
Chapter 9
Frequently hypercyclic operators

The theory of linear dynamical systems has its roots in topological dynamics.
But there is also a parallel theory of measurable dynamics, which is better
known under the name of ergodic theory. In this chapter we show how con-
cepts and results from that theory lead to a deepened understanding of linear
dynamics. More specifically, we will see how the celebrated Birkhoff ergodic
theorem suggests an interesting and rather strong variant of hypercyclicity,
that of frequently hypercyclic operators. We point out that, while ergodic
theory has turned out to be a most powerful tool in linear dynamics, we will
use it here only for motivating the new concept.

Having introduced frequently hypercyclic operators, we then derive a Fre-
quent Hypercyclicity Criterion and an eigenvalue criterion that allow us to
show that, quite surprisingly, many of the hypercyclic operators met so far
are in fact frequently hypercyclic. In the final section we revisit several of the
structural properties of hypercyclicity within the new framework.

9.1 Frequently recurrent orbits

Let T be an operator on a separable Fréchet space X. In order to look at
T from the point of view of ergodic theory we need to have a probability
measure μ on X. Since we are in a topological situation it is natural to
assume that μ is defined on the Borel σ-algebra B(X), that is, the smallest
σ-algebra containing the open subsets of X; the elements of B(X) are called
the Borel sets of X. Since T is continuous, it is then also measurable. We
assume that T satisfies the minimum requirement in ergodic theory, namely,
that it is μ-invariant, that is, μ(T−1(A)) = μ(A) for every Borel set A.

Of course, μ-invariance alone does not yet give us interesting dynamics
since, for example, the identity operator is automatically μ-invariant for any
measure μ. This changes when we inject ergodicity: one way of defining this
notion is by demanding that, for any Borel sets A and B with μ(A) > 0
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and μ(B) > 0, there is some n ∈ N0 such that μ(T−n(A) ∩ B) > 0. This
notion is not only formally similar to topological transitivity. Suppose that
the measure μ has the additional property that μ(U) > 0 for any nonempty
open set U ; μ is then said to be of full (topological) support. Under this
assumption, ergodicity obviously implies topological transitivity.

But there is an added bonus in the form of the Birkhoff ergodic theorem.
It tells us that if T is ergodic with respect to μ then, for any μ-integrable
function f on X, its time average with respect to T coincides with its space
average; more precisely we have that

1
N + 1

N∑

n=0
f(Tnx) →

∫

X

f dμ, for μ-almost all x ∈ X, (9.1)

as N → ∞. This then implies an interesting topological property for T .
Indeed, since X is separable, its topology has a countable base (Uk)k. When
we apply (9.1) to the indicator functions 1Uk

, k ≥ 1, the left-hand side turns
out to be

1
N + 1

N∑

n=0
1Uk

(Tnx) =
card{0 ≤ n ≤ N ; Tnx ∈ Uk}

N + 1
,

while the right-hand side is simply
∫
X

1Uk
dμ = μ(Uk) > 0, where we have

assumed again that μ is of full support. Thus there are subsets Ak ⊂ X,
k ≥ 1, of full measure such that, for any x ∈ Ak,

lim
N→∞

card{0 ≤ n ≤ N ; Tnx ∈ Uk}
N + 1

> 0.

Since every nonempty open set contains some Uk and since
⋂

k≥1 Ak has full
measure we obtain that, for μ-almost all x ∈ X and every nonempty open
subset U of X,

lim inf
N→∞

card{0 ≤ n ≤ N ; Tnx ∈ U}
N + 1

> 0.

What we have found here is that, under the mentioned assumptions, the
operator T has a property that is much stronger than hypercyclicity. There
must even be an x ∈ X whose orbit meets every nonempty open set very
often, in the sense given above. Let us recall here the following.

Definition 9.1. The lower density of a subset A ⊂ N0 is defined as

dens(A) = lim inf
N→∞

card{0 ≤ n ≤ N ; n ∈ A}
N + 1

.

Our discussion so far leads us to the following concept.
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Definition 9.2. An operator T on a Fréchet space X is called frequently
hypercyclic if there is some x ∈ X such that, for any nonempty open subset
U of X,

dens {n ∈ N0 ; Tnx ∈ U} > 0.

In this case, x is called a frequently hypercyclic vector for T . The set of
frequently hypercyclic vectors for T is denoted by FHC(T ).

The orbit of a frequently hypercyclic vector is therefore, in the specified
sense, frequently recurrent. Obviously, frequent hypercyclicity is a stronger
notion than hypercyclicity.

There is an equivalent formulation of frequent hypercyclicity that nicely
differentiates it from hypercyclicity. Let A be a subset of N0; if (nk)k≥1 is the
increasing sequence of integers forming A and nk ≤ N < nk+1 then

k

nk+1
≤ card{0 ≤ n ≤ N ; n ∈ A}

N + 1
≤ k

nk
,

which implies that dens (A) = lim infk→∞
k
nk

. Thus A has positive lower
density if and only if (nk

k )k is bounded; in other words, if nk = O(k).

Proposition 9.3. A vector x ∈ X is frequently hypercyclic for T if and only
if, for any nonempty open subset U of X, there is a strictly increasing se-
quence (nk)k of positive integers such that

Tnkx ∈ U for all k ∈ N, and nk = O(k).

By contrast, T is hypercyclic if and only if the same is true for some
(nk)k, not necessarily of order O(k). This seems to indicate that our new
notion requires much more than mere hypercyclicity.

We have the usual behaviour under quasiconjugacies, which can be proved
as in Proposition 1.19.

Proposition 9.4. Frequent hypercyclicity is preserved under quasiconjugacy.

Our first task will be to show that frequently hypercyclic operators exist.
We saw above that an operator T on a separable Fréchet space X is frequently
hypercyclic if one can find a Borel probability measure μ of full support
on X with respect to which T is ergodic. However, in order to keep our
introduction to frequent hypercyclicity simple we will not pursue this circle of
ideas any further. Instead, we will favour a constructive approach to frequent
hypercyclicity.

So, what does it take for a vector x to be frequently hypercyclic for an
operator T? Let ‖ · ‖ denote an F-norm defining the topology of X, and let
(yl)l be a dense sequence in X. Then there are subsets A(l, ν), l, ν ≥ 1, of N0
of positive lower density such that, for any n ∈ A(l, ν),

‖Tnx− yl‖ <
1
ν
.
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Moreover, if yl 
= yk then the sets A(l, ν) and A(k, μ) are disjoint if ν and μ
are big. In fact, in the sequel we will need the existence of sets A(l, ν) with
a stronger separation property.

Lemma 9.5. There exist pairwise disjoint subsets A(l, ν), l, ν ≥ 1, of N0 of
positive lower density such that, for any n ∈ A(l, ν) and m ∈ A(k, μ), we
have that n ≥ ν and

|n−m| ≥ ν + μ if n 
= m.

Proof. We start by partitioning N in a very natural fashion by using the
dyadic representation

n =
∞∑

j=0

aj2j =: (a0, a1, a2, . . .)

of any positive integer n. We define I(l, ν), l, ν ≥ 1, as the set of all n ∈ N

whose dyadic representation has the form

n = (0, . . . , 0, 1, . . . , 1, 0, ∗)

with l − 1 leading zeros, followed by ν ones, then one zero, followed by an
arbitrary tail. It is clear that the sets I(l, ν) form a partition of N, but they
do not satisfy the required separation property. To achieve this we let δk = ν
if k ∈ I(l, ν) for some l ≥ 1, and we define

nk = 2
k−1∑

i=1

δi + δk, k ≥ 1,

which is a strictly increasing sequence. We claim that

A(l, ν) = {nk ; k ∈ I(l, ν)}, l, ν ≥ 1

has the desired properties. First, these sets are pairwise disjoint. Moreover,
if nk ∈ A(l, ν) then nk ≥ δk = ν; and if nj ∈ A(l, ν), nm ∈ A(k, μ) with
nj 
= nm, where we can assume that j > m, then

nj − nm = δm + 2
j−1∑

i=m+1

δi + δj ≥ μ + ν.

It remains to show that each set A(l, ν) has positive lower density. We
begin by proving that there is some M > 0 such that

nk ≤ Mk, k ≥ 1. (9.2)
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It suffices to do this for k = 2N , N ≥ 1, because we then have for 2N−1 ≤
k < 2N that

nk ≤ n2N ≤ M2N ≤ 2Mk.

Thus let k = 2N . A simple but tedious enumeration shows that, if l + ν ≤
N + 2, then I(l, ν) contains at most 2N+2−l−ν elements that do not exceed
2N , and none if l + ν > N + 2. Hence we have that

n2N ≤ 2
2N∑

i=1

δi ≤ 2
∑

l+ν≤N+2

2N+2−l−νν ≤
(
8
∑

l,ν≥1

ν

2l+ν

)
2N ,

so that (9.2) holds for some M > 0.
Now let l, ν ≥ 1. Let (kj)j be the increasing sequence of elements of I(l, ν).

Since the latter set has positive lower density, the argument leading up to
Proposition 9.3 shows that there is some constant K > 0 such that

kj ≤ Kj, j ≥ 1.

It then follows that A(l, ν) = {nkj ; j ≥ 1} and

nkj ≤ Mkj ≤ MKj, j ≥ 1.

Hence each set A(l, ν) has positive lower density. �


This result allows us to obtain a first example of a frequently hypercyclic
operator.

Example 9.6. (Birkhoff’s operators) The translation operators Ta : f →
f(· + a), a 
= 0, on the space H(C) of entire functions are frequently hyper-
cyclic. By Proposition 9.4 and Example 4.26 it suffices to consider a = 1.

