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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technol-
ogy transfer in control engineering. The rapid development of control technology
has an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies. . . , new challenges. Much of this development work resides in in-
dustrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended ex-
position of such new work in all aspects of industrial control for wider and rapid
dissemination.

A monograph that was very influential in the field of extremum-seeking con-
trol was that due to K.B. Ariyur and M. Krstić entitled Real-Time Optimization by
Extremum-Seeking Control published in 2003. This was a very timely contribution
to the literature since it created a focus for the current research activity into the the-
ory and application of extremum-seeking control, an activity that has continued to
grow in the intervening years.

Many industrial and manufacturing processes are often “nudged” by operators
into operating conditions that give better outcomes, productivity, and yields. Sub-
sequently the controller design may need some adjustment to take advantage of
the process features in the new operating condition. Extremum-seeking control is
one formal way of finding this optimised process location. However, unlike optimal
control design methods per se, in extremum-seeking control the performance cost
function is often unknown analytically, and the optimization has to proceed using
online real-time measurements of actual or related process and system variables.
Consequently, it is not surprising to find that extremum-seeking control has drawn
on the wealth of research into numerical optimization methods.

This Advances in Industrial Control series monograph Extremum-Seeking Con-
trol and Applications by Chunlei Zhang and Raúl Ordóñez has the subtitle A Numer-
ical Optimization-Based Approach that clearly indicates the constructive numerical
optimization route the authors intend to follow. The monograph has an introduc-
tory overview chapter and then the remaining chapters fall into two parts, theory
first followed by the application studies. There are four chapters of theory. Chap-
ter 2 reports the numerical optimization results and techniques the authors will be
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viii Series Editors’ Foreword

using. This is followed by the extremum-seeking control design chapter and then
two chapters on the development and analysis for the numerical-optimization based
extremum-seeking control algorithm devised by the authors. The results in these
chapters are illustrated by examples and simulation studies.

In the all-important applications part of the monograph, the reader will find
detailed expositions of three applications, each presented at chapter length in
Chaps. 6, 7, and 8 respectively. Usefully, these chapters present a benchmark pro-
cess, a real-world industrial application, and a potential field of future applications.
Somehow, the antilock brake system almost seems to have become a benchmark pro-
cess for demonstrating extremum-seeking control methods and this is the topic of
Chap. 6. The real-world industrial problem of Chap. 7 involves extremum seeking
control design and implementation for a semiconductor plasma-processing cham-
ber, and in Chap. 8, the future application is the co-ordinated control of a swarm of
agents (particles) where the solution of a source seeking and surround problem is
investigated. These chapters have the merit of presenting a tutorial application, a re-
port of what happens in a real industrial application of extremum-seeking control
and a look at a more futuristic application that appears frequently in quite a number
of today’s international control research conferences.

This monograph will be of interest to readers from a wide range of disciplines,
from applied industrial mathematics, through the mechanical, electrical, manufac-
turing and chemical engineering disciplines and on to the control systems and con-
trol engineering fields. The level of the presentation is appropriate for industrial
engineers and researchers, postgraduate students and the control academic research
and practitioner communities. The Editors are pleased to welcome this very first
monograph on extremum-seeking control in the Advances in Industrial Control se-
ries.

M.J. Grimble
M.A. Johnson

Industrial Control Centre
Glasgow, Scotland, UK



Preface

There are many problems of engineering interest for which an optimal operating
point or condition exists, but this point or condition are not necessarily well known
or easy to find. Extremum seeking control is a family of control design methods
whose purpose is to autonomously find an optimal system behavior (e.g., set point
or trajectory to be tracked) for the closed-loop system, while at the same time main-
taining stability and boundedness of signals. Extremum seeking control is therefore
mainly used to realize real-time optimization for dynamic systems. It has been ap-
plied to engineering problems in the automotive industry, process control, thermal
fluids, flow control, semiconductor industry, energy conversion and many other ar-
eas. The motivation for the research on extremum seeking control arises from its
practical interest, since even small improvements in performance can lead to cost
and energy savings. This book reviews existing extremum seeking techniques, and
proposes a new numerical optimization based extremum seeking control approach.
Several applications are presented, including problems from the automotive indus-
try, autonomous robotics and the semiconductor industry. This book will be of ben-
efit to students and professionals in all areas of engineering, especially on system
control and optimization. The book contains many figures (block diagrams, plots,
simulation and experimental results) that will help the reader to understand the ma-
terial. The reader (researcher, Ph.D or M.S level graduate student, R&D engineer)
will become familiar with step-by-step algorithms that can be readily applied to a
variety of control problems in engineering practice. The reader will also acquire a
deep understanding of extremum seeking control and its mathematical foundations.
The application examples included in the book will help the reader understand the
concepts and how they can be applied.

Overview of the Book

Tracking a varying maximum or minimum of a performance (output, cost) function
is called extremum seeking control. For example, problems where finding such an
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extremum may be of interest include maximizing the yield of bioreactors, minimiz-
ing the power demand in formation control, minimizing reflected power, or even
producing a better tuning of the PID coefficients in a control system. All of these
are problems of practical interest in engineering, some of which have ad-hoc so-
lutions, and some of which are yet unresolved. It is for these types of problems
that extremum seeking control can be of great value. Extremum seeking attempts
to determine the optimal performance of a control system as it operates, thereby
potentially eliminating or reducing the need for down time and for doing system
analysis.

In the first part of the book, we begin with a comprehensive review of the state-
of-the-art in the extremum seeking control literature, and provide the reader with an
understanding of what the different “flavors” of extremum seeking control are, and
how they relate to each other. We review the existing analog optimization based ex-
tremum seeking control methods, which include gradient based design, perturbation
based design and sliding mode based design. Then, we present a novel numerical
optimization based extremum seeking control method that makes use of numerical
optimization algorithms and state regulation, starting from simple linear time invari-
ant systems and extending to a class of feedback linearizable nonlinear systems. We
also analyze the robustness of two main optimization algorithms as they apply to ex-
tremum seeking: line search methods and trust region methods. For linear systems,
a finite time state regulator is proposed and an asymptotic state regulator is used for
nonlinear systems. Further design flexibility is achieved via the robustness results
of the optimization algorithms and the asymptotic state regulator, where existing
nonlinear adaptive control techniques can be introduced for robust design.

The second part of the book deals with the application aspects of extremum seek-
ing control. We perform a comparative study of antilock braking system design via
different extremum seeking control schemes. An industrial application of extremum
seeking control methods to RF impedance matching is also presented, including
experimental results obtained by one of the authors (Zhang) at Applied Materials.
Finally, an interesting and promising application studied here is the autonomous
agent source seeking problem. We use extremum seeking control and artificial po-
tentials to achieve source seeking, formation control, collision avoidance and ob-
stacle avoidance of a group of autonomous agents. Within this context, we present
a practical application of source seeking via extremum seeking control to mobile
radar sensor networks.

Acknowledgements

The authors gratefully acknowledge Professor Paul Eloe (University of Dayton),
Professor John Dennis (Rice University) and Professor Mark A. Abramson (Air
Force Institute of Technology) for their help on numerical optimization and anal-
ysis (Chap. 2); Professor Ümit Özgüner (Ohio State University) for discussions
on sliding mode based extremum seeking control (Chap. 3); Professor Miroslav
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Chapter 1
Introduction

1.1 Motivation

Traditional control system design deals with the problem of stabilization of a sys-
tem about a known reference trajectory or set point, while attaining certain design
criteria. This general stabilization problem includes the so-called “tracking” and
“regulation” problems, where the reference is often easily determined or generated.
However, in some occasions it can be quite difficult to find a suitable reference
value. For instance, the fuel consumption of a car depends on the ignition angle.
If one desires to maintain optimal efficiency, it is necessary to change the ignition
angle as the conditions of the road and the load of the car change.

Tracking a varying maximum or minimum (also referred to as extremum, or op-
timum value) of a performance function (herein also referred to as output, or cost
function) is called extremum seeking control [4]. In order to better explain the con-
cept of extremum seeking control and its motivation, next we discuss two relevant
examples from industrial control engineering practice.

1.1.1 Anti-lock Braking Systems

Nowadays, nearly every new automobile is equipped with Anti-lock Braking Sys-
tems (ABS) [1–3]. ABS is a safety system whose tuning of the coefficients in pur-
pose is to achieve the maximum possible braking force in a motor vehicle’s wheels
while preventing the wheels from locking up, and therefore avoiding skidding. There
exist a PID number of approaches for the design of ABS, and here we consider ABS
design using extremum seeking control.

In an extremum seeking control implementation of ABS, the controller automat-
ically applies the brake such that the friction force coefficient between the wheel
and the ground is maximized, and therefore the vehicle is stopped in a minimum
time, where the torque control is realized via extremum seeking. Figure 1.1 presents
a simplified block diagram of ABS design via extremum seeking. The objective of

C. Zhang, R. Ordóñez, Extremum-Seeking Control and Applications,
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Fig. 1.1 Anti-lock Braking
Systems

Fig. 1.2 PID Tuning

the ABS extremum seeking controller is to maximize the friction force coefficient μ,
which has a maximum at some non-zero value of slip λ. The problem is complicated
by the fact that the friction coefficient is unknown and cannot be directly measured.
Moreover, it changes for different road and wheel conditions. Thus, some sort of
indirect measurement or estimation of this friction force coefficient needs to be fed
back to the extremum seeking controller. Chapter 6 gives a detailed description of
the ABS problem and presents the reader solutions based on different extremum
seeking control methods.

1.1.2 PID Tuning

Proportional-integral-derivative (PID) controllers are widely used in industry. At
the same time, the tuning of PID parameters is often done in manually, and thus
the effectiveness of the tuning is typically based on the experiences of the control
engineer. Furthermore, in many practical situations, the plant model is unknown or
only approximately known. Thus, a method for tuning PID controller in the closed-
loop setting is very appealing. Extremum seeking control is very well suited for
performing automated PID tuning [8]. Figure 1.2 shows a schematic block diagram
of the tuning system. A cost function is composed based on the difference between
the actual response and the desired response, and this cost function output is then
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Fig. 1.3 General block
diagram for extremum
seeking control

fed back to the extremum seeking loop in order to tune the three parameters Kp , Ki

and Kd of the PID controller.
There exist a large number of additional relevant examples of industrial appli-

cations of extremum seeking control, and these will be covered in more detail in
Sect. 1.3.

1.2 Basic Principles

A general block diagram of extremum seeking control can be found on Fig. 1.3.
Extremum seeking control has two functional layers: first, we need to seek an ex-
tremum of the output function;(or performance) function; secondly, we need to be
able to control (stabilize) the system and drive the performance output to that ex-
tremum.

It is important to place extremum seeking control (ESC) in the context of the
systems and control literature at large. In doing so, one notes that ESC is highly re-
lated to both traditional optimal control (TOC) [9–11] and model predictive control
(MPC) [12, 13]. In the traditional optimal control problem, the performance func-
tion generally is an integral function of the state and control. That is, the extremum
of the performance function is a trajectory. Therefore, calculus of variations is in-
volved in the design, and the analytical form of the performance function is needed
to obtain the necessary conditions of the optimal control. Related to optimal con-
trol, model predictive control (MPC) is one of the most widely applied advanced
control methods in industry, where the control input at each step is obtained by
solving an optimization problem. In this case, the optimization objective is to try to
approximate an optimal trajectory in the context of optimal control using numerical
optimization algorithms.

The common thread between the three control approaches (TOC, MPC and ESC)
is that they all try to solve the problem

minJ (.) subject to ẋ = f (x,u), (1)

where J is a cost function that may depend on states, control input, time, initial and
final values, etc.

In order to solve this problem, both TOC and MPC methods generally assume
that the function (or functional) J is perfectly known—in fact, it is usually a design
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choice. However, in extremum seeking control,1 the performance function is gener-
ally a function of the state and is unknown or poorly known in the design—and it is
often a feature of the control problem itself. This lack of knowledge implies that we
can only design an extremum seeking controller based on the measurements of the
performance function or its derivatives, if available. In ABS design, for example,
the friction force coefficient is a function of the slip, but this function is not known,
and it also varies with different road conditions and weather. However, we can get
measurements of the friction force coefficient, which can act as a proxy for the per-
formance function we wish to optimize (the slip). Another example can be found in
the problem of minimizing the effect of an unknown vortex field in formation flight
[15], where again certain sensor measurements can be used as proxies of the effect
of the unknown vortex field. At the same time, it is important to note that even if the
performance function were perfectly known, and we could in principle get optimal
points by finding the roots of its gradient, this may be hard to do in itself. Mathe-
matically, the root finding and the optimization problems are equivalently difficult
to solve.

The assumption about knowledge of the cost J is a fundamental difference be-
tween ESC and TOC and MPC, not only in practice, but also in the theory. This is
because the availability of this knowledge, or lack thereof, puts constraints on what
can be done with the system.2

In addition to the assumptions about knowledge of the cost function, model pre-
dictive control requires the assumption that it has a very good model of the system,
good enough that it can act as a predictor. In this sense, MPC is very much like
linear optimal control (TOC): the problem it actually solves can be loosely stated as

u(t) = arg
{
minJ (.) subject to ẋ = f (x,u), for t ∈ [tk, tk+1]

}
.

In TOC, one may have t0 = 0 and t1 = ∞, as happens for the development of the
linear quadratic regulator (LQR) [16] . In general, though, both MPC and TOC yield
an open loop solution, that is, a signal u(t) valid over some interval. Other than the
LQR, which can be also expressed as a closed-loop solution, TOC generally lacks
robustness. This is not necessarily true of MPC, since here the interval [tk, tk+1] is
usually small, and as the discrete index k increases, the signal u(t) is recomputed.
In practice, however, this can usually mean a computationally expensive method.

At the same time, the version of ESC presented in this book relies on an existing,
possibly robust, closed-loop regulator or tracking controller, to which a sequence
of set-points is passed. Thus, one can see that ESC does not quite solve the same

1Some results in the ESC literature do make the assumption that J is known (see [14], for instance).
Our approach here is to avoid having to make this assumption, since otherwise the practical value
of the method is somewhat limited, in our view.
2Philosophically, it may be useful to compare this difference to solving the regulation (or tracking)
problem using state feedback versus output feedback. Both try to achieve the same ultimate objec-
tive, but the assumptions made about the available information profoundly alter the way one goes
about achieving it.
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problem as MPC and TOC. Moreover, it is important to emphasize that each method
has its strengths and weaknesses, and its own domain of applicability.

Without assuming knowledge of the performance function, many of the ideas
used in extremum seeking control have been transferred from numerical optimiza-
tion, where only the measurements of the performance output or its gradient are
required. Extremum seeking control is therefore also sometimes called dynamic op-
timization, due to the fact that the arguments of the performance function to be
optimized are constrained by a dynamic system [17]. Also, the controller needs to
track the extremum if it is varying. Control of air-fuel ratio of combustion is one ex-
ample where the extremum will change with the temperature and fuel quality. Also,
the maximum of tire friction force coefficient will change with temperature and road
condition. Similar statements of extremum seeking control can be found in the lit-
erature. Whenever off-line calculation of the optimal parameters is impractical or
when no reliable model is available to predict the variation of the cost function with
time, extremum seeking algorithms are used to determine and track the parameters
that optimize a system level cost function in real time [18].

The goal of extremum seeking control is to operate at a set-point that represents
the optimal value of a function being optimized in the control loop [19]. It is also
known as extremum control and self-optimizing control, meaning a control system
that is used to determine and to maintain the extreme value of a function [20]. As
stated in [3], extremum seeking control is applicable in situations where there is a
nonlinearity in the control problem, and the nonlinearity has a local minimum or a
maximum. The nonlinearity may be in the plant, as a physical nonlinearity, possi-
bly manifesting itself through an equilibrium, or it may be in the control objective,
added to the system through a cost functional of an optimization problem. Hence,
one can use extremum seeking control both for tuning a set-point to achieve an
optimal value of the output, or for tuning the parameters of a feedback law.

There are some aspects in extremum seeking control that need further investi-
gation, beyond what is presented in this book. These include the modeling of the
processes and nonlinearity [4]; taking into account transient dynamical phenomena;
performance measurements with noise, where low-pass filtering the output can take
care of the measurement noise but can also introduce additional dynamics into the
problem [18].

In Sect. 13.3 in Aström and Wittenmark [4], the authors classify extremum seek-
ing control among the most promising future areas for adaptive control. Extremum
seeking control is of great practical interest, since even small improvements in
the performance can lead to large savings in raw material and energy consump-
tion. There are commercial extremum seeking controllers and applications, some of
which will be presented and explored in this book.

1.3 Literature Overview

The emergence of extremum seeking control dates as far back as the 1922 paper
of Leblanc [21], and it was already popular in the 1950s and 1960s. A historical
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Fig. 1.4 Static Optimization

development of extremum seeking control can be found in [3]. Extremum seeking
control witnessed a resurgence of interest after Krstić’s publication of stability stud-
ies on perturbation-based extremum seeking control (PESC) in [23] and [24]. From
a recent overview on, extremum seeking from 1922 to 2010 [25], one can find out
that the number of publications increased by roughly a factor of eight during the
first decade since the year 2000, compared with the previous ten years.

1.3.1 Theory Development of Extremum Seeking Control

By posing different assumptions on the knowledge of the system, performance out-
put and so on as seen in Fig. 1.3, one ends up with various approaches for extremum
seeking control design in the literature. Here, we mainly focus on the development
through the last decades.

1.3.1.1 Static Optimization

In the traditional application of extremum seeking control, the optimal parameters
were assumed to vary rather slowly. Then, system dynamics were typically ne-
glected and the algorithm was analyzed and designed using traditional “static op-
timization” techniques [18, 22]. Many investigations of extremum seeking control
assume that the dynamic system is static, which can be justified if the time between
the changes in the optimal reference is sufficiently long. Extremum seeking con-
trol of static systems is in essence a problem of numerical optimization [4], which
is generally solved iteratively in a discrete-time fashion. The gradient-based and
nearest-neighboring extremal scheme is studied in [62] and output feedback is used
to simplify the requirement of using state feedback for the update law. However,
this static optimization can be approached using the continuous (analog) implemen-
tations of some numerical optimization methods; that is, the so-called “analog op-
timization” approach (such as sinusoidal perturbation, sliding mode-based analog
optimization and gradient feedback). These analog optimization methods provide
an important basis for extremum seeking control design.

1.3.1.2 Analog Optimization Based Extremum Seeking Control

By posing certain assumptions on a nonlinear system [3], one can reduce the ex-
tremum seeking control problem to a one dimensional optimization problem. There-
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Fig. 1.5 Analog
optimization based extremum
seeking control

fore, the design of extremum seeking control focuses on how to find an updating law
for the single parameter, θ , where several interesting analog analog optimizers [23,
26, 27] come into the context of extremum seeking control (refer to Fig. 1.5). The
proper assumptions to allow time scale separation between the nonlinear system dy-
namics and the extremum seeking loop are crucial for analog optimization based
extremum seeking control (AOESC) to be successful. Mathematical tools such as
singular perturbation, averaging and Lyapunov functions are used for the stability
analysis. Sinusoidal perturbation based optimization method is the most popular
method used in extremum seeking control design. A high-pass filter and a slow si-
nusoidal perturbation signal are employed to derive the gradient information from
the performance output. The first analysis of local stability of PESC for a general
nonlinear system was developed based on averaging analysis and singular pertur-
bation [23]. The pioneering averaging studies of Meerkov [28–30] stand out as a
precursor to the stability results in [23]. In [24], dynamic compensation was pro-
posed for providing stability guarantees and fast tracking of changes in the plant
operating conditions for single parameter extremum seeking. Discrete time PESC
was studied in [31]. An accelerator designed based on polynomial identification and
Butterworth filter is studied in [32] to speed up the convergence of PESC. Roeta [18]
and Walsh [33] provided the first studies of a multiparameter PESC scheme. Their
results were for plants with constant parameters and a systematic design procedure
is absent. Stability analysis for general multiparameter PESC and systematic design
guidelines for stability/performance are supplied in [34]. The results in [35] consti-
tute a generalization of extremum seeking, which seeks a point of zero slope, to the
problem of seeking a general slope. The book by Ariyur and Krstić [3] presents a
systematic description of PESC and its applications.

A simple PESC scheme is presented in [36], where also the semi-global stability
analysis is discussed. These results then get extended to seek an optimal trajectory in
a finite time interval in a repeatable control environment [37]. The study of different
perturbation signals other than sinusoidal ones appeared in [38], where mathemati-
cal analysis and simulation results illustrate that mainly the shape of the perturbation
signal will impact the performance of the extremum seeking control in terms of ac-
curacy, speed and domain of convergence. Global extremum seeking is studied in
[39] by changing the amplitude of the perturbation signal to overcome local min-
ima, i.e., a larger perturbation amplitude is more likely to explore a wider range.
The PESC above relies on time scale decomposition and as such has so far been
developed only for plants that are open loop stable, with poles that are sufficiently
well damped. A new idea based on phase lead compensator extends the applica-
bility to moderately unstable systems [40]. For the multiparameter PESC case, the
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orthogonality requirement for the periodic perturbation signal presents an additional
challenge on implementations (such as making the search vehicle’s behavior more
predictable in source seeking applications), and the periodicity of perturbation may
cause unwanted resonant behavior in some systems. A stochastic perturbation sig-
nal is therefore studied in [41, 42] as a potential solution for these problems, which
is also inspired from biological systems (such as bacterial chemotaxis) [43]. In the
recent study [44], a Newton-like step is added to SPESC to further improve the ef-
fectiveness of extremum seeking by reducing the dependency on objective function
curvature.

Sliding mode control is also a tool that has been used for optimization [45]. Sim-
ilar to the perturbation method, a sinusoidal signal is used to generate the switching
function to guide the controller seeking a different direction (using the sign of the
gradient information) to find the extremum. Sliding mode based extremum seeking
control (SMESC) is introduced by Korovin and Utkin in [46], and analyzed and ap-
plied by Özgüner and his coworkers [26, 47–55], and others [56–58] on a variety of
automotive problems, especially in ABS design [1, 59–61]. The Lyapunov method
is used for the analysis of convergence and stability of the closed-loop system.

Gradient (or its estimation) based extremum seeking control (GESC) is the most
straightforward approach. A series of work has been carried outpapers by Banavar
and his co-workers [19, 63–66] are strongly reminiscent of steepest descent type
algorithms in numerical optimization. Continuing work has been seen on using
Kalman filter to estimate the gradient and Hessian of the performance function in
[67]. A similar idea also appears in the parameter updating law design in adaptive
control [68]. The self-optimizing control studied by Horowitz and his co-workers
[69–71] belongs to estimated gradient based ESC. Recent developments of gradi-
ent based ESC with adaptive design are pursued by Guay and his co-workers. An
ESC problem is proposed and solved in [14] for a class of nonlinear systems with
unknown parameters, where an explicit structure information for the performance
function to be maximized is required. Assuming that one can provide a suitable
functional expression for the plant profit, an adaptive receding horizon controller
design technique is developed that is able to steer the process state of the closed-
loop system to an unknown optimum while ensuring transient performance and pro-
cess regulation about the unknown optimum [72]. They continue the work for output
feedback ESC for linear uncertain plants in [73], state constrained nonlinear systems
in [74] and a flatness based approach for nonlinear systems in [75]. Further study
on persistently exciting signals used to guarantee parameter convergence appeared
in [76].

The optimization process involved in AOESC is continuous, as opposed to gen-
eral iterative numerical optimization algorithms. The requirement for continuous
measurements of the gradient is very strong, thus PESC and SMESC are appeal-
ing because they are non-gradient based. Other non-gradient analog optimization
such as neural-network based can be found in [27, 77]. The main advantage claimed
by AOESC methods is non-model based design due to the assumption of asymp-
totic system stability, and the analog optimization for updating the parameter does
not require the plant knowledge. However, for more complicated systems involving
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Fig. 1.6 Numerical optimization based extremum seeking control

multiple parameters (such as the source seeking example in Chap. 3), the system
model is in fact needed for the design of extremum seeking controller using AOESC
methods. Recent analysis on general AOESC can be found in [78, 79].

1.3.1.3 Numerical Optimization Based Extremum Seeking Control

Numerical optimization-based extremum seeking control (NOESC) methods have
been in development somewhat separately from AOESC approaches (refer to
Fig. 1.6). Now, the requirement for gradient measurements is not continuous, and the
system may have time to collect enough output measurements to estimate the gra-
dient. Moreover, there are non-gradient numerical optimization algorithms that can
be implemented as well. Extremum seeking control via triangular search as in [80]
was employed to attenuate combustor thermoacoustic oscillations and minimize dif-
fuser losses at United Technologies Research Center (UTRC). Nonlinear program-
ming was successfully used in ESC by defining a readout map as a steady-state
output function [81]. Simultaneous perturbation stochastic approximation (SPSA)
recursive algorithm is used in the ESC design [17] and [41]. More systematic stud-
ies by Zhang and Ordóñez on NOESC first appeared in [82], and then in [83–85],
where numerical optimization algorithms and state regulation are combined to de-
sign the extremum seeking control scheme, and will be presented in this book. The
extremum seeking controller (state regulator) ensures that the state travels along the
set-point sequence generated by the numerical optimization algorithm, which even-
tually converges to a minimizer of the performance function. NOESC design does
require a system model to construct a state regulator to achieve the dynamic opti-
mization; however, the design method is more generic (it is a multiparameter ESC
design and is not limited to any particular optimization algorithm). Therefore, it can
be applied to different systems and improve the control performance by choosing a
suitable optimization algorithm. Two different kinds of state regulator design, finite-
time state regulator and asymptotic state regulator, are studied in this book. More-
over, if the state regulator design does not require a system model (for instance,
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by making asymptotic stability assumptions similar to those in PESC schemes), the
NOESC method could be considered a non-model based design as well. A similar
design framework is studied with particle swarming optimization [86] and bacteria
foraging optimization [87]. State regulation is achieved by predictive control for LTI
systems in [88] as the set-point sequence becomes the terminal state constraint of
predictive control. Furthermore, instead of using a state regulator, a tracking control
is used to achieve extremum seeking given that a reference trajectory is obtained by
filtering the set-point sequence [89].

1.3.1.4 Other Approaches

Many other research work in ESC arises from different practical motivations and as-
sumptions. An extremum controller having no special trial steps or oscillations can
be designed if some a priori knowledge about the plant and its disturbance exist [90].
That is, the extremum characteristic of the plant is unimodal and can be approxi-
mated by second or third-order polynomials, the distribution of the disturbances is
close to uniform and the value of the optimum changes slowly. A self-tuning con-
cept is applied to the extremum control problem in [91]. It can be viewed as the
case of online optimization of a static performance criterion. When placed in a self-
tuning context, this performance index will be parameterized as a quadratic func-
tion so that a recursive estimator can be applied to determine the coefficients of its
parametric form. The mixing of dynamics with the static optimization task presents
problems for the self-tuning identifier [92], which is a companion paper concerning
the application of self-tuning extremum control to automotive engine management.
Adaptive extremum control [91, 93–95] is intended to optimize the output of static
nonlinear processes under noisy conditions. The concept of explicitly parameter-
izing the performance index and estimating the coefficients has appeared in [96].
Extremum seeking control dealing with the steady-state optimization of noisy non-
linear systems is studied in [95]. The control action is calculated by making use
of a model obtained by some kind of system identification. A new approach called
Dynamic Extremum Control was studied in [97, 98] and earlier references of the
authors. The authors explicitly solve the optimal condition given the form of the
cost function, and a self-tuning algorithm is then developed, where a dither signal is
used to prevent non-identifiability problems.

Extremum seeking control of Wiener type systems is considered in [99], where
the linear subsystem is described by a discrete-time system with delay and Gaus-
sian distributed white noise. The nonlinearity is described as a quadratic function
with a unique minimum. Therefore, the author solves for the minimum of the out-
put and the purpose of the control is to keep the output as close as possible to the
minimum. Extremum seeking control based on a probing strategy can be found
in [100], and the stability and performance issues are examined further in [101].
Discrete-time extremum seeking algorithms for SISO nonlinear systems are pro-
posed in [102], where the reference-to-output equilibrium map is approximated via
a quadratic polynomial. The extremum can be explicitly solved by the polynomial
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Fig. 1.7 Source Seeking

parameters, then three extremum seeking algorithms are proposed based on the
way they estimate the polynomial parameters, which are least square estimation,
parabola approximation and ellipse approximation. A similar study can be found
in [103].

1.3.2 Applications of Extremum Seeking Control

Among the many applications of extremum seeking control overviewed in [22] and
[4] are combustion processes, grinding processes, solar cell management, radio tele-
scope antenna adjustment to maximize the received signal, and blade adjustment in
water turbines and wind mills to maximize the generated power. Even though most
of the application results are presented as simulations in the literature, there are
effective experimentation results that have been obtained in real engineering prob-
lems [44, 104–115]. Both simulation and experiment applications on theory and
engineering problems are reviewed in this section.

1.3.2.1 Agents and Sensor Networks

Control of a single or a group of autonomous agent and sensor networks is one of
the most active research areas in the last decade. Source seeking (or source localiza-
tion), i.e., the design of control algorithms for autonomous agents to seek a source
with unknown spatial distribution is of great interest, where extremum seeking con-
trol can be naturally used in the design. Even though it is an application having
great theoretical interest, it also does have a significant impact on engineering ap-
plications: for instance, in the problem of developing vehicles with more autonomy,
such as the situation where no GPS information is available, or to reduce cost due to
position sensors. Some of the direct applications of source seeking can be found in
contaminant plume control, autonomous odor sensing or toxic gas leakage localiza-
tion. In the application of source seeking, the task of the vehicle is to find a source
that emits a signal that decays as a function of distance away from the source, where
the signal field is unknown and only the measurement of the signal at the current
agent location is available.

A basic diagram of source seeking can be found in Fig. 1.7, where the control
goal is for the agent to seek an extremum of an unknown signal field based on the
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measurement of the signal only. Source seeking is first discussed as a direct applica-
tion result of PESC for systems with moderately unstable single poles [116], where
the autonomous vehicle is modeled as a single or a double integrator. A formal study
on unicycle model source seeking first appeared in [117], where the design keeps
the angular velocity constant and tunes the forward speed by extremum seeking,
which generates triangle or star pattern vehicle motions that drift toward the source.
A more challenging analysis is performed on a different strategy in [118], where
the approach is to keep the forward speed constant and tune the angular velocity by
extremum seeking. The resulting motion sinusoidally converges to the source and
settles in a ring around the source as the forward speed is constant. Based on these
two strategies, adding a simple derivative-like feedback to the forward speed in the
angular velocity tuned by extremum seeking loop [119] allows the vehicle to slow
down as it gets closer to the source and converges closer to the source without giv-
ing up convergence speed. Source seeking for slow or drifting sensors is explored in
[120]. Rather than sinusoidal perturbations, a stochastic source seeking control law
is used to tune the forward velocity in [121, 122] and the angular velocity in [123].

An extension to 3D source seeking is studied in [124], where two design schemes
are studied: One actuates both yaw and pitch velocity while keeping the forward ve-
locity constant. The other actuates the roll velocity while keeping the forward and
roll velocity constant. Source seeking for fish models is discussed in [125, 126] and
an overview paper of source seeking can be found in [127]. Moreover, SMESC is
also used for non-holonomic vehicle source seeking in [128, 129]. In this work, un-
like the above series of papers based on PESC, sliding mode optimization is used
to control the on-board antenna toward the right direction to the source, and then
sliding mode control and MPC are used to regulate the vehicle velocity and direc-
tion of driving. This two-stage control is similar to numerical optimization based
extremum seeking control, where an optimization algorithm provides the set-point
sequence and a state regulator drives the state. An advanced numerical optimization
algorithm is proposed for source seeking in [130] with the focus on convergence
and robustness, while the vehicle dynamics are not considered in part of the design,
and therefore open loop control is used to steer the vehicle.

The application of ESC in group source seeking (namely, swarm seeking) has
emerged recently as well. Swarm seeking is approached via a leader-follower for-
mat in [131], and extremum seeking control is used to guide the leader vehicle to
seek the source; then, a passivity framework is used to design the followers’ coordi-
nation laws. The extremum seeking control algorithm is basically a type of NOESC:
the vehicle dynamics are given by a simple integrator, and Newton’s method is
used to construct the set-point sequence. For this purpose, a specific design vehicle
velocity profile is used to estimate the gradient and Hessian matrix by measuring
the field signal at orthogonal directions. Biased random walk inspired by bacterial
chemotaxis is also used in swarm seeking [43]. Similar work based on stochastic
extremum seeking can be found in [132]. Diffusion based feedback control is com-
bined with perturbation based extremum seeking in the study of 1D swarm seeking
[133], where extremum seeking tries to place all the agents at the extremum while a
diffusion mechanism aims to spread the agents evenly. Averaging theory for PDE’s
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is used to prove that the vehicle density is highest around the source. A detailed
discussion and comparison of swarm seeking can be found in Chap. 8.

PESC is used to optimize the throughput of a linked communication chain of
mobile nodes in [134]. The mobility of the nodes is modeled as the standard bicycle
kinematic model, where the multi-variable PESC is implemented to achieve the
decentralized control. Other work investigating the use of extremum seeking for
formation control includes [7, 15, 135, 136].

1.3.2.2 Automotive and Related Applications

Automotive engine performance has been difficult to improve as the number of pa-
rameters to optimize keeps increasing. The traditional engine mapping and calibra-
tion has become a very time consuming task, and instead extremum seeking con-
trol has been widely explored in this area. In [107, 137], NOESC is used to tune
intake cam timing, exhaust cam timing and spark timings to improve the brake spe-
cific fuel consumption of a variable cam timing engine. Three different numerical
optimization algorithms (simultaneous perturbation stochastic approximation algo-
rithm, persistently exciting finite differences algorithm, and Box and Wilson steep-
est descent algorithm) are compared, where repeatable experiment results are ob-
tained. Homogeneous-charge-compression-ignition (HCCI) engines have the bene-
fits of high efficiency with low emission of NOx and particulates, and one design
goal is to minimize their fuel consumption, which is indirectly controlled by the
combustion-timing. The combustion-time is a function of gas temperature, pres-
sure, composition and mixture homogeneity. In [110], the combustion-timing is
controlled by some temperature-control valves, and the author first uses perturba-
tion based extremum control to perturb the combustion-timing set-point to optimize
the fuel consumption, then a faster extremum seeking loop is used to tune the PID
parameter of the valve control. PESC is used to minimize the engine performance
index via controlling the throttle angle [138]. In [139], a SMESC is implemented to
modulate spark time in a slow-time scale to maximize the steady-state Exhaust Gas
Recirculation (EGR) amount. Further studies of engine optimization appear in [140,
141].

Another application of ESC in automotive industry is Antilock Breaking Systems
(ABS), where different sorts of extremum seeking control design have been applied.
These include SMESC, PESC and NOESC [1–3, 84]. A detailed design of PESC has
been presented in [142], where Lyapunov analysis is used to study the design along
the lines of the results in [36]. A discussion on the tuning of extremum seeking
controller is also provided, simulation studies showed ESC also has good degree of
robustness. Chapter 6 studies several different ESC designs for ABS.

In the context of aircraft engine design, extremum seeking control has been ap-
plied to reduce the acoustic pressure oscillations in gas turbine engines [104], where
a phase shifting controller is tuned by PESC, whereas [143] considers application of
PESC to an axial-flow compressor. Other applications include control of combustion
instability [144, 145] and minimizing nitrogen oxides emission [146].
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Fig. 1.8 Bioreactor

1.3.2.3 Process Control

The process industry is another area where control engineers have made much use
of extremum seeking control. For continuous or fed-batch bio-processes, the pro-
ductivity is in general an increasing function of input flow rate, while the yield is a
decreasing function of the input flow rate. Operating close to 100% yield normally
gives very low productivity, and vice versa. One design goal is to adjust the input
flow rate to achieve the best trade-off between yield and productivity, i.e., optimize
an objective function composed of both productivity and yield. The corresponding
diagram can be found in Fig. 1.8.

Given the explicit knowledge of the growth kinetic model and objective function
with some parameter uncertainty, while the actual measurement of the objective is
not available (one justification is that such measurements could be expensive or in-
accurate), adaptive extremum seeking control [14] is applied to bio-reactors with
Monod growth kinetics in [6, 147], Haldane kinetics in [148] and fed-batch process
in [149]. A numerical implementation for constrained optimization of a batch sys-
tem can be found in [150]. The neural-network approximation technique is used to
relax the requirement of growth kinetic model in [151] and [152].

A similar application for a tubular reactor with distributed feed can be found in
[153–155], and the productivity optimization for a van de Vusse reaction is stud-
ied in [156]. Without knowing the nonlinear process dynamics and explicit form of
the objective function, based only on the measurements of cost at a particular flow
rate, the use of simple PESC [5, 36] is able to achieve the optimization as in [157],
where the authors further explore the application to a multivalued objective func-
tion using a proper tuning of the perturbation signal amplitude to overcome local
optima or bifurcation points. NOESC is applied to maximize the biomass produc-
tion using Haldane and Monod growth kinetics [89]. Extremum seeking is applied
to fermentation processes in [158].

