
Chapter 6
Connectedness arguments in linear
dynamics

This chapter is devoted to some of the most fundamental results in linear
dynamics. What is particularly striking is that they hold for all operators,
without further technical assumptions.

We have already obtained such a result in Chapter 2 . It says that every hy-
percyclic operator admits a dense subspace of hypercyclic vectors, except for
the zero vector. Note that this property would not make sense in a nonlinear
setting.

In this chapter we will consider the following problems, which, a priori, do
not involve linearity.

• If T has a dense orbit, does then every power T p also have a dense orbit?
• Suppose that the union of a finite collection of orbits is dense. Will then

at least one of these orbits be actually dense?
• If an orbit is somewhere dense, is it (everywhere) dense?

Each of these questions has a negative answer for arbitrary, nonlinear maps.
It is therefore even more surprising that they all have a positive answer for
(linear) operators, and that without any restrictions. The proofs depend in
a crucial way on connectedness arguments.

In the final section we will consider two more problems.

• Let T be a hypercyclic operator, and let λ ∈ K with |λ| = 1. Is then λT
also hypercyclic?

• Let (Tt)t≥0 be a hypercyclic C0-semigroup on a Banach space. Is then
every single operator Tt, t > 0, hypercyclic?

Again we will give positive answers to these questions. The proofs can be given
within a common framework and use, once more, a connectedness argument,
this time via a suitable homotopy.
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162 6 Connectedness arguments in linear dynamics

6.1 Ansari’s theorem

In this section we deal with the question of whether every power T p, p ∈ N,
of a hypercyclic operator T is again hypercyclic. Since every sequence (kp)k
is syndetic, Theorem 1.54 implies a positive answer if T is even a weakly
mixing operator on a separable Fréchet space. We will show here that the
answer is positive for all hypercyclic operators.

The following auxiliary result will be crucial.

Lemma 6.1. The T be a continuous map on a metric space X without iso-
lated points. Then the interiors of the closures of two orbits under T either
coincide, or they are disjoint.

Proof. Suppose that int(orb(x, T ))∩int(orb(y, T )) �= ∅, x, y ∈ X. Then there
is some n ∈ N0 such that

Tnx ∈ orb(y, T ).

Since orb(y, T ) is T -invariant, we have that T kx ∈ orb(y, T ) for k ≥ n and
therefore

{T kx ; k ≥ n} ⊂ orb(y, T ).

Since X has no isolated points, one shows easily that

int(orb(x, T )) ⊂ int({T kx ; k ≥ n});

see also Exercise 6.2.1. Hence int(orb(x, T )) ⊂ int(orb(y, T )). By symmetry,
we also have the converse inclusion, so that the two interiors coincide. ��

Theorem 6.2 (Ansari). Let T be an operator on a Fréchet space. Then, for
any p ∈ N, HC(T ) = HC(T p). In particular, if T is hypercyclic then so is
every power T p.

Proof. Let p ∈ N. We clearly have that HC(T p) ⊂ HC(T ).
For the converse inclusion we fix x ∈ HC(T ). From Proposition 1.15 and

Corollary 2.56 we know that D := HC(T ) is a dense, T -invariant connected
subset of X; in particular, it does not have isolated points. For the remainder
of the proof we consider the map T : D → D; the topological operations of
closure and interior will be understood in D. Since D is dense in X it then
suffices to show that orb(x, T p) = D.

To this end we define

Dj = orb(T jx, T p), j = 0, . . . , p− 1.

We need to show that D = D0. Observe that

D = orb(x, T ) =
p−1⋃

j=0

orb(T jx, T p) =
p−1⋃

j=0

Dj
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and
T (Dj) ⊂ Dj+1(mod p).

Let F ⊂ {0, . . . , p− 1} be a set of minimal cardinality such that

D =
⋃

j∈F

Dj .

Suppose that F is not a singleton. Let, in addition, int(Dj)∩ int(Dk) �= ∅

for some j, k ∈ F with j �= k. By Lemma 6.1, int(Dj) = int(Dk). From
minimality we deduce that

D \
⋃

l∈F\{j}
Dl

is nonempty, and it is an open set contained in Dj and thus in int(Dj) ⊂ Dk,
which is not possible. Therefore, int(Dj ∩ Dk) = ∅ for any j, k ∈ F with
j �= k.

We now set Fl = F + l(mod p), l = 0, . . . , p − 1. We have D = T l(D) =⋃
j∈F T l(Dj) =

⋃
k∈Fl

Dk, l = 0, . . . , p− 1. Since card(Fl) = card(F ), which
is minimal, we also get that int(Dj ∩Dk) = ∅ for any j, k ∈ Fl with j �= k,
l = 0, . . . , p− 1. As a consequence, the set

A :=
p−1⋃

l=0

⋃

j,k∈Fl

j �=k

(Dj ∩Dk)

is nowhere dense as a finite union of nowhere dense sets; and it is T -invariant.
If A were nonempty, with y ∈ A, say, then

D = orb(y, T ) ⊂ A = A,

which is a contradiction. Therefore A = ∅, which implies that

D =
⋃

j∈F

Dj

is a finite union of pairwise disjoint closed subsets. But this contradicts the
connectedness of D.

In conclusion, F = {j} is a singleton. Then D = Dj , and we obtain that
D = T p−j(Dj) = D0, which had to be shown. ��

The simple example T : {−1, 1} → {−1, 1}, Tx = −x, shows that Ansari’s
theorem fails for nonlinear dynamical systems; see also Exercise 1.2.11 for an
example on a metric space without isolated points. Ansari’s theorem does ex-
tend to the nonlinear setting if the set of points with dense orbit is connected;
see Exercise 6.1.7.



164 6 Connectedness arguments in linear dynamics

6.2 Somewhere dense orbits

We recall that a set is called somewhere dense if its closure contains a
nonempty open set.

