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Preface

The renewable energy penetration rate to the power grid is increasing rapidly now-
a-days. Wind, solar, biogas/biomass, tidal, geothermal, etc. are considered as the
renewable sources of energy and among those the wind is playing the major role in
world’s energy market along with conventional sources of energy. The wind
energy sector has already reached a matured stage due the contributions from
many engineering and science disciplines in the last few decades, mainly from
mechanical, electrical, electronic, computer, and aerospace. Each discipline has its
own beauty and the combined efforts from scientists from different disciplines are
the secret of the success of wind industry.

In this book, the present future development schemes of wind turbine generator
systems are depicted based on the contribution from many renowned scientists and
engineers from different disciplines. A wide verity of research results are merged
together to make this book useful for students and researchers.

The chapters of the book are organized into three parts. In part I, wind energy
conversion systems using different types of wind generator including necessary
control schemes, are presented. Efficiency analysis of commercially available wind
energy conversion systems, large scale wind generator, using superconducting
material and high efficient power converter technology are the key features of this
section. Part II is focused on several important issues for wind industry and
transmission system operators. Grid interfacing issues, grid code, lightning strike
and protection, use of energy storage options are highlighted in this section. And in
the part III, the focus is given only to offshore wind power technology. Offshore
wind speed observation from the space, HVDC based transmission scheme to
interconnect offshore wind farm into onshore grid, hybrid offshore wind farms and
marine current farms are the key issues discussed in this section. A general
overview and essence of the chapters can be obtained from Chap.1 of the book.

Abu Dhabi, 31 March 2011 S. M. Muyeen
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Chapter 1
Introduction

S. M. Muyeen

Abstract In this chapter, first, the global wind power scenario is depicted
followed by the market forecasting upto the year 2030. Then the current technology
and the future trend of wind energy conversion system are discussed where the
development of wind generator, blade designing, lightning protection, installation,
commissioning, operation and maintenance of wind turbine generator unit are
briefly stated. Some important issues such as variability and predictability of wind
power, energy storage options and grid interfacing techniques are discussed as well.
Prime offshore wind farm technology issues in terms of feasibility study, bulk
power transmission scheme are discussed in detail. Finally, the highlights of all the
chapters are given from where the flavor of the book can be obtained at a glance.

1.1 Global Wind Power Scenario

Wind energy is becoming one of the mainstream power sources in many countries
around the world. According to Global Wind Energy Council (GWEC) statistics,
global wind power installations increased by 35.8 GW in 2010, bringing the total
installed wind energy capacity upto 194.4 GW, a 22.5% increase on the 158.7 GW
installed at the end of 2009. GWEC is one of the few organizations doing an
excellent job by broadcasting and forecasting regional wind power development
throughout the world. In the following section, the present wind power installation
scenario at the end of 2010 and some future predictions are demonstrated in light
of GWEC reports [1, 2].
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The regional wind power installations in 2010 are shown in Fig. 1.1 where the wind
power statistics of 2009 are available as well. The installation scenarios of wind
energy conversion systems of the world’s top 10 countries in 2009 and 2010 are shown
in Figs. 1.2 and 1.3, respectively. One important message obvious from Figs. 1.2
and1.3 is that wind power is spreading in other countries of the world along with the
top ten countries which are already in good pace in installing new wind turbines.
The global cumulative installed capacity from 1996 to 2010, the global annual
installed capacity from 1996 to 2010, and the annual installed capacity by region
from 2003 to 2010 scenarios are shown in Figs. 1.4, 1.5 and 1.6. Figure 1.4 shows an
interrupted growth rate due to the worldwide economic crisis in the recent years.

1.1.1 Asia

The growth in Asian markets has been breathtaking, as more than 50% of the
world’s wind energy in 2010 was installed in Asia and it is the 3rd year in a row
where Asia is leading the regional market on the globe. China was the world’s
largest market in 2010, adding a staggering 16.5 GW of new capacity, and slipping
past the USA to become the world’s leading wind power country. The Chinese
market more than doubled its capacity from 12 GW in 2008 to 25.8 GW in 2009
and added 16.5 MW in 2010 to reach 42.2 GW at the end of 2010 [1]. The
planning, development and construction for the “Wind Base” programme, which
aims to build 138 GW of wind capacity in eight Chinese provinces, is well
underway. It is expected that in its twelfth Five-Year Plan, which is expected to be
adopted in March 2011, the Chinese government will increase its official target for
wind power development to 200 GW by 2020.

Wind power market in India is now back on track after a few years of slow
growth and witnessed significant growth in 2010. It comes in third behind China and
the USA in terms of new installed capacity during 2010 at 2,139 MW, taking the
total capacity upto 13.1 GW. The states with the highest wind power concentration
are Tamil Nadu, Maharashtra, Gujarat, Rajasthan, Karnataka, Madhya Pradesh and
Andhra Pradesh. In 2010 the official wind power potential estimates for India were
revised upwards from 45 to 49.1 GW by the Centre for Wind Energy Technology
(C-WET). However, the estimations of various industry associations and wind
power producers are more optimistic, citing a potential in the range of 65-100 GW.

Other Asian countries with new capacity additions in 2010 include Japan
(221 MW, for a total of 2.3 GW), South Korea (31 MW for a total of 379 MW)
and Taiwan (83 MW for a total of 519 MW).

1.1.2 North America

According to American Wind Energy Association (AWEA) statistics the U.S.
wind energy industry installed 5,115 MW in 2010. This is barely half of 2009s
record pace, but the fourth quarter was strong, showing new momentum for 2011
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GLOBAL INSTALLED WIND POWER CAPACITY (MW )- REGIONAL DISTRIBUTION
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Fig. 1.1 Regional distribution of global installed wind power capacity in MW (Source: GWEC)

(Fig. 1.7). Further wind projects are expected to start up in time to meet the new
construction deadline at the end of 2011 for the Section 1603 Investment Tax
Credit, which Congress recently extended by a year. Wind is increasingly
appreciated for being cost-competitive with natural gas, which has helped the U.S.
industry weather this latest boom-bust cycle.

Utilities are moving to lock in more wind power at long-term low rates. The
nationwide capacity now totals 40,180 MW, an increase in capacity of 15% over
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Fig. 1.2 Installation scenario for the top 10 countries in 2009 (Source: GWEC)

the start of 2010. Wind power installation by each state at the end of 2010 is shown
in Fig. 1.8. Texas, the leading wind power state in America for several years
running, achieved a major milestone by surging past the 10,000 MW mark for total
installations, with the addition of 680 MW in 2010. Texas achieved the mark
thanks to aggressive pursuit of renewable energy and a renewable electricity
standard passed in 1999 and strengthened in 2005. On average, wind now gen-
erates 7.8% of the electricity in the Electric Reliability Council of Texas (ER-
COT), peaking as high as 25%. Other states active in pursuing targets for
renewable energy last year were Illinois (498 MW added), California (455 MW),
South Dakota (396 MW) and Minnesota (396 MW). Five more states doubled or
more than doubled their wind power capacity in 2010. Delaware and Maryland
both added their first utility-scale wind turbines in 2010. A total of 38 states now
have utility-scale wind projects, and 14 of them have now installed more than
1,000 MW of wind power [3].

Canada’s wind power market was also down in 2010 compared to the previous
year, but it was still the second best year ever. A total of 690 MW of new wind
capacity came online, compared to 950 MW in 2009, taking the total capacity to
more than 4,000 MW. Ontario leads Canada’s wind energy development with
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Fig. 1.3 Installation scenario for the top 10 countries in 2010 (Source: GWEC)
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Fig. 1.4 Global cumulative installed capacity 1996-2010 (Source: GWEC)

1.5 GW of installed wind capacity. Other leading wind energy provinces include
Quebec (806 MW) and Alberta (663 MW).

1.1.3 Europe

During 2010, 9,883 MW of wind power was installed across Europe, with
European Union countries accounting for 9,259 MW of the total. This represents a
decrease in the EU’s annual wind power installations of 10% compared to 2009.
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Fig. 1.5 Global annual installed capacity 1996-2010 (Source: GWEC)
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Fig. 1.7 U.S. annual and quarterly wind installations from 2000 to 2010 (Source: AWEA)



1 Introduction 7

< 100 MW

9100 - 1,000 MW
~ . I 1,000 - 2,000 MW
L\ > 10000 MW

Cumulative Utility-Scale Wind Power
Through 2010 for U.S.: 40,180 MW

Fig. 1.8 State-wise wind installations at the end of 2010 (Source: AWEA)

Of the 9,259 MW installed in the EU, 8,377 MW were installed onshore and 883
offshore. This means that in 2010, the annual onshore market decreased by over
13% compared to the previous year, while the annual offshore market grew by
51%, and accounted for 9.5% of all capacity additions.

In terms of annual installations, Spain was the largest market in 2010, installing
1,516 MW, followed by Germany with 1,493 MW. France was the only other
country to install over 1 GW (1,086 MW), followed by the UK (962 MW), Italy
(948 MW), Sweden (603 MW), Romania (448 MW), Poland (382 MW), Portugal
(345 MW) and Belgium (350 MW). For the first time, two new EU Member States
were among the top ten largest annual markets [1].

1.1.4 Latin America

Brazil and Mexico are the leading countries in Latin America in wind power gen-
eration as can be seen from the GWEC report [1]. In 2010, Brazil added 326 MW of
new capacity, slightly more than in 2009, and is now host to 931 MW of wind power.
Mexico’s installed wind capacity more than doubled for the second year in a row,
with 316 MW of new capacity added to the existing 202 MW operating at the end of
2009. The total installed wind power capacity now amounts to 519 MW.

1.1.5 Pacific Region

At the end of 2010, 1,880 MW of wind capacity was installed in Australia, an
increase of 167 MW from 2009. There are now 52 operating wind farms in the
country, mostly located in South Australia (907 MW) and Victoria (428 MW).
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Fig. 1.9 Market forecast for 2010-2015 (Source: GWEC)

1.1.6 Africa and Middle East

In North Africa, the expansion of wind power continues in Morocco, Egypt and
Tunisia. Egypt not only saw the largest addition of new capacity in 2010 (120 MW),
bringing the total upto 550 MW but also continues to lead the region. Morocco
comes in a distant second with a cumulative capacity of 286, 30 MW of which was
added in 2010. Tunisia added 60 MW of new capacity in 2010, taking the total to
114 MW.