1.3.2.4 Flow Control

In the area of flow control, PESC is used to minimize the global energy consump-
tion (electric and aerodynamic power) of a flow system [159] via tuning the cylin-
der rotation speed. Extremum seeking [160] outperformed traditional look-up table
methods or computational fluid dynamics (CFD) simulation, where the multiparam-
eter PESC is successfully used to find the optimal torque and pitch angle based on
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the measurement of rotor power. Various design guidelines have been further dis-
cussed in [18]. In addition, anti-windup ESC is implemented via the usage of back
calculation method, and resetting logic is embedded in the system to deal with a
drifting extremum. An application of PESC to subsonic cavity flow control is pre-
sented in [161]. Related to this work, extremum seeking control of a high-speed and
high Reynolds number jet is examined in [162].

For micro-channel based cooling of high-power electronic devices, gradient esti-
mation based extremum seeking control is used to maximize the heat transfer coeffi-
cient, based on the measurements of the wall temperature [163]. Perturbation based
extremum seeking control is used to enhance the heat transfer rate in magnetohydro-
dynamic channel flow [164, 165]. Other applications include flow separation control
in diffusers [166] and control of an electromechanical valve actuator [167].

1.3.2.5 Plasma Control

In the plasma control area, one goal is to minimize the reflective radio-frequency
(RF) power or to maximize the delivery RF power given different plasma loads.
In the Frascati Tokamak Upgrade (FTU), the effectiveness of RF heating is propor-
tional to the coupling between antenna and plasma, and extremum seeking control is
used to maximize delivery power and therefore maximize the temperature increase
given the same power set-point [168]. The implementation issues due to multiple
antennas are studied in [106].

Gradient estimation based extremum seeking control is proposed for the plasma
RF heating on FTU [169]. PESC is also used to minimize the reflective power by
adjusting the plasma position through a build in position and plasma current control
system in the Frascati Tokamak [108]. For safety concerns, instead of introducing
the sinusoidal perturbation signal to the system, the existing power circuit distur-
bance is used as the perturbation signal for the extremum seeking loop. However,
PESC is mainly used here as an optimization algorithm to adjust in real time the
set-point for the plasma position control system, not directly adjusting the system
control input. The work [170] deals with finite-time extremum seeking control of
plasma in the Tokamak. RF impedance matching via extremum seeking for semi-
conductor plasma chambers will be discussed at length in Chap. 7.

1.3.2.6 Energy Conversion

In the fast-growing green energy area, maximum power point tracking (MPPT) con-
trol for energy conversion systems gained noticeable interest during the last few
years. The common control input is the rotor speed of the generator, and the output
is stator power (refer to Fig. 1.9). If one knew the optimal tip speed ratio and wind
velocity, it becomes a set-point regulation problem. However, such measurements
are difficult to obtain [171]. Then, based on the knowledge of the wind turbine’s
maximum power curve, MPPT is approached through trajectory tracking [172].
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Fig. 1.9 Maximum power
point tracking

However, the maximum power curve first needs to be estimated via simulation or
experimentation; moreover, it fluctuates as the wind velocity changes. A simple idea
from optimization, hill climbing, is used to design the MPPT controller [173]. Re-
cent studies have used GESC [174], SMESC [175, 176] and PESC [113, 177–182]
in the MPPT design. Constrained extremum seeking control for MPPT of a polymer
electrolyte membrane fuel cell system is studied in [183], where a penalty function
is used to transform inequality constraints to be part of the objective function.

Maximizing wind turbine energy capture via extremum seeking is briefly studied
in [184]. In order to maximize the cooling power of the thermoacoustic cooler, mul-
tiparameter PESC is used to tune the driving frequency and piston position to max-
imize the heat transfer rate [105, 185]. Experimental results showed improved per-
formance even in the presence of a changing flow rate. A Newton-like step is added
to SPESC to minimize the thermoacoustic oscillations in a model premixed combus-
tor [44]. Using the optical power and wavelengths of the optical pump lasers as con-
trol inputs [186], NOESC is used to minimize the variation of output amplifier op-
tical signal power from a desired power over the entire operating signal wavelength
band. For the beam matching problem, a multiparameter PESC is used to tune the
lens strength in four-lens and six-lens channels to achieve matching [187–189]. In
mobile wireless networks, sliding mode extremum seeking control is used to adjust
the power at each node based on the feedback of signal-to-interference ratio (SIR),
while maintaining the network equilibrium close to the Pareto-optimum [190]. Sinu-
soidal perturbation based extremum seeking control is used to improve the variator
efficiency in a pushbelt continuously variable transmission [115].

1.3.2.7 Control Design and Optimization

One application of extremum seeking is in simplifying controller design. For an n

dimensional system, 2n simple feedback control laws are designed that only use one
state variable. A variable structure control algorithm [191] is proposed to stabilize
the system by switching the system control input among the 2n feedback control
laws, where the switching mechanism is achieved by SMESC by minimizing a Lya-
punov function.

Potentially one of the most important applications of extremum seeking control
for engineering problems in industry is the optimization of PID coefficients. The
non-model based PESC [8] can be easily incorporated as an existing PID controller
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auto-tune feature, which will improve the controller performance without requiring
advance knowledge for the user. This tuning method is applied to tuning a propor-
tional term of a weight feeder controller in [114], and tuning PID controller for
Tokamaks in [192]. Annealing recurrent neural-network based extremum seeking is
also applied for PID tuning in [193]. Given the ease of use of auto-tune PID, one
can improve the controller performance by simple firmware updates and therefore
the cost benefits are significant as PID control is the most widely applied control
method in industry.

Similar work on tuning backstepping controller parameters via SPESC can be
found in [194]. Moreover, perturbation based extremum seeking control is also ap-
plied to game theory [51, 195–197] and limit cycle minimization [198]. Optimizing
the nonlinear control of blending processes can be found in [199].

1.3.2.8 Other Industrial Applications

To conclude this overview of applications, we list some other recent work that does
not easily fit the classification we have followed here.

Advances made in the research of Ionic Polymer Metal Composite (IPMC) actu-
ators enables some application such as small scale aquatic vessels to operate within
bloodstreams, in order to record and transmit biological data, or to interact with the
blood to treat a medical condition. Both experimentation and simulation results are
presented in [109], where an IPMC fish-tail and its controller swimming environ-
ment are manufactured, and PESC is used to maximize the swimming thrust via
tuning the tail oscillation.

For MEMS vibrating gyroscopes, the mode-matching condition is essential in
order to achieve enhanced sensitivity and uniform performance on the whole sen-
sor bandwidth. The goal is to match the resonant frequencies of the sense-mode
to the drive mode. This mode-matching problem can be reformulated as the prob-
lem of maximizing the sense-mode oscillation amplitude. The sense-mode natural
frequency is adjusted via PESC to maximize the amplitude of the sense-mode dy-
namics at the drive-mode natural frequency in [200, 201].

In the application to drilling using minimal reaction force and torque while op-
erating from light-weight platforms or planets with low gravity, an ultrasonic/sonic
driller/corer is developed and one control objective is to maximize the drilling rates
via tuning the sinusoidal drive frequency [111]. NOESC is used to tune the driving
frequency of a time-varying resonating actuator subjected to both random and high-
power impulsive noise disturbance, where hill climbing algorithm is used to rapidly
converge to the neighborhood of resonance, and quadratic programming is used for
precise resonance tuning.

Via optical phased arrays (OPA), NOESC is used to achieve simultaneously beam
steering and wavefront control for free space laser communication system [202].
The control objective is to determine an OPA phase profile that maximizes the
power-in-fiber, where quasi-Newton optimization algorithm is used in the NOESC.

Heating, Ventilation and Air Conditioning (HVAC) systems are often designed
and specified independently of each other. Therefore, a path to optimize building
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system energy efficiency is of important value. Focusing on chillers and towers in
the building, [203–205] proposed using extremum seeking control to minimize the
total power consumption via tuning the condenser water temperature, and perturba-
tion based and numerical optimization based ESC are implemented.

To maximize the user’s power output, recent research has focused on closed-
loop actuated exercise machines that incorporate the feedback from the user. In
[112, 206], a nonlinear exercise machine controller is developed for a single de-
gree of freedom system. A desired trajectory is designed to seek the optimal ve-
locity set-point that will maximize the user’s power output, while the controller is
designed to ensure that the exercise machine tracks the resulting desired trajectory.
This work actually uses the same idea of NOESC presented in this book. In this
paper, sinusoidal perturbation and Brents’ method or Simplex method are used to
generate the tracking trajectory and the tracking controllers are designed based on
Lyapunov analysis, where the torque is either measured or estimated. Experimenta-
tion results were provided and illustrated the performance of the proposed control
strategy. Other studies of exercise machine control via extremum seeking appear in
[70, 71].
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116. Zhang, C., Siranosian, A., Krstić, M.: Extremum seeking for moderately unstable systems
and for autonomous target tracking without position measurements. Automatica 43, 1832–
1839 (2007)

117. Zhang, C., Arnold, D., Ghods, N., Siranosian, A., Krstić, M.: Source seeking with nonholo-
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186. Dower, P., Farrell, P., Nešić, D.: Extremum seeking control of cascaded Raman optical am-
plifiers. IEEE Trans. Control Syst. Technol. 16(3), 396–407 (2008)

187. Schuster, E., Morinaga, E., Allen, C.K., Krstić, M.: Optimal beam matching in particle
accelerators via extremum seeking. In: Proceedings of the American Control Conference,
pp. 1962–1967 (2006)

188. Schuster, E., Xu, C., Torres, N.: Extremum seeking adaptive control of beam envelope in par-
ticle accelerators. In: Proceedings of the IEEE Conference on Control Applications (2006)

189. Schuster, E., Xu, C., Torres, N., Morinaga, E., Allen, C., Krstić, M.: Beam matching adaptive
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Chapter 2
Numerical Optimization

2.1 Mathematical Background

In this chapter, we present the necessary mathematical background on numerical
optimization [11], which is used in this book as a fundamental tool for extremum
seeking control. We first review concepts related to continuity, differentiability, and
optimality. These concepts will then allow us to present the line search and trust-
region unconstrained optimization methods.

Definition 2.1.1 (Sequence) A sequence of real numbers {xs
k |k = 1,2, . . . } (also

represented as {xs
k}) is said to converge to a limit x ∈R if for every ε > 0 there exists

some positive integer K (that depends on ε) such that, for every k ≥ K , we have
|xs

k − x| < ε. For such a convergent sequence we may also write limk→∞ xs
k = x.

Similarly, a sequence {xs
k} of vectors xs

k ∈ R
n is said to converge to a limit x ∈R

n

if the ith coordinate of xs
k converges to the ith coordinate of x for 1 ≤ i ≤ n. In this

case, the notation limk→∞ xs
k = x is employed as well.

Definition 2.1.2 (Continuously Differentiable Functions) Consider the function f :
R → R. This function is said to be continuously differentiable if its derivative f ′
exists and is continuous. Alternatively, one can say that f belongs to class C1, or
f ∈ C1.

Similarly, if f ′, f ′′, . . . , f (k) exist and are continuous, then f is said to belong
to class Ck , or f ∈ Ck . Finally, if f has continuous derivatives of all orders, then it
is said to be smooth, or f ∈ C∞.

For a multivariate function f :Rn → R, it is said to belong to class Ck if each of
its derivatives up to kth order exists and is continuous.

In addition to these continuity concepts, there is another type of continuity we
often need, called Lipschitz continuity. Lipschitz continuity is a smoothness condi-
tion, stronger than regular continuity, that imposes a limit on the function’s growth
rate.
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Definition 2.1.3 (Lipschitz Continuity) Consider the function f : Rn → R
m. This

function is said to be Lipschitz continuous if there exists a constant L > 0 such that
∥∥f (x) − f (y)

∥∥≤ L‖x − y‖. (2.1)

The following cases can be distinguished:

1. If condition (2.1) is satisfied for every x, y ∈ R
n and with the same constant L,

then f is said to be globally Lipschitz continuous, or simply Lipschitz.
2. If condition (2.1) is satisfied for every x, y ∈ D, where D ∈ R

n and with the
same constant L, then f is said to be Lipschitz in D.

3. If condition (2.1) is satisfied for every x, y ∈ D, where D ∈ R
n but not with the

same constant L, which can depend on x, then f is said to be locally Lipschitz
in D.

For the study of nonlinear systems it is often useful to define functions that map
one set to another, with the purpose of normalizing the form of a system’s dynamics.
To this end, we require the following concept.

Definition 2.1.4 (Diffeomorphism) Consider a function T : D → M mapping the
domain D ∈ R

n to the domain M ∈ R
n. The function T is called a diffeomorphism

if T is continuously differentiable, and its inverse T −1 exists and is continuously
differentiable.

Definition 2.1.5 (Matrix Concepts) An n × n matrix A with real elements is sym-
metric if it is equal to its transpose, or A = A	. The symmetric matrix A is said to be
positive definite if x	Ax > 0 for all x ∈R

n, x 
= 0. A is called positive semi-definite
if x	Ax ≥ 0. A is negative definite if −A is positive definite.

Theorem 2.1.6 The following statements hold for any non-zero symmetric ma-
trix A ∈R

n×n [8]:

1. Its eigenvalues are all real-valued, and the corresponding n eigenvectors are
real, non-zero and mutually orthogonal.

2. A is positive definite if and only if all its eigenvalues are strictly positive.
3. A is positive semi-definite if and only if all its eigenvalues are non-negative.

Given a function J : Rn →R with J ∈ C1, denote

g(x) = ∇J (x) =
[
∂J (x)

∂x1
, . . . ,

∂J (x)

∂xn

]	

as the gradient of J evaluated at the point x ∈R
n. In the case of x = x(t) for t ∈R

m,
by using the chain rule we have

∇J
(
x(t)

)=
n∑

i=1

∂J

∂xi

∇xi(t) =
n∑

i=1

∂J

∂xi

[
∂xi(t)

∂t1
, . . . ,

∂xi(t)

∂tm

]	
.
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If J ∈ C2, let H(x) = ∇2J (x) be the Hessian matrix. The (i, j)th component of
H is given by ∂2J (x)/∂xi∂xj , 1 ≤ i, j ≤ n. The square matrix H is symmetric.

Theorem 2.1.7 (Taylor’s Theorem [11]) Let J : Rn → R be continuously differen-
tiable and p ∈R

n. Then

J (x + p) = J (x) + ∇J	(x + αp)p,

for some α ∈ [0,1]. Moreover, if J is twice continuously differentiable then

∇J (x + p) = ∇J (x) +
(∫ 1

0
∇2J (x + τp)dτ

)
p,

and the following three statements hold:

1. There exists some α ∈ [0,1] such that, for any p ∈R
n,

J (x + p) = J (x) + ∇J (x)	p + 1

2
p	∇2J (x + αp)p.

2. For any p ∈R
n,

J (x + p) = J (x) + ∇J (x)	p + 1

2
p	∇2J (x)p + O

(‖p‖2).

3. For any p ∈R
n,

J (x + p) = J (x) + ∇J (x)	p + 1

2
p	

(∫ 1

0

(∫ t

0
∇2J (x + τy) dτ

)
dt

)
p.

Note that a set S ⊆ R
n is convex if for any x, y ∈ S we have βx+(1−β)y ∈ S for

all β ∈ [0,1]. The set S is closed if it contains all of its limit points, and it is bounded
if all its elements have coordinates whose magnitude is less than some finite d > 0.
Further, S is compact if every sequence of elements of S has a subsequence that
converges to an element of S. The set S is compact if and only if it is closed and
bounded.

A function J is a convex function if its domain is convex and if for any x, y in
this domain we have J (βx + (1 − β)y) ≤ βJ (x) + (1 − β)J (y) for all β ∈ [0,1].

Definition 2.1.8 (Global Minimizer) Let J be defined on S ⊆ R
n. The point x∗ ∈ S

is a global minimizer of J if J (x∗) ≤ J (x) for all x ∈ S; it is a strict global min-
imizer of J if J (x∗) < J (x) for all x ∈ S, x 
= x∗. Correspondingly, we say that
J (x∗) is a (strict) global minimum of J .

Definition 2.1.9 (Local Minimizer) Let J be defined on S ⊆ R
n. The point x∗ ∈ S

is a local minimizer of J if there exists an open neighborhood B of x∗ such that
J (x∗) ≤ J (x) for all x ∈ B ∩ S; it is a strict local minimizer if J (x∗) < J (x) for all
x ∈ B ∩ S, x 
= x∗. Correspondingly, we say that J (x∗) is a (strict) local minimum
of J .
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Definition 2.1.10 (Stationary Point) We say that x∗ is a stationary point of J de-
fined on S ⊆ R

n if ∇J (x∗) = 0.

Definition 2.1.11 (Level Set) Let J be defined on R
n and γ > 0. We define the

level set with respect to γ as

Lγ = {
x ∈R

n : J (x) ≤ γ
}
.

Computational procedures that minimize (maximize) J , that is, search for its
minima (maxima), are referred to as optimization methods. The optimization is often
achieved via different iterative algorithms. The algorithms begin with a initial guess
xs

0 and generate a sequence {xs
k} leading to a possible solution, that is, a stationary

point, a local minimizer or a global minimizer.

Definition 2.1.12 (Algorithm Convergence) Let S ⊆ R
n and {xs

k} ⊆ S be a se-
quence generated by an optimization algorithm. If limk→∞ xs

k = x∗ ∈ S for any
xs

0 ∈ S, then we say that the algorithm is globally convergent. If such a convergence
only exists for some xs

0 ∈ S, then we say the algorithm is locally convergent.

Definition 2.1.13 (q-order Convergence) Let {xs
k} be a locally convergent sequence

in S ⊆ R
n. We say that {xs

k} is q-order convergent if

lim
k→∞

‖xs
k+1 − x∗‖

‖xs
k − x∗‖q

= M

exists for some q,M > 0. In particular, we say that {xs
k} is linearly convergent if

q = 1; and superlinearly or quadratically convergent if 1 < q < 2 or q = 2, respec-
tively.

The following standard stopping criteria are frequently employed in optimiza-
tion computations. In the case when xs

k 
= 0 and J (xs
k) 
= 0 for sufficiently large k,

computation terminates when
∥∥xs

k+1 − xs
k

∥∥/
∥∥xs

k

∥∥≤ ε,

or
∣∣J
(
xs
k

)− J
(
xs
k+1

)∣∣/
∣∣J
(
xs
k

)∣∣≤ ε.

Otherwise, the optimization computation may be terminated when ‖xs
k+1 −xs

k‖ ≤ ε,
or |J (xs

k) − J (xs
k+1)| ≤ ε, where ε > 0 is a controlling parameter. More sophisti-

cated stopping criteria may also be considered.
Since most optimization algorithms are iterative, there has been a fundamental

trade-off between their efficiency and robustness [14]. In general, algorithms de-
signed to be very efficient on one type of problem tend to be brittle in the sense that
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they may not be ideally used for other types of problem. Such a lack of a universally
best algorithm is a manifestation of the so-called No Free Lunch (NFL) theorems
[16]. The NFL theorems serve as a fundamental barrier to exaggerated claims of the
power and efficiency of any specific algorithm in numerical optimizations. A way to
cope with negative implications of the barrier is to restrict an algorithm to a particu-
lar class of problems and to design the algorithm structures only for the anticipated
class. This has become a general principle in optimization.

2.2 Unconstrained Optimization

Let J :Rn → R be a sufficiently smooth objective function. Consider

y∗ = min
x∈Rn

J (x). (2.2)

The above function J is referred as an objective function. We do not consider the
maximization optimization problem due to the fact that maxJ (x) = −min(−J (x)),
for x ∈ S ⊆ R

n. The existence of a global minimizer for (2.2) has been shown in
cases where the level sets of J are compact for certain γ [12].

2.2.1 Optimality Conditions

Theorem 2.2.1 (First-order Necessary Conditions, [11]) If x∗ is a local mini-
mizer and J is continuously differentiable in an open neighborhood of x∗, then
∇J (x∗) = 0.

Theorem 2.2.2 (Second-order Necessary Conditions, [11]) If x∗ is a local mini-
mizer and ∇2J is continuous in an open neighborhood of x∗, then ∇J (x∗) = 0 and
∇2J (x∗) is positive semi-definite.

Theorem 2.2.3 (Second-order Sufficient Conditions, [11]) If ∇J (x∗) = 0, ∇2J is
continuous in an open neighborhood of x∗ and ∇2J (x∗) is positive definite, then x∗
is a strict local minimizer of J .

Theorem 2.2.4 [11] If J is convex, then any local minimizer x∗ is a global mini-
mizer of J . If in addition J is differentiable, then any stationary point x∗ is a global
minimizer of J .

The above conditions provide a basis for the developments and analysis of vari-
ous algorithms. In particular, any well-defined algorithm should verify whether pu-
tative solutions satisfy certain optimality conditions, and detect if a minimizer has
been satisfactorily approximated. To determine a global minimizer of a given prob-
lem is in general difficult, therefore many algorithms used can only guarantee the
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convergence to a stationary point. The optimality and algorithms for constrained
optimization are based on the results of unconstrained optimization, and additional
techniques such as penalty methods and barrier methods are used to address equality
and inequality constraints [2, 3, 11].

2.2.2 Line Search Methods

Each iteration in a line search method starts from xs
k , computes a search direc-

tion pk , and then decides how far to move along that direction. This iterative process
can be illustrated by

xs
k+1 = xs

k + αkpk,

where the positive scalar αk is called the step length. Most line search meth-
ods require pk to be a descent direction, that is, p	

k ∇J (xs
k) < 0, to guarantee

that the objective function value is reduced along that direction if the step length
is sufficiently small. This is understood by using Taylor’s theorem, which offers
J (xs

k +αkpk) = J (xs
k)+αkp

	
k ∇J (xs

k)+O(α2
k ). Since the term αkp

	
k ∇J (xs

k) dom-
inates O(α2

k ) for small αk , it follows that J (xs
k + αkpk) < J (xs

k) for all positive but
sufficiently small αk if p	

k ∇J (xs
k) < 0. The steepest-descent direction,

pk = −∇J
(
xs
k

)
,

is the most obvious choice for search direction. It is chosen among all the directions
we could select from xs

k , and it ensures that J decreases most rapidly.
According to Taylor’s theorem, the rate of change in J along pk at xs

k is
p	

k ∇J (xs
k). Thus, if the condition ‖pk‖ = 1 is imposed, the most rapid decrease

is given by the solution of the problem

min
pk

(
p	

k ∇J
(
xs
k

))
.

Its solution can be found to be pk = −∇J (xs
k)/‖∇J (xs

k)‖, which yields p	
k ∇J (xs

k)= −‖∇J (xs
k)‖.

Other frequently used search directions include the Newton direction,

pk = −(∇2J
(
xs
k

))−1∇J
(
xs
k

)
,

which can be adopted in a line search method when the Hessian matrix is positive
definite. The basic idea here is to minimize

Jk(x) = J
(
xs
k

)+ (
x − xs

k

)	∇J
(
xs
k

)+ 1

2

(
x − xs

k

)	∇2J
(
xs
k

)(
x − xs

k

)
,

the quadratic approximation of J at xs
k instead of the objective function J itself.

Setting the derivative of Jk(x) equal to zero, one obtains

∇J
(
xs
k

)+ ∇2J
(
xs
k

)(
x − xs

k

)= 0.
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Therefore p	
k ∇J (xs

k) = −p	
k ∇2J (xs

k)pk ≤ −σk‖pk‖ for some σk > 0. Unless the
gradient ∇J (xs

k) is zero, p	
k ∇J (xs

k) < 0. Therefore, a Newton direction is a descent
direction and a normalized unit step length is often utilized.

Needless to mention that calculations of the Hessian matrix may involve large
amounts of computation. A quasi-Newton method is designed to avoid this dis-
advantage via features of J (xs

k) and ∇J (xs
k). Their curvature information is used

to construct the matrix Bk , an approximation of the Hessian matrix. The standard
Quasi-Newton search routine is

pk = −B−1
k ∇J

(
xs
k

)
.

A popular formula for obtaining Bk is the BFGS formula, named after Broyden,
Fletcher, Goldfarb, and Shanno:

Bk = Bk−1 − B	
k−1s

	
k−1sk−1Bk−1

s	
k−1Bk−1sk−1

+ yk−1y
	
k−1

y	
k−1sk−1

,

where B0 = I , sk−1 = xs
k − xs

k−1 and yk−1 = ∇J (xs
k) − ∇J (xs

k−1). Factorizations
of Bk can be achieved through updating the inverse of Bk−1 [11].

As yet another alternative, a conjugate gradient direction is computed by

pk = −∇J
(
xs
k

)+ βkpk−1,

where p0 = −∇J (xs
0), and βk can either by computed via the Fletcher–Reeves for-

mula,

βk = ∇J	(xs
k)∇J (xs

k)

∇J	(xs
k−1)∇J (xs

k−1)
,

or the Dixon formula,

βk = −∇J	(xs
k)∇J (xs

k)

p	
k−1∇J (xs

k−1)
.

The Dixon formula βk ensures pk and pk+1 are conjugate, a concept originally
developed for solutions of linear systems.

2.2.2.1 Step Length

Typical step-length selection algorithms consist of two phases: a bracketing phase
and a selection phase. The former finds an interval [a, b] containing acceptable step
lengths, while the latter zooms in the interval to locate the final step length.

The second phase can be implemented by approximating solutions of the follow-
ing scalar minimization problem:

min
α>0

φ(α) = min
α>0

J
(
xs
k + αpk

)
, α > 0, (2.3)
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which brings the name “line search.” An exact solution for the above is called ex-
act line search, which is expensive and frequently not necessary. More practical
strategies suggest an inexact line search to determine a step size that makes an
adequate reduction in J at minimal costs. To achieve this, often used conditions
include

J
(
xs
k + αkpk

)≤ J
(
xs
k

)+ c1αkp
	
k ∇J

(
xs
k

)
, (2.4)

which prevents steps that are too long via a sufficient decrease criterion, and

p	
k ∇J

(
xs
k + αkpk

)≥ c2p
	
k ∇J

(
xs
k

)
, (2.5)

which prevents steps that are too short via a curvature criterion, for 0 < c1 < c2 < 1.
Condition (2.4) is sometimes called the Armijo condition, while (2.5) is called the
Wolfe condition. Moreover, in order to avoid poor choices of descent directions, an
angle condition [9] can be introduced to enforce a uniformly lower bound on the
angle θk between pk and −∇J (xs

k):

cos θk = −p	
k ∇J (xs

k)

‖pk‖‖∇J (xs
k)‖

≥ c3 > 0, (2.6)

where c3 is independent of k. The above holds naturally in the method of steepest
descent.

2.2.2.2 Convergence and Rate of Convergence

Definition 2.2.5 (First-order Convergence) First-order convergence of an optimiza-
tion algorithm means that one (or some, or all) of the limit points of the iterate
sequence is a stationary point of J (x).

A standard first-order global convergence result for line search methods is

Theorem 2.2.6 [9] Let J : Rn → R be continuously differentiable and bounded
from below. Further, let ∇J be Lipschitz continuous with constant L > 0, that is,

∥∥∇J (y) − ∇J (x)
∥∥≤ L‖y − x‖ for all x, y ∈ R

n.

If the sequence {xs
k} satisfies conditions (2.4), (2.5) and (2.6), then

lim
k→∞

∥∥∇J
(
xs
k

)∥∥= 0.

We can relax the assumptions in this theorem, where instead of requiring J to be
bounded from below and continuously differentiable on R

n, we only do so within an
open set N containing the level set {x|J (x) ≤ J (xs

0)}, where xs
0 is the starting point

of the iteration. And the gradient ∇J is only required to be Lipschitz continuous on
N [11].

Furthermore, the following theorem shows the linear convergence rate of the
steepest-descent algorithm.
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Theorem 2.2.7 [7] Let J : Rn → R be twice continuously differentiable, and as-
sume the Hessian matrix is positive definite. If the sequence {xs

k} is generated by a
steepest-descent method with exact line search and it converges to x∗, then

J
(
xs
k+1

)− J (x∗) ≤
(

λn − λ1

λn + λ1

)[
J
(
xs
k

)− J
(
x∗)],

where 0 < λ1 ≤ · · · ≤ λn are the eigenvalues of the Hessian matrix of J .

It has been shown that numerical methods using Newton directions have a fast
rate of local convergence, typically quadratic. Their main drawback, however, is the
need of the Hessian matrix. There have been numerous recent discussions about the
simplification of the underlying computation procedures. In the particularly practi-
cal case of the quasi-Newton method, if its search direction approximates the New-
ton direction accurately enough, then the unit step length can satisfy the Wolfe con-
ditions as the iterates converge to a minimizer. Further, if for the search direction
it holds that limk→∞ ‖∇J (xs

k) + ∇2J (xs
k)pk‖/‖pk‖ = 0, then the quasi-Newton

method offers a superlinearly convergent iteration. It is also known that for any
quadratic objective function, a conjugate gradient method terminates with an opti-
mal solution within n steps.

The following lemma will be used in the robustness analysis for line search meth-
ods.

Lemma 2.2.8 (Descent Lemma [2]) Let J : Rn → R be continuously differentiable
on R

n. Suppose that ∇J is Lipschitz continuous with constant L. Then for x, y ∈R
n,

J (x + y) ≤ J (x) + y	∇J (x) + L

2
‖y‖2.

Lemma 2.2.9 Let J : Rn → R be continuously differentiable on R
n. Suppose that

∇J is Lipschitz continuous with constant L. Let αk,pk be the step length and de-
scent direction. Then

J
(
xs
k + αkpk

)− J
(
xs
k

)≤ − c

2L

∥∥∇J
(
xs
k

)∥∥2 cos2 θk,

where c = 1 for exact line search, and c = 2c1(1 − c2) for inexact line search satis-
fying conditions (2.4) and (2.5), and θk represents the angle between vector pk and
−∇J (xs

k).

Proof First, for exact line search, αk is the solution of (2.3). From the Descent
Lemma 2.2.8, we have J (xs

k + αpk) ≤ J (xs
k) + αp	

k ∇J (xs
k) + α2

2 L‖pk‖2 valid for

all α > 0. Letting ᾱ = −p	
k ∇J (xs

k )

L‖pk‖2 > 0, it follows that

J
(
xs
k + αkpk

)− J
(
xs
k

)≤ J
(
xs
k + ᾱpk

)− J
(
xs
k

)
(exact line search)

≤ ᾱp	
k ∇J

(
xs
k

)+ ᾱ2

2
L‖pk‖2 (Descent Lemma 2.2.8)
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= − (p	
k ∇J (xs

k))
2

L‖pk‖2
+ L‖pk‖2

2

(p	
k ∇J (xs

k))
2

(L‖pk‖2)2

= − 1

2L

∥∥∇J
(
xs
k

)∥∥2 cos2 θk.

Second, for inexact line search, αk satisfies conditions (2.4) and (2.5). From
the Lipschitz condition, we have p	

k [∇J (xs
k + αkpk) − ∇J (xs

k)] ≤ ‖pk‖‖∇J (xs
k +

αkpk) − ∇J (xs
k)‖ ≤ αkL‖pk‖2. Then from (2.5), we have −αkL‖pk‖2 ≤

p	
k [∇J (xs

k) − ∇J (xs
k + αkpk)] ≤ (1 − c2)p

	
k ∇J (xs

k). That is, −αk‖pk‖ ≤
− 1−c2

L
‖∇J (xs

k)‖ cos θk . Finally, from (2.4),

J
(
xs
k + αkpk

)− J
(
xs
k

)≤ c1αkp
	
k ∇J

(
xs
k

)

= −c1αk‖pk‖
∥∥∇J

(
xs
k

)∥∥ cos θk

≤ − c

2L

∥∥∇J
(
xs
k

)∥∥2 cos2 θk,

where c = 2c1(1 − c2). �

Since 0 < c1 < c2 < 1 is required to ensure the feasibility of inexact line search,
we will have c = 2c1(1 − c2) < 1. This observation is consistent with the up-
per bound results in the above lemma. That is, we always expect that the exact
line search achieves more decrease along the search direction than the inexact line
search.

2.2.2.3 Example: Minimization of the Rosenbrock’s Function with Line
Search Method

The Rosenbrock’s function,

J (x) = 100
(
x2 − x2

1

)2 + (1 − x1)
2, x ∈ R

2, (2.7)

also known as the “banana function,” is a benchmark function in unconstrained op-
timization due to its curvature bends around the origin. The only global minimizer
occurs at x∗ = [1,1]	, where J (x∗) = 0. A sequence {xs

k} obtained via the steepest-
descent method with inexact line search staring from xs

0 = [−1.9,0]	 is shown in
Fig. 2.1, where the Armijo condition (2.4) is used and c1 = 0.4. Due to the very slow
curvature change of the banana function inside its “valley,” the steepest-descent al-
gorithm takes more than one thousand steps to converge.

2.2.3 Trust-Region Methods

At each iteration of a trust-region method, we consider the minimization of a model
function mk instead of the objective function J at the current iterate xs

k . Because the
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Fig. 2.1 Steepest-descent method on Rosenbrock’s function

model function may not be a good approximation of J when x is far away from xs
k ,

we have to restrict the search for a minimizer of mk to a local region around xs
k .

Such a region is called a trust region. A trust-region method is defined as

min‖p‖≤Δk

mk

(
xs
k + p

)
. (2.8)

Let pk be the minimizer obtained, and Δk the current size of the trust region.
The current iterate is then updated to be xs

k + pk . If the achieved objective func-
tion reduction is sufficient compared with the reduction predicted by the model,
the trial point is accepted as the new iterate and the trust region is centered at the
new point and possibly enlarged. On the other hand, if the achieved reduction is
poor compared with the predicted one, the current iterate is typically left unchanged
and the trust region is reduced. This process is then repeated until convergence oc-
curs.

Define the ratio

ρk = J (xs
k) − J (xs

k + pk)

mk(x
s
k) − mk(x

s
k + pk)

. (2.9)

The following algorithm [11] describes the process.
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2.2.3.1 Trust-Region Algorithm

Step 0 Given Δ̄ > 0, initialize the trust-region size to Δ0 ∈ (0, Δ̄), and η ∈ [0, 1
4 ).

Set k = 0.
Step 1 Approximately solve the trust-region problem (2.8) to obtain pk .
Step 2 Evaluate ρk from (2.9).
Step 3 If ρk < 1

4 , Δk+1 = 1
4‖pk‖; if ρ > 3

4 and ‖pk‖ = Δk , Δk+1 = min(2Δk, Δ̄);
else Δk+1 = Δk .

Step 4 If ρk > η, xs
k+1 = xs

k + pk , else xs
k+1 = xs

k . Set k = k + 1. Go to Step 1.

Quadratic approximations of J are often used for constructing mk . In this case,
mk in (2.8) can be formed as

mk(p) = J
(
xs
k

)+ g	
k p + 1

2
p	Bkp. (2.10)

The vector gk is either the gradient ∇J (xs
k) or an approximation of it, and the ma-

trix Bk is either the Hessian matrix ∇2J (xs
k) or an approximation of it. Thus, such

construction of mk still requires gradient information. However, the trust-region
framework provides large flexibility in designing derivative-free optimization meth-
ods. This compares very favorable with most line search methods which do require
gradient measurements of the objective function. Derivative-free trust-region algo-
rithms proposed in [4, 5, 13] use multivariate interpolation to construct the model
function mk , where only an interpolation set Y containing the interpolating nodes
and their objective function values are needed. Overall, trust-region methods retain
the quadratic convergence rate while being globally convergent. The following is a
global convergence result for trust-region methods [11].

Theorem 2.2.10 Let J : Rn → R be Lipschitz, continuously differentiable and
bounded below on the level set {x ∈ R

n|J (x) ≤ J (xs
0)}. Further, let η > 0 in the

trust-region algorithm. Suppose that ‖Bk‖ ≤ β for some constant β , and that all
approximate solutions of (2.8) satisfy the inequality

mk(0) − mk(pk) ≥ ct

∥∥∇J
(
xs
k

)∥∥min

(
Δk,

‖∇J (xs
k)‖

‖Bk‖
)

for some constant ct ∈ (0,1], and ‖pk‖ ≤ γΔk for some constant γ ≥ 1. Then

lim
k→∞

∥∥∇J
(
xs
k

)∥∥= 0.

