.823 0.81 0.834 0.876
Indirect relations 0.827 0.852 0.807 – – 0.828
All relations 0.905 0.898 0.816 0.81 0.834 0.853

Recall Direct relations 0.967 0.972 0.875 0.654 0.834 0.860
Indirect relations 0.847 0.855 0.834 – – 0.845
All relations 0.920 0.906 0.854 0.654 0.834 0.833

Table 13 Results of recall and precision measurements

System Document type
Number of
traceability rules Precision Recall

ATC i∗ vs. Prometheus 58 78.2 94.36
Prometheus & JACK 63 94.9 73.8

Average 86.55 84.08
e-BookStore i∗ vs. Prometheus 23 89.41 86.38

Prometheus & JACK 63 78.03 72.77
Average 83.72 79.56

recall results are comparable to the results achieved in those approaches. In order to
increase the results of recall in our work, new traceability rules need to be created
to support the identification of missing relationships.

Although our framework relies on the use of XML documents, our experience
has demonstrated that the creation of these documents is not an issue since many
application tools use XML as a standard export format to support data interchange
among heterogeneous tools and applications. A possible drawback of our work is
concerned with the extra effort to mark-up textual parts of the documents with XML
POS-tag elements, when necessary. However, this is alleviated by the use of tools
like CLAWS (2010) and our converter that transforms the POS-tags identified by
CLAWS into XML elements representing these tags. Another issue of the work is
concerned with the creation of traceability rules. However, once a set of rules is
created, these rules can be used in different applications with the same types of doc-
uments. To alleviate this issue, we have also proposed a machine learning algorithm
to support the creation of new traceability rules to generate trace relationships that

168 A. Zisman

existing rules failed to identify, between requirements and object-oriented speci-
fications (Spanoudakis et al., 2003). We plan to extend this work to support the
generation of new traceability rules in the scope of product line and multi-agent
systems.

Our experience has also demonstrated that a large number of trace relationships
can be created. Therefore, it is necessary to develop ways to manage and visualise
these large number of relationships or to develop processes in which only necessary
trace relationships for specific tasks are created. This is also a topic of extension
work of the framework.

5 Conclusions and Future Work

In this paper we describe a rule-based traceability framework that supports auto-
matic traceability creation and identification of missing artifacts for documents
generated during the development of object-oriented, product-line, and multi-agent
systems. We have presented a traceability information model for the documents of
our concerned with different types of trace relationships. The framework assumes
documents represented in XML format and uses traceability rules specified in
XQuery with some extended functions that we have created. Prototype tools have
been implemented to evaluate and demonstrate the framework. The framework has
been evaluated in terms of recall and precision for different case studies. The results
of the evaluation are comparable to other approaches to support automatic creation
of trace relationships.

Currently we are extending the framework to support visualisation of the large
number of trace relationships that are created and to support automatic amendment
of the documents after the missing elements are identified. We are also expanding
the framework to allow traceability creation and identification of missing artifacts
for other types of documents (e.g., documents for domain implementation phase in
product line systems). Another topic that we are investigating is how to optimise the
creation of trace relationships when the documents evolve.

References

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability
links between code and documentation. IEEE Trans. Softw. Eng. 28(10), 970–983 (2002).
doi:10.1109/TSE.2002.1041053

Bayer, J., Widen, T.: Introducing traceability to product lines. In: Software Product-Family
Engineering, 4th International Workshop, PFE 2001, Spain, October 3–5, 2001. Appeared in
Lecture Notes in Computer Science, vol. 2290, Springer, Berlin/Heidelberg (2002)

CLAWS. http://www.comp.lancs.ac.uk/ucrel/claws. Accessed 13 June 2010
Cleland-Huang, J., Chang, C.K, Sethi, G., Javvaji, K., Hu, H., Xia, J.: Automating spec-

ulative queries through event-based requirements traceability. In: Proceedings of the
IEEE Joint International Requirements Engineering Conference, Essen, Germany (2002).
doi:10.1109/ICRE.2002.1048540

http://www.comp.lancs.ac.uk/ucrel/claws

Using Rules for Traceability Creation 169

Cleland-Huang, J., Settimi, R., BenKhadra, O.: Goal-Centric Traceability for Managing Non-
Functional Requirements, International Conference on Software Engineering, USA (2005).
doi:10.1109/ICSE.2005.1553579

Cysneiros, G., Zisman, A.: Refining Prometheus Methodology with i∗. Third International
Workshop on Agent-Oriented Methodologies, OOPSLA, Canada (2004)

Cysneiros, G., Zisman, A.: Traceability for Agent-Oriented Design Models and Code, 19th
International Conference on Software Engineering and Knowledge Engineering, SEKE, MA
(2007a)

Cysneiros, G., Zisman, A.: Tracing agent-oriented systems. International Symposium of the Grand
Challenges for Traceability, Kentucky (2007b)

Cysneiros, G., Zisman, A.: Traceability and completeness checking for agent-oriented sys-
tems. 23rd Annual ACM Symposium on Applied Computing, New York, NY (2008).
doi:10.1145/1363686.1363706

DOORS: http://www-01.ibm.com/software/awdtools/doors/
Egyed, A.: A scenario-driven approach to trace dependency analysis. IEEE Trans. Softw. Eng.

9(2), 116–132 (2003). doi:10.1109/TSE.2003.1178051
Egyed, A., Grünbacher, P.: Automatic requirements traceability: Beyond the record and replay

paradigm. Proceedings of the 17th IEEE International Conference on Automated Software
Engineering (ASE), Edinburgh, UK (2002). doi:10.1109/ASE.2002.1115010

Faloutsos, C., Oard, D.: A survey of information retrieval and filtering methods. Technical Report
CS-TR3514, Department of Computer Science, University of Maryland (1995)

Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation for require-
ments tracing: The study of methods. IEEE Trans. Softw. Eng. 32(1), 4–19 (2006).
doi:10.1109/TSE.2006.3

Jirapanthong, W., Zisman, A.: Supporting product line development through traceability. In:
Proceedings of the 12th Asia-Pacific Software Engineering Conference, APSEC, Taiwan
(2005). doi:10.1109/APSEC.2005.101

Jirapanthong, W., Zisman, A.: XTraQue: Traceability for product line systems. Softw. Syst. Model.
J. 8(1), 1619–1374 (2007). doi:10.1007/S10270-007-0066-8

Kaindl, H.: The missing link in requirements engineering. Softw. Eng. Notes. ACM SIGSOFT
Softw. Eng. Notes 18(2), 30–39 (1992). doi:10.1145/159420.155836

Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-oriented reuse
method with domain-specific reference architectures. Ann. Softw. Eng. 5(1), 143–168 (1998).
doi:10.1023/A:1018980625587

Lamb, L., Jirapanthong, W., Zisman, A.: Formalizing traceability relations for product lines. In:
Proceedings of the 6th International Workshop on Traceability for Emerging Forms of Software
Engineering, Honolulu, Hawaii (2011). doi:10.1145/1987856.1987866

Marcus, A., Maletic, I.: Recovering Documentation-to-Source-Code Traceability Links Using
Latent Semantic Indexing. ICSE, Washington, DC (2003). doi:10.1109/ICSE.2003.1201194

Marcus, A., Maletic, I., Sergeyev, A.: Recovery of traceability links between software doc-
umentation and source code. Int. J. Softw. Eng. Knowl. Eng. 15(4), 811–836 (2005).
doi:10.1142/S0218194005002543

Padgham, L., Winikoff. W.: Developing Intelligent Agent Systems–A Practical Guide. Wiley, West
Sussex, England (2004)

Pohl, K.: Process-Centered Requirements Engineering. Wiley West Sussex, England (1996a)
Pohl, K.: PRO-ART: Enabling requirements pre-traceability. In: Proceedings of the IEEE

International Conference on Requirements Engineering, ICRE, pp. 76–84 (1996b).
doi:10.1109/ICRE.1996.491432

Pinheiro, F.: Formal and informal aspects of requirements tracing. Position Paper in Proceedings
of 3rd Workshop on Requirements Engineering (III WER), Rio de Janeiro, Brazil (2000)

Ramesh, B., Dhar, V.: Supporting systems development using knowledge captured during require-
ments engineering. IEEE Trans. Softw. Eng. 9(2), 498–510 (1992)

http://www-01.ibm.com/software/awdtools/doors/

170 A. Zisman

Ramesh, B., Jarke, M.: Towards Reference Models for Requirements Traceability. IEEE
Transactions on Software Engineering, Germany (2001). doi: 10.1109/32.895989

Rational Rose.: http://www-01.ibm.com/software/awdtools/developer/rose. Accessed 14 June
2010

RDT: http://www.incose.org/productspubs/products/setools/survey/RDT.htm
RTM: Integrated chipware. www.chipware.com
SAXON: http://saxon.sourceforge.net. Accessed 14 June 2010
Spanoudakis, G., Garcez, A., Zisman, A.: Revising rules to capture requirements traceability rela-

tions. In: 15th International Conference on Software Engineering and Knowledge Engineering,
SEKE, San Francisco, CA (2003)

Spanoudakis, G., Zisman, A.: Software traceability: A roadmap. Handbook of software engi-
neering and knowledge engineering, (V. 3) S.K. Chang, World Scientific Publishing Co.
(2003)

Spanoudakis, G., Zisman, A., Pérez-Miñana, E., Krause, P.: Rule-based generation of require-
ments traceability relations. J. Syst. Softw. 72(2), 105–127 (2004). doi:10.1016/S0164-
1212(03)00242-5

XPath: http://www.w3.org/TR/xpath. Accessed 14 June 2010
XTraQue: XTraQue Project. http://www.soi.city.ac.uk/~zisman/XTraQue. Accessed 14 June 2010
XQuery: http://www.w3.org/TR/xquery. Accessed 14 June 2010
Yu, E.: Modelling Strategic relationships for process reengineering. Dissertation, University of

Toronto, Toronto, ON (1995)
Winikoff, M.: JackTM Intelligent Agents: An Industrial Strength Platform. Springer, USA (2005)
WordNet: http://wordnet.princeton.edu. Accessed 14 June 2010

http://www-01.ibm.com/software/awdtools/developer/rose
http://www.incose.org/productspubs/products/setools/survey/RDT.htm
www.chipware.com
http://saxon.sourceforge.net
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery
http://wordnet.princeton.edu

Part III
Traceability Maintenance

For traceability links to be trusted by developers, they need to not only be created
correctly, but also maintained so that they remain consistent and accurate. This is
no mean feat in a typical software development project where it is the norm for
requirements, design, code and test cases to constantly evolve to meet the changing
needs of a project.

The first three chapters of this part of the book describe various approaches
for dealing with traceability on evolving projects. The chapter by Mäder and
Gotel focuses on maintaining “Ready-to-Use Traceability on Evolving Projects”.
It promotes the use of a simple traceability information model, explores the require-
ments for automated maintenance and highlights a semi-automated approach. The
chapter by Heider et al. details an event-based approach for acquiring and main-
taining traceability links based on tracking changes to artifacts, “Evolution-Driven
Trace Acquisition in Eclipse-Based Product Line Workspaces”, while the chap-
ter by Seibel et al. discusses a rule-based approach to maintain model-to-model

172 Part III Traceability Maintenance

traceability, “Traceability in Model-Driven Engineering: Efficient and Scalable
Traceability Maintenance”. In a slightly different vein, and pertinent given the
plethora of research on semi and automated techniques, the chapter by Dekhtyar and
Hayes examines the role of the human to cast light on future directions for in-life
cycle tracing research, “Studying the Role of Humans in the Traceability Loop”.

Ready-to-Use Traceability on Evolving Projects

Patrick Mäder and Orlena Gotel

1 Introduction

While complete and correct traceability is a common goal for development projects,
the quality of the traceability can only be ascertained by an “informed” developer
and cannot yet be assessed automatically within industrial applications. A more
realistic goal is, therefore, to keep the traceability compliant with a defined trace-
ability information model (TIM) (Mäder et al., 2009a). Compliance with a TIM, a
definition of the permissible trace links between artifact types, means that the trace-
ability on a project would always be ready-to-use according to the intentions for a
project. While a TIM cannot be used to answer the question of whether a particular
instance of a trace is correct or not, it can be examined to answer questions such
as: (a) which traces are not required in order to fulfill the current traceability strat-
egy and (b) between which artifact types are trace links intended. A TIM, therefore,
provides a guide for where traceability should be created and maintained, and com-
pliance of existing traces with the TIM can be checked and enforced automatically
as a project evolves.

This chapter focuses on two of the activities that are part of the traceability life
cycle (see Fig. 1) and that work together to provide for ready-to-use traceability
on evolving projects: (1) defining the traceability that is required on a project and
(2) keeping the traceability ready-to-use by maintaining previously established trace
links as the project evolves.

Activity 1 refers to the practice of defining a project-specific traceability infor-
mation model (TIM) tailored to the goals for traceability in a given project. Such
a TIM should be defined according to the intended usage of traceability within the
project, but is also dependent upon the structure of the project and the development
process used, as these define the artifacts that are actually available for tracing. This
means that the evolution of a project’s scope (e.g., adding additional models or arti-
fact types) should also trigger the validation of a project’s TIM and its customisation

P. Mäder (B)
Institute for Systems Engineering and Automation (SEA), Johannes Kepler University,
Linz, Austria
e-mail: patrick.maeder@jku.at

173J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_8, C© Springer-Verlag London Limited 2012

174 P. Mäder and O. Gotel

(1) Defining Traceability

(2) Creating and
maintaining traceability

(3) Using traceability

Project with ready-to-use
traceability according

to defintion

Change in
definition

Information need
that cannot be
satisfied by current
traceability

Information need that
requires traceability usage

Changing a model
with traceability impact

Initial identification of trace-
ability needs for a new
project and later usage

Fig. 1 The traceability life cycle for a development project (Mäder, 2009)

if necessary. This chapter outlines best practices on setting up a TIM according to
project-specific needs.

Activity 2 refers to the impact that evolution and change has on previously estab-
lished traceability. While much attention has been directed towards approaches for
establishing traceability among artifacts initially, less attention has been paid to
ensuring that this traceability remains correct over time. This chapter discusses the
problem of traceability decay and highlights the state of the art in traceability main-
tenance to address it. It describes the requirements for an automated approach to the
problem, and then describes a novel approach for reducing the manual effort and
associated costs when maintaining traceability.

The remainder of the chapter is structured as follows. Section 2 discusses the role
of a defined traceability strategy and describes a usage-centered process for creating
a TIM. Section 3 describes model-based development and traceability in this partic-
ular context. While the chapter focuses on model-based development for description
and illustration purposes, the theoretical considerations are more broadly applicable
to evolving projects in general. Section 4 explains the problem of traceability decay,
while Section 5 reviews existing approaches to traceability maintenance and out-
lines the requirements for an automated approach to support this task. Section 6
discusses a particular approach for the (semi-) automated maintenance of traceabil-
ity. Finally, Section 7 summarises the chapter and discusses future challenges in the
area. Where appropriate, the chapter employs the iTrust case study of Appendix B
to exemplify the points discussed.

2 Defining a Project-Specific Traceability Strategy

The most effective way to establish traceability within a software systems devel-
opment project may be to provide each stakeholder with the opportunity to create
traces where and when she/he believes they are required. Although such a naive

Ready-to-Use Traceability on Evolving Projects 175

approach to traceability might be plausible, researchers and practitioners (e.g.,
Letelier, 2002; Mäder et al., 2009a; Pinheiro, 2004; Ramesh and Jarke, 2001) do
not envisage that this would be a viable strategy within industrial projects. Instead,
for traceability to provide high development support at minimal costs, a traceability
strategy should be defined, followed and updated as an integral part of a project’s
planning and management. A goal-oriented approach to inform the traceability
strategy comprises the following three steps.

2.1 Step 1: Identify Development Tasks that Require Traceability

Specific development tasks that are dependent upon traceability should be identified.
For example, the testing engineer of the iTrust project might want to find out about
those Java Server Pages implementing a use case that is tested by a failed black
box test. In addition, the project manager of the iTrust project might want to find
out about all the use cases that are not currently tested by a black box test. Such
traceability-enabled tasks can be identified systematically by identifying project
goals, and then by analysing the project roles and their related tasks.

For the iTrust project, two general project goals have been identified that require
traceability:

Goal 1: Ensure a high quality product through equal test coverage.
Goal 2: Ensure compliance to HIPAA regulations through regular code

inspections.

2.2 Step 2: Identify Traceability-Related Queries

Once the traceability-enabled tasks have been identified (Step 1), a set of support-
ing traceability-related queries should be defined. The queries should provide for
an efficient way of supporting the identified development tasks. This step is largely
ignored by current tools, which assume that the queries will either be overly simplis-
tic or that high-end users will export data and write customised scripts to support
their more advanced queries. Recent work proposes a generic Visual Traceability
Modeling Language (VTML) that could fill this gap (Mäder and Cleland-Huang,
2010).

For the iTrust project, three traceability-related queries have been identified for
the first project goal, test coverage, and one traceability-related query has been
identified for the second project goal, code inspection:

Query 1.1: Return all use cases without acceptance test cases (Test developer).
Query 1.2: Return a count of test cases per use case (Project leader).
Query 1.3: Return all JSPs with failed acceptance tests (Interface designer).

Query 2.1: Find all source code methods that contribute to satisfying a given
HIPAA regulation (Code inspector).

176 P. Mäder and O. Gotel

2.3 Step 3: Define Traceability

After the traceability-related queries have been identified (Step 2), a project level
traceability strategy can be defined to ensure that the necessary trace links are cre-
ated and maintained. This definition can be provided via a TIM and is commonly
represented as a UML (Unified Modeling Language) class diagram. Figure 2 shows
an example of a TIM for the iTrust project. Once new or changed project goals and
traceability-related queries arise, the defined traceability strategy would need to be
updated accordingly.

A TIM is composed of two basic types of entity: trace artifact types, represented
as classes; and permitted trace link types between the trace artifact types, repre-
sented as associations. Trace artifact types serve as the abstractions supporting the
traceability perspective of a project, but they do not necessarily reflect concrete arti-
fact types that exist in the traced models. A trace artifact type might represent an
abstraction of several different concrete artifact types existing in the related models
or, conversely, it could refer to a single artifact type in a tool. Figure 2 shows the
mapping of trace artifact types to their source documents, each one stereotyped as a
«toolArtifact». A tool artifact provides information about how a certain trace artifact
type is represented within a concrete tool or model. A more in-depth discussion on
TIMs is given in (Mäder et al., 2009a).

For the iTrust project (see Fig. 2), a Use Case shall be traced to related
Acceptance Tests, to HIPAA Regulations that impact its implementation, and to
Methods and Server Pages implementing it. These trace links were found suffi-
cient to support the four traceability-related queries identified in Step 2. Mäder and
Cleland-Huang propose a visual way of defining the identified traceability-related
queries and Fig. 3 shows how iTrust Query 1.2 would be defined using this VTML
approach (Mäder and Cleland-Huang, 2010). The benefits of VTML are its generic
nature, independent from the representation of the queried artifacts, and its more
intuitive application compared to standard query languages like SQL.

UseCase

id
name
description

Method

name

AcceptanceTest

id
description
expectedResults
actualResults
role

dateAdded
dateModified

«toolArtifact»
UseCase

- id: int
- name: string
- description: string

«toolArtifact»
BlackBoxTestCase

- id: string
- description: string

- actualResult: string
- expectedResult: string

- role: string
- dateAdded: date
- dateModified: date

«map»

«map»

«toolArtifact»
TextParagraph

- id: int
- name: string
- description: string

«map»

«toolArtifact»
JavaMethod

- name: string
«map»

HIPAARegulation

id
name
description

ServerPage

name

«toolArtifact»
JSP

- name: string«map»

UseCase

«toolArtifact»
TextParagraph

Logical artifact
in TIM

Source
document

Legend

Fig. 2 Example of a project-specific traceability information model (TIM) for the iTrust project

Ready-to-Use Traceability on Evolving Projects 177

UseCase
Acceptance

Test

id COUNT(id)
1..*

Fig. 3 iTrust Query 1.2,
Return a count of test cases
per use case, in VTML
notation

A VTML query is read by starting from the scope element (represented by an
encircled dot in the upper left corner of a classifier) and following the direction
of the relations. In Fig. 3, the UseCase classifier is the scope element, meaning
that the query applies to use cases. Before executing a query, the user can decide
whether to perform the query on all existing use cases of a development project or
on a subset. The query will return the id (see bar graph symbol and id attribute in
the UseCase classifier) of all use cases that are tested by at least one acceptance
test (see filter symbol and cardinality at the relation between both classifiers). The
query also retrieves the count of related acceptance tests per use case (see bar graph
symbol and COUNT function defined in the AcceptanceTest classifier).

3 Traceability in the Context of Model-Based Development

The engineering of a software system can be a complex task. A common way to
manage this complexity is by modelling the product to be developed through differ-
ent levels of abstraction and from different perspectives. Within this chapter, such a
model-based development process is assumed in order to scope the discussion.

3.1 Evolution of Software and System Development Models

A model can be defined as an abstraction of some real world object. In the con-
text of software systems development, a model describes a software product, its
structure, functionality, behaviour or code, which is collectively maintained by the
many stakeholders that participate during the development life cycle (OMG, 2003,
2007). During software and systems engineering, models are used to represent the
requirements, the design and the implementation. As all models of one develop-
ment project describe different aspects of the same product, they are interrelated by
many dependencies. For example, the design of a software system depends upon
its requirements, while the implementation depends upon its design. The UML
(OMG, 2007) provides a set of structural and behavioural diagrams that allow for
the modelling of such related yet separately described facets of a software devel-
opment process. It is supported by many modelling tools and is the quasi-standard
in object-oriented development. The extension, the Systems Modeling Language
(SysML) (OMG, 2008), provides additional diagrams and options particular to
systems development.

178 P. Mäder and O. Gotel

Software systems development may be viewed as a multiphase transformation
process from the initial problem statement to the final solution (Jacobson et al.,
1999). The transformations are carried out as development activities. Each of these
activities is applied to or influenced by various input artifacts and creates new or
improved output artifacts. Most current problems are too complex to be solved in
a one-time transformation process from the problem to the solution, so state of the
art development processes are iterative and incremental (e.g., the Unified Process
(Jacobson et al., 1999)). In an iterative process, activities are executed repeatedly
until the goals of development are reached. Despite its benefits, creating a solution to
a problem in such a manner is not without its difficulties. Almost all of the artifacts
created during the development process are subject to changes in a later iteration.
Many of these changing artifacts influenced the creation of other dependent artifacts
in an earlier iteration, which are now either obsolete or need to be changed also.
This requires identifying, managing and resolving inconsistencies between related
models and their artifacts. The basis for change impact analysis is knowledge about
the dependencies between the changed artifact and other artifacts that may now
need changing. These dependencies are only available if they have been created and
maintained earlier in the form of trace links.

3.2 Traceability Between Model Elements

Creating a trace link between two artifacts is an expression of their dependence.
The representation of such trace links can, therefore, be considered as a type of
dependency relationship with a given directionality, as defined within the UML
meta-model (OMG, 2004). The graphical representation of the direction points from
the dependent model element towards the independent model element (e.g., from a
method of the source code to the implemented requirement). This directionality is
intended to convey semantics, but it does not prevent bi-directional use or navigation
of the trace link. Arlow and Neustadt state that a change to the independent element
(i. e., supplier) may effect or supply information needed by the dependent element
(i. e., client) and that the client in some way depends upon the supplier (Arlow
and Neustadt, 2005). Within the UML, a stereotype trace distinguishes trace links
from other dependencies that are part of the models (Arlow and Neustadt, 2005;
Weilkiens, 2006).

A major problem that arises in model-based development is ensuring that related
models, referring to similar aspects of a system, evolve consistently while the devel-
opment process proceeds (Egyed, 2011; Huzar et al., 2004). Finkelstein et al. state
that checking consistency between perspectives and the handling of inconsistency
creates many interesting and difficult research problems (Finkelstein et al., 1994).
If traceability reflects all the required dependencies correctly, then it can support
this complex task by propagating changes in one model to all the related mod-
els (Aizenbud-Reshef et al., 2006; Egyed, 2011). Where this is not the case, the
traceability inevitably decays.

Ready-to-Use Traceability on Evolving Projects 179

4 The Problem of Traceability Decay

A change to one model in a setting of multiple related models is likely to
cause inconsistencies with respect to one or more of those related models (see
Section 3.2). Changes to related models can also require maintaining the existing
trace links to reflect all the dependencies between the evolved model elements after
the change. In theory, there are three types of impact that a change to a model ele-
ment can have on a related element and the trace link. Figure 4 illustrates these three
types of impact with examples from the iTrust project:

(I) The change can be solely corrective with no impact on the related element. For
example, correcting the name of a use case to align it with other names.

(II) The change can have impact on the related element, but no impact on the
traceability. For example, a new method within a class is required due to an
enhanced use case. This change to the original model element also requires
evolving the related element.

(III) The change can have impact on the related element and, due to changes in the
model structure, also on the traceability. For example, a new class is required
due to an evolved use case. This change to the original model element not only
requires evolving the related element, but also maintaining the traceability
between both models.

These types of impact apply separately for each trace link and related element
of any one changing element. Since a changed element can have more than one
trace link to other elements, the impact can further differ among the three types for
each linked element. In addition, each related element may have its own related ele-
ments to subsequent models. If a related element has been changed (impact types
II or III above), then the three types of impact apply to its related elements as well
via the ripple effect. It is also possible that the change to the original element (see

enable

Changing an element in one model (e. g., changing a use case) can have
different impact on related elements in other models

«trace» «trace» «trace» «trace»

PhoneEmail

I) No impact on
related element

II) Changes to the related
element are necessary, but

traces are not impacted

III) Changes to the related
element and to traces are

required

+

+

+

Maintain
Standards listings

Create, Enable
and Disable Patients

Alert Users by
Email or Phone

+
++

Fig. 4 Different types of impact that a change to a model element can have on related model
elements

180 P. Mäder and O. Gotel

the use case in Fig. 4) requires a change to its structure (e.g., to split into two
use cases in the figure). This change is similar to impact type III and can even-
tually require updating trace links on the original element as well. Such a step
by step degradation of trace links has been called traceability decay (Mäder et al.,
2008).

Definition 1 (Traceability decay) The gradual disintegration and break down of
the traceability on a project. This tends to result following ongoing traceability
evolution.

Traceability decay can be prevented by continuous or on-demand traceability main-
tenance. Continuous maintenance refers to the update of impacted trace links after
changes to traced artifacts. On-demand maintenance refers to a dedicated and overall
update of the traceability, generally in response to some explicit trigger and in prepa-
ration for an upcoming usage. While the maintenance of traceability is a challenging
problem within a model’s evolution, the problem is compounded when dealing with
related models; traceability information is needed to ensure the consistency of mod-
els, but consistency is necessary to compute the correct impact of changes with
respect to the traceability.

5 Traceability Maintenance

Researchers have been working on the “Traceability Problem” for almost two
decades (Gotel and Finkelstein, 1994) and part of the outcome of that work has been
a range of techniques for recovering trace links (e.g., Alexander, 2002; Antoniol
et al., 2002; Hayes et al., 2003; Lucia et al., 2008; Marcus and Maletic, 2003).
In order to preserve the investment made while creating traceability manually, or
with the support of automated recovery techniques such as those referenced, it is
necessary to maintain the traceability while the development process proceeds. In
contrast, there has been relatively little work focusing on the maintenance of these
trace links. The automated solutions to traceability creation are only partially trust-
worthy and more reliable solutions require expensive, manual feedback from a user.
Under these circumstances, it is not feasible to recover trace links anew every time a
model changes. Traceability maintenance is, therefore, an expensive and error-prone
activity at present (Aizenbud-Reshef et al., 2006).

Murta et al. characterise the problem of traceability maintenance between archi-
tectural elements and source code as follows: “given an initial set of established
traceability links, and given that both an architecture and its implementation can
evolve independently, how can traceability links be updated with the addition of new
links, removal of existing links, and changes in existing links to ensure that each
architectural element is at all times accurately linked to its corresponding source
code configuration items, and vice versa?” (Murta et al., 2006). A more general
definition of traceability maintenance is provided in this chapter.

Ready-to-Use Traceability on Evolving Projects 181

Definition 2 (Traceability Maintenance) Those activities associated with updating
pre-existing traces as changes are made to the traced artifacts and the traceability
evolves, creating new traces where needed to keep the traceability relevant and up
to date.

The ultimate goal of traceability automation is the creation and update of traces
without the need for manual intervention. This section reviews work towards
this goal, discusses the recognition of change and evolution as a key enabler for
automated traceability maintenance, and lists the requirements for an automated
traceability maintenance solution.

5.1 Research on the Maintenance of Traceability

Spanoudakis et al. present a rule-based approach for the automatic generation of
trace links between documents (Spanoudakis et al., 2004). A requirement-to-object-
model rule and a technique based upon information retrieval are used together to
automatically establish trace links between requirements and analysis models. A
second kind of rule analyses the relations between requirements and object models
to recognise intra-requirements dependencies and establishes these trace links auto-
matically. The approach requires the export of all supported artifacts into the XML
(Extensible Markup Language) and the rules generate trace links for the exported
state of the models. Due to the use of information retrieval, there is uncertainty in the
recognition of traces and the automated application of tracing rules does not include
the possibility for pruning any false candidate trace links that will be created. The
approach, in its current form, does not appear to support the maintenance of trace-
ability following artifact evolution, but the approach proposes interesting ideas that
could be configured to support maintenance, such as the idea of organising rules
in the style of event, condition, action, further stored in the open XML format to
facilitate their customisation by the user.

Maletic et al. describe an XML-based approach to support the evolution of trace
links between models expressed in the XML (Maletic et al., 2005). The authors
also describe a traceability graph and its representation in the XML, independent of
specific models or tools. They propose to evolve traceability along with the models
by detecting syntactic changes at the same level and type as the trace links (e.g.,
textual links require textual change detection). The authors do not discuss how to
detect these changes nor how to update the impacted trace links, but refer to their
own work on the analysis of fine-grained source code differences and mention that
this work could be applied to artifacts in the XML format. The idea of convert-
ing models into the XML format and applying differencing techniques in order to
recognise small incremental changes could be burdensome and slow. The authors
do not provide sufficient information to draw conclusions about the practicality of
the proposed approach.

Murta et al. describe an approach called ArchTrace that supports the evolution of
trace links between architecture and implementation (Murta et al., 2006). The use

182 P. Mäder and O. Gotel

of the Extensible Architecture Description Language (xADL) for the description of
software architectures and Subversion for the versioning of source code is required
in the current form of the approach. The authors trigger a set of eight policies on
committing a new version of an artifact (e.g., suggest a trace link to a more recent
configuration item version if the user creates a trace link to an older version). These
policies mostly ensure the update of existing traceability on artifacts to new versions
within the version control system and further restrict the creation of new trace links
on old artifacts (see also (Murta et al., 2008)). While the approach is an important
contribution for evolving projects working with version control systems, it does not
offer policies that would allow for the recognition of structural changes to models
as the main trigger for traceability maintenance (e.g., the replacing, splitting and
merging of related elements).

5.2 Recognising Evolution to Support Traceability Maintenance

An approach that supports traceability maintenance needs to recognise relevant
changes to related model elements. There is work on categorising and identifying
changes to models that is discussed below.

Cleland-Huang et al. describe a concept for the recognition of change types
applied to requirements as part of their event-based traceability approach (Cleland-
Huang et al., 2002). These change types are used for the description of a recognised
change during change propagation. The authors distinguish and capture seven types
of changes to a requirements model as change events: create a new requirement,
inactivate a requirement, modify an attribute value, merge two or more require-
ments, refine a requirement by adding additional parts, decompose a requirement
into two or more parts, and replace one requirement with another. All seven change
types are composed of a sequence of four different change actions (i.e., create
requirement, set requirement attribute, create link and set link attribute). The recog-
nition of complex change types (i.e., merge, refine, decompose and replace) depends
upon the manual creation of trace links with a certain type between the original
requirement and the newly created requirement(s) and, in certain cases, on setting an
attribute of the initial requirement to the state inactive. The authors provide an algo-
rithm that identifies the seven change types within a sequence of captured change
actions. Furthermore, the authors suggest triggering the actual recognition process
only for a completed user-defined session in order to minimise the risk of false
recognition due to inclusions between the change types (e.g., a decompose change
type consists of a refine change type and an inactivate change type). Since the focus
of the approach is on recognising types of requirements changes, it does not deal
with the more complex task of recognising multi-step change activities to models
comprising different element types.

Engels et al. present a classification of UML model refinements to preserve
consistency during the evolution of UML-RT models (a UML enhancement for real-
time systems) (Engels et al., 2002). The authors identify three kinds of atomic mod-
ification: creation, deletion and update. The focus is limited to four model elements:
capsules, ports, connectors and protocols. The focus of this work lies on preserving

Ready-to-Use Traceability on Evolving Projects 183

and maintaining consistency after incremental evolution. The work does not show
how atomic changes can be combined into the recognition of composite change
activities with development intent and how to maintain consistency in these cases.

Hnatkowska et al. specify behavioral refinements in UML collaboration diagrams
and describe how these relate to structural refinements (Hnatkowska et al., 2003).
The purpose is to establish refinement relationships between different abstraction
layers. The authors provide a classification of nine simple class diagram refine-
ments: adding a class, modifying an attribute, modifying a method, adding an
attribute to a class, splitting a class into two classes with an association, introducing
a successor of a class, adding an association, modifying an association and intro-
ducing an intermediate class. The authors do not discuss how these refinements can
be detected and, accordingly, require the developer to establish the relationships
manually at present.

Mens et al. describe an extension to the UML meta-model to support the version-
ing and evolution of UML models (Mens et al., 2005). The authors classify possible
inconsistencies of UML design models and provide rules, expressed in the Object
Constraint Language (OCL), to detect and resolve these. They transform the models
into a supported format, apply their rules and suggest model refactorings based upon
the results. While the authors discuss the necessity for traceability management and
change propagation during the evolution of UML models, they provide no support
for this scenario.

Many researchers discuss the recognition and the classification of changes to
development models, especially in the context of consistency management between
models after their evolution. However, the necessity to maintain traceability, along
with changing a related model, has been little emphasised. To date, there is no
approach that recognises structural changes to related model elements as a main
trigger of traceability decay, in turn necessitating the maintenance of traceability.

5.3 Requirements for Automated Traceability Maintenance

Addressing this shortcoming, this section provides a list of requirements for a
(semi-)automated approach to traceability maintenance, an approach that would
support the recognition of changes to related model elements with impact on trace-
ability as well as the propagation of these changes between related models. It refers
to the chapter “Grand Challenge of Traceability” and to related work to show how
these contributed to the requirements. The aim of an approach that meets these
requirements is to reduce the effort for traceability maintenance significantly, in
turn reducing the overall costs for a traceable development project (see the sec-
tion Traceability Challenge 2: Traceability that is cost-effective in the chapter “The
Grand Challenge of Traceability (v1.0)”). While an automated solution to traceabil-
ity maintenance would be the ultimate vision (see the chapter “The Grand Challenge
of Traceability (v1.0)”: Ubiquitous Research Theme RT 2), there is no statistic avail-
able to inform the necessary reduction of manual effort that would be required to
get acceptance from the user community; this would also probably vary among users
and projects.

184 P. Mäder and O. Gotel

Requirement 1 (Recognise Model Changes with Traceability Impact) Develop
a technique to recognise changes with impact on traceability, the changes that make
trace links obsolete, the changes that require new trace links and the changes that
require modifications to existing trace links (see the chapter “The Grand Challenge
of Traceability (v1.0)”: Trusted Requirement Req 9) and (Murta et al., 2006). This
needs to support complex models with different types of related artifacts and mul-
tiple possible development activities to evolve these artifacts (see the chapter “The
Grand Challenge of Traceability (v1.0)”: Scalable Requirement Req 8 and Portable
Requirement Req 7). Information will need to be gathered on the intention of a
change to decide about the necessary traceability maintenance.

Requirement 2 (Maintain Trace Links to Prevent Traceability Decay) Prevent
traceability decay by maintaining trace links in a way that is comparable to the
effectiveness of manual maintenance (see the chapter “The Grand Challenge of
Traceability (v1.0)”: Cost-effective Requirement Req 6). This will require perform-
ing all traceability updates in accordance to the project’s TIM (Pinheiro, 2004),
(see the chapter “The Grand Challenge of Traceability (v1.0)”: Configurable
Requirement Req 5).

Requirement 3 (Reduce Effort) The high effort for handling traceability manually
has been reported as one of the major reasons for its rare usage in the past (Arkley
et al., 2002; Gotel and Finkelstein, 1994; Ramesh and Jarke, 2001). It is necessary
to significantly reduce the effort necessary for the manual maintenance of traceabil-
ity by converting it into computational effort (see the chapter “The Grand Challenge
of Traceability (v1.0)”: Ubiquitous Requirement Req 4). Algorithms need to per-
form the required computations without recognisable delays for the user to accept
such an approach (see the chapter “The Grand Challenge of Traceability (v1.0)”:
Purposed Requirements Req 10 and Req 11).

Requirement 4 (Operate Incrementally) A technique for supporting the mainte-
nance of traceability can operate incrementally at run-time rather or batch-wise
(see the chapter “The Grand Challenge of Traceability (v1.0)”: Cost-effective Goal
G 3 and (Maletic et al., 2005)). In batch-wise operation, two states of a model
can be compared and the differences can be computed. While the identification of
small differences might allow for the reasoning about those development activities
that transformed the earlier state of the model into the later state, that reasoning
becomes very uncertain for larger differences. Without knowledge about the per-
formed development activities, and therefore about the intent behind a change, an
automated update of traceability is seldom possible. With incremental operation,
the traces are updated and propagated as they become impacted, and so they are
always ready-to-use (see the chapter “The Grand Challenge of Traceability (v1.0)”:
Cost-effective Requirement Req 7).

Requirement 5 (Propagate Changes to Related Artifacts) Propagate changes to
related artifacts as they occur (Grundy et al., 1998). The change to a model ele-
ment might have impact on related elements and the traces between those elements
(see Section 4). Change propagation captures the information about a change and

Ready-to-Use Traceability on Evolving Projects 185

reminds stakeholders to fix the resulting inconsistencies whenever convenient. It
is necessary to inform the developer about inconsistencies and provide support for
resolving these (Cleland-Huang et al., 2003). Such a change propagation is required
in those situations where one stakeholder causes inconsistencies in models she/he is
not responsible for (see the chapter “The Grand Challenge of Traceability (v1.0)”:
Portable Requirement Req 7). The whole mechanism should be tightly integrated
with the modelling tool and the development process in order to get acceptance
from users and to operate efficiently (see the chapter “The Grand Challenge of
Traceability (v1.0)”: Ubiquitous Requirement Req 4).

Requirement 6 (Transparency of Integration) The approach needs to be trans-
parent for the user and the interactions need to be reduced to a minimum. The
underlying implementation of the approach needs to be general enough to allow for
its use within different tools, model types and development paradigms. User inter-
faces should be integrated seamlessly into any tool in order to minimise the learning
period for the user. (see the chapter “The Grand Challenge of Traceability (v1.0)”:
Purposed Requirements Req 7, Req 9 and Req 12.)

6 A (Semi-)Automated Approach to Traceability Maintenance

This section introduces an approach, emerging from a multi-year research project,
that demonstrates one way to meet the requirements introduced in the previous
section. The objective is to show how the challenging and effort-intensive task of
traceability maintenance can be (semi-)automated and to discuss what can be gained
or lost with such a solution.

The fundamental idea of the approach is the recognition of semantically mean-
ingful development activities applied to model elements and the (semi-)automated
update of impacted traceability if needed. The approach consists of three stages:

Stage 1: Capturing elementary changes to model elements and generating
events.

Stage 2: Recognising the wider development activity applied to the model
element, as comprised of several elementary changes.

Stage 3: Updating the trace links associated with the changed model element.

The first stage consists of issuing a change event to each elementary change
that is applied to a model element. This assumes that development is taking place
within a tool that supports model-based development. During the second stage,
these change events are compared with abstract, pre-defined sequences of changes
(called development activities) that require traceability maintenance. In order to
reduce the effort for the definition of change sequences, while at the same time
being able to handle the high variability in the ways in which development activities
can be performed, a sophisticated method for comparing change events and change
sequences has been developed. This is described fully in (Mäder, 2009). The third
stage consists of performing an update action for the impacted traceability. A set of

186 P. Mäder and O. Gotel

traceability update rules contains signatures of development activities and the cor-
responding traceability update that is necessary. The captured elementary changes
are compared with these rules and, in the case of a match, the necessary traceability
update is performed.

The current set of traceability update rules comprise 21 rules and is able to recog-
nise 37 different development activities. Among these rules are, for example, one to
recognise the extraction of an attribute into a separate class, one to recognise the
replacement of a class with a component and one to recognise the splitting of a
class. The definition of these rules is founded on an in-depth analysis of develop-
ment methodologies and observations of developers creating and updating software
models during their daily work. In order to estimate the completeness of the rule
set, six basic types of development activities are accounted for: create an element,
delete an element, split an element, merge an element, replace an element and move
parts between elements.

6.1 Illustrative Example

A simple scenario, again based upon the iTrust project, is provided to illustrate
the approach. In Fig. 5, a change to a requirement impacts a realised use case and
it becomes necessary for the developer to convert an existing attribute within one
class into its own class.

Step 1 of Fig. 5 shows the initial situation and the trace link between class
LOINCbean and use case Maintain Standards Lists. Steps 2 to 5 show one way
for the developer to carry out the development activity based upon a sequence of
elementary changes. With the last elementary change, deleting the original attribute,

1•0 LOINCbean

- component: string
- kindOfProperty: string
 …

LabProcedureCode

- id: int
- name: string
- barcode: string

1•0 LOINCbean

- labProcedureCode: string
- component: string
- kindOfProperty: string
 …

Step 1: Change of a traced requirement

New Class

1•0 LOINCbean

- labProcedureCode: string
- component: string
- kindOfProperty: string
 …

Step 2: ADD a new class

LabProcedureCode

- id: int
- name: string
- barcode: string

Step 3: MOD - rename new class and add additional properties

Step 4: ADD association between class LOINCbean and
 LabProcedureCode

Step 5: DEL original attribute labProcedureCode

1•0

Step 6: Trace links have been updated automatically

0•1
Maintain
Hospital
Listing

0•3
Maintain

Standards
Lists Administrator

uc: admin

«trace»

1•0 LOINCbean

- labProcedureCode: string
- component: string
- kindOfProperty: string
 …

LabProcedureCode

- id: int
- name: string
- barcode: string

LabProcedureCode

- id: int
- name: string
- barcode: string

1•0 LOINCbean

- labProcedureCode: string
- component: string
- kindOfProperty: string
 …

1•0 LOINCbean

- component: string
- kindOfProperty: string
 …

Fig. 5 Development activity with automated traceability maintenance

Ready-to-Use Traceability on Evolving Projects 187

the development activity is recognised by the approach and the necessary update
of the trace links is performed automatically. Step 6 shows the automatically cre-
ated trace link between class LabProcedureCode and use case Maintain Standards
Lists (depicted by the number “1” placed in the upper left corner of the class).
The scenario is representative of many regular development activities. Nevertheless,
there are activities that do not lead to clear directives for a traceability update. In
such situations, a dialog is required for the user to decide upon the update. This
makes the approach (semi-)automated.

6.2 Prototype and Evaluation

In order to evaluate the approach, a prototype called traceMaintainer (short: tM)
was developed (Mäder et al., 2009b). traceMaintainer not only implements the
recognition of development activities and the update of impacted trace links, but
also supports the customisation and definition of new traceability update rules. The
prototype has been used in industrial projects at Siemens and its integration with
software modelling tools is under discussion.

Several pilot studies of the approach were undertaken to inform a controlled
experiment to explore the following research questions:

1. Does use of the approach reduce the manual effort necessary for maintaining
trace links significantly?

2. Do the traceability updates performed by the approach result in a set of trace links
of comparable quality to those that result when maintained purely manually?

The experiment was conducted on freely available models for a mail-order sys-
tem described with UML diagrams. The project artifacts included models on three
levels of abstraction: requirements, analysis and design. These models consisted
of 33 diagrams, 15 of which were structural diagrams supported by the developed
approach. They further consisted of 104 classes, 223 attributes and 404 methods.
The initial model had been annotated with 214 trace links according to a pre-defined
TIM. This set of trace links provided a baseline for the later analysis of the results.

Sixteen students participated in the experiment, all of whom were in the 8th and
9th semester of their computer science studies. They were assigned equally to an
experimental group (tM) and a control group (notM), according to their experience
in the area of model-based development. The participants had to perform three tasks
to evolve the project over a three hour period. Since they were permitted to perform
the tasks according to their own ideas and experiences, a realistic spread of different
solutions to the same problem was captured.

While the experiment is described fully in (Mäder, 2009), the salient points are
provided here. To determine the effort spent on maintaining traceability, the number
of manual and automated changes to trace links nm and na, as well as the number
of user interactions nUI, were counted. To determine the quality of the performed
traceability updates, the number of correct, incorrect and missing trace link changes

188 P. Mäder and O. Gotel

were captured. These data were then used to compute the commonly used metrics of
precision QP and recall QR. Precision refers to the percentage of performed changes
that were correct and recall refers to the percentage of necessary changes that were
actually performed.

6.3 Evaluation Results

Tables 1(a) and 1(b) summarise the results of the experiment per task and across
all tasks (see the task column). The remaining columns, from left to right, refer to
the dependent variable (var), the treatment (treat), the mean of the measured values
(mean), the standard deviation of the measured values (sd) and the difference of
the mean value of both treatments as a percentage (%-diff). The t-test column of
Tables 1(a) and 1(b) shows the computed p-values as the result of two-sample t-tests
for the dependent variables nm, QP, and QR. The significance threshold for the tests
was set to α = 0.05.

Table 1(a) additionally shows the difference in relative effort between both treat-
ments per task and across all tasks. The computation of that value weights the
number of created trace links and the number of removed trace links differently
in order to reflect that deleting a trace link requires less effort than creating a new
one on average. The relative effort further takes into account the effort for user
interaction during semi-automated traceability updates. A detailed discussion of the
relative effort and its computation is given in (Mäder, 2009).

Regarding research question 1, Table 1(a) shows that the subjects of the tM-
treatment working with support of the approach spent between 48 and 82% less
time per task and 71% less time across all tasks for maintaining traceability. All

Table 1 Experiment statistics

Ready-to-Use Traceability on Evolving Projects 189

the discovered differences between the treatments were statistically significant.
These figures demonstrate that the approach affords a reduction of manual effort
for maintaining traceability.

Regarding research question 2, Table 1(b) shows that the precision of the
changes across all tasks in the tM-treatment were 95.9% on average. This means
that the precision of the changes across all tasks in the experimental group was 21%
higher than that of the control group on average. The computed recall metric for the
performed changes shows that members of the tM treatment performed 11% more
of the required changes on average. Nevertheless, all the computed quality measures
for recall and precision possess a high standard deviation, especially for the control
group, thus all the differences between both treatments regarding quality are not
statistically significant. This means that the approach delivers a maintenance quality
comparable to manually performed traceability maintenance, though the results also
show a tendency for the precision to be better than if the developer worked manually.

6.4 Discussion

While trying to find partners to evaluate the approach, two perspectives materialised.
After an explanation of the approach with employees responsible for traceability
within development projects at Siemens, one employee replied: “I do not think that
I like an automated solution for this sensible task. I want people to think about their
changes again while maintaining traceability.” A second employee replied: “That is
exactly the solution I was waiting for; it can save us a lot of work.” The decision for
or against a (semi-)automated approach to traceability maintenance is individual.
The approach can save tedious and error-prone work, but it should not be seen as
a solution that makes the maintenance of traceability something the developer does
not have to think about anymore. With respect to the particular approach outlined in
this chapter, the following critique is provided.

Development Methodology The approach assumes model-based development,
using a UML modelling tool, establishing traceability in accordance to a TIM.
Except for the use of a TIM, this is exactly the scenario that was reported by
nine of the ten companies profiled in (Mäder et al., 2009). While the scenario is
common in industry, there are other domains with different settings. The exten-
sion of the approach to additional types of diagrams and models remains a future
task. Regarding the use of a TIM, a major problem is the missing support for such
definitions within the most commonly used commercial CASE (Computer-Aided
Software Engineering) tools.

Predefined Rule Catalogue A limitation of the approach is that only predefined
development activities can be recognised and these are unlikely to be exhaustive. It
will be necessary to customise and extend the rule catalogue. In order to address this
issue, a rule editor is provided by the prototype with checks to validate changes to
rules. Nevertheless, the task remains a manual one.

190 P. Mäder and O. Gotel

Semantic Correctness of Trace Links The approach maintains existing trace links
irrespective of whether they are semantically correct or not. It is not possible to find
out about the correctness of these trace links, or even to improve their quality, so
a reasonable pre-existing set is required to make the approach useful. For projects
where this initial quality cannot be guaranteed, the manual maintenance of trace-
ability might be the better choice, allowing the developer to correct problems when
recognised.

Uncertainty in the Recognition Process There are several points of uncertainty
in the process of recognising development activities that might lead to incorrect
or missing traceability updates. Missing rules and missing alternatives within rules
can lead to unrecognised development activities and missing updates, while insuffi-
ciently defined rules can lead to the recognition of development activities that have
not been performed and so, in turn, lead to incorrect traceability updates. The val-
idation functionality within the rule editor supports the identification of certain
problems within a rule definition. Nevertheless, large parts of ensuring the cor-
rectness and completeness of the rule catalogue remains manual work. While no
concrete figures regarding the quality of the current rule catalogue can be given,
the fact that all (semi-)automated updates were performed without mistakes dur-
ing the discussed experiment indicates a high effectiveness of the current rule
catalogue.

Scope of and Threats to Empirical Studies More statistical data need to be gath-
ered on the cost/benefit trade-off of the approach, costs in terms of customising
and extending the rules, and benefits in terms of the time saved on manual mainte-
nance across all projects using the rules. The discussed experiment showed a saving
in effort while using the existing rule catalogue. Unfortunately, no data are avail-
able on the work related to evolving related models and triggering the necessity for
traceability maintenance within development projects. Without this information it is
difficult to calculate how much effort is really saved on a project.

7 Conclusions and Future Challenges

This chapter has focused on the traceability-related challenges of evolving projects.
It discussed two of the core activities of the traceability life cycle: (1) defining the
traceability that is required on a project and (2) keeping the traceability ready-to-
use by maintaining previously established trace links as the project evolves. It also
described a (semi-)automated approach that can reduce the effort of maintaining
traceability within a model-based development context.

TIMs are an essential component of any traceability process. Unfortunately, they
are not widely adopted in industrial projects. CASE tool vendors are encouraged
to provide better support for TIMs and the benefits of having a defined trace-
ability strategy, including a TIM, should be further promoted by consultants and
researchers.

Ready-to-Use Traceability on Evolving Projects 191

The motivation for the development of the approach described in this chapter was
to reduce the manual effort involved in the maintenance of traceability as much as
possible. Nevertheless, there are two points that still require manual work to keep
traceability ready-to-use: (1) selecting impacted trace links during a semi-automated
update and (2) customising and extending the rules that guide the update. To address
the first point, the visualisation and animation of the impacted element, along with
all related elements before and after the update, could support the user in her/his
decision. To address the second point, the existing rule editor could be extended
by functionality that allows new rules to be determined semi-automatically, by
observing a developer performing change activities in situ using a rule recorder.

While the approach supports structural UML diagrams, it would be desirable to
extend it to other kinds of development model. The necessary preconditions would
be models described in a semi-formal language with a defined meta-model and
sufficient element properties to allow for the identification of meaningful devel-
opment activities. The following types of diagrams would meet these preconditions:
behavioural UML diagrams, feature diagrams, Mathworks SimulinkTM diagrams
and NI LabViewTM diagrams.

The described approach has a local perspective on the traceability maintenance
problem, meaning that traces connecting to elements of a changed model will be
maintained. There is also a global perspective on the traceability maintenance prob-
lem, where changes to one model often have an impact on related models and their
traces (see Section 3). A common solution is the propagation of information about
a change on to related models via existing trace links. While such a change prop-
agation approach has been used in commercial development, the problem lies in
the classification of the impact a change to one model has on a related model (see
Fig. 4). The state of the practice is the propagation of any change, leaving the devel-
oper with the decision as to whether the propagated change has an impact on the
artifact she/he is responsible for or not. A more sophisticated and selective proce-
dure would be desirable, based upon the available information about the change
and its type, following the work of (Cleland-Huang et al., 2003). The knowledge of
recognised development activities could facilitate this goal.

The requirements traceability problem (Gotel and Finkelstein, 1994) has many
facets and it is unlikely that there will ever be one single approach that solves
the whole problem, but much has been achieved over the past decade providing
promising approaches to partial aspects. A major goal for the traceability commu-
nity should clearly be the integration of promising techniques in order to provide a
solution for the whole traceability life cycle of a project. The integration of auto-
mated approaches that support the initial creation of traceability with the approach
described in this chapter would give stakeholders the opportunity to retain their
investment through ongoing (semi-)automated traceability maintenance. Another
more technical issue of integration refers to the tooling environment within larger
projects. Different artifacts of the development process are often held in a vari-
ety of tools and the support for traceability between these tools is, in many cases,
not sufficient (Mäder et al., 2009). This integration seems to be a precondition for
the extended usage and ongoing maintenance of traceability in larger distributed
industrial projects.

192 P. Mäder and O. Gotel

References

Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM Syst. J.
45(3), 515–526 (2006). ISSN 0018-8670

Alexander, I.: Toward automatic traceability in industrial practice. In: Proceedings of 1st
International Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE02). In Conjunction with the 17th IEEE International Conference on Automated
Software Engineering (ASE02), Edinburgh, UK, pp. 26–31 (2002, September)

Antoniol, G., Canfora, G., Casazza, G., Lucia, A.D., Merlo, E.: Recovering traceability links
between code and documentation. IEEE Trans. Softw. Eng. 28(10), 970–983 (2002, October).
ISSN 0098-5589

Arkley, P., Mason, P., Riddle, S.: Position paper: Enabling traceability. In: Proceedings of
1st International Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE02). In Conjunction with the 17th IEEE International Conference on Automated
Software Engineering (ASE02), Edinburgh, UK, pp. 61–65 (2002, September)

Arlow, J., Neustadt, I.: UML 2 and the Unified Process: Practical Object-Oriented Analysis and
Design, 2nd edn. Addison-Wesley, Boston, MA (2005). ISBN 0-321-32127-8

Cleland-Huang, J., Chang, C.K., Christensen, M.J.: Event-based traceability for managing evolu-
tionary change. IEEE Trans. Softw. Eng. 29(9), 796–810 (2003). ISSN 0098-5589

Cleland-Huang, J., Chang, C.K., Ge, Y.: Supporting event based traceability through high-level
recognition of change events. In: Annual International Computer Software and Applications
Conference (COMPSAC02), pp. 595–602. IEEE Computer Society, Los Alamitos, CA (2002).
ISBN 0-7695-1727-7

Egyed, A.: Automatically detecting and tracking inconsistencies in software design models. IEEE
Trans. Softw Eng. 37(2), 188–204 (2011, March). ISSN 0098-5589

Engels, G., Heckel, R., Küster, J.M., Groenewegen, L.: Consistency-preserving model evolu-
tion through transformations. In: Proceedings 5th International Conference UML 2002 –
The Unified Modeling Language. Model Engineering, Languages, Concepts, and Tools.
Lecture Notes in Computer Science, vol. 2460, pp. 212–226. Springer, Berlin (2002). ISSN
3-540-44254-5

Finkelstein, A.C.W., Gabbay, D.M., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency handling
in multiperspective specifications. IEEE Trans. Softw. Eng. 20(8), 569–578 (1994, August).
ISSN 0098-5589

Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability problem. In:
Proceedings of the First International Conference on Requirements Engineering (ICRE94), pp.
94–101. IEEE Computer Society, Colorado Springs, CO (1994, April). ISBN 0-8186-5480-5,
0-8186-5481-3

Grundy, J.C., Hosking, J.G., Mugridge, W.B.: Inconsistency management for multiple-view soft-
ware development environments. IEEE Trans. Softw. Eng. 24(11), 960–981 (1998). ISSN
0098-5589

Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via information retrieval.
In: Procerdings of 11th IEEE International Requierments Engineering Conference (RE03), pp.
138–148. IEEE Computer Society, Los Alamitos, CA (2003, September). ISBN 0-7695-1980-6

Hnatkowska, B., Huzar, Z., Kuzniarz, L., Tuzinkiewicz, L.: Refinement relationship between col-
laborations. In: Proceedings Workshop on Consistency Problems in UML-Based Software
Development, UML’03, pp. 51–57. IEEE Computer Society, San Francisco, CA (2003)

Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.-L.: Consistency problems in UML-based
software development. In Nunes, N.J., Selic, B., da Silva, A.R., Álvarez, J.A.T. (eds.) UML
Satellite Activities. Lecture Notes in Computer Science, vol. 3297, pp. 1–12. Springer,
Heidelberg (2004). ISBN 3-540-25081-6

Jacobson, I., Rumbaugh, J., Booch, G.: The Unified Software Development Process. Object
Technology Series. Addison-Wesley, Reading, MA (1999). ISBN 0-201-57169-2

Ready-to-Use Traceability on Evolving Projects 193

Letelier, P.: A framework for requirements traceability in UML-based projects. In: Proceedings
of 1st International Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE02). In Conjunction with the 17th IEEE International Conference on Automated
Software Engineering (ASE02), pp. 32–41. Edinburgh, UK (2002, September)

Lucia, A.D., Oliveto, R., Tortora, G.: IR-based traceability recovery processes: an empirical com-
parison of one-shot and incremental processes. In: 23rd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2008), 15–19 September 2008, L’Aquila, Italy, pp.
39–48. IEEE Computer Society, Los Alamitos, CA (2008). ISBN 978-1-4244-2776-5

Mäder, P.: Rule-based maintenance of post-requirements traceability. PhD Thesis. MV-Verlag,
Münster (2009, October). ISBN 978-3-86991-093-2

Mäder, P., Cleland-Huang, J.: A visual traceability modeling language. In Petriu, D., Rouquette,
N., Haugen, Ø. (eds.), Model Driven Engineering Languages and Systems. Lecture Notes in
Computer Science, vol. 6394, pp. 226–240. Springer, Berlin/Heidelberg (2010)

Mäder, P., Gotel, O., Philippow, I.: Rule-based maintenance of post-requirements traceability rela-
tions. In: Proceedings of 16th International Requirements Engineering Conference (RE’08),
Barcelona, Spain, pp. 23–32 (2008, September). ISSN 1090-705X

Mäder, P., Gotel, O., Philippow, I.: Getting back to basics: Promoting the use of a traceability
information model in practice. In: Proceedings of 5th International Workshop on Traceability
in Emerging Forms of Software Engineering (TEFSE2009). In conjunction with the 31st
International Conference on Software Engineering (ICSE09), pp. 21–25. Vancouver, Canada
(2009a, May)

Mäder, P., Gotel, O., Philippow, I.: Semi-automated traceability maintenance: An architec-
tural overview of trace MAINTAINER. In: Proceedings 5th ECMDA Traceability Workshop
(ECMDA-TW 2009). In conjunction with the 5th European Conference on Model-Driven
Architecture Foundations and Applications (ECMDA2009), pp. 7–16. Enschede, The
Netherlands (2009b, June)

Mäder, P., Gotel, O., Philippow, I.: Motivation matters in the traceability trenches. In: Proceedings
of 17th International Requirements Engineering Conference (RE’09), pp. 143–148. Atlanta,
GA (2009, August)

Maletic, J.I., Collard, M.L., Simoes, B.: An XML based approach to support the evolu-
tion of model-to-model traceability links. In Proceedings of 3rd International Workshop
on Traceability in Emerging Forms of Software Engineering TEFSE’05, pp. 67–72. ACM,
New York, NY (2005). ISBN 1-59593-243-7

Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability links using
latent semantic indexing. In: Proceedings of the 25th International Conference on Software
Engineering (ICSE03), pp. 125–137. IEEE Computer Society, Piscataway, NJ (2003, May
3–10)

Mens, T., van der Straeten, R., Simmonds, J.: A framework for managing consistency of evolving
UML models. In Yang, H. (ed.) Software Evolution with UML and XML, pp. 1–30. Hershey,
PA: IGI Publishing (2005). ISBN 1-59140462-2

Murta, L.G.P., van der Hoek, A., Werner, C.M.L.: Archtrace: Policy-based support for managing
evolving architecture-to-implementation traceability links. In: 21st IEEE/ACM International
Conference on Automated Software Engineering, 2006 (ASE’06), pp. 135–144 (2006,
September). ISSN 1527-1366

Murta, L.G.P., van der Hoek, A., Werner, C.M.L.: Continuous and automated evolution of
architecture-to-implementation traceability links. Automat. Softw. Eng. J. 15(1), 75–107
(2008). ISSN 0928-8910

OMG: MDA Guide Version 1.0.1. Object Management Group (OMG), Framingham, MA.
omg/2003-06-01 (2003, June)

OMG.: UML 2.0 Superstructure. OMG Final Adopted Specification. Ptc/04-10-02. Object
Management Group (OMG), Framingham, MA (2004, June)

OMG.: OMG Unified Modeling Language Specification (OMG UML) Version 2.1.2. Object
Management Group (OMG), Framingham, MA formal/2007-11-02 (2007, November)

194 P. Mäder and O. Gotel

OMG.: OMG System Modeling Language (OMG SysML) Version 1.1. Object Management Group
OMG, Framingham, MA. formal/2008-11-01 (2008, November)

Pinheiro, F.A.C.: Requirements traceability. In: Leite, J.C.S.P., Doorn, J. (eds.), Perspectives on
Software Requirements, pp. 91–113. Kluwer, The Netherlands (2004). ISBN 1-402-07625-8

Ramesh, B., Jarke, M.: Toward reference models of requirements traceability. IEEE Trans. Softw.
Eng. 27(1), 58–93 (2001). ISSN 0098-5589

Spanoudakis, G., Zisman, A., Pérez-Miñana, E., Krause, P.: Rule-based generation of requirements
traceability relations. J. Syst. Softw. 72(2), 105–127 (2004, Juli). ISSN 0164-1212

Weilkiens, T.: Systems Engineering mit SysML/UML. dpunkt.verlag (2006). ISBN 3-8986-
4409-X

Evolution-Driven Trace Acquisition
in Eclipse-Based Product Line Workspaces

Wolfgang Heider, Paul Grünbacher, Rick Rabiser, and Martin Lehofer

1 Introduction

Practitioners and researchers generally agree that trace links are vital for under-
standing software systems and for supporting mission-critical engineering tasks.
Trace links can be used for determining the impact of changes during maintenance,
they allow performing coverage analyses, and they support checking consistency
among arbitrary artifacts. Traceability is nowadays mandated by standards and pre-
scribed in development methods in many domains. Despite significant advances in
traceability research, acquiring trace links remains challenging and requires high
efforts of developers and domain experts (Egyed et al., 2010).

Traceability represents a major challenge in software product line engineer-
ing (PLE) as variability has to be addressed at multiple levels of abstraction
(Anquetil et al., 2010). PLE distinguishes two life cycles (Pohl et al., 2005): devel-
opment for reuse (also called domain engineering) and development with reuse
(also called application engineering). Domain engineering covers the development
of reusable artifacts such as code, models, or documents and defining their variabil-
ity. Application engineering deals with deriving products from the product line by
exploiting its variability. In PLE traceability is relevant to understand dependencies
among the diverse reusable artifacts as well as between the product line and the
derived products which often include additional developments and customizations.
Traceability in PLE thus helps understanding variability and ensuring the consis-
tency of products. Engineers need traceability support in IDEs when modifying
product line artifacts.

There are basically two ways for acquiring trace links (Asuncion, 2010). In
retrospective trace acquisition, trace links are identified ex post by statically ana-
lyzing artifacts, for example, by parsing existing product line models to find trace
links among model elements. In prospective approaches trace links are created

W. Heider (B)
Christian Doppler Laboratory for Automated Software Engineering, Johannes Kepler University,
Linz, Austria
e-mail: heider@ase.jku.at

195J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_9, C© Springer-Verlag London Limited 2012

196 W. Heider et al.

“on the fly” by observing artifacts as they are created and modified by users dur-
ing development. Researchers have proposed various techniques and heuristics
to support the acquisition and evolution of traces. Examples include event-based
approaches (Cleland-Huang et al., 2003), information retrieval (Cleland-Huang
et al., 2007), feature location techniques (Koschke and Quante, 2005), process-
oriented approaches (Pohl, 1996), scenario-based techniques (Egyed, 2001), or
rule-based methods (Mäder et al., 2008; Spanoudakis et al., 2004).

This chapter presents an event-based approach that allows acquiring trace links
in a standard IDE used for model-based product line development. There are two
contributions: we discuss challenges of traceability in PLE and illustrate these chal-
lenges in the context of the tool-supported DOPLER approach. Furthermore, we
present a trace acquisition approach for PLE that is based on tracking changes in
an IDE. Our EvoKing tool uses a meta-model that defines artifacts, evolution events
and trace links. Traces are identified based on evolution events which are created
based on tracking changes or analyzing files in the workspace. The tool uses infor-
mation about the artifact structure defined as extensions to the EvoKing framework.
These extensions include mappings of change notifications and facts (i.e., analyzed
data of stored models and files) with evolution events and trace links. Our model-
based approach supports both retrospective and prospective tracing and can deal
with arbitrary types of artifacts.

Throughout the chapter we use the mobile phone product line case study (see
Appendix C) to illustrate our approach. We regard our approach as interesting
to both researchers in the area of tool-supported trace acquisition as well as
practitioners that need to provide support for traceability in their development
environment.

2 Product Line Engineering and Traceability

A software product line is a “a set of software-intensive systems sharing a common,
managed set of features that satisfy the needs of a particular market segment or mis-
sion and that are developed from a common set of core assets in a prescribed way”
(Clements and Northrop, 2001). Product lines aim at increasing the degree of reuse
in software engineering to reduce cost and time-to-market and to increase software
quality and reliability (Pohl et al., 2005). Reports show that product lines are suc-
cessfully used in many business environments (Clements and Northrop, 2001; Pohl
et al., 2005; van der Linden et al., 2007). Many product line approaches are based on
models that define the variability of the reusable artifacts. For instance, researchers
and practitioners use feature models (Czarnecki and Eisenecker, 2000; Kang et al.,
1990) or decision models (Schmid et al., 2011) to define product line variability.

PLE involves modeling the problem space (the variability of the product line’s
features and capabilities) and the solution space (the architecture and the compo-
nents of the technical solution). It is fundamental to understand the relationship
between the problem and solution space. It is however also critical to establish trace

Evolution-Driven Trace Acquisition in Eclipse-Based Product Line Workspaces 197

links among the elements within both spaces (Vierhauser et al., 2010). Trace links
are needed in PLE when configuring and assembling products. Traceability is thus
a prerequisite for automation in PLE.

Several authors have presented research on traceability in product lines. For
instance, Jirapanthong and Zisman (2009) describe support for rule-based trace
link generation between different artifacts and discuss scenarios of how trace links
can help in PLE. Berg et al. (2005) discuss tracing of variability in product lines
at different levels and present a variability modeling approach with support for
traceability. Mohan and Ramesh (2007) argue that “high-end traceability practices
significantly improve the performance of product family developers in maintenance
tasks.” However, existing research does not provide sufficient traceability support
for the evolution of product line artifacts in specific development environments.

Commercial product line tools provide basic traceability support. For instance,
the pure::variants synchronizer (pure systems GmbH, 2006) for CaliberRM and
DOORS allows developers to benefit from the functionalities of these requirements
management tools. Similarly, GEARS (Krueger, 2008) integrates with DOORS,
UGS TeamCenter, and IBM/Rational RequisitePro to support requirements manage-
ment. However, despite these basic mechanisms the tools lack full life cycle support
for traceability in PLE. According to Anquetil et al. (2010) existing commercial
tools for requirements management and traceability do not provide proper built-in
support for product line evolution and there is also only little progress regarding
traceability support in existing PLE tool suites.

Compared to traditional single systems engineering traceability in PLE is chal-
lenged by the interconnected life cycles of domain and application engineering.
More specifically, the traceability challenges shown in Fig. 1 are relevant in PLE:

Fig. 1 Traceability
challenges in the two product
line life cycles. The arrows
indicate common types of
trace links in product line
engineering. The numbers
indicate traceability
challenges

198 W. Heider et al.

Challenge (1) – Dealing with the diversity of product line artifacts and tools.
Product lines comprise different types of artifacts, e.g., variability models, software
components, or documents. The artifacts are created and maintained with different
tools. Traceability is required among the artifacts as well as between specific ele-
ments within the artifacts, e.g., the model elements. Meta-models are often used to
define the artifact types and their granularity. They allow establishing vertical trace
links between different types of artifacts and between artifacts at different levels of
granularity.

Challenge (2) – Ensuring traceability during product line development. During
product line development it is essential to establish trace links among problem
space elements representing variability from the perspective of users, for exam-
ple, between different choices about the functionality of a mobile phone camera.
Similarly, trace links are needed among solution space elements representing
reusable and interdependent assets, e.g., between components, test cases, or docu-
ments implementing or describing the mobile phone camera. Furthermore, solution
space models have to be mapped to the actual reusable artifacts like code or
test cases. Establishing such trace links is essential for keeping the product line
consistent (Vierhauser et al., 2010).

Challenge (3) – Establishing traceability from the product line to the products.
The ultimate goal of PLE is to turn out products. Trace links between domain engi-
neering artifacts and application engineering artifacts support maintenance activities
and help determining the impact of a change on existing products, e.g., when trying
to find out whether an existing mobile phone software can be updated after a change
to the product line. Managing such horizontal traces can become very challenging
as many products are derived from a product line over time. Also, as the product
line evolves products are typically derived from different releases.

Challenge (4) − Relating new product requirements with the product line. The
unrealistic blue-sky scenario in product derivation is that all customer requirements
can be satisfied by reusing and composing existing product line assets. A more
realistic case in many domains is that customers articulate additional, often unan-
ticipated requirements not yet covered by the product line. These new requirements
need to be related with the reusable assets to support the evolution of the product
line. In practice this process is often further complicated as multiple products are
derived concurrently from a single product line. In this case trace links are essential
to analyze similarities and conflicts of the captured requirements.

Challenge (5) − Treating variability as a first class citizen in traceability. Models
describing single systems do not regard variability as a first class citizen and all
model elements are considered part of the system. In product lines modelers need
to explicitly deal with variability which makes managing traceability more diffi-
cult. For example, if a particular feature is not included in a derived product (e.g.,
no camera is available in a specific mobile phone) one still needs to capture trace
links from the feature to the specific product to avoid possible inconsistencies after
changing the variability model (e.g., by defining the camera as mandatory in later
releases).

Evolution-Driven Trace Acquisition in Eclipse-Based Product Line Workspaces 199

3 Traceability in the DOPLER Product Line Approach

We further illustrate the presented traceability challenges in the context of the
DOPLER approach (Dhungana et al., 2011; Grünbacher et al., 2009; Rabiser et al.,
2009). DOPLER uses decision models to define variability. The DOPLER tools
allow defining a product line meta-model and support product derivation involving
different types of product line artifacts (cf. challenge 1).

From a traceability perspective the relevant types of artifacts in DOPLER are
product line meta-models, variability models, derivation models, and specific model
elements in these models. Figure 2 depicts these key artifact types together with
relevant relations. It also shows examples of change events that can result in the
creation or update of trace links.

Product line meta-models specify the types of reusable assets, their attributes,
and dependencies for a given domain. In the mobile phone example, the asset
type Implementation Technique represents components providing capabilities like the
Bluetooth connectivity of a mobile phone. This asset type consists of the attributes
name, description, and version. Implementation Technique also defines a possible
dependency implements to assets of type Operating Environment.

Variability models in DOPLER describe the problem space with decision models
and the solution space with asset models that are based on the asset types predefined
in the product line meta-model (Dhungana et al., 2011). Decisions represent the
assets’ variability. Decisions have a name (e.g., “connectivity”) and a type (Boolean,
String, Double, or Enumeration). They are represented as questions, e.g., “Which
connections for transferring data?” Decisions can depend on each other hierarchi-
cally (e.g., a decision needs to be taken before another one) and/or logically (e.g.,

Artifacts RelationsChange Events

Product Line
Meta-Model

Variability Model

Derivation Model

Requirement
in Derivation

Model

uses

based on

from

Asset type defined in
domain engineering

Decision changed
during variability

modeling

Decision taken
during product

derivation

New requirement
captured about a
new functionality

Fig. 2 Key artifacts in DOPLER with high-level relations and examples of change events (Heider
et al., 2009)

200 W. Heider et al.

taking a decision changes the value of another one). The decision dependencies
determine the order of taking decisions but do not define configuration constraints.
Assets are related with decisions via explicit inclusion conditions to establish trace-
ability between the solution space and the problem space of the product line (cf.
challenge 5) and define for an asset under which condition it is part of a product.
For example, the asset Bluetooth Stack is part of the product if the option Bluetooth
is selected for the decision on data transfer connections. Assets without an explicit
mapping to the problem space can be included for a derived product through func-
tional relations from other assets (cf. challenge 2) that are included because of a
decision.

A derivation model (Rabiser et al., 2007) is a product-specific instance of a
variability model and establishes trace links between the product line and con-
crete products (cf. challenge 3). It further defines additional elements such as
tasks, roles, and users. Tasks are groups of decisions, which result in trace links
from product derivation tasks to decisions, and guide product derivation by pro-
viding multiple views on the problem space. Roles define responsibilities for tasks,
e.g., sales, project management, or engineering. Roles can be assigned to concrete
users resulting in user-role-task relations. Derivation models are furthermore used
to define guidance on decisions, e.g., to provide documentation useful for resolv-
ing variability. Derivation models also store the actual values of decisions. They
can also contain requirements that represent new customer wishes (Rabiser and
Dhungana, 2007) captured during product derivation, e.g., requested functionalities
such as “bookmark synchronization” of a mobile phone browser. These require-
ments are also related with product line variability models through trace links (cf.
challenge 4).

3.1 Granularity of Trace Links in DOPLER

The DOPLER tool suite (Dhungana et al., 2011) supports creating and managing the
models and artifacts described above and provides initial support for model evolu-
tion (Dhungana et al., 2010). More specifically the tool suite includes a meta-model
editor, a variability model editor, a derivation model editor, and a configuration
wizard supporting end users such as sales people or project managers in deriving
products. The configuration wizard utilizes derivation models and guides the user in
resolving variability by taking decisions.

Similar to other development environments DOPLER distinguishes between
coarse- and fine-grain traces:

Coarse-grain traces. Traceability has to be managed in the large, i.e., among
the diverse types of models (meta-models, variability models, and derivation mod-
els). For instance, a variability model is based on a particular meta-model and a
derivation model instantiates a specific variability model (see Fig. 2).

Fine-grain traces. Traceability also needs to be managed in the small, i.e.,
between model elements such as decisions, assets, or requirements. These elements

Evolution-Driven Trace Acquisition in Eclipse-Based Product Line Workspaces 201

are often not part of the same model. For example, requirements are captured in
different derivation models but can be related with individual decisions or assets in
arbitrary variability models.

4 EvoKing Traceability Support

To address traceability at different levels of granularity and for arbitrary artifacts we
have been developing the EvoKing approach and tool (Heider et al., 2009). EvoKing
is based on a generic meta-model similar to existing approaches for software evo-
lution analysis (Girba and Ducasse, 2006) and traceability frameworks (Anquetil
et al., 2010). This generic meta-model has to be extended to define the elements
that are to be tracked. EvoKing monitors changes to artifacts and derives trace links
by analyzing these changes. EvoKing saves data about changes right in the moment
the elements are modified (live prospective tracing) but also allows restoring trace-
ability information from already existing workspace artifacts (ex post retrospective
tracing).

The tool is realized as a set of Eclipse plug-ins monitoring low-level change
events in Eclipse and creating trace links between arbitrary artifacts such as code,
documents, or models stored in Eclipse workspaces. EvoKing thereby complements
the existing file-level change tracking feature of Eclipse and can easily be adapted to
any Eclipse-based IDE. Our testbed for developing EvoKing has been the DOPLER
tool suite.

4.1 Tracking Changes to Acquire Trace Links

Our approach establishes trace links while product line artifacts evolve and thus
relies on tracking changes to diverse artifacts during product line modeling and
maintenance. Examples of changes in model-based PLE are the creation of models
(e.g., new product derivation model) or modifications of models (e.g., adding a new
feature to a variability model).

Our approach focuses on establishing trace links on the fly to provide as much
information as possible to the modeler in product line maintenance. However, trace
links are not just based on prospective tracing by observing model changes. Upon
activating EvoKing the first time, a retrospective analysis of the artifacts is per-
formed automatically to extract trace information by utilizing the APIs of the
integrated tools. For instance, we instrumented DOPLER to track all changes to vari-
ability models in the IDE and to find all derivation models using a specific variability
model.

Extensions to our tool define how events map to relations between the involved
artifacts and how trace links can be found within a file or a model. We do not
apply heuristics or statistical data as other retrospective analysis methods. We use

202 W. Heider et al.

facts to recover artifact-specific trace links. For example, we check model equal-
ity to find the variability model that is used for a derivation model. However, in
artifact definitions one could also implement heuristics to recover trace links if
desired.

4.2 Evolution Meta-Model

When adapting EvoKing to a particular product line development environment one
needs to define the artifacts to be tracked, the events to be captured and the trace
link types as relations among them. The generic EvoKing meta-model for tracking
evolution comprises the elements Artifact, Event, and Relation (cf. Fig. 3). We use
a layered approach: our generic meta-model defines just the basic elements for the
evolution and traceability data structure. These elements are then refined to specific
domains and technologies using custom artifact definitions.

An artifact represents an element of interest for establishing traceability and
tracking changes. Examples of artifacts in product lines are meta-models, vari-
ability models, model elements (e.g., decisions, assets), documents (Rabiser et al.,
2010), or new product requirements captured during product derivation (Rabiser and
Dhungana, 2007). Artifacts can have arbitrary attributes, e.g., the URL of the related
resource and a flag whether it has been deleted or still exists in the workspace. A
change event fired by the IDE (e.g., a derivation model file was created) or by model
editors (e.g., a decision was added) indicates changes to artifacts and might lead to
the creation of trace links (e.g., if a derivation model is instantiated from a variability
model).

Based on the generic evolution meta-model, arbitrary events can be defined and
are instantiated with the specified artifact definitions. Relevant events can be derived
from existing process models and workflows in product line engineering (cf. Fig. 2).
For example, modifying a decision to add a new network option to the mobile
phone product line constitutes an event with information about a new version of
this decision.

Artifact

+id
+type
+attributes

Event

+type
+description
+timestamp

Relation

+type

1 * 1 1

* 1

Fig. 3 Generic EvoKing meta-model for evolution tracking of arbitrary artifacts. Artifact is an
abstract class and has to be extended for defining concrete artifacts. Implementing an artifact also
requires instantiating events and relations as reactions to change notifications

Evolution-Driven Trace Acquisition in Eclipse-Based Product Line Workspaces 203

A relation among artifacts is established by an event tracked for a specific
artifact. Such links can be spatial or temporal. Spatial relations between arti-
facts describe how the artifacts are organized, e.g., a derivation model is an
instance of a variability model or a decision is defined in a variability model.
Temporal relationships are created to track the evolution history of artifacts, for
instance, each modification of a decision is stored in events related to the vari-
ability model containing that decision. When refining our evolution meta-model
to a particular development environment, users can define different types of trace
links with different semantics in their definitions of artifacts. For example, the
artifact definition of a derivation model covers decisions taken during product
derivation. In this case trace links are created from decisions to derived products,
e.g., to determine how a particular decision has been made in already derived
products.

4.3 Capturing Notifications and Establishing Traceability

Software engineers customize EvoKing for tracking evolution and generating trace
links in arbitrary Eclipse-based environments. Our evolution meta-model defines a
data structure for storing evolution and trace data. It can be refined for arbitrary
elements and represents the core of our tool-supported approach. EvoKing allows
adding extensions for resolving domain-specific relations. It supports interpreting
notifications from Eclipse for specific models or model elements and therefore add
semantic information to change events.