1.2 Market Forecast

GWEC predicts that at the end of 2015, global wind capacity will stand at
449 GW, up from 194 GW at the end of 2010 [1]. During 2015, 60.5 GW of new
capacity will be added to the global total, compared to 35.8 GW in 2010. These are
shown in Fig. 1.9. The annual growth rates during this period will average 18.2%
in terms of total installed capacity, and 11.1% for annual market growth.
GWEC also estimates that Asia will remain the fastest growing market in the
world, driven primarily by China, which is set to continue the rapid upscaling of its
wind capacity and hold its position as the world’s largest annual and cumulative
market. For Asia as a whole, the annual market is expected to increase from
19 GW in 2010 to 26 GW in 2015, which would translate into a total of 116 GW
of new capacity to be added over this period—far more than in any other region.
In 2013, Asia is expected to overtake Europe as the region with the largest total
installed capacity, and it will reach a cumulative wind power generation capacity
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Fig. 1.11 Regional cumulative market forecast for 2010-2015 (Source: GWEC)

of 174.6 GW by 2015. Annual and cumulative market forecasting by region from
2010 to 2015 are shown in Figs. 1.10 and 1.11, respectively.

In [2], GWEC presents three types of scenarios for wind power forecasting. The
first is ‘Reference scenario’ based on the projections in the 2009 World Energy
Outlook from the International Energy Agency (IEA). This takes into account not
only existing policies and measures, but includes assumptions such as continuing
electricity and gas market reform, the liberalization of cross-border energy trade
and recent policies aimed at combating pollution. Second, the ‘Moderate scenario’
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Fig. 1.12 Global cumulative market forecast in terms of reference, moderate and advanced
scenarios (Source: GWEC)

takes into account all policy measures to support renewable energy either already
enacted or in the planning stages around the world. It also assumes that the targets
set by many countries for either renewables, emissions reductions and/or wind
energy are successfully implemented, as well as the modest implementation of
new policies aimed at pollution and carbon emission reduction, and increased
energy security. It also takes into account environmental and energy policy
measures that were part of many government economic stimulus packages
implemented since late 2008. The third is the most ambitious, the ‘Advanced
scenario’ which examines the extent to which this industry could grow in a best
case ‘wind energy vision’. The assumption here is a clear and unambiguous
commitment to renewable energy as per the industry’s recommendations, along
with the political will necessary to carry it forward.

Wind power forecasting upto 2030 in forms of cumulative and regional
breakdown are shown in Figs. 1.12 and 1.13, respectively, based on the three
aforementioned scenarios.

1.3 Technological Aspects—Present and Future

Though wind energy conversion system has reached to a mature stage it is still
going through a continuous development program by researcher and industry
peoples from different disciplines for the improvement in both component and
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system level. Few of the technical issues in terms of present and future develop-
ment of this technology are discussed in the following sections.

1.3.1 Wind Turbine Generator Unit

Wind turbine manufacturers are trying to incorporate the recent technology in drive
train layout, turbine blade design and structural improvement to reduce the total mass
and net cost and to increase energy extraction efficiency and lifetime as well. Gearbox
is one of the components that causes the downtime of wind turbine generator systems
the most, and therefore, gearless or one or two gearing stage with multi-pole generator
based scheme is going to be a popular trend in the wind industry. Elimination of
carbon fibre reinforcement from turbine blade might be a good attempt which is under
consideration by blade manufacturers. Lightning protection scheme including eddy
current loss minimization should be focused more in future blade designing. This is
because the lightning strike in one wind turbine may not only hamper wind power
extracting from that unit, but the nearby units as well.

At the generator end, although the doubly fed induction generator is dominating
the wind industry, permanent magnet synchronous generators may play a vital role
in the near future due to the flexibility of gearless operation as mentioned earlier.
The size of the wind generator can be reduced significantly by using supercon-
ducting material, where the research focus can be targeted, especially when we are
thinking about a wind turbine generator system of more than 5 MW.

1.3.2 Power Electronic Converter Technology

The issue of energy conversion from wind power nowadays involves the presence
of power electronic devices. In a power electronic inverter and converter the
commonly used devices are the diode, thyristor, gate turn-on thyristor (GTO) or
insulated gate turn-on thyristor (IGBT) and in some cases the integrated gate-
commutated thyristor (IGCT). The conduction and switching losses in these device
modules have been reduced greatly and therefore the losses in high power con-
verters/inverters have also reduced significantly. As a result, the full rating
inverter/converter-based wind energy conversion system using permanent magnet
synchronous generator is becoming popular. The same reason is behind the pop-
ularity of HVDC-based offshore wind farms. However, the wind power industry
is looking forward to further loss reduction of high power converters and the
discovery of a silicon carbide (SiC) power switch has added extra pace in this
development.

Another important consideration is the reliability of the megawatt class wind
energy conversion system using full or partial rated frequency converter. Loss of
the frequency converter results in loss of total generation and operation of
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frequency converter at low power due to low wind speed may result in higher loss.
Considering these issues the parallel operation of the frequency converter might be
a feasible option which GAMESA has already implemented successfully, though
more research is required for overall control strategy including fault ride-through
characteristics of multiple units.

1.3.3 Offshore Wind Farm

In the recent years offshore wind farms show the most prominent market opportuni-
ties, since they are likely to offer comparatively higher productivity than projects
based on onshore wind turbines, due to the higher speed of offshore wind. It is
expected that while the average wind speed on the shore is 7 m/s, offshore speed
ranges between 9 and 10 m/s. The average size of the offshore wind farm is increasing
e.g., the average offshore wind farm size in Europe in 2010 exceeds 150 MW [4],
therefore, the total accumulation will be on a big scale. Many large-scale offshore
wind farms are under construction and many more are in the planning stage.

Numerous technological challenges exist for successful installation, commis-
sioning and operation of offshore wind farms. The average distance from the shore
is increasing compared to previous years. As per the EWEA report [4], the average
distance from the shore increased in 2010 by 12.7-27.1 km, substantially less,
however, than the average of 35.7 km for projects currently under construction.
As a consequence, the average water depth is increasing, e.g., Average water depth
in 2010 was 17.4 m, a 5.2 m increase from 2009, with projects under construction
in water depth averaging 25.5 m. These raise the issues of foundations, installation
methods, bulk power transmission system, etc.

The preferred foundation type for the offshore project is likely to be a multi-
member design such as tripod, tripile or jacket because of the suitability of deep
water. In general it is observed that at the present 2-3 MW class wind turbine
generator units are dominating in offshore wind farms, however, the 5 MW class is
going to be more popular in the near future. It is not an easy task to install large
wind turbines in the sea where many technical challenges are needed to be
overcome, especially in the deep sea. Figures 1.14a and b show the installation of
a 5 MW class wind turbine generator unit at the Beatrice Offshore Wind farm by
Scaldis Salvage & Marine Contractors NV.

The floating type offshore wind farm concept might be another innovative idea in
the wind industry. A lot of research work is ongoing to make it a success. The
variability of sea wind can be optimally utilized using the floating wind farm concept.

1.3.4 Operation and Maintenance

A downtime of the single or multiple megawatt class wind turbine generator
results in loss of revenue. Therefore operation and maintenance (O & M) is a big
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Fig. 1.14 a, b Installation of a 5 MW offshore wind turbine generator at the Beatrice Offshore
Wind farm (Courtesy: Scaldis Salvage & Marine Contractors NV)
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issue for wind farm owners of transmission system operators, both for onshore
and offshore wind farms. The general picture in a wind farm is that 2 or 3
operators are engaged in O & M services for few tens of wind turbine generator
units for routine checkup and for bringing back the units in operation which are
out of services. In the case of offshore wind farms O & M facilities can be
housed at a nearby port or floating substation depending on the distance of the
wind farm from the shore. For distant offshore wind farms sometimes helicopter
accessibility from the maintenance substation gives better flexibility to O & M
personnel for quick repairing.

However, it is noted that remote condition monitoring based on data analysis
from sensors may give a much better option and may become the standard in the
future for operation and maintenance of large-scale wind farms both on offshore
and onshore platforms. It will save the effort and cost of accessing the turbine unit
by manual inspection. A project work carried out in Risg National Laboratory for
Sustainable Energy in 2008 gave an important outline on the sensor-based remote
monitoring scheme; more such works are required to be performed with support
from the real industry. The Risg project focused on a structural health monitoring
system for wind turbine blades [5]. The project was targeted at creating knowledge
that will allow sensor signals to be used for remotely identifying the position of
damage, the damage type and severity, and generate a structural condition
assessment of the wind turbine blades that can integrate with existing SCADA
tools to improve management of large offshore wind farms, and optimize the
manual inspection/maintenance effort. The concept can be extended for remote
monitoring of generator, gearbox and other sensitive equipments which widen the
research opportunity in this area.

1.3.5 Moderate and Bulk Power Transmission

Economical feasibility is one of the key issues behind the selection of transmission
technology (HVDC or HVAC) for grid interconnection of offshore wind farms.
The distance of the offshore wind farm from the shore is an important factor to
determine the transmission system as transmission line loss has a direct relation
to it. High power converter technology has progressed tremendously, losses in
converter have reduced significantly, and therefore, big companies are offering
complete packages for bulk offshore power transmission using HVDC technology.
There is a chance that future offshore wind farms will move to the HVDC-based
transmission system, especially with the spread of the supergrid concept these
days. Some of the other issues like multi-terminal scheme for offshore wind farm,
loss minimization in HVDC stations, control scheme including fault ride-through
capability augmentation should be focused more to make this technology viable.
Moderate level DC-based onshore wind farms may attract the grid operator where
full-bridge DC-DC converters can help in boosting the generator side voltage to
higher levels using high frequency transformers.
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1.3.6 Variability and Predictability

There is no argument about the variability of wind power but about intermittency!
Wind power is often described as an “intermittent” energy source, and therefore
unreliable. In fact, at the power system level, wind energy does not start and stop at
irregular intervals, hence the term “intermittent” is misleading. The output of
aggregated wind capacity is variable, just as the power system itself is inherently
variable. Since wind power production is dependent on the wind, the output of a
turbine and a wind farm varies over time, under the influence of meteorological
fluctuations. These variations occur on all time scales: by seconds, minutes, hours,
days, months, seasons and years. Understanding and predicting these variations is
essential for successfully integrating wind power into the power system and to use
it most efficiently [6].

Predictability is key in managing wind power variability, and significant
advances have been made in improving forecasting methods. Today, wind power
prediction is quite accurate for aggregated wind farms and large areas. Using
increasingly sophisticated weather forecasts, wind power generation models and
statistical analysis, it is possible to predict generation from five min to hourly
intervals over timescales upto 72 h in advance, and for seasonal and annual
periods. Using the current tools, the forecast error for a single wind farm is
between 10 and 20% of the power output for a forecast horizon of 36 h. For
regionally aggregated wind farms the forecast error is in the order of 10% for a day
ahead and less than 5% for 14 h in advance [6]. However, there is further scope to
work on the prediction scheme of wind speed for making it as precise as possible
and there is room to integrate the prediction strategy in the control of wind energy
conversion system.