Thus, let A(l, ν), l, ν ≥ 1, be subsets of N0 as given by Lemma 9.5, and
let (Pl)l be a dense sequence of polynomials. Let (nk)k be the increasing
sequence of elements of

⋃
l,ν≥1 A(l, ν). If nk ∈ A(l, ν) then we define Bk as

the closed ball around nk of radius rk := ν/2, and on this ball we consider
the function gk := Pl(z− nk); see Figure 9.1. It follows from the lemma that

Fig. 9.1 Constructing Birkhoff frequently hypercyclic functions
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the Bk are pairwise disjoint. We now apply Runge’s theorem recursively. We
start with f1 = g1. If entire functions f1, . . . , fk, k ≥ 1, have been constructed
then we consider the function that is defined as fk on |z| ≤ nk + rk and as
gk+1 on Bk+1. Let εk > 0 be numbers that will be specified later. By Runge’s
approximation theorem there is an entire function fk+1 such that

sup
|z|≤nk+rk

|fk+1(z) − fk(z)| < εk and sup
z∈Bk+1

|fk+1(z) − gk+1(z)| < εk.

If
∑∞

k=1 εk < ∞ then it follows from the first inequality and the fact that
nk → ∞ that

f(z) := f1(z) +
∞∑

k=1

(fk+1(z) − fk(z)) = lim
k→∞

fk(z)

defines an entire function. Moreover we have with ε0 = 0 that

sup
z∈Bk

|f(z) − gk(z)| ≤ sup
z∈Bk

|fk(z) − gk(z)| +
∞∑

j=k

sup
z∈Bk

|fj+1(z) − fj(z)|

≤
∞∑

j=k−1

εj ,

that is,

sup
|z−nk|≤ν/2

|f(z) − Pl(z − nk)| ≤
∞∑

j=k−1

εj

for nk ∈ A(l, ν). It is easy to see that we can choose the εj in such a way
that
∑∞

j=k−1 εj <
1
ν whenever nk ∈ A(l, ν). We therefore have that

sup
|z|≤ν/2

|Tnk
1 f(z) − Pl(z)| <

1
ν

for nk ∈ A(l, ν). Since the sets {g ∈ H(C) ; sup|z|≤ν/2 |g(z) − Pl(z)| < 1
ν },

l, ν ≥ 1, form a basis of the topology of H(C) and since each set A(l, ν) has
positive lower density, it follows that T1 is frequently hypercyclic.

It is of interest to compare the new, and strong, form of hypercyclicity
with other strong forms such as weak mixing, mixing and chaos. We start
here by showing that every frequently hypercyclic operator is weakly mixing.
For the proof we need a property of sets of positive lower density. For any
subset A of N0 its difference set is defined as

A−A = {n−m ; n,m ∈ A,n ≥ m};
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it should be noted that we consider here only nonnegative differences. We
recall that a subset B of N0 is called syndetic if its complement does not
contain intervals of arbitrary length; one also says that it has bounded gaps.

Theorem 9.7 (Erdős–Sárközy). Let A ⊂ N0 be a set of positive lower
density. Then the difference set A−A is syndetic.

Proof. Suppose that the difference set D of A is not syndetic. In particu-
lar, there exists some n1 /∈ D. Moreover, since N0 \ D contains intervals
of arbitrary length, there is some n2 /∈ D such that also n2 + n1 /∈ D.
Hence {n1, n2, n1 + n2} ⊂ N0 \D. Similarly, there is some n3 /∈ D such that
n3+n1, n3+n2 /∈ D, which implies that {n1, n2, n3, n1+n2, n1+n3, n2+n3} ⊂
N0 \D. Continuing in this way we obtain a sequence (nk)k in N0 such that
any finite sum of elements in the sequence belongs to N0 \D.

We now fix a positive integer m such that dens(A) > 1
m , and we consider

the sets
Ak = A + (n1 + . . . + nk), k ∈ N.

Since each set Ak also has lower density larger than 1
m , there is some N ≥ 1

such that, for any k ≤ m,

card{n ≤ N ; n ∈ Ak} >
N + 1
m

.

If the Ak, k = 1, . . . ,m, were pairwise disjoint, we would have that

card{n ≤ N ; n ∈ A1 ∪ . . . ∪Am} > m
N + 1
m

= N + 1,

which is impossible. Hence there are j < k with Aj ∩Ak 
= ∅, which implies
that

nj+1 + . . . + nk ∈ A−A = D.

This contradicts the construction of the nk. �


With this we can prove the announced result.

Theorem 9.8. Any frequently hypercyclic operator on a Fréchet space is
weakly mixing.

Proof. Let T be a frequently hypercyclic operator on a Fréchet space X. We
want to show that the condition of Theorem 2.47 is satisfied. Thus, let W be
a 0-neighbourhood and U and V nonempty open subsets of X.

First, since T is hypercyclic and therefore topologically transitive, there is
some n0 ≥ 0 such that Tn0(U) ∩W 
= ∅. By continuity there is a nonempty
open subset U0 of U such that Tn0(U0) ⊂ W . Now let x be an arbitrary
frequently hypercyclic vector for T . Then there is a set A ⊂ N0 of positive
lower density such that

Tnx ∈ U0 for any n ∈ A.
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For m,n ∈ A, m ≥ n, we then find that

Tn0+m−n(Tnx) = Tn0(Tmx) ∈ W.

We thus have that

n0 + (A−A) ⊂ N(U0,W ) ⊂ N(U,W ).

It follows from Theorem 9.7 that N(U,W ) is syndetic.
Secondly, by continuity and linearity, each set T−k(W ) is a 0-neigh-

bourhood. Thus, given any m ≥ 1, there is a 0-neighbourhood W0 such
that T k(W0) ⊂ W for k = 1, . . . ,m. Again by topological transitivity there is
some K > m and some y ∈ W0 such that TKy ∈ V and hence, for 1 ≤ k ≤ m,

TK−k(T ky) ∈ TK−k(W ) ∩ V.

This shows that, for any m ≥ 1, N(W,V ) contains m consecutive integers.
Our two conclusions imply that N(U,W ) ∩ N(W,V ) 
= ∅, so that, by

Theorem 2.47, T is weakly mixing. �


9.2 The Frequent Hypercyclicity Criterion

In order to obtain further examples of frequently hypercyclic operators, we
derive here a sufficient condition for frequent hypercyclicity that resembles
the Hypercyclicity Criterion. Its proof is inspired by Kitai’s constructive ap-
proach to that criterion; see the alternative proof of Theorem 3.12. However,
at a crucial point we have to depart from that proof: since we require ap-
proximation on sets of positive lower density we can no longer define the kj
inductively. On the other hand, fixing the kj in advance is no option either
as they will necessarily depend on the chosen operator. Lemma 9.5 provides
us with exactly the right tool for the construction.

We refer to Appendix A for the notion of unconditionally convergent series.

Theorem 9.9 (Frequent Hypercyclicity Criterion). Let T be an oper-
ator on a separable Fréchet space X. If there is a dense subset X0 of X and
a map S : X0 → X0 such that, for any x ∈ X0,

(i)
∞∑

n=0
Tnx converges unconditionally,

(ii)
∞∑

n=0
Snx converges unconditionally,

(iii) TSx = x,
then T is frequently hypercyclic.
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Proof. Since X is separable we can choose a sequence (yj)j from X0 that
is dense in X. Let ‖ · ‖ denote an F-norm that defines the topology of X.
Conditions (i) and (ii) imply that there are Nl ∈ N, l ≥ 1, such that, for any
j ≤ l and any finite set F ⊂ {Nl, Nl + 1, Nl + 2, . . .} we have that

∥∥∥
∑

n∈F

Tnyj

∥∥∥ <
1
l2l

, (9.3)

∥∥∥
∑

n∈F

Snyj

∥∥∥ <
1
l2l

. (9.4)

Now let A(l, ν), l, ν ≥ 1, be subsets of N0 as given by Lemma 9.5. We set

A =
∞⋃

l=1

A(l, Nl)

and
zn = yl if n ∈ A(l, Nl).

We then consider
x =
∑

n∈A

Snzn. (9.5)

First we want to verify that this series converges unconditionally. Let us
fix l ≥ 1. For any finite set F ⊂ N0 we have that

∑

n∈A
n∈F

Snzn =
∞∑

j=1

∑

n∈A(j,Nj)
n∈F

Snyj =
l∑

j=1

∑

n∈A(j,Nj)
n∈F

Snyj +
∞∑

j=l+1

∑

n∈A(j,Nj)
n∈F

Snyj .

It follows from (9.4) that, for j ≤ l and F ⊂ {Nl, Nl + 1, Nl + 2, . . .} finite,
∥∥∥
∑

n∈A(j,Nj)
n∈F

Snyj

∥∥∥ <
1
l2l

;

moreover, since n ≥ Nj for any n ∈ A(j,Nj) by Lemma 9.5, we also have by
(9.4) that, for any j ≥ 1 and any finite set F ,

∥∥∥
∑

n∈A(j,Nj)
n∈F

Snyj

∥∥∥ <
1
j2j

≤ 1
2j

.

Altogether we have that, for any finite set F ⊂ {Nl, Nl + 1, Nl + 2, . . .},

∥∥∥
∑

n∈A
n∈F

Snzn

∥∥∥ <
l∑

j=1

1
l2l

+
∞∑

j=l+1

1
2j

=
2
2l
.
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Since l was arbitrary we have proved that the series (9.5) converges uncon-
ditionally.

We now show that x is frequently hypercyclic for T . To this end, fix l ≥ 1.
Then, for n ∈ A(l, Nl),

Tnx− yl =
∑

k∈A
k<n

TnSkzk +
∑

k∈A
k>n

TnSkzk + TnSnzn − yl.

For the second sum we have, for any m ≥ n, using condition (iii),

∑

k∈A
n<k≤m

TnSkzk =
l∑

j=1

∑

k∈A(j,Nj)
n<k≤m

Sk−nyj +
∞∑

j=l+1

∑

k∈A(j,Nj)
n<k≤m

Sk−nyj .