2.2.3.2 Example: Minimization of the Rosenbrock’s Function with
Trust-Region Method

Again we use the banana function to illustrate the trust-region method. A sequence
{xs

k} obtained via the trust-region method starting from xs
0 = [−1.9,0]	 is shown in

Fig. 2.2, where a quadratic approximation (2.10) is used and the measurements of
exact gradient and Hessian are assumed. The trust region Δ0 = 0.5 and the iterates
converge to x∗ in 18 steps.
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Fig. 2.2 Trust-region method on Rosenbrock’s function

2.2.4 Direct Search Methods

Direct search methods are one of the best known methods within the family of
derivative-free unconstrained optimization. In the past decades, these methods have
seen a revival of interest due to the appearance of rigorous mathematical analysis
[1, 15], as well as in parallel and distributed computing. Such features make direct
search applicable to the problem of extremum seeking control design. And as direct
search does not need derivative information, it can apply to non-smooth objective
functions as well. Overall, direct search methods are slower than line search meth-
ods, such as steepest-descent method. A systematic review of direct search methods
can be found in [9].

The well-known Simplex algorithm of Nelder and Mead [10] is one of the direct
search methods. Compass search is one of the earlier version of two dimensional di-
rect search, and it can be summarized as follows: Try steps to the East, West, North,
and South. If one of these steps yields a reduction in the function, the improved
point becomes the new iterate. If none of these steps yields improvement, try again
with steps half as long. By revisiting compass search in a more analytically rigorous
manner, it has been named “generating set search” or “pattern search method” [9].

2.2.4.1 Generating Set Search Algorithm

Step 0 Let x0 be the initial guess. Set Δtol > 0 as the tolerance used for conver-
gence, and let Δ0 > Δtol be the initial value of the step-length control pa-
rameter.
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Fig. 2.3 Direct search method on Rosenbrock’s function

Step 1 Let Ds be the coordinate direction set (or generator set)

Ds = {e1, e2, . . . , en,−e1,−e2, . . . ,−en},
where ei is the ith unit coordinate vector in R

n.
Step 2 If there exists dk ∈ Ds such that f (xk + Δkdk) < f (xk), then set xk+1 =

xk + Δkdk and Δk+1 = Δk . Set k = k + 1 and go to Step 1.
Step 3 Otherwise, if f (xk + Δkd) ≥ f (xk) for all d ∈ Ds , set xk+1 = xk and

Δk+1 = Δk/2. If Δk+1 < Δtol, then terminate; otherwise set k = k + 1 and
go to Step 1.

As depicted for two dimensional compass search, it is easy to see that at each
iteration, at least one of the four coordinate directions will be a descent direction. In
fact, it is true for any dimension n: given any x ∈ R

n for which Δf (x) 
= 0, at least
one of coordinate directions must be a descent direction.

We choose the generator set Ds as {e1, e2, . . . , en,−e1,−e2, . . . ,−en} in the
above algorithm. In general, it can be any positive spanning set [6]. That is, for
n dimensional optimization problem, the minimum number of vectors in the gen-
erator set is n + 1, which will guarantee a descent direction can be found in the
generator set.

Direct search can be thought of as being related to trust-region methods, although
in direct search no attempt is done to approximate the objective function nor its
gradient, as trust-region methods do. Thus, direct search methods are best suited to
problems for which no derivative information is available; in particular, to problems
where the objective function is non-smooth.
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2.2.4.2 Example: Minimization of the Rosenbrock’s Function with Direct
Search Method

Again we use the banana function to illustrate the direct search method. A sequence
{xs

k} is obtained via the direct search method, starting from xs
0 = [−1.9,0]	. The

resulting sequence is shown in Fig. 2.3, where the generator set

Ds = {
(1,1), (1,−1), (−1,1), (−1,1)

}

is used and no derivative information is employed. The initial step length is Δ0 =
0.1. Only the first 20 steps of the simulation are shown, where it can be seen in
Fig. 2.3 that the sequence does converge to the neighborhood of the minimum, but
at a very slow rate due to the small gradient change near the minimum, which is
located inside an almost flat “valley.”
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Chapter 3
Design of Extremum Seeking Control

Throughout this chapter, we will deal with the general nonlinear system

ẋ = f (x,u), (3.1)

y = J (x), (3.2)

where x ∈ R
n is the state, u ∈ R is the input, y ∈ R is the performance output, and

the functions f : D × R → R
n and J : D → R are sufficiently smooth on D ⊆

R
n. For the simplification of analysis, we assume D = R

n throughout the book
unless otherwise stated. We consider the design of an extremum seeking controller
to find the extremum (maximum or minimum) of the performance function (3.2).
The reader should note that a maximum seeking controller design can be used to
achieve minimum seeking by replacing y with −y, and vice versa.

The performance output y = J (x) should not be confused with the common no-
tion of a plant output, which is generally used for regulation or tracking purposes.
Here, the performance output is the aspect of plant behavior one desires to mini-
mize or maximize, and it may or may not be equal to (or a function of) a physical
output obtained via sensor measurements. In other words, the performance output is
application and design dependent.

3.1 Analog Optimization Based Extremum Seeking Control

In this section, we focus on maximum seeking control, where the nonlinearity with
an extremum arises as a reference-to-output equilibrium map of a general nonlinear
system [2]. This system is assumed to be stable or stabilizable at each of these
equilibria by a local feedback controller. Suppose that we know a smooth control
law

u = α(x, θ) (3.3)

parameterized by a scalar parameter θ . The closed-loop system

ẋ = f
(
x,α(x, θ)

)
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Fig. 3.1 Analog
optimization based extremum
seeking control

then has equilibria parameterized by θ . We make the following assumptions about
the closed-loop system.

Assumption 3.1.1 There exists a smooth function l : R →R
n such that

f
(
x,α(x, θ)

)= 0 if and only if x = l(θ).

Assumption 3.1.2 For each θ ∈ R, the equilibrium x = l(θ) of the system (3.1) is
locally exponentially stable.

Assumption 3.1.3 There exists θ∗ ∈ R such that

(J ◦ l)′
(
θ∗)= 0,

(J ◦ l)′′
(
θ∗)< 0.

Thus, we assume that the output equilibrium map

y = J
(
l(θ)

)
(3.4)

has a maximum at θ = θ∗ (we would assume (J ◦ l)′′(θ∗) > 0 for a minimization
problem). Our objective is to develop a feedback mechanism that maximizes the
steady state value of y but without requiring knowledge of either θ∗ or the functions
J and l.

The above three assumptions were first proposed in [19]. Using these assump-
tions, one reduces the n-dimensional optimization of the performance function (3.2)
to the one-dimensional problem of optimizing (3.4) in the steady state. Therefore,
the design of extremum seeking control focuses on how to find an optimizing law
for the parameter θ , where several interesting analog optimizers come into the con-
text of the extremum seeking. This framework allows the AOESC approach to be
considered model-free, because Assumption 3.1.2 means that we have a control law
designed for local stabilization and this control law need not to be based on model-
ing knowledge of either f (x,u) or l(θ). In practice, however, one may usually find
that this knowledge is indeed required in order to devise the local control law (3.3).
A basic block diagram depicting the AOESC scheme can be found in Fig. 3.1.



3.1 Analog Optimization Based Extremum Seeking Control 49

3.1.1 Gradient Based Extremum Seeking Control

Consider the maximization of the performance function y = J (θ), where θ ∈ R. If
we know the derivative dJ/dθ , we can choose the optimizing law for θ as

θ̇ = k
dJ

dθ
, k > 0. (3.5)

By letting θ∗ be an isolated local maximizer of J (θ), we can choose the Lyapunov
candidate V = J (θ∗) − J (θ). Then,

V̇ = −dJ

dθ
θ̇ = −k

(
dJ

dθ

)2

≤ 0.

Thus, we see that θ converges to the invariant set where V̇ = 0; that is, where
dJ/dθ = 0, which can only occur at θ = θ∗ for a local region (due to Assump-
tion 3.1.3). Therefore, by invoking the invariance principle [17], we conclude that
the optimizing law (3.5) can successfully maximize J (θ). Note that we can easily
change it into a minimizing law by changing the sign of V and k.

However, assuming the knowledge of the derivative amounts to knowing J (θ)

as well, and we can obtain θ∗ by solving the equation dJ/dθ = 0, which also
means that the root finding and optimization problem are in this sense mathemati-
cally equivalent.

In the one-dimensional case, estimating the derivative is not a difficult task, and
therefore we do not really need the precise gradient information. In fact, one can
choose

θ = k sgn

(
dJ

dθ

)
, (3.6)

with k > 0, where sgn is the signum function, defined as

sgn(t) =
{

1, t ≥ 0
−1, t < 0

.

Then, using the same Lyapunov candidate V = J (θ∗) − J (θ), we have

V̇ = −k
dJ

dθ
sgn

(
dJ

dθ

)
= −k

∣
∣∣∣
dJ

dθ

∣
∣∣∣≤ 0.

Assuming knowledge of the sign of the derivative is still a strong assumption. How-
ever, we can instead try to estimate the sign, which is exactly what the sliding mode
approach tries to achieve. One can then form a gradient based extremum seeking
control as the framework shown in Fig. 3.1 by using the update law (3.6) to be the
analog optimizer.

Below we will see that a general design of extremum seeking control based on
gradient feedback is difficult without reducing it to the framework in Fig. 3.1. Now,
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consider a general n-dimensional gradient system

ẋ = k∇J (x), k > 0. (3.7)

It is well known [15, 16] that the maximal points of J are stable equilibria of the
gradient system (3.7), and that, if the level sets of J are bounded, then the trajectory
of x will converge asymptotically to the set of stationary points of J . So if we have
the gradient ∇J (x) and if we can design a control law u to force the nonlinear
system (3.1) with performance function (3.2) to behave as the gradient system (3.7),
then we can achieve the extremum seeking control task.

Moreover, we can also try to form the system

ẋ = kp(x), k > 0,

where p(x) is required to be an ascent direction (that is p(x)	∇J (x) > 0) in order
to guarantee that the performance function is increased along the direction of ẋ,
which can be seen from J̇ = ∇J	ẋ = k∇J	p(x) > 0. Recent developments in [7]
show that we can achieve finite convergence to the stationary point by choosing a
control law u to force the system to be

ẋ = ∇J (x)

‖∇J (x)‖
or

ẋ = sgn
(∇J (x)

)
.

Now, we want to see how to design the control u to force the dynamic system to
behave like the gradient system (3.7). Consider a linear time invariant (LTI) system

ẋ = Ax + Bu, (3.8)

where x ∈ R
n. Assume that x∗ is a local maximum of the performance function

J (x). Let V = J (x∗) − J (x) be a Lyapunov candidate, then

V̇ = −∇J (x)	ẋ = −∇J (x)	(Ax + Bu).

We need to find a control law such that V̇ ≤ 0, which generally is very difficult even
if we know the gradient. In the particular case when the LTI system is square, that
is, u ∈R

n and B is nonsingular, we can choose

u = kB−1(∇J (x) − Ax
)
,

with k > 0. Then, V̇ = −k‖∇J (x)‖2 ≤ 0 and we can conclude the state will con-
verge to the stationary points of J . Of course, we can have a more flexible design by
choosing u = kB−1(p(x) − Ax), with k > 0 and p(x) satisfying p(x)	∇J (x) > 0.

Recent research on gradient or its estimation based extremum seeking can be
found in [1, 3–6, 11, 24]. However, the requirement of knowing the gradient ∇J (x)

is a very strong assumption, and moreover for the general single input, single output
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Fig. 3.2 Sliding mode based
analog optimization

n-dimensional nonlinear system (3.1) and (3.2), a control law that transforms the
nonlinear system into a gradient system (3.7) may not exist or may be very diffi-
cult to find. Thus, by posing Assumptions 3.1.1–3.1.3, we can reduce the extremum
seeking control design to find a controller parameter update law for θ , which op-
timizes the unimodal reference-to-output equilibrium map J ◦ l(θ). For these rea-
sons, analog optimization laws based on these assumptions have been intensively
explored.

3.1.2 Sliding Mode Based Extremum Seeking Control

The use of sliding mode for analog optimization of an analytically unknown one-
dimensional function J (θ) has been reported in [12, 18, 26]. The basic idea is to
make J follow an increasing/decreasing time function via sliding mode motions.
The main difficulty with such set up is that the unknown gradient term multiplies
the control at the differential equation of J so that the system itself possesses a
variable structure behavior. This idea has been extended in [8] with the introduction
of the notion of periodic switching function and then studied in [12, 13, 20–23, 25,
27, 28, 30, 31] on a variety of automotive problems, especially in ABS design [9,
10, 14, 29].

Consider the maximization of a performance function y = J (θ). The perfor-
mance output y is forced to track an increasing time function irrespective of the
unknown gradient via sliding mode. A basic sliding mode based analog optimiza-
tion method can be found in Fig. 3.2, where the symbol

⊕
denotes a summer. Pick

any increasing function g(t) and try to keep J (θ) − g(t) at a constant value by a
proper choice of θ̇ . If so, J (θ) increases at the same rate as g(t), independent of
whether θ < θ∗ or θ > θ∗. To this end, let

e = J (θ) − g(t), (3.9)

so that

ė = dJ

dθ
θ̇ − ġ(t).

With the optimizing law of

θ̇ = k sgn(sin(πe/α)), k > 0 (3.10)
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Fig. 3.3 Sinusoidal
perturbation based analog
optimization

as in [8] with α being a small positive constant, a sliding motion occurs for
k|dJ/dθ | > |ġ(t)| and θ is steered toward θ∗ while y tracks g(t). The region de-
fined by |dJ/dθ | < |ġ(t)|/k quantifies the region in which θ will be confined with
this optimizing law. The idea can be extended to more general dynamics by adding
the derivatives of the performance function as well as those of g(t) to the sliding
manifold expression so as to compensate the relative degree deficit. In [13], this op-
timization idea has further been developed for online operating point and set point
optimization purposes by using a two-time scale sliding mode optimization design.
The resulting method allows the optimization of the closed-loop operation of a sys-
tem by exploiting the extra degree of freedom in the available control authority,
possibly in a different time scale. This is exactly what we mean to be sliding mode
based extremum seeking control.

3.1.3 Perturbation Based Extremum Seeking Control

The method of sinusoidal perturbation introduced in this section has been the most
popular of extremum seeking control schemes. Due to its continuous way to perform
gradient type optimization, it permits fast adaptation and easy implementation. This
section is mainly based on Chap. 5 of [2], and later we extend the perturbation
based extremum seeking control to unstable systems by incorporating phase lead
compensators in the extremum seeking loop.

Consider the maximization of a performance function y = J (θ). A basic sinu-
soidal perturbation based continuous maximization method can be found in Fig. 3.3,
where the symbol

⊗
denotes a multiplier.

The perturbation signal α sin(ωt) fed into the function helps to get a measure of
the gradient information of J (θ). The following result [2] summarizes the properties
of the basic perturbation based extremum seeking loop in Fig. 3.3:

Theorem 3.1.4 For sufficiently large ω there exists a unique exponentially stable
periodic solution of period 2π/ω for system in Fig. 3.3 and it satisfies

∣∣θ̃2π/ω(t)
∣∣+

∣∣∣
∣e

2π/ω(t) − α2J ′′

4

∣∣∣
∣≤ O

(
1

ω

)
, ∀t ≥ 0.
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Fig. 3.4 Perturbation based
extremum seeking control

This theorem states a local convergence property of the perturbation based con-
tinuous optimization of a single parameter function. The output y − J ∗ converges
to J ′′O( 1

ω2 + α2). This convergence result is of second order, and the convergence
speed is proportional to 1/ω,α, k and J ′′.

Based on the analog optimization scheme, the perturbation based extremum seek-
ing control scheme is shown in Fig. 3.4. Here, we review the results that first ap-
peared in [19], and later in Chap. 5 of [2]. These results lay the foundation of the
techniques we use here to extend the perturbation based extremum seeking control
to moderately unstable system and the autonomous vehicle source seeking prob-
lem.

Tools of averaging and singular perturbation are employed to show that solutions
of the closed-loop system converge to a small neighborhood of the extremum of
the equilibrium map. The size of the neighborhood is inversely proportional to the
adaptation gain and the amplitude and frequency of a periodic signal used to achieve
extremum seeking. The low pass filter ωl

s+ωl
is not necessary, but it is helpful in filter-

ing out a cos(2ωt) signal after the multiplier (demodulator). The design parameters
are selected as

ωh = ωωH = ωδω′
H = O(ωδ), (3.11)

ωl = ωωL = ωδω′
L = O(ωδ), (3.12)

k = ωK = ωδK ′ = O(ωδ), (3.13)

where ω and δ are small positive constants and ω′
H , ω′

L, and K ′ are O(1) positive
constants. As it will be become apparent later, α also needs to be small. From (3.11)
and (3.12) we see that the cut-off frequencies of the filters need to be lower than the
frequency of the perturbation signal, from which it follows that we need to choose
ωH < 1 and ωL < 1. In addition, the adaptation gain k needs to be small as well.

The analysis that follows treats first the static case (“freeze” x at its equilibrium)
using the method of averaging. Then we use the singular perturbation method for
the full system in Fig. 3.4. Let us introduce the new coordinates θ̃ = θ̂ − θ∗ and
η̃ = η − J ◦ l(θ∗), where η̇ = −ωhη + ωhy from its definition in Fig. 3.4. Then, in
the time scale τ = ωt , the system in Fig. 3.4 is written as

ω
dx

dτ
= f

(
x,α(x, θ∗ + θ̃ + α sin τ)

)
, (3.14)
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d

dτ

⎡

⎣
θ̃

ξ

η̃

⎤

⎦= δ

⎡

⎢
⎣

K ′ξ
−ω′

Lξ + ω′
L(J (x) − J ◦ l(θ∗) − η̃)α sin τ

−ω′
H η̃ + ω′

H (J (x) − J ◦ l(θ∗))

⎤

⎥
⎦ . (3.15)

Then we have the following theorem.

Theorem 3.1.5 [2] Consider the feedback system (3.14) and (3.15) under As-
sumptions 3.1.1–3.1.3. There exists a ball of initial conditions around the point
(x, θ̂ , ξ, η) = (l(θ∗), θ∗,0, J ◦ l(θ∗)) and contains ω̄, δ̄, and ᾱ such that for all
ω ∈ (0, ω̄), δ ∈ (0, δ̄), and α ∈ (0, ᾱ), the solution (x(t), θ̂ (t), ξ(t), η(t)) converges
exponentially to an O(ω + δ + α)-neighborhood of that point. Furthermore, y(t)

converges to an O(ω + δ + α)-neighborhood of J ◦ l(θ∗).

3.1.4 Perturbation Based Extremum Seeking Control for a Plant
with Slightly Unstable Poles

The perturbation based extremum seeking control above and in [2] relies on time
scale decomposition and as such has so far been developed only for plants that are
open loop stable, with poles that are sufficiently well damped. In the current and fol-
lowing sections, we introduce a new idea regarding how to extend the applicability
of perturbation based extremum seeking to moderately unstable systems (this mate-
rial is related to [32], where the focus is mainly on source seeking). The extension to
marginally unstable systems draws motivation from the application of autonomous
vehicle source seeking and will be presented in Chap. 8.

We present an example of a MIMO plant with slightly unstable poles that can
be stabilized, in the absence of its output measurements, with extremum seeking.
Consider a two-input–two-output system:

ẋ = vx + εxx,

ẏ = vy + εyy,
(3.16)

with performance function

J = f (x, y) = f ∗ − qx

(
x − x∗)2 − qy

(
y − y∗)2

, (3.17)

where εx, εy > 0 are constant and vx , vy are the inputs. The (x∗, y∗) is a max-
imizer, f ∗ = f (x∗, y∗) is the maximum and qx , qy are some unknown positive
constants (since the Hessian is negative). General non-quadratic maps with non-
diagonal Hessians are equally amenable to analysis, using the same technique as
in [2, 19]. A block diagram of extremum seeking is shown in Fig. 3.5. If εx , εy are
very small, the robustness of the perturbation based extremum seeking loop itself
will be enough to compensate for their effect without having to resort to a phase
lead compensator.
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Fig. 3.5 Perturbation based extremum seeking control of a plant with slightly unstable poles

The analysis that follows employs the method of averaging. Let

e = h

s + h
[J ] − f ∗, (3.18)

then the signal after the washout filter can be expressed as

s

s + h
[J ] = J − h

s + h
[J ] = J − f ∗ − e.

Now, let us introduce the new coordinates

x̃ = x − x∗ − α sin(ωt), (3.19)

ỹ = y − y∗ + α cos(ωt). (3.20)

Then, in the time scale τ = ωt , we summarize the system in Fig. 3.5 as

dx̃

dτ
= 1

ω

[
cxΔ sin τ + εx(x̃ + x∗ + α sin τ)

]
,

dỹ

dτ
= 1

ω

[−cyΔ cos τ + εy(ỹ + y∗ − α cos τ)
]
,

de

dτ
= h

ω
Δ,

(3.21)

where Δ is defined as

Δ = (J − f ∗ − e) = −[
qx(x̃ + α sin τ)2 + qy(ỹ − α cos τ)2 + e

]
. (3.22)
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The system (3.21) is in a form to which the averaging method is applicable. The
averaging model of (3.21) is

dx̃avg

dτ
= 1

ω

[
(εx − αcxqx)x̃avg + εxx

∗],

dỹavg

dτ
= 1

ω

[
(εy − αcyqy)ỹavg + εyy

∗],

deavg

dτ
= 1

ω
(−h)

[
qxx̃

2
avg + qyỹ

2
avg + eavg + α2

2
(qx + qy)

]
.

(3.23)

Then the equilibrium of the average model (3.23) is

x̃e
avg = εxx

∗

αcxqx − εx

,

ỹe
avg = εyy

∗

αcyqy − εy

,

ee
avg = −α2

2
(qx + qy) − qx

(
εxx

∗

αcxqx − εx

)2

− qy

(
εyy

∗

αcyqy − εy

)2

.

(3.24)

The Jacobian of (3.23) at (x̃e
avg, ỹ

e
avg, e

e
avg) is

Javg = 1

ω

⎡

⎢
⎣

εx − αcxqx 0 0

0 εy − αcyqy 0

−2hqxx̃
e
avg −2hqyỹ

e
avg −h

⎤

⎥
⎦ . (3.25)

Therefore, Javg will be Hurwitz if and only if

εx − αqxcx > 0, εy − αqycy > 0. (3.26)

Given that qx, qy are unknown but positive constants, and that εx , εy are small,
there exist some α, cx and cy satisfying the inequalities in (3.26), so as to make
the Jacobian (3.25) Hurwitz. This implies that the equilibrium (3.24) of the average
system (3.23) is exponentially stable. Then, according to the Averaging Theorem
[17], we have the following result.

Theorem 3.1.6 Consider the system in Fig. 3.5, where the nonlinear map has the
form of (3.17). There exist ε̄, ω̄ such that for all εx, εy ∈ (0, ε̄) and for all 1

ω
∈ (0, 1

ω̄
)

the system has a unique exponentially stable periodic solution (x̃2π/ω, ỹ2π/ω, e2π/ω)

of period 2π
ω

, and this solution satisfies

∥∥∥∥∥∥

⎡

⎣
x̃2π/ω − x̃e

avg
ỹ2π/ω − ỹe

avg
e2π/ω − ee

avg

⎤

⎦

∥∥∥∥∥∥
≤ O(1/ω̄), ∀τ ≥ 0, (3.27)
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where

x̃e
avg = εxx

∗

αcxqx − εx

, ỹe
avg = εyy

∗

αcyqy − εy

, and

ee
avg = −

[
α2

2
(qx + qy) + qx

(
εxx

∗

αcxqx − εx

)2

+ qy

(
εyy

∗

αcyqy − εy

)2]
.

Since

x − x∗ = x̃ + α sin(ωt)

= (
x̃ − x̃2π/ω

)+
(

x̃2π/ω − εxx
∗

αcxqx − εx

)
+ εxx

∗

αcxqx − εx

+ α sin τ (3.28)

the result (3.27) implies that the first term in (3.28) converges to zero, then second
term is O(1/ω̄), the third term is O(ε̄) and the fourth term O(α). Thus, we obtain

lim sup
τ→∞

|x − x∗| = O(α + 1/ω̄ + ε̄).

Similarly, we can obtain

lim sup
τ→∞

|y − y∗| = O(α + 1/ω̄ + ε̄).

Thus, we conclude that

lim sup
τ→∞

|f − f ∗| = O
(
α2 + (1/ω̄)2 + ε̄2),

which characterizes the asymptotic performance of the extremum seeking loop in
Fig. 3.5, meaning that (x(t), y(t)) eventually converge to a neighborhood of the
maximum. The size of the neighborhood is proportional to the amplitude of the
periodic perturbation, the inverse of the perturbation frequency and the value of the
unstable poles.

Example 3.1 In the simulation results shown in Fig. 3.6, we have εx = εy = 0.05,
the perturbation frequency ω = 20, perturbation amplitude a = 0.05, adaptation
gains cx = cy = 10 and washout filter h = 1. The parameters of the nonlinear
map (3.17) are f ∗ = 1, qx = 1 and qy = 0.5. The start position of the state is
(x(0), y(0)) = (0,0).

The practical consequence of the perturbation signals can easily be observed in
the oscillatory nature of the control signals, as seen in Figs. 3.6(c) and (d). The
perturbation allows the method to locally estimate the gradient, but in practice the
oscillatory controls and the resulting vehicle trajectory in Fig. 3.6(b) may not be
acceptable. This is one potentially negative effect shared by all perturbation based
methods, which designers should keep in mind when deciding what approach best
fits the application at hand.
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Fig. 3.6 Perturbation based extremum seeking control of a plant with slightly unstable poles:
(a) performance output; (b) state; (c) control input of x-axis; (d) control input of y-axis

3.1.5 Perturbation Based Extremum Seeking Control for a Plant
with Moderately Unstable Poles

Consider now the case where εx and εy in (3.16) are not restricted to be very small,
but can be of “medium” size (in the sense of their relative size with respect to qx

and qy , which may make it more difficult to satisfy the inequalities (3.26)). In this
case, the robustness of the extremum seeking loop alone cannot stabilize the sys-
tem, and therefore we must include a phase lead compensator to make up for the
phase lag introduced by the unstable first-order dynamics. Thus, the extremum seek-
ing scheme in Fig. 3.7 employs phase lead compensators for achieving robustness
against the destabilizing effect of εx , εy > 0.

The transfer function of the PD compensator is designed as

G(s) = kc

s − z0

s − p0
. (3.29)
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Fig. 3.7 Perturbation based extremum seeking control of a plant with moderately unstable poles

Then, in the time scale τ = ωt , we summarize the system in Fig. 3.7 as

dx̃

dτ
= 1

ω

[
wx + εx(x̃ + x∗ + α sin τ)

]
,

dỹ

dτ
= 1

ω

[
wy + εy(ỹ + y∗ − α cos τ)

]
,

de

dτ
= h

ω
Δ,

dwx

dτ
= 1

ω

[
pxwx − cxkxzxΔ sin τ + cxkxωΔ cos(ωt) + cxkx

dΔ

dt
sin(ωt)

]
,

dwy

dτ
= 1

ω

[
pywy + cykyzyΔ cos τ + cykyωΔ sin(ωt) − cyky

dΔ

dt
cos(ωt)

]
,

(3.30)

where Δ is defined in (3.22), and

dΔ

dt
= −2qx

(
x̃ + α sin(ωt)

)(dx̃

dt
+ αω cos(ωt)

)

− 2qy

(
ỹ − α cos(ωt)

)(dỹ

dt
+ αω sin(ωt)

)
− de

dt
.

The average model of (3.30) is

dx̃avg

dτ
= 1

ω

[
εx(x̃avg + x∗) + wxavg

]
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dỹavg

dτ
= 1

ω

[
εy(ỹavg + y∗) + wyavg

]

deavg

dτ
= 1

ω
(−h)

[
qxx̃

2
avg + qyỹ

2
avg + eavg + α2

2
(qx + qy)

]

dwxavg

dτ
= 1

ω

[
(px − αcxkxqx)wxavg + αcxkxqx(zx − 2εx + h)x̃avg (3.31)

− αcxkxqxεxx
∗]

dwyavg

dτ
= 1

ω

[
(py − αcykyqy)wyavg + αcykyqy(zy − 2εy + h)ỹavg

− αcykyqyεyy
∗].

Then the equilibrium of the average model (3.31) is

x̃e
avg = pxεxx

∗

αcxkxqx(zx − εx + h) − pxεx

ỹe
avg = pyεyy

∗

αcykyqy(zy − εy + h) − pyεy

ee
avg = −α2

2
(qx + qy) − qx

(
pxεxx

∗

αcxkxqx(zx − εx + h) − pxεx

)2

− qy

(
pyεyy

∗

αcykyqy(zy − εy + h) − pyεy

)2

wx
e
avg = −αcxkxqxεx(zx − εx + h)x∗

αcxkxqx(zx − εx + h) − pxεx

wy
e
avg = −αcykyqyεy(zy − εy + h)y∗

αcykyqy(zy − εy + h) − pyεy

.

(3.32)

The Jacobian of (3.31) at (x̃e
avg,wx

e
avg, ỹ

e
avg,wy

e
avg, e

e
avg) is

Javg = 1

ω

⎡

⎢⎢
⎢⎢
⎣

εx 1 0 0 0
a1 a2 0 0 0
0 0 εy 1 0
0 0 b1 b2 0

−2hqxx
e
avg 0 −2hqyy

e
avg 0 −h

⎤

⎥⎥
⎥⎥
⎦

, (3.33)

where a1 = αcxkxqx(zx −2εx +h), a2 = (px −αcxkxqx), b1 = αcykyqy(zy −2εy +
h) and b2 = (py − αcykyqy). Therefore, Javg will be Hurwitz if and only if the
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following inequalities hold:

αcxkxqx − εx − px > 0,

(αcxkxqx + px)εx − αcxkxqx(zx + h) > 0,

αcykyqy − εy − py > 0,

(αcykyqy + py)εy − αcykyqy(zy + h) > 0,

h > 0.

(3.34)

If qx, qy ≥ q and εx, εy ≤ ε̄, one possible design to satisfy the inequalities (3.34) is

1. Choose α > 0 to be small, h > 0.
2. Choose cx > 0, kx > 0 such that cxkx > ε̄

2αq
.

3. Choose px = −αcxkxq and zx < −h.

4. Choose cy > 0, ky > 0 such that cyky > ε̄
2αq

.

5. Choose py = −αcykyq and zy < −h.

Then according to the averaging theorem [17], we have the following result.

Theorem 3.1.7 Consider the system in Fig. 3.7, where the nonlinear map has the
form of (3.17). If the conditions (3.34) are satisfied by design, then there exists ω̄

such that for all 1
ω

∈ (0, 1
ω̄
) the system has a unique exponentially stable periodic

solution (x̃2π/ω, ỹ2π/ω, e2π/ω) of period 2π
ω

and this solution satisfies
∥∥∥
∥∥∥∥∥∥∥∥∥

⎡

⎢⎢⎢⎢⎢⎢
⎣

x̃2π/ω − x̃e
avg

ỹ2π/ω − ỹe
avg

e2π/ω − ee
avg

wx
2π/ω − wx

e
avg

wy
2π/ω − wy

e
avg

⎤

⎥⎥⎥⎥⎥⎥
⎦

∥∥∥
∥∥∥∥∥∥∥∥∥

≤ O(1/ω̄), ∀τ ≥ 0, (3.35)

where (x̃e
avg, ỹ

e
avg, e

e
avg,wx

e
avg,wy

e
avg) is the equilibrium (3.32) of the average model

(3.31).

Since

x − x∗ = x̃ + α sin(ωt)

= (
x̃ − x̃2π/ω

)+
(

x̃2π/ω − pxεxx
∗

αcxkxqx(zx − εx + h) − pxεx

)

+ pxεxx
∗

αcxkxqx(zx − εx + h) − pxεx

+ α sin τ,

the above theorem implies that the first term converges to zero, the second term is
O(1/ω̄), the third term is O(ε̄) and the fourth term O(α), guaranteeing

lim sup
τ→∞

|x − x∗| = O(α + 1/ω̄ + ε̄).
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Fig. 3.8 Perturbation based extremum seeking control of a plant with moderately unstable poles:
(a) performance output; (b) state; (c) control input of x-axis; (d) control input of y-axis

Similarly, we can obtain

lim sup
τ→∞

|y − y∗| = O(α + 1/ω̄ + ε̄).

Thus, in the end we arrive at

lim sup
τ→∞

|f − f ∗| = O
(
α2 + (1/ω̄)2 + ε̄2),

which characterizes the asymptotic performance of the extremum seeking loop in
Fig. 3.7. This result implies that the system eventually converges to the neighbor-
hood of the maximum. The size of the neighborhood is proportional to the amplitude
of the periodic perturbation, the inverse of the perturbation frequency and the value
of the unstable poles.
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Example 3.2 The simulation results are shown in Fig. 3.8, where the two un-
stable poles are εx = εy = 0.5. The parameters of the nonlinear map (3.17) are
f ∗ = 1, qx = 1 and qy = 0.5. The parameters of the PD compensator (3.29) are
kc = 2, z0 = −5, p0 = −1, the perturbation frequency ω = 30, perturbation ampli-
tude a = 0.05, adaptation gain cx = cy = 15 and washout filter h = 1. The system’s
start position is set to (0,0).

3.2 Numerical Optimization Based Extremum Seeking Control

In this section, we consider the minimum seeking control design of nonlinear system
(3.1) with performance function (3.2). Here, we treat extremum seeking control
from the perspective of optimization. From this point of view, extremum seeking
control can be considered as a type of constrained optimization problem, whose
constraint is the differential equation (3.1) as compared to the traditional algebraic
constraints, and the manipulation of x has to be done indirectly through the control
input u. The extremum seeking control problem then can be stated as

min
x∈Rn

J (x) subject to ẋ = f (x,u).

Now the state x is feasible only if it is a solution of the dynamic system. In the
case when (3.1) is controllable, there always exists an input u that transfers x to
anywhere in R

n in a finite time. Although controllable dynamic system constraints
do allow x to be anywhere in the state space where the numerical optimizer wants,
the way in which x reaches the particular place is determined by the dynamic sys-
tem and the state regulator to be designed. Therefore, the goal of extremum seeking
control is to design a controller based on output measurements and state measure-
ments to regulate the state to an unknown minimizer of an unknown performance
function.

Assumption 3.2.1 (Existence of the Minimum) The performance function J (x)

is continuous on the compact level sets L(xs
0) = {x ∈ R

n|J (x) ≤ J (xs
0)} for all xs

0
in R

n.

Assumption 3.2.2 (Isolated Minimizer) The global minimizer x∗ ∈ R
n of J (x) is

an isolated minimizer.

Assumption 3.2.3 (Stabilizable Equilibrium) The global minimizer x∗ ∈ R
n of

J (x) is a stabilizable equilibrium point of the closed-loop system.

Assumption 3.2.1 guarantees the existence of the minimum, and any numerical
optimization algorithms with first-order global convergence property will produce
a sequence {xs

k} converging to a minimizer (more precisely, a first-order stationary
point) of the performance function. Assumptions 3.2.2 and 3.2.3 are required for
the applicability of Lyapunov analysis. Assumption 3.2.3 also ensures that there is a
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Fig. 3.9 Numerical optimization based extremum seeking control

controller that can operate the system at the desired set point x∗; otherwise, we may
still be able to design a controller that enables the system to track a reference tra-
jectory containing the minimizer x∗. In the latter case, the steady state performance
output will be oscillating. Note that Assumption 3.2.3 is more practical than the as-
sumptions in Chap. 5 of [2] (presented in Assumptions 3.1.1 and 3.1.2 in Sect. 3.1),
where the closed-loop system is assumed to have an equilibrium set parameterized
by the control argument and extremum seeking is achieved by tuning the single
parameter.

A block diagram of numerical optimization based extremum seeking control is
proposed in Fig. 3.9, where the nonlinear system is modeled as (3.1) and the perfor-
mance function is (3.2). The extremum seeking controller (state regulator) ensures
that the state x travels along the set point sequence {xs

k} generated by the numerical
optimization algorithm, which eventually converges to a minimizer of the perfor-
mance function. A basic framework for such extremum seeking control is as fol-
lows.

3.2.1 Basic Numerical Optimization based Extremum Seeking
Control Algorithm

Step 0 Given xs
0, set t0 = 0, x(t0) = xs

0 and k = 0.
Step 1 Use an optimization algorithm to produce xs

k+1 based on current state x(tk),
the measurements of J (x(tk)) and/or ∇J (x(tk)). Denote

xs
k+1 = OPTIMIZER

(
x(tk)

)
.

Step 2 Design a state regulator u(t) that regulates the state x(tk) to xs
k+1 in a finite

time δk , let tk+1 = tk + δk . That is, x(tk+1) = xs
k+1.