1.3.7 Energy Storage Option

To cope with the variability of wind power and to meet the requirement of
transmission system operators (TSO) or grid companies,the wind industry is
extensively dependent on energy storage options. There is increasing interest in
both large-scale storage implemented at transmission level, and in smaller scale
dedicated storage embedded in distribution networks. The range of storage tech-
nologies is potentially wide. For large-scale storage, pumped hydro accumulation
storage (PACPACPAC) is the most common and best known technology, which
can also be done underground. Another technology option available for large scale
is compressed air energy storage (CAES). On a decentralized scale storage options
include flywheels, batteries, possibly in combination with electric vehicles, fuel
cells, electrolysis and super-capacitors. Furthermore, an attractive solution consists
of the installation of heat boilers at selected combined heat and power locations
(CHP) in order to increase the operational flexibility of these units [6].
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Hybrid power stations composed of wind energy conversion system, hydrogen
generation, and fuel cell and energy storage system have a good potential in the
future energy market. A lot of work has to be done in the area of a coordinated
control scheme for hybrid power stations where the lifetimes of electrolyzer, fuel
cell, energy storage devices should be considered as well. For the floating type
offshore wind farm ESS may play a vital role to make this technology successful.

1.3.8 Grid Code

In response to the increasing demands from network operators, for example to stay
connected to the system during a fault event, the most recent wind turbine designs
have been substantially improved. The majority of MW-size turbines being
installed today are capable of meeting the most severe grid code requirements,
with advanced features including fault ride-through capability. This enables them
to assist in keeping the power system stable when disruptions occur. Modern wind
farms are moving towards becoming wind energy power plants that can be actively
controlled [6]. Grid codes developed in many countries are more or less similar.
They focus on policies such as transient Fault Ride Through (FRT), active power
control, reactive power issues, power quality and voltage regulations. Huge
penetration of wind power to the grid in the near future may lead to a change in the
present grid codes available in different countries and wider regions.

1.4 Wind Power Explained in this Book

As mentioned in the preface the chapters in this book are organized into three
sections. The key issues mentioned in each chapter are highlighted briefly in the
following sections. In some cases, the technical challenges, future trends and
further research scopes are pointed out.

It is expected that a large number of wind generators are going to be connected
to the grid in the near future as can be seen from the statistics of the past few years.
As different types of wind generators are commercially available in the market,
it is very important to know what type of wind generator we are going to install in
a particular region. This is because the overall efficiency of the wind turbine
generator system depends on the losses of its various components which are
generally in the form of copper loss, iron loss, stray load loss, windage loss,
bearing loss and in some cases the losses in various power electronic devices. The
author in Chap. 2 has made a significant contribution in the loss calculation
method of different wind turbine generator systems based on wind speed. The
details of the loss calculation methods for induction generator, doubly fed
induction generator and permanent magnet synchronous generator are explained.
A comparative study in light of loss and efficiency of different types of generators
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are also incorporated. This study is even helpful to find out the capacity factor of
wind farms in an efficient and easy way.

In the sea the wind condition is better than on shore and therefore much energy
extraction from wind is expected from a single wind turbine generator unit.
However, the larger the generating capacity the larger the structural cost is, and at
the same time the generator should be operated at lower speed due to the large
diameter of the turbine blade. This issue initiates the idea of using superconducting
material in wind generators and the authors in Chap. 3 report on this emerging
technology. In the direct drive wind turbine operated at variable speed the
superconducting generator can be applied successfully, and the wind industry may
accept this trend in the near future.

The wind industry is extensively dependent on power electronic devices and
without the rapid development of power converters it would not be possible to
build large-scale wind turbine generating units. The maximization of power
capture from the wind also would not be possible. The power electronic switches
we use in the power converter/inverter are the conventional thyristor, GTOs, or
IGBT and in some cases IGCT. The device which can offer low loss, fast-
switching, higher blocking voltage, etc. are most attractive for the converter/
inverter technology of wind energy conversion system. Size and compactness are
other issues under consideration. Silicon carbide (SiC) power switches have the
potential to meet all the aforementioned issues and may lead the converter/inverter
technology that suits wind energy conversion system. Authors of Chap. 4 have
focused on this promising technology.

Chapter 5 is focused on a cost-effective grid interfacing scheme of a wind farm
composed of variable speed wind generators. The thyristor rectifiers ensure the
maximum power capture from individual wind generators and are connected to a
common DC transmission system and finally one thyristor inverter is used for grid
interfacing. For reactive power compensation of the grid side, synchronous
compensator using duplex reactor is considered. Detailed modelling and control
strategy of the proposed system are discussed and extensive simulation analyses
are also performed.

The application of a switched reluctance generator (SRG) as variable speed
wind generator is demonstrated in Chap. 6. The switched reluctance generator has
some inherent characteristics such as simple construction, robustness and lower
cost and it might be a good choice to use it as a small wind generator. The con-
struction and modelling of SRG, grid interfacing using asymmetric half-bridge
converter, dc-link and inverter are discussed in detail. Speed control including
maximum power point tracking scheme is demonstrated as well. It seems from the
simulation results that SRG can be operated at variable speeds to maximize the
power capture from wind and can be interconnected to the grid with the help of a
power electronic converter using the available technology in the power industry.

Numerous control relevant issues are involved with the individual components
of a wind turbine generator system for standalone and grid connected systems. To
apply the control in a precise way, it is essential to know the dynamics of indi-
vidual components. The author in Chap. 7 has made efforts towards developing the
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dynamics of the different parts of a wind energy conversion system. The dynamics
of a power converter which are used frequently with commercially available wind
turbines are also discussed in the chapter and finally, the control algorithms are
presented in light of system dynamics.

Power quality is one of the key points for successful grid-interfacing of a wind
turbine generator system. In Chap. 8, the authors focused on voltage flicker which
is an important area to be considered for large-scale wind farm grid intercon-
nection. The primary reasons for voltage flicker arise from tower shadow, blade
pitching, yaw errors and in some cases from turbulence, wind shear or variability
of wind speed. It might not be an easy task to measure the voltage flicker and the
authors in this chapter attempt to find a successful way to measure voltage flicker
caused by wind turbines.

An important and timely study on wind power forecasting in terms of wind
speed prediction is presented by the authors in Chap. 9. Wind speed prediction is
an important area to be focused on which can be integrated with modern control
systems of wind turbine generator units or controlling the entire wind farm as per
the requirement of transmission system operators (TSOs). The authors focused on
wind speed forecasting based on the Grey predictor rolling model which can be
successfully used for hourly wind power prediction. As wind power penetration
level to the grid is increasing rapidly, this will allow the utility companies to
resolve the issues of power quality, load management, system stability etc. In
general, it can be said that the more precisely we are able to predict the wind, the
more the increase in the possibility of wind power penetration.

The word “Lightning” is a major concern for wind turbine and blade manu-
facturers. Length and material of the blade, structure height, local terrain elevation
are important factors for lightning protection and the authors in Chap. 10 have
pointed and discussed on these important issues. The effect of turbine rotating
blades on lightning is also taken into consideration. The presence of carbon
reinforced plastics (CRP) in the blades may raise a new problem which is pointed
out. The energy dissipation issue caused by CRP is discussed as well.

In Chap. 11, effects of “back-flow-surge” on wind turbines due to winter
lightning are reported by the authors, which is very important for wind farm
designers. The nearby wind turbines that were not struck by lightning can also be
affected easily by “back-flow-surge” and therefore, a special lightning protection
scheme is very important at the design level. The surge protection device of the
lightning-struck turbine and other turbines nearby and even far from the striking
point can be damaged. Possible solutions of the aforementioned problems are also
pointed out by the authors.

Many countries have adopted their own grid code considering the huge pene-
tration of wind power into the grid. When the wind power was not on a large scale,
shutdown of a small unit was not a big issue for power grid companies. However,
shutdown of a megawatt class wind turbine or a group of megawatt class wind
turbines in a wind farm may cause system instability similar to a conventional
power plant when it shuts down. Therefore, a wind farm has to comply with the
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grid code and the authors in Chap. 12 have reported on the operational aspects of a
wind turbine generator system considering grid connectivity issues.

There is no doubt that energy storage system (ESS) is an effective means to
increase the wind penetration level to the power system. A lot of energy storage
technology is available that can be successfully incorporated with an individual
wind turbine generator unit or with the entire wind farm. However, in this regard
the first question that comes to our mind is the huge investment cost of ESS,
especially when we consider the megawatt class wind power integration to the
power system. For autonomous islands the pump storage system is an attractive
and viable solution and in Chap. 13 the authors present an excellent work on this
technology where focus is given on hybrid wind-hydro power stations. The outline
of the scheme, operating policy for island system, economic evaluation, detailed
modelling and control strategy, and finally a real-case scenario from Ikaria Island,
Greece are demonstrated in the chapter.

In Chap. 14, frequency fluctuation minimization of a grid-connected wind farm
is discussed. To minimize wind power fluctuation, a superconducting magnetic
energy storage (SMES) system is used as the energy storage device, which is
considered to be connected at the terminal of the wind farm. A realistic power
system model is used in the simulation and the detailed switching model is con-
sidered for SMES modelling. The optimum power and energy storage capacity
required for SMES is focused and finally, it is shown that SMES is a good tool to
mitigate the frequency fluctuation of a grid connected wind farm. The similar
control strategy can be adopted with other energy storage systems such as energy
capacitor system, battery energy storage system, etc.

Are we moving to fixed type of offshore wind farms in the future! The answer
might be YES. The authors of Chap. 15 have given tremendous efforts in the past
and are continuing the works with the support from the National Aeronautics and
Space Administration (NASA). The authors are preliminary focused on developing
wind mapping in sea based on spaceborne scatterometer. Using scattorometer data
average wind in sea, frequency of strong wind, power density, etc. can be obtained.
It is possible to get the global distribution of wind strength and the authors have
also reported on that. The dependence of wind strength on height and stability is
examined as well. The authors are working on identifying near-shore locations of
strong wind. In general it can be said that the technology presented in Chap. 15
may explore many branches in offshore wind power extraction research.

Chapter 16 is focused on offshore wind farm grid interconnection using a line-
commutated HVDC scheme. Offshore wind farm composed of squirrel cage wind
generator might be a good choice due to robustness, simplicity and lower cost of
induction generator. In that case, the issue of reactive power requirements of
induction generators for their magnetizations should be handled with proper care,
otherwise the bus voltage will be affected widely. In this chapter, the authors have
emphasised on damping enhancement and mitigation of wind power fluctuation of
parallel operated wind farms through line-commutated HVDC link with a modal-
control designed PID rectifier current regulator (RCR). The authors have presented
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both frequency and time domain analyses to demonstrate the validity of the pro-
posed scheme.

