
Chapter 4
Classes of hypercyclic and chaotic
operators

In this chapter we study in detail some important classes of hypercyclic and
chaotic operators. Each of them has its origin in the three classical hypercyclic
operators. Rolewicz’s multiples of backward shifts lead naturally to the study
of arbitrary weighted shifts. MacLane’s differentiation operator and Birkhoff’s
translation operators are both special cases of differential operators, while the
translation operators can also be regarded as composition operators. Finally,
Rolewicz’s operators reappear as adjoint multipliers.

4.1 Weighted shifts

The basic model of all shifts is the backward shift

B(x1, x2, x3, . . .) = (x2, x3, x4, . . .).

In order to distinguish this shift from the bilateral shift that we will discuss
later one also speaks of the unilateral backward shift.

Rolewicz has shown that, for any λ with |λ| > 1, the multiples of B,
λB(xn)n = (λxn+1)n, are hypercyclic on the sequence space �2. It is then a
small step to let the weights vary from coordinate to coordinate, which leads
to the (unilateral) weighted shift

Bw(x1, x2, x3, . . .) = (w2x2, w3x3, w4x4, . . .),

where
w = (wn)n

is a sequence of nonzero scalars, called a weight sequence. Note that the value
of w1 is irrelevant.

We may also generalize these operators in a different direction. Rolewicz
had already replaced �2 by any of the spaces �p, 1 ≤ p < ∞, and c0. More
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90 4 Classes of hypercyclic and chaotic operators

generally, one may take as the underlying space an arbitrary sequence space
X, that is, a linear space of sequences or, in other words, a subspace of
ω = K

N. In addition, X should carry a topology that is compatible with
the sequence space structure of X. We interpret this as demanding that the
embedding X → ω is continuous, that is, convergence in X should imply co-
ordinatewise convergence. A Banach (Fréchet, . . . ) space of this kind is called
a Banach (Fréchet, . . . ) sequence space. The terms of a sequence x, y, z, . . .
will be denoted by xn, yn, zn, . . ., n ≥ 1.

By en, n ∈ N,

en = (δn,k)k∈N = (0, . . . , 0, 1
n
, 0, . . .)

we denote the canonical unit sequences. If the en are contained in X and
span a dense subspace then an alternative way of describing weighted shifts
is by saying that

Bwen = wnen−1, n ≥ 1, with e0 := 0.

The continuity of the embedding X → ω amounts to requiring the conti-
nuity of each coordinate functional

X → K, x → xn, n ≥ 1,

which implies that each weighted shift has closed graph. From the closed
graph theorem (see Appendix A) we thus obtain that a weighted shift defines
an operator on a Fréchet sequence space X as soon as it maps X into itself.

Proposition 4.1. Let X be a Fréchet sequence space. Then every weighted
shift Bw : X → X is continuous.

We start by studying the (unweighted) backward shift B. Our results will
then extend immediately to all weighted shifts via a simple conjugacy.

The following technical result will help us simplify the condition charac-
terizing hypercyclicity of B.

Lemma 4.2. Let X be a metric space, vn ∈ X, n ≥ 1, and v ∈ X. Suppose
that there is a strictly increasing sequence (nk)k of positive integers such that

vnk−j → v for every j ∈ N.

Then there exists a strictly increasing sequence (mk)k of positive integers
such that

vmk+j → v for every j ∈ N.

Proof. Let d denote the metric in X. It follows from the assumption that, for
any k ≥ 1, there is some Nk ≥ k + 2 such that

d(vNk−j , v) <
1
k
, j = 1, . . . , k.
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Setting mk = Nk − k − 1, k ≥ 1, we see that d(vmk+k+1−j , v) < 1
k for

j = 1, . . . , k, hence

d(vmk+j , v) <
1
k
, j = 1, . . . , k;

this implies the assertion when we pass to a strictly increasing subsequence
of (mk)k, if necessary. ��

We recall that the sequence (en)n is a basis in the space X if each en,
n ∈ N, belongs to X and, for any x ∈ X,

x = lim
N→∞

(x1, x2, . . . , xN , 0, 0, . . .) =
∞∑

n=1
xnen.

Clearly, (en)n is a basis in any of the sequence spaces �p, 1 ≤ p < ∞, c0 and
ω.

Theorem 4.3. Let X be a Fréchet sequence space in which (en)n is a basis.
Suppose that the backward shift B is an operator on X. Then the following
assertions are equivalent:

(i) B is hypercyclic;
(ii) B is weakly mixing;
(iii) there is an increasing sequence (nk)k of positive integers such that

enk
→ 0 in X as k → ∞.

Proof. Let ‖ · ‖ stand for an F-norm that induces the topology of X; see
Section 2.1.

(i)=⇒(iii). Suppose that B is hypercyclic. Let N ∈ N and ε > 0. We show
that there exists some n ≥ N with ‖en‖ < ε.

It follows from the basis assumption that, for any x ∈ X, the sequence
(xnen)n converges to 0 in X. By the Banach–Steinhaus theorem (see Ap-
pendix A), applied to the operators x → xnen, n ≥ 1, there is some δ > 0
such that, for all x ∈ X,

‖x‖ < δ =⇒ ‖xnen‖ < ε
2 for all n ≥ 1. (4.1)

Moreover, since convergence in X implies coordinatewise convergence,
there is some η > 0 such that, for all x ∈ X,

‖x‖ < η =⇒ |x1| ≤ 1
2 . (4.2)

Now, since B is hypercyclic and therefore topologically transitive, there
are x ∈ X and n ≥ N such that

‖x‖ < δ and ‖Bn−1x− e1‖ < η.

Hence, by (4.1) and (4.2),
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‖xnen‖ < ε
2 and |xn − 1| ≤ 1

2 ; (4.3)

the latter implies that xn is closer to 1 than to 0 and hence that

∣∣x−1
n − 1

∣∣ =
∣∣∣
1 − xn

xn

∣∣∣ ≤ 1.

From this and (4.3) we deduce, using the properties of an F-norm, that

‖en‖ =
∥∥(x−1

n − 1)xnen + xnen
∥∥ ≤

∥∥(x−1
n − 1)xnen‖ + ‖xnen

∥∥ < ε, (4.4)

which had to be shown.
(iii)=⇒(ii). We apply the Hypercyclicity Criterion. For X0 = Y0 we take

the set of finite sequences, which by the basis assumption is dense in X. For
Sn we take the nth iterate of the forward shift

F : (x1, x2, x3, . . .) → (0, x1, x2, . . .),

that is, Sn = Fn : Y0 → X, n ≥ 1. With this, conditions (i) and (iii) of the
Hypercyclicity Criterion hold even for the full sequence (n).

As for condition (ii) note that, by continuity of B,

enk−j = Bjenk
→ 0 as k → ∞,

for all j ≥ 1. Since (nk)k must be strictly increasing, it follows from Lemma
4.2 that there is an increasing sequence (mk)k of positive integers such that

emk+j → 0 as k → ∞,

for all j ≥ 1. But since Smk
ej = emk+j , we have by linearity that

Smk
y → 0

for any y ∈ Y0. This shows that conditions (i)–(iii) of the Hypercyclicity
Criterion hold for the sequence (mk)k, so that B is weakly mixing.

(ii)=⇒(i) holds for all operators on X. ��

We point out that B being an operator on X is part of the hypothesis.
By Proposition 4.1 this can be restated simply as saying that (xn+1)n ∈ X
whenever (xn)n ∈ X, which is usually easily verified for concrete spaces.

Example 4.4. (a) Let

�p(v) =
{

(xn)n≥1 ;
∞∑

n=1
|xn|pvn < ∞

}
, 1 ≤ p < ∞,

be a weighted �p-space, where v = (vn)n is a positive weight sequence. Then
B is an operator on �p(v) if and only if there is an M > 0 such that, for all
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x ∈ �p(v),
( ∞∑

n=1
|xn+1|pvn

)1/p
≤ M

( ∞∑

n=1
|xn|pvn

)1/p
,

which is equivalent to supn∈N

vn
vn+1

< ∞. Theorem 4.3 tells us that, under
this condition, the hypercyclicity of B is characterized by

inf
n∈N

vn = 0.

The same conditions also characterize the continuity and hypercyclicity of
the backward shift B on the weighted c0-space

c0(v) =
{
(xn)n≥1 ; lim

n→∞
|xn|vn = 0

}
.

(b) Spaces of holomorphic functions constitute a rich and interesting source
of sequence spaces via the identification of a holomorphic function with its se-
quence of Taylor coefficients. As a first example we consider here the Bergman
space A2 of all holomorphic functions f on the unit disk D = {z ∈ C ; |z| < 1}
such that

‖f‖2 :=
1
π

∫

D

|f(z)|2 dλ(z) < ∞,

where λ denotes two-dimensional Lebesgue measure. Using polar coordinates
and writing f(z) =

∑∞
n=0 anz

n we obtain that

1
π

∫

D

|f(z)|2 dλ(z) =
1
π

∫ 1

0

∫ 2π

0

∣∣∣
∞∑

n=0
an(reit)n

∣∣∣
2
dt r dr

= 2
∫ 1

0

(∫ 2π

0

∣∣∣
∞∑

n=0
anr

n 1√
2π

eint
∣∣∣
2
dt
)
r dr

= 2
∫ 1

0

∞∑

n=0
|an|2r2nr dr =

∞∑

n=0
|an|2

1
n + 1

,

where we have applied Parseval’s identity in L2[0, 2π] for the orthonormal
basis ( 1√

2π eint)n∈Z. As a consequence, A2 is isometrically isomorphic to the
weighted space �2( 1

n+1 ) (with indices running from 0). By (a), the backward
shift is therefore hypercyclic on A2. When acting on functions, B is the
operator

Bf(z) =
∞∑

n=0
an+1z

n =
1
z
(f(z) − f(0)) with Bf(0) = f ′(0).

Further Banach and Hilbert spaces of holomorphic functions will be studied
in Section 4.4.
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(c) As in (b) we can consider the space H(C) of entire functions (see Ex-
ample 2.1) as a sequence space by identifying the entire function f(z) =∑∞

n=0 anz
n with the sequence (an)n≥0. By the formula for the radius of con-

vergence of Taylor series, this sequence space is given by

{
(an)n≥0 ; lim

n→∞
|an|1/n = 0

}
=

{
(an)n≥0 ;

∞∑

n=0
|an|mn < ∞, m ≥ 1

}
.

Since |an+1|1/n = (|an+1|1/(n+1))(n+1)/n → 0 if |an|1/n → 0, we have that
the backward shift B is an operator on H(C); see Proposition 4.1. Moreover,
the unit sequences en correspond to the monomials z → zn, n ≥ 0. It then
follows from Theorem 4.3 that B is not hypercyclic on H(C).

Using the same arguments as in the proof of Theorem 4.3, but employing
Kitai’s criterion instead of the Hypercyclicity Criterion, we obtain a charac-
terization of the mixing property for B.

Theorem 4.5. Let X be a Fréchet sequence space in which (en)n is a basis.
Suppose that the backward shift B is an operator on X. Then the following
assertions are equivalent:

(i) B is mixing;
(ii) en → 0 in X as n → ∞.

For chaos we have a curious phenomenon. Proceeding as before, but with
somewhat stronger assumptions on the space X, we easily obtain a condition
that characterizes chaos for B. But it turns out that this condition is already
implied by the existence of a single nontrivial periodic point, that is, a periodic
point other than 0. Hence, this fact alone implies chaos.