Note that, by Lemma 9.5, k− n ≥ Nl in the first sum and k− n ≥ Nj in the
second sum. Therefore, the same argument as above shows that

∥∥∥
∑

k∈A
n<k≤m

TnSkzk

∥∥∥ <
l∑

j=1

1
l2l

+
∞∑

j=l+1

1
2j

=
2
2l
,

hence
∥∥∥
∑

k∈A
k>n

TnSkzk

∥∥∥ ≤
2
2l
.

In the same way, but using (9.3) instead of (9.4), we obtain that also
∥∥∥
∑

k∈A
k<n

TnSkzk

∥∥∥ ≤
2
2l
.

Finally, since n ∈ A(l, Nl) we have that

TnSnzn = yl.

Altogether we find that for all n ∈ A(l, Nl)

‖Tnx− yl‖ ≤ 4
2l
.

Since the yl form a dense set in X and since each set A(l, Nl) is of positive
lower density we conclude that x is frequently hypercyclic for T . �


Remark 9.10. For a later application we note that the same proof works when
we replace conditions (ii) and (iii) by the following:
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For any x ∈ X0 there is a sequence (un)n≥0 in X with u0 = x such that∑∞
n=0 un converges unconditionally and Tnuk = uk−n if n ≤ k.

Let us also note here that the Frequent Hypercyclicity Criterion not only
implies frequent hypercyclicity but also two other strong forms of hypercyclic-
ity.

Proposition 9.11. An operator on a separable Fréchet space that satisfies
the Frequent Hypercyclicity Criterion is also chaotic and mixing.

Proof. The mixing property follows immediately from Kitai’s criterion.
As for chaos, we have from conditions (i) and (ii) that, for any x ∈ X0 and

N ≥ 1,

yx,N :=
∞∑

j=1

SjNx + x +
∞∑

j=1

T jNx

converges in X. Moreover, by condition (iii), TNyx,N = yx,N , and by (i)
and (ii) we have that yx,N → x as N → ∞. Since X0 is dense, the yx,N
therefore form a dense set of periodic points for T . Knowing already that T
is hypercyclic we deduce that T is even chaotic. �


In the last section we saw that Birkhoff’s operators are frequently hyper-
cyclic. The Frequent Hypercyclicity Criterion allows us to show that also
the other two classical hypercyclic operators, the operators of MacLane and
Rolewicz, are in fact frequently hypercyclic; see also Exercise 9.2.2.

Example 9.12. (MacLane’s operator) The differentiation operator D on
H(C) is frequently hypercyclic. To see this we proceed as in Example 3.7.
Let X0 be the set of polynomials and S the operator Sf(z) =

∫ z
0 f(ζ) dζ.

Condition (i) of the Frequent Hypercyclicity Criterion is satisfied since
any finite series converges unconditionally, and (iii) is trivial. For (ii) we
need only consider the monomials, for which we find that

∑∞
n=0 S

n(zk) =
k!
∑∞

n=0
1

(k+n)!z
k+n, which converges uniformly and unconditionally on any

compact set.

We study Rolewicz’s operators in the broader context of general weighted
shifts. We will use the notation and terminology of Section 4.1. In particular,
we consider weighted (backward) shifts

Bw : (x1, x2, x3, . . .) → (w2x2, w3x3, w4x4, . . .),

where w = (wn)n is a weight sequence. By en, n ≥ 1, we denote the canonical
unit sequences.

Proposition 9.13. Let Bw be a weighted shift on a Fréchet sequence space
X in which span{en ; n ≥ 1} is dense. If the series
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∞∑

n=1

( n∏

ν=1
wν

)−1
en

converges unconditionally in X then Bw is frequently hypercyclic.

Proof. We apply the Frequent Hypercyclicity Criterion. We choose X0 as the
set of finite sequences, which is dense by assumption, and for S we consider
the weighted forward shift (x1, x2, x3, . . .) → (0, x1/w2, x2/w3, . . .). Then con-
dition (i) holds because any finite series converges unconditionally, and condi-
tion (iii) is obvious. By linearity, we need to confirm (ii) only for the sequences
ek, k ≥ 1. But then

∞∑

n=0
Snek =

∞∑

n=0

ek+n

wk+1 · · ·wk+n
=
( k∏

ν=1
wν

) ∞∑

n=0

( k+n∏

ν=1
wν

)−1
ek+n,

which converges unconditionally by hypothesis. �


In particular, by Theorem 4.8 we have the following.

Corollary 9.14. On a Fréchet sequence space X in which (en)n is an un-
conditional basis, every chaotic weighted shift is frequently hypercyclic.

The result covers some interesting special cases.

Example 9.15. (Rolewicz’s operators) For λ ∈ K we consider the multiples
T = λB of the shift operator B with |λ| > 1. Then T is frequently hypercyclic
on any Fréchet sequence space on which it is defined, in which (en)n is an
unconditional basis and that contains the sequence (1/λn)n. This includes,
in particular, the spaces �p, 1 ≤ p < ∞, and c0.

Example 9.16. (a) We follow Example 4.9(b) and consider weighted shifts
T = Bw on H(C), or rather its corresponding sequence space. Since the
sequences en, n ≥ 0, correspond to the monomials zn, Bw turns out to be
frequently hypercyclic if

∑∞
n=1(
∏n

ν=1 wν)−1zn converges unconditionally in
H(C), which is equivalent to

lim
n→∞

( n∏

ν=1
|wν |
)1/n

= ∞.

Since the differentiation operator D corresponds to the weights wn = n, we
also get a new proof that D is frequently hypercyclic.

(b) In the space ω = K
N, every series

∑∞
n=1 anen converges uncondition-

ally. As a consequence, every weighted shift is frequently hypercyclic on ω.

One is still far away from a characterization of frequently hypercyclic
weighted shifts. We complement here the sufficient condition derived above
by a necessary condition.
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Proposition 9.17. Let Bw be a weighted shift on a Fréchet sequence space
X in which (en)n is an unconditional basis. If Bw is frequently hypercyclic
then there exists a subset A ⊂ N0 of positive lower density such that

∑

n∈A

( n∏

ν=1
wν

)−1
en converges.

Proof. Let x be a frequently hypercyclic vector for T = Bw. Since

Tnx = (w2w3 · · ·wn+1xn+1, . . .)

and since the projection onto the first coordinate is continuous on X, there
is a set B ⊂ N0 of positive lower density such that, for any n ∈ B,

|w2w3 · · ·wn+1xn+1 − 2| < 1,

hence
|xn+1| >

1
|w2w3 · · ·wn+1|

.

Together with the unconditional convergence of
∑∞

n=1 xnen this implies that

∑

n∈B

1
w1w2 · · ·wn+1

en+1

converges; see Theorem A.16. This proves the claim for A = {n+1 ; n ∈ B}.
�


We note that this condition is not, in general, a sufficient condition; see
Exercise 9.2.5.

While at the outset it was not even clear if frequently hypercyclic operators
exist, we have now actually seen that all the classical hypercyclic operators
and many others have this strong form of hypercyclicity. Although it is not to
be expected that hypercyclicity and frequent hypercyclicity coincide, we are
also in the position to give an example that differentiates the two concepts.

Example 9.18. On X = �2 we consider the weighted shift Bw with weights
wn = (n+1

n )1/2. It follows from Example 4.9(a) that Bw is hypercyclic and
even mixing. However, if Bw were frequently hypercyclic then by the previous
proposition we could find a set A = {nk ; k ≥ 1} of positive lower density
such that

∑∞
k=1

1
nk+1 < ∞, which is impossible since nk = O(k); see the

discussion before Proposition 9.3. Note that Bw is conjugate to the shift
operator B on the Bergman space A2; see Example 4.4(b).

This example takes us back to the problem of comparing frequent hyper-
cyclicity with other forms of hypercyclicity. We saw in Theorem 9.8 that
every frequently hypercyclic operator is weakly mixing. Some other implica-
tions have turned out to be false. We have just seen that the mixing property
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does not imply frequent hypercyclicity. But there is also a frequently hyper-
cyclic operator on c0 that is neither mixing nor chaotic. In particular, by
Proposition 9.11, this operator does not satisfy the Frequent Hypercyclicity
Criterion. The construction of this example goes well beyond the scope of
this book.

The reader may have noticed that in frequent hypercyclicity so far we have
not made use of the Baire category theorem. This is unlike the situation in
hypercyclicity where the existence of a hypercyclic vector was deduced from
the fact that, in the sense of Baire category, there must be many of them;
see the proof of the Birkhoff transitivity theorem. In fact, this procedure is
ruled out in frequent hypercyclicity because, in general, the set FHC(T ) of
frequently hypercyclic vectors for an operator T is only of first Baire category.

Proposition 9.19. Let T be an operator on a Fréchet space X. If there is a
dense set X0 such that Tnx → 0 for all x ∈ X0 then FHC(T ) is of first Baire
category. This is true, in particular, for all operators satisfying the Frequent
Hypercyclicity Criterion.

Proof. Let ‖ · ‖ be an F-norm defining the topology of X, and choose δ > 0
such that {x ∈ X ; ‖x‖ > δ} is nonempty. Then every frequently hypercyclic
vector for T belongs to the set

E := {x ∈ X ; dens{n ∈ N0 ; ‖Tnx‖ ≥ δ} > 0}.

We have that
E =

⋃

k≥1

⋃

M≥1

Ek,M ,

where

Ek,M =
⋂

N≥M

{
x ∈ X ; card{n ≤ N ; ‖Tnx‖ ≥ δ} ≥ N+1

k

}
.