As depicted in Fig. 4, EvoKing works as a consumer and recipient of primitive
change notifications coming from Eclipse or other tools (e.g., a variability model
editor) involved in modifying the artifacts. Based on the incoming notifications evo-
lution events with more detailed information regarding changed content and new
or changed trace links are generated as implemented in the domain-specific artifact

Artifacts Events
Relations

Refined Evolution
Meta-Model

Artifacts Events
Relations

Refined Evolution
Meta-Model

EvoKing

Eclipse

Custom
Event

Providers observe Other
tools

Evolution
View

Change
Events

Evolution
Eventsre

ce
iv

e

se
nd

use

Artifacts Events
Relations

Refined Evolution
Meta-Model

EvoKing
Storage

Fig. 4 EvoKing receives change events and adds information through artifact/event/relation
definitions from refined evolution meta-models and stores evolution and trace information

204 W. Heider et al.

definitions. Evolution events are stored for each artifact. EvoKing receives change
events based on information from two sources:

(i) EvoKing receives and analyzes Eclipse resource change events such as “file
added” or “file modified”. Using the model-specific APIs the tool then
retrospectively parses the models stored in the files to recognize internal
changes. Such changes are mapped to artifacts, events, and trace links as defined
in the refined evolution meta-model. EvoKing thus complements the existing
notification mechanisms of Eclipse by adding explicit semantics to events. For
example, users can define in the artifact definitions of their refined EvoKing
meta-model that the meaning of adding a new file of type derivation model to
the workspace represents the start of a new product derivation based on a related
variability model. In this case a trace link can be established to the originating
variability model (cf. Fig. 2).

(ii) Custom event providers for specific artifact types (e.g., variability models)
can send custom events (e.g., “decision added”) to EvoKing to enable live,
prospective tracking. A listener can be generated semi-automatically using Java
Reflection for a particular type of model to receive and store change notifica-
tions. EvoKing can then track internal changes made to a model. Notifications
are automatically transformed to evolution events according to the artifact
definitions.

The evolution events are stored in a local file if working offline or in the online
EvoKing storage accessible by other product line stakeholders to synchronize engi-
neering activities. Other tools can implement EvoKing’s notification interfaces to
be informed about relevant evolution events. For instance, EvoKing’s storage can be
visualized in a tree-based evolution view (cf. Fig. 7) depicting all tracked artifacts,
the evolution events as well as trace links to affected artifacts.

4.4 Evolution Tracking in the DOPLER Eclipse Workspace

The predefined Eclipse artifacts automatically tracked by EvoKing are the
workspace entities file and project (cf. Fig. 5). Users can specify the Eclipse projects
and specific file types they want to be tracked by activating EvoKing for Eclipse
projects and by providing the proper artifact definitions for the file extensions as
Java classes. For tracking DOPLER models we defined the file extensions .meta
(Product Line Meta-Model), .var (Variability Model) and .gen (Product Derivation
Model). These artifact definitions include implementations to utilize the DOPLER
model APIs for extracting and observing internal changes and to find references to
extract trace links. The implementer of an artifact definition is responsible to create
the events and to add the trace links for the change notifications.

When EvoKing is activated for a specific project a full scan of the
project workspace is performed to determine trace links in the defined artifacts

Evolution-Driven Trace Acquisition in Eclipse-Based Product Line Workspaces 205

Artifact

+id
+type
+attributes

Event

+type
+description
+timestamp

Relation

+type

1 * 1 1

1*

File

+extension

Project

+type

Evolution Artifacts in Eclipse

PL Meta-Model Variab. Model

Evolution Artifacts in DOPLER

Deriv. Model

Fig. 5 Basic evolution meta-model for the Eclipse workspace and examples of DOPLER artifacts.
The abstract definition of an artifact is extended for specific artifacts in Eclipse and DOPLER.
Events and relations are defined within the specific artifact implementations according to the
change notifications relevant for trace links

(retrospective tracing). From then on, live prospective tracing is active and EvoKing
also tracks internal changes to models.

5 Application Example: Evolving the Mobile Phone
Product Line

We provide examples of evolving DOPLER artifacts to illustrate EvoKing’s capa-
bilities for tracking changes and acquiring trace links. We created DOPLER product
line models based on the data of the mobile phone product line case study. We used
the existing feature models, descriptions of mobile phone functionalities, module
models and the technical specifications of three product members given to define an
initial DOPLER product line model.

Figure 6 shows examples of decisions and assets of the mobile phone product
line defined in the product line model. The decision conn offers the three options
Bluetooth, Infrared, and USB. According to the cardinality one to three options can
be chosen. If at least one connectivity option is selected, the decision syncML
becomes available to the user. The inclusion condition for the operating envi-
ronment asset Bluetooth defines that it is included for a product if the selected
options of the conn decision comprise Bluetooth. The relationship implemented
by leads to the inclusion of the implementation technique asset named Bluetooth

206 W. Heider et al.

Transfer data via SyncML?
(name: syncML;expected val: bool)

-name: string = Bluetooth
-inclusion cond.: string = (conn, „Bluetooth“)
-description: string = …

Operating Environment

-name: string = Bluetooth Stack
-inclusion cond.: string = false
-description: string = …
-version: string = 2.0

Implementation Technique

Bluetooth is included
if the taken decision conn
includes option Bluetooth

<<implemented by>>

-name: string = Connection
-inclusion cond.: string = false
-description: string = …

Operating Environment

<<generalization of>>

-name: string = SyncML Protocol
-inclusion cond.: string = syncML
-description: string = …
-version: string = 2.0

Implementation Technique

included if syncML == true

<<requires>>

Asset dependenciesDecision dependencies

D
ec

is
io

ns
A

ss
et

s

Inclusion condition

Which connections for transferring data?
 (name: conn; cardinality: 1:3;

 {„Bluetooth“, „Infrared“, „USB“})

syncML can be taken if any option for conn is selected

Fig. 6 Partial DOPLER model of the mobile phone example

stack. The asset SyncML Protocoll is added if the syncML decision is set to true.
This asset requires the operating environment Connection, which in turn general-
izes the Bluetooth operating environment and also all other available connection
assets.

We performed multiple changes to the mobile phone product line model (cf.
Table 1) to simulate realistic product line evolution (Heider et al., 2010). For exam-
ple, we added decisions and assets about more advanced mobile phone features such
as touch screens.

Using the mobile phone example, we show how EvoKing and its evolution view
can assist in coping with the five challenges we described earlier.

Challenge 1 – Dealing with the diversity of product line artifacts and tools.
The DOPLER meta-model for the mobile phone example defines all possible asset
types in the solution space of the product line. More specifically, we defined

Evolution-Driven Trace Acquisition in Eclipse-Based Product Line Workspaces 207

Table 1 Examples of product line evolution

Change activity Description

Remove decision We removed the decision on Java support from the variability model as it
was decided that Java support should be a part of all products from
now on

Change assets After the “remove decision” change we defined the related assets as
mandatory to include full Java support for all future products. We had
to change the inclusion conditions of the assets related to the decision
on Java support

Capture new
requirements

While answering decisions to derive a mobile phone we captured the
requests for touch screen and WiFi support. This simulates the situation
of mobile phone configuration performed by a product manager
defining the new generation of a mobile phone device series

Add decision We added a Boolean decision “Touch sensitive screen?” to offer the
requested support for touch screen

Change decision We added the option “Wireless LAN” to the decision on connectivity
options to offer the requested WiFi connectivity

Add assets According to the new options for screen and connectivity we added the
assets “Touch Screen” and “WiFi” of asset type “Operating
Environment”

Add asset
relationships

We added generalization relations from the assets “Input Method” and
“Screen” to the new asset “Touch Screen”

implementation technique, domain technology and operating environment as asset
types. The DOPLER asset model of the mobile phone example (cf. Fig. 6) comprises
elements found in the feature model and the module model of the mobile phone
case study, for example, Bluetooth and SyncML. The decision model defines ques-
tions that need to be asked to resolve variability. We have modeled several decisions
(e.g., “Which connections for transferring data?”) based on the described product
members and their functionalities and based on the variability that is described in
the existing feature model.

EvoKing supports tracking changes to these diverse artifacts. Fig. 7 (left pane)
shows the unstructured default view of folders and files in the workspace: the
Eclipse project explorer contains different files (models) related to the mobile phone
product line. Without EvoKing, traceability relations would not be accessible to
developers without manually inspecting the involved files. The right pane in Fig. 7
depicts a tree outline of the relevant content (requirement Req_VT100 is expanded),
trace links among the different artifacts (Req_VT100 is stored in derivation model
mobile_v02.gen, which uses variability model mobile_v02.var), and internal changes
(decision changes in variability model mobile_v02.var). EvoKing provides this out-
line for all artifacts tracked as defined in the EvoKing meta-model. The tree structure
represents the trace links among artifacts.

Challenge 2 – Ensuring traceability during product line development. Product
line development not just means evolving the reusable components but also requires
maintaining the variability models. This ensures that the models reflect the actual
functionality that can be offered. After a change to a variability model we need

208 W. Heider et al.

Fig. 7 The unstructured list of product line files in the Eclipse project viewer (left) shows no
trace links. The EvoKing evolution view (right) provides a structured visualization of vertical (e.g.,
“uses” relation between .gen and .var file) and horizontal trace links between the DOPLER artifacts
(e.g., changes to decision attributes in mobile_v02.var)

to find model elements and product line artifacts that are potentially affected to
consider them for revision. The dependencies in a specific version of the product line
model may be insufficient to determine the backward compatibility of the product
line to the products. EvoKing thus allows inspecting the model elements’ history to
reveal more details about earlier changes and dependencies no longer present in the
current product line model.

For example, a modeler intending to update the decision “Touch sensitive
screen?” will be interested in related screen functionalities such as Graphic Screen
(cf. Fig. 8). The change history reveals possible side effects to other decisions like
camera. The figure depicts the change history of model elements related to a search
term “screen”. We see that in variability model mobile_v02.var the inclusion condi-
tion (IncludedIF attribute) of the Graphic Screen asset refers to the camera decision
and in variability model mobile_v03.var a new screen option “Touch Screen” was
added. This suggests that the modeler should consider possible conflicts or neces-
sary changes regarding the camera option, the graphic screen, and the touch screen
option.

Challenge 3 – Establishing traceability from the product line to the products.
Changes to the product line models potentially have an impact on already derived
products and ongoing product derivation projects. If we want to “replay” a product
derivation that was performed with an earlier version of the product line, we need
to understand the impact of all changes made in the variability model. For example,
when removing a decision from the variability model to thereby define Java support
as mandatory feature in future products we need to know the decision values of past

Evolution-Driven Trace Acquisition in Eclipse-Based Product Line Workspaces 209

Fig. 8 Evolution view showing changes to trace links between different model elements (e.g.,
asset relation change) and temporal trace links showing the history of individual model elements
(e.g., asset change)

product derivations. This helps the modeler to assess whether existing products can
be derived again with a newer version of the product line.

In Fig. 9 we see mobile phone product line evolution data stored by EvoKing
related to the search term “java”. In the variability model mobile_v03.var the decision
java was removed. In two product derivation projects (represented by derivation
models mobile_v03.gen and Product_NKE2311.gen) this decision was set to [“Mobile
Media API, Wireless Messaging API”]. A developer can infer maintenance tasks
to avoid compatibility issues. For example, she has to make at least these two
functionalities and related assets mandatory to avoid reducing the functionality
of the products when deriving them again from the product line models, i.e.,
mobile_v03.gen and Product_NKE2311.gen.

Challenge 4 – Relating new product requirements with the product line. New
requirements captured during product derivation are triggers for product line evo-
lution. Engineers incorporate required changes in the product line as early as

Fig. 9 EvoKing Evolution view. The events are filtered using the name of a model element (e.g.,
“java”). The view shows that changes to that model element (e.g., removing decision “java”)
has an impact on two existing products represented by derivation models NKE2311.gen and
mobile_v03.gen

210 W. Heider et al.

Fig. 10 Trace links from new requirements to the derivation model which is related to the vari-
ability model (e.g., REQ_connection_wifi – from Deriv. Model – Product NKE2311.gen – uses –
mobile_v03.var)

possible to avoid duplicate product-specific developments. We thus need to collect
all new requirements captured in concurrent product derivations and analyze the
requests with respect to similarities and affected variability models. Figure 10 shows
data provided by EvoKing including new requirements (REQ_connections_wifi,
REQ_connection_wlan). These can be also processed by other tools, for example,
when using an issue tracker to plan product line maintenance. The requirements
originate from the derivation models Product_NKE2311.gen, P_NKx1234.gen and
P_Nm3.gen which are related to the variability models mobile_v02.var and mobile
v03.var as shown by the trace links presented to the user (cf. Fig. 10, “uses”
trace link). Additionally, references to related model elements (i.e., via the influ-
enced attribute) that are captured with new requirements are presented by EvoKing.
This enables a modeler to quickly find the models (e.g., mobile_v03.var) and model
elements that need to be adapted to address a specific requirement.

Challenge 5 – Treating variability as a first class citizen in traceability. To ensure
traceability in product line evolution we have to treat decisions as first class citizens
and track them throughout product line modeling and product derivation. Figure 8
shows modifications and usage of the mobile phone product line decision touch.
The product line modeler can see in which version of the product line (variability
model file mobile_v03.var with a certain timestamp) this decision was introduced
and when, by whom or in what respect it was changed or deleted. Taking decisions
during product derivation is also tracked as shown in Fig. 9. This enables identifying
the impact of changing decisions.

Evolution-Driven Trace Acquisition in Eclipse-Based Product Line Workspaces 211

6 Summary and Conclusion

This chapter gave an overview of traceability in product line engineering and dis-
cussed five key challenges of tracing in PLE arising from: (1) diverse artifacts
with interrelations at different levels of granularity; (2) inter- and intra-model
relations; (3) multiple, concurrent product derivations; (4) feedback from product
derivation projects; and (5) variability as a first class citizen regarding traceability
and evolution. We presented the decision-oriented variability modeling approach
DOPLER with its specific traceability requirements to illustrate the five challenges.
We described tool support to cope with these challenges. Using scenarios from the
mobile phone product line we showed how EvoKing facilitates model maintenance
and product line evolution.

The EvoKing framework is flexible and can be adapted to track arbitrary artifacts.
However, there is also a limitation of the approach as the artifacts, evolution events,
and trace link types need to be defined in advance through implementation. Also,
the framework is currently only available for the Eclipse IDE. For future work we
plan to extend the EvoKing framework to provide the user with more visualizations
and guidance for easier utilization of the trace links and evolution data.

References

Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.C., Rummler, A., Sousa, A.: A
model-driven traceability framework for software product lines. Softw. Syst. Model 9(4),
427–451 (2010)

Asuncion, H.U., Asuncion, A.U.: Taylor RN software traceability with topic modeling. In: 32nd
International Conference on Software Engineering (ICSE ’10), pp. 95–104. ACM, Cape Town,
South Africa (2010)

Berg, K., Bishop, J., Muthig, D.: Tracing software product line variability – from problem to solu-
tion space. In: 2005 Annual Research Conference of the South African Institute of Computer
Scientists and Information Technologists on IT Research in Developing Countries, pp. 182–
191. South African Institute for Computer Scientists and Information Technologists, White
River, South Africa (2005)

Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best practices for
automated traceability. IEEE Comp. 40(6), 27–35 (2007)

Cleland-Huang, J., Chang, C.K., Christensen, M.J.: Event-based traceability for managing evolu-
tionary change. IEEE TSE 29(9), 796–810 (2003)

Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. SEI Series in Software
Engineering, Addison-Wesley, Boston, MA (2001)

Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Techniques, and
Applications. Addison-Wesley, Boston, MA (2000)

Dhungana, D., Grünbacher, P., Rabiser, R.: The DOPLER meta-tool for decision-oriented variabil-
ity modeling: A multiple case study. Automat. Softw. Eng. 18(1), 77–114 (2011)

Dhungana, D., Grünbacher, P., Rabiser, R., Neumayer, T.: Structuring the modeling space and
supporting evolution in software product line engineering. J. Syst. Softw. 83(7), 1108–1122
(2010)

Egyed, A. A scenario-driven approach to traceability. In: 23rd International Conference on
Software Engineering (ICSE 2001), pp. 123–132. Toronto, ON (2001)

212 W. Heider et al.

Egyed, A., Graf, F., Grünbacher, P.: Effort and quality of recovering requirements-to-code traces:
Two exploratory experiments. In: 18th International Requirements Engineering Conference,
IEEE, pp. 221–230. Sydney, Australia (September 27–October 1, 2010)

Girba, T., Ducasse, S.: Modeling history to analyze software evolution. J. Softw. Maint. Evol.: Res.
Pract. 18, 207– 236 (2006)

Grünbacher, P., Rabiser, R., Dhungana, D., Lehofer, M.: Model-based customization and
deployment of eclipse-based tools: Industrial experiences. In: 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2009), pp. 247–256. IEEE/ACM,
Auckland, New Zealand (2009)

Heider, W., Froschauer, R., Grünbacher, P., Rabiser, R., Dhungana, D.: Simulating evolution in
model-based product line engineering. Inform. Softw. Technol. 52(7), 758–769 (2010)

Heider, W., Rabiser, R., Dhungana, D., Grünbacher, P.: Tracking evolution in model-based product
lines. In: 1st International Workshop on Model-driven Approaches in Software Product Line
Engineering (MAPLE 2009), Collocated with the 13th International Software Product Line
Conference (SPLC 2009), pp. 59–63. Software Engineering Institute, Carnegie Mellon, San
Francisco, CA (2009)

Jirapanthong, W., Zisman, A.: (2009) XTraQue: Traceability for product line systems. Softw. Syst.
Model. 8(1), 117–144

Kang, K.C., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90TR-21, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

Koschke, R., Quante, J.: On dynamic feature location. In: 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2005), pp. 86–95. Long Beach, CA
(2005, November 7–11)

Krueger, C.: The BigLever software gears unified software product line engineering framework.
In: 12th International Software Product Line Conference (SPLC 2008), vol. 2, p. 353. Lero,
Limerick, Ireland (2008)

Mäder, P., Gotel, O., Philippow, I.: Enabling automated traceability maintenance by recognizing
development activities applied to models. In: 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008), pp. 49–58. L’Aquila, Italy (2008)

Mohan, K., Ramesh, B.: (2007) Tracing variations in software product families. Commun. ACM
50(12), 68–73

Pohl, K.: PRO-ART: Enabling requirements pretraceability. In: 2nd International Conference on
Requirements Engineering (ICRE ’96), pp. 76–85. IEEE Computer Society, Springs, Colorado
(1996, April 15–18)

Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, Berlin Heidelberg (2005)

pure systems GmbH: Variant Management with pure::variants, Technical Whitepaper. http://www.
pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf (2006). Last checked on 22
April 2008

Rabiser, R., Dhungana, D.: Integrated support for product configuration and requirements engi-
neering in product derivation. In: 33rd EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA’07), pp. 219–228. IEEE Computer Society, Lübeck, Germany
(2007)

Rabiser, R., Dhungana, D., Heider, W., Grünbacher, P.: Flexibility and end-user support in model-
based product line tools. In: 35th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA 2009), pp. 508–511. IEEE CS, Patras, Greece (2009)

Rabiser, R., Grünbacher, P., Dhungana, D.: Supporting product derivation by adapting and aug-
menting variability models. In: 11th International Software Product Line Conference (SPLC
2007), pp. 141–150. IEEE Computer Society, Kyoto, Japan (2007)

Rabiser, R., Heider, W., Elsner, C., Lehofer, M., Grünbacher, P., Schwanninger, C.: A flexible
approach for generating product-specific documents in product lines. In: Bosch, J., Lee, J. (eds)

http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf

Evolution-Driven Trace Acquisition in Eclipse-Based Product Line Workspaces 213

14th International Software Product Line Conference, Jeju Island, South Korea, pp. 47–61.
Springer, Berlin/Heidelberg (2010)

Schmid, K., Rabiser, R., Grünbacher, P.: A comparison of decision modeling approaches in product
lines. In: 5th International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS 2011), pp. 119–126. ACM, Namur, Belgium (2011)

Spanoudakis, G., Zisman, A., Pérez-Minana, E., Krause, P.: Rule-based generation of requirements
traceability relations. J. Syst. Softw. 72(2), 105–127 (2004)

van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action – The Best
Industrial Practice in Product Line Engineering. Springer, Berlin/Heidelberg (2007)

Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R., Heider, W.: Flexible and scalable con-
sistency checking on product line variability models. In: 25th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2010), pp. 63–72. ACM, Antwerp,
Belgium (2010)

Traceability in Model-Driven Engineering:
Efficient and Scalable Traceability Maintenance

Andreas Seibel, Regina Hebig, and Holger Giese

1 Introduction

Developing a software system is a complex endeavor. A software development
project is conducted throughout several development life cycles. Each life cycle con-
siders the specification of a certain level of abstraction of the software system. Thus,
in each life cycle different software artifacts have to be developed and maintained,
e.g.; business processes (environment of the software system), stakeholder require-
ments, use cases, software architectures, implementation code, etc. Model-Driven
Engineering (MDE) addresses the increased complexity in software development
by employing models and model transformations as first-class citizens (cf. (Kent,
2002)).

In MDE various types of software artifacts have to be considered because MDE
is always part of a software development process. We classify software artifacts
into informal (text intensive), semi-formal and formal (structure intensive). Informal
software artifacts are prominent in early life cycles, e.g., unstructured requirements
specifications. Formal software artifacts are primarily present in later life cycles,
which make the application of MDE more attractive that life cycles.

Software artifacts directly or indirectly represent specific concerns of the devel-
oped software system, but at different levels of abstraction or from different
perspectives. Thus, software artifacts do not exist in isolation, but rather have inher-
ent dependencies between each other. The types of dependencies are versatile.
In most requirements traceability approaches (cf. (Antoniol et al., 2001)), depen-
dencies exist because software artifacts have textual similarities (e.g., the name
of a class in a UML class diagram is related to a term within a requirements
specification). In MDE, we can distinguish between three types of dependencies:
hard references, soft references and semantic connections (cf. (Lochmann and
Hessellund, 2009)). Hard and soft references are syntactic relationships between
arbitrary software artifacts. A hard reference is an explicit reference between

A. Seibel (B)
Hasso-Plattner-Institute, The University of Potsdam, 14482 Potsdam, Germany
e-mail: andreas.seibel@hpi.uni-potsdam.de

215J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_10, C© Springer-Verlag London Limited 2012

216 A. Seibel et al.

software artifacts whereas a soft reference is an implicit reference between software
artifacts encoded by means of name equivalence of certain attributes. A semantic
connection is a complex connection between software artifacts, which may involve
other software artifacts to describe this connection.

In any case, it is important to the software development process that these depen-
dencies are explicitly captured. Ignoring these dependencies may endanger the
success of the whole development project because inconsistencies, due to missed
change propagation, may find their way into the final software system. In addition,
traceability approaches are beneficial because they enable impact analysis, change
propagation or just ease the understanding of software artifacts.

Automated establishment of traceability links is necessary because thousands of
dependencies between all kinds of software artifacts may exist implicitly. Various
approaches to automatically establish traceability links exist. Generally, we can dis-
tinguish between prospective and retrospective approaches (cf. (Asuncion et al.,
2010)). A prospective approach generates traceability links in situ, e.g., by directly
analyzing actions (e.g., (Asuncion et al., 2010) or (Mäder et al., 2009)). In MDE,
a common way of realizing prospective traceability is generating traceability links
as by-product of model transformations (e.g., (Jouault, 2005)). An inherent benefit
of prospective approaches is that they are efficient and scalable because they are
incremental by nature. However, they either require a tight integration into exist-
ing environments or technologies (e.g., model transformations) or are restricted to
capture traceability links from behavioral information only.

A retrospective approach infers traceability links ex post facto from a set of
software artifacts. Classical traceability approaches are retrospective and rely on
information retrieval methods to automate traceability link establishment. In con-
trast to prospective approaches, retrospective approaches are applicable in settings
where no behavioral information is available.

In information retrieval, dependencies between software artifacts cannot be for-
mally specified. Thus, heuristic methods, e.g., latent semantic indexing (LSI) (e.g.,
(Jiang et al., 2008)) are employed to determine the similarity between software arti-
facts by means of textual similarity. The inherent benefit is that traceability links
between informal as well as formal software artifacts could be established with
only one common/pre-defined heuristic. However, using a heuristic always requires
manual post-processing because required traceability links may be not automati-
cally established or traceability links are falsely established (false positives). Thus,
the quality information retrieval approaches is rather “low” (measured by means of
precision and recall). On the contrary, formal methods, i.e. pattern matching, can
also be employed to establish traceability links (e.g., (Seibel et al., 2010)). A formal
method basically does not require any post-processing because the dependencies
are precisely specified and not contain any vague statements as in case of informa-
tion retrieval. Because of their preciseness, formal methods are best applicable to
establish traceability links between formal software artifacts and, to some extent,
between semi-formal software artifacts.

Another important challenge to prospective and retrospective traceability
approaches is traceability maintenance. Changes to software artifacts occur

Traceability in Model-Driven Engineering: Efficient and Scalable Traceability . . . 217

frequently, which leads to the question whether new traceability links have to be
established or existing and potentially invalidated traceability links have to be de-
established because related software artifacts have changed. Rejecting all existing
traceability links first and subsequently establishing all traceability links again is
a naïve solution toward retrospective traceability maintenance. However, this strat-
egy does not scale because the computational effort such approaches depend on the
number of considered software artifacts.

The approach we present in this chapter is an efficient and scalable retrospec-
tive traceability maintenance approach in the MDE domain, which is a successive
development of a previous traceability approach we presented in (Seibel et al.,
2010). Our traceability maintenance approach relies on formal rules to automatically
maintain traceability links, which represent dependencies primarily between formal
software artifacts.1 The formal rules are encoded by means of Story Diagrams2) to
specify a precise semantic for specific types of traceability links. In the past, we
have developed an interpreter (Giese et al., 2009a, b) for Story Diagrams that we
apply in this approach. We specify rules for the establishment (creation rules) and
de-establishment (deletion rules) of traceability links.

A drawback of our previous approach is that the constitution of the rules is
considerably complex, which makes the specification of our rules tedious. Thus,
we extended our approach to simplify the constitution of the creation and deletion
rules. Furthermore, our previous approach does only provide a naïve solution toward
traceability maintenance and, thus, does not scale with increasing number of soft-
ware artifacts. In this chapter, we introduce an incremental traceability maintenance
approach that leverages change information to specifically establish new traceability
links and de-establish invalidated traceability links efficiently. The approach scales
because it does not rely on the number of software artifacts but on the number of
changes.

This chapter is structured as follows: first particular characteristics of the
employed case study are outlined in Section 2. In Section 3, our approach is com-
pletely outlined on an informal level including technical implementation details. In
Section 4, we provide a rigorous formal definition of our approach and a detailed
description of our traceability maintenance strategies. In Section 5, we evaluate the
envisioned efficiency and scalability and further discuss our approach concerning
applicability and accuracy. The paper finally concludes with a discussion of related
work in Section 6 and a conclusion and outlook on future work in Section 7.

1 Our approach is technically not restricted to formal software artifacts, but it develops its full
potential in that domain. We evaluate our approach in a slightly different domain than proposed
because the software artifacts of the applied case study are primarily semi-formal.
2 A Story Diagram is a combination of UML activity diagrams and graph-rewriting rules (Fischer
et al., 2000).

218 A. Seibel et al.

2 Case Study

In this chapter, we apply the mobile phone product line software system case study
as introduced in Appendix C. We employ all software artifacts provided in that
case study except the shown state diagrams. We use the case study to exemplarily
illustrate as well as to evaluate the runtime complexity of our traceability approach.
The dependencies that we are going to trace in this chapter are informally explained
in the following.

• SubsystemDependsOnFeature: a subsystem depends on a feature. The condition
for tracing this dependency is that a feature is allocated to a subsystem.

• ProcessModelRefinesSubsystem: a process model refines a subsystem model. It
holds between a process model and individual subsystems of a subsystem model.
It should be traced if a feature has a soft reference to a subsystem (equivalent
names).

• ModuleModelRefinesProcess: a module model refines a process. It should be
traced if a process in the module model has a soft reference to a process in a
process model (equivalent names).

• UseCaseDependsOnFeatureModel: a use case depends on a feature model. It
should be traced if the system of a use case has a soft reference to a feature
model (equivalent names).

• UseCaseDependsOnFeature: a use case depends on a feature of a feature model. It
should be traced if the use case depends on a feature model and if the description
of the use case is somehow similar to the description of the feature in a feature
model.3

• UMLDiagramImplementsUseCase: a class diagram or a sequence diagram imple-
ments a use case. It should be traced if a package of a UML diagram has a soft
reference to a family member of a use case (equivalent names).

• ClassDiagramRelatedToSequenceDiagram: a sequence diagram relates to a class
diagram. It should be traced whenever both reside in the same package (semantic
connection).

• MessageOverlapsAssociation should be traced if the message uses an associa-
tion (semantic connection). In addition, it should be only traced if their related
sequence and class diagrams are related.

• LifelineOverlapsClass should be traced if a lifeline has a soft reference to a class
(equivalent names). This traceability link type should be only traced if their
related sequence and class diagrams are related.

• MessageOverlapsOperation should be traced if a message has a soft reference to
an operation (equivalent names) and the related class of the operation overlaps
with the lifeline of the message.

3 We can only trace this dependency if the descriptions are completely similar.

Traceability in Model-Driven Engineering: Efficient and Scalable Traceability . . . 219

Because of the focus on models in the context of MDE, we mainly consider
traceability between sequence diagrams and class diagrams in the following
sections.

3 Traceability Approach

Our traceability approach is implemented as a set of plugins within Eclipse.4

Currently, it supports all kinds of software artifacts that are conform to Ecore.5

The integration of our traceability approach into Eclipse and EMF works seam-
lessly. This means that a developer is able to modify, create or delete any software
artifact without recognizing that traceability links are automatically maintained in
the background. A condition for a seamless integration is an efficient and scalable
traceability maintenance approach, which we introduce in this chapter.

3.1 Traceability Information Model

The foundation of our traceability approach is a traceability information model,
which is combined of a traceability model and a traceability reference model. The
traceability model is responsible for storing existing traceability links while the
traceability reference model is responsible for providing the semantics of trace-
ability links by means of traceability link types. We already informally introduced
ten traceability link types in the pervious section. The Ecore conform metamodel of
the traceability information model is shown in Fig. 1. The major constituents of our
traceability model are:

• SoftwareArtifact: a software artifact acts as a proxy for models (Model) and model
elements (ModelElement). Thus, both represent EObject instances by means of the
root and rep reference, respectively. Software artifacts act as source and targets
of traceability links. In addition, a software artifact can contain other software
artifacts realized by the inherited contains reference. We use this reference to
reflect the containment structure of EMF models. Thus, we have a flexible trace
granularity at model level as well as model element level.

• TraceabilityLink: a traceability link manifests a dependency between software arti-
facts. A traceability link has a read direction encoded by the source and target
reference. As software artifacts, traceability links can also contain other traceabil-
ity links realized by the same inherited contains reference. We use this reference
to encode that a traceability link exists in the context of another traceability
link (hierarchy), which is an important concept for our traceability maintenance
approach.

4 http://www.eclipse.org/
5 Ecore is the metametamodel of Eclipse Modeling Framework (EMF). http://www.eclipse.org/
modeling/emf/

http://www.eclipse.org/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

220 A. Seibel et al.

ModelType
Model

Traceability
Model

SoftwareArtifact

ModelElement

EObject
0..1 0..1

TraceabilityLink

root > rep

< source/
target0..*

0..*
TraceabilityLink

Type

Traceability
Reference

Model

SoftwareArtifact
Type

0..*

ModelElement
Type

EClass
0..10..1

< rootrep

source/target

instance of >

+name:String

TraceabilityElement

+name:String

1..10..*

CreationRule DeletionRule

0..10..1

+active:Boolean

Parameter
+required:Boolean

0..*

0..1

+name:String

0..*

0..*
< contains

0..*
contains

0..*

elements >

TraceabilityElement
Type

+name:String

0..*

>

>

< elements

Traceability
InformationModel

0..1 0..1
< traceability model traceability reference model >

(a) (b)

Fig. 1 Ecore metamodel of the traceability information model. a. Metamodel of the traceability
model. b. Metamodel of the traceability reference model

The major constituents of our traceability reference model are:

• SoftwareArtifactType: a software artifact type acts as a proxy for metamodels
(ModelType) and metamodel elements (ModelElementType). We further call meta-
models and metamodel elements to be software artifact types. Thus, both kinds of
software artifact types represent EClass instances because the type of an EObject
is an instance of EClass. Our model reflects this dependency by means of the
inherited instance of reference. This reference permits reflection without needing
Java’s reflection mechanism. Software artifact types act as source and targets
of traceability link types. Furthermore, as software artifacts, software artifact
types also reflect the containment structure of EMF metamodels by means of
the inherited contains reference.

• TraceabilityLinkType: a traceability link type defines the dependency between soft-
ware artifacts at type level by interrelating software artifact types via the source
and target references. However, software artifact types are only indirectly refer-
enced through Parameter instances. A parameter is related to exactly one software
artifact type. Parameters are required to technically realize the application of our
rules. A traceability link type can be related to a creation rule (CreationRule) and
a deletion rule (DeletionRule), which represent the rules. A traceability link type
can contain further traceability link types via the inherited contains reference,
which is used to define additional context that is required for the existence of
traceability links.

Software artifacts and software artifact types are automatically synchronized
with software artifacts in the workspace of the modeling environment because in
our implementation software artifacts and software artifact types are only proxies.
A developer just needs to initially register the software artifacts and software arti-
fact types, which should considered for traceability. The semantic of traceability

Traceability in Model-Driven Engineering: Efficient and Scalable Traceability . . . 221

:TraceabilityLink
Type

name = "MessageOverlapsOperation"

:Parameter

name = "interaction"
required = false

:Parameter

name = "operation"
required = true

:Parameter

name = "lifeline"
required = true

:Parameter

name = "mos"
required = false

:Parameter

name = "message"
required = false

< source target >

target

targettarget

:TraceabilityLink
Type

name = "LifelineOverlapsClass"

contains

... ...

...

<

<<

<

Fig. 2 Abstract syntax showing the traceability link type MessageOverlapsOperation

links is defined by means of traceability link types, which implies the specifica-
tion of creation and deletion rules. This is previously obtained by a designer of
the environment. Figure 2 is an excerpt of the case studies’ traceability reference
model showing the MessageOverlapsOperation traceability link type. It shows the
source and target parameters and that it is contained by the LifelineOverlapsClass
traceability link type. The contains reference is set because we have defined that
traceability links of type MessageOverlapsOperation should only exist in the context
of a traceability link of type LifelineOverlapsClass.

3.2 Traceability Maintenance Rules

Traceability maintenance rules are the building blocks for our traceability mainte-
nance approach. We distinguish between deletion rules and creation rules. These
rules are responsible for creating and deleting instances of the related traceabil-
ity link type. Thus, the maintenance rules can be interpreted as a condition for
the existence of traceability links. A creation rule checks if the condition holds
and, thus, whether a traceability link should be created. A deletion rule checks if
the condition is violated and, thus, whether a traceability link should be deleted.
Nevertheless, we do not expect that traceability link types always have a creation or
a deletion rule related. Sometimes, it is necessary to automatically create traceability
links but not to automatically delete them, e.g., when subsequently applying change
propagation or conformance analysis. These maintenance rules are currently imple-
mented by means of Story Diagrams. We have developed an interpreter for Story
Diagrams that is employed for applying these maintenance rules (see (Giese et al.,
2009a, b)).

The application of maintenance rules always needs a context where to apply
them. In case of deletion rules, the context (deletion context) is always a traceability
link that already exists between software artifacts.

Figure 3 shows a deletion rule of the MessageOverlapsOperation traceability link
type shown in Fig. 2. The structure of this deletion rule is representative for all other

222 A. Seibel et al.

[op_o.name = message_o.name]

lifeline_o:
Lifeline

op_o:
Operation

lifeline:
ModelElement

operation:
ModelElement

repr.

< repr.

interaction:
ModelElement

contains

interaction_o:
Interaction

< repr.

message:
ModelElement

contains

message_o:
Message

mos_o:
MessageOccurence

cation

receive event

mos:
ModelElement

< repr.

covered >

contains

< repr.

check condition pattern

link:
TraceabilityLink

< source

< target

targettargettarget

true

false

[failure]

[success]

linktype:
TraceabilityLinkType

name = "MessageOverlaps
Operation"

instance of >

<

<<

<

<

<

<

<

story pattern

unbounbounbonbonbound und und undund storstorstortortory pay pay pay pay pattertterttertterttern obn obn obn obn objectjectjectjecjec

st
ar

t n
od

e

en
d

no
de

ow condition

condcondcondcondconditioitioitioitioitionnnn

elemelemelemelemelement ent ent entent typetypetypeypeype

bounbounbounboubou ddddd

Fig. 3 Deletion rule from the case study (MessageOverlapsOperation)

deletion rules. The deletion rule is defined by a single Story Pattern. It encodes
the condition of the related traceability link type. The deletion context for applying
this rule is the traceability link that should be checked for deletion (link). The Story
Pattern expects that this traceability link is already bound in the beginning. If the
condition is violated, the deletion rule will terminate and return true, which indicates
that the traceability link should be deleted subsequently. Else, the deletion rule will
return false, which indicates that nothing should happen.

In case of creation rules, reasoning about the context (creation context) for appli-
cation is not that trivial, because the considered traceability link does not yet exists.
In this case, we only have the traceability link type as some kind of blueprint for
the creation. A simple approach could be finding all possible creation contexts
that reflect all possible combinations of software artifacts, which are required for
applying the creation rule.

As explained in Section 2, we expect to trace the overlap of messages and oper-
ations only if they are in the context of overlapping lifelines and classes, which
themselves are in the context of related sequence and class diagrams. Thus, we do
not expect traceability links to be created between class diagrams and sequence
diagrams defined in different product members, because they do not relate to each
other. Thus, if the creation rules do not explicitly consider this context in their con-
dition, this strategy would lead to traceability links in places where they should not
exist (false positives).

We could define the necessary condition (message and operation belongs to life-
lines and classes, which are in sequence and class diagrams of the same product
member) explicitly in creation rules, which results in an increased complexity of
the creation rules and an increased size of creation context. This also leads to redun-
dancy, since parts of creation rules might have been defined in other creation rules,
too. For example, a creation rule of a traceability link type between classes and

Traceability in Model-Driven Engineering: Efficient and Scalable Traceability . . . 223

lifelines also requires that sequence and class diagrams belong to the same product
member.

In our previous approach, we explicitly encoded the existence of traceability
links as parts of the condition of creation rules, which reduces the complexity of
creation rules. However, they are still too complex. Furthermore, creation rules
are indirectly coupled to others because they refer to the existence of traceability
links of a specific type. This decreases reusability of creation rules and still leads
to re-occurring patterns in creation rules that have the same traceability link type
as additional context. In this approach, we do not require to explicitly define the
existence of other traceability links in the creation rules. This dependency is explic-
itly defined within the definition of traceability link types only. Figure 2 shows that
the traceability link type MessageOverlapsOperation can only exist in the context of
a traceability link that is an instance of the type LifelineOverlapsClass. In this case,
the creation contexts are not all possible combinations of software artifacts but only
all combinations of software artifacts that are in the context of an existing trace-
ability link. For example, the creation contexts for applying the creation rule of
MessageOverlapsOperation does only consider messages and operations that are in
the context of lifelines and classes that are related via a traceability link of the type
LifelineOverlapsClass. Thus, the creation rules are less complex and can be reused in
different contexts. Furthermore, we avoid redundancy in creation rules that have to
be applied in the same context.

Figure 4 shows the creation rule related to the LifelineOverlapsClass traceability
link type. The structure of this creation rule is representative for all creation rules
where the required context is equal to the sources and targets of the related traceabil-
ity link type. All parameters of the traceability link type have required set to true.
A creation context of this creation rule consists of a lifeline and a class software
artifact (already bound). Technically, we always require the traceability link type as
part of the creation context, too. For a given creation context, the first Story Pattern
checks whether there already exists a traceability link of the considered traceability
link type that is connected to software artifacts in the creation context. If this is the

lifeline_o:
Lifeline

class_o:
Class

lifeline:
ModelElement

class:
ModelElement

checkLink:
TraceabilityLink

linkType:
TraceabilityLinkType

target >

source >

repr. >

repr. >

[failure]

[success]

lifeline_o:
Lifeline

class_o:
Class

lifeline:
ModelElement

class:
ModelElement

linkType:
TraceabilityLinkType link:

TraceabilityLink

target >

source >

instance
< of

repr. >

repr. >

++

++

++

++

[lifeline_o.name = class_o.name]

check exclusive pattern

check condition and create link pattern

to to to to to be be be be be crecrecrecrecreateateateateated ed ed ed ed elemlemlemlemlementententententsssss

name = "LifelineOverlaps
Class"

instance
< of

name = "LifelineOverlaps
Class"

Fig. 4 Creation rule from the case study (LifelineOverlapsClass)

224 A. Seibel et al.

case, the creation rule will terminate because another traceability link of that type
should not be created in the same creation context. If there is no such traceability
link yet, the subsequent Story Pattern is executed. It first checks the condition of the
traceability link type (lifeline_o.name = class_o.name). If the condition is fulfilled,
a traceability link is created into that creation context and is set as instance of the
given traceability link type.

All creation rules, which related traceability link type has at least one param-
eter that is not set to required, are defined differently. In this case, creation rules
start from creation contexts that only contain matchings for required parameters.
From this creation context, the creation context is subsequently complemented. An
example of such a creation rule from the case study is shown in Fig. 5.

The shown creation rule is related to the MessageOverlapsOperation traceability
link type. The structure of this creation rule is representative for all creation rules
where the required context is only a subset of the sources and targets of the related
traceability link type. The traceability link type has five parameters (see Fig. 2).
However, because only lifeline and operation are set as required, we can apply the
creation rule from a creation context that only contains two software artifacts

lifeline:
ModelElement

operation:
ModelElement

linkType:
TraceabilityLinkType link:

TraceabilityLink

target >

source >

instance
< of

[op_o.name = message_o.name]

foreach story pattern

lifeline_o:
Lifeline

op_o:
Operation

lifeline:
ModelElement

operation:
ModelElement

repr.

repr.

interaction:
ModelElement

contains >interaction_o:
Interaction

< repr.

message:
ModelElement

contains

message_o:
Message

mos_o:
MessageOccurence

cation

receive event

mos:
ModelElement

 < repr.

covered >

contains

< repr.

[end]

[foreach] [success]

interaction:
ModelElement

message:
ModelElement

mos:
ModelElement

target >

< target

< target

[failure]

lifeline:
ModelElement

operation:
ModelElement

linkType:
TraceabilityLinkType link:

TraceabilityLink

target >

source >

instance
< of

interaction:
ModelElement

message:
ModelElement

mos:
ModelElement

target >

< target

< target

++

++
++

++

++
++

++

complement creation context and check condition pattern

create link pattern

check exclusive pattern

>

name = "MessageOverlaps
Operation"

name = "MessageOverlaps
Operation"

> >

>

>

Fig. 5 Creation rule from the case study (MessageOverlapsOperation)

Traceability in Model-Driven Engineering: Efficient and Scalable Traceability . . . 225

of these types. One should keep the number of software artifacts in the creation
context low because with increasing number of software artifacts in creation con-
text, the number of possible combinations and, therefore, the number of necessary
applications is increasing drastically. The first Story Pattern is a combination of
complementing the creation context and subsequently checking the condition. If a
match that fulfills the condition is found, the second Story Pattern checks if there is
already a traceability link of the considered type in between these software artifacts.
If so, the first Story Pattern is triggered again to find another possible complement.
This is done until no more matches can be found. However, if the second Story
Pattern cannot find a traceability link between a given extended creation context,
the third Story Pattern is executed which actually creates the traceability link. If the
traceability link is created, the Story Diagram terminates execution.

3.3 Traceability Maintenance

Existing traceability links become out of date resulting in suspect or even obsolete
traceability links because software artifacts are subject to constant change. In order
to keep traceability links up to date, traceability maintenance is required.

Our traceability approach supports two traceability maintenance strategies,
which both rely on the previously shown maintenance rules: a batch strategy and an
incremental strategy. The batch strategy is a reactive traceability maintenance strat-
egy. It can be triggered by a developer on demand and reasons on the current state
of the software artifacts only. Thus, it can be employed in situations where no infor-
mation about changes is available. For example, if our approach is initially applied
to a set of software artifacts (initial situation). In contrast, the incremental strategy
is proactive. This strategy is triggered automatically when changes occur. Thus, it
only creates and deletes traceability links in the direct context of actual changes.
This approach is efficient and further scales with increasing number of software
artifacts. In both approaches, we cover the automatic maintenance of traceability
links that are related to deletion and creation rules.

The incremental strategy facilitates changes that are currently coming from
the Eclipse workspace (in case that coarse granular software artifacts have been
changed) and from EMF or GMF6 editors (in case that fine granular software arti-
facts have changed). Changes are stored in a changed record, which is created by
the following schema. If a software artifact has been created or changed (e.g., if the
value of an attribute has changed or a related reference has been added or deleted),
it is added to a change record. If a software artifact has been deleted, all software
artifacts that reference the deleted software artifact are added to the change record.
In addition, existing traceability links that are connected to deleted software artifacts
are added to the change record, too.

6 Graphical Modeling Framework; www.eclipse.org/gmf/

www.eclipse.org/gmf/

226 A. Seibel et al.

4 Rigorous Formal Definition of the Traceability Approach

In this section, the foundations of our traceability approach are defined in a rigor-
ous formal way. The formalisms relate to the terminology introduced in Section 3.
However, technical aspects are not mentioned here or are simplified to stay focused
on the essence of our approach.

4.1 Formal Definition of the Traceability Information Model

A formal definition of the traceability reference model is shown in Definition 1.

Definition 1 (Traceability Reference Model) A traceability reference model mt is
a 7-tuple (At, Lt, Rc, Rd, Ct, St, Tt) with At is a finite set of software artifact types,
Lt ⊆ Rc × Rd is a finite set of traceability link types, Rc is a finite set of creation
rules, Rd is a finite set of deletion rules, St ⊆ At × Lt is a finite set of tuples defining
the sources of traceability link types, Tt ⊆ At × Lt is a finite set of tuples defining
the targets of traceability link types, Ct ⊆ (At ∪ Lt) × (At ∪ Lt) is a finite set of
tuples defining the containments of software artifact types and traceability link types
with ∀(x, y) ∈ Ct, (x′, y′) ∈ Ct : (x ∈ At =⇒ y ∈ At) ∧ (x ∈ Lt =⇒ y ∈
Lt) ∧ (y = y′ =⇒ x = x′) defines that software artifact types only contain software
artifact types and traceability link types only contain traceability link types and that
a software artifact type or a traceability link type can only have a single container,
and ∀(l1t , l2t) ∈ Ct, (a′

t, l2t) ∈ St ∪ Tt, ∃(at, l1t) ∈ St ∪ Tt : a′
t ∈ containedBy(at) defines

that any software artifact type in the source or target of a contained traceability
link type l2t must be contained by a software artifact type that is source or target
of the container traceability link type l1t with containedBy : At → 2At thus that
∀a′

t ∈ containedBy(at) : (at, a′
t) ∈ Ct ∨ (∃a′′

t ∈ containedBy(at) : (a′′
t , a′

t) ∈ Ct),
which defines that all a′

t are directly or indirectly contained by at.

Concerning the traceability reference model shown in Fig. 1, the set Ct is related
to the contains reference between traceability link types, the sets St and Tt are related
to the source and target references. The traceability model is formally defined as
shown in Definition 2.

Definition 2 (Traceability Model) A traceability model m is a 5-tuple (A, L, C, S, T)
with A is a finite set of software artifacts with ∀a ∈ A, ∃at ∈ At : φ(a) = at defines
that any software artifact a is an instance of a software artifact type at, L is a finite
set of traceability links ∀l ∈ L, ∃lt ∈ Lt : ρ(l) = lt defines that any traceabi-
lity link l is an instance of a traceability link type lt, S ⊆ A × L is a finite set of
tuples defining the sources of traceability links, T ⊆ A × L is a finite set of tuples
defining the targets of traceability links, C ⊆ (A ∪ L) × (A ∪ L) is a finite set of
tuples defining the containments of software artifacts and traceability links with
∀(x, y) ∈ C, (x′, y′) ∈ C : (x ∈ A =⇒ y ∈ A) ∧ (x ∈ L =⇒ y ∈ L) ∧ (y = y′ =⇒
x = x′) defines that software artifacts only contain software artifacts and traceabi-
lity links only contain traceability links and that a software artifact or a traceability

Traceability in Model-Driven Engineering: Efficient and Scalable Traceability . . . 227

link can only have a single container, and ∀(l1, l2) ∈ C, (a′, l2) ∈ S ∪ T , ∃(a, l1) ∈
S ∪ T : a′ ∈ containedBy(a) ∧ (ρ(l1), ρ(l2)) ∈ Ct) defines that any software arti-
fact in the source or target of a contained traceability link l2 must be contained
by a software artifact that is source or target of the container traceability link l1

and there must be a containment of the instantiated traceability link types too with
containedBy : A → 2A thus that ∀a′ ∈ containedBy(a) : (a, a′) ∈ C ∨ (∃a′′ ∈
containedBy(a) : (a′′, a′) ∈ C) which defines that all a′ are directly or indirectly
contained by a.

When mapping this definition to the metamodel of the traceability model shown
in Fig. 1, C is mapped to the contains reference between traceability links, and S and
T is mapped to the source and target references.

4.2 Formal Definition of Traceability Maintenance

Applying deletion rules is much simpler than applying creation rules. In this case,
we only need a traceability link that should be potentially deleted. Thus, the deletion
context is always a single traceability link. The application of a deletion rule for a
given deletion context is defined as show in the following.

Defintion 3 (Deletion Rule Application) Given a traceability link type lt =
(rc, rd) ∈ Lt and a traceability link l with ρ(l) = lt, the application of the
deletion rule rd ∈ Rd for a traceability link l as deletion context is defined as
appD : L → L′ ∪ {∅}. Calling appD(l) applies the deletion rule rd on l as dele-
tion context. If the deletion rule decides that l should not be deleted, appD(l) = {∅}
else appD(l) = {l}.

Before defining how to apply creation rules, we have to define the creation con-
text that is required for the application. A formal definition of the creation context
is given in Definition 4.

Definition 4 (Creation Context) For a given traceability link type lt ∈ Lt, a cre-
ation context CClt ⊆ req(lt) × A is a finite set of tuples of required sources and
targets of lt and software artifacts A. Each c ∈ CClt is a mapping of a software
artifact a ∈ A to a required source or target software artifact type at ∈ At with
∀((at, lt), a) ∈ CClt : φ(a) = at defines that the type of the mapped software artifact
is equal to the software artifact type of the required source or target of lt, ∀(a′

t, l′t) ∈
req(lt), ∃((a′′

t , l′′t), a′′) ∈ CClt : (a′
t, l′t) = (a′′

t , l′′t) defines that the creation context is
always complete, ∀((at, lt), a) ∈ CClt , ((a′

t, lt)′, b) ∈ CClt : (a′
t, lt)′ = (at, lt) =⇒

a = b and ∀((at, lt), a) ∈ CClt , ((a′
t, lt)′, b) ∈ CClt : a = b =⇒ (a′

t, lt)′ = (at, lt)
defines that a software artifact can only be mapped once. The required context
req : Lt → 2St∪Tt is a function that provides a subset of sources St and targets
Tt for a given traceability link type lt ∈ Lt with ∀(a′

t, l′′t) ∈ req(l′t) : l′′t = l′t and
∀(a′

t, l′t) ∈ req(l′t), ∃(at, lt) ∈ (St ∪ Tt) : l′t = lt ∧ a′′
t = at defines that any element

returned by the function is related to lt and is in St ∪ Tt.

228 A. Seibel et al.

Thus, the creation context for applying a creation rule is basically a set of soft-
ware artifacts, with the type of each software artifact maps to a source or target of
the related traceability link type. Nevertheless, in some cases it is sufficient to only
provide a subset of these types as creation context (required) because the creation
rule can complement the creation context on its own from a given creation con-
text. Thus, the creation context provides a minimal set of software artifacts that is
required for applying a creation rule as defined in the following.

Defintion 5 (Creation Rule Application) Given a traceability link type lt =
(rc, rd) ∈ Lt and a set of all possible creation contexts CC∗

lt
with CClt ∈ CC∗

lt
, the

application of the creation rule rc is defined as appC : Lt × CC∗
lt

→ 2L′ × 2S′ × 2T ′

with ∀l′ ∈ L′ : ρ(l′) ∈ Lt is the set of created traceability links, S′ ⊆ A × L′ is
the set of created source tuples and T ′ ⊆ A × L′ is the set of created target tuples.
We further assume that the traceability links that are created do not exist before
defined by L′ ∩L = ∅. Additionally, ∀(L′′, S′′, T ′′) ∈ appC(lt, CClt), l′ ∈ L′′, (a, l′′′) ∈
S′′ ∪ T ′′, ∃l ∈ L′′ : ρ(l′) = lt ∧ l = l′′′ holds, which defines that each created trace-
ability link l′ must be of type lt and that created source and target tuples must be
related to a created traceability link l.

4.2.1 Batch Traceability Maintenance

The batch strategy is completely state-based and, thus, needs to analyze all software
artifacts whether existing traceability links have to be deleted or new traceability
links have to be created. The main procedure of the batch strategy is shown in
Listing 1.

Listing 1 Main procedure of the batch strategy

In Line 3–12 each existing traceability link l is removed from the traceability
model if it got obsolete. In Line 4 the deletion rule of the traceability link type ρ(l)

Traceability in Model-Driven Engineering: Efficient and Scalable Traceability . . . 229

is applied to l. If the traceability link l should be deleted, Line 5 first estimates all
directly and indirectly contained traceability links of l because they must be deleted,
too. Else they would exist without a container, which is not allowed due to the nature
of the containment. Thus, for each l′ ∈ L′, Line 7–10 removes these traceability
links appropriately. When all necessary traceability links have been deleted, each
existing traceability link is taken as additional context for establishing new trace-
ability links (Line 13) by calling createNonRootBatch (see Listing 2). Afterwards,
it has to be ensured that also traceability links are created which do not require
another traceability link as container (Line 14–16) by calling createRootBatch
(see Listing 3).

Listing 2 Batch procedure of creating a non root traceability link

Listing 3 Batch procedure of creating a root traceability link

The algorithm for createNonRootBatch iterates over all traceability link types
l′t, which are directly contained by the traceability link type lt = ρ(l) (Line 3).
For each traceability link type l′t, it first estimates a set of software artifacts A′ ⊆ A
(Line 5) by calling filterArtifacts. This procedure is responsible for filtering software
artifacts that have to be considered when generating the creation context. For each
software artifact a′ ∈ A′ holds that it is in the direct context of l defined by (a′, l) ∈

230 A. Seibel et al.

(S ∪ T) or that it is in the indirect context of l defined by ∃(a′′, l) ∈ S ∪ T : a′ =
containedBy(a′′). Furthermore, for each a′ ∈ A′ holds that ∃(a′

t, l′t) ∈ req(l′t) : a′
t =

φ(a′), which means that only software artifacts are in A′ which type is required
source or target of l′t. This filtered set of software artifacts is then used to generate
all possible creation contexts (Line 6) by calling generateCreationContexts. This
procedure generates all possible creation contexts for a given set of software artifacts
created by the filter. For each creation context CCl′t , the creation rule related to
l′t is applied (Line 8). Subsequently, the resulting triple (L′, S′, T ′) is added to the
traceability model (Line 9). Each traceability link l′ that has been created is then
set as contained by l (Line 11) and createNonRootBatch is called recursively for
each newly created traceability link l′. The algorithm terminates as soon as no more
traceability link types are contained by ρ(l).

The algorithm for createRootBatch first estimates a set of software artifacts
A′ ⊆ A (Line 3). This filter differs from the one in Listing 2 because it does
not consider a traceability link as context for filtering. Thus, the type of each
software artifact a′ ∈ A′ is only a required source or target of lt defined by
∃(a′

t, lt) ∈ req(lt) : a′
t = φ(a′). This set is used to generate all possible creation

contexts by calling generateCreationContexts (Line 4), which is similar to the pro-
cedure called in Listing 2. For each creation context CCl′t , the creation rule related
to lt is applied (Line 6). Afterwards, the resulting triple (L′, S′, T ′) is added to the
traceability model (Line 7). Each newly created traceability link l′ is then set as then
further processed by calling createNonRootBatch (Line 8) in order to create links in
context of l′.

4.2.2 Incremental Traceability Maintenance

In comparison to the batch strategy, the incremental strategy starts analyzing from
a given set of changes Ch ⊆ A ∪ L, which contains created and changed software
artifacts as well as changed traceability links due to deleted software artifacts. The
main algorithm is shown in Listing 4. First, it applies deletion rules to any trace-
ability link that is suspect (Line 4–17). The deletion rules are applied to traceability
links only if they have changed (Line 5) or if they are indirectly changed (Line 6).
Then for all l ∈ L′, the related deletion rule is applied (Line 8). If a traceabil-
ity link l is declared to be obsolete, l and all its directly and indirectly contained
traceability links, estimated by getAllSubLinks, are deleted appropriately (Line 9–
15). Afterwards, L should only contain traceability links that are neither suspect nor
obsolete.

Now, the algorithm checks if new traceability links have to be created based on
given changes (Line 18–27). For each ch, which is a changed or created software
artifact (ch ∈ A), a set of affected traceability link types L′

t is estimated by calling
getAffectedTraceabilityLinkTypes (Line 19) with ∀l′t ∈ L′

t, ∃(ch, l′t) ∈ (St ∪ Tt) holds.
For all traceability link types l′t ∈ L′

t, which are contained by another traceability
link type (∃(l′′t , l′t) ∈ Ct), a set of traceability links L′ is derived by calling getCon-
textLinks (Line 22). The procedure retrieves only traceability links that are potential
containers for the instantiation of l′t. A potential container is a traceability link l′ that

Traceability in Model-Driven Engineering: Efficient and Scalable Traceability . . . 231

Listing 4 Main procedure of incremental strategy

has a as source or target with ch ∈ containedBy(a) and whose type ρ(l′) contains
l′t ((ρ(l′), l′t) ∈ C). For all these potential containers l′ of a traceability link type l′t,
createNonRootInc is called (Line 23), which is shown in Listing 5. If the traceability
link type l′t ∈ L′

t is not contained by another traceability link type, createRootInc is
called (Line 25), which is shown in Listing 6.

Listing 5 Incremental procedure of creating a non root traceability link

232 A. Seibel et al.

Listing 6 Incremental procedure of creating a root traceability link

The procedure createNonRootInc starts with estimating a subset of software arti-
facts A′ by calling filterArtifacts. This procedure is similar to the filterArtifacts
procedure used in Listing 2 but there is only one software artifact of type φ(ch)
in A′, which is ch. This further reduces the size of A′. However, it is equal to fil-
terArtifacts in Listing 2 if the considered traceability link type lt has more than one
source or target of the same software artifact type (e.g., ∃(cht, lt) ∈ (St ∪Tt), (at, l′t) ∈
(St ∪ Tt) : (cht = at) ∧ (lt = l′t) ∧ (cht, lt) �= (at, l′t)). In that case, we would not find
all required software artifacts for creating the necessary creation contexts. Based on
the filtered software artifacts A′, all possible creation contexts CC∗

lt
are generated

by calling generateCreationContexts. This procedure is a variation of the procedure
in Listing 2 and 3. It returns only creation contexts that also include ch. From this
point, this procedure works like createNonRootBatch in Lines 7–14.

The procedure createRootInc also starts with estimating a subset of software
artifacts A′ by calling filterArtifacts. This procedure is similar to the filterArtifacts
procedure used in Listing 3 but there is only one software artifact of type φ(ch) in
A′, which is ch. It is equal to filterArtifacts in Listing 3 if the considered traceability
link type lt has more than one source or target of the same software artifact type.
By means of A′, all possible creation contexts CC∗

lt
are estimated by calling gener-

ateCreationContexts, which is similar to the equally named procedure in Listing 5.
From this point, this procedure works like createRootBatch in Lines 5–10.

5 Evaluation

The purpose of our evaluation is to validate our implicitly stated hypothesis that
our traceability maintenance approach is efficient and scales with increasing num-
ber of software artifacts. We expect that hypothesis is satisfied if 1) the time for
maintaining traceability links for a realistic number of changes is less than one sec-
ond (efficiency) and 2) the performance is not directly affected by the number of
software artifacts (scalability).

To validate our hypothesis, we perform a performance evaluation by means of
a subset of software artifacts from the given case study. We conduct two separate

Traceability in Model-Driven Engineering: Efficient and Scalable Traceability . . . 233

Product Line Models

Product Member 1 Models

2,508 modeling
artifacts (28 models)

Product Member 2 Models

4,454 modeling
artifacts (46 models)

6,400 modeling
artifacts (64 models)

8,346 modeling
artifacts (82 models)

10,292 modeling
artifacts (100 models)

1x 1x 1x 1x 1x

1x

1x

2x

2x

3x

3x

4x

4x

5x

5x

Product Member 3 Models 1x 1x 1x 1x 1x

Fig. 6 Evaluation scenarios

evaluations because our approach is a combination of initial establishment of trace-
ability links (batch strategy) and a subsequent incremental maintenance of traceabil-
ity links (incremental strategy). The first evaluation shows the performance of the
batch strategy whereas the second shows the performance of the incremental strat-
egy. In both evaluations, we apply ten traceability link types, as informally explained
in Section 2. Beside the given case study scenario, we have generated four additional
scenarios that vary in the number of software artifacts only. The scenarios are arti-
ficially generated by multiplying the software artifacts systematically as shown in
Fig. 6.7

5.1 Batch Traceability Maintenance Evaluation

In the first evaluation, we have conducted a measurement for each scenario. In each
scenario, we have initially not traceability links established. Thus, the number of
traceability links that are created are the number of traceability links that exist in
the scenario. For each measurement, we recoded the execution time in seconds (s)
and the number of created traceability links (#) by applying the batch strategy. The
results are shown in Fig. 7.

Fig. 7 Evaluation of batch strategy

7 The performance evaluation is conducted on a Apple MacBook Pro 2.4 GHz, 4 GB main memory,
Mac OS X 10.6.5, Java 1.6.0, and Eclipse 3.5.2 with EMF 2.5.0.

234 A. Seibel et al.

As expected, applying the batch strategy results in a linear increase of the exe-
cution time. The execution time varies from 11 s in the first scenario up to 42.9 s in
the last scenario. Thus, only applying the batch strategy is not sufficient to satisfy
our hypothesis.

5.2 Incremental Traceability Maintenance Evaluation

In the second evaluation, we have conducted the same measurements on the same
scenarios. The only difference is that in these scenarios we also take the previ-
ously established traceability links into account. Beside the five scenarios, another
important parameter for the second evaluation is the number of changes to software
artifacts. For each scenario, we conduct four measurements with each has a different
number of changes (5, 60, 120 and 200 changes). We assume that 200 changes is
realistic size. For this measurement, we only took updates of software artifacts into
account. Thus, each measurement contains the execution time of finding impacted
traceability links and applying the related deletion rule.

Because we randomly generated these changes, we have applied 20 measure-
ments on each combination of scenario and set of changes. The results are shown as
the average of the execution time in seconds in Fig. 8. The chart also contains the
confidence interval with a confidence level of 95%.

We can see that for each scenario, and even for a realistic number of changes,
the execution times are less then one second. We can also observe that the execu-
tion time does not correlate to the number of software artifacts but rather correlate
to the number of changes. Thus, we conclude that our incremental strategy sat-
isfies our hypothesis. It is efficient because the execution times are considerable
low (less than one second) and it scales with increasing number of software
artifacts.

Fig. 8 Execution time of incremental strategy

Traceability in Model-Driven Engineering: Efficient and Scalable Traceability . . . 235

5.3 Threats to Validity

Now, our evaluation is discussed by means of internal and external validity.

5.3.1 Internal Validity

In our evaluation, we have not considered all correlating variables exhaustively.
Concerning the changes, we only considered updates and, furthermore, these
updates do not result in actual de-establishment of traceability links. This has impact
on the efficiency because de-establishing a traceability link would cause an impact
on other traceability links, which also might have to be de-established. Concerning
the type of changes, deleting a software artifact is basically similar to updating soft-
ware artifacts. Creating a software artifact will result in new traceability links. Both
cases have impact on the efficiency but do not impact the scalability because it does
not increase the number of software artifacts afterwards.

The number of software artifacts in all five scenarios may be too small. Huge
application examples have about 100,000 software artifacts (cf. (Egyed, 2007)).
However, because the incremental strategy only relies on the number of changes,
the scalability is not endangered.

In our evaluation, we completely neglected the variation of the number of trace-
ability link types. Concerning deletions and updates, the number of traceability link
types does not matter but only the number of actually established traceability links
that are impacted by the change. The creation of new software artifacts requires
checking whether there are any traceability link types that have to be established.
Thus, the number of traceability link types impacts the efficiency but it does not
affect scalability.

The constellation of the scenarios and the kind of traceability link types can affect
the efficiency and scalability. For example, if a traceability link type is defined to
hold between any pair software artifact, the number of established traceability links
would be greater than the number of software artifacts. In such case, an arbitrary
change would have impact to the number of traceability links that is greater than
the number of software artifacts. However, we think that this scenario is unrealistic
because traceability link types refer to more specific software artifacts and changes
occur locally and not distributed over all software artifacts.

5.3.2 External Validity

Our approach is best suited in the MDE domain because the software artifacts are
primarily formal. In that domain, we cover three kinds of dependencies between
software artifacts that are hard references, soft references and semantic connections
(cf. (Lochmann and Hessellund, 2009)). A hard reference is an explicit reference
between software artifacts encoded in the language of the software artifacts. Our
approach translates these explicit references into our traceability model. Thus, tech-
niques like impact analysis can be applied also for those relationships. A soft
reference is an implicit reference between software artifacts encoded by means of

236 A. Seibel et al.

name equivalence of certain attributes. Such soft references occur in heterogeneous
MDE environments working with loosely coupled DSLs. Our approach can make
these relationships explicit by creating traceability links. A semantic connection is
any overlap between software artifacts, which basically means the same but have dif-
ferent syntactical representations. Semantic connections are covered by the pattern
capability of our employed formal specification method.

Our approach is a retrospective traceability approach. Thus, it only reasons
about the existence of traceability links by means of software artifacts. Prospective
and retrospective traceability approaches are complementary because both are dis-
junctive concerning their ability to establish traceability links. Because both have
their advantages and disadvantages, we agree Lucia et al. as they argue that those
approaches should complement each other (Lucia et al., 2007).

Because the automated establishment of traceability links bases on a formal
method, we expect that all established traceability links are of highest precision.
However, we assume that a designer of the creation and deletion rules does only
define correct and complete rules. Whenever a rule may be incorrect or incomplete,
the precision of our established traceability links is questionable. Nevertheless,
we cannot validate the correctness or completeness of creation and deletion rules
because it always depends on the specific intention of each individual traceability
link type.

A similar situation holds for the question about recall. Currently, we assume
that all necessary traceability link types are formally underpinned by means of
creation and deletion rules. However, we might miss the establishment of certain
traceability links if the creation and deletion rules are specified incorrectly or if
whole traceability link types are missing.

Nevertheless, we may support the designer in specifying creation and deletion
rules. There are approaches that focus on the automated establishment of mappings
between metamodels (cf. (Del Fabro and Valduriez, 2007)). These approaches may
use the same heuristics as in information retrieval. Because of applying heuristics,
the established mappings underlie the same accuracy issues than usual traceabil-
ity approaches. However, employing such approaches can be used to automatically
synthesize executable creation and deletion rules or guide a designer in specifying
them.

6 Related Work

Many traceability approaches are retrospective. There are approaches that only
rely on information retrieval methods to automatically establish traceability links
(Antoniol et al., 2001, 2002; Asuncion et al., 2010; Cleland-Huang et al., 2003;
De Lucia et al., 2008; Lucia et al., 2007). These approaches only focus on the
initial establishment of traceability links and the reached quality of their outcome
concerning precision and recall.

In (Nguyen et al., 2002), Nguyen et al. introduce an approach called Software
Concordance to manage versions of software documents and traceability links

Traceability in Model-Driven Engineering: Efficient and Scalable Traceability . . . 237

(relations) in between. Their focus is on the invalidation of traceability links when-
ever anchor (connected) software artifacts are created, deleted or updated. Each time
a traceability link is invalidated, a new version is created. Furthermore, they employ
a timestamp strategy to heuristically reason about the conformance of software arti-
facts connected to these invalidated traceability links. In (Maletic et al., 2003) they
argue that only relying on a timestamp strategy is not sufficient. Thus, the semantic
of the underlying change should also be taken into account. However, our notion of
maintenance is different because we reason about the existence of traceability links
(invalidation) and not the effect to conformance of connected software artifacts. If
a deletion rule is triggered on a traceability link, the context of the impacted trace-
ability link has changed in a way that the condition for the existence of the impact
traceability links may not hold anymore. We agree that in certain situations, the
deletion of invalidated traceability links is too restrictive. However, it is not clear
whether their approach operates incrementally nor the efficiency and scalability is
evaluated.

In (Jirapanthong and Zisman, 2009), Jirapanthong and Zisman have shown a
comprehensive work on automated traceability establishment in the context of soft-
ware product lines. It is a semi-formal method to establish traceability links based
on a combination of XML-based rules and LSI. However, they do not focus on the
incremental maintenance of traceability links.

Salay et al. show a traceability approach in the context of model management
(Salay et al., 2009). They use a formal method to establish traceability links (rela-
tionships) based on metamodel morphisms, which they call a macromodel. This
macromodel is used to automatically establish traceability links. Furthermore, they
guide the user to complete the models in a way that traceability link get inferred.
However, they do not consider maintenance questions.

Ivkovic and Kontogiannis show another traceability approach toward auto-
matic establishment of traceability links (model dependencies) in (Ivkovic and
Kontogiannis, 2006). They show a combination of heuristic and formal methods
to establish traceability links (using type-based, spatial and text-based associa-
tion rules). However, their approach does not provide the notion of incremental
traceability maintenance and, thus, scalability is questionable.

Maletic et al. show an XML-based approach toward traceability in (Maletic et al.,
2005). In their paper, evolution of traceability in the domain of MDE is discussed.
However, they only discuss that traceability links should evolve whenever software
artifacts change. They do not give any detailed insight of how to actually maintain
traceability links in case of changes.

Another idea toward a retrospective traceability approach is discussed in
(Aizenbud-Reshef et al., 2005). It advocates that traceability links should be main-
tained by means of formal operational semantics. Furthermore, they propose to use
the event-condition-action (ECA) method to realize the maintenance of traceability
links. However, they do not show how these operational semantics look like nor how
to actually realize the maintenance of traceability links by means of ECA.

Jiang et al. show in (Jiang et al., 2008) the only retrospective and incremental
traceability maintenance approach. They have developed an incremental version

238 A. Seibel et al.

of LSI called iLSI. They also evaluated time complexity and showed that their
approach is efficient and indeed scalable. Because their approach relies on LSI,
established traceability links still need to be post-processed manually. Nevertheless,
our approach presents a good complement to their approach because we focus on
formal methods in the domain of MDE.

The prospective traceability approaches are incremental by nature, if they
establish and de-establish traceability links by means of changes or change records.

Mäder et al. have shown in (Mäder et al., 2009) a prospective approach to incre-
mentally maintain traceability links in the UML context. They employ rules that are
used to specify development activities. In addition, they define in detail how ele-
mentary changes affect existing traceability links and whether new traceability link
have to be established. Thus, their notion of incremental traceability maintenance
is similar to ours. The only difference is that they do not consider the initial estab-
lishment of traceability links because their approach is not retrospective. Therefore,
their approach does only function in environments that provide change information.
However, their approach can be considered as another complement to ours.

Common prospective traceability approaches in the context of MDE are the
approaches that automatically establish traceability links as by-products of the appli-
cation of model transformations (Aleksy et al., 2008; Boronat et al., 2005; Falleri
et al., 2006; Jouault, 2005; Jouault et al., 2010; Walderhaug et al., 2006). However,
these approaches are restricted to establish traceability links only in combination
with applying model transformations. Furthermore, whenever software artifacts
change, the model transformations have to be re-applied completely.

Prospective approaches can be considered as complementary to retrospective
approaches. However, prospective approaches are not sufficient in case that inferring
traceability links is required because no change information is available.

7 Conclusions and Future Work

The presented traceability approach supports the specification of maintenance rules
for automated maintenance (delete and create) of traceability links between soft-
ware artifacts in an MDE setting. We have explained our foundational traceability
information model, the nature of our maintenance rules, and how they are employed
when it comes to automate traceability maintenance. Furthermore, we have given a
rigorous formal definition of the traceability information model, the application of
maintenance rules and, finally, a detailed strategy for batch and incremental trace-
ability maintenance. An evaluation, using the mobile phone product line case study,
demonstrates that our approach is efficient and scales with increasing complexity
due to the incremental strategy.

As ongoing work, it is planned to integrated model management into our trace-
ability approach by considering traceability links as the application of model
transformations and not only as any kind of overlaps between software artifacts.
This would enable us to coordinate the application of model transformations.
The linguistic components of our maintenance rules are currently integrated via

Traceability in Model-Driven Engineering: Efficient and Scalable Traceability . . . 239

additional conditions encoded in OCL, which is somehow similar to the integration
like in (Jirapanthong and Zisman, 2009) but not that powerful. We currently think
about ways to better link both concepts by also support not exact structural rules
like in (Niere, 2002).

References

Aizenbud-Reshef, N., Paige, R.F., Rubin, J., Shaham-Gafni, Y., Kolovos, D.S.: Operational
semantics for traceability. In: ECMDA-TW’05: Proceedings of 1st Workshop on Traceability,
pp. 7–14. Nurnberg, Germany, SINTEF (2005)

Aleksy, M., Hildenbrand, T., Obergfell, C., Schwind, M.: A pragmatic approach to traceability in
model-driven development. In: Heinzl, A., Appelrath, H.J., Sinz, E.J. (eds.) PRIMIUM, CEUR
Workshop Proceedings, vol. 328. CEUR-WS.org (2008)

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A.: Maintaining traceability links during object-
oriented software evolution. Softw. Pract. Exper. 31, 331–355 (2001)

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability links
between code and documentation. IEEE Trans. Softw. Eng. 28, 970–983 (2002)

Asuncion, H.U., Asuncion, A.U., Taylor, R.N.: Software traceability with topic modeling. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering –
Volume 1, ICSE ’10, pp. 95–104. ACM, New York, NY (2010)

Boronat, A., Carsí, J.A., Ramos, I.: Automatic support for traceability in a generic model manage-
ment framework. In: First European Conference ECMDA-FA 2005, pp. 316–330. Nuremberg,
Germany (2005)

Cleland-Huang, J., Chang, C.K., Christensen, M.: Event-Based traceability for managing evolu-
tionary change. IEEE Trans. Softw. Eng. 29, 796–810 (2003)

De Lucia, A., Oliveto, R., Tortora, G.: Adams re-trace: Traceability link recovery via latent seman-
tic indexing. In: ICSE ’08: Proceedings of the 30th International Conference on Software
Engineering, pp. 839–842. ACM, New York, NY (2008)

Del Fabro, M.D., Valduriez, P.: Semi-automatic model integration using matching transformations
and weaving models. In: Proceedings of the 2007 ACM Symposium on Applied Computing,
SAC ’07, pp. 963–970. ACM, New York, NY (2007)

Egyed, A.: Fixing inconsistencies in UML design models. In: Proceedings of the 29th International
Conference on Software Engineering, ICSE ’07, pp. 292–301. IEEE Computer Society,
Washington, DC (2007)

Falleri, J.R., Huchard, M., Nebut, C.: Towards a traceability framework for model transformations
in Kermeta. In: ECMDA-TW’06: Proceedings of 2nd Workshop on Traceability, Bilbao, Spain.
SINTEF (2006)

Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph rewrite language
based on the Unified Modeling Language and Java. In: TAGT’98: Selected Papers from the
6th International Workshop on Theory and Application of Graph Transformations, LNCS, vol.
1764/2000, pp. 296–309. Springer, London (2000)

Giese, H., Hildebrandt, S., Seibel, A.: Feature report: Modeling and interpreting EMF-based story
diagrams. In: Van Gorp, P. (ed.) Proceedings of the 7th International Fujaba Days, Eindhoven,
The Netherlands, pp. 5–9. Technische Universiteit, Eindhoven (2009a). http://alexandria.tue.nl/
repository/books/656886.pdf

Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by interpreting story
diagrams. In: Magaria, T., Padberg, J., Taentzer, G. (eds.) Proceedings of the 8th International
Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2009), York,
UK, vol. 18. Electronic Communications of the EASST (2009b)

Ivkovic, I., Kontogiannis, K.: Towards automatic establishment of model dependencies using
formal concept analysis. Int. J. Softw. Eng. Knowl. Eng. 16(4), 499–522 (2006)

http://alexandria.tue.nl/repository/books/656886.pdf
http://alexandria.tue.nl/repository/books/656886.pdf

240 A. Seibel et al.

Jiang, H.Y., Nguyen, T.N., Chen, I.X., Jaygarl, H., Chang, C.K.: Incremental latent semantic
indexing for automatic traceability link evolution management. In: Proceedings of the 2008
23rd IEEE/ACM International Conference on Automated Software Engineering, ASE’08,
pp. 59–68. IEEE Computer Society, Washington, DC (2008)

Jirapanthong, W., Zisman, A.: Xtraque: Traceability for product line systems. Softw. Syst. Model.
8, 117–144 (2009). doi: 10.1007/s10270-007-0066-8

Jouault, F.: Loosely coupled traceability for atl. In: Proceedings of the European Conference on
Model Driven Architecture (ECMDA) Workshop on Traceability, pp. 29–37 (2005)

Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y., Bezivin, J.: Inter-DSL traceability
and navigability support by combining megamodeling and model weaving. In: Proceedings of
Special Track on the Coordination Models, Languages and Applications at the 25th Symposium
on Applied Computing (SAC 2010), Sierre, Switzerland, March 22–26, 2010

Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) Proceedings
of the Third International Conference on Integrated Formal Methods (IFM 2002), Turku,
Finland. Lecture Notes in Computer Science (LNCS), vol. 2335, pp. 286–298. Springer,
Berlin/Heidelberg (2002)

Lochmann, H., Hessellund, A.: An integrated view on modeling with multiple domain-specific
languages. In: Proceedings of the IASTED International Conference Software Engineering (SE
2009), pp. 1–10. ACTA Press, Chamonix, France (2009)

Lucia, A.D., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in software artifact
management systems using information retrieval methods. ACM Trans. Softw. Eng. Methodol.
16(4), 13 (2007)

Mäder, P., Gotel, O., Philippow, I.: Enabling automated traceability maintenance through the
upkeep of traceability relations. In: Proceedings 5th European Conference on Model-Driven
Architecture Foundations and Applications (ECMDA2009) – LNCS5562, pp. 174–189.
Enschede, The Netherlands (2009)

Maletic, J.I., Collard, M.L., Simoes, B.: An XML based approach to support the evolution
of model-to-model traceability links. In: Proceedings of the 3rd International Workshop on
Traceability in Emerging Forms of Software Engineering, TEFSE ’05, pp. 67–72. ACM, New
York, NY (2005)

Maletic, J.I., Munson, E.V., Marcus, A., Nguyen, T.N.: Using a hypertext model for traceability
link conformance analysis. In: Proceedings of the 2nd International Workshop on Traceability
in Emerging Forms of Software Engineering (TEFSE), pp. 47–54. Montreal, Canada (2003)

Nguyen, T., Gupta, S.C., Munson, E.V.: Versioned hypermedia can improve software docu-
ment management. In: Proceedings of the Thirteenth ACM Conference on Hypertext and
Hypermedia, HYPERTEXT ’02, pp. 192–193. ACM, New York, NY (2002)

Niere, J.: Fuzzy logic based Interactive Recovery of Software Design. In: Proceedings of the 24th
International Conference on Software Engineering (ICSE), pp. 727–728. Orlando, FL (2002)

Salay, R., Mylopoulos, J., Easterbrook, S.: Using macromodels to manage collections of related
models. In: Proceedings of 21st International Conference on Advanced Information Systems
Engineering (CAiSE’09), LNCS, vol. 5565/2009, pp. 141–155. Springer, Amsterdam, The
Netherlands (2009)

Seibel, A., Neumann, S., Giese, H.: Dynamic hierarchical mega models: Comprehensive
traceability and its efficient maintenance. Softw. Syst. Model. 9(4), 493–528 (2010). doi:
10.1007/s10270-009-0146-z

Walderhaug, S., Johansen, U., Stav, E., Aagedal, J.: Towards a generic solution for traceability in
MDD. In: Neple, T., Oldevik, J. , Aagedal, J. (eds.) ECMDA Traceability Workshop (ECMDA-
TW’06). Bilbao, Spain, SINTEF (2006)

Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering and model-driven
development. Softw. Syst. Model. 9(4), 529–565 (2010). doi: 10.1007/s10270-009-0145-0

Studying the Role of Humans in the Traceability
Loop

Alex Dekhtyar and Jane Huffman Hayes

1 Introduction

Traceability information has been captured and used to perform value-added activi-
ties as part of a “good” software engineering process since the coining of the phrase
“software engineering.” Often, this information has been captured after the fact, pos-
sibly not to the proper level of detail, and probably has not been kept up to date. Yet
when traceability information is available early, it becomes the underlying founda-
tion of vital activities throughout the life cycle, such as change impact analysis and
regression testing, and has been an acknowledged part of the software engineering
process for decades.