For this result we will require that (en)n is an unconditional basis, that is,
it is a basis in X such that, for any (xn)n ∈ X and any 0-1-sequence (εn)n,
the series

∞∑

n=1
εnxnen

converges in X; see Appendix A.

Theorem 4.6. Let X be a Fréchet sequence space in which (en)n is an un-
conditional basis. Suppose that the backward shift B is an operator on X.
Then the following assertions are equivalent:

(i) B is chaotic;
(ii)

∑∞
n=1 en converges in X;

(iii) the constant sequences belong to X;
(iv) B has a nontrivial periodic point.

Proof. (i)=⇒(iv) is trivial.
(iv)=⇒(iii). Let x = (x1, x2, x3, . . .) �= 0 be periodic for B, that is, a

periodic sequence. Let N be its period. Then there is some j ≤ N such that



4.1 Weighted shifts 95

xj �= 0, and we have xj+νN = xj for ν ≥ 0. Setting all coordinates with
indices other than j + νN to zero and dividing the result by xj we obtain,
by unconditionality of the basis, that

∞∑

ν=0
ej+νN ∈ X.

Applying the backward shift N − 1 times and adding the results we obtain
(iii).

(iii)=⇒(ii) follows from our assumptions.
(ii)=⇒(i). First, by Theorem 4.3, condition (ii) implies that B is hyper-

cyclic.
Next, since (1, 1, 1, . . .) ∈ X, the unconditionality of the basis implies that

all the periodic 0-1-sequences belongs to X, and hence also all the periodic
sequences, which are exactly the periodic points for B. It remains to show
that these form a dense set in X.

To see this, let x = (xn)n ∈ X and ε > 0. Since (en)n is a basis, there is
some N ≥ 1 such that

x̃ :=
N∑

n=1
xnen

has distance less than ε/2 from x. The associated periodic sequence

∞∑

ν=0

N∑

n=1
xnen+νN

belongs to X. The unconditionality of the basis implies that there is some
m ≥ 1 such that

∥∥∥
∞∑

ν=m

N∑

n=1
xnεn+νNen+νN

∥∥∥ <
ε

2

for any 0-1-sequence (εn)n; see Theorem A.16. In particular we have that

∥∥∥
∞∑

μ=1

N∑

n=1
xnen+μmN

∥∥∥ <
ε

2
.

This shows that the periodic point

∞∑

μ=0

N∑

n=1
xnen+μmN

has distance less than ε/2 from x̃, hence less than ε from x. ��

Example 4.7. (a) We consider again the space �p(v) of Example 4.4(a). Under
the assumption that B is an operator on �p(v) we have that B is mixing if
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and only if
lim
n→∞

vn = 0,

and it is chaotic if and only if

∞∑

n=1
vn < ∞.

In this example, mixing is implied by chaos. In particular, the backward shift
on the Bergman space A2 is mixing but not chaotic.

(b) It is not difficult to give an example that shows that Theorem 4.6 does
not remain valid if one drops the unconditionality assumption on the basis
(en)n; see Exercise 4.1.3.

It is now an easy matter to transfer our results so far to arbitrary weighted
shifts by means of a suitable conjugacy. Let Bw be a weighted shift on some
sequence space X. We define new weights vn by

vn =
( n∏

ν=1
wν

)−1
, n ≥ 1,

and consider the sequence space

Xv = {(xn)n ; (xnvn)n ∈ X}.

The map φv : Xv → X, (xn)n → (xnvn)n is a vector space isomorphism.
We may use φv to transfer a topology from X to Xv: a set U is open in Xv

if and only if φv(U) is open in X. If X is a Banach (Fréchet, . . . ) sequence
space then so is Xv. And if (en)n is a basis in X then it is also a basis in Xv.

Finally, a simple calculation shows that Bw ◦ φv = φv ◦ B, that is, the
following diagram commutes:

Xv
B−−−−→ Xv

φv

⏐⏐�
⏐⏐�φv

X
Bw−−−−→ X.

Thus Bw : X → X and B : Xv → Xv are conjugate operators.
Since conjugacies preserve hypercyclicity, (weak) mixing and chaos, our

previous results immediately yield the following.

Theorem 4.8. Let X be a Fréchet sequence space in which (en)n is a basis.
Suppose that the weighted shift Bw is an operator on X.
(a) The following assertions are equivalent:

(i) Bw is hypercyclic;
(ii) Bw is weakly mixing;
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(iii) there is an increasing sequence (nk)k of positive integers such that

( nk∏

ν=1
wν

)−1
enk

→ 0

in X as k → ∞.
(b) The following assertions are equivalent:

(i) Bw is mixing;
(ii) we have that

( n∏

ν=1
wν

)−1
en → 0

in X as n → ∞.
(c) Suppose that the basis (en)n is unconditional. Then the following asser-

tions are equivalent:
(i) Bw is chaotic;
(ii) the series

∞∑

n=1

( n∏

ν=1
wν

)−1
en

converges in X;
(iii) the sequence

(( n∏

ν=1
wν

)−1)

n

belongs to X;
(iv) Bw has a nontrivial periodic point.

Example 4.9. (a) A weighted shift Bw is an operator on a sequence space
�p, 1 ≤ p < ∞, or c0 if and only if the weights wn, n ≥ 1, are bounded.
The respective characterizing conditions for Bw to be hypercyclic, mixing or
chaotic on �p, 1 ≤ p < ∞, are

sup
n≥1

n∏

ν=1
|wν | = ∞, lim

n→∞

n∏

ν=1
|wν | = ∞,

∞∑

n=1

1∏n
ν=1 |wν |p

< ∞.

We remark that only the third condition depends on the parameter p. The
first condition also characterizes when Bw is hypercyclic on c0, and the second
when it is mixing or, equivalently, chaotic on c0.

In particular, for Rolewicz’s operator T = λB, |λ| > 1, we have that∏n
ν=1 |wν | = λn, which implies once more that this operator is chaotic.
As another specific example we consider, for α > 0, the weights wn =

(n+1
n )α, n ≥ 1. Then

∏n
ν=1 |wν | = (n + 1)α, and the corresponding weighted

shift is mixing; it is even chaotic on c0, and it is chaotic on �p exactly when
α > 1/p. We note that, for wn = (n+1

n )1/2, n ≥ 1, the weighted shift Bw
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on �2 is conjugate to the backward shift on the Bergman space; see Example
4.4(b).

(b) We consider the Fréchet space H(C) of all entire functions as a sequence
space; see Example 4.4(c). It is easy to see that a weighted shift Bw defines an
operator on H(C) if and only if supn≥1 |wn|1/n < ∞; moreover, we have that
anen → 0 in H(C) if and only if |an|1/n → 0; see Exercise 4.1.1. Theorem
4.8 then shows that a weighted shift Bw on H(C) is mixing if and only if
it is chaotic, and that the characterizing conditions for hypercyclicity and
mixing/chaos are, respectively,

sup
n≥1

( n∏

ν=1
|wν |

)1/n
= ∞, lim

n→∞

( n∏

ν=1
|wν |

)1/n
= ∞.

In particular, for the differentiation operator we have that D(
∑∞

n=0 anz
n)

=
∑∞

n=0(n + 1)an+1z
n, so that D is a weighted shift with weight sequence

wn = n, n ≥ 1. Since (n!)1/n → ∞ we obtain MacLane’s theorem that D is
hypercyclic; in fact, it is even a mixing and chaotic operator.

But in order to prove chaos for D it suffices, as we have seen, to come up
with a nontrivial periodic point; the easiest such example is f(z) = ez. Thus,
one might be tempted to say that the exponential function makes D chaotic.

(c) In the space ω = K
N, every series

∑∞
n=1 anen converges. Thus, every

weighted shift Bw defines an operator on ω and is, indeed, mixing and chaotic
on ω.

Remark 4.10. By Example 4.9(a), any bounded weight sequence (wn)n with

lim inf
n→∞

n∏

ν=1
|wν | < lim sup

n→∞

n∏

ν=1
|wν | = ∞

defines a weighted shift Bw on �p, 1 ≤ p < ∞, or c0 that is weakly mixing but
not mixing. This provides us with a large supply of operators of this kind;
see also Example 3.11.

Remark 4.11. One might wonder why we have studied backward shifts and
not forward shifts. The simple truth is that a forward shift is never hyper-
cyclic. More precisely, a (unilateral) weighted forward shift is given by

Fw(x1, x2, x3, . . .) = (0, w1x1, w2x2, . . .)

with a weight sequence w = (wn)n. The first coordinate of every point in the
orbit of x is either x1 or 0. By the assumption that convergence in the space
implies coordinatewise convergence no orbit can be dense.

Some new and interesting phenomena arise when we study shifts on se-
quence spaces indexed over Z. The bilateral backward shift is given by

B(xn)n∈Z = (xn+1)n∈Z,
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and the bilateral weighted backward shifts are given by

Bw(xn)n∈Z = (wn+1xn+1)n∈Z,

where w = (wn)n∈Z is a weight sequence, that is, a sequence of nonzero
scalars. The underlying space is then supposed to be a Banach (Fréchet,
. . . ) sequence space over Z, that is, a subspace of ω(Z) := K

Z that carries a
Banach (Fréchet, . . . ) space topology under which the embedding X → ω(Z)
is continuous.

In this new setting, we say that the unit sequences

en = (δn,k)k∈Z, n ∈ Z,

form a basis in X if they are contained in X and if every sequence x =
(xn)n∈Z ∈ X satisfies

x = lim
M,N→∞

(. . . , 0, 0, x−M , x−M+1, . . . , xN−1, xN , 0, 0, . . .).

The finite sequences are the sequences in span{en ; n ∈ Z}.

Theorem 4.12. Let X be a Fréchet sequence space over Z in which (en)n∈Z

is a basis. Suppose that the bilateral shift B is an operator on X.
(a) The following assertions are equivalent:

(i) B is hypercyclic;
(ii) B is weakly mixing;
(iii) there is an increasing sequence (nk)k of positive integers such that,

for any j ∈ Z, ej−nk
→ 0 and ej+nk

→ 0 in X as k → ∞.
(b) The following assertions are equivalent:

(i) B is mixing;
(ii) e−n → 0 and en → 0 in X as n → ∞.

(c) Suppose that the basis (en)n is unconditional. Then the following asser-
tions are equivalent:

(i) B is chaotic;
(ii)

∑∞
n=−∞ en converges in X;

(iii) the constant sequences belong to X;
(iv) B has a nontrivial periodic point.

Proof. (a), (i)=⇒(iii). Let ‖ · ‖ be an F-norm that induces the topology of
X. We will derive the following equivalent formulation of (iii): for any ε > 0
and any N ∈ N there exists some n ≥ N such that if |j| ≤ N , then

‖ej−n‖ < ε and ‖ej+n‖ < ε.

To this end, we fix ε > 0 and N ∈ N. As in the unilateral case we can find
some δ > 0 such that, for all x ∈ X,

‖x‖ < δ =⇒ ‖xnen‖ < ε
2 (n ∈ Z) and |xj | ≤ 1

2 (|j| ≤ N). (4.5)
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Now, by the topological transitivity of B, we can find some x ∈ X and
n > 2N such that

∥∥∥x−
∑

|j|≤N

ej

∥∥∥ < δ and
∥∥∥Bnx−

∑

|j|≤N

ej

∥∥∥ < δ. (4.6)

From (4.5) and (4.6) we obtain that

‖xnen‖ < ε
2 (|n| > N) and |xn+j − 1| ≤ 1

2 (|j| ≤ N),

hence

‖xj+nej+n‖ < ε
2 (|j| ≤ N) and |(xn+j)−1 − 1| ≤ 1 (|j| ≤ N);

here we have used that n > 2N . As in (4.4) this implies that

‖ej+n‖ < ε for |j| ≤ N.