It was a key point in the proof of Ansari’s theorem to write the space D
as a finite union of closures of orbits. Then one of these closures must have
an interior point, which means that the corresponding orbit is somewhere
dense. In the end we concluded that this orbit is, in fact, (everywhere) dense.
Do we have a general principle here, that is, is every somewhere dense orbit
necessarily dense? We will give a positive answer to this question.

Thus, let T be an operator on a Fréchet space X. For x ∈ X we write

D(x) = orb(x, T ) and U(x) = intD(x).

The following properties can be easily deduced from the continuity of T and
the fact that X has no isolated points (see Exercise 6.2.1):

(i) if y ∈ D(x), then D(y) ⊂ D(x);
(ii) U(x) = U(T kx) for each k ∈ N;
(iii) if R : X → X is a continuous map that commutes with T , then

R(D(x)) ⊂ D(Rx).
We first need a generalization of Theorem 2.54. An easy adaptation of the
argument used there gives the result; see Exercise 6.2.2.

Lemma 6.3. If T admits a somewhere dense orbit and p is a nonzero poly-
nomial, then the operator p(T ) has dense range.

Before proving that a vector whose orbit is somewhere dense is necessarily
hypercyclic, we will show that it is cyclic, that is, the linear span of its orbit
is dense in X.

Lemma 6.4. If orb(x, T ) is somewhere dense, then the set {p(T )x ; p �=
0 a polynomial} is connected and dense in X.

Proof. The set A := {p(T )x ; p �= 0 a polynomial} is path connected. Indeed,
let p, q be nonzero polynomials. If q is not a multiple of p then the straight
path t → tp(T )x + (1 − t)q(T )x, t ∈ [0, 1], is contained in A. Otherwise we
select a third nonzero polynomial r that is not a multiple of p, and therefore
not of q, and we take the union of the straight paths connecting p(T )x and
q(T )x with r(T )x.

On the other hand, A is a subspace of X that contains orb(x, T ). It follows
from the hypothesis that there is some x0 ∈ X and a 0-neighbourhood W
such that x0 +W ⊂ A. Thus, for any y ∈ X, there is a scalar λ with y ∈ λW ;
hence y ∈ λ(x0 + W ) − λx0 ⊂ A. Consequently, A is dense in X. ��

Theorem 6.5 (Bourdon–Feldman). Let T be an operator on a Fréchet
space X and x ∈ X. If orb(x, T ) is somewhere dense in X, then it is dense
in X.



6.2 Somewhere dense orbits 165

Proof. We have to show that if U(x) �= ∅ then D(x) = X. The proof will be
split into four steps.

Step 1. We have that T (X \ U(x)) ⊂ X \ U(x).
We show, equivalently, that T−1(U(x)) ⊂ U(x). First, since U(x) �= ∅

there is some m ∈ N0 with xm := Tmx ∈ U(x).
Now let y ∈ T−1(U(x)), and let V be an arbitrary neighbourhood of y.

Since, by property (ii), xm also has a somewhere dense orbit, Lemma 6.4
implies that we can find a polynomial p such that p(T )xm ∈ V ∩ T−1(U(x)).

We have, using property (ii), that

p(T )xm ∈ p(T )(U(x)) = p(T )(U(Tm+1x)) ⊂ p(T )(D(Tm+1x)).

Moreover, since Tp(T )xm ∈ U(x) ⊂ D(x), properties (iii) and (i) yield that

p(T )(D(Tm+1x)) ⊂ D(Tp(T )xm) ⊂ D(x).

We have therefore shown that V ∩D(x) �= ∅. Since V was arbitrary and D(x)
is closed, we deduce that y ∈ D(x) and hence T−1(U(x)) ⊂ D(x). Continuity
of T implies that T−1(U(x)) ⊂ U(x).

Step 2. For any z ∈ X \ U(x), D(z) ⊂ X \ U(x).
By Step 1, X \U(x) is T -invariant, and it is closed. The claim then follows

from the definition of D(z).

Step 3. For any polynomial p �= 0, p(T )x ∈ X \ ∂D(x), where ∂D(x) denotes
the boundary of D(x); see Figure 6.1.

Suppose that p(T )x ∈ ∂D(x) for some polynomial p �= 0. By Lemma 6.3
there is some y ∈ X such that p(T )y ∈ U(x). Since p(T )x /∈ U(x), property
(iii) and Step 2 imply that

p(T )(D(x)) ⊂ D(p(T )x) ⊂ X \ U(x).

We therefore have that y ∈ X \ D(x). By Lemma 6.4 there then exists a
polynomial q such that q(T )x is close enough to y to satisfy q(T )x ∈ X \
D(x) ⊂ X \ U(x) and p(T )q(T )x ∈ U(x). Since p(T )x ∈ D(x), property (iii)
and Step 2 imply that

p(T )q(T )x = q(T )p(T )x ∈ q(T )(D(x)) ⊂ D(q(T )x) ⊂ X \ U(x),

which is a contradiction. This proves the claim.

Step 4. We have that D(x) = X.
By Step 3,

A := {p(T )x ; p �= 0 a polynomial} ⊂ U(x) ∪ (X \D(x)),
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Fig. 6.1 Step 3

which is a disjoint union of open sets. Since, by Lemma 6.4, A is connected
and, by density of A, A∩U(x) �= ∅, we must have that A∩ (X \D(x)) = ∅.
Hence, A ⊂ D(x), which implies that D(x) = X. ��

6.3 Multi-hypercyclic operators

The Bourdon–Feldman theorem provides us with a very powerful tool for
obtaining dense orbits. A particular case occurs when the union of a finite
number of orbits under T is dense in X. In this case the operator T is called
multi-hypercyclic.

