
Chapter 2
Numerical Optimization

2.1 Mathematical Background

In this chapter, we present the necessary mathematical background on numerical
optimization [11], which is used in this book as a fundamental tool for extremum
seeking control. We first review concepts related to continuity, differentiability, and
optimality. These concepts will then allow us to present the line search and trust-
region unconstrained optimization methods.

Definition 2.1.1 (Sequence) A sequence of real numbers {xs
k |k = 1,2, . . . } (also

represented as {xs
k}) is said to converge to a limit x ∈R if for every ε > 0 there exists

some positive integer K (that depends on ε) such that, for every k ≥ K , we have
|xs

k − x| < ε. For such a convergent sequence we may also write limk→∞ xs
k = x.

Similarly, a sequence {xs
k} of vectors xs

k ∈ R
n is said to converge to a limit x ∈R

n

if the ith coordinate of xs
k converges to the ith coordinate of x for 1 ≤ i ≤ n. In this

case, the notation limk→∞ xs
k = x is employed as well.

Definition 2.1.2 (Continuously Differentiable Functions) Consider the function f :
R → R. This function is said to be continuously differentiable if its derivative f ′
exists and is continuous. Alternatively, one can say that f belongs to class C1, or
f ∈ C1.

Similarly, if f ′, f ′′, . . . , f (k) exist and are continuous, then f is said to belong
to class Ck , or f ∈ Ck . Finally, if f has continuous derivatives of all orders, then it
is said to be smooth, or f ∈ C∞.

For a multivariate function f :Rn → R, it is said to belong to class Ck if each of
its derivatives up to kth order exists and is continuous.

In addition to these continuity concepts, there is another type of continuity we
often need, called Lipschitz continuity. Lipschitz continuity is a smoothness condi-
tion, stronger than regular continuity, that imposes a limit on the function’s growth
rate.
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Definition 2.1.3 (Lipschitz Continuity) Consider the function f : Rn → R
m. This

function is said to be Lipschitz continuous if there exists a constant L > 0 such that
∥
∥f (x) − f (y)

∥
∥ ≤ L‖x − y‖. (2.1)

The following cases can be distinguished:

1. If condition (2.1) is satisfied for every x, y ∈ R
n and with the same constant L,

then f is said to be globally Lipschitz continuous, or simply Lipschitz.
2. If condition (2.1) is satisfied for every x, y ∈ D, where D ∈ R

n and with the
same constant L, then f is said to be Lipschitz in D.

3. If condition (2.1) is satisfied for every x, y ∈ D, where D ∈ R
n but not with the

same constant L, which can depend on x, then f is said to be locally Lipschitz
in D.

For the study of nonlinear systems it is often useful to define functions that map
one set to another, with the purpose of normalizing the form of a system’s dynamics.
To this end, we require the following concept.

Definition 2.1.4 (Diffeomorphism) Consider a function T : D → M mapping the
domain D ∈ R

n to the domain M ∈ R
n. The function T is called a diffeomorphism

if T is continuously differentiable, and its inverse T −1 exists and is continuously
differentiable.

Definition 2.1.5 (Matrix Concepts) An n × n matrix A with real elements is sym-
metric if it is equal to its transpose, or A = A	. The symmetric matrix A is said to be
positive definite if x	Ax > 0 for all x ∈R

n, x 
= 0. A is called positive semi-definite
if x	Ax ≥ 0. A is negative definite if −A is positive definite.

Theorem 2.1.6 The following statements hold for any non-zero symmetric ma-
trix A ∈R

n×n [8]:

1. Its eigenvalues are all real-valued, and the corresponding n eigenvectors are
real, non-zero and mutually orthogonal.

2. A is positive definite if and only if all its eigenvalues are strictly positive.
3. A is positive semi-definite if and only if all its eigenvalues are non-negative.