On the other hand, (4.5) and (4.6) yield that

|xj − 1| ≤ 1
2 (|j| ≤ N) and ‖xn+kek‖ < ε

2 (|k| > N),

hence
∣∣(2xj)−1∣∣ ≤ 1 (|j| ≤ N) and ‖xjej−n‖ < ε

2 (|j| ≤ N),

whence
‖ej−n‖ =

∥∥(2xj)−12xj ej−n

∥∥ < ε for |j| ≤ N.

(iii)=⇒(ii). One need only observe that for the forward shift

F (xn)n∈Z = (xn−1)n∈Z

we have that BFx = x for any finite sequence x, and for any j ∈ Z

Bnkej = ej−nk
→ 0, Fnkej = ej+nk

→ 0,

so that the Hypercyclicity Criterion gives the required implication.
The implication (ii)=⇒(i) holds for all operators on X.
(b) The proof here is the same as that for hypercyclicity; for the sufficiency

of condition (ii) one applies Kitai’s criterion instead of the Hypercyclicity
Criterion, while the proof of the necessity of this condition simplifies as we
have only to consider the case of j = 0.

(c) This proof is much the same as that in the unilateral case. ��

Using a suitable conjugacy this result can again be generalized immediately
to weighted shifts. The conjugacy here is given by
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Xv
B−−−−→ Xv

φv

⏐⏐�
⏐⏐�φv

X
Bw−−−−→ X,

where
Xv = {(xn)n∈Z ; (xnvn)n ∈ X}

and φv : Xv → X, (xn)n∈Z → (xnvn)n∈Z with

vn =
( n∏

ν=1
wν

)−1
for n ≥ 1, vn =

0∏

ν=n+1
wν for n ≤ −1, v0 = 1.

Theorem 4.13. Let X be a Fréchet sequence space over Z in which (en)n∈Z

is a basis. Suppose that the weighted shift Bw is an operator on X.
(a) The following assertions are equivalent:

(i) Bw is hypercyclic;
(ii) Bw is weakly mixing;
(iii) there is an increasing sequence (nk)k of positive integers such that,

for any j ∈ Z,

( j∏

ν=j−nk+1

wν

)
ej−nk

→ 0 and
( j+nk∏

ν=j+1

wν

)−1
ej+nk

→ 0

in X as k → ∞.
(b) The following assertions are equivalent:

(i) Bw is mixing;
(ii) we have that

( 0∏

ν=−n+1
wν

)
e−n → 0 and

( n∏

ν=1
wν

)−1
en → 0

in X as n → ∞.
(c) Suppose that the basis (en)n∈Z is unconditional. Then the following as-

sertions are equivalent:
(i) Bw is chaotic;
(ii) the series

0∑

n=−∞

( 0∏

ν=n+1
wν

)
en +

∞∑

n=1

( n∏

ν=1
wν

)−1
en

converges in X;
(iii) the sequence (xn)n∈Z with
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xn =
0∏

ν=n+1
wν (n ≤ 0), xn =

( n∏

ν=1
wν

)−1
(n ≥ 1)

belongs to X;
(iv) Bw has a nontrivial periodic point.

We see that the absence of an analogue of Lemma 4.2 leads to a more
complicated characterization of hypercyclic bilateral shifts. However, for in-
vertible bilateral shifts a simplified characterization is available; see Exercises
4.1.4 and 4.1.5.

Remark 4.14. In the bilateral case, forward shifts can be hypercyclic. A bi-
lateral weighted forward shift is given by an operator

Fw : X → X, (xn)n∈Z → (wn−1xn−1)n∈Z,

where w = (wn)n∈Z is a weight sequence. It is easily seen to be conjugate to a
suitable backward shift. As a result one obtains, under the same assumptions
as in Theorem 4.13, that Fw is hypercyclic if and only if there is an increasing
sequence (nk)k of positive integers such that, for any j ∈ Z,

( j−1∏

ν=j−nk

wν

)−1
ej−nk

→ 0 and
( j+nk−1∏

ν=j

wν

)
ej+nk

→ 0

in X as k → ∞. The corresponding characterizations hold for the mixing
property and chaos.

Example 4.15. A weighted backward shift Bw is an operator on a sequence
space �p(Z), 1 ≤ p < ∞ if and only if the weights wn, n ∈ Z, are bounded.
Such an operator is then hypercyclic, mixing or chaotic if and only if the
following conditions, respectively, are satisfied:

∃(nk)k ∀j ∈ Z : lim
k→∞

j∏

ν=j−nk+1

wν = 0 and lim
k→∞

j+nk∏

ν=j+1

|wν | = ∞;

lim
n→∞

0∏

ν=−n+1
wν = 0 and lim

n→∞

n∏

ν=1
|wν | = ∞;

∞∑

n=0

0∏

ν=−n+1
|wν |p < ∞ and

∞∑

n=1

1∏n
ν=1 |wν |p

< ∞.

In particular, a symmetric weight (that is, one with w−n = wn for all n ≥ 0)
never defines a hypercyclic weighted shift Bw on these spaces.

As a concrete example, the weight

w =
(
. . . , 1

2 ,
1
2 ,

1
2 , 2, 2, 2, . . .

)
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induces a chaotic weighted backward shift on each �p(Z).

One reason for studying shifts is that they provide a rich source of exam-
ples. As a first illustration we construct a hypercyclic operator whose adjoint
is also hypercyclic.

Proposition 4.16. There exists an operator T on �2(Z) such that T and its
adjoint T ∗ are weakly mixing, and hence hypercyclic.

Proof. As usual, we identify the dual of �2(Z) with itself; indeed, every con-
tinuous linear functional x∗ on �2(Z) is of the form

x∗(x) = 〈x, x∗〉 =
∑

n∈Z

xnyn, (xn)n∈Z ∈ �2(Z)

for a suitable sequence y = (yn)n∈Z ∈ �2(Z).
Now let T = Bw be a bilateral shift. It defines an operator on �2(Z) if and

only if the wn, n ∈ Z, are bounded. Since

〈Bwx, y〉 =
∑

n∈Z

wn+1xn+1yn =
∑

n∈Z

xnwnyn−1 = 〈x, F(wn+1)y〉,

we see that the adjoint T ∗ = B∗
w of Bw is the forward shift F(wn+1).

When we define

vn =
( n∏

ν=1
wν

)−1
(n ≥ 1), vn =

0∏

ν=n+1
wν (n ≤ −1), v0 = 1,

then Theorem 4.13 and Remark 4.14 tell us that Bw and F(wn+1) are weakly
mixing if and only if there are increasing sequences (nk)k and (mk)k of pos-
itive integers such that, for any j ∈ Z,

vj−nk
→ 0, vj+nk

→ 0,
vj−mk

→ ∞, vj+mk
→ ∞,

and the continuity of Bw requires that vn/vn+1, n ∈ Z, is bounded. But such
a sequence is easy to find: we choose the symmetric sequence (vn)n∈Z with

(vn)n≥0 =
(
1, 1, 2, 1, 1

2 , 1, 2, 4, 2, 1,
1
2 ,

1
4 ,

1
2 , 1, 2, 4, 8, 4, 2, 1,

1
2 ,

1
4 ,

1
8 ,

1
4 , . . .

)
,

and the nk are the indices of the local minima, the mk the indices of the local
maxima of this sequence. Note that Bw is even invertible. ��

Remark 4.17. This proposition provides us with an example of two weakly
mixing, hence hypercyclic operators S, T : X → X whose direct sum S ⊕ T
is not hypercyclic.

We show more generally that for any operator T on a Banach space X
the operator T ⊕ T ∗ cannot be hypercyclic on X ⊕ X∗. Indeed, suppose
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that (x, x∗) is a hypercyclic vector for T ⊕ T ∗. If we consider −x ∈ X as a
continuous linear functional on X∗ then we have for n ≥ 0 that

〈(Tnx, (T ∗)nx∗), (x∗,−x)〉 = 〈Tnx, x∗〉 − 〈x, (T ∗)nx∗〉 = 0,

which is impossible since the left-hand side must be dense in K; note that
(x∗,−x) cannot be the zero vector.

It was this observation that motivated Herrero’s problem if T ⊕ T is hy-
percyclic whenever T is; see Section 2.5.

4.2 Differential operators

As the last section demonstrates, Rolewicz’s result on the hypercyclicity of
multiples of the backward shift has seen far-reaching generalizations. Let us
turn, in the same spirit, to Birkhoff’s theorem and MacLane’s theorem. At
first glance, the operators

Df(z) = f ′(z) and Taf(z) = f(z + a), a ∈ C,

on the space H(C) of entire functions have little in common. But there is a
surprisingly simple connection. Since

f(z + a) =
∞∑

n=0

f (n)(z)
n!

an =
∞∑

n=0

anDnf

n!
(z)

we have, at least formally, that

Ta = eaD.

In fact, this representation can be justified rigorously. We will need the fol-
lowing notion from complex analysis: an entire function ϕ is said to be of
exponential type if there are constants M,A > 0 such that

|ϕ(z)| ≤ MeA|z| for all z ∈ C. (4.7)

Lemma 4.18. An entire function ϕ(z) =
∑∞

n=0 anz
n is of exponential type

if and only if there are M,R > 0 such that, for n ≥ 0,

|an| ≤ M
Rn

n!
. (4.8)

Proof. On the one hand, if (4.7) holds, then by the Cauchy estimates we have
for any ρ > 0 that
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|an| =
∣∣∣
ϕ(n)(0)

n!

∣∣∣ ≤
1
ρn

max
|z|≤ρ

|ϕ(z)| ≤ M

ρn
eAρ.

Setting ρ = n/A and using Stirling’s formula we get, with some C > 0,

|an| ≤
MAn

nn
en ≤ CM

√
nAn

n!
≤ CM

(2A)n

n!
.

Conversely, if (4.8) holds then

|ϕ(z)| ≤
∞∑

n=0
|anzn| ≤ M

∞∑

n=0

(R|z|)n

n!
= MeR|z|,

so that ϕ is of exponential type. ��

Proposition 4.19. Let

ϕ(z) =
∞∑

n=0
anz

n

be an entire function of exponential type. Then

ϕ(D)f =
∞∑

n=0
anD

nf

converges in H(C) for every entire function f and defines an operator on
H(C).

Proof. Let f ∈ H(C) and |z| ≤ m. By the Cauchy estimates and Lemma 4.18
there are M,R > 0 such that

∣∣anf (n)(z)
∣∣ ≤ |an|

n!
mn

max
|ζ|≤2m

|f(ζ)| ≤ M
(R

m

)n

max
|ζ|≤2m

|f(ζ)|. (4.9)

Therefore, if m > R then
∑∞

n=0 anf
(n)(z) converges uniformly on |z| ≤ m.

Hence

ϕ(D)f =
∞∑

n=0
anD

nf

converges in H(C). Moreover, by (4.9), writing pm(f) = max|z|≤m |f(z)|, we
have for m > R that

pm(ϕ(D)f) ≤ M
1

1 −R/m
p2m(f).

This shows that ϕ(D) is an operator on H(C); see Proposition 2.11. ��

We will call the operators ϕ(D) simply differential operators on H(C).
They include all finite-order differential operators



106 4 Classes of hypercyclic and chaotic operators

T = a0I + a1D + . . . + amDm.