Theorem 6.6 (Costakis–Peris). Let T be an operator on a Fréchet space
X and x1, . . . , xn ∈ X. If

n⋃

j=1

orb(xj , T )

is dense in X, then there is some j ∈ {1, . . . , n} such that orb(xj , T ) is dense
in X. In particular, every multi-hypercyclic operator is hypercyclic.

Proof. The hypothesis says that

n⋃

j=1

orb(xj , T ) =
n⋃

j=1

orb(xj , T ) = X.

Since a finite union of nowhere dense sets is nowhere dense, orb(xj , T ) must
be somewhere dense in X for some j ∈ {1, . . . , n}. By the Bourdon–Feldman
theorem, xj then has a dense orbit. ��

Ansari’s result can easily be derived from this theorem. Let x ∈ HC(T )
and p ∈ N. Since



6.4 Hypercyclic semigroup actions 167

orb(x, T ) =
p−1⋃

j=0

orb(T jx, T p)

is dense in X, Theorem 6.6 implies that there is some j ∈ {0, . . . , p− 1} such
that T jx is hypercyclic for T p. Since T p−j has dense range and

T p−j(orb(T jx, T p)) ⊂ orb(x, T p)

we obtain that x ∈ HC(T p).
These arguments also imply that because Ansari’s theorem fails for non-

linear dynamical systems the same is true for the theorems of Costakis–Peris
and Bourdon–Feldman; see also Exercise 1.2.11.

6.4 Hypercyclic semigroup actions

In this section we will be dealing with two additional important problems in
linear dynamics.

The problem of unimodular multiples asks whether, given a hypercyclic
operator T , is every multiple λT with λ ∈ K, |λ| = 1, also hypercyclic? The
operator λT is called a rotation of T . In the real setting the answer is positive.
Indeed, one only needs to show that if T is hypercyclic then so is −T . But
this follows from Ansari’s theorem because the two operators have a common
square, T 2 = (−T )2. Thus we will concentrate here on the complex setting.

The problem of hypercyclic discretizations of semigroups asks whether,
given a hypercyclic C0-semigroup (Tt)t≥0 on a Banach space, is every single
operator Tt, t > 0, also hypercyclic? Although C0-semigroups will only be
treated in the next chapter (and we ask the reader to consult the relevant
definitions there), there will be no harm in already considering the discretiza-
tion problem here. The (very basic) proof that a hypercyclic C0-semigroup
satisfies the assumptions imposed in this section will be postponed to Chap-
ter 7.

The main aim of this section is to show that both problems have a positive
answer. In analogy with Ansari’s theorem, it will even be proved that the
corresponding sets of hypercyclic vectors coincide.

Theorem 6.7 (León–Müller). Let T be an operator on a complex Fréchet
space X. If x ∈ X is such that {λTnx ; λ ∈ C, |λ| = 1, and n ∈ N0} is
dense in X then orb(x, λT ) is dense in X for each λ ∈ C with |λ| = 1.

In particular, for any λ ∈ C with |λ| = 1, T and λT have the same
hypercyclic vectors, that is,

HC(T ) = HC(λT ).
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In Exercise 2.5.1 we saw that rotations of mixing (or weakly mixing) op-
erators are mixing (or weakly mixing, respectively). But that result did not
say anything about the sets of hypercyclic vectors.

Theorem 6.8 (Conejero–Müller–Peris). Let (Tt)t≥0 be a C0-semigroup
on a Banach space X. If x ∈ X is hypercyclic for (Tt)t≥0, then it is hypercyclic
for each operator Tt, t > 0.

It is particularly gratifying that the two problems can be treated within
a common framework, that of semigroup actions. We will also show that a
variant of the method leads to a new proof of Ansari’s theorem; see Exercise
6.4.5.

Throughout this section we will write

G = N0 × R+,

which is a semigroup under addition. If X is a Fréchet space then a map

Ψ : G → L(X)

is called a (continuous and linear) semigroup action of G on X if the following
properties hold:

(i) Ψ(0) = I;
(ii) for any g1, g2 ∈ G, Ψ(g1 + g2) = Ψ(g1)Ψ(g2);
(iii) the map G×X → X, (g, x) → Ψ(g)x, is continuous, where G = N0×R+

and G×X carry the product topology.

Definition 6.9. A semigroup action Ψ on a Fréchet space X is called hyper-
cyclic if there is some x ∈ X such that {Ψ(g)x ; g ∈ G} is dense in X. The
vector x is then called hypercyclic for Ψ , and we write x ∈ HC(Ψ).

Let us see how our two problems fit into this framework. If T is an operator
on a complex Fréchet space X, then we define

Ψ(n, t) = e2πtiTn, n ∈ N0, t ≥ 0.

In the second case, if (Tt)t≥0 is a C0-semigroup on a Banach space X, then
we define

Ψ(n, t) = Tt, n ∈ N0, t ≥ 0.

It is easy to see that these are semigroup actions of G on X; we refer to
Chapter 7 for the definition of a C0-semigroup.

Moreover, in both cases, the following properties are satisfied:
(α) either Ψ(1, 0) = I or Ψ(0, 1) = I;
(β) if the semigroup action is hypercyclic then each convex combination of

Ψ(0, s) and Ψ(1, t), s, t ≥ 0, has dense range.
That property (β) is satisfied follows from a simple generalization of The-

orem 2.54 and by Theorem 7.16, respectively.
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The following theorem therefore immediately implies the Theorems of
León–Müller and Conejero–Müller–Peris.

Theorem 6.10. Let Ψ be a semigroup action on an infinite-dimensional
Fréchet space X satisfying properties (α) and (β). If x ∈ X is hypercyclic
for Ψ then it is hypercyclic for each operator Ψ(1, t), t > 0.