The continuity of T implies that the complement of Ek,M ,

X \ Ek,M =
⋃

N≥M

{
x ∈ X ; card{n ≤ N ; ‖Tnx‖ < δ} > (N + 1)(1 − 1

k )
}
,

is open, and it contains the dense set X0. Hence each set Ek,M is nowhere
dense, so that E is of first Baire category. �


Thus one cannot argue as in the case of hypercyclicity (see Proposition
2.52), that any vector in the underlying space is the sum of two frequently
hypercyclic vectors. Indeed, there are frequently hypercyclic operators T for
which X 
= FHC(T )+FHC(T ); see Exercise 9.2.6. On the other hand, there
are operators T for which the set FHC(T ) is sufficiently large to ensure that
X = FHC(T ) + FHC(T ); see Exercise 9.1.4.
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We end this section with another interesting phenomenon. Chapter 11 will
be devoted to the question of whether an uncountable family of hypercyclic
operators on a given space can have a common hypercyclic vector. The answer
is positive, for example, for the Rolewicz operators λB, λ > 1, on any of the
spaces X = �p, 1 ≤ p < ∞, or c0; see Example 11.11. The corresponding
result is false, however, for frequent hypercyclicity.

Example 9.20. Let X be one of the spaces �p, 1 ≤ p < ∞, or c0. Then the
Rolewicz operators λB, λ > 1, on X have no common frequently hypercyclic
vector. Indeed, suppose that x was such a vector. By the proof of Proposition
9.17 it then follows that, for any λ > 1,

δλ := dens{n ∈ N0 ; |λnxn+1 − 2| < 1} > 0.

Since there are uncountably many λ, one can find a finite subset, λ1 < λ2 <
. . . < λK say, such that

K∑

k=1

δλk
> 2.

Let ρ = min1≤k<K
λk+1
λk

, and choose M ∈ N such that ρM ≥ 3. We then have
for N sufficiently large that, for any k = 1, . . . ,K,

card{M ≤ n ≤ N ; |λn
kxn+1 − 2| < 1} ≥ 1

2δλk
N.

Since
∑K

k=1
1
2δλk

N > N , the corresponding sets cannot be pairwise disjoint.
Hence there are 1 ≤ k < l ≤ K and n ≥ M such that |λn

kxn+1 − 2| < 1 and
|λn

l xn+1 − 2| < 1. Thus, λn
k |xn+1| > 1 and λn

l |xn+1| < 3, which implies that
ρM ≤ (λl/λk)n < 3, a contradiction.

9.3 An eigenvalue criterion for frequent hypercyclicity

By the Godefroy–Shapiro criterion, eigenvalues inside and outside the unit
disk with many associated eigenvectors are useful for proving an operator to
be hypercyclic. Additional eigenvectors to certain unimodular eigenvalues are
responsible for chaos. We recall that an eigenvalue λ is called unimodular if
|λ| = 1.

In this section we will see that, rather surprisingly, a large supply of eigen-
vectors to unimodular eigenvalues by itself may lead to hypercyclicity, and in
some cases to frequent hypercyclicity. Let us only mention that the correct
interpretation of largeness in this context was again motivated by ergodic
theoretic considerations.

Suppose for the moment that T is an operator on a complex Fréchet space
X whose eigenspaces to unimodular eigenvalues all have dimension at most
one. One can then define an eigenvector field E : T → X so that, for any
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λ ∈ T, E(λ) is either an eigenvector to the eigenvalue λ, or 0. Since we want
a large supply of eigenvectors we would demand that span{E(λ) ; λ ∈ T}
is dense in X, in which case E is called spanning. In order to capture the
situation where eigenspaces are higher-dimensional one has to allow for a
collection of eigenvector fields. In the sequel, J is a nonempty index set.

Definition 9.21. Let T be an operator on a complex Fréchet space X. Then
a collection of functions Ej : T → X, j ∈ J, is called a spanning eigenvector
field associated to unimodular eigenvalues if Ej(λ) ∈ ker(λI − T ) for any
λ ∈ T, j ∈ J , and

span{Ej(λ) ; λ ∈ T, j ∈ J} is dense in X.

In addition, the vector field is said to be continuous (or C2) if each function
Ej : T → X, j ∈ J , is continuous (or C2, respectively).

As usual, a function E : T → X, is called C2 if it is twice continuously
differentiable, where differentiation is defined as in the scalar-valued case.

We now have the announced eigenvalue criterion.

Theorem 9.22. Let T be an operator on a complex separable Fréchet space.
(a) If T has a spanning continuous eigenvector field associated to unimod-

ular eigenvalues then it is mixing and chaotic.
(b) If T has a spanning C2-eigenvector field associated to unimodular

eigenvalues then it is frequently hypercyclic.

The proof is similar to that of Theorem 7.32. We will need the Riemann
integral ∫ 2π

0
f(t) dt

for a continuous function f : [0, 2π] → X; see Appendix A for details and
basic properties.

Lemma 9.23. Let X be a complex Fréchet space and f : [0, 2π] → X a
continuous function.

(a) (Riemann–Lebesgue lemma) Then
∫ 2π
0 eintf(t) dt → 0 as n →

±∞.
(b) If f is twice continuously differentiable with f(0) = f(2π) and

f ′(0) = f ′(2π) then
∑∞

n=0
∫ 2π
0 eintf(t) dt and

∑∞
n=0
∫ 2π
0 e−intf(t) dt converge

unconditionally.

Proof. Let (pk)k be an increasing sequence of seminorms defining the topol-
ogy of X.

(a) As in the proof of Lemma 7.31 one shows that, for any k ≥ 1,
pk (
∫ 2π
0 eintf(t) dt) → 0 as n → ±∞. This implies the claim.

(b) Upon integrating by parts twice we obtain that, for any k ≥ 1, n 
= 0,
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pk

(∫ 2π

0
eintf(t) dt

)
= pk

(
− 1
n2

∫ 2π

0
eintf ′′(t) dt

)
≤ 1

n2

∫ 2π

0
pk(f ′′(t)) dt,

which implies the claim. �


We are now in a position to prove the eigenvalue criterion.

Proof of Theorem 9.22. (a) Let (Ej)j∈J be the given eigenvector field of T .
Since each Ej : T → X is continuous the integrals

xk,j :=
∫ 2π

0
eiktEj(eit) dt ∈ X, k ∈ Z, j ∈ J,

are defined. In order to apply Kitai’s criterion we set

X0 = Y0 = span{xk,j ; k ∈ Z, j ∈ J}.

We will use the Hahn–Banach theorem to show that this set is dense. Thus,
let x∗ be a continuous linear functional on X so that, for all k ∈ Z, j ∈ J ,

〈xk,j , x
∗〉 =
∫ 2π

0
eikt〈Ej(eit), x∗〉 dt = 0.

The functions t → 〈Ej(eit), x∗〉 are continuous and therefore belong to
L2[0, 2π]. Since ( 1√

2π eikt)k∈Z is an orthonormal basis in this Hilbert space,
we deduce that, by continuity,

〈Ej(eit), x∗〉 = 0 for all t ∈ [0, 2π], j ∈ J.

Hence x∗ vanishes on the set span{Ej(λ) ; λ ∈ T, j ∈ J}, which is dense by
assumption, so that x∗ itself must vanish. Thus X0 = Y0 is dense.

Now, since each Ej(λ) is in the eigenspace of λ we have for any k ∈ Z and
j ∈ J that

Tnxk,j =
∫ 2π

0
eiktTnEj(eit) dt =

∫ 2π

0
ei(k+n)tEj(eit) dt → 0

as n → ∞, as a result of the Riemann–Lebesgue lemma. By linearity, we
conclude that Tnx → 0 for all x ∈ X0.

It would seem natural to define the mapping S : Y0 → Y0 by

xk,j =
∫ 2π

0
eiktEj(eit) dt →

∫ 2π

0
ei(k−1)tEj(eit) dt = xk−1,j ,

followed by linear extension to Y0. Since this may lead to a conflict if the
xk,j are not linearly independent we apply, instead, the variant, Exercise
3.1.1, of Kitai’s criterion. Thus, for any y ∈ Y0, we consider a representation
y =
∑m

l=1 alxkl,jl and define
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un =
m∑

l=1

alxkl−n,jl , n ≥ 0.

We then have Tnun = y and, again by the Riemann–Lebesgue lemma, that
xkl−n,j → 0 as n → ∞, so that un → 0. We can therefore conclude that T is
mixing.

Moreover, by continuity of the eigenvector field, also

span{Ej(λ) ; j ∈ J, λ = eαπi for some α ∈ Q}

is dense in X, and each vector in this span is a periodic point for T . Conse-
quently, T is chaotic.

(b) The proof follows the same lines, this time using Lemma 9.23(b) and
the Frequent Hypercyclicity Criterion in the form of Remark 9.10. �


The eigenvalue criterion provides a new proof that the three classical hy-
percyclic operators are even frequently hypercyclic.

Example 9.24. (Rolewicz’ operators) We consider the Rolewicz operators
T = μB, |μ| > 1, on one of the complex spaces X = �p, 1 ≤ p < ∞, or c0.
Then

E : T → X, λ → (λn/μn)n
is an eigenvector field associated to unimodular eigenvalues. An elementary
but tedious calculation shows that the field is C2 (see Exercise 9.3.2), while
the spanning property was proved in Example 3.2.

Concerning MacLane’s and Birkhoff’s operators we will show a much more
general result, namely that Theorem 4.21 by Godefroy and Shapiro also holds
for frequent hypercyclicity.

Theorem 9.25. Suppose that T : H(C) → H(C), T 
= λI, is an operator
that commutes with D, that is,

TD = DT.

Then T is frequently hypercyclic.