Proposition 4.19, in particular, justifies our earlier calculation concerning
Birkhoff’s operators that

Ta = ϕ(D) with ϕ(z) = eaz. (4.10)

The following result gives a useful description of the differential operators
ϕ(D) among the operators on H(C).

Proposition 4.20. Let T be an operator on H(C). Then the following as-
sertions are equivalent:

(i) T = ϕ(D) for some entire function ϕ of exponential type;
(ii) T commutes with D;
(iii) T commutes with each Ta, a ∈ C.

Proof. (i)=⇒(ii). Let T = ϕ(D). By the continuity of D we have for f ∈ H(C)

TDf =
∞∑

n=0
anD

n(Df) =
∞∑

n=0
D(anDnf) = DTf.

(ii)=⇒(iii). By the same token, using (4.10), we obtain for f ∈ H(C) that

TTaf = T

∞∑

n=0

an

n!
Dnf =

∞∑

n=0

an

n!
TDnf =

∞∑

n=0

an

n!
Dn(Tf) = TaTf.

(iii)=⇒(i). By continuity of f → (Tf)(0) there is some M > 0 and some
R ∈ N such that

|(Tf)(0)| ≤ M max
|z|≤R

|f(z)|, f ∈ H(C).

Denoting by en, n ≥ 0, the monomials en(z) = zn we define

an =
(Ten)(0)

n!

and deduce that
|an| ≤ M

Rn

n!
.

It follows from Lemma 4.18 and Proposition 4.19 that ϕ(z) =
∑∞

n=0 anz
n

defines an entire function ϕ of exponential type and that ϕ(D) =
∑∞

n=0 anD
n

defines an operator on H(C). Then

(ϕ(D)en)(0) = ann! = (Ten)(0), n ≥ 0.

Since the monomials span a dense subspace of H(C), we obtain that
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(ϕ(D)f)(0) = (Tf)(0) for f ∈ H(C).

By what we have shown above we also know that ϕ(D) commutes with each
Ta. Thus we get with (iii) for any z ∈ C and f ∈ H(C), using the definition
of Tz,

(ϕ(D)f)(z) = (Tzϕ(D)f)(0) = (ϕ(D)Tzf)(0)
= (TTzf)(0) = (TzTf)(0) = Tf(z),

so that T = ϕ(D). ��

With this in hand we can prove a remarkably general common extension
of the theorems of Birkhoff and MacLane.

Theorem 4.21 (Godefroy–Shapiro). Suppose that T : H(C) → H(C),
T �= λI, is an operator that commutes with D, that is,

TD = DT.

Then T is mixing and chaotic.

Proof. By Proposition 4.20 we can write T = ϕ(D) for some entire function

ϕ(z) =
∞∑

n=0
anz

n

of exponential type. Our additional assumption implies that ϕ is nonconstant.
It is now easy to verify that T satisfies the conditions of the Godefroy–Shapiro
criterion. In fact, considering the exponential functions

eλ(z) = eλz, λ ∈ C,

we calculate that

Teλ = ϕ(D)eλ =
∞∑

n=0
anλ

neλ = ϕ(λ)eλ.

Thus each eλ is an eigenvector of T to the eigenvalue ϕ(λ). Consequently,

span{f ∈ H(C) ; Tf = μf for some μ ∈ C with |μ| < 1}

contains span{eλ ; |ϕ(λ)| < 1}, which is dense in H(C) by Lemma 2.34;
indeed, since any nonconstant entire function has dense range (see Appendix
A), {λ ∈ C ; |ϕ(λ)| < 1} is a nonempty open set and therefore has an
accumulation point. For the same reason, the eigenvectors of T to eigenvalues
μ with |μ| > 1 span a dense set in H(C). For the density of

span{f ∈ H(C) ; Tf = eαπif for some α ∈ Q}
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it suffices to observe that also the set {λ ∈ C ; ϕ(λ) = eαπi for some α ∈ Q}
has an accumulation point. Indeed, since ϕ(C) is connected and dense, it
must intersect the unit circle. And since nonconstant holomorphic functions
are open mappings, infinitely many preimages under ϕ of roots of unity lie
in some bounded subset of C and therefore have an accumulation point. ��

Having established the hypercyclicity of every differential operator T =
ϕ(D) �= λI we now want to focus our attention on properties of the cor-
responding hypercyclic functions. MacLane had already addressed such a
problem: he showed that there exists a D-hypercyclic entire function f of
exponential type 1, which means that for every ε > 0 there is some M > 0
such that

|f(z)| ≤ Me(1+ε)r for all z ∈ C.

Here we follow the usual convention of writing r = |z|. MacLane’s growth
condition can be improved, and one can even determine the least possible
rate of growth.

Theorem 4.22. (a) Let φ : ]0,∞[ → [1,∞[ be a function with φ(r) → ∞ as
r → ∞. Then there exists an entire function f that is hypercyclic for D and
that satisfies

|f(z)| ≤ Mφ(r)
er√
r

for |z| = r > 0

with some M > 0.
(b) There is no entire function f that is hypercyclic for D and that satisfies

|f(z)| ≤ M
er√
r

for |z| = r > 0

with some M > 0.

Proof. (a) The assertion suggests consideration of the space

X =
{
f ∈ H(C) ; ‖f‖ := sup

r=|z|>0

√
r |f(z)|
φ(r)er

< ∞
}
.

Proving our assertion then amounts to showing that the sequence of operators

Tn : X → H(C), f → f (n), n ≥ 0

admits a dense orbit in the sense of Section 3.4; note that the Tn are indeed
operators because the inclusion map X → H(C) is obviously continuous.

To prove that (Tn)n is hypercyclic we apply the Hypercyclicity Criterion
for sequences of operators, Theorem 3.24.

It is an easy exercise to see that X is a Banach space. We would like
to take as X0 the set of polynomials, but we cannot guarantee that the
polynomials are dense in X. Thus we replace X by the closure X0 of X0 in
X. Clearly Tnf → 0 for any f ∈ X0. For Y0 we take the set of polynomials
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in H(C), and we define Sn = Sn : Y0 → X0 using the antiderivative operator
Sf(z) =

∫ z

0 f(ζ)dζ. Then TnSnf = f, n ∈ N0, for any f ∈ Y0.
It remains to show that Snf → 0 in X0 for any polynomial f . By linearity

we may assume that f is a monomial en(z) = zn, and because Snek =
k!

(n+k)!en+k = k!Sn+ke0 it suffices to consider f = e0. For this we find that

‖Sne0‖ =
∥∥∥
en
n!

∥∥∥ = sup
r>0

rn+1/2

n!φ(r)er
.

A simple calculation shows that

sup
r>0

rn+1/2

n!er
=

(n + 1/2)n+1/2

n!en+1/2 ,

and Stirling’s formula implies that this is bounded in n ≥ 0 by some constant
C. Fixing ε > 0, and letting R > 0 be such that φ(r) > 1/ε for r ≥ R we
obtain that

‖Sne0‖ ≤ Rn+1/2

n!
+ sup

r≥R

rn+1/2ε

n!er
≤ Rn+1/2

n!
+ Cε,

which implies that Sne0 → 0 in X and therefore in X0.
(b) Let f ∈ H(C). Under the assumed growth condition we have by the

Cauchy estimates that, for any n ∈ N0 and ρ > 0,

∣∣f (n)(0)
∣∣ ≤ n!

ρn
max
|z|≤ρ

|f(z)| ≤ M
n!

ρn
√
ρ
eρ.

Choosing ρ = n we get

∣∣f (n)(0)
∣∣ ≤ M

n!
nn+1/2 e

n,

which is bounded by Stirling’s formula. Thus, f cannot be hypercyclic for D.
��

Exercise 4.2.5 explains how the critical rate of growth er/
√
r is related to

the differentiation operator.
In contrast to the result for MacLane’s operator, entire functions that are

hypercyclic for Birkhoff’s operators can grow arbitrarily slowly. The proof
requires a different technique and will be provided in Chapter 8; see Exercise
8.1.3.

Theorem 4.23 (Duyos-Ruiz). Let a �= 0. Let φ : ]0,∞[ → [1,∞[ be a
function so that, for any N ≥ 1, φ(r)/rN → ∞. Then there exists an entire
function f that is hypercyclic for Ta and that satisfies

|f(z)| ≤ Mφ(r) for |z| = r > 0
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with some M > 0.

By the method used in the proof of Theorem 4.21 one can derive certain
possible rates of growth for an arbitrary operator ϕ(D); see Exercise 4.2.4.

4.3 Composition operators I

As we have seen, operators may often be interpreted in various ways.
MacLane’s operator is both a differential operator and a weighted shift.
Birkhoff’s operators are differential operators as well. Here now we have an-
other interpretation of Birkhoff’s operators Ta: they are special composition
operators. Writing

τa(z) = z + a

we see that τa is an entire function such that

Taf = f ◦ τa.

In fact, τa is even an automorphism of C, that is, a bijective entire function.
These observations serve as the starting point of another major investigation:
the hypercyclicity of general composition operators.

Let Ω be an arbitrary domain in C, that is, a nonempty connected open
set. An automorphism of Ω is a bijective holomorphic function

ϕ : Ω → Ω;

its inverse is then also holomorphic. The set of all automorphisms of Ω is
denoted by Aut(Ω). Now, for ϕ ∈ Aut(Ω) the corresponding composition
operator is defined as

Cϕf = f ◦ ϕ,

that is, (Cϕf)(z) = f(ϕ(z)), z ∈ Ω.
What about the underlying space? Following Birkhoff we consider the

space H(Ω) of all holomorphic functions on Ω which we endow, as in the
case Ω = C, with the topology of local uniform convergence. To describe this
topology by seminorms we need an exhaustion of Ω by compact sets, that is,
an increasing sequence of compact sets Kn ⊂ Ω such that each compact set
K ⊂ Ω is contained in some Kn.

Lemma 4.24. Every domain Ω ⊂ C has an exhaustion of compact sets.

Proof. For each n ∈ N we consider the grid of all points x + iy in C so that
either x or y is an integer multiple of 1

2n ; then let Kn be the (finite) union of
all closed squares that have their sides lying on the grid and that lie entirely
in Ω ∩ {z : |z| < n}. It is obvious that (Kn)n is an exhaustion of Ω. ��
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Now, if (Kn)n is an exhaustion of Ω then we endow H(Ω) with the topol-
ogy induced by the seminorms

pn(f) = sup
z∈Kn

|f(z)|, n ∈ N.

In this way H(Ω) turns into a Fréchet space; note that the topology is inde-
pendent of the chosen exhaustion. Moreover, by Runge’s theorem, H(Ω) is
separable; see Exercise 4.3.1.

Clearly, for any automorphism ϕ of Ω the composition operator Cϕ is con-
tinuous on H(Ω). Let us first note that conformal maps, that is, holomorphic
bijections between two domains, induce conjugacies between the correspond-
ing composition operators; the proof is immediate.

Proposition 4.25. Let Ω1 and Ω2 be domains in C and ψ : Ω1 → Ω2 a
conformal map. If ϕ1 and ϕ2 are automorphisms of Ω1 and Ω2, respectively,
such that ϕ2 ◦ ψ = ψ ◦ ϕ1 then Cϕ2 and Cϕ1 are conjugate via the map
J : H(Ω2) → H(Ω1), f → f ◦ ψ, that is, the diagram

H(Ω2)
Cϕ2−−−−→ H(Ω2)

J

⏐⏐�
⏐⏐�J

H(Ω1)
Cϕ1−−−−→ H(Ω1)

commutes.