Traceability information can be generated as the life cycle proceeds or after the
fact. Of the two, after-the-fact tracing is more straightforward: the analyst has access
to the entire collection of artifacts and usually does not have as tight a delivery
schedule. Tracing “as you go” is, unfortunately, a rare activity. It is often viewed
as taking software engineers away from development and other “core” life cycle
activities. Even when done, it is often not performed to the level of detail required
(e.g., tracing sections to sections instead of tracing requirements to test cases) and/or
is not kept current. It has also been noted in the Grand Challenges chapter that some
organizations do not bother to trace until they have a need for the traceability matrix.
After-the-fact tracing, thus, is often the default approach.

Definition. We formally define in-life cycle tracing as any tracing activity
or activities that happen before the software is deployed. Similarly, after-the-
fact tracing is any tracing activity or activities that happen after the initial
deployment of the software.

In practice, in-life cycle tracing is usually performed on projects where trace-
ability information is either very important for the later stages of the life cycle
or its presence is mandated by laws and/or regulations. The software produced

A. Dekhtyar (B)
Cal Poly State University, San Luis Obispo, CA, USA
e-mail: dekhtyar@calpoly.edu

241J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_11, C© Springer-Verlag London Limited 2012

242 A. Dekhtyar and J.H. Hayes

by such a project is usually mission- and/or safety-critical in nature. Federal
regulations require that mission- and safety-critical software deployed by the fed-
eral government undergo pre-deployment independent verification and validation
(IV&V), a quality assurance process performed by an authorized third party.
Tracing is one of the key components of IV&V, supplying requisite information
to other IV&V processes such as requirements satisfaction assessment and critical-
ity analysis. Third-party analysts performing IV&V must certify that the software
product conforms to all requirements and specifications before the software is
deployed.

Regardless of when it is performed, the tracing process, in its traditional man-
ual form, is commonly considered to be unpleasant and is often described as boring
and repetitive. To alleviate this, much focus has been placed on the automation of
tracing. Other chapters in this book describe a variety of techniques that have been
used to automatically generate traceability links between various software engineer-
ing artifacts as well as the methods used to evaluate such techniques (generally
involving running an experiment or study on a dataset and capturing various stan-
dard accuracy measures). All of these techniques take as input the artifacts to be
traced and output candidate traceability matrices (deemed “candidate” until a human
approves them).

As we define it, a manual tracing process is one in which all tracing activities are
performed and all tracing decisions are rendered by a human analyst or a group of
human analysts. We define a fully automated tracing process as one in which human
analysts do not perform any tracing activities and where all tracing decisions are
rendered by software.

A fully automated tracing process stops when the software generates a candidate
traceability matrix. This matrix is then used in the subsequent activities as the source
document for the traceability relation between the artifacts considered. In theory,
full automation is beneficial as it is much faster than a manual tracing process, and
thus it frees up analyst time. In practice though, automated methods still fall short of
consistently capturing the exact traceability relationships between pairs of artifacts.

Herein lies the key distinction between after-the-fact tracing and in-life cycle
tracing. Typical goals of after-the-fact tracing are such that “good enough” but not
perfectly recovered traces are still very useful, and the ability to obtain them quickly
and with little human effort is appreciated. However, use of the results of fully auto-
mated tracing processes is not appropriate for the majority of in-life cycle tracing
activities.

Essentially, for in-life cycle tracing scenarios, manual tracing is highly unde-
sirable due to its time-consuming and arduous nature. At the same time, fully
automated tracing cannot be used in most situations, as the nature of the tracing
process requires human analysts to accept responsibility for the traceability rela-
tionships that they produce (and at present, the automated methods come with no
accuracy guarantees).

The main question that this chapter addresses is how to design in-life cycle trac-
ing processes that are both accurate and cost-effective. To address this problem,
we propose a third category of tracing processes, semi-automated tracing, a.k.a.

Studying the Role of Humans in the Traceability Loop 243

assisted tracing, defined as a tracing process in which tracing activities can be
performed by both human analysts and tracing software. In the semi-automated
tracing processes that we consider in this chapter, human analysts render final
traceability decisions.

When performing semi-automated tracing, human analysts, at a minimum, need
to examine the results produced by the automated methods. Additionally, analysts
may interact with the tracing software, provide tracing feedback to the software,
and ask the tracing software to retrace. It is therefore important to study how
human analysts make decisions when performing tracing tasks, how they interact
with the automated tracing methods and the tracing software, and what factors
lead to the analysts (hopefully) being able to construct accurate traceability rela-
tions. This chapter attempts to shed light on how to approach the study of these
questions.

The chapter is organized as follows. Section 2 presents a motivating example.
Section 3 discusses the semi-automated process in detail. Section 4 provides an
overview of the research questions under consideration for semi-automated tracing.
Section 5 provides concluding thoughts.

2 Semi-Automated Tracing by Example

Let us examine the case of MedComp. They are developing a software system,
iTrust, in order to provide their patient customers with: (a) a way to maintain their
personal medical history/records, (b) a way to select a doctor, and (c) a way to
communicate with their doctors (iTrust, 2011). In addition, iTrust can support a
medical office: it provides an interface for medical staff from various locations,
allows the staff to keep track of their patients through messaging capabilities, allows
the scheduling of office visits, the prescribing of medication, etc. (iTrust, 2011). Of
particular interest to MedComp is the assurance that prescriptions are ordered prop-
erly and patients are not given the wrong medication (drug interactions, allergies,
illegal narcotics, etc.). To ensure that this requirement is satisfied, MedComp has
decided to develop a traceability matrix from requirements (represented in the use
cases document) to code. We assume that there are M requirements and N indi-
vidual code elements (e.g., classes or methods). We consider three possible tracing
scenarios.

Scenario 1. Manual tracing. In a traditional manual tracing process, the ana-
lyst reads all M of the requirements and finds matches for each within the N code
elements. The analyst can approach the task in many ways, perhaps reading all the
requirements and then reading through the code elements to find matches. If the ana-
lyst is highly fortunate, the matches might be found with only one reading of each
artifact, meaning that the analyst would read M + N elements. In the worst case
though, the analyst must examine every code element as a possible match each time
that a requirement is read, meaning that the analyst must examine M ∗ N elements.

Manual tracing allows the analyst to examine as many or as few candidate links as
the analyst sees fit. It gives the analyst the opportunity to render the correct decision

244 A. Dekhtyar and J.H. Hayes

on each candidate link. It also ensures that the process continues until the analyst is
satisfied and thus stops.

At the same time, manual tracing suffers from a number of clear drawbacks.
While in practice examining the full M∗N candidate links is unlikely, the most popu-
lar way to trace still remains a scan of a low-level artifact for each high-level element
to be traced. The expected number of candidate links that will be checked thus is
more likely to be quadratic in M and N rather than linear. For large datasets with
hundreds of requirements and thousands of code elements (e.g., individual meth-
ods), this quickly becomes either outright infeasible or extremely time-consuming.
Additionally, while manual tracing gives the analyst the opportunity to render cor-
rect decisions, it is not a given that analysts will do this every time. Studies show
that the boring nature of the task makes the process error-prone (Egyed et al., 2010).

Scenario 2. Fully automated tracing. Automated tracing starts with the analyst
starting up the automated tracing software, setting up the tracing task by selecting
the high- and low-level artifacts, a specific tracing technique to apply along with
any required settings. The software tool then generates a traceability matrix (TM)
which is submitted by the analyst as the discovered traceability relationship. In this
process, the analyst may study the output of the tracing software, but she does not
modify the results of the automated tracing process.

The fully automated process gives the analyst the control of initial settings, but
excludes the analyst from any further decision-making. Tracing tools are fast – even
large datasets can be traced in a matter of minutes if not seconds. However, iTrust
requires accountability: the analyst performing the tracing task certifies the correct-
ness of the established traceability relationship. Fully automated tracing does not
ensure accountability, which disqualifies it as a possibility for tracing the iTrust
requirements to code.

Scenario 3. Semi-automated tracing. Initially, this process follows the same
steps as the automated process – all the way until a candidate matrix is generated
by a software tool. At this point, the analyst starts examining the candidate TM,
making any needed changes to it by either (a) adding links missed by the tracing
tool or (b) removing candidate links suggested by the tool but deemed incorrect.
When satisfied, the analyst certifies and submits the resulting TM as the established
traceability relation.

As mentioned above, the manual process provides accountability and poten-
tially high accuracy, but at the cost of high effort. The fully automated process is
fast, but is not accountable and may not be accurate. The semi-automated process,
at least in theory, can be the “best of both worlds” by combining the efficiency
of the automated methods in vetting a large number of candidate links with the
accountability of the manual process. On the other hand, it can potentially com-
bine “the worst of both worlds,” if the automated method produces very poor
results and requires the analyst to apply an inordinate amount of time and effort
to fix. In the next section, we examine the semi-automated tracing process in more
detail.

Studying the Role of Humans in the Traceability Loop 245

3 Semi-Automated Tracing Process

The semi-automated tracing process can be viewed as consisting of two main actors:
a human analyst and an automated tracing tool. The process has a number of inputs:
the artifacts to be traced to each other and a selection of tracing techniques and
settings for the techniques. The outputs are candidate traceability matrices and final
traceability matrices. We examine each in turn.

Inputs

Artifacts – Artifacts may be textual, graphical, even multi-media. Most research has
focused on textual artifacts. The artifacts can strongly impact the semi-automated
tracing task. If the two textual artifacts were written by different people or using
different terminology, the automated tool may miss many links.

Techniques – Automated tracing techniques available for use in the tracing tool.
Some techniques are better suited to certain artifacts than others. We defer to earlier
chapters which have covered this topic in detail.

Settings for techniques – Choices that the human analyst can make regarding the
specifics of using automated tracing techniques. Settings vary from technique to
technique. Examples of settings include selection of the vocabulary base (high-level
artifact, low-level artifact, both artifacts) for LSI, selection of a stop word list for
any technique or use of feedback processing to interact with the software tool and
cause it to retrace portions of candidate traceability matrix.

Actors

Human analyst – The analyst is truly the lynch pin in the process. The analyst may
be highly knowledgeable about the system/domain and may have many years of
tracing experience, the analyst may be very new to the project and have never traced
before, or possess experience that is in between these two extremes. The analyst may
spend a tremendous amount of time performing tracing, examining each possible
link in great detail; the analyst may only glance at each link (or only a subset of
them); or may apply some level of effort that falls between the extremes. The analyst
may review links in the order in which they appear, or may jump around. The analyst
may provide feedback on every candidate link, may not provide any feedback, or
may provide some feedback. The analyst may search for links that do not appear in
the candidate TM, may not search at all, or may search for a small or large number
of missing links. The analyst may use the relevance weights to guide the process, or
may not. Last but not least, the analyst may be prone to human error at any point of
the tracing process. There is a high degree of variability regarding this actor.

Tool – To qualify as an actor in a tracing process, a software tool must, at a min-
imum, possess the ability to produce a qualitative or quantitative “relationship”

246 A. Dekhtyar and J.H. Hayes

assessment for each pair of elements from the artifacts being traced. The tool will
largely be a collection of techniques. The tool must provide the human analyst the
ability to set up a tracing task and output the results that the analyst can peruse. The
tool may have an interactive user interface (UI). The UI design can impact the work
performed by the analyst.

Candidate TM – Any traceability matrix/traceability relation generated or updated
by an automated method.1 The accuracy of the candidate TM can influence the final
results. It seems intuitive that a high quality candidate TM might make work easier
for the analyst.

Final TM – The traceability matrix/traceability relationship produced by the
analyst as the result of the tracing process and explicitly declared as a “ready-
for-submission” artifact. The accuracy of this TM is of paramount importance,
especially if “upstream” decisions in the life cycle will be made based upon it.

Semi-automated tracing generates two results, a candidate TM produced by the
tool, and a final TM delivered by the analyst. We can measure the accuracy of these
TMs using the standard information retrieval (IR) measures of recall, precision,
and f-measure (or f 2-measure). These measures were defined earlier, as a reminder
recall evaluates how well the tool or analyst retrieved true links, precision looks at
how many false links were retrieved by the tool or analyst, and f-measure is the har-
monic mean of recall and precision (f 2-measure favors recall over precision). Now
that we are able to evaluate the semi-automated tracing process, we can examine
some important questions.

4 Directions for the Evaluation of Semi-Automated Tracing

The success of the semi-automated tracing process will be judged based on the
accuracy (we desire 100% recall, 100% precision) of the final TM which is passed
on for other “upstream” software engineering activities. Thus in assessing the suc-
cess of a semi-automated tracing process, we are measuring the quality of human
performance.

What factors can affect the analyst performance when tracing? In a semi-
automated process, the analyst obtains the initial candidate TM from an automated
method, uses tracing software (or some other process), and relies on her expertise to
validate candidate links and search for the ones missing from the candidate TM. As
such, we can separate the key factors that can have effect on the analyst performance
into three broad categories: (a) task-related, (b) tool-related, and (c) analyst-related.
We discuss each group of factors in turn.

Task-related factors. These factors quantify the properties of the tracing task
at hand: the input artifacts and the traceability matrices constructed. Among the
specific parameters (or factors) we can identify:

1 As well as any “work-in-progress” traceability matrix observed throughout the process.

Studying the Role of Humans in the Traceability Loop 247

1. Size of high- and low-level artifacts: usually measured in terms of numbers of
elements.

2. “Quality” of high- and low-level artifacts: measured in terms of reading level,
size/verbosity of individual elements, size of corpus, difference in language
between the high- and the low-level documents, etc.

3. Size of true traceability relationship: in real tracing tasks, this information is
usually not available, but it is available for staged experiments.

4. Accuracy of the initial candidate trace: measured using recall, precision, f/f 2-
measure, selectivity, etc. Note that this factor can both be considered domain-
and software-tool-dependent.

Tool-related factors. These factors describe how the software tool used in the pro-
cess makes tracing decisions (tracing method), what parameters guide the work of
the tracing algorithm, and how users are expected to interact with the software tool
and observe/react to the produced results. Among the key factors in this category
are:

1. Automated tracing method used to produce candidate TMs.
2. Use of feedback: whether it is used at all, and specific feedback processing

method if used.
3. Use of filtering and specifics of a filtering method: which candidate links are

shown to the analyst and which are not?
4. Tool functionality and UI: what features are available for the analyst to use when

tracing with the tool? What are the steps necessary for the analyst to use these
features?

Analyst-related factors. These factors cover the analyst’s tracing expertise and
domain knowledge. Some of the analyst-related factors we identify are:

1. General expertise working in the field of software engineering (measured in
years, number of projects, etc.)

2. Expertise with tracing: which can be measured on the “Not expert” – to –
“Expert” ordinal scale, or in terms of the number of tracing tasks com-
pleted/undertaken to date and/or hours spent performing tracing tasks.

3. Domain expertise: level of analyst’s familiarity with the application domain.
4. Personal qualities: while hard to objectively measure, personal qualities (such

as attention to detail, attention span, whether the language of the artifacts is the
native language of the analyst, etc.) can potentially influence how an analyst
engages in trace validation.

5. Effort: how much time the analyst puts into performing the actual tracing. It can
be measured in total time to trace or time to trace per observed candidate link.

Whenever empirical studies of semi-automated tracing are performed, a fourth
category of factors is also present:

248 A. Dekhtyar and J.H. Hayes

Empirical study-specific factors. This category encompasses a variety of factors
that are present in the empirical study design. Examples of such factors are:

1. Experiment location/cohort: in a repeated/replicated experiment, the cohort
and/or location of the analyst (site A of the experiment vs. site B) may play a
role in the observations of analyst behavior. Generally speaking, when conduct-
ing multi-site/multi-cohort experiments, the researchers want to eliminate the
effects of these factors on the results.

2. Analyst opinions: Empirical studies allow researchers to collect information
about the opinions of the analysts on a variety of issues related to the exper-
iment: their level of comfort, their self-assessment, their tracing preferences.
While these factors might not have causal effect on the accuracy of the
analyst-submitted TM, they might have predictive effect.

The large number of factors that can influence analyst performance in semi-
automated traceability tasks present a clear challenge for traceability study design.
In deciding which specific factors to consider, we can propose a somewhat different
ontology:

1. Factors that can be controlled by study designers. These are the factors whose
values can be altered by the study designers at will. They are the key candidates
for becoming the control/independent variables in the study design. Examples
include initial TM accuracy, tracing software behavior, cohort/location.

2. Factors that can be observed/measured by study designers. These are the fac-
tors that either cannot be controlled at all (e.g., analyst effort), or are hard to
control given the realities of the empirical studies2 (e.g., analyst experience with
tracing).

Initial studies of semi-automated tracing, out of necessity, must concentrate on
studying the influence of the factors from the former category, while collecting
and analyzing any correlations and/or predictive effects of the factors from the lat-
ter category. As such, we put forth three key research questions which need to be
addressed.

[RQ1]. What is the influence of the accuracy of the candidate TM on the
accuracy of the final TM submitted by the analyst?

[RQ2]. Is analyst behavior when performing semi-automated tracing tasks
predictable and reliable?

[RQ3]. What makes the best automated tracing tool for the semi-automated
tracing process?

2 Key to such reality is the scarcity of potential participants in experimental studies. This makes any
analyst-specific control (e.g., by education level, experience with tracing, etc.) harder to implement
in practice.

Studying the Role of Humans in the Traceability Loop 249

In the sections that follow, we discuss approaches to studying these questions, the
studies already undertaken, and their results.

4.1 Accuracy of the Candidate Traceability Matrix

What to study. Accuracy of the candidate traceability matrix produced by an auto-
mated method is the key feature of the candidate TM. In theory, the more accurate
the initial TM is, the less effort the analyst needs to spend to validate it.

How to study. Given an initial traceability matrix, there are two ways to assess
the performance of an analyst on the task. First, we can look at the absolute accu-
racy of the final TM submitted by the analyst. Second, we can look at the change
in the accuracy from the initial to the final TM. The accuracy of the final TM is
measured in terms of precision, recall and, through them, the f 2-measure. By the
same token, the change in the accuracy can be measured in terms of difference in
recall, difference in precision, and difference in f 2-measure between the initial and
the analyst-submitted TM. It is important to consider both groups of measures. The
former tell us how close the final TM is to the true trace (golden standard). The latter
tell us how well the analysts made their decisions.

Visualization of results. One of the most straightforward ways of visualizing the
results of the analyst’s work is illustrated in Fig. 1. The initial and the final TMs
are represented as points in the recall (X-axis) – precision (Y-axis) space. We can
draw a vector from the point representing the initial TM to the point representing
the final TM. The length of the vector illustrates the difference in recall (horizon-
tal component) and precision (vertical component). In the recall-precision space,
vectors directed towards the (1,1) (a.k.a. 100% recall and 100% precision) point
exhibit the desired behavior – the analyst has improved the accuracy of the candi-
date TM, while the proximity of the heads of the vectors to the point (1,1) indicates
the desirability of the final outcome – the analyst came close to identifying the
correct TM.

Studies to date. Research on this topic, addressing RQ1, began in 2005 with an
anecdotal study (Hayes et al., 2005b) of four industry analysts working on NASA’s
IV&V projects. The idea was to ask each analyst to complete a trace of a small sub-
set of requirements taken from NASA’s MODIS (MODIS, 1997) project. Analysts
were assigned candidate TMs of varying quality to see if this impacted the quality
of the final TM. The results of the pilot study are shown in Fig. 2. The findings
were a bit astonishing: all of the analysts decreased the accuracy of the TMs. Also,
they tended to move the TMs toward the recall = precision line. It was not until
2010–2011 that this anecdotal evidence was examined further, with a large study
conducted at two universities by Cuddeback et al. (Cuddeback et al., 2010), and
later replicated and extended by Dekhtyar et al. (Dekhtyar et al., 2011). We use
the experimental framework of Hayes and Dekhtyar (Hayes and Dekhtyar, 2005) to
examine the two studies.

250 A. Dekhtyar and J.H. Hayes

Fig. 1 Visualizing analyst performance in semi-automated traceability tasks

Fig. 2 Results of the pilot semi-automated tracing study

Studying the Role of Humans in the Traceability Loop 251

The motivation for the original study (Cuddeback et al., 2010) was to understand
the behavior of analysts and the impact of accuracy of the candidate TM on the
accuracy of the final TM. For the second study (Dekhtyar et al., 2011), the original
motivation was expanded to add confirmation of findings.

The purpose of both studies was to evaluate the impact of starting candidate
TM quality on final TM quality from the perspective of a researcher. The null and
alternate hypotheses were not stated, instead, three research questions were asked:

1. How do human analysts transform the requirements traceability information
produced by automated methods?

2. How does the accuracy change in that process?
3. Does the amount of time an analyst spends on trace validation impact the quality

(accuracy) of the results?

The second study added a fourth research question:

4. Are there any factors that serve as statistically significant predictors of the
accuracy of the final TM?

For the first experiment, the automated tracing tool Requirements Tracing On target
(RETRO) (Hayes et al., 2007) was modified to deliver a pre-calculated candidate
TM to an analyst as opposed to computing the TM “on the fly.” Candidate TMs of
varying recall and precision were constructed for a dataset and then were assigned to
various study participants based on their experience (determined by their responses
to a pre-study questionnaire). In the second experiment, two more processes were
added. A group of participants was asked to perform manual trace validation: par-
ticipants received hardcopies of the two artifacts being traced to each other and a
hardcopy of a candidate TM and were asked to validate it. The third process used in
the experiments involved using an updated version of RETRO called RETRO.NET
(Dekhtyar et al., 2007), which included a significantly modified UI. The back end of
RETRO.NET was instrumented to automatically log information about user activity
(Kong et al., 2011).

In both experiments, the scope was a single project whose importance level
was convenience. The project examined was ChangeStyle, a BlueJ plugin that for-
mats Java programs. The project came out of a junior-level Software Engineering
two-course sequence at Cal Poly. The ChangeStyle dataset used in the experiments
consisted of 32 requirements and 17 test cases (Cuddeback et al., 2010). The project,
when acquired by researchers, had a traceability relationship associated with it.
The research team examined and extended the traceability relation to produce the
“golden standard” TM used in the experiments against which to validate. The
golden standard, a.k.a. the true TM, contained 24 links between the requirements
and the test cases.

Both studies collected the same information. The independent variables were
broken into two categories: baseline independent variables and observed indepen-
dent variables. Tables 1 and 2 list the variables.

252 A. Dekhtyar and J.H. Hayes

Table 1 Baseline
independent variables Variable Abbreviation Scale

Precision of initial TM SPrec [0,1]
Recall of initial TM SRec [0,1]
F 2-measure of initial TM SF 2 [0,1]
Quadrant of initial TM SQuadrant {Q1, Q2, Q3, Q4}
Size of initial TM SSize # links (1 --- 544)

Table 2 Observed independent variables

Variable Abbreviation Scale Type

Procedure used Procedure {RETRO, Manual,
RETRO.NET}

Tool-related

Location Location {CalPoly, UK} Experiment-related
Software engineering

experience
SEExp {0,1,2} Analyst-related

Tracing experience TRExp {0,1} Analyst-related
Time to perform task Time # minutes Analyst-related
Grade level Grade {F, Soph, J, S, G} Analyst-related
Confidence w/tracing TrConf 1 – 5 Analyst-related
Opinion on Tool vs.

Manual
Opinion {Manual, Software} Experiment-related

Effort searching for
omitted links

MissingEff 0---5 Analyst-related

Effort validating
offered links

ValidEff 0---5 Analyst-related

Level of preparedness Prepared 1---5 Analyst-related

The baseline independent variables are the variables whose values were directly
or indirectly controlled in the study. The experiments assigned each participant a
starting (initial) TM with a predefined accuracy, controlled by precision and recall
numbers. Precision and recall of the initial TM uniquely determine the values of the
other three baseline variables: F 2-measure of the initial TM, a convenient single-
value surrogate for the precision/recall pair, the quadrant of the initial TM (the
precision, recall pair discretized into four values: {low precision/low recall, low
precision/high recall, high precision/low recall, high precision/high recall}), and
size of the initial TM.

The observed independent variables were collected as follows. Prior to tracing,
participants took a preliminary survey designed to gauge their level of expertise
with tracing. During the tracing process, we collected information about the time it
took the participants to complete the task. After the task, participants took a short
post-study survey which measured their impressions of the process. From these
three sources, information about 11 variables (factors) was collected. Most of the
variables collected represent analyst-related factors, as seen in Table 2. Only one
tool-related and one experiment-related variable were collected. We briefly describe
each variable below.

Studying the Role of Humans in the Traceability Loop 253

Procedure used (Procedure). The experiments were run in three cohorts, each
cohort being offered a different tracing experience. Two cohorts used software tools
(RETRO and RETRO.NET), one cohort traced manually.

Location (Location). The experiments took place at two locations: on the campuses
of California Polytechnic State University (Cal Poly) and University of Kentucky
(UK). All participants in the manual tracing cohort were from one location. The
other two cohorts had participants from both locations.

Software Engineering experience (of the participant). (SEExp). This was determined
from participant answers to questions about the software engineering courses they
took and their industry experience.

Tracing experience (of the participant) (TExp). The pre-study survey asked a number
of questions about prior experience the analysts had with tracing, both in industry
and in coursework, and the circumstances of the prior experience. This variable is
the composite of the answers.

Time to perform task (Time). The amount of time spent by the participant on
performing the assigned task was collected in each experiment.

Grade level (Grade). The grade level (freshman, sophomore, junior, senior, graduate
student) of the experiment participants.

Confidence with tracing (TRConf). The post-study survey asked the participants to
evaluate their level of confidence when performing tracing tasks.

Opinion on tool vs. manual tracing (Opinion). The post-study survey asked every
participant if they would prefer tracing manually or using a software tool (regardless
of how they were asked to trace in the experiment).

Effort searching for omitted links (MissingEff). Each participant was asked a post-
study question about the amount of effort they spent searching for missing links.

Effort validating offered links (ValidEff). Each participant was asked a post-study
question about the amount of effort they spent validating/vetting candidate links
from the initial TM presented to them.

Level of preparedness (Prepared). The participant’s response to the post-study
survey question asking how prepared they felt for the tracing task.

Table 3 lists the dependent variables that were collected in the experiments. Two
groups of dependent variables were collected: (a) recall, precision, and f 2-measure
of each participant’s final TM, and (b) the “deltas”: the differences in the recall,
precision, and f 2-measure between the initial and the final TM.

No pilot study was discussed. The participants traced the 32 requirements to the
17 test cases using the candidate TMs assigned to them. The samples used were
representative with respect to content to what is used in industry, but were small.
The first experiment did not replicate any prior studies. The second experiment
replicated the first experiment using two different tracing procedures: one using
a different software tool, and the other using manual trace validation.

254 A. Dekhtyar and J.H. Hayes

Table 3 Dependent
(response) variables Variable Abbreviation Scale

Precision of the final TM FinPrec [0,1]
Recall of the final TM FinRec [0,1]
F 2-measure of the final TM FinF 2 [0,1]
Difference in precision 	Prec [-1.1]
Difference in recall 	Rec [-1,1]
Difference in f 2-measure 	F 2 [-1,1]

Table 4 A summary of two experiments (Cuddeback et al., 2010, Dekhtyar et al., 2011)

Cohort Date Tracing process University A University B Total

1 11/2009 RETRO 16 10 26
1 04/2010 RETRO 0 7 7
2 11/2010 Manual 38 0 38
3 12/2010 RETRO.NET 8 5 13
All All 62 22 84

The results of the studies are documented in the graphs and tables below. Table 4
shows the basic information about the experiments. The experiments were per-
formed at two sites (University of Kentucky and Cal Poly, referred to as «University
A» and «University B» in the table) over a period of approximately one year. The
experiment participants were students enrolled in upper-division or graduate soft-
ware engineering courses. The first procedure, trace validation using the front-end
of the requirements tracing tool RETRO, was used on two occasions, and a total of
33 participants completed this task. Thirteen participants performed trace validation
using the UI of RETRO.NET, a newer, more streamlined, user-friendly version of
RETRO. Thirty eight participants validated presented hardcopy candidate TMs by
hand.

Prior to the tracing task, each participant completed a pre-study survey. For
cohorts involving software tools, a tool demonstration introduced the appropriate
tool (RETRO or RETRO.net) and allowed participants to learn its UI. Participants
in the manual tracing cohort instead received a brief overview of tracing and trace-
ability. Each participant was assigned a unique userID, tied to a specific accuracy
(precision, recall) of a candidate TM the participant was asked to trace.

To simplify observation and highlight trends, the results of both studies are com-
bined and presented in the graphs in Fig. 3 broken down by the quadrant of the
initial TM. Based on the results, the following observations about analyst behavior
were made.

Low-precision, low-recall TMs. Analysts who validated candidate TMs with
low precision and low recall, for the most part, showed significant improvement
of both recall and precision of the final TMs that they submitted. Low precision and
low recall TMs have moderate size averaging about the size of the true TM (i.e.,
24 links). Analysts removed false positives from the candidate TM, noticed that it
became too small and went looking (and found!) for omitted true links.

Studying the Role of Humans in the Traceability Loop 255

Fig. 3 Results of assisted tracing experiment broken down by the quadrant of the initial TM

Low-precision, high-recall TMs are very large, containing many true links and
even more false positives. With a few notable exceptions, analysts presented these
TMs tended to concentrate on removing false positive links from the candidate
TM, thus improving precision. At the same time, they occasionally removed a true
link, decreasing recall. They tended to submit TMs that were smaller in size than
the ones given to them, although not every submitted TM had close to 24 links.

High-precision, low-recall TMs presented a different challenge to the analysts.
These TMs are very small in size – some containing as few as 5–7 candidate links.
Analysts correctly determined that many true links were missing and went search-
ing for them. Except for a few outliers, most analysts successfully discovered a
significant number of true links, improving, sometimes quite significantly, recall. At
the same time, most added a number of false positive links, decreasing precision.
Most analysts in this group submitted TMs that were similar or somewhat larger in
size than the true TM.

High-precision, high-recall TMs. Analysts working with high-precision, high-
recall TMs were less predictable. Most of the analysts correctly recognized that
their initial TMs have relatively high accuracy, and therefore did not affect too many
changes. What changes they made, however, had small but diverse and, often neg-
ative, effects. Analysts tended to slightly decrease the overall accuracy of the TM,
while still supplying some of the most accurate final TMs.

256 A. Dekhtyar and J.H. Hayes

True TM not recovered. Not a single experiment participant recovered the correct
trace or at least discovered all correct links (finished with recall of 100%). At the
same time, every correct link was found by multiple analysts, although not all links
were uniformly easy for them to discover.

Following our experimental framework (Hayes and Dekhtyar, 2007), the inter-
pretation context for this work is the field of tracing research. In this context,
these observations shed some light onto the first two research questions studied in
(Cuddeback et al., 2010) and (Dekhtyar et al., 2011): analyst behavior and accuracy
of the final trace appeared to depend on the accuracy of the initial TM. To address
the remaining questions and confirm the informal observations in a more formal
way, (Dekhtyar et al., 2011) analyzed the influences of both baseline and observed
independent variables on the dependent variables and tested them for statistical
significance.

Tables 5 and 6 detail the results of the analysis. Table 5(a) examines the influence
of the independent variables Initial Precision and Initial Recall on the response
variables using multiple regression, bolded items are statistically significant. The
first column reports the adjusted R-square value, R2

adj, column two lists the F-value,
and column three reports the significance level (pvalue) for each model. The initial
accuracy of the TM has a statistically significant effect on the precision of the final
TM. It also has a statistically significant effect on changes in precision, recall, and
F 2-measure.

Linear regression was applied to examine the influence of the Initial F 2-measure
on our response variables. Table 5(b) summarizes the results: initial F 2-measure
statistically significantly influences final precision, final F 2-measure, the change in
recall, and the change in F 2-measure.

Next, we examined how our observed independent variables related to the
response variables. We controlled for two baseline independent variables, initial
precision and initial recall, to prevent systematic bias and reduce error variance
within groups. Of the eleven variables, only time to complete the tracing task (Time)
is continuous, thus multiple linear regression analysis was used for it. We used one-
way ANCOVA to analyze the remaining 10 (categorical) variables. Table 6 shows

Table 5 (a) Influence of initial precision and initial recall on response variables (degrees of free-
dom: 2,81); (b) Influence of initial F 2-measure on response variables (degrees of freedom: 1,82)

(a) (b)

Response
Variable R2

adj F-value Sig. (pval)
Response
Variable R2

adj F-value Sig. (pval)

FinPrec 0.12 6.659 0.002 FinPrec 0.056 5.913 0.017
FinRec –0.004 0.842 0.434 FinRec 0.037 3.117 0.081
FinF 2 0.0 1.012 0.368 FinF 2 0.053 4.604 0.035
�Prec 0.454 35.548 0.0001 	Prec 0.036 3.02 0.086
�Rec 0.444 34.115 0.0001 �Rec 0.312 37.227 0.0001
�F 2 0.288 17.761 0.0001 �F 2 0.238 25.672 0.0001

Studying the Role of Humans in the Traceability Loop 257

Ta
bl

e
6

A
na

ly
si

s
fo

r
ob

se
rv

ed
in

de
pe

nd
en

tv
ar

ia
bl

es
co

nt
ro

lli
ng

fo
r

in
iti

al
T

M
pr

ec
is

io
n

an
d

re
ca

ll

R
es

po
ns

e
L

oc
at

io
n

Pr
oc

ed
ur

e
SE

E
xp

T
R

E
xp

T
im

e
G

ra
de

T
rC

on
f

O
pi

ni
on

M
is

si
ng

E
ff

V
al

id
E

ff
Pr

ep
ar

ed

Fi
nP

re
c

R
2 ad

j
0.

12
0.

10
9

0.
10

7
0.

12
1

0.
12

7
0.

14
8

0.
08

3
0.

12
9

0.
04

9
0.

12
6

0.
10

2
R

2 ad
j
=

0.
12

0
F

1.
01

2
0.

51
0

0.
87

6
2.

03
4

1.
02

5
1.

66
8

0.
04

5
1.

11
1

0.
09

1
1.

02
1.

00
3

P
0.

31
8

0.
60

2
0.

42
1

0.
15

8
0.

31
5

0.
16

6
0.

83
3

0.
33

5
0.

96
5

0.
41

3
0.

42
3

Fi
nR

ec
R

2 ad
j

0.
00

6
0.

00
1

−0
.0

01
0.

00
2

−0
.0

12
0.

01
7

−0
.0

22
−0

.0
17

−0
.0

16
0.

11
5

−0
.0

53
R

2 ad
j
=

−0
.0

04
F

1.
78

9
1.

18
0

1.
02

8
1.

30
6

0.
12

6
1.

42
3

0.
00

1
0.

37
3

0.
84

7
2.

81
0

0.
34

0
P

0.
18

5
0.

31
3

0.
36

2
0.

25
7

0.
72

4
0.

23
4

0.
97

8
0.

69
0

0.
52

2
0.

02
3

0.
88

7
Fi

nF
2

R
2 ad

j
−0

.0
06

0.
01

0.
01

9
0.

01
6

−0
.0

08
−0

.0
25

−0
.0

22
0.

0
−0

.0
24

0.
15

3
−0

.0
22

R
2 ad

j
=

0.
0

F
0.

49
6

1.
38

3
1.

76
5

2.
28

4
0.

01
3

0.
50

3
0.

07
7

0.
78

4
0.

71
7

3.
42

8
0.

74
1

P
0.

48
3

0.
25

7
0.

17
8

0.
13

5
0.

91
0

0.
73

4
0.

78
2

0.
46

0.
61

3
0.

00
8

0.
59

5
	

Pr
ec

R
2 ad

j
0.

46
1

0.
44

8
0.

46
6

0.
47

5
0.

47
5

0.
47

2
0.

46
0

0.
46

2
0.

42
7

0.
46

5
0.

45
9

R
2 ad

j
=

0.
45

4
F

1.
01

2
0.

51
0

0.
87

6
2.

03
4

1.
02

5
1.

66
8

0.
04

5
1.

11
1

0.
19

1
1.

02
1.

00
3

P
0.

31
8

0.
60

2
0.

42
1

0.
15

8
0.

31
5

0.
16

6
0.

83
3

0.
33

5
0.

96
5

0.
41

3
0.

42
3

	
R

ec
R

2 ad
j

0.
44

9
0.

44
6

0.
44

3
0.

44
5

0.
41

6
0.

45
5

0.
44

5
0.

41
3

0.
44

4
0.

49
3

0.
42

4
R

2 ad
j
=

0.
44

4
F

1.
78

9
1.

18
0

1.
02

8
1.

30
6

0.
12

6
1.

42
3

0.
00

1
0.

37
3

0.
84

7
2.

81
0

0.
34

P
0.

18
5

0.
31

3
0.

36
2

0.
25

7
0.

72
4

0.
23

4
0.

97
8

0.
69

0.
52

2
0.

02
3

0.
88

7
	

F
2

R
2 ad

j
0.

28
4

0.
29

7
0.

32
2

0.
29

7
0.

24
3

0.
27

0
0.

29
1

0.
24

5
0.

26
5

0.
32

6
0.

26
8

R
2 ad

j
=

0.
28

8
F

0.
54

1
1.

56
5

2.
53

0
1.

17
0.

02
1

0.
52

1
0.

00
1

0.
57

1
0.

59
8

2.
58

2
0.

65
3

P
0.

46
4

0.
21

6
0.

08
6

0.
28

3
0.

88
5

0.
72

1
0.

98
0

0.
56

8
0.

70
2

0.
03

4
0.

66

258 A. Dekhtyar and J.H. Hayes

the results of the analyses. We report the R2
adj, the F-value, and the p-value as well

as the baseline R2
adj value for each response variable’s effect with initial precision

and initial recall. As can be seen from the table, only one variable, ValidEff has
statistically significant effect on any response variables.

ValidEff quantifies the amount of effort participants put into evaluating candidate
links from the initial TM as collected in the post-experiment survey (on a 0 – 5 scale,
where 0 meant “never performed this type of activity” and 5 meant ”performed this
type of activity for every single link.”). The key reason for the statistically signif-
icant influence on final recall and change in recall of ValidEff was interesting. Of
84 participants, 62 specified values of 0, 1, 2, or 3 in response to the question.
Thirteen participants gave a response of 4 and one participant gave a response of
5. The average recall for those responding 4 or 5 was 20.5% less than the average
recall of those whose responded 0 through 3. Those who responded 4 or 5 were the
only group of participants whose mean change in recall was negative, at an alarm-
ing −24.22%. Therefore, it appears that those participants who “overthought” the
problem of validating the given TM performed significantly worse than everyone
else.

Based on the obtained results, the accuracy of the initial TM was the best pre-
dictor for the change in the TM accuracy. Initial precision and initial recall together
account for over 40% of variability of 	Prec and 	Rec response variables. Of the
11 observed independent variables, only ValidEff had statistically significant effect
on 	Rec and 	F 2, explaining an additional 7–8% of variability. This was much
less than the baseline variables.

From these two studies we draw two important conclusions which have overar-
ching consequences for the overall study of traceability. First, accurate automated
methods do not necessarily guarantee accurate final traces: human analysts,
surprisingly, do not perform well when given fairly accurate candidate TMs.
Second, human analysts are predictably fallible. To be successful, semi-automated
procedures must take this into account!

4.2 Studying Reliability

In the context of semi-automated tracing, analyst consistency, a.k.a. analyst pre-
dictability, is the degree to which analysts tend to produce similar final results when
given similar initial candidate TMs. Analyst reliability is the degree to which the
analysts improve the initial TMs (i.e., can be relied on to deliver the correct TM).
Semi-automated tracing procedures should allow analysts to behave both consis-
tently and reliably – i.e., being able to predictably improve the initial candidate TMs
and to reach the true TM. This behavior should not depend on the accuracy and/or
other parameters guiding the specifics of the initial candidate TMs. Failing that, we
would like to observe that there is a certain region of parameter/factor values for
the initial TM which leads to both consistent and reliable behavior.

Consistency. Current results, described in the sections above, suggest a cer-
tain degree of predictability of analyst behavior. The second study described above

Studying the Role of Humans in the Traceability Loop 259

(Dekhtyar et al., 2011) shows that the accuracy of the initial TM (precision, recall)
is a significant predictor for the accuracy of the final TM and for the change in accu-
racy. In fact, this was the factor with the highest predictive power of all the factors,
both controlled and observed in the experiment. While it can be seen from Fig. 3
that the accuracy of the initial TM is not a perfect predictor – analysts shown similar
TMs do not always behave in exactly the same manner – the overall behavior of the
analysts is affected by the initial TMs they are getting.

• Analysts receiving low-recall, low-precision intial TMs show consistent and sig-
nificant improvement in accuracy. They tend to keep the size of the final TMs
close to the size of the candidate TMs they received and spend time both validat-
ing existing links (and rejecting false positives) and searching for missing links
and including them into their final TM.

• Analysts receiving high-recall, low-precision initial TMs (i.e., TM has a large
number of candidate links) spend most of their time vetting candidate links from
the TM. They have shown the ability to improve (sometimes significantly) the
precision of the TM. That is, they are able to recognize and reject false positive
candidate links, for the most part. However, together with removing false pos-
itives, the analysts tend to remove small numbers of true links, thus somewhat
decreasing recall.

• Analysts receiving low-recall, high-precision initial TMs exhibit the opposite
behavior. Low-recall, high-precision TMs contain very few links, so the analysts
tend to vet them quickly. After vetting provided links, most analysts conclude
that their TM is not complete and start searching for missing links. They wind
up adding a number of links (sometimes a significant number of links) to the
TM before submitting. In doing so, most of them succeed in finding more true
links. However, they also tend to introduce non-trivial numbers of false positives
into the TM. As a result, analysts achieve improved recall, but at the price of
decreased precision.

• Analysts receiving high-recall, high-precision initial TMs show the least agree-
ment in behavior. Generally speaking, these analysts tend to correctly recognize
that their TMs are already “pretty good” and require only a few “tweaks.” Some
tweak the TM by adding a few links, some tweak it by removing links, some do
a bit of both. Interestingly enough, on average the tweaks have negative effects
on the accuracy of the final analyst-submitted TMs, i.e., most of the tweaks to
the candidate TM are introduced in error. As a result, the final TMs tend to
have a slightly lower overall accuracy than the candidate TMs, although with-
out a specific discernable pattern of what (recall, precision) improves and what
deteriorates.

The studies essentially show that the analysts are predictably unreliable. Indeed,
while some analysts show consistent improvement in TM accuracy, no analyst in
the studies has ever been able to recover the true TM, or even to reach a TM with
100% recall. Something in the studies made analysts unreliable.

260 A. Dekhtyar and J.H. Hayes

5 Conclusions

The study of the role of the analyst in semi-automated tracing scenarios has serious
implications for both traceability researchers and industry practitioners engaged in
in-life cycle tracing. There are a number of important implications for traceability
research:

Semi-automated procedures. Semi-automated tracing scenarios change our under-
standing of what the “best” automated tracing methods and techniques are/should
be. For automated tracing research, the choice of a better tracing method is straight-
forward: it’s the one producing more accurate candidate RTMs. In semi-automated
tracing settings, the accuracy of the final, analyst-submitted TM trumps the accu-
racy of the automatically generated candidate TM. As seen from the semi-automated
tracing studies, higher accuracy TMs do not lead to better analyst performance in
semi-automated tracing tasks and do not always lead to better results.

As such, in the context of semi-automated tracing, there is a second notion of
“goodness” of automated methods: a better automated method is one which
induces better analyst performance and higher accuracy of the final, analyst-
submitted TM.

Importance of HCI. Human-computer interaction in semi-automated tracing
scenarios can play an important role as analysts who work with software tools
with poor UI capabilities may be more error prone. This introduces a new
direction in traceability research: determining how to construct the right front-
end for a special-purpose tracing tool in order to improve analyst performance.
Measuring analyst performance in response to small design changes to such a
front-end will also challenge researchers.

There are some key implications for industry as well.

• Manual tracing processes currently employed for in-life cycle tracing tasks
require much effort and are prone to error, i.e., are not reliable. Semi-automated
tracing can decrease required effort. Thus the challenge to making semi-
automated tracing reliable is as much of an industry imperative as it is a research
endeavor.

• Because full automation of tracing in-life cycle is infeasible, training analytical
personnel to trace requirements and to do so using imperfect tracing tools (i.e.,
tools that do not produce 100% accurate traceability matrices) is an important
direction in academia-to-industry technology transfer.

• It seems intuitive that these findings could more broadly pertain to any setting
where an automated tool provides “advice” or intermediate results from which a
human must make a final decision. As semi-automated tracing is studied further,
transferrable/adaptable findings should be pursued and disseminated.

Studying the Role of Humans in the Traceability Loop 261

References

Cuddeback, D., Dekhtyar, A., Hayes, J. H.: Automated requirements traceability: The study
of human analysts. In: Proceedings of IEEE International Conference on Requirements
Engineering (RE), Sydney, Australia (2010, September)

Dekhtyar, A., Dekhtyar, O., Holden, J., Hayes, J.H., Cuddeback, D., Kong, W.-K.: On human
analyst performance in assisted requirements tracing: Statistical analysis. In: Proceedings of
IEEE International Requirements Engineering Conference, Sydney, Australia (2011)

Dekhtyar, A., Hayes, J.H., Larsen, J.: Make the most of your time: How should the analyst work
with automated traceability tools? Predictor Models in Software Engineering, International
Workshop on, p. 4, Third International Workshop on Predictor Models in Software Engineering
(PROMISE′07: ICSE Workshops 2007)

Egyed, A., Graf, F., Grünbacher, P.: Effort and quality of recovering requirements-to-code traces:
Two exploratory experiments. Requirements Engineering, IEEE International Conference on,
pp. 221–230, 2010 18th IEEE International Requirements Engineering Conference (2010)

Hayes, J.H., Dekhtyar, A.: A framework for comparing requirements tracing experiments. Int. J.
Softw. Eng. Knowl. Eng. (IJSEKE) 15(5), 751–781 (2005, October)

Hayes, J.H., Dekhtyar, A., Sundaram, S.: Text mining for software engineering: How analyst feed-
back impacts final results. In: Proceedings of Workshop on Mining of Software Repositories
(MSR), Associated with ICSE 2005b, pp. 58–62. St. Louis, MO (2005b, May)

Hayes, J.H., Dekhtyar, A., Sundaram, S.K., Holbrook, E.A., Vadlamudi, S., April, A.:
REquirements TRacing on target (RETRO): Improving software maintenance through trace-
ability recovery. Innov. Syst. Softw. Eng.: A NASA J. (ISSE) 3(3), 193–202 (2007)

iTrust: http://agile.csc.ncsu.edu/iTrust/wiki/doku.php. Last accessed 10 May 2011
Kong, W.-K., Hayes, J.H., Dekhtyar, A., Holden, J.: How do we trace requirements? An ini-

tial study of analyst behavior in trace validation tasks. In: Proceedings of 4th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE 2011), an
ICSE workshop, pp. 32–39. ACM, New York, NY, USA

MODIS Science Data Processing Software Requirements Specification Version 2, SDST-089,
GSFC SBRS (1997, 10 November)

http://agile.csc.ncsu.edu/iTrust/wiki/doku.php

Part IV
Traceability Use

Traceability can be used to check that specified requirements have been satisfied
in design and code, and help to assess and manage the impact of changing require-
ments, among many other things. The demands that are placed upon the traceability
for end use, and thus the ability to use traceability effectively in practice, obviously
varies dependent upon the context in which software systems are engineered and
used.

This part of the book describes some typical development contexts and pin-
points their particular concerns. The chapter by Cleland-Huang, “Traceability in
Agile Projects”, reminds us that while successful traceability is always needs
driven, there are sometimes leaner ways to achieve traceability goals in certain
contexts. The chapter by De Borger et al. examines aspect-oriented software devel-
opment, a context within which “Traceability Between Run-Time and Development
Time Abstractions” becomes the all-important focus. The chapter by Mirakhorli
and Cleland-Huang considers the benefits that can arise from “Tracing Non-
Functional Requirements” and explains the associated complexity. Architectural

264 Part IV Traceability Use

centric traceability is proposed as an approach for those contexts in which the qual-
ity of service is the foremost concern. Finally, the chapter by Mc Caffery et al.
on “Medical Device Software Traceability” explains the special demands of trac-
ing regulatory requirements in the medical device industry and illustrates a medical
device traceability software process assessment method.

Traceability in Agile Projects

Jane Cleland-Huang

1 Introduction

Agile methodologies represent a set of development processes in which both the
requirements and the delivered solution evolve incrementally through a series of
short iterations. Such projects are characterized by an emphasis on human interac-
tions and collaborations, lightweight development processes, frequent deliverables,
and minimal documentation (Ambler, 2004; Beck and Andres, 2004; Cockburn,
2000; Schwaber, 2004; Warden and Shore, 2007), Not surprisingly, traceability is
generally perceived by agile developers as a heavy-weight and burdensome activ-
ity which returns little value to the project (Appleton, B. ACME Blog, 2005;
Cleland-Huang 2006). On the other hand, agile practices are increasingly adopted
in larger, distributed, and sometimes safety-critical projects, and it is often in these
environments that the benefits of traceability outweigh its costs. For example, if
agile methods are used to build a healthcare device, then the approval process
for that device will require a demonstration that the device is safe. The Federal
Drug Administration (FDA), which is responsible for approving such devices in the
USA, specifically requires traceability between requirements, design, code, and test
cases (USA Food and Drug Administration, 2005). For such projects, the burden
is therefore placed on developers to create a project environment that establishes
the necessary traceability relationships (Gotel and Finkelstein, 1994; Pinheiro FAC,
2003; Ramesh and Jarke, 2001).

As explained in the chapter “Traceability Fundamentals” of this book, the trace-
ability efforts for a project must be fit for purpose. This means that there is no
“one-size-fits-all” option where traceability is concerned, and traceability decisions
will vary widely across different kinds of agile projects. In this chapter we there-
fore explore the issues, challenges, and goals for tracing in an agile environment,
and propose specific solutions that we believe balance the spirit of agility with the
increasingly common challenges of scale, complexity, and compliance.

J. Cleland-Huang (B)
DePaul University, School of Computing, 60604 Chicago, USA
e-mail: jhuang@cs.depaul.edu

265J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_12, C© Springer-Verlag London Limited 2012

266 J. Cleland-Huang

2 A Quick Look at Agility

Although a thorough discussion of agile methods is outside the scope of this book,
we briefly present the philosophies and practices of agile development in order to
provide the context for the remainder of this chapter. In general, agile practices
share a set of fundamental philosophies, documented in the Agile Manifesto.1 These
philosophies stress the importance of people and their interactions over a strict
adherence to processes and tools and the delivery of executable code over masses
of documentation. They also emphasize the need to work closely with customers
to shape the product and to resolve issues as they emerge instead of relying upon
rigidly defined contracts. Finally they stress the importance of embracing chang-
ing requirements instead of rigidly following a pre-set development plan (Beck and
Andres, 2004; Warden and Shore, 2007).

One of the most popular and well adopted agile approaches is eXtreme
Programming (Beck and Andres, 2004), introduced by Kent Beck in 2004. XP
includes several different practices which Beck found to be a particularly effective
mix in the projects he had worked on. These practices are summarized in Table 1
and discussed below.

Requirements in XP projects are first captured as user stories and then later
transformed by the customer into user acceptance tests. We illustrate this using
an example taken from the healthcare domain. CCHIT (Certification Commission
for Health Information Technology) certification standards requires all healthcare
related systems, such as iTrust, to use ISO-8601 compatible timestamps. In an XP
project, this might be documented as the following user story:

which could be transformed into an acceptance test as follows:

In most XP projects, it is the test cases, rather than the user stories, which are
considered to categorically document the user requirements. When the test cases are
executed and the tests are passed, the system is considered to meet its requirements.
A pure XP project will therefore have little in terms of documentation beyond some

1 Agile Manifesto: http://agilemanifesto.org

http://agilemanifesto.org

Traceability in Agile Projects 267

Table 1 Practices of extreme programming (Beck and Andres, 2004)

XP practice Brief description

1. Customer team
member

Include a customer in the core team who can define & prioritize
features, write test scripts, and work closely with developers

2. User stories Capture initial requirements as user stories i.e. brief and informal
descriptions of features, each of which typically takes 1-3 weeks of
work

3. Short cycles Build and deliver the product in a series of short iterations
4. Acceptance tests Transform user stories into scripted acceptance tests
5. Pair programming Developers work in pairs. One thinks and assesses while the other

writes code
6. Test-driven

development
Write test cases first before writing the code. Automate all test cases

7. Collective
ownership

All developers are responsible for all of the code

8. Continuous
integration

Integrate new code frequently, and rerun all automated tests following
each integration. When tests fail, roll-back, fix code, resubmit, and
rerun tests

9. Sustainable pace Keep a maintainable pace throughout the project
10. Open workspace Work in an environment which is conducive to collaboration and

which emphasizes the use of informal shared work spaces for
tracking progress, agile modeling etc

11. The planning
game

Developers and customers work together to plan iterations and releases

12. Simple design Choose the design option which is the simplest solution for meeting
the current needs of the project. Don’t engage in big upfront designs
or design solutions which look too far into the future of “what if”
scenarios

13. Refactoring Keep the design clean. A clean design is more poised to accommodate
change

14. Metaphor Provide meaningful and well-understood names to elements of the
project

possibly throw-away user stories, user acceptance tests, and code (including unit
test cases).

Although, not part of eXtreme Programming per se, Agile Modeling (AM), as
proposed by Scott Ambler (Ambler, 2004) uses basic models from the unified mod-
eling language (UML) and other approaches to shape the overall design of the
system. However, in AM, the architectural and design models are more likely to
be sketched on white boards or flipcharts than in more formal modeling tools.
Furthermore, many agile models are considered throw-away, i.e. they are used to
help sketch important elements of the design, but are not retained as permanent doc-
umentation. As a result of these practices, agile projects tend to travel quite “light”
and have few traceable artifacts.

As depicted in Table 1, eXtreme Programming also follows the three practices
of simple design, refactoring, and continuous integration (Beck and Andres, 2004).
Together, these three practices serve the primary purpose of keeping the system
flexible and maintainable, so that it is poised to embrace change. The constantly

268 J. Cleland-Huang

evolving nature of an agile project introduces additional challenges, and as a result,
traditional approaches in which significant effort is needed to manually create and
maintain traceability links are very unlikely to be adopted. Any viable traceability
solution must therefore be light-weight, highly adaptable, and sufficiently robust to
be effective in the continually changing environment of an agile project.

This discussion highlights an interesting facet of the traceability problem. While
software engineers place significant emphasis on building maintainable systems in
which classes or other kinds of modules are loosely coupled and highly cohesive,
they have generally failed to extend these same practices to traceability. As a result,
most traceability processes create a brittle and rigid layer over an otherwise rela-
tively flexible software system. Given the environment and goals of an agile project,
a brittle traceability solution is simply not a viable option. In the following sections
we therefore explore some viable options for tracing in agile projects.

3 The Benefits of Tracing in Agile Projects

In many respects the traceability needs in agile projects are not that different from
other project environments (Gotel and Finkelstein, 1994; Pinheiro FAC, 2003). Brad
Appleton identified several reasons for tracing in an agile project (Appleton, B.
ACME Blog, 2005), of which the most important ones are listed below:

• Change impact analysis – to assess how a proposed change will impact the
existing system, in order to accommodate tasks such as communication, team
coordination, and effort estimation.

• Product conformance – to ensure that the delivered product meets the cus-
tomers’ needs i.e. realizes their requirements. This is commonly referred to as
requirements validation.

• Process compliance – to ensure that any procedural processes such as reviews
and tests have been conducted.

• Project accountability – to provide assurance that the solution does not include
gold-plating (i.e. excess functionality), and that all changes match a requested
feature request.

• Baseline reproducibility – to support configuration of baselines, so that different
versions can be reproduced.

• Organizational learning – to document rationales behind critical decisions in
order to transfer knowledge to new team members.

Agile traceability goals are similar to those found in non-agile projects (Cleland-
Huang et al., 2007; Gotel and Finkelstein, 1994), but differ in the way in which they
are achieved. Appleton points out that if we look beyond the limitations of tradi-
tional traceability techniques, many tracing goals can be satisfied through trust and
communication in a project. For example, if team members intrinsically hold the
knowledge for how a modification will impact a system, then there is no need to
capture that kind of information in the form of traceability links, or if developers

Traceability in Agile Projects 269

trust each other not to gold-plate the system, then there is no need to create
traceability links to demonstrate that all sections of the code trace back to require-
ments. However, while many agile projects, successfully follow such approaches,
the practices become increasingly inadequate in larger and more complex
projects.

4 Tracing in Agile Projects

4.1 Basic Traceability

The most common tracing scenario for an agile project is depicted in the Traceability
Information Model (TIM) shown in Fig. 1. It is interesting to note that this TIM
emerged as a result of forum discussions with agile developers2 and therefore
reflects their perception of common practice. This TIM shows how traceability is
first established between acceptance tests and user stories through inserting a cross-
reference to one or more user story into each of the acceptance tests. This is very
simple, and is currently supported by a number of agile management tools such as
Rally SoftwareTM. When test cases are executed and passed, we are assured that the
code implements the test case, and we can therefore implicitly establish an “imple-
ments” trace from the test case to the code. This means however, that the code is
treated as a single high-level target artifact, and there is no visibility as to which
classes are related to which test cases.

This raises the interesting question of whether traceability at this level of gran-
ularity supports the primary traceability goals of impact analysis and product

Requirements
(User Stories)

Test Cases
(Customer

Acceptance Tests)

Code
+ Unit Tests

Achieved through
annotating the test case
with a user story ID, or
creating the mapping in an
agile tool such as Rally.

tests implements

Traces to code are “black
box”. All we know is that
the test scripts pass or fail.
A passed test demonstrates
that the code-based
includes the needed
functionality.

Test Suite
(Customer

Acceptance Tests)

Contained in

Fig. 1 A traceability information model for a basic agile project

2 Agile Project Management Forum hosted on Yahoo – Discussion thread “Agile Traceability”

270 J. Cleland-Huang

conformance. Clearly, it can demonstrate product conformance because for any
given user story we can identify the related acceptance tests and determine if they
are satisfied by the code (Richardson and Green, 2004). What it does not do, is to
support traditional impact analysis in which traceability links are used to identify
potentially impacted sections of the code in order to plan a proposed change, man-
age risks, or estimate effort. However, this level of support is not necessarily needed
in many agile projects, especially if the projects are small or medium sized. In prac-
tice developers draw from their own knowledge of the system to plan and execute a
change, and then run automated test cases to make sure that the change has been cor-
rectly implemented without unwanted side effects. A benefit of this approach is that
it provides a highly resilient traceability mechanism anchored around acceptance
and user tests, and which does not become brittle over time.

This approach is feasible unless the size of the project is too large, or the
longevity of the project and staff turnover mean that communal knowledge is
insufficient for the tracing task.

4.2 Beyond the Basics

In his article on “Lean Traceability” (Appleton et al., 2007), Brad Appleton
describes several additional techniques for lightweight tracing. One such technique
utilizes existing configuration management tools in order to capture traceability
links. If changes are implemented at the level of granularity that would be expected
in a test-driven environment, then software-level requirements, design, code, and
test cases would all be part of the same task, and could easily be tracked to a single
transaction ID in the change management system. Implementing simple configu-
ration management, which is a natural part of an agile project, would therefore
automatically produce traces into the code at the granularity of the check-in units
(Guckenheimer, 2006). This is an improvement on the black-box approach depicted
in Fig. 1.

Jacobsson conducted a series of interviews with developers, testers, configuration
managers, product owners, scrum masters, and scrum coaches from several agile
development projects (Jacobsson, 2009). He asked them “do you feel the need to
trace in a project, and if so what kind of tracing?” According to Jacobsson, several
of the interviewees were initially skeptical about the need for traceability, but then
did identify several potentially useful traceability tasks, above and beyond the ones
depicted in Fig. 1. We discuss the most important ones below:

• Stakeholder to requirements – to track who contributed the requirement (or user
story). This makes it possible to identify the source of each requirement, and also
to create a feedback loop to keep stakeholders notified of progress. The trace-
ability link can be implemented simply by tagging each requirement with the
contributing stakeholders’ names.

• Requirements (user stories) to versions – to track exactly which requirements
have been implemented in a specific revision. This can be accomplished quite

Traceability in Agile Projects 271

trivially using a source control tool such as Perforce, SVN, or Clear Case by
attaching user story IDs to all committed changes. This provides traceability
between requirements and code as a natural byproduct of the configuration man-
agement process. Trace granularity is at the checkin level. In fact, this process is
described in greater detail in the chapter “Evolution-Driven Trace Acquisition in
Eclipse-Based Product Line Workspaces” of this book.

• Requirements to requirements – to track dependencies between user stories.
Although this could potentially create significant overhead, it is relatively easy
to insert identified dependencies into user stories. Furthermore, it is possible to
document dependencies as they are observed, or as new stories are introduced.
This can be useful during the planning process, and there is no need to retain
such traces once stories have been implemented.

4.3 Trace Retrieval

One of the themes pervading the previous sections of this chapter is that in many
cases traces can be generated as a byproduct of the normal agile process at only
negligible cost. In this section we explore one additional low-cost option, which can
be useful in larger projects when developers may not have sufficient intrinsic knowl-
edge of the overall project, and may therefore need automated support to understand
the impact of a new user story, or to determine the purpose behind a feature in the
code.

Just-in-time Traceability (JITT) addresses this problem through using infor-
mation retrieval techniques to automatically create candidate traceability links
(Cleland-Huang et al., 2007; De Lucia et al., 2007; Hayes et al., 2003; Lin et al.,
2006). Although JITT does not produce perfect results, it has been shown to signif-
icantly reduce the cost and effort of the tracing process. In this chapter we do not
present the theory or algorithms behind JITT, as they have been described in signifi-
cant detail in the chapter “Automated Techniques for Capturing Custom Traceability
Links Across Heterogeneous Artifacts”; however we do discuss its application to
agile projects.

Figure 2 shows an example of JITT in action. In this example, the developer
wants to find out how a new user story “Display drug-related interactions for each
patient at the time a new order is being placed” will impact the code. It may be that
the developer is fairly new to the project, or that the system was deployed a while
ago and not modified recently, or it could be that the developer has a general idea of
which classes might be impacted but wants to augment her existing knowledge with
a dynamic trace. Either way, the tool returns a list of candidate classes and shows
the likelihood that the retrieved class is related to the user story. Classes exhibiting
higher similarity to the user story are returned towards the top of the list as they
are more likely to be correct links than those returned further down the list. The
developer can explore the details of individual classes, or may interactively improve
the trace query through filtering terms or adding additional search words. A JITT
tool therefore provides an interactive environment for retrieving potentially relevant

272 J. Cleland-Huang

Fig. 2 Just-in-time Traceability in which traces are generated automatically

code. No permanent traces need to be stored or maintained, and the primary cost
and effort of the trace is incurred at the time of need, thereby avoiding the problem
found in more traditional approaches in which developers must invest significant
time creating traceability links which they may or may not ever actually need.

On the other hand utilizing JITT on a project does require initial setup of the JITT
tool, and this involves interfacing with the version control system so that queries can
be launched against the code base. This is generally quite simple as there are several
tools, such as src2ML (Collard et al., 2003) which can quickly convert code into a
format parsable by JITT tools.

5 Traceability Across Different Types of Agile Projects

Agile projects come in many different shapes and sizes, and therefore their trace-
ability needs differ quite significantly. This fact was stressed by Espinoza and
Garbajosa, who proposed a model-based approach to planning traceability in agile
projects (Espinoza and Grabajosa, 2011). This extends Ramesh’s previous work
on metamodels (Ramesh and Jarke, 2001), and the general practice of using
Traceability Information Models (TIMs) as outlined in the chapter “Traceability
Fundamentals” of this book. Espinoza advocates making traceability fit for pur-
pose through allowing user-defined traceability links, well defined roles, and linkage
rules which specify what kinds of traceability links can and must be created.

Traceability in Agile Projects 273

In this chapter of the book, we do not attempt to propose specific TIMs for dif-
ferent types of projects, but rather provide some general guidelines for tracing in
three different types of agile projects. These can be characterized according to size,
longevity, complexity, and criticality.

5.1 Typical Small to Medium Sized Agile Projects

A typical project is characterized primarily by its small to medium size and by
the volatility of its requirements. While it may be hard to justify the creation and
maintenance of traditional traceability links in such projects, the basic traces from
Requirements (user stories) to test cases, and from test cases to (black-box) code,
provide sufficient support in many projects. As the project size increases, there is
increasing value in extracting traceability information from the check-in transac-
tions of the version control systems to establish more finely grained traceability
links from requirements and test cases to code.

5.2 Large Scaled, Distributed, or Long-Lived Projects

The second kind of agile project is characterized by a multi-year development
duration, large and potentially distributed teams, and size and complexity of the
code-base. In such projects it becomes difficult, if not impossible, to rely on com-
munal memory to understand where specific functions have been implemented in the
code, or to recall parts of the code that are sensitive to change because of interre-
lated trade-offs. This is particularly important to consider, because studies of agile
projects have shown that although the cost and effort of change in agile projects,
increases far more slowly than in traditional projects, it still does increase over the
life of the project.

Furthermore, agile projects often suffer from some of the same ailments as tradi-
tional projects in terms of quality degradation. While we are not advocating the need
for a heavy-weight traceability solution we suggest a customized mix of three dif-
ferent techniques: (i) basic traces from user stories → test cases → black-box code,
(ii) JITT, and (iii) more fine-grained user-stories → code traces achieved through
tagging checkin units with associated user stories.

5.3 Safety Critical Project

Finally, we consider the traceability needs of agile projects that incorporate safety-
critical components. Such projects are obligated to demonstrate that the devices,
including the software that runs on them, are safe for use (Appleton et al., 2007;
USA Food and Drug Administration, 2005). Under these circumstances, traceability
becomes compulsory, and certification requirements typically require bi-directional

274 J. Cleland-Huang

traces to be established from requirements to design, design to code, and code to
test cases.

When the safety case is not adequately made, the company can be fined, or worse
still, any devices running the uncertified software can be forcibly recalled. While a
complete discussion of tracing in safety critical systems is outside the scope of this
chapter, we do stress that such projects must follow a more rigorous traceability
process in which risks are analyzed, hazards are identified, and mitigating require-
ments are specified (Cleland-Huang et al., 2012). It is then expected that a safety
case will be developed which shows full life cycle traceability between hazards,
requirements, design, code, and test cases. Such traces are likely to be stored in a
more traditional traceability matrix which carries with it all the responsibilities and
costs associated with manually creating and maintaining traceability links. These
costs are justified due to the certification requirements of such a project.

6 Conclusions

This chapter has presented some basic ideas for effective tracing in agile projects.
The guiding principles have been to eradicate the significant overheads of traditional
traceability techniques and replace them with techniques that are significantly more
cost effective. While many agile developers have a tendency to scoff at the idea of
traceability, the increasing size and complexity of agile projects compels us to find
ways to achieve the benefits of traceability without the cost and effort of traditional
approaches. We are therefore forced to question the purpose of traceability, and
look far beyond the confines and problems of traditional traceability techniques to
discover new approaches for achieving the same goals.

References

Ambler, S.: The Object Primer: Agile Model-Driven Development with UML 2.0 (2004, 22 March)
Appleton, B. ACME Blog: Traceability and TRUST-ability. http://bradapp.blogspot.com/2005/03/

traceability-and-trust-ability.html (2005, Tuesday, 15 March). Accessed June 2011
Appleton, B., Cowham, R., Berczuk, S.: Lean traceability: A smattering of strategies and solutions,

CM Crossroads (Configuration Management) (2007, Tuesday, 18 September, 16:57)
Beck, K., Andres, C.: Extreme programming explained:embrace change, 2nd edn. Addison-

Wesley, Boston, MA (2004). ISBN:0321278658
Cleland-Huang, J.: Just enough requirements traceability. COMPSAC 1, 41–42 (2006)
Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best practices for

automated traceability. IEEE Comp. 40(6), 27–35 (2007). ISSN:0018-9162
Cleland-Huang, J., Heimdahl, M., Hayes, J.H., Lutz, R., Maeder, P.: Trace queries for safety

requirements in high assurance systems. In: Working Conference on Requirements Engineering
for Quality. Essen, Germany, March 2012

Collard, M., Kagdi, H., Maletic, J.: An XML-based lightweight C++ Fact extractor. IWPC 134–143
(2003)

De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Recoveringtraceability links in software artifact
management systems using information retrieval methods. ACM Trans. Softw. Eng. Methodol.
16(4), 13 (2007). ISSN:1049-331

http://bradapp.blogspot.com/2005/03/traceability-and-trust-ability.html
http://bradapp.blogspot.com/2005/03/traceability-and-trust-ability.html

Traceability in Agile Projects 275

Cockburn, A.: Selecting a project’s methodology. IEEE Softw. 17(4), 64–71 (2000). ISSN:0740-
7459. doi:10.1109/52.854070

Espinoza, A., Grabajosa, J.: A study to support agile methods more effectively through traceability.
Innov. Syst. Softw. Eng. 7, 53–69 (2011)

Gotel, O., Finkelstein, A.: An analysis of the requirements traceability problem. In: Proceedings of
the International Conference on Requirements Engineering (RE), pp. 94–102. IEEE Computer
Society, Springs, Colorado (1994)

Guckenheimer, S.: Software Engineering with Microsoft Visual Studio Team System. Adison
Wesley, Boston, MA (2006, May)

Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via information retrieval.
In: Proceedings of the IEEE International Conference on Requirements Engineering (RE),
p. 138. IEEE Computer Society, Washington, DC (2003). ISBN:0-7695-1980-6

Jacobsson, M.: Implementing traceability in agile software development. Master’s Thesis, Lund
Institute of Technology (2009, January)

Lin, J., Lin, C.C., Cleland-Huang, J., Settimi, R., Amaya, J., Bedford, G., Berenbach, B., Ben
Khadra, O., Duan, C., Zou, X.: Poirot: A distributed tool supporting enterprise-wide auto-
mated traceability. In: Proceedings of the 14th IEEE International Requirements Engineering
Conference (RE’06). IEEE Computer Society, Washington, DC (2006). ISBN:0-7695-2555-5

Pinheiro, F.A.C.: Requirements traceability. In: Sampaio do Prado Leite, J.C., Doorn J.H. (eds.),
Perspectives on Software Requirements, vol. 753, pp. 93–113. Springer, Berlin (2003)

Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE Trans. Softw.
Eng. 27(1), 58–93 (2001)

Richardson, J., Green, J.: Automating traceability for generated software artifacts. In: Proceedings
of the 19th IEEE International Conference on Automated Software Engineering (ASE ’04),
pp. 24–33. IEEE Computer Society, Washington, DC (2004). ISBN:0-7695-2131-2

Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond, WA (2004).
ISBN:073561993X

Warden, S., Shore, J.: The Art of Agile Development: With Extreme Programming. O’Reilly
Media, Inc., Sebastopol, CA (2007). ISBN:0596527675

USA Food and Drug Administration: Guidance for the Content of Premarket Submissions for
Software Contained in Medical Devices, May 11, 2005

Traceability Between Run-Time
and Development Time Abstractions

A Case Study on AOSD and Debugging

Wouter De Borger, Bert Lagaisse, and Wouter Joosen

1 Introduction

Traceability throughout the software life cycle of requirements, architecture, design,
development, testing and maintenance is an important research problem. Being able
to relate effects to their causes is fundamental to any software engineering process.
However this is still a challenge. Keeping track of all software artifacts, abstrac-
tions, relations and transformations throughout this life cycle requires sophisticated
relationship management.

The software engineering life cycle is a process of gradual creation, transforma-
tion and refinement, where the artifacts of one phase are translated and transformed
into those of the next phase (see Fig. 1). In the requirements phase, the functional
and non-functional requirements are described. The architecture phase selects tac-
tics to fulfill these requirements and documents the overall structure of the solution
in various architectural views. During the design phase, the architecture is fur-
ther refined into implementable components. Finally in the development phase, the
designs are implemented and compiled into an actual system. Each of these phases
uses its own abstractions. Many implicit associations exist between these different
abstractions, which are vital to relate the actual system to its origins.

At run-time, the higher level abstractions used during development are no longer
present. Even the artifacts used in the intermediate phases are no longer present
in the actual system. They were lost in the process of translation and transforma-
tion. All there is left is a complex, synthetic run-time structure that is optimized for
efficient execution and often too complex to understand.

In this chapter we focus on traceability in the final phases of the software life
cycle: between the development and run-time phases. Between these phases, an
abstraction gap exists: the various high level abstractions used during development
are no longer present in the run-time environment. This often makes inspection of
the complex, synthetic run-time structure impossible.

W. De Borger (B)
DistriNet Research Group, K.U. Leuven, B-3001 Heverlee, Belgium
e-mail: wouter.deborger@cs.kuleuven.be

277J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_13, C© Springer-Verlag London Limited 2012

278 W. De Borger et al.

RuntimeRequirements Architecture Design Implementation

Use case
Node

comp.

object2object

Class2Class1

Class

Method

<xml>
</xml>

1011
1010
1110
1110

Fig. 1 Creation and transformation of abstractions throughout software life cycle

During the development phase libraries, languages and middlewares provide
abstractions that shield the developers from the technical complexity of the
underlying system and allow them to focus on core functionality. In the run-time
environment, these abstractions have been compiled away. Technical and synthetic
artifacts are polluting and replacing the abstraction of the original program. Due to
the power and complexity of modern composition techniques, the synthetic exe-
cution structure no longer resembles the original program. It is too complex to
understand even to the original developers themselves. Trends towards distribution
and heterogeneity further widen this abstraction gap.

We propose a methodology for restoring the abstractions. Based on a declara-
tive model that relates the development abstractions to the run-time abstractions,
a trace information model is derived. For this case specificaly, this trace informa-
tion model contains all information lost during compilation. At compile time, this
trace is extracted. At run-time, the trace is combined with run-time information to
recreate the development abstractions.

Concretely, we present results of our approach applied in the context of the
debugging of aspect oriented software. Aspect Oriented Software Development
(AOSD) (Filman et al., 2004) addresses the shortcomings of existing modularity
techniques by focusing on the systematic identification, modularization, represen-
tation and composition of concerns or requirements throughout the software life
cycle. The compilation process of aspect oriented programs is inherently complex.
Tracing back from the actual run-time state to the development abstractions is not
possible without proper tools.

In our previous work (De Borger et al., 2009), we have built a debugger for
Aspect Oriented Programming (AOP) languages, capable of presenting AOP pro-
grams in terms of AOP abstractions. This debugger, based on the Aspect Oriented
Debugging Architecture (AODA), will serve as a specific example of the use of
traceability information to inspect the run-time state.

This chapter will first go deeper into what AOSD is and how it poses a chal-
lenge to run-time traceability. Section 2 will discuss the AODA approach to
solving this problem. Section 3 evaluates the result by comparing the resulting

Traceability Between Run-Time and Development Time Abstractions 279

debugger to existing tools. Sections 4 and 5 will give a short overview of future
challenges and conclude.

2 Aspect Oriented Software Development and Debugging

This section first introduces the most commonly used AOP programming lan-
guage, AspectJ. Next the problems of tracing AOP abstractions back to the run-time
are discussed. In the third subsection, the existing solutions to this problem are
discussed.

2.1 What Is AOSD

AOSD tackles inter-dependency and modularization issues by focusing on the
systematic identification, representation and composition of (often crosscutting)
concerns throughout the software development process. The core concept is that of
an aspect: a coherent entity that addresses one specific concern, and has properties
that can be changed independently of other entities.

Aspects allow behavior to be linked to global predicates over the structure of
a program. An aspect can for example define: before each method whose name
starts with set, execute a security check. More concrete, aspects allow us to express
pointcuts, which are conditional statements selecting a number of events or locations
in a program, called joinpoints. An aspect can provide a number of advices, which
provide behavior that is executed before, after or instead of specific joinpoints.

For example: the aspect in Listing 1 logs the entry of every public method whose
name starts with get and takes no arguments. This aspect has one advice (lines
2–4). The pointcut [execution(..)] selects all methods that take no arguments,
whose name starts with get. The before keyword indicates that this advice must
be executed before every joinpoint matched by the pointcut. The advice also use the
thisJoinPoint keyword, that gives the advice access to information about the
joinpoint the advice is applied to.

This sample demonstrates the power of AOSD: a concern that is usually scattered
throughout the code, like logging, can be modularized into a single aspect.

Listing 1 Logging with AspectJ

Aspects are also applicable to more complex tasks. Consider the software used
in hospitals. This software is bound to regulations and laws concerning privacy,
security and accountability. To comply to these rules, security checks must be added

280 W. De Borger et al.

to the software. These checks are often scattered throughout the software and rely
on context information. Take for example the simple rule that sensitive information
about a patient can only be viewed by the attending physician. This check must be
placed on any possible access path towards this information and it depends on who
is requesting the information, about which patient the information is and what their
relation is. As such, placing this check poses two problems: where does it have to
be placed and how can it find the context information, such as who’s files are being
requested, who is making the request and what is their relation. On top of that, the
laws and rules change with geographic location and time. When they change, all
security checks must be reviewed and the software must be modified to make the
required context information available.

With AOSD, these security rules can be separated into their own aspects. If we
for example take the requirement that every change to the database must be logged,
we can write the aspect in Listing 2.

Listing 2 Logging database access in the iTrust case with AspectJ

This aspect logs any method call [call (..)] towards the data access objects.
It can be further refined to capture the current user name and other context
information.

The aspect in Listing 3 illustrates scoping. The percflow(..) construct defines
the scope of the aspect. Each time the execution control flow passes through a
method in the org.apache.jsp package, with as first argument an object of
a subclass of HttpServletRequest a new instance of the aspect is created. In
practice this means that every web-request handled by the server has its own instance
of this aspect and thus a safe place to store context information. This allows multiple
concurrent requests to be handled without interference.

Listing 3 Capturing context information in the iTrust case with AspectJ

The aspect also has an advice that captures and stores the current user’s identity
[Principal]. Because the scope of this aspect is bound to the current request, this
principal can be used for security checks during the request.

Further reading on the application of AOP for security can be found in the work
of De Win et al. (2004) en Verhanneman et al. (2006).

Traceability Between Run-Time and Development Time Abstractions 281

2.2 Traceability and AOSD

Aspect oriented techniques are not limited to the development phase of the life cycle,
but they exist for various other life cycle stages. Aspect oriented requirements engi-
neering (Rashid et al., 2002) identifies aspects during the requirements phase. The
aspectual requirements are refined and transformed to form an aspect oriented archi-
tecture (Pinto and Fuentes, 2007; Tekinerdogan, 2004) and an aspect oriented design
(Baniassad and Clark, 2004). At the end of the development phase, the compilation
process weaves the various aspects into the base code. Pointcuts are matched to
joinpoints and advice calls and aspect instantiation instructions are woven into the
code. This weaving process yields a synthetic run-time structure that is often too
complex to understand. The complexity of the weaving process makes it difficult to
trace between the run-time and the development abstractions.

The transformation between aspect oriented source code and executable code
creates two problems: the behavior-traceability problem and the data-abstraction
problem.

The behavior-traceability problem arises when it is not clear which source
code statement causes which behavior. For example, when a certain behavior is
executed, it is often unclear which advice contains this behavior. Advices are often
inlined into other parts of the program, making it hard to find their origin. Even if
the advice is known, it is often not clear which pointcut triggered this advice, as
multiple pointcuts can be bound to a single advice. This problem is called the causal
pointcut problem.

The data-abstraction problem arises when a mismatch exists between data-
structures at development time and at run-time. Aspect scoping for example suffers
from the data-abstraction problem. As the example in listing 3 shows, aspect
instances are transparently created. When an advice is applied, the correct aspect
instance is selected automatically. How this selection is done and where these
instances are stored is not clear. This makes it impossible to find out which
instance of an aspect is bound to the current execution context, making contextual
information inaccessible.