Proof. Following the proof of Theorem 4.21 we can write T = ϕ(D) with a
nonconstant entire function ϕ of exponential type, which also implies that ev-
ery function eλ(z) = eλz, λ ∈ C, is an eigenvector of T to the eigenvalue ϕ(λ).
Since ϕ(C) is connected and dense (see Appendix A), there is a point z ∈ C

with w := ϕ(z) ∈ T; and since ϕ(C) is open and the zeros of ϕ′ are isolated
points we can also achieve that ϕ′(z) 
= 0. Thus ϕ maps a neighbourhood of
z conformally onto a neighbourhood U of w; let ψ be the inverse map, which
is holomorphic. Fix a nontrivial closed subarc γ ⊂ U of T containing w and a
C2-function f : T → C with f(w) 
= 0 that vanishes outside γ. It follows that
E : T → H(C) with E(λ) = f(λ)eψ(λ) if λ ∈ γ and E(λ) = 0, else, defines an



9.3 An eigenvalue criterion for frequent hypercyclicity 253

eigenvector field associated to unimodular eigenvalues for T . It was shown in
the proof of Lemma 2.34 that the function C → H(C), λ → eλ is, in fact,
infinitely differentiable, so that E is a C2-field. Finally, E is spanning by
Lemma 2.34. Now the eigenvalue criterion for frequent hypercyclicity implies
the result. �


As in the case of hypercyclicity one may ask how slowly a frequently hy-
percyclic entire function can grow at infinity. The eigenvalue criterion al-
lows us to deduce corresponding results for any operator T = ϕ(D); see
Exercise 9.3.3. Here we consider only the special case of Birkhoff’s operators
Taf(z) = f(z + a), a 
= 0. The theorem of Duyos-Ruiz tells us that corre-
sponding hypercyclic functions can grow arbitrarily slowly. This is no longer
true in the frequent context.

Theorem 9.26. Let a 
= 0.
(a) Let ε > 0. Then there exists an entire function f that is frequently

hypercyclic for Ta and that satisfies

|f(z)| ≤ Meεr for |z| = r > 0

with some M > 0.
(b) Let ε : R+ → R+ be a function with lim infr→∞ ε(r) = 0. Then there

is no entire function f that is frequently hypercyclic for Ta and that satisfies

|f(z)| ≤ Meε(r)r for all |z| = r > 0 sufficiently large

with some M > 0.

Proof. (a) This result follows from a general growth result for all operators
that commute with D (see Exercise 9.3.3) because Ta = eaD and eaz = 1 for
z = 0.

(b) We will assume that a = 1; see Example 4.26. Suppose, on the contrary,
that f is a frequently hypercyclic entire function with the stated growth
condition; by adding a constant, if necessary, we can assume that f(0) = 1.
Then there is a strictly increasing sequence (nk)k of positive integers with
nk = O(k) such that, for any k ≥ 1,

|f(z + nk) − z| < 1
2

for |z| ≤ 1
2
.

Thus, by Rouché’s theorem (see Appendix A), f has a zero in |z−nk| < 1
2 . If

N(r) denotes the number of zeros of f in |z| < r, counting multiplicity, then

N(nk + 1) ≥ k, k ≥ 1.

On the other hand, it follows from Jensen’s formula (see Theorem A.23) and
the growth assumption on f that
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N(r) log 2 ≤ logM + ε(2r)2r

for r sufficiently large.
Now let rν → ∞ be such that ε(2rν) → 0 as ν → ∞. For sufficiently large

ν choose kν such that nkν + 1 ≤ rν ≤ nkν+1. Altogether we conclude that

kν
nkν+1

≤ N(nkν + 1)
nkν+1

≤ N(rν)
rν

≤ logM + ε(2rν)2rν
rν log 2

→ 0,

hence that nkν+1
kν+1 = kν

kν+1
nkν+1
kν

→ ∞, which is a contradiction. �


9.4 Structural properties

In the previous chapters we derived various structural properties of hyper-
cyclicity. In this section we revisit several of them in the context of frequent
hypercyclicity.

We begin by looking at the main results of Chapter 6. Ansari’s theorem
says that every power T p, p ≥ 1, of a hypercyclic operator is again hyper-
cyclic; in fact, T and T p have the same hypercyclic vectors. For frequent
hypercyclicity we have the corresponding property, but its proof relies on
very different techniques than Ansari’s theorem.

Theorem 9.27. Let T be an operator on a Fréchet space. Then, for any
p ∈ N, FHC(T ) = FHC(T p). In particular, if T is frequently hypercyclic
then so is every power T p.

Proof. Since every orbit orb(x, T p) is obtained from the orbit orb(x, T ) by
retaining only the powers Tnpx, n ≥ 0, it is clear that every frequently
hypercyclic vector for T p is also frequently hypercyclic for T .

Conversely, let x ∈ X be a frequently hypercyclic vector for T and p ≥ 1. In
order to show that x is also frequently hypercyclic for T p we fix a nonempty
open subset U of X. Since the sequence (kp − 1)k≥1 is syndetic, we can
deduce from Theorems 9.8 and 1.54 that there is some m1 ≥ 0 of the form
m1 = k1p− 1 such that U1 := U ∩T−m1(U) 
= ∅. For the same reason, there
is some m2 ≥ 0 of the form m2 = k2p−2 such that U2 := U1∩T−m2(U1) 
= ∅.
Proceeding inductively we find, for j = 1, . . . , p − 1, integers mj ≥ 0 of the
form mj = kjp− j such that Uj := Uj−1 ∩T−mj (Uj−1) 
= ∅, where U0 := U .
Moreover we set k0 = 0.

Now let V = Up−1, which clearly satisfies V ⊂ U and T kjp−j(V ) ⊂ U , for
j = 0, 1, . . . , p− 1. Since x is frequently hypercyclic there is a subset A ⊂ N0
of positive lower density such that Tnx ∈ V for all n ∈ A. We then define the
function f : N0 → N0 by f(n) = n−j

p + kj if n = j (mod p), j = 0, . . . , p− 1;
note that this is well defined.

We finally set B = f(A). It is easy to show that dens(B) ≥ dens(A) > 0;
see Exercise 9.4.1. Moreover, if m ∈ B, then m = n−j

p + kj for some n ∈ A
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with n = j (mod p), and hence

(T p)mx = Tn−j+kjpx = T kjp−j(Tnx) ∈ T kjp−j(V ) ⊂ U.

This proves that x is frequently hypercyclic for T p. �


We saw in Section 6.3 how Ansari’s theorem follows from the fact that if
the union of the orbits of finitely many vectors is dense then one of these
orbits must already be dense. The corresponding result fails for frequent
hypercyclicity.

Example 9.28. We consider the Rolewicz operator T = 2B on �1. We claim
that there are two vectors v, w ∈ �1 such that, for any nonempty open subset
U ⊂ �1,

dens{n ∈ N0 ; Tnv ∈ U or Tnw ∈ U} > 0, (9.6)

but neither v nor w is frequently hypercyclic for T .
To see this, let (yj)j be a dense sequence in �1 consisting of finite sequences.

The proof of the Frequent Hypercyclicity Criterion, with S being half the
forward shift, then constructs a frequently hypercyclic vector x for T given
by

x =
∑

n∈A

Snzn,

where A is the union of certain pairwise disjoint sets A(l, Nl), l ≥ 1, of positive
lower density, and zn = yl for n ∈ A(l, Nl). For an increasing sequence
(mk)k≥0 of positive integers with m0 = 0, that will be determined later, we
split the set A into two subsets

B = {n ∈ A ; ∃ k ≥ 0 : m2k ≤ n < m2k+1},
C = {n ∈ A ; ∃ k ≥ 0 : m2k+1 ≤ n < m2k+2}.

The proof of the Frequent Hypercyclicity Criterion then shows that the series

v :=
∑

n∈B

Snzn, w :=
∑

n∈C

Snzn

converge and that, for any n ∈ A(l, Nl),

‖Tnv − yl‖ ≤ 4
2l

or ‖Tnw − yl‖ ≤ 4
2l

depending on whether n ∈ B or n ∈ C. This implies that the joint orbits of
v and w are frequently recurrent, in the sense of (9.6).

On the other hand, let ln be the length of the finite sequence zn, n ∈ A.
Let k ≥ 0. If n ∈ N0 satisfies

M2k+1 := max
ν∈B,ν<m2k+1

(ν + lν) ≤ n < m2k+2



256 9 Frequently hypercyclic operators

then the sequence Tnv starts with a 0 and hence Tnv /∈ U , where U = {x ∈
�1 ; ‖x− e1‖ < 1}. Now, if we choose the m2k+2, k ≥ 1, such that

M2k+1

m2k+2
≤ 1

k

then dens{n ≥ 0 ; Tnv ∈ U} = 0, which shows that v is not frequently
hypercyclic for T . Imposing, in addition, a similar condition on the m2k+1
one can also achieve that w is not frequently hypercyclic for T .

For a variant of the Bourdon–Feldman theorem for frequent hypercyclicity
see Exercise 9.4.4.

We next turn to the results of Section 6.4. For this we need to define
frequent hypercyclicity for C0-semigroups. The lower density of a measurable
subset A ⊂ R+ is given by

dens(A) := lim inf
T→∞

λ{t ∈ [0, T ] ; t ∈ A}
T

,

where λ denotes the Lebesgue measure.

Definition 9.29. A C0-semigroup (Tt)t≥0 on a Banach space X is called
frequently hypercyclic if there is a vector x ∈ X such that, for any nonempty
open subset U of X,

dens {t ∈ R+ ; Ttx ∈ U} > 0.

In this case, x is called a frequently hypercyclic vector for (Tt)t≥0.

As before we will treat the problems of unimodular multiples and of dis-
cretizations of semigroups within the common framework of semigroup ac-
tions; see Section 6.4. We recall that if T is an operator on a complex Fréchet
space X then

Ψ(n, t) = e2πtiTn, n ∈ N0, t ≥ 0, (9.7)

defines a semigroup action. Similarly, if (Tt)t≥0 is a C0-semigroup on a Banach
space X then

Ψ(n, t) = Tt, n ∈ N0, t ≥ 0, (9.8)

defines a semigroup action. In both cases, properties (α) and (β) of Section
6.4 are satisfied.