Example 4.26. Any two Birkhoff operators Ta, Tb, a, b �= 0, are conjugate.
This follows immediately by taking ψ(z) = b

az, z ∈ C, since τb ◦ ψ = ψ ◦ τa.

We turn to the problem of determining which composition operators are
hypercyclic. The crucial concept will be the notion of a run-away sequence.

Definition 4.27. Let Ω be a domain in C and ϕn : Ω → Ω, n ≥ 1, holo-
morphic maps. Then the sequence (ϕn)n is called a run-away sequence if, for
any compact subset K ⊂ Ω, there is some n ∈ N such that

ϕn(K) ∩K = ∅.

We will usually apply this definition to the sequence (ϕn)n of iterates of
an automorphism ϕ on Ω. Let us consider two examples. Another important
example will be studied below; see Proposition 4.36.

Example 4.28. (a) Let Ω = C. Then the automorphisms of C are the functions

ϕ(z) = az + b, a �= 0, b ∈ C,

and (ϕn)n is run-away if and only if a = 1, b �= 0.
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Indeed, let ϕ be an automorphism of C. If ϕ is not a polynomial then,
by the Casorati–Weierstrass theorem, ϕ({z ∈ C ; |z| > 1}) is dense in C

and therefore intersects the set ϕ(D), which is open by the open mapping
theorem. Since this contradicts injectivity, ϕ must be a polynomial. Again
by injectivity, its degree must be one, so that ϕ is of the stated form. Now,
if a = 1 then ϕn(z) = z + nb, so that we have the run-away property if and
only if b �= 0; while if a �= 1 then (1−a)−1b is a fixed point of ϕ so that (ϕn)n
cannot be run-away.

(b) Let Ω = C
∗ = C \ {0}, the punctured plane. An argument as in (a)

shows that the automorphisms of C
∗ are the functions

ϕ(z) = az or ϕ(z) =
a

z
, a �= 0.

Then (ϕn)n is run-away if and only if ϕ(z) = az with |a| �= 1.

We first show that the run-away property is a necessary condition for the
hypercyclicity of the composition operator.

Proposition 4.29. Let Ω be a domain in C and ϕ ∈ Aut(Ω). If Cϕ is hy-
percyclic then (ϕn)n is a run-away sequence.

Proof. If (ϕn)n is not run-away then there exists a compact set K ⊂ Ω and
elements zn ∈ K such that

ϕn(zn) ∈ K, n ∈ N. (4.11)

Now suppose that f ∈ H(Ω) is a hypercyclic vector for Cϕ. Let M =
supz∈K |f(z)|. Then, by (4.11), we have that

inf
z∈K

|((Cϕ)nf)(z)| ≤ |((Cϕ)nf)(zn)| = |f(ϕn(zn))| ≤ M,

so that the functions (Cϕ)nf cannot approximate, for example, the constant
function M + 1 uniformly on K, a contradiction. ��

Corollary 4.30. There is no automorphism of C
∗ whose composition oper-

ator is hypercyclic.

Proof. By Proposition 4.29 and Example 4.28(b), Cϕ can only be hypercyclic
on H(C∗) if ϕ(z) = az with |a| �= 1. Suppose that f ∈ H(C∗) is hypercyclic
for such a function ϕ. If f(z) =

∑
n∈Z

cnz
n then

∫

T

((Cϕ)nf − 1
z ) dz =

∫

T

f(anz) dz −
∫

T

1
z dz = 2πi

(c−1

an
− 1

)
,

where the unit circle T is positively oriented. By hypercyclicity, there is a
sequence (nk)k for which the left-hand side converges to zero, unlike the
right-hand side, which is a contradiction. ��
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Thus, when Ω is C
∗ then the run-away property is not a sufficient condition

for hypercyclicity. Our goal now is to show that in essentially all other cases,
hypercyclicity is characterized by the run-away property. To this end we need
to introduce some topological properties of plane sets.

We denote by Ĉ = C∪{∞} the one-point compactification of C. A domain
Ω is called simply connected if Ĉ\Ω is connected. A domain Ω is called finitely
connected if Ĉ \ Ω contains at most finitely many connected components,
otherwise it is infinitely connected. If M is any set in C then one also speaks
of a bounded component of Ĉ \M as a hole. In that sense, finitely connected
domains have only finitely many holes, a simply connected domain has no
hole.

We first deal with finitely, not simply connected domains Ω. One can show
that unless such a domain is conformally equivalent to C

∗, that is, unless
there is a holomorphic bijection between Ω and C

∗, Ω does not admit an
automorphism ϕ so that (ϕn)n is run-away; we omit the proof. By Proposition
4.29 and Corollary 4.30 we therefore have the following.

Proposition 4.31. Let Ω be a finitely connected but not simply connected
domain in C. Then Cϕ is not hypercyclic for any automorphism of Ω.

In all other cases we have the following.

Theorem 4.32. Let Ω be a domain in C that is either simply connected or
infinitely connected. Let ϕ ∈ Aut(Ω). Then Cϕ is hypercyclic if and only if
(ϕn)n is a run-away sequence.

In view of Proposition 4.29 we only have to prove sufficiency of the run-
away property. For this we need to study the geometry of domains more
closely, at least for infinitely connected domains. A compact subset K of a
domain Ω will be called Ω-convex if every hole of K contains a point of C\Ω;
see Figure 4.1. Of course, in a simply connected domain, Ω-convexity only
says that K has no holes, in other words, that its complement is connected.

Fig. 4.1 An Ω-convex set K Fig. 4.2 ϕn(K) ∪K is Ω-convex

The following auxiliary result will be crucial for the proof of sufficiency in
Theorem 4.32. However, since its proof is rather technical we will postpone it
to the end of the section. For later use we formulate the lemma for arbitrary
sequences (ϕn)n of automorphisms.



114 4 Classes of hypercyclic and chaotic operators

Lemma 4.33. Let Ω be an infinitely connected domain in C and (ϕn)n a
run-away sequence of automorphisms of Ω. Then every compact subset of
Ω is contained in some Ω-convex compact subset K of Ω for which there is
some n ∈ N such that ϕn(K) ∩K = ∅ and ϕn(K) ∪K is Ω-convex.

Proof of Theorem 4.32 (sufficiency). Suppose that (ϕn)n is a run-away se-
quence. We want to show that then Cϕ is topologically transitive. Let
f, g ∈ H(Ω), let L be a compact subset of Ω and ε > 0. Then there is a
compact subset K of Ω containing L and an n ∈ N such that ϕn(K)∩K = ∅

and ϕn(K) ∪ K is Ω-convex (see Figure 4.2); in the simply connected case
one can take any Ω-convex compact set K containing L, in the infinitely
connected case one applies Lemma 4.33. Then the function g ◦ (ϕn)−1 is
holomorphic on some neighbourhood of ϕn(K), and f is holomorphic on
some neighbourhood of K. It follows from Runge’s theorem that there is a
function h ∈ H(Ω) such that

sup
z∈K

|f(z) − h(z)| < ε and sup
z∈ϕn(K)

∣∣g ◦ (ϕn)−1(z) − h(z)
∣∣ < ε,

hence

sup
z∈L

|f(z) − h(z)| < ε and sup
z∈L

|g(z) − h(ϕn(z))| < ε.

As in Example 2.20 this implies that Cϕ is topologically transitive. ��

Fig. 4.3 The set Ω (Example 4.34)

Example 4.34. We give an example of a hypercyclic composition operator
on an infinitely connected domain. We start with the unit disk D and the
automorphism

ϕ(z) =
z − 1

2
1 − 1

2z

of D; see also Proposition 4.36. Let A = {z : |z| ≤ 1
10}. It is easy to see that

the forward and backward iterates ϕn(A), n ∈ Z, of A are pairwise disjoint.
Then
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Ω := D \
⋃

n∈Z

ϕn(A)

is an infinitely connected domain (see Figure 4.3), and the restriction of ϕ to
Ω is an automorphism of Ω. Moreover, a simple calculation shows that

ϕn(z) =
z − an
1 − anz

with an =
3n − 1
3n + 1

, n ≥ 0,

so that limn→∞ ϕn(z) = −1, uniformly on compact subsets of Ω. Hence,
(ϕn)n is a run-away sequence on Ω, which implies that Cϕ is hypercyclic on
H(Ω).

Remark 4.35. Any hypercyclic composition operator Cϕ on a domain Ω is
even weakly mixing. To see this, let (Kn)n be an exhaustion of Ω by compact
sets. Since (ϕn)n is run-away, there is some m1 such that ϕm1(K1)∩K1 = ∅.
If L = K2∪

⋃m1
k=1 ϕ

k(K1), there is some m2 such that ϕm2(L)∩L = ∅. Then,
in particular, ϕm2(K2)∩K2 = ∅; moreover, since ϕm2(L) contains ϕm2(K1)
and L contains ϕk(K1) for k = 1, . . . ,m1, we must have that m2 > m1.
Proceeding inductively we obtain a strictly increasing sequence (mn)n such
that ϕmn(Kn) ∩Kn = ∅, for any n ∈ N; as a consequence, (ϕmn)n and any
of its subsequences is run-away. The proofs in this section then show that
every subsequence of (Cϕmn )n admits a dense orbit. This tells us that Cϕ is
hereditarily hypercyclic, and hence weakly mixing by Theorem 3.15.

We want to study the case of simply connected domains in greater detail.
If Ω = C, the automorphisms are given by

ϕ(z) = az + b, a �= 0, b ∈ C,

and Cϕ is hypercyclic if and only if a = 1, b �= 0; see Example 4.28(a) and
Theorem 4.32. Thus the hypercyclic composition operators on C are precisely
Birkhoff’s translation operators.

Let us now consider the simply connected domains Ω other than C. By
the Riemann mapping theorem, Ω is conformally equivalent to the unit disk,
that is, there is a conformal map ψ : D → Ω. By Proposition 4.25 it suffices
to study the case when Ω = D.

Proposition 4.36. The automorphisms of D are the linear fractional trans-
formations

ϕ(z) = b
a− z

1 − az
, |a| < 1, |b| = 1.

Moreover, ϕ maps T bijectively onto itself.

Proof. We first consider the maps

ha(z) =
a− z

1 − az
, |a| < 1.
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A simple calculation shows that, for w = ha(z),

1 − |w|2 =
1 − |a|2
|1 − az|2 (1 − |z|2). (4.12)

Hence D and T are invariant under ha. Moreover one finds that ha ◦ ha = I
on D. This implies that ha is an automorphism of D that maps T bijectively
onto itself. The same is then true for bha, |b| = 1.

Conversely, let ϕ be an automorphism of D, and let 0 = ϕ(a) with |a| < 1.
Then the map f := ϕ◦h−1

a is also an automorphism of D with f(0) = 0. The
Schwarz lemma then implies that |f(z)| ≤ |z| for z ∈ D. The same argument
applied to the inverse of f shows that |f−1(z)| ≤ |z|, hence |z| ≤ |f(z)| for
z ∈ D. Altogether we have that |f(z)| = |z| for z ∈ D. Again by the Schwarz
lemma, f can only be a rotation, that is, there is some b with |b| = 1 such
that f(z) = bz and therefore ϕ = bha. ��

Now, linear fractional transformations are a very well understood class
of holomorphic maps; see Appendix A. Using their properties it is not diffi-
cult to determine the dynamical behaviour of the corresponding composition
operators; via conjugacy these results can then be carried over to arbitrary
simply connected domains.