The stack trace also suffers from the data-abstraction problem: because the struc-
ture of the program was transformed, the information present on the stack is no
longer meaningful. The stack trace (Fig. 2) of the previous aspect (Listing 2), clearly

AuthDAO.edu$ncsu$csc$itrust$dao$mysql$AuthDAO$getLoginFailures$aop(String) line: 335

JoinPoint_getLoginFailures_N_5777861951194645837_2(AuthDAO$JoinPoint_getLoginFailures_N_5777861951194645837).

dispatch() line: not available

JoinPoint_getLoginFailures_N_5777861951194645837_2.invokeNext() line: not available

SimpleInterceptor.invoke(Invocation) line: 14

JoinPoint_getLoginFailures_N_5777861951194645837_2.invokeNext() line: not available

JoinPoint_getLoginFailures_N_5777861951194645837_2.invokeJoinpoint(AuthDAO, String) line: not available

AuthDAO$AuthDAOAdvisor.getLoginFailures_N_5777861951194645837(AuthDAO, String) line: not available

AuthDAO.getLoginFailures(String) line: not available

LoginFailureAction.isValidForLogin() line: 66

authenticate.jsp line: 26

Fig. 2 Stack trace of the aspect in Listing 2, when implemented by JBoss AOP

282 W. De Borger et al.

shows this. This example is the simplest possible application of AOP and already
it is too complex to understand. When the more advanced features of AOP, such
as joinpoints on exception handlers, come in to play, this abstraction gap becomes
increasingly wide.

2.2.1 State of the Art

While the abstraction gap is a known issue in the AOSD community, most existing
languages offer no extensive traceability support. For debugging, developers have
to fall back to the synthetic run-time abstraction. This leads to the two problems
mentioned before.

Currently used tools have no actual support for debugging beyond Java debug-
ging. Most tools use the Java debugger (JDI), when inspecting AspectJ programs.
JDI can only observe the synthetic run-time structure. Editing and development
tools, such as the aspect java development tool (AJDT), attempt to improve
behavior-traceability. The AJDT places markers in the source code to indicate where
advices can influence the source code. This helps estimating which advices acted
where, but it is not sufficient to solve the causal pointcut problem.

Research in this area has produced two solutions to alleviate this problem. Eaddy
et al. (2007) have created the Wicca language. Wicca is specifically designed to
support source weaving: the weaver no longer produces machine code but synthetic
source code. This produces a view of the woven program which is readable as it is
expressed in a programming language. The behavior-traceability problem is reduced
by a source-to-source mapping, that indicates the origin of each instruction. The
causal pointcut problem is not solved, as pointcuts produce no actual instructions
and thus leaves no trace in the synthetic source. The data-abstraction problem is not
addressed, all information is presented in terms of OO-abstractions. An additional
drawback of this approach is that it requires the woven code to be optimized for read-
ability, and not for efficiency. This approach can present a detailed representation,
but only in terms of synthetic OO-abstractions.

Pothier and Tanter (2008) created TOD, the omniscient debugger. Omniscient
debuggers maintain a complete trace of the execution itself. The result of every
instruction is recorded. This makes it possible to replay a program backwards, so
that effects (in the program state) can be traced back to their causes. This trace is pre-
sented in terms of the byte code instructions. Furthermore each instruction is related
to its origin in the source code. Synthetic code is highlighted to make it easily distin-
guishable from the actual functional code. This alleviates the code-location problem,
but leaves the causal pointcut problem unsolved. The data-abstraction problem is
not solved as data can only be inspected in terms of low-level abstractions. As such,
this approach has similar properties to the previous, but at a much finer level of
granularity. This means that the trace is more accurate, but also that it suffers harder
from the lack of abstraction. Even with highlighting, byte-code remains very hard to
decode. Due to its high level of detail, TOD is a perfect tool for language designers
to evaluate the internal workings of their languages. For the average user however,
the massive amount of low-level information is not very useful.

Traceability Between Run-Time and Development Time Abstractions 283

Table 1 Comparison of inspection techniques for AspectJ. Comparing the Java debugger (JDI),
the Java debugger with the AspectJ development tools (AJDT), TOD (Pothier and Tanter, 2008),
Wicca (Eaddy et al., 2007) and our proposed solution (AODA) to the qualities described in
Section 1.2

JDI AJDT TOD Wicca AODA

Behavior − + + + ++
Data − − − − +

As such, the existing solutions for debugging of aspect based programs make an
effort to overcome the aforementioned problems, they are not generally applicable.
The abstraction gap is reduced, but not bridged (see Table 1). There exists no explicit
representation of the run-time state in terms of the development abstractions.

3 The AODA Approach

To bridge the abstraction gap between the run-time structure and the programming
abstractions we propose a methodology that represents the run-time state in terms
of the programming abstractions.

The approach encompasses five steps: modeling of the abstractions, modeling of
the relations between the abstractions, derivation of the trace model, extraction of
the trace, and implementation of the transformation (Fig. 3).

1. In the abstraction modeling phase the run-time and language abstractions are
modeled according to the principles of mirroring (Bracha and Ungar, 2004). Both
these models describe which entities exist in their respective view of the system.
Each model also describes the interface by which the system can be debugged.
(Sections 2.1 and 2.2)

2. In the relational modeling phase the two models are related by a model-to-model
transformation. This transformation is an abstract representation of the compila-
tion. It describes how the compiler breaks down the language level entities into
run-time structures, in an abstract and declarative way. (Sections 2.3 and 2.4)

3. In the trace derivation phase, a trace information model is derived from the trans-
formation. This trace model defines which trace information the compiler must
output to make the compilation reversible. In other words, the trace information
model contains all information lost during the compilation. (Section 2.4)

3. In the trace extraction phase, the compiler is modified to actually output a trace
conforming the trace information model. (Section 2.5)

5. In the transformation implementation phase, the model-to-model transformation,
created in the relational modeling phase is implemented. The result is a compo-
nent that consumes run-time information through an interface conforming to the
run-time model and combines it with trace information emitted by the compiler
to create an interface conforming to the language model. (For more detail see
De Borger et al. (2009).)

284 W. De Borger et al.

1.Abstraction Modeling 2.Relation Modeling

4.Trace Extraction

5.Transformation implementation

3.Trace Derivation

Fig. 3 The AODA approach

Aspectj

Aspect Debugger

Java Debugger JVM

Java

Tracer

Compiler

Tools AOP Program

Debug
Connection

Trace

AJDI

JDI

Fig. 4 Principle of run-time tracing

When we apply this approach to AspectJ, this results in Fig. 4. On the right hand
side, there is a program, written in AspectJ, which is compiled to JVM-byte-code.
The resulting program is executed by the JVM, that can be debugged by a Java
debugger. On the left hand side, the information presented by the Java debugger is
in terms of Java abstractions, conforming to the run-time model JDI. This model
contains no aspect specific entities such as aspects or advices.

The AspectJ abstractions are restored by the aspect debugger. This aspect debug-
ger consumes trace information and combines it with debug information. It provides
a debug interface conforming to the AJDI model, which contains all the aspect
specific entities such as Aspects and Advices.

In the remainder of this chapter, we explain the first four phases of the process.
For the final phase, we refer to De Borger et al. (2009). First the principles of mirror-
ing are discussed. These principles define the JDI and AJDI interfaces. Section 2.2
provides more details on how the AJDI interface is created by applying these princi-
ples to AspectJ. Section 2.3 gives a general introduction into model transformations.
Section 2.4 describes how we can use model transformations to model the compila-
tion and derive the trace information model from the compilation model. Section
2.5 covers the technical details of recording the trace and the structure of the
tracer.

Traceability Between Run-Time and Development Time Abstractions 285

3.1 Mirror Based Reflection

The foundation of this approach is situated in the research domain of computational
reflection. Maes (1987) describes reflection as the capability of a system to reason
about itself and act upon this information. For this purpose, a reflective system main-
tains a representation of itself that is causally connected to the underlying system
that it describes. In other words, a reflective model is an abstract representation of
the run-time state of the system itself.

An important design principle for reflective systems is mirror based reflection.
Bracha and Ungar (2004) describe four design principles for mirrors:

1. “Encapsulation: [reflective] facilities must encapsulate their implementation.
2. Stratification: [reflective] facilities must be separated from base-level

functionality.
3. Structural correspondence: the structure of [reflective] facilities should corre-

spond to the structure of the language they reflect on.
4. Temporal correspondence: [reflective] APIs should be layered in order to

distinguish between static and dynamic properties of the system. ”

In the context of debugging, encapsulation and stratification are not a problem,
as the debugger is a completely separate process.

The combination of structural and temporal correspondence is also named
ontological correspondence. To bridge the abstraction gap, ontological corre-
spondence is crucial. If this correspondence is maintained, the abstractions are
maintained. Ontological correspondence implies that the trace information must
relate a meaningful model of the run-time to a meaningful model of the high-level
language.

3.2 The AJDI Model

AJDI is the reflective front-end interface of our AODA debugging solution. It is
based on the mirror design principles that have been defined in Section 2.1.

The AspectJ language is an extension of the Java language. In the same way,
the AJDI, representing AspectJ, is an extension of the Java Debugging Interface
(JDI), representing Java. The AJDI interface extends the JDI by specializing the
existing entities with additional aspect related properties as well as by introducing
new entities that are specific to AOP. The essential concepts of AJDI are depicted
in Fig. 5. The gray part is the JDI model representing Java. The white compo-
nents are specific to AJDI. They represent AOP-related entities that don’t exist in
Java.

The virtual machine itself is reified as the VirtualMachine mirror. This mir-
ror encapsulates the debug connection between the actual virtual machine under

286 W. De Borger et al.

Fig. 5 Essential concepts in AJDI

inspection and the mirroring system. The VM mirror creates and manages all other
mirrors. All mirrors provided by the VirtualMachine mirror are interrelated thus
allowing exploration of the program structure. For example: to inspect the type of an
object, the referenceType() method is invoked. This method returns a mirror
of the ReferenceType class that represents the type of the object. The ReferenceType
can then be queried for its name, methods, fields, super classes, interfaces and other
properties.

We now summarize the basic JDI entities and the extensions on these entities that
are relevant. These extensions are mainly related to inspecting joinpoints within the
context of a JDI entity and where the JDI entity is located in the source.

Type reifies a type. A type can be primitive, void or a ReferenceType. Types
have a name (name()) and a signature (signature()).

Value reifies a typed entity. A value can be primitive, void or an
ObjectReference. Each value has a type (type()).

ClassType reifies a class. ClassType extends Type. A ClassType has
Fields, Methods, Constructors, Interfaces, a Superclass,
Subclasses, etc.

Method reifies a method. A Method can have an ExecutionJoinPoint and
several other JoinPoints in its body (allJoinPoints()).

Traceability Between Run-Time and Development Time Abstractions 287

The essential AOP-related mirrors offered by AJDI are defined as follows:

Aspect reifies an aspect. Aspect extends ClassType, as an aspect is based on
a class. It thus has state (Fields) and behavior (Methods). However, every
attempt to explicitly instantiate an aspect instance with the reflective API, will
cause an exception.

Advice reifies an advice. Advice extends Method as advices are based on meth-
ods. However, every attempt to explicitly invoke it through the reflective API will
result in an exception.

Binding reifies the relation between an advice and a pointcut. A binding can have
a name or can be nameless. In AspectJ each advices is bound to exactly one
pointcut by a nameless binding. When an advice is bound to a pointcut, the advice
is applied on any joinpoint matched by the pointcut.

AdviceApplication reifies the application of a certain advice under a certain binding
on a certain joinpoint.

JoinPoint reifies a joinpoint. A hierarchy of subclasses is offered by AJDI (but
not depicted) to represent specific joinpoint types. In this context a join-
point is a specific location in the program, sometimes called a joinpoint
shadow.

HookFrame extends StackFrame. HookFrames indicate the presence of join-
points in the control flow. HookFrames provide information about the joinpoint
and the advices that have executed, are executing and will execute on that
joinpoint.

PastAdvice encapsulates the state of an advice that has been executed, that is being
executed or that could have been executed.

The mirrors of the AO software system are related to the exact locations in
the underlying byte code and the underlying source code. Bindings, Fields,
Methods and Advices are all related to a source code location. StackFrames
and byte code indices inside a method or advice are related to a byte code loca-
tion and a source code location. Joinpoints are related to a range of byte code
indices and source code lines as they can span more than one instruction.

Both JDI and AJDI can be divided in a static and a dynamic part. The static part
is know at compile time, the dynamic part is only know at run-time. Aspects and
Classes are part of the static part, AspectInstances and Objects are not. Joinpoint
matching is somewhat special, as it is done partly at compile time and partly at
run-time. The compiler matches as much of the pointcut as possible. All locations
matched by the compiler are marked with an AdviceApplication mirror. At run-time,
the pointcuts are further evaluated. The result of this evaluation is represented by a
PastAdvice mirror.

3.3 QVT Model to Model Transformations

As described at the start of this section, the models presenting the run-time and
language structure can be related by a model-to-model transformation (Czarnecki

288 W. De Borger et al.

Fig. 6 Overview of model to model transformations (based on Czarnecki and Helsen, 2006)

and Helsen, 2006). In this subsection we will describe the general principles of
model transformations, in the context of the Query View Transformer (QVT) (http://
www.omg.org/spec/QVT/1.0/) relations language. In the next subsection we will
apply this theory to the JDI and AJDI models.

In general, a model-to-model transformation expresses the relations between a
source model and a target model (Fig. 6). The model transformation definition
defines how entities in the source model are related to entities in the target model
and vice versa.

A QVT transformation consists of a set of relations. Each relation models a trace
between a specific entity in the source model and its corresponding entity in the
target model. In Listing 4 such a relation is depicted, both in an abstract form
and a concrete form. Each entity is expressed as a pattern (lines 3 and 18–20).
It has the keyword domain followed by the name of the domain it belongs to
and the type of the entity. The pattern binds each property of the entity to a
variable. If the variables, bound in both patterns, have the same values, the rela-
tion holds. Relations can also contain conditions and assertions (lines 8–13 and
28–34). The keyword when indicates all conditions, the keyword where all asser-
tions. If the conditions are not satisfied, the relation doesn’t hold. If a relation
holds, the assertion must hold. Relations can use other relations as conditions or
assertions.

The concrete pattern thus means that each Package in JDI is equivalent to a
Package in AJDI when both packages have the same name and are in equivalent
VM’s. When the packages are equivalent, the classes in this package, in the JDI
domain are equivalent to either classes in AJDI domain or to aspects in the AJDI
domain.

Model transformations can be executed in two modes: they can either verify
whether two models are related according to the transformation, or they can pro-
duce a valid target model for a given source model. Even in this second mode, most
model transformations can be executed either way: they can not only produce a tar-
get model based on a source model, but they can also produce a source model based
on a target model.

A model transformation also defines a trace information model: the complete
set of variables bound in a relation defines a trace record. By keeping track of
all bindings of all relations, a trace of the transformation can be automatically
generated.

http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/QVT/1.0/

Traceability Between Run-Time and Development Time Abstractions 289

Listing 4 Example of a model transformation

3.4 From Transformation Model to Trace Information Model

Consider a QVT transformation with as source meta-model the AJDI and as target
meta-model JDI. The part of this transformation relating the static parts of both
models represents the compilation. The reverse of this transformation (from JDI to
AJDI) is the transformation capable of bridging the abstraction gap.

As was previously described, both Java and AspectJ can be described by mirror-
ing models, (JDI and AJDI). This subsection describes the model transformation
that converts AODA into JDI. This model transformation defines the relation
between the abstraction in both languages. It can be refined into a trace infor-
mation model and into a high-level debugger, as described at the start of this
section.

290 W. De Borger et al.

AspectJ

Java

producesuses

AJDI

JDI

TM TIM

Fig. 7 Inter-model relations

Figure 7 gives an overview of the different models and their meta model. On
top is AJDI, representing AspectJ. On the bottom, there is JDI representing Java.
In the middle we can see the relations between the models. The complete set of
relations between AJDI and JDI is described in the form of a model transformation
(MT). This transformation is bi-directional: it describes both the compilation and
the debugging. In the direction of the compilation, the input uniquely determines
the output: an AJDI model always produces the same JDI model. Due to the loss of
abstraction, the reverse is not true: given a JDI model, there can be many possible
AJDI programs that caused it. Or, in terms of model transformations: for some JDI
entities, multiple relations may hold, other than those that created the JDI entity.

To be able to reconstruct the abstractions, the reverse transformation must be
made uniquely determined. To do this, we use the trace information defined by the
static part of the transformation. This corresponds to the information that is lost dur-
ing compilation. Because of the well-typedness of Java, the dynamic part is uniquely
determined if the static part is uniquely determined (i.e. if the run-time type is deter-
mined, the structure of its instances is determined). As such the trace must capture
all information that is lost during compilation, in order to be capable of restoring
the abstraction correctly.

In summary, our approach to restoring abstractions is based on this model trans-
formation, applied to run-time structure. Due to the loss of abstraction, this model
transformation requires trace information to restore the development abstractions.

An example is in Listing 4. The left relation states that any aspect (in AODA) is
equivalent to a class (in JDI) with the same name if [when] they are in the same
package. If this pattern matches then [where] all advices (in AODA) are meth-
ods (in JDI), as defined by the adviceToMethod relation and all methods and fields
respectively become methods and fields. The right pattern shows a nearly identical
relation that transforms classes (in AODA) to classes (in JDI).

If we execute this transformation from AODA to JDI, it is uniquely determined.
In the other direction, it is not. Any class (in JDI) can be either a class (in AJDI) or
an aspect (in AJDI). Therefore we need tracing information that indicates, for each
class (in JDI), whether it is an aspect or not.

Traceability Between Run-Time and Development Time Abstractions 291

The tracing information model for this part of the transformation will contain a
record to distinguish between these two possible transformations. For each class,
the trace must mark it as either a class or an aspect. In the same way, to distinguish
between the methodToMethod and adviceToMethod transformations, each
method will have to be marked as being either a method or an advice. This yields a
trace information model defines the following records:

1. ClassRecord(class:jdi.Class, isAspect:boolean,
isClass:boolean)

2. MethodRecord(method:jdi.Method, isMethod:boolean,
isAdvice:boolean)

This trace information can be reincorporated into the transformation as an extra
condition (Listing 6, line 16). Adding such conditions to the entire transformation
yields both a complete trace information model and a reversible transformation,
capable of restoring the AspectJ abstractions. For entities such as classes, the trace
information model is quite simple. For other entities, such as pointcuts, which have
no Java counterpart, the trace information model may contain the entire entity.

Also note that the model transformation is not the compilation, but a model of
the compilation. If the compiler has to take a complex decision, like the matching of
pointcuts to joinpoints, it is not necessary to model the mechanics of this decision.
The decision can be represented by a function with no implementation. This makes
it clear that tracing information is required to invert the function. As the transfor-
mation is not intended to be executed without this tracing information, this model is
sufficient.

Listing 5 Transform relating classes to aspects

292 W. De Borger et al.

Listing 6 Transform relating classes to aspects with tracing information

3.5 Trace Collection

Once the trace information model is known, the required trace information can
be collected in the compiler. The AspectJ compiler conceptually consists of three
stages: front-end, weaver and back-end. Each stage consists out of several steps.
The front-end builds the abstract syntax tree (AST) of the program. During this
stage, the source files are parsed into an abstract syntax tree. Types and names are
resolved and various validations, such as type checking and exception checking are
performed. At the end of the front-end stage, a correct and complete model of the
program exists in the form of an AST. The weaving stage transforms the AspectJ
AST into a Java AST. Pointcuts are matched to joinpoints, advice calls are inserted
at the matched positions. All aspects and advices are transformed into classes and
methods. In the back-end stage, the code is optimized and written to disk.

As such, the AJDI AST is present before the start of the weaving stage and the
JDI AST is present after the weaving stage. The most complex transformations take
place within the weaving stage. In the front-end, only one kind of information is lost
and that is the line-numbering. As such, the front-end must only trace line numbers
up to the abstract syntax tree. In the back-end, optimizations take place. Instruction
sequences are reordered or eliminated. For the back-end, it is important that the
collected trace-information is still applicable after instruction reordering.

In general two basic techniques for tracing through compilation exist: generic
meta-data passing or maintaining explicit traces. The generic approach attaches
meta-data about the origin of entities to these entities. When an entity is trans-
formed, all meta-data of the origin is replicated into the target. If entities are merged,

Traceability Between Run-Time and Development Time Abstractions 293

so is their meta-data. The second approach requires modification of each stage of
the compiler so that is explicitly outputs a trace.

The advantages of the generic approach is that it requires no modification of
the various compiler stages. The disadvantage is that the meta-data signatures can
become arbitrarily complex.

In our implementation, we adapted all relevant stages in the weaver, so they
explicitly produce trace information. At the end of the weaving phase, the trace
information is attached to the relevant AST nodes and carried through all optimiza-
tions as meta-data. At the end, the trace is outputted and stored in the class files.

If we apply this extraction to the trace information model part derived in
Section 2.4 on the code segment in Listing 3 we get the following trace information:

ClassRecord(Security,true,false)
MethodRecord(Security.$before0,false,true)

Meaning that the Java class Security is an aspect in AspectJ and that the Java
method Security.$before0 is actually an advice in AspectJ.

4 Evaluation

To illustrate the use of AODA, this section will compare the standard AspectJ tools
with AODA. We will search for a number of common bugs with both the AspectJ
development tools (AJDT) and AODA.

As case study, we use the iTrust application, but with aspect based security
(Listing 7). The security system consists of two advices: a first advice captures the
session context (line 5–10) and a second advice does a security check before every
security sensitive action and logs the action (line 12–18). This second advice is
bound to many different pointcuts, for different types of security sensitive actions.

This example contains the following bugs

1. The security checking advice is bound to overlapping pointcuts, which causes
some actions to be logged multiple times (line 26 and 30). One of them should
be removed or refined.

2. The security checking advice has an incorrect dynamic condition in a point-
cut, that causes it to be skipped at run-time (line 14). The first part of the
pointcut (secureAction()) selects all joinpoints matching secureAction.
The second part !cflow(secureAction()) selects all joinpoints not in
the control flow in or below the secureAction pointcut. This combi-
nation is always false, as every point in the control flow is in or below
itself. The pointcut should be cflowbelow, which selects all points in the
control flow not below the secureAction. The combination secureAction()
&&!cflowbelow(secureAction()) makes sure that the security check is
only executed once for each operation.

3. The security checking advice doesn’t execute the actual behavior, but skips it
(line 17). return null should be replaced with return proceed()

294 W. De Borger et al.

Listing 7 Security aspects

When we execute the system with these errors, the system no longer displays
any information or allows any login. If we use the AJDT and we place a breakpoint
on one of the security sensitive methods and step forward, we step into synthetic
code, that is visible in the stack trace but of which there is no source (Fig. 8). If
we keep on stepping forward long enough, we enter the security check. The stack
trace doesn’t indicate how the check was reached, as only synthetic code seems to
be present. If we step on, we eventually drop out of the synthetic code, without
ever executing a single instruction out of the method body of the security sensitive
method.

Security.allowed(Principal, String) line:35

Security.ajc$inlineAccessMethod$Security$Security$allowed(Security, Principal, String) line: 1

AuthDAO.getUserName_aroundBody5$advice(AuthDAO, long, JoinPoint, Security,
AroundClosure, JoinPoint) line: 18
AuthDAO.getUserName(long) line: 1

authenticate.jsp line: 11

Fig. 8 Stack trace as presented by AJDT

Traceability Between Run-Time and Development Time Abstractions 295

If we use AODA, the stack trace looks like Listing 8. This immediately shows
the problem: the target was skipped.

Listing 8 Stack trace as presented by AODA

If this bug is fixed, the system still acts as if no one is logged in. If we place a
breakpoint in the context collection advice, this breakpoint is never reached. The
AJDT shows the advice is deployed on the correct location and that it has a run-
time condition. With AODA we can place a breakpoint on the broken joinpoint and
inspect the run-time condition. This inspection shows the following stack-trace.

Listing 9 Stack trace as presented by AODA after the first bug is fixed

This stack trace immediately shows that the dynamic condition did not match.
When this bug is fixed, the system works normal, but the log of the security actions
shows that many actions were logged twice. This points to a bug in the security
checking advice. This advice is deployed multiple times, with different pointcuts.
The existing tools can show where and when the advice is executed, but they can’t
show which pointcut caused the application of the advice. With AODA, we can see
all advice acting on the stack on any given time and see which pointcut caused which
application.

Listing 10 Stack trace as presented by AODA

This example shows the added value of using the correct abstractions for
debugging.

296 W. De Borger et al.

5 Ongoing Work and Future Challenges

Representing the run-time structure in terms of development abstractions is still a
challenge in many ways. We have outlined the methodology to create debuggers
capable of representing the run-time state in terms of development abstractions.
While this is an improvement to the current state-of-the-art, it is not well supported,
both in terms of theory and practice.

In practice, no design guidelines or tools exist to support development of tools
for tracing between the run-time and the development abstractions. The phases
trace derivation and transformation implementation could be automated, but no tool
support exist.

From a software engineering perspective, debuggers (and other run-time inspec-
tion tools) are quite challenging. Most debuggers have been built in an ad-hoc way
and are not well modularized. The transformation they execute is only documented
in their source, as are the techniques they use to implement the transformation. This
lack of modularity makes debuggers very prone to the ripple effect: if the transfor-
mation is to be changed, the inspection techniques have to be reimplemented or even
reinvented. Vice versa in order to change or optimize the used techniques, the trans-
formation must be redefined. With the structured approach described in this chapter,
we make a first step towards separation of concerns, by making the transformation
explicit.

The theoretical foundations of debugging are not complete. It is not possible
yet to determine the limits of this approach. It is clear that not all run-time effects
can be derived directly from compile time artifacts. This is a limiting factor to our
approach. Currently there is however no theoretical framework to determine which
abstractions can be restored and which can not.

This work can be extended in three dimensions: beyond AOP, beyond debugging
and beyond development abstractions.

This work can be extended beyond AOP. Other complex languages (such as
Scala) and middlewares (such as JBoss AOP) also suffer from the abstraction
gap. Many new languages and domain specific languages would benefit from this
approach. Applying this methodology to such languages is our next step in this
research.

It can also be extended beyond debugging: the abstraction gap also affects other
forms of software inspection, such as profiling, monitoring and auditing. The same
models and traces could be reused in these different tools. The automatic imple-
mentation of these various tools, based on the declarative specification of the model
transformation would allow us to rapidly construct many different tools out of the
same model.

And finally, it can be extended beyond development abstractions. The grand chal-
lenge is the application of tracing information to restore higher abstractions, used
earlier in the software life cycle. This would allow architects to benefit from the
abundance of operational data present in the run-time. This would have important
consequences for the way we treat software. Features such as drill down debug-
ging may become achievable. This would allow tracing failures through a system,

Traceability Between Run-Time and Development Time Abstractions 297

starting from an unfulfilled requirement, through the architecture, into the designs
and components, all the way down to machine code.

6 Conclusion

In the software life cycle an abstraction gap exists between development abstrac-
tions and run-time abstractions. Software is developed using powerful abstractions,
as present in models, languages, middlewares and libraries. In the run-time these
abstractions have been compiled into a complex synthetic structure, that is often too
complex to understand.

To extract meaningful information out of a running system, the abstractions must
be restored. This chapter described a methodology that can restore abstractions,
based on a declarative specification of the relations between abstractions. From this
specification, we derive a tracing model that captures all information required to
bridge the abstraction gap. This approach was validated in an example case study.

In the future, we hope to extend this approach beyond AOP to other languages,
beyond debugging to other forms of inspection and beyond programming abstrac-
tion. To us, the grand challenge is to relate all software development artifacts to
the actual system, to allow different forms of inspection, in terms of different
abstractions.

References

Baniassad, E., Clarke, S.: Theme: An approach for aspect-oriented analysis and design. ICSE ’04
Proceedings of the 26th International Conference on Software Engineering IEEE Computer
Society Washington, DC, USA, pp. 158–167 (2004).

Bracha, G., Ungar, D.: Mirrors: design principles for meta-level facilities of object-oriented pro-
gramming languages. In: Proceedings of the 19th Annual ACM SIG-PLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, ACM, New York, NY,
USA, pp. 331–344 (2004).

Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Syst J
45(3):621–645 (2006).

De Borger, W., Lagaisse, B., Joosen, W.: A generic and reflective debugging architecture to sup-
port runtime visibility and traceability of aspects. In: Proceedings of the 8th ACM International
Conference on Aspect-Oriented Software Development, ACM, New York, NY, USA,
pp. 173–184 (2009).

De Win, B., Joosen, W., Piessens, F.: Developing secure applications through aspect-oriented
programming. In Aspect-Oriented Software Development. Addison-Wesley, Boston, MA,
pp. 633–650 (2004).

Eaddy, M., Aho, A., Hu, W., McDonald, P., Burger, J.: Debugging Aspect-Enabled Programs.
Lecture Notes in Computer Science, vol. 4829 , p. 200. Springer, Heidelberg (2007).

Filman, R., Elrad, T., Clarke, S.: Aspect-Oriented Software Development. Addison-Wesley
Professional, Boston, MA (2004).

Maes, P.: Concepts and experiments in computational reflection. In: OOPSLA ’87: Conference
Proceedings on Object-Oriented Programming Systems, Languages and Applications, ACM,
New York, NY, USA, pp. 147–155 (1987).

298 W. De Borger et al.

OMG. Meta object facility (mof) 2.0 query/view/transformation. http://www.omg.org/spec/QVT/
1.0/.

Pinto, M., Fuentes, L.: Ao-adl: An adl for describing aspect-oriented architectures. Early Aspects:
Current Challenges and Future Directions, pp. 94–114. Springer, Berlin (2007).

Pothier, G., Tanter, É.: Extending omniscient debugging to support aspect-oriented program-
ming. In SAC ’08: Proceedings of the 2008 ACM Symposium on Applied Computing, ACM,
New York, NY, USA, pp. 266–270 (2008).

Rashid, A., Sawyer, P., Moreira, A., Araújo, J.: Early aspects: A model for aspect-oriented require-
ments engineering. In International Conference on Requirements Engineering, pp. 199–202.
IEEE Computer Society, Essen (2002).

Tekinerdogan, B.: Asaam: Aspectual software architecture analysis method. In: Working
IEEE/IFIP Conference on Software Architecture, Oslo (2004), p. 5.

Verhanneman, T., Piessens, F., Win, B. D., Truyen, E., Joosen, W.: A modular access control ser-
vice for supporting application-specific policies. Distributed Systems Online, IEEE 7, 6 June
2006, p. 1.

http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/QVT/1.0/

Tracing Non-Functional Requirements

Mehdi Mirakhorli and Jane Cleland-Huang

1 Introduction

In this chapter we focus on tracing non-functional requirements (NFRs), also
referred to as Quality of Service requirements, performance constraints, or “ili-
ties”. In contrast to functional requirements, which define what the system must
do in terms of transforming inputs into outputs (Davis, 1993; Sommerville, 2004;
Wiegers, 1999), NFRs define non-behavioral attributes of a system which constrain
the way in which the system must behave. For example, one NFR might specify
the required response times for executing a search, while another might define the
degree of availability required for a critical component. Yu et al., identified over 100
different types of NFRs (Chung, 2000) describing qualities such as reliability, main-
tainability, safety, usability, portability, and security (Davis, 1993; Antón, 1997).
Each type of NFR is satisfied in very unique ways in the architectural design. For
example security requirements might be achieved through including authentication
and authorization functions, while reliability concerns might be achieved through
incorporating redundancy tactics to increase the degree of fault-tolerance.

NFRs play a strategic role in driving the architectural design of a software
intensive system, and architects must understand the complex interdependencies
and trade-offs that occur between them. From a traceability perspective, NFRs
are significantly more difficult to trace than functional requirements as they often
exhibit cross-cutting and broad-reaching impacts across the system and are realized
through components and behaviors that are visible across various architectural and
implementation views at very different abstraction levels. Unfortunately, standard
traceability processes do not begin to address this degree of complexity.

This chapter briefly discusses the major benefits of tracing NFRs across the soft-
ware development life cycle. It presents an overview of the different practices and
methods used for NFR traceability, evaluates the challenges and goals, and explores
proposed solutions.

M. Mirakhorli (B)
Depaul University, Chicago, IL, USA
e-mail: m.mirakholi@acm.org

299J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_14, C© Springer-Verlag London Limited 2012

300 M. Mirakhorli and J. Cleland-Huang

The remainder of this chapter is laid out as follows. Sections 2 and 3 discuss the
specific benefits and challenges of tracing NFRs. Sections 4 and 5 describe several
common techniques that either produce traceability links as a byproduct of another
process, or else create them explicitly. We do not claim a complete analysis of all
techniques, but rather a representative sampling of the most common ones. Section 6
describes our pattern-based approach for tracing NFRs, which addresses many of
the shortcomings of existing methods by providing reusable, tactic-based traces.
All of the examples in this chapter are built around the case study of the Mobile

Table 1 NFRs in the mobile phone case study

NFR description Design decision

NFR.1.Security: The system shall provide safe browsing of
the internet and safe use of internet applications

Restrict access, secure
transmission of data,
WAP security, SSL

NFR.2.Security: When a malicious application tries to alter
sensitive data or access services and devices, the system
shall block the malicious access and notify the user

Restrict access

NFR.3.Security: The system shall provide the capability for
establishing security settings and associated access policies
for installed applications

Access control by security
policies

NFR.4.Security: The system shall limit access of the master
reset, personal data and the SIM card, to authorized users

Phone protection by
authentication

NFR.5.Security: The system shall provide safe connections
through using Bluetooth, Infrared, and USB devices

Restrict access, encryption
(PGP, DES)

User notification of
accesses

NFR.6.Performance: The system shall load and display
stored images in less than 10 s

Avoid data compression

NFR.7.Performance: The system shall respond to requests
for queries against retrieved data in less than 3 s

Larger heap memory (Jar,
Shared, Heap)

NFR.8.Reliability: When a software crash occurs, the
system shall prevent information loss

Data backup and recovery

NFR.9.Reliability: When the user accidentally deletes data
from the address book and requests restoration of the data
the system shall recover and restore the information

Autonomous address book
backup; and recovery

NFR.10.Reliability: When the cell phone user moves from
the range of one base station to another the system will
provide reliable handover without loss or interruption of
service

Call queuing

NFR.11.Availability: When multiple wireless networks are
available, the cell phone shall provide a continuous internet
connection

Heartbeat

NFR.12.Security: The system shall only allow connections
to secure and trusted service providers

Authentication

NFR.13.Usability: The system shall allow the user to
perform common tasks in less than three steps

Short cut key

NFR.14.Usability: The system shall allow the user to switch
between a running application and a call in a single step

Short cut key

NFR.15.Extensibility: The system shall provide a simple
process for deploying upgrades

Bridge pattern

Tracing Non-Functional Requirements 301

Phone application and to this end we have augmented the requirements specification
and the design solution to include both the NFRs and the design decisions listed in
Table 1.

2 Benefits of Tracing NFRs

In many software systems, the success of the system or the safety of the people it
serves, are dependent upon the underlying quality concerns. For example, a safety-
critical avionics system must guarantee levels of safety through performance and
dependability requirements, while a mobile phone service must provide reliable
hand-over as a subscriber moves across various towers, deliver high quality voice
and data service, and provide fast response times for placing calls and sending text
messages. These same systems must also demonstrate compliance to government
regulations describing safety, privacy, and other such operational procedures.

In early phases of software development, NFR traceability provides sup-
port for software project planning, and control (http://www2.cdc.gov/cdcup/
library/practices_guides/CDC_UP_Requirements_Traceability_Practice_Guide.
pdf; Ramesh and Edwards, 1993). Forward traces from early quality concerns to
candidate architectural solutions can help project stakeholders recognize risks and
uncertainties associated with achieving quality goals, estimate their associated
costs, and gain a more complete understanding of the total cost of achieving
each quality goal (Kazman et al., 2000). Furthermore traceability can help project
managers track delivered qualities in each software build and observe the progress
with which individual NFRs are satisfied.

During the requirements analysis and software design process, tracing NFRs
to design decision can be useful for several reasons. Trace links can help archi-
tects determine whether all NFRs have been fully accounted for in the proposed
design, and conversely identify unresolved concerns (Tang et al., 2010; Ramesh
and Edwards, 1993). Second, trace links can help in identifying conflicting require-
ments (Antoniol et al., 2002; Egyed and Grünbacher, 2005; Cleland-Huang et al.,
2005) or misunderstandings (Antoniol et al., 2002; Egyed and Grünbacher, 2005;
Kruchten, 2004; Cleland-Huang et al., 2005). Finally, having the ability to visual-
ize and understand relationships between quality concerns, NFRs, and architectural
design decisions, improves the ability to reason about an architectural solution (Tang
et al., 2007) and helps architects to discover tradeoffs, risks and sensitivity points
(Kazman et al., 2000).

The ability to connect each design and implementation element back to design
decisions and its related NFRs can also provide capabilities for verifying and
evaluating the completeness of the design, and for understanding the rationale
behind each element in the design (Cleland-Huang et al., 2005; Cleland-Huang and
Schmelzer, 2003; Mirakhorli and Cleland-Huang, 2011a; Gurp et al., 2005; Tang
et al., 2010; Tekinerdogan et al., 2007).

During the maintenance phase, existing traces from NFRs to the design provide
support for change impact analysis and also help to mitigate and prevent the tricky

http://www2.cdc.gov/cdcup/library/practices_guides/CDC_UP_Requirements_Traceability_Practice_Guide.pdf
http://www2.cdc.gov/cdcup/library/practices_guides/CDC_UP_Requirements_Traceability_Practice_Guide.pdf
http://www2.cdc.gov/cdcup/library/practices_guides/CDC_UP_Requirements_Traceability_Practice_Guide.pdf

302 M. Mirakhorli and J. Cleland-Huang

and seemingly ubiquitous problem of architectural erosion (Perry and Wolf, 1992;
Mirakhorli and Cleland-Huang, 2011a). The erosion problem occurs when develop-
ers make a modification without fully understanding the architectural intent behind
the design. Such changes can often have negative repercussions upon underlying
quality concerns. An effective traceability scheme can help developers more fully
understand the consequences of both minor and major modifications to the code or
the design artifacts, and therefore can help to maintain architectural quality (Gurp
et al., 2005).

Finally NFR traceability is an integral part of documenting the architectural
decisions and their relationship to quality goals and NFRs. This is useful for multi-
ple activities such as building a safety case, or simply communicating information
to developers and testers (Kruchten, 2004; Mirakhorli and Cleland-Huang, 2011a;
Tang et al., 2007; van Vliet, 2008; Tekinerdogan et al., 2007).

3 Challenges of Tracing NFRs

Despite all these benefits, tracing NFRs is not easy to accomplish in practice.
Figure 1 presents a traditional metamodel for supporting traceability of NFRs. The
model is amalgamated from individual metamodels for requirements management,
rationales and contribution structures, design allocation, and compliance verifica-
tion previously developed by Ramesh and Jarke (2001). The model shows that

Fig. 1 Components extracted from Ramesh’s metamodels for requirements management, ratio-
nales and contribution structures, design allocation, and compliance verification (Antón, 1997)

Tracing Non-Functional Requirements 303

requirements drive design decisions which are supported by rationales, assump-
tions, and various supporting arguments. Specific design elements are allocated
to components. This meta-model is representative of traceability graphs proposed
by other researchers, such as Burge (Burge and Brown, 2008) and Kruchten
(2004) for documenting and managing design rationales. Unfortunately, using this
model to guide the traceability effort would likely produce an excessive number
of traceability links, as the full meta-model (only partially shown in Fig. 1) is a
relatively complete graph. It is clear that a better approach is needed for tracing
NFRs.

To better understand what NFR traces should look like, we conducted an
extensive study of architecturally significant requirements and their associated tac-
tical decisions across several high-assurance software systems (Mirakhorli and
Cleland-Huang, 2011a) including the Airbus A320/330/340 family, Boeing 777,
Boeing 7J7 (Siewiorek and Narasimhan, 2005; Aplin, 1997), NASA robots (http://
prime.jsc.nasa.gov/ROV/nlinks.html) and also performance centric systems such as
Google Chromium OS (http://www.chromium.org/developers/design-documents).
This study provided many concrete examples that illustrated the specific issues
involved in tracing NFRs.

An initial analysis of the specification revealed several critical quality concerns
for each system. For example reliability, availability, and fault tolerance were iden-
tified as concerns for the flight control systems of both the Airbus and Boeing, with
the primary reliability requirement defined as the likelihood of loss of aircraft func-
tion or critical failure is required to be less than 10–9 per flight hour. Similarly our
investigation of the CHROME browser identified security, portability, reliability,
and availability as specific concerns. Security was important for defending against
attackers exploiting vulnerabilities in the rendering engine, while portability was
important for allowing the browser to run on multiple platforms.

The study first analyzed the tactical decisions that were made to implement these
NFRs, and then explored techniques for tracing such decisions. As a result of the
study we identified the following fundamental issues related to tracing NFRs.

• Multi-level: High-level architectural decisions are often associated with a fairly
extensive set of subsequent lower-level decisions which impose constraints on
the behavior, structure, and deployment of the system, and which work synergis-
tically to support and shape the higher level decision. Traceability solutions must
therefore explicitly link high-level decisions to their related low-level decisions,
and then provide the means of tracing lower level decisions into the architectural
design.

• Multi-path: Different architectural decisions are visible across different archi-
tectural views. While traditional Traceability Information Models (TIM) assume
standard traceability paths for tracing requirements, our study showed that NFR
related traceability links must be established across a wide variety of architectural
views. In practice this means that a trace from a specific NFR to the architec-
ture may be established along one or more potential trace paths, and that the

http://prime.jsc.nasa.gov/ROV/nlinks.html
http://prime.jsc.nasa.gov/ROV/nlinks.html
http://www.chromium.org/developers/design-documents

304 M. Mirakhorli and J. Cleland-Huang

sum of the traces will provide a more complete traceability picture. Furthermore,
different NFRs will be traced along different paths.

• Heterogeneous: NFRs are realized through a broadly diverse set of architectural
decisions, for example an availability requirement might be realized through a
decision for 3-way redundancy of a critical component, with diverse development
teams and programming languages. In this case it is not sufficient to just trace
structural elements of the design, as traces must also be possible (in some form)
to less traditional elements such as development processes and organizational
structures.

• Multi-granularity: Architectural decisions are characterized by a variety of roles
and constraints. For example, a tactic such as ping-echo, designed to satisfy
an availability requirement, includes high-level roles represented by ping and
monitor components, as well as very low-level roles to control the ping rate.
Traceability links must therefore be created and maintained at various levels of
granularity including layers, processors, components, and variables.

• Tacit traces: NFRs are often difficult to trace, simply because they are satisfied
implicitly through non-documented design decisions representing tacit architec-
tural knowledge. Tacit decisions must therefore be articulated and documented in
order to establish traceability.

• Tradeoffs: Design decisions exhibit tradeoffs and interdependencies.
Relationships between decisions, including both positive contributions and nega-
tive trade-offs need to be explicitly modeled as traceability links (Cleland-Huang
et al., 2005).

• Semantically typed: Ramesh’s prior study on traceability high-lighted the need
for traceability links to be semantically typed (Ramesh and Jarke, 2001). This
is especially important in tracing NFRs because of the varied roles played by
different components in realizing architectural decisions.

• Strategic: Complex high-assurance and high-performance systems are rich with
design decisions (Hofmeister et al., 2000; Tryggeseth and Nytro, 1997). Given
the known problems of creating, maintaining, and using traceability links, it is
important to develop a minimalistic traceability strategy that removes redun-
dancy, while retaining only those traceability links needed to support critical
software engineering tasks such as impact analysis and architectural preservation.

• Minimalistic: NFRs tend to have broad-reaching impact across the architectural
design and can therefore result in the proliferation of hard-to-use traceability
links. An effective NFR traceability solution must therefore minimize the num-
ber of traceability links through strategic and cost-effective traceability decisions,
while simultaneously scaling up to support traceability in large and complex
software systems.

These requirements are used throughout the remainder of this paper to evaluate the
potential and effectiveness of the various traceability techniques.

Tracing Non-Functional Requirements 305

4 Software Architecture Practices that Capture NFR Traces

In practice, many architectural assessment and project scoping techniques rely on
project stakeholders to explicitly map out relationships between NFRs and down-
stream work products. The significant benefits of building traceability techniques
on top of such methods is that project stakeholders realize immediate benefits from
their traceability efforts. The disadvantage is that NFR traceability links are often
embedded in documentation that is specific to a given activity, and it is therefore dif-
ficult to extract and use those links to support other unrelated activities. For example,
NFR trace links which are created and documented within an architectural analysis
document, will likely be available for future architectural analysis activities, but will
not be readily available for programmers who may need to understand how a low
level code modification impacts an architectural decision.

In this section, we describe four representative software engineering activi-
ties that incorporate the creation and utilization of NFR traceability links. These
practices are the Architectural Tradeoff Analysis Method (ATAM), Architectural
Documentation, Enterprise Architectural Frameworks, and management of archi-
tectural knowledge.

4.1 Architecture Tradeoff Analysis Method (ATAM)

The Architecture Tradeoff Analysis Method (ATAM) is a well-known approach for
evaluating an architecture with respect to a set of clearly articulated quality scenarios
(Kazman et al., 2000).

ATAM uses a utility tree to generate concrete quality scenarios, which can later
be transformed into specific NFRs. The utility tree starts with a root node which
represents the overall quality of the system. The system is decomposed into interme-
diate nodes representing quality goals such as reliability, performance and security
and low level leaf nodes representing quality scenarios. As such, ATAM uses the
utility tree to help stakeholders explore quality concerns in order to clearly define
their expectations for the system.

ATAM then implicitly documents traceability relationships among quality sce-
narios and the architectural elements in which they are realized. For example Fig. 2
shows the output of the analysis for a simple security scenario stating that “NFR.1
The system shall provide safe browsing of the internet and safe use of internet
applications”. It documents the architectural decisions as restricting access, data
encryption and reliance upon WAP secure communication and SSL. These decisions
have been analyzed to identify risks, sensitivity points, and trade-off points in the
architecture. Each NFR is then mapped to its corresponding architectural decision
and the design fragment in which the architectural solution is implemented. These
mappings create a de facto traceability matrix, documenting relationships between
quality concerns, tactical architectural decisions, and lower level design solutions.
Unfortunately, as previously noted, this information is not easily accessible for any
purpose other than architectural analysis. However, Mirakhorli and Cleland-Huang

306 M. Mirakhorli and J. Cleland-Huang

Scenario SC1 The system resists malicious altering

NFR(s) Security

Environment Under Normal Operation

Stimulus Identified user or application tries to modify the data

Response Denying them access

Architectural Decisions Sensitivity Trade-off Risk Non-Risk

Restrict Access N1

Encryption S1 T1

WAP Security, SSL S2 N2

Reasoning

Data Controller

Data Encryption

Wap Controller Emailing

Mobile Internet Application Controller

Edit Controller

Architecture
Diagram

Access control to sensitive data for internet application and user is simple and
effective. Encryption causes a trade-off among performance and security.
Choices of encryption algorithm might affect the level of reliability as PGP first
compress the data so data movement will be faster. WAP security provide internet
security but it might affects transmission speed

Fig. 2 A scenario analysis from the mobile phone application

(2011b) have partially addressed this problem through developing a utility for
extracting traceability information from ATAM documents and using it to construct
a more traditional traceability matrix.

4.2 Architecture Documentation Methods

Architectural documentation approaches such as Views-and-Beyond (Bass et al.,
2003), Siemens S4V (Hofmeister et al., 2000), and RUP 4+1 (Kruchten, 1995)
provide guidelines and a template for documenting architectural solutions across
multiple views. Each view depicts a coherent set of architectural elements from a
specific perspective such as hardware resources, runtime behavior, or data usage,
and is presented visually with a supporting catalog describing the behavior and
property of each element, their interfaces, and the qualities associated with each
interface. Architectural decisions and rationales associated with each view are also
documented. The catalog of elements implicitly captures traceability relationships
among architectural elements and the quality concerns exposed by a component or
its interfaces.

Tracing Non-Functional Requirements 307

In the Siemens architecture documentation approach (Hofmeister et al., 2000), a
global analysis is conducted to analyze requirements and goals. Factors influencing
any aspect of the architecture are then identified and documented in a factor table.
Factors can include budgetary issues, technology factors such as specific develop-
ment frameworks, and product factors such as functional and quality concerns. Each
factor is described in terms of its flexibility, and the potential influence that a change
in the factor will have on the system. It is this element of the factor table which
provides implicit traceability from the factors to the system design.

To illustrate this, consider Table 2, which depicts a subset of factors for the
Mobile Application case study. The first two factors relate to NFR 6 and NFR 15,
and are therefore considered product factors, while the third factor is an organiza-
tional one. The table shows that the File loading performance factor is susceptible
to change across different products, and that changes to this factor could affect data
communication performance, data processing units, and communication units of
the system. This kind of traceability information captured by the factor tables is
designed to support long-term system maintenance of the Mobile Phone systems.
However, the limitations of tracing NFRs through factor tables are similar to those
realized when tracing through ATAM scenarios, as such tables can clearly only
be parsed and used in a manual way by a human user, and are unable to support
automated trace queries.

4.3 Enterprise Architectural Frameworks

An enterprise architectural framework provides a mechanism for describing
and communicating architectural concerns, for comparing different architectural

Table 2 Example of factor table and implicit traceability

Factors Description Changeability Impact

File loading
performance

The system shall load
and display stored
images in less than
10 s

Depending on
product families
and application
types it might vary

Affects data
communication
performance, data
processing units,
communication
unit

Extensibility in use
of different
hardware for
screen, keypad,
and Bluetooth

There might be
varieties of
hardware to interact
with external
system, user

Extensibility is not a
dominant factor
less likely to
change

Large impact on
components
involved in
acquisition and
input event
processing

Minimum
marketable
features

Features are
prioritized based on
stakeholders
request and market

Negotiable It might have an
impact on
meeting
milestones

308 M. Mirakhorli and J. Cleland-Huang

solutions, and for helping to ensure integrity and completeness of a solu-
tion. Several architectural frameworks, including the Command, Control,
Computers, Communication, Intelligence, Surveillance, and Reconnaissance
(C4ISR) framework (http://www.afcea.org/education/courses/archfwk2.pdf), have
directly addressed issues of tracing quality concerns. C4ISR was developed by
the U.S. Department of Defense (DoD) to improve operational capabilities of
warrior systems across defense agencies. The C4ISR framework provides three
different architectural views. The Operational View (OV) artifacts define opera-
tional elements, activities and tasks, as well as the information exchange needed
to accomplish an operation. The System View (SV) artifacts describe the physi-
cal systems, software services and interconnections needed to support operations.
Finally the Technical View (TV) defines technical standards, implementation con-
ventions, rules and criteria governing interaction and interdependences of system
parts.

C4ISR utilizes traceability in several different ways. For example the System
Interface Description is used to map supporting security and communication
requirements to system interfaces, while the Operational Information Exchange
Matrix (OV-3) is used to describe operational node connectivity descriptions such
as Throughput, Security, Timeliness (e.g., 10/minute), and Required Interoperability
Level. In these cases, the traceability matrices are used to map qualities to software
elements; however the traces are relatively high level and do not provide detailed
mappings from quality concerns to subsystems.

4.4 Knowledge Management Tools

Software architectural knowledge management tools provide support for document-
ing architecturally significant requirements, the decisions that were made to satisfy
those requirements, and the rationale behind those decisions (van Vliet, 2008).
Documenting architectural knowledge helps developers and architects maintain
existing systems, and can also be used to improve the architectural design of future
systems.

Tyree and Akerman (2005) proposed a taxonomy of items needed to effectively
document design rationales including issues, decisions, assumptions, arguments,
implications, related decisions, related requirements, related artifacts, related prin-
ciples, and notes. Other researchers, such as Kruchten (2004) and Burge and Brown
(2008), have proposed similar ontologies to document architectural decisions. All
of these works assume the underlying use of traceability links to relate architec-
tural decisions to external artifacts such as requirements, design documents, and
architectural assessments. Several tools have been developed to capture and re-use
architectural knowledge. Although the primary focus of these tools is on archi-
tectural knowledge, the organization of that knowledge relies upon user-created
traceability links.

Most architectural management tools, such as Process-based Architecture
Knowledge Management Environment (PAKME) (Dutoit et al., 2006), Archium

http://www.afcea.org/education/courses/archfwk2.pdf

Tracing Non-Functional Requirements 309

(Jansen and Bosch, 2005) and Architecture Design Decision Support System
(ADDSS) (Capilla et al., 2006), help architects to create traceability links between
the knowledge related items including requirements and design decisions, and
external documents. However, the tools we evaluated, support only relatively
coarse-grained traceability between documents, and do not support finer grained
traceability between NFRs and specific design or code elements in which architec-
tural decisions are realized. Furthermore, the tools have not yet been integrated with
architectural modeling tools (Tang et al., 2010), which further limits their ability to
support NFR traceability to critical elements of the architecture.

4.5 Summary of Tracing in Architectural Techniques

In summary, while architectural analysis and related knowledge management tech-
niques incorporate tracing into their practices, they tend to suffer from three different
problems. In the first case, architectural analysis techniques tend to encapsulate
traceability information into proprietary documents which are difficult to use for
anything other than the originally intended architectural analysis or project planning
process, and therefore can only be parsed and understood manually by a human ana-
lyst. In the second case, architectural management tools provide rich environments
for tracing between designs decisions, rationales, and other supporting information,
but do not provide support for tracing into the architectural design or the code.
Finally, architectural management tools which do incorporate traceability practices,
tend to support only relatively high level trace links.

5 Custom Processes and Techniques for Tracing NFRs

In addition to software architecture practices which utilize NFR traceability to sup-
port their prime objectives, there are several other techniques, some of which are
designed specifically for creating and maintaining NFR traces. In this section we
describe four techniques including use of UML Profiles, Goal-Centric Traceability,
Tracing through Design Patterns, and Decision-Centric Traceability. The benefits
of these approaches are that they provide higher degrees of automation for using
and understanding traceability links, and in some cases are designed specifically
with maintainability in mind; however unlike the methods described in the previous
section, these approaches require specific modeling environments or development
practices, and, as they are not integrated with a specific task such as architectural
analysis, do not necessarily return immediate benefits to the trace creators. This
raises practical concerns related to the costs versus benefits of investing in an infras-
tructure of traceability links, and makes it less likely that such approaches will be
broadly adopted in practice.

310 M. Mirakhorli and J. Cleland-Huang

5.1 Techniques that Embed Traceability Links into UML

The Unified Modeling Language (UML) is used to visualize, specify, and con-
struct elements of an object-oriented system. It models boundaries and interactions
between the system and its users, the communication between objects, the state of
those objects, the static structure of the system, and the physical architecture of
the system (Booch et al., 2000). Standard UML can be customized for a particular
domain through the use of UML Profiles, which allow the semantics of standard
UML elements to be refined through the use of stereotypes, tags, and the object
constraint language (OCL). For example, a <<trace>> stereotype could be created
and associated with a dependency link to depict a traceability relationship.

Several researchers have developed UML profiles for supporting traceability
of NFRs. For example, Salazar-Zárate et al. (2003) modeled NFRs and related
them to functional elements through use of a <<NFR Behaviour>> stereotype,
and then described behavioral attributes using OCL. Figure 3 illustrates the use of
this approach for the Mobile Phone Application. For example “Data Controller”
is related to its corresponding NFRs through the <<Has Behaviour>> dependency.
Furthermore, additional constraints, such as “response time shall be less than 10
seconds” are expressed through OCL statements.

The Architecture Rationale and Element Linkage (AREL) (Tang et al., 2007)
approach provides two new UML profiles for modeling Architectural Entities (AE)
and Architectural Rationales (AR). These profiles, and an associated tool, allow
architects to visualize AEs and their related ARs. AEs can represent functional

«NFR Behaviour»

- Application Blocking: True
- Fraud Notification: True
- Security: Hight

«OCL»
{Authentication is Enabled
Authorization is Enabled}

Application Controller

Data ControllerNFR Behaviour

- Performance
- Reliability: Hight
- Security «OCL»

{Responce time < 10 Sec
Back up Period = 12 Hours
Encryption Options = PGP || DES}

WAP Controller«NFR Behaviour»

- Security
«OCL»
{WAP Connection
Security = OK}

Has Behaviour

«Has Behaviour»

«Has Behaviour»

Fig. 3 Using UML profile providing support for NFR traceability

Tracing Non-Functional Requirements 311

requirements, non-functional requirements, components, processors, or text docu-
ments; while ARs describe quantitative rationales such as the costs, benefits, and
risks associated with architectural decisions, and the qualitative rationales which
document the issues, arguments, alternatives, and trade-offs associated with a design
decision. As depicted in Fig. 4, an AREL model is represented as an acyclic graph,
in which causal dependencies between design rationales and design objects can be
traversed in order to extract traceability links. Figure 5 provides an example of
several trace links captured by the AREL tool to establish relationships between

«AE»
AE

«AR»
AR

+cause

1

results-in

«ARtrace»

+effect

1..*

+cause

1..

constrains/motivates

«ARtrace»

+effect

1
Unique

Fig. 4 Trace relationships in AREL

«AE»
NFR 6: Security

«AR»
Encryption«AE»

NFR 1: Security

«AE»
C_12: Data Encryption

«AE»
C_05:WAP Controller

«AR»
Secure Transmition of Data

+ CLR
+ QNR

+ CLR
+ QNR

«ARtrace»
«ARtrace»

«ARtrace»

«ARtrace»

«ARtrace»

«ARtrace»

Fig. 5 Using AREL to create traces for the mobile phone product line

312 M. Mirakhorli and J. Cleland-Huang

security NFRs and specific architectural decisions such as the secure transmission
of data, or the use of encryption. In related work Zhu and Gorton (2007) proposed
two UML profiles for modeling architectural decisions and NFRs. However, one of
the limitations of embedding traceability links into UML diagrams, is the fact that
trace links are limited to individual models. Cysneiro et al. addressed this limita-
tion by developing a Language Extended Lexicon (LEL) that facilitated the tracing
of goals across multiple UML diagrams. Their approach embedded controlled key-
words from the LEL into goals and elements of the UML models (Cysneiros and
Leite, 2004).

UML approaches enable traceability relationships to be depicted within the
design model, but suffer from scalability problems which make even medium
sized models difficult to create and understand. Furthermore, many UML pro-
file approaches are limited to tracing structural elements and exclude traces to a
broader set of models such as deployment or implementation models. Both of these
issues are major short-comings as both scalability and heterogeneity were identi-
fied through our study of safety and performance-critical systems as fundamental
requirements for tracing NFRs. Despite these issues, the idea of incorporating trace-
ability into UML models is quite appealing, simply because the UML models are
a natural part of many software development projects. However, it should be noted
that such approaches focus on the notation of the trace links and provide very lim-
ited guidance for how and where to establish useful and effective links for tracing
NFRs.

5.2 Aspect Oriented Approach

Aspect Oriented Requirements Engineering (AORE) approaches focus on identi-
fying crosscutting concerns early in the software development life cycle (Rashid
et al., 2002; Grundy, 1999). As a precursor to Aspect Oriented Programming (AOP),
AORE’s primary purpose is to identify candidate cross-cutting concerns, some of
which will later be recognized as aspects and implemented as such in the final code.
The concepts of AORE provide an enticing framework for tracing NFRs, as many
early aspects do in fact represent specific quality requirements. For this reason, sev-
eral researchers have explored ideas of using early aspects to trace NFRs (Rashid
et al., 2003; Gan et al., 2004; Tekinerdoğan et al., 2007; Kassab and Ormandjieva,
2006).

The first approach, referred to as “Aspect-oriented development model with
traceability mechanisms” (Kassab and Ormandjieva, 2006) facilitates the separation,
composition and traceability of crosscutting concerns (both functional and nonfunc-
tional). This approach includes a dynamic view, in which crosscutting concerns are
traced to use-cases and scenarios, and a static view in which they are traced to con-
ceptual classes. In related work, Tekinerdoğan et al. (2007) developed a concerns
traceability meta-model (CTM) for tracing concerns throughout the life cycle. The
meta-model provides support for bidirectional traceability between concerns in the
requirements and design, and for traces between concerns and other artifacts. Like

Tracing Non-Functional Requirements 313

Ramesh’s original metamodels, AORE approaches define quite precisely the ele-
ments which should be traced. In this case they include concerns, relationships,
dependencies, behaviors, compositions, mappings, and user needs, but the literature
in this area lacks traceability guidelines, rules, and heuristics for mapping entities
and trace information to different artifacts across the entire development life cycle
(Rummler et al., 2007). However, the approach is intended to support AOP rather
than more general development environments.

5.3 Goal Centric Traceability

Goal-Centric Traceability (GCT) provides traceability support for managing and
maintaining NFRs and their related quality concerns over the long-term life of a
software intensive system (Cleland-Huang et al., 2005). As its name suggests, GCT
is a goal-oriented approach which assumes that quality concerns are modeled in
a goal hierarchy such as the NFR framework (Chung, 2000), i∗ (Yu, 1997), tro-
pos (Castro et al., 2002), or an ATAM utility tree (Kazman et al., 2000). GCT also
assumes that during the initial analysis, design, and implementation of the soft-
ware system, a number of different models are developed to evaluate the quality of
the design. These might include ATAM scenarios for evaluating how well a design
satisfies critical use cases, a Software Performance Execution (SPE) graph (Salazar-
Zárate et al., 2003) to evaluate response time goals, a system execution graph to
measure throughput and latency (Lamsweerde and Letier, 2004), an attack graph
(Sheyner et al., 2002) to evaluate security attributes, usability metrics to evaluate
a graphical user interface, or an executable test-case to evaluate functionality that
that is needed to satisfy quality goal. GCT refers to these kinds of models at Quality
Assessment Models (QAMs) (Cleland-Huang et al., 2005).

The GCT framework, includes: (i) a goal model that captures stakeholders quality
concerns and their tradeoffs, (ii) a set of QAMs that have been designed to evaluate
the extent to which the architecture satisfies the stated quality goals, (iii) a trace-
ability infrastructure that is used to link QAMs to goals, (iv) GCT algorithms that
manage the automated impact analysis and propagation of change across the goal
hierarchy, and finally (v) an impact report which describes the potential impact of a
change on the overall quality goals.

GCT supports two specific traceability tasks. The first involves identifying the
initial impact of a change upon the GCT model. For example, if a developer changes
a section of the code, or an architect makes a change in a UML model, traceability is
used to identify potentially related goals or operationalizations (design solutions) in
the goal model. Either manually created or automatically generated traces (Cleland-
Huang et al., 2005) can be used to perform this initial trace. The second traceability
task is triggered once an initial impact point is discovered. This second task is
internal to the GCT model, and utilizes the internal structure of the goal model,
the executable traceability links between specific goals and QAMs, and the GCT
propagation algorithms. In GCT, an executable trace is defined as a trace which
carries sufficient semantics to be processed automatically, so that the QAM can be

314 M. Mirakhorli and J. Cleland-Huang

High
Performance of
Mobile Phone

Fast response
time

High throughput

Fast response
time for data

requests

Fast response
time for voice

calls

Load and display
stored data in < 10

seconds

Respond to queries
against retrieved
data in < 3 secs.

Larger heap
memory

(jar, shared, heap)
Encrypt data for

transmission

«QAM»
Software Performance Execution Graph

Simulates load and
display of data, and
computes expected
time for the average
case under conditions
of no contention.

«QAM»
Systems Execution Graph System Execution

Model evaluating
throughput and
response times for
loading and
displaying data.

«trace»

«trace»

«+»«+»

«+»«+»

«+»
«+»«+»

«+»

«+» «+»

Fig. 6 GCT applied to a performance requirement in the Mobile Phone Application

parameterized and re-executed, and output values are returned to the GCT model
for evaluation.

In Fig. 6, GCT is illustrated for a small subset of performance goals for the
mobile phone application. In this example, response time and throughput goals are
modeled for both voice and data scenarios. One of the goals, to “load and display
stored data in < 10 seconds” is evaluated through two simulations (i.e. QAMs). The
GCT model establishes traceability links between the response time goal and each of
these QAMs, so that the simulations can be automatically re-executed if potentially
impacted by a proposed change.

The primary advantage of GCT is that it provides support for maintaining quality
concerns over the long-term by making use of QAMs that were already created
during the initial development phase; however GCT is only viable if tool support
is available to automate the process, and if QAMs, such as simulation models, are
created as an integral component of the development process. GCT is therefore best
deployed for only a critical set of goals, for which executable QAMs are available,
and as such cannot be seen as a holistic solution for tracing all NFRs.

Tracing Non-Functional Requirements 315

Input Interface

+ Operation()

Input Interface Implementor

+ Operation()

Touch_Screen_Interface

+ Operation()

KeyPad_Interface

+ Operation()

Joystick_Interface

+ Operation()

Extensibility

(a) Bridge Pattern used in mobile application for implementing different
input device interfaces

Traceability results based on bridge pattern invariants(b)

Bridge Pattern Invariants

- Input Interface
- Input Interface Implementer
- Joystick_Interface
- KeyPad_Interface
- Touch_Screen_Interface

«trace»

Fig. 7 Pattern based traceability for mobile phone product line software system. a Bridge Pattern
used in mobile application for implementing different input device interfaces. b Traceability results
based on bridge pattern invariants

5.4 Design Pattern-Based Approaches

A design pattern represents a reusable solution to a commonly occurring problem in
software design (Gamma et al., 1995), and often addresses a specific set of quality
concerns such as maintainability, flexibility, or portability. Gross and Yu (2001) and
Cleland-Huang and Schmelzer (2003) proposed tracing NFRs to software designs
through the use of existing design patterns as intermediaries. This technique sup-
ports traceability for any NFR that can be implemented as a design pattern. Figure 7
shows how it can be instantiated for a sample pattern in the mobile application case
study used to achieve extensibility.

6 Tracing NFRs Through Architectural Decisions

In the previous two sections of this chapter, we have presented approaches for trac-
ing NFRs. The first approach is integrated with existing architectural analysis and
management processes, but produces traceability information that is deeply embed-
ded into the resulting architectural documents. The second incorporates tracing into

316 M. Mirakhorli and J. Cleland-Huang

modeling notations such as UML, but has scalability problems. Finally, approaches
such as GCT, which are designed specifically for tracing NFRs, require instrumented
development environments and often create a timelag between the traceability effort
and its benefits. In this section we introduce a hybrid approach which is designed
specifically for tracing NFRs across the software development life cycle, but is also
closely integrated into common Architectural assessment and analysis techniques
(Burge and Brown, 2008).

We refer to this approach as Architectural Centric Traceability (ACT)
(Mirakhorli and Cleland-Huang, 2010, 2011c). ACT provides traceability support
for preventing the typical architectural erosion and quality degradation that occurs
during long-term system maintenance and evolution of a software system. Like
Goal Centric Traceability, ACT focuses on traceability of architectural qualities
and their long-term maintenance; however unlike GCT, ACT capitalizes on exist-
ing architectural practices that are core concepts in the creation of quality software
architectures. As its name suggests, ACT anchors traceability links around the archi-
tectural decisions (referred to as tactics) that have shaped the delivered system, and
uses these links to establish relationships between architecturally significant require-
ments (ASRs), high and low level design decisions, and relevant elements in both
the design and the code.

ACT utilizes tactic Traceability Information Models (tTIMs) to define backwards
traceability to the tactic’s contribution structures and rationales, and forward trace-
ability to the architectural elements in which it is realized. A tTIM defines the
primary roles and parameters of the tactic, relationships between the roles, and
proxy elements (i.e. classes, methods, variables, files etc.) which are used to map
architectural elements in design models and code to the tTIM. Traceability links
between tactics and architecture are therefore established as mappings.

This is illustrated through the example of the heartbeat tactic used in the mobile
phone application. The tTIM for the heartbeat tactic and its associated mappings into
the mobile phone application are shown in Fig. 8. The tTIM shows that the heartbeat
pattern helps satisfy the availability requirement (NFR.11) “When multiple wireless
networks are available, the cell phone shall provide a continuous internet connec-
tion.” It also shows that this tactic contributes towards availability and reliability
goals, and that the tactic is implemented through three primary roles of emitter,
receiver, and fault monitor, as well as four supporting parameters of heart beat rate,
heart beat message, checking interval, and acceptable silence, all of which are used
to parameterize the way the heartbeat tactic is implemented. In this example, we
chose to trace only at the coarse-grained level, meaning that we established map-
pings for the three primary components only. These components were mapped to the
network subsystem, Mobile Internet Subsystem::Signaling controller, and “Mobile
Internet Subsystem:: Connecting” respectively.

Using tTIMs to establish NFR traceability links reduces the cost and effort of
traceability through providing a set of re-usable traceability links. Furthermore,
these re-usable links are meaningfully typed to reflect the relationship between the
related artifacts. The infrastructure of each tTIM enables visualization of architec-
tural decisions while the proxy elements defined in the tTIM provide guidance for

Tracing Non-Functional Requirements 317

Note: Elements shaded white must
be mapped or filled in by user.

Legend

Heartbeat rate

Heartbeat Receiver

Heartbeat Message

Heartbeat emitter

Reliability
goal

Concrete C...
Mobile Internet

Subsystem::
Signaling
controller

Availability
goal

When multiple
wireless
networks are
available, the
cell phone
shall provide a
continuous
internet
connection

Heartbeat rate

Network Subsystem
(Detailed component

unavailable in case study)

Heartbeat
Message

Checking
Interval

Checking
Interval

Note: In this example, traces are
established by mapping heartbeat
emitter, heartbeat receiver, and fault
monitor to concrete components in the
mobile phone application.

Rationale

Fault Monitor

Mobile Internet
Subsystem::
Connecting

Acceptable
Silence

Acceptable
Silence

<<maps>>

Requirement
or goal

Documentation

Tactic

Proxy (for mapping
to architecture)

Essential Role

Optional Role
or parameter

Parameter

Component

Message

Component

Variable

Concrete Component

Variable

Attribut... Variable

Component

Concrete C...

Attribut... Variable

maps

helps

maps

regulates
heartbeatencapsulates

Heartbeat

Sends pulse

helps

maps

monitors
faults

maps

maps

sets
wellness
interval

emits heartbeat receives heartbeat

sets
checking
interval

maps

Heartbeat Tactic

Fig. 8 NFR traceability links established for the mobile phone through mapping emitter, receiver,
and monitor components to proxies in the tTIM

establishing both fine-grained and coarse-grained traceability links. This leads to
more consistent traces, and reduces the time needed to define strategic traceability
plans for a project. It also supports scalability because the number of traces that
need to be created to trace each individual tactic are significantly reduced and sup-
plemented by the reusable traces provided by the tTIM. Finally, the tTIMs simplify
tracing by transforming it to a basic mapping task. As a result of these benefits,
the tTIM approach supports software engineering tasks such as requirements val-
idation, impact analysis, compliance verification, and prevention of architectural
degradation.

7 Future Directions and Conclusions

This chapter has discussed the significant benefits that can be realized through
tracing NFRs, but also the specific traceability challenges that result from the cross-
cutting nature and interdependencies of NFRs. Given the well-understood reticence
of practitioners to create and maintain traceability links unless there is a clearly

318 M. Mirakhorli and J. Cleland-Huang

defined return on investment, it becomes very appealing to incorporate trace cre-
ation into the architectural analysis and assessment process. To achieve this we
clearly need better techniques for extracting the traceability information from archi-
tectural documents in which it is embedded, and transforming it into formats that
are useful for supporting longer-term activities such as impact analysis, architectural
preservation, and visualization.

Our analysis of existing techniques has highlighted a number of promising
approaches, but has also shown that many of the proposed techniques work only
under certain conditions, do not scale well, or require significant human effort. To
address these issues, we have presented an alternate approach based on Architectural
Centric Traceability (ACT), which builds upon existing architectural methods. The
problems related to tracing NFRs have been identified as one of the open research
tasks in the Grand Challenges of Traceability. This area represents a critically impor-
tant issue, which traceability researchers are just beginning to understand and to
address.

Acknowledgments The work described in this chapter related to Goal Centric Traceability and
Architectural Centric Traceability has been partially funded by the National Science Foundation
under grants CCF-0810924 and CCF-0447594.

References

Antón, A.I.: Goal Identification and Refinement in the Specification of Software-Based
Information Systems. Georgia Institute of Technology, Atlanta, GA (1997).

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability links
between code and documentation. IEEE Trans. Softw. Eng. 28(10), 970–983 (2002).

Aplin, J.: Primary flight computers for the Boeing 777. Microprocess. Microsy. 20(8), 473–478
(1997).

Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison Wesley, Boston,
MA (2003).

Booch, G., Jacobson, I., Rumbaugh, J.: Unified Modelling Language Specification, version 1.3.
(2000).

Burge, J.E., Brown, D.C.: Software engineering using RATionale. J. Syst. Softw. 81(3), 395–413
(2008).

C4ISR Architecture Working Group: C4ISR Architecture Framework, Version 2.0. Washington,
DC: Department of Defense, 1997, http://www.afcea.org/education/courses/archfwk2.pdf.

Capilla, R., Nava, F., Pérez, S., Dueñas, J.C.: A web-based tool for managing architectural design
decisions. SIGSOFT Softw. Eng. Notes. 31 (2006). http://dl.acm.org/citation.cfm?id=1163514.
1178644.

Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems engineer-
ing: The Tropos project. Inf. Syst. 27(6), 365–389 (2002).

CDC UP | Practices Guides on Requirements Traceability, http://www2.cdc.gov/cdcup/library/
practices_guides/CDC_UP_Requirements_Traceability_Practice_Guide.pdf.

Chromium projects, Design documents, http://www.chromium.org/developers/design-documents.
Chung, L.: Non-functional Requirements in Software Engineering. Kluwer Academic, Boston, MA

(2000).
Cleland-Huang, J., Schmelzer, D.: Dynamically tracing non-functional requirements through

design pattern invariants. In: Workshop on Traceability in Emerging Forms of Software

http://www.afcea.org/education/courses/archfwk2.pdf
http://dl.acm.org/citation.cfm?id=1163514.1178644
http://dl.acm.org/citation.cfm?id=1163514.1178644
http://www2.cdc.gov/cdcup/library/practices_guides/CDC_UP_Requirements_Traceability_Practice_Guide.pdf
http://www2.cdc.gov/cdcup/library/practices_guides/CDC_UP_Requirements_Traceability_Practice_Guide.pdf
http://www.chromium.org/developers/design-documents

Tracing Non-Functional Requirements 319

Engineering in Conjunction with ASE 2003 IEEE International Conference on Automated
Software Engineering. Montreal, Canada (2003).

Cleland-Huang, J., Settimi, R., Khadra, O.B., Berezhanskaya, E., Christina, S.: Goal-centric trace-
ability for managing non-functional requirements. In: Roman, G., Griswold, W.G., Nuseibeh,
B. (eds.) Proceedings of the 27th International Conference on Software Engineering (ICSE
2005), 15–21 May 2005, St. Louis, MO, USA, pp. 362–371, ACM, New York, NY (2005).

Cysneiros, L.M., Leite, J.C.S.D.P.: Nonfunctional requirements: From elicitation to conceptual
models. IEEE Trans. Softw. Eng. 30(5), 328–350 (2004).

Davis, A.M.: Software Requirements – Objects, Functions, and States. Prentice Hall, Englewood
Cliffs, NJ (1993).

Dutoit, A.H., McCall, R., Mistrik, I., Paech, B.: Rationale Management in Software Engineering.
Springer-Verlag New York, Inc., Secaucus, NJ (2006).

Egyed, A., Grünbacher, P.: Supporting software understanding with automated requirements
traceability. Int. J. Softw. Eng. Know. Eng. 15(5), 783–810 (2005).

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object
Oriented Software. Addison Wesley, Reading, MA (1995).

Gan, B.T., Moreira, A., Araújo, J., Clements, P.: Early aspects: Aspect-oriented requirements engi-
neering and architecture design—workshop report. In: Gan, B.T., Clements, P., Moreira, A.,
Araújo, J. (eds.) Early Aspects: Aspect-Oriented Requirements Engineering and Architecture
Design. pp. 3–14. Lancaster, UK (2004). http://doc.utwente.nl/56986/1/00000112.pdf.

Gross, D., Yu, E.S.K.: From non-functional requirements to design through patterns. Requirements
Eng. 6(1), 18–36 (2001).

Grundy, J.C.: Aspect-oriented requirements engineering for component-based software systems.
In: Proceedings of the 4th IEEE International Symposium on Requirements Engineering. pp.
84–91. IEEE Computer Society, Washington, DC (1999).

Gurp, J.V., Brinkkemper, S., Bosch, J.: Design preservation over subsequent releases of a software
product: a case study of Baan ERP: Practice articles. J. Softw. Maint. Evol. 17, 277–306 (2005).

Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA (2000).

Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions. In:
Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture, pp. 109–120.
IEEE Computer Society, Washington, DC (2005).

Kassab, M., Ormandjieva, O.: Towards an aspect oriented software development model with
tractability mechanism. In: Proceedings of Workshop on Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture Design. Bonn, Germany (2006). http://trese.cs.
utwente.nl/workshops/early-aspects-Traceability-AOSD2006/.

Kazman, R., Klein, M., Clements, P.: ATAM: A Method for Architecture Evaluation. Software
Engineering Institute, Pittsburgh, PA (2000).

Kruchten, P.: An Ontology of Architectural Design Decisions in Software Intensive Systems. In
2nd Groningen Workshop on Software Variability. Citeseer. pp. 54–61 (2004). http://www.
kruchten.com/inside/citations/Kruchten2004_DesignDecisions.pdf.

Kruchten, P.: The 4+1 View Model of Architecture. IEEE Softw. 12, 42–50 (1995).
Lamsweerde, A.V., Letier, E.: From Object Orientation to Goal Orientation: A Paradigm Shift for

Requirements Engineering. Springer, Berlin (2004).
Mirakhorli, M., Cleland-Huang, J.: A decision-centric approach for tracing reliability concerns

in embedded software systems. In: Proceedings of the Workshop on Embedded Software
Reliability (ESR), ISSRE10. San Jose, CA, USA (2010).

Mirakhorli, M., Cleland-Huang, J.: Tracing architectural concerns in high assurance systems
(NIER Track). In: Proceedings of the 33th International Conference on Software Engineering,
New Ideas and Emerging Results Track, ICSE. Waikiki, Honolulu, HI, USA (2011a).

Mirakhorli, M., Cleland-Huang, J.: Transforming trace information in architectural documents into
re-usable and effective traceability links. In: Proceedings of the 6th Workshop on Sharing and
Reusing Architectural Knowledge. Waikiki, Honolulu, HI, USA (2011b).

http://doc.utwente.nl/56986/1/00000112.pdf
http://trese.cs.utwente.nl/workshops/early-aspects-Traceability-AOSD2006/
http://trese.cs.utwente.nl/workshops/early-aspects-Traceability-AOSD2006/
http://www.kruchten.com/inside/citations/Kruchten2004_DesignDecisions.pdf
http://www.kruchten.com/inside/citations/Kruchten2004_DesignDecisions.pdf

320 M. Mirakhorli and J. Cleland-Huang

Mirakhorli, M., Cleland-Huang, J.: Using tactic traceability information models to reduce the
risk of architectural degradation during system maintenance. In: Proceedings of the 27th
International Conference on Software Maintenance. Williamsburg, VA, USA (ICSM) (2011c).

NASA’s Robots, http://prime.jsc.nasa.gov/ROV/nlinks.html.
Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIGSOFT Softw. Eng.

Notes. 17(4), 40–52 (1992).
Ramesh, B., Edwards, M.: Issues in the development of a requirements traceability model. In:

Proceedings of IEEE International Symposium on Requirements Engineering, pp. 256–259
(1993). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=324849&tag=1.

Ramesh, B., Jarke, M.: Toward reference models of requirements traceability. IEEE Trans. Softw.
Eng. 27(1), 58–93 (2001).

Rashid, A., Moreira, A., Araújo, J.: Modularisation and composition of aspectual requirements. In:
Proceedings of the 2nd International Conference on Aspect-Oriented Software Development.
pp. 11–20. ACM, New York, NY (2003).

Rashid, A., Sawyer, P., Moreira, A.M.D., Araújo, J.A.: Early aspects: A model for aspect-oriented
requirements engineering. In: Proceedings of the 10th Anniversary IEEE Joint International
Conference on Requirements Engineering. pp. 199–202. IEEE Computer Society, Washington,
DC (2002).

Rummler, A., Pohl, C., Grammel, B.: Improving traceability through AOSD. In: Proceedings of the
Third Workshop on Models and Aspects, Handling Crosscutting Concerns in MDSD at the 21st
European Conference on Object-Oriented Programming. Berlin, Germany. pp. 9–10 (2007)
(Forschungsberichte der Fakultät IV, Elektrotechnik und Informatik, Bericht Nr. 6, 2007).