Step 3 Set k ← k + 1. Go to Step 1 until convergence.
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Here we have only introduced the basic framework for NOESC. This framework
will be thoroughly explained and expanded upon in Chaps. 4 and 5, where the class
of systems we consider is explained, and the contents of the state regulator block
are addressed. Moreover, in the next two chapters we also deal with the important
issues of convergence and robustness of the NOESC algorithms.
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Chapter 4
Finite Time State Regulator Design

4.1 Finite Time State Regulator Design

4.1.1 Linear Time Invariant Systems

Here, we consider a single-input, single-output (SISO) linear time invariant (LTI)
system of the general form

ẋ = Ax + Bu (4.1)

with the performance function

y = J (x), (4.2)

as it was defined in (3.2) and repeated here for convenience, where x ∈ R
n is the

state, and u ∈R is the input. The matrices A,B are given as a model of a real system.
However, the explicit form of the performance function J (x) and its minimum are
not known, and we assume we are only able to measure the function value y or its
derivatives. We need the following assumption to ensure the feasibility of extremum
seeking control for the LTI system (4.1).

Assumption 4.1.1 The LTI system (4.1) is controllable.

Now, we can combine an optimization algorithm and a state regulator originated
from the controllability theorem in [1] to form an extremum seeking control scheme:

4.1.1.1 NOESC Scheme for LTI Systems

Step 0 Given xs
0, choose a termination threshold ε0, and let t0 = 0, x(t0) = xs

0, and
set the index k = 0.

Step 1 Use an optimization algorithm with first-order global convergence to pro-
duce xs

k+1 based on current state x(tk), the measurement of J (x(tk)) or

C. Zhang, R. Ordóñez, Extremum-Seeking Control and Applications,
Advances in Industrial Control,
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∇J (x(tk)). Denote

xs
k+1 = OPTIMIZER

(
x(tk)

)
.

Step 2 Choose a regulation time δk , let tk+1 = tk + δk , and design the control input
during tk ≤ t ≤ tk+1 to be

u(t) = −B	eA	(tk+1−t)W−1
c (δk)

[
eAδkx(tk) − xs

k+1

]
, (4.3)

where the controllability Gramian is given by

Wc(δk) =
∫ δk

0
eAτBB	eA	τ dτ. (4.4)

Step 3 If ‖∇J (x(tk+1))‖ < ε0, then stop. Otherwise, set k ← k + 1. Go to Step 1.

Remark 4.1.2 The above extremum seeking control scheme can be derivative-free
if the optimization algorithm used in Step 1 (as well as the termination criterion in
Step 3) does not require gradient information. For example, we can use derivative-
free trust region methods [2, 7] or direct search [5]. Some modifications of the above
scheme are required in order to use the trust region methods due to the need to obtain
the ratio ρk in (2.9), where we may need additional regulation time to drive the state
back to xs

k if ρk ≤ η. The reader should refer to Sect. 4.2.2 and [9, 10] for the details
of trust region based extremum seeking control.

Remark 4.1.3 If the steepest descent method is used in Step 1, we will have

xs
k+1 = OPTIMIZER

(
x(tk)

)= x(tk) − αk∇J
(
x(tk)

)
.

Even though it requires gradient measurement ∇J (x(tk)) by using steepest descent
method, such measurement is only needed every δk time, therefore, we can estimate
the gradient by collecting enough measurements of J during the δk time.

Remark 4.1.4 The stopping criterion ‖∇J (x(tk+1))‖ < ε0 is used only for simplic-
ity, where ε0 is a predefined small positive constant. In case gradient information
is not available, there are other stopping criteria only based on the difference of
function values [6].

Now, we present the convergence analysis of the NOESC scheme.

Theorem 4.1.5 Consider the LTI system (4.1) with performance output (4.2). As-
sume the LTI system (4.1) satisfies 4.1.1 and the performance function (4.2) satisfies
Assumption 3.2.1. If the extremum seeking control scheme above is applied, where
the optimization algorithm used is of first-order global convergence, then the state
x will globally asymptotically converge to the first-order stationary point of the per-
formance function (4.2).
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Proof First, given that the performance function (4.2) satisfies Assumption 3.2.1,
an optimization algorithm with first-order global convergence will produce a search
sequence {xs

k} that globally asymptotically converges to the first-order stationary
point of the performance function (4.2).

By assuming the LTI system (4.1) is controllable, the controller (4.3) is feasible
since the controllability Gramian Wc(δk) in (4.4) is nonsingular. First, at t = t0, the
state x(t0) = xs

0, we have xs
1 = OPTIMIZER(x(t0)). Then, at time t1 = t0 + δ0, we

will have

x(t1) = eAδ0x(t0) +
∫ t1

t0

eA(t1−τ)Bu(τ) dτ = xs
1,

where the control input during (t0, t1) is

u(t) = −B	eA	(t1−t)

[∫ δ0

0
eAτBB	eA	τ dτ

]−1
[
eAδ0x(t0) − xs

1

]
.

By induction, at t = tk , we suppose the state x(tk) = xs
k , then we obtain xs

k+1 =
OPTIMIZER(x(tk)). At time tk+1 = tk + δk , we will have

x(tk+1) = eAδkx(tk) +
∫ tk+1

tk

eA(tk+1−τ)Bu(τ) dτ = xs
k+1,

where u(t) is defined in (4.3). Thus the controller (4.3) interpolates between each
point in the sequence {xs

k} precisely, within each time interval of length δk . There-
fore, the state of the system will globally asymptotically converge to the first-order
stationary point of performance function (4.2). �

Remark 4.1.6 The convergence result for the extremum seeking control scheme is
global since the numerical optimization algorithm used is of first-order global con-
vergence.

Remark 4.1.7 Additional assumptions about the performance function J may be re-
quired to guarantee that an arbitrary optimization algorithm with first-order global
convergence indeed converges to the stationary point of (4.2). For example, accord-
ing to Theorem 2.2.6, we need to assume J (x) is continuously differentiable and
∇J (x) is Lipschitz continuous for line search methods; also we will assume J is
Lipschitz, continuously differentiable and bounded from below on level sets when
using trust region methods.

Remark 4.1.8 The design of controller (4.3) is not limited to single-input systems,
and it is just one way to fulfill the state regulation task. It is an open-loop controller
during the time interval of length δk , and it does not consider the change of xs

k+1,
which is fed back from the optimization algorithm. This approach has the advantage
of achieving regulation in a finite time, but it relies on the precise knowledge of the
A and B matrices, and is very difficult to use it to yield a robust design because
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of its open-loop nature. Later on, we will relax the state regulation design criterion
from perfect regulation to regulation within a neighborhood of xs

k+1, which pro-
vides further flexibility of using other designs of state regulator to deal with input
disturbance or unmodeled plant dynamics.

Remark 4.1.9 The only requirement for the feasibility of state regulator (4.3) is
that the LTI system is controllable (in other words, that the controllability Gramian
Wc(δk) of (4.4) is nonsingular), which means the extremum seeking control scheme
works for both stable and unstable systems. However, in practice it is preferable to
first stabilize the unstable system by pole placement, then design a state regulator on
the stabilized LTI system. The reason is that the unstable LTI system will amplify
the regulation error resulting from an input disturbance, for example.

Remark 4.1.10 The performance of the extremum seeking control design largely
depends on the performance function to be optimized, the optimization algorithm
used, and a robust and efficient state regulator.

Remark 4.1.11 If the performance function (4.2) is differentiable and convex,
then the convergence to stationary point becomes convergence to the global min-
imum [6].

Example 4.1 Now, consider a second order stable LTI system in its controllable
canonical form. Let x = [x1, x2]	, and

ẋ =
[

0 1
−2 −3

]
x +

[
0
1

]
u, (4.5)

y = J (x) = 100
(
x2 − x2

1

)2 + (1 − x1)
2. (4.6)

The banana function (4.6) has its minimizer at x∗ = [1,1]	, and J (1,1) = 0. The
explicit form of the function J (x) and its minimum are both unknown to the de-
signer. Extremum seeking control scheme based on steepest descent algorithm with
inexact line search is applied. The simulation results with the first 15 steps are shown
in Fig. 4.1, where xs

0 = [−1.9,0]	, and δk = 2. Hence, we only require the gradient
measurement at x(tk) every δk time to implement the optimization algorithm.

The performance output (Fig. 4.1(a)) approaches its minimum at J (1,1) = 0 and
the state (Fig. 4.1(b)) accordingly converges to the minimizer [1,1]	. The steepest
descent algorithm produces a sequence {xs

k} of set-point commands for the con-
troller to follow. The trajectory between xs

k and xs
k+1 is shaped by the dynamical

system (4.1) and the regulator (4.3). This can be clearly viewed in Fig. 4.2, where
the blue circle represents the command sequence {xs

k} and the red dashed line rep-
resents the state trajectory.1 The choice of δk is rather heuristic in this example.
However, in practice this is an important design factor. We can see that a smaller

1Since it would take thousands of steps for the steepest descent algorithm to converge to the mini-
mizer of the banana function, we only simulate the first 15 steps for illustrative purposes.
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Fig. 4.1 Extremum seeking control for a LTI system: (a) performance output; (b) states; (c) con-
trol input

δk yields a larger control force to satisfy the short regulation time. Thus, δk should
be chosen such that the control force does not exceed the practical limits. There is
always a tradeoff between the extremum seeking time and the control gain.

Example 4.2 As another example, consider again the second order linear system
(4.5), although this time with the cost function

y = J (x) = 5x2
1 + x2

2 + 4x1x2 − 14x1 − 6x2 + 20. (4.7)

The performance function J (x) has its minimizer at x∗ = (1,1) and J (1,1) = 10.
Here we use, for simplicity, a steepest descent algorithm with exact line search [3].
The search direction can be computed to be

pk = −∇J
(
xk

1 , xk
2

)= [−10xk
1 − 4xk

2 + 14,−2xk
2 − 4xk

1 + 6
]	 = [

pk
1,p

k
2

]	
.

Then, we can derive an explicit expression of the step length

αk = argminα f (xk + αpk) = (pk
1)

2 + (pk
2)

2

2(5(pk
1)2 + (pk

2)2 + 4pk
1p

k
2)

.
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Fig. 4.2 Extremum seeking control for a LTI system: phase portrait of the steepest descent se-
quence {xs

k} over the contour of the performance function

Note that, generally speaking, exact line search is not possible since the cost func-
tion is assumed unknown; however, as shown in Example 4.1, similar results are
expected for inexact line search as well as other optimization algorithms.

Given δk = 2, x0 = [−10,10], the simulation results are shown in Fig. 4.3. The
performance function (Fig. 4.3(a)) approaches its minimum at J (1,1) = 10. The
steepest descent algorithm produces a sequence {xk} as a set-point sequence for
the controller to follow. The trajectory between xk and xk+1 is shaped by the dy-
namical system constraints. This can be clearly viewed in Fig. 4.4, where the blue
circle represents the sequence {xk} and the red dashed line represents the state tra-
jectory.

A point of interest here is the oscillatory behavior observed in Fig. 4.3(b),
where the states are plotted. The reason for this oscillation is that the mini-
mizer x∗ = (1,1) of (4.7) is not an equilibrium point of system (4.5). Thus,
the best the controller can do is force the state to periodically revisit the mini-
mizer.

4.1.2 State Feedback Linearizable Systems

Now, we consider a SISO nonlinear affine system

ẋ = f (x) + g(x)u (4.8)
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Fig. 4.3 Extremum seeking control for LTI system: (a) performance function; (b) states; (c) con-
trol input

with the performance function defined in (4.2), where x ∈ R
n is the state, u ∈ R

is the input, f,g : D → R
n are smooth functions on a domain D. We have the

following assumption for the nonlinear affine system:

Assumption 4.1.12 The nonlinear affine system is state feedback linearizable on
the domain D.

From this assumption it follows that we can always put the system in controllable
canonical form [4]. That is, there exists a diffeomorphism T : D → R

n such that
Dz = T (D) contains the origin and the change of variables z = T (x) transforms the
system (4.8) into the form

ż = Az + Bγ (x)
[
u − α(x)

]
(4.9)

with (A,B) in controllable canonical form, that is,

A =

⎡

⎢⎢⎢
⎢⎢
⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤

⎥⎥⎥
⎥⎥
⎦

, B =

⎡

⎢⎢⎢
⎢⎢
⎣

0
0
...

0
1

⎤

⎥⎥⎥
⎥⎥
⎦

, (4.10)
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Fig. 4.4 Extremum seeking control for LTI system: phase portrait of the steepest descent sequence
{xk} over the contour of the performance function

and γ (x) nonsingular for all x ∈ D. Then we can easily extend the results on LTI
systems to outline the extremum seeking control scheme for the state feedback lin-
earizable systems (4.8), where we still assume D = R

n for simplicity:

4.1.2.1 NOESC Scheme for State Feedback Linearizable Systems

Step 0 Given xs
0, set ε0, t0 = 0, x(t0) = xs

0 and k = 0.
Step 1 Let xs

k+1 = OPTIMIZER(x(tk)).
Step 2 Set zs

k+1 = T (xs
k+1).

Step 3 Choose a regulation time δk , let tk+1 = tk + δk , and choose the control input
during tk ≤ t ≤ tk+1 to be

u(t) = α(x) + γ −1(x)v(t), (4.11)

where

v(t) = −B	eA	(tk+1−t)W−1
c (δk)

[
eAδkT

(
x(tk)

)− zs
k+1

]
, (4.12)

and Wc(δk) = ∫ δk

0 eAτBB	eA	τ dτ .
Step 4 If ‖∇J (x(tk+1))‖ < ε0, then stop. Otherwise, set k ← k + 1. Go to Step 1.

Theorem 4.1.13 Consider the nonlinear affine system (4.8) with performance out-
put (4.2). Suppose the system (4.8) satisfies Assumption 4.1.12 and the performance
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function (4.2) satisfies Assumption 3.2.1; moreover, if the extremum seeking control
scheme above is applied, where the optimization algorithm used is of first-order
global convergence, then the state x will globally asymptotically converge to the
first-order stationary point of the performance function (4.2).

The proof mainly follows the proof of Theorem 4.1.5. The feasibility of the con-
troller defined in (4.11) is guaranteed by Assumption 4.1.12. Remarks similar to
those of 4.1.2 through 4.1.11 also apply here.

4.1.3 Input–Output Feedback Linearizable Systems

We can extend the previous results on state feedback linearizable systems to input–
output feedback linearizable systems given some minor modifications. We make the
following assumption:

Assumption 4.1.14 The nonlinear affine system (4.8) is input–output feedback lin-
earizable from input u to output ȳ on D.

We define

ȳ = h(x), (4.13)

where h : D → R is sufficiently smooth in the domain D. The motivation of defin-
ing a new output ȳ is to retain the claim that in extremum seeking control we do
not necessarily have knowledge of the performance function, but we do need the
knowledge of some suitable output ȳ = h(x) to perform input–output linearization.
Let d be the relative degree of the nonlinear system (4.13). Then, for every xs

0 ∈ D, a
neighborhood N of xs

0 and a diffeomorphism T : N →R
n exist such that the change

of variables z = [η, ξ ] = T (x), transforms the system (4.13) into the form

η̇ = f0(η, ξ), (4.14)

ξ̇ = Aξ + Bγ (x)
[
u − α(x)

]
, (4.15)

ȳ = Cξ, (4.16)

where ξ ∈ R
d, η ∈ R

n−d , the pair (A,B) is in controllable canonical form (4.10),
and γ (x) is nonsingular in N . Since η is uncontrollable, in order to fulfill the ex-
tremum seeking of the performance function, two more assumptions are proposed:

Assumption 4.1.15 The performance function is not dependent on the state η of the
internal dynamics.

Assumption 4.1.16 The state η of the internal dynamics (4.14) will be bounded
given bounded ξ and any initial state xs

0.
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The Assumption 4.1.15 puts the performance function in the form

y = J (x) = Jd(ξ).

It is a reasonable assumption since we have to be able to control the variables of
the performance function to achieve the extremum seeking. Moreover, Assump-
tion 4.1.16 simply means that the internal dynamics are well behaved such that the
linearizing control signal will not grow unbounded due to the existence of the un-
controllable state η. Note that assuming input-to-state stability [4] of the internal
dynamics is stronger than Assumption 4.1.16. However, simply assuming the zero
dynamics η̇ = f0(η,0) are asymptotically stable is also not enough since the state
η may grow unbounded given bounded input ξ . Thus, the same analysis for the
state feedback linearizable systems holds here given the extremum seeking scheme
in Sect. 4.1.2 with minor modifications, where we replace z with ξ . The following
theorem is a straightforward extension of Theorem 4.1.13.

Theorem 4.1.17 Consider the nonlinear affine system (4.8) with performance out-
put (4.2). Suppose the system (4.8) satisfies Assumptions 4.1.14 and 4.1.16, and the
performance function (4.2) satisfies Assumptions 3.2.1 and 4.1.15; moreover, if the
extremum seeking control scheme of Sect. 4.1.2 is applied with z replaced by ξ , then
the state ξ will globally asymptotically converge to the first-order stationary point
of the performance function (4.2).

The proof mainly follows the proof of Theorem 4.1.5. The feasibility of the con-
troller defined in (4.11) is guaranteed by Assumptions 4.1.14 and 4.1.16. Similar
remarks like 4.1.2 through 4.1.11 also apply here.

4.2 Robustness Issues

The main restriction of Theorems 4.1.5, 4.1.13 and 4.1.17 is the requirement of
perfect state regulation to guarantee convergence. That is, at each iteration, the con-
troller needs to regulate the state precisely to the desired set-point xs

k+1, which is
produced by the iterative optimization algorithm based on the current state x(tk). In
practical applications, noisy output or state measurements, input disturbances, satu-
ration and time delay, unmodeled plant dynamics and computational errors will be
detrimental to the theoretical result. Thus, we can only expect to be able to regulate
the state to a neighborhood of the set-point xs

k+1.
For example, let us consider a LTI system with input disturbance. Let û(t) =

u(t) + �u(t), where u(t) is given as in (4.3). At time t = t0, the state x(t0) = xs
0

and xs
1 = OPTIMIZER(x(t0)). Then, at time t1 = t0 + δ0, we will have

x(t1) = eAδ0x(t0) +
∫ t1

t0

eA(t1−τ)Bû(τ ) dτ
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= eAδ0x(t0) +
∫ t1

t0

eA(t1−τ)Bu(τ) dτ +
∫ t1

t0

eA(t1−τ)B�u(τ) dτ

= xs
1 + e1,

where e1 = ∫ t1
t0

eA(t1−τ)B�u(τ) dτ . However, the error will not accumulate since
the optimization algorithm will generate the next destination based on the current
state x(t1). That is, by including the numerical optimizer in the extremum seeking
loop, it offers a feedback mechanism to robustify the extremum seeking scheme.
Denote x̂s

0 = x(t0) = xs
0, x̂

s
1 = x(t1) = xs

1 + e1. Then, by induction, we find that the
controller interpolates precisely between the sequence {x̂s

k}, where

x̂s
k+1 = x(tk+1) = xs

k+1 + ek+1,

xs
k+1 = OPTIMIZER

(
x̂s
k

)
,

ek+1 =
∫ tk+1

tk

eA(tk+1−τ)B�u(τ) dτ.

The error ek+1 will be bounded if δk = tk+1 − tk is bounded and the input disturbance
is bounded. Moreover, for stable systems, the system matrix A has eigenvalues with
negative real part, and therefore the state transition matrix has exponentials terms
that decrease with time. Therefore, ek+1 will asymptotically converge to some con-
stant as tk+1 approaches infinity, that is, even if δk is unbounded, we will still have
a bounded ek+1 given bounded input disturbance. Moreover, the more negative the
real parts of the eigenvalues are, the smaller ek+1 will be.

On the other hand, for unstable systems, the state transition matrix will amplify
even a small input disturbance �u, and ek+1 will grow as δk increases. Therefore,
we wish to have a stable LTI system and a short regulation time. Consequently,
there is the need of a high gain controller to deal with the disturbance. Consider, for
instance, extremum seeking control of an unstable but controllable LTI system. In
this case, we would perform pole placement to transform the unstable LTI system
to a desired stable LTI system, and then design the state regulator on the stabilized
LTI system.

Similarly, for state feedback linearizable systems, given the knowledge of A

and B , which are in controllable canonical form, the controller will be implementing
functions α̂(x) and γ̂ (x), approximations of α(x) and γ (x). That is,

u(t) = α̂(x) + γ̂ −1(x)v(t),

where v(t) is defined in (4.12). Now the closed-loop systems becomes

ż = Az + Bγ (x)
[
α̂(x) + γ̂ −1(x)v(t) − α(x)

]

= Az + B
[
v(t) + �v(t)

]
,

where �v(t) = γ (x)[α̂(x) − α(x) + (γ̂ −1(x) − γ −1(x))v(t)]. Then, the imperfect
modeling is equivalent to having an input disturbance in the resulting linear sys-
tem, therefore we need to deal with imperfect regulation as well. Overall, we will
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hope that a well designed optimization algorithm will inherit its robustness to the
extremum seeking scheme. That is, if the new sequence {x̂s

k} converges to the min-
imum, or a small neighborhood of it, given that the error ek is bounded, then the
extremum seeking control schemes in Sect. 4.1 will converge to the minimum or a
small neighborhood of it as well. In the following, we will present the robustness
analysis of two types of unconstrained optimization algorithm, which provide the
foundation of robust design of extremum seeking control.

4.2.1 Robustness of Line Search Methods

Theorem 4.2.1 Let J : Rn → R be continuously differentiable on R
n and be

bounded below. Suppose that ∇J is Lipschitz continuous with constant L. A line
search method starting from x̂s

0 = xs
0 is used but with bounded error at each itera-

tion, i.e., x̂s
k+1 = xs

k+1 + ek+1 and xs
k+1 = x̂s

k + αkpk . Then, the new sequence {x̂s
k}

is a descent sequence, that is,

J
(
x̂s
k+1

)
< J

(
x̂s
k

)
,

provided

‖ek+1‖ <
(c‖∇J (x̂s

k)‖2 cos2 θk)/L√
‖∇J (xs

k+1)‖2 + c‖∇J (x̂s
k)‖2 cos2 θk + ‖∇J (xs

k+1)‖
, (4.17)

where c = 1 for exact line search, and c = 2c1(1 − c2) for inexact line search satis-
fying conditions (2.4) and (2.5).

Proof Now, for line search method at step k + 1, we have

J
(
x̂s
k+1

)− J
(
x̂s
k

)= J
(
xs
k+1 + ek+1

)− J
(
x̂s
k

)

≤ J
(
xs
k+1

)+ ∇J
(
xs
k+1

)	
ek+1 + L

2
‖ek+1‖2 − J

(
x̂s
k

)
,

≤ ∇J
(
xs
k+1

)	
ek+1 + L

2
‖ek+1‖2 − c

2L

∥∥∇J
(
x̂s
k

)∥∥2 cos2 θk

≤ L

2

[
‖ek+1‖2 + 2

‖∇J (xs
k+1)‖

L
‖ek+1‖ − c

L2

∥∥∇J
(
x̂s
k

)∥∥2 cos2 θk

]

= L

2

[(
‖ek+1‖ + ‖∇J (xs

k+1)‖
L

)2

− 1

L2

(∥∥∇J
(
xs
k+1

)∥∥2 + c
∥∥∇J

(
x̂s
k

)∥∥2 cos2 θk

)]
,
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where the second line is obtained via the Descent Lemma 2.2.8, and the third line is
achieved based on Lemma 2.2.9. Then, if we have

‖ek+1‖ <

√
‖∇J (xs

k+1)‖2 + c‖∇J (x̂s
k)‖2 cos2 θk − ‖∇J (xs

k+1)‖
L

= (c‖∇J (x̂s
k)‖2 cos2 θk)/L√

‖∇J (xs
k+1)‖2 + c‖∇J (x̂s

k)‖2 cos2 θk + ‖∇J (xs
k+1)‖

,

we can obtain J (x̂s
k+1) − J (x̂s

k) < 0. �

Although the bound (4.17) is very conservative, it can give us some insights into
the robustness of line search methods. First, exact line search allows a larger error
bound than inexact line search. Second, we can see that the bound is an increas-
ing function of ‖∇J (x̂s

k)‖. That is, when x̂s
k is far away from the minimizer of the

performance function, we will expect the gradient to be large and thus the error the
algorithm can tolerate is also large. This observation implies that line search meth-
ods will be very robust until the gradient converges to some invariant set, which is
illustrated in the following corollary.

Corollary 4.2.2 Let J : Rn → R be continuously differentiable on R
n and be

bounded below. Suppose ∇J is Lipschitz continuous with constant L. A steepest de-
scent algorithm is used with bounded error at each iteration. Assuming ‖ek‖ ≤ eL

for some constant eL, then the gradient of the sequence {x̂s
k} converges to the invari-

ant set satisfying

∥∥∇J
(
x̂s
k

)∥∥≤ LeL

c

[√
(1 + αkL)2 + c + (1 + αkL)

]
, (4.18)

where c = 1 for exact line search, and c = 2c1(1 − c2) for inexact line search satis-
fying conditions (2.4) and (2.5).

Proof We have cos θk = 1 for steepest descent algorithm, and from inequality
(4.17), provided

1

L

(√∥∥∇J
(
xs
k+1

)∥∥2 + c
∥∥∇J

(
x̂s
k

)∥∥2 − ∥∥∇J
(
xs
k+1

)∥∥
)

> eL,

we will always have J (x̂s
k+1) < J (x̂s

k). So we can find a conservative bound on
∇J (x̂s

k) given the error bound eL.
For steepest descent method, we have xs

k+1 = x̂s
k − αk∇J (x̂s

k). Then, from the
Lipschitz condition it follows that

∥∥∇J
(
xs
k+1

)∥∥≤ ∥∥∇J
(
xs
k+1

)− ∇J
(
x̂s
k

)∥∥+ ∥∥∇J
(
x̂s
k

)∥∥

≤ (1 + αkL)
∥∥∇J

(
x̂s
k

)∥∥.
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Now the bound can be found via

1

L

(√∥∥∇J
(
xs
k+1

)∥∥2 + c
∥∥∇J

(
x̂s
k

)∥∥2 − ∥∥∇J
(
xs
k+1

)∥∥
)

≤ eL

⇔
√∥∥∇J

(
xs
k+1

)∥∥2 + c
∥∥∇J

(
x̂s
k

)∥∥2 ≤ LeL + ∥∥∇J
(
xs
k+1

)∥∥

⇔ c
∥∥∇J

(
x̂s
k

)∥∥2 ≤ 2LeL(1 + αkL)
∥∥∇J

(
x̂s
k

)∥∥+ L2e2
L

⇔
[√

c
∥∥∇J

(
x̂s
k

)∥∥− LeL√
c

(1 + αkL)

]2

≤ L2e2
L

[
(1 + αkL)2/c + 1

]

⇔ ∥
∥∇J

(
x̂s
k

)∥∥− LeL

c
(1 + αkL) ≤ LeL

c

√
(1 + αkL)2 + c.

Thus, it follows that the gradient of the sequence {x̂s
k} converges to the invariant set

satisfying

∥∥∇J
(
x̂s
k

)∥∥≤ LeL

c

[√
(1 + αkL)2 + c + (1 + αkL)

]
. �

From the point of view of inequality (4.18), a diminishing step length αk is pre-
ferred later on to decrease the bound of the invariant set. As αk → 0, the bound
converges to

(
1

c
+
√

1

c2
+ 1

c

)
LeL.

This is consistent with the theory of numerical optimization, where generally a di-
minishing step length is required for the algorithms to converge to a minimum. And
if there is no error between x̂s

k and xs
k , we will see that the gradient converges to zero.

Moreover, exact line search can achieve a smaller bound than inexact line search.

Example 4.3 Now, we continue the simulation in Sect. 4.1.1 on the LTI system (4.5)
with performance function (4.6). A zero-mean random disturbance uniformly dis-
tributed with amplitude 0.8 is added to the input. The simulation results are shown
in Fig. 4.5 with xs

0 = [−1.9,0]	, δk = 2.
The controller (4.3) is unable to precisely regulate the state to the desired

set-point. For example, at the first step, the controller cannot transfer the state
to the desired destination xs

1 = [−1.2288,0.1763]	; instead it arrives at x̂s
1 =

[−1.0809,0.2216]	 due to the input disturbance. Then xs
2 = x̂s

1 − αk∇J (x̂s
1) =

[−0.6771,0.4065]	, that is, the line search method tries to amend the deviated path
toward the minimum. Again, the state only arrives at x̂s

2 = [−0.5289,0.4529]	.
Therefore, eventually we will still have a descent sequence {x̂s

k} as long as the
error ek satisfies the bound (4.17). The comparison of {xs

k} and {x̂s
k} can be seen in

Fig. 4.6, where the blue circles represent {xs
k}, magenta squares denote {x̂s

k} and the
red dashed line is the state trajectory.

Interestingly, we find that the disturbance actually helps the algorithm to achieve
more reduction in function values in the first few steps by comparing with the ideal
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Fig. 4.5 Extremum seeking control for a LTI system with input disturbance: (a) performance
output; (b) states

case (see Fig. 4.2 and Fig. 4.6). However, as shown in Fig. 4.5(a), the performance
output becomes diverging eventually since the state regulator design (4.3) with input
disturbance cannot regulate the state even into the desired neighborhood (4.17) of
xs
k+1 as ∇J (x) is very small. Therefore, in such cases, we will prefer using (4.18)

as the stopping criterion, which is the best we can do given the current design of
state regulator (4.3) with input disturbance.

4.2.2 Robustness of Trust Region Methods

For trust region methods, the ratio ρk in (2.9), repeated here for convenience,

ρk = J (xs
k) − J (xs

k + pk)

mk(x
s
k) − mk(x

s
k + pk)

,

is required at each step to determine xs
k+1. Let us call the kth step a successful step

if ρk > η, and an unsuccessful step if ρk ≤ η. However, in order to obtain ρk , we
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Fig. 4.6 Extremum seeking control for a LTI system with input disturbance: phase portrait of the
steepest descent sequence {xs

k} over the contour of the performance function

need the measurement of J (xs
k + pk). Then, in the implementation of extremum

seeking control based on trust region method, this means we need to regulate the
state x to xs

k + pk in order to obtain measurement of J (xs
k + pk), even if it is not

the next iterate xs
k+1. For example, at the kth step, the controller needs to regulate

the state x(tk) to xs
k +pk to obtain the ratio ρk . If ρk > η, then it is a successful step

and we are done. Otherwise, if ρ ≤ η, then we need to regulate the state back to xs
k

since it is an unsuccessful step. However, for practical applications, the ideal ratio
ρk cannot be obtained due to the imperfect regulation. The following theorem pro-
vides one possible quantitative analysis for the convergence of trust region methods
under bounded error.

Theorem 4.2.3 Let J : Rn → R be Lipschitz continuously differentiable and
bounded below on the level set {x|J (x) ≤ J (xs

0)}. Suppose that ∇J is Lipschitz
continuous with constant L. A trust region method starting from x̂s

0 = xs
0 is used,

but with a bounded error at each iteration. That is, x̂s
k+1 = x̂s

k + pk + ek+1 for a
successful step, or x̂s

k+1 = x̂s
k + ek+1 for an unsuccessful step. If, for every success-

ful step

‖ek+1‖ ≤ − 2

L

∥∥∇J
(
x̂s
k + pk

)∥∥ cosαk, (4.19)

and for every unsuccessful step,

‖ek+1‖ ≤ − 2

L

∥∥∇J
(
x̂s
k

)∥∥ cosβk, (4.20)
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where

cosαk = ∇J (x̂s
k + pk)

	ek+1

‖∇J (x̂s
k + pk)‖‖ek+1‖

and

cosβk = ∇J (x̂s
k)

	ek+1

‖∇J (x̂s
k)‖‖ek+1‖ ,

then there exists a subsequence of {x̂s
k} that converges to the first-order stationary

point of J (x).

Proof At iteration k, t = tk , and we obtain pk by approximately solving the trust
region subproblem (2.8). Ideally, we would use a regulator such as (4.3) to drive the
state from x(tk) = x̂s

k to x̂s
k + pk to obtain an ideal ratio (2.9). However, due to the

input disturbance or model uncertainty, such a controller can only regulate the state
to x̂s

k + pk + ek+1 and conclude with a practical ratio

ρ̂k = J (x̂s
k) − J (x̂s

k + pk + ek+1)

mk(x̂
s
k) − mk(x̂

s
k + pk)

. (4.21)

Let Sk = {s1, s2, . . . , si} be a subsequence of {1,2, . . . , k} such that Sk represents
the index set of successful steps {x̂s

si
} up to t = tk , that is si ≤ k and

J (x̂s
si−1

) − J (x̂s
k)

msi−1(x̂
s
si−1

) − msi−1(x̂
s
si−1

+ psi−1)
≥ η, (4.22)

which means x̂s
k is a successful step if started from x̂s

si−1
. Two cases need to be

analyzed to guarantee the global convergence of the sequence {x̂s
k}.

Case I: For a successful step, we have ρk > η. Therefore, we want ρ̂k > η to
guarantee a successful step in the presence of ek+1. That is, we wish

J (x̂s
k) − J (x̂s

k + pk + ek+1)

mk(x̂
s
k) − mk(x̂

s
k + pk)

≥ J (x̂s
k) − J (x̂s

k + pk) − ∇J (x̂s
k + pk)

	ek+1 − L
2 ‖ek+1‖2

mk(x̂
s
k) − mk(x̂

s
k + pk)

= J (x̂s
k) − J (x̂s

k + pk)

mk(x̂
s
k) − mk(x̂

s
k + pk)

− ∇J (x̂s
k + pk)

	ek+1 + L
2 ‖ek+1‖2

mk(x̂
s
k) − mk(x̂

s
k + pk)

> η − ∇J (x̂s
k + pk)

	ek+1 + L
2 ‖ek+1‖2

mk(x̂
s
k) − mk(x̂

s
k + pk)

≥ η.
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Since mk(x̂
s
k) − mk(x̂

s
k + pk) is always positive, we need

∇J
(
x̂s
k + pk

)	
ek+1 + L

2
‖ek+1‖2 ≤ 0.

Now define αk to be the angle between ∇J (x̂s
k + pk) and ek+1, implying that

cosαk = ∇J (x̂s
k + pk)

	ek+1

‖∇J (x̂s
k + pk)‖‖ek+1‖ .

Then,

∇J
(
x̂s
k + pk

)	
ek+1 + L

2
‖ek+1‖2

= ∥∥∇J
(
x̂s
k + pk

)∥∥‖ek+1‖ cosαk + L

2
‖ek+1‖2 ≤ 0

⇔ ‖ek+1‖ ≤ − 2

L

∥
∥∇J

(
x̂s
k + pk

)∥∥ cosαk.

Case II: For an unsuccessful step, we have ρk ≤ η. This means that we do not
need to care about the regulation error to the set-point x̂s

k + pk . If the resulting
ρ̂k > η, it means that the state has been regulated to a point with lower performance
function value, which actually helps the optimization process. If ρ̂k ≤ η, then we
need to regulate the state back to x̂s

k . Here, we redefine the regulation error ek+1

as an error from this second state regulation, i.e., x̂s
k+1 = x̂s

k + ek+1. Therefore, we
wish x̂s

k + ek+1 to be a successful step compared with the previous one x̂s
si−1

, i.e.,

J (x̂s
si−1

) − J (x̂s
k + ek+1)

msi−1(x̂
s
si−1

) − msi−1(x̂
s
si−1

+ psi−1)

≥ J (x̂s
si−1

) − J (x̂s
k) − ∇J (x̂s

k)
	ek+1 − L

2 ‖ek+1‖2

msi−1(x̂
s
si−1

) − msi−1(x̂
s
si−1

+ psi−1)

= J (x̂s
si−1

) − J (x̂s
k)

msi−1(x̂
s
si−1

) − msi−1(x̂
s
si−1

+ psi−1)
− ∇J (x̂s

k)
	ek+1 + L

2 ‖ek+1‖2

msi−1(x̂
s
si−1

) − msi−1(x̂
s
si−1

+ psi−1)

> η − ∇J (x̂s
k)

	ek+1 + L
2 ‖ek+1‖2

msi−1(x̂
s
si−1

) − msi−1(x̂
s
si−1

+ psi−1)

≥ η.

Now define βk to be the angle between ∇J (x̂s
k) and ek+1, that is,

cosβk = ∇J (x̂s
k)

	ek+1

‖∇J (x̂s
k)‖‖ek+1‖ .
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Then it follows that

∇J
(
x̂s
k

)	
ek+1 + L

2
‖ek+1‖2 = ∥∥∇J

(
x̂s
k

)∥∥‖ek+1‖ cosβk + L

2
‖ek+1‖2 ≤ 0

⇔ ‖ek+1‖ ≤ − 2

L

∥∥∇J
(
x̂s
k

)∥∥ cosβk.