Fault ride-through is equally important in the case of HVDC connected offshore
wind farms. A major challenge might be to make coordination in bulk power
transfer between offshore and onshore stations.The authors of Chap. 17 present
three schemes to resolve this problem. In this chapter voltage source converter-
based HVDC scheme is used for grid interconnection of offshore wind farms. The
control scheme is applicable for multi-terminal HVDC topology and can
successfully be used to augment the fault ride-through capability of offshore wind
farms.

The details of the control scheme for HVDC-based offshore wind farms can be
obtained in Chap. 18. The authors explain variable speed wind generator control
including front-end converter current control scheme, diode-based HVDC control,
modelling of individual components such as wind turbine, transformer, back to
back converter scheme and distributed voltage and frequency control of offshore
wind farms connected with a diode-based HVDC link. The fault ride-through
capability augmentation is covered as well. Islanded operation, self-starting and
voltage-dependent current order limit for thyristor-based HVDC system are also
explained.

In Chap. 19, a coordinated control scheme for offshore wind farms using line
commutated converter (LCC) is discussed focusing on the load frequency control.
A frequency drop characteristic is considered in the control loop of HVDC rectifier
to share the wind farm active power with the power grid efficiently taking into
account change of generation and load. The method demonstrated in this chapter is
a simple but effective one where active power flow through HVDC link is ramped
down or up when the grid frequency is too high or low respectively. Inertial
response and blade angle control are discussed as well.

Tidal power conversion came into the picture in the recent years and there
might be a bright future for electricity generation from offshore tidal and wind
turbine generating systems placed in the same region. The authors in Chap. 20
have worked a lot towards this technology and a prototype of the proposed scheme
is given in this chapter. Offshore wind and hybrid systems are explained in detail
and the power conversion scheme is also presented. The authors provide both the
simulation and experimental results of the proposed scheme. There is scope to
work further on the topological scheme, system layout, and bulk power trans-
mission system.

DC-based wind farms will become a popular trend in the near future. For large-
scale DC wind farms, high voltage of the sending end is the key issue as the
conventional DC-DC boost converter has limitations on its output voltage regu-
lation. A full-bridge DC-DC converter can be a key component of a DC-based
wind farm that can resolve this problem. In Chap. 21, the authors propose a
coordinated control scheme of a DC-based offshore wind farm that transmits
power to the onshore grid through high voltage DC cables, utilizing full-bridge
DC-DC converter at the offshore HVDC station. This might be a cost-effective
solution compared to the existing technology and the scope for future research is
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open considering the voltage level of the wind farm including its topology, soft
switching full-bridge DC-DC converter, line length of DC-cable, Power trans-
mission capacity, etc.

1.5 Conclusions

At present, wind power is playing a major role in the world renewable energy
market and from its growth it can be said that wind power will certainly hold the
leading position in the next few decades. Due to its technological maturity and
cost-effectiveness compared to the other renewable sources, it is expected that
wind energy will also make a significant contribution to the world energy market
which will reduce the carbon emission to a large extent. A few of the technological
challenges such as adopting variability of wind power, power quality issues, etc.,
are yet to be solved, however, the combined efforts from researchers and scientists
from different disciplines will ensure its fastest growth I believe.
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Chapter 2
Calculation Method of Losses
and Efficiency of Wind Generators

Junji Tamura

Abstract In the recent years, many wind turbine generation systems (WTGS)
have been installed in many countries. However the electric power obtained from
wind generators is not constant due to wind speed variations. The generated
electric power and the loss in WTGS change corresponding to the wind speed
variations, and consequently the efficiency and the capacity factor of the system
also change. In this chapter, methods to evaluate the losses and output power of
wind generator systems with Squirrel-Cage Induction Generator (IG), Permanent
Magnet Synchronous Generator (PMSG), and Doubly-fed Induction Generator
(DFIG) are explained. By using the presented methods, it is possible to calculate
the generated power, the losses, total energy efficiency, and capacity factor of wind
farms quickly.

2.1 Introduction

Wind energy is a clean and renewable energy source. In the recent years, many wind
turbine generation systems (WTGS) have been installed in many countries from the
viewpoints of global warming and depletion of fossil fuels. In addition, WTGS is of
low cost in comparison with other generation systems using renewable energy.
However the electric power obtained from wind generators (WG) is not constant due
to wind speed variations. The generated electric power and the loss in WTGS change
corresponding to the wind speed variations, and consequently the efficiency and the
capacity factor of the system also change. In addition, the wind characteristic of each

J. Tamura (D)

Department of Electrical and Electronic Engineering, Kitami Institute of Technology,
165 Koen-Cho, Kitami 090-8507, Japan

e-mail: tamuraj@mail kitami-it.ac.jp

S. M. Muyeen (ed.), Wind Energy Conversion Systems, 25
Green Energy and Technology, DOI: 10.1007/978-1-4471-2201-2_2,
© Springer-Verlag London Limited 2012



26 J. Tamura

area is different and thus the optimal WTGS for each area is different. Therefore, it is
necessary to analyze the optimal WTGS in each area. In the determination of optimal
WTGS, annual energy production and capacity factor are very important factors.

In order to capture more energy from wind, it is essential to analyze the loss
characteristics of WG, which can be determined from wind speed. Furthermore,
since many non-linear losses occur in WG, making prediction profit by using
average wind speed may cause many errors. This chapter presents a method to
represent various losses in WG as a function of wind speed, which is based on the
steady-state analysis. By using the presented method, wind turbine power, gen-
erated power, copper loss, iron loss, stray load loss, mechanical losses, converter
loss, and energy efficiency can be calculated quickly.

First, a calculation method of the efficiency for constant speed WGs using
Squirrel-Cage Induction Generator (IG) is presented, in which, using the wind
turbine characteristics and IG steady-state equivalent circuit, wind turbine output,
generator output, and various losses in the system can be calculated. Next, a
calculation method of the efficiency for variable speed WGs using permanent
magnet synchronous generator (PMSG) is presented. PMSG has some advantages
over constant speed IG; i.e., PMSG can operate at the speed corresponding to the
maximum power coefficient of wind turbine; noise can be decreased because
PMSG WG does not need slip ring, brush, and gear system. However, since it
needs power electronics devices for being connected to the power grid, loss
evaluation of the power electronics devices is also needed in order to calculate the
total efficiency of the wind generation system. Finally, a method to calculate loss,
power, and efficiency of WTGS with Doubly-fed Induction Generator (DFIG) is
presented. In recent years, the number of wind farms with large size DFIGs has
increased all over the world. This type of system has power converters in the rotor
circuit, and thus it can be operated at variable speed. The power rating of the
power converter can be lower in this system than those in other types of systems,
for example, WTGS with a synchronous generator with a field winding or per-
manent magnet. Thus, the power converter cost becomes lower than those of other
systems.

In the methods presented in this chapter, wind speed is used as the input data,
and then all state variables and conditions of the WG system, for example, wind
turbine output, generator output, output power to the power grid, and various
losses in the system etc., can be obtained. Generator state variables are calculated
using the d-q axis equivalent circuit.

As one application of the presented methods, annual energy production and
capacity factor of the wind farm can easily be evaluated by using wind speed
characteristics expressed by Weibull distribution function. Weibull distribution
function is commonly used to express the annual wind speed characteristics.
Coefficients of Weibull distribution function can be determined by the geography
and climate data of each area. Using the data of Weibull distribution function of
different areas, capacity factor is calculated and compared among three types of
WTGS, i.e., Squirrel-Cage 1G, PMSG, and DFIG.
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Fig. 2.1 System
configuration with IG

AN\
o
©

Gearbox
Table 2.1 Losses of wind Mechanical loss Gear box losses
generator Windage loss
Ball bearing loss
Copper loss Primary winding copper loss
Secondary winding copper loss
Iron loss Eddy current loss

Hysteresis loss
Stray load loss

2.2 Calculation Method for Squirrel-Cage
Induction Generator

2.2.1 Outline of the Calculation Method

Induction generator is widely used as WG due to its low cost, low maintenance,
and direct grid connection. However, there are several problems regarding the
induction generator as given below.

e Usually the input, output, and loss conditions of induction generator can be
determined from rotational speed (slip). However, it is difficult to determine slip
from wind turbine input torque.

e Generator input torque is reduced by mechanical losses, but mechanical losses
are a function of rotational speed (slip). It is difficult to determine mechanical
losses and slip at the same time.

e [t is hard to measure stray load loss and iron loss.

e It is difficult to evaluate gear loss analytically as a function of rotational speed.

In this section, a method of calculating the efficiency of WG correctly is pre-
sented, taking into account the points mentioned above. Figure 2.1 shows the
system configuration for the analysis in this section. Table 2.1 shows the losses of
this type of WG. The equivalent circuit of the induction generator used in the
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Fig. 2.2 Equivalent circuit
of induction generator

r = stator resistance,

ry’ = rotor resistance,

x = stator leakage reactance,
x,/ = rotor leakage reactance,
rm = iron loss resistance,

X, = magnetizing reactance,
s(slip) = (Ns-N)/Ns, N = rotor
speed, Ns = synchronous
speed

Fig. 2.3 Power coefficient
versus tip speed ratio
characteristics
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method is shown in Fig. 2.2. The input torque and copper losses are calculated by

solving the circuit Eq. 2.1.

Vi = —(rl +jxi +

JrmXm

JTmXm >11+ JTmXm 12

rm"’jxm rm+jxm

Ym + JXm

VX rh .
+ ( Mt +;2+jx2>12

Tm + JXm

2.2.2 Models and Equations Necessary in the Calculations

2.2.2.1 Wind Turbine Power

The MOD-2 [1] model is used as a wind turbine model in this chapter. The power
captured from the wind can be expressed as Eq. 2.2, tip speed ratio as Eq. 2.3, and
power coefficient Cp as Eq. 2.4. As shown in Fig. 2.3, this turbine characteristic is
non-linear, and it has a characteristic similar to those of actual wind turbines.

1
Pu =5 pCy (4, B)mR*V3 (W) (2.2)
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wibR
),:“’V—‘; (2.3)
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Cp(4, ) = 0.5(I' — 0.022 — 5.6)e 7 1609 (2.4)

In Eqgs. 2.2-2.4, Py = turbine output power (W), p = air density (kg/m?),
C, = Power coefficient, 4 = Tip speed ratio, R = Radius of the blade (m), V,, = wind
speed (m/s), wyp = Wind turbine angular speed (rad/s), and f§ = blade pitch
angle (deg).