Salazar-Zárate, G., Botella, P., Dahanayake, A.: Introducing non-functional requirements in UML.
In: Favre, L. (ed.) UML and the Unified Process. pp. 116–128. IGI Publishing, Hershey, PA,
USA (2003).

Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and analysis of
attack graphs. 2002 IEEE Symposium on Security and Privacy (SSP ′02). pp. 273–284. IEEE,
Washington – Brussels – Tokyo (2002).

Siewiorek, D.P., Narasimhan, P.: Fault-tolerant architectures for space and avionics applications
(2005). http://ic-www.arc.nasa.gov/projects/ishem/Papers/Siewiorek_Fault_Tol.pdf.

Sommerville, I.: Software Engineering, 7th edn. Pearson Addison Wesley, Boston, MA (2004).
Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Babar, M.A.: A comparative study of architecture

knowledge management tools. J. Syst. Softw. 83(3), 352–370 (2010).
Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design traceability and

reasoning. J. Syst. Softw. 80(6), 918–934 (2007).
Tekinerdogan, B., Hofmann, C., Aksit, M.: Modeling traceability of concerns for synchronizing

architectural views. J. Object Technol. 6(7), 7–25 (2007).
Tekinerdoğan, B., Hofmann, C., Akşit, M., Bakker, J.: Metamodel for tracing concerns across

the life cycle. In: Proceedings of the 10th International Conference on Early Aspects: Current
Challenges and Future Directions, pp. 175–194. Springer, Berlin, Heidelberg (2007).

Tryggeseth, E., Nytro, I.: Dynamic traceability links supported by a system architecture descrip-
tion. In: Proceedings International Conference on Software Maintenance, pp. 180–187. Bari,
Italy (1997).

Tyree, J., Akerman, A.: Architecture decisions: Demystifying architecture. IEEE Softw. 22(2),
19–27 (2005).

van Vliet, H.: Software architecture knowledge management. In: Proceedings of 19th Australian
Conference on Software Engineering, 2008, ASWEC 2008, pp. 24–31 (2008).

Wiegers, K.E.: Software Requirements. Microsoft Press, Redmond, WA (1999).
Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements engineering. In

Proceedings of the 3rd IEEE International Symposium on Requirements Engineering (RE′97),
pp. 226–235 (1997).

Zhu, L., Gorton, I.: UML profiles for design decisions and non-functional requirements.
Proceedings of the 2nd Workshop on SHAring and Reusing Architectural Knowledge
Architecture, Rationale, and Design Intent, pp. 8–15. IEEE Computer Society, Washington,
DC (2007).

http://prime.jsc.nasa.gov/ROV/nlinks.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=324849&tag=1
http://ic-www.arc.nasa.gov/projects/ishem/Papers/Siewiorek_Fault_Tol.pdf

Medical Device Software Traceability

Fergal Mc Caffery, Valentine Casey, M.S. Sivakumar, Gerry Coleman,
Peter Donnelly, and John Burton

1 Introduction

Software is becoming an increasingly important component of medical devices,
as it enables often complex functional changes to be implemented without hav-
ing to change the hardware (Lee et al., 2006). With increasing demands for
greater functionally within medical devices, the complexity of medical device soft-
ware development also increases (Rakitin, 2006). This therefore places increased
demands for appropriate traceability and risk management processes and tools.

Due to the safety-critical nature of medical device software it is important that
highly effective software development practices are in place within medical device
companies. Medical device companies must comply with the regulatory require-
ments of the countries in which they wish to sell their devices (Burton et al., 2006).
To tackle these issues, governments have put in place regulatory bodies whose role
is to define regulatory systems for medical devices and to ensure that only safe medi-
cal devices are placed on the market (Mc Caffery et al., 2010a). Although guidance
exists from regulatory bodies on what software activities must be performed, no
specific method for performing these activities is outlined or enforced (Mc Caffery
et al., 2010b).

To this end, in the USA, the Food and Drug Administration (FDA) Center for
Devices and Radiological Health (CDRH) has published guidance papers which
include risk-based activities to be performed during software validation (US FDA
Center for Devices and Radiological Health, 2002), pre-market submission (US
FDA Center for Devices and Radiological Health, 2005) and when using off-the-
shelf software in a medical device (US FDA Center for Devices and Radiological
Health, 1999). Although the CDRH guidance documents provide information on
which software activities should be performed, they do not enforce any specific
method for performing these activities. The obvious implication of this is that
medical device manufacturers could fail to comply with the expected requirements.

F. Mc Caffery (B)
Regulated Software Research Group, Lero, Dundalk Institute of Technology, Dundalk, Ireland
e-mail: Fergal.McCaffery@dkit.ie

321J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_15, C© Springer-Verlag London Limited 2012

322 F. Mc Caffery et al.

Therefore, within the medical device industry a decision was made to recognize
ISO/IEC 12207 (1995) (a general software engineering life cycle process standard)
as being suitable for general medical device software development. However, the
Association for the Advancement of Medical Instrumentation (AAMI) software
committee carefully reviewed ISO/IEC 12207 and decided that, due to a number
of shortfalls, it was necessary to create a new standard specifically for medical
device software development. The AAMI used ISO/IEC 12207 as the foundation
for their new standard “AAMI SW68, Medical device software – Software life cycle
processes” SW68 (2001). In 2006, a new standard AAMI/IEC 62304 (2006) was
released that was based on the AAMI SW68 standard.

In 1993, the Council of the European Communities published the Council
Directive 93/42/EEC (1993), the “Medical Device Directive” (MDD), on medical
devices. The MDD is intended to ensure the safety of medical devices placed on
the market in the European Union, and has the backing of national legislation in
member states. Amendments to this directive occurred via Directives 2000/70/EC
(2000), 2001/104/EC (2001), 2003/32/EC (2003), and 2007/47/EC (2007).

Whenever we mention medical device guidelines within this chapter we refer to
the following medical device standards and guidelines: IEC 62304, FDA, the MDD,
ISO 14971 (2007), EN 60601-1-4 (2000), TIR 32 (2005), IEC 80002-1 (2009), IEC
62366 (2007), GAMP 5 (2008), IEC/TR 61508 (2005), ISO 13485 (2003) and IEC
60812 (2006).

In this context, we embarked on a study of Software Traceability, which is critical
to the requirements and safety aspects of software for medical devices. Within this
chapter we include the following sections:

2. Requirements for traceability in the context of software development for medical
devices;

3. The development of a software traceability process assessment method (Med-
Trace) for determining the capability of a medical device software development
organization to perform regulatory compliant and effective traceability;

4. Implementation of Med-Trace within two medical device software development
organizations;

5. How each of the two assessed organizations plan to improve traceability;
6. Challenges the medical device software industry is facing in terms of implement-

ing traceability;
7. Foundation for further research in this area and how Med-Trace may be rolled

out to assist organizations.

2 Requirements for Medical Device Software Traceability

In order to understand the requirements for traceability in the context of medical
device software development we conducted a literature review of generic practices
for software traceability and in particular a review of the medical device standards
requirements for traceability.

Medical Device Software Traceability 323

2.1 Traceability Literature Review

The literature review was undertaken in three stages and focused on:

• Generic software development and traceability;
• Safety-critical software development and traceability;
• Medical device software traceability requirements.

2.2 Traceability for Generic Software Development

“Requirements traceability refers to the ability to describe and follow the life of
a requirement in both a forwards and backwards direction – i.e. from its origins,
through its development and specification, to its subsequent deployment and use,
and through periods of on-going refinement and iteration in any of these phases”
(Gotel and Finkelstein, 1997). An important focus of requirements traceability is
identifying how high level requirements are transformed into low level requirements
and how these are subsequently implemented in the software product.

Initially requirements traceability was utilized as an aid in tracing requirements
from customer/stakeholder needs to implementation and final verification before
delivering the product to the customer. The role traceability plays has expanded
and it has become an important tool in the software development activities of
project management, change management, and defect management (Nuseibeh and
Easterbrook, 2000). This is particularly relevant as software development is increas-
ingly globally distributed across multiple teams and sites (Casey, 2010; Damian
and Moitra, 2006). It is therefore essential to have an effective traceability process
in place as it provides an essential support for developing high quality software
systems (Espinoza and Garbajosa, 2008).

When considering generic software development, two of the most popular pro-
cess assessment and improvement frameworks are the Capability Maturity Model R©
Integration (CMMI R©) (CMMI Product Team, 2006) and ISO/IEC 15504-5 (2006)
and Liao et al. (2005). Both recognize the importance traceability plays and incor-
porate it in their respective models. Each model was reviewed in detail with regard
to the requirement for effective traceability and how this was addressed.

2.3 Traceability for Safety-Critical Development

Software products are increasingly being deployed in complex, potentially danger-
ous products such as military systems, cars, aircrafts and medical devices. Software
products for these areas can be critical because failure can result in loss of life, sig-
nificant environmental damage, or major financial loss (Kannenberg and Saiedian,
2009).

324 F. Mc Caffery et al.

Traceability is especially vital for critical systems which must satisfy a range
of functional and non-functional requirements, including safety, reliability and
availability (Mason, 2005).

Within the safety-critical software arena, different standards/certifications are
available for different industries. These include DO-178B (1992) for the Aerospace
industry, with Automotive SPICE (2005) and ISO 26262 (2009) being required
in the Automotive industry. IEC 60880 (2006) describes the European standards
for certification of nuclear power generating software and IEC/TR 61508 (2005)
describes a general-purpose hierarchy of safety-critical development methodologies
that have been applied to a variety of domains ranging from medical instrumenta-
tion to electronic switching of passenger railways. Requirements traceability is an
important clause in all the above mentioned standards/certifications.

In addition to the software development life cycle, a software safety life cycle
has also to be implemented for safety-critical systems. It is crucial to maintain trace-
ability between the software safety requirements, the decisions taken during design,
and their actual implementation in the code. This is a complex task and needs to be
performed whilst the system is being developed and not after the development has
finished (Panesar-Walawege et al., 2010).

2.4 Medical Device Software Traceability Requirements

A detailed review was undertaken of the medical device guidelines with regard
to traceability. A key point to emerge from this study is that while requirements
traceability is essentially part of risk management, hazard traceability is of equal
importance in medical device software development. The most relevant findings
regarding traceability are presented here in summary.

2.4.1 ANSI/AAMI/IEC 62304:2006

In 2006, ANSI/AAMI/IEC 62304:2006 (Medical Device Software – Software Life
Cycle Processes) was released. Traceability plays a key role in this standard and is
defined as the “Degree to which a relationship can be established between two or
more products of the development process” (ANSI/AAMI/IEC 62304, 2006). It is
specifically addressed in the following sections of the standard: Section 5.1 states
that “the manufacturer shall establish a software development plan for the develop-
ment activity”. This plan shall address “Traceability between system requirements,
software requirements, software system test, and risk control measures implemented
in the software”. Section 5.2 specifies that “the manufacturer shall verify and doc-
ument that the software requirements are traceable to the system requirements or
other source.” Section 5.7 states that “the manufacturers shall verify that the soft-
ware system test procedures trace to the software requirements”. In section 7.3
Verification of Risk Control Measures the standard specifies that “the Manufacturer
shall document traceability of software hazards as appropriate: From the hazardous
situation to the software item. From the software item to the specific software cause.

Medical Device Software Traceability 325

From the software cause to the risk control measure and from the risk control
measure to the verification of the risk control measure”.

As part of the Configuration Management Process in section 8 the standard spec-
ifies that “the manufacturer shall create an audit trail whereby each change request,
problem reports and approval of change request can be traced”.

Traceability is also addressed in B.6 Software Maintenance Process which states
“It is especially important to verify through trace or regression analysis that the risk
control measures built into the device are not adversely changed or modified by
the software change that is being implemented as part of the software maintenance
activity”.

2.4.2 Medical Device Directive and Amendments

The European Medical Device Directive (MDD) (European Council, 2003) men-
tions traceability twice, but only in relation to the calibration of test equipment:
In 2007, Directive 2007/47/EC added the following amendment to section 8 of the
MDD: “For devices which incorporate software or which are medical software in
themselves, the software must be validated according to the state of the art taking
into account the principles of the development life cycle, risk management, valida-
tion and verification” (European Council, 2007). It is in this context that effective
software requirements and risk management traceability are essential to achieve
state of the art validation.

2.4.3 General Principles of Software Validation

The US FDA CDRH General Principles of Software Validation; Final Guidance for
Industry and FDA Staff document (US FDA Center for Devices and Radiological
Health, 2002) provides guidance on validation and traceability in medical device
software development. The scope of the document outlines that traceability is an
important activity that provides support to achieve a final conclusion that software is
validated. Under section 3.1.2 it states: “the validation of software typically includes
evidence that all software requirements have been implemented correctly and com-
pletely and are traceable to system requirements”. In section 3.2 it specifies that
“software validation includes confirmation of conformance to all software specifi-
cations and confirmation that all software requirements are traceable to the system
specifications”. The document goes on to outline in section 5 that traceability is key
across almost all of the software development processes and especially in relation
to the requirements, design, construction and test processes.

2.4.4 Premarket Submissions for Software Contained in Medical Devices

The FDA CDRH document Guidance for the Content of Premarket Submissions
for Software Contained in Medical Devices (US FDA Center for Devices and
Radiological Health, 2005) provides information to industry regarding the doc-
umentation to include in premarket submissions for software devices, including

326 F. Mc Caffery et al.

standalone software applications and hardware-based devices that incorporate soft-
ware. In this document traceability analysis is defined as linking together the product
design requirements, design specifications, and testing requirements. It also pro-
vides a means of tying together identified hazards with the implementation and
testing of the mitigations. It also states that traceability analysis should be included
as part of the premarket submission for Moderate and Major level of concern
medical devices.

2.4.5 Off-The-Shelf Software Use in Medical Devices

The FDA CDRH Guidance for Industry, FDA Reviewers and Compliance on Off-
The-Shelf Software Use in Medical Devices (US FDA Center for Devices and
Radiological Health, 1999) document was developed to address the many ques-
tions asked by medical device manufacturers regarding what they need to provide
in a pre-market submission to the FDA when they adopt Off-The-Shelf (OTS) soft-
ware. With regard to traceability it states: “The introduction of new or modified OTS
components to a product baseline may impact the safety of the product. Therefore
a safety impact assessment of the medical device must be performed and the asso-
ciated hazards documented in a Failure Modes and Effects Analysis (FMEA) table.
Each hazard’s consequence should be provided and expressed qualitatively; e.g.,
major, moderate, or minor. Traceability between these identified hazards, their
design requirements, and test reports must be provided”.

2.4.6 ISO 14971:2007

ISO 14971:2007 (Medical devices – Application of risk management to medical
devices) is the de-facto standard on risk management for medical devices. The FDA
recognize the standard (US FDA Center for Devices and Radiological Health, 2002)
and agree compliance with it as acceptable for pre-market submissions in the US
(US FDA Center for Devices and Radiological Health, 2005). In the EU, confor-
mance with the standard is also acceptable for meeting the requirements of the
medical device directives. In section A.2.3.5 the standard defines the risk man-
agement file as: “Where the manufacturer can locate or find the locations of all
the records and other documents applicable to risk management. This facilitates
the risk management process and enables more efficient auditing to the standard.
Traceability is necessary to demonstrate that the risk management process has been
applied to each identified hazard.”

2.4.7 IEC/TR 80002-1:2009

IEC/TR 80002-1:2009 (Medical Device Software – Part 1: Guidance on the applica-
tion of ISO 14971 to medical device software). Though this technical report does not
add to, or otherwise change, the requirements of ISO 14971:2007, it does provide
direction on how the standard can be implemented specifically for medical device
software. The technical report states: “The software process should set up a system

Medical Device Software Traceability 327

that makes traceability possible, starting from the software-related hazards and the
software risk control measures and tracing their implementation to the correspond-
ing safety-related software requirements and the software items that satisfy those
requirements. All of these should be traceable to their verification”.

2.4.8 ISO 13485:2003

ISO 13485:2003 (Medical devices – Quality management systems – Requirement
for regulatory purposes). The standard specifies requirements for a quality manage-
ment system that can be used by an organization for the design and development,
production, installation and servicing of medical devices, and the design, devel-
opment, and provision of related services (ISO 13485, 2003). With reference to
traceability, the standard states in section 7.5.3.2.1: “The organization shall estab-
lish documented procedures for traceability. Such procedures shall define the extent
of product traceability and the records required”. It goes on in section 7.5.3.2.2 with
reference to “Particular requirements for active implantable medical devices and
implantable medical devices” to state: “In defining the records required for trace-
ability, the organization shall include records of all components, materials and work
environment conditions, if these could cause the medical device not to satisfy its
specified requirements. The organization shall require that its agents or distributors
maintain records of the distribution of medical devices to allow traceability and that
such records are available for inspection. Records of the name and address of the
shipping package consignee shall be maintained.”

2.4.9 Traceability for Medical Device Software Development

Software development for medical devices can be a difficult and complex endeav-
our compared to other domains. Safety is a key area which must be successfully
addressed given the potential for harm that defective medical device software can
cause. An analysis of medical device recalls by the FDA in 1996 (Wallace and
Kuhn, 2001) found that software was increasingly responsible for product recalls: In
1996, 10% of product recalls were caused by software-related issues. The standards
and guidelines created to overcome this have already been discussed, but prob-
lems still persist. In the period the 1st November 2009 to 1st November 2010 the
FDA recorded 78 medical device recalls and state software as the cause (Medical &
Radiation Emitting Device Recalls, 2010).

Our literature review highlighted there was a limited amount of published mate-
rial regarding implementation challenges and advances in the field of traceability in
medical device software. This was in contrast to other sectors in the same context
e.g., automotive and aerospace software development. Another important aspect to
emerge from our literature review was that while there is a requirement to address
traceability, and undertake traceability analysis, there is limited guidance available
to help implement traceability effectively in organizations. This finding is in line
with a review of guidance for all aspects of medical device software development
which took place in 2009 (Mc Caffery and Dorling, 2009).

328 F. Mc Caffery et al.

3 Development of the Med-Trace Assessment Method

One of the main aims of the Regulated Software Research Group in Dundalk
Institute of Technology is to support the growth of a medical device software
development industry within Ireland. Therefore, as traceability is central to the
development of regulatory compliant software development we decided to develop
an assessment method specifically to assist companies to adhere to the traceability
aspects of the medical device software standards.

The Adept method (Mc Caffery et al., 2007) was previously developed to pro-
vide a lightweight assessment of software processes from CMMI R© and ISO/IEC
15504-5 and was not domain specific. The Adept method provides an organization
with a choice of 12 process areas that may be assessed using Adept. However, based
upon previous research four of these process areas are considered to be important
to the success of any software development company and these processes are there-
fore mandatory – Requirements Management, Configuration Management, Project
Planning, Project Monitoring & Control. Therefore, the organization only can select
2 of the process areas to be assessed from the remaining 8 process areas. Adept con-
sists of eight stages, the main stage involves an assessment team conducting process
area interviews for each of the 6 selected process areas with appropriate members
of the assessed organization. Based upon these interviews a findings report con-
sisting of a set of strengths, issues and recommendations as to how to address the
highlighted issues is produced.

Med-Trace is a new lightweight assessment method that provides a means of
assessing the capability of an organization in relation to medical device software
traceability. Med-Trace is based upon Adept but whereas Adept relates to generic
software development processes Med-Trace is specific to the traceability process
with medical device software development organizations. Med-Trace enables these
software development organizations to gain an appreciation of the fundamental
traceability best practices based on the software engineering traceability literature,
software engineering process models (CMMI R©, ISO/IEC 15504-5), and the medical
device software guidelines and standards. Med-Trace may be used to diagnose an
organization’s strengths and weaknesses in relation to their medical device software
development traceability practices.

3.1 Med-Trace Stages

Med-Trace is composed of eight stages (see Fig. 1). The assessment team typically
consists of two assessors who conduct the assessment between them. It is essential
that the assessors are trained in how to conduct a Med-Trace assessment and have
the requisite knowledge of the requirements for medical device software traceability.

The purpose of stage 1 of a Med-Trace assessment is to “Receive Site Briefing
and Develop Assessment Schedule”. This involves a preliminary meeting between
the assessment team and the organization wishing to undergo a Med-Trace

Medical Device Software Traceability 329

Fig. 1 Stages in a Med-Trace assessment

assessment. The assessment team discuss the main drivers for the organization
embarking upon a Med-Trace assessment and what can be achieved. Based on the
outcome of that discussion an assessment schedule is prepared and agreed.

The purpose of stage 2 is to “Conduct Overview Briefing” During this stage the
lead assessor provides an overview of the Med-Trace assessment to members of
the organization who will be involved in the subsequent stages of the assessment.
This includes what the assessment will involve and cover. What will be required and
expected of the participants will also be outlined.

The purpose of stage 3 is to “Analyse Key Documents”. The objective of this
stage is to provide insight into relevant process documentation and artifacts which
refer or relate to traceability. These are collected, analysed and discussed by the
assessors and they record their findings. The first 3 stages are normally performed

330 F. Mc Caffery et al.

on the organization’s premises, but the documentation collected in stage 3 is some-
times taken off-site as it can then be used to assist with the generation of additional
questions for stage 4.

The primary source of data for a Med-Trace assessment is gathered through a
series of interviews conducted in stage 4. Therefore the purpose of stage 4 is to
“Conduct Interviews”. At this stage a set of scripted questions (Appendix: Sample
Scripted Med-Trace Questions) are used as the foundation for asking questions
that are based upon the software traceability literature search, traceability practices
within the CMMI R© and ISO/IEC 15504-5 models, and traceability practices that
are required by the medical device industry. References are provided in Appendix:
Sample Scripted Med-Trace Questions to show the sources of these questions. The
assessment team return onsite and key staff members from the organization are
interviewed. Each interview is scheduled to last approximately 1.5 hours. At each
interview two assessors and one or more representatives from the organization are
present. The lead assessor conducts the interview based on the scripted questions
and evaluates the responses. The second assessor prepares interview notes based on
the responses and may ask additional questions if clarification is required on specific
points.

The purpose of stage 5 is to “Generate Assessment Results and Create the
Findings Report”. This is a collaborative exercise between the assessors to develop
the findings report and takes place off-site. The evaluation and interview notes are
analysed and discussed in detail from each interview. The findings from all the inter-
views and from the results from document analysis (undertaken at stage 3) are then
considered and the assessment results generated. Based on these results the findings
report is prepared and finalised. The resultant findings report consists of a list of
strengths, issues and suggested actions for improving traceability.

The purpose of stage 6 is to “Deliver the Findings Report”. This stage takes
place on-site and involves the lead assessor presenting the findings report to man-
agement and participating staff in the organization. Stage 7’s purpose is to “Develop
a Traceability Improvement Plan with the Organization”. This involves the asses-
sors collaborating with management and staff from the organization to collectively
develop a pathway towards achieving highly effective and regulatory compliant
traceability practices. The findings report provides guidance to the assessed orga-
nization and will focus upon practices that will provide the greatest benefit in terms
of the organizations business goals with regard to traceability, in addition to qual-
ity and compliance. The collaborative aspect of this step is essential as the relevant
management and staff take a key part in developing the improvement plan and they
ultimately have ownership of it. In these circumstances they are motivated to ensure
its successful implementation.

The purpose of stage 8 is to “Re-assess the Traceability Improvement Plan and
Produce a Final Report”. As part of this stage the assessed organization is revi-
sited approximately 3 months after the completion of stage 7. Progress is reviewed
against the recommended improvement path. The outcome of this stage is an
updated improvement path and a final report detailing the progress that has been
accomplished along with additional recommendations.

Medical Device Software Traceability 331

4 Implementation of Med-Trace

In this section we discuss how we implemented the Med-Trace assessment method
in two medical device organizations. The objective of performing both case studies
was to demonstrate how Med-Trace could be used within similar sized and types
of organizations (albeit in different countries) to assess the current status of their
software traceability processes. We felt that it was important to illustrate the find-
ings from implementing Med-Trace in more than one organization so observations
could be made in relation to both the findings and the performance of Med-Trace.
Additionally, we wanted to discover what the main issues are that medical device
software development organizations face in terms of traceability. We present the pro-
cess improvement objectives that were collaboratively agreed by both organizations
to improve their respective traceability process. We also outline our observations
from the findings of undertaking both assessments.

4.1 Implementation in MedSoft

We implemented a Med-Trace assessment in a Small to Medium Size (SME)
Irish medical device organization, MedSoft (a pseudonym). MedSoft develop elec-
tronic based medical devices that require compliance with both the FDA and the
MDD. MedSoft sought a resource-light method to obtain guidance as to how they
could improve their software development traceability process, which Med-Trace
provided.

4.1.1 Med-Trace Assessment Recommendations Provided to MedSoft

Based on the analysis of the results from the Med-Trace assessment, and in collab-
oration with MedSoft staff, an improvement plan was developed with the following
recommendations:

1. The organization will initiate steps to measure the time spent on traceability and
evaluate its effectiveness.

2. The task of performing traceability, in future, will be identified as part of the
project plan and adequate time will be allocated to undertake this important task.

3. Good practices which are employed while performing the traceability process
will be documented in an efficient format and disseminated to relevant parties as
and when required.

4. Project managers will mandate the use of traceability while conducting impact
analysis, promoting its usage as a management tool and thus enabling the capture
of information for management use.

5. The software development life cycle will contain milestones which will not
permit further advancement to other phases/stages of the life cycle until the
requirements for traceability are satisfied.

332 F. Mc Caffery et al.

6. A mechanism for tracing the open bugs/known issues to the safety/hazard/risk
management system and linking them to the requirements will be made available
and utilised.

7. The organization will evaluate tools for the process of automating traceability
and requirements management. A tool will then be selected and implemented.

4.2 Implementation in MedNorth

We also undertook a Med-Trace assessment in a UK based medical device organi-
zation, MedNorth (a pseudonym). Like MedSoft, MedNorth is an SME and develop
electronic-based medical devices that require compliance with both the FDA and
the MDD. MedNorth also sought a resource-light method to obtain guidance as to
how they could improve their software development traceability process.

4.2.1 Med-Trace Assessment Recommendations Provided to MedNorth

Based on the analysis of the results from the Med-Trace assessment (the MedNorth
response to one of the Med-Trace scripted questions is illustrated in Table 1), and in
collaboration with MedNorth staff, a pathway was developed as follows:

1. The process for software development traceability and for meetings between the
various parties involved will be formalised and documented.

2. A formal training program will be introduced to ensure the adoption of best
traceability practices for requirements and risk management.

3. The current Excel-based traceability application will be replaced with an appro-
priate automated traceability tool.

Table 1 MedNorth response to a Med-Trace scripted question

Question Response

What kind of resources are
provided for the activity of
traceability management?

MedNorth developed a dedicated process specifically for
traceability that provides coverage of hardware and
software. Part of this process involves meetings between
parties that are involved in the development of various
components that must work together in order to produce
the final medical device product. MedNorth feel that the
inclusion of these meetings as part of their traceability
procedure is a good way of bringing everyone together
from the different areas (i.e. software, hardware,
mechanical) to ensure that everyone is fully aware of
what is required from them and to help ensure that
nothing slips within the overall project.

The project manager in MedNorth has overall ownership
of traceability.

Medical Device Software Traceability 333

4. Terminology usage with regard to traceability will be standardised and a for-
mal definition of both risk and hazard agreed. A formal method for quantifying
probability of harm will also be introduced and deployed.

5. A defined traceability and validation procedure will be developed, implemented
and monitored to verify the activities of the staff that perform the traceability and
validation function.

6. A formal procedure will be developed and implemented to facilitate mapping
from the design documentation to the software code.

7. Resources will be allocated to enable the full implementation of the Ideagen tool.
This tool has already been purchased to allow digital signatures to be recorded
at each development stage, but it had not been properly implemented in the
organization.

4.3 Observations from the 2 Med-Trace Implementations

In both organizations the importance traceability plays in medical device software
development was understood and a member of the management team was respon-
sible for its implementation. The dual role of tracing requirements and managing
risk and hazards were appreciated, but were recognized as complex and difficult to
achieve. The lack of detailed guidance on how best to implement traceability was
highlighted as a problem by both organizations. While they both employed a pro-
cess for software development with regard to traceability this needed to be improved
and formalized. The requirement for relevant training and the ability to record and
leverage best practice with regard to traceability also emerged.

The serious limitations of utilising manual tools such as Excel, to manage trace-
ability and the need for automated tools was recognized, and required addressing.
It was also appreciated that this had to be undertaken with due care and within the
financial and temporal constraints of both organizations.

Both organizations welcomed the opportunity to participate in a Med-Trace
assessment. The fact that it was lightweight and specifically addressed traceabi-
lity was considered worthwhile and very relevant. The findings reports addressed
key areas where improvements were required and this was confirmed in consul-
tation with the management and staff of both organizations. The adoption of the
development pathway provided realistic goals and the collaborative process pro-
vided motivation for their achievement. Both organizations are implementing their
respective development pathways and have agreed to be reassessed (part of stage 8
of the Med-Trace assessment method).

5 Medical Device Software Industry Traceability Challenges

Due to the critical nature of medical device software and the potential harm fail-
ure can cause, the implementation of an effective traceability process is essential.
Therefore, to ensure validity, software requirements traceability analysis needs to

334 F. Mc Caffery et al.

be conducted to trace software requirements to (and from) system requirements,
and to risk analysis results. While this is mandated by the medical device guidelines
it is recognized by the industry as a difficult and complex endeavour. This is not
helped by the fact that organizations have highlighted the lack of detailed guidance
and direction as to how this can be successfully achieved.

A key factor which has been highlighted by the Med-Trace assessments and
the literature is the importance of incorporating automated traceability tools into
the development process. Especially, considering that many medical device soft-
ware development organizations employ manual systems like Excel for traceability
(Denger et al., 2007). This is a real challenge, which needs to be addressed. There
is also a requirement to define and formalise processes which specifically facilitate
effective traceability. These need to be supported by resources to provide relevant
training and infrastructure.

While the need to provide requirements traceability cannot be underestimated,
the necessity to provide traceability for each identified hazard is of equal impor-
tance. Risk management is a key activity for medical device software development
and hazards have to be traced to risk analysis, risk evaluation and the implementa-
tion and verification of the risk control measures.

The number of standards and guidelines which govern medical device soft-
ware development is also a challenge. To determine the exact requirements of each
document with regard to traceability can be time consuming. The information pro-
vided can also lack the level of detail required to successfully implement these
requirements.

When comparing generic and medical device software development the key dif-
ference lies in the mission critical nature and potential for harm which can be
inherent in medical device software. Therefore, as risk is a key factor, require-
ments and hazard traceability both need to be addressed. It is somewhat surprising
in these circumstances that tools are used less in medical device software develop-
ment than in other software development domains (Denger et al., 2007). However,
upon closer inspection of the medical device standards there is perhaps a reason in
that such tools will also have to be validated in order to achieve regulatory compli-
ance. The use of new automated tools require validation (including Risk and Hazard
Analysis/Management) in their own right prior to their use as part of the Quality
Management System. This is a very time consuming and costly exercise, especially
for a SME. The more complex the tool, the more time, effort and cost associated
with the validation and roll-out of the tool.

6 Foundation for Further Research in This Area

The work presented here will be used as the basis for further research in the area
of medical device software traceability. It will also be utilized in Medi SPICE (Mc
Caffery et al., 2010; Mc Caffery and Dorling, 2009) a software process assessment
and improvement model specifically for the medical device industry. The Regulated

Medical Device Software Traceability 335

Software Research Group is currently developing Medi SPICE in collaboration with
international standards bodies and the medical device industry.

Med-Trace will continue to be refined based on the results of ongoing research
and feedback from future assessments and practitioners. The goal is to roll out Med-
Trace nationally and internationally to assist with traceability. Given the positive
response it has received, it is envisaged that research will be undertaken into the
development of a tool to automate Med-Trace. The objective of the tool will be to
facilitate the international roll out of Med-Trace and encourage its wider use. It is
planned that the tool will also collect metrics which will be automatically passed
back to the Regulated Software Research Group for analysis. This will assist with
the future development of Med-Trace and Medi SPICE.

Acknowledgments This research is supported by the Science Foundation Ireland (SFI) Stokes
Lectureship Programme, grant number 07/SK/I1299, the SFI Principal Investigator Programme,
grant number 08/IN.1/I2030 (the funding of this project was awarded by Science Foundation
Ireland under a co-funding initiative by the Irish Government and European Regional Development
Fund), and supported in part by Lero – the Irish Software Engineering Research Centre
(http://www.lero.ie) grant 03/CE2/I303-1. The research presented in this chapter was partially
funded by the ARTEMIS Joint Undertaking of the European Commission, under grant agreement
n◦ 100022 (CHARTER).

Appendix: Sample Scripted Med-Trace Questions

Question

Source – Software
Traceability
Literature

Source – Medical
Device Standards

What kind of resources are provided for
the activity of traceability
management?

Ramesh (1998)a

Is there a documented procedure in place
for traceability? Is training provided
on traceability and to what extent is
explicit knowledge made available on
software traceability

Ramesh (1998)a

Implementation of traceability –
Forward, Backward Traceability and
the Relationship between
Requirements (Dependent
Requirements), Traceability tracking
from the safety perspective and
traceability to hazards/risk
management

de Leon and
Alves-Foss (2006)a

336 F. Mc Caffery et al.

(continued)

Question

Source – Software
Traceability
Literature

Source – Medical
Device Standards

Where does traceability start – market
requirements, product roadmap,
system specifications? Where does
proper requirement tagging start and
how is it documented? Does any tool
support this? How is safety
classification in traceability achieved?

How is traceability established between
System Requirements, Software
Requirements, and Software System
testing?

Section 5.1.1
(ANSI/AAMI/IEC
62304:2006, 2006)a

How are software requirements traceable
to system requirements and how is this
verified?

Section 5.2.6
(ANSI/AAMI/IEC
62304:2006, 2006)a

How is traceability demonstrated
between the software requirements
and software system testing?

Section 5.7.4
(ANSI/AAMI/IEC
62304:2006, 2006)a

What traceability activities are
undertaken during the design phase?

Section 3.2 (US FDA
Center for Devices
and Radiological
Health, 2002)a

What traceability activities are
undertaken during the coding and
construction phase?

Section 5.2.4 (US FDA
Center for Devices
and Radiological
Health, 2002)a

How are software systems test
procedures traced to software and
verified? What elements of system test
procedures need to be traced? What
are the difficulties in tracing? How
does updating of results happen and
how are they traced?

Section 5.7.4
(ANSI/AAMI/IEC
62304:2006, 2006)a

How are risk control measures traced to
the software requirements?

Section 7.3.3
(ANSI/AAMI/IEC
62304:2006, 2006)a

How is traceability established between
the risk control measures implemented
in software?

Section 6.3 (ISO
14971:2007, 2007)a

The standard IEC 62304 specifies that
the manufacturer shall document
traceability of software hazards as
appropriate: How is such complex
traceability achieved? What are the
tools available for achieving this?

Section 7.3.3
(ANSI/AAMI/IEC
62304:2006, 2006)a

How is traceability undertaken from the
software related hazards and the
software risk control measures to the
corresponding safety-related software
requirements and the software items
that satisfy those requirements?

Section 3.5 (ISO
14971:2007, 2007)a

Medical Device Software Traceability 337

(continued)

Question

Source – Software
Traceability
Literature

Source – Medical
Device Standards

How is software requirements
traceability analysis conducted to
trace software requirements to (and
from) system requirements to risk
analysis results?

Section 5.2.2 (US FDA
Center for Devices
and Radiological
Health, 2002)a

What documentation do you use to
provide traceability to link together
design, implementation, testing, and
risk management?

US FDA Center for
Devices and
Radiological Health
(2005)a

In a software release, there is usually a
process of noting down the known
errors/known bugs. Is there a concept
of traceability from these known bugs
to the requirements or any other
technical documentation?

Section 5.1.1
(ANSI/AAMI/IEC
62304:2006, 2006)a

How is the process of traceability
measured and managed for
effectiveness? Is there a way of
consolidating feedback periodically on
how well this process is performed?

Ramesh (1998)a

To what extent has the organization
automated traceability? What kind of
tools are available which you think are
useful for your organization? Have
you evaluated them?

Higgins et al.
(2003)a,
Feldmann et al.
(2007)a

a Denotes the relevant reference from the Software Traceability Literature or Medical Device
Standards & Guidelines on which the question is based

References

AAMI TIR32:2004: Medical Device Software Risk Management. AAMI, Arlington (2005)
ANSI/AAMI SW68:2001: Medical Device Software – Software Life Cycle Process. AAMI,

Arlington (2001)
ANSI/AAMI/IEC 62304:2006: Medical Device Software—Software Life Cycle Processes. AAMI,

Arlington (2006)
Automotive SIG Automotive SPICE Process Assessment Ver. 2.2. August 2005
BS EN 60601-1-4:2000 Medical Electrical Equipment, Part 1 – General Requirements for Safety.

BSI, London (2000)
Burton, J., Mc Caffery, F., Richardson, I.: A risk management capability model for use in medical

device companies. In: International Workshop on Software Quality (WoSQ ’06), Shanghai,
China, May 2006. ACM, New York, NY, pp. 3–8

Casey, V.: Virtual software team project management. J. Brazil. Comp. Soc. 16(2), 83–96 (2010)
CMMI Product Team: Capability Maturity Model R© Integration for Development Version 1.2.

Software Engineering Institute. Pittsburgh, PA (2006)

338 F. Mc Caffery et al.

Damian, D., Moitra, D.: Global software development: How far have we come? IEEE Softw. 23(5),
17–19 (2006)

de Leon, D., Alves-Foss, J.: Hidden implementation dependencies in high assurance and critical
computing systems. IEEE Trans. Softw. Eng. 32(10), 790–811 (2006)

Denger, C., Feldmann, R., Host, M., Lindholm, C., Shull, F.: A snapshot of the state of practice
in software development for medical devices. In: First International Symposium on Empirical
Software Engineering and Measurement, Madrid, Spain, 2007, pp. 485–487

DO-178B: Software Considerations in Airborne Systems and Equipment Certification. RTCA,
USA, 1st Dec 1992

Espinoza, A., Garbajosa, J.: A proposal for defining a set of basic items for project-specific
traceability methodologies. In: Proceedings of the 32nd Annual IEEE Software Engineering
Workshop, Kassandra, Greece, pp. 175–184 (2008)

European Council: Council Directive 93/42/EEC Concerning Medical Devices. Official Journal of
the European Communities, Luxembourg (1993)

European Council: Council Directive 2000/70/EC (Amendment). Official Journal of the European
Union, Luxembourg (2000)

European Council: Council Directive 2001/104/EC (Amendment). Official Journal of the European
Union, Luxembourg (2001)

European Council: Council Directive 2003/32/EC (Amendment). Official Journal of the European
Union, Luxembourg (2003)

European Council: Council Directive 2007/47/EC (Amendment). Official Journal of the European
Union, Luxembourg (2007)

Feldmann, R.L., Shull, F., Denger, C., Host, M., Lindholm, C.: A survey of software engi-
neering techniques in medical device development. In: Joint Workshop on High Confidence
Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability,
Cambridge, MA, USA, 25th–27th June 2007, pp. 46–54

GAMP 5:2008: A Risk-Based Approach to Compliant GxP Computerized System. ISPE, Florida
(2008)

Gotel, O., Finkelstein, A.: Extended Requirements Traceability: Results of an Industrial Case
Study. In: Proceedings of the 3rd International Symposium on Requirements Engineering,
Annapolis, MD, USA, 6th–10th Jan 1997, pp. 169–178

Higgins, S.A., de Laat, M., Gieles, P.M.C., Geurts, E.M.: Managing requirements for medical IT
products. IEEE Softw. 20(1), 26–33 (2003)

IEC 60812:2006: Analysis Technique for System Reliability – Procedure for Failure Modes and
Effects Analysis (FMEA), 2nd edn. IEC, Geneva, Switzerland (2006)

IEC 60880:2006: Nuclear Power Plants – Instrumentation and Control Systems Important to Safety
– Software Aspects for Computer-Based Systems Performing Category A Functions. IEC,
Geneva, Switzerland (2006)

IEC 62366:2007: Medical Devices – Application of Usability Engineering to Medical Devices.
IEC, Geneva, Switzerland (2007)

IEC/TR 61508:2005: Functional Safety of Electrical/Electronic/Programmable Electronic Safety
Related Systems. BSI, London (2005)

IEC/TR 80002-1:2009: Medical Device Software Part 1: Guidance on the Application of ISO
14971 to Medical Device Software. BSI, London (2009)

ISO 13485:2003: Medical Devices — Quality Management Systems — Requirements for
Regulatory Purposes, 2nd edn. ISO, Geneva, Switzerland (2003)

ISO 14971:2007: Medical Devices — Application of Risk Management to Medical Devices, 2nd
edn. ISO, Geneva (2007)

ISO/DIS 26262: Road Vehicles – Functional Safety. ISO, Geneva, Switzerland (2009)
ISO/IEC 12207:1995: Information Technology — Software Life Cycle Processes. ISO, Geneva,

Switzerland (1995)
ISO/IEC 15504-5:2006: Information Technology — Process Assessment — Part 5: An Exemplar

Process Assessment Model. ISO, Geneva, Switzerland (2006)

Medical Device Software Traceability 339

Kannenberg, A., Saiedian, H.: Why software requirements traceability remains a challenge. Cross
Talk: The Journal of Defense Software Engineering 22(5), 14–17 (2009)

Lee, I., Pappas, G., Cleaveland, R., Hatcliff, J., Krogh, B., Lee, P., Rubin, H., Sha, L.: High-
confidence medical device software and systems. Computer 39(4), 33–38 (2006)

Liao, L., Qu, Y., Leung, H.: A software process ontology and its application. In: Workshop on
Semantic Web Enabled Software Engineering, Galway, Ireland, Nov 2005

Mason, P.: On traceability for safety critical systems engineering. In: Proceedings of the 12th
Asia-Pacific Software Engineering Conference, 2005, Taipei, Taiwan, 15th–17th Dec 2005

Mc Caffery, F., Burton, J., Casey, V., Dorling, A.: Software process improvement in the medical
device industry. In: Laplante, P. (ed.) Encyclopedia of Software Engineering, vol. 1. CRC Press
Francis Taylor Group, New York, NY (2010a)

Mc Caffery, F., Dorling, A.: Medi SPICE: An overview. In: International Conference on Software
Process Improvement and Capability Determinations (SPICE), Turku, Finland, 2nd–4th June
2009, pp. 34–41

Mc Caffery, F., Dorling, A., Casey, V.: Medi SPICE: An update. In: International Conference on
Software Process Improvement and Capability Determinations (SPICE), Pisa, Italy, 18–20 May
2010. Edizioni ETS, pp. 195–198 (2010b)

Mc Caffery, F., Taylor, P.S., Coleman, G.: Adept: A unified assessment method for small soft-
ware companies. IEEE Software – Special Issue SE Challenges in Small Software Organization
24(1), 24–31 (2007)

Medical & Radiation Emitting Device Recalls: FDA. http://www.accessdata.fda.gov/scripts/cdrh/
cfdocs/cfres/res.cfm. Accessed 25 Nov 2010 (2010)

Nuseibeh, B., Easterbrook, S.: Requirements engineering: A roadmap. In: International Conference
on Software Engineering, Limerick, Ireland (2000), pp. 35–46

Panesar-Walawege, R., Sabetzadeh, M., Briand, L., Coq, T.: Characterizing the chain of evidence
for software safety cases: A conceptual model based on the IEC 61508 Standard. In: Third
International Conference on Software Testing, Verification and Validation, Paris, 6th–10th Apr
2010, pp. 335–344

Rakitin, R.: Coping with defective software in medical devices. Computer 39(4), 40–45 (2006)
Ramesh, B.: Factors influencing requirements traceability practice. Communications ACM 41(12),

37–44 (1998)
US FDA Center for Devices and Radiological Health: General Principles of Software Validation;

Final Guidance for Industry and FDA Staff. CDRH, Rockville (2002)
US FDA Center for Devices and Radiological Health: Guidance for the Content of Premarket

Submissions for Software Contained in Medical Devices. CDRH, Rockville (2005)
US FDA Center for Devices and Radiological Health: Off-The-Shelf Software Use in Medical

Devices; Guidance for Industry, Medical Device Reviewers and Compliance. CDRH, Rockville
(1999)

Wallace, D.R., Kuhn, D.R.: Failure modes in medical device software: An analysis of 15 years of
recall data. Int. J. Reliability, Quality, Safety Eng. 8(4) (2001)

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfres/res.cfm
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfres/res.cfm

Part V
Traceability Challenges

A workplace in which traceability is ubiquitous means that traceability is built into
the engineering process. The traceability is fit for purpose and accommodates the
changing needs of stakeholders. The traceability can be exchanged and extended
across organisational boundaries. The traceability is valued and depended upon, and
its benefits demonstrably exceed its costs.

Members of the traceability community have been exploring the problems and
challenges of traceability for a number of years, and this final part of the book
describes their vision for traceability in the year 2035 and in the context of a
flying solar car project. This vision presents a number of challenges for traceability
research and practice, and systematically catalogues the associated research topics
that need to be tackled over the intervening years to address them. The chapter by
Gotel et al., “The Grand Challenge of Traceability”, is reproduced courtesy of the
Center of Excellence for Software Traceability. It is offered as a framework through
which to motivate and track both research work and industrial experiences in the
area of traceability going forwards.

The Grand Challenge of Traceability (v1.0)

Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes, Andrea Zisman,
Alexander Egyed, Paul Grünbacher, Alex Dekhtyar, Giuliano Antoniol,
and Jonathan Maletic

1 Introduction

As software systems permeate our society, we must entrust many of them with the
lives of everyday people on a daily basis. For example: a commuter on a train trusts
that the switching software correctly routes the trains, an airline passenger trusts
that the developers of air traffic control software and aviation flight control software
have built the system correctly, the grocery shopper purchases produce that they
trust has been found to be safe and can be tracked back to the farm using software
developed to U.S. Food and Drug Administration (FDA) standards, and patients in
a hospital are monitored remotely by software systems that many parties trust will
work as intended. The ability to attain a requisite level of trust in these everyday
examples is enabled through some form of traceability.

Requirements traceability, defined as “the ability to describe and follow the life
of a requirement, in both a forwards and backwards direction (i.e., from its origins,
through its development and specification, to its subsequent deployment and use,
and through periods of on-going refinement and iteration in any of these phases)”
(Gotel and Finkelstein, 1994) is a critical element of any rigorous software and
systems development process. For example, the U.S. FDA states that traceability
analysis must be used to verify that the software design implements all of the speci-
fied software requirements, that all aspects of the design are traceable to software
requirements, and that all code is linked to established specifications and established
test procedures (FDA, 2002). Similarly, the U.S. Federal Aviation Administration
(FAA) has established DO-178B (FAA, 1992) as the accepted means of certify-
ing all new aviation software, and this standard specifies that at each and every
stage of development “software developers must be able to demonstrate traceability

This chapter is reproduced material from Center of Excellence for Software Traceability Technical
Report #CoEST-2011-001, with permission. Please direct any feedback on this material via the
CoEST website (http://www.coest.org).

O. Gotel (B)
New York, NY10014, USA
e-mail: olly@gotel.net

343J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5_16, C© Springer-Verlag London Limited 2012

http://www.coest.org

344 O. Gotel et al.

of designs against requirements.” Software process improvement standards that
are being adopted by many organisations, such as the Capability Maturity Model
Integration (CMMI Product Team, 2010), require similar traceability practices.

Although there have been significant advances since the early processes and tools
to support traceability were introduced in the 1970s (Pierce, 1978), it is unfortu-
nate that there is still almost universal failure across both industry and government
projects to implement successful and cost-effective traceability (Egyed et al., 2007).
For example, one global corporation working towards achieving CMMI level-three
compliance was thwarted in this plan primarily because it was unable to success-
fully meet the traceability requirements for its legacy software products. In another
organisation governed by the U.S. FAA, developers of a software control system for
a well-known airplane struggled to trace each line of code back to requirements and
were finally able to accomplish this only through reverse engineering a large number
of requirements.1 These difficulties have been broadly attributed to problems asso-
ciated with creating, maintaining and using requirements traceability matrices and
other enabling techniques, and also attributed to the perception by many developers
that the effort of establishing traceability exceeds the benefits it returns (Gotel and
Finkelstein, 1994; Lindvall and Sandahl, 1996; Bianchi et al., 2000; Ramesh and
Jarke, 2001; Arkley and Riddle, 2005).

The challenges of traceability are significant; however, the payoffs for getting
it right are also considerable. Over the past two decades, traceability researchers
have been systematically addressing the challenges in an attempt to alleviate the
traceability problem experienced by practitioners, and to better understand how
to create and maintain cost-effective, accurate and meaningful traceability that is
fit-for-purpose. Because of the difficulty in accomplishing these goals, a num-
ber of international researchers gathered in a series of two workshops funded by
NASA and the NSF (respectively held at NASA’s IV&V facility in the Summer of
2006, and in Lexington, Kentucky in the Spring of 2007) with the specific inten-
tion of determining the state of the practice and research in traceability, and of
identifying the significant challenges that need to be addressed. The participants
represented academic, government, and industrial researchers and practitioners, and
they brought a wealth of experience to the working sessions. This series resulted in
the creation of a draft Problem Statement and Grand Challenges (v0.1) document
(Cleland-Huang et al., 2006).

This chapter follows on from these workshop discussions and draft document,
and it is a community effort among members of the Center of Excellence for
Software Traceability. It is a reformulation of the material so as to give grounding,
cohesion and structure to the challenges, and to articulate a single grand chal-
lenge for traceability as opposed to forty, along with a smaller set of supporting
challenges.2

1 Both of these accounts were provided first hand to one of the authors of this chapter.
2 A traceability matrix, one that maps this new reformulation of The Grand Challenge of
Traceability (v1.0) to the draft Problem Statement and Grand Challenges (v0.1) document
(Cleland-Huang et al., 2006), is provided in Fig. 2 of Section 12 of this chapter.

The Grand Challenge of Traceability (v1.0) 345

The chapter first presents a vision of what traceability makes possible 25 years
into the future, by describing a hypothetical software and systems development sce-
nario in 2035, and then outlines the assumptions that are necessary to make this
vision a reality. These assumptions constitute the revised and updated set of trace-
ability challenges, and they are eight crosscutting concerns – traceability that is
purposed, cost-effective, configurable, trusted, scalable, portable, valued and ubiqui-
tous. The last challenge is elevated to the status of the grand challenge of traceability
since it demands progress with the other seven. The objective of this reformula-
tion is to provide a structured and motivated research agenda for the traceability
community, and a basis upon which to classify and track this research going for-
wards. It therefore highlights eight major research themes to tackle the challenges
and delineates their underlying research topics.

The chapter is a complement to existing survey work in the area, notably two
comprehensive surveys of the traceability landscape (von Knethen and Paech,
2002; Winkler and von Pilgrim, 2010), as well as more focal surveys on traceabi-
lity relations (Spanoudakis and Zisman, 2005) and requirements interdependencies
(Dahlstedt and Persson, 2005).

The chapter is organised as follows. Section 2 presents a traceability vision for
2035 and summarises the traceability assumptions underlying this vision. These
assumptions form the eight traceability challenges. Section 3 describes the frame-
work that was used to explore each of the challenges in more detail, and to
derive the major research theme associated with each challenge and its under-
lying research topics. Sections 4 through 10 present the first seven challenges
of traceability in turn – traceability that is purposed, cost-effective, configurable,
trusted, scalable, portable and valued. Section 11 presents the eighth and grand
challenge of traceability – traceability that is ubiquitous. Section 12 explains the
approach to evaluation that is in progress and the intended future use of the
traceability challenges by researchers and practitioners. Section 13 concludes the
chapter, and reiterates the challenges and major research themes for the traceability
community.

2 Traceability Vision

The vision for traceability revolves around the software and systems develop-
ment practice that traceability will help to make possible in the year 2035: the
problems traceability solves, the questions it answers, and the overall software
and systems engineering experience it enables. Given that there are likely to be
many concomitant advances in the processes and technologies that are used for
software and systems development, this vision is grounded in what is envisaged
will be a typical working environment in 2035. A Utopian scenario from this
future is outlined in Section 2.1, the traceability it demands is summarised in
Section 2.2 and the assumptions needed to achieve this traceability are elaborated in
Section 2.3.

346 O. Gotel et al.

2.1 Utopian Traceability Scenario – Vestigia Sine Lacrimis3

The software systems engineer highlighted the five key stakeholder types that she
knew were interested in the new flying solar car for which she was developing the
controller software. She dragged their avatars into the requirements task area of her
application life cycle tool with a wave of her pointer finger. Three flashing red alerts
appeared:

• One potential stakeholder type is missing. The impact of their exclusion or inclusion has
been analysed and the results are ready to examine.

• High priority requirement 55 of stakeholder type ‘Police officer’ conflicts with high pri-
ority requirement 33 of stakeholder type ‘disabled citizen’. Stakeholder representatives
have been identified and the resolution process is ready to proceed.

• The software demands safety certification. Policy regulations have been retrieved and
safety requirements have been determined from related systems in the requirements
knowledgebase. Confirm to inspect and integrate.

“I overlooked all that,” she muttered as she pulled up the impact analyser, conflict
resolver and requirements integrator all with a snap of her left hand. A few minutes
later, green check marks then appeared with the message:

All identified requirements have been negotiated and validated with relevant parties. There
are no current conflicts, inconsistencies or known omissions, and change management pro-
cedures have been established for this requirements baseline. Prioritised requirements with
associated test cases are now ready for design and initial architectural options have been
retrieved.

The engineer said aloud: “Let’s see the options then,” and the design process
engaged. A series of questions then appeared to the engineer:

• Is usability more important than reliability?
• Is reliability more important than maintainability?
• . . .

The engineer worked through the design goal parameters diligently, pulling up
visual design aids and assessing the requirements change impact as needed. Having
balanced the design attributes with cost parameters as the requirements evolved fur-
ther, the engineer shipped off the results to the hardware analyst and other specialists
to ensure that there were no lurking issues before proceeding further.

Eventually, working in this manner, the engineer had a fully tested software
release ready to integrate into the flying solar car system. With the latest set of
requirements verified, the necessary safety certificate was issued. After integration,
system testing and launch, the engineer moved on to focus on her next project.

3 Tracing without tears – with thanks to Dr. Robert Natelson for the Latin version of this motto
(http://www.umt.edu/ law/ faculty/natelson.htm).

http://www.umt.edu/law/faculty/natelson.htm

The Grand Challenge of Traceability (v1.0) 347

A few days later, the flying solar car project appeared on the engineer’s pursetop
with this note:

A new stakeholder requirement has been identified for project flying solar car following
end user feedback. Please review the impact of this addition and of an inconsistency that
has been identified if this is to be accommodated.

The engineer clicked on the warning message and projected a rendering of the
relationships between the new requirement request and the existing requirements,
design, code and tests. Walking through the virtual project environment, the engi-
neer could see that a similar requirement already existed due to the colour of the
requested requirement’s visual path and that of an existing requirement. After a
discussion with holographic avatars representing the stakeholders affected, the engi-
neer pressed the “dupe requirement” icon with her pinkie finger. Confident that
the detailed rationale underlying this decision from the virtual discussion would
be assembled and sent to the project manager and requesting end users, and added
into the requirement’s record for future reference, she moved back to concentrate on
her current project.

Eleven months after the deployment of the software and first production run of
the flying solar car an alert arrived on the engineer’s prototype smart cashmere
sweater sleeve:

ALERT! The license for the navigation software used by the flying solar car project expires
in one month. Renew at $22 million per annum or substitute with one of the following new
software services: (a) Nav-U-Like at $11.5 million or (b) Never-Get-Lost at $11.75 million.
No negative impact of either code substitution has been identified during simulation and
a benefit is projected for each option. Option (a) implements a requirement that would
address open bug report 686 of priority 2, and requires a small design change estimated
to take Bob one working week to fully integrate and test. An analysis of the multimedia
materials accompanying option (b) indicates that it satisfies requirements that align with a
forthcoming change to world policies on open skies flight that is scheduled to take effect
in three months time and negate our current safety certificate. The impacted components
will take the full team in Johannesburg two weeks to re-align the software and re-verify the
requirements.

“Let’s plan ahead and go with Never-Get-Lost,” she decides as she taps option (b) on
her sweater sleeve.

2.2 Traceability in 2035

In 2035, traceability will be purely in the background and simply expected to be
there. It will be accurate and trusted by all project stakeholders. Traceability will be
seamless to software and systems engineering tasks, and something that underlies
many of the techniques and technologies that engineers use habitually. With the
disappearance of traceability as a primary concern, the engineer and other project
stakeholders will be free to focus on those activities and decisions that utilise their
skills and knowledge fully.

348 O. Gotel et al.

Traceability will facilitate tasks in all phases of the software and systems engi-
neering life cycle, providing for both productivity and quality gains. In particular,
it will help with the definition of requirements through reuse at the requirements
level, retrieving associated design, code and test cases, along with all the underpin-
ning traceability. It will also help to identify services to satisfy those requirements
and to monitor the violations of service-centric systems. It will help to discover
discrepancies and inconsistencies in requirements perspectives by identifying con-
nections between disparate requirements, in real-time, by following their trace links
to assess the implications. It will also help to assess requirements completeness and
satisfaction, and is the mechanism through which certificates of assurance will be
issued.

In summary, traceability will be the thread that weaves data together on a project
to tell a myriad of stories, from the rationale underlying decisions through to the
underlying social network that came together to make these decisions and is, there-
fore, best able to change them. Traceability will be completely requirements-driven
in 2035.

2.3 Assumptions of the Vision -> Traceability Challenges

To achieve this vision of traceability, advances will be required in a number of areas,
ranging from everyday communication devices and visual displays through to the
manner in which requirements are described and organised. Based upon progress
over the past 25 years, it is likely that the technologies mentioned in the Utopian
scenario will be historic by 2035, but the changes demanded in software and sys-
tems engineering practice will remain ambitious. The assumptions demanded of the
traceability practice are highlighted below.

To provide for the level of engineering support envisaged, the results of the
traceability must be amenable to use and fully trusted, echoing the theme of the
examples provided in the introduction to this chapter. The starting point for secur-
ing this trust will be buy-in, accompanied by accurate and up to date underlying
data to trace, along with timely and meaningful linkages between these data. Much
will depend upon the quality of these data, be they business goals, requirements,
design ideas or code, whatever the representation or medium used. In an ideal
world, there would be elaborate trace links between all of these differing data,
and these would be established on demand and cost-effectively, as needed, to sat-
isfy end user needs. An engineer might adjust some default settings, as far as the
type of trace link to generate or when each one should be generated, so that traces
would be created at the level of granularity appropriate to support the context and
intent of a specific traceability-enabled activity or task. Furthermore, these trace
links would be maintained in an accurate state by monitoring changes to the soft-
ware system, at all locations at which it is distributed around the globe. Provisional
traceability updates would be generated automatically as and when the system
evolves.

The Grand Challenge of Traceability (v1.0) 349

In 2035, the traceability is assumed to be:

1. Purposed. Traceability is fit-for-purpose and supports stakeholder needs (i.e.,
traceability is requirements-driven).

2. Cost-effective. The return from using traceability is adequate in relation to the
outlay of establishing it.

3. Configurable. Traceability is established as specified, moment-to-moment, and
accommodates changing stakeholder needs.

4. Trusted. All stakeholders have full confidence in the traceability, as it is cre-
ated and maintained in the face of inconsistency, omissions and change; all
stakeholders can and do depend upon the traceability provided.

5. Scalable. Varying types of artifact can be traced, at variable levels of granularity
and in quantity, as the traceability extends through-life and across organisational
and business boundaries.

6. Portable. Traceability is exchanged, merged and reused across projects, organi-
sations, domains, product lines and supporting tools.

7. Valued. Traceability is a strategic priority and valued by all; every stakeholder
has a role to play and actively discharges his or her responsibilities.

8. Ubiquitous. Traceability is always there, without ever having to think about get-
ting it there, as it is built into the engineering process; traceability has effectively
“disappeared without a trace.”

These eight assumptions constitute the eight traceability challenges and are exami-
ned in turn in Sections 4 through 11. The framework used to explore and discuss
each challenge is described in Section 3.

Note that traceability challenge eight, traceability that is ubiquitous, is referred
to as the grand challenge of traceability because its realisation depends upon hav-
ing made significant progress with each of the seven other challenges. Traceability
challenge eight is longer term and all-encompassing.

3 Challenges Framework

The vision for traceability was created as a result of a brainstorming effort among
the authors of this chapter, following on from the Kentucky workshop. The concept
was to describe what software and systems development would be like in 2035 if the
traceability problem were solved. Based upon the Utopian scenario, the assumptions
that would need to hold true of the traceability to realise the vision were then deter-
mined, also in an iterative manner. This led to agreement upon eight crosscutting
concerns that now form the eight traceability challenges. In the subsequent sections
of this chapter, each challenge is elaborated according to the following framework:

• Link to Vision. The challenge is anchored in the Utopian scenario of the vision
via a short description.

350 O. Gotel et al.

• Problems Addressed. The current problems with traceability that realisation of
the challenge would help to address are summarised. This provides additional
rationale and motivation for prioritising and addressing the challenge.

• Dream Process. To explore the traceability process that would be needed to
realise each challenge, the authors developed a model of a generic traceabi-
lity process. This model was developed in an iterative manner and is described
fully in the chapter “Traceability Fundamentals”. In summary, the model com-
prises an abstract description of the series of activities that serve to establish
traceability and render it usable, along with a description of the typical respon-
sibilities and resourcing required to undertake them, as well as their inputs and
outputs. The model considers the various stages in the life of a trace and the
overarching process that brings traces into existence. An overview of this model
is provided in Fig. 1. The key activities are: traceability planning and man-
agement (strategy), traceability creation and maintenance, and traceability use.
The dream approach to each traceability process activity is described for the
challenge.

• Goals. The high-level goals that would need to be satisfied to achieve the chal-
lenge are listed. These goals are given a unique identifier in order to track
progress towards their satisfaction, using the following format: <challenge name>
<goal number> (e.g., Purposed G 1, Purposed G 2, Valued G 1, etc.).

Planning and Managing
Traceability Strategy

Creating Using

Maintaining

Trace created [elem
ents change]

Trace creation planned

[create directed]
Creation

feedback

Use
 fe

ed
bac

k

Tr
ac

e
m

ai
nt

ai
ne

d
[u

se
 re

qu
es

te
d]

Trace created
[use requested]

Maintenance
feedback

Trace maintenance
planned

Trace maintenance required [elements change]

Requirements for
traceability

changed

Traceability
required

Project
archived

Trace
retired

Trace
envisaged

Fig. 1 A generic traceability process model

The Grand Challenge of Traceability (v1.0) 351

• Requirements. The goals suggest and decompose into a number of requirements.
The requirements relevant to each of the traceability process activities (i.e., strat-
egy, creation and maintenance, and use) are examined in turn for each challenge.
For each requirement that is defined, a brief review of the current status of the
research and practice is provided, and areas of promise are highlighted.4 These
requirements are given a unique identifier in order to track progress towards
their satisfaction, using the following format: <challenge name> <requirement
number> (e.g., Purposed Req 1, Purposed Req 2, Valued Req 1, etc.). Each
requirement is cross-referenced to the goals it supports.

• Recommended Research. Based upon the prior analysis, a major research theme
was identified for each challenge. This was then decomposed into a num-
ber of supporting research topics. These research topics are given a unique
identifier in order to track future progress with the research, using the follow-
ing format: <challenge name> <research topic number> (e.g., Purposed RT 1,
Purposed RT 2, Valued RT 1, etc.). Each research topic is cross-referenced to the
requirements it addresses.

• Positive Adoption Practices for Industry. The framework ends with a list of prac-
tices that, if implemented in industrial settings, would facilitate and/or begin to
show satisfaction of the requirements, and so progress towards the realisation
of the challenge. These industry practices are also given a unique identifier in
order to subsequently track the progress, using the following format: <challenge
name> <industry practice number> (e.g., Purposed IP 1, Purposed IP 2, Valued
IP 1, etc.).

The intention of creating a framework for exploring the challenges was to provide a
systematic structure for directing and tracking future traceability research and prac-
tice. The details provided in the following sections serve to highlight salient points
to assist with this objective, arising from working discussions among the authors of
this chapter; they do not provide an exhaustive review of the entire traceability field.
The reader is referred to a number of existing surveys for such traceability review
material (von Knethen and Paech, 2002; Dahlstedt and Persson, 2005; Spanoudakis
and Zisman, 2005; Winkler and von Pilgrim, 2010).

4 Traceability Challenge 1: Traceability that Is Purposed

Traceability is fit-for-purpose and supports stakeholder needs (i.e., traceability is
requirements-driven).

4 Please note that this chapter is a result of community workshops and discussions; the objective is
to highlight general points about the state of the art and the practice in traceability, not to provide
an exhaustive set of references to projects and publications. The reader is referred to the website
of the Center of Excellence for Software Traceability for such materials: http://www.coest.org.

http://www.coest.org

352 O. Gotel et al.

4.1 Link to Vision (Purposed)

In the vision scenario, traceability helps the engineer to detect those stakeholders to
involve during requirements elicitation, to identify missing and conflicting require-
ments, and to demonstrate compliance to regulatory codes. Traceability also helps
the engineer to see the impact of new and modified requirements, and facilitates
the requirements negotiation and validation process with appropriate stakeholders.
Traces are used to retrieve the context and rationale for decisions, to examine costs
and to verify compliance to product requirements. Traceability supports the engi-
neer explicitly in all aspects of her daily work over the course of the project. The
traceability is fit-for-purpose.

4.2 Problems Addressed (Purposed)

Traceability will not be implemented and used in practice unless it is perceived as
useful or is mandated. Currently, there is poor understanding of what people need
traceability for and how people actually use traceability over time. Further, trace-
ability will not be created or maintained effectively if the required tasks to do so are
themselves not understood and supported. Currently, there is poor understanding of
what individuals and teams need to do to create and maintain traces. This distinction
between satisfying the requirements of those stakeholders who establish traceability
and those stakeholders who use traceability lies at the heart of many traceability
problems, for these roles are not necessarily overlapping. The stakeholder commu-
nity for establishing and using traceability is potentially vast and dynamic, and the
skills and incentives of these stakeholders vary widely. Tools are frequently pur-
chased to enable traceability but, because they are often insufficiently configured to
support these specific stakeholder requirements for traceability, they do not support
their processes nor adapt to their changing needs; therefore, the tools rarely realise
their potential.

4.3 Dream Process (Purposed)

• Traceability Strategy. The initial stakeholder requirements for traceability on a
project will be selected from profiles and templates, and the integrated devel-
opment environment used on the project will handle all the details necessary to
design and implement a traceability solution to satisfy them. The effectiveness
of this solution will be measured over time as the requirements evolve and are
accommodated.

• Traceability Creation and Maintenance. All traces on a project will be demon-
strably created based upon specified stakeholder requirements for establishing
traceability, accounting for the nature of the artifacts to be traced in different
environments. Once created on a project, the traces will be maintained such that

The Grand Challenge of Traceability (v1.0) 353

changing stakeholder requirements for establishing traceability are continuously
and demonstrably satisfied.

• Traceability Use. The traceability provided will fit the end users’ contexts and
needs. A feedback-driven learning system will adapt the traceability that is
established to fully address its end users’ evolving task contexts and needs.

4.4 Goals (Purposed)

Purposed G 1 Prototypical stakeholder requirements for traceability use are
understood, defined and shared by the software and systems
research and development communities.

Purposed G 2 Prototypical stakeholder requirements for creating and maintaining
traceability are understood, defined and shared by the software and
systems research and development communities.

Purposed G 3 Stakeholder requirements for traceability drive, and are demonstra-
bly satisfied in, traceability solutions.

Purposed G 4 The effectiveness of the traceability in end use is measured and
drives traceability process improvement.

Purposed G 5 The effectiveness of the traceability creation and maintenance
process is measured and drives traceability process improvement.

Purposed G 6 Executed trace queries provide value beyond simply retrieving a
set of artifacts; they actively support specific software and systems
engineering tasks.

4.5 Requirements (Purposed)

4.5.1 Traceability Strategy (Purposed)

Purposed Req 1 To understand and define the full range of stakeholders to
be supported in and by a comprehensive traceability solution.
[Purposed G 1, G 2]

• Status: Little attention has been paid to the full set of stakeholders for traceability.
The focus of both research and practice has been on partial views of restricted
constituents and their tasks, and this knowledge has not been consolidated in one
place for the traceability community. Many traceability stakeholders are typically
forgotten about during strategy formulation, such as the downstream consumers
of traceability (e.g., subcontractors). Stakeholders also have both near and long-
term needs for traceability, and this is rarely distinguished in the strategy.

• Promise: Traceability personas are being developed by the Tracy project to
explore stakeholder requirements for traceability tools (Cleland-Huang et al.,
2011). Characterising personas and their requirements for establishing and using
traceability (i.e., standard role models) would be a natural and valuable extension

354 O. Gotel et al.

of this work, and would begin to address the current lack of requirements focus
in and by the traceability community.

Purposed Req 2 To understand and characterise the contextual factors that con-
strain and shape options for traceability solutions, such as the
project type, organisational type, regulatory demands, domain,
etc. [Purposed G 1, G 2]

• Status: The contextual factors shaping the traceability provided in various
domains are generally explained in any case study reporting. Various classifica-
tion schemes also exist to characterise the nature of projects, organisations, etc.
However, there is as yet no agreed upon classification scheme and the demands
that such factors place on traceability solutions have not yet been examined
systematically.

• Promise: Such classification material could be consolidated so as to begin
to be more methodical about defining the “context” for traceability solutions.
Empirical studies could then be framed by comparable expressions of their
contexts.

Purposed Req 3 To understand and define the numerous properties required of
traceability for it to be considered effective for supporting the
various stakeholder tasks and contexts, such as different demands
on trace quality, completeness and granularity. [Purposed G 1,
G 2, G 4, G 5, G 6]

• Status: Given the lack of systematic attention to stakeholder identification and
requirements determination for traceability, there has been a corresponding lack
of attention to what would be required of a traceability solution to satisfy
them; these criteria for assessing the effectiveness of any supporting traceability
solutions are rarely articulated.

• Promise: Better definition of stakeholder requirements for traceability, along
with their contexts and acceptance criteria, will help in designing and assessing
potential solution options for traceability more comprehensively.

Purposed Req 4 To design traceability solutions that are driven by, and trace-
able to, stakeholder requirements and contexts for traceabi-
lity, providing access to the rationale for strategic decisions.
[Purposed G 3]

• Status: There are few practical guidelines for practitioners as to good practices
for designing and implementing an effective and traceable traceability solution
for their project, one that is driven by the stakeholder requirements for traceabi-
lity and project context. There is much reliance on past experience and informal
knowledge sharing at present.

The Grand Challenge of Traceability (v1.0) 355

• Promise: The creation of a Traceability Body of Knowledge (TBOK), a resource
proposed by the traceability community for the community, is essential to
disseminate good traceability practices and to advance them. The development
of such a resource is part of the impetus behind the formation of the Center of
Excellence for Software Traceability (Hayes et al., 2007).

Purposed Req 5 To tailor traceability solutions to accommodate key and poten-
tially changing stakeholder requirements and contexts for trace-
ability, and to evolve the overarching traceability strategy as
needed. [Purposed G 3]

• Status: Once the traceability solution has been designed for a project context, the
strategy is generally to fix this solution for the duration of the project. It can be a
non-trivial exercise to reconfigure the entire approach mid-project.

• Promise: The growth in the use of agile approaches to software and sys-
tems development, coupled with more focus on the use of services to satisfy
requirements, is necessitating the development of lightweight, lean and dynamic
traceability solutions. Such solutions are emerging.

Purposed Req 6 To agree upon measures of effectiveness with respect to organi-
sational and business needs for a traceability strategy and its
component aspects. [Purposed G 4, G 5]

• Status: There are no agreed upon measures for assessing the effectiveness of
competing traceability strategies in different organisational and business con-
texts. Reporting on the effectiveness of an overarching traceability strategy, and
its underlying models, processes and tools is largely the remit of qualitative
industrial case studies at present.

• Promise: The number of industrial case studies and traceability experience
reports has been growing in recent years and there would be value in more
systematic cross-comparison of this work.

4.5.2 Traceability Creation and Maintenance (Purposed)

Purposed Req 7 To understand and define the requirements and constraints
of those stakeholders who create and/or maintain traces (i.e.,
the creators’ and maintainers’ requirements for traceability).
[Purposed G 2]

• Status: The goal of research is to simplify the task of traceability creation and
maintenance by reducing the human effort required. However, this research has
focused more on the study of techniques, methods and tools than on the peo-
ple creating and maintaining the traceability and their needs. As a consequence,
there is little real appreciation as to what may be gained or what may be lost

356 O. Gotel et al.

by the move to increasing automation in these processes, such as the tacit role
that a manual creator or maintainer plays, and the implicit development and
maintenance knowledge gained by humans from doing the work.

• Promise: Empirical studies of humans undertaking various traceability tasks are
beginning to emerge from research on trace automation, and this will lead to more
understanding of the underlying activities and provide baselines for performance
comparison.

Purposed Req 8 To develop a model of the general process of traceability creation
and maintenance that depicts the generic workflow and compo-
nent activities of the process and articulates the life cycle of a
single trace within this process. [Purposed G 2]

• Status: There is no fine-grained description of traceability creation and mainte-
nance processes, along with how these fit into a wider traceability process. The
various steps and activities involved in creation and maintenance of a single trace
are neither articulated nor agreed.

• Promise: Initial work on a generic traceability process model by the traceabil-
ity community deconstructs the traceability creation and maintenance processes
into their fundamental activities, and examines the workflow needed to cre-
ate and maintain a single trace (see the chapter “Traceability Fundamentals”).
Understanding and agreeing upon the underlying specifics of these processes will
potentially help to identify process bottlenecks, and then guide and improve the
support in these areas.

Purposed Req 9 To use the creators’ and maintainers’ requirements for trace-
ability, in conjunction with a generic traceability process model,
to guide and support the traceability creation and maintenance
process. [Purposed G 3]

• Status: While there has been focus on the need to define the traceability process to
be enabled by traceability techniques, methods and tools, the support to actually
define this process on a project and then to implement this process in a team
setting is not always readily available to practitioners.

• Promise: Guidance for traceability process definition is provided in some leading
commercial tools or supported via consulting arrangements. Ideally, creators and
maintainers would be provided with the means to define and configure their own
working processes.

Purposed Req 10 To agree upon measures of effectiveness with respect to trace-
ability creation and maintenance. [Purposed G 3]

• Status: Researchers have conducted some initial studies to compare the effective-
ness of fully automated, semi-automated and manual approaches to traceability

The Grand Challenge of Traceability (v1.0) 357

creation and maintenance, resulting in well-accepted measures of trace recall and
trace precision. While these measures focus on the quality of the trace links, they
do not account for the quality of their end use by stakeholders. They also do
not account for the impact of using various traceability creation and maintenance
techniques, methods and tools on the wider development tasks.

• Promise: Any discussion on the effectiveness of the traceability creation and
maintenance process needs to be tied to the effectiveness of the traces in end
use. Even where trace links are well crafted, this does not imply that the creation
process was effective. Promise lies in a more sophisticated understanding and
analysis of “effectiveness” and its associated measures.

Purposed Req 11 To gather data on and monitor the process of traceability cre-
ation and maintenance, using agreed measures of effectiveness,
so as to continuously improve the process. [Purposed G 3, G 5]

• Status: Researchers have conducted some initial studies to compare the effective-
ness of fully automated, semi-automated and manual approaches to traceability
creation and maintenance, though this has not yet matured to using these data to
then evolve the process of creation and maintenance.

• Promise: More comparative studies of manual processes for traceability creation
and maintenance with semi and fully automated settings are emerging, along with
baselines for comparisons upon which to improve. Benchmark experiments and
data sets will shape the future research direction and practical uptake strategies
in these areas.

Purposed Req 12 To understand the paradigm used to develop the software or
system (e.g., object-oriented, agent-oriented, service-oriented,
product line, etc.), the nature of the artifacts involved and the
domain specifics, so as to contextualise support for the trace-
ability creation and maintenance processes within the wider
software and systems development workflow. [Purposed G 3]

• Status: Approaches to traceability vary across development type and domain.
However, there has been little systematic effort to articulate those project char-
acteristics that impact the choices made for the approach to traceability creation
and maintenance.

• Promise: Understanding what approaches to traceability creation and mainte-
nance work best in different situations, and blending approaches as needed.

Purposed Req 13 To collect and use data about traceability evolution, such as
intermediate versions of traces, to improve the initial trace-
ability creation process and subsequent maintenance tasks.
[Purposed G 5]

358 O. Gotel et al.

• Status: Trace maintenance data has been under-utilised to date.
• Promise: Historical traceability data may reveal useful insight into both traceabi-

lity creation and maintenance process improvement areas.

4.5.3 Traceability Use (Purposed)

Purposed Req 14 To understand and define the full range of stakeholders who
use the end products of traceability (i.e., its end users), their
task needs, their constraints and their contexts of use. [Purposed
G 1, G 6]

• Status: To date, the focus of the traceability community has been more on the
processes and software needed to support the mechanics of traceability than on
the needs of the consumers of the traces. Where the needs of the end users is a
concern, research has focused mostly on using traceability to support the tasks of
a specific subset of stakeholders, such as independent validation and verification
analysts, and representatives from regulatory bodies, rather than on the full range
of end users.

• Promise: End user stakeholder requirements for traceability are discussed in a
fragmented way across various publications, often in terms of high-end users and
low-end users of traceability. Typical end user requirements for traceability in
different projects, organisations and domains could be consolidated and classified
as a definitive resource for the traceability community to draw upon.

Purposed Req 15 To provide guidelines to determine and prioritise which traces
are needed on a project, by whom, for what purposes, when,
how, at what level of granularity, under what constraints, etc.
[Purposed G 1]

• Status: Actual traceability use in various domains is patchy, as engineering pro-
fessionals do not always recognise that traceability is needed or could save money
or lives. Traceability need assessment is quite coarse and little active support is
provided to do this.

• Promise: Practitioners are beginning to publish more experience reports of trace-
ability in use to the wider traceability community. However, there is the issue of
confidentiality that restricts progress. When organisations implement traceability
techniques and methods that do not work as intended, they do not always publish
the results. This makes it very hard for the traceability community to find out
what does and does not work over time. Better ways to anonymise, sanitise and
incentivise such reporting are sorely needed.

Purposed Req 16 To agree upon measures of effectiveness with respect to trace-
ability in end use. [Purposed G 4]

The Grand Challenge of Traceability (v1.0) 359

• Status: There are no proposed or routinely used measures to assess traceabi-
lity effectiveness in end use in different organisational and business contexts.
Traceability metrics tend to focus on the effectiveness of the actual trace
links (i.e., is it a real one?) and so support assessment for traceability cre-
ation and maintenance purposes only. Researchers have no hard statistics to
confirm whether traceability actually enables what it sets out and purports
to do.

• Promise: Researchers advocate the use of traceability information models that
capture decisions about the anticipated traceability-related queries that the trace-
ability solution should support, and describe the trace artifacts and the trace links
needed to support those queries. This requirements and task-directed approach
is promoted in researcher-led training sessions and there has been some initial
uptake in practice. The obvious next step is to track the effectiveness of the
solution in satisfying these queries from an end user perspective. The metrics
component now needs more consideration.

Purposed Req 17 To gather data on and monitor traceability end use against stake-
holder requirements for traceability, using agreed measures of
effectiveness, to evolve the end user requirements and the capac-
ity for their satisfaction in traceability solutions. [Purposed G 3,
G 4]

• Status: If practitioners have end use effectiveness data, it is rarely shared
within the traceability community, for the reasons described above. Practitioners
primarily rely upon word of mouth (externally) or tool-generated traceability-
related reports (internally) to get feedback about traceability end use for process
improvement purposes.

• Promise: Anonymous feedback, ranking and rating systems are now com-
mon when distributing information on websites. There could be potential in
examining similar strategies for evaluating traceability end use, focusing on
measures less reliant on the concept of “traffic” or “throughput”, to assess
whether the results of traceability are used as intended and are actually useful in
practice.

4.6 Recommended Research (Purposed)

The major research theme to achieve purposed traceability is to define and instru-
ment prototypical traceability profiles and patterns. These would comprise typical
stakeholder requirements for traceability, a way to characterise the wider project
context, and recognised approaches for their accommodation and satisfaction in
traceability solutions. Supporting research topics are listed below.

360 O. Gotel et al.

Research ID Description Req ID

Purposed RT 1 Develop a profile of prototypical role, task and
context-based stakeholder requirements for
traceability, including scenarios of end use for
traceability.