We then also need a concept of frequent hypercyclicity for semigroup ac-
tions. The natural notion of lower density on G = N0 × R+ is given by

dens(A) := lim inf
N→∞

1
N(N + 1)

N∑

n=0
λ{t ∈ [0, N ] ; (n, t) ∈ A},

where A ⊂ G is such that {t ≥ 0 ; (n, t) ∈ A} is measurable for each n ≥ 0;
λ denotes the Lebesgue measure.



9.4 Structural properties 257

Definition 9.30. A semigroup action Ψ : G → L(X) is called frequently
hypercyclic if there is some x ∈ X such that, for any nonempty open subset
U of X,

dens {g ∈ G ; Ψ(g)x ∈ U} > 0.

In this case, x is called a frequently hypercyclic vector for Ψ .

Now, frequent hypercyclicity of some operator Ψ(n, t), n, t > 0, implies
frequent hypercyclicity of Ψ .

Proposition 9.31. Let Ψ be a semigroup action on a Fréchet space X sat-
isfying property (α). If x ∈ X is frequently hypercyclic for some operator
Ψ(n, t), n, t > 0, then it is frequently hypercyclic for Ψ .

Proof. Let U be a nonempty open subset of X. Since Ψ(0, 0) = I and Ψ is
continuous, there is a nonempty open subset V of U and some η > 0 such
that Ψ(0, s)V ⊂ U if 0 ≤ s < η. By assumption, there is some (n, t) ∈ G
such that dens(A) = δ > 0, where A = {k ∈ N0 ; Ψ(n, t)kx ∈ V }. Now,
if k ∈ A and 0 ≤ s < η then Ψ(kn, kt + s)x = Ψ(0, s)Ψ(n, t)kx ∈ U . In
view of property (α), if Ψ(1, 0) = I then also Ψ(kn + m, kt + s)x ∈ U for
m ∈ Z with kn + m ≥ 0; if Ψ(0, 1) = I then Ψ(kn, kt + s + m)x ∈ U for
m ∈ Z with kt + s + m ≥ 0. In both cases a simple count reveals that
dens{(k, s) ∈ G ; Ψ(k, s)x ∈ U} ≥ ηδ/max(n, t) > 0. �


Our main aim is to prove the converse statement. The following will be
crucial.

Lemma 9.32. Let Ψ be a semigroup action on an infinite-dimensional Fré-
chet space X satisfying properties (α) and (β). If x ∈ X is frequently hyper-
cyclic for Ψ then, for any k ∈ N and any nonempty open subset U of X, we
have that

dens
{
(n, t) ∈ G ; Ψ(n, t)x ∈ U, t ∈

⋃∞
m=1[m− 1

k ,m[
}
> 0.

Proof. We fix k ∈ N and a nonempty open subset U of X. For j = 1, . . . , k
we define the sets

Ij =
∞⋃

m=1
[m− j

k ,m− j−1
k [.

By Theorem 6.10, x is hypercyclic for Ψ(1, 1). It follows from property (β)
that, for any t ≥ 0, also Ψ(0, t)x is hypercyclic for Ψ(1, 1). Therefore there
are nj ∈ N0, j = 1, . . . , k, such that

Ψ(nj , nj + j−1
k )x = Ψ(1, 1)njΨ(0, j−1

k )x ∈ U.

By continuity there is a neighbourhood V of x such that

Ψ(nj , nj + j−1
k )(V ) ⊂ U, j = 1, . . . , k.
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Let N0 = max(n1, . . . , nk) + 1. It follows from frequent hypercyclicity of x
for Ψ that there are δ > 0 and N1 ≥ N0 such that, if N ≥ N1, then

1
N(N + 1)

N∑

n=0
λ{t ∈ [0, N ] ; Ψ(n, t)x ∈ V } ≥ δ.

We now fix N ≥ N1. Since the Ij , j = 1, . . . , k, form a partition of R+,
there is some j such that

N∑

n=0
λ{t ∈ [0, N ] ; Ψ(n, t)x ∈ V, t ∈ Ij} ≥ 1

k

N∑

n=0
λ{t ∈ [0, N ] ; Ψ(n, t)x ∈ V }.

We fix such a j. If 0 ≤ n ≤ N , 0 ≤ t ≤ N , t ∈ Ij , and Ψ(n, t)x ∈ V then
ν := n + nj ≤ 2N , τ := t + nj + j−1

k ≤ 2N , τ ∈ I1, and

Ψ(ν, τ)x = Ψ
(
nj , nj + j−1

k

)
Ψ
(
n, t
)
x ∈ Ψ

(
nj , nj + j−1

k

) (
V
)
⊂ U.

We conclude that

2N∑

ν=0
λ{τ ∈ [0, 2N ] ; Ψ(ν, τ)x ∈ U, τ ∈ I1}

≥ 1
k

N∑

n=0
λ{t ∈ [0, N ] ; Ψ(n, t)x ∈ V },

so that

1
2N(2N + 1)

2N∑

ν=0
λ{τ ∈ [0, 2N ] ; Ψ(ν, τ)x ∈ U, τ ∈ I1} ≥ δ

4k
.

Since N ≥ N1 was arbitrary, the claim follows. �


We can now prove the analogue of Theorem 6.10 for frequent hypercyclic-
ity.

Theorem 9.33. Let Ψ be a semigroup action on an infinite-dimensional
Fréchet space X satisfying properties (α) and (β). If x ∈ X is frequently
hypercyclic for Ψ then it is frequently hypercyclic for every operator Ψ(1, t),
t > 0.

Proof. We first prove the case when t = 1. Thus, let U be a nonempty
open subset of X. Since Ψ(0, 0) = I, continuity of Ψ implies that there is a
nonempty open subset V of U and some η > 0 such that Ψ(0, s)V ⊂ U if
0 ≤ s < η. Let k ∈ N be such that 1

k < η. Then, by Lemma 9.32, there are
δ > 0 and N0 ∈ N such that, for any N ≥ N0,
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r :=
N∑

n=0
λ{t ∈ [0, N ] ; Ψ(n, t)x ∈ V, t ∈

⋃∞
m=1[m− 1

k ,m[
}
≥ N(N + 1)δ.

Now, if Ψ(n, t)x ∈ V and t ∈ [m− 1
k ,m[ then Ψ(n,m)x = Ψ(0,m−t)Ψ(n, t)x ∈

U . Thus, for

p := card{(n,m) ; 0 ≤ n,m ≤ N,Ψ(n,m)x ∈ U}

we have that p 1
k ≥ r.

Next, let Ψ(1, 1)nx ∈ U . We distinguish the two cases described by (α). If
Ψ(1, 0) = I then Ψ(m,n)x = Ψ(n, n)x = Ψ(1, 1)nx ∈ U for any m ∈ Z; and
if Ψ(0, 1) = I then Ψ(n,m)x = Ψ(n, n)x ∈ U for any m ∈ Z. Thus, for

q := card{0 ≤ n ≤ N ; Ψ(1, 1)nx ∈ U}

we have that p = (N + 1)q.
Altogether we find that, for any N ≥ N0,

card{0 ≤ n ≤ N ; Ψ(1, 1)nx ∈ U}
N + 1

=
p

(N + 1)2
≥ kr

(N + 1)2
≥ kN

N + 1
δ.

Hence x is frequently hypercyclic for Ψ(1, 1).
Now, if t > 0 is arbitrary then we rescale the semigroup action as in the

proof of Theorem 6.10. It is then not difficult to see, using property (α),
that x is also frequently hypercyclic for Ψ̃ and thus frequently hypercyclic for
Ψ̃(1, 1) = Ψ(1, t). �


If we combine Theorem 9.33 with Theorem 9.27, noting that ψ(n, t) =
Ψ(1, t/n)n, we obtain the announced converse of Proposition 9.31.

Corollary 9.34. Let Ψ be a semigroup action on a Fréchet space X satisfying
properties (α) and (β). If x ∈ X is frequently hypercyclic for Ψ then it is
frequently hypercyclic for every operator Ψ(n, t), n, t > 0.

Proposition 9.31 and Theorem 9.33, applied to the semigroup action (9.7),
immediately imply a version of the León–Müller theorem for frequent hyper-
cyclicity.

Theorem 9.35. Let T be an operator on a complex Fréchet space and λ ∈ C

with |λ| = 1. Then T and λT have the same frequently hypercyclic vectors,
that is, FHC(T ) = FHC(λT ).

Similarly, applying Theorem 9.33 to the semigroup action (9.8) yields an
analogue of the Conejero–Müller–Peris theorem.

Theorem 9.36. Let (Tt)t≥0 be a C0-semigroup on a Banach space X. If
x ∈ X is frequently hypercyclic for (Tt)t≥0, then it is frequently hypercyclic
for every operator Tt, t > 0.
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Apart from being interesting in its own right, Theorem 9.35 has an impor-
tant application. We saw in Chapter 5 that the spectrum of a hypercyclic op-
erator on a complex Banach space has the property that each of its connected
components meets the unit circle; this is the content of Kitai’s theorem. In
particular, the spectrum cannot have isolated points outside the unit circle.
We will now show that the spectrum of frequently hypercyclic operators, just
like that of chaotic operators (see Proposition 5.7), cannot even have isolated
points on the unit circle.

We start with a crucial lemma whose proof uses complex analysis in a very
clever way.

Lemma 9.37. Let T be an operator on a real Fréchet space X. Let x ∈ X
and x∗ ∈ X∗ with 〈x, x∗〉 
= 0 be such that

|〈(T − I)nx, x∗〉|1/n → 0

as n → ∞. Then x is not frequently hypercyclic for T .

Proof. First, we may assume that 〈x, x∗〉 = 1. Suppose that x is frequently
hypercyclic for T . Then (〈Tnx, x∗〉)n≥0 is dense in R. Thus there must be
some n ≥ 0 such that 〈Tnx, x∗〉 ≤ 0 and 〈Tn+1x, x∗〉 > 0. Then, for α > 0
sufficiently small, 〈Tnx − αx, x∗〉 < 0 and 〈Tn+1x − αTx, x∗〉 > 0, so that
the open set

U = {y ∈ X ; 〈y, x∗〉 < 0 and 〈Ty, x∗〉 > 0}

is nonempty.
We now consider the series

f(z) =
∞∑

k=0

〈(T − I)kx, x∗〉z(z − 1) · · · (z − k + 1)
k!