Given a function J : Rn →R with J ∈ C1, denote

g(x) = ∇J (x) =
[
∂J (x)

∂x1
, . . . ,

∂J (x)

∂xn

]	

as the gradient of J evaluated at the point x ∈R
n. In the case of x = x(t) for t ∈R

m,
by using the chain rule we have

∇J
(

x(t)
) =

n
∑

i=1

∂J

∂xi

∇xi(t) =
n

∑

i=1

∂J

∂xi

[
∂xi(t)

∂t1
, . . . ,

∂xi(t)

∂tm

]	
.
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If J ∈ C2, let H(x) = ∇2J (x) be the Hessian matrix. The (i, j)th component of
H is given by ∂2J (x)/∂xi∂xj , 1 ≤ i, j ≤ n. The square matrix H is symmetric.

Theorem 2.1.7 (Taylor’s Theorem [11]) Let J : Rn → R be continuously differen-
tiable and p ∈R

n. Then

J (x + p) = J (x) + ∇J	(x + αp)p,

for some α ∈ [0,1]. Moreover, if J is twice continuously differentiable then

∇J (x + p) = ∇J (x) +
(∫ 1

0
∇2J (x + τp)dτ

)

p,

and the following three statements hold:

1. There exists some α ∈ [0,1] such that, for any p ∈R
n,

J (x + p) = J (x) + ∇J (x)	p + 1

2
p	∇2J (x + αp)p.

2. For any p ∈R
n,

J (x + p) = J (x) + ∇J (x)	p + 1

2
p	∇2J (x)p + O

(‖p‖2).

3. For any p ∈R
n,

J (x + p) = J (x) + ∇J (x)	p + 1

2
p	

(∫ 1

0

(∫ t

0
∇2J (x + τy) dτ

)

dt

)

p.

Note that a set S ⊆ R
n is convex if for any x, y ∈ S we have βx+(1−β)y ∈ S for

all β ∈ [0,1]. The set S is closed if it contains all of its limit points, and it is bounded
if all its elements have coordinates whose magnitude is less than some finite d > 0.
Further, S is compact if every sequence of elements of S has a subsequence that
converges to an element of S. The set S is compact if and only if it is closed and
bounded.

A function J is a convex function if its domain is convex and if for any x, y in
this domain we have J (βx + (1 − β)y) ≤ βJ (x) + (1 − β)J (y) for all β ∈ [0,1].

Definition 2.1.8 (Global Minimizer) Let J be defined on S ⊆ R
n. The point x∗ ∈ S

is a global minimizer of J if J (x∗) ≤ J (x) for all x ∈ S; it is a strict global min-
imizer of J if J (x∗) < J (x) for all x ∈ S, x 
= x∗. Correspondingly, we say that
J (x∗) is a (strict) global minimum of J .

Definition 2.1.9 (Local Minimizer) Let J be defined on S ⊆ R
n. The point x∗ ∈ S

is a local minimizer of J if there exists an open neighborhood B of x∗ such that
J (x∗) ≤ J (x) for all x ∈ B ∩ S; it is a strict local minimizer if J (x∗) < J (x) for all
x ∈ B ∩ S, x 
= x∗. Correspondingly, we say that J (x∗) is a (strict) local minimum
of J .
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Definition 2.1.10 (Stationary Point) We say that x∗ is a stationary point of J de-
fined on S ⊆ R

n if ∇J (x∗) = 0.

Definition 2.1.11 (Level Set) Let J be defined on R
n and γ > 0. We define the

level set with respect to γ as

Lγ = {

x ∈R
n : J (x) ≤ γ

}

.

Computational procedures that minimize (maximize) J , that is, search for its
minima (maxima), are referred to as optimization methods. The optimization is often
achieved via different iterative algorithms. The algorithms begin with a initial guess
xs

0 and generate a sequence {xs
k} leading to a possible solution, that is, a stationary

point, a local minimizer or a global minimizer.

Definition 2.1.12 (Algorithm Convergence) Let S ⊆ R
n and {xs

k} ⊆ S be a se-
quence generated by an optimization algorithm. If limk→∞ xs

k = x∗ ∈ S for any
xs

0 ∈ S, then we say that the algorithm is globally convergent. If such a convergence
only exists for some xs

0 ∈ S, then we say the algorithm is locally convergent.