Theorem 4.37. Let Ω be a simply connected domain and ϕ ∈ Aut(Ω). Then
the following assertions are equivalent:

(i) Cϕ is hypercyclic;
(ii) Cϕ is mixing;
(iii) Cϕ is chaotic;
(iv) (ϕn)n is a run-away sequence;
(v) ϕ has no fixed point in Ω;
(vi) Cϕ is quasiconjugate to a Birkhoff operator.

Proof. The implications (vi)=⇒(iii) and (vi)=⇒(ii) follow from known prop-
erties of the Birkhoff operators, (iii)=⇒(i) and (ii)=⇒(i) hold for all operators
on H(Ω), and (i)⇐⇒(iv) was proved in Theorem 4.32.

(i)=⇒(v). If ϕ has a fixed point z0 ∈ Ω then, for any f ∈ H(Ω) and n ≥ 0,
((Cϕ)nf)(z0) = f(ϕn(z0)) = f(z0), so that f cannot have a dense orbit.

It remains to prove that (v)=⇒(vi). In the case Ω = C the result was
shown in Example 4.28(a). In the case Ω �= C we can assume by the discussion
leading up to Proposition 4.36 that Ω = D. The proof then requires certain
properties of linear fractional transformations. Since we will have occasion
to study them in Section 4.5 we will postpone the proof to the end of that
section. ��

In particular the final condition in the theorem is of great interest. Any
property of the Birkhoff operators that is preserved under quasiconjugacies
will transmit to all composition operators on simply connected domains.

It remains to give the proof of Lemma 4.33.
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Proof of Lemma 4.33. We consider the exhaustion of Ω by compact sets
Kn constructed in the proof of Lemma 4.24. Then each Kn is automatically
Ω-convex. But also ψ(Kn) is Ω-convex for every automorphism ψ. Indeed,
if some hole of ψ(Kn) contained only points of Ω then one could deform
the boundary of that hole continuously in Ω to a point in Ω; applying the
map ψ−1, the same would then be true for the corresponding hole of Kn,
contradicting the Ω-convexity of Kn.

By the run-away property, we can find a strictly increasing sequence (mn)n
of positive integers such that ϕmn(Kn)∩Kn = ∅ for n ≥ 1; see Remark 4.35.

Now, every compact subset of Ω is contained in some KN , and since Ω is
infinitely connected we can assume that KN has at least two holes. Then, for
all n ≥ N , ϕmn(KN )∩KN = ∅. Also, each ϕmn(KN ) is Ω-convex. To finish
the proof it suffices to show that there is some n ≥ N such that, in addition,
ϕmn(KN ) ∪KN is Ω-convex.

We distinguish three cases. First, if there is some n ≥ N such that
ϕmn(KN ) lies in the unbounded component of the complement of KN and
KN lies in the unbounded component of the complement of ϕmn(KN ) then
clearly ϕmn(KN ) ∪KN is Ω-convex.

Fig. 4.4 ϕmN+1(KN )∪KN is Ω-convex Fig. 4.5 Both ϕmN+1(KN ) ∪ KN and
ϕmν (KN ) ∪KN are Ω-convex

Secondly, suppose that infinitely many ϕmn(KN ), n ≥ N , lie in holes of
KN . Since KN only has a finite number of holes, infinitely many ϕmn(KN ),
n ≥ N , must lie in some fixed hole O of KN ; by passing to a subsequence we
may assume that this is true for all n > N . We then choose some ν > N such
that ϕmN+1(KN ) ⊂ Kν . Since ϕmν (Kν)∩Kν = ∅ we have that ϕmN+1(KN )
and ϕmν (KN ) are disjoint subsets of O. Now one has three possibilities: either
ϕmN+1(KN ) lies in a hole of ϕmν (KN ) (see Figure 4.4), or ϕmν (KN ) lies in
a hole of ϕmN+1(KN ), or both sets lie in the unbounded component of the
complement of the other set (see Figure 4.5). Since both sets have at least
two holes one finds that in each of these cases either ϕmN+1(KN ) ∪ KN or
ϕmν (KN ) ∪KN is Ω-convex.
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Finally, the remaining case is when for infinitely many n ≥ N , KN lies in
a hole of ϕmn(KN ). Again we can assume that this is true for all n > N . We
then choose some ν > N such that ϕmN+1(KN ) ⊂ Kν . As above we find that
ϕmN+1(KN ) and ϕmν (KN ) are disjoint sets. Since both these sets contain
KN in one of their holes, we have that either ϕmN+1(KN ) lies in a hole of
ϕmν (KN ), or vice versa. Since both sets have two holes we find that either
ϕmν (KN ) ∪KN or ϕmN+1(KN ) ∪KN is Ω-convex. ��

4.4 Adjoint multipliers

In this section we consider an interesting generalization of the backward shift
operator. The underlying space will be the Hardy space H2. Arguably its
easiest definition is the following. If (an)n≥0 is a complex sequence such that

∞∑

n=0
|an|2 < ∞,

then it is, in particular, bounded, and hence

f(z) =
∞∑

n=0
anz

n, z ∈ C, |z| < 1,

defines a holomorphic function on the complex unit disk D. The Hardy space
is then defined as the space of these functions, that is,

H2 =
{
f : D → C ; f(z) =

∞∑

n=0
anz

n, z ∈ D, with
∞∑

n=0
|an|2 < ∞

}
.

In other words, the Hardy space is simply the sequence space �2(N0), with
its elements written as holomorphic functions. It is then clear that H2 is a
Banach space under the norm

‖f‖ =
( ∞∑

n=0
|an|2

)1/2
when f(z) =

∞∑

n=0
anz

n,

and it is even a Hilbert space under the inner product

〈f, g〉 =
∞∑

n=0
anbn when f(z) =

∞∑

n=0
anz

n, g(z) =
∞∑

n=0
bnz

n.

The polynomials form a dense subspace of H2.
The following result is an immediate consequence of the definitions.
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Proposition 4.38. For any λ ∈ D define kλ : D → C by

kλ(z) =
∞∑

n=0
λ
n
zn =

1
1 − λz

.

Then kλ ∈ H2 and, for any f ∈ H2,

f(λ) = 〈f, kλ〉.

This implies that for any λ ∈ D the point evaluation

f → f(λ)

is a continuous linear functional on H2. The functions kλ, λ ∈ D, are called
reproducing kernels. They will play the same role here as the exponential
functions eλ ∈ H(C), λ ∈ C, in Section 4.2. In particular we have the following
analogue of Lemma 2.34.

Lemma 4.39. Let Λ ⊂ D be a set with an accumulation point in D. Then
the set

span{kλ ; λ ∈ Λ}

is dense in H2.

Proof. It suffices to show that only the zero function can be orthogonal to
span{kλ ; λ ∈ Λ}. But that is immediate by the identity theorem for holo-
morphic functions: if, for f ∈ H2, 〈f, kλ〉 = f(λ) vanishes for all λ ∈ Λ, then
f = 0. ��

The operators that we want to study are those that map f ∈ H2 to ϕf ,
where ϕ is a bounded holomorphic function on D. In order to see that this
defines an operator on H2 we need another representation of the space.

Proposition 4.40. A holomorphic function f : D → C belongs to H2 if and
only if

sup
0≤r<1

∫ 2π

0
|f(reit)|2 dt < ∞.

Moreover, for any f, g ∈ H2,

‖f‖ =
(

sup
0≤r<1

1
2π

∫ 2π

0
|f(reit)|2 dt

)1/2
=

(
lim
r↗1

1
2π

∫ 2π

0
|f(reit)|2 dt

)1/2

and
〈f, g〉 = lim

r↗1

1
2π

∫ 2π

0
f(reit)g(reit) dt.

Proof. Writing f(z) =
∑∞

n=0 anz
n we obtain that
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1
2π

∫ 2π

0
|f(reit)|2 dt =

1
2π

∫ 2π

0

∣∣∣
∞∑

n=0
an(reit)n

∣∣∣
2
dt

=
∫ 2π

0

∣∣∣
∞∑

n=0
anr

n 1√
2π

eint
∣∣∣
2
dt =

∞∑

n=0
|an|2r2n,

where we have used Parseval’s identity in L2[0, 2π] for the orthonormal basis
( 1√

2π eint)n∈Z; see also Example 4.4(b). Since

sup
0≤r<1

∞∑

n=0
|an|2r2n = lim

r↗1

∞∑

n=0
|an|2r2n =

∞∑

n=0
|an|2 = ‖f‖2,

the first part of the assertion follows. In the same way, one obtains the second
part by using Parseval’s identity for the inner product. ��

Now let ϕ be a bounded holomorphic function on D. Then, for any f ∈ H2,
ϕf is holomorphic on D, and we have that

sup
0≤r<1

1
2π

∫ 2π

0
|(ϕf)(reit)|2 dt ≤ sup

z∈D

|ϕ(z)|2 sup
0≤r<1

1
2π

∫ 2π

0
|f(reit)|2 dt,

so that also ϕf ∈ H2 by the previous proposition. Moreover, we see that

Mϕf = ϕf

defines an operator on H2 with ‖Mϕ‖ ≤ supz∈D |ϕ(z)|. The function ϕ is
called a multiplier of H2, Mϕ is called the corresponding multiplication op-
erator or briefly multiplier .

Clearly, multiplication operators are never hypercyclic. For if (Mϕ)nf =
ϕnf , n ≥ 0, formed a dense set in H2 then, by continuity of point evaluations,
the same would be true of the sequence (ϕ(0)nf(0))n≥0 in C, which is never
the case. Instead, we will consider the (Hilbert space) adjoint M∗

ϕ : H2 → H2

of Mϕ, called an adjoint multiplication operator or adjoint multiplier .
In fact, we already know that some operators M∗

ϕ are hypercyclic, as we will
see now. As usual, B and F denote the backward and forward shifts on �2(N0),
respectively, which are operators of norm 1. Hence, if ϕ(z) =

∑∞
n=0 anz

n is
holomorphic on some neighbourhood of D then

∑∞
n=0 ‖anBn‖ ≤

∑∞
n=0 |an| <

∞, so that

ϕ(B) =
∞∑

n=0
anB

n

defines an operator on �2(N0), and the same is true for ϕ(F ) =
∑∞

n=0 anF
n;

see also Appendix B.
Proposition 4.41. Let ϕ(z) =

∑∞
n=0 anz

n be holomorphic on a neighbour-
hood of D, and set ϕ∗(z) =

∑∞
n=0 anz

n. Then, via the identification of H2

with �2(N0):
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(i) the multiplier Mϕ corresponds to the operator ϕ(F ) on �2(N0);
(ii) the adjoint multiplier M∗

ϕ corresponds to the operator ϕ∗(B) on �2(N0).

Proof. (i) On the one hand we have that for f ∈ H2, f(z) =
∑∞

k=0 bkz
k,

Mϕf(z) =
∞∑

n=0
anz

n
∞∑

k=0

bkz
k =

∞∑

n=0

( n∑

k=0

an−kbk

)
zn.

On the other hand we have for (bk)k≥0 ∈ �2(N0),

ϕ(F )(bk)k =
∞∑

n=0
anF

n(bk)k =
∞∑

n=0
an(0, . . . , 0, b0, b1, . . .)

= (a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2, . . .) =
( n∑

k=0

an−kbk

)

n≥0
.

This implies the result.
(ii) A simple calculation shows that B is the adjoint of F . Hence, by (i),

the adjoint M∗
ϕ corresponds to ϕ(F )∗ = (

∑∞
n=0 anF

n)∗ =
∑∞

n=0 anB
n, where

we have used properties of the adjoint; see Proposition A.8. ��

In particular, the adjoint multipliers M∗
ϕ with ϕ(z) = λz, |λ| > 1, corre-

spond to the Rolewicz operators λB and are therefore hypercyclic.
The Godefroy–Shapiro criterion allows us to characterize the hypercyclic

adjoint multipliers. We can exclude constant multipliers because their adjoint
multiplication operators are multiples of the identity.