, z ∈ C,

where we regard the quotient as 1 if k = 0. We claim that this defines an
entire function. Indeed, it follows from the assumption that, for any ε ∈ ]0, 1[,
there is some M > 0 such that

|〈(T − I)nx, x∗〉| ≤ Mεn, n ≥ 0,

so that, for any R > 0 and |z| ≤ R,

∞∑

k=0

|〈(T − I)kx, x∗〉|
∣∣∣
z(z − 1) · · · (z − k + 1)

k!

∣∣∣

≤ M
∞∑

k=0

εk
R(R + 1) · · · (R + k − 1)

k!

= M

∞∑

k=0

(
−R

k

)
(−ε)k =

M

(1 − ε)R
< ∞,
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where we have used the binomial theorem. Moreover, setting η = − log(1−ε),
this inequality implies that

|f(z)| ≤ Meη|z|, z ∈ C.

In addition, f(0) = 〈x, x∗〉 = 1. It follows from Jensen’s formula (see Theorem
A.23) that if N(r) denotes the number of zeros of f in |z| < r, counting
multiplicity, then

N(r) log 2 ≤ logM + 2rη, r > 0. (9.9)

On the other hand we have that for n ∈ N0,

f(n) =
n∑

k=0

〈(T − I)kx, x∗〉n(n− 1) · · · (n− k + 1)
k!

=
〈 n∑

k=0

(
n

k

)
(T − I)kx, x∗

〉
= 〈Tnx, x∗〉.

Thus, if Tnx ∈ U then f(n) < 0 and f(n + 1) > 0, so that f , being real on
the real axis, has a zero in the interval ]n, n + 1[. It follows with (9.9) that

card{0 ≤ n ≤ m ; Tnx ∈ U}
m + 1

≤ N(m + 1)
m + 1

≤ logM + 2(m + 1)η
(m + 1) log 2

→ 2η
log 2

as m → ∞. Since η > 0 is arbitrary, we deduce that x is not frequently
hypercyclic. �


As an immediate consequence we have the following. Recall that an oper-
ator T on a Banach space is called quasinilpotent if ‖Tn‖1/n → 0 as n → ∞.

Lemma 9.38. Let T be an operator on a Banach space X of the form T =
λI+S with |λ| = 1 and S quasinilpotent. Then T is not frequently hypercyclic.

Proof. By Theorem 9.35 we may assume that λ = 1, so that ‖(T −I)n‖1/n →
0 as n → ∞. Moreover, we can regard X as a real Banach space and T − I
as a (real-linear) operator on X. We then have that, for any x ∈ X and any
(real-linear) continuous linear functional x∗ on X,

|〈(T − I)nx, x∗〉|1/n ≤
(
‖(T − I)n‖‖x‖‖x∗‖

)1/n → 0.

By the previous lemma, T cannot be frequently hypercyclic on X; note that
this notion does not depend on the scalar field. �


We can now prove the mentioned spectral property of frequently hyper-
cyclic operators.

Theorem 9.39. Let T be a frequently hypercyclic operator on a complex Ba-
nach space. Then its spectrum σ(T ) has no isolated points.
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Proof. Suppose that λ ∈ C is an isolated point of the spectrum. Then σ(T )
can be partitioned into some closed subset and the singleton {λ}. By the Riesz
decomposition theorem (see Appendix B) there are nontrivial T -invariant
closed subspaces M1 and M2 of X such that X = M1 ⊕M2 and σ(T |M2) =
{λ}. By Exercise 2.2.8 and Proposition 9.4, T |M2 is frequently hypercyclic.
By Kitai’s theorem we have that |λ| = 1, and the spectral radius formula (see
Appendix B) implies that T |M2 = λI + S with a quasinilpotent operator S.
This contradicts Lemma 9.38. �


Lemma 9.38 has another application. First, combining it with Lemma 5.19
yields the following.

Proposition 9.40. No compact perturbation of a multiple of the identity on
a Banach space is frequently hypercyclic.

We can then apply the Argyros–Haydon theorem; see Theorem 8.11.

Corollary 9.41. Let K = R or C. Then there exists an infinite-dimensional
separable Banach space over K that supports no frequently hypercyclic oper-
ator.

With this we end our introduction to frequent hypercyclicity.

Exercises

Exercise 9.1.1. Show that the Herrero–Bourdon theorem also holds for frequent hyper-
cyclicity. In particular, every frequently hypercyclic operator on a Fréchet space admits
a dense T -invariant subspace consisting, except for 0, of frequently hypercyclic vectors.

Exercise 9.1.2. Using Lemma 9.5, show that every weighted shift is frequently hyper-
cyclic on the space ω = K

N.

Exercise 9.1.3. Show that every frequently hypercyclic operator on a Fréchet space is
topologically ergodic; see Exercise 1.5.6. Deduce that if T is a frequently hypercyclic
operator on a Banach space then its adjoint T ∗ cannot be frequently hypercyclic. (Hint:
Exercise 2.5.5, Remark 4.17.)

Exercise 9.1.4. Show that every entire function is the sum of two functions that are
frequently hypercyclic for the translation operator T1f(z) = f(z + 1). (Hint: Use a
variant of the construction in Example 9.6.)

Exercise 9.2.1. Let Tn : X → Y , n ≥ 0, be operators between separable Fréchet spaces
X and Y . The definition of frequent hypercyclicity for the sequence (Tn)n≥0 is obvious.
Prove the following version of the Frequent Hypercyclicity Criterion for (Tn)n. For the
notion of uniformly unconditionally convergent series see Definition 11.7 below.

If there is a dense subset Y0 of Y and maps Sn : Y0 → X, n ≥ 0, such that, for any
y ∈ Y0,

(i)
m∑

n=0

TmSm−ny converges unconditionally in Y , uniformly for m ≥ 0,
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(ii)
∞∑

n=0

TmSm+ny converges unconditionally in Y , uniformly for m ≥ 0,

(iii)
∞∑

n=0

Sny converges unconditionally in X,

(iv) TnSny → y, as n → ∞,
then (Tn)n is frequently hypercyclic.

Note that, in (i), the finite sums can be understood as infinite series by adding 0
terms.

Exercise 9.2.2. Use the Frequent Hypercyclicity Criterion to give a new proof that
Birkhoff’s operators are frequently hypercyclic. (Hint: Example 3.8.)

Exercise 9.2.3. Formulate and prove an analogue of Proposition 9.13 for weighted bi-
lateral shifts.

Exercise 9.2.4. Let Bw be a frequently hypercyclic weighted shift on �p, 1 ≤ p < ∞.
Show that, for any ε > 0, there exists a subset A ⊂ N0 of positive lower density such
that, for any m ∈ A, ∑

n∈A
n>m

1
|w2w3 · · ·wn−m+1|p

< ε.

(Hint: Proceed as in the proof of Proposition 9.17 and consider the coordinates of index
n−m + 1 in Bm

w x− e1.)

Exercise 9.2.5. Let Nj = 2j2−2j+1, j ≥ 1. Define wn as (n+1
n )2 for Nj ≤ n < Nj +j,

as (Nj + j)−2/j for Nj + j ≤ n < Nj + 2j, as 1 for Nj + 2j ≤ n < Nj + 3j, and as
(Nj+1)2/j for Nj + 3j ≤ n < Nj + 4j = Nj+1. Show that Bw is a weighted shift on �p,
1 ≤ p < ∞, that satisfies the condition given in Proposition 9.17 but not the condition
in the previous exercise. Thus, the condition in Proposition 9.17 does not characterize
frequent hypercyclicity of weighted shifts on �p. (Hint: Use the result by Erdős and
Sárközy.)

Exercise 9.2.6. The aim of this exercise is to show that not every vector x ∈ �1 is the
sum of two frequently hypercyclic vectors for the Rolewicz operator 2B. Suppose that
x = y+z with y and z frequently hypercyclic. Then there is an increasing sequence (mk)k
of positive integers such that ‖Tmky‖ < 1 for k ≥ 1; further let dens{n ∈ N0 ; ‖Tnz‖ <
1} =: 2δ > 0. Deduce that there are positive integers nk such that ‖Tnkz‖ < 1 and
δmk ≤ nk ≤ mk, k ≥ 1 sufficiently large, and hence that ‖Tmkx‖ ≤ 1 + 2(1−δ)mk .
Finally find some x ∈ �1 that fails this inequality for any δ > 0 and any increasing
sequence (mk)k of positive integers.

Exercise 9.2.7. Generalize Example 9.20: let T be an operator on a Fréchet space
X and Λ ⊂ ]0,∞[ an uncountable set such that λT is frequently hypercyclic for any
λ ∈ Λ. Show that these operators have no common frequently hypercyclic vector. (Hint:
Consider U = {x ∈ X ; |〈x, x∗〉 − 2| < 1}.)

Exercise 9.3.1. Let Lp(T), 1 ≤ p < ∞, be the space of all complex-valued functions
f on T such that ‖f‖p := (

∫ 2π
0 |f(eit)|p dt)1/p < ∞. Show that Tf(λ) = λf(λ) −∫

(1,λ) f(ζ) dζ defines a mixing and chaotic operator on Lp(T), where (λ1, λ2) denotes the
positively oriented arc from λ1 to λ2. (Hint: Consider the indicator functions f = 1(λ,1).)
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Exercise 9.3.2. Let X be one of the complex spaces �p, 1 ≤ p < ∞, or c0. Show that
the map D → X, λ → (λn)n, is infinitely differentiable. Deduce that also the maps
D → H2, λ → k

λ
(see Proposition 4.38) and Dτ → E2

τ , λ → eλ (see Exercise 4.2.4) are
infinitely differentiable.