Purposed Req 1,
7, 8, 14, 15

Purposed RT 2 Develop a classification scheme to define the context
of a traceability need, such as salient properties of
projects, organisations and domains.

Purposed Req 2,
12, 15

Purposed RT 3 Develop patterns for traceability implementations
associated with traceability profiles and contexts.

Purposed Req 3,
4, 9, 15

Purposed RT 4 Instrument a mechanism to both use and evolve this
resource of profiles, contexts and patterns,
integrating feedback from practice and
experience.

Purposed Req 5,
9, 11, 13, 17

Purposed RT 5 Propose and agree upon metrics to measure
effectiveness in all areas of the traceability
process.

Purposed Req 3,
6, 10, 16

Purposed RT 6 Perform empirical studies to determine whether the
various stakeholder types find traceability
techniques, methods and tools fit-for-purpose.

Purposed Req 3,
6, 10, 11, 16,
17

Purposed RT 7 Develop a Traceability Body of Knowledge (TBOK)
to define the traceability terminology, profiles,
contexts, patterns, practices, techniques, methods
and tools, and to include resources on metrics,
case studies, lessons, experts, benchmarking,
baselines, etc. Careful attention will need to be
paid to the contribution process for the credibility
and sustainability of such a resource.

Purposed Req
1-17

4.7 Positive Adoption Practices for Industry (Purposed)

Purposed IP 1 Practitioners consult, use and contribute to an evolving Traceability
Body of Knowledge (TBOK).

Purposed IP 2 Practitioners draw upon prototypical traceability profiles, contexts
and patterns when designing and implementing a traceability solu-
tion for their project, organisation and domain.

Purposed IP 3 Practitioners routinely measure the effectiveness of all aspects of
their traceability process, evolve their solution accordingly and con-
tribute these data to the Traceability Body of Knowledge (TBOK).

5 Traceability Challenge 2: Traceability that Is Cost-Effective

The return from using traceability is adequate in relation to the outlay of establish-
ing it.

The Grand Challenge of Traceability (v1.0) 361

5.1 Link to Vision (Cost-Effective)

By establishing traceability automatically and early in the vision scenario, the engi-
neer is alerted to product requirements that she overlooked in the initial stages of the
engineering process, avoiding the need for costly rework later. Such knowledge has
been accrued over a myriad of projects thanks to traceability analyses. The engi-
neer is able to focus on her job, and on those analyses that demand her expertise
and decision-making skills, and is not distracted by building in traceability sup-
port continuously as she works. Moreover, by having the opportunity of creating or
maintaining the traceability on-demand later, the engineer does not have to worry
now about having a traceability problem in the future; she knows that any missing
traceability can always be established cost-effectively if and when needed, based
upon tried and tested best-of-breed techniques, methods and tools.

5.2 Problems Addressed (Cost-Effective)

Complete traceability is often impractical, expensive to establish and not always
necessary. Too much time can be invested in establishing traceability that may never
be used or useful on a project, such as the provision of rich link semantics that are
not actually exploited in traceability-related queries or analyses. It is difficult to
know what is “just enough” traceability for each project situation because these sit-
uations themselves are often poorly expressed. The costs incurred in establishing
traceability are also perceived to come too early on in a project, which leads to
delays in implementing traceability, or in implementing it only under crisis mode;
but traceability is not something that can be retrofitted with ease later. Because
there is little sharing of good practices and heuristics for traceability, costs can
further escalate as well known mistakes are made. Furthermore, there is inade-
quate understanding of the costs incurred during the entire traceability life cycle,
so the approximate return on investment from traceability is not readily known or
knowable at present. Together, these issues give traceability a bad reputation finan-
cially and present a real dilemma, as industry is reluctant to take on new approaches
emerging from research without more data on the full costs and anticipated returns.

5.3 Dream Process (Cost-Effective)

• Traceability Strategy. Interactive and intelligent planning models, decision sup-
port tools and return on investment simulators will illustrate the business impact
of spend decisions on traceability solution options.

• Traceability Creation and Maintenance. Traceability will only be created when it
is needed, at exactly the quality needed – no more, no less – and each trace will be
created in the most economical way possible to serve its intended purpose. Just
enough traceability will always be maintained, and each trace will be maintained

362 O. Gotel et al.

in the most economical way possible to continue to serve its intended purpose.
Traces will be archived and discarded once they are no longer needed to avoid
unnecessary maintenance costs.

• Traceability Use. The end user will always be effectively supported in his or her
task. The costs for establishing this traceability will only be incurred at the point
of end use, which will be proportional to the benefits obtained, and these data
will be known ahead of time for planning purposes.

5.4 Goals (Cost-Effective)

Cost-effective G 1 The total cost of traceability throughout a project’s life is com-
puted, along with the projected return on investment, and it
is available to assess the potential effectiveness of competing
traceability solutions.

Cost-effective G 2 Just enough traceability is provided, balancing the stakeholder
requirements for traceability with the resource constraints.

Cost-effective G 3 The perfect middle ground between creating and maintaining
traceability early and creating and maintaining traceability on
demand is attained, so that the time, effort and money that are
expended in establishing traceability are in balance with the
resourcing profile of the project and the required quality in end
use.

Cost-effective G 4 Lessons learned are captured, shared and capitalised upon,
so that the cost and effectiveness of various traceability tech-
niques, methods and tools are known and improved upon.

Cost-effective G 5 Intuitive user interfaces and interaction mechanisms enable
process-related cost decisions to be explored and altered at all
stages of the traceability process. The factors that influence
traceability cost-effectiveness at different stages of the project
life cycle are hence monitored and the traceability process can
be adapted as needed.

5.5 Requirements (Cost-Effective)

5.5.1 Traceability Strategy (Cost-Effective)

Cost-effective Req 1 To provide support to get the right traceability (how good) at
acceptable cost (how much) at the appropriate time (when)
during traceability planning. [Cost-effective G 2, G 3, G 5]

• Status: There are no traceability-specific planning techniques and tools that help
the practitioner to balance stakeholder requirements for traceability against its
implementation costs. Practitioners tend to rely upon more traditional project

The Grand Challenge of Traceability (v1.0) 363

management techniques and tools to assist their traceability planning at present.
Furthermore, the resulting strategies are unlikely to vary over time.

• Promise: A better understanding and definition of what traces are needed, when
and where, at what levels of quality, and for what duration on a project (i.e.,
progress with traceability challenge one) will assist with progress on this chal-
lenge. Research on value-based traceability is already underway and is needed
for making strategy decisions on the traceability that is needed, leading to viable
and mixed approaches in the future, and to more sophisticated visual planning
aids.

Cost-effective Req 2 To agree upon metrics for measuring the traceability return
on investment on a project, informing those data to collect,
and those mechanisms to put in place to obtain these data
and measures. [Cost-effective G 1]

• Status: Few agreed upon return on investment metrics are available for trace-
ability, let alone used routinely, when planning and making strategic traceability
decisions.

• Promise: Value-based approaches could lead to the situation where every trace
that is created and maintained, manually, semi-automatically or fully automati-
cally, is routinely tagged with data on both the price to create and maintain the
trace, and the expected return in terms of the anticipated need it will satisfy. The
cost to achieve this crude metric would itself need to be balanced against the
benefits of so doing.

Cost-effective Req 3 To understand the fixed and variable costs for a life cycle-
wide traceability solution. [Cost-effective G 1]

• Status: Currently, there is little examination as to where the various traceability
costs actually lie across the entire software and systems development life cycle.
Furthermore, there is little understanding as to the essential costs and the optional
costs, such as those specific to particular project characteristics.

• Promise: Models of the traceability process are beginning to decompose the
underlying activities of traceability, thus providing a structure to investigate and
delineate the cost profile. This needs to be superimposed on to development life
cycle models and the wider cost profile.

Cost-effective Req 4 To understand the costs and benefits of establishing trace-
ability at different times on a project, and at varying levels
of granularity. [Cost-effective G 3]

• Status: There are two extreme strategies for establishing traceability: (1) Early,
by people who are familiar with the software or system. While this may pro-
duce quality traces at little cost per trace, the traces may never be used or useful;
(2) On-demand, by people who may lack intricate knowledge of the software or

364 O. Gotel et al.

system. While the speed and quality of the traces may be lacking in this approach,
the traces that are produced are actually needed and used. No single strategy is
perfect and a balance is now being sought.

• Promise: Proposals to distribute the cost of traceability across the whole project
life cycle, and to mix strategies such as (1) and (2) over this life cycle, have been
made and now need to be developed further.

Cost-effective Req 5 To capitalise upon historical return on investment measures
and cost-benefit analyses when setting up a traceability
strategy. [Cost-effective G 1, G 2, G 4]

• Status: Many of the benefits resulting from traceability may be realised only after
the delivery of a product. This is hard to factor into fixed budgeting strategies
without historical evidence of such. Practitioners share data on traceability prac-
tices, and rely upon past experiences when formulating traceability strategies,
but this knowledge sharing may be restricted to personal networks or internal to
organisations at present.

• Promise: There is a growing body of practitioner experience reports that are
beginning to disseminate knowledge on traceability results and successful prac-
tices among the traceability community. More quantitative data on the costs and
benefits now need to be gathered.

5.5.2 Traceability Creation and Maintenance (Cost-Effective)

Cost-effective Req 6 To establish benchmarks to compare and contrast the cost-
effectiveness of the various traceability creation and mainte-
nance techniques, methods and tools. [Cost-effective G 4]

• Status: There is little comparative data available on the cost-effectiveness of var-
ious traceability techniques, methods and tools. Researchers have focused on
measuring disparate aspects of individual approaches. There is no simple mech-
anism for the practitioner to measure the cost-effectiveness of the total trace
creation and maintenance effort on a project because the cost-effectiveness of
creating and maintaining even a single trace link is not measured at present.

• Promise: Benchmarking has become a priority topic within the traceability
research community. The Tracy project is developing TraceLab as an environ-
ment within which to facilitate the development and use of such benchmarks for
experimental studies. This should lead to the availability of more comparative
data in the near future.

Cost-effective Req 7 To provide a mix of continuous and on-demand approaches
to traceability creation and maintenance to balance the costs
throughout a project’s life. This may include traces that
are discovered, created and maintained only when needed.
[Cost-effective G 3]

The Grand Challenge of Traceability (v1.0) 365

• Status: In practice, traces are often created that are never used, mostly manually,
which is costly in terms of the time, effort and money expended. The true costs
of this expenditure are rarely measured and known. The research focus on auto-
mated traceability creation and maintenance seeks to reduce the costs and errors
that occur when this process is performed manually. The emphasis to date has
been on exploring continuous versus on-demand approaches to traceability cre-
ation and maintenance, and the effectiveness of these techniques and methods,
not on their respective costs.

• Promise: The promise lies in the potential to mix and match from a portfolio of
complementary traceability creation and maintenance approaches, so as to bal-
ance needs with the available resources. To do this effectively, the various options
will need to have cost profiles.

Cost-effective Req 8 To develop more cost-effective techniques, methods and
tools for traceability creation and maintenance. [Cost-
effective G 4]

• Status: With a research focus on the automated creation of trace links, to save on
the costs of initial traceability creation and the costs of ongoing maintenance, the
emphasis has been on the effectiveness of these techniques, methods and tools
in creating actual trace links. The costs incurred and the savings made in using
these, in relation to manual processes, are still under investigation. Moreover, it is
the traces that are used in practice that are more likely to be maintained, whereas
those that are not used are left to decay. There has been no research to date on
whether this is an effective strategy.

• Promise: The focus on benchmarks for traceability, establishing frameworks for
experimentation and baselines to improve upon, will provide the needed com-
parative data to assess and improve upon individual techniques, methods and
tools.

5.5.3 Traceability Use (Cost-Effective)

Cost-effective Req 9 To reduce the cost and increase the performance of retriev-
ing and displaying traces for end use. [Cost-effective
G 1, G 4, G 5]

• Status: The costs for undertaking each activity in the traceability process are
rarely quantified at present. The assumption is that retrieving and displaying
traces can be a performance bottleneck and a deterrent to end use where it
distracts the end user from their primary task.

• Promise: Ongoing improvements in performance with regard to information
retrieval and data visualisation will negate this issue over time, leading to the
potential for real-time immersive trace data to facilitate end user tasks more
seamlessly.

366 O. Gotel et al.

Cost-effective Req 10 To configure and adapt traces to support end user tasks
dynamically, creating new traces on-demand as needed,
rather than hardwiring them in upfront just in case they are
needed. [Cost-effective G 3]

• Status: In practice, many trace links are created and maintained that are either
never used or never used effectively, partly because they are not needed and
partly because the associated traces required to support a complete end user task
are missing. Research has not identified the optimal set of traces, partly because
it does not have a thorough understanding of stakeholder needs (traceability
challenge one).

• Promise: Progress in automated traceability creation could lead to dynamically
generating traceability to support end user tasks, if low cost. This would need to
be coupled with a greater understanding of task-specific needs, and a way for end
users to articulate these needs both dynamically and non-intrusively.

Cost-effective Req 11 To provide visualisations and interaction mechanisms for
end users to navigate and access traces, so as to render
traces more effective for task-supported end use. [Cost-
effective G 5]

• Status: The artifacts that are related on a project are generally presented to prac-
titioners in ways that do not always support their end user tasks explicitly, such
as via textual lists or traceability matrices. So, while traceability may be present
on a project, it is not guaranteed that the practitioner can and will use it. This
means that the return from the effort expended may never be realised. Little
research attention has been paid to the usability and effectiveness of the results
of traceability in end user tasks or to improvement thereof.

• Promise: Researchers are beginning to propose interesting visualisations for
traceability, but these tend to depict the trace links so as to support their valida-
tion rather than to support end user tasks. Human-computer-interface researchers
and practitioners, interaction designers and visual artists are enhancing many
aspects of software and systems development practice. Their contributions are
essential to make traceability end use more intuitive and amenable to task
support.

5.6 Recommended Research (Cost-Effective)

The major research theme to achieve cost-effective traceability is to develop
cost-benefit models for analysing stakeholder requirements for traceability and
associated solution options at a fine-grained level of detail. Supporting research
topics are listed below.

The Grand Challenge of Traceability (v1.0) 367

Research ID Description Req ID

Cost-effective RT 1 Agree upon metrics for measuring traceability
cost-effectiveness.

Cost-effective
Req 2

Cost-effective RT 2 Understand the typical cost profile of traceability
outlay on a project.

Cost-effective
Req 3, 9

Cost-effective RT 3 Develop the means to associate a cost and a benefit
profile with every trace that is brought into
existence and maintained.

Cost-effective
Req 7, 10

Cost-effective RT 4 Create decision support tools and impact analysis
tools for making traceability return on investment
decisions, such as a mechanism to globally and
locally optimise the traceability solution based
upon stakeholder requirements for traceability, the
available resources and the return on investment
required.

Cost-effective
Req 1, 4, 5, 7

Cost-effective RT 5 Gather and disseminate benchmark empirical studies
for researchers to demonstrate the
cost-effectiveness (or not) of various traceability
processes, techniques, methods and tools, as part
of the Traceability Body of Knowledge (TBOK).

Cost-effective
Req 3, 5, 6

Cost-effective RT 6 Decrease the costs and improve the effectiveness of
the techniques, methods and tools supporting all
activities of the traceability process.

Cost-effective
Req 8, 11

5.7 Positive Adoption Practices for Industry (Cost-Effective)

Cost-effective IP 1 Practitioners consult the Traceability Body of Knowledge
(TBOK) to understand the cost-effectiveness of existing and
new techniques, methods and tools when making traceability
strategy decisions.

Cost-effective IP 2 Practitioners use decision support tools and impact analysis
tools to explore the cost-effectiveness of employing various
and mixed traceability strategies on a project, and to help
adapt the strategy over time.

Cost-effective IP 3 Practitioners track the return on investment from traceabil-
ity on a project and contribute these data routinely to the
Traceability Body of Knowledge (TBOK).

6 Traceability Challenge 3: Traceability that Is Configurable

Traceability is established as specified, moment-to-moment, and accommodates
changing stakeholder needs.

368 O. Gotel et al.

6.1 Link to Vision (Configurable)

Traceability is established and used with consistency across the distributed teams
in the vision scenario, to suit the particular needs of the engineer’s project, organi-
sation and domain. As the engineer walks through a virtual project environment to
explore the impact of a new requirement on the project, the paths and discussions
that are taken are simultaneously packaged as traceable rationale for any decisions
implemented, according to the project’s and organisation’s potentially changing
requirements for traceability. There is a real-time intention for traceability on the
project, which is specified and complied with at all times by all team members.

6.2 Problems Addressed (Configurable)

The traceability solution is generally fixed upfront for a project and rigid there-
after. Once a traceability information model and an enabling process have been
agreed to on a project (if at all), it can be problematic to change the particulars
mid-project. Even when the traceability process is pre-defined and agreed upon, it
is often implemented inconsistently in and across teams, irrespective of whether
the team is co-located or distributed. Furthermore, when the stakeholder require-
ments for traceability change or the implementation specifics change, not all of the
stakeholders may be notified. With time, the manner in which the traceability is
established on a project can drift from the specified intent. A typical concern that
is a common barrier to technology transfer of new traceability techniques, meth-
ods and tools in industry is whether research-initiated techniques can actually be
configured to fit real project needs and circumstances as they emerge.

6.3 Dream Process (Configurable)

• Traceability Strategy. A traceability planning and management tool will auto-
matically create a project-specific traceability solution with an underlying trace-
ability information model and process that reflects stakeholder requirements for
traceability. It will also provide an interactive traceability dashboard that will
allow this all to be re-configured in real-time.

• Traceability Creation and Maintenance. Traces will be identified and created
based upon a project’s traceability information model and its actual artifacts,
and they will be compliant with this definition of traceability intent. Traces will
then be self-maintained such that they align with what is defined in a project’s
traceability information model at all times.

• Traceability Use. Semantically rich traceability will be personalised to satisfy
individual needs for end use at all times, by dynamically reconfiguring and re-
purposing existing traces as needed.

The Grand Challenge of Traceability (v1.0) 369

6.4 Goals (Configurable)

Configurable G 1 The intended traceability is defined for a project, using rich
semantics for trace links, and any changes to these intentions
are reflected.

Configurable G 2 The traceability solution on a project complies with the defini-
tion of intent, accommodating diverse and potentially changing
needs at all times.

Configurable G 3 Proactive prediction provides support for determining and
accommodating future stakeholder requirements for traceabi-
lity, adapting the specification of intended traceability, updating
the pre-existing traceability solution and reconfiguring existing
traces over time as needed.

Configurable G 4 Levels of compliance are defined so as to either relax or tighten
the traceability that is established on a project, thereby config-
uring the extent to which it is necessary to comply with the
intended traceability at different times, for differing artifacts or
by differing stakeholders.

6.5 Requirements (Configurable)

6.5.1 Traceability Strategy (Configurable)

Configurable Req 1 To define the intended traceability for a project as an integral
part of the traceability solution. [Configurable G 1]

• Status: Researchers advocate that the intended traceability for a project be defined
within a semantically rich traceability information model or meta-model. Such a
model defines the trace artifact types and their associated trace link types based
upon the analyses made possible by traversing these traces. The state of the prac-
tice is that traceability information models, if built, are typically rudimentary and
their trace links are rarely semantically typed. The potential of using rich seman-
tics is thus seldom exploited in traceability-related queries and end use. While
there are some domain-specific traceability information models, it appears that
many practitioners have yet to be convinced of their value. High-level goals tend
to be provided to explain the purpose of traceability information models, rather
than actual guidance in their construction and use.

• Promise: Research has emphasised simple and pragmatic traceability infor-
mation models recently, so some flow-through to industry is expected. The
Tracy project further proposes to include a downloadable traceability informa-
tion model tool for practitioners to configure and use, potentially facilitating
uptake.

370 O. Gotel et al.

Configurable Req 2 To define variable levels of granularity in the intended trace-
ability, to accommodate different stakeholders and artifacts,
and to account for differing parts of a system at differ-
ent times in a project’s life (i.e., heterogeneous solutions to
heterogeneous needs). [Configurable G 1, G 4]

• Status: Traceability solutions are typically designed to be homogeneous (i.e., one
size fits all). Research has not addressed variability in the traceability solution, so
tools rarely support this. Traceability information models, where created, rarely
come in a heterogeneous and partitioned form either.

• Promise: Finer-grained and parameterised traceability information models, tai-
lored to different project contexts and needs, may enable variability. Individual
requirements may demand different levels of traceability based upon their value
and volatility, so risk-driven provisioning may be worth investigating.

Configurable Req 3 To use the definition of the intended traceability to provide
traceability process guidance, and to undertake compliance
and consistency checks in the actual implementation of the
traceability process across team members and other project
constituents. [Configurable G 2, G 4]

• Status: A number of commercial tools offer assistance to define the intended
traceability on a project and then to enforce compliance and consistency in its
implementation. Process compliance and consistency management is already a
mature topic in other branches of software and systems engineering.

• Promise: Process-aware integrated development environments that monitor the
current state of a project and, when coupled with a well-defined traceability
information model, provide guidance and feedback on the traceability that is
implemented in real-time. Using a definition of the intended traceability on a
project more habitually would enable such compliance checking and consistency
management.

Configurable Req 4 To adapt the definition of the intended traceability, and any
associated process, to accommodate changing contexts and
needs. [Configurable G 1, G 2, G 3]

• Status: Traceability information models, where defined and used, seldom come
in an evolvable form. They can, therefore, be difficult to change retrospectively.
Research has not addressed subsequent changes to the traceability information
model and process, so tools rarely support this evolution.

• Promise: The concepts underpinning self-managing and adaptive systems, along
with techniques from autonomic computing, are likely to play an important role
in the required re-configurability of traceability solutions.

The Grand Challenge of Traceability (v1.0) 371

6.5.2 Traceability Creation and Maintenance (Configurable)

Configurable Req 5 To create and maintain traces that comply with the intended
traceability for a project, whenever, however and wherever
these traces are established. [Configurable G 2, G 4]

• Status: Research proposes defining traceability information models to guide the
creation of valid traces. Such models help to check the validity of the trace links
that have been created, and tools can enforce this checking, but they do not readily
help in capturing the trace links in the first place. Semantics may be attached to
trace links in practice, by putting attributes on trace links in leading requirements
management tools, but these semantics are often minimal, inconsistently applied
and not always subsequently exploited in traceability end use.

• Promise: Using a definition of the intended traceability on a project, as specified
in a semantically rich traceability information model, to guide the actual dis-
covery and creation of trace links, and then to guide ongoing trace maintenance
activities.

Configurable Req 6 To assess whether there is a need to remove and re-create
existing traces when the definition of the intended traceability
changes on a project, as an alternative to maintaining versions
of existing traces. [Configurable G 3]

• Status: Where the context of a project changes, such as the introduction of new
audit requirements in an industry or the reuse of an existing project’s artifacts
and associated traceability in a completely new project, the traceability remains
relevant to the prior context. No research has investigated switches of con-
text mid-project or in reuse situations for its ramifications with respect to trace
validity and ongoing trace maintenance.

• Promise: In theory, the established traceability can be checked against its trace-
ability information model at any time, where one exists on a project, and any
discrepancies can either be noted or rectified. In practice, such models are infre-
quently used in this way beyond initial trace creation and then for ongoing
maintenance, but this support would be a simple and natural progression.

6.5.3 Traceability Use (Configurable)

Configurable Req 7 To use models of the end user, the wider end use process
and end user traceability-related queries to guide the fine-
grained definition of the intended traceability on a project.
[Configurable G 1, G 3]

• Status: Researchers advocate that traceability information models be constructed
that reflect and enable the answering of end user traceability-related queries.
But, because there is an incomplete understanding of the various end users
of traceability at present, their task queries are not routinely used to define

372 O. Gotel et al.

traceability information models in practice. However, studies of how users use
traces and models of the end use process are both emerging.

• Promise: Operational profiles indicate where to focus the testing effort in soft-
ware and systems development. A similar profile of intended end use could lead
to defining a profile for the traceability focus on a project, allowing for variation
in both its specification and implementation over time and contexts.

Configurable Req 8 To monitor end use to predict future needs and re-configure
the definition of the intended traceability as needed.
[Configurable G 3]

• Status: Since there is seldom a feedback loop from traceability in actual use back
to the original intentions, the traceability that is created and maintained is rarely
adjusted moment-to-moment. It is not clear whether this would even be a cost-
effective approach.

• Promise: Data collected on end use, both historical and real-time, may provide
insights into likely future needs and enable the development of probabilistic end
use models. There may also be some scope for end users to define and manipulate
their own traceability needs and models.

Configurable Req 9 To adapt pre-existing traces to address end user requirements
for traceability dynamically. [Configurable G 3]

• Status: Where implemented, trace links are generally hard-wired to provide sup-
port for particular predefined uses in practice and are rarely reconfigurable to
support new contexts of traceability use.

• Promise: With advances in monitoring, and in autonomic techniques and tech-
nologies, traces could be self-aware and adapt to changing demands. Smart traces
would assist with the reuse and repurposing of traces for new end uses.

6.6 Recommended Research (Configurable)

The major research theme to achieve configurable traceability is to use dynamic,
heterogeneous and semantically rich traceability information models (or similar
specifications of the intended traceability) to guide the definition and provision of
traceability. Supporting research topics are listed below.

Research ID Description Req ID

Configurable RT 1 Provide better ways to define the traceability that is
required on a project, accommodating varying levels
of granularity and rich semantics to account for
differing tracing needs, artifacts and stages of the
project life cycle. This could be via traceability
information models or other specification concepts.

Configurable
Req 1, 2, 7

The Grand Challenge of Traceability (v1.0) 373

(continued)

Research ID Description Req ID

Configurable RT 2 Provide a mapping from the traceability information
model (or similar specification concept) to its
instantiation on a project, so as to support change and
enable compliance checks and consistency
management in its implementation.

Configurable
Req 3, 4, 5

Configurable RT 3 Investigate techniques to automatically propose
traceability information models (or similar
specification concept) based upon an analysis of
stakeholders’ requirements for traceability and the
projected project artifacts in various organisations
and domains.

Configurable
Req 7, 8

Configurable RT 4 Investigate how to reconfigure or re-purpose a
pre-existing set of traces to accommodate changes in
the definition of the traceability information model
(or similar specification concept) – i.e., smart trace
links.

Configurable
Req 6, 9

6.7 Positive Adoption Practices for Industry (Configurable)

Configurable IP 1 Practitioners use a traceability information model (or similar
specification concept) to define and update their traceability
intentions for a project. This definition and use process will be
supported and form an integral part of the traceability solution.

Configurable IP 2 Practitioners work on global and distributed projects establish-
ing traceability consistently and as intended (which may not
mean homogeneously) irrespective of locale.

Configurable IP 3 Practitioners change their particular approach to traceability as
their needs and context dictate, yet comply with the traceability
of other practitioners.

7 Traceability Challenge 4: Traceability that Is Trusted

All stakeholders have full confidence in the traceability, as it is created and main-
tained in the face of inconsistency, omissions and change; all stakeholders can and
do depend upon the traceability provided.

7.1 Link to Vision (Trusted)

In the vision scenario, the engineer is confident in making decisions based upon
the options presented to her. She trusts the results of the traceability and expects the
associated analyses it enables to be accurate and up to date at all times. The engineer

374 O. Gotel et al.

is alerted to the impact on traceability of potential changes in the requirements and
their implementation, and any necessary traceability updates for the changes that are
implemented are made proactively, meaning that this confidence in the traceability
is retained. The traceability simply self-repairs and evolves at all times without the
engineer having to do anything explicit. The engineer is also comfortable in delegat-
ing any ensuing tasks that will impact the traceability, as she trusts that the overall
traceability will not be jeopardised by others’ actions or inactions. The traceability
is always dependable; it is “ready-to-use” by the engineer and even “ready-to-wear”
on her sweater sleeve.

7.2 Problems Addressed (Trusted)

The traceability that is established on many projects often has a dubious provenance,
impacting how much trust can be placed in the analyses it facilitates, as well as its
longevity. People establishing traceability make mistakes that go undetected and
the impact of such mistakes are rarely known. Traces decay unless they are culti-
vated, but the useful life and quality of the trace links is usually also unknown. The
traced artifacts can themselves expire and this can remain unknown, with unfore-
seeable consequences. Without effort, there is traceability entropy over time. This
is a vicious cycle for both establishing and using traceability – why keep the trace-
ability current if it is already flawed and why use it? Practitioners are not going
to invest in something that they do not find trustworthy or that demands inordinate
housekeeping effort from them to keep it dependable and credible.

7.3 Dream Process (Trusted)

• Traceability Strategy. An up to date quality profile for all the traces established
and used on a project will be planned for and made available at any moment in
time.

• Traceability Creation and Maintenance. Every trace that is created will have
associated quality metrics. Once created, every trace will be guaranteed to a
defined quality level and strive to retain its own ongoing integrity, despite changes
in the system and artifacts, and its quality metrics will be updated accordingly if
necessary.

• Traceability Use. Only trusted traces will be used to support different traceability-
enabled tasks on a project. The end user will trust the traceability and depend
upon its analyses.

7.4 Goals (Trusted)

Trusted G 1 The factors that impact the quality of the traceability process and
product are known and factored into traceability strategies.

The Grand Challenge of Traceability (v1.0) 375

Trusted G 2 The quality of the traceability is measured on a project, at an individ-
ual trace level and at a trace set level, and this information is provided
to all stakeholders.

Trusted G 3 Degrees of confidence in the analyses provided by the traceability are
calculated and this information is provided to all stakeholders.

Trusted G 4 The traceability is self-healing, so its quality is preserved in the face
of change, or updated where adjusted.

7.5 Requirements (Trusted)

7.5.1 Traceability Strategy (Trusted)

Trusted Req 1 To agree upon metrics to define the quality, both required and
actual, of all aspects of the traceability process and product.
[Trusted G 2, G 3]

• Status: Research on automated trace recovery and trace capture has made wide
use of a number of quality metrics common in the information retrieval discipline,
such as for the recall and precision of trace links. Other than these and their
associated metrics, there are few agreed upon measures for traceability quality.

• Promise: Precision and recall metrics are only a start, and quantitative measures
of traceability process and product quality will only take us so far. Qualitative and
probabilistic measures of traceability quality will need to be added to provide for
a mix of measures.

Trusted Req 2 To account for levels of completeness, correctness, consistency,
etc. in the various trace elements when planning and managing a
traceability solution. [Trusted G 1, G 2]

• Status: The artifacts to be traced are seldom “perfect”. Researchers have focused
on the quality of the trace links, more so than the quality of the trace artifacts to
date, but the quality of the overall traceability is part determined by the quality
of those artifacts being linked and traced. There is rarely any discussion on arti-
fact quality and its ramifications on the traceability, and little “cleaning” of the
artifacts to be traced takes place in practice.

• Promise: If you link garbage you retrieve garbage. Those artifacts being traced
need to be of an acceptable quality standard (i.e., accurate, complete, up to date,
consistent, etc.). Or, where artifact quality is lacking, their quality attributes need
to be understood and taken into account. Improvements in development prac-
tices, coupled with agreed upon quality metrics for traceability, will be important
here. Advances will come from more focus on writing better requirements and
by improving the other engineering artifacts to be traced, and by providing real-
time feedback on their potential traceability at the time at which these artifacts
are created.

376 O. Gotel et al.

Trusted Req 3 To measure all aspects of the traceability process for completeness,
correctness, consistency, etc., based upon agreed metrics. [Trusted
G 1, G 2]

• Status: The quality of the traceability process itself is even less examined than the
quality of the elements forming the traces. Process quality measures are not rou-
tinely integrated into the traceability strategy, limiting the potential for informed
traceability process improvement.

• Promise: The use of process data and quality measures to advance the quality
of the trace product, as is common practice in general process improvement,
would provide a mechanism for traceability process improvement. Levels for
such improvement could also be defined along the lines of the more general
capability maturity models.

Trusted Req 4 To understand the nature and impact of human vulnerability on
all aspects of the traceability process, and to build in suitable
mitigation strategies to address them. [Trusted G 1, G 2, G 3, G 4]

• Status: When creating and maintaining traceability manually, humans can err in
their decisions, actions and inactions. When traces are created automatically,
humans may not always trust the process that was used to create the traces,
impacting their likelihood to use them. Furthermore, when performing certain
traceability-enabled tasks in practice (such as impact analysis where it is essen-
tial to discover each and every impacted component), any incompleteness or error
in the traces created (either manually or automatically) may lead the end users to
mistrust other traces created in the same manner, especially where they are led
to believe that the traces will be complete. Little attention has been paid to the
impact of human involvement and trace confidence levels in all aspects of the
traceability process.

• Promise: Models of human involvement in the traceability process are needed
to gain a greater understanding of the potential value humans add to the process
and the bottlenecks they present. Researchers are now beginning to look at the
“humans in the loop” and more studies of this nature are essential.

Trusted Req 5 To use the traceability itself to understand and strengthen the qual-
ity of the traceability on a project (i.e., traceability bootstrapping).
[Trusted G 2, G 4]

• Status: The traceability that is already established on a project can itself be used to
help identify some quality attributes, such as the completeness of the traceability
via an examination of missing artifacts. Researchers are also beginning to study
what can be learned about the traceability from both the presence and the absence
of traces.

• Promise: Using traceability analyses to advance traceability quality may present
some interesting opportunities for traceability bootstrapping.

The Grand Challenge of Traceability (v1.0) 377

7.5.2 Traceability Creation and Maintenance (Trusted)

Trusted Req 6 To define and agree upon standards to create and maintain quality
traces. [Trusted G 2, G 4]

• Status: Researchers informally agree upon what would be acceptable values for
potential traceability quality metrics, such as for the recall and precision associ-
ated with automated traceability creation. In an attempt to reach such quality
targets, recent research combines automated techniques to identify candidate
trace links with voting-based mechanisms to improve and bolster the confidence
in the quality of the traces created.

• Promise: Reaching agreement upon how the quality of a trace and its compo-
nent elements are defined, and establishing benchmark experiments and datasets
to compare techniques, methods and tools for their creation and maintenance
against baselines.

Trusted Req 7 To gather requisite data for both traceability quality assessment and
the future upkeep of this quality at the time of a trace’s creation.
[Trusted G 2, G 4]

• Status: Researchers have paid much attention to boosting the confidence levels
with automated traceability creation, using the concept of “candidate links” and
by setting thresholds for selecting among them.

• Promise: Providing suitable semantics and meta-data to clarify the quality
attributes of a trace at the point of its initial creation and at every stage in the trace-
ability maintenance process. This relies upon gaining progress, more generally,
with agreeing upon quality metrics for traceability.

Trusted Req 8 To understand the impact of the familiarity of the stakeholders who
establish the traceability with the artifacts under trace (i.e., where
stakeholders are less familiar with the code, there may be less trust
in their ability to trace the design to the code). [Trusted G 1]

• Status: The quality of the traceability is, in part, determined by the person or
the tool doing the tracing, and that topic has received limited attention to date.
Equally, with the emergence of more automated approaches, researchers have
not yet determined whether people trust automatically created traces more than
manually created ones. With automatically created traces, practitioners still need
to take the time to approve the candidate trace links to assure confidence in the
trace link. This means that automated approaches still necessitate human skills in
the loop at present.

• Promise: Empirical studies of the role of human involvement in the traceability
process are emerging and more such studies are needed.

Trusted Req 9 To monitor for any kind of change that impacts the quality of the
traceability. [Trusted G 1, G 4]

378 O. Gotel et al.

• Status: In practice, the validity of traces expires and becomes obsolete, and this
is not always accounted for in practice. This leads to a degradation of trust in the
traceability over time. Research into the automated maintenance of traces assigns
a status of “suspect” to previously created trace links that change and in which
confidence has been lost. Each suspect trace link demands user confirmation on
subsequent actions to perform, while unambiguous updates can only sometimes
be performed in the background.

• Promise: Techniques that identify potentially obsolete trace links, along with sup-
port to update, version and archive these trace links, are needed to retain the
traceability quality. This includes the propagation of updates to ensure that the
overall traceability remains credible. Initial work based upon event-based and
rule-based maintenance is promising.

Trusted Req 10 To understand the process of traceability decay, and to predict and
measure the useful life of a trace. [Trusted G 1, G 4]

• Status: It is currently a costly proposition to maintain all the traces previously
created during a development project. It is also not really known how the qual-
ity of each individual trace impacts the overall traceability quality and so it is
uncertain as to which trace links really deserve the attention.

• Promise: The life expectancies of different traces probably vary and it may not be
necessary to maintain and preserve them all. A triage-based approach to traceabi-
lity maintenance would identify those traces that can be thrown away and those
that can maintain themselves satisfactorily, relieving time to focus on those that
need to be maintained more explicitly and on a case-by-case basis.

7.5.3 Traceability Use (Trusted)

Trusted Req 11 To define the necessary and acceptable quality for different
traceability-enabled end user tasks. [Trusted G 3]

• Status: The quality required of the traceability to support the various end
users and their tasks is rarely articulated in practice, chiefly because the tasks
themselves have not been specified (traceability challenge one).

• Promise: The required traceability quality is unlikely to be a fixed value across
people, projects, tasks and time, so this needs to be articulated. This depends
upon progress with traceability challenge one.

Trusted Req 12 To present confidence levels for the traceability and the analyses it
enables to the end users, with respect to its suitability for different
tasks. [Trusted G 3]

• Status: All trace links are usually presented as equal in practice (i.e., they either
exist or they do not exist). It can also be difficult to assess whether a trace link is

The Grand Challenge of Traceability (v1.0) 379

up to date or not. Some trace visualisations explore the use of colour to suggest
the age and likely relevance of trace links to assist in their end use.

• Promise: Further visual mechanisms to render the quality of the traceability vis-
ible to end users, and to indicate the suitability for various tasks, are needed.
Traces are sometimes going to be less than perfect, so the promise also lies in
making the best use of such traces and ensuing that the risks of this use is made
visible.

Trusted Req 13 To retrieve the most current trace with respect to an end user
query, reflecting real-time dependencies between the latest arti-
facts. [Trusted G 3, G 4]

• Status: To boost the quality and credibility of trace analyses, these must be based
upon up to date trace artifacts and trace links, unless the analyses are historical
in nature. Version control systems allow for such fine-grained control of artifacts
and their dependencies.

• Promise: Version control systems are mature technologies and improvements in
this area will be of continued value to traceability advances.

Trusted Req 14 To accommodate or repair breaks in the traceability record, so that
the quality status of the traceability is always made evident to the
end user. [Trusted G 2, G 4]

• Status: Automated techniques enable traceability to be recovered afresh on end
use request if traces are missing or problematic, but the difficulty lies in iden-
tifying that either a trace is missing or has been compromised in the first
place.

• Promise: More attention to monitoring the quality of traces over time is essential.
This relies upon quality metrics and knowledge of the quality levels required to
support various end user tasks. The quality could be repaired dynamically dur-
ing end use if any issues are encountered. Requirements monitoring research is
already in evidence and could lend insight here.

Trusted Req 15 To provide a link to those people who have contributed traced
artifacts or have created trace links, to enable the end user to
assess whether they are trusted entities and to do further checks
on quality concerns (in person) when needed. [Trusted G 1, G 2,
G 3]

• Status: Practitioners often infer trust in traced artifacts and trace links based upon
who created and who maintained them (i.e., the quality of a product is a reflection
of the process and the people undertaking the process). Equally, where the trace-
ability provided at the point of end use is confusing or deficient in some way,
sometimes the only resort in practice is to talk to the people who established
the traces. Some research has proposed tying in the social production network

380 O. Gotel et al.

underlying the traceability network to enable this support, such as by modelling
the social network underlying the creation and maintenance of traceability (e.g.,
contribution structures).

• Promise: Further integration of social network modelling approaches and analy-
ses into the traceability process is desirable here.

Trusted Req 16 To provide a way for end users to exchange data about the per-
ceived and actual quality of a trace and of the analyses provided
following the end use of a trace. [Trusted G 2, G 3]

• Status: There is little research into those mechanisms to help identify and alert
end users to mistakes or problems in the traceability (i.e., incorrect or miss-
ing traces), in turn to provide experiential quality data to factor into traceability
analyses. However, most contemporary development environments now include
integrated emailing and chat capabilities, discussion forums, etc. for developers
to communicate about the development process, and sometimes these are being
used to support traceability in these ways.

• Promise: Further exploitation of integrated communication capability within inte-
grated tooling holds promise, to enable all stakeholders to report on quality issues
in both establishing and using traceability.

7.6 Recommended Research (Trusted)

The major research theme to achieve trusted traceability is to perform systematic
quality assessment and assurance of the traceability. Supporting research topics are
listed below.

Research ID Description Req ID

Trusted RT 1 Develop a model of the vulnerabilities in the traceability
process, including human error in both manual and
automated approaches, and develop suitable
techniques to reinforce their reliability.

Trusted Req 4, 8,
15, 16

Trusted RT 2 Formulate metrics for traceability quality assessment,
especially for the traces that are created and
maintained.

Trusted Req 1, 3, 6

Trusted RT 3 Gain improvements in the quality of both manual and
automatically created and maintained trace links.

Trusted Req 2, 5,
6, 7, 9, 13, 14

Trusted RT 4 Provide ways of inferring trust in the traceability based
upon how the trace links are established and used,
and by whom, and upon the useful life expectancy of
traces.

Trusted Req 4, 8,
10, 15, 16

Trusted RT 5 Create a visual dashboard for displaying and examining
traceability quality attributes on a project.

Trusted Req 2, 3,
7, 9, 12, 15, 16

Trusted RT 6 Catalogue the quality required of the traceability for
supporting different end user tasks within the
Traceability Body of Knowledge (TBOK).

Trusted Req 11

The Grand Challenge of Traceability (v1.0) 381

(continued)

Research ID Description Req ID

Trusted RT 7 Gather empirical evidence as to the quality of
traceability techniques, methods and tools with
respect to the quality of the traces they enable within
the Traceability Body of Knowledge (TBOK).

Trusted Req 2, 3,
6, 7, 8, 16

Trusted RT 8 Advance the run-time monitoring of traceability quality
with validated error detection models for trace links.

Trusted Req 7, 9

Trusted RT 9 Apply concepts from autonomic computing to explore
self-healing traceability techniques, methods and
tools, covering diagnosis, repair actions and
propagation, to apply at both the individual trace and
trace set levels.

Trusted Req 5, 14

7.7 Positive Adoption Practices for Industry (Trusted)

Trusted IP 1 Practitioners routinely specify acceptable levels for traceability
quality attributes for their end user tasks.

Trusted IP 2 Practitioners are provided with the data they need to determine
whether they can trust the traceability techniques, methods and tools
that they use and the analyses that are based upon their end use.

Trusted IP 3 Practitioners supply feedback on the quality of the traceability
unobtrusively and as part of its creation, maintenance and end use.

8 Traceability Challenge 5: Traceability that Is Scalable

Varying types of artifact can be traced, at variable levels of granularity and in quan-
tity, as the traceability extends through-life and across organisational and business
boundaries.

8.1 Link to Vision (Scalable)

The engineer has an enormous quantity of data that is rendered traceable in the
vision scenario: eleven months of fine-grain project artifacts, links back to past
archives containing other project artifacts, full records of project rationale and con-
text, etc. The traceability that the engineer makes use of accounts for a myriad
of artifact types, such as requirements, live links to stakeholders and contributors,
test cases and government regulations. The engineer can rely upon the traceabil-
ity having been established from the onset of her development project, through its
transition into a maintenance project, to the eventual project closure and system
retirement.

382 O. Gotel et al.

8.2 Problems Addressed (Scalable)

Traceability is often an afterthought on projects and established when it is needed,
rather than from the first days in which project artifacts begin to accumulate. Pre-
requirements artifacts can therefore be missed and remain untraceable. Likewise,
traceability can erode over time unless the transition of traceability from a develop-
ment project into its maintenance phase is also planned for. It is often difficult to
account for the entirety of the artifacts relevant to development in the traceability,
notably multimedia and unstructured informal artifacts. The traceability can become
complex to depict and hence unusable over time. Some datasets are intrinsically
difficult to trace due to inconsistencies in terminology, the nature of the artifact
types, the lack of structure and heterogeneous formats. Non-functional require-
ments that have a global impact on the system are also notoriously difficult to trace.
Traceability processes, techniques and methods tend to break down with scale in
its various dimensions (e.g., the quantity of traceable artifacts or trace links, and
time). Practitioners are reluctant to use new and emerging techniques, methods and
tools without evidence of scalability in these multiple dimensions. The issue of scale
can be compounded where customers mandate traces without discerning attention
to their intended end use.

8.3 Dream Process (Scalable)

• Traceability Strategy. Full life cycle and all-embracing traceability will be
planned for and managed, and any scale issues will be reduced via auto-
completion tools.

• Traceability Creation and Maintenance. Trace creation will be as fast in large
projects as it is in small ones, linking anything within its scope without a perfor-
mance hit. Traceability maintenance will also be as fast in large projects as it is
in small ones, and the traceability will not entropy over time.

• Traceability Use. End users will only see what they need to see from among a
mass of project artifacts when they use traceability, and they will switch between
coarse-grain and fine-grain traceability routinely.

8.4 Goals (Scalable)

Scalable G 1 There are no practical limits to the quantity of traceable artifacts
and trace links that can be created and maintained in a project.

Scalable G 2 All media and artifact types serve as potentially traceable artifacts.
Scalable G 3 Traceable artifacts are “zoomed” into as required, to trace at varying

levels of granularity.
Scalable G 4 Full project life cycle traceability coverage and longevity of this

coverage is provided throughout a system’s life, extending across
organisations and business entities.

The Grand Challenge of Traceability (v1.0) 383

8.5 Requirements (Scalable)

8.5.1 Traceability Strategy (Scalable)

Scalable Req 1 To plan and manage traceability from the first day of a project
until the last day of the project. [Scalable G 1, G 2, G 4]

• Status: Traceability is sometimes not implemented in practice until it is needed,
or it is truncated to cover a period of a project’s life, such as from requirements to
design, or from requirements to code. This is often a side effect of the disparate
tools being used.

• Promise: Late or restricted implementation of traceability is often a consequence
of the investment required upfront on a project, coupled with unclear cost-benefit
studies. Progress here will depend upon progress with traceability challenge two.

Scalable Req 2 To set up an open system to accommodate multiple types of trace
artifacts and trace links. [Scalable G 2, G 4]

• Status: Traceability is often planned for in a homogenous manner on projects,
irrespective of the project artifacts and project size, so many artifacts can thus
be excluded from traceability support. Traceability is primarily planned for and
applied on code, textual descriptions (e.g., natural language requirements) and
UML (Unified Modeling Language) artifacts at present. Nevertheless, industrial
researchers are piloting the traceability of heterogeneous artifacts in very large
projects with some success.

• Promise: Designing approaches to traceability based upon traceability abstrac-
tions, rather than concrete artifacts types, which can accommodate all the artifacts
that are likely to arise in the life of a project.

Scalable Req 3 To specify the concept of granularity, formally, to provide a
way to define and retrieve the levels of granularity required for
traceability on a project. [Scalable G 3]

• Status: Researchers have proposed establishing macro and micro levels of trace-
ability to accommodate diverse media types, promoting the concept of granularity
layers in the traceability provided, but this has not yet been fully developed or
adopted in practice. Granularity remains an informally defined concept, with
no real consensus on what is actually meant by fine-grain and coarse-grain,
and all the levels in between. At present, a trace artifact accounts for both
a full requirements document and an individual word within a requirement
statement.

• Promise: Trace link semantics have received a great deal of attention by the
research community and more use of such will find its way into practice via rich
links. A more discerning ontology for specifying trace artifacts is now equally
needed.

384 O. Gotel et al.

Scalable Req 4 To understand how traces are needed and used across organisa-
tions and business entities (i.e., accounting for subcontractors,
etc.) and accommodating broader needs in the traceability strat-
egy. [Scalable G 4]

• Status: Stakeholder requirements for traceability are poorly understood at present
(see traceability challenge one).

• Promise: Progress with traceability challenge one is essential to progress here.
However, this needs to take care to examine additional stakeholders beyond the
obvious candidates to examine the breath of artifacts to be traced.

Scalable Req 5 To apply traceability practices and processes to large, distributed,
multi-person, multi-year projects. [Scalable G 1, G 4]

• Status: To support distributed contexts requires that the traceability does not
decay as changes are made to interrelated and externally maintained artifacts over
time. In practice, a lack of seamless bi-directionality of the traceability across all
the possible tools that produce and hold the traced artifacts can compound the
update of traceability following changes made to any associated external artifacts.
This issue is usually addressed where projects use a single and shared application
life cycle tool.

• Promise: The growing interoperability of tools and data offers promise here
because standardisation on a single tool across a distributed multi-organisational
setting may not always be viable. There are also dependencies that can reduce
the scalability problem to a smaller, more manageable problem, such as exploit-
ing the transitivity properties among trace links. If one trace can partially or fully
imply another trace, then this can be reasoned about and be potentially supported
by auto-completion strategies.

Scalable Req 6 To understand the particular scale issues associated with tracing
the global properties of systems, such as non-functional require-
ments, and with tracing in the context of systems of systems.
[Scalable G 1, G 4]

• Status: The traceability of non-functional requirements is receiving attention in
the research community, as the perception is that the traceability of such global
properties is more complex and difficult to handle. Differentiating the particular
nuances of systems of systems development, for tracing purposes, has received
less attention to date.

• Promise: Early industry and government adopters of automated trace recovery
techniques have made datasets available for research into the issues associated
with the scalability of traceability techniques, methods and tools. The issues
of local and global traceability could be examined in such contexts to gain a
clearer understanding of the different issues with scale in these two increasingly
important dimensions.

The Grand Challenge of Traceability (v1.0) 385

8.5.2 Traceability Creation and Maintenance (Scalable)

Scalable Req 7 As scale grows, to maximise the use of automated traceability
creation and maintenance. [Scalable G 1]

• Status: Pilot studies have been conducted in large industrial projects to examine
the scalability of automated trace recovery techniques with promising results. The
recall measure for trace links recovered via automated techniques is now gener-
ally acceptable, even on large datasets. The validation of automated maintenance
techniques is still mostly restricted to small datasets at present.

• Promise: To provide for a viable approach to completely automated traceability
creation and maintenance in large projects over time, the method of automation
may need to be differentiated according to the criticality of the artifacts. For
example, traces might be created as a by-product of formal specifications for
highly critical components, while traces might be created using trace retrieval
methods for less critical components.

Scalable Req 8 To create and maintain trace links between artifacts of different
types, in terms of their media, formality, level of structure, etc.,
and at any level of granularity [Scalable G 2, G 3]

• Status: The focus of traceability creation has been from requirements through to
code to date (i.e., post-requirements traceability). There has been limited research
on the indexing and retrieval of informal, unstructured and multimedia artifacts
in a software and systems development context, so they are often not included as
potential traceable artifacts in traceability solutions that adopt automated trace-
ability creation techniques and methods. Traceability maintenance techniques
and methods also deal primarily with structured textual artifacts, UML diagrams
and code. In general, there has been less focus on accounting for pre-requirements
artifacts in traceability solutions by researchers or practitioners, though some
recent industry attention has been on tracing back to regulatory codes.

• Promise: In theory, any artifact that can be indexed can be traced, so more
attention needs to be paid to developing ontologies for describing different
types of traceable artifact. Navigating and presenting the resulting traces also
demands rendering these artifacts in some way, so this requires progress with
trace visualisation.

Scalable Req 9 To prune the growing mass of traceable artifacts and trace
links to keep trace maintenance and trace retrieval manageable.
[Scalable G 1]

• Status: Research has focused on accumulating trace links rather than on prun-
ing them. Trace links are rarely retired in practice, potentially impeding future
traceability as they grow in number. Trace links need versioning and garbage
collection if the traceability is to scale, and well-known versioning systems are
increasingly a core component of many traceability solutions.

386 O. Gotel et al.

• Promise: The versioning and garbage collection techniques common to other
areas of software and systems engineering need to be applied more widely within
traceability solutions.

8.5.3 Traceability Use (Scalable)

Scalable Req 10 To retrieve and filter trace artifacts, potentially represented
as diverse media types, to address traceability-related queries.
[Scalable G 1, G 2]

• Status: There has been limited analysis on how to exploit artifacts of different
media types in trace retrieval algorithms, so presenting traces containing multi-
ple media artifacts is not standard. There can be performance issues associated
with using traceability in large datasets in practice, an issue compounded by the
presence of rich media artifacts.

• Promise: Ongoing improvements in multimedia search, retrieval and filtering will
make media-rich traces increasingly feasible in the future. However, the actual
need for and value of media-rich traces requires more empirical study.

Scalable Req 11 To provide visual mechanisms to augment large-scale trace-
ability in end use, switching between coarse-grain views of
traceability (i.e., broad) and fine-grain views of traceability (i.e.,
deep) with ease. [Scalable G 1, G 3]

• Status: End users often need to untangle a mass of trace links in order to make use
of them in practice. Commonly used visual mechanisms, like traceability matri-
ces, while wholly appropriate for many traceability-enabled activities and tasks,
do not scale. Researchers are beginning to focus on visualisations for trace links,
to overcome their complexity in actual use, mostly appearing in prototype tools
at present. However, there are few usability studies on the use of such emerging
visuals, particularly for handling the traceability of large datasets.

• Promise: The improved visualisation of traces will facilitate their end use and
make the resulting analyses more accessible to end users. Layered approaches to
traceability, building on similar concepts to those seen in computer-aided design
tools, where layers can be turned on or off depending on need, would help to
provide filters and so address some of the issues associated with scale.

8.6 Recommended Research (Scalable)

The major research theme to achieve scalable traceability is to provide for levels of
abstraction and granularity in traceability techniques, methods and tools, facilitated
by improved trace visualisations, to handle very large datasets and the longevity of
these data. Supporting research topics are listed below.

The Grand Challenge of Traceability (v1.0) 387

Research ID Description Req ID

Scalable RT 1 Obtain industrial datasets from various domains to
enable researchers to investigate scalability issues,
and the potential of techniques, methods and tools to
address them, both systematically and comparatively.

Scalable Req 5,
6, 7, 9

Scalable RT 2 Develop effective search, filtering and visual
mechanisms to navigate and query large numbers of
trace artifacts and trace links, of varying media types.

Scalable Req 2,
5, 10, 11

Scalable RT 3 Develop an abstract model of the traceability process
and its component activities, to enable pluggable
techniques, methods and tools that apply to differing
process activities and differing layers of abstraction to
be created, located and used.

Scalable Req 1,
2, 3, 5

Scalable RT 4 Develop a cost-benefit model to assess granularity
decisions that impact subsequent scale issues with
respect to traceability.

Scalable Req 1,
3, 8

Scalable RT 5 Provide techniques to evaluate the traceability potential
of various datasets and media assets, and to guide in
setting up a suitable traceability strategy to
accommodate them.

Scalable Req 1, 8

Scalable RT 6 Gain improvements in performance for the real-time
automated recovery and capture of trace links to
account for scale.

Scalable Req 5, 7

Scalable RT 7 Gain improvements in performance for the real-time
retrieval and rendering of traces to account for scale.

Scalable Req 5,
10, 11

Scalable RT 8 Define ontologies for software and systems
development artifacts, and investigate the need for
and value of integrating the various artifact types and
media into traceability end use.

Scalable Req 2, 8

Scalable RT 9 Explore the unique scalability issues associated with
tracing non-functional requirements, and develop
effective techniques, methods and tools for this
context.

Scalable Req 6

Scalable RT 10 Explore the unique scalability issues associated with
tracing within and across systems of systems, and
across organisational and business boundaries, and
develop effective techniques, methods and tools for
this context.

Scalable Req 4, 6

8.7 Positive Adoption Practices for Industry (Scalable)

Scalable IP 1 Practitioners establish traceability from the onset of a project, along
with the housekeeping procedures that are needed to keep the
traceability use viable through to project completion.

Scalable IP 2 Practitioners take a multi-pronged approach to establish traceabi-
lity, to account for all project artifacts over time, but the unique
details remain hidden behind a simpler and more abstract treatment
of the artifacts.

388 O. Gotel et al.

Scalable IP 3 Practitioners switch seamlessly between 2D and 3D visualisations
as they walkthrough multimedia-rich traces at varying levels of
granularity.

Scalable IP 4 Practitioners contribute datasets to enable researchers to examine
scalability issues with emerging traceability techniques, methods
and tools.

9 Traceability Challenge 6: Traceability that Is Portable

Traceability is exchanged, merged and reused across projects, organisations,
domains, product lines and supporting tools.

9.1 Link to Vision (Portable)

Traceability is merged across all components of the full flying solar car system in
the vision scenario, where software is but one component of the system, and require-
ments from related projects are reused, along with their entire traceability networks.
Interrogating the traceability networks of external software systems and services
aids the engineer’s decision making regarding procurement. The engineer integrates
a new service into the existing system with the confidence that the traceability back
to the requirements will facilitate both the uncoupling of the expired software and
the integration of the new service, and so provide the team in South Africa with all
the information that they need to complete the update. The entire traceability history
is always available for use and reuse, irrespective of where the actual traces were
created and the tools that were used to create them.

9.2 Problems Addressed (Portable)

Traceability is often legacy and locked into projects and tools, so it is rarely
extractable and reusable across projects or components therein. It is also typically
project, organisation and person-specific, so difficult to reconcile in a timely man-
ner. Standards are rarely used across more than locales and, where they are used,
they can be applied somewhat inconsistently such that problems are not recognised
until the traceability is needed and found wanting. In reality, it can be tricky to trace
to artifacts created by other people and in other organisations, or to use others’ trace
links; much of the contextual knowledge needed to interpret and understand the
traceability is often missing.

9.3 Dream Process (Portable)

• Traceability Strategy. Projects and organisations across the globe will use
industry agreed upon standards, policies, representations and terminology for

The Grand Challenge of Traceability (v1.0) 389

traceability, not because of mandate, but due to the obvious benefits and value
of so doing.

• Traceability Creation and Maintenance. Where traceability is pre-established
within a set of artifacts, it will be extracted, reused and integrated with the trace-
ability of other artifacts with ease, irrespective of the tooling. Where traceability
is integrated across a set of artifacts with their own traceability networks, this
newly created traceability network will be maintained with ease.

• Traceability Use. Traceability will be retrieved such that it draws upon wider
traceability networks to support any end user traceability-related query or
application need.

9.4 Goals (Portable)

Portable G 1 An industry agreed policy for traceability serves to define the
minimal conditions under which any traceability solution and any
resulting traceability network will integrate with any other.

Portable G 2 Comprehensive traceability information, comprising traceability
information models, trace artifacts and trace links, are expressed
in a common way, and retained and reused for full projects or for
components therein.

Portable G 3 The traceability associated with individual projects and components
is reconciled and merged seamlessly when reused across projects,
product lines, organisations and domains. The traceability infor-
mation models, processes and tools supporting the traceability are
designed to enable this integration.

Portable G 4 Where traceability is reused or re-purposed for new contexts, mul-
tiple traceability networks are maintained as the trace elements
change.

Portable G 5 Traceability is established dynamically, reaching out to incorporate
previously unconnected artifacts within its scope as the search space
for traceability widens.

9.5 Requirements (Portable)

9.5.1 Traceability Strategy (Portable)

Portable Req 1 To standardise key aspects of the traceability process. [Portable
G 1]

• Status: Traceability policies and standards are few at present, focus mostly on sin-
gle project or organisational processes, and are rarely used in other than regulated
industries and domains (e.g., military and aerospace standards).

• Promise: A loose framework of guiding policies, as common in some other indus-
tries requiring tracing (e.g., the food industry), supported by defined roles and

390 O. Gotel et al.

responsibilities, may provide for a more flexible and less burdensome way to
address the need for wider standardisation in traceability processes.

Portable Req 2 To agree upon and use a common representation to express the
intended and actual traceability on a project. [Portable G 2]

• Status: While the traceable artifact types and trace link types may be listed in a
requirements management plan, there is no agreed upon way to describe a trace-
ability information model in research or practice, or even to describe a single trace
that is created and maintained. While there have been numerous proposals as to
the semantics of trace links, there is yet to be an agreement upon their classifica-
tion and use. The traceability information models that show the full traceability
intent for a project need to be examinable and the semantic meaning needs to be
consistent to assess trace compatibility across projects. Likewise, the traces cre-
ated and maintained need themselves to be examinable, consistent and extractable
if they are to be shared and reused.

• Promise: A unified representation for expressing traceability information models,
traces and other interchangeable traceability information would offer promise.

Portable Req 3 To monitor and assure compliance to the policies, standards,
representations and language used for traceability. [Portable
G 1, G 2]

• Status: In regulated industries, the compliance of the traceability is generally
assessed and assured via third parties. Automated techniques and tools are also
beginning to assist in this space. This is less widely practiced in non-regulated
industries. A related issue is the fact that the traceability terminology is not yet
shared within the traceability community.

• Promise: Compliance will become easier to assess when the policies and repre-
sentations for traceability have themselves have become better defined and their
use is integrated into practice. A glossary of traceability terminology accompa-
nies this chapter (see the glossary of this book) and may help to foster future
agreement in the use of traceability terms by the community.

Portable Req 4 To examine the integration potential of existing traces when they
are to be merged and/or reused from across distributed project
settings, and the subsequent potential for their maintainability.
[Portable G 3, G 4]

• Status: There are no explicit mechanisms to assess the potential integration of
traceability that has been pre-established for different artifact sets and is held in
different tools, nor of the likely issues for subsequent traceability maintenance.
Most of the research focus and practical implementation has been on inner prod-
uct traceability, so there is no agreed upon standard for extracting and sharing the

The Grand Challenge of Traceability (v1.0) 391

traceability across products over time. This is often the case even within organi-
sations. Recent attention has been paid to reusing traceability between variants in
a product line, and support for this is maturing in practice in some industries (e.g.,
in the automotive industry). This trace reuse is carefully built into the engineering
practice, through an examination of variability, and is not determined post-hoc.

• Promise: The traceability work that is emerging from product line engineering
contexts may have wider applicability to broader traceability reuse.

Portable Req 5 To develop reconciliation tactics to accommodate specific project
and organisational needs when merging and reusing previously
disparate or legacy traceability networks. [Portable G 3]

• Status: Legacy projects can have their traceability recovered via automated
techniques with some success, though research has not yet looked into wider
traceability integration and reconciliation of traces across multiple traceability
networks. Reconciling traces that have been created by other people in other
projects and organisations is a relatively open area, but one that will become
increasingly relevant with the service-oriented provisioning of software and sys-
tems. The attention to incorporating institutional knowledge about traceability
may facilitate such sharing and reuse.

• Promise: The provision of appropriate contextual information, alongside the
traces that are used or reused, may ease the understanding and merging of
myriad trace elements by humans. Useful trace meta-data to support automatic
reconciliation also needs to be explored.

9.5.2 Traceability Creation and Maintenance (Portable)

Portable Req 6 To provide supporting mechanisms to facilitate tracing to arti-
facts created by other people in other projects and organisations,
perhaps held in diverse toolsets. [Portable G 1, G 2, G 3]

• Status: Dedicated requirements management tools offer varying levels of sup-
port for incorporating artifacts created outside of the tool within a traceability
network, often via pre-processing, though support for bi-directional traceability
to these other tools can be variable and impede future maintenance of the trace-
ability once incorporated. There are prototype tools that have demonstrated the
creation of trace links across heterogeneous CASE tools at distributed locations
though. A common method for supporting trace portability between artifacts in
disparate tools is indirectly via XML (Extensible Markup Language). Such trace
links may also be held in one place and as a separate artifact to ease extraction
and reuse.

• Promise: Decoupling the representation of the trace links from the trace artifacts,
irrespective of where the trace elements are physically stored, will further aid
trace extraction, portability and reuse.

392 O. Gotel et al.

Portable Req 7 To monitor and identify changes in trace-related artifacts, irre-
spective of their storage location, and to propagate the necessary
traceability updates to those traceability networks in which they
participate. [Portable G 4]

• Status: It can be problematic to maintain traceability in dedicated requirements
management tools if other third party tools have been used for different stages
of the software and systems development life cycle. This requires clear protocols
for the interchange and interoperability of data between the tools. Application life
cycle management tools ameliorate the problem as they are fully integrated tools
and, as such, can propagate traceability changes internally. The repurposing of
artifacts in multiple traceability networks may happen routinely within a single
project and tool, but extending this to their inclusion within additional project
and tooling contexts is not routine at present.

• Promise: Maintaining reused traces will be less problematic where the reused
trace artifacts and trace links are initially created and maintained, and then sub-
sequently reused, within fully integrated and interoperable toolsets. Where this is
not the case, differentiating live reuse (i.e., where updates to artifacts impact the
traceability) from copied reuse (i.e., where updates to artifacts does not impact
the traceability) may be important to investigate here.

9.5.3 Traceability Use (Portable)

Portable Req 8 To understand and use the trace artifacts and trace links
established by third parties in traceability-related queries.
[Portable G 5]

• Status: Traceability-related queries are generally targeted to an associated set
of artifacts for which the traceability has been explicitly defined and created.
Research has not looked at how this could be extended to incorporate additional
artifacts, opportunistically, within its remit, and whether this would even add
value as a concept. This may become more important as systems are developed
from pre-existing components and services.

• Promise: Drawing upon a number of traceability networks or non-traced artifacts
in providing support for end user tasks demands standards in the base represen-
tation of traces and trace elements. A Google-strength search capability may be
incorporated into future traceability solutions to find new traces.

9.6 Recommended Research (Portable)

The major research theme to achieve portable traceability is to agree upon uni-
versal policies, standards, and a unified representation or language for expressing
traceability concepts. Supporting research topics are listed below.

The Grand Challenge of Traceability (v1.0) 393

Research ID Description Req ID

Portable RT 1 Develop a unified representation or language for
expressing traceability information models and for
representing traces.

Portable Req 2

Portable RT 2 Define and agree upon the semantic meaning of the
various types of trace artifacts and trace links used in
different domains.

Portable Req 2

Portable RT 3 Define policies, standards, infrastructure, processes and
tools for tracing distributed artifacts in distributed
settings, enabling cross-boundary traceability of all
forms.

Portable Req 1,
6, 7

Portable RT 4 Examine the likely forms of cross-boundary traceability
required in the future.

Portable Req 6, 7

Portable RT 5 Provide a way to examine pre-established traceability
and to assess its integration or reuse potential with or
within other contexts of use.

Portable Req 4

Portable RT 6 Develop mechanisms to help extract, integrate and reuse
traceability work products.

Portable Req 3,
4, 5, 6, 7, 8

Portable RT 7 Learn about traceability representations, policies and
standards in other distributed industries (such as the
food industry), and the regulatory standards that
mandate it, to apply lessons to software and systems
contexts.

Portable Req 1, 2

Portable RT 8 Re-conceptualise traceability as a service so that it can
be procured and interchanged at will.

Portable Req 8

9.7 Positive Adoption Practices for Industry (Portable)

Portable IP 1 Practitioners actively engage in defining and using policies and
standards that enable cross-boundary traceability of multiple forms.

Portable IP 2 Practitioners use a unified representation or language to describe
both the intended traceability and the actual traceability on their
projects.

Portable IP 3 Practitioners reuse and integrate the traceability from other
projects, and from components of other projects and services, with
ease.

Portable IP 4 Professional bodies agree upon ways to encourage and enforce the
use of industry agreed upon standards, policies, representations and
terminology for traceability.

10 Traceability Challenge 7: Traceability that Is Valued

Traceability is a strategic priority and valued by all; every stakeholder has a role to
play and actively discharges his or her responsibilities.

394 O. Gotel et al.

10.1 Link to Vision (Valued)

In the vision scenario, all the stakeholders simply expect the traceability to be there
in the engineer’s project just like computation, electricity and oxygen. Traceability
is a commodity that is built into organisations and projects since they have realised
that they cannot be agile and competitive without it. Its value is undisputed and has
long been institutionalised within the engineer’s organisation and the wider industry,
supported by top management and workers alike. Every action that the stakeholders
take on the project preserves and adds to this valuable traceability asset. The engi-
neer could not do her job without traceability and the flying solar car business of her
organisation would not be viable in the longer-term without the value-added support
provided by traceability.

10.2 Problems Addressed (Valued)

Traceability is often valued to the extent that organisations may invest in a tool;
there is still somewhat of a misconception that tools will do the traceability job once
configured. While current tools provide varying levels of support for traceability,
they require organisations to define (at a minimum) a traceability process to be used
effectively, and many organisations do not invest in this aspect of the tool procure-
ment process sufficiently. Inadequate training in the ensuing traceability process
compounds the issue. The required skills for doing a good job at traceability are
unclear and so people may be allocated the job without sufficient preparation and
training. Such people do not always see the personal reward from doing this job
meticulously and there can be little motivation to do the task well if the benefits are
perceived to be too few or too distant. This can lead to a lack of total stakeholder
buy-in to establishing traceability. Traceability certifications do not exist, so are
consequently not expected of people or of organisations, so what you get by way of
traceability in practice can be a complete surprise. The granularity at which to trace
also remains a value question concerning effort and payback, and getting this wrong
can devalue any traceability that is established. To management, the competitive
advantage of traceability may therefore end up not being evident. A typical concern
that is a barrier to technology transfer is whether any investment in a traceability
initiative, including training, is actually worth it; value is questioned, along with its
value to whom.

10.3 Dream Process (Valued)

• Traceability Strategy. The inherent and added value of traceability will be dis-
cussed on day one of a project and everyone, henceforth, will work together to
do a good job on it.

• Traceability Creation and Maintenance. Practitioners will love the intellectual
challenge of creating and maintaining trace links. They will take real pride in

The Grand Challenge of Traceability (v1.0) 395

their job because they know that what they do is valued and respected by their
peers who will use the resulting traces in the future.

• Traceability Use. Everyone will want traceability and expect it, as it is one of the
most valued support dimensions of a project, making testing more exacting and
helping functioning code to meet its stakeholder requirements.

10.4 Goals (Valued)

Valued G 1 Everyone, from upper management to workers, understands and buys
into the value of traceability on a project.

Valued G 2 A return on investment profile for traceability is available to con-
sult and a traceability value proposition is used in strategic project
planning.

Valued G 3 Resources are provisioned to match the traceability need for a project,
meaning that people are trained in traceability logistics and tools are
grounded in traceability processes.

Valued G 4 Traceability use is exploited to add value to many project planning
and management tasks.

10.5 Requirements (Valued)

10.5.1 Traceability Strategy (Valued)

Valued Req 1 To develop a value proposition for traceability on a project to help
determine and sustain a suitable traceability strategy. [Valued G 2]

• Status: Some practitioners may be hard-pushed to articulate the actual value
of traceability to them, or even to their projects and organisations, while some
project managers still have not even heard of traceability. Traceability is obvi-
ously more valued in certain domains than in others at present, such as for
safety-critical software systems, which impacts the degree of traceability plan-
ning and management undertaken in the various domains. While this should
and will continue to be the case, as the value of traceability will differ widely
between organisations dependent upon the business environment and domain of
the company, there is scope to examine traceability value propositions in vary-
ing contexts. A recent follow-up survey of an industry pilot study showed that
engineers found trace retrieval methods useful, so awareness of traceability value
is emerging. However, there is currently no language as such for describing and
discussing traceability value. When costs are cut on a project, traceability can be
one of the first things to go, and this is somewhat indicative of how its actual
value is construed, measured and managed at present.

• Promise: Value-based traceability is a growing area of interest in the traceability
community and is leading the way in researching the concept of and measures for

396 O. Gotel et al.

traceability value. Such research needs to find its way into strategic planning and
management tools for traceability. Progress here will also depend upon advances
with traceability challenge two.

Valued Req 2 To provide people with the necessary knowledge and skills that
they need to undertake their traceability tasks successfully. Further,
to provide the requisite money, time and technology resources for
these people to fulfil these tasks. [Valued G 3]

• Status: People are often assigned to a traceability task in practice with a vague job
description and little prior training. While there are also many experienced trace-
ability practitioners, there is a lack of an established industry-wide apprenticing
or a mentoring model to acquire or impart the necessary traceability skills to new
personnel. Few educational or training programs exist to impart proficiency in
how to plan for and manage traceability, how to create and maintain traces, or
even how to educate as to its inherent and wider value.

• Promise: There are conferences and workshops that emphasise traceability topics.
The reporting on industry case studies can demonstrate value, put new practition-
ers in contact with seasoned ones, and hence communicate both the value of
and skills underlying traceability. The systematic gathering of good practices and
benchmark examples will help to foster knowledge sharing further.

Valued Req 3 To define traceability roles and responsibilities on a project, both
within and across organisations. [Valued G 3]

• Status: It is often unclear as to who is in charge of traceability in an organisation
(e.g., is it the requirements engineers, software architects, developers, mainte-
nance team, etc.?) In practice, the responsibilities for traceability tend to lie
with one or a few people on a project; traceability is rarely a fully distributed
responsibility.

• Promise: Visibility is important to accountability and more could be done to make
the roles and responsibilities for traceability visible, such as via the creation of
traceability development contracts. To accommodate complex settings, traceabi-
lity tasks really need to be made part of the job description of all software and
systems development roles such that some form of traceability is made an integral
part of everyday work activities.

Valued Req 4 To make traceability assurance a fundamental part of project man-
agement and quality assurance practice, performing regular trace
audits to monitor and measure value creation. [Valued G 3, G 4]

• Status: Traceability value is implied where it is required by standard pro-
cess improvement initiatives, such as the Capability Maturity Model Integration
(CMMI), or by various regulatory bodies. In such cases, traceability is fundamen-
tal to the process, valued as such and assessed. Where organisations have been

The Grand Challenge of Traceability (v1.0) 397

appraised at certain maturity levels, some assurance of their traceability practices
may be assumed.

• Promise: If traceability value propositions are defined and integrated into the soft-
ware and systems development process more routinely, then they can be tracked
and measured in the future.

10.5.2 Traceability Creation and Maintenance (Valued)

Valued Req 5 To define value propositions for traces as they are created and to
update these value propositions for traces as they are maintained.
[Valued G 2]

• Status: Researchers have not built a convincing case regarding the value of trace-
ability creation and maintenance, especially to those engaged in the traceability
process, let alone the value of the respective strategies for so doing, such as
creating traces early or on-demand, and maintaining traces continuously or on
demand. There is also little understanding of those decisions that impact value
when creating and maintaining traces, such as the specific technique to use and
the granularity.

• Promise: Measures, baselines and benchmark experiments for examining the
value of traces over time are needed here.

Valued Req 6 To reward practitioners for doing a good job at traceability creation
and maintenance. [Valued G 1]

• Status: What constitutes and defines a “good” job at traceability creation and
maintenance is not really a matter of consensus. Few educational or training
programs exist to impart proficiency in how to create and maintain traceability
as part of regular development training activities, nor convey the standards to
which to aspire. Without such baselines it is difficult to set expectations and for
practitioners to be held accountable for their work.

• Promise: Well-defined job descriptions for traceability creators and maintainers,
ones that account for the specifics of organisations, domains and development
approaches, and ones that set guidelines for practice, will help to advance the
parameters for traceability quality measures. Industry awards for excellence in
traceability creation and maintenance may be an option to build up the reputation
of practice.

10.5.3 Traceability Use (Valued)

Valued Req 7 To add value to wider project tasks through the use of traceability,
to inform business decisions and to measure the resulting value.
[Valued G 2, G 4]

398 O. Gotel et al.

• Status: Value-based traceability research is examining how traceability can sup-
port the global value estimation of a software product, release management,
feature prioritisation, etc. Nevertheless, few educational and training programs
currently exist to impart proficiency in how to use the results of traceability for
development or business strategic advantage. Practitioners and customers in reg-
ulated domains are primarily the ones demanding traceability at present, though
it is not always clear whether this is due to mandate or due to the perception of
value.

• Promise: Research in how traceability can be put to wider end use in software and
systems engineering, followed by education and training, will promote the value
perception of traceability. The promise lies in software tools that use traceability
more than today to provide sophisticated support to business stakeholders, as well
as to the engineers. More case studies reporting on the risks and impact of not
having readily accessible traceability on a project, in addition to positive value
case studies, are needed.

10.6 Recommended Research (Valued)

The major research theme to achieve valued traceability is to raise awareness
of the value of traceability, to gain buy-in to education and training, and to get
commitment to implementation. Supporting research topics are listed below.

Research ID Description Req ID

Valued RT 1 Develop techniques, methods and tools to support and
measure various traceability value propositions on a
project.

Valued Req 1, 4,
5, 7

Valued RT 2 Define traceability roles and responsibilities within a
traceability development contract, and provide
support for instantiating and discharging these in
different project and organisational settings.

Valued Req 2, 3, 6

Valued RT 3 Identify the core knowledge areas and associated skills
for doing (and using) traceability, and create
effective pedagogical materials (e.g., model
examples) to integrate competency for traceability
into software and systems engineering teaching and
training.

Valued Req 2, 5, 7

Valued RT 4 Increase awareness of traceability value by developing
software tools that use traces in more interesting
and value-added ways than today for wider software
and systems engineering and business tasks.

Valued Req 1, 4, 7

Valued RT 5 Gather experimental evidence within the Traceability
Body of Knowledge (TBOK) on the role of
traceability with respect to software and systems
development success rates and longevity.

Valued Req 1, 7

The Grand Challenge of Traceability (v1.0) 399

10.7 Positive Adoption Practices for Industry (Valued)

Valued IP 1 Managers are aware of the value of traceability on their project and
in their organisation, so they ensure that their employees are trained
in the discipline and that they are compensated for doing a good job.

Valued IP 2 Practitioners actively seek training, and potentially certification, in
traceability excellence.

Valued IP 3 Practitioners both want and demand traceability of their software
and systems engineering work products and processes; customers of
software, systems and services expect “traceability inside”.

Valued IP 4 Universities and colleges integrate traceability into their software
and systems engineering curricula, at all degree levels, and students
choose these curricula for their future job prospects.

Valued IP 5 The Traceability Body of Knowledge (TBOK) is consulted to deter-
mine and use value propositions to guide traceability strategising and
practice.

11 Traceability Challenge 8: Traceability that Is Ubiquitous

The Grand Challenge of Traceability – “Traceability is always there, without ever
having to think about getting it there, as it is built into the engineering process;
traceability has effectively disappeared without a trace.”

11.1 Link to Vision (Ubiquitous)

There is no mention of traceability anywhere in the vision scenario as it is truly
behind the scenes. The engineer does not establish traceability explicitly; trace-
ability is established automatically via her actions and via the actions of others.
Traceability of the requirements trade-offs and negotiations are automatically cap-
tured from the tooling environments that the engineer uses, along with the rationale.
Traceability data is presented to the engineer in a ready-to-use and usable manner as
a by-product of her engineering process and of using her tools, and is never explic-
itly sought. Traceability neither disrupts the engineer from her primary tasks nor
does she spend a micro second thinking about it. Software components, systems
and services are customised by the other engineers while not having to worry about
the detailed specifics of the underlying technologies and traceability information.

11.2 Problems Addressed (Ubiquitous)

Traceability is perceived as, or actually is, a burden for practitioners as it is mostly
manual and repetitive in nature. Establishing or using traceability often interrupts

400 O. Gotel et al.

tasks that are considered more important when it comes to software and systems
development. It also often requires engineers to use special-purpose tools and so
disrupts their primary working practices. Establishing traceability manually is fur-
ther open to human error and inconsistency, and its quality is only as good as the
efforts of its weakest human link. Traceability should not be the goal of software
and systems development, and it certainly should not force a break in an engineer’s
workflow, but it often ends up being construed that way. If traceability gets in the
way, people simply stop doing it with the care and with the rigor that it demands to
be successful; and, if traceability is not there when it is needed and expected, people
stop using it. It can be a vicious cycle.

11.3 Dream Process (Ubiquitous)

• Traceability Strategy. An integrated development environment will be set up and
configured to establish the traceability demanded of a project, in the confidence
that the approach will be adapted as needed, allowing the people involved to focus
on the more creative development work.

• Traceability Creation and Maintenance. Trace creation will be completely
automated, to specified quality levels, with 100% recall and precision. Trace
maintenance will either be completely automated or superseded by automated
on-demand trace creation, dependent upon the cost proposition of either strategy.

• Traceability Use. Stakeholders will both use and come to depend upon traceabi-
lity on an everyday basis, without even really knowing it.

11.4 Goals (Ubiquitous)

Ubiquitous G 1 Near zero (or acceptable) stakeholder effort is required to estab-
lish and make use of traceability, with no (or minimum) impact
on their primary task.

Ubiquitous G 2 Traceability is de facto in software and systems develop-
ment processes and their supporting integrated development
environments.

Ubiquitous G 3 A virtuous cycle is sustained as traceability is established and
used both painlessly and effectively.