Theorem 4.42. Let ϕ be a nonconstant bounded holomorphic function on D

and let M∗
ϕ be the corresponding adjoint multiplier on H2. Then the following

assertions are equivalent:
(i) M∗

ϕ is hypercyclic;
(ii) M∗

ϕ is mixing;
(iii) M∗

ϕ is chaotic;
(iv) ϕ(D) ∩ T �= ∅.

Proof. Suppose that condition (iv) holds. Considering the reproducing ker-
nels kλ, λ ∈ D, we find that, for all f ∈ H2,

〈f,M∗
ϕkλ〉 = 〈ϕf, kλ〉 = (ϕf)(λ) = 〈f, ϕ(λ) kλ〉,

which shows that
M∗

ϕ kλ = ϕ(λ) kλ.

Consequently,

span{f ∈ H2 ; M∗
ϕf = μf for some μ ∈ C with |μ| < 1}
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contains span{kλ ; |ϕ(λ)| < 1}, which is dense in H2 by Lemma 4.39; indeed,
since nonconstant holomorphic functions are open mappings, condition (iv)
implies that {λ ∈ D ; |ϕ(λ)| < 1} is nonempty and open and therefore
contains an accumulation point in D. For the same reason the eigenvectors of
M∗

ϕ to eigenvalues of modulus greater than 1 span a dense set in H2. Finally,
the same is true for the eigenvectors of M∗

ϕ to eigenvalues that are roots
of unity. For this it suffices to show that {λ ∈ D ; ϕ(λ) is a root of unity}
has an accumulation point. But since ϕ is an open mapping, condition (iv)
implies that infinitely many preimages of roots of unity lie in some relatively
compact subset of D and therefore have an accumulation point in D. By the
Godefroy–Shapiro criterion, therefore, (iv) implies (ii) and (iii).

To finish the proof it suffices to show that (i) implies (iv). Let us suppose
that ϕ(D) does not intersect the unit circle. Since ϕ(D) is connected, it must
lie entirely inside or entirely outside D. If ϕ(D) ⊂ D then

‖M∗
ϕ‖ = ‖Mϕ‖ ≤ sup

z∈D

|ϕ(z)| ≤ 1

(see Proposition A.8), and hence M∗
ϕ cannot be hypercyclic. On the other

hand, if ϕ(D) ⊂ C \ D then ψ := 1/ϕ is a bounded holomorphic function on
D with ψ(D) ⊂ D, which implies that M∗

ψ cannot be hypercyclic. But Mϕ

is the inverse of Mψ and therefore M∗
ϕ is the inverse of M∗

ψ; see Proposition
A.8. By Proposition 2.23, M∗

ϕ cannot be hypercyclic. ��

This result can easily be extended to more general Hilbert spaces of holo-
morphic functions, for example the Bergman space (see Exercise 4.4.3); but
see also Exercise 4.4.4. An extension to some Banach spaces X of holomor-
phic functions is also possible, in which case, of course, M∗

ϕ is the Banach
space adjoint on the dual X∗; see Exercise 4.4.5.

We pass on to another, partial generalization of Theorem 4.42 that is
motivated by Proposition 4.41. Under the assumptions of that proposition,
ϕ(B) =

∑∞
n=0 anB

n defines an operator on each of the spaces �p, 1 ≤ p < ∞,
and c0.

Theorem 4.43. Let X be one of the complex sequence spaces �p, 1 ≤ p <
∞, or c0. Furthermore, let ϕ be a nonconstant holomorphic function on a
neighbourhood of D. Then the following assertions are equivalent:

(i) ϕ(B) is chaotic;
(ii) ϕ(D) ∩ T �= ∅;
(iii) ϕ(B) has a nontrivial periodic point.

Proof. (ii)=⇒(i). We saw in Example 3.2 that any sequence

eλ := (λ, λ2, λ3, . . .), |λ| < 1

is an eigenvector of B to the eigenvalue λ and that, for any set Λ ⊂ D that
has an accumulation point in D, the set
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span{eλ ; λ ∈ Λ}

is dense in X. Now, for any λ ∈ D we have that

ϕ(B)eλ =
∞∑

n=0
anB

neλ =
∞∑

n=0
anλ

neλ = ϕ(λ)eλ,

so that each eλ is also an eigenvector of ϕ(B) to the eigenvalue ϕ(λ). From
here we proceed exactly as in the proof of Theorem 4.42 to show that ϕ(B)
is chaotic.

(i)=⇒(iii) is trivial.
(iii)=⇒(ii). For this implication we need to use results from spectral theory;

see Appendix B. By condition (iii) there is some point x �= 0 from X and
some N ≥ 1 such that ϕN (B)x = ϕ(B)Nx = x. Thus, 1 ∈ σp(ϕN (B)), the
point spectrum of ϕN (B). It follows from the point spectral mapping theorem
(see Theorem B.7) that 1 = ϕN (λ) for some λ ∈ σp(B) = D; see Example
3.2. Hence ϕ(λ) ∈ T, which implies (ii). ��

Example 4.44. The theorem shows in particular that any operator

I + λB and eλB, λ �= 0

is hypercyclic (and even chaotic) on X = �p, 1 ≤ p < ∞, or c0. In Section
8.1 we will see that much more is true: for any weight sequence w for which
the backward shift Bw is an operator on X, the operators I + Bw and eBw

are hypercyclic (and even mixing); see Theorems 8.1 and 8.2.

4.5 Composition operators II

In this section we return to the composition operators studied in Section
4.3, but we consider them now on the Hardy space H2. Thus, let ϕ be an
automorphism of the unit disk D and let

Cϕf = f ◦ ϕ

be the corresponding composition operator, where we now demand that f
belongs to H2. The first problem is that of determining if this defines an
operator on H2.

Proposition 4.45. For any ϕ ∈ Aut(D), Cϕ defines an operator on H2.

Proof. By Proposition 4.36 there are a, b ∈ C with |a| < 1 and |b| = 1 such
that

ϕ(z) = b
a− z

1 − az
.
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First, let f be a polynomial. Then f and f ◦ϕ are continuous on D so that,
by Proposition 4.40,

‖f ◦ ϕ‖2 =
1
2π

∫ 2π

0

∣∣f(ϕ(eit))
∣∣2 dt, (4.13)

and similarly for ‖f‖2. Also by Proposition 4.36, ϕ is a bijective self-map on
T so that there is some u0 ∈ R and a continuously differentiable function
u : [0, 2π] → [u0, u0 + 2π] such that

eiu(t) = ϕ(eit), t ∈ [0, 2π].

Differentiating with respect to t we obtain that

ieiu(t) du

dt
= ieitϕ′(eit), t ∈ [0, 2π],

so that (4.13) and the substitution u = u(t) yield

‖f ◦ ϕ‖2 =
1
2π

∫ u0+2π

u0

|f(eiu)|2 1
|ϕ′(eit(u))| du.

Since, for |z| = 1,

|ϕ′(z)| =
∣∣∣b

aa− 1
(1 − az)2

∣∣∣ ≥
1 − |a|2

(1 + |a|)2 =
1 − |a|
1 + |a| ,

we deduce that

‖f ◦ ϕ‖2 ≤ 1 + |a|
1 − |a| ·

1
2π

∫ u0+2π

u0

|f(eiu)|2 du =
1 + |a|
1 − |a| · ‖f‖

2. (4.14)

Now let f ∈ H2 be arbitrary, and let fn, n ≥ 0, be the partial sums of its
Taylor series. By Proposition 4.40 and (4.14) we have for n ≥ 0 and 0 ≤ r < 1
that

1
2π

∫ 2π

0
|fn(ϕ(reit))|2 dt ≤ ‖fn ◦ ϕ‖2 ≤ 1 + |a|

1 − |a| · ‖fn‖
2.

Letting n → ∞ and noting that fn → f in H2 and locally uniformly on D

we deduce that, for 0 ≤ r < 1,

1
2π

∫ 2π

0
|f(ϕ(reit))|2 dt ≤ 1 + |a|

1 − |a| · ‖f‖
2.

By Proposition 4.40 this shows that f ◦ ϕ ∈ H2 and that Cϕ is continuous
on H2. ��

The proof also gives us a norm estimate on the operator Cϕ, namely
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‖Cϕ‖ ≤
(1 + |a|

1 − |a|

)1/2
.

Our aim now is to characterize when Cϕ is hypercyclic on H2. To this end
we need to study the (nonlinear) dynamical system that is described by the
automorphism ϕ on D. It will be convenient to consider ϕ as a particular
linear fractional transformation; see Appendix A.

Indeed, let
ϕ(z) =

az + b

cz + d
, ad− bc �= 0,

be an arbitrary linear fractional transformation, which we consider as a map
on the extended complex plane Ĉ. Then ϕ has either one or two fixed points
in Ĉ, or it is the identity.

Suppose that ϕ has a single fixed point z0, and let σ be a linear fractional
transformation that maps z0 to ∞. Then ψ := σ ◦ϕ ◦σ−1 has ∞ as a unique
fixed point, which easily implies that ψ(z) = z + c for some c �= 0.

Now suppose that ϕ has two distinct fixed points z0 and z1, and let σ
be a linear fractional transformation that maps z0 to 0 and z1 to ∞. Then
ψ := σ◦ϕ◦σ−1 has fixed points 0 and ∞, which easily implies that ψ(z) = λz
for some λ �= 0. The constant λ is called the multiplier of ϕ. Replacing σ by
1/σ one sees that also 1/λ is a multiplier, which, however, causes no problem
in the following.

Definition 4.46. Let ϕ be a linear fractional transformation that is not the
identity.

(a) If ϕ has a single fixed point then it is called parabolic.
(b) Suppose that ϕ has two fixed points, and let λ be its multiplier. If

|λ| = 1 then ϕ is called elliptic; if λ > 0 then ϕ is called hyperbolic; in all
other cases, ϕ is called loxodromic.

It is now easy to deduce some important dynamical properties of auto-
morphisms ϕ of D.

Proposition 4.47. Let ϕ ∈ Aut(D), not the identity. Then we have the fol-
lowing:

(i) if ϕ is parabolic then its fixed point z0 lies in T, and ϕn(z) → z0,
ϕ−n(z) → z0 for all z ∈ Ĉ;

(ii) if ϕ is elliptic then it has a fixed point in D;
(iii) if ϕ is hyperbolic then it has distinct fixed points z0 and z1 in T such

that ϕn(z) → z0 for all z ∈ Ĉ, z �= z1, and ϕ−n(z) → z1 for all z ∈ Ĉ,
z �= z0;

(iv) ϕ cannot be loxodromic.

Proof. In the various cases, let σ and ψ be the linear fractional transforma-
tions given above. Then σ provides a conjugacy between ϕ and ψ.

(i) If ϕ is parabolic then ψn(z) = z + nc → ∞ for all z ∈ Ĉ and hence
ϕn(z) → σ−1(∞) = z0 for all z ∈ Ĉ. In the same way, ϕ−n(z) → z0 for all
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z ∈ Ĉ. Since ϕ maps T into T (see Proposition 4.36), we must have that
z0 ∈ T.