2.2.2.2 Several Losses in the Generator System

Generator input power can be calculated from the equivalent circuit of Fig. 2.2 as
shown below:

I-s

15 (T X r2> (W) (2.5)

Copper losses are resistance losses occurring in the winding coils and can be
calculated using the equivalent circuit resistances r; and r,’ as

Weopper = 11 X I% + r; X Ig(W) (26)

Generally, iron loss is expressed by the parallel resistance in the equivalent
circuit. However, iron loss is the loss produced by the flux change, and it consists
of eddy current loss and hysteresis loss. In the calculation method here, the
iron loss per unit volume, wy, is calculated first using the flux density, as shown

below [5].
2
wr = BZ{O'H (1%) + ogd? <%> } (W/kg) (2.7)

where B: flux density (T), oy: hysteresis loss coefficient, og: eddy current loss
coefficient, f: frequency (Hz), and d: thickness of iron core steel plate (mm).
Generally, flux ¢ and the internal voltage E can be related to Eq. 2.8. Therefore, if
the number of turns of a coil is fixed, proportionality holds between the flux
density and the internal voltage as shown in Eq. 2.9.

E=444 X f X ky xw x ¢(V) (2.8)

E
B =By x—(T) (2.9)
0
where k,, : winding coefficient, w : number of turns, ¢ : flux, E, : nominal internal
voltage. Then the iron loss resistance can be obtained with respect to the internal
voltage E determined by the flux density as shown below, where W is the total
iron loss which is determined using Eq. 2.7 and the iron core weight.
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E2
™ W3

(2.10)

Bearing loss is a mechanical friction loss due to the rotation of the rotor, which
can be expressed as below.

Wo = Kpom (W) (2.11)

where Kp is a parameter concerning the rotor weight, the diameter of an axis, and
the rotational speed of the axis.

Windage loss is a friction loss that occurs between the rotor and the air, and is
expressed as follows.

Wi = Kwa?, (W) (2.12)

where K, is a parameter determined by the rotor shape, its length, and the rota-
tional speed. Stray load loss is expressed as follows.
P2
Ws = 0.005— (W) (2.13)
Py
where P is generated power (W) and P,, is the rated power (W).

Gear box losses [6, 2], are primarily due to tooth contact losses and viscous oil
losses. In general, these losses are difficult to predict. However, tooth contact
losses are very small compared with viscous losses, and at fixed rotational speed,
viscous losses do not vary strongly with transmitted torque. Therefore, simple
approximation of gearbox efficiency can be obtained by neglecting the tooth losses
and assuming that the viscous losses are constant (a fixed percentage of the rated
power). A viscous loss of 1% of rated power per step is a reasonable assumption.
Thus the efficiency of a gearbox with “q” steps can be computed using Eq. 2.14.
Generally, the maximum gear ratio per step is approximately 6:1, hence two or
three steps of gears are typically required.

P Pwn— (0.01)gPur

Ngear = E = P x 100(%) (2.14)

where P, is gear box output power, P, is turbine power, and P,y is the rated
turbine power. Figure 2.4 shows the gear box efficiency for three gear steps. In this
chapter, three steps are assumed, according to a large-sized WG in recent years.

2.2.2.3 Calculation Method

The efficiency of a generator is determined using the loss expressions described
above. The input, output, and loss conditions of induction generator can be
determined from rotational speed (slip). However, it is difficult to determine slip
from wind turbine input torque. Therefore, an iterative process is needed to obtain
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a slip, which produces torque equal to the wind turbine torque, from a slip-torque
curve as shown in Fig. 2.5. Furthermore, it is difficult to determine mechanical
losses and slip at the same time, because mechanical losses are a function of
rotational speed (slip). Mechanical loss can also be obtained in the iterative cal-
culation. The power transfer relation in the WG is shown in Fig. 2.6.

Since mechanical losses and stray load loss cannot be expressed in a generator
equivalent circuit, they are deducted from the wind turbine output. Figure 2.7
shows the flowchart of the calculation method, which is described below.

1. Wind velocity is taken as the input value, and from this wind velocity all states
of WG are calculated.
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Fig. 2.7 Flowchart of the
proposed method
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Wind turbine output is calculated from Eq. 2.2. The synchronous angular
velocity is taken as the initial value of the angular velocity and wind turbine
power is multiplied by the gear efficiency, #gear.

. Ball bearing loss and windage loss which are mechanical losses are deducted

from the wind turbine output calculated in step 2, and stray load loss is also
deducted. These losses are assumed to be zero in the initial calculation.

. At this step the slip is changed using the characteristic of Fig. 2.5 until giving

the same generated power as the power calculated in step 3.

. By using the slip calculated in step 4 and using Eq. 2.1, the currents in the

equivalent circuit can be determined, and consequently the output power,
copper loss, and iron loss can be calculated. Next, loss Wy is calculated from the
flux density using the iron loss calculation method mentioned above, and the
iron loss resistance, r,,,, which produces the same loss as W, is also determined.
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Table 2.2 Induction generator parameters

Rated power 5 MVA Rated voltage 6,600 V
Rated frequency 60 Hz Pole number 6

Stator resistance 0.0052 pu Stator leakage reactance 0.089 pu
Rotor resistance 0.0092 pu Rotor leakage reactance 0.13 pu

Iron loss resistance (Initial value) 135 pu Magnetizing reactance 4.8 pu

6. Ball bearing loss and windage loss are calculated by using Eqs. 2.11 and 2.12,
and the rotational slip of the generator determined in step 5. And stray load loss
is calculated from Eq. 2.13.

7. If the calculated losses converge, the calculation will stop, otherwise it will
return to step 2.

2.2.3 Calculated Results

The parameters of the WG used in this section are shown in Table 2.2.
A 5 MVA induction generator is used. The cut-in and rated wind speeds are 5.8
and 12.0 m/s respectively. Moreover, it is assumed that the generated power of
the induction generator is controlled by pitch controller when the wind speed is
over the rated wind speed. Figure 2.8 shows the calculated results of power and
various losses of the generator, in which the curves for the windage loss, bearing
loss, and iron loss are enlarged for clear and easy understanding. From the
Figures, it is clear that all losses are non-linear with respect to the wind speed.
Iron loss decreases with the increase of wind speed. When wind speed increases,
the generator real power increases, and thus the generator draws more reactive
power and the internal voltage of the generator decreases. As a result, flux
density and iron loss decrease.

2.3 Calculation Method for Permanent Magnet
Synchronous Generator

2.3.1 System Configuration

In this section, a calculation method of the efficiency for variable speed WGs using
PMSG is explained. In the method, wind speed is used as the input data in a similar
way as in the previous section, and then all state variables and conditions of the
WG system, for example, wind turbine output, generator output, output power to
the power grid, and various losses in the system etc. can be obtained.
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Fig. 2.8 Power and various
losses of induction generator
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Figure 2.9 shows the system configuration for the analysis in this section. The
same model (MOD-2) as shown in Eqs. 2.2-2.4 is used as a wind turbine model.
Figure 2.10 shows the wind turbine characteristic in a different manner from
Fig. 2.3. Because this system can be operated in variable speed condition with the
range of 0.4-1.0 pu where 1 pu is the synchronous speed, the turbine power can
follow the maximum power point tracking (MPPT) line as shown in the figure. The
rotor speed is controlled by the pitch controller in the high wind speed area and

then kept at the rated level.
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2.3.2 Models and Equations Necessary in the Calculations

2.3.2.1 Several Losses in the Generator System

Table 2.3 shows the various losses occurring in PMSG WG. Wind turbine output
power is calculated by using the model equations presented above, and then
generator input power can be calculated using the d-q axis equivalent circuit of
Fig. 2.11 and Eqgs. 2.15-2.22, where reactive power output of the generator is

assumed to be controlled to zero.

Vd = —Talg + Fmldi

0= rpig + wm<Dq

Vq = —ralq + Fmligi

0 = rmig + 0nPq

Oy = —Lqg(ia + iai) + Ppo
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Table 2.3 Losses of
permanent magnet
synchronous generator

Fig. 2.11 d-q axis equivalent
circuit. a d axis. b q axis

r, = Stator winding
resistance, r,,, = Iron loss
resistance, /, = Leakage
inductance, L,q = d axis
magnetizing inductance,
Ly = q axis magnetizing
inductance, @4 = d axis flux
linkage, @4 = q axis flux
linkage, ®,,, = Mechanical
angular speed
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Mechanical loss Windage loss
Ball bearing loss

Stray load loss

Copper loss

Iron loss

Converter loss

Inverter loss

Filter loss

(a)

(b)

L mq

g-axis

Dy = —Ly(iq + iqi) (2.20)

@ = Linairo (2.21)

Pric = —0m(La — Ly)iaiq + on®pig (222)

where, Ly = Iy + Ling, Lqg = I + Ling; Lq: d axis inductance; Lq: q axis inductance;
Pyg: internal active power (W). Copper losses occur in the stator coil, and are
calculated using stator winding resistance, r,, in the equivalent circuit as below.

We = ra(ig +i2)(W) (2.23)

Mechanical losses, ball bearing loss W, and windage loss W,,, are friction
losses due to the rotation of the rotor. In general, bearing has two types, that is,
plain bearing and ball-and-roller bearing. The bearing loss can be, in general,
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expressed as Eq. 2.24, where Ky is a parameter concerning the rotor weight, the
diameter of the axis, and the rotational speed of the axis. Windage loss is a friction
loss that occurs between the rotor and the air. Since it is difficult to calculate
windage loss correctly, it is approximately expressed as Eq. 2.25 in this section,
where K, is a parameter determined by the rotor shape, its length, and the rota-
tional speed. In general, bearing loss and windage loss in the case of PMSG WG
are very small because its rotational speed is very low.

Wy = Kpom(W) (2.24)
Wy, = Ky (W) (2.25)

Stray load loss is the electric machine loss produced under loading condition,
and it is difficult to calculate accurately. The main factors for the stray load loss are
the eddy current losses in conductors, iron core, and adjoining metallic parts
produced by leakage flux. Stray load loss can be expressed approximately as
Eq. 2.26 due to IEEE standard expression.

2
W, = 0.005 x i— (W) (2.26)
where, P: generated power (W); P,: rated output (W).

Power electronic converter/inverter devices are necessary to connect PMSG
WG with the power grid. Since the converter/inverter circuits include switching
operations of IGBT devices, in general, it is difficult to calculate the losses in the
devices accurately. In this section, power electronics device (PED) loss Egs. 2.27
and 2.28 are used which is obtained from the semiconductor device catalogs [5].
PED loss is calculated by the combination of Eqgs. 2.27 and 2.28.