Thus, if (4.19) and (4.20) are satisfied, we conclude that we will have a descent
subsequence {x̂sk } of {x̂s

k} globally converging to the first-order stationary point
of J (x). �

4.2.3 Robust Extremum Seeking Control Design

The importance of Theorems 4.2.1 and 4.2.3 is that they relax the design require-
ments for the state regulator, thus removing the need for perfect state regulation to
xs
k+1. Robust design of a state regulator to deal with disturbances, unmodeled plant

dynamics via adaptive control [8] or sliding mode control can be made easier by
regulating state x to a neighborhood of xs

k+1, which will be presented in the next
chapter.

For extremum seeking control based on line search methods, as long as we can
design a regulator satisfying (4.17), then the extremum seeking will continue to
decrease the performance output.

For extremum seeking control based on trust region methods, at time t = tk , we
do not know whether it will be a successful step or not in advance, since we do not
have the knowledge of ρk . In this case, one way to guarantee the convergence under
input disturbance is the following. The state regulator for set-point xs

k +pk needs to
be designed to satisfy (4.19). In the case of a successful step, then the design will
guarantee the step still to be a successful step since ρ̂k > η (see (4.21) in Sect. 4.2.2).
If it is not a successful step, that is, ρk < η, then there is no guarantee that ρ̂k will
be greater than η. If ρ̂k > η, then it means that the controller is on the right way due
to the disturbance. If not, then we need to regulate the state back to x̂s

k ; that is, we
need to design the regulator for x̂s

k to satisfy (4.20), which means we can return to
the right path as inferred from previous steps.

Example 4.4 Both inequalities (4.19) and (4.20) define similar criteria for the design
of state regulators. A pictorial illustration of such criteria in R

2 is shown in Fig. 4.7,
where we let the set-point, x̂s

k +pk in (4.19) and x̂s
k in (4.20), be [0,0]	. We also let

its gradient be [10,10]	, and let the Lipschitz constant be L = 2. The blue star is
the desired destination, and the dotted area depicts the acceptable region satisfying
inequalities (4.19) and (4.20). The size of the region is proportional to the gradient
of the set-point, and the reciprocal of the Lipschitz constant.

4.3 Conclusion

In this chapter, we successfully incorporate numerical optimization algorithms into
the set up of an extremum seeking control scheme. The convergence of the pro-
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Fig. 4.7 Design criterion for
the robust regulator to satisfy
(4.19) and (4.20) of the trust
region based extremum
seeking control

posed extremum seeking control scheme is guaranteed if the optimization algorithm
is globally convergent and with appropriate state regulation. We also analyze the ro-
bustness of line search methods and trust region methods, which relaxes the design
requirement for the state regulator and provides further flexibility in designing the
robust extremum seeking control scheme. Numerical examples are given to illustrate
the analysis results.

The current setting of the proposed extremum seeking control scheme is one
attractive way to use the numerical optimization for the purpose of real time opti-
mization, as it retains the global convergence property of the numerical optimization
algorithm. It allows us to utilize the research results from the optimization commu-
nity. For example, when D ⊂ R

n, it becomes a constrained extremum seeking con-
trol problem, and generally we need to resort first to constrained optimization algo-
rithms. In this case, the state regulator design will be more challenging as it needs
to ensure that the state will not violate the constraints during the transient. The ex-
ploration of more robust numerical optimization algorithms and the design of robust
state regulators will be two ways to enhance the robustness of the extremum seeking
control schemes. Moreover, the design of the regulation time δk needs to be further
studied to deal with various requirements originating from practical applications.
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Chapter 5
Asymptotic State Regulator Design

5.1 Problem Statement

In this chapter, we focus on minimum seeking control of the SISO nonlinear affine
system given by

ẋ = f (x) + g(x)u, (5.1)

and the performance output

y = J (x), (5.2)

where we assume1 D = R
n. Notice that this is a rather broad class of systems, con-

taining a large number of systems of engineering and scientific interest. In addition
to Assumptions 3.2.1, 3.2.2 and 3.2.3, we assume

Assumption 5.1.1 The performance function J (x) is convex on the domain D.

Assumption 5.1.1 means the stationary point condition becomes a necessary and
sufficient condition to identify a global minimizer. Optimization algorithms with
global convergence are then able to converge to a global minimum x∗. Without such
assumption, we just reduce the convergence to a stationary point, and the validity of
all the results to follow is preserved. The goal of ESC is to design a controller based
on output measurements and state measurements to regulate the state to an unknown
minimizer x∗ of an unknown performance function J (x).

Assume the nonlinear affine system (5.1) is state feedback linearizable on the do-
main D, as in Assumption 4.1.12. Then, there exists a diffeomorphism T : D → R

n

such that Dz = T (D) contains the origin and the change of variables z = T (x)

transforms the system (5.1) into the form (see [2] for more details)

ż = Az + B
(
f (z) + g(z)u

)
(5.3)

1Restrictions on D will result in the need for constrained optimization. The stability of constrained
ESC is still an open topic of research.
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with (A,B) in controllable canonical form (4.10), and g(z) = g(T (x)) non-singular
for all x ∈ D. Note that we assume D = R

n; therefore, we need to design a state reg-
ulator u for the state feedback linearizable system (5.3) that drives the state to xs

k+1.
This is so as to obtain the necessary measurement of the performance output, or its
gradient, at x = xs

k+1, needed in order to continue the optimization process, as stated
in Step 3 of the algorithm shown in Sect. 3.2.

We have proposed a design method for a finite-time state regulator for system
(5.3) in Sect. 4.1.2 of Chap. 4. This design approach is based on the controllability
proof of LTI systems. As shown in Chap. 4, the finite-time regulator can transfer the
state from x(tk) to xs

k+1 in a predefined δk time. The convergence result is stated in
Theorem 4.1.13. However, input disturbances and unmodeled plant dynamics can
result in imperfect regulation of the finite-time state regulator, by driving the state
only to a neighborhood of the set point xs

k+1. This regulation error can result in the
closed-loop system becoming unstable. Theorems 4.2.1 and 4.2.3 provide criteria
stating that if the regulation neighborhood is always within the robust region of the
optimization algorithm used in Step 1 of the NOESC scheme, then extremum seek-
ing can still be achieved. However, these theorems do not illustrate a methodology
to design a robust NOESC loop. In fact, it is generally very challenging to robustify
the finite-time state regulator, since it is inherently an open-loop approach between
initial and final conditions.

Moreover, the finite-time state regulator in (4.11) can only guarantee that the
state will arrive at the desired xs

k+1 at the prescribed time (of course, as long as that
the system is controllable); however, this regulator does not guarantee the system
will stay at the set point after that.

Example 5.1 As a simple illustration of this issue, consider a point mass model
given by

mz̈ = u,

where z ∈ R is the position of the mass, and we set m = 1 for simplicity. Letting
x1 = z, x2 = ż, the state variable model is

ẋ =
[

0 1
0 0

]
x +

[
0
1

]
u.

It is easy to verify that the point mass model is controllable, and therefore we can
design a finite-time state regulator to drive the state to an arbitrary point in the state
space. For example, we start the point mass at the initial condition xs

0 = [0,0]	, and
we want to drive the point mass to the state [1,2]	. The finite-time state regulator
can guarantee the state trajectory will pass through the point [1,2]	. However, it
is clear that the point mass cannot remain in this state, since the velocity state is 2.
That is, [1,2]	 is not an equilibrium point. The point mass state can only stay at an
equilibrium point, such as [c,0]	 for any c ∈ R. Of course, for some systems, any
point in the state space is a stabilizable equilibrium. But then, requiring this condi-
tion would be similar to the assumptions in Chap. 5 of [1], where the performance
function is assumed to be reducible to a function of a single parameter of the control
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law, and then it is assumed that this parameter is sufficient to produce a stabilizable
equilibrium point.

As this example shows, even if the optimization algorithm can find the extremum
x∗ for regulation, the controller (4.11) cannot guarantee that x∗ can be converted
into an equilibrium point, and consequently, that the system will operate at x∗ per-
manently. It is for this reason that we observe an oscillating steady state performance
in Fig. 4.3 of Example 4.2, where the optimizer keeps commanding x∗ = [1,1]	 as
the destination, but the best the controller can do is to enable the state to visit x∗
every δK time to create an oscillating behavior. Thus we require Assumption 3.2.3
to preclude an oscillating steady state behavior.

In order to address these shortcomings of the basic NOESC method introduced
in Chap. 4, in the following sections we will present a new design of state regulator
via asymptotic tracking, which provides the basis for robust NOESC design.

5.2 Asymptotic State Regulator Design for NOESC

Inspired by the standard output-tracking problem [6], we will design an asymp-
totic state regulator that regulates the state x asymptotically to xs

k+1. Let z = T (x),
where T is a diffeomorphism in D. We will use the following notation: xi , zi are
the ith coordinates of the state vectors x and z, respectively. Moreover, xs

k+1 and
zs
k+1 = T (xs

k+1) are the set points generated by the optimization algorithm in x and
z coordinates, respectively, at the (k + 1)th step; then, xs

k+1,i , zs
k+1,i denote the ith

coordinates of the set points xs
k+1 and zs

k+1, respectively.
Given a bounded reference signal rk(t) ∈ R, let

ez = k1(z1 − rk) + · · · + kn−1
(
zn−1 − r

(n−2)
k

)+ zn − r
(n−1)
k , (5.4)

where the polynomial

sn−1 + kn−1s
n−2 + · · · + k1

is Hurwitz, and we define the auxiliary signal

χ(z) = k1(z2 − ṙk) + · · · + kn−1
(
zn − r

(n−1)
k

)− r
(n)
k .

Thus, the control design

u = −χ(z) − f (z) − kuez

g(z)
, (5.5)

with ku > 0, will ensure ez → 0 and hence z1 → rk(t), z2 → ṙk(t), . . . for the state
feedback linearizable system (5.3). From [6], we have

‖z − r̄k‖ ≤ k∑φμ

(
t, |ez|

)+ |ez|, (5.6)
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where

k∑ = (
1 + |k1| + · · · + |kn−1|

)
, (5.7)

r̄k = [
rk, ṙk, . . . , r

(n−1)
k

]	
, (5.8)

μ = [
z1 − rk, . . . , zn−1 − r

(n−2)
k

]	
, (5.9)

and

∥∥μ(t)
∥∥≤ φμ

(
t, |ez|

)

= d1e
−d2t

∥∥μ(0)
∥∥+ d1|ez(0)|

d2 − ku

(
e−kut − e−d2t

)
(5.10)

for some positive scalars d1 and d2 
= ku. We have φμ(t, |ez|) bounded for any
bounded ez, nondecreasing with respect to |ez| ∈ R

+ for each fixed t , and decreasing
to zero as t → ∞. Now, we present the Theorem for the asymptotic state regulator
design.

Theorem 5.2.1 Assume the nonlinear system (5.1) is state feedback linearizable
on the domain D, with T the diffeomorphism that transforms the system to normal

form (5.3), and ‖ ∂T −1

∂x
‖ is bounded on D. At time t = tk , with state x = x(tk), the

desired set point is xs
k+1. The reference trajectory rk(t) is designed to be a bounded

periodic signal satisfying the condition

rk(mTr) = zs
k+1,1,

ṙk(mTr) = zs
k+1,2,

...

r
(n−1)
k (mTr) = zs

k+1,n,

(5.11)

where zs
k+1 = T (xs

k+1),m is a positive integer, and Tr > 0 is the period of rk(t).
By applying the controller (5.5), we will have x asymptotically tracking T −1(r̄k),
which will visit the desired set point xs

k+1 every Tr time.

Proof As seen above, the controller (5.5) implies z1 will asymptotically track rk(t).
Since T is a diffeomorphism on D, then T −1 is continuously differentiable. Because

we also assume ‖ ∂T −1

∂x
‖ is bounded on D, then T −1 is Lipschitz continuous on D

for some Lipschitz constant LT . Now, we have

∥∥x − T −1(r̄k)
∥∥= ∥∥T −1(z) − T −1(r̄k)

∥∥

≤ LT ‖z − r̄k‖
≤ LT

(|ez| + k∑φμ

(
t, |ez|

))
. (5.12)
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By virtue of controller (5.5), and from (5.6) and (5.10), ez and φμ(t, |ez|) will
globally converge to zero as t → ∞, therefore we will have x asymptotically track-
ing T −1(r̄k). Moreover, from condition (5.11), we have r̄k(mTr) = zs

k+1 and there-
fore

∥∥T −1(r̄k(t)
)− xs

k+1

∥∥= ∥∥T −1(r̄k(t)
)− T −1(zs

k+1

)∥∥

≤ LT

∥∥r̄k(t) − zs
k+1

∥∥

= 0, (5.13)

at t = mTr , where m is an arbitrary positive integer. This completes the proof. �

Theorem 5.2.1 converts the state regulation problem x → xs
k+1 into the error

regulation problem ez → 0, where the system dynamics can be written as

ėz = χ(z) + f (z) + g(z)u.

This enables the robust ESC design. One possible design of reference signal rk(t)

satisfying (5.11) can be found below.

5.2.1 Construction of Reference Signal

Here, we will illustrate one possible approach to constructing the bounded periodic
reference signal satisfying condition (5.11). First, assume that the number of states
n is odd and let p = (n − 1)/2. Then, choose

rk(t) = a1 sin(ω1t) + b1 cos(ω1t) + a2 sin(ω2t) + b2 cos(ω2t) + · · ·
+ ap sin(ωpt) + bp cos(ωpt) + rk0, (5.14)

where ai , bi , ωi and rk0 for i = 1, . . . , p are parameters to be determined based on
(5.11). We have

ṙk(t) = a1ω1 cos(ω1t) − b1ω1 sin(ω1t) + · · ·
+ apωp cos(ωpt) − bpωp sin(ωpt),

r̈k(t) = −a1ω
2
1 sin(ω1t) − b1ω

2
1 cos(ω1t) + · · ·

− apω2
p sin(ωpt) − bpω2

p cos(ωpt),

...

r
(2p−1)
k (t) = (−1)p−1a1ω

2p−1
1 cos(ω1t)

− (−1)p−1b1ω
2p−1
1 sin(ω1t) + · · · (5.15)

+ (−1)p−1apω
2p−1
p cos(ωpt)
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− (−1)p−1bpω
2p−1
p sin(ωpt),

r
(2p)
k (t) = (−1)pa1ω

2p

1 sin(ω1t)

+ (−1)pb1ω
2p

1 cos(ω1t) + · · ·
+ (−1)papω

2p
p sin(ωpt)

+ (−1)pbpω
2p
p cos(ωpt).

Then, since Tr is the period of the signal rk(t), such that ωiTr = 2miπ for some
positive integers mi , i = 1, . . . , p, we have

rk(mTr) = rk(Tr )

= b1 + b2 + · · · + bp + rk0

= zs
k+1,1

ṙk(mTr) = ṙk(Tr )

= a1ω1 + a2ω2 + · · · + apωp

= zs
k+1,2

r̈k(mTr) = r̈k(Tr )

= −b1ω
2
1 − b2ω

2
2 − · · · − bpω2

p

= zs
k+1,3

...

r
(2p−1)
k (mTr) = r

(2p−1)
k (Tr)

= (−1)p−1[a1ω
2p−1
1 + · · · + apω

2p−1
p

]

= zs
k+1,2p

r
(2p)
k (mTr) = r

(2p)
k (Tr )

= (−1)p
[
b1ω

2p

1 + · · · + bpω
2p
p

]

= zs
k+1,2p+1.

Thus, we can solve the linear equations

⎡

⎢⎢⎢
⎣

ω1 ω2 . . . ωp

ω3
1 ω3

2 . . . ω3
p

...
...

. . .
...

ω
2p−1
1 ω

2p−1
2 . . . ω

2p−1
p

⎤

⎥⎥⎥
⎦

︸ ︷︷ ︸
Ωa

⎡

⎢⎢⎢
⎣

a1
a2
...

ap

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

(−1)1−1zs
k+1,2

(−1)2−1zs
k+1,4

...

(−1)p−1zs
k+1,2p

⎤

⎥⎥⎥
⎦

, (5.16)
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⎡

⎢⎢⎢
⎣

ω2
1 ω2

2 . . . ω2
p

ω4
1 ω4

2 . . . ω4
p

...
...

. . .
...

ω
2p

1 ω
2p

2 . . . ω
2p
p

⎤

⎥⎥⎥
⎦

︸ ︷︷ ︸
Ωb

⎡

⎢⎢⎢
⎣

b1
b2
...

bp

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

(−1)1zk+1,3

(−1)2zk+1,5
...

(−1)pzk+1,2p+1

⎤

⎥⎥⎥
⎦

(5.17)

in order to obtain the parameters ai, bi,ωi and rk0. We can first choose different
frequencies as 0 < ω1 < ω2 < · · · < ωn, then the generalized Vandermonde matrices
Ωa in (5.16) and Ωb in (5.17) will have positive determinants and hence are non-
singular, so that we can obtain unique ai, bi for i = 1, . . . , p by solving (5.16) and
(5.17). Finally, we can solve

rk0 = zs
k+1,1 −

p∑

i=1

bp.

Finally, if the number of states is even and greater than 2, we can let p = n/2 and
rk(t) be (5.14) with rk0 = 0, then we will have a very similar result as in the case
when n is odd.

5.2.2 Using the Asymptotic State Regulator in Finite Time

The asymptotic state regulator in Theorem 5.2.1 may take infinite time in order for
the state x to reach the required set point xs

k+1. For this reason, convergence results
of NOESC using a finite-time state regulator as in Theorem 4.1.13 do not directly
apply here. However, certain optimization algorithms are still functional as long as
we can regulate the state to a neighborhood of the set point xs

k+1. Therefore, we may
still be able to implement the asymptotic state regulator (5.5) for a finite time and
guarantee the convergence given a robust optimization algorithm is used and some
conditions are met.

In particular, recall Theorem 4.2.1, which studies convergence of line search
methods under bounded errors. This theorem can be used for our purposes here: It
implies that given the current state x = x̂s

k , if we use the line search method to gen-
erate the new set point xs

k+1 = x̂s
k + αkpk , we can still ensure the sequence {x̂s

k} is a
descent sequence and the NOESC is convergent, even in the presence of regulation
errors. This is true as long as the control (5.5) drives the state into the neighborhood
of xs

k+1 given by (4.17). Indeed, the asymptotic state regulator (5.5) can drive the
state into the desired neighborhood (4.17) of xs

k+1 in a finite time δk , which can be
estimated in advance as shown in the following result.

Theorem 5.2.2 Assume the nonlinear system (5.1) is state feedback linearizable on
the domain D, with T the diffeomorphism that transforms the system to normal form

(5.3), and ‖ ∂T −1

∂x
‖ is bounded on D. At time t = tk we have x = x(tk) = x̂s

k , and the
desired set point xs

k+1 = x̂s
k + αkpk is generated by a line search algorithm. The
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asymptotic state regulator (5.5) will drive the state into the neighborhood (4.17) of
xs
k+1 in δk time. An upper bound of the regulation time is

δ̄k = mkTr, (5.18)

where Tr is the period of the reference trajectory rk(t), and mk is the smallest integer
satisfying

mkTr >
1

min(ku, d2)
ln

(
ksLT

bk‖∇J (x̂s
k)‖

)
, (5.19)

where

ks = ∣∣ez(0)
∣∣+ k∑

(
d1
∥∥μ(0)

∥∥+ d1|ez(0)|
|d2 − ku|

)
,

bk = cc2
3

L(
√

(1 + αkL)2 + c + (1 + αkL))
.

The constant k∑ is defined in (5.7), d1 and d2 are defined in (5.10), and ku is defined
in (5.5).

Proof Since T is a diffeomorphism on D, then T −1 is continuously differentiable.

Because we also assume ‖ ∂T −1

∂x
‖ is bounded on D, then T −1 is Lipschitz continuous

on D for some Lipschitz constant LT . Since we have no measurement of ∇J (xs
k+1)

unless we drive the state to xs
k+1, the right hand side of inequality (4.17), shown

here again for convenience, is not known yet:

‖ek+1‖ <
(c‖∇J (x̂s

k)‖2 cos2 θk)/L√
‖∇J (xs

k+1)‖2 + c‖∇J (x̂s
k)‖2 cos2 θk + ‖∇J (xs

k+1)‖
.

From the assumption that ∇J is Lipschitz continuous with constant L, we will have
∥∥∇J

(
xs
k+1

)∥∥≤ ∥∥∇J
(
xs
k+1

)− ∇J
(
x̂s
k

)∥∥+ ∥∥∇J
(
x̂s
k

)∥∥

≤ (1 + αkL)
∥∥∇J

(
x̂s
k

)∥∥,

and 1 ≥ cos θk ≥ c3 > 0 (c3 = 1 for steepest descent algorithm) to satisfy the angle
condition required for the global convergence of a line search method. Therefore

(c‖∇J (x̂s
k)‖2 cos2 θk)/L√

‖∇J (xs
k+1)‖2 + c‖∇J (x̂s

k)‖2 cos2 θk + ‖∇J (xs
k+1)‖

≥ (c‖∇J (x̂s
k)‖2c2

3)/L

(
√

(1 + αkL)2 + c)‖∇J (x̂s
k)‖ + (1 + αkL)‖∇J (x̂s

k)‖

= cc2
3‖∇J (x̂s

k)‖
L(
√

(1 + αkL)2 + c + (1 + αkL))
.



5.2 Asymptotic State Regulator Design for NOESC 97

Thus, let

bk = cc2
3

L(
√

(1 + αkL)2 + c + (1 + αkL))
,

and if in finite time δk , the state x enters the region given by

∥∥x − xs
k+1

∥∥< bk

∥∥∇J
(
x̂s
k

)∥∥, (5.20)

then we let x̂s
k+1 = x(tk + δk) and therefore

‖ek+1‖ = ∥∥x̂s
k+1 − xs

k+1

∥∥≤ bk

∥∥∇J
(
x̂s
k

)∥∥,

which will satisfy the inequality (4.17).
Since we know

∥∥x − xs
k+1

∥∥≤ ∥∥T −1(z) − T −1(zs
k+1

)∥∥

≤ LT

∥
∥z − zs

k+1

∥
∥

≤ LT

(‖z − r̄k‖ + ∥∥r̄k − zs
k+1

∥∥),

then from (5.6), (5.12) and (5.20), we can solve inequality (5.21) to estimate the
regulation time δk :

|ez| + k∑φμ

(
t, |ez|

)+ ∥∥r̄k − zs
k+1

∥∥<
bk

LT

∥∥∇J
(
x̂s
k

)∥∥. (5.21)

We first consider the case when d2 > ku in (5.10). Since ez(t) = ez(0)e−kut , we have

|ez| + k∑φμ

(
t, |ez|

)+ ∥∥r̄k − zs
k+1

∥∥

= ∣∣ez(0)
∣∣e−kut + ∥∥r̄k − zs

k+1

∥∥

+ k∑
(

d1e
−d2t

∥∥μ(0)
∥∥+ d1|ez(0)|

d2 − ku

(
e−kut − e−d2t

))

<
∣∣ez(0)

∣∣e−kut + ∥∥r̄k − zs
k+1

∥∥+ k∑
(

d1
∥∥μ(0)

∥∥e−kut + d1|ez(0)|
d2 − ku

e−kut

)

= kse
−kut + ∥∥r̄k − zs

k+1

∥∥,

where

ks =
(∣∣ez(0)

∣∣+ k∑
(

d1
∥∥μ(0)

∥∥+ d1|ez(0)|
d2 − ku

))
.

Similarly, for the case when d2 < ku, we will have

|ez| + k∑φμ

(
t, |ez|

)+ ∥∥r̄k − zs
k+1

∥∥< kse
−d2t + ∥∥r̄k − zs

k+1

∥∥
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where

ks =
(∣∣ez(0)

∣∣+ k∑
(

d1
∥∥μ(0)

∥∥+ d1|ez(0)|
ku − d2

))
.

So if t = δ̄k = mkTr as in (5.18) and (5.19), and considering (5.13), then it is clear
that we will satisfy inequality (5.21), and therefore x will enter the neighborhood
(4.17) in δ̄k time. �

Remark 5.2.3 The estimated bound bk‖∇J (x̂s
k)‖ in (5.20) is proportional to the

last gradient measurement and can be computed at the beginning of the current
regulation step. Moreover, note that when x̂s

k is away from the minimizer of the
performance function, we will expect the gradient to be large and therefore the error
bound (5.20) to be large as well. This initially looser bound will potentially help
reduce the burden on the controller when the state is still far from the minimizer.
Also since the step length αk generally converges to zero as k → ∞, then we have

bk → cc2
3

L(
√

1 + c + 1)
.

Remark 5.2.4 Since the desired set point xs
k+1, bk and rk(t) are bounded, then we

will have ez(0),‖μ(0)‖ bounded and therefore ks is bounded too. Thus from (5.19),
the regulation time upper bound δ̄k will be finite if the gradient ‖∇J (x̂s

k)‖ is not
zero. That is, this upper bound is inversely proportional to the gradient magnitude
‖∇J (x̂s

k)‖. Thus, the estimation δ̄k replaces the empirical tuning of the wait time in
[7], which also prevents the extremum seeking from getting stuck.

Remark 5.2.5 (Guidelines for Choosing Control Parameters) From the above analy-
sis, we can establish some guidelines for choosing control parameters. If it is desired
to one wants to decrease the regulation time δk , then it would be necessary to choose
relatively small constants k1, . . . , kn−1, large control gain ku, small d1, large d2, and
a small period Tr for the reference signal rk(t).

5.2.3 Algorithm and Convergence

Even though we can estimate the upper bound δ̄k , we would rather use inequality
(5.20) in the ESC scheme to stop regulation, since it is easier to compute than δ̄k

and less conservative. Now, we present the NOESC scheme for state feedback lin-
earizable systems based on line search optimization method and the asymptotic state
regulator designed via output tracking.

5.2.3.1 Line Search and Output-Tracking Based NOESC for State Feedback
Linearizable Systems

Step 0 Given xs
0, set t0 = 0, xs

0 = x̂s
0 = x(t0), and k = 0. Measure J (x(t0)) and

∇J (x(t0)).
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Step 1 Use a line search method with global convergence to produce

xs
k+1 = x(tk) + αkpk, (5.22)

where αk is the step length, and pk is the search direction.
Step 2 Construct a reference signal rk(t) to satisfy condition (5.11), such as in

(5.14).
Step 3 Apply the state regulator in (5.5).
Step 4 If the state satisfies inequality (5.20), then stop the current regulation and

record the current time to be tk+1. Set δk = tk+1 − tk and x̂s
k+1 = x(tk+1).

Measure J (x(tk+1)) and ∇J (x(tk+1)).
Step 5 Set k ← k + 1. Go to step 1.

We now have the following convergence theorem.

Theorem 5.2.6 Consider the nonlinear system (5.1) with performance function
(5.2). Suppose the system (5.1) is state feedback linearizable on D, with T the diffeo-

morphism that transforms the system to normal form (5.3), and ‖ ∂T −1

∂x
‖ is bounded

on D. Also, suppose the performance function (5.2) satisfies Assumptions 3.2.1–
3.2.2 and is continuously differentiable, and ∇J is Lipschitz continuous with con-
stant L.

If the line search and output-tracking based ESC algorithm shown above is ap-
plied, where a maximal allowed regulation time δ̄k = mkTr can be computed us-
ing (5.19), then the ESC system will be uniformly ultimately bounded [2] (i.e., the
closed-loop system is stable and the state x will globally asymptotically converge to
a neighborhood of the global minimizer x∗ of J (x)).

Proof Now at time t = tk , we have the current state x = x(tk) = x̂s
k , and we obtain

xs
k+1 as in (5.22). We apply controller (5.5) to perform output tracking of reference

rk(t) and therefore regulate the state into a neighborhood of xs
k+1 in finite time δ̄k .

Thus we know we can enter the desired robust region (5.20) in a finite time, and
ensure the state trajectory interpolates between the descent sequence {x̂s

k} every δ̄k

time.
According to Assumption 3.2.2, we suppose that the unknown global minimizer

is an isolated equilibrium point. Therefore, let e = x − x∗, and we choose the Lya-
punov candidate

V (e, k) = J
(
e(tk) + x∗)− J

(
x∗)

= J
(
x(tk)

)− J
(
x∗),

which is positive whenever e 
= 0 and zero for e = 0. And we know that the con-
troller will ensure that the state x crosses x̂s

k and x̂s
k+1 (where x̂s

k+1 = x̂s
k + αkpk +

ek+1) at time t = tk and tk+1 = tk + δ̄k , respectively. Then, according to Theo-
rem 4.2.1, and assuming x̂s

k+1 
= x∗, and δ̄k = mkTr satisfies (5.19), we will have
ΔV = V (e, k+1)−V (e, k) = J (x(tk+1))−J (x(tk)) = J (x̂s

k+1)−J (x̂s
k) < 0. Thus,
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we can conclude the closed-loop system is stable and x will converge to a neigh-
borhood of x∗. That is, the ESC system is uniformly ultimately bounded. And from
equations (5.18) and (5.19), we can obtain the size of the neighborhood,

∥∥∇J
(
x̂s
k

)∥∥≤ LT ks

bkemin(ku,d2)δ̄k

, (5.23)

which can be make arbitrary small given large enough ku, d2 or δ̄k . �

Remark 5.2.7 The change of coordinate T is for the sake of designing the asymp-
totic state regulator (5.5) based on the feedback linearized system (5.3) output track-
ing a reference signal, but the desired set point is still generated via the optimization
algorithm in x coordinates.

Remark 5.2.8 The measurement of gradient is required because a line search
method is used, but we can relax such requirement by estimating the gradient
given it is only needed every δk time. Also, we certainly can combine a non-
gradient optimization algorithm with the asymptotic state regulator to form non-
gradient NOESC [8]. The robustness result of trust region methods can be found
in Sect. 4.2.2, where now we need to transform that result into a region similar to
that defined via the bound (5.20): first, we need to estimate the gradient at xs

k+1 and
therefore obtain the size of the robust region, then we can shift the regulation set
point xs

k+1 to the center of the robust region.

Remark 5.2.9 One could argue that given knowledge of x and measurements of
y, why not simply estimate J and then pursue a robust nonlinear control design.
First, even if the performance function is known perfectly, we need to compute the
optimal set point by finding the root of its gradient, which may be difficult as well.
Mathematically, the root finding and optimization problem are equivalently difficult
to solve. Second, the trust region method (a class of optimization algorithms) does
in fact use an estimated model of J in a trusted region to perform optimization step
by step.

Remark 5.2.10 A stopping criterion like ‖∇J (x(tk+1))‖ < ε0 can be used to termi-
nate the extremum seeking loop in finite iterations, where ε0 is a predefined small
positive constant. It is equivalent to having an upper limit on the regulation time δk .
In the case when gradient information is not available, there are other stopping cri-
teria only based on the difference of function values [5].

Remark 5.2.11 An important point to note is that the NOESC framework does not
explicitly separate the plant dynamics from the extremum seeking loop, and there-
fore does not assume time scale separation between them, as PESC and SMESC
typically do. At the same time, a time separation between the optimizer and the
control loop does emerge in practice, due to the structure of the scheme: as the op-
timizer block provides the sequence of set points xk

s , there is a regulation time the
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controller needs in order to move the state between the set points. This regulation
time is not fixed at each step of the optimization procedure, but we know it is finite,
and bounded by δ̄k .

Example 5.2 Consider a second order nonlinear system

ẋ1 = −x1 + x2,

ẋ2 = x1x2 + u,
(5.24)

with the Rosenbrock performance function

y = J (x) = 100
(
x2 − x2

1

)2 + (1 − x2)
2. (5.25)

The performance function (5.25) has its minimizer at x∗ = [1,1]	, and the mini-
mum is J (1,1) = 0, which is a stabilizable equilibrium by letting u(t) = −1. The
explicit form of the performance function and its minimizer are both assumed un-
known to the designer.

Let z1 = x1, z2 = −x1 + x2. The transformed system in the new coordinates
(z1, z2) is

ż1 = z2,

ż2 = −(−x1 + x2) + x1x2 + u.

In the NOESC scheme, we only need to measure the function value and its gradient
value every δk time. Then, at iteration k +1, we use the line search method to obtain
the set point

xs
k+1 = x(tk) − αk∇J

(
x(tk)

)
.

We then compute zs
k+1 = T (xs

k+1), that is

zs
k+1,1 = xs

k+1,1,

zs
k+1,2 = −xs

k+1,1 + xs
k+1,2.

The bounded reference signal is chosen to have period Tr as

rk(t) = a1 sin(ω1t) + a2,

where ω1 = 2π/Tr , a1 = zs
k+1,2/ω1 and a2 = zs

k+1,1. It is easy to verify that this
design satisfies conditions (5.11). The error manifold is defined as ez = k1(z1 −
rk) + z2 − ṙk . Then, the controller (5.5) becomes

u = −k1(z2 − ṙk) + r̈k + (−x1 + x2) − x1x2 − kuez. (5.26)

We now implement the NOESC scheme in Sect. 5.2.3, where the initial condi-
tion is xs

0 = [−1.9,0]	, t0 = 0 and line search method with pk = −∇J (x(tk)), i.e.,
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Fig. 5.1 Line search and output-tracking based NOESC, k1 = 2, ku = 2, Tr = 3, αk = 0.0012:
(a) performance output; (b) state; (c) control input

steepest descent algorithm. The designer chooses step length αk , gains k1, ku, and
estimates the bk in (5.20). The simulation results can be found in Fig. 5.1, where the
performance output (5.25) (Fig. 5.1(a)) approaches its minimum at J (1,1) = 0 and
the state (Fig. 5.1(b)) accordingly converges to the minimizer [1,1]	. The control
input can be seen in Fig. 5.1(c). The steepest descent algorithm produces a set point
sequence {xs

k} as commands for the state regulation. The trajectory between xs
k and

xs
k+1 is shaped by the dynamic system (5.24) and the state regulator (5.26). This can

be viewed clearly in Fig. 5.2, where the blue circles represent the {xs
k} and the red

dashed lines represent the state trajectory.
It is also worth noticing that the control only regulates the state to the neighbor-

hood of the set point, as seen from Fig. 5.2. That is, the control’s action results in the
state trajectory interpolating between the points in the sequence {x̂s

k}. Moreover, one
can choose a large control gain ku, and a small period of the reference signal Tr to
accelerate the extremum seeking loop. Finally, we note that the control (5.26) con-
verges to −1, which stabilizes the system at minimizer [1,1]	. Therefore the steady



5.3 Robust Design for Input Disturbance 103

Fig. 5.2 Line search and output tracking based NOESC, k1 = 2, ku = 2, Tr = 3, αk = 0.0012:
phase portrait

state output does not oscillate by using the asymptotic state regulator, in contrast to
the finite-time state regulator of Example 4.2.

5.3 Robust Design for Input Disturbance

In this and the following sections, we will see the advantage of the asymptotic state
regulator design, where we trade off the finite-time state regulation to achieve robust
state regulation, i.e., robustly regulating x to xs

k+1, or equivalently, driving the error
ez in (5.4) to 0. Now, consider an input disturbance satisfying the matching condition

ėz = χ(z) + f (z) + g(z)
(
u + Δ(t, z)

)
, (5.27)

where Δ(t, z) is the unknown input disturbance (we postulate it as a function of z

for notation convenience; mathematically it is equivalent to having it as a function
of x). Nonlinear damping is used to overcome the disturbance [6]. That is, the new
state regulator for robust extremum seeking control is

u = −χ(z) − f (z) − kuez

g(z)
+ us, ku > 0, (5.28)

where us is the stabilizing term designed based on the properties of the disturbance.
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5.3.1 Bounded Input Disturbance

First, we assume |Δ(t, z)| ≤ β represents some bounded disturbance with β > 0 a
known constant. We can first choose

us = −β sgn
(
ezg(z)

)
, (5.29)

where sgn(·) is the signum function , defined as

sgn(y) =
{

1, y ≥ 0,

−1, y < 0.
(5.30)

Now consider the Lyapunov candidate V = (1/2)e2
z , and we find that V̇ = ezėz =

−2kV + ezg(z)(us + Δ(t, z)). Then we have

V̇ ≤ −2kV − ∣∣ezg(z)
∣∣β + ∣∣ezg(z)

∣∣∣∣Δ(t, z)
∣∣≤ −2kV,

from which we conclude that the error ez asymptotically converges to zero using the
nonlinear damping term (5.29).