Definition 2.1.13 (q-order Convergence) Let {xs
k} be a locally convergent sequence

in S ⊆ R
n. We say that {xs

k} is q-order convergent if

lim
k→∞

‖xs
k+1 − x∗‖

‖xs
k − x∗‖q

= M

exists for some q,M > 0. In particular, we say that {xs
k} is linearly convergent if

q = 1; and superlinearly or quadratically convergent if 1 < q < 2 or q = 2, respec-
tively.

The following standard stopping criteria are frequently employed in optimiza-
tion computations. In the case when xs

k 
= 0 and J (xs
k) 
= 0 for sufficiently large k,

computation terminates when
∥
∥xs

k+1 − xs
k

∥
∥/

∥
∥xs

k

∥
∥ ≤ ε,

or
∣
∣J

(

xs
k

) − J
(

xs
k+1

)∣
∣/

∣
∣J

(

xs
k

)∣
∣ ≤ ε.

Otherwise, the optimization computation may be terminated when ‖xs
k+1 −xs

k‖ ≤ ε,
or |J (xs

k) − J (xs
k+1)| ≤ ε, where ε > 0 is a controlling parameter. More sophisti-

cated stopping criteria may also be considered.
Since most optimization algorithms are iterative, there has been a fundamental

trade-off between their efficiency and robustness [14]. In general, algorithms de-
signed to be very efficient on one type of problem tend to be brittle in the sense that
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they may not be ideally used for other types of problem. Such a lack of a universally
best algorithm is a manifestation of the so-called No Free Lunch (NFL) theorems
[16]. The NFL theorems serve as a fundamental barrier to exaggerated claims of the
power and efficiency of any specific algorithm in numerical optimizations. A way to
cope with negative implications of the barrier is to restrict an algorithm to a particu-
lar class of problems and to design the algorithm structures only for the anticipated
class. This has become a general principle in optimization.

2.2 Unconstrained Optimization

Let J :Rn → R be a sufficiently smooth objective function. Consider

y∗ = min
x∈Rn

J (x). (2.2)

The above function J is referred as an objective function. We do not consider the
maximization optimization problem due to the fact that maxJ (x) = −min(−J (x)),
for x ∈ S ⊆ R

n. The existence of a global minimizer for (2.2) has been shown in
cases where the level sets of J are compact for certain γ [12].

2.2.1 Optimality Conditions

Theorem 2.2.1 (First-order Necessary Conditions, [11]) If x∗ is a local mini-
mizer and J is continuously differentiable in an open neighborhood of x∗, then
∇J (x∗) = 0.

Theorem 2.2.2 (Second-order Necessary Conditions, [11]) If x∗ is a local mini-
mizer and ∇2J is continuous in an open neighborhood of x∗, then ∇J (x∗) = 0 and
∇2J (x∗) is positive semi-definite.

Theorem 2.2.3 (Second-order Sufficient Conditions, [11]) If ∇J (x∗) = 0, ∇2J is
continuous in an open neighborhood of x∗ and ∇2J (x∗) is positive definite, then x∗
is a strict local minimizer of J .

Theorem 2.2.4 [11] If J is convex, then any local minimizer x∗ is a global mini-
mizer of J . If in addition J is differentiable, then any stationary point x∗ is a global
minimizer of J .

The above conditions provide a basis for the developments and analysis of vari-
ous algorithms. In particular, any well-defined algorithm should verify whether pu-
tative solutions satisfy certain optimality conditions, and detect if a minimizer has
been satisfactorily approximated. To determine a global minimizer of a given prob-
lem is in general difficult, therefore many algorithms used can only guarantee the
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convergence to a stationary point. The optimality and algorithms for constrained
optimization are based on the results of unconstrained optimization, and additional
techniques such as penalty methods and barrier methods are used to address equality
and inequality constraints [2, 3, 11].