Proof. We first note that it suffices to prove the claim for t = 1. Indeed, let
x be hypercyclic for Ψ , and let t > 0 be arbitrary. We distinguish the two
subcases of (α). If Ψ(1, 0) = I then

Ψ̃(n, s) := Ψ(n, st)

defines a semigroup action that satisfies (α) and (β). Since x is also hyper-
cyclic for Ψ̃ we can conclude that x is hypercyclic for Ψ̃(1, 1) = Ψ(1, t). If
Ψ(0, 1) = I then we define

Ψ̃(n, s) = Ψ(n, nt + s),

and we can conclude as before that x is hypercyclic for Ψ̃(1, 1) = Ψ(1, t+1) =
Ψ(1, t).

As usual, T = {z ∈ C ; |z| = 1} is the unit circle. For ease of notation we
introduce the map ρ : R+ → T, given by ρ(t) := e2πti. We then define, for
every pair u, v ∈ X, the subset Fu,v of T by

Fu,v :=
{
λ ∈ T ; ∃ ((nk, tk))k ⊂ G with Ψ(nk, tk)u → v and ρ(tk) → λ

}
.

The remainder of the proof will be divided into several steps.

Step 1. If u ∈ HC(Ψ), then Fu,v �= ∅ for all v ∈ X.
Since u ∈ HC(Ψ), we can find sequences (nk)k in N0 and (tk)k in R+

such that Ψ(nk, tk)u → v. By passing to a subsequence if necessary, we may
assume that (ρ(tk))k is convergent. Its limit is an element of Fu,v.

Step 2. If λk ∈ Fu,vk , vk → v and λk → λ, then λ ∈ Fu,v. In particular, Fu,v

is a closed set for each u, v ∈ X.
Let W be a 0-neighbourhood of X and ε > 0. There is a 0-neighbourhood

W1 such that W1 +W1 ⊂ W ; see Lemma 2.36. By assumption, there is some
k ∈ N with v−vk ∈ W1 and |λ−λk| < ε. Now, by definition, there are nk ∈ N0
and tk ∈ R+ such that vk − Ψ(nk, tk)u ∈ W1 and |λk − ρ(tk)| < ε. We then
get that v−Ψ(nk, tk)u ∈ W1+W1 ⊂ W and |λ−ρ(tk)| < 2ε, so that λ ∈ Fu,v.

Step 3. If u, v, w ∈ X, λ ∈ Fu,v, and μ ∈ Fv,w, then λμ ∈ Fu,w.
Given a 0-neighbourhood W , take a 0-neighbourhood W1 such that W1 +

W1 ⊂ W . Let ε > 0. Then there are n1 ∈ N0 and t1 ∈ R+ such that
w−Ψ(n1, t1)v ∈ W1 and |μ−ρ(t1)| < ε. One can then find a 0-neighbourhood



170 6 Connectedness arguments in linear dynamics

V , n2 ∈ N0 and t2 ∈ R+ satisfying Ψ(n1, t1)(V ) ⊂ W1, v − Ψ(n2, t2)u ∈ V ,
and |λ− ρ(t2)| < ε. Consequently we have for n3 := n1 +n2 and t3 := t1 + t2
that

w− Ψ(n3, t3)u = w− Ψ(n1, t1)v + Ψ(n1, t1)(v− Ψ(n2, t2)u) ∈ W1 +W1 ⊂ W,

and
|λμ− ρ(t3)| ≤ |λ| |μ− ρ(t1)| + |ρ(t1)| |λ− ρ(t2)| < 2ε.

Hence λμ ∈ Fu,w.

We now fix x ∈ HC(Ψ). Our aim is to show that x ∈ HC(Ψ(1, 1)). By Steps
1, 2 and 3, Fx,x is a nonempty closed subsemigroup of the multiplicative
group T.

Step 4. If Fx,x = T then x is hypercyclic for Ψ(1, 1).
Suppose that Fx,x = T. Given any y ∈ X, Steps 1 and 3 imply that

Fx,y = T. In particular 1 ∈ Fx,y, which yields the existence of sequences (nk)k
in N0 and (tk)k in R+ such that Ψ(nk, tk)x → y and ρ(tk) = e2πtki → 1. We
can then write tk = jk − 1 + εk with jk ∈ N and εk ∈ [−1/2, 1/2], where
εk → 0.

Let W be a 0-neighbourhood, and let W1 be a 0-neighbourhood such that
W1 + W1 ⊂ W . By a standard compactness argument, the continuity of
the semigroup action implies that there is a 0-neighbourhood V such that
Ψ(0, t)(V ) ⊂ W1 if 0 ≤ t ≤ 2. Moreover, there is some k ∈ N such that
Ψ(nk, tk)x− y ∈ V and Ψ(0, 1 − εk)y − Ψ(0, 1)y ∈ W1. Therefore

Ψ(nk, jk)x− Ψ(0, 1)y
= Ψ(0, 1 − εk)(Ψ(nk, tk)x− y) + (Ψ(0, 1 − εk) − Ψ(0, 1))y
∈ Ψ(0, 1 − εk)(V ) + W1 ⊂ W1 + W1 ⊂ W.

Observe that, by property (α), Ψ(nk, jk)x ∈ orb(x, Ψ(1, 1)). Thus Ψ(0, 1)y ∈
orb(x, Ψ(1, 1)). Since Ψ(0, 1) has dense range by property (β), and y ∈ X is
arbitrary, x is hypercyclic for Ψ(1, 1).

For the rest of the proof we can now assume that Fx,x �= T, and we will show
that this leads to a contradiction.

Step 5. There exists some m ∈ N such that, for each y ∈ HC(Ψ), there is
λ ∈ T satisfying Fx,y = {λz ; zm = 1}.