I ? V2
Piger = \/5;0 (kion + kiott) - fo + D - <b~§+n-a~10) (2.27)
I 2 V2
PFWD\/Z;Z-kﬂ~fc+(1D)-<d~§+\7/_c_~c'lo) (2.28)

where, I,: Phase current (A); f.: Carrier frequency; D: IGBT duty ratio; k,: IGBT
turn on switching energy (mJ/A); kyo: IGBT turn off switching energy (mJ/A); k.
FWD recovery switching energy (mlJ/A); a,b: IGBT on voltage approximation
coefficient; Vcg = a + b*I; c,d: FWD forward voltage approximation coefficient;
Vg = ¢ + d*L. Figure 2.12 shows an example of loss characteristics of IGBT and
FWD [7].

Filter is, in general, used to reduce the high harmonic components resulted from
the inverter. Filter efficiency is assumed to be 98% here.

Iron loss mainly occurs in the stator iron core. Iron loss is expressed by using
the varying iron loss resistance, r,,,, in the equivalent circuit as shown in Fig. 2.11.
However, real iron loss varies depending on the magnetic flux density in the core



38 J. Tamura

(a) (b)
12004 459 _ _
——FWD 4,04 Eoon
10001 — - jGBT 35k, 7/
—_ - .
=, 800+ Vee S 3.04 =-—E G
M 7 £ 25 Mo
~©600- v, = .
= 8 2.04 / .-
E 4004 ._.'é:,o' R W
© 2004 P # Ta=arll. 104 /.‘/‘/
] e Ve=c+dl, gg« i
01234567 T0 200 400 600
Voltage V..V, [V] Collector current I [A]
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switching loss on I

which varies depending on the load condition. Therefore, if the iron loss is cal-
culated using constant iron loss resistance, the result can have some error.
Moreover, it should be noted that magnetic flux densities in heel piece and teeth in
the stator core differ from each other.

Generally, iron loss consists of eddy current loss and hysteresis loss, both of
which are proportional to the square of the magnetic flux density. In addition, eddy
current loss is proportional to the square of the frequency and hysteresis loss is
proportional to the frequency of alternating magnetic flux. In this section, iron loss
is expressed as Eq. 2.29 in the same way as Eq. 2.7 for each of heel piece and
teeth, which denotes the loss per 1 kg core. Therefore, the total iron loss Wy for
each of heel piece and teeth is obtained by multiplying Eq. 2.29 by the core weight
of each part. Then, the value of iron loss resistance, ry,, in the equivalent circuit is
changed in order for the iron loss calculated from the equivalent circuit, W, to be
equal to the iron loss, W;.

we = BZ{GH <1fo0) + opd? <1fOO>2}(W/kg) (2.29)

where, B: Magnetic flux density (T); oy: Hysteresis loss coefficient; og: Eddy current
loss coefficient; f: Frequency (Hz); d: Thickness of iron core steel plate (mm).

Calculation method of the iron loss is described below. Generally, magnetic
flux and internal voltage can be related to each other as Eq. 2.30. Therefore, the
magnetic flux density can be calculated from Eq. 2.31 and then the iron loss is
calculated from Eq. 2.29, where magnetic flux density and internal voltage for the
rated operating condition are expressed as nominal values, By and E,,.
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E = 4 44fk,wp(W) (2.30)
where, k,,: Winding coefficient; w: Number of turns; f: frequency.

B = BO£ (T) (2.31)
Ey
where, Ey: Nominal internal voltage. Magnetic flux density is determined using the
above equation, and then the total iron loss W; is calculated. The iron loss resis-
tance ry, can be obtained with respect to the internal voltage E and the total iron
loss W; as follows.

E2
™ W, /3

(2.32)

By continuing the above calculations until Wy to be equal to W,, converged
results can be obtained for the iron loss and iron loss resistance in the equivalent
circuit. For the calculation of iron loss, initial value of iron loss is assumed to be
2.5% of the rated power.

2.3.2.2 Calculation Method

Figure 2.13 shows the flowchart of the calculation method, which is described
below.

1. Wind speed V,, m/s is taken as the input value, and then all state variables of
WG will be calculated.

2. Wind turbine output power is calculated from Eq. 2.2. Then, MPP(Max-
imum Power Point) produced by wind turbine is searched, resulting in the
maximum wind turbine output power and the corresponding rotor speed.
However, if the obtained power is greater than the rated power, the power is
changed to 1 pu.

3. Bearing loss, windage loss, and also stray load loss are deducted from the wind
turbine power calculated in step 2, yielding the input power to the generator.
However, generator rotor speed is the value calculated in step 2.

4. Assuming generator reactive power to be 0, d and q axis currents are calculated
from the d-q axis equivalent circuits, and then internal active power is calcu-
lated from Eq. 2.22.

5. Comparing the generator input power with the internal active power, if they are
not equal to each other, calculation returns to step 4 with changing d-q axis
currents, which will be continued until the generator input power is equal to the
internal active power.

6. Using generator frequency and d-q axis currents calculated in step 5, internal
voltage E, and then, Wy, W,, and ry,, are calculated.
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Fig. 2.13 Flowchart of
calculation for PMSG wind
generator

1. Input wind speed

|

2. Search maximum power point
produced by wind turbine, then
calculate maximum power and

rotor speed.

3. Mechanical loss (bearing loss and
windage loss) and stray load loss
are deducted from maximum
power, resulting input power, Pj,.

!

4. Considering reactive power as 0,
calculate circuit current and internal
active power, Py

J. Tamura

change circuit current |

No

6. Calculate iron loss, W, W,

Yes

8. Calculate generated power,
Pg=Pyg—(WA+Wyp) and
Pout=(PG - PED)an~

No

7. Comparing W; with W,, if Wy is not equal to W,, calculation returns to step 4,

with replacing the value of r,,, by the new value calculated in step 6.

8. Generator active power Pg and AC/DC/AC converter loss, Pgp, are calculated.
And then, deducting Pgp from Pg and multiplying the result by the filter
efficiency, ny, yields the final output power, Py.
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Table 2.4 PMSG wind generator parameters

Rated power 5 MVA Rated voltage 6,600 pu
D axis reactance 0.88 pu Q axis reactance 0.97 pu
Stator resistance 0.012 pu Field flux 1.4 pu
Iron loss resistance (rated condition) 116 pu Number of poles 96
Fig. 2.14 Output and losses 50
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2.3.3 Calculated Results

The parameters of the PMSG WG used in the calculation are shown in Table 2.4.

Figure 2.14 shows the results of output power and various losses of PMSG.
Bearing loss and windage loss characteristics are shown in Fig. 2.15. Figure 2.16
shows the characteristics of the iron loss, generator frequency, and the internal
voltage. It is seen from Fig. 2.14 that output power and each loss increase with the
increase in wind speed. Bearing loss and windage loss are small as shown in
Fig. 2.15, because rotor speed of PMSG WG is very low. It is seen from Fig. 2.16
that the iron loss, the generator frequency, and the internal voltage increase with
the wind speed. It is also seen from Fig. 2.17 that the iron loss resistance decreases
with the wind speed, which can be thought to be due to the increases in generator
frequency and internal voltage.
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Fig. 2.15 Bearing loss and 12 -
windage loss of PMSG wind
generator
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2.4 Calculation Method for Doubly-Fed Induction Generator
2.4.1 System Configuration

Figure 2.18 shows the system configuration of DFIG WG analyzed in this section.
Wind speed is used as an input data, and then all state variables and conditions of
the WG system can be obtained. This system can be operated in variable speed
with the range of 0.7-1.3 pu, where 1 pu is the synchronous speed. Rated power of
DFIG is set at 5 MVA.

The same model (MOD-2) as shown in Egs. 2.2-2.4 is used as a wind turbine
model. Because this system can also be operated in variable speed condition, the
turbine power can follow the maximum power point tracking (MPPT) line as shown
in Fig. 2.10. The rotor speed is controlled by the pitch controller within 1.3 pu.

2.4.2 Models and Equations Necessary in the Calculations

2.4.2.1 Several Losses in the Generator System

Various state values in the generator can be calculated using the equivalent circuit
of Fig. 2.19, in which reactive power output of the generator is assumed to be
controlled zero. Each internal voltage, E;, E,, is expressed as Eq. 2.33. Table 2.5
shows the various losses considered in DFIG WG.
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Fig. 2.16 Iron loss,
frequency, and internal
voltage of PMSG wind
generator

Fig. 2.17 Iron loss
resistance of PMSG wind
generator
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Gear loss, We,r, among mechanical losses [3] is generated in speed-up gear
between wind turbine and generator. Bearing loss, W), is a mechanical friction loss
due to the rotation of the rotor. Windage loss, W,,, is a friction loss between the
rotor surface and the surrounding air. Although it is difficult, in general, to
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Fig. 2.18 System
configuration with DFIG P
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Fig. 2.19 Equivalent circuit of DFIG ry : stator winding resistance, r} : rotor winding resistance,
x; : stator leakage reactance, x} : rotor leakage reactance, ry; : stator iron loss resistance, ry :
rotor iron loss resistance

Table 2.5 Losses in DFIG
wind generator

Mechanical loss Gear loss
Bearing loss
Windage loss

Iron loss

Copper loss

Stray load loss

Power converter loss

Transformer loss

calculate these mechanical losses accurately, approximate expressions for the
losses shown by Egs. 2.34-2.36 are used in this section, where coefficients of
bearing loss and windage loss, Kg, Kw, are determined by using generator
structure and dimensions. Input power to the generator can be calculated by
subtracting these mechanical losses from the wind turbine output.

Wgear - OOqumR (234)
Wy = Kpom (2.35)
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In the equations above, Pr is the rated turbine power and w,, is angular speed.

Iron loss varies dependent on the flux density and frequency. In this section,
iron loss is expressed by using variable iron loss resistances, 7,1, 'm2, as shown in
Fig. 2.19. On the other hand, since the iron loss consists of hysteresis loss and
eddy-current loss, it can be expressed as Eq. 2.37. Moreover, it should be noted
that magnetic flux densities in yoke core and teeth core differ from each other.
Therefore, iron loss of each core is calculated separately using Eq. 2.37 for each
part of the stator and rotor, and then the total iron loss is obtained by summing
them. Flux density can be expressed to vary in proportion to the internal voltage as
shown in Eq. 2.38. Iron loss resistance in the equivalent circuit can be determined
by Eq. 2.39. In these equations, K; and K, are coefficients of hysteresis and eddy-
current losses, Ej is the reference internal voltage, E’ is the internal voltage, By is
the reference flux density, and W is iron core weight.

W, = Wy + W, = KifB"® + Kof>B*(W /kg) (2.37)
El
B = By— 2.38
0% (2.38)
E?
- 2.
m WoW3 (2.39)

Copper losses in the stator coil P.,; and the rotor coil P, can be calculated
using winding resistances, r; and r;, in the equivalent circuit as follows.