2.2.2 Line Search Methods

Each iteration in a line search method starts from xs
k , computes a search direc-

tion pk , and then decides how far to move along that direction. This iterative process
can be illustrated by

xs
k+1 = xs

k + αkpk,

where the positive scalar αk is called the step length. Most line search meth-
ods require pk to be a descent direction, that is, p	

k ∇J (xs
k) < 0, to guarantee

that the objective function value is reduced along that direction if the step length
is sufficiently small. This is understood by using Taylor’s theorem, which offers
J (xs

k +αkpk) = J (xs
k)+αkp

	
k ∇J (xs

k)+O(α2
k ). Since the term αkp

	
k ∇J (xs

k) dom-
inates O(α2

k ) for small αk , it follows that J (xs
k + αkpk) < J (xs

k) for all positive but
sufficiently small αk if p	

k ∇J (xs
k) < 0. The steepest-descent direction,

pk = −∇J
(

xs
k

)

,

is the most obvious choice for search direction. It is chosen among all the directions
we could select from xs

k , and it ensures that J decreases most rapidly.
According to Taylor’s theorem, the rate of change in J along pk at xs

k is
p	

k ∇J (xs
k). Thus, if the condition ‖pk‖ = 1 is imposed, the most rapid decrease

is given by the solution of the problem

min
pk

(

p	
k ∇J

(

xs
k

))

.

Its solution can be found to be pk = −∇J (xs
k)/‖∇J (xs

k)‖, which yields p	
k ∇J (xs

k)= −‖∇J (xs
k)‖.

Other frequently used search directions include the Newton direction,

pk = −(∇2J
(

xs
k

))−1∇J
(

xs
k

)

,

which can be adopted in a line search method when the Hessian matrix is positive
definite. The basic idea here is to minimize

Jk(x) = J
(

xs
k

) + (

x − xs
k

)	∇J
(

xs
k

) + 1

2

(

x − xs
k

)	∇2J
(

xs
k

)(

x − xs
k

)

,

the quadratic approximation of J at xs
k instead of the objective function J itself.

Setting the derivative of Jk(x) equal to zero, one obtains

∇J
(

xs
k

) + ∇2J
(

xs
k

)(

x − xs
k

) = 0.
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Therefore p	
k ∇J (xs

k) = −p	
k ∇2J (xs

k)pk ≤ −σk‖pk‖ for some σk > 0. Unless the
gradient ∇J (xs

k) is zero, p	
k ∇J (xs

k) < 0. Therefore, a Newton direction is a descent
direction and a normalized unit step length is often utilized.

Needless to mention that calculations of the Hessian matrix may involve large
amounts of computation. A quasi-Newton method is designed to avoid this dis-
advantage via features of J (xs

k) and ∇J (xs
k). Their curvature information is used

to construct the matrix Bk , an approximation of the Hessian matrix. The standard
Quasi-Newton search routine is

pk = −B−1
k ∇J

(

xs
k

)

.

A popular formula for obtaining Bk is the BFGS formula, named after Broyden,
Fletcher, Goldfarb, and Shanno:

Bk = Bk−1 − B	
k−1s

	
k−1sk−1Bk−1

s	
k−1Bk−1sk−1

+ yk−1y
	
k−1

y	
k−1sk−1

,

where B0 = I , sk−1 = xs
k − xs

k−1 and yk−1 = ∇J (xs
k) − ∇J (xs

k−1). Factorizations
of Bk can be achieved through updating the inverse of Bk−1 [11].

As yet another alternative, a conjugate gradient direction is computed by

pk = −∇J
(

xs
k

) + βkpk−1,

where p0 = −∇J (xs
0), and βk can either by computed via the Fletcher–Reeves for-

mula,

βk = ∇J	(xs
k)∇J (xs

k)

∇J	(xs
k−1)∇J (xs

k−1)
,

or the Dixon formula,

βk = −∇J	(xs
k)∇J (xs

k)

p	
k−1∇J (xs

k−1)
.