Since us in (5.29) is discontinuous, one may not be able to guarantee existence
and uniqueness of the solutions of the plant’s differential equation. Moreover, from
a practical point of view, a discontinuous control signal may be unduly harsh on
actuators, and it may also excite unmodeled high frequency plant dynamics. To
avoid these issues, it is possible to choose instead a smoothed approximation of
the nonlinear damping term (5.29), such as

us = −β
ezg(z)

|ezg(z)| + cs

, (5.31)

with cs > 0 a small constant. Then instead of having the origin of ez rendered
asymptotically stable, we will only be able to conclude that it is uniformly ulti-
mately bounded, a more practical and realistic result. To show this, consider again
the Lyapunov candidate V = (1/2)e2

z , where now we use the smoothed approxima-
tion (5.31). Then we find

V̇ ≤ −2kV + ezg(z)

(
−β

ezg(z)

|ezg(z)| + c
+ Δ(t, z)

|ezg(z)| + c

|ezg(z)| + c

)

≤ −2kV + β

|ezg(z)| + c

(−∣∣ezg(z)
∣∣2 + ∣∣ezg(z)

∣∣2 + c
∣∣ezg(z)

∣∣)

= −2kV + cβ|ezg(z)|
|ezg(z)| + c

≤ −2kV + cβ. (5.32)

We find V̇ < 0 whenever V > cβ/2k, or equivalently when |ez| > √
cβ/k.
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The size of the neighborhood can be made arbitrarily small given large enough
ku and small enough cs . There are other approximations of the signum function
available and will arrive at similar results.

5.3.2 Unbounded Input Disturbance

Here, we assume |Δ(t, z)| ≤ βψ(z) with β an unknown constant and ψ : Rn → R

is a known nonnegative function. It is only assumed that ψ is bounded for any
bounded z ∈ R

n, in this case, we have the disturbance Δ may grow unbounded if
z → ∞. Then, we consider the stabilizing term

us = −ηezg(z)ψ2(z), η > 0. (5.33)

The time derivative of the Lyapunov candidate V = 1
2e2

z becomes

V̇ = −2kV + ezg(z)
(−ηezg(z)ψ2(z) + Δ(t, z)

)

≤ −2kV − η
∣∣ezg(z)

∣∣2ψ2(z) + β
∣∣ezg(z)

∣∣ψ(z) − 2kV + β2

4η
.

We find V̇ < 0 whenever V > β2/(8kη), or equivalently when |ez| > β/
√

4kη. This
means that the origin of ez is uniformly ultimately bounded and hence the closed-
loop system is stable. As before, the size of the neighborhood of ez can be made
arbitrarily small given large enough ku and η.

Now we will examine the implications of uniform ultimate boundedness [2] of
ez, as opposed to asymptotic convergence to zero. Note that the convergence of the
numerical optimization based ESC relies on the controller to drive the state to the
desired set point xs

k+1 or within the required neighborhood in finite time. When ez

asymptotically converges to zero (such as when using the term (5.29) in the bounded
input disturbance case), we know from Theorem 5.2.2 that there exists a δ̄k such that
the inequality (5.21) is valid for some t ≤ δ̄k .

Consider instead the case when ez is uniformly ultimately bounded given an
input disturbance. For example, in the case of a bounded disturbance with smooth
damping term (5.31), one obtains from (5.32) that

∣
∣ez(t)

∣
∣≤

√
cβ

k
+
(

2V (0) − cβ

k

)
e−2kt .

Therefore, we have limt→∞ |ez(t)| ≤ √
cβ/k. Denote ēz = max{√2V (0),

√
cβ/k}.

Then, from (5.6) and (5.10),

φμ

(
t, |ez|

)= d1e
−d2t

∥∥μ(0)
∥∥+

∫ t

0
d1e

−d2(t−τ)
∣∣ez(τ )

∣∣dτ

≤ d1e
−d2t

∥∥μ(0)
∥∥+ d1ēze

−d2t

∫ t

0
ed2τ dτ

≤ d1e
−d2t

∥∥μ(0)
∥∥+ d1ēz

(
1 − e−d2t

)
/d2.
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Then, recalling (5.13), for t = δ̄k = mkTr we have
(|ez| + k∑φμ

(
t, |ez|

)+ ∥
∥r̄k − zs

k+1

∥
∥)

t=δ̄k

≤ ēz + k∑
(
d1e

−d2δ̄k
∥∥μ(0)

∥∥+ d1ēz

(
1 − e−d2δ̄k

)
/d2

)
.

The system will still be uniformly ultimately bounded, but the size of the neighbor-
hood will be larger than in (5.23) and can be given as

∥∥∇J
(
x̂s
k

)∥∥≤ LT

bk

[
ēz + k∑

(
d1e

−d2 δ̄k
∥∥μ(0)

∥∥+ d1ēz

(
1 − e−d2 δ̄k

)
/d2

)]
, (5.34)

which can be made arbitrary small. In general, one wants to have a small ēz (choose
large ku, small β for the bounded disturbance case), and choose large d2, δ̄k and
small c, d1, k1, k2, . . . , kn−1 to have a small size neighborhood.

Example 5.3 Simulation configurations are the same as in Example 5.2. Let the
bounded input disturbance be

Δ(t, z) = 2 rand(t) (5.35)

where rand(t) is uniformly distributed noise in the range [−1,1] with amplitude 1.
Also consider an unbounded disturbance given by

Δ(t, z) = 1

|z1| + rand(t)
+ 3

(
cos(t) + 1

)
z2, (5.36)

which can be bounded by |Δ(t, z)| ≤ 1
|z1|+1 + 6z(2).

The simulation results of the nominal controller (5.5) given input disturbances are
shown in Fig. 5.3, where we have the state converge to a neighborhood of x∗ due
to the bounded disturbance, and the system becomes unstable given the unbounded
disturbance.

Now, the robust extremum seeking controller (5.28) is introduced to deal with
the bounded input disturbance (5.35). The simulation results for stabilizing term
(5.29) can be found in Fig. 5.4. Even though the stabilizing term with signum func-
tion achieves good performance, it produces chattering in the control input as seen
in Fig. 5.4(c). As seen in Fig. 5.5, the approximated version (5.31) implements a
smoothed control law and achieves comparable results.

For the unbounded disturbance (5.36), the stabilizing term (5.33) is able to over-
come the unbounded disturbance and achieve the extremum seeking purpose, as
seen in Fig. 5.6.

5.4 Robust Design for Unknown Plant Dynamics

The state regulator (5.5) is based on exact mathematical cancelation of the nonlinear
terms f (z) and g(z). This is generally difficult in practice for several reasons such
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Fig. 5.3 Line search and output-tracking based NOESC, k1 = 2, ku = 2, αk = 0.0012: (a) per-
formance output of bounded input disturbance; (b) phase portrait of bounded input disturbance;
(c) performance output of unbounded input disturbance; (d) phase portrait of unbounded input
disturbance

as model simplification, parameter uncertainty and computational errors. Usually,
we will implement instead the feedback control law

u = −χ(z) − f̂ (z) − kuez

ĝ(z)
,

where f̂ (z), ĝ(z) are approximations of f (z) and g(z). One method to deal with
the approximation error is to treat it as an input disturbance. Then, we can design
static (non-adaptive) stabilizing controllers to deal with input disturbance as seen
in Sect. 5.3. Here, instead, we use approximation based adaptive control laws [6]
to deal with unknown plant dynamics, where we remove the assumption of exact
knowledge of plant dynamics and only assume that g(z) ≥ g0 > 0.
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Fig. 5.4 Stabilizing controller using signum function for bounded input disturbance, k1 = 2,
ku = 2, αk = 0.001, β = 3: (a) performance output; (b) state; (c) control input; (d) phase por-
trait

5.4.1 Indirect Adaptive Control

First we will approximate the unknown plant dynamics f (z) and g(z) using two
function approximators, and then use them to construct an adaptive controller. Now,
we assume that the function approximator will approximate the plant dynamics
within a compact set S ⊂ R

n. That is,

f (z) = F1
(
z, θ∗

1

)+ ω1(z),

g(z) = F2
(
z, θ∗

2

)+ ω2(z),

where

F1
(
z, θ∗

1

)= θ∗
1

	
ξ1(z),

F2
(
z, θ∗

2

)= θ∗
2

	
ξ2(z)

are function approximators using basis functions ξ1(z), ξ2(z).
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Fig. 5.5 Smoothed stabilizing controller for bounded input disturbance, k1 = 2, ku = 2,
αk = 0.0012, β = 3, cs = 0.1: (a) performance output; (b) state; (c) control input; (d) phase portrait

Moreover, θ∗
1 ∈ R

p1 , θ∗
2 ∈ R

p2 are unknown optimal parameters such that for
arbitrary z ∈ S we have |ω1(z)| ≤ W1 and |ω2(z)| ≤ W2 for some known constants
W1 and W2, which are the smallest possible given p1, p2 and S. Let θ̂1, θ̂2 be the
estimates of θ∗

1 , θ∗
2 , with parameter error vectors θ̃1 = θ̂1 − θ∗

1 and θ̃2 = θ̂2 − θ∗
2 .

Now we design the indirect adaptive controller to be

u = 1

F2(z, θ̂2)

(−χ(z) −F1(z, θ̂1) − kuez

)

︸ ︷︷ ︸
uFL

+us. (5.37)

We choose the Lyapunov candidate

V = 1

2
e2
z + 1

2γ1
θ̃	

1 θ̃1 + 1

2γ2
θ̃	

2 θ̃2,

where γ1, γ2 are some positive constants. Note that
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Fig. 5.6 Stabilizing controller for unbounded input disturbance, k1 = 1, ku = 3, αk = 0.0012,
η = 2: (a) performance output; (b) states; (c) control input; (d) phase portrait

ėz = χ(z) + f (z) + g(z)(uFL + us)

= χ(z) + f (z) + g(z)(uFL + us) +F2
(
z, θ̂2

)
(uFL − uFL)

= (
F1

(
z, θ∗

1

)+ ω1(z)
)+ (

F2
(
z, θ∗

2

)+ ω2(z)
)
(uFL + us)

−F1
(
z, θ̂1

)− kez −F2
(
z, θ̂2

)
uFL

= −kez −F1
(
z, θ̃1

)−F2
(
z, θ̃2

)
uFL + ω1(z) + ω2(z)uFL + g(z)us.

Then,

V̇ = ezėz + 1

γ1
θ̃	

1
˙̂
θ1 + 1

γ2
θ̃	

2
˙̂
θ2

= −ke2
z − θ̃	

1 ξ1(z)ez − θ̃	
2 ξ2(z)uFLez + 1

γ1
θ̃	

1
˙̂
θ1 + 1

γ2
θ̃	

2
˙̂
θ2

+ ω1(z)ez + ω2(z)uFLez + g(z)usez.
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Choose the parameter update laws and the stabilizing term to be

˙̂
θ1 = γ1ξ1(z)ez, (5.38)

˙̂
θ2 = γ2ξ2(z)uFLez, (5.39)

us = 1

g0

(−W1 − W2|uFL|) sgn(ez). (5.40)

Now, we have

V̇ ≤ −ke2
z + ∣∣ω1(z)ez

∣∣+ ∣∣ω2(z)uFLez

∣∣+ g(z)usez

≤ −ke2
z + W1|ez| + W2|uFL||ez| + g(z)

g0

(−W1 − W2|uFL|)|ez|

≤ −ke2
z .

Therefore, we can first see that the system is stable and ez, θ̃1, θ̃2 are bounded.
Furthermore, ez asymptotically converges to zero [6].

5.4.2 Direct Adaptive Control

As an alternative approach to the adaptive NOESC problem, instead of approx-
imating the plant dynamics we can directly approximate the controller (5.5). In
order to do this, we need two more assumptions: 0 < g0 ≤ g(z) < g1 ≤ ∞ and
|ġ(z)| ≤ B1 < ∞ for z ∈ S, where g0 and B1 are known constants.

Now let u∗
FL represent the nominal controller (5.5), and we assume that the func-

tion approximator will approximate it within a compact set S ⊂ R
n, that is,

u∗
FL = Fu

(
z, θ∗

u

)+ ωu(z),

where

Fu

(
z, θ∗

u

)= θ∗
u

	
ξu(z)

is a function approximator using basis function ξu(z). Moreover, θ∗
u ∈ R

pu are un-
known optimal parameters such that for arbitrary z ∈ S we have |ωu(z)| ≤ Wu for
some known constant Wu, which is the smallest possible given pu, S. Let θ̂u be the
estimate of θ∗

u and θ̃u = θ̂u − θ∗
u . Now, we design the direct adaptive controller as

u = Fu(z, θ̂u) + us, (5.41)

where us is a stabilizing term defined later. We choose the Lyapunov candidate

V = 1

2g(z)
e2
z + 1

2γu

θ̃	
u θ̃u,
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where γu is a positive constant. Note that

ėz = χ(z) + f (z) + g(z)u

= χ(z) + f (z) + g(z)
(
Fu(z, θ̂u) + us +Fu

(
z, θ∗

u

)−Fu

(
z, θ∗

u

))

= χ(z) + f (z) + g(z)
(
θ̃	
u ξu(z) + us + u∗

FL − ωu(z)
)

= −kez + g(z)
(
θ̃	
u ξu(z) + us − ωu(z)

)
.

Then,

V̇ = 1

g(z)
ezėz − ġ(z)e2

z

2g(z)2
+ 1

γu

θ̃	
u

˙̂
θu

= − k

g(z)
e2
z + θ̃	

u ξu(z)ez + (
us − ωu(z)

)
ez − ġ(z)e2

z

2g(z)2
+ 1

γu

θ̃	
u

˙̂
θu.

Choose the parameter update law and stabilizing term to be

˙̂
θu = −γuξu(z)ez (5.42)

us = −
(

Wu + B1

2g2
0

|ez|
)

sgn(ez). (5.43)

Now, we have

V̇ ≤ − k

g(z)
e2
z + ∣

∣wu(z)ez

∣
∣+

∣∣
∣∣
ġ(z)e2

z

2g(z)2

∣∣
∣∣+ usez

≤ − k

g(z)
e2
z + Wu|ez| + B

2g2
0

|ez|2 −
(

Wu + B

2g2
0

|ez|
)

|ez| ≤ − k

g(z)
e2
z ≤ − k

g1
e2
z .

Therefore, we can first see that the system is stable and ez, θ̃u are bounded. We have
also that ez asymptotically converges to zero as in [6].

Remark 5.4.1 We can relax the assumption of knowing W1, W2 and Wu, which
can be estimated online as well. Also, note that both stabilizing terms (5.40) and
(5.43) use the signum function. We can choose instead a continuous term to approx-
imate the signum function, similar to (5.31). In this case, we will see that the error
ez is uniformly ultimately bounded instead of asymptotically convergent to zero.
Therefore, the closed-loop system will be stable and the state x will asymptotically
converge to an arbitrarily small neighborhood of the global minimizer x∗.

Example 5.4 Same simulation configurations as in Sect. 5.2 are used here. Simula-
tion results for indirect adaptive control can be found in Figs. 5.7 and 5.8, whereas
the direct adaptive control case appears in Figs. 5.9 and 5.10. In both cases, we use
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Fig. 5.7 Indirect adaptive control for unknown plant dynamics with unknown unbounded input
disturbance, k1 = 2, ku = 2, p1 = p2 = 3, αk = 0.0007, g0 = 0.9, W1 = 10, W2 = 10, γ1 = 2,
γ2 = 2: (a) performance output; (b) state; (c) control input

a saturation function to approximate the signum function in the stabilizing terms.
The saturation function is defined as

sat(y) =
⎧
⎨

⎩

1, y > 1,

y, −1 ≤ y ≤ 1,

−1, y < −1.

(5.44)

Thus, in the stabilizing terms (5.40) and (5.43), we can use the approximation

sgn(ez) ≈ sat(ez/ε),

where ε is a design parameter that controls the width of the transition from negative
to positive.

We can see that both adaptive controllers not only deal with the unknown plant
dynamics, but also the unknown input disturbance. In the indirect adaptive control
case, the effect of input disturbance is taken into account in f (z), and the function
approximator will try to approximate f (z) + g(z)Δ(z) together. Similarly, in the
direct adaptive control case, the function approximator will approximate the robust
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Fig. 5.8 Indirect adaptive control for unknown plant dynamics with unknown unbounded input
disturbance, k1 = 2, ku = 2, p1 = p2 = 3, αk = 0.0007, g0 = 0.9, W1 = 10, W2 = 10, γ1 = 2,
γ2 = 2: phase portrait

controller such as (5.28) to deal with the input disturbance implicitly. Therefore, we
have seen that advanced control techniques can be incorporated in the robust design
of NOESC.

5.5 Conclusions

In this chapter, inspired by the standard output-tracking problem [6], we propose
a new design of state regulator for state feedback linearizable systems, and then
extend this design to robust NOESC. The robustness of the numerical optimiza-
tion algorithms (in particular, line search algorithm) enables the applicability of
the asymptotic state regulator, which leads to the robust NOESC design for input
disturbances and unknown plant dynamics, using nonlinear damping and function
approximation based adaptive control techniques, respectively.

We have assumed in general that the system is globally feedback linearizable by
letting D = R

n. This is a strong assumption, which can be relaxed by considering
a nonlinear system that is only feedback linearizable on D ⊂ R

n. Furthermore, we
may want to put additional algebraic constraints on the performance function J (x).
For example, we could require the state to satisfy certain inequalities constraints of
the form

ai ≤ xi ≤ bi, i ∈ {1, . . . , n},
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Fig. 5.9 Direct adaptive control for unknown plant dynamics with unknown unbounded input dis-
turbance, k1 = 2, ku = 2, pu = 3, αk = 0.004, g0 = 0.9, B1 = 0, Wu = 20, γu = 5: (a) performance
output; (b) state; (c) control input

which can be simplified as

min
x

J (x) subject to x ∈ E ⊂ R
n,

with E appropriately defined.
In Sect. 5.4 we use function approximators to approximate either the dynamics of

the plant (indirect adaptive control case) or the nominal controller (direct adaptive
control). In both of these cases, the approximation is only valid on a subset S of Rn.
The controller design has not yet been addressed to guarantee that the state will
not exit the subset S (although this can be achieved using, e.g., using high-gain
bounding control terms or via analysis techniques similar to those in [6]). Thus,
ESC with state constraints will be an important future research topic.

To this end, some basic ideas can be formulated. Let Sx ⊆ D∩E ∩T −1(S). First,
we would need a constrained optimization algorithm (for example, penalty methods,
or barrier methods [5]) to generate the set point sequence xs

k+1 inside Sx . Then we
can use Lyapunov methods to choose parameters for the state regulator such that
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Fig. 5.10 Direct adaptive control for unknown plant dynamics with unknown unbounded input
disturbance, k1 = 2, ku = 2, pu = 3, αk = 0.004, g0 = 0.9, B1 = 0, Wu = 20, γu = 5: phase
portrait

x will not only converge to the required vicinity of xs
k+1, but also not violate the

constraints and stay within the require set Sx during the transient.
The NOESC framework allows for large design flexibility for more general non-

linear systems and various performance functions. For example, we can easily ex-
tend the result to input-output feedback linearizable systems (similar to Sect. 4.1.3),
or other nonlinear systems as long as we can design a robust state regulator. More-
over, since the reference signal rk(t) is also periodic, it maybe possible to apply
iterative learning control [4] to improve the tracking performance. Furthermore, by
using a non-derivative optimization algorithm such as the trust region method [8, 9]
or gradient estimation, we can remove the assumption of gradient measurement.

Future research will include the design of output feedback state regulator, and
will explore other robust numerical optimization algorithms. The recent paper [3]
successfully combines the state regulator with the Recursive Smith-Power (RSP)
algorithm, which only requires performance output measurements. This is made
possible by the fact that RSP algorithm can be reduced to a sequence of one dimen-
sional optimization routines, and the state can be controlled to move freely along a
straight line (point mass dynamics) to achieve optimization objectives. It points to
a great research direction focused on how to merge the optimization algorithm with
the controller design.
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Part II
Applications



Chapter 6
Antilock Braking Systems

6.1 Problem Description

Antilock braking systems (ABS) are an important tool in the automotive industry.
They allow the vehicle to stop faster and make safer turns when the wheels are
prevented from locking. ABS design was initially proposed to deal with braking on
slippery surfaces, i.e., to prevent the wheels from locking and skidding.

Due to the nonlinearity of the dynamics and uncertainty in the braking systems,
the design of ABS is difficult. The character of the friction force acting on the tires
has a maximum for a low (nonzero) wheel slip and decreases as the slip increases.
Standard ABS systems apply braking pressure in a rapid intermittent fashion. In
some of them, the purpose of the intermittent action is to “seek” the maximum of
the friction characteristic. In this chapter, we study the ABS design via different
extremum seeking control schemes; our goal is to design a control algorithm for
the braking torque to achieve maximal friction force without prior knowledge of the
optimal slip. The wheel model and the perturbation based extremum seeking design
are due to Ariyur and Krstić (Chap. 7 of [1]).

Consider the single wheel model depicted in Fig. 6.1. The wheel dynamics are
given by

mẋ1 = −Nμ(λ), (6.1)

I ẋ2 = −Bx2 + NRμ(λ) − u, (6.2)

where x1 is the linear velocity v and x2 is the angular velocity Ω of the wheel, m is
the mass, N = mg is the weight of the wheel, R is the radius of the wheel, I is the
moment of inertia of the wheel, Bx2 is the braking friction torque, u is the braking
torque, μ(λ) is the friction force coefficient and the wheel slip λ is defined as

λ = x1 − Rx2

x1
(6.3)

for Rx2 ≤ x1.
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Fig. 6.1 The wheel forces

Fig. 6.2 Friction force
coefficient

Note that (6.1) and (6.2) are together a fairly accurate model of actual wheel
behavior, as they capture the uncertainty due to road and driving conditions inherent
in the ABS problem.

There exists a maximum μ∗ for the friction force coefficient μ(λ) at λ∗, but λ∗
and μ∗ will change as the road conditions change. The friction force coefficient
μ(λ) is shown in Fig. 6.2 for three road conditions. Now the purpose of the ABS
design is to generate a control input u such that the friction force coefficient μ(λ) is
maximized, regardless of the road conditions. Moreover, even though the knowledge
of μ(λ) is not available, we are able to obtain the measurement of μ(λ) from (6.1),
assuming that the linear acceleration ẋ1 is measured via an accelerometer.

6.2 Perturbation Based Extremum Seeking Control Design

In order to formulate the problem into the perturbation based extremum seeking
setting, let us introduce a constant λ0 (which is unknown) and define λ̃ = λ − λ0.
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Fig. 6.3 ABS design via perturbation based extremum seeking control

The governing equation for λ̃ is

˙̃
λ = λ̇ =

(
Rx2

x2
1

+ mR2

Ix1

)
ẋ1 + RB

Ix1
x2 + R

Ix1
u. (6.4)

Since ẋ1 is measurable via an accelerometer, it is easy to see that the simple feedback
linearizing controller

u = −cIx1

R
(λ − λ0) − Bx2 − Ix2

x1
ẋ1 − mRẋ1, (6.5)

where c is a positive constant, makes the equilibrium λ0 of the system (6.4) expo-
nentially stable, giving

˙̃
λ = −cλ̃.

Note that the control u in (6.5) does not require the knowledge of the unknown
function μ(λ) (due to the assumption that ẋ1 is available for measurement). Then
the wheel model under feedback controller (6.5) can be written as a cascade of input
dynamics and a static map:

1

c
λ̇ = −(λ − λ0),

y = μ(λ).
(6.6)

We can apply the perturbation based extremum seeking control scheme given in
Fig. 6.3 with

λ0 = λ̂0 + α sin(ωt).

As before, the reader should note that the symbol
⊕

denotes a summer, whereas
the symbol

⊗
denotes a multiplier.

For simulation purposes, we postulate a simple function that qualitatively
matches μ(λ) as in [1]:

μ(λ) = 2μ∗ (λ∗)λ
(λ∗)2 + λ2

. (6.7)
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Fig. 6.4 ABS design via perturbation based extremum seeking control: (a) friction force coeffi-
cient; (b) slip; (c) linear velocity and angular velocity; (d) braking torque

This function has a maximum at λ = λ∗, whose value is μ(λ∗) = μ∗. We run the
simulation for λ∗ = 0.25 and μ∗ = 0.6. The parameters of the wheel are chosen
as m = 400 kg, B = 0.01 and R = 0.3 m. The initial conditions are linear velocity
x1(0) = 33.33 m/s, and angular velocity x2(0) = 400/3.6, which makes λ(0) = 0.

The simulation employs the perturbation based extremum seeking scheme with
α = 0.01, ω = 3, ωh = 0.6, ωl = 0.8, c = 20 and k = 1.5. For λ0 = 0.1, the simula-
tion results are shown in Fig. 6.4. It is seen that during braking, maximum friction
force is reached and the car is stopped within the shortest time and distance. The
low pass filter in the design can be removed without loss of stability, i.e., ωl = 0. Its
purpose is to attenuate noise in the loop.

6.3 Sliding Mode Based Extremum Seeking Control Design

We can easily use sliding mode extremum seeking to replace the sinusoidal pertur-
bation based extremum seeking scheme. By using the same torque controller (6.5),
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Fig. 6.5 ABS design via sliding mode based extremum seeking control

we apply the sliding mode based extremum seeking method depicted in Fig. 6.5,
with

λ̇0 = k sign sin(πs/α),

where α is a positive constant, s is a switching function defined as

e(t) = y − g(t)

and g(t) is an increasing function satisfying ġ(t) = ρ > 0.
In the simulation, μ(λ) is postulated as in (6.7). The simulation employs the slid-

ing mode based extremum seeking scheme with α = 0.1, ρ = 1, c = 20, and k = 1.5.
For the same wheel parameters and initial conditions as in Sect. 6.2, the simulation
results are shown in Fig. 6.6. It can be seen that during braking, maximum friction
force is reached and the car is stopped within the shortest time and distance.

At the same time, note from Fig. 6.6(d) that the braking torque attains large
values, and it is highly oscillatory. It is reasonable to speculate that a system such as
this may negatively impact ride comfort if implemented in an actual ABS design.

6.4 Numerical Optimization Based Extremum Seeking Control
Design

By observing (6.1), we find that x1 is not controllable from u for a fixed μ(λ). Fortu-
nately, the friction force coefficient μ is only dependent on λ, which is a function of
x1 and x2, and thus it may be controllable by u. Therefore, we attempt to feedback
linearize the system from the input u to output λ.

We define the change of variables

η = x1,

λ = (x1 − Rx2)/x1,
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Fig. 6.6 ABS design via sliding mode based extremum seeking control: (a) friction force coeffi-
cient; (b) slip; (c) linear velocity and angular velocity; (d) braking torque

which transforms the system (6.1), (6.2) into the form

η̇ = −Nμ(λ)/m, (6.8)

λ̇ = −
(

R

Ix1
+ x2

mx2
1

)
NRμ(λ) + R

Ix1
(u + Bx2). (6.9)

Since η is the linear velocity, it will be bounded at all times due to physical restric-
tions. Then, given x1(0) > 0, let the braking torque be

u = Ix1

R
(−cλ + v) − Bx2 +

(
R

Ix1
+ x2

mx2
1

)
INμ(λ)x1. (6.10)

As we did before, we assume that ẋ1 is available for measurement, instead of μ(λ).
Thus, using (6.1), the control (6.10) becomes

u = Ix1

R
(−cλ + v) − Bx2 +

(
R

Ix1
− x2

mx2
1

)
Imẋ1x1. (6.11)
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Fig. 6.7 ABS design via numerical optimization based extremum seeking control

Fig. 6.8 ABS design using line search and finite-time state regulator extremum seeking control:
(a) friction force coefficient; (b) slip; (c) linear velocity and angular velocity; (d) braking torque
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Fig. 6.9 ABS design using trust region and finite-time state regulator extremum seeking control:
(a) friction force coefficient; (b) slip; (c) linear velocity and angular velocity; (d) braking torque

Then (6.9) becomes

λ̇ = −cλ + v, (6.12)

where we first investigate the finite-time state regulator of Chap. 4, and thus set v to
be the regulator defined in (4.12).

A block diagram of extremum seeking scheme for the wheel model can be found
in Fig. 6.7. That is, by designing the control torque as in (6.10), we are able to adjust
the slip λ to maximize the friction force coefficient.

In the simulation, μ(λ) is again postulated to be as in (6.7). We use the same
wheel parameters and initial conditions as in Sect. 6.2 in the simulations. The simu-
lation results for line search based extremum seeking control are shown in Fig. 6.8,
where c = 1, and δk = 0.5. However, since the finite-time state regulator cannot ren-
der the optimal λ∗ as an equilibrium point of the closed loop system, we observe
that the steady-state slip oscillates.

The simulation results based on trust region method are shown in Fig. 6.9, where
no gradient measurements of μ(λ) are needed. As a way to illustrate the robust
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Fig. 6.10 ABS design using trust region and finite-time state regulator extremum seeking con-
trol with input disturbance: (a) friction force coefficient; (b) slip; (c) linear velocity and angular
velocity; (d) braking torque

behavior of NOESC using trust region, Fig. 6.10 shows results where the input is
disturbed by a uniformly distributed noise with amplitude 2.

Next, we apply the asymptotic state regulator design from Chap. 5. This time,
there is no need to put the design into the finite-time regulator framework since we
only have one state to control via one control input. We can render any λk to be
an equilibrium point for the linearized system in (6.12) by choosing the asymptotic
controller

v = cλk,

where λk is the commanded regulation point from the numerical optimization algo-
rithm, as seen in Fig. 6.7. Let e = λ − λk . Then, we have

ė = λ̇ = cλ + v = −cλ + cλk = −ce,

which implies e asymptotically converges to zero as long as c > 0. It is interesting
to note that the control (6.11) from NOESC is identical to the control (6.5) used by
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Fig. 6.11 ABS design using line search and asymptotic state regulator extremum seeking control:
(a) friction force coefficient; (b) slip; (c) linear velocity and angular velocity; (d) braking torque

PESC, with λ0 = λk . The reason for this is that the PESC ABS controller is in fact
a feedback linearizing controller, the same as the NOESC controller.

Now, the simulation results for line search and trust region based extremum seek-
ing design can be found in Figs. 6.11 and 6.12, respectively.

6.5 Conclusions

Since only one parameter needs to be tuned among different extremum seeking
control schemes, the perturbation based and sliding mode based designs turn out to
be easy to tune in this case. The PESC and SMESC designs do not need to have
the gradient; however, they do bring additional oscillations in steady state due to the
perturbation signal and the sliding mode, respectively. Further research to deal with
oscillations can be found in [3], and time delay can be found in [2].

The design via numerical optimization based extremum seeking can be made
gradient free as well using a derivative free trust region method; however, the con-
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Fig. 6.12 ABS design using trust region and asymptotic state regulator extremum seeking control:
(a) friction force coefficient; (b) slip; (c) linear velocity and angular velocity; (d) braking torque

vergence may be relatively slow due to the slow convergence of the optimization
method. Nevertheless, all NOESC methods achieve brake times comparable with
those of PESC and SMESC, with significantly less braking torque required. Oscil-
lation is successfully avoided when using the asymptotic state regulator numerical
optimization based extremum seeking control of Chap. 5, because no perturbation
signal is used and no sliding mode function is introduced. An additional robustify-
ing term can be easily added to the numerical optimization based design to deal with
input disturbances and unmodeled plant dynamics.
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Chapter 7
Impedance Matching in Semiconductor Plasma
Processing Chamber

7.1 Introduction to Impedance Matching

Impedance matching is the practice of designing the input impedance of an elec-
trical load or the output impedance of its corresponding signal source in order to
maximize the power transfer and minimize reflection from the load. In general, the
main reason to do impedance matching is to obtain a more efficient power transfer
in a circuit. Moreover, in a complex industrial application, there are cases where the
designer needs to interconnect a number of different components into a system, and
the only way this interconnection can be performed reliably and predictably is by
constraining the reflection coefficients of the various interfaces through impedance
matching. Multiple reflections could result in group delay variations that can pro-
duce undesired intermodulation in broadband systems [16].

For semiconductor thin film processing applications, impedance matching is used
in a semiconductor plasma processing chamber in order to minimize the reflected
power back from plasma discharge into the RF cables, and maximize the power
transferred from the RF generator into the plasma discharge.

7.1.1 Maximal Power Principle

Whenever a source of power with a fixed output impedance operates into a load
(refer to Fig. 7.1), the maximum possible power is delivered to the load when the
impedance of the load is equal to the complex conjugate of the impedance of the
source. Let

Zl = Rl + jXl

denote the load impedance. The generator (or voltage source) supplies a constant
voltage output V and has internal impedance

Zs = Rs + jXs.
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Thus, we have the current

I = V

Zs + Zl

and the voltage

Vl = V

Zs + Zl

Zl.

Then the power delivery to the load is

Pl = 1

4
Re(IV ∗

l + I ∗Vl)

= 1

2
|I |2Rl

= 1

2

|V |2Rl

|Zs + Zl |2 ,

where the symbol ∗ denotes complex conjugate. By ensuring that

∂Pl

∂Rl

= 0,
∂Pl

∂Xl

= 0,

the power is maximal transferred to the load if Zl = Z∗
s , that is, by letting

Rl = Rs,

Xl = −Xs,

and one obtains the value of the maximum power delivered as

Pl,max = |V |2
8Rs

.

Moreover, the quantity

Γ = Zl − Zs

Zl + Zs

is defined as the reflection coefficient and is generally a complex number.

7.1.2 Reflected Power

In the Radio Frequency (RF) domain, if at any point on the transmission line one
inserts a directional coupler sampling the voltage and current, it will produce two
quantities called the forward and reflected voltage. These voltages are the ampli-
tudes of the two traveling waves and together make up the standing wave on the
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Fig. 7.1 A simple source
load circuit

line. One can define the forward voltage as

Vf = (V + Z0I )/2

and the reflected voltage as

Vr = (V − Z0I )/2,

where the quantity Z0 is arbitrary and it could be the characteristic impedance of
the transmission line [11]. Then, the forward power is defined as

Pf = |Vf |2/Z0

and the reflected power is given by

Pr = |Vr |2/Z0.

The reflected power could be as low as zero when Vr = 0 as the impedance is
matched. The difference between the two powers is called load power, that is,

Pl = Pf − Pr

= 1

Z0

(|Vf |2 − |Vr |2
)

= |Vf |2
Z0

(
1 − |Γ |2), (7.1)

where we further express the reflection coefficient as Γ = Vr

Vf
.

An alternative metric is the voltage standing wave ratio (VSWR), defined as

Ψ = 1 + |Γ |
1 − |Γ | .

Consider for example a 50 � source impedance. Then, the VSWR Ψ = 1 if Z0 = 50,
and Ψ = ∞ if Z0 = 0 or Z0 = ∞ (that is, either a closed or open circuit). Thus, the
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main goal for RF impedance matching is to maximize the forward power to the
load or minimize the reflected power, which is equivalent to reducing the reflection
coefficient Γ to 0 or VSWR Ψ to 1.

7.1.3 Impedance Matching Techniques and Challenges in
the Semiconductor Plasma Processing Chamber

Plasma processing technology is widely used in the semiconductor wafer process-
ing. Plasma processing is also critical in the aerospace, automotive and waste man-
agement industries [5]. In the semiconductor industry, RF driven plasma discharge
is commonly used in Etch or Chemical Vapor Deposition (CVD) processes.

An idealized semiconductor plasma processing chamber/equipment contains two
planar electrodes separated by a certain gap and driven by an RF power source.
The processing substrate is placed on one electrode, chemical gases flow through
to form discharge, and effluent gases are removed by a vacuum pump. One of most
important design requirements for the plasma chamber is to maximize the power
transferred from the RF generator to the plasma discharge load, or to minimize the
amount of power reflected back from the plasma discharge into the RF generator.

The schematic of a typical RF power delivery system in the plasma processing
chamber can be found in Fig. 7.2, where a generator is connected through RF cables
to an RF matching network. This network is generally part of the plasma processing
chamber. When the impedance is mismatched, the high VSWR could affect the
power accuracy of the generator and thus impact the process repeatability.

The current generation of generators can operate at “LOAD” mode, that is,
closed-loop control on the delivery power to ensure the process repeatability. In
other words, the plasma discharge always obtains the same power, no matter how
large the impedance mismatch is. Mismatched loads that are run for extended pe-
riods of time can damage the RF delivery system, for instance due to overheat-
ing of the cables and connectors because of an increase in the RF current. Mis-
matched loads can also cause arcing in the component due to high voltage. More-
over, the amount of electromagnetic interference increases under mismatched con-
ditions. There is also a significant cost benefit in using the proper size of gener-
ator if the reflected power is minimized, because one does not have to increase
the power limit of the generator in order to compensate for additional reflected
power.

There are generally two main impedance matching techniques utilized in the
semiconductor industry. One is called automatic matching network, where physi-
cal components like “loss-less” passive electrical elements (such as capacitors and
inductors) are used. This physical matching network is placed in between the gener-
ator and the plasma processing chamber, and it is placed as close as possible to the
chamber in order to minimize further transmission line loss. A practical matching
network is shown in Fig. 7.3, where impedance matching is achieved by varying the
values of the capacitors or inductors within the L type of matching network, such
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Fig. 7.2 An RF power
delivery system of a plasma
processing chamber

Fig. 7.3 A practical matching network schematic diagram

that the load impedance from the port of the generator equals the generator internal
impedance. Variable capacitors are commonly used instead of variable inductor, as
variable capacitors are of much more compact design and lower cost.