Pt = rlllz (240)
Py = 1H13 (2.41)

Stray load loss can be expressed approximately as Eq. 2.42.

PZ
Ws = 0.005 x — (2.42)
Pr
where Py is the rated power of the generator and P is generator output.

The Power converter is composed of IGBT and FWD. Therefore, power con-
verter loss is calculated as a summation of IGBT switching loss, reverse recovery
loss of FWD, and steady-state losses of IGBT and FWD [5]. It is expressed as
Eq. 2.43.

V4 I

1. [2v2 1 2V2
Pec = 2DT[\/_IOa+I§b} +5(1-DT) [f10c+1§d]

1 1
+ EfC (Eon + Eoff) + EfCEr (243)

where, Iy: Phase current (A); f,: Carrier frequency (Hz); DT: IGBT duty ratio; koy,:
IGBT turn on switching energy (mJ/A); ki oi: IGBT turn off switching energy
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Fig. 2.20 Flowchart of
calculation for DFIG wind
generator

(mJ/A); k,: FWD recovery
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switching energy (mlJ/A); a,b: IGBT on-voltage

approximation coefficient, Vcg = a + b*I; c,d: FWD forward voltage approxima-

tion coefficient, Vi = ¢ + d*1.

For simplicity, transformer is expressed by leakage impedance, and its loss is
calculated as a resistance loss. The iron loss of the transformer is not considered.

2.4.2.2 Calculation Method and Results

The flowchart for the entire calculation using each loss expression explained above
is shown in Fig. 2.20, which is described below.
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Table 2.6 DFIG wind generator parameters

Rated output 5 MVA Rated voltage 6,600 V
Frequency 60 Hz

T 0.0053 pu 7 0.0052 pu
X1 0.076 pu X 0.14 pu
Xm 4.4 pu

Fmi 287 pu Fm2 166 pu
Fig_ 2.21 Calculated results e (Generator ethciency = = <I'otal ethiciency

of efficiencies and rotational
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1. Wind speed V,, m/s is taken as the input value, and then all state variables of

WG will be calculated. Wind turbine output power is calculated from Eq. 2.2.
Then, MPPT(Maximum Power Point) power produced by wind turbine is
searched, resulting the maximum wind turbine output power and the corre-
sponding rotor speed.

. Gear loss, bearing loss, windage loss, and also stray load loss are calculated and

deducted from the wind turbine power calculated in step 1, yielding the input
power to the generator. Generator rotor speed is the value calculated in step 1.

. Assuming generator reactive power to be 0 and stator active power to be an

appropriate value, iron loss, copper loss, and rotor power are calculated from
the equivalent circuit, in which the stator voltage is set to be 1 pu.

. Iron loss is calculated using Eq. 2.37 and iron core weight.
. The above calculation is repeated until the iron loss in step 3 is equal to that in

step 4 with changing the iron loss resistance.

. Power converter losses, transformer loss, total loss, rotor power, WG system

output power, and stator power are calculated.

. Above calculation is repeated until the stator power in step 3 is equal to that in

step 6 with changing the assumed stator power.

. If the WG system output is greater than 1 pu, wind turbine output is reduced by

the pitch controller and go to step 2.

The parameters of the DFIG WG used in the calculation are shown in

Table 2.6. Figures 2.21, 2.22 and 2.23 show the obtained results of efficiency and
losses of DFIG WG with respect to wind velocity. The cut-in wind speed, cut-out
wind speed, and rated wind speed are 4.0 m/s, 25.0 m/s, and 12.1 m/s, respec-
tively. Figure 2.21 shows that the generator efficiency becomes highest when wind
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speed is about 10 m/s but the total system efficiency becomes highest when the
wind speed is over the rated speed. From Figs. 2.22 and 2.23, it can be understood
that the stray load loss is greater than other generator losses and the gear loss is
very large among all losses.

2.5 Comparative Study About Capacity Factor Among Three
WGs (IG, PMSG and DFIG)

2.5.1 Weibull Distribution Function

If real wind speed data is available as a function of time, the efficiency calculation
of WG can be precisely performed. However, it is difficult to calculate the annual
generated energy and capacity factor by using the real wind data for one year
expressed as a function of time. If the Weibull distribution function of wind speed
for a specific area is available, it is possible to calculate the amount of annual
generated energy and capacity factor for that area by using the method described
above. The Weibull function can be expressed as Eq. 2.44, where k is shape factor
and c is scale factor. f{Vy,) denotes a probability density distribution function that
wind speed V, appears. The annual generated energy can be calculated from
Eq. 2.45, where Py(V,,) is generated power, Ey, is annual energy production,
Vmax 18 cut-out wind speed (m/s), and V,,;, is cut-in wind speed (m/s). Capacity
factor is calculated from Eq. 2.46.
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Fig. 2.25 Efficiency of each
wind generator system

V max
Eoral = / Py (Vi) X f(Viy) x 8760dv (2.45)
V min
Etolal
Pr x 365 x 24(h)

Capacity Factor = (2.46)

2.5.2 Calculated Results of Capacity Factor

Capacity factor of WG systems with Squirrel-Cage Induction Generator (IG),
PMSG, and DFIG is calculated and compared to each other. Although a power
converter is needed, the latter two systems can be operated in variable speed
condition. On the other hand, the first system is operated in fixed speed. In the
comparison analysis, 5.8 m/s is used for the fixed speed WG (IG) as the cut-in
wind speed, but both 5.8 and 4.0 m/s are used for the variable speed WGs
(PMSG and DFIG). Coefficients of Weibull distribution function have been
determined as shown in Fig. 2.24. Figure 2.25 shows the system efficiency of
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Table 2.7 Calculated results of capacity factor
Area  IG capacity factor (%) PMSG capacity factor (%) DFIG capacity factor (%)

4.0 m/s 5.8 m/s 4.0 m/s 5.8 m/s
A 40.36 43.20 42.14 42.48 41.64
B 37.40 39.74 38.79 39.12 38.37
C 12.81 16.28 14.56 15.58 14.22

each WG system with respect to wind speed. Table 2.7 shows the result of
capacity factor of each WTGS for each Weibull distribution function. It is clear
that capacity factors of variable speed WGs (PMSG and DFIG) are higher than
that of the fixed speed one (IG).

2.6 Conclusions

In this chapter, methods to evaluate the losses and output power of WG systems
with Squirrel-Cage Induction Generator (IG), PMSG and DFIG are explained, in
which values of losses and state variables in each system can be calculated with
respect to wind speed. By using the presented methods, it is possible to calculate
the generated power, losses, total energy efficiency and capacity factor of WG
system quickly.

In addition, if the Weibull distribution function of annual wind speed condition
at a certain area is available,the annual generated energy and capacity factor of
WG system for that area can easily be obtained. Using the method, capacity factors
of three WG systems (IG, PMSG, and DFIG) for three wind conditions expressed
by Weibull distribution function data have been evaluated, and then, it has been
clearly shown that capacity factors of variable speed WGs (PMSG and DFIG) are
higher than that of the fixed speed one (IG). The presented method can be used
effectively for improving WG design, construction planning, and economic con-
ditions of wind farms for specific areas.
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Chapter 3

Superconducting Direct Drive Wind
Turbine Generators: Advantages
and Challenges

Asger Bech Abrahamsen and Bogi Bech Jensen

Abstract This chapter contains a discussion of the advantages and challenges of
introducing superconducting generators in future wind turbines. A special focus is
given to the European offshore wind turbine marked, because this is the most
mature and because the European Union (EU) has decided on a 20% renewable
energy share of the electricity by 2020. Thus there are already scenarios of how the
offshore wind power capacity is expected to develop in EU over the next two
decades and this is used as the framework for a discussion of the advancements
needed to make the superconducting drive trains feasible. The text is organized in
a section first outlining the EU offshore plans; a section on the different drive
trains; a section on the materials used to produce and shape the magnetic field in
the generators and finally a section on the superconducting, vacuum, cryostat and
cooling challenges of the superconducting direct drive technology.

3.1 Introduction

Wind power has developed into a mature renewable energy technology providing
160 GW of the world’s demand for energy by 2010 as illustrated in Fig. 3.1. The
development was initiated in the late seventies after the oil crisis and focus was on
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land-based turbines with a power range less than 100 kW. However, the size of the
turbines has grown to the 2-3 MW range for onshore turbines, which constitute the
majority of the wind market today. The areas suitable for onshore wind farms near
the major cities of Europe are limited and offshore installation is seen as an option
even though the price of the produced electricity is higher than for onshore turbines.
Figure 3.1 shows that the offshore market of EU first showed a visible increase
around the year 2000 and the growth is expected to be two orders of magnitude from
the present 3 GW and to 120 GW by 2030 [1, 2]. Thus offshore wind power should
not be considered mature yet and the offshore turbine technology is expected to
divert from the onshore technology by aiming at bigger and more reliable machines.
A central question is what the optimal size of offshore turbines should be in
order to be economically feasible, but the answer will depend heavily on the initial
assumptions made for such an investigation. First of all one would need to decide
whether the renewable energy sources should be competing directly with the fossil
fuel sources, such as coal power plants, which will remain cheap for decades if the
impact on the environment is not included in the economic evaluation. Secondly
one will need to consider a growing global demand for energy and that fossil fuel
resources are fundamentally finite causing a peak in the production. This peak in
the oil production has already been passed by many industrialized countries, which
rely on imports from foreign states. We can only guess at how the above scenarios
will develop, but the issues of climate change and energy security are likely to
become more important in the future, whereby the scenario outlined in Fig. 3.1
would call for more installed capacity. In this context it should be said that several
EU countries are discussing a goal of being independent of fossil fuel in 2050.