The Dixon formula βk ensures pk and pk+1 are conjugate, a concept originally
developed for solutions of linear systems.

2.2.2.1 Step Length

Typical step-length selection algorithms consist of two phases: a bracketing phase
and a selection phase. The former finds an interval [a, b] containing acceptable step
lengths, while the latter zooms in the interval to locate the final step length.

The second phase can be implemented by approximating solutions of the follow-
ing scalar minimization problem:

min
α>0

φ(α) = min
α>0

J
(

xs
k + αpk

)

, α > 0, (2.3)
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which brings the name “line search.” An exact solution for the above is called ex-
act line search, which is expensive and frequently not necessary. More practical
strategies suggest an inexact line search to determine a step size that makes an
adequate reduction in J at minimal costs. To achieve this, often used conditions
include

J
(

xs
k + αkpk

) ≤ J
(

xs
k

) + c1αkp
	
k ∇J

(

xs
k

)

, (2.4)

which prevents steps that are too long via a sufficient decrease criterion, and

p	
k ∇J

(

xs
k + αkpk

) ≥ c2p
	
k ∇J

(

xs
k

)

, (2.5)

which prevents steps that are too short via a curvature criterion, for 0 < c1 < c2 < 1.
Condition (2.4) is sometimes called the Armijo condition, while (2.5) is called the
Wolfe condition. Moreover, in order to avoid poor choices of descent directions, an
angle condition [9] can be introduced to enforce a uniformly lower bound on the
angle θk between pk and −∇J (xs

k):

cos θk = −p	
k ∇J (xs

k)

‖pk‖‖∇J (xs
k)‖

≥ c3 > 0, (2.6)

where c3 is independent of k. The above holds naturally in the method of steepest
descent.

2.2.2.2 Convergence and Rate of Convergence

Definition 2.2.5 (First-order Convergence) First-order convergence of an optimiza-
tion algorithm means that one (or some, or all) of the limit points of the iterate
sequence is a stationary point of J (x).

A standard first-order global convergence result for line search methods is

Theorem 2.2.6 [9] Let J : Rn → R be continuously differentiable and bounded
from below. Further, let ∇J be Lipschitz continuous with constant L > 0, that is,

∥
∥∇J (y) − ∇J (x)

∥
∥ ≤ L‖y − x‖ for all x, y ∈ R

n.

If the sequence {xs
k} satisfies conditions (2.4), (2.5) and (2.6), then

lim
k→∞

∥
∥∇J

(

xs
k

)∥
∥ = 0.

We can relax the assumptions in this theorem, where instead of requiring J to be
bounded from below and continuously differentiable on R

n, we only do so within an
open set N containing the level set {x|J (x) ≤ J (xs

0)}, where xs
0 is the starting point

of the iteration. And the gradient ∇J is only required to be Lipschitz continuous on
N [11].

Furthermore, the following theorem shows the linear convergence rate of the
steepest-descent algorithm.
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Theorem 2.2.7 [7] Let J : Rn → R be twice continuously differentiable, and as-
sume the Hessian matrix is positive definite. If the sequence {xs

k} is generated by a
steepest-descent method with exact line search and it converges to x∗, then

J
(

xs
k+1

) − J (x∗) ≤
(

λn − λ1

λn + λ1

)
[

J
(

xs
k

) − J
(

x∗)],

where 0 < λ1 ≤ · · · ≤ λn are the eigenvalues of the Hessian matrix of J .

It has been shown that numerical methods using Newton directions have a fast
rate of local convergence, typically quadratic. Their main drawback, however, is the
need of the Hessian matrix. There have been numerous recent discussions about the
simplification of the underlying computation procedures. In the particularly practi-
cal case of the quasi-Newton method, if its search direction approximates the New-
ton direction accurately enough, then the unit step length can satisfy the Wolfe con-
ditions as the iterates converge to a minimizer. Further, if for the search direction
it holds that limk→∞ ‖∇J (xs

k) + ∇2J (xs
k)pk‖/‖pk‖ = 0, then the quasi-Newton

method offers a superlinearly convergent iteration. It is also known that for any
quadratic objective function, a conjugate gradient method terminates with an opti-
mal solution within n steps.