We first note that Fx,x must be of the form Fx,x = {z ∈ T ; zm = 1} for
some m ∈ N. Indeed, if Fx,x contained points z = e2πti with t > 0 arbitrarily
small then, being a closed subsemigroup of T, Fx,x would be dense, and hence
coincide with T, which was excluded. Hence there is a minimal t0 ∈ ]0, 1] such
that z0 = e2πt0i ∈ Fx,x. By the same argument, t0 cannot be irrational; see
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Example 1.17. There is then a minimal m ∈ N with zm0 = 1. The minimality
of t0 and m easily imply that Fx,x = {z ∈ T ; zm = 1}.

Now let y ∈ HC(Ψ). By Step 1, there exist λ ∈ Fx,y and μ ∈ Fy,x. Then,
by Step 3, λFx,x ⊂ Fx,y and μFx,y ⊂ Fx,x, so that card(Fx,y) = card(Fx,x).
This implies that Fx,y = λFx,x.

Step 6. There is a continuous function f : HC(Ψ) → T such that f(Ψ(0, t)x) =
e2πmti for every t ≥ 0.

Let m ∈ N be the integer given by Step 5. Then, for any y ∈ HC(Ψ), we
define

f(y) = λm if λ ∈ Fx,y.

By Step 5, this is well defined. Moreover, f is continuous. Otherwise there
are yk ∈ HC(Ψ) and y ∈ HC(Ψ) such that yk → y but f(yk) �→ f(y). We
choose λk ∈ Fx,yk

. Passing to a subsequence if necessary, we can assume that
f(yk) → μ �= f(y) and λk → λ for some λ, μ ∈ T. It follows from Step 2 that
λ ∈ Fx,y and hence that f(yk) = λm

k → λm = f(y), which is a contradiction.
Now let t ≥ 0. By property (β), Ψ(0, t) has dense range and therefore

Ψ(0, t)x ∈ HC(Ψ). Since, by definition, ρ(t) = e2πti ∈ Fx,Ψ(0,t)x we conclude
that f(Ψ(0, t)x) = e2πmti.

Step 7. There is a continuous function h : D → T, whose restriction to the
unit circle is homotopically nontrivial. A contradiction.

This is the decisive, and most difficult part of the proof. We will use here
the terminology and some results of homotopy theory; see Appendix A. In
order to define the function h we will first define a function g : T → HC(Ψ),
where we will distinguish the two subcases of (α).

Case 1: Ψ(0, 1) = I. Here we define g : T → HC(Ψ) by

g(e2πti) = Ψ(0, t)x, 0 ≤ t < 1,

which is well defined by property (β), and g is continuous because Ψ(0, 1) = I.
By Step 6, the function f ◦g : T → T satisfies f(g(e2πti)) = e2πmti, 0 ≤ t < 1,
so that the index of f ◦ g is m ≥ 1.

We extend the function g to the closed unit disk D by defining g(z) =
(1− r)Ψ(1, 0)x+ rg(e2πti) for z = re2πti ∈ D, r ≥ 0. This extension is clearly
continuous on D. Since g(z) is a convex combination of Ψ(1, 0)x and Ψ(0, t)x
for some t ≥ 0, property (β) implies that g(z) ∈ HC(Ψ) for every z ∈ D.

To summarize, we have found a continuous function h := f ◦ g : D → T

whose restriction to the unit circle is homotopically nontrivial. In other words,
the map H : T × [0, 1] → T, (e2πti, r) → h(re2πti) defines a homotopy be-
tween the function h on T, which is homotopically nontrivial, and a constant
function. This is the desired contradiction.

Case 2: Ψ(1, 0) = I. Here the construction of g is slightly more delicate.
First, since f is continuous and f(x) = 1, we can find a 0-neighbourhood W
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such that |f(y) − 1| < 1 if y ∈ HC(Ψ) and y − x ∈ W . We can assume that
W is balanced, that is, μW ⊂ W whenever |μ| ≤ 1; see Lemma 2.6(iii).

Since no 0-neighbourhood in an infinite-dimensional Fréchet space can be
relatively compact (see Appendix A), the set U := W \ {x − Ψ(0, t)x ; 0 ≤
t ≤ 1} is open and nonempty. By the hypercyclicity of x there are n0 ∈ N0
and t0 ≥ 0 such that x− Ψ(n0, t0)x ∈ U . Since Ψ(1, 0) = I we also have that
x− Ψ(0, t0)x ∈ U , and therefore t0 > 1 and x− Ψ(0, t0)x ∈ W . We can now
define g : T → HC(Ψ) by

g(e2πti) =

{
Ψ(0, 2tt0)x if 0 ≤ t < 1/2,
(2t− 1)x + (2 − 2t)Ψ(0, t0)x if 1/2 ≤ t < 1,

which is clearly continuous. The fact that g is well defined is a consequence
of property (β); note that x = Ψ(1, 0)x.

Fig. 6.2 The map h, Case 2

We consider the function f ◦ g : T → T. Then f(g(e2πti)) = e4πmtt0i for
0 ≤ t < 1/2. Moreover, by the selection of t0, and since W is balanced, we
obtain that |f(g(e2πti)) − 1| < 1 for 1/2 ≤ t < 1. Thus, as t moves from 0
to 1/2, f(g(e2πti)), starting from 1, moves along the unit circle in a positive
direction and covers it [mt0] times, finishing inside the disk of radius 1 around
1. As t then moves from 1/2 to 1, f(g(e2πti)) stays completely in that disk,
returning to 1 for t = 1. As a consequence, the path t → f(g(e2πti)) can be
deformed homotopically to the path t → e2πni with either n = [mt0] ≥ 1 if
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Im(e2πmt0i) ≥ 0 or with n = [mt0] + 1 ≥ 2 if Im(e2πmt0i) < 0. In any case,
the index of f ◦ g is nonzero.