The second technique is the so-called generator frequency tuning, where the RF
frequency at the generator end is varied in order to reduce the reflected power back
to the generator. That is, the impedance is changed by tuning the frequency ω of
the generator. A directional coupler [6, 7] is generally available in the RF generator,
which provides measurements of the reflected power and is used as feedback to
control the frequency. There are cases when both techniques are used together in
order to obtain a larger window of tune space; that is, in order to satisfy a broad
range of plasma loads [3].

Moreover, there are two modes to tune or utilize the matching network in order
to achieve maximal power delivery: the “auto-tune” mode and the “preset” mode.
These modes correspond to closed-loop and open-loop control, respectively. In the



138 7 Impedance Matching in Semiconductor Plasma Processing Chamber

“auto-tune” mode, the variable capacitor is adjusted automatically during the plasma
processing in order to achieve the lowest reflected power. In the “preset” mode, the
variable capacitor value is pre-determined and is fixed during the plasma processing.

There are advantages and disadvantages to these two methods, keeping in mind
that from the industrial manufacturing point of view, process repeatability and re-
producibility are the number one priority, even compared with achieving the low-
est reflected power. For the “auto-tune” mode, it is generally implemented by
feedback control of the variable capacitors, based on reflected power reading or
phase/magnitude sensor inputs. The advantage is that it can compensate for the drift-
ing of load impedance over the production life time. However, in certain cases, such
as when plasma arcing occurs or during process recipe1 transition from one step to
another, a dramatic change of plasma impedance is expected and improper tuning
could further aggravate arcing. The “preset” mode, on the other hand, does yield
better repeatability. The challenge with this mode is to devise the desired preset in
the first place, since this task requires the knowledge of load impedance (plasma
impedance) and/or a significant amount of trial and error.

A similar idea is found in [8, 13], where deterministic tuning is described if one
knows the load impedance, and functional tuning is basically iterative optimization
via the directional coupler sensor measurements. Moreover, a genetic algorithm is
also studied for impedance matching in [14]. A reflection coefficient with gradi-
ent type search is combined to achieve impedance matching in [9]. For matching
networks having phase and magnitude sensors, commonly the phase sensor is used
together with a PID controller to adjust the tune capacitor, and the magnitude sensor
is used to control the load capacitor. Also, voltage and current sensors are used in
the matching network in order to provide sensor measurements to control the shunt
and series capacitors [15]. This approach is widely used today by many companies
providing automatic matching network products, such as Seren Industrial Power
Systems [12], Daihen Advanced Component [4], Advanced Energy Industries [1],
etc.

If the exact load impedance is known, the “auto-tune” and “preset” modes are
the same, since the system can be operated in open-loop. The main challenge is the
unknown load impedance case. The load impedance is mainly composed of plasma
impedance and other impedances due to hardware connections, cables, connectors
and installations. Firstly, the load impedances are difficult to model, because plasma
discharge impedance is a function of the particular process recipe running on the
chamber (for example, consider the experimental results described at the end of the
chapter and shown in Fig. 7.15(d), where the reflected power changes as pressure
oscillates). Furthermore, plasma impedance may even change during the processing
of the substrate wafer itself, even if all the other process conditions remain the same.
In Fig. 7.4, one can observe the DC bias voltage changing during the wafer process-
ing, which specifically implies that the chamber impedance is changing. This can
be explained by considering that the DC bias voltage is mainly impacted by the

1A process recipe is a predefined chamber operation conditions, such as gas mixture amount, cham-
ber pressure, temperature and RF power, etc.
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Fig. 7.4 The DC bias voltage
changes during the Etch
process

chamber impedance, and this impedance change mainly arises from the wafer film
composition changes during the Etch process. Moreover, other load impedances
from hardware may also slightly differ from chamber to chamber and are sensitive
to chamber condition, mechanical tolerances and installation.

Other matching network design challenges include the range of the variable ca-
pacitor needed to cover all possible load impedances, commonly referred to as the
matching network tune space. This tune space is generally simulated first, and then
a wide selection of process recipes are tested to finalize. The Smith chart is one
of the most widely used engineering tools in the earlier stage of matching network
design and is still a powerful tool today for analysis. A typical tune space in Smith
chart can be found in Fig. 7.5, where the light blue circle area is one illustrative
example of the tune space. In the context of discussion of tuning algorithms, we
always assume the load impedance is well within the tune space, i.e., the system is
controllable.

In this chapter, we will present two tuning algorithms applied to RF matching
network design for a capacitive coupled plasma (CCP) chamber: the first algorithm’s
objective is to improve the productivity by providing a tuning method in order to
give the user an optimized preset for each particular recipe; the second one is a real
time auto-tuning algorithm.

7.1.4 Plasma Load Impedance Estimation for a CCP Chamber

A CCP chamber can be modeled as two capacitors (the sheath capacitors Cs1,Cs2 )
serially connected to an RLC circuit (L0 and R0 are serially connected, and then
parallel connected with C0). The circuit model can be found in Fig. 7.6, where an
RF generator and an LC-type matching network are connected with a CCP chamber.
Again, the goal is to tune the matching network inductor and capacitor such that
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Fig. 7.5 Tune space in Smith
chart representation

ZS = Z∗
P , therefore maximizing the delivery power. Here, we make the simplifying

assumption that the load impedance is the same as the plasma impedance.
Let f be the RF frequency in Hz and ω = 2πf (rad/s). Thus, we have

C0 = ε0A

d
, (7.2)

L0 = 1

ω2
peC0

, (7.3)

R0 = νmL0, (7.4)

where

• ε0 = 8.8542 × 10−12 (F/m) is the permittivity of free space,
• A is the electrode area,
• d is the gap between the two electrode and generally d � A/2π ,

• ωpe =
√

e2n0
ε0m

is the electron plasma frequency (rad/s),

• e is the electron elementary charge (1.6022 × 10−19 C),
• m is the electron mass (9.1095 × 10−31 kg),
• n0 is the plasma density (m−3), and
• νm is the electron-neutral collision frequency for momentum transfer.

Moreover, we assume the two sheath capacitances are equal, or Cs1 = Cs2 = Cs ,
and

Cs = 1.226
ε0

sm
, (7.5)
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Fig. 7.6 A circuit model for
a CCP chamber

where sm is the sheath thickness. At steady state, if we assume a collision frequency
νm and an electron temperature Te, we are able to calculate the plasma density n0

given the chamber pressure p and the RF forward power Pf ; then we can calculate
the sheath thickness and sheath capacitance, and finally we can estimate the plasma
impedance as

Zp = Rp + jXp

= 2

jωCs

+ (jωL0 + R0)/(jωC0)

jωL0 + R0 + 1/(jωC0)
. (7.6)

In some simple cases, we may be to obtain the collision frequency νm and elec-
tron temperature Te given the knowledge of pressure and RF power, and we can
estimate the above chamber impedance Zp in an easy fashion or using (7.6). Con-
sider for example a simple argon discharge system. In this case we have the neutral
gas density

ng = p

kTg

, (7.7)

where k = 1.3807 × 10−23 J/K, p is pressure in Pa, and Tg is the gas temperature in
kelvin (K). We know

Kiz = 2

ngd
uB

(
m3/s

)
,

where Kiz is the reaction rate for ionization, and

uB =
√

eTe

M

is the Bohm velocity and M is the ion mass (the atomic mass unit of Ar is 39.95,
therefore M = 39.95 × 1.67 × 10−27 kg). Then, we can compute

Kiz = 2.34 × 10−14T 0.59
e exp(−17.44/Te),
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so we can solve the following equation for Te ,

2.34 × (
e−14)T 0.59

e exp(−17.44/Te) = 2

ngd

√
eTe

M
. (7.8)

Then, for Ar discharge, we know

Kel = 2.336 × 10−14Te
1.609 exp

(
0.0618(logTe)

−0.1171(logTe)
3),

where Kel is the reaction rate for elastic scattering, and then we can obtain

νm = Kelng. (7.9)

Let the total energy loss be given by

Et = (Kizξiz + Kexξex + Kel3mTe/M)/Kiz + 7.2Te, (7.10)

where

• ξiz = 15.76 eV is the ionization energy,
• ξex = 12.14 eV is the excitation energy, and
• Kex = 2.48 × (10−14)T 0.59

e exp(−17.44/Te) is the reaction rate for excitation.

The first term in (7.10) is the effective energy loss per electron-ion pair, whereas the
7.2Te term is the electron energy loss from the plasma.

Now, from energy balance the plasma density can be computed as

n0 = 1

2

[ m(νmd + 2
√

8eTe

πm
)

e3uB(2Te + 7.2Te)

]1/2

J1. (7.11)

Then, given forward power Pf , one can solve the following equation for the current
flux J1,

Pf = 2eAn0uBEt + 1.5uBJ 2
1 /
(
ε0ω

2), (7.12)

where ε0 = 8.8542 × 10−12 (F/m) is the electric constant. Once we have solved for
current flux J1 from (7.12), the plasma density can be calculated from (7.11), and
the sheath thickness can be obtained with

sm = J1

eωn0
, (7.13)

and finally the plasma impedance is computed as

Zp = Rp + jXp

= 2Pf

(J1A)2
− j

4sm

ωε0A
. (7.14)
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Now, given an L type RF matching network as seen in Fig. 7.6, one can easily
calculate the desired inductance as

LM =
(√

RpRs − R2
p − Xp

)
/ω, (7.15)

where Rs is the generator resistance, and normally Rs = 50 �, and the desired
capacitance is obtained with

CM =
√

1

RsRp

− 1

R2
s

/ω. (7.16)

Example 7.1 Consider a capacitively coupled plasma system operating at 5 mTorr
pressure with argon only and 1000 W RF power. The discharge gap is 5 cm, the
electrode areas are 1000 cm2, and the RF frequency is 13.56 MHz. Then, based on
the above analysis, one can easily calculate the plasma impedance

RD = 1.61, XD = −123.56.

Therefore, the desired capacitance is approximately 1284 pF, and the inductance is
approximately 1.554 µH.

7.2 Impedance Matching via Extremum Seeking Control

Now, we can express the plasma load impedance as a function of chamber pres-
sure p, RF frequency ω, electron temperature Te , collision frequency νm, plasma
density n0, etc., as

Zp = fp(Te, νm,n0, θ),

where fp is some unknown nonlinear function, and θ is a parameter array that could
contain all known values in the recipe, such as θ = [p,ω,Tg, d,M]	.

Ideally, if one could feed back the load impedance, then the impedance matching
becomes an easy set-point regulation problem. In reality, it is impossible to feed
back the load impedance in real time. As seen from the analysis in Sect. 7.1.4, even
for a simple Ar discharge system, it is fairly complicated to estimate the plasma load
impedance. Firstly, it is only done at steady state and secondly, we have to assume
some knowledge about cross section and other important parameters. For actual
process recipes, the chemistry is much more complicated than Ar (it will typically be
a mix of four or five gases), and there are multiple frequencies ongoing at the same
time. Also, the load impedance is not just the plasma impedance itself, but the actual
hardware design and chamber condition change over time will all contribute as part
of the load impedance. The discussion presented thus far is only a starting point
to provide an approximate understanding of what the plasma impedance actually is
for different process conditions, and it allows one to design the matching network
to have proper tune space to cover all the possible plasma impedances. Then, the
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non-model based extremum seeking control plays an important role, because it can
bypass the dependency on exact knowledge of plasma impedance and it can directly
use the knowledge of reflected power to achieve the impedance matching. Of course,
an approximate estimation of the load impedance typically can provide good initial
conditions for the tunable capacitors, thus potentially helping improve the transient
performance.

The reflected power is a function of the load impedance Zp and the matching
network tunable capacitors impedance Zc1, Zc2 (typically, one or two variable ca-
pacitors are used),

Pr = fr(Zp,Zc1,Zc2),

where Pr is the reflected power and fr is an unknown nonlinear function. In gen-
eral, Pr is measured at the RF generator via the directional coupler. Here, we use re-
flected power reading from the generator to control the tunable capacitor, instead of
adding another phase/magnitude sensor in the matching network, which is the com-
mon industrial practice. This significantly reduces the cost, simplifies the matching
network design and improves the quality and reliability. Therefore, the goal is to
design a control law to tune the variable capacitors such that the reflected power is
minimized for an arbitrary load impedance, assuming this load impedance is within
the matching network tune space.

This problem statement exactly falls into the framework of extremum seeking
control. Moreover, as the variable capacitor is motor-driven and generally integrated
as a subcomponent in the matching network, this means that the system itself is
asymptotically stable, or the state regulator is already achieved by the motorized
capacitors. All we need to focus on is how to generate the desired capacitance tra-
jectory for the variable capacitors to follow.

7.3 Dual Frequency Matching Network Tuning via Direct Search
Based NOESC

In this application, a particular type of NOESC approach is taken to solve the
impedance matching network tuning problem. The matching network is already
designed to achieve a fixed preset functionality for a low and high frequency
RF bias delivery [18, 20]. The matching network is well designed, such that the
crosstalk between the two frequencies is minimized. Thus, we can treat the re-
flected power minimization of two frequencies as two one-dimensional extremum
seeking control problems. The schematic diagram of this system can be found in
Fig. 7.7.

First, we need to investigate controllability of the system. In order to do so, a
manual scan of reflected power versus capacitor value is carried out to investigate
the tuning capability. A particular process condition is chosen with 4500 W low
frequency power and 1000 W high frequency power. The scan of low frequency
matching network can be found in Fig. 7.8, and the scan for high frequency matching
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Fig. 7.7 The dual frequency matching network

network can be found in Fig. 7.10. The variable capacitance is represented here as
percentage and the scan is done with 5% increment steps.

One can clearly see in Fig. 7.9 that for low frequency RF delivery, the lowest
reflected power is achieved for the capacitor CLF between 50% and 55%. For high
frequency bias, the optimized preset value for CHF is between 30% and 35%, as
can be seen in Fig. 7.11. Thus, one can conclude that for this particular process, the
matching networks are capable of tuning down the reflected power. That is, the load
impedance is well within the matching network tune space. Also, both low and high
frequency generators have frequency tuning capability, and the general settling time
of frequency tuning is about 1 second (refer to Figs. 7.9 and 7.11).

As the matching network already have well designed motor-driven vacuum ca-
pacitors, in the context of NOESC framework, the state regulator is already avail-
able. Thus, we just need to focus on the design of the optimization algorithm. As
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Fig. 7.8 Manual scan low frequency RF delivery: (a) set point; (b) reflected power; (c) forward
power; (d) low frequency tune capacitor value

the derivative signal is difficult to obtain in a this case, a direct search2 approach is
taken here instead of a more complex numerical optimization method:

1. Start with a preset capacitor set point C(0) based on existing best known value
or user input.

2. Increase or decrease the capacitor set point by a step C(k + 1) = C(k) ± �C,
wait for certain time Tw , read the reflected power Pf .

3. If none of the two capacitor set-point steps yields a reduction in the reflected
power, set �C = �C/2 and go back to Step 2.

Such a simple direct search algorithm combined with the well designed match-
ing network motorized capacitors achieve great performance in practice. In order
to simplify the control design and avoid crosstalk between the frequency tuning

2Direct search is used here as a valid optimization method for NOESC because its behavior and
properties are similar to those of derivative-free trust region methods. Moreover, since we rely on
an already existing motor controller, all stability, convergence and robustness results from Chaps. 4
and 5 directly apply here.
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Fig. 7.9 Low frequency RF bias reflected power versus matching network tune capacitor CLF

and capacitor tuning, we have included the waiting time Tw to be 2 seconds. Also,
the high frequency generator is configured in LOAD mode; that is, the generator is
in closed-loop control on the load power (the difference between forward and re-
flected power). In this manner, the generator will ensure that the load power equals
the set point. Therefore, as one can observe in Fig. 7.10, the forward power minus
the reflected power equals the set point, while this is not the case for low frequency
generator, as shown in Fig. 7.8. In general, the LOAD mode is preferred in order
to ensure consistent load power to the plasma chamber for better chamber match-
ing.

Now, we implemented the direct search algorithm to control the matching net-
work variable capacitor position for both low and high frequencies. In particular, the
same process is used, and the initial conditions are CLF(0) = CHF(0) = 20%. The
actual experimental results can be found in Figs. 7.12 and 7.13, where the optimal
capacitance for low frequency is found to be CLF = 55%, and the high frequency ca-
pacitance is CHF = 35%. These optimized values confirm the actual capacitor scans
performed previously.

The direct search based extremum seeking control software feature has been im-
plemented on more than 200 equipment installations worldwide at different fabri-
cation facilities, where different process applications have been used. This software
feature significantly reduces the process development time. And as one can see,
the chamber impedance does change over the process time (refer to Figs. 7.12(b)
and (d), where the same matching capacitor value ends up with slightly different
reflected power) and also drifts over the production time. Therefore, if one inte-
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Fig. 7.10 Manual scan high frequency RF delivery: (a) set point; (b) reflected power; (c) forward
power; (d) low frequency tune capacitor value

grated this feature into the Fab APC (Advanced Process Control) loop, it can further
improve run-to-run control performance.

There are also several other practical issues that are covered in the implementa-
tion: the reflected power is considered to be minimized if it is less than 5% of the
set point; one still prefers to choose a good start tune capacitor value such that the
process does not begin with very high reflected power that may lead to high voltage
arcing; finally, as the same ESC algorithm is applied to both matching networks, the
matching network tuning for each frequency is performed sequentially.

7.4 Dual Capacitor Matching Network Tuning via Perturbation
Based Extremum Seeking Control

In this application, a very high frequency (VHF) RF source is connected to the top
electrode of the processing chamber. Even without a matching network, the VHF
generator has a circulator inside, such that the reflected power can be absorbed
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Fig. 7.11 High frequency RF bias reflective power versus matching network tune capacitor CHF

by the generator without damage to the hardware, up to certain level. As process-
ing evolves, a matching network is indeed necessary for some applications [19].
A prototype matching network is developed in-house, with two motorized capaci-
tors (one shunt and one series) used to achieve the desired tune space. Therefore,
the extremum seeking control problem becomes a two-input (shunt and series ca-
pacitors), one-output (reflected power) problem. Sinusoidal perturbation based ex-
tremum seeking control is implemented for this problem. Refer to Fig. 7.14 for a
schematic diagram of the system.

A particular process with 2500 W power set point is tested with and without
the matching network. The actual experimental results can be found in Fig. 7.15.
One can first observe that the reflected power oscillates mainly due to the pres-
sure oscillation. The red curve in Figs. 7.15(d) and (e) (corresponding to the test
without matching network) clearly confirms that once the pressure reading is steady
the reflected power becomes flat as well, as the pressure significantly impacts the
plasma density and therefore the plasma impedance. When the chamber has the
matching network installed, the reflected power is significantly reduced, as seen in
Fig. 7.15(d). Moreover, as the load impedance is indeed different for the two pres-
sure regions (before and after 80 seconds), the resulting shunt and tune capacitor
values are different as well.

Several practical design issues also arise in this problem: the ω1 and ω2 sinu-
soidal perturbation frequencies have to be different, as it is a two-variable SPESC
[2, 10] scheme; the time scales for the servo system and the extremum seeking loop
need to be separated; finally, the initial conditions and filter parameters are impor-
tant for the transient performance.
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Fig. 7.12 Direct search based extremum seeking control for low frequency matching network:
(a) set point of 4500 W; (b) reflected power; (c) forward power; (d) low frequency tune capacitor
value

7.5 Conclusions

A study of impedance matching in semiconductor industry is presented in this chap-
ter. From an engineering design point of view, the range of the series and shunt ca-
pacitors dictate the tuning space of the system. In other words, the capacitor values
dictate the range of plasma load values that the system can support with minimum
reflected power. This tuning space covers plasma loads for low and high pressure
processes with a variety of gases of interest and for different power levels.

Due to practical industry needs, here we only focus on the matching network
design via extremum seeking control. However, the same concept can be applied
to frequency tuning. Compared with the capacitor matching network with generator
frequency tuning problem in Sect. 7.4, one would suggest that NOESC should be
used in the matching network problem of Sect. 7.3, as it consists of mechanically
adjustable components and therefore tuning is done on the level of set-point gener-
ation. As for the generator frequency tuning problem, AOESC could also be used,
since frequency tuning requires a very fast response time (down to a few micro-
seconds). Moreover, setting the right presets for the series and shunt capacitors will
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Fig. 7.13 Direct search based extremum seeking control for high frequency matching network:
(a) set point of 1000 W; (b) reflected power; (c) forward power; (d) low frequency tune capacitor
value

Fig. 7.14 The dual capacitor matching network
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Fig. 7.15 Sinusoidal perturbation based extremum seeking control for very high frequency match-
ing network: (a) set point; (b) forward power; (c) load power; (d) reflected power; (e) pressure;
(f) tune capacitor values

ensure high voltage for plasma ignition along with low reflected power while sus-
taining the plasma. The capacitor matching network generally has a wide tuning
range while the frequency tuning range is much narrower (as one does not want to
have large frequency sweeps, which could perturb the plasma). In some applica-
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tions, one could consider combining both frequency tuning and capacitor matching
network to realize impedance tuning for a wide range of process conditions.
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Chapter 8
Swarm Tracking

8.1 Introduction

The problem of coordination and control of autonomous vehicles, autonomous
robots, or agents, has been receiving an extraordinary amount of attention during
the past decade. The same is true of the study of the biological world and the appli-
cation of derived principles to engineering designs. Instead of the traditional trajec-
tory tracking problem, some researchers began to study coordinated tracking [33,
42]. Some tasks can be performed more efficiently by controlling a group of agents
in a collaborative manner. Possible applications could range from autonomous robot
assembly to unmanned air vehicles (UAVs) scout and counter insurgency. Compared
to individuals, swarms, flocks, and schools can have remarkable group-level char-
acteristics, which may allow them to perform complicated tasks efficiently.

As discussed earlier in Chap. 1, extremum seeking is first applied to source seek-
ing in [48], and a recent overview of source seeking can be found in [25]. Detailed
work on source seeking can be found in [4–6, 8, 9, 11, 13, 14, 20, 21, 28, 29, 39, 40,
49], where perturbation based design is the focus.

The swarm tracking problem consists of finding a coordinated control scheme
for a group of agents, with the objective of making them achieve and maintain some
given geometrical formation. At the same time, the agents need to seek a source of a
scalar signal or track a moving target. Thus, there is a trade-off between maintaining
formation and arriving at the final goal. Related work can be found in [3, 18, 19, 30].
Motivated by the work in [43] and [48], swarm tracking is achieved via artificial
potentials and extremum seeking control in this chapter.

Artificial potential functions have been widely used for robot navigation and con-
trol, including multi-agent coordination [12, 27, 34, 35]. A potential function is cre-
ated to contain the scalar signal to be tracked, as well as the interaction rules for the
group of agents. By minimizing the potential function, one is able to achieve source
seeking, formation control, obstacle avoidance and collision avoidance. Extremum
seeking techniques [1] are used to design the controller for each agent, and three
different extremum seeking control designs are studied here. Among these, gradient
extremum seeking is the natural extension from the work in [43]. Perturbation based
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extremum seeking has been studied for source seeking in [7, 10, 48, 49]. Numeri-
cal optimization based extremum seeking control [46] is also used here for source
seeking.

We begin this chapter with a problem statement, introducing the model for each
agent and the design block diagram in Sect. 8.2. Three different extremum seeking
control designs are presented in Sects. 8.3, 8.4 and 8.5, respectively. Section 8.6
presents a specific application of the swarming theory of Sect. 8.5 to the problem
of localizing radar leakage points via a mobile sensor network. Finally, Sect. 8.7
concludes the chapter.

8.2 Problem Statement

Consider a multi-agent system (i.e., a swarm) consisting of N individuals in n-
dimensional Euclidean space. We assume synchronous motion and no time delays.
Let xi ∈ R

n denote a column vector in n-dimensional Euclidean space, whose mean-
ing is the position of an individual agent i. Furthermore, let x	 = [x	

1 , . . . , x	
N ] ∈

R
n×N . To begin with, assume that the ith agent’s motion is governed by the follow-

ing point-mass kinematic model,

ẋi = ui, (8.1)

where ui ∈ R
n is the control input for the ith agent. We simplify the dynamics to

be kinematic in order to focus on the coordinated control design for swarm track-
ing. Later we also consider a double integrator point-mass model. For other more
realistic models such as the unicycle, techniques like phase lead compensator [48],
sliding mode control [24] or trajectory tracking can be used to extend the work here.

Furthermore, we assume there is a scalar signal Jt (x) to be tracked by the swarm-
ing agents, which has an unknown isolated minimum at xt ∈ R

n. The strength of the
scalar signal can be measured by the agent. Such signal could be a field signal gener-
ated by a mobile source xt , or an artificial potential field if tracking a moving target
and one knows its position xt , or the relative distance between agent and target. Our
purpose is to design a control law for each agent such that we can achieve swarm
tracking, i.e., source seeking, formation control, collision avoidance and obstacle
avoidance.

We consider a potential function composed of several components. First, the
inter-connection component puts a constraint on the agent, based on its neighbors’
positions, in order to maintain a group structure. This part includes functions of the
relative distance between each pair of neighbors. In addition, a tracking component
containing the scalar signal to be tracked is added in order to direct the group’s be-
havior for source seeking. This tracking component could be an artificial potential
function given the knowledge of target position, or the concentration of a chemical
source. It could even be an electromagnetic (as in Sect. 8.6), an acoustic or a ther-
mal signal. The specific form of the potential function is defined according to the
desired geometric formation. The choice of a potential function is important because
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different potentials might result in different performance even with the same control
algorithm. In particular, existence of multiple local minima in the potential function
results in only being able to guarantee local convergence to the desired formation.
Nevertheless, we show that by appropriate choice of the potential function one can
always guarantee that eventually the target will be surrounded or “enclosed” by the
tracking agents.

First, consider a potential function for agent to target interaction given by

Jat (x, xt ) =
N∑

i=1

Jit

(∥∥xi − xt

∥∥), (8.2)

where Jit is constructed based on the scalar signal Jt , and it is assumed to have a
minimum at ‖xi − xt‖ = δit of Jit . In other words, we require each agent to track xt

by a prescribed distance of δit . One can calculate such potential function based on
the Jt (x) measurement even if xt is not known. Moreover, we do not want δit to be
zero since it will result in collision of the agent with the target. Also if the agent is
modeled as a unicycle with non-collocated sensor [23, 26], we can have the sensor
position of each agent tracking the target, while the agent itself is at a distance r

away from the target, where r is the distance between the agent and sensor footprint.
A similar situation can happen in the case of air vehicles tracking a ground target,
where we might want the sensor footprint of each air vehicle focusing on the target
but avoiding collision.

Second, consider the potential function for agent to agent interaction, given by

Jaa(x) =
N−1∑

i=1

N∑

j=i+1

Jij

(∥∥xi − xj
∥∥), (8.3)

where Jij (‖xi − xj‖) is the potential between the ith and the j th agent, whose
purpose is to achieve a balance between attraction and repulsion [17]. Such poten-
tials can be obtained if one knows the relative distance between the agents, or by
measuring a possible field distribution generated by the agent.

Now, we can put the swarm tracking problem into the framework of extremum
seeking control design. Slightly abusing notation, let

y = J (x, xt )

= J
(∥∥xi − xt

∥∥,
∥∥xi − xj

∥∥), for 1 ≤ i, j ≤ N

= KatJat (x, xt ) + KaaJaa(x)

= Kat

N∑

i=1

Jit

(∥∥xi − xt

∥
∥)+ Kaa

N−1∑

i=1

N∑

j=i+1

Jij

(∥∥xi − xj
∥
∥), (8.4)

be the performance function of the system (8.1) for i = 1, . . . ,N , where Kat , Kaa

are the weights of the potential components. Our objective is to make the entire
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Fig. 8.1 Swarm tracking for N agents/vehicles

group aggregate around the target xt and track along it, possibly in a specific forma-
tion regardless of the target’s movement. A block diagram can be found in Fig. 8.1.

Keeping in mind that we have assumed the potential function will have a min-
imum at ‖xi − xt‖ = δit and ‖xi − xj‖ = δij , if the extremum seeking controller
for each agent can minimize the performance function (8.4), then we can achieve
our objective of source seeking, formation control and collision avoidance (this ob-
jective is achieved by adding a repulsive potential between the agents and obstacle
into (8.4)). This control design will be decentralized if each agent has its own per-
formance function, which will be discussed in Sects. 8.4, 8.5 and 8.6.

8.3 Gradient Based Extremum Seeking Control Design

8.3.1 Analysis

Based on [43], we present the gradient based extremum seeking control design for
each agent. First, we assume that the following conditions hold for the potential
function J :

Assumption A1 For i = 1, . . . ,N , there exist functions hit :R+ →R such that

∇xJit

(‖x‖)= xhit
(‖x‖).

Assumption A2 There exist unique distances δit at which we have

hit (δit ) = 0.
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Assumption A3 The potentials Jij (‖xi − xj‖) are symmetric and satisfy

∇xi Jij

(∥∥xi − xj
∥∥)= −∇xj Jij

(∥∥xi − xj
∥∥).

Assumption A4 For 1 ≤ i, j ≤ N there exist functions g
ij
ar : R+ →R such that

∇xJij

(‖x‖)= xg
ij
ar

(‖x‖).

Assumption A5 There exist unique distances δij at which we have

g
ij
ar

(‖x‖)
⎧
⎨

⎩

> 0, ‖x‖ > δij ,

= 0, ‖x‖ = δij ,

< 0, ‖x‖ < δij .

Potential functions satisfying Assumptions A3 to A5 are odd functions that are
attractive on distances ‖x‖ > δij and repulsive on distances ‖x‖ < δij . The term

g
ij
ar (‖x‖) determines the attraction-repulsion relationship between the individuals

and usually is of the form

g
ij
ar

(‖x‖)= g
ij
a

(‖x‖)+ g
ij
r

(‖x‖),

where g
ij
a (‖x‖) represents the attraction and g

ij
r (‖x‖) represents the repulsion. The

distance δij is the equilibrium distance at which the attraction and the repulsion
balance. That is, the potential function Jij (‖xi −xj‖) has a minimum at ‖xi −xj‖ =
δij . Later, we will see that if we can construct a potential function Jaa encoding
a desired formation of the agents, then the formation control will be realized if
such potential function is minimized. Similarly, we can set up a repulsive potential
function Jao between obstacle and agents, where in this case the potential function
is inverse proportional to the distance between obstacle and agents. By doing so, we
can achieve obstacle avoidance by minimizing Jao.

We now study some consequences of Assumptions A1 through A5, similar to the
analysis in [43]. From (8.4) we obtain

∇xi
J (x, xt ) = Kat (xi − xt )h

it
(‖xi − xt‖

)

+ Kaa

N∑

j=1,j 
=i

(xi − xj )g
ij
ar

(‖xi − xj‖
)

(8.5)

and

∇xt J (x, xt ) = −Kat

N∑

i=1

(xi − xt )h
it
(‖xi − xt‖

)
. (8.6)



160 8 Swarm Tracking

By observing the equalities in (8.5) and (8.6), notice that the equality in (8.6) can
be rewritten as

∇xt J (x, xt ) = −
N∑

i=1

∇xi
J (x, xt )

+ Kaa

N∑

i=1

N∑

j=1,j 
=i

(xi − xj )g
ij
ar

(‖xi − xj‖
)
. (8.7)

Moreover, since we have

N∑

i=1

N∑

j=1,j 
=i

(xi − xj )g
ij
ar

(‖xi − xj‖
)= 0, (8.8)

which follows from Assumption A3, we obtain

∇xt J (x, xt ) = −
N∑

i=1

∇xi
J (x, xt ). (8.9)

Now, without loss of generality, we can choose a Lyapunov candidate as V =
J (x, xt ). Then, it follows that

V̇ =
N∑

i=1

[∇xi J (x, xt )
]	

ẋi + [∇xt J (x, xt )
]	

ẋt

=
N∑

i=1

[∇xi J (x, xt )
]	(

ui − ẋt

)
,

so for the ith agent, let

ui = ẋt − ki∇xi J (x, xt ), for ki > 0. (8.10)

Then we obtain

V̇ = −
N∑

i=1

ki

∥∥∇xi J (x, xt )
∥∥2 ≤ 0.

By the LaSalle–Yoshizawa theorem [38], we can further conclude that the trajectory
of x asymptotically converges to values for which

∥∥∇xi J (x, xt )
∥∥= 0, (8.11)

∥∥∇xt J (x, xt )
∥∥= 0. (8.12)
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Then, for values of (x, xt ) satisfying (8.11) and (8.12) we have, from (8.6),

−Kat

N∑

i=1

(xi − xt )h
it
(‖xi − xt‖

)= 0.

Rearranging this equation, we obtain

N∑

i=1

xih
it
(‖xi − xt‖

)= xt

N∑

i=1

hit
(‖xi − xt‖

)
, (8.13)

which is guaranteed to be achieved as t → ∞. Equation (8.13) provides a relation of
the position of the target to the position of the agents at equilibrium and allows the
designer to choose appropriately the functions hit (‖xi − xt‖) (that is, the tracking
part of the potential function).

First, since ‖xi − xt‖ = δit for all i, note that at the desired formation we have
hit (‖xi − xt‖) = 0 for all i, and (8.13) is satisfied. In this case, agents catch up with
the target and compose the expected formation with respect to it.

Second, note that if hit (‖xi − xt‖) are chosen such that

N∑

i=1

hit
(‖xi − xt‖

)= 0

can occur (excluding the case at the desired formation), then the position of the
target xt cannot be specified (meaning that it could be anywhere in the state space).
To avoid this situation one can choose hit (‖z‖) > 0 for all z except ‖z‖ = δit . Then,
assuming that

N∑

i=1

hit
(‖xi − xt‖

) 
= 0,

we obtain

xt =
∑N

i=1 xih
it (‖xi − xt‖)

∑N
i=1 hit (‖xi − xt‖)

.

Defining

ηi = hit (‖xi − xt‖)
∑N

i=1 hit (‖xi − xt‖)
, i = 1, . . . ,N,

we can write

xt =
N∑

i=1

ηixi .
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With the choice of hit (‖z‖) ≥ 0 for all z, we see that 0 ≤ ηi ≤ 1 for all i and∑N
i=1 ηi = 1, implying that as t → ∞ we will have

xt → conv{x1, x2, . . . , xN },
where conv{x1, x2, . . . , xN } is the convex hull of the positions of the agents. In other
words, by choosing hit (‖z‖) as above one can guarantee that as t → ∞, the agents
will “surround” or “enclose” the target.

However, assuming the measurement of ẋt in the control signal (8.10) is a strong
assumption, since usually it is not possible for one to know the velocity of the
source. This is especially true since one often does not even know the source’s posi-
tion, xt . Thus, we will only assume that ‖ẋt‖ ≤ γt for some known γt > 0. Note that
this constitutes a more realistic assumption, since any moving target has a bounded
velocity. With this assumption, let ki > 0, βi > γt , and choose the controller as

ui = −ki∇xi J (x, xt ) − βi sgn
(∇xi J (x, xt )

)
, (8.14)

where sgn(·) is the signum function. Then,

V̇ =
N∑

i=1

(−ki

∥∥∇xi J (x, xt )
∥∥2 − βi

∥∥∇xi J (x, xt )
∥∥− [∇xi J (x, xt )

]	
ẋt

)

≤ −
N∑

i=1

ki

∥∥∇xi J (x, xt )
∥∥2 ≤ 0. (8.15)

We can further relax the controller design to

ui = −(ki + βi) sgn
(∇xi J (x, xt )

)
. (8.16)

Then, we obtain

V̇ =
N∑

i=1

(− (ki + βi)
∥∥∇xi J (x, xt )

∥∥− [∇xi J (x, xt )
]	

ẋt

)

≤ −
N∑

i=1

ki

∥∥∇xi J (x, xt )
∥∥≤ 0. (8.17)

Therefore, the controllers (8.14) and (8.16) again result in the agent positions xi

asymptotically enclosing the target xt from δit distance away. This result requires
the knowledge of the gradient of the scalar signal, or at least the sign of the gradient
and a bound on the target speed. Then, with the help of a switching term, the con-
trollers guarantee asymptotic tracking of the target. Intuitively, the signum function
allows for the detection of the changes in the direction of the motion of the target
and helps redirect the agent in that direction. All the three controllers (8.10), (8.14)
and (8.16) belong to the gradient based extremum seeking controller type.
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8.3.2 Kinematic Point-Mass Model Simulations

For simulation purposes, we consider a two-dimensional case where n = 2 and three
agents, so N = 3. The scalar signal is postulated as a quadratic function:

Jt (x, xt ) = ‖x − xt‖2, (8.18)

where the dynamics of the target xt satisfy

ẋt1 = 0.25,

ẋt2 = sin(0.25t). (8.19)

Then we construct the potential function

Jat (x, xt ) =
3∑

i=1

Jit

(∥∥xi − xt

∥∥),

where

Jit

(∥∥xi − xt

∥∥)= 1

2

(∥∥xi − xt

∥∥2 − δ2
it

)2

for i = 1,2,3. We can further verify that

∇xi Jit

(∥∥xi − xt

∥∥)= 2
(∥∥xi − xt

∥∥2 − δ2
it

)(
xi − xt

)= 0

if ‖xi −xt‖ = δit as assumed in Assumption A2. Moreover, we choose the potential
function between agents as

Jaa(x) =
2∑

i=1

3∑

j=2

Jij

(∥∥xi − xj
∥∥),

where

Jij

(∥∥xi − xj
∥∥)= 1

2

(∥∥xi − xj
∥∥2 − δ2

ij

)2

for i = 1,2,3. And we can also verify

∇xi Jij

(∥∥xi − xj
∥∥)= 2

(∥∥xi − xj
∥∥2 − δ2

ij

)(
xi − xj

)

and

∇xj Jij

(∥∥xi − xj
∥∥)= −2

(∥∥xi − xj
∥∥2 − δ2

ij

)(
xi − xj

)
,

which satisfies Assumption A3. Such design of potential function Jaa prescribes a
triangular formation for the agents to form with each lateral length equal to δij .