The following lemma will be used in the robustness analysis for line search meth-
ods.

Lemma 2.2.8 (Descent Lemma [2]) Let J : Rn → R be continuously differentiable
on R

n. Suppose that ∇J is Lipschitz continuous with constant L. Then for x, y ∈R
n,

J (x + y) ≤ J (x) + y	∇J (x) + L

2
‖y‖2.

Lemma 2.2.9 Let J : Rn → R be continuously differentiable on R
n. Suppose that

∇J is Lipschitz continuous with constant L. Let αk,pk be the step length and de-
scent direction. Then

J
(

xs
k + αkpk

) − J
(

xs
k

) ≤ − c

2L

∥
∥∇J

(

xs
k

)∥
∥2 cos2 θk,

where c = 1 for exact line search, and c = 2c1(1 − c2) for inexact line search satis-
fying conditions (2.4) and (2.5), and θk represents the angle between vector pk and
−∇J (xs

k).

Proof First, for exact line search, αk is the solution of (2.3). From the Descent
Lemma 2.2.8, we have J (xs

k + αpk) ≤ J (xs
k) + αp	

k ∇J (xs
k) + α2

2 L‖pk‖2 valid for

all α > 0. Letting ᾱ = −p	
k ∇J (xs

k )

L‖pk‖2 > 0, it follows that

J
(

xs
k + αkpk

) − J
(

xs
k

) ≤ J
(

xs
k + ᾱpk

) − J
(

xs
k

)

(exact line search)

≤ ᾱp	
k ∇J

(

xs
k

) + ᾱ2

2
L‖pk‖2 (Descent Lemma 2.2.8)
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= − (p	
k ∇J (xs

k))
2

L‖pk‖2
+ L‖pk‖2

2

(p	
k ∇J (xs

k))
2

(L‖pk‖2)2

= − 1

2L

∥
∥∇J

(

xs
k

)∥
∥

2 cos2 θk.

Second, for inexact line search, αk satisfies conditions (2.4) and (2.5). From
the Lipschitz condition, we have p	

k [∇J (xs
k + αkpk) − ∇J (xs

k)] ≤ ‖pk‖‖∇J (xs
k +

αkpk) − ∇J (xs
k)‖ ≤ αkL‖pk‖2. Then from (2.5), we have −αkL‖pk‖2 ≤

p	
k [∇J (xs

k) − ∇J (xs
k + αkpk)] ≤ (1 − c2)p

	
k ∇J (xs

k). That is, −αk‖pk‖ ≤
− 1−c2

L
‖∇J (xs

k)‖ cos θk . Finally, from (2.4),

J
(

xs
k + αkpk

) − J
(

xs
k

) ≤ c1αkp
	
k ∇J

(

xs
k

)

= −c1αk‖pk‖
∥
∥∇J

(

xs
k

)∥
∥ cos θk

≤ − c

2L

∥
∥∇J

(

xs
k

)∥
∥

2 cos2 θk,

where c = 2c1(1 − c2). �

Since 0 < c1 < c2 < 1 is required to ensure the feasibility of inexact line search,
we will have c = 2c1(1 − c2) < 1. This observation is consistent with the up-
per bound results in the above lemma. That is, we always expect that the exact
line search achieves more decrease along the search direction than the inexact line
search.

2.2.2.3 Example: Minimization of the Rosenbrock’s Function with Line
Search Method

The Rosenbrock’s function,

J (x) = 100
(

x2 − x2
1

)2 + (1 − x1)
2, x ∈ R

2, (2.7)

also known as the “banana function,” is a benchmark function in unconstrained op-
timization due to its curvature bends around the origin. The only global minimizer
occurs at x∗ = [1,1]	, where J (x∗) = 0. A sequence {xs

k} obtained via the steepest-
descent method with inexact line search staring from xs

0 = [−1.9,0]	 is shown in
Fig. 2.1, where the Armijo condition (2.4) is used and c1 = 0.4. Due to the very slow
curvature change of the banana function inside its “valley,” the steepest-descent al-
gorithm takes more than one thousand steps to converge.