11.5 Requirements (Ubiquitous)

While there are many dependencies between all the requirements of the seven pre-
viously discussed traceability challenges,5 traceability challenge eight is unique in

5 Expressing these requirements dependencies and determining priorities remain topics for future
work (see Section 12).

The Grand Challenge of Traceability (v1.0) 401

that it really depends upon having made significant progress with satisfying the
requirements of these previous seven challenges. In addition to the status and areas
of promise for each requirement, the core dependencies with the previous challenges
are also suggested in this section.

11.5.1 Traceability Strategy (Ubiquitous)

Ubiquitous Req 1 To automate routine traceability planning and management
tasks. [Ubiquitous G 1]

• Status: Traceability has to be planned for on a project, and the implementation of
this plan requires ongoing human monitoring and control. This can comprise set-
ting up a traceability solution (i.e., a traceability information model, process and
tooling) and ensuring both its use and fitness for use over time. The underlying
components of this task are under examination as part of a generic traceability
process model to inform as to those areas amenable to automation and to offer
more practice guidelines.

• Promise: Progress with traceability challenge one (purposed), in the form of
profiles and patterns for traceability, will assist with defining and setting up trace-
ability on a project. Progress with traceability challenges three (configurable) and
six (portable) will lead to the parameterisation, reuse and adaptation of traceabi-
lity strategies, while progress with traceability challenge two (cost-effective) will
reduce the cost of traceability start-up.

• Dependencies: Traceability that is purposed, cost-effective, configurable and
portable.

Ubiquitous Req 2 To integrate traceability planning and management processes
into the overarching software and systems development plan-
ning and management process. [Ubiquitous G 1, G 2]

• Status: Traceability is not always an integral part of general project planning and
management, so it is often tackled in isolation as and when needed on projects,
rather than built into the software and systems development life cycle. Two excep-
tions are model-driven development and formal development processes where
the transformations are essential to the underlying development philosophy and
provide for traceability.

• Promise: Progress with traceability challenges one (purposed) and seven (valued)
will assist with getting traceability integrated into wider development processes,
as tighter support for primary development tasks is demanded and provided.

• Dependencies: Traceability that is purposed and valued.

Ubiquitous Req 3 To determine where manual intervention is unavoidable in the
traceability process, to keep the required human involvement to
a minimum, and to provide for better process guidance and tool
support when unavoidable. [Ubiquitous G 1, G 2, G 3]

402 O. Gotel et al.

• Status: While the ultimate goal may be for total automation of traceability, it
is likely that there will always be some cases in which human intervention is
required to assess the validity and value of traces, resulting in a more symbiotic
system. Work on understanding the component activities of a generic traceability
process model, and the potential human interaction points, is underway.

• Promise: Three key drivers for the complete automation of traceability are to
reduce the cost of traceability, to increase the trust in the results and to allow
for scale. Progress with traceability challenges two (cost-effective), four (trusted)
and five (scalable) will help to shape the boundaries for what is viable in the way
of traceability automation.

• Dependencies: Traceability that is cost-effective, trusted and scalable.

11.5.2 Traceability Creation and Maintenance (Ubiquitous)

Ubiquitous Req 4 To create and maintain traces automatically, as a by-product of
working in integrated development environments. Where man-
ual intervention is unavoidable, to make traceability creation
and maintenance a single “click” process. [Ubiquitous G 1,
G 2, G 3]

• Status: Traceability creation and maintenance is still mostly manual in prac-
tice, and it can become a full time job for some people in some projects.
However, the automated recovery and capture of trace links is producing rea-
sonable results in research settings and gaining some acceptance in industrial
practice. There is also successful semi-automated maintenance of trace links in
certain development contexts, such as in UML-based development, and research
on the full automation of trace maintenance is gaining momentum. Leading
requirements management and application life cycle management tools provide
for some flexibility in defining the traceability that can be enabled through their
use and for some automated capturing of the traces (e.g., support for real-time
trace capture as a by-product of working in the JAZZ environment). UML-based
tools that support model-driven development are also leading the way in this
area.

• Promise: Automated techniques, methods and tools for traceability creation and
maintenance will continue to improve. More variety in the base techniques (e.g.,
information retrieval based, rule based, event based, etc.), along with options to
vote on the results from competing techniques, will lead to improved quality
levels in the traces they obtain. Moreover, the ability to automatically recover
traces faster than identifying the delta of what has changed would potentially
eliminate the need for traceability maintenance altogether (i.e., traces would sim-
ply be created on-demand and never maintained). What is lost from having no
human involvement and no record of the trace evolution would need to be studied

The Grand Challenge of Traceability (v1.0) 403

carefully, and the cost/benefit trade-off of trace creation versus trace maintenance
also studied. However, the promise lies not just in performance improvements,
but in closing the loop to ensure that the traces that are created and maintained are
fit for purpose, account for the entire necessary artifact types and are trusted. This
relies upon progress with traceability challenges one (purposed), four (trusted)
and five (scalable).

• Dependencies: Traceability that is purposed, trusted and scalable.

11.5.3 Traceability Use (Ubiquitous)

Ubiquitous Req 5 To support end user tasks, without any distraction from
the underlying traceability that is being retrieved and ren-
dered visible to make this support possible. [Ubiquitous G 1,
G 2, G 3]

• Status: Traceability is used in a number of wider software and systems engineer-
ing activities, such as testing, version control, configuration management and
quality assurance. There are some traceability-enhanced tools for these areas
that do not make the traceability evident and unwieldy. In general, end users
are presented with unintuitive traceability matrices and hierarchical reports at
present, to interpret and make use of the traceability to support many other tasks.
Their use can be cumbersome and get in the way of the task at hand, so end
users are often made very aware of the traceability that they are have to call
upon.

• Promise: Improved support for end user tasks relies upon progress with traceabi-
lity challenge one (purposed) and on novel approaches to address issues of scale
and complexity in traceability end use, particularly through improved visualisa-
tions and task matching, so progress with traceability challenge five (scalable)
too. Re-conceptualising traceability as a service for wider software and systems
development tasks, integral to all the supporting processes and tools, could also
provide for advances here. This relies upon progress with traceability challenges
three (configurable) and six (portable).

• Dependencies: Traceability that is purposed, configurable, scalable and portable.

11.6 Recommended Research (Ubiquitous)

The major research theme to achieve ubiquitous traceability is to provide automation
such that traceability is encompassed within broader software and systems engi-
neering processes, and is integral to all tool support. Supporting research topics are
listed below.

404 O. Gotel et al.

Research ID Description Req ID

Ubiquitous RT 1 Investigate novel ways to define the traceability strategy,
such as in an executable way, so that the traceability
solution simply follows from the specification of the
traceability need, as per model-driven or formal
development.

Ubiquitous Req
1, 2

Ubiquitous RT 2 Total automation of (or “one-click”) traceability
creation and trace maintenance, with quality and
performance levels superior to manual efforts.

Ubiquitous Req
3, 4

Ubiquitous RT 3 Embed traceability into all the software and systems
engineering techniques and methods for all of the
tasks that it facilitates, and provide this traceability
support seamlessly from within a total automated
tooling solution that is underpinned by a sound
traceability process.

Ubiquitous Req
3, 4, 5

11.7 Positive Adoption Practices for Industry (Ubiquitous)

Ubiquitous IP 1 Practitioners choose integrated development environments based
upon the traceability-enabled software and systems engineering
activities that they provide and enable. They have “traceability
inside”.

Ubiquitous IP 2 Practitioners configure the traceability parameters that they need
on a project in an integrated development environment and then
forget about it, as it is henceforth established and evolved as
needed and behind the scenes.

Ubiquitous IP 3 Practitioners know that they are establishing and making use
of traceability in their everyday tasks, but they do not have
to do anything extra to achieve this. They further benefit from
this traceability when developing and customising their own
applications based upon the composition of building blocks and
services.

Ubiquitous IP 4 Practitioners do not talk about the “traceability problem”
because it has been solved.

12 Validation, Evolution and Intended Use

This chapter presents a snapshot of a community work in progress, now over five
years into the process. The new and updated Grand Challenge of Traceability v1.0
has been cross-referenced to the draft Problem Statement and Grand Challenges
(v0.1) document (Cleland-Huang et al., 2006) to maintain continuity. Figure 2
shows the traceability matrix between the two versions, as created by two of the

The Grand Challenge of Traceability (v1.0) 405

Traceability Challenges Purposed Cost-effective Configurable Trusted Scalable Portable Valued Ubiquitous

A: Traceability Knowledge A-GC1

B: Training & Certification B-GC1

B-GC2

B-GC3

C: Supporting Evolution C-GC1

C-GC2

C-GC3

C-GC4

D: Link Semantics D-GC1

D-GC2

D-GC3

E: Scalability E-GC1

E-GC2

E-GC3

F: Human Factors F-GC1

F-GC2

F-GC3

F-GC4

G: Cost Benefit Analysis G-GC1

G-GC2

G-GC3

H: Methods & Tools H-GC1

H-GC2

H-GC3

I: Organizational Boundaries I-GC1

I-GC2

I-GC3

J: Process J-GC1

J-GC2

K: Compliance K-GC1

K-GC2

K-GC3

L: Measurement & Benchmarks L-GC1

L-GC2

L-GC3

L-GC4

M: Technology Transfer M-GC1

M-GC2

M-GC3

M-GC4

Fig. 2 Example traceability matrix mapping the challenges of the draft Problem Statement and
Grand Challenges (v0.1) document (Cleland-Huang et al., 2006) to those of The Grand Challenge
of Traceability (v1.0)

contributing authors of this chapter. The intended use of the reformulated mate-
rial, along with the process for gathering feedback from the wider traceability
community, is outlined in this section.

12.1 Dissemination and Feedback Process

The core material from this chapter is made publicly available on the website of
the Center of Excellence for Software Traceability (Hayes et al., 2007): http://www.
coest.org. The CoEST website lists all eight traceability challenges and their major
research themes. For each challenge, it summarises the underlying goals, require-
ments, areas of promise, research topics and positive adoption practices for industry.

http://www.coest.org
http://www.coest.org

406 O. Gotel et al.

The website has been set up as a community resource to disseminate traceability
good practices, and to gain wider feedback to validate and evolve the work on the
traceability challenges.

Feedback is currently being solicited on the individual research topics to gain
community input on the likely impact of the research topic, the anticipated research
difficulty and the effort required to accomplish the research. Given the internal trace-
ability of the individual research topics to the requirements, goals and challenges
within this document, the broader intention is to accumulate these data to ascertain
the status of and progress with respect to the individual traceability challenges over
time, and so, in turn, with the overarching grand challenge.

Feedback is also being sought from practitioners on the state of the industry
practice. This is to assess whether the positive adoption practices are evident in any
domains, organisations and projects, and to be in a position to track this status over
time. References are also being sought to existing publications and ongoing research
projects that address the various research topics. The intention here is to gain data
to summarise the state of the art in a more exacting manner, to understand where
traceability research efforts are and are not directed at present, and to assess the
status of the overarching research theme for each traceability challenge over time.

Such data gathering is going to require a substantial and sustained effort by the
traceability community to be both useful and successful. One proposal to ease this
effort is to use the research topics and industry practices as a means to classify
traceability-related submissions and publications at future conferences and work-
shops. This would help to track traceability research contributions and industrial
reality going forwards. Equally, each new research contribution in the field could be
more explicit in documenting the traceability challenges that it tackles.

An environment for traceability experimentation and benchmarking is currently
in development under the auspices of the Tracy project (Cleland-Huang et al., 2011).
This environment, called TraceLab, intends to provide the traceability community
with experiments and datasets to begin to baseline and benchmark traceability tech-
niques, methods and tools. The proposal is to launch traceability contests within
TraceLab that serve to contribute progress towards the various research topics. This
will provide an additional way to collect data on traceability research efforts with
respect to the challenges going forwards.

12.2 Towards a Roadmap for Traceability Research

The material within this chapter forms the basis for a traceability research roadmap
that is currently under preparation by the authors. The realisation of the grand chal-
lenge of ubiquitous traceability is dependent upon progress with each of the seven
other challenges. These traceability challenges are, themselves, crosscutting con-
cerns, so progress on certain research topics will therefore contribute to a number of
the other challenges in various ways. The intent of the research roadmap is to high-
light these research dependencies and, in conjunction with early feedback from the
CoEST website, to delineate priorities for traceability research over the near-term,
mid-term and longer-term.

The Grand Challenge of Traceability (v1.0) 407

13 Conclusions

The Grand Challenge of Traceability (v1.0) is a major update to a draft document
developed by members of the traceability community in 2006 (Cleland-Huang et al.,
2006). It reformulates the forty prior grand challenges as seven major traceability
challenges and one overarching grand challenge for traceability. Associated with
these challenges are seven major themes for traceability research, along with one
more dominating and long-term theme.

The Grand Challenge of Traceability is to make traceability ubiquitous:

The Grand Challenge of Traceability – Traceability that is Ubiquitous.
Traceability is always there, without ever having to think about getting it
there, as it is built into the engineering process; traceability has effectively
“disappeared without a trace.”

Associated with achieving this grand challenge is the following major long-term
research theme:

Long-term Research Theme – To provide automation such that traceability is
encompassed within broader software and systems engineering processes, and
is integral to all tool support.

To achieve such traceability ubiquity in software and systems engineering practice,
seven underlying traceability challenges need to be tackled. Each of these challenges
has a major research theme associated with it:

1. Purposed. Traceability is fit-for-purpose and supports stakeholder needs (i.e.,
traceability is requirements-driven).
Major Research Theme – To define and instrument prototypical traceability
profiles and patterns.

2. Cost-effective. The return from using traceability is adequate in relation to the
outlay of establishing it.
Major Research Theme – To develop cost-benefit models for analysing stake-
holder requirements for traceability and associated solution options at a fine-
grained level of detail.

3. Configurable. Traceability is established as specified, moment-to-moment, and
accommodates changing stakeholder needs.
Major Research Theme – To use dynamic, heterogeneous and semantically
rich traceability information models (or similar specifications of the intended
traceability) to guide the definition and provision of traceability.

4. Trusted. All stakeholders have full confidence in the traceability, as it is cre-
ated and maintained in the face of inconsistency, omissions and change; all
stakeholders can and do depend upon the traceability provided.

408 O. Gotel et al.

Major Research Theme – To perform systematic quality assessment and assur-
ance of the traceability.

5. Scalable. Varying types of artifact can be traced, at variable levels of granularity
and in quantity, as the traceability extends through-life and across organisational
and business boundaries.
Major Research Theme – To provide for levels of abstraction and granular-
ity in traceability techniques, methods and tools, facilitated by improved trace
visualisations, to handle very large datasets and the longevity of these data.

6. Portable. Traceability is exchanged, merged and reused across projects, organi-
sations, domains, product lines and supporting tools.
Major Research Theme – To agree upon universal policies, standards, and a
unified representation or language for expressing traceability concepts.

7. Valued. Traceability is a strategic priority valued by all; every stakeholder has a
role to play and actively discharges his or her responsibilities.
Major Research Theme – To raise awareness of the value of traceability, to gain
buy-in to education and training, and to get commitment to implementation.

The eight traceability challenges were determined by exploring the assumptions of
a community vision for traceability in 2035. The major research themes associated
with each challenge were determined by expressing the goals and requirements that
would be needed of a generic traceability process to address the challenge, by exam-
ining the state of the art and the state of the practice, and by considering areas of
promise and necessary topics for research. In conducting this systematic analysis,
one challenge and its associated research theme appeared to depend upon progress
with all of the others, and so it was labelled as the grand challenge of traceability.

The intention of this new document is to provide a structured framework for
directing, classifying and tracking past and future research efforts in the field of
traceability.

Acknowledgements The authors would like to thank all the participants of the two initial trace-
ability workshops in which the initial grand challenges for traceability were explored (at NASA’s
IV&V facility in the Summer of 2006, and in Lexington, Kentucky in the Spring of 2007). They
would also like to thank NASA and the NSF for funding these original workshops (NASA grant
number NNX06AD02G and NSF grant number 0647443).

References

Arkley, P., Riddle, S.: Overcoming the traceability benefit problem. In Proceedings of the 13th
IEEE International Conference on Requirements Engineering, Paris, France, pp. 385–389, 29
Aug–2 Sep 2005.

Bianchi, A., Visaggio, G., Fasolino, A.R.: An exploratory case study of the maintenance effec-
tiveness of traceability models. In Proceedings of the 8th International Workshop on Program
Comprehension, Limerick, Ireland, pp. 149–158, 10–11 June 2000.

Cleland-Huang, J., Hayes J.H., Dekhtyar, A. (Eds.): Center of Excellence for Traceability: Problem
Statements and Grand Challenges (v0.1). Center of Excellence for Traceability Technical
Report COET-GCT-06-01-0.9, 10 Sep 2006.

The Grand Challenge of Traceability (v1.0) 409

Cleland-Huang, J., Czauderna, A., Dekhtyar, A., Gotel, O., Huffman Hayes, J., Keenan, E., Leach,
G., Maletic, J., Poshyvanyk, D., Shin, Y., Zisman, A., Antoniol, G., Berenbach, B., Egyed, A.,
Maeder, P.: Grand challenges, benchmarks, and TraceLab: Developing infrastructure for the
software traceability research community. In: Proceedings of the 6th International Workshop
on Traceability in Emerging Forms of Software Engineering, Honolulu, Hawaii, USA, 23 May
2011.

CMMI Product Team: CMMI for Development, Version 1.3. Technical Report CMU/SEI-2010-
TR-033 (ESC-TR-2010-033), Carnegie Mellon University Software Engineering Institute, Nov
2010.

Dahlstedt, A.G., Persson, A.: Requirements interdependencies: State of the art and future chal-
lenges. In: Aurum A., Wohlin, C. (Eds.), Engineering and Managing Software Requirements,
Springer, Berlin, Heidelberg (2005).

Egyed, A., Grünbacher, P., Heindl, M., Biffl, S.: Value-based requirements traceability: Lessons
learned. In: Proceedings of the 15th IEEE International Requirements Engineering Conference,
New Delhi, India, pp. 115–118, 15–19 Oct 2007.

Gotel, O., Finkelstein, A.: An analysis of the requirements traceability problem. In: Proceedings of
the 1st IEEE International Conference on Requirements Engineering, Colorado Springs, CO,
USA, pp. 94–101, 18–22 Apr 1994.

Hayes, J.H., Dekhtyar, A., Cleland-Huang, J.: Charter (Business Plan) for the center of excellence
for traceability. COET-CBP-07-02-1.0, 15 Feb 2007. http://www.traceabilitycenter.org/.

Lindvall, M., Sandahl, K.: Practical implications of traceability. Softw. Practice Exper. 26(10),
1161–1180 (Oct, 1996).

Pierce, R.: A requirements tracing tool. ACM SIGSOFT Software Engineering Notes. 3(5), 53–60
(Nov, 1978).

Ramesh, B., Jarke, M.: Towards reference models for requirements traceability. IEEE Trans. Softw.
Eng. 27(1), 58–93 (Jan, 2001).

Radio Technical Commission for Aeronautics, Inc. (RTCA). DO-178B: Software considerations in
airborne systems and equipment certification, Issued 12-1-92, Prepared by SC-167, Supersedes
DO-178A, Errata Issued 3-26-99.

Spanoudakis, G., Zisman, A.: Software traceability: A roadmap. In: Chang, S.K. (ed.) Handbook
of Software Engineering and Knowledge Engineering, Volume 3: Recent Advances, World
Scientific Publishing Co., ISBN:981-256-273-7, Aug 2005.

U.S. Food and Drug Administration, General Principles of Software Validation; Final
Guidance for Industry and FDA Staff, January 11, 2002, http://www.fda.gov/MedicalDevices/
deviceregulationandguidance/guidancedocuments/ucm085281.htm.

von Knethen, A., Paech, B.: A survey on tracing approaches in practice and research, Fraunhofer
IESE Research Report 095.01/E, Kaiserslautern, Germany, 2002, http://publica.fraunhofer.de/
documents/N-9197.html. Accessed Jan 2010.

Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering and model-driven
development. Softw. Syst. Model. 9(4), 529–565 September 2010, Springer. (Published on line
22 Dec 2009).

http://www.traceabilitycenter.org/
http://www.fda.gov/MedicalDevices/deviceregulationandguidance/guidancedocuments/ucm085281.htm
http://www.fda.gov/MedicalDevices/deviceregulationandguidance/guidancedocuments/ucm085281.htm
http://publica.fraunhofer.de/documents/N-9197.html
http://publica.fraunhofer.de/documents/N-9197.html

Appendices

The appendices draw together the resources for traceability that have been referred
to throughout the book. Appendix A provides a copy of a traceability glossary
that has been created by members of the traceability community. This glossary is
included in an attempt to promote a greater consistency in the use of traceabil-
ity terms and concepts, and we have attempted to remain faithful to this glossary
where possible in the book. Appendices B and C provide the materials for the two
case studies that have been used as exemplars in the various chapters. Appendix B
provides a synopsis of the “iTrust Electronic Health Care System” and includes its
associated resources. Appendix C does likewise for the “Mobile Phone Product Line
Software System”. Appendix D provides an overview of “The Center of Excellence
for Software Traceability”, and provides a link to its resources and membership
opportunities. Appendix E lists the objectives of “TraceLab: A Tool for Supporting
Traceability Research” and indicates how others can get involved.

411J. Cleland-Huang et al. (eds.), Software and Systems Traceability,
DOI 10.1007/978-1-4471-2239-5, C© Springer-Verlag London Limited 2012

Appendix A: Glossary of Traceability
Terms (v1.0)

Orlena Gotel, Jane Cleland-Huang, Andrea Zisman, Jane Huffman Hayes,
Alex Dekhtyar, Patrick Mäder, Alexander Egyed, Paul Grünbacher,
Giuliano Antoniol, and Jonathan Maletic

Answer set – A known set of trace links derived prior to a tracing experiment,
usually prepared by system experts.

Artifact – Something that is created or shaped by humans, either directly or indi-
rectly via automation. In software and systems engineering contexts, the term
refers to the products of the engineering process. See trace artifact.

Artifact type – See trace artifact type.
Assisted traceability – See semi-automated traceability.
Assisted tracing – See semi-automated tracing.
Association – An as yet unspecified connection between a pair of artifacts. Where

augmented with semantics providing directionality, the association becomes
traversable and is referred to as a trace link.

Atomic trace – A trace (noun sense) comprising a single source artifact, a single
target artifact and a single trace link.

Attribute – A characteristic or property inherent in or ascribed to something. In
software and systems engineering contexts, the term refers to the properties of
artifacts and their trace links. See trace attribute.

Automated traceability – The potential for automated tracing.
Automated tracing – When traceability is established via automated techniques,

methods and tools. Currently, it is the decision as to among which artifacts to
create and maintain trace links that is automated.

Backward traceability – The potential for backward tracing.
Backward tracing – In software and systems engineering contexts, the term is

commonly used when the tracing follows antecedent steps in a developmen-
tal path, which is not necessarily a chronological path, such as backward from
code through design to requirements. Note that the trace links themselves could
be used in either a primary or reverse trace link direction, dependent upon the
specification of the participating traces.

This glossary is reproduced material from Center of Excellence for Software Traceability Technical
Report #CoEST-2011-001, with permission. An up to date version of this glossary is maintained on
the CoEST website (http://www.coest.org). Please direct any glossary additions or updates to this
website. To promote consistency in the use of terms within the traceability community, preferred
terms are denoted by ∗ and U.S. English spellings are used throughout.

413

http://www.coest.org

414 Appendix A: Glossary of Traceability Terms (v1.0)

Bidirectional trace link – A term used to refer to the fact that a trace link can be
used in both a primary trace link direction and a reverse trace link direction.

Bidirectional traceability – The potential for bidirectional tracing.
Bidirectional tracing – When tracing can be undertaken in both a forward and

backward direction.
Body of knowledge for traceability – See Traceability Body of Knowledge

(TBOK).
Candidate trace link – A potential, as yet unverified, trace link.
Center of Excellence for Software Traceability (CoEST) – A traceability com-

munity initiative. “Our goal is to bring together traceability researchers and
experts in the field. We hope to encourage research collaborations, assemble a
body of knowledge for traceability, and develop new technology to meet tracing
needs.” (Hayes et al., 2007.) See: http://www.coest.org.

Chained trace – A trace (noun sense) comprising multiple atomic traces strung
in sequence, such that a target artifact for one atomic trace becomes the source
artifact for the next atomic trace.

Continuous traceability maintenance – The update of impacted trace links
immediately following changes to traced artifacts.

Creating traceability – See traceability creation.
Element – A fundamental constituent of a composite entity. In a traceability con-

text, the term refers to the fundamental constituents of a trace (noun sense). See
trace element.

Establishing traceability – Enacting those parts of the traceability process asso-
ciated with traceability creation and maintenance, and in accordance with the
traceability strategy.

Forward traceability – The potential for forward tracing.
Forward tracing – In software and systems engineering contexts, the term is com-

monly used when the tracing follows subsequent steps in a developmental path,
which is not necessarily a chronological path, such as forward from requirements
through design to code. Note that the trace links themselves could be used in
either a primary or reverse trace link direction, dependent upon the specification
of the participating traces.

Golden standard requirements traceability matrix – See answer set.
Grand Challenge of Traceability – A fundamental problem with traceability that

members of the international research and industrial communities agree deserves
attention in order to achieve a revolutionary advance in traceability practice. It
is a problem with no point solution; its solution involves first understanding and
tackling a myriad of underlying challenges, and so will demand the effort of
multiple research groups over an extended time period.

Horizontal traceability – The potential for horizontal tracing.
Horizontal tracing – In software and systems engineering contexts, the term is

commonly used when tracing artifacts at the same level of abstraction, such as:
(i) traces between all the requirements created by “Mary”, (ii) traces between
requirements that are concerned with the performance of the system, or (iii)

http://www.coest.org

Appendix A: Glossary of Traceability Terms (v1.0) 415

traces between versions of a particular requirement at different moments in time.
Horizontal tracing may employ both forward tracing and backward tracing.

Just in time tracing (JITT) – See reactive tracing.
Link – See trace link.
Link base – See link set.
Link semantics – The purpose or meaning of the trace link. The link semantics are

generally specified in the trace link type, which is a broader term that may also
capture other details regarding the nature of the trace link, such as how the trace
link was created.

Link set – The totality of the trace links on a project.
Link type – See trace link type.
Maintaining traceability – See traceability maintenance.
Manual traceability – The potential for manual tracing.
Manual tracing – When traceability is established by the activities of a human

tracer. This includes traceability creation and maintenance using the drag and
drop methods that are commonly found in current requirements management
tools.

Obsolete trace link – A pre-existing, and previously verified, trace link that is no
longer valid.

On-demand traceability maintenance – A dedicated and overall update of the
trace set (in whole or in part), generally in response to some explicit trigger and
in preparation for an upcoming traceability use.

Post-requirements (specification) traceability – The potential for post-
requirements (specification) tracing.

Post-requirements (specification) tracing – In software and systems engineer-
ing contexts, the term is commonly used to refer to those traces derived from or
grounded in the requirements, and hence the traceability explicates the require-
ments’ deployment process. The tracing is, therefore, forward from requirements
and back to requirements. Post-requirements (specification) tracing may employ
forward tracing, backward tracing, horizontal tracing and vertical tracing.

Pre-requirements (specification) tracing – The potential for pre-requirements
(specification) tracing.

Pre-requirements (specification) traceability – In software and systems engi-
neering contexts, the term is commonly used to refer to those traces that show the
derivation of the requirements from their original sources, and hence the trace-
ability explicates the requirements’ production process. The tracing is, therefore,
forward to requirements and back from requirements. Pre-requirements (speci-
fication) tracing may employ forward tracing, backward tracing, horizontal
tracing and vertical tracing.

Primary trace link direction – When a trace link is traversed from its specified
source artifact to its specified target artifact, it is being used in the primary direc-
tion as specified. Where link semantics are provided, they provide for a way to
“read” the traversal (e.g., A implements B).

416 Appendix A: Glossary of Traceability Terms (v1.0)

Proactive tracing – Initiating trace capture without explicit response to a stimu-
lus to do so (i.e., traces are created in the background). Compare with reactive
tracing.

Prospective tracing – See trace capture.
Reactive tracing∗ – Responding to a stimulus to initiate trace capture (i.e., traces

are created on demand). Compare with proactive tracing.
Ready-to-use traceability – Where previously established trace links are main-

tained as a project evolves, generally in compliance with a traceability infor-
mation model (TIM), so that the traceability on a project is always ready to be
used according to the intentions for a project. This may combine continuous and
on-demand traceability maintenance as appropriate.

Reference set – See answer set.
Requirements management – The activity concerned with the effective con-

trol of information related to stakeholder, system and software requirements
and, in particular, the preservation of the integrity of that information for the
life of the system and with respect to changes in the system and its environ-
ment. Requirements management depends upon requirements traceability as its
enabling mechanism.

Requirements management tools – Tools that support requirements manage-
ment.

Requirements traceability – “The ability to describe and follow the life of a
requirement in both a forwards and backwards direction (i.e., from its origins,
through its development and specification, to its subsequent deployment and use,
and through periods of ongoing refinement and iteration in any of these phases).”
(Gotel and Finkelstein, 1994.)

Requirements traceability matrix (RTM) – See traceability matrix.
Retrospective tracing – See trace recovery.
Reverse trace link direction – When a trace link is traversed from its specified

target artifact to its specified source artifact, it is being used in the reverse
direction to its specification. The link semantics may no longer be valid, so a
change from active to passive voice (or vice-versa) is generally required (e.g., if
A replaces B then B is replaced by A).

Semi-automated traceability∗ – The potential for semi-automated tracing.
Semi-automated tracing∗ – When traceability is established via a combination of

automated techniques, methods, tools and human activities. For example, auto-
mated techniques may suggest candidate trace links or suspect trace links and
then the human tracer may be prompted to verify them.

Software traceability – See requirements traceability, extending the definition to
encompass and interrelate any uniquely identifiable software engineering artifact
to any other.

Source artifact∗ – The artifact from which a trace originates.
Stakeholder requirements for traceability – Stakeholder requirements for trace-

ability comprise two parts: (i) why end users (i.e., people, organizations, etc.)
need traceability; and (ii) what tracers need in order to establish and use this
traceability. The latter form part of the system requirements for traceability.

Appendix A: Glossary of Traceability Terms (v1.0) 417

Suspect trace link – A pre-existing, and previously verified, trace link that may
no longer be valid.

System requirements for traceability – What the traceability solution needs to
do to fulfill the stakeholder requirements for traceability. Note that the agent
(human or automated) that establishes the traceability is part of the traceability
solution.

Systems traceability – See requirements traceability, extending the definition to
encompass and interrelate any uniquely identifiable systems engineering artifact
to a broad range of systems-level components, such as people, processes and
hardware models.

Target artifact∗ – The artifact at the destination of a trace.
Trace (Noun) – A specified triplet of elements comprising: a source artifact, a

target artifact and a trace link associating the two artifacts. Where more than two
artifacts are associated by a trace link, such as the aggregation of two artifacts
linked to a third artifact, the aggregated artifacts are treated as a single trace
artifact. The term applies, more generally, to both traces that are atomic in nature
(i.e., singular) or chained in some way (i.e., plural).

Trace (Verb) – The act of following a trace link from a source artifact to a target
artifact (primary trace link direction) or vice-versa (reverse trace link direction).
See tracing.

Trace acquisition – See trace creation.
Trace artifact∗ – A traceable unit of data (e.g., a single requirement, a cluster

of requirements, a UML class, a UML class operation, a Java class or even a
person). A trace artifact is one of the trace elements and is qualified as either a
source artifact or as a target artifact when it participates in a trace. The size of
the traceable unit of data defines the granularity of the related trace.

Trace artifact type∗ – A label that characterizes those trace artifacts that have the
same or a similar structure (syntax) and/or purpose (semantics). For example,
requirements, design and test cases may be distinct artifact types.

Trace asset – See trace element.
Trace attribute∗ – Additional information (i.e., meta-data) that characterizes

properties of the trace or of its individual trace elements, such as a date and
time stamp of the trace’s creation or the trace link type.

Trace capture∗ – A particular approach to trace creation that implies the creation
of trace links concurrently with the creation of the artifacts that they associate.
These trace links may be created automatically or semi-automatically using tools.

Trace creation∗ – The activity of creating a single trace, associating two artifacts
via a trace link. The trace link may be created manually, automatically using
tools or semi-automatically using some combination of tool and manual input.
The terms of trace capture, trace recovery and trace retrieval lend connotations
as to when a trace link is created, along with the technique used to create the
trace link in the case of trace retrieval.

Trace data – See trace element.
Trace element∗ – Used to refer to either one of the triplets comprising a trace: a

source artifact, a target artifact or a trace link.

418 Appendix A: Glossary of Traceability Terms (v1.0)

Trace generation – A particular approach to trace creation that implies that the
trace links are created automatically or semi-automatically using tools.

Trace granularity – The level of detail at which a trace is recorded and performed.
The granularity of a trace is defined by the granularity of the source artifact and
the target artifact.

Trace life cycle – A conceptual model that describes the series of activities
involved in the life of a single trace, from initial conception, through creation,
maintenance and use, through to eventual retirement. This is the traceability
process from the perspective of a single trace flowing through the traceability
process.

Trace link∗ – A specified association between a pair of artifacts, one comprising
the source artifact and one comprising the target artifact. The trace link is one of
the trace elements. It may or may not be annotated to include information such
as the link type and other semantic attributes. This definition of trace link implies
that the link has a primary trace link direction for tracing. In practice, every trace
link can be traversed in two directions (i.e., if A tests B then B is tested by A),
so the link also has a reverse trace link direction for tracing. The trace link is
effectively bidirectional. Where no concept of directionality is given or implied,
it is referred to solely as an association.

Trace link type∗ – A label that characterizes those trace links that have the
same or similar structure (syntax) and/or purpose (semantics). For example,
“implements”, “tests”, “refines” and “replaces” may be distinct trace link types.

Trace maintenance – Those activities associated with updating a single pre-
existing trace as changes are made to the traced artifacts and the traceability
evolves, creating new traces where needed to keep the traceability relevant and
up to date.

Trace precision – A commonly used metric in automated tracing that applies to
represent the fraction of retrieved trace links that are relevant. It is computed as:
Precision = (Relevant Links ∩ Retrieved Links) / Retrieved Links.

Trace quality – A measurable property of a single trace at a particular point in
time on a project, such as a confidence score depicting its correctness.

Trace query – A term often used in the process of generating or vetting trace links,
where one high level element is regarded as the trace query for searching into an
artifact collection to find trace links (as distinguished from traceability-related
queries).

Trace recall – A commonly used metric in automated tracing that applies to rep-
resent the fraction of relevant trace links that are retrieved. It is computed as:
Recall = (Relevant Links ∩ Retrieved Links) / Relevant Links.

Trace record – Persistent information that registers the triplet of trace elements
constituting a trace and is subject to version control. The trace record can also
refer to the entire trace set.

Trace recovery∗ – A particular approach to trace creation that implies the
creation of trace links after the artifacts that they associate have been gen-
erated and manipulated. These trace links may be created automatically or

Appendix A: Glossary of Traceability Terms (v1.0) 419

semi-automatically using tools. The term can be construed to infer that the trace
link previously existed but now is lost.

Trace relation – All the trace links created between two sets of specified trace
artifact types. The trace relation is the instantiation of the trace relationship
and hence is a collection of traces. For example, the trace relation would be
the actual trace links that associate the instances of requirements artifacts with
the instances of test case artifacts on a project. The trace relation is commonly
recorded within a traceability matrix.

Trace relationship – An abstract definition of a permissible trace relation on a
project (i.e., source artifact type, target artifact type and trace link types), as
typically expressed within a traceability information model (TIM). Note that the
trace links of the instances of the two artifact types may not necessarily have the
same trace link type.

Trace retrieval – A particular approach to trace creation where information
retrieval methods are used to dynamically create a trace link. This approach can
be used for both trace capture and trace recovery.

Trace set – The totality of the traces on a project.
Trace sink artifact – See target artifact.
Trace source artifact – See source artifact.
Trace target artifact – See target artifact.
Trace use – Those activities associated with putting a single trace to use to support

various software and systems engineering activities and tasks.
Traceability – The potential for traces to be established and used. Traceability

(i.e., trace “ability”) is thereby an attribute of an artifact or of a collection of
artifacts. Where there is traceability, tracing can be undertaken and the specified
artifacts should be traceable.

Traceability analyses – The analyses that can be undertaken following
traceability-related queries.

Traceability benchmark – A standard measure or test against which approaches
to various aspects of the traceability process can be evaluated and compared.

Traceability benchmark data – Datasets that contain two or more artifact types
and validated traceability matrices, the latter serving as answer sets (i.e.,
reference sets), for evaluating experimental results.

Traceability Body of Knowledge (TBOK)∗ – A proposed resource for the
traceability community, containing traceability benchmarks, good traceability
practices, traceability experience reports, etc.

Traceability challenge – A significant problem with traceability that members of
the international research and industrial communities agree deserves attention in
order to achieve advances in traceability practice.

Traceability community – Those people who are establishing and using trace-
ability in practice, or have done so in the past or intend to do so in the future.
Also, those people who are active in traceability research or in one of its many
interrelated areas.

Traceability configuration management – The process of identifying, defining,
recording and reporting on traces as configuration items, also controlling both

420 Appendix A: Glossary of Traceability Terms (v1.0)

the release of traces for traceability use and the changes that occur during
traceability maintenance. Traceability configuration management depends upon
traceability version control.

Traceability creation – The general activity of associating two (or more) arti-
facts, by providing trace links between them, for tracing purposes. Note that
this could be done manually, automatically or semi-automatically, and additional
annotations can be provided as desired to characterize attributes of the traces.

Traceability decay – The gradual disintegration and break down of the traceabil-
ity on a project. This tends to result following ongoing traceability evolution.

Traceability-enabled activities and tasks – Those software and systems engi-
neering activities and tasks that traceability supports, such as verification and
validation, impact analysis and change management.

Traceability-enabled tasks and activities – See traceability-enabled activities
and tasks.

Traceability end use – See traceability use.
Traceability end user – The human or system engaged in traceability use.
Traceability entropy – The inevitable and steady deterioration of traceability as

a result of traceability decay.
Traceability evolution – The gradual change of the traceability on a project. It

generally refers to the tendency for pre-existing traces to become outdated and/or
obsolete over time as changes are made to the traced artifacts, unless the trace-
ability is maintained sufficiently. Ongoing deterioration of the traceability may
lead to traceability decay.

Traceability graph – A representation of the trace set, with trace artifacts
depicted as nodes and trace links depicted as edges.

Traceability history – A record of the traceability evolution and the associated
traceability maintenance that has taken place on a project.

Traceability information – Any traceability-related data, such as traceability
information models, trace artifacts, trace links and other traceability work
products.

Traceability information model (TIM)∗ – A graph defining the permissible trace
artifact types, the permissible trace link types and the permissible trace relation-
ships on a project, in order to address the anticipated traceability-related queries
and traceability-enabled activities and tasks. The TIM is an abstract expression
of the intended traceability for a project. The TIM may also capture additional
information such as: the cardinality of the trace artifacts associated through a
trace link, the primary trace link direction, the purpose of the trace link (i.e.,
the link semantics), the location of the trace artifacts, the tracer responsible for
creating and maintaining the trace link, etc. (See Mäder et al. (2009) for more
detail.)

Traceability intent – See traceability information model (TIM).
Traceability life cycle – A conceptual model that describes the series of activities

associated with a full end-to-end traceability process.

Appendix A: Glossary of Traceability Terms (v1.0) 421

Traceability link – A term often used in place of trace link. Arguably, while trace-
ability link captures the enabling role of the link for traceability purposes, trace
link emphasizes the fact that the link is a primary element of a trace.

Traceability link document – A document depicting traces, showing which pairs
of trace artifacts are associated via trace links.

Traceability maintenance – Those activities associated with updating pre-
existing traces as changes are made to the traced artifacts and the traceability
evolves, creating new traces where needed to keep the traceability relevant and
up to date.

Traceability management – Those activities associated with providing the con-
trol necessary to keep the stakeholder and system requirements for traceability
and the traceability solution up to date during the life of a project. Traceability
management is a fundamental part of traceability strategy.

Traceability matrix – A matrix recording the traces comprising a trace relation,
showing which pairs of trace artifacts are associated via trace links.

Traceability meta-model – Defined constructs and rules related to the trace arti-
fact types and trace link types for building traceability information models
(TIMs).

Traceability method – A prescription of how to perform a collection of trace-
ability practices, integrating traceability techniques with guidance as to their
application and sequencing.

Traceability metric – A measure for some property or aspect of the traceability
process, either quantitative or qualitative, such as trace recall and trace precision
for trace recovery.

Traceability model – See traceability information model (TIM).
Traceability network – A traceability graph in which the directionality of the

trace links is expressed (i.e., the artifacts are depicted as ordered pairs) and where
the trace links are potentially weighted in some manner.

Traceability planning – Those activities associated with determining the stake-
holder and system requirements for traceability and designing a suitable trace-
ability solution. Traceability planning is a fundamental part of traceability
strategy.

Traceability policy – Agreed principles and guidelines for establishing and using
traceability in practice.

Traceability practices – Those actions and activities associated with planning,
managing, creating, maintaining and using traceability.

Traceability process – An instance of a traceability process model defining the
particular series of activities to be employed to establish traceability and render it
usable for a particular project, along with a description of the responsibilities and
resourcing required to undertake them, as well as their inputs and outputs. The
traceability process defines how to undertake traceability strategy, traceability
creation, traceability maintenance and traceability use.

Traceability process improvement – The activity of defining, analyzing and
improving upon an existing traceability process.

422 Appendix A: Glossary of Traceability Terms (v1.0)

Traceability process model – An abstract description of the series of activities
that serve to establish traceability and render it usable, along with a description
of the typical responsibilities and resourcing required to undertake them, as well
as their inputs and outputs. Distinctive steps of the process comprise traceability
strategy, traceability creation, traceability maintenance and traceability use.

Traceability product – See traceability work products.
Traceability quality – A measurable property of the overall traceability at a

particular point in time on a project, such as a confidence score depicting its
overall correctness, accuracy, precision, completeness, consistency, timeliness,
usefulness, etc.

Traceability quality assessment – The activity of assessing the traceability
quality on a project.

Traceability quality assurance – The activity of assuring that defined standards
and processes for traceability are appropriate and applied on a project.

Traceability quality attribute – A measurable property of a single trace link or
of a group of trace links, such as a confidence score depicting the likelihood that
a recovered candidate trace link is correct or the usefulness of a particular trace
link over time.

Traceability reference model – See traceability information model (TIM).
Traceability-related queries – Those questions that a software or systems engi-

neer may pose to which traceability can help to retrieve answers, such as the
percentage of the specified requirements that are traceable to test cases and the
existence of any requirements that are not traced through to design artifacts.

Traceability scheme – See traceability information model (TIM).
Traceability solution∗ – The traceability information model (TIM) and trace-

ability process, as defined, designed and implemented for a particular project
situation, along with any associated traceability tooling. The traceability solution
is determined as a core part of the traceability strategy.

Traceability stakeholders – Those roles (i.e., people or systems) that have some-
thing to gain or something to lose from either having or not having traceability
on a project.

Traceability standard – Mandatory practices and other conventions employed
and enforced to prescribe a disciplined and uniform approach to traceability,
generally written down and formed by consensus.

Traceability strategy – Those decisions made in order to determine the stake-
holder and system requirements for traceability and to design a suitable trace-
ability solution, and for providing the control necessary to keep these require-
ments and solutions relevant and effective during the life of a project. Traceability
strategy comprises traceability planning and traceability management activities.

Traceability system – See traceability solution.
Traceability technique – A prescription of how to perform a single traceabil-

ity practice, such as traceability creation, along with a description of how to
represent its traceability work products.

Traceability tool – Any instrument or device that serves to assist or automate any
part of the traceability process.

Appendix A: Glossary of Traceability Terms (v1.0) 423

Traceability use∗ – Those activities associated with putting traces to use to sup-
port various software and systems engineering activities and tasks, such as
verification and validation, impact analysis and change management.

Traceability version control – Tracking changes to a particular trace over time.
Each time a trace is changed in some way, a new version of the trace is effec-
tively generated. This provides for an audit trail, and for parallel development
and rollback possibilities.

Traceability work products∗ – Those artifacts produced as a result of planning,
managing, creating, maintaining and using traceability, including the trace set.

Traceable – The potential for artifacts to be accessed and retrieved by following
trace links (i.e., by undertaking tracing). Traceable (i.e., trace “able”) is thereby
an attribute of an artifact or of a collection of artifacts.

Traced – The artifacts that have been accessed by tracing, and so by having
followed trace links.

TraceLab – A visual experimental workbench for designing and executing trace-
ability experiments, providing traceability researchers with access to algorithms,
datasets, experimental frameworks and benchmarking tools. TraceLab is a major
component of the Tracy project.

Tracer – The agent engaged in the activity of tracing, where the agent can be a
human or supporting tool.

Tracing – The activity of either establishing or using traces.
Tracing activity or task – A discrete and identifiable unit of work associated with

the broader activity of tracing; an atomic activity of the traceability process.
Tracing benchmark – A clearly defined tracing task, with associated data sets and

metrics that have been agreed upon by the traceability community, and which is
used to evaluate different traceability techniques and methods comparatively.

Tracing contest – A clearly defined tracing task that has been identified by
the traceability community as a critical traceability practice that warrants
traceability benchmarking.

Tracing task or activity – See tracing activity or task.
Tracking – In software and systems engineering contexts, the term commonly

applies to the act or process of following requirements and depends upon
requirements traceability.

Tracy project – A National Science Foundation funded project designed to instru-
ment the traceability research community, and to develop tools for facilitating the
transfer of technology to industry and government organizations (Cleland-Huang
et al., 2011).

True requirements traceability matrix – See answer set.
Using traceability – Enacting those parts of the traceability process associated

with traceability use.
Value-based traceability – An approach to traceability that actively seeks to

create, manage and measure either the monetary worth or utility worth of
traceability on a project.

Vertical traceability – The potential for vertical tracing.

424 Appendix A: Glossary of Traceability Terms (v1.0)

Vertical tracing – In software and systems engineering contexts, the term is com-
monly used when tracing artifacts at differing levels of abstraction so as to
accommodate life cycle-wide or end-to-end traceability, such as from require-
ments to code. Vertical tracing may employ both forward tracing and backward
tracing.

References

Cleland-Huang, J., Czauderna, A., Dekhtyar, A., Gotel, O., Huffman Hayes, J., Keenan, E., Leach,
G., Maletic, J., Poshyvanyk, D., Shin, Y., Zisman, A., Antoniol, G., Berenbach, B., Egyed, A.,
Maeder, P.: Grand challenges, benchmarks, and TraceLab: Developing infrastructure for the
software traceability research community. In: Proceedings of the 6th International Workshop
on Traceability in Emerging Forms of Software Engineering, Honolulu, Hawaii, USA, 23 May
2011.

Gotel, O., Finkelstein, A.: An analysis of the requirements traceability problem. In: Proceedings
of the 1st IEEE International Conference on Requirements Engineering, Colorado Springs, CO,
USA, 18–22 Apr 1994, pp. 94–101.

Hayes, J.H., Dekhtyar, A., Cleland-Huang, J.: Charter (Business Plan) for the center of excellence
for traceability. COET-CBP-07-02-1.0, 15 Feb 2007. (http://www.traceabilitycenter.org/).

Mäder, P., Gotel, O., Philippow, I.: Getting back to basics: Promoting the use of a traceability infor-
mation model in practice. In: Proceedings of the 5th International Workshop on Traceability in
Emerging Forms of Software Engineering, Vancouver, Canada, 18 May 2009.

http://www.traceabilitycenter.org/

Appendix B: iTrust Electronic Health Care
System Case Study

Andrew Meneely, Ben Smith, and Laurie Williams

1 Introduction

Electronic health record (EHR) systems present a formidable “trustworthiness”
challenge because people’s health records, which are transmitted and protected by
these systems, are just as valuable to a myriad of attackers as they are to health
care practitioners. Major initiatives in EHR adoption and increased sharing of health
information raise significant challenges for protecting the privacy of patients’ health
information.

The United States is pursuing the vision of the National Health Information
Network (NHIN) in which the electronic health records of the American people
are passed between sometimes-competing health care providers. The American
Recovery and Reinvestment Act of 2009 (ARRA, 2009) provides $34 billion of
incentives to health care providers to deploy a government-approved EHR. The
ARRA will, by 2014, impose penalties on those who do not. As a result, the use
of EHR systems is likely to proliferate in the US in the next four years.

Dr. Laurie Williams created iTrust in 2005 as a course project for undergraduates
in North Carolina State University’s Software Engineering course. iTrust is intended
as a patient-centric application for maintaining an EHR. An ideal health care system
combines medical information from multiple sources to provide a summary or detail
view of the history of a particular patient in a way that is useful to the health care
practitioner.

iTrust is not intended to fulfill the requirements set forth to be approved by the
government, nor is it intended for use by practitioners in the field of medicine.
The primary goal for the project is to provide software engineering students with
a project with real-world relevance and enough depth and psychological complexity
as to mimic industrial systems that students may encounter while working in the
software industry. Additionally, iTrust provides an educational testbed for under-
standing the importance of security and privacy requirements. iTrust is particularly
focused with maintaining the privacy standards set forth in the HIPAA Security and
Privacy Rules (2002).

The notion that a software developer’s role is often to maintain, test, and refine
software rather than creating it “from scratch” is a unique learning objective for
students at North Carolina State. For the past five years, each semester students in

425

426 Appendix B: iTrust Electronic Health Care System Case Study

the undergraduate software engineering course enhance the project deemed to be
the best from the prior semester. Refactoring of iTrust by graduate students often
occurs during the summer. As such, students must learn the code base of more than
10,000 lines of Java Server Page code to make required enhancements.

This chapter highlights the key pieces of iTrust’s project artifacts that pertain to
traceability and describes the project in detail. The version of iTrust we are describ-
ing in this chapter is v10.0, which was released in the August 8th, 2010, and built
from requirements specification v18. The source code for this project, as well as all
the artifacts we describe in this chapter are available from iTrust’s homepage.1 The
iTrust project consists of the following artifacts:

• Source code, including:

◦ Production source code (Java, Java Server Pages)
◦ Automated test code

• Testing documents, including:

◦ Black box test plan
◦ Acceptance test plan
◦ Test data

• Requirements, including sections describing:

◦ System Roles
◦ Use cases
◦ Non-functional requirements and constraints
◦ Data field formats
◦ Use case tracing from requirements to JSP pages

• Traceability Matrix

The rest of this chapter is organized as follows. Section 2 focuses on iTrust as a
project and how the team develops and maintains it. Section 3 describes an overview
of the iTrust functionality. Section 4 describes the architecture and organziation
of the iTrust system. Section 5 describes the traceability provided by the project’s
maintainers, and Section 6 summarizes the chapter.

2 iTrust Project

iTrust is an active team project for undergraduate students in North Carolina
State University’s Software Engineering course. Dr. Laurie Williams conceived the
project in the Fall of 2005 and the project has been released to undergraduate and
graduate students at North Carolina State for the following five years (10 semesters).

1 http://realsearchgroup.com/iTrust

http://realsearchgroup.com/iTrust

Appendix B: iTrust Electronic Health Care System Case Study 427

Table 1 iTrust project size
Component Number of files LOC#

Production classes 226 14,570
Java server pages 135 12,942
Unit tests 244 11,936
HTTP tests 50 4,146

As a part of their homework assignments, students in the undergraduate Software
Engineering course as well as the graduate Software Testing course are required to
perform maintenance and feature additions to iTrust.

In between semesters, the project administrators (typically graduate students)
perform a “housekeeping” procedure. The graduate students spend approximately
one to two weeks on housekeeping, and the procedure entails one or more of the
following:

• Updating the automated test plan, which consists of improving the coverage and
accuracy of JUnit and system-level integration testing.

• Fixing or clarifying the documentation of the iTrust code, which consists of
Javadoc that explains the functionality and use of each Java class.

• Discussions on the future of the project, including possible architectural design
changes, new decisions on technologies to use for testing, and other high-level
decisions that would be infeasible during a semester.

• Minor features, which often involve removing or adding functionality that stu-
dents have complained about but not changed, or functionality that would be
required to prepare the system for assignments in the upcoming semester.

• Cosmetic changes, primarily involving editing the style sheets and Java Server
Pages to improve the user interface of the system.

• Refactoring, which has often been major, involving a complete redesign of the
system, or sometimes minor, such as implementing and redesigning a component
of the system to be more amenable to future changes and development.

Table 1 presents measurements on the source lines of code and number of Java
classes or JSP files that make up the iTrust code base.

The iTrust requirements v18 contains 40 functional requirements, six non-
functional requirements, and eight constraints. iTrust v11 was released for download
from SourceForge on August 8th, 2010. Since students were the primary develop-
ers for iTrust, there has been no public feedback on the project, although the install
base is rather large. Since this release date, iTrust v11 has been downloaded from
SourceForge 394 times.

3 iTrust Functionality

We designed iTrust to be a patient-centric application for maintaining an electronic
health record. An ideal health record combines medical information from multiple
sources to provide a summary or detail view of the history of a particular patient in

428 Appendix B: iTrust Electronic Health Care System Case Study

a way that is useful to the health care practitioner. iTrust is particularly focused with
maintaining the privacy standards set forth in the HIPAA Security and Privacy Rules
(2002). In addition to maintaining the patient’s personal information and health his-
tory, iTrust maintains a comprehensive transaction log. The transaction log, which
can be used for repudiation and to track the actual operational profile, contains
53 different high-level transaction types that include viewing patients’ informa-
tion, sending reminders, and adding a prescription. The patient can view a list of
which health care professionals have viewed his or her medical information upon
login. Also, iTrust has a focus on providing health care providers with dynamically
determined information regarding a patient’s chronic disease risk factors includ-
ing diabetes and heart disease. Finally, iTrust allows a health care professional to
view trend information about patients’ causes of death. Often iTrust requirements
are obtained from the US Department of Health and Human Services (HHS) use
cases (2006–2009)2; those that are obtained from HHS reference the use cases. The
remaining requirements are developed in a creative process by the teaching staff,
with the intent of covering the software engineering curriculum.

3.1 System Roles

iTrust contains eight roles in its role-based access control system. The role of a user
determines their viewing and editing capabilities.

• Patient: When an American infant is born or a foreigner requests medical care,
each is assigned a medical identification number and password. Then, this
person’s electronic records are accessible via the iTrust Medical Records system.

• Administrator: The administrator assigns medical identification numbers and
passwords to LHCPs. (Note: for simplicity of the project, an administrator is
added by directly entering the administrator into the database by an administrator
that has access to the database.)

• Licensed Health Care Professional (LHCP): A licensed health care professional
that is allowed by a particular patient to view all approved medical records. In
general, a patient does not know this non-designated health care professional,
such as an emergency room doctor, and the set of approved records may be
smaller than that granted to a designated licensed health care professional.

• Designated Licensed Health Care Professional (DLHCP): A licensed health care
professional that is allowed by a particular patient to view all approved medical
records. Any LHCP can be a DLHCP to some patients (with whom he/she has an
established relationship) and an LHCP to others (whom he/she has never/rarely
seen before).

• Emergency Responder (ER): Police, Fire, Emergency Medical Technicians
(EMTs), and other medically trained emergency responders who provide care
while at, or in transport from, the site of an emergency (referred to as “on site care

2 http://www.hhs.gov/healthit/usecases/

http://www.hhs.gov/healthit/usecases/

Appendix B: iTrust Electronic Health Care System Case Study 429

providers” by Department of Health and Human Services Emergency Responder
Electronic Health Record Use Case (2006–2009)).

• Unlicensed Authorized Personnel (UAP): A health care worker such as a medical
secretary, laboratory technician, case manager, care coordinator, or other autho-
rized clerical-type personnel. An unlicensed personnel can enter and edit demo-
graphic information, diagnosis, office visit notes and other medical information,
and can view records.

• Personal Representative: A person legally authorized to make health care deci-
sions on an individual’s behalf or to act for a deceased individual. When a person
logs into iTrust, if he or she is a personal representative, they view their own
records or those of the person/people they are representing. (For example, a
mother is a personal health representative for her children and could choose
herself and any one of her children upon logging into iTrust.)

• Public Health Agent: A person legally authorized view and respond to aggregated
reports of adverse events.

• Software Tester: An information technology worker who tests the iTrust Medical
Records system. Of particular interest to the software tester is the operational
profile information which informs him/her of the frequency of use of the features
of the system.

3.2 Patient-Centered Functionality

One of the unique characteristics of iTrust is its patient-centered functionality where
patients can log into the system to view their own records and perform a variety of
tasks.

The primary way of tracking care for a given patient is through office visits.
An office visit represents a specific consultation with an LHCP on a specific date
in a specific location. Various standardized health care codes are linked to office
visits, including diagnoses, immunizations, procedures, prescriptions, and general
demographics such as height and weight. The LHCP logs the information for a given
office visit, and the patient can view the records for of his or her previous office
visits. Patients can also take a satisfaction survey on the LHCP, which is aggregated
for other patients in search for an LHCP.

In addition to office visit tracking, patients have access to several forms of
auditability. iTrust takes data provenance very seriously, so all access and changes
to patient records are permanently logged. Patients are presented with an activity
feed upon logging in to iTrust, and can configure email alerts when their records
have been accessed or changed.

Lastly, iTrust focuses on providing informative feedback to both patients and
LHCPs. Patients are shown potential risk factors on their record, such as for dia-
betes or heart disease. High risk patients who have not had a recent office visit
are also alerted. LHCPs can also request biosurveillance to detect potential epi-
demics. The epidemic detection feature uses statistical modeling to determine an
abnormal number of diagnoses for a given location. Additionally, LHCPs can view
cause-of-death trends for a given location.

430 Appendix B: iTrust Electronic Health Care System Case Study

Fig. 1 High-level overview of the iTrust use cases

The requirements document in iTrust is a use-case based specification as shown
in Fig. 1.

The requirements specification breaks down into the following sections:

• System Roles (described in Section 3.1)
• Use cases

Appendix B: iTrust Electronic Health Care System Case Study 431

• Non-functional requirements and constraints
• Data field formats

Each use case represents a small piece of functionality that students implemented
in a two week iteration. The project administrators wrote the use cases in terms of
the roles to imply the access controls surrounding the feature. Each use case has
a precondition describing what conditions need to be met prior to accessing the
feature (e.g. authentication). The main flow of the use case provides a high-level
overview of the feature from the perspective of what the user does. The main flow of
the use case references different sub-flows of the use case that provide added detail
on the different events of the feature (e.g. the flow of events for when a patient
is deceased). Lastly, each use case contains an alternative flow that describes the
behavior of the feature outside of typical functionality (e.g. when the user enters
wrong data). The requirements document also contains a reference from each sub-
flow to the web page implementing that functionality. For an example of a use case,
see the “Traceability in iTrust” section.

After the use cases, the rest of the document comprises of non-functional require-
ments and constraints. The non-functional requirements describe limitations that all
features must adhere to. For example, all features must adhere to HIPAA standards.
The constraints section covers the development process, such as the programming
language and coding standards. iTrust was written in Java 1.5, and was designed to
work with Tomcat v5.5.27 and MySQL 5.0.

The data field formats section covers all of the inputs to the iTrust system and
how the field can be validated. For example, the data fields section defines which
characters are allowed in a patient’s name. Many data fields are defined according
to common health care standards. iTrust uses the following standard medical codes:

• ICD9CM for diagnoses
• CPT for procedures
• NDC for drug prescriptions

The iTrust requirements document is stored in a wiki format online. Storing
the document in a wiki allows the requirements to be edited in a central location
by authorized project maintainers. Each revision of the requirements document is
retained so that the entire history of the document is preserved. Using the “diff”
feature of the wiki also provides students with the ability to view what has recently
changed in the requirements document without having to find changes manually.

4 iTrust Architecture

The iTrust source code is designed around the Model-View-Controller design
pattern (Gamma et al., 1994). The goal of this organization is to separate the logic
associated with the user interface (i.e. the “view”) from the logic of the persistent

432 Appendix B: iTrust Electronic Health Care System Case Study

Fig. 2 Overview of the iTrust architecture

storage (i.e. the “model”), while organizing most of the complex business logic in
one place (i.e. the “controller”). In iTrust, the view is implemented in JavaServer
Pages (JSPs), the controller is implemented in Java, and the model is implemented
in SQL and Java. An overview of the iTrust architecture can be found in Fig. 2.

4.1 Source Code Organization

View/JSPs. The primary purpose of the JSPs is to provide a web-based user inter-
face. Each JSP contains Java code, HTML, and potentially some Javascript. Each
JSP has a one-to-one mapping to an action class. The JSP instantiates the Action
class.

Controller. The overall purpose of the controller in iTrust is to provide a bridge
between the user experience and the persistent storage of the database. Most of
the complex logic behind validating data, and processing database query results are
implemented in the controller.

The primary classes in the controller are action classes. Representing specific
functionality in iTrust, the purpose of an action class is to delegate responsibility
to the appropriate classes. Action classes serve as thin mediators between the user
interface and the database and business logic. The responsibilities of action classes
include:

Appendix B: iTrust Electronic Health Care System Case Study 433

• Delegating any input validation to a Validator.
• Logging transactions for auditability
• Delegating any custom business logic, such as risk factor calculations
• Delegating database interaction
• Handling exceptions in a secure manner

In addition to action classes, the controller contains validators. The sole purpose
of validators is to validate any input brought into the system. Since security is a high
priority in iTrust, the validators operate on using both whitelist and blacklist tech-
niques for checking input. Additionally, the validators are designed to aggregate all
errors in input so that the user is given a full report of all the problems with the input.

Lastly, the controller contains several classes with custom business logic. The
custom business logic classes are a set miscellaneous Java classes designed for spe-
cific use cases. For example, Use Case 14 (UC14) is a feature for determining if a
patient is at risk for several risk factors. Many of the queries involved in UC14 are
specific to certain risk factors (e.g. having a viral infections during childhood), so
the UC14 requires its own business logic.

Model. The model involves the all of the logic related to persistent storage in
iTrust. Beans are placeholders for data related to an iTrust entity (e.g. Patient). Beans
have minimal functionality other than storing data. Other supporting classes load
beans from database result sets, validate beans based on input, or any other custom
logic needed.

The relational database is the sole storage mechanism for iTrust. The database
stores all persistent information, including patient records, immunizations, office
visits, and transaction logs. The database schema is defined by a set of custom scripts
found in the source code tree. The database for iTrust does not contain any foreign
keys, as the students who use iTrust do not usually have a background in relational
databases and would not be able to debug foreign key constraint violations.

To interact with the database, iTrust employs database access objects (DAOs).
DAOs are Java objects that interact with the iTrust relational database. Action
classes will typically use DAOs to store and query the database. DAOs provide a
set of common queries required by the action classes so that database query logic
is contained to the DAO layer. Every DAO assumes that the incoming data is valid
and any exception is handled by the Action classes. Connections to the DAOs are
handled by the DAOFactory, which is a singleton class that utilizes a database con-
nection pool for better performance and reliability. By convention, each database
entity maps to a single Database Access Object and a single Bean.

4.2 Testing Artifacts

iTrust contains both automated and manual testing artifacts. All testing artifacts are
constantly maintained throughout the development process.

Black Box Test Plan. As a part of their assignments in the graduate and
undergraduate software engineering courses, students are required to maintain and

434 Appendix B: iTrust Electronic Health Care System Case Study

develop manual, black box test cases for the functionality of iTrust. The black box
test plan is intended to be executed by a software tester using a web browser with no
background in the project or how it can be used. The black box test plan is intended
to cover each use case and sub-flow, including the exceptional or alternative flow
cases.

A subset of the black box test plan is the acceptance test plan. The acceptance test
plan is a set of black box, manual test cases that can be executed with passing results
by the iTrust customer. When a new use case is developed for a course assignment,
the instructors of the software engineering course develop an acceptance test case
that corresponds to the use case. The acceptance test plan acts as a tool for grading
how well students performed the assignment as well as providing a clarification
of certain details of the specification that may be lacking from the requirements
specification. Students are then responsible for adding additional black box tests for
each use case flow.

Automated Unit Tests. The goal of the unit tests is to test individual iTrust
functionality at the Java class level. Students are expected to test both regular func-
tionality and boundary cases for virtually every unit in the iTrust system. When
students are assigned faults to fix, they are required to write an automated unit test
to ensure that the fault remains fixed. As the iTrust code is being developed, students
are required to maintain 80% line coverage of all Java classes. Between semesters,
the automated unit test plan is improved and maintained such that 80% coverage
is maintained on all relevant classes if the students had not done so. Students are
encouraged, but not required to use a test-driven approach to writing unit tests.
iTrust uses JUnit for our automated unit tests, and EclEmma for code coverage in
an Eclipse environment.

iTrust also contains a number of supporting classes to aid the automated testing
process. A test database is set up clean before each unit test on database functionality
(i.e. DAO classes), and the test data is a standard data set across all student projects.

There are some packages and classes of the iTrust Java classes for which unit
testing does not make sense or is not applicable. The following types of classes are
excluded from the 80% coverage requirement:

• The Server Package, which contains Java classes that interface with the Apache
Tomcat API to provide session time out functionality and other web-server
specific features.

• Test Utilities, which provide developer-friendly methods for inserting the correct
test data into the database.

• Tag Classes, which provide custom JSP tags for data fields such as the US state
the patient lives in.

Automated HTTP Tests. The automated HTTP tests simulate a user using iTrust
in an web browser. Using HTTPUnit,3 the automated HTTP tests execute on a fully-
deployed iTrust system by crafting HTTP requests and checking the responses.

3 http://httpunit.sourceforge.net/

http://httpunit.sourceforge.net/

Appendix B: iTrust Electronic Health Care System Case Study 435

As opposed to the automated unit tests, the automated HTTP tests are intended
for regression testing. Students are required to implement HTTP tests based on the
acceptance test plan. Thus, each acceptance test case is represented by at least one
HTTP test. Students also automate security penetration testing using HTTP tests.

5 Traceability in iTrust

The iTrust project administrators maintain multiple traceability matrices amongst
the artifacts. The main three artifacts that are involved in tracing are:

• Black box test plan
• Requirements document
• System archetypes (e.g. JSPs, Actions, Validators, DAOs)

Figure 3 shows an overview of how the test plan, requirements, and system
archetypes are traced to each other. The requirements document contains sub-
sections for each use case that trace to the implementing JSP. Students can use this
traceability analysis to find the place in the code that implements a given require-
ment for comprehending the code as well as improved testing. Additionally, the
whole traceability matrix is available for students on the wiki for posterity.

To construct the tracing, a software engineering graduate student conducted a
manual traceability analysis on iTrust. The procedure was as follows:

Fig. 3 Traceability overview

436 Appendix B: iTrust Electronic Health Care System Case Study

1. Examine the first (or next) use case sub-flow in the iTrust requirements docu-
ment. Record the unique identifier of the use case. For example, UC1S3.

2. Manually perform the action described in the use case. Record the relative
URL in the browser window along with the use case and sub-flow. For exam-
ple /hcp-uap/addPatient.jsp. The observed URLs correspond to JSP files (e.g.
addPatient.jsp) contained within the iTrust code base.

3. If the use case cannot be performed, or does not involve any JSPs, enter “No
links” for the use case and sub-flow.

4. Inspect the JSP code for the recorded URL. If more than one JSP is involved in
executing the described action, for instance when more than one URL is observed
in the browser window while executing the action, record each JSP separately on
its own line with a trace to the use case and sub-flow in question.

5. Record DAOs, Action classes and Validators separately with their own trace to
the sub-flow and use case in question.

6. Return to Step 1.

For an extended example of this traceability analysis, consider iTrust Use Case 1
sub-flow 1, whose traceability results are presented in Table 2.

UC1. Create and disable patients use case

Preconditions:
The iTrust HCP has authenticated himself or herself in the iTrust Medical

Records system.

Main Flow:
An HCP creates patients and disables patients. The create/disable patients and

HCP transaction is logged.

Sub-flows:

• [S1] The HCP enters a patient as a new user of iTrust Medical Records system.
Only the name and email are is provided. An email with The patient’s assigned
MID and a secret key (the initial password) is personally provided to the user,
with which the user can reset his/her password. The HCP can edit the patient with
all initial values (except patient MID) defaulting to null and/or 0 as appropriate.
Patient MID should be the number assigned when the patient is added to the
system and cannot be edited. The HCP does not have the ability to enter/edit/view
the patient’s security question/password.

• [S2] The HCP provides the MID of a patient for whom he/she wants to disable.
The HCP provides a deceased date. An optional diagnosis code is entered as the
cause of death.

iTrust has a separately maintained list of manual black box test cases that students
and administrators maintain. The black box test plan contained traceability to the
requirements specification before the traceability analysis described in this chapter
was complete. Students created and developed black box tests for the project as a

Appendix B: iTrust Electronic Health Care System Case Study 437

Table 2 Traceability results
for Use Case 1 Sub-flow 1 Use Case Subflow Source Code

UC1S1 /auth/hcp-uap/addPatient.jsp
UC1S1 AddPatientAction().addPatient()
UC1S1 PatientDAO.addEmptyPatient()
UC1S1 AuthDAO.addUser()
UC1S1 PatientDAO.editPatient()
UC1S1 TransactionDAO.logTransaction()
UC1S2 No link

part of their course requirements and included the use case and sub-flow their test
case was based upon when creating the test.

This traceability analysis procedure was scoped for the purposes of this case
study, and is limited in the following ways:

1. The traceability was conducted manually. We did not look at possible automated
approaches since we conducted the analysis exclusively for this case study.

2. The matrix was not checked and confirmed by any other students. Another
researcher or developer performing the analysis may arrive at different results.

From the 40 functional requirements in the iTrust requirements specification v18,
we elicited 199 use case sub flows that could potentially trace to portions of the code.
These 199 sub flows contained 609 separate links to 310 Java methods or JSP files.
Of the 199 use case sub flows, 38 did not trace to any code within the iTrust project.

Although we traced the full list of 40 functional requirements, we excluded the
set of six non-functional requirements in v18 of the iTrust requirements specifica-
tion. The functional requirements typically traced to one or two components of each
layer of the iTrust architecture. The traceability of the non-functional requirements
in iTrust was less straightforward, however. Some of the non-functional require-
ments trace to every member of certain archetypes in iTrust (e.g. form validation),
and others have no direct target (e.g. enabling multiple simultaneous users to be
logged in).

6 Summary

iTrust is a patient-centered electronic health record web application used as an
educational project in graduate and undergraduate software engineering courses
at North Carolina State University. The software development project contains a
use case-based requirements document, a black box test plan, automated tests, and
source code. The project administrators maintain a manual traceability matrix from
the black box test plan to the requirements document, and from the requirements
document to the source code. iTrust is an open source software project, and all of its
artifacts are publicly-available online.

438 Appendix B: iTrust Electronic Health Care System Case Study

References

American Recovery and Reinvestment Act of 2009, U.S.C. 111-5 (2009).
Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable Object-

Oriented Software, 1st ed. Reading, MA: Addison-Wesley Professional (1994).
Health Insurance Portability and Accountability Act Privacy Rule. http://www.hhs.gov/ocr/

privacy/hipaa/administrative/privacyrule/index.html. Last accessed 4 December 2011 (2002,
August)

US Department of Health and Human Services ER Use Case. http://www.hhs.gov/healthit/
usecases/. Last accessed 4 December 2011 (2006–2009)

http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/index.html
http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/index.html
http://www.hhs.gov/healthit/usecases/
http://www.hhs.gov/healthit/usecases/

Appendix C: Mobile Phone Product Line
Software System Case Study

Waraporn Jirapanthong and Andrea Zisman

1 Introduction

We present in the following a case study for a line of software systems with
different mobile phones. The mobile phone product line case study has been devel-
oped based on study, analysis, and discussions of mobile phone domains and ideas
in http://www.forum.nokia.com/main.html; www.omg.org/technology/documents/
formal/xmi.htm. This case study has also been used to evaluate the work in
Jirapanthong and Zisman (2009). The various types of documents composing the
case study are presented in details in this Appendix. It is worth noting that, when
necessary, other documents were created by authors of the chapters in the book,
based on the described functionalities of the mobile phone product line case study,
to extend the case study and accommodate the need to illustrate or evaluate the
works described in those chapters.

The mobile phone product line case study was developed using a feature-based
object-oriented methodology. More specifically, we have used an extension of the
FORM (Kang et al., 1998) methodology to develop the mobile phone system.
A feature-based approach supports domain analysis and design, while an object-
oriented approach assists with the development of various product members. The
documents in the case study include feature, subsystem, process, and module models
representing product line information; and use cases, class, and sequence diagrams
representing information about product members. Table 1 presents a summary of
the documents used in the case study. As shown in the table, these documents rep-
resent information in different phases of product line engineering namely domain

Table 1 Summary
of documents used in
the case study

Domain analysis Domain design

Product line level Feature model Subsystem model
Process model
Module model

Product member level Use cases Class diagram
Sequence diagram

439

http://www.forum.nokia.com/main.html
www.omg.org/technology/documents/formal/xmi.htm
www.omg.org/technology/documents/formal/xmi.htm

440 Appendix C: Mobile Phone Product Line Software System Case Study

analysis and domain design, and different levels of specialisations in product line
engineering namely product line and product member levels.

The line of systems in the case study contains three product members (mobile
phones), namely PM_1, PM_2, and PM_3, with common and variable character-
istics. Product member PM_1 is supposed to be a trendy device and is targeted at
young people; product member PM_2 is intended to offer an elegant design and is
targeted at business people; while product member PM_3 is targeted at users who
enjoy media applications including games and music. Table 2 presents a summary
of the various functionalities of these three product members.

Table 2 List of functionalities of the product members

Functionality PM_1 PM_2 PM_3

F1: Make and receive calls using GSM 900 X X X
F2: Make and receive calls using GSM 1800 X X X
F3: Make and receive calls using GSM 1900 X X
F4: Hold and swap a call X X X
F5: Receive and update voice mail X X X
F6: Display and update time and date X X X
F7: Set alarm and time X X X
F8: Record, display, and manipulate call logs X X X
F9: Play games X X X
F10: Update calendar X X X
F11: Add, delete, and update preferences X X X
F12: Add, delete, and update contacts X X X
F13: Include calculator X X X
F14: Take photos using VGA camera X
F15: Take photos using VGA camera with 2x digital zoom X
F16: FM radio X
F17: Email system using SMTP, POP3, or IMPA4 X X X
F18: Hand-free speaker X X
F19: Send and receive text messages X X X
F20: Send and receive multimedia message X X X
F21: Play Real One format tunes and video X
F22: Play and record MP3 format tunes X
F23: Record and update video (clips) X
F24: Play 3GPP video format X X
F25: Play Real Video format X
F26: Access Internet using WAP 1.2.1 X X
F27: Access Internet using WAP 2.0 X
F28: Access Internet using WAP XHTML X X
F29: Connect via Bluetooth transfer data X X X
F30: Connect via Infrared transfer data X X
F31: Connect via USB X
F32: Play MIDI formatted tunes X X X
F33: Play AMR formatted tunes X X
F34: Play AAC formatted tunes X
F35: Play MP3 formatted tunes X
F36: Play WAV formatted tunes X

Appendix C: Mobile Phone Product Line Software System Case Study 441

Table 2 (continued)

Functionality PM_1 PM_2 PM_3

F37: Play True Tones formatted tunes X
F38: Compose and play MIDI formatted ring tones X X
F39: Record and update voice messages X X X
F40: Transfer data via SyncML X X
F41: Transfer data via SyncML and TCP/IP X
F42: Support CLDC Java technology X X X
F43: Support MIPD Java technology X X X
F44: Support wireless messaging API Java technology X X
F45: Support mobile media API Java technology X X

We assume that for each line of software system being developed, there is a sin-
gle instance of feature and subsystem models, but there may have various instances
of process and module models and various instances of documents in the product
member level (i.e., use cases, class, and sequence diagrams). This assumption is
not unrealistic since the product line level represents general characteristics of a
group of product members being developed, while the product member level is con-
cerned with the various products in the group. Moreover, for a certain product line,

Table 3 Number of document types and their main elements

Document type
Number of
document types Element type Number of element types

Feature 1 Features 130
Subsystem

model
1 Subsystems 5

Process models 6 Processes 48 (for all 6 process models)
Module models 2 Modules 40 (for all 2 module models)
Use cases PM_1 = 4

PM_2 = 4
PM_3 = 3

Events PM_1 = 36 (for all 4 use cases)
PM_2 = 36 (for all 4 use cases)
PM_3 = 28 (for all 3 use cases)

Class diagrams PM_1 = 1 Classes PM_1 = 23
PM_2 = 1 PM_2 = 25
PM_3 = 1 PM_3 = 27

Attributes PM_1 = 26
PM_2 = 26
PM_3 = 33

Methods PM_1 = 78
PM_2 = 82
PM_3 = 87

Sequence
diagrams

PM_1 = 4
PM_2 = 4
PM_3 = 3

Messages PM_1 = 114 (in total for all
4 seq. diagrams)

PM_2 = 128 (in total for all
4 seq. diagrams)

PM_3 = 95 (in total for all
3 seq. diagrams)

442 Appendix C: Mobile Phone Product Line Software System Case Study

it is possible to have different behaviour for the subsystems represented by different
process and module models, and for a certain product member, it is possible to have
various ways of using and interacting with the product represented by different use
cases, and sequence diagrams.

Table 3 shows a summary of the types and number of documents provided in the
case study, and the size of the various documents with respect to the number of their
main elements. For the documents representing information of product members
(use cases, class, and sequence diagrams), we present the number of these docu-
ments and the number of the main elements in these documents for each product
member in the case study.

In the following, we give a description of the various types of documents in the
case study. The rest of the appendix is structured as follows. In Section 2 we present
the product line level documents. In Section 3 we present the product member level
documents. In Section 4 we show the feature model in XML format.

2 Product Line Level Documents

2.1 Feature Model

A feature model describes common and variable aspects (features) of a line of appli-
cations in a domain. In the FORM methodology (Kang et al., 1998), a feature model
is composed of two parts: (a) a graphical hierarchy of features, and (b) a textual
specification. Figure 1 presents the graphical representation of the feature model
for the mobile phone case study. An example of the textual specification template
proposed by the FORM methodology for Text Messages is presented in Fig. 2 . The
other textual descriptions are shown in XML format in Section 3.

As shown in Fig. 1, a feature is represented by a name and can be (i) mandatory,
when it must exist in the applications in the domain; (ii) optional, when it is not
necessary to be present in the applications in the domain; or (iii) alternative, when
it can be selected for an application from a set of features that are related to the
same parent feature in the hierarchy. The features can be classified into four groups,
namely: (a) application capabilities, signifying features that represent functional
aspects of the applications (e.g. calling, connectivity, personal preference, and tool
features); (b) operating environments, signifying features that represent attributes
of the environment in which product members are used and operated (e.g. network,
input and output methods, and operating system features); (c) domain technolo-
gies, signifying features that represent specific implementation and technological
aspects of the applications in the domain (e.g. WAP and XHTML2 browser types;
specific Java application support like mobile media and wireless messaging applica-
tion programming interface; SMTP, POP3, and IMAP43 network protocol features);
and (iv) implementation techniques, signifying features that represent more general
implementation and technological aspects of the applications, but not specific for
the domain (e.g. PGP and DES encryption methods; AMR, MIDI, and MP3 sound
formats; and 3GPP and MPEG4 video format features).

Appendix C: Mobile Phone Product Line Software System Case Study 443

F
ig

.1
M

ob
ile

ph
on

e
ca

se
st

ud
y

fe
at

ur
e

m
od

el

444 Appendix C: Mobile Phone Product Line Software System Case Study

Feature-name: Text Messages
Description: The phone can edit, send, and receive a short text

message
Issues and decision: Text message over mobile phone is a way of

communication
Type: Application capability
Commonality: Mandatory
Composed-of: Sending Text Messages, Receiving Text Messages,

Editing Text Messages
Composition-rule: -
Allocated-to-subs: Messaging

Fig. 2 Textual template for feature model

Features can also be associated by different types of relationships. Examples of
these relationships are (i) composed_of, (ii) generalisation/specialization, and (iii)
implemented_by relationship types.

As shown in Fig. 2, the textual specification represents (i) a name, (ii) a descrip-
tion, (iii) issues and decisions representing trade-offs, rationale, or justifications for
including the feature in an application, (iv) a type such as application capabilities,
operating environments, domain technologies, and implementation technologies,
(v) commonality indicating if a feature is mandatory, optional, and alternative,
(vi) relationship with other features such as composed-of, implemented-by, gener-
alisation/specialization, (vii) composition rule representing mutual dependency and
mutual exclusion relationships to indicate consistency and completeness of a fea-
ture, if any, and (viii) allocated-to-subsystem indicating the name of a subsystem
that contains the feature, if any.