We extend the function g continuously to the closed unit disk D by defining
g(z) = (1 − r)x + rg(e2πti) for z = re2πti ∈ D, r ≥ 0. Since g(z) is a convex
combination of x = Ψ(1, 0)x and Ψ(0, s)x for some s ≥ 0, property (β) implies
that g(z) ∈ HC(Ψ) for every z ∈ D. We define again the map h : D → T

by h = f ◦ g; see Figure 6.2. Since the restriction of h to the unit circle is
homotopically nontrivial we obtain a contradiction as in Case 1. ��

When we combine Theorem 6.10 with Ansari’s theorem, by which Ψ(n, t) =
Ψ(1, t/n)n is hypercyclic whenever Ψ(1, t/n) is, we obtain the following.

Corollary 6.11. Let Ψ be a semigroup action on a Fréchet space X satisfying
properties (α) and (β). If x ∈ X is hypercyclic for Ψ then it is hypercyclic
for each operator Ψ(n, t), n, t > 0.

Exercises

Exercise 6.1.1. In a metric space, show that a finite union of nowhere dense sets is
nowhere dense.

Exercise 6.1.2. Let T : X → X be a (not necessarily linear) weakly mixing dynamical
system. Show that any T p, p ∈ N, is also weakly mixing. (Hint: Theorem 1.54.)

Exercise 6.1.3. Let T be an operator on a separable Fréchet space X that satisfies the
Hypercyclicity Criterion. Give two proofs of the fact that any T p, p ∈ N, also satisfies
the Hypercyclicity Criterion.

Exercise 6.1.4. Let T be a chaotic operator on a Fréchet space X. Without the use of
Theorem 6.2, show that any T p, p ∈ N, is also chaotic. This is not true for nonlinear
maps by the example of Exercise 1.2.11.

Exercise 6.1.5. Let S : X → X, T : Y → Y be topologically ergodic operators on
Fréchet spaces X and Y . Show that any operator Sp ⊕ T q, p, q ∈ N, is topologically
ergodic on X ⊕ Y . (Hint: Exercises 2.5.5 and 2.5.6.)

Exercise 6.1.6. Let T be an operator on a Fréchet space X and x a hypercyclic vector
for T . Show that there exists an increasing sequence (nk)k of positive integers with
supk≥1(nk+1 − nk) = 2 such that x does not have dense orbit under (Tnk )k. (Hint:
Show that there is some y ∈ X and a 0-neighbourhood W such that z ∈ y + W implies
that Tz /∈ y + W .)

In the following two exercises, let T : X → X be a (not necessarily linear) dynamical
system, that is, a continuous map T on a metric space X. Suppose that X does not have
isolated points, and let D = {x ∈ X ; orb(x, T ) is dense in X}.

Exercise 6.1.7. Show the following generalization of Ansari’s theorem. If D contains a
connected and dense set then T and T p, p ∈ N, have the same points of dense orbits.
(Hint: Follow the proof of Ansari’s theorem and note that D itself must be connected;
see the proof of Corollary 2.56.)
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Exercise 6.1.8. An alternative proof of Exercise 6.1.7 (and thus of Ansari’s theorem)
is the following. With the notation of Theorem 6.2, let

Ak :=
⋃

0≤j1<···<jk≤p−1

(Dj1 ∩ · · · ∩Djk ) ,

where k = 1, . . . , p. Prove the following assertions:
(i) A1 = D, Ap =

⋂p−1
j=0 Dj , and Ak+1 ⊂ Ak, k = 1, . . . , p− 1;

(ii) T (Ak) ⊂ Ak, k = 1, . . . , p;
(iii) if Ak = D, then Ak+1 = D, k = 1, . . . , p− 1.
In particular, orb(x, T p) is dense in X for every x ∈ D. (Hint: For (iii), observe that if
Ak+1 �= D, then Ak+1 = ∅, since it is closed, T -invariant, and T : D → D is minimal;
hence Ak is a finite union of pairwise disjoint closed sets.)

Exercise 6.2.1. Prove assertions (i), (ii) and (iii) before Lemma 6.3. (Hint: See the
proof of Proposition 1.15.)

Exercise 6.2.2. Prove Lemma 6.3. (Hint: Follow the argument of Theorem 2.54.)

Exercise 6.2.3. Let T be a continuous map on a metric space X without isolated
points, and let x ∈ X. With the notation of this section, prove that if U(x) �= ∅ and
T (X \ U(x)) ⊂ X \ U(x), then D(x) = U(x). (Hint: Show that orb(x, T ) ⊂ U(x).)

Exercise 6.2.4. Let T be an operator on a Fréchet space X and x ∈ X. With the
notation of this section, prove directly that if X is a complex (or real) space, then
U(x) = U(λx) = λU(x) for λ �= 0 (or for λ > 0, respectively). Deduce that D(x) = X if
0 ∈ U(x). (Hint: Use Lemma 6.1.)

Exercise 6.2.5. Let T : X → X be a (not necessarily linear) topologically transitive
dynamical system and x ∈ X. Show that if orb(x, T ) is somewhere dense in X, then it
is dense in X.

Exercise 6.2.6. Let T be an operator on a Fréchet space X and x a hypercyclic vector
for T . Show that there exists an increasing sequence (nk)k of positive integers with
supk≥1(nk+1 − nk) = 2 such that the orbit of x under (Tnk )k is somewhere dense but
not dense. (Hint: See Exercise 6.1.6.)

Exercise 6.3.1. Let T be an invertible operator on a Fréchet space X and x ∈ X such
that {Tnx ; n ∈ Z} is dense in X. Show that x is either hypercyclic for T or for T−1;
in particular, both T and T−1 are hypercyclic. For the proof,

(i) either use the Bourdon–Feldman theorem,
(ii) or proceed directly.

(Hint: For (i); see the proof of Theorem 6.6. For (ii), suppose that Tnx /∈ U for all
n ≥ 0; for any V , find k ∈ Z and U ′ ⊂ U such that T k(U ′) ⊂ V ; find m < −|k| such
that Tmx ∈ U ′; then Tm+kx ∈ V , m + k < 0.)