2.2.3 Trust-Region Methods

At each iteration of a trust-region method, we consider the minimization of a model
function mk instead of the objective function J at the current iterate xs

k . Because the
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Fig. 2.1 Steepest-descent method on Rosenbrock’s function

model function may not be a good approximation of J when x is far away from xs
k ,

we have to restrict the search for a minimizer of mk to a local region around xs
k .

Such a region is called a trust region. A trust-region method is defined as

min‖p‖≤Δk

mk

(

xs
k + p

)

. (2.8)

Let pk be the minimizer obtained, and Δk the current size of the trust region.
The current iterate is then updated to be xs

k + pk . If the achieved objective func-
tion reduction is sufficient compared with the reduction predicted by the model,
the trial point is accepted as the new iterate and the trust region is centered at the
new point and possibly enlarged. On the other hand, if the achieved reduction is
poor compared with the predicted one, the current iterate is typically left unchanged
and the trust region is reduced. This process is then repeated until convergence oc-
curs.

Define the ratio

ρk = J (xs
k) − J (xs

k + pk)

mk(x
s
k) − mk(x

s
k + pk)

. (2.9)

The following algorithm [11] describes the process.
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2.2.3.1 Trust-Region Algorithm

Step 0 Given Δ̄ > 0, initialize the trust-region size to Δ0 ∈ (0, Δ̄), and η ∈ [0, 1
4 ).

Set k = 0.
Step 1 Approximately solve the trust-region problem (2.8) to obtain pk .
Step 2 Evaluate ρk from (2.9).
Step 3 If ρk < 1

4 , Δk+1 = 1
4‖pk‖; if ρ > 3

4 and ‖pk‖ = Δk , Δk+1 = min(2Δk, Δ̄);
else Δk+1 = Δk .

Step 4 If ρk > η, xs
k+1 = xs

k + pk , else xs
k+1 = xs

k . Set k = k + 1. Go to Step 1.

Quadratic approximations of J are often used for constructing mk . In this case,
mk in (2.8) can be formed as

mk(p) = J
(

xs
k

) + g	
k p + 1

2
p	Bkp. (2.10)

The vector gk is either the gradient ∇J (xs
k) or an approximation of it, and the ma-

trix Bk is either the Hessian matrix ∇2J (xs
k) or an approximation of it. Thus, such

construction of mk still requires gradient information. However, the trust-region
framework provides large flexibility in designing derivative-free optimization meth-
ods. This compares very favorable with most line search methods which do require
gradient measurements of the objective function. Derivative-free trust-region algo-
rithms proposed in [4, 5, 13] use multivariate interpolation to construct the model
function mk , where only an interpolation set Y containing the interpolating nodes
and their objective function values are needed. Overall, trust-region methods retain
the quadratic convergence rate while being globally convergent. The following is a
global convergence result for trust-region methods [11].

Theorem 2.2.10 Let J : Rn → R be Lipschitz, continuously differentiable and
bounded below on the level set {x ∈ R

n|J (x) ≤ J (xs
0)}. Further, let η > 0 in the

trust-region algorithm. Suppose that ‖Bk‖ ≤ β for some constant β , and that all
approximate solutions of (2.8) satisfy the inequality

mk(0) − mk(pk) ≥ ct

∥
∥∇J

(

xs
k

)∥
∥min

(

Δk,
‖∇J (xs

k)‖
‖Bk‖

)

for some constant ct ∈ (0,1], and ‖pk‖ ≤ γΔk for some constant γ ≥ 1. Then

lim
k→∞

∥
∥∇J

(

xs
k

)∥
∥ = 0.