2.2 Subsystem Model

A subsystem model is used at the product line level to represent the main functional
groups of a system (internal subsystems), subsystems outside the scope of the sys-
tem (external subsystems), and how the various subsystems relate to each other in
terms of data and control flows. Figure 3 presents the subsystem model of the mobile
phone case study composed of five subsystems, as described below.

(a) Operating System. This subsystem provides facilities for performing basic tasks
such as control of the interaction with all devices, software, and data; sup-
port of the interaction between internal applications (e.g. games, multimedia,
and PC connective), recognition of internal hardware (e.g. screen, keypad,
and Bluetooth) and different types of input data (e.g. air signal, keystroke,
screen touch, voice); response to different types of output data (e.g. air signal,
screen-display, voice).

(b) Messaging. This subsystem manages the exchange and manipulation of mes-
sages. It supports two services: short message service (SMS) for textual
messages, and multimedia message service (MMS) for multimedia messages.

Appendix C: Mobile Phone Product Line Software System Case Study 445

Fig. 3 Subsystem model for mobile phone system

The subsystem interacts with short message service centers (SMSC) or multi-
media message service centers (MMSC) to receive and forward messages.

(c) Mobile Internet. This subsystem manages the interaction between wireless net-
works and tools such as plug-in applications (e.g. for online games and for
mobile browser) and extra hardware (e.g. mobile game desk and 3G PCMCIA
data card) for supporting mobile internet applications. The subsystem supports
some special functionalities e.g. editing and browsing mobile web pages by
using WML and XHTML techniques. The subsystem is also able to activate
24-hour connectivity and support mobile functions e.g. playing online games,
managing personal online data, entertainment, and servicing online banking.

(d) Network. This subsystem supports the communication between different net-
work protocols and the maintenance of network coverage for the mobile-phone
devices. It manages a network protocol for transferring data over a mobile
phone network e.g. GSM, GPRS, HSCSD, CSD and EDGE. It supports dif-
ferent network protocol architectures such as TCP, IPv4, IPv6, MSCHAP v2,
IPSec, TCP/IP plug-in framework, WAP stack, and Multiple PDP context.

(e) Calling and Applications. This subsystem provides telephony management (e.g.
creating and responding to phone calls), supports fundamental functions (e.g. a
multimode API), and enables interworking of house-in applications (e.g. elec-
tronic games, clock and radio). In particular, the subsystem enables integration

446 Appendix C: Mobile Phone Product Line Software System Case Study

of applications and the creation of advanced data services based on global net-
work standards including GSM (Phase 2), GPRS (r4, Class B), CDMA2000
(1x), EDGE (ECSD, EGPRS), and WCDMA (r4).

2.3 Process Model

The dynamic behaviour of each subsystem in a subsystem model is represented in
a graphical diagram called process model. A process model is composed of vari-
ous processes, messages representing communication between the processes, and
shared data used by the processes (e.g., databases, reports, files). A process can be
resident, when it belongs to the subsystem, or transient, when it does not belong to
the subsystem, but exchanges messages with a resident process. Processes can also
be single or multiple, depending on the necessary number of instances of a process
to perform a task.

Table 4 presents a list of all the process models and their respective processes for
the five subsystems in the case study shown in Fig. 3. For the Messaging Subsystem
there are two process models, namely process model for SMS (Short Messaging
Service) and process model for MMS (Multimedia Messaging Service). The dia-
grams of the process models in the case study are presented in Figs. 4, 5, 6, 7, 8
and 9.

2.4 Module Model

Each process in a process model is further refined in a module model. A module
model represents a hierarchical structure of the various modules composing a pro-
cess and their interactions. The modules are classified into four groups related to
the different groups of features, namely: (i) service modules, which support the
functionality of the system and correspond to application capability features; (ii)
environment hiding modules, which represent the running environment of the sys-
tem and correspond to the operating environment features; (iii) technique hiding
modules, which represent the technology domain aspects of the system and corre-
spond to the domain technologies features; and (iv) utility modules, which represent
general purpose aspects of the system and correspond to implementation techniques
features.

We provide two module models in the case study, namely (a) module model for
SMS for process model for SMS (messaging subsystem), and (b) module model for
mobile internet for process model for internet subsystem. Figure 10 shows the mod-
ule model for SMS. Table 5 presents a list of all the modules in this model. The
module model for SMS contains 18 modules which are classified as 3 service mod-
ules, 1 environment handling module, 10 technique hiding modules, and 4 utility
modules. Figure 11 shows the module model for mobile internet. Table 6 presents
a list of all the modules in this model. The module model for mobile internet con-
tains 22 modules which are classified as 4 service modules, 2 environment handling
modules, 13 technique hiding modules, and 3 utility modules.

Appendix C: Mobile Phone Product Line Software System Case Study 447

Table 4 Processes in each process model

Process model Process name

Process model for operating
subsystem

• Recall reception process
• Establish the connection process
• Control functions process
• Display and interact process
• Edit information process
• Messaging service control process
• Making call control process
• Maintain logging process
• Invoke added-in application process
• Detect added-in hardware/software process
• IRQ (Interrupt ReQuest) process
• IPC (Inter Process Communication) process

Process model for SMS
(Messaging subsystem)

• Short messaging control process
• Check signal process
• Edit process
• Short Messaging Service (SMS) control process
• Short Messaging Service Center (SMSC) process
• Notification process
• Update remotely process

Process model for MMS
(Messaging subsystem)

• Multimedia messaging control process
• Check signal process
• Edit process
• Multimedia Messaging Service (MMS) control process
• Multimedia Messaging Service Center (MMSC) process
• Notification process
• Update remotely process

Process model for mobile
internet subsystem

• Trigger process
• Download software process
• Launch application process
• Restore data process
• Maintain reception process
• Control process

Process model for network
subsystem

• Establish high-range signal process
• Check authentication process
• Valid equipment process
• Find signal process
• Forward signals process
• Register subscriber process (Roaming)
• Handoff process
• Establish low-range signal process

Process model for calling
subsystem

• Calling control process
• Compose a call process
• Keep logging process
• Check a signal/ reception process
• Trigger a receiving call process
• Delivery a call process
• Forwarding a call to voice mail process
• Accepting a call process

448 Appendix C: Mobile Phone Product Line Software System Case Study

Process model for operating subsystem

Recall
reception
process

Establish the
connection

process

Control
functions
process

Display and
interact
process

Edit
information

process

Messaging
service control

process

Making call
control
process

Maintain
logging
process

Invoke
added-in

application
process

Detect added-
in hardware/

software process

Pr
of

ile
 c

on
ta

ct
s

M
es

sa
ge

s

L
og

 f
ile

IRQ

IPC

IR
Q

da
ta

Fig. 4 Process model for operating subsystem

Process model of SMS for Messaging
subsystem

Update
remotely
process

Notification
process

Short
messaging

control process

Check
signal

process

Edit
process

Short Messaging
Service (SMS)
control process

Short Messaging
Service Center

(SMSC) process

SM
S-

te
m

pl
at

e

Fig. 5 Process model for messaging subsystem (SMS)

Appendix C: Mobile Phone Product Line Software System Case Study 449

context

Process model of MMS for Messaging subsystem

Update
remotely
process

Notification
process

Multimedia
messaging

control
process

Check
signal

process

Edit
process

Multimedia
Messaging

Service (MMS)
control process

Multimedia
Messaging

Service Center
(MMSC) process

response info

response

context

M
M

S-
te

m
pl

at
e

trigger responseReceiving message/
advertising/
broadcast/
voicemail/

news

W
A

P
Pu

sh

msg

MMSC process is to forward
the message to receiver

i.e. phones, email servers.

msg

notification
Context

<WAP GET>

response Sending
<WAP PUT>

request Sending
+ context

Fig. 6 Process model for messaging subsystem (MMS)

Fig. 7 Process model for mobile internet subsystem

450 Appendix C: Mobile Phone Product Line Software System Case Study

Process model for Network subsystem

Forward
signals
process

Establish
high-range

signal process

Check
authentification

process

Valid
equipment

process

Find radio
signal process

Register subscriber
process (Roaming)

response info

info

SI
M

H
L

R

H
L

R

Handoff
process

Establish low-
range signal

process

request

Fig. 8 Process model for network subsystem

Profile contacts

Process model for Calling Telephony subsystem

Compose a
call process

Trigger a
receiving

call process

Delivery a call
process

Forwarding a call to
voice mail process

Calling
control
process

Check a signal/
reception process

response

request

info

L
og

 f
ile

Pr
of

ile
 c

on
ta

ct
s

Keep logging
process

info
Accepting a call

process

Fig. 9 Process model for calling subsystem

IO
Interface
controller

Output Interface
Input/Output Interface

Service

Environment Hiding

Technique Hiding

Utility

Messaging controller

Phone system

Data controllerConnecting

Data encryption

Input Inteface

Web display

Display KeypadTouch screen Joystick

Textual display

Timer

Multi network

Edit controller

Module model for Messaging

<Network>
Signalling
controller

Fig. 10 Module model for short messaging service (SMS)

Table 5 List of modules in short messaging service SMS module model

Module Type Description

Messaging controller Pre-coded Controls messages
Connecting Pre-coded Establishes a network communication
Data controller Pre-coded Controls internal data of mobile-phone handset
Multi-network Pre-coded Responds to multi-networks
Signaling controller Template Provides algorithms for maintaining the

mobile-phone reception and supporting different
mobile-phone networks

IO Interface controller Pre-coded Provides software interfaces for input and output
devices of a mobile-phone handset

Edit controller Pre-coded Manages editors
Output Interface Skeleton Manages output devices of a mobile-phone handset
Input/Output Interface Skeleton Manages input and output devices of a mobile-phone

handset
Input Interface Skeleton Manages input devices of a mobile-phone handset
Display Pre-coded Displays data to output devices of a mobile-phone

handset
Touch screen Pre-coded Manages touch screen of a mobile-phone handset
Keypad Pre-coded Manages a keypad of a mobile-phone handset
Joystick Pre-coded Manages a joystick of a mobile-phone handset
Textual display Pre-coded Manages a textual display of a mobile-phone

handset to support displaying text
Web display Pre-coded Manages a graphical display of a mobile-phone

handset to support displaying web pages
Timer Pre-coded Sets and displays the time
Data encryption Pre-coded Encrypts and decrypts data

IO
Interface
controller

Device Interface<Network>
Signalling
controller

Output Interface
Input/Output Interface

Service

Environment Hiding

Technique Hiding

Utility

Phone system

Applications controller
Data controller

Connecting

JavaTM support technique

Data encryption

Mobile Internet
application
controller

Input Inteface

Web display

Display KeypadTouch screen Joystick

Timer

WAP controller

<Emailing
protocol>
Emailing

Multi network
Multi platform

Module model for Mobile internet

Fig. 11 Module model for mobile internet process model

Appendix C: Mobile Phone Product Line Software System Case Study 453

Table 6 List of modules in mobile internet process model

Module Type Description

Application controller Pre-coded Controls a running (local) application
Connecting Pre-coded Establishes a network communication
Data controller Pre-coded Controls internal data of mobile-phone handset
Mobile-phone Internet

application
controller

Pre-coded Controls a running Internet application

Multi-network Pre-coded Responds to multi-networks
Multi-platform Pre-coded Responds to multi-platform applications
Signaling controller Template Provides algorithms for maintaining the

mobile-phone reception and supporting different
mobile-phone networks

IO Interface controller Pre-coded Provides software interfaces for input and output
devices of a mobile-phone handset

WAP controller Pre-coded Controls WAP browsing
Emailing Template Provides algorithms for composing emails and

supporting different emailing protocols
JavaTM support

technique
Template Manages Java-based plug-ins

Device Interface Skeleton Manages interfaces for different devices of
mobile-phone handsets e.g. game desk, PDA,
computers

Output Interface Skeleton Manages output devices of a mobile-phone handset
Input/Output Interface Skeleton Manages input and output devices of a mobile-phone

handset
Input Interface Skeleton Manages input devices of a mobile-phone handset
Display Pre-coded Displays data to output devices of a mobile-phone

handset
Touch screen Pre-coded Manages a touch screen of a mobile-phone handset
Keypad Pre-coded Manages a keypad of a mobile-phone handset
Joystick Pre-coded Manages a joystick of a mobile-phone handset
Web display Pre-coded Manages a graphical display of a mobile-phone

handset to support displaying web pages
Timer Pre-coded Sets and displays the time
Data encryption Pre-coded Encrypts and decrypts data

3 Product Member Level Documents

The three product members in the case study (PM_1, PM_2, and PM_3) are
designed and documented in terms of use cases and UML class and sequence dia-
grams. Use cases are used to represent the functional requirements of the products.
One product member can have several use cases. The use cases are specified in nat-
ural language following a template that is a variant of the one proposed in Cockburn
(1997). The design aspects of the product members are represented as class and
sequence diagrams. Each product member has one class diagram, but can have
several sequence diagrams. We present below the documents for this case study.

454 Appendix C: Mobile Phone Product Line Software System Case Study

3.1 Product Member PM_1

Use Cases: The four use cases for product member PM_1 are: UC1: Making a call,
UC2: Taking a photo, UC3: Sending emails, and UC4: Transferring data. These use
cases are described below.

Use Case UC1: Making a call

Status: Common
Region: EU, Africa, Asia Pacific
--
CHARACTERISTIC INFORMATION
Description: The phone is able to make a call. The user can select a calling
phone number from a list of phone numbers, which are restored in the data
collection, or enter the number via the keypad. After the user confirms the
call, the phone establishes the line connection to create the call. If properly
done, the phone dials for a response from the receiver. Otherwise, the phone
informs the user of a problem on the connection. In the case that the desti-
nation number is engaged, or it is not able to establish a signal, the phone
responds with a voice message.
Level: Primary task
Preconditions: The user has selected the function for making a call from the
main menu.
Postconditions: The user has finished a call. The phone is ready for next
actions.
Primary Actor: The user
Secondary Actors: -
--------------------------------------–
FLOW OF EVENTS
Trigger:

1. The system is ready to make a call.
2. The user selects a phone number from the list of contacts or enters a

phone number via keypad.
3. The user confirms making a call.
4. The system establishes the line connection.
5. If the connection is properly set, the phone dials the number to the desti-

nation. Otherwise, the phone informs the user about existing problems.
6. If the destination number is engaged or not able to be reached, the phone

informs the user.
7. The user confirms by hanging up the call.
8. The phone disconnects.
9. The phone shows the attempt to make a call to the user.

10. The phone keeps a log file of calls made in the data storage.

Appendix C: Mobile Phone Product Line Software System Case Study 455

EXCEPTIONAL EVENTS
None identified at present.
--------------------–
RELATED INFORMATION
Superordinate Use Case: None
Subordinate Use Cases: None

Use Case UC2: Taking a photo

Status: Common
Region: EU, Africa, Asia Pacific
--
CHARACTERISTIC INFORMATION
Description: The phone is integrated with a digital camera. It enables a user to
take and restore pictures from the phone. The photo file is in JPG format. The
photo can be taken as one of three optional types: general, night, and portrait.
Each of these types are of different size. The pictures stored in the phone can
be viewed and deleted afterwards.
Level: Primary task
Preconditions: The user has selected a function for taking a photo from the
main menu.
Postconditions: The phone has taken a photo and kept it as a JPG-formatted
file in its temporary memory storage in order to be restored in the data
collection later on. The phone is ready for capturing future shots.
Primary Actor: The user
Secondary Actors: -
--------------------------------------–
FLOW OF EVENTS
Trigger:

1. The system shows a list of photo types, i.e. general, night, and portrait.
2. The user selects one of the photo types.
3. The system shows the scenario on the screen.
4. The user clicks the button on the phone to capture a snapshot.
5. The system displays the shot that has just been taken.
6. The system pops up a request for restoring the snapshot as a photo in the

phone.
7. If the user wants to keep the snapshot, the system restores the photo as a

JPG file in the data collection.
8. The system shows the scenario on the screen for other snapshots.

456 Appendix C: Mobile Phone Product Line Software System Case Study

EXCEPTIONAL EVENTS
None identified at present.
--------------------–
RELATED INFORMATION
Superordinate Use Case: None
Subordinate Use Cases: None

Use Case UC3: Sending emails

Status: Common
Region: EU, Africa, Asia Pacific
--
CHARACTERISTIC INFORMATION
Description: The phone is able to send emails with attachment using different
network protocols such as SMTP, POP3, IMAP4. The user can specify the
receiver’s email addresses by selecting them from a contact list, which are
stored in the data collection of the phone, or entered via keypad. The phone
can send emails to multiple receivers. The user can attach different file types to
the emails including images and photos. The phone keeps a log file of emails
sent in the data storage. The user can view and delete the log file later on.
Level: Primary task
Preconditions: The user has selected a function fore sending emails from the
main menu.
Postconditions: The phone sends the email to specified receivers and shows a
confirmation to the user.
Primary Actor: The user Secondary Actors: -
--------------------------------------–
FLOW OF EVENTS
Trigger:

1. The system shows an editor composed of a text box for specifying the
email addresses of the receivers and a blank note for writing a message.

2. The user inserts a receiver’s email address by selecting it from a contact
list stored in the data collection of the phone, or entering it via keypad.
Note that the user can send the email to multiple receivers by separating
the email addresses with ‘;’.

3. The user can type the message.
4. The user may attach files or notes (.txt), photos (.jpg), and images (.jpg) to

the email that are available in the phone. (Note that the event of 2, 3, and
4 are not sequential processes.)

5. The user confirms by sending the email.
6. The phone establishes the connection for sending emails.

Appendix C: Mobile Phone Product Line Software System Case Study 457

7. If the connection is properly set, the phone sends the email via network
protocols. Otherwise, the phone informs the user about any problems.

8. After the email is sent, the phone disconnects.
9. The phone shows that an email has been sent and keeps this information

in a log file of the phone.

EXCEPTIONAL EVENTS
None identified at present.
--------------------–
RELATED INFORMATION
Superordinate Use Case: None Subordinate Use Case: None.

Use Case UC4: Transferring data

Status: Common
Region: EU, Africa, Asia Pacific
--
CHARACTERISTIC INFORMATION
Description: The phone is able to transfer data that are stored in the data col-
lection of the phone via communication ports such as Bluetooth and infrared
to another device attached with the same communication port. For example,
the user can transfer photos taken by an integrated camera to a computer being
attached with a Bluetooth device. Data can be any sort of files or notes (.txt),
photos (.jpg), and images (.jpg). The phone can transfer one data item at a
time.
Level: Primary task
Preconditions: The user has already selected a function for transferring data.
Postconditions: The system displays the status of data transferred.
Primary Actor: The user
Secondary Actors: -
--------------------------------------–
FLOW OF EVENTS
Trigger:

1. The user selects a data item to be transferred from the data collection.
2. The system shows a list of communication ports for transferring the data

item. For PM_1, there are two ports Bluetooth and infrared.
3. The user selects a communication port.
4. The system searches a destination port from a device that is closest to the

phone for transferring the data item.

458 Appendix C: Mobile Phone Product Line Software System Case Study

5. If the destination port is found, the system establishes the communication
channel between the phone and the device via the communication port.
Otherwise, the phone notifies the user about the problem.

6. The system transfers the data item.
7. While transferring, the phone displays the status of transferring the data

item on the screen.
8. After completed, the phone disconnects.
9. The phone shows the status of data item transferred.

EXCEPTIONAL EVENTS
None identified at present.
--------------------–
RELATED INFORMATION
Superordinate Use Case: None
Subordinate Use Cases: None

Appendix C: Mobile Phone Product Line Software System Case Study 459

Class Diagram

F
ig

.1
2

C
la

ss
di

ag
ra

m
fo

r
pr

od
uc

tm
em

be
r

PM
_1

460 Appendix C: Mobile Phone Product Line Software System Case Study

Sequence Diagrams

Fig. 13 Making a call sequence diagram

Appendix C: Mobile Phone Product Line Software System Case Study 461

Fig. 14 Taking a photo sequence diagram

462 Appendix C: Mobile Phone Product Line Software System Case Study

Fig. 15 Sending message sequence diagram

Appendix C: Mobile Phone Product Line Software System Case Study 463

Fig. 16 Transferring data sequence diagram

464 Appendix C: Mobile Phone Product Line Software System Case Study

3.2 Product Member PM_2

Use Cases: The four use cases for PM_2 are: UC5: Making a call, UC6: Taking
a photo, UC7: Sending emails, and UC8: Transferring data. Use cases UC5, UC6,
and UC7 are the same as use cases UC1, UC2, and UC3 for product member PM_1,
respectively. Use case UC8 is slightly different than its respective use case UC4. It
is described below.

Use Case UC8: Transferring data

Status: Common
Region: EU, Africa, Asia Pacific

--
CHARACTERISTIC INFORMATION
Description: The phone is able to transfer data that are stored in the data col-
lection of the phone via communication channels such as Bluetooth, infrared,
or TCP/IP network to another device attached with the same communication
channels. For example, the user can transfer photos taken by an integrated
camera to a computer being attached with a Bluetooth device. The user can
also transfer a text file via local network working on TCP/IP protocol. Data
can be any sort of files or notes (.txt), photos (.jpg), and images (.jpg). The
phone can transfer one data item at each time.
Level: Primary task
Preconditions: The user has already selected a function for transferring data.
Postconditions: The system displays the status of transferred.
Primary Actor: The user
Secondary Actors: -

--------------------------------------–
FLOW OF EVENTS
Trigger:

1. The user selects a data item to be transferred from the data collection.
2. The system shows a list of communication channels for transferring the

data item. For PM2, there are not only communication ports Bluetooth and
infrared, but the phone is also able to transfer data via the local network
using TCP/IP protocol.

3. The user selects a communication channel.
4. The system searches a destination channel from a device that is closest to

the phone for transferring the data item.
5. If the channel is found, the system establishes the communication channel

between the phone and the device via the communication port. Otherwise,
the phone notifies the user about the problem.

6. The system transfers the data item.

Appendix C: Mobile Phone Product Line Software System Case Study 465

7. While transferring, the phone displays the status of transferring the data
item on the screen.

8. After completed, the phone disconnects.
9. The phone shows the status of data item transferred.

EXCEPTIONAL EVENTS
None identified at present.
--------------------–
RELATED INFORMATION
Superordinate Use Case: None
Subordinate Use Cases: None

466 Appendix C: Mobile Phone Product Line Software System Case Study

Class Diagram

0.
.*

D
at

aC
o

lle
ct

io
n

-m
ax

im
um

S
to

ra
ge

:fl
oa

t
-m

ax
im

um
Ite

m
:fl

oa
t

+
ge

tD
at

aI
te

m
:v

oi
d

+
sh

ow
Li

st
D

at
a:

vo
id

+
ne

w
D

at
aI

te
m

:v
oi

d

D
at

a

-it
em

Ty
pe

ID
:in

t
-it

em
In

de
x:

in
t

-n
um

S
to

re
d:

in
t

-it
em

Ty
pe

:S
tr

in
g

+
di

sp
la

yD
at

aI
te

m
:v

oi
d

+
de

le
te

D
at

aI
te

m
:v

oi
d

+
ed

itD
at

aI
te

m
:v

oi
d

+
ge

tD
at

aI
te

m
:v

oi
d

+
ne

w
D

at
aI

te
m

:v
oi

d
+

sa
ve

D
at

aI
te

m
:v

oi
d

Im
ag

e

-im
ag

eT
yp

e:
Im

ag
eF

or
m

at

+
se

nd
D

at
aI

te
m

:v
oi

d
+

ed
itD

at
aI

te
m

:v
oi

d
+

di
sp

la
yD

at
aI

te
m

:v
oi

d

Te
xt

-t
ex

tM
es

sa
ge

:b
yt

e

+
se

nd
D

at
aI

te
m

:v
oi

d
+

di
sp

la
yD

at
aI

te
m

:v
oi

d
+

ed
itD

at
aI

te
m

:v
oi

d

Im
ag

eF
o

rm
at

-f
or

m
at

S
iz

e:
by

te
-f

or
m

at
N

am
e:

S
tr

in
g

C
o

n
ta

ct
P

ro
fi

le

-m
ax

im
um

P
ro

fil
eI

te
m

:in
t

+
ed

itD
at

aI
te

m
:v

oi
d

+
di

sp
la

yD
at

aI
te

m
:v

oi
d

E
m

ai
l

-e
m

ai
lM

es
sa

ge
:in

t
-e

m
ai

lV
oi

ce
:S

ou
nd

F
or

m
at

-e
m

ai
lP

ic
tu

re
:in

t

+
ed

itD
at

aI
te

m
:v

oi
d

+
se

nd
D

at
aI

te
m

:v
oi

d
+

di
sp

la
yD

at
aI

te
m

:v
oi

d

S
o

u
n

d
F

o
rm

at

-f
or

m
at

S
iz

e:
by

te
-f

or
m

at
N

am
e:

S
tr

in
g

Vo
ic

e

-v
oi

ce
:S

ou
nd

F
or

m
at

+
ed

itD
at

aI
te

m
:v

oi
d

+
se

nd
D

at
aI

te
m

:v
oi

d
+

di
sp

la
yD

at
aI

te
m

:v
oi

d

B
lu

et
o

o
th

+
tr

an
sf

er
D

at
a:

vo
id

+
se

ar
ch

A
P

ai
r:

vo
id

+
co

nn
ec

t:v
oi

d
+

di
sc

on
ne

ct
:v

oi
d

In
fr

ar
ed

+
di

sc
on

ne
ct

:v
oi

d
+

se
ar

ch
A

P
ai

r:
vo

id
+

co
nn

ec
t:v

oi
d

+
tr

an
sf

er
D

at
a:

vo
id

S
ys

te
m

C
o

n
tr

o
l

-la
st

A
ct

io
n:

S
tr

in
g

-t
im

e:
flo

at
-p

ow
er

:fl
oa

t

+
se

le
ct

S
en

dM
et

ho
d:

vo
id

+
se

nd
D

at
a:

vo
id

+
op

er
at

eT
oo

lA
pp

lic
at

io
n:

vo
id

+
di

sp
la

yD
at

a:
vo

id
+

di
al

C
al

l:v
oi

d
+

se
tD

at
a:

vo
id

+
se

tF
un

ct
io

n:
vo

id
+

op
er

at
eN

et
w

or
k:

vo
id

+
ac

kn
ow

le
dg

e:
vo

id
+

di
sc

on
ne

ct
:v

oi
d

P
C

C
o

n
n

ec
t

+
co

nn
ec

t:v
oi

d
+

di
sc

on
ne

ct
:v

oi
d

+
tr

an
sf

er
D

at
a:

vo
id

+
se

ar
ch

A
P

ai
r:

vo
id

D
is

p
la

yS
cr

ee
n

-s
iz

eY
:d

ou
bl

e
-s

iz
eX

:d
ou

bl
e

+
di

sp
la

yS
et

tin
g:

vo
id

+
di

sp
la

yF
un

ct
io

nM
en

u:
vo

id
+

sh
ow

S
en

dM
et

ho
d:

vo
id

+
di

sp
la

yT
im

eS
ta

m
p:

vo
id

+
di

sp
la

yA
ck

no
w

le
dg

e:
vo

id
+

di
sp

la
y:

vo
id

+
op

er
at

io
n1

:v
oi

d

G
ra

p
h

ic
C

o
lo

u
rS

cr
ee

n

+
di

sp
la

yF
un

ct
io

nM
en

u:
vo

id
+

gr
ap

hi
cS

et
tin

g:
vo

id

Te
xt

S
cr

ee
n

+
di

sp
la

yF
un

ct
io

nM
en

u:
vo

id

N
et

w
o

rk
C

o
n

tr
o

l

-n
et

w
or

kT
yp

e:
S

tr
in

g
-s

ta
tu

s:
S

tr
in

g

+
es

ta
bl

is
hC

on
ne

ct
io

n:
vo

id
+

di
sc

on
ne

ct
C

on
ne

ct
io

n:
vo

id
+

re
st

or
eC

on
ne

ct
io

n:
vo

id

C
al

l

-p
er

io
dC

al
l:d

ou
bl

e
-d

ia
lN

o:
in

t

+
re

ce
iv

eC
al

l:v
oi

d
+

en
dC

al
l:v

oi
d

+
es

ta
bl

is
hC

al
l:v

oi
d

+
di

ve
rt

C
al

l:v
oi

d

In
te

rf
ac

e

+
se

tU
p:

vo
id

+
sy

nc
hr

on
is

e:
vo

id
+

di
sc

on
ne

ct
:v

oi
d

K
ey

p
ad

In
te

rf
ac

e

+
ke

yi
n:

vo
id

K
ey

p
ad

+
se

le
ct

O
pt

io
n:

vo
id

+
sh

ow
Li

st
S

en
dM

et
ho

d:
vo

id
+

sh
ow

Li
st

O
pt

io
n:

vo
id

+
se

le
ct

S
en

d:
vo

id
+

se
le

ct
S

en
dM

et
ho

d:
vo

id
+

se
tD

at
a:

vo
id

S
ig

n
al

C
o

n
tr

o
l

+
se

nd
D

at
a:

vo
id

+
ac

kn
ow

le
dg

e:
vo

id

C
am

er
aZ

o
o

m
2x

+
ta

ke
P

ho
to

:v
oi

d
+

di
sp

la
yA

re
a:

vo
id

+
sa

ve
P

ho
to

:v
oi

d
+

di
sp

la
yP

ho
to

:v
oi

d

C
am

er
a

+
ta

ke
P

ho
to

:v
oi

d
+

di
sp

la
yA

re
a:

vo
id

+
sa

ve
P

ho
to

:v
oi

d
+

di
sp

la
yP

ho
to

:v
oi

d

C
am

er
aA

p
p

lic
at

io
n

F
ig

.1
7

C
la

ss
di

ag
ra

m
fo

r
pr

od
uc

tm
em

be
r

PM
_2

Appendix C: Mobile Phone Product Line Software System Case Study 467

Sequence Diagram: The sequence diagrams for product member PM_2 are the
same as the sequence diagrams for product member PM_1. An exception is found
in the transferring data sequence diagram, which is extended to support data to be
transferred using TCP/IP protocol.

3.3 Product Member PM_3

Use Cases: The three use cases for product member PM_3 are: UC9: Making a
call, UC10: Sending emails, and UC11: Transferring data. Use cases UC9, UC10,
and UC11 are the same as use cases UC1, UC3, and UC4, respectively for product
member PM_1.

Sequence Diagram: The sequence diagrams for product member PM_3 are the
same as the sequence diagrams for PM_1, for making a call, sending emails, and
transferring data.

468 Appendix C: Mobile Phone Product Line Software System Case Study

Class Diagram

F
ig

.1
8

C
la

ss
di

ag
ra

m
fo

r
pr

od
uc

tm
em

be
r

PM
_3

Appendix C: Mobile Phone Product Line Software System Case Study 469

4 Feature Model in XML Format

<Feature_Model
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

-<Feature>
<Feature_name>Bluetooth</Feature_name>
<Description>Bluetooth enables cost-free wireless connections between elec-

tronic devices within various maximum ranges according to the models of phones.
A Bluetooth connection can be used to send images texts business cards calendar
notes or to connect wirelessly to Bluetooth enabled devices such as computers.
Since Bluetooth devices communicate using radio waves the phone and the other
Bluetooth device do not need to be in direct line-of-sight. The two devices only need
to be within various maximum of distance depending to the models of the phones.
The connection can be subject to interference from obstructions such as walls or
from other electronic devices. Moreover using Bluetooth consumes the battery and
the phone’s operating time will be reduced.</Description>

<Issue_and_decision />
<Type />
<Existential>Optional</Existential>
<Relationship />
</Feature>

- <Feature>
<Feature_name>Digital Camera</Feature_name>
<Description>With the camera customers can take photo or events while on the

move. The photos are automatically saved in the Images application where the cus-
tomers can rename them and organise them in folders. The customers can also send
data to people in a multimedia message as an e-mail attachment or via a Bluetooth
or infrared connection. The camera produces JPEG photos.</Description>

<Issue_and_decision />
<Type />
<Existential>Optional</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Taking Photos</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Edit Text Message</Feature_name>
<Description>Customers can compose and send the message through net-

work.</Description>
<Issue_and_decision />
<Type />
<Existential>Mandatory</Existential>
<Relationship />
<Allocated_to_Subsystem>Messaging</Allocated_to_Subsystem>
</Feature>

470 Appendix C: Mobile Phone Product Line Software System Case Study

- <Feature>
<Feature_name>Taking Photos</Feature_name>
<Description>With an integrated digital camera the phone can take photos. The

Camera application is opened and customers can see the view to be captured. The
screen shows the viewfinder and the cropping lines which shows the photo area to
be captured. The customers can also see the image counter which shows how many
images depending on the selected image quality fit in the memory of the phone.
The lens range is various according to the models of phones. If the distance to the
subject of taking a photo is closer than the minimum distance of the lens range
it may affect the sharpness of images. The photos are saved automatically in the
Images application.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
<Relationship />
</Feature>

- <Feature>
<Feature_name>Connectivity</Feature_name>
<Description>The phone must be switched on to use the functions in the

Connectivity folder. Do not switch the phone on when wireless phone use is
prohibited or when it may cause interference or danger.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Infrared</Rel_feature>
<Rel_feature>Bluetooth</Rel_feature>
<Rel_feature>WAP</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Infrared</Feature_name>
<Description>Via infrared customers can send or receive data such as business

cards and calendar notes to and from a compatible phone or data device. Do not
point IR infrared beam at anyone’s eye or allow it to interfere with other IR devices.
The infrared ports of the sending and the receiving devices are pointing at the
sending device and there are no obstructions between the devices. The preferable
distance between two devices is one metre at most.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Optional</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Sending Data Via Infrared</Rel_feature>
<Rel_feature>Receiving Data Via Infrared</Rel_feature>
</Relationship>
</Feature>

Appendix C: Mobile Phone Product Line Software System Case Study 471

- <Feature>
<Feature_name>WAP</Feature_name>
<Description>The phones must be switched on to use this function. Do not switch

the phone on when wireless phone use is prohibited or when it may cause inter-
ference or danger. Various WAP Wireless Application Protocol service providers
on the Internet maintain pages specially designed for mobile phones offering ser-
vices such as news weather reports banking travel information entertainment and
games. These pages use the Wireless Markup Language WML Web pages using
the Hypertext Markup Language HTML can not be viewed on the phones. Once
the customers have stored all the required connection setting they can access WAP
pages. There are three different ways to access WAP pages the homepage of cus-
tomers’ service provider the bookmark from the Bookmarks view and the address
of a WAP service.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Optional</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Receiving Smart Messages</Rel_feature>
<Rel_feature>Adding Bookmark</Rel_feature>
<Rel_feature>Viewing Bookmark</Rel_feature>
<Rel_feature>Sending Bookmark</Rel_feature>
<Rel_feature>Browsing WAP Pages</Rel_feature>
<Rel_feature>Saving WAP Pages</Rel_feature>
<Rel_feature>WAP Connection Security</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Sending Data Via Bluetooth</Feature_name>
<Description>There can be only one active Bluetooth connection at a time. Data

can be various depending on an application where the item the customers wish to
send is stored. For example to send a photo to another device open the Images appli-
cation. After opening the application the customers can select options of sending
data via Bluetooth. The phone starts to search for devices within range Bluetooth
enables devices that are within range start to appear on the display one by one. In
the case that the customers have searched for Bluetooth devices earlier a list of the
devices that were found previously is shown first. The phone is able to start and stop
searching of Bluetooth devices before sending data. When the connection has been
successfully established the phone is ready to send data If sending fails the message
or data will be deleted.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
<Relationship />
</Feature>

- <Feature>

472 Appendix C: Mobile Phone Product Line Software System Case Study

<Feature_name>Receiving Data Via Bluetooth</Feature_name>
<Description>When the phone has received data via Bluetooth there will be a tone

sound and a pop-up to ask if the customer want to accept the Bluetooth message. If
accept the item will be placed in the Inbox folder in Messaging.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Sending Data Via Infrared</Feature_name>
<Description>The sending device has to select the desired infrared function to

start data transfer. If data transfer is not started within one minute after the acti-
vation of the infrared port the connection is cancelled and must be restarted
again.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Receiving data Via Infrared</Feature_name>
<Description>All items which are received via infrared are placed in the

Inbox folder in Messaging. The receiving device must activate the infrared
port.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Receiving Smart Messages</Feature_name>
<Description>The short message a so-called smart message can be received from

the network operator or service provider that offers the WAP service. The message
can contain both WAP access point settings and bookmarks such that the customers
can view the bookmark and access point information separately.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Receiving Smart Messages</Feature_name>
<Description>The short message a so-called smart message can be received from

the network operator or service provider that offers the WAP service. The message
can contain both WAP access point settings and bookmarks such that the customers
can view the bookmark and access point information separately.</Description>

Appendix C: Mobile Phone Product Line Software System Case Study 473

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Adding Bookmark</Feature_name>
<Description>The customer can add a bookmark in the Bookmark view by only

defining the address.</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Viewing Bookmark</Feature_name>
<Description>Viewing Bookmark A bookmark consists of an Internet address

mandatory bookmark title WAP access point and if the service requires a user name
and password. The phone may have some pre-installed bookmarks for sites not affil-
iated with the phone company. The company does not warrant or endorse these sites.
If the customer choose to access them the customer should take the same precau-
tions for security or content as would with any site. In the Bookmarks view the
customer can see bookmarks pointing to different kinds of WAP pages Bookmarks
are indicated by the following icons.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Browsing WAP Pages</Feature_name>
<Description>The phone can show which WAP pages are previously visited. The

customers can open a link with various input methods e.g. pressing the joystick
entering addresses of WAP pages etc. then they can read and view WAP service
messages while browsing.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Saving WAP Pages</Feature_name>
<Description>A WAP page can be saved to the phone memory and be viewed it

offline. The customers can open the Saved pages view from the phone memory.
Moreover the customer can start a connection to the WAP service and to retrieve the
page again.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

474 Appendix C: Mobile Phone Product Line Software System Case Study

- <Feature>
<Feature_name>WAP Connection Security</Feature_name>
<Description>The phone can pop-up an indicator during a WAP connection when

the data transmission between the phone and the WAP gateway or WAP service
is encrypted and secure. It is up to the service provider to secure data transmis-
sion between the gateway and the content server. It is possible that the customer is
trying to access or have accessed confidential information requiring passwords for
example the customer’s bank account. The phone can empty the cache after each
use.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Tools</Feature_name>
<Description>Tools</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Calendar</Rel_feature>
<Rel_feature>Games</Rel_feature>
<Rel_feature>Clock</Rel_feature>
<Rel_feature>Digital Camera</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Clock</Feature_name>
<Description>The phone can set and show the time and date. The clock can be

Analogue or Digital according to the models of phones.</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Personal Preference</Feature_name>
<Description>Personal_Preference</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>A Call</Rel_feature>
<Rel_feature>Wallpaper</Rel_feature>

- <Rel_feature> Data Transfer Setting </Rel_feature>
<Rel_feature>Clock Setting</Rel_feature>

Appendix C: Mobile Phone Product Line Software System Case Study 475

<Rel_feature>Screen saver</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Wallpaper</Feature_name>
<Description>The phone can set what is shown on the wallpaper.</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Optional</Existential>
</Feature>

- <Feature>
<Feature_name>Screen saver</Feature_name>
<Description>The phone can set what is shown on the screen saver bar time and

date or text.</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Optional</Existential>
</Feature>

- <Feature>
<Feature_name>Calling</Feature_name>
<Description>The phone can connect to landline and mobile phones. During a call

the customer can mute unmute end active call end all calls hold/unhold make a new
call. Moreover if the phone is activated the Call waiting service the network will
notify a new incoming call while the customer has a call in progress.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Making Call</Rel_feature>
<Rel_feature>Receiving A Call</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Making Call</Feature_name>
<Description>The phone can make a call by entering the phone number via keypad

or selecting a contact from the Contacts directory.</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Receiving A Call</Feature_name>
<Description>The phone can answer an incoming call by any input methods. The

customers can ignore to answer a call by activating as a line busy. The customers
can quickly mute the ringing tone for a coming call. Moreover the customer can

476 Appendix C: Mobile Phone Product Line Software System Case Study

direct incoming calls to another phone number. This depends on the network service
activated.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Input Method</Feature_name>
<Description>The phone has different ways for entering commands.

</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Keypad</Rel_feature>
<Rel_feature>Joy Stick</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Keypad</Feature_name>

- <Description>A customer can enter data and activate with responses via keypad
of the phone.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Joy Stick</Feature_name>
<Description>A customer can browse and select items with a joy stick which can

move four directions left right down and up.</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Optional</Existential>
</Feature>

- <Feature>
<Feature_name>Output Method</Feature_name>
<Description>The phone has a screen as an output showing activating responses

to a customer.</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Graphic display</Rel_feature>
<Rel_feature>Text display</Rel_feature>

Appendix C: Mobile Phone Product Line Software System Case Study 477

</Relationship>
</Feature>

- <Feature>
<Feature_name>Graphic display</Feature_name>
<Description>The screen can display graphic mode including textual contents.

The customer can change the contrast of the display to lighter or darker and the
colour palette used on the display. The phone has the light sensor to measure
the surrounding light. When the light sensor is active and it is bright enough
the phone display and keypad lights are automatically shut down. The phone can
control the setting of Minimum and Maximum of the sensitivity of the light sen-
sor. Also the function can be set off if the customer does not want to use the
light sensor. Moreover the display and keypad lights will shut down if there have
been not key presses within a range of time depending on the models of the
phones.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Alternative</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>VGA</Rel_feature>
<Rel_feature>"G"</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Text display</Feature_name>
<Description>The screen can display responses in textual. The phone has the

light sensor to measure the surrounding light. When the light sensor is active
and it is bright enough the phone display and keypad lights are automatically
shut down. The function can be set off if the customer does not want to use
the light sensor. Moreover the display and keypad lights will shut down if there
have been not key presses within a range of time depending on the models of the
phones.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Alternative</Existential>
</Feature>

- <Feature>
<Feature_name>Data</Feature_name>
<Description>Data</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Ring Tones</Rel_feature>
<Rel_feature>Photo albums</Rel_feature>
<Rel_feature>Phone Book</Rel_feature>

478 Appendix C: Mobile Phone Product Line Software System Case Study

<Rel_feature>Text Messages</Rel_feature>
<Rel_feature>Emails</Rel_feature>
<Rel_feature>Voice</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Photo albums</Feature_name>
<Description>Photo albums</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Optional</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>photos</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>photos</Feature_name>
<Description>The phone must be switched on to use this function. The phone

can view photos organise delete and send photos and pictures stored. There are
different types of photos Standard or Night or Portrait modes. Photos in Standard
or Night mode are saved in 640×480 pixel VGA format photos. In Portrait mode
are saved in 80×96 pixel format. The phone can store view organise delete and
send photos and pictures stored in your phone. The possible formats of photos in
the phone can be JPEG GIF TIFF MBM BMP WBMP OTA WMP Unsupported or
Unknown.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Storing Photos</Rel_feature>
<Rel_feature>Viewing Photos</Rel_feature>
<Rel_feature>Sending Photos</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Storing Photos</Feature_name>
<Description>The phone can store photos including ones taken with the inte-

grated digital camera in the phone itself or ones sent into inbox in a multimedia
or a photo messaging as an e-mail attachment via an infrared or Bluetooth
connection.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

Appendix C: Mobile Phone Product Line Software System Case Study 479

- <Feature>
<Feature_name>Viewing photos</Feature_name>
<Description>The phone can view an photo with functions e.g. zooming full

screen moving the focus rotating.</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Sending photos</Feature_name>
<Description>The phone can send photos in a multimedia or e-mail message as an

attachment or communication ports like infrared Bluetooth.</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Text Messages</Feature_name>
<Description>The phone can edit send and receive a short message photos in

a multimedia or e-mail message as an attachment or communication ports like
infrared Bluetooth.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Sending Text Message</Rel_feature>
<Rel_feature>Receiving Text Message</Rel_feature>
<Rel_feature>Edit Text Message</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Sending Text Message</Feature_name>
<Description>The phone can send a short message to another phone by pressing

a contact via keypad or entering from a list of contacts. The maximum amount
of sending short messages and the maximum amount of characters in one short
message depend on the models of the phone. The phone can store messages sent
previously in the outbox.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Receiving Text Message</Feature_name>
<Description>The phone can receive a short message and store it in the phone

memory. The maximum amount of receiving short messages and the maximum

480 Appendix C: Mobile Phone Product Line Software System Case Study

amount of characters in one short message depend on the models of the phone.
The phone can store messages received previously in the inbox.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Phone Book</Feature_name>
<Description>PhoneBook</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Contacts</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Contacts</Feature_name>
<Description />
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Emails</Feature_name>
<Description>The phone can send receive retrieve reply to and forward email. To

do so the customer must configure an Internet Access Point IAP correctly and define
the email settings correctly. Emails can be attached with photos.</Description>

<Issue_and_decision />
<Type>Capability</Type>
<Existential>Optional</Existential>

- <Relationship type="Composed-Of">
<Rel_feature>Sending Emails</Rel_feature>
<Rel_feature>Receiving Emails</Rel_feature>
</Relationship>
</Feature>

- <Feature>
<Feature_name>Sending Emails</Feature_name>
<Description>The customers can select the recipient(s) from a list of contacts in

the phone or write the email address of the recipient. It can send emails to mul-
tiple recipients. Moreover the customer can add an attachment to an e-mail. The
attachment includes photos sound clip note etc. This function includes replying and
forwarding emails.</Description>

<Issue_and_decision />
<Type>Capability</Type>

Appendix C: Mobile Phone Product Line Software System Case Study 481

<Existential>Mandatory</Existential>
</Feature>

- <Feature>
<Feature_name>Retrieving Emails</Feature_name>
<Description>The customers can receive emails and store them in the inbox

emails. Afterwards the phone can retrieve and delete those emails.</Description>
<Issue_and_decision />
<Type>Capability</Type>
<Existential>Mandatory</Existential>
</Feature> </Feature_Model>

References

Cockburn, A.: Structuring use-cases with goals. Journal of Object-Oriented Programming (JOOP
Magazine), Sep–Oct and Nov–Dec (1997).

Jirapanthong, W., Zisman, A.: XTraQue: Traceability for product line systems. Softw. Syst.
Modeling J. 8(1), 1619–1366 (2009).

Kang, K., Kim, S., et al.: FORM: A feature-oriented reuse method with domain-specific architec-
tures. Ann. Softw. Eng. 5(1), 143–168 (1998).

Nokia: http://www.forum.nokia.com/main.html.
OMA: www.omg.org/technology/documents/formal/xmi.htm.

http://www.forum.nokia.com/main.html
www.omg.org/technology/documents/formal/xmi.htm

Appendix D: The Center of Excellence
for Software Traceability

The International Center of Excellence for Software Traceability (CoEST) was
established in 2005 with the charge to “bring together traceability researchers
and experts in the field, encourage research collaborations, assemble a body of
knowledge for traceability, and develop new technology to meet tracing needs.”

CoEST membership currently includes academic, government, and industrial
researchers from across the U.S. and Europe.

Since its inception, the CoEST has engaged in two primary projects, the Grand
Challenges of Traceability (GCT) and the Tracy project. The grand challenges,
which were presented in chapter “The Grand Challenge of Traceability (v1.0)” of
this book, provide a detailed road map of critical research and practice goals. The
Tracy project is driven by the grand challenges, and as depicted in Fig. 1, focuses on

483

484 Appendix D: The Center of Excellence for Software Traceability

equipping the traceability research community through building research infrastruc-
ture, collecting and organising datasets, establishing benchmarks, and developing
a tool named TraceLab, which will provide support for designing and executing a
broad range of traceability experiments.

For further information, or to become a CoEST member, please visit http://www.
coest.org.

http://www.coest.org
http://www.coest.org

Appendix E: TraceLab – A Tool for Supporting
Traceability Research

TraceLab is a visual experimental workbench for designing and executing
traceability experiments.

TraceLab’s primary features include:

• A visual environment for designing and executing experiments.
• A component library which facilitates sharing a wide variety of importers, pre-

processors, algorithms, analysers, etc. across the traceability community.
• Ability to write components in a wide variety of languages including, C++, C#,

and Java, and combined into a single experimental workflow.
• Integration with standard benchmarks for comparatively evaluating new tech-

niques against previous results. Benchmarks utilise community datasets, stan-
dardised metrics, and previously published traceability tasks.

• A scalable environment that supports experiments involving extremely large
sized industrial datasets.

• Portability across multiple operating systems including Windows, Linux, and
Mac OS.

485

486 Appendix E: TraceLab – A Tool for Supporting Traceability Research

• A simple installation process which allows new users to quickly download and
install TraceLab.

• An intuitive user interface which enables new users to execute basic experiments
without any formal training.

The TraceLab project is funded under National Science Foundation’s Major
Research Instrumentation Grant # 0959924. Further information is available at
http://www.coest.org.

http://www.coest.org

Index

A
Actor, 159, 245, 454–457, 464
Agility, 265–268
Architecture

architect, 51, 129, 313
architectural decision, 302–306, 308–309,

311–312, 315–317
Aspect oriented

design, 281
programming, 278, 312

Automated traceability, 69, 71–95, 129, 181,
183–186, 188, 191, 237, 248, 250,
332, 334, 337, 365–366, 377, 385

B
Benchmark, 357, 367, 377, 396–397, 406
Business case, 54–57, 65

C
Challenge

configurable, 367–373
cost, 43, 69, 183, 344

effective, 183
portable, 288–393
purposed, 345, 349–360, 389, 401, 403,

405, 407
scalable, 345, 349, 381–388, 402–403, 405,

408
trusted, 373–381
ubiquitous, 399–404
valued, 345, 349–351, 393–399, 401,

405, 408
Change

evolution, 17, 174, 181, 209
impact, 4, 28, 32, 52, 178, 241, 268,

301, 346
analysis, 4, 32, 178, 241, 268, 301

management, 13, 17, 35–38, 270, 323, 346
Clustering, 80–81

CoEST (Center of Excellence for Software
Traceability), 4, 343, 351, 405–406,
413

Compliance, 50, 61, 173, 175, 265, 268,
301–302, 317, 326, 330–332, 334,
344, 352, 369–370, 373, 390, 405

Configuration management, 142, 270–271,
325, 328, 403

Cost
benefit, 1, 12, 23–41, 190, 364, 366, 383,

387, 403
effort, 112
estimation, 29–33, 40
return on investment, 1, 24–25, 27, 29, 33,

37, 40, 55, 61, 112, 318, 361–364,
367, 395

D
Design

decision, 23, 38, 300–301, 303–304, 309,
311, 316

model, 183, 267, 312, 316
pattern, 309, 315, 431

Domain knowledge, 104, 106–107, 109,
114–115, 117, 247

E
Effort, 1, 11, 23–32, 34–35, 37, 39–41, 52, 55,

65, 69, 71, 86–88, 91, 94, 112–116,
120–121, 123, 143, 167, 174,
183–185, 187–188, 190, 195, 217,
242, 244–245, 247–249, 252–253,
258, 260, 265, 268, 270–274, 283,
303, 305, 316, 318, 334, 344, 349,
355, 357, 362, 364–366, 372, 374,
394, 400, 404, 406, 408, 414

Empirical study, 78, 90, 103, 114–122,
248–249, 386

Extreme Programming, 266–267

487

488 Index

F
Feature model, 149–150, 152–153, 156–158,

196, 205, 207, 218, 439, 442–444,
469–481

Framework, 29, 34, 44, 129, 147–159, 164,
167–168, 196, 211, 219, 225, 249,
256, 296, 307–308, 312–313, 341,
345, 349–351, 389, 408, 445

Functional requirement, 36–37, 39, 111, 263,
277, 299–318, 324, 353, 382, 384,
387, 426–427, 431, 437

G
Glossary, 413–424
Goal oriented, 11, 175, 313
Grand Challenge, 4, 183, 296–297, 341,

343–408

H
Hazard, 324, 326, 332–334
Health care, 425–437
High assurance, 303–304
Horizontal trace, 208
Human analyst, 242, 245–246, 309
Hypertext, 99, 102

I
Impact analysis, 4, 13, 17, 23–24, 32, 49,

51, 56, 71, 178, 216, 235, 241,
268–270, 301, 304, 313, 317–318,
331, 367, 376

Incremental traceability, 88, 217, 230–232,
234, 237–238

Infrastructure, 12, 62, 309, 313, 316,
334, 393

iTrust, 34–35, 39, 51–52, 89–95, 117, 119,
121, 174–177, 179, 186, 243–244,
266, 280–281, 293, 411, 425–437

J
Joinpoint, 279, 281, 287, 293–295

K
Keyword, 133, 279, 288

L
Latent Semantic Indexing (LSI), 73, 94,

99, 216
Life cycle, 4, 16, 19, 21, 44–46, 48, 50–52,

57, 59–60, 62, 129, 131, 171,
173–174, 177, 190–191, 241–242,
246, 260, 277, 281, 312–313,

316, 322, 324–325, 331, 346, 348,
356, 361–364, 372, 382, 384, 392,
401–402, 418, 420, 424

Longevity, 62, 270, 273, 374, 382, 386,
398, 408

M
Maintenance, 10, 13, 15–16, 21, 26, 31–32,

35–37, 47, 49, 56, 62, 64–65,
71, 104, 107, 112–113, 115, 123,
129–132, 134, 137–138, 140–141,
143–144, 154, 171, 174, 180–186,
189–191, 195, 197–198, 201,
209–211, 215–239, 273, 277, 301,
307, 316, 325, 350–353, 355–359,
361–362, 364–365, 368, 371, 374,
377–378, 380–382, 385, 389–391,
394, 396–397, 400, 402–404,
414–416, 418, 420–422, 427, 445

rule, 221–225, 238
Mandate, 37, 40, 47, 195, 241, 289, 331, 334,

352, 382, 393, 398
Manual Tracing, 10, 91, 242–244, 253–254,

260, 415
Medical device, 263, 321–337
Meta model, 178, 183, 191, 196, 199–207,

289, 303, 312, 369
Metrics

precision, 85–86, 101, 106
average, 86, 92–93, 100, 118, 166

recall, 375
Missing element, 69, 148–149, 158, 161–162,

164, 166, 168
Missing link, 107–108, 114, 123, 245,

253, 259
Model

based, 80, 174, 177–178, 185, 187,
189–190, 196, 201–202, 272, 288

element, 178–179, 182–185, 195, 198–200,
202–203, 208–210, 219–220

transformation, 215–216, 238, 283–284,
287–291, 296

Modeling language, 5, 48, 51, 175–177, 267,
310, 383

Morphological, 75, 90
Multimedia, 347, 358–386, 382, 444–447, 469,

478–479

N
Natural language, 21, 74, 82, 108–110,

383, 453
Non functional requirement, 36–37, 277, 299,

311, 324, 384, 387, 431, 437

Index 489

O
Obsolete, 71, 140, 178, 184, 225, 228, 230,

378, 415, 420
OMG (Object management group), 177–178,

288, 439
Ontology, 248, 383
Organizational context, 268, 304

P
Policies, 182, 300, 347, 388–390, 392–393,

408
Post requirements traceability, 19, 385
Predictor, 251, 258–259
Pre requirements traceability, 59
Privacy, 279, 301, 425, 428
Process

assessment, 263, 322–323, 334
improvement, 53–55, 57, 59–60, 64, 66,

331, 344, 353, 358–359, 376,
396, 421

model, 9–11, 13, 21, 61, 153, 218, 350,
356, 401–402, 421–422, 439,
446–453

Product line
feature, 151
product requirements, 56, 198, 202, 209,

269, 352, 361
variability, 196, 200

Program comprehension, 71, 101, 104, 123
Program language, 74, 101, 103, 106, 112,

115–117, 120–122, 124, 159, 279,
282, 304, 431

Project manager, 35, 94, 101, 124, 175, 200,
301, 331–332, 347, 395

Project size, 31, 104–105, 123, 273,
383, 427

Protocol, 159, 182, 206, 392, 442, 445, 453,
456

Prototype, 148, 164, 168, 187, 189, 347,
386, 391

Q
Quality

concern, 301–303, 305–308, 313–315, 379
goal, 301–302, 305, 313
non functional requirement, 36–37, 263,

277, 299–318, 324, 382, 384, 387,
426, 431, 437

R
Recovery technique, 73–75, 130, 143, 180,

384–385
Refactor, 36, 112, 183, 267, 426–427

Requirements
management, 38, 46, 416
prioritization, 88
specification, 5, 58, 78, 215, 301, 426

RETRO, 251–254
Risk

analysis, 334, 337
hazard, 332
management, 321, 324–326, 332, 334–335,

337
Roadmap, 62, 336, 406
Rule, 69, 99–100, 102, 132–134, 147–168,

189–191, 220–225, 227–228,
425, 428

S
Safety critical, 28, 94, 242, 265, 273–274, 321,

323–324, 395
Scalability (scalable), 144, 217, 232, 235,

237, 312, 316–317, 382, 384–385,
387–388, 403, 405

Search engine, 114, 138, 140
Software Artifact, 71–75, 78, 89–90,

94, 151
Software evolution, 71, 201
Software maintenance, 104, 113, 115, 129, 325
Source artifact, 5–8, 14, 20, 414–419
Source code, 106–107, 111–113, 117–118,

432–433, 437
Staff turnover, 36, 270
Stakeholder, 56, 270, 346, 353, 384, 416
Stemmer, 75
Stop word, 74–75, 90, 245
Strategy, 1, 9–15, 17, 23, 26, 28–29, 32–35,

37, 62, 64, 80–81, 83, 87, 173–177,
190, 217, 222, 225, 228, 230–231,
233–235, 237–238, 304, 350–353,
355, 361–365, 367–369, 374–376,
382–384, 387–391, 394–397,
400–401, 404, 414, 421–422

Subsystem model, 153, 439, 445
Synonym, 81, 152, 157, 163
Systems traceability, 9, 45, 417

T
Tagger, 148–149
Target, 5–8, 13, 16, 20, 45, 47, 56, 73, 78,

81–82, 86, 88–89, 99, 102–103,
120, 148, 161–162, 164, 219–224,
226–228, 230, 232, 251, 269,
288–289, 292, 295, 377, 392,
413–419, 437, 440

490 Index

Test case, 5, 7, 39, 58–59, 69, 71, 74, 82, 84,
90, 102–103, 129–130, 171, 175,
177, 198, 241, 251, 253, 265–267,
269–270, 273–274, 313, 346, 348,
381, 417, 419, 422, 434–437

Time stamp, 8, 417
Tooling

acquisition, 44, 52–55, 59, 61, 64–66
chain, 48, 50–51
support, 3, 43–67, 86, 111, 129–130,

143, 164, 196, 203, 296, 314, 401,
403–404

Topic model, 78, 130
Trace

acquisition, 171, 195–211, 417
capture, 15, 129–132, 137–140, 143–144,

375, 402, 416–417, 419
creation, 15, 26, 31–32, 40–41, 151, 166,

318, 364, 371, 382, 400, 403,
417, 419

data, 23–29, 31–34, 36–37, 39–40, 203,
365, 417

element, 5–6, 8, 14, 375, 389, 391–392,
414, 417–418

evolution, 402
history, 388, 420
maintenance, 26, 31, 144, 350, 358, 371,

385, 400, 402–404, 418
obsoletion, 71, 140, 225, 228, 230, 415
planning, 1, 11, 25, 49, 350, 362, 368, 395,

401, 421–422
quality, 24, 26–29, 33, 37, 354, 418
query, 271, 418
record, 288, 418
recovery, 15, 108, 130, 143, 375, 384–385,

416–419, 421
relationship, 7, 13, 69, 130, 147–152,

154–156, 158–168, 311, 419–420
set, 16, 375, 381, 415, 418–420, 423
tool, 137

Traceability
acquisition, 171, 195–211, 417
analysis, 326–327, 333, 337, 343, 435–437
creation, 10, 13–15, 32, 71–95, 99–124,

129–145, 147–168, 180, 350, 352,
355–358, 371, 377–378, 385–386,
391–392, 397, 402–403, 420

decay, 174, 179–180, 183–184, 378, 420
maintenance, 10, 13–16, 21, 31, 173–191,

195–211, 215–239, 241–260,
377–378, 382, 385, 390, 421

management, 11, 183, 332, 335, 421

planning, 11, 25, 49, 350, 362, 368, 395,
401, 421

process, 4, 9–17, 268, 274, 299, 322–323,
328, 331–333, 350, 353, 356,
360, 362–363, 367, 370, 375–377,
380, 382, 387, 390, 394–395, 397,
401–402, 404, 408

recovery, 71–95, 99–124
rule, 33, 102, 147–150, 155–158, 160–168
solution, 12–13, 268, 273, 303–304,

352–355, 359–363, 367–370, 373,
375, 385, 389, 392, 401, 404, 422

Traceability body of knowledge (TBOK), 21,
355, 360, 367, 380–381, 398–399,
419

Traceability framework, 148–158
Traceability graph, 181, 303, 420
Traceability Information Model (TIM), 13, 49,

151–154, 159, 168, 171, 173, 176,
219–221, 226–227, 269, 272, 303,
368–373, 390, 393, 401, 407, 420

Traceability link
coarse-grained, 309, 316–317
fine-grained, 27, 111–112, 137, 181, 273,

317, 356, 366, 379
link evolution, 16, 26, 71, 154–155, 173,

180–183, 195–211, 237, 316, 357,
370, 402, 414, 420

link granularity, 5, 9, 11–12, 27, 32–33, 61,
112, 138, 142–144, 200–201, 304

semantics, 5–7, 9, 72–74, 77, 151, 155,
178, 203–204, 219, 237, 310, 313,
361, 369, 371–372, 377, 383, 390,
405, 418, 420

source, 71, 73, 75, 78, 80, 88, 90, 101
target, 219, 226–228

Traceability Matrix, 7, 32, 51, 84, 90, 241–246,
249–258, 306, 344, 404–405, 421

Traceability model, 112, 175, 198, 219–220,
226–228, 230, 235, 421

Traceability network, 380, 388–389, 391–392,
421

Traceability practices, 21, 63, 197, 309, 328,
330, 332, 344, 355, 364, 384,
397, 421

Traceability Tools
ArchStudio, 130–131, 134–135
RETRO, 251–254

TraceLab, 364, 406, 411, 423, 485–486
Tracer, 10, 13, 157, 162, 164, 284, 416, 423
Trace recovery, 15, 108, 130, 143, 375,

384–385, 418

Index 491

Trace relationship, 7, 13, 69, 130, 147–152,
154–156, 158–168, 311, 419

Track change, 201
Transaction, 30, 270, 273, 428, 433,

436–437
Trigger, 16, 39, 65, 173, 180, 182–183, 415,

447, 454–457, 464

U
UML (Unified Modeling Language)

class diagram, 5, 21, 150, 153, 176, 183,
215, 218, 439, 453, 459, 466–468

sequence diagram, 153, 218, 439, 460–463,
467

Usage scenario, 130–132, 134, 138, 140

V
Variability model, 198–204, 207–210
Vector Space Model (VSM), 76, 87, 99, 119
Vendor, 50, 57, 62–63
Veritical trace, 18–19, 423
Version control, 182, 272–273, 379, 403, 418,

420, 423
Vision, 183, 341, 345–349, 352, 361, 368,

373–374, 381, 388, 394, 399

W
Workflow, 50, 57, 60, 356–357, 400, 485

X
Xpath, 158
Xquery, 147–148, 155–156, 162, 164, 168

	Requirements and Relationships: A Foreword
	Preface
	Acknowledgments
	Contents
	Contributors
	Part I Traceability Strategy
	Traceability Fundamentals
	1 Introduction
	2 Essential Traceability Terminology
	2.1 Trace Artifact
	2.2 Trace Link
	2.3 Trace
	2.4 Traceability
	2.5 Tracing

	3 A Generic Traceability Process Model
	3.1 Traceability Strategy
	3.2 Traceability Creation
	3.3 Traceability Maintenance
	3.4 Traceability Use

	4 Basic Types of Traceability and Associated Concepts
	5 Conclusions
	References

	Cost-Benefits of Traceability
	1 Introduction
	2 Controlling Traceability Costs
	2.1 Establishing Traceability Goals
	2.2 Trace Creation and Evolution
	2.3 Using Automated Tools

	3 Trace Quality
	3.1 Ranking Requirements for Selective Traceability

	4 Cost Estimation
	4.1 Estimating Effort for Traceability
	4.2 Estimating Costs for Traceability

	5 Traceability Strategies
	6 Conducting a Practical Cost Analysis
	6.1 Establish Traceability Goals
	6.1.1 Change
	6.1.2 Design and Requirements Rationale
	6.1.3 Requirements Management and Testing Coverage

	6.2 Identifying the Minimum Data Needed
	6.3 Prioritising Requirements and Implementing Optimisations
	6.4 Estimating Effort and Refining Choices

	7 Conclusions
	References

	Acquiring Tool Support for Traceability
	1 Introduction
	2 Traceability and Requirements Management
	2.1 Traceability
	2.2 Requirements Management
	2.3 Where Traceability Fits in Requirements Management

	3 Tool Support for Requirements Management and Traceability
	3.1 Dedicated Requirements Management Tools
	3.2 Life Cycle Tools
	3.3 General-Purpose Tools and Proprietary Development

	4 Guidelines for Acquiring Tool Support for Traceability
	4.1 Step 1: Agree on the Problem and Terminology
	4.2 Step 2: Understand the Problem and Commit to Tackling it
	4.3 Step 3: Identify Stakeholders
	4.4 Step 4: Determine Requirements and Constraints
	4.5 Step 5: Design the Wider Requirements Management System
	4.6 Step 6: Assess and Select Tools
	4.7 Step 7: Plan for Tool Introduction, Adoption and Ongoing Use

	5 Conclusions
	References

	Part II Traceability Creation
	Information Retrieval Methods for Automated Traceability Recovery
	1 Introduction
	2 Using IR Methods for Traceability Recovery
	2.1 Document Parsing, Extraction and Pre-processing
	2.2 Corpus Indexing and Ranked List Generation
	2.2.1 Probabilistic Models
	2.2.2 Vector Space-Based Models

	3 Measuring the Performance of IR-Based Traceability Recovery Methods
	4 Analysis of Candidate Links
	5 Trace Retrieval in Action: Recovering Traceability Links in the iTrust System
	6 Conclusion
	References

	Factors Impacting the Inputs of Traceability Recovery Approaches
	1 Introduction
	2 Identification of Factors and Preventive Measures
	2.1 Incremental Literature Review
	2.2 Identification of Factors
	2.3 Identification of Preventive Measures

	3 Factors Impacting the Inputs of TRAs
	3.1 Requirements
	3.1.1 Ambiguous Requirements
	3.1.2 Vague Requirements
	3.1.3 Conflicting Requirements

	3.2 Source Code
	3.2.1 Granularity Level
	3.2.2 Identifiers' Quality

	3.3 Experts' Opinion
	3.3.1 Domain Knowledge
	3.3.2 Programming Knowledge

	4 Empirical Study for a Factor Impacting the Inputs of TRAs
	4.1 Experimental Design
	4.1.1 Research Question
	4.1.2 Subjects Selection
	4.1.3 Source Code Selection
	4.1.4 Links, Tasks, and Questionnaires

	4.2 Procedure
	4.3 Analysis Method
	4.4 Experimental Results
	4.5 Threats to Validity

	5 Discussions
	6 Conclusion and Future Work
	References

	Automated Techniques for Capturing Custom Traceability Links Across Heterogeneous Artifacts
	1 Motivation
	2 Techniques for Automating the Trace Capture
	2.1 Integrating Third-Party Tools
	2.1.1 Usage Scenario
	2.1.2 Techniques Behind the Scenes

	2.2 Incorporating Custom Rules
	2.2.1 Usage Scenario
	2.2.2 Techniques Behind the Scenes

	2.3 Capturing Traceability Links
	2.3.1 Usage Scenario
	2.3.2 Techniques Behind the Scenes

	2.4 Accessing Captured Traceability Links
	2.4.1 Usage Scenario
	2.4.2 Technique Behind the Scenes

	2.5 Combining Trace Capture with Integrated Search Tools
	2.5.1 Usage Scenario
	2.5.2 Technique Behind the Scenes

	2.6 Maintaining Traceability Links
	2.6.1 Usage Scenario
	2.6.2 Technique Behind the Scenes

	3 Limitations
	4 Rationale and Related Work
	5 Conclusion
	References

	Using Rules for Traceability Creation
	1 Introduction
	2 Rule-Based Traceability Framework
	2.1 Traceability Information Model
	2.2 Traceability Rules and Traceability Creation Process

	3 Multi-Agent Systems
	4 Implementation and Evaluation
	5 Conclusions and Future Work
	References

	Part III Traceability Maintenance
	Ready-to-Use Traceability on Evolving Projects
	1 Introduction
	2 Defining a Project-Specific Traceability Strategy
	2.1 Step 1: Identify Development Tasks that Require Traceability
	2.2 Step 2: Identify Traceability-Related Queries
	2.3 Step 3: Define Traceability

	3 Traceability in the Context of Model-Based Development
	3.1 Evolution of Software and System Development Models
	3.2 Traceability Between Model Elements

	4 The Problem of Traceability Decay
	5 Traceability Maintenance
	5.1 Research on the Maintenance of Traceability
	5.2 Recognising Evolution to Support Traceability Maintenance
	5.3 Requirements for Automated Traceability Maintenance

	6 A (Semi-)Automated Approach to Traceability Maintenance
	6.1 Illustrative Example
	6.2 Prototype and Evaluation
	6.3 Evaluation Results
	6.4 Discussion

	7 Conclusions and Future Challenges
	References

	Evolution-Driven Trace Acquisition in Eclipse-Based Product Line Workspaces
	1 Introduction
	2 Product Line Engineering and Traceability
	3 Traceability in the DOPLER Product Line Approach
	3.1 Granularity of Trace Links in DOPLER

	4 EvoKing Traceability Support
	4.1 Tracking Changes to Acquire Trace Links
	4.2 Evolution Meta-Model
	4.3 Capturing Notifications and Establishing Traceability
	4.4 Evolution Tracking in the DOPLER Eclipse Workspace

	5 Application Example: Evolving the Mobile Phone Product Line
	6 Summary and Conclusion
	References

	Traceability in Model-Driven Engineering: Efficient and Scalable Traceability Maintenance
	1 Introduction
	2 Case Study
	3 Traceability Approach
	3.1 Traceability Information Model
	3.2 Traceability Maintenance Rules
	3.3 Traceability Maintenance

	4 Rigorous Formal Definition of the Traceability Approach
	4.1 Formal Definition of the Traceability Information Model
	4.2 Formal Definition of Traceability Maintenance
	4.2.1 Batch Traceability Maintenance
	4.2.2 Incremental Traceability Maintenance

	5 Evaluation
	5.1 Batch Traceability Maintenance Evaluation
	5.2 Incremental Traceability Maintenance Evaluation
	5.3 Threats to Validity
	5.3.1 Internal Validity
	5.3.2 External Validity

	6 Related Work
	7 Conclusions and Future Work
	References

	Studying the Role of Humans in the Traceability Loop
	1 Introduction
	2 Semi-Automated Tracing by Example
	3 Semi-Automated Tracing Process
	Inputs

	Actors

	4 Directions for the Evaluation of Semi-Automated Tracing
	4.1 Accuracy of the Candidate Traceability Matrix
	4.2 Studying Reliability

	5 Conclusions
	References

	Part IV Traceability Use
	Traceability in Agile Projects
	1 Introduction
	2 A Quick Look at Agility
	3 The Benefits of Tracing in Agile Projects
	4 Tracing in Agile Projects
	4.1 Basic Traceability
	4.2 Beyond the Basics
	4.3 Trace Retrieval

	5 Traceability Across Different Types of Agile Projects
	5.1 Typical Small to Medium Sized Agile Projects
	5.2 Large Scaled, Distributed, or Long-Lived Projects
	5.3 Safety Critical Project

	6 Conclusions
	References

	Traceability Between Run-Time and Development Time Abstractions
	1 Introduction
	2 Aspect Oriented Software Development and Debugging
	2.1 What Is AOSD
	2.2 Traceability and AOSD
	2.2.1 State of the Art

	3 The AODA Approach
	3.1 Mirror Based Reflection
	3.2 The AJDI Model
	3.3 QVT Model to Model Transformations
	3.4 From Transformation Model to Trace Information Model
	3.5 Trace Collection

	4 Evaluation
	5 Ongoing Work and Future Challenges
	6 Conclusion
	References

	Tracing Non-Functional Requirements
	1 Introduction
	2 Benefits of Tracing NFRs
	3 Challenges of Tracing NFRs
	4 Software Architecture Practices that Capture NFR Traces
	4.1 Architecture Tradeoff Analysis Method (ATAM)
	4.2 Architecture Documentation Methods
	4.3 Enterprise Architectural Frameworks
	4.4 Knowledge Management Tools
	4.5 Summary of Tracing in Architectural Techniques

	5 Custom Processes and Techniques for Tracing NFRs
	5.1 Techniques that Embed Traceability Links into UML
	5.2 Aspect Oriented Approach
	5.3 Goal Centric Traceability
	5.4 Design Pattern-Based Approaches

	6 Tracing NFRs Through Architectural Decisions
	7 Future Directions and Conclusions
	References

	Medical Device Software Traceability
	1 Introduction
	2 Requirements for Medical Device Software Traceability
	2.1 Traceability Literature Review
	2.2 Traceability for Generic Software Development
	2.3 Traceability for Safety-Critical Development
	2.4 Medical Device Software Traceability Requirements
	2.4.1 ANSI/AAMI/IEC 62304:2006
	2.4.2 Medical Device Directive and Amendments
	2.4.3 General Principles of Software Validation
	2.4.4 Premarket Submissions for Software Contained in Medical Devices
	2.4.5 Off-The-Shelf Software Use in Medical Devices
	2.4.6 ISO 14971:2007
	2.4.7 IEC/TR 80002-1:2009
	2.4.8 ISO 13485:2003
	2.4.9 Traceability for Medical Device Software Development

	3 Development of the Med-Trace Assessment Method
	3.1 Med-Trace Stages

	4 Implementation of Med-Trace
	4.1 Implementation in MedSoft
	4.1.1 Med-Trace Assessment Recommendations Provided to MedSoft

	4.2 Implementation in MedNorth
	4.2.1 Med-Trace Assessment Recommendations Provided to MedNorth

	4.3 Observations from the 2 Med-Trace Implementations

	5 Medical Device Software Industry Traceability Challenges
	6 Foundation for Further Research in This Area
	Appendix:
Sample Scripted Med-Trace Questions
	References

	Part V Traceability Challenges
	The Grand Challenge of Traceability (v1.0)
	1 Introduction
	2 Traceability Vision
	2.1 Utopian Traceability Scenario -- Vestigia Sine
Lacrimis
	2.2 Traceability in 2035
	2.3 Assumptions of the Vision -> Traceability Challenges

	3 Challenges Framework
	4 Traceability Challenge 1: Traceability that Is Purposed
	4.1 Link to Vision (Purposed)
	4.2 Problems Addressed (Purposed)
	4.3 Dream Process (Purposed)
	4.4 Goals (Purposed)
	4.5 Requirements (Purposed)
	4.5.1 Traceability Strategy (Purposed)
	4.5.2 Traceability Creation and Maintenance (Purposed)
	4.5.3 Traceability Use (Purposed)

	4.6 Recommended Research (Purposed)
	4.7 Positive Adoption Practices for Industry (Purposed)

	5 Traceability Challenge 2: Traceability that Is Cost-Effective
	5.1 Link to Vision (Cost-Effective)
	5.2 Problems Addressed (Cost-Effective)
	5.3 Dream Process (Cost-Effective)
	5.4 Goals (Cost-Effective)
	5.5 Requirements (Cost-Effective)
	5.5.1 Traceability Strategy (Cost-Effective)
	5.5.2 Traceability Creation and Maintenance (Cost-Effective)
	5.5.3 Traceability Use (Cost-Effective)

	5.6 Recommended Research (Cost-Effective)
	5.7 Positive Adoption Practices for Industry (Cost-Effective)

	6 Traceability Challenge 3: Traceability that Is Configurable
	6.1 Link to Vision (Configurable)
	6.2 Problems Addressed (Configurable)
	6.3 Dream Process (Configurable)
	6.4 Goals (Configurable)
	6.5 Requirements (Configurable)
	6.5.1 Traceability Strategy (Configurable)
	6.5.2 Traceability Creation and Maintenance (Configurable)
	6.5.3 Traceability Use (Configurable)

	6.6 Recommended Research (Configurable)
	6.7 Positive Adoption Practices for Industry (Configurable)

	7 Traceability Challenge 4: Traceability that Is Trusted
	7.1 Link to Vision (Trusted)
	7.2 Problems Addressed (Trusted)
	7.3 Dream Process (Trusted)
	7.4 Goals (Trusted)
	7.5 Requirements (Trusted)
	7.5.1 Traceability Strategy (Trusted)
	7.5.2 Traceability Creation and Maintenance (Trusted)
	7.5.3 Traceability Use (Trusted)

	7.6 Recommended Research (Trusted)
	7.7 Positive Adoption Practices for Industry (Trusted)

	8 Traceability Challenge 5: Traceability that Is Scalable
	8.1 Link to Vision (Scalable)
	8.2 Problems Addressed (Scalable)
	8.3 Dream Process (Scalable)
	8.4 Goals (Scalable)
	8.5 Requirements (Scalable)
	8.5.1 Traceability Strategy (Scalable)
	8.5.2 Traceability Creation and Maintenance (Scalable)
	8.5.3 Traceability Use (Scalable)

	8.6 Recommended Research (Scalable)
	8.7 Positive Adoption Practices for Industry (Scalable)

	9 Traceability Challenge 6: Traceability that Is Portable
	9.1 Link to Vision (Portable)
	9.2 Problems Addressed (Portable)
	9.3 Dream Process (Portable)
	9.4 Goals (Portable)
	9.5 Requirements (Portable)
	9.5.1 Traceability Strategy (Portable)
	9.5.2 Traceability Creation and Maintenance (Portable)
	9.5.3 Traceability Use (Portable)

	9.6 Recommended Research (Portable)
	9.7 Positive Adoption Practices for Industry (Portable)

	10 Traceability Challenge 7: Traceability that Is Valued
	10.1 Link to Vision (Valued)
	10.2 Problems Addressed (Valued)
	10.3 Dream Process (Valued)
	10.4 Goals (Valued)
	10.5 Requirements (Valued)
	10.5.1 Traceability Strategy (Valued)
	10.5.2 Traceability Creation and Maintenance (Valued)
	10.5.3 Traceability Use (Valued)

	10.6 Recommended Research (Valued)
	10.7 Positive Adoption Practices for Industry (Valued)

	11 Traceability Challenge 8: Traceability that Is Ubiquitous
	11.1 Link to Vision (Ubiquitous)
	11.2 Problems Addressed (Ubiquitous)
	11.3 Dream Process (Ubiquitous)
	11.4 Goals (Ubiquitous)
	11.5 Requirements (Ubiquitous)
	11.5.1 Traceability Strategy (Ubiquitous)
	11.5.2 Traceability Creation and Maintenance (Ubiquitous)
	11.5.3 Traceability Use (Ubiquitous)

	11.6 Recommended Research (Ubiquitous)
	11.7 Positive Adoption Practices for Industry (Ubiquitous)

	12 Validation, Evolution and Intended Use
	12.1 Dissemination and Feedback Process
	12.2 Towards a Roadmap for Traceability Research

	13 Conclusions
	References

	Appendices
	Appendix A: Glossary of Traceability Terms (v1.0)
	References

	Appendix B: iTrust Electronic Health Care System Case Study
	1
Introduction
	2
iTrust Project
	3
iTrust Functionality
	3.1 System Roles
	3.2 Patient-Centered Functionality

	4
iTrust Architecture
	4.1 Source Code Organization
	4.2 Testing Artifacts

	5
Traceability in iTrust
	6
Summary
	References

	Appendix C: Mobile Phone Product Line Software System Case Study
	1
Introduction
	2
Product Line Level Documents
	2.1 Feature Model
	2.2 Subsystem Model
	2.3 Process Model
	2.4 Module Model

	3
Product Member Level Documents
	3.1 Product Member PM_1

	Use
Case UC1: Making a call
	Use
Case UC2: Taking a photo
	Use
Case UC3: Sending emails
	Use
Case UC4: Transferring data
	Class
Diagram
	Sequence
Diagrams
	3.2 Product Member PM_2

	Use
Case UC8: Transferring data
	Class
Diagram
	3.3 Product Member PM_3

	4
Feature Model in XML Format
	References

	Appendix D: The Center of Excellence for Software Traceability
	Appendix E: TraceLab -- A Tool for Supporting Traceability Research

	Index