Now, the performance function becomes

y = J (x, xt ) = KatJat

(
x1, x2, x3, xt

)+ KaaJaa

(
x1, x2, x3), (8.20)
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where the weights Kat , Kaa are important in balancing the priority in source seek-
ing and formation keeping. In the simulation, we choose δit = 1, δij = √

3 for
i, j = 1,2,3, Kat = 1, Kaa = 0.1, and ki = 10, βi = 2 for i = 1,2,3. We apply
the controller (8.14) to each agent, all of which start randomly inside a ball centered
at (−1,−1) with radius 0.01, and the target is started from position [0,0]	. The
simulation time interval is [0,50] time units. The results can be found in Fig. 8.2.
The movements of the agents and the target over the entire simulation can be found
in Fig. 8.2(a), where source seeking, formation control and collision avoidance are
successfully achieved This figure shows “snapshots” of the formation at various
times between beginning and end of the simulation. The final triangular formation
(that is, at t = 50 time units) can be found in Fig. 8.2(b), where the stars denote
the center trajectory of all three agents following exactly the target trajectory, and
the circles denote the agent positions surrounding the target. Also, the performance
functions are minimized in a very short time period as seen in Fig. 8.2(c), which
shows the values of the performance functions over time.

8.3.3 Dynamic Point-Mass Model Simulations

Consider also a point-mass with second order dynamics, that is,

ẍi = ui, (8.21)

instead the kinematic equation (8.1). We can follow the controller design for a single
vehicle as in [16], where a sliding mode is used to force the sliding mode occur on
the gradient flow. The simulation results can be found in Fig. 8.3. The results shown
here follow the same format as those in Fig. 8.2.

8.4 Perturbation Based Extremum Seeking Control Design

We achieved very good simulation results by using the gradient based extremum
seeking control in Sect. 8.3. However, the controllers used there rely on the knowl-
edge of the gradient of the performance function, which is a very strong assumption.
Moreover, for complicated obstacles near the agent, it is difficult to calculate the gra-
dient even if one knows the analytical form of the potential function and the relative
distance between the agent and the obstacle. In this section, we apply perturbation
based extremum seeking control to each agent [48].

8.4.1 Analysis

Let xi = [xi
p, yi

p]	 denote the ith agent’s position in two-dimensional space, with
kinematic equations ẋi

p = ui
x , ẏi

p = ui
y . The controller is designed as
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Fig. 8.2 Swarm tracking via gradient based extremum seeking control, kinematic point-mass:
(a) trajectories of the swarm agents; (b) final formation; (c) potential functions
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Fig. 8.3 Swarm source seeking via gradient based extremum seeking control, dynamic point-
mass: (a) trajectories of the swarm vehicles; (b) final formation; (c) potential functions
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ui
x = ci

x sin(ωit)
s

s + hi

[J ] + αiωi cos(ωit), (8.22)

ui
y = −ci

y cos(ωit)
s

s + hi

[J ] + αiωi sin(ωit), (8.23)

where the notation s
s+hi

[J ] is used to represent the output of the block whose trans-

fer function is s
s+hi

and whose input is J . The constants are chosen as ci
x , ci

y , hi ,
αi > 0 for the ith agent, and the perturbation frequencies are ωi 
= ωj for i 
= j . It
is the use of the high pass filter and perturbation signal that extracts the gradient
information from the performance function measurement.

Now, consider the performance function (8.20): the first agent is only able to
influence the potential functions J1t , J12 and J13. Therefore, instead of giving each
agent the same performance function, we replace J in (8.22) with Ji for the ith
agent, where

Ji

(
xi, xt

)= KatJit

(∥∥xi − xt

∥∥)+ Kaa

3∑

j=1,j 
=i

Jij

(∥∥xi − xj
∥∥)

= Kat

2

(∥∥xi − xt

∥∥2 − δ2
it

)2 + Kaa

2

3∑

j=1,j 
=i

Jij

(∥∥xi − xj
∥∥2 − δ2

ij

)
.

(8.24)

8.4.2 Kinematic Point-Mass Model Simulations

The simulation results can be found in Fig. 8.4, where the initial conditions are the
same as in Sect. 8.3 and the format is the same as in Fig. 8.2. The parameters of the
perturbation based extremum seeking control simulation are selected as ω1 = 200,
ω2 = 215, ω3 = 230, αi = 0.15, and ci

x = ci
y = 25, i = 1,2,3. The weights of the

potential function are chosen as Kat = 1 and Kaa = 0.2. The performance function
is reduced to a neighborhood of the minimum, as we are tracking a moving target
and no exact gradient information is available. The small peaks in the performance
seen in Fig. 8.4(c) correspond to the peaks and valleys of the sinusoidal trajectory
of the target, where the agent suddenly changes direction and increases the error of
the gradient estimation. It is also important to notice that three different perturbation
frequencies are needed for three agents in a two-dimensional space, and this choice
of distinct frequencies is suggested from the stability analysis of multiple parameter
perturbation based extremum seeking control in [36].

8.4.3 Obstacle Avoidance

The main advantage of the perturbation based extremum seeking control is that
no gradient information and absolute position measurements are needed. The latter
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Fig. 8.4 Swarm tracking via perturbation based extremum seeking control, kinematic point-mass:
(a) trajectories of the swarm agents; (b) final formation; (c) potential functions
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Fig. 8.5 Potential function of a rectangular obstacle

means no GPS or self-localization is required, as long as one can obtain the po-
tentials. The former property is very appealing in incorporating new constraints or
design requirements through potential functions. For instance, we can easily incor-
porate obstacle avoidance. For example, assume there is a rectangular obstacle with
its coordinates given as [o1, o2]× [o3, o4], where [o1, o2] is the x-axis coverage and
[o3, o4] is the y-axis coverage.

We can calculate the potential between the agent xi = [xi
p, yi

p]	 and the rectan-
gular obstacle with

Jio

(
xi, o

)=
∣∣∣∣xo1 log

(
(x2

o1
+ y2

o1
)0.5 + yo1

(x2
o1

+ y2
o1

)0.5 − yo1

)
− xo1 log

(
(x2

o1
+ y2

o2
)0.5 + yo2

(x2
o1

+ y2
o2

)0.5 − yo2

)

+ xo2 log

(
(x2

o2
+ y2

o2
)0.5 + yo2

(x2
o2

+ y2
o2

)0.5 − yo2

)
− xo2 log

(
(x2

o2
+ y2

o1
)0.5 + yo1

(x2
o2

+ y2
o1

)0.5 − yo1

)∣∣∣∣,

where o = [o1, o2, o3, o4], xo1 = o1 − xi
p , xo2 = o2 − xi

p , yo1 = o3 − yi
p and yo2 =

o4 − yi
p . As an illustration, a rectangular obstacle ranging from [4,6] in the x-axis

and [8,9] in the y-axis can be found in Fig. 8.5.
Let

Jao(x, o) = J1o

(
x1, o

)+ J2o

(
x2, o

)+ J3o

(
x3, o

)
.

Then, the potential function (8.20) is augmented as

y = J
(
x, xt

)

= KatJat

(
x1, x2, x3, xt

)+ KaaJaa

(
x1, x2, x3)+ KaoJao

(
x1, x2, x3),

where Kao is the weight of the potential component generated by the obstacle. In
general, we do not know where the obstacle is; however, if the agent is equipped
for instance with a laser range finder, an infrared sensor or a visual sensor, among
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other possibilities, the relative distance to the obstacle can be found and it becomes
possible to calculate a repulsive force similar to Jio. In such cases, it is very diffi-
cult or impossible to calculate the gradient of the potential function Jio and apply
the gradient based extremum seeking control. However, we can easily incorporate
such repulsive force into the performance function and apply perturbation based
extremum seeking control, which is non-gradient based. Thus, we change the per-
formance function Ji for the ith agent to

Ji

(
xi, xt , o

)= KatJit

(∥∥xi − xt

∥∥)+ Kaa

3∑

j=1,j 
=i

Jij

(∥∥xi − xj
∥∥)+ KaoJio

(
xi, o

)
.

Now the simulation results by including the obstacle o = [4,6,8,9] can be found in
Fig. 8.6, where kao = 0.5. The obstacle is successfully avoided as seen in Fig. 8.6(b),
and now a narrow peak is observed in the potentials when the obstacle is first en-
countered, as shown in Fig. 8.6(c). Here, the same presentation format as in Fig. 8.2
is used, except that Fig. 8.6(b) shows the formation at the time corresponding to its
closest approach to the obstacle.

8.4.4 Dynamic Point-Mass Model Simulations

In the case when the vehicle is modeled by the dynamic point mass in (8.21), we
can use the perturbation based extremum seeking design in Chap. 3 (the reader is
also referred to [48] for more details).

The simulation results can be found in Fig. 8.7, where the settings of the potential
functions and initial conditions are the same as above and the presentation format is
the same as in Fig. 8.2. The parameters of the perturbation based extremum seeking
controller are ω1 = 80, ω2 = 95, ω3 = 110, αi = 0.15, and cxi

= cyi
= 35, i =

1,2,3. The zeros of the PD compensator are zxi
= −2, the poles are pxi

= −5 and
the gains are kxi

= 1 for i = 1,2,3. The weights of the potential function (8.24) are
Kat = 1 and Kaa = 0.2. The simulation results for obstacle avoidance can be found
in Fig. 8.8, where we add Kao = 0.5.

8.5 Numerical Optimization Based Extremum Seeking Control
Design

As the agent is modeled by (8.1), we rewrite the model as

ẋi = Axi + Bui,

where xi , ui ∈ R
n, A = 0 and B = [1,1, . . . ,1]	. Therefore, we can apply numer-

ical optimization based extremum seeking control [46], as discussed in Chaps. 4
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Fig. 8.6 Swarm tracking via perturbation based extremum seeking control, kinematic point-mass,
obstacle avoidance: (a) trajectories of the swarm agents; (b) obstacle avoidance; (c) potential func-
tions
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Fig. 8.7 Swarm source seeking via perturbation based extremum seeking control, dynamic point-
mass: (a) trajectories of the swarm vehicles; (b) final formation; (c) potential functions
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Fig. 8.8 Swarm source seeking via perturbation based extremum seeking control, dynamic point-
mass, obstacle avoidance: (a) trajectories of the swarm vehicles; (b) obstacle avoidance; (c) poten-
tial functions
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and 5, where the set point candidate xi
k+1 is generated by the numerical optimiza-

tion algorithm and the controller for the ith agent can be designed as

ui(t) = −B	eA	(t ik+1−t)W−1
c

(
δi
k

)[
eAδi

k x
(
t ik
)− xi

k+1

]

= − 1

δi
k

(
x
(
t ik
)− xi

k+1

)
, (8.25)

where t ik ≤ t ≤ t ik+1 and δi
k = t ik+1 − t ik . The controller (8.25) will regulate the agents

to xi
k+1 in δi

k time, or

ui = −ki

(
xi − xi

k+1

)
, ki > 0 (8.26)

which will regulate the agents to xi
k+1 asymptotically.

8.5.1 Kinematic Point-Mass Model Simulations: Target Tracking
and Formation Orientation

Here, we use direct search1 to generate the set point candidate xi
k+1 and apply the

controller (8.26) for each agent in the simulation, where the setting of the potential
functions and initial conditions are the same as in Sect. 8.3. The additional require-
ment for direct search is to have four performance output measurements in the same
time on the corner of the rectangular structure centered at the agent’s current posi-
tion, which can be realized if the agent is equipped with four sensors.

We will consider two cases here: first, similar to Sects. 8.3.2 and 8.4.2, we present
simulation results for three-agent swarm tracking using a kinematic point-mass
model, and as in Sect. 8.4.3, we also consider tracking in the presence of an ob-
stacle. Then, we augment the potential function with a term that allows us to also
control the orientation of the triangular swarm.

8.5.1.1 Swarm Tracking Without Orientation Control

The simulation results can be found in Fig. 8.9, where δk = 0.005, ki = 5, Kat = 1
and Kaa = 0.2. Other non-gradient numerical optimization based design could be
used as well [45].

The simulation results for the obstacle at o = [4,6,8,9] can be found in Fig. 8.10,
where δk = 0.005, k = 30, Kat = 1, kaa = 0.2 and kao = 0.05.

1Direct search is used here as a valid optimization method for NOESC because its behavior and
properties are similar to those of derivative-free trust region methods. Moreover, since we rely on
an asymptotic controller, all stability, convergence and robustness results from Chap. 5 directly
apply here.
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Fig. 8.9 Swarm tracking via numerical optimization based extremum seeking control, kinematic
point-mass: (a) trajectories of the swarm agents; (b) final formation; (c) potential functions
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Fig. 8.10 Swarm source seeking via numerical optimization based extremum seeking control,
kinematic point-mass, obstacle avoidance: (a) trajectories of the swarm vehicles; (b) obstacle
avoidance; (c) potential functions
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Fig. 8.11 Orientation angles
between the agents and the
target, without orientation
control

8.5.1.2 Swarm Tracking with Orientation Control

Consider the simulation results for swarm tracking of the point-mass kinematic
model shown in Fig. 8.9(a). Notice that even though the triangular formation ob-
jective is achieved, the formation itself attains a rather unpredictable orientation
with respect to a fixed frame of reference. To better illustrate this point, Fig. 8.11
shows a plot of the angles formed between the x-axis and a line joining each agent
and the target. As can be clearly seen, the angles are not constant and change wildly
as the formation goes through the peaks and valleys of the target’s motion.

In practice, one may be interested in being able to not only set the shape of
the formation, but also its attitude with respect to the target. For instance, if the
agents need to examine the target using an asymmetrical sensor (such as a camera,
or a horn-type antenna), then the orientation itself of the formation may be criti-
cal.

Here, we present a simple method to achieve orientation control, in addition to
the other objectives already met (formation control, target tracking and enclosure,
and obstacle avoidance), by adding an extra term to the potential function (8.20). In
particular, let the potential function be given by

y = J (x, xt )

= KatJat

(
x1, x2, x3, xt

)+ KaaJaa

(
x1, x2, x3)+ KarJar

(
x1, x2, x3, xt

)
,

(8.27)

where Kar is a weight used to prioritize the importance of orientation-keeping, and

Jar

(
x1, x2, x3, xt

)= 1

2

3∑

i=1

Jir (x, xt ), (8.28)
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and one can choose, for example,

Jir (x, xt ) =
[

arctan

(
yi
p − xt2

xi
p − xt1

)
− θi

]2

. (8.29)

The angles θi are desired angles between each agent and the target, and are defined
with respect to a fixed frame of coordinates. Clearly, these angles need to be chosen
to be geometrically consistent with the formation parameters in Jaa , as otherwise
the controller would be attempting to meet contradicting objectives.

In this simulation, we keep all the parameters chosen in Sect. 8.5.1.1. In addition,
we set the orientation potential weight to Kar = 150. Note that this number is signif-
icantly larger than the other weights; this is due to the different relative magnitudes
of radians (small) and distances (large). Finally, we choose the desired orientation
angles θ1 = 90◦, θ2 = −30◦ and θ3 = −150◦. As can be observed in Fig. 8.12, the
orientation angles are maintained approximately even as target tracking proceeds.

8.5.2 Dynamic Point-Mass Model Simulations

Now, consider the dynamic point-mass model (8.21) in the two-dimensional plane.
Let xi = [xi

p, yi
p, xi

v, y
i
v], where xi

p, yi
p denotes the position and xi

v , yi
v denotes the

velocity of the ith agent, respectively. Note that this time the performance is a func-
tion of the position only, thus we need to design the control ui = [ui

x, u
i
y] to regulate

the position state [xi
p, yi

p] to the set point [xi
k+1,x , x

i
k+1,y].

Let

ei
x = ki

e

(
xi
p − xi

k+1,x

)+ xi
v

and

ei
y = ki

e

(
yi
p − xi

k+1,y

)+ yi
v.

Then,

ėi
x = ki

ev
i
x + ui

x

and

ėi
y = ki

ev
i
y + ui

y.

We can design the controller for the ith agent modeled by a double integrator as

ui = [
ui

x, u
i
y

]	 = [−ki
ev

i
x − kie

i
x,−ki

ev
i
y − kie

i
y

]	
, (8.30)

where ki
e, ki > 0. The simulation results for a dynamic point mass model can be

found in Fig. 8.13, where δk = 0.01,Kat = 1,Kaa = 0.2, k1 = 10 and k = 20.
Moreover, the controller design (8.30) is robust to a bounded input disturbance

due to the damping term −kiei
x and −kiei

y . Simulation results of the obstacle avoid-
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Fig. 8.12 Swarm source
seeking via numerical
optimization based extremum
seeking control, kinematic
point-mass, orientation
control: (a) orientation angles
between the agents and the
target; (b) trajectories of the
swarm vehicles

ance case with unknown input disturbance 5 sin(0.2t) can be found in Fig. 8.14,
where δk = 0.005, Kat = 1, Kaa = 0.3, Kao = 0.05, ki

e = 10 and ki = 10 for all
i = 1,2,3. Given the weights selection, this design focuses more on collision avoid-
ance and formation control. At the same time, we still enclose the moving target
regardless of the input disturbance and more complicated dynamical model.

8.6 Application: Detection of Leakage Points Using a Mobile
Radar Sensor Network

In this chapter we have studied a variety of formation control methods using ex-
tremum seeking control. A possible application of these methods is the localization
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Fig. 8.13 Swarm source seeking via numerical optimization based extremum seeking control, dy-
namic point-mass: (a) trajectories of he swarm vehicles; (b) final formation; (c) potential functions
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Fig. 8.14 Swarm tracking via numerical optimization based extremum seeking control, dynamic
point-mass, obstacle avoidance with input disturbance: (a) trajectories of the swarm agents; (b) ob-
stacle avoidance; (c) potential functions



182 8 Swarm Tracking

Fig. 8.15 Embedded
scatterer surrounded by RF
shields, with leakage points

of RF “leakage points” using a swarm of small unmanned aerial vehicles (SUAVs).
The work this material is based on originally appeared in [44], and related concepts
have been explored in [2, 15, 31, 32, 37].

8.6.1 Problem Statement

The main idea is illustrated in Fig. 8.15, where an “embedded scatterer” can
be seen in the center, surrounded by three metal shields, with three “holes,” or
leakage points, between them. The nature of the scatterer is not known, and the
objective is to locate the leakage points using a collaboration between a group
of SUAVs. Each SUAV is equipped with an active radar sensor, whose mea-
surements are used to help guide the SUAV to the vicinity of a signal leakage
point.

The number of leakage points and their locations are not known in advance,
and thus it is conceivable that in some conditions, some leakage points may not be
found, while others may be found by more than one SUAV. In order to maximize
the chances of finding all points and minimizing the likelihood of more than two
vehicles finding the same point, we will use the general potential function approach
described in Sect. 8.2, where the radar measurements obtained by each SUAV will
be directly used as part of the potential function.

Because the part of the potential function derived from the radar measurements
is completely unknown, and highly noisy, it becomes unfeasible to use a GESC
approach, as in Sect. 8.3, since it is impossible to construct an analytical expression
of the gradient. In the following, we investigate the use of NOESC to solve the
problem of leakage point location, by extending the simulations from Sect. 8.5.
Since the potential function is not expected to be smooth, we will use direct search
as the numerical optimizer.
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Fig. 8.16 Geometry used for
electromagnetic simulations

8.6.2 RF Signal Synthesis for Multi-SUAV Geometry

In order to proceed with this application, radar signals need to be synthesized for a
notional set of SUAV geometries via electromagnetic simulation.

Figure 8.16 illustrates the geometry used to conduct electromagnetic simula-
tions of the multi-SUAV example depicted in Fig. 8.15. Electromagnetic simula-
tions for purposes of this investigation were conducted using the software package
FEKO [22]. FEKO offers several options for performing electromagnetic simula-
tions, including a method-of-moments code (MoM), a physical optics code (PO),
and hybridized versions of these two codes. We selected the PO code due to time
constraints and the need for computational efficiency. In order to simulate scatter-
ing from the perfect electric conductors (PEC) within the geometry of Fig. 8.16,
consider the surface scattering integral

Es = kη0

4

∫ ∫
Js

(�r ′)g
(�r, �r ′)dS′. (8.31)

In (8.31), Js is the surface current density on the PEC materials within our sim-
ulated environment, �r ′ represents localized coordinates on the surface of the PEC
scatterers, �r represents field evaluation coordinates (i.e. the synthesized received
waveform), η0 is the free-space impedance, k is the free-space wavenumber, and g

is the free-space Green’s function given by

g(�r, �r ′) = exp(jkR)

4πR
,

where R is the distance. The PO or Kirchhoff approximation for (8.31) is

Js = n̂ × (
Hi + Hs

)≈ 2n̂ × Hi. (8.32)

Equation (8.32) can greatly simplify the numerical computations (i.e., it allows
us to justify using a PO code) and implies that the surface magnetic field, Hs , is ap-
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proximately equal to the incident magnetic field, Hi from the SUAV source. Meet-
ing this surface boundary condition requirement motivates the selection of relatively
large (or smooth) structures in relation to the wavelengths for the radar waveforms
that we select for our multi-platform SUAV simulation.

In order to continue generating the parameters and pre-conditions for this simu-
lation set, we selected a design simulation frequency for each of the three notional
radars on the three SUAV platforms of 2 GHz. This frequency corresponds to a
wavelength of 15 cm at the selected center frequency of 2 GHz. We also selected
a bandwidth of 100 MHz to simulate each of the three SUAV radars. For our case,
this corresponds to 100 frequency points from 1.95 to 2.05 GHz. Next, we select
the PEC structures for our scattering environment to be relatively large in relation to
our characteristic wavelength of 15 cm. Considering this constraint/approximation,
we selected dimensions for the cylindrical scatterer at the center of the simula-
tion space in Fig. 8.16 as 2 meters in height and 1 meter in diameter. The three
shields, used to define the leakage points, each have a height of three meters. The
“holes” or leakage points between the three shields are 25.5 degrees each, and the
radius from the center of the cylinder to the boundary of any given shield is 3 me-
ters.

Considering these structural dimensions, along with the physical constraints for
accurate PO simulation, we selected a simulation grid size of one-third wavelength,
or 5 cm. This selection was partially justified by the fact that all the structures in
our simulation space are smooth, and all the structures along with all the other gaps
between structures are large compared to 5 cm. In order to verify the validity of this
approach, we produced several sample simulations at one-sixth the wavelength for
a grad spacing and compared outputs. The resulting outputs from two initial sample
runs were identical to within over a 95 percent accuracy level.

After selecting the above-mentioned simulation parameters, we conducted a set
of simulations for the PEC based scattering environment of Fig. 8.16 with the FEKO
PO code as a function of azimuth angle and elevation angle. We simulated scattering
output corresponding to 100 frequency points, from 1.95 to 2.05 GHz for a series of
spatial points within the simulation space, where we varied the elevation angle from
30 degrees to 3 degrees at three degree increments, and the azimuth angle from 0 to
120 degrees at 1 degree increments. We generated 360 degrees of simulation data in
azimuth due to the symmetries within our simulation space. After generating this set
of synthetic data, we ported these data into a MATLAB workspace and conditioned
the data to simulate scattering versus range and azimuth, by applying the appropriate
link budget based terms for propagation loss due to 1/R4 terms from the basic radar
range equation. Thus, via this conversion from spherical to cylindrical coordinates,
effectively we can assume to have data in terms of azimuth (denoted by φ) and range
(denoted by R).

All SUAV platform altitudes are selected at 3 meters (across all azimuth and
elevation simulation points) for these signal conditioning computations. While the
resulting signal simulation is relatively coarsely spaced in terms of the spatial in-
crements between neighboring points, we have a large enough density of points to
meet the basic objectives of our investigation.
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8.6.3 NOESC for Leakage Point Localization

The key element that allows us to use the general swarming theory described in this
chapter to solve this particular problem is a suitable choice of potential function. In
what follows, we describe the potential function by decomposing it into its motion
and avoidance components (which are similar to those used in the examples we
have already seen), and a new component specific to this problem that is based on
the radar measurements performed by each SUAV.

More specifically, let the potential function for the ith vehicle be given by

Ji(x, xt ) = KsJis

(
xi, xt

)+ KaaJia(x) + KrJir

(
xi
)
, (8.33)

where Jis is a motion-control component, Jia is an inter-vehicle avoidance compo-
nent, and Jir is a term computed directly from the radar measurements. The cor-
responding weights Ks , Kaa and Kr allow the designer to balance the behaviors
encoded by each term in (8.33) (we choose them equal for all vehicles for simplic-
ity). Note that here each vehicle has its own potential function, independent of the
other vehicles—thus, this control scheme can easily be implemented in a decentral-
ized fashion. Of course the inter-vehicle distances are required to compute Jia(x),
but in practice these can be obtained by each individual vehicle via the use of a
range finder, if inter-vehicle communication is not desired.

8.6.3.1 Motion and Avoidance Potentials

In this application, we make the simplifying assumption that the location of the
central cylindrical scatterer in Fig. 8.16 is at least approximately known. Also, we
assume some initial estimates for the distance between the metal shields and the
cylinder. With these assumptions, we are able to direct the SUAVs to move in the
general direction of the embedded scatterer, but without approaching it so much that
a collision could take place.

With these assumptions in mind, let the motion-control component of the poten-
tial function for the ith vehicle be given by

Jis

(
xi, xt

)= [(
xi
p − xt1

)2 + (
yi
p − xt2

)2 − δ2
t

]2
, (8.34)

where xt is the known location of the central cylinder. The potential (8.34) compels
the ith SUAV to move toward the target xt while getting no closer than a distance δt

(chosen to be the same for all SUAVs, for simplicity).
As the SUAVs explore the area around the target looking for radar leakage points,

it is imperative to prevent them from colliding with each other. Thus, we define the
inter-vehicle collision avoidance potential for the ith vehicle as

Jia(x) =
N∑

j=1,j 
=i

Jij

(∥∥xi − xj
∥∥), (8.35)
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where

Jij

(∥∥xi − xj
∥∥)= 1

‖xi − xj‖4
. (8.36)

The reason for the choice (8.36) for inter-vehicle collision avoidance is that this
function has very small magnitude for large distances—in practice, it has a negligi-
ble effect as long as the vehicles are in no danger of colliding. But the magnitude of
(8.36) increases rapidly as the distance decreases, and it will quickly become larger
than the other terms, a necessary condition if collision is to be avoided. The potential
(8.36) is equal to 1 when ‖xi − xj‖ = 1 meter, thus defining a radius of action. This
radius can be adjusted as desired via a suitable weight of the denominator of (8.36).

8.6.3.2 Radar Measurement Potential

The most important part of the potential function formulation for this problem is the
term related to radar measurements. For the ith SUAV, let the function Fir(f,φ,R)

denote the measurements obtained from performing a frequency scan (from 1.95 to
2.05 GHz) with a single radar antenna, where f is the frequency, and the SUAV
the antenna is mounted on is located at azimuth φ and range R with respect to the
embedded scatterer. Let F−1 denote the inverse Fourier transform. Then, let

fir (t, φ,R) = F−1{Fir (f,φ,R)
}
,

and compute

f̄ir (φ,R) = max
t

fir (t, φ,R). (8.37)

Equation (8.37) converts the raw synthetic data from the frequency, azimuth, and
range domain into the time domain via inverse Fourier-transforming each point-by-
point frequency slice into a synthesized temporal domain and then extracting the
maximum value from each temporal slice of data. This operation transforms the raw
data from a basic three-dimensional simulation space into a two-dimensional array
of maximum values as a function of azimuth and range.

Next, let Hφ(·,w) denote a w-element sliding low-pass filtering operation across
azimuth, and

f̄irLP
(φ,R) = Hφ

(
f̄ir (φ,R),w

)
. (8.38)

Equation (8.38) has the effect of generating a smoothed RF data array with relatively
larger azimuth-dependent scattering trends from the shield structures and relatively
smaller azimuth-dependent scattering trends from within the leakage points.

Note that (8.38) assumes the ability to perform a filtering operation over a w-
window of azimuth angles (at 1 degree increments, due to the simulation conditions
described in Sect. 8.6.2). In practice, this means that each SUAV would need to per-
form w frequency scans at w contiguous azimuth angles. This is not an unreasonable
assumption, as all it implies is a delay proportional to the size w of the window in
order to be able to compute the value of the potential function.
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The final step in the computation of the potential again makes use of the sliding
w-window, where we let

Jir (φ,R) =
[

max
φ−w≤φ≤φw

(
f̄irLP

(φ,R)
)− min

φ−w≤φ≤φw

(
f̄irLP

(φ,R)
)]2

(8.39)

denote the value of the radar-related potential function, evaluated at cylindrical co-
ordinates (φ,R) with respect to the center of the embedded scatterer. The max
and min operations are performed on the azimuth interval φ−w ≤ φ ≤ φw , where
φ−w and φw are the lower and upper limit, respectively, of the w-sized sliding win-
dow centered on φ. Clearly, (8.39) can be evaluated at any rectangular coordinate
xi = [xi

p, yi
p]	 of the SUAV via a suitable coordinate transformation. Thus, us-

ing a slight abuse of notation, we will write (8.39) interchangeably as Jir (φ,R)

or Jir (x
i).

8.6.4 Results

In order to better visualize what the potential (8.39) does and the effect of the sliding
window size, consider Fig. 8.17, where (8.39) is plotted for ten different values of
range R and 0◦ ≤ φ < 360◦, with different choices for window size w. As one
could expect, the larger w is, the more clearly the leakage points can be detected,
with fewer local minima in Jir .

In the simulations below, we present results for w = 10 and w = 4, for com-
parison purposes. We use the kinematic model (8.1) to represent the SUAVs (this
is clearly a great simplification with respect to a real application, but we do it so
that we can focus on the potential function choice), together with controller (8.26).
The simulation parameters for NOESC are Ks = 1, Kaa = 5 × 108, Kr = 0.001,
ki = 0.1, δk = 10 seconds, and we perform all simulations for 1500 seconds, with
N = 3 (that is, we use three vehicles).

Figure 8.18 shows the first simulation, where the window size is w = 10. In
Fig. 8.18(a) one can see the paths taken by the vehicles, whose initial conditions
are marked next to each vehicle’s label. The scattering cylinder is located on co-
ordinate [15,25]	, and the surrounding metal shields are also shown in red. Fi-
nally, a scaled version of (8.39) is shown for all vehicles, for illustration pur-
poses. The color of the plot of (8.39) matches the color of the trace of each ve-
hicle.

Figure 8.18(b) shows plots of the individual potential functions for each vehi-
cle, weighted by their respective constants in order to compare the relative scales.
Note that the inter-vehicle collision avoidance terms increase, as expected, as the
vehicles start to approach each other. Figure 8.18(c) shows an aggregation of the
potentials, where Js = ∑

i Jis , Jaa = ∑
i Jia and Jr = ∑

i Jir . The aggregates are
again weighted by their corresponding constants, thus facilitating a comparison of
the relative effect of each term as the vehicles approach the target.
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Fig. 8.17 Radar potential (8.39) for ten different radii and varying window size: (a) w = 10;
(b) w = 7; (c) w = 4; (d) w = 1

For the initial vehicle positions chosen in the simulation of Fig. 8.18 we see that
the three leakage points are found. The same is true in Fig. 8.19, where now w = 4
but the same vehicle initial positions are chosen.

Figures 8.20 and 8.21 present a different scenario, where w = 10 in the first case
and w = 4 in the second. Here, when the larger w = 10 window is used, the three
leakage points are again found; but when w = 4, we observe vehicles 1 and 3 getting
stuck in local minima of J1r and J3r , respectively.

The last scenario is shown in Fig. 8.22, where only the w = 10 case is presented.
For this initial vehicle positions we see that only two leakage points are found. All
vehicles are simply too far from the minimum of the third leakage point, and are
unable to locate it. A case like this indicates that, in a practical application of this
scheme, the designer may want to augment the controller with some logic that, for
instance, makes decisions to send a vehicle to an entirely different area based on
relative values of Jir when steady-state has been reached.
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Fig. 8.18 Leakage point localization using NOESC with w = 10: (a) vehicle trajectories; (b) each
vehicle’s potential functions; (c) aggregated potentials
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Fig. 8.19 Leakage point localization using NOESC with w = 4: (a) vehicle trajectories; (b) each
vehicle’s potential functions; (c) aggregated potentials
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Fig. 8.20 Leakage point localization using NOESC with w = 10: (a) vehicle trajectories; (b) each
vehicle’s potential functions; (c) aggregated potentials



192 8 Swarm Tracking

Fig. 8.21 Leakage point
localization using NOESC
with w = 4: (a) vehicle
trajectories; (b) each vehicle’s
potential functions;
(c) aggregated potentials
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Fig. 8.22 Leakage point localization using NOESC with w = 10: (a) vehicle trajectories; (b) each
vehicle’s potential functions; (c) aggregated potentials
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8.7 Concluding Remarks

In this chapter, we present three swarm tracking designs for a group of agents via
artificial potential and extremum seeking control. All three extremum seeking con-
trol methods achieve source seeking, formation control and collision avoidance, and
all the designs can be decentralized if each agent controller is based on its own per-
formance function. The gradient based extremum seeking control design obtains the
best performance based on its requirement of gradient information, which is equiv-
alent to knowing the target position. It can be used to avoid obstacles as long as we
can calculate the gradient field of the potential between the obstacle and the agents.
However, it is generally impossible for irregular and unknown obstacles. The pertur-
bation based and numerical optimization based designs both achieve source seeking,
formation control, and collision avoidance with good performance. The obstacle
avoidance is also easy to realize via the incorporation of additional potential mea-
surements between the obstacle and the agents due to the non-gradient extremum
seeking ability. And such designing allows for unknown and irregular obstacle as
long as one can obtain the potential value via sensor measurements.

The non-gradient numerical optimization based extremum seeking design may
require more sensor information as we use direct search in this chapter (trust region
methods could also be used), and the results are local since the numerical optimiza-
tion algorithm only provides local convergence. Using recent advances in perturba-
tion based extremum seeking design, one may be able to achieve better tracking per-
formance by jumping over certain local minima by carefully design the amplitude
of perturbation signal [41]. The extension of perturbation based extremum seek-
ing control design to more complicated vehicle dynamics is not straightforward as
shown in [7–11, 20, 48, 49], and additional robust design issues are not system-
atically addressed. The numerical optimization based design is relatively straight-
forward to fit for a more general model of autonomous vehicle, and the robust and
adaptive design techniques for numerical optimization based extremum seeking pro-
vide large space to accommodate input disturbance, and unmodeled plant dynam-
ics [47].

By observing the simulation results, we found that the control gain of the per-
turbation based design tends to be high due to the tracking of the moving target.
Moreover, something similar occurs for the numerical optimization based design
when one desires to improve tracking speed by reducing the regulation time, which
also means an increase of the control gain. Thus, we need to have an estimation
of the velocity of the target to choose a suitable regulation time δk . In the obstacle
avoidance case, unlike the continuous optimization running in the gradient based or
perturbation based design, the numerical optimization based design does not guar-
antee that the agent will avoid the obstacle during the transient due to the fact that
no potential force is fed back in the regulation period.

Finally, Sect. 8.6 presents a specific application of the general swarming theory
described in this chapter. Here, we show how a mobile sensor network can be pro-
grammed to localize radar leakage points in a radar scattering environment. The key
to achieving this result is in the design of an appropriate potential function that is
directly derived from the radar sensor measurements.
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20. Ghods, N., Krstić, M.: Speed regulation in steering-based source seeking. Automatica 46,
452–459 (2010)
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