Exercise 6.3.2. Let T be an operator on a Fréchet space X admitting a countable set
{x1, x2, . . . } of vectors such that

∞⋃

j=1

orb(xj , T ) = X.

Show that some vector xj , j ≥ 1, is hypercyclic for T . Give an example of an operator
on a normed space for which this assertion fails.
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Exercise 6.3.3. An operator T on a Banach space X is called countably hypercyclic if
it admits a countable bounded set {x1, x2, . . . } of vectors with infj �=k ‖xj − xk‖ > 0
such that

∞⋃

j=1

orb(xj , T ) = X.

Show that the operator T = 2(I ⊕ B) on X = �2 ⊕ �2 is countably hypercyclic but not
hypercyclic, where B is the backward shift. (Hint: Take xj = (0, ej) + 2−nj (I ⊕F )njyj ,
where F is the forward shift.)

Exercise 6.3.4. Let T be a countably hypercyclic operator on a Banach space X. Show
the following.

(a) The spectrum σ(T ) meets the unit circle.
(b) The orbit of every x∗ �= 0 in X∗ under T ∗ is unbounded.

(Hint: See Section 5.1.)

Exercise 6.3.5. Let T = Bw be a weighted backward shift on X = �p, 1 ≤ p < ∞, or
c0; see Section 4.1. Show that if T is countably hypercyclic then it is hypercyclic. (Hint:
Apply Exercise 6.3.4(b) to x∗ = e1.)

Exercise 6.4.1. Let T = Bw be the weighted bilateral backward shift on �2(Z) with
weights wn = n+1

n if n ≥ 1 and w−n = n+1
n+2 if n ≥ 0; see Section 4.1. Show that λT ,

λ ∈ C, is hypercyclic if and only if |λ| = 1. Discuss this result in the light of Kitai’s
theorem, showing first that σ(T ) ⊂ T. (Hint: For the first part note that λBw = Bλw;
for the second part use the spectral radius formula for T and T−1 and Exercise 5.0.7.)

Exercise 6.4.2. Let Tj be operators on complex Fréchet spaces Xj , j = 1, . . . , n, such
that T1 ⊕ · · · ⊕ Tn is hypercyclic. Show that, for any λj ∈ C with |λj | = 1, j = 1, . . . , n,
the operator λ1T1 ⊕ · · · ⊕ λnTn is also hypercyclic and, moreover, that it shares the set
of hypercyclic vectors with T1 ⊕ · · · ⊕ Tn. (Hint: Set Ψ(n, t) = Sn

1 ⊕ e2πtiSn
2 for suitable

operators S1, S2, deduce that HC(Ψ) = HC(S1⊕S2), and apply this result repeatedly.)

Exercise 6.4.3. Let Tj be operators on complex Fréchet spaces Xj , j = 1, . . . , n, and
let xj ∈ Xj , j = 1, . . . , n, be such that

{
(λ1T

k
1 x1, . . . , λnT

k
nxn) ; k ∈ N0, (λ1, . . . , λn) ∈ T

n
}

is dense in X1 ⊕ · · · ⊕Xn. Show that x := (x1, . . . , xn) is hypercyclic for T1 ⊕ · · · ⊕ Tn.
(Hint: Let (Um)m be a countable base of open sets in X1 ⊕ · · · ⊕ Xn. Show that the
sets {(μ1, . . . , μn) ∈ T

n ; ∃ k ∈ N0 with (μk
1T

k
1 x1, . . . , μ

k
nT

k
nxn) ∈ Um} are open and

dense in T
n. By a Baire argument, find (μ1, . . . , μn) ∈ T

n such that x is hypercyclic for
μ1T1 ⊕ · · · ⊕ μnTn, and conclude by using Exercise 6.4.2.)

Exercise 6.4.4. Let X = C0(R+), the space of continuous functions on R+ that van-
ish at ∞, endowed with the sup-norm. Consider the semigroup action Ψ(n, t)f(x) :=
2n−tf(x + t), n ∈ N0, t ∈ R+. Then Ψ is hypercyclic but the operator Ψ(1, 1) is not
hypercyclic. Which hypothesis of Theorem 6.10 is not satisfied?

Exercise 6.4.5. Give a new proof of Ansari’s theorem by proceeding as follows. Let T
be a hypercyclic operator on a Fréchet space X, x a hypercyclic vector for T and p ∈ N.
For u, v ∈ X define the subset Fu,v of T by

Fu,v =
{
e2πji/p ; ∃ (nk)k ⊂ N0 with Tnkp+ju → v, j = 0, . . . , p− 1

}
.

Show the following:
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(i) if u ∈ HC(T ), then Fu,v �= ∅ for all v ∈ X;
(ii) if u, v, w ∈ X, λ ∈ Fu,v, and μ ∈ Fv,w, then λμ ∈ Fu,w;
(iii) there is a divisor m ≥ 1 of p such that Fx,x = {e2πmi/p ; j = 0, . . . , p/m− 1};
(iv) for every y ∈ HC(T ) there is some j, 0 ≤ j ≤ m−1, such that Fx,y = e2πji/pFx,x.
Now let Dj = {y ∈ HC(T ) ; Fx,y = e2πji/pFx,x}, j = 0, . . . ,m − 1. Then finish the
proof as follows:
(v) show that the Dj form a partition of HC(T ) into closed (and open) sets;
(vi) deduce that m = 1 and hence that x ∈ HC(T p).

In the following two exercises, let T : X → X be a (not necessarily linear) dynamical
system, where X does not have isolated points.