2.2.3.2 Example: Minimization of the Rosenbrock’s Function with
Trust-Region Method

Again we use the banana function to illustrate the trust-region method. A sequence
{xs

k} obtained via the trust-region method starting from xs
0 = [−1.9,0]	 is shown in

Fig. 2.2, where a quadratic approximation (2.10) is used and the measurements of
exact gradient and Hessian are assumed. The trust region Δ0 = 0.5 and the iterates
converge to x∗ in 18 steps.
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Fig. 2.2 Trust-region method on Rosenbrock’s function

2.2.4 Direct Search Methods

Direct search methods are one of the best known methods within the family of
derivative-free unconstrained optimization. In the past decades, these methods have
seen a revival of interest due to the appearance of rigorous mathematical analysis
[1, 15], as well as in parallel and distributed computing. Such features make direct
search applicable to the problem of extremum seeking control design. And as direct
search does not need derivative information, it can apply to non-smooth objective
functions as well. Overall, direct search methods are slower than line search meth-
ods, such as steepest-descent method. A systematic review of direct search methods
can be found in [9].

The well-known Simplex algorithm of Nelder and Mead [10] is one of the direct
search methods. Compass search is one of the earlier version of two dimensional di-
rect search, and it can be summarized as follows: Try steps to the East, West, North,
and South. If one of these steps yields a reduction in the function, the improved
point becomes the new iterate. If none of these steps yields improvement, try again
with steps half as long. By revisiting compass search in a more analytically rigorous
manner, it has been named “generating set search” or “pattern search method” [9].

2.2.4.1 Generating Set Search Algorithm

Step 0 Let x0 be the initial guess. Set Δtol > 0 as the tolerance used for conver-
gence, and let Δ0 > Δtol be the initial value of the step-length control pa-
rameter.
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Fig. 2.3 Direct search method on Rosenbrock’s function

Step 1 Let Ds be the coordinate direction set (or generator set)

Ds = {e1, e2, . . . , en,−e1,−e2, . . . ,−en},
where ei is the ith unit coordinate vector in R

n.
Step 2 If there exists dk ∈ Ds such that f (xk + Δkdk) < f (xk), then set xk+1 =

xk + Δkdk and Δk+1 = Δk . Set k = k + 1 and go to Step 1.
Step 3 Otherwise, if f (xk + Δkd) ≥ f (xk) for all d ∈ Ds , set xk+1 = xk and

Δk+1 = Δk/2. If Δk+1 < Δtol, then terminate; otherwise set k = k + 1 and
go to Step 1.

As depicted for two dimensional compass search, it is easy to see that at each
iteration, at least one of the four coordinate directions will be a descent direction. In
fact, it is true for any dimension n: given any x ∈ R

n for which Δf (x) 
= 0, at least
one of coordinate directions must be a descent direction.

We choose the generator set Ds as {e1, e2, . . . , en,−e1,−e2, . . . ,−en} in the
above algorithm. In general, it can be any positive spanning set [6]. That is, for
n dimensional optimization problem, the minimum number of vectors in the gen-
erator set is n + 1, which will guarantee a descent direction can be found in the
generator set.

Direct search can be thought of as being related to trust-region methods, although
in direct search no attempt is done to approximate the objective function nor its
gradient, as trust-region methods do. Thus, direct search methods are best suited to
problems for which no derivative information is available; in particular, to problems
where the objective function is non-smooth.
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2.2.4.2 Example: Minimization of the Rosenbrock’s Function with Direct
Search Method

Again we use the banana function to illustrate the direct search method. A sequence
{xs

k} is obtained via the direct search method, starting from xs
0 = [−1.9,0]	. The

resulting sequence is shown in Fig. 2.3, where the generator set

Ds = {

(1,1), (1,−1), (−1,1), (−1,1)
}

is used and no derivative information is employed. The initial step length is Δ0 =
0.1. Only the first 20 steps of the simulation are shown, where it can be seen in
Fig. 2.3 that the sequence does converge to the neighborhood of the minimum, but
at a very slow rate due to the small gradient change near the minimum, which is
located inside an almost flat “valley.”
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