3.2 Upscaling Offshore Turbines

The basic properties of future offshore turbines can be estimated by considering the
amount of kinetic energy density in the wind, which can be converted into kinetic
energy of the turbine shaft. The power density of the wind is simply given by
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Fig. 3.2 Power curve of a Multibrid 5 MW turbine scaled to 8 and 10 MW by increasing the
swept area of the rotor. The shaft power scales with the wind speed by v up until the rated wind
speed, where pitching of the turbine blades is used to limit the shaft power at the rated production.
The blue curve represents the Weibull distribution of the wind power in the North Sea and the
annual energy production of the turbine is determined by the integral of the product of the
Weibull distribution and power curve [3]. Reproduced with permission from Institute Of Physics

1
Pying = EPAV3 (3.1)

where p is the density of the air, A is the swept area of the turbine rotor with a
diameter D giving A = n(D/2)* and v is the velocity of the wind passing the rotor.
The efficiency by which the turbine blades can convert the wind power into kinetic
energy of the shaft is quantified in the power coefficient C,, and is determined by
the aerodynamic properties of the blades. The power coefficient depends on the
ratio between the tip speed vr;, of the blades and the wind speed v, as well as the
pitch angle 8 of the rotor blades

vrip Rw

p (3.2)

v v
where R is the radius of the turbine rotor and w is the rotation speed. Thus the
power on the turbine shaft is then given by

Pshati = PwinaCp(4, ) (3.3)

where the power coefficient can be changed from a maximum value at an optimum
pitch angle and 4 to zero by pitching the blades. This is used to control the power
of the turbine shaft as illustrated in Fig. 3.2, which shows the ideal power curve of
a5 MW Multibrid M5000 turbine. Between the cut-in wind speed v;, = 4 m/s and
the rated ideal wind speed vg; = 12 m/s the controller of the turbine will regulate
the blades to maximize the power coefficient, whereby the shaft power will scale
with the wind speed to v>. The controller will pitch the blades to get a constant
rated shaft power for wind speeds above vg; = 12 m/s and finally stop the turbine
above the cut-out wind speed vy = 25 m/s [3].
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existing turbines

(P <5 MW) and the
resulting rotation speed,
which is decreasing in order
to limit the tip speed of the
blades. The values for

P > 5 MW have been
obtained by scaling the
properties of the 5 MW
Multibrid turbine [3] 60
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The conservative up-scaling of a turbine can be done by increasing the area of
the rotor A in Eq. 3.1, while limiting the tip speed to less than v, < 90 m/s in
order to limit the noise and the load on the rotor blades. This choice results in a
decreasing rotation speed according to Eq. 3.2 as the turbines become bigger as
illustrated in Fig. 3.3.

3.3 Drive Trains

There have been many suggestions on drive trains for wind turbines, but the
majority are based on a gearbox inserted between the turbine shaft and a generator
supplied with a suitable power converter connected to the collection grid of a wind
farm [4, 5]. Figure 3.4 illustrates the mechanical configurations, where the gearing
ratio changes from approximately 1:100 with a generator rotating at approximately
1,500 rpm, into a gear ratio of 1:10 connected to a medium speed generator
rotating at approximately 150 rpm and finally into the direct drive option where
the gearbox is completely omitted. The consequence of the simplification of the
gearbox of the different drive train choices in Fig. 3.4 is that the generators must
provide an increasing torque 7" at lower rotational speeds w as the direct drive is
approached, since the power P produced by the generator is

P=Tow, (3.4)

On general grounds one can formulate the torque of a generator by only

considering the fundamental harmonic of the airgap flux density B, and of the
stator electric loading Ig

By (0) = By cos(p0) (3.5)

I5(0) = V2As cos(p(0 — 7)) (3.6)
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Fig. 3.4 Typical drive train configurations for wind turbines based on a a multi-stage gearbox
and a squirrel-cage induction generator rotating at 1,500 rpm connected directly to the grid via a
transformer b a multi-stage gearbox and a double fed induction generator (DFIG) which has a
converter connected to the rotor windings via slip rings. ¢ Hybrid setup with a 1:10 ratio gearbox
and a generator rotating at medium speed of 150 rpm and d the direct drive with the generator
rotating at the speed of the rotor blades. The frequency of the produced electricity will not match
the grid frequency in the last two cases and a full power converter must be inserted between the
generators and the grid transformer

where 0 is the angle around the circumference of the airgap, y is the angular
displacement between the magnetic field and the stator current distribution and p is
the number of pole pairs. The peak airgap flux density is denoted Bg and the rms
(root mean square) value of the electric loading is denoted As.

The total torque T of the generator is now found by considering that the airgap
flux density B will cause a Lorentz force F| on a stator wire carrying a current /,
F1 ~1 x B. This force results in a torque on the wire, 7'~ r x FL. By performing
an integration of Egs. 3.5 and 3.6 one obtains

T = V2AsB,V cos (py) (3.7)
V =nr’L (3.8)

where V is the airgap volume of the generator with an airgap radius r and active
length L.
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3.4 Generator Types

In the previous sections it was illustrated that the rotation speed of the turbine
blades is expected to decrease as the turbines are up-scaled to power ratings of
10 MW and furthermore the transition to the direct drive will call for generators
capable of delivering torques in the order of 7= 10° Nm at a speed of 10 rpm.
From Eq. 3.7 it is seen that in order to obtain such an increase of the torque one
must either increase the electric loading Ag, the airgap flux density B, or finally the
volume of the generator. The airgap flux density is limited by saturation and
cannot be increased substantially in a more conventional machine. The electric
loading is limited by stator cooling. This can be increased to a certain extent by
improving the thermal design, but would not be expected to increase by several
factors. It is therefore obvious from Eq. 3.7 that if the torque is to increase, then
the generator volume must increase. From Eq. 3.8 increasing the radius of the
generator is more efficient, since the torque scales as 7%, compared to a linear
scaling with the length L of the generator.

Alternative to just increasing the volume of the generator it is interesting to
investigate whether it is possible to increase the airgap flux density B,. Direct drive
generators can be characterized by the method by which the magnetic field is
created and shaped.

3.5 First Generation: Copper and Steel

The simplest version of the direct drive generator is based on copper (Cu) wires
wound around magnetic steel making up the rotor structure, which is magnetized
when a current is passed through the field windings. The stator is constructed in a
similar way where copper wires are inserted between the teeth of the magnetic
steel of the stator. This is illustrated in Fig. 3.5, where the green circles represent
the Cu wires in one of the rotor coils and the red circles represent one of the stator
windings of a 3-phase stator. The blue arrows illustrate the magnetic flux path.
It should be noticed that each stator winding will be distributed in several slots in a
realistic machine.

The advantage of this kind of machine is the choice of the cheap raw
materials Cu and Steel, and the ability to control the excitation. However, some
limitations of the parameter entering Eq. 3.7 are imposed by the physical
properties of the materials, which will be discussed below. Enercon has been
using the wound direct drive generator in its wind turbines since the early
nineties, which have a characteristic nacelle shape, because they must hold a
large diameter ring generator [6]. The weight of the generator for the E-112
turbine of 6 MW power rating and having a rotor diameter of 114 m is 212 t and
the total nacelle weight is 500 t [7].
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Fig. 3.5 Simplified illustration of the first generation direct drive generator based on copper
wires (green circles) wound into a coil placed on the magnetic steel structure of the rotor.
The stator is constructed in a similar way by winding copper wires (red) in the slots of the stator
magnetic steel. A 3-phase stator is made by adding two more coils marked by index 2 and 3.
The generator is magnetized by passing a current through the rotor windings and the shape of the
magnetic field is schematically illustrated by the arrows (blue)

3.5.1 Ohm’s Law and Heat Generation

The resistivity p of the wires making the rotor winding will cause a total resistance of

lwir
Reoil = p—= (3.9)

Awire

where [y is the length of the wire and A, is the cross-sectional area of the wire.
The rotor is magnetized by sending a current / through the rotor winding, whereby
the magnetic flux ® produced is proportional to the magneto motive force
(mmf = NI) and inversely proportional to the reluctance (R) of the magnetic path.
NI
b=— (3.10)
R
N is the number of turns in the coil. The power dissipation Py in the wire will
however scale with the square of the current

Pr = RI? (3.11)

and cause Joule heating, which must be managed by the cooling of the rotor to
prevent a thermal run away. Thus the second thing to consider is the thermal
conductivity k, the specific heat ¢, and the mass density p,, of the wires and
materials surrounding the coil windings. One can then determine the final oper-
ating temperature of the rotor windings by solving the general heat equation

pmcpal

V2T =
K Ot

(3.12)
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where T is the local temperature, V is the Laplace operator and 0/0t is the
time derivative.

The above equations illustrate that the current passing through the copper
windings of both the rotor and stator will be limited by the cooling of the
generator. This is why the current density of the copper wires of air cooled
machines is usually quite limited and forced air or liquid cooling of the windings is
needed to achieve higher current densities. From Eq. 3.10 it is seen that the flux
will scale linearly with the current until the current density limit is reached. This is
however only true as long as the iron does not saturate. When the iron saturates the
reluctance will start to increase and hence the flux will not remain proportional to
the current.

3.5.2 Magnetic Steel and Flux Circuits

Magnetic steel is primarily iron holding some percentage of silicon and addi-
tional traces of other elements to increase the electrical resistivity compared to
pure iron. Iron is a ferromagnetic material, because the conduction electrons with
spin up and down are shifted due to the exchange interaction between the
electrons. This imbalance results in an effective magnetic moment of each of the
Fe atoms with neighbouring moments pointing in the same direction. Long range
alignment of the magnetic moments is however prevented by the formation of
magnetic domains, which are reducing the stray fields of the ferromagnetic
material. These domains can however rather easily be aligned along an external
applied magnetic field, but the associated magnetization will eventually saturate
when all domains point in the same direction [8]. This is illustrated in Fig. 3.6
which shows a typical magnetization curve of magnetic construction steel
(0.42% Mn, 0.17% Si and 0.08% C). Thus the combination of a field coil and
soft iron is used to construct a magnetic flux circuit, where the flux created by
the coil is mediated by the alignment of the magnetic domains in the soft iron in
order to maximize the air gap flux density B, entering the torque Eq. 3.7. This
technique is however only effective as long as the iron does not saturate too
much, since the magnetic flux will leak out of the circuit above the saturation
magnetization density uoMg; = 1.5-1.8 T.

3.6 Second Generation: Nd,Fe 4B, Copper and Steel

The second generation direct drive generator illustrated in Fig. 3.7 utilizes
permanent magnets to establish the magnetic field instead of using rotor coils,
whereas the stator is constructed similar to the first generation. The advantage is
that there is no need for connections of the rotor magnetization current and there
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Fig. 3.7 Second generation direct drive generator based on permanent magnets mounted on the
surface of the rotor, whereas the stator is similar to the first generation generator with cu wires
(red) wound in the slots of the magnetic stator steel

are no resistive losses associated with the rotor coils. Thus the mechanical and
electrical simplification of the rotor is considerable and is believed to improve the
reliability, because fewer parts can fail in the generator.

A prerequisite for the construction of such a generator is however the avail-
ability of the strong Nd,Fe 4B type of permanent magnet. They primarily consist
of iron atoms, but the additional neodymium (Nd) atoms locks the magnetization
direction of the iron moments to the long axis of the crystal structure as shown in
the inset of Fig. 3.8. This directional locking of the magnetic moments makes it
possible to align small powder grains of Nd,Fe 4B by applying a magnetic field
and then pressing the powder into blocks, which are finally sintered together in a
furnace. Small ferromagnetic domains are formed as the blocks are cooled
down below the magnetic ordering temp