Exercise 9.3.3. Let ϕ be a nonconstant entire function of exponential type and A =
min{|z| ; z ∈ C, |ϕ(z)| = 1}. Show that, for any ε > 0, there is an entire function f that
is frequently hypercyclic for ϕ(D) such that

|f(z)| ≤ Me(A+ε)r for |z| = r > 0

with some M > 0. (Hint: Combine the ideas of Exercise 4.2.4 and the proof of Theorem
9.25.)

Exercise 9.3.4. Let D be the differentiation operator on H(C). Let φ : ]0,∞[→ [1,∞[
be a function with φ(r) → ∞ as r → ∞. Show that there exists an entire function f
that is frequently hypercyclic for D and that satisfies

|f(z)| ≤ Mφ(r)er for |z| = r > 0

with some M > 0. (Hint: Look at the proof of Theorem 4.22, using the Frequent Hy-
percyclicity Criterion in the version of Exercise 9.2.1.)

Exercise 9.3.5. Let ϕ be a nonconstant bounded holomorphic function on D and let
M∗

ϕ be the corresponding adjoint multiplication operator on H2; see Section 4.4. Show
that M∗

ϕ is frequently hypercyclic if and only if it is hypercyclic, that is, if ϕ(D)∩T �= ∅.
(Hint: Look at the proofs of Theorems 4.42 and 9.25.)

Exercise 9.4.1. In the proof of Theorem 9.27, show that dens(B) ≥ dens(A).

Exercise 9.4.2. Let T be a frequently hypercyclic operator on a Fréchet space X. Show
that then T p ⊕ T q is hypercyclic on X ⊕X for any p, q ∈ N. (Hint: Exercises 2.5.5 and
9.1.3.)

Exercise 9.4.3. Let T be a topologically ergodic operator on a separable Fréchet space;
see Exercise 1.5.6. Show that T p is then also topologically ergodic for any p ≥ 1. (Hint:
Follow the proof of Theorem 9.27, using Exercise 2.5.5; see Exercise 6.1.5 for an alter-
native proof.)

Exercise 9.4.4. Let T be an operator on a separable Fréchet space X. Suppose that
there is a vector x ∈ X and a nonempty open subset U of X such that dens{n ∈
N0 ; Tnx ∈ V } > 0 for all nonempty open subsets V of U . Show that x is frequently
hypercyclic for T . (Hint: Use the Bourdon–Feldman theorem.)

Exercise 9.4.5. Let T be an operator on a (real or complex) Banach space X. Show that
if there is some x∗ ∈ X∗, x∗ �= 0, and some λ with |λ| = 1 such that ‖(λI−T ∗)nx∗‖1/n →
0 as n → ∞ then T is not frequently hypercyclic.

Sources and comments

Section 9.1. Frequently hypercyclic operators were introduced by Bayart and Grivaux
[38], [40]. The idea of using ergodic theory to obtain the dynamical properties of linear
operators seems to be due to Rudnicki [272] and Flytzanis [152, 153]. Bayart and Grivaux
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[40] obtained Lemma 9.5 (see also Bonilla and Grosse-Erdmann [87]) as well as the
frequent hypercyclicity of the Birkhoff operators. The theorem of Erdős and Sárközy
can be found in [296]. Theorem 9.8 is due to Grosse-Erdmann and Peris [185]; Bayart
and Matheron [45] show that this result is essentially optimal.

For an introduction to ergodic theory we refer to Walters [300].

Section 9.2. The Frequent Hypercyclicity Criterion was obtained by Bayart and Gri-
vaux [38, 40]; the form given here is due to Bonilla and Grosse-Erdmann [87]. Grivaux
[173] also provided a probabilistic version of it. Proposition 9.11 is due to Bonilla and
Grosse-Erdmann [87]. The remaining results in this section can essentially be found in
Bayart and Grivaux [40]; see also Bonilla and Grosse-Erdmann [87]. The latter paper also
contains further conditions under which the set FHC(T ) of frequently hypercyclic op-
erators is of first Baire category, or when FHC(T )+FHC(T ) does or does not coincide
with the full space.

Bayart and Grivaux [41] constructed a weighted shift on c0 that is frequently hy-
percyclic, but neither chaotic nor mixing; this also shows that not every frequently
hypercyclic operator satisfies the Frequent Hypercyclicity Criterion, and that Proposi-
tion 9.13 does not characterize frequently hypercyclic weighted shifts on c0. Badea and
Grivaux [19] found operators on a Hilbert space that are frequently hypercyclic and
chaotic but not mixing.

It remains an open problem whether every chaotic operator is frequently hypercyclic,
and to find a characterization of frequently hypercyclic weighted shifts, even on �2 or on
c0.

Section 9.3. The proof of Theorem 9.22 follows Bayart and Grivaux [38]; see also [39].
Theorems 9.25 and 9.26 are due to Blasco, Bonilla and Grosse-Erdmann [86, 76]; these
authors also show that the operators of differentiation and translation on the space of
harmonic functions on R

N are frequently hypercyclic, and they obtain some related
growth results.

In order to keep the presentation simple we have imposed rather strong assumptions
on the eigenvector fields. A much deeper analysis leads to one of the most striking results
in linear dynamics.

To be more specific, an operator T on a complex separable Banach space X is said
to have a perfectly spanning set of eigenvectors associated to unimodular eigenvalues if
one of the following two equivalent conditions holds:

(i) there exists an atomless probability measure σ on T such that, for any measurable
set A ⊂ T with σ(A) = 1, span{ker(λI − T ) ; λ ∈ A} is dense in X;

(ii) for any countable set D ⊂ T, span{ker(λI − T ) ; λ ∈ T \D} is dense in X.
These conditions were first introduced by Flytzanis [152, 153]. Their equivalence was
shown by Grivaux [174], who also obtained the following fundamental principle.

Theorem 9.42. Any operator on a complex separable Banach space with a perfectly
spanning set of eigenvectors associated to unimodular eigenvalues is frequently hyper-
cyclic.

When the underlying space is even a Hilbert space then one can show that there exists
a Borel probability measure of full support on X with respect to which T is ergodic (see
Bayart and Grivaux [40]); as explained in Section 9.1, this immediately implies that T
is frequently hypercyclic. The measure can even be a so-called Gaussian measure. A
similar result for nuclear Fréchet spaces is due to Grosse-Erdmann [182]. For surveys
on the application of ergodic theory to linear dynamics we refer to Godefroy [164] and
Grosse-Erdmann [182]. A detailed treatment can be found in Bayart and Matheron [44].

Bayart and Grivaux [40, 41] have applied their results to various operators. In par-
ticular they have shown that if ϕ is an automorphism of the unit disk D then the
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corresponding composition operator Cϕ (see Section 4.5) is frequently hypercyclic on
the Hardy space H2 if and only if it is hypercyclic, that is, if and only if ϕ is parabolic
or hyperbolic.

The example of Bayart and Grivaux [41] of a frequently hypercyclic weighted shift on
c0, mentioned above, has no unimodular eigenvalues, so that the approach chosen in this
section is not always possible. Moreover, their operator does not possess any invariant
Gaussian measure of full support.

Section 9.4. Theorem 9.27 is due to Bayart and Grivaux [40], whose proof uses Ansari’s
theorem. The alternative proof given in Grosse-Erdmann and Peris [185] contains an
error; in fact, Example 9.28 contradicts Theorem 1.4 in that paper. The proof given
here is due to Grosse-Erdmann and Peris [186].

Theorem 9.33 provides a new common approach to Theorems 9.35 and Theorem 9.36
that were previously obtained by Bayart and Matheron [44] and by Conejero, Müller
and Peris [110], respectively. The remainder of the section, including Theorem 9.39
and Corollary 9.41, is due to Shkarin [287]. Grivaux [174] has recently shown that the
necessary spectral conditions of Theorems 5.6 and 9.39 actually characterize spectra of
frequently hypercyclic operators on Hilbert spaces.

Theorem 9.43. Let K ⊂ C be a nonempty compact set. There exists a frequently hy-
percyclic operator T on a complex Hilbert space such that σ(T ) = K if and only if K
has no isolated points and each of its connected components meets the unit circle.

Further interesting results on frequent hypercyclicity include the facts that every op-
erator on an infinite-dimensional complex separable Hilbert space is the sum of two
frequently hypercyclic operators (Bayart and Grivaux [40]) and that every infinite-
dimensional complex Fréchet space with an unconditional basis supports a frequently
hypercyclic and chaotic operator (De la Rosa, Frerick, Grivaux, and Peris [127]).

Many questions concerning frequently hypercyclic operators remain open. For exam-
ple (see Bayart and Grivaux [40]), whether the frequent hypercyclicity of an operator T
is inherited by its direct sum T ⊕ T ; and whether it is inherited by its inverse T−1, if it
exists.

Exercises. Exercise 9.1.1 is taken from Bayart and Grivaux [40], Exercises 9.1.4, 9.2.1
and 9.2.6 from Bonilla and Grosse-Erdmann [87], and Exercises 9.2.4 and 9.2.5 from
Grosse-Erdmann and Peris [185]. For Exercise 9.3.1 we refer to Bayart and Grivaux
[39], for Exercise 9.3.3 to Bonilla and Grosse-Erdmann [86]. Exercise 9.3.4 is taken from
Blasco, Bonilla and Grosse-Erdmann [76] who also show that, in the converse direction,
given any function φ : R+ → R+ with limr→∞ φ(r) = 0 there is no entire function f
that is frequently hypercyclic for D such that |f(z)| ≤ φ(r) er

r1/4 for |z| = r sufficiently
large. Exercise 9.3.5 is taken from Bayart and Grivaux [40], Exercise 9.4.2 from Costakis
and Ruzsa [122], Exercise 9.4.4 from Grosse-Erdmann and Peris [185], and Exercise 9.4.5
from Shkarin [287].
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