Exercise 6.4.6. Show the following separation theorem. If x ∈ X has dense orbit un-
der T but not under T p, p > 1, then there is a divisor m > 1 of p and a partition
D0, . . . , Dm−1 of D = {x ∈ X ; orb(x, T ) is dense in X} into closed (and open) subsets
with the following properties:

(i) T (Dj) ⊂ Dj+1(modm), j = 0, . . . ,m− 1;
(ii) for j = 0, . . . ,m− 1, the orbit of T jx under T p is contained and dense in Dj .

(Hint: Proceed as in the previous exercise.)

Fig. 6.3 Nonlinear dynamics if x has dense orbit under T but not under T p, m|p

Exercise 6.4.7. Show the following decomposition theorem. If x ∈ X has dense orbit
under T but not under T p, p > 1, then there is a divisor m > 1 of p and pairwise disjoint
open subsets S0, S1, . . . , Sm−1 of X with the following properties:

(i) S :=
⋃m−1

j=0 Sj is dense in X;
(ii) T (Sj) ⊂ Sj+1, j = 0, . . . ,m− 2, and T (Sm−1) ⊂ S0 ∪ (X \ S);
(iii) X \ S is invariant under T ;
(iv) for j = 0, . . . ,m− 1, the orbit of T jx under T p is contained and dense in Sj ;
see Figure 6.3.
(Hint: Consider the sets Dj of the previous exercise; set Sm−1 = X \

⋃m−2
j=0 Dj , with

closure in X, and Sj = T−m+j+1(Sm−1); show first that T−m(Sm−1) ⊂ Sm−1, Dj ⊂ Sj ,
and that Tnx ∈ Sj if and only if n = j(modm).)

Exercise 6.4.8. Verify the results of the previous two exercises in the case of the map
of Exercise 1.2.11.
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Sources and comments

The results in this chapter have in common that their proofs use connectedness argu-
ments. But their relationship runs deeper than that. As we have seen, Ansari’s theorem
is a consequence of the Costakis–Peris theorem, which in turn follows from the Bourdon–
Feldman theorem. Moreover, the theorems of León–Müller and Conejero–Müller–Peris
are proved by a common approach. Recently, Shkarin [284] was able to unify the latter
two theorems with Ansari’s theorem by deriving them as consequences of a single, quite
general result. An alternative common framework was developed by Bayart and Math-
eron [44], which was further generalized by Matheron [235] to include Shkarin’s result.

Section 6.1. Ansari [9] showed that powers of hypercyclic operators are hypercyclic. In-
dependently, Banks [28] proved a more general result: any power of a minimal map on a
connected topological space is also minimal (see Exercise 6.1.7). We combine ideas from
Banks [28] and Peris [254] for the proof of Theorem 6.2. Lemma 6.1 is from Peris [254].

Section 6.2. Theorem 6.5 is due to Bourdon and Feldman [93], answering a question
from Peris [254]. The corresponding result for semigroups of operators (see the next
chapter for this notion) is due to Costakis and Peris [121]. It is interesting to note that
for a weighted backward shift on �p, 1 ≤ p < ∞, to be hypercyclic it already suffices to
have an orbit with a nonzero limit point, as was shown by Chan and Seceleanu [105];
such an orbit though, need not be dense.

Section 6.3. The fact that multi-hypercyclic operators are hypercyclic was indepen-
dently proved by Costakis [117] and Peris [254], answering a question raised by Her-
rero [195]. The original proofs motivated the question leading to the Bourdon–Feldman
theorem.

Section 6.4. Theorem 6.7 on rotations of hypercyclic operators is due to León and
Müller [222]. Bayart and Bermúdez [37] show that the corresponding result for chaos
fails. Badea, Grivaux and Müller [20] characterize the subsets of C that can appear as
{λ ∈ C ; λT hypercyclic} for invertible operators T on a complex Hilbert space.

Theorem 6.8 on discretizations of hypercyclic C0-semigroups is due to Conejero,
Müller and Peris [110]. Exercise 6.4.4 shows that the result fails for semigroups indexed
over N0 × R+; see also Shkarin [284] and Exercise 7.3.1. Bayart [36] shows that it even
fails for holomorphic groups over C. And by Bayart and Bermúdez [37] there are chaotic
C0-semigroups on a Hilbert space for which no individual operator is chaotic.

The unified proof of Theorem 6.10 essentially follows the argument of [110]. The re-
lated approach to Ansari’s theorem in Exercise 6.4.5 is due to Grosse-Erdmann, León
and Piqueras [183]. As mentioned above, Shkarin [284], Bayart and Matheron [44] and
Matheron [235] obtain much more general results that contain the theorems of Ansari,
León–Müller and Conejero–Müller–Peris as special cases. Shkarin and Matheron point
out that the main common idea in all these proofs can already be found in a paper by
Furstenberg [156].

Exercises. Exercise 6.1.6 is taken from Montes and Salas [243], Exercise 6.1.7 from
Banks [28]. Exercise 6.1.8 outlines essentially the original proof of Ansari [9]. Exercises
6.2.2 and 6.2.3 are taken from Bourdon and Feldman [93], while the result of Exercise
6.2.6 is due to Peris and Saldivia [257]. The result of Exercise 6.3.1 is due to Herrero
and Kitai [196]. The notion of a countably hypercyclic operator (see Exercise 6.3.3), as
well as the results of Exercises 6.3.4 and 6.3.5 are due to Feldman [149]. Exercise 6.4.1
is taken from León and Müller [222], Exercise 6.4.2 from Shkarin [284]. Exercises 6.4.6
and 6.4.7 are due to Grosse-Erdmann, León and Piqueras [183] (see also Marano and
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Salas [226]); the case of p = 2 was previously obtained by Bourdon [91].

Extensions. We will show in Chapter 12 that the theorems of Ansari, Bourdon–
Feldman, Costakis–Peris and León–Müller continue to hold in arbitrary topological vec-
tor spaces.
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