(ii) Let ϕ be elliptic. Since ϕ maps D onto itself, ψ maps σ(D) onto itself,
which is either a half-plane, or the interior or the exterior of a disk U . Since
ψ is a rotation and λ �= 1, the first alternative is excluded and U must be
centred at 0. Thus, either 0 or ∞ lies in B = σ(D), so that either z0 or z1
belongs to D.

(iii) Let ϕ be hyperbolic. Then λ > 0, and since with λ also 1/λ is a
multiplier we can assume that λ < 1. Then ψn(z) = λnz → 0 for all z ∈ Ĉ,
z �= ∞, and therefore ϕn(z) → σ−1(0) = z0 for all z ∈ Ĉ, z �= σ−1(∞) = z1.
It follows as in (i) that z0 ∈ T. Moreover, we find that ψ−n(z) = λ−nz → ∞
for all z ∈ Ĉ, z �= 0, and hence ϕ−n(z) → σ−1(∞) = z1 for all z ∈ Ĉ,
z �= σ−1(0) = z0. Since T is also invariant under ϕ−1 we find that also
z1 ∈ T.

(iv) Let ϕ be loxodromic. As in (ii), ψ maps σ(D) onto itself, which is either
a half-plane, or the interior or the exterior of a disk. But this is incompatible
with the fact that |λ| �= 1 and λ ≯ 0. ��

The dynamical properties of ϕ imply the dynamical properties of Cϕ.

Theorem 4.48. Let ϕ ∈ Aut(D) and Cϕ be the corresponding composition
operator on H2. Then the following assertions are equivalent:

(i) Cϕ is hypercyclic;
(ii) Cϕ is mixing;
(iii) ϕ has no fixed point in D.

Proof. The implication (ii)=⇒(i) holds for all operators on H2, and (i)=⇒(iii)
follows as in the proof of Theorem 4.37, using the fact that point evaluations
are continuous on H2.

(iii)=⇒(ii). Suppose that ϕ has no fixed point in D. It suffices to show
that Cϕ satisfies Kitai’s criterion. By Proposition 4.47, ϕ is either parabolic
or hyperbolic, and in both cases there are z0, z1 ∈ T (possibly with z0 = z1)
such that ϕn(z) → z0 for all z ∈ T\{z1} and ϕ−n(z) → z1 for all z ∈ T\{z0}.

Now, for X0 we will take the subspace of H2 of all functions that are
holomorphic on a neighbourhood of D and that vanish at z0. To see that X0
is dense in H2, let f ∈ H2, f(z) =

∑∞
n=0 anz

n, be orthogonal to any g ∈ X0.
Since, for any n ≥ 0, the functions gn : z → z0z

n−zn+1 belong to X0 we have
that 〈f, gn〉 = z0an − an+1 = 0 and hence an = a0z0

n, n ≥ 0. Since (an)n is
square summable and |z0| = 1 we must have that a0 = 0, hence f = 0. This
implies that X0 is dense in H2. Moreover, let f ∈ X0. As in (4.13) we have
that

‖(Cϕ)nf‖2 =
1
2π

∫ 2π

0

∣∣f
(
ϕn

(
eit

))∣∣2 dt.

Since the integrands are uniformly bounded and convergent to |f(z0)|2 = 0,
for every t with possibly one exception, the dominated convergence theorem
implies that (Cϕ)nf → 0 for all f ∈ X0.
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Next, for Y0 we take the subspace of H2 of all functions that are holomor-
phic on a neighbourhood of D and that vanish at z1, and for S we take the
map S = Cϕ−1 . Since z1 is a fixed point of ϕ−1, S maps Y0 into itself, and
clearly TS = I. It follows as above that Y0 is dense in H2 and that Snf → 0
for all f ∈ Y0.

Therefore the conditions of Kitai’s criterion are satisfied, so that Cϕ is
mixing. ��

Some concrete instances of this result are treated in Exercise 4.5.2.
We end this chapter by returning to Theorem 4.37 of Section 4.3. Propo-

sition 4.47 allows us to give the missing proof of the implication (v)=⇒(vi)
for Ω = D.

Conclusion of the proof of Theorem 4.37. Let ϕ be an automorphism of D

without fixed points in D. Again, ϕ is either parabolic or hyperbolic.
First, let ϕ be parabolic. By the discussion before Definition 4.46 there

is a linear fractional transformation σ that provides a conjugacy between ϕ
and ψ(z) = z + c, c �= 0. Then ψ is an automorphism of σ(D), so that Cϕ is
conjugate to the operator Cψ on H(σ(D)) by Proposition 4.25. By Runge’s
theorem, the continuous restriction map H(C) → H(σ(D)), f → f |σ(D) has
dense range. Hence Cϕ is quasiconjugate to the Birkhoff operator Cψ on
H(C).

In the hyperbolic case, there is a linear fractional transformation σ such
that ϕ is conjugate to a dilation ψ(z) = λz, λ �= 1 strictly positive, and ψ
is an automorphism of σ(D), which therefore must be a half-plane with 0 on
its boundary. After conjugation with a suitable rotation we can assume that
it is the right half-plane C+, and ψ remains unchanged. Now, the principal
branch log of the logarithm is a conformal map from C+ to the strip S =
{z ∈ C ; |Im(z)| < π

2 }, and conjugating ψ with log gives us the translation
τ(z) = z + log λ, log λ �= 0, on S. We conclude as in the parabolic case that
Cϕ is quasiconjugate to the Birkhoff operator Cτ on H(C). ��

Exercises

Exercise 4.1.1. Show that a weighted shift Bw defines an operator on H(C) if and only
if supn≥1 |wn|1/n < ∞, and that anen → 0 in H(C) if and only if |an|1/n → 0.

Exercise 4.1.2. Let T := Bw be a weighted shift on �p, 1 ≤ p < ∞.
(a) Given an increasing sequence (nk)k of positive integers, show that the sequence

of operators (Tnk )k is hypercyclic if and only if, for each j ∈ N,

sup
k≥1

j+nk∏

ν=1

|wν | = ∞.

(b) Show that T is hereditarily hypercyclic with respect to (nk)k if and only if, for
each j ∈ N,
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lim
k→∞

j+nk∏

ν=1

|wν | = ∞.

Exercise 4.1.3. Let X be the Banach space of all sequences (xn)n satisfying

‖x‖ =
∞∑

n=1

∣∣∣xn

n
− xn+1

n + 1

∣∣∣ < ∞ and xn

n
→ 0 as n → ∞.

Show that the backward shift B is a hypercyclic operator on X and that conditions
(ii)–(iv) of Theorem 4.6 are satisfied, but that the only periodic points of B are the
constant sequences and that B is therefore not chaotic.

Exercise 4.1.4. Let X be a Fréchet sequence space over Z in which (en)n∈Z is a basis.
Suppose that the bilateral weighted shift Bw is an invertible operator on X. Show that
Bw is hypercyclic if and only if there is an increasing sequence (nk)k of positive integers
such that

( 0∏

ν=−nk+1

wν

)
e−nk → 0 and

( nk∏

ν=1

wν

)−1
enk → 0

in X as k → ∞. (Hint: For the sufficiency, look at the proof of (iii)=⇒(ii) in Theorem
4.3.)

Exercise 4.1.5. Find a (necessarily non-invertible) bilateral weighted shift that satisfies
the condition stated in the previous exercise but that is not hypercyclic. (Hint: See the
proof of Proposition 4.16, but choose nonsymmetric vn.)

Exercise 4.1.6. Prove the results stated in Remark 4.14; instead of using a conjugacy
one may also observe that a forward shift on the basis (en)n is a backward shift on the
basis (e−n)n.

Exercise 4.1.7. Show that the characterizing conditions on a weight w to define a
hypercyclic bilateral weighted shift Bw on �p(Z) can also be written as follows: for any
ε > 0 and any M,N ≥ 1 there exists some n ≥ N such that whenever |j| ≤ M then

j∏

ν=j−n+1

|wν | < ε,

j+n∏

ν=j+1

|wν | >
1
ε
.

Exercise 4.2.1. An entire function ϕ is of exponential type 0 if for any ε > 0 there is
some M > 0 such that

|ϕ(z)| ≤ Meε|z| for all z ∈ C.

For example, any polynomial but no exponential function z → eλz , λ 
= 0, is of expo-
nential type 0.

For a domain Ω ⊂ C, let H(Ω) denote the Fréchet space of holomorphic functions
on Ω; see Section 4.3. Show the following:

(i) an entire function ϕ(z) =
∑∞

n=0 anz
n is of exponential type 0 if and only if, for

any ε > 0, there is some M > 0 such that |an| ≤ M εn

n! ;
(ii) for any domain Ω ⊂ C and any entire function ϕ(z) =

∑∞
n=0 anz

n of exponential
type 0, ϕ(D) =

∑∞
n=0 anD

n defines an operator on H(Ω);
(iii) for any simply connected domain Ω ⊂ C and any nonconstant entire function ϕ

of exponential type 0, ϕ(D) is chaotic on H(Ω). (Hint: Use the Godefroy–Shapiro
theorem and the fact, that, by Runge’s theorem, H(C) is dense in H(Ω).)
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Exercise 4.2.2. Let Ω be a domain and P a nonconstant polynomial. Show that the
following assertions are equivalent:

(i) P (D) is chaotic on H(Ω);
(ii) P (D) is hypercyclic on H(Ω);
(iii) Ω is simply connected.
(Hint: If Ω is not simply connected then there is a smooth Jordan curve Γ in Ω sur-
rounding some a /∈ Ω. Show that f →

∫
Γ
f(ζ) dζ is an eigenvector of P (D)∗, and use

Lemma 2.53.)

Exercise 4.2.3. Let X = C∞
R

(R) be the space of infinitely differentiable real functions
f : R → R; see Exercise 2.1.5. Show that every (real) differential operator T : X → X,

Tf =
∑N

n=0 anf
(n), T 
= a0I, is chaotic. (Hint: See Exercise 2.2.5.)

Exercise 4.2.4. Let ϕ be a nonconstant entire function of exponential type and A =
min{|z| ; z ∈ C, |ϕ(z)| = 1}. Show that, for any ε > 0, there is an entire function f that
is hypercyclic for ϕ(D) such that

|f(z)| ≤ Me(A+ε)r for |z| = r > 0

with some M > 0.
For the proof consider the Hilbert spaces

E2
τ =

{
f ∈ H(C) ; f(z) =

∞∑

n=0

anz
n,

∞∑

n=0

(
n!
τn

)2
|an|2 < ∞

}
, τ > 0.

Show that any f ∈ E2
τ satisfies |f(z)| ≤ Meτr; use ideas from Example 3.2 to show

that for any Λ ⊂ Dτ with an accumulation point, span{eλ ; λ ∈ Λ} is dense in E2
τ (see

Appendix A for the dual of E2
τ ); show that ϕ(D) is an operator on any E2

τ , and that
ϕ(D) is hypercyclic on E2

A+ε for any ε > 0.
Apply the result to MacLane’s and Birkhoff’s operators.

Exercise 4.2.5. Let Bw be a chaotic weighted shift on H(C); see Example 4.9(b). Then∑∞
n=0(

∏n

ν=1 wν)−1 zn is an entire function, and its maximum term is defined by

μw(r) = max
n≥0

rn∏n

ν=1 |wν |
, r ≥ 0.

(a) Let φ : ]0,∞[ → [1,∞[ be a function with φ(r) → ∞ as r → ∞. Show that there
exists an entire function f that is hypercyclic for Bw and that satisfies

|f(z)| ≤ Mφ(r)μw(r) for |z| = r > 0

with some M > 0.
(b) Suppose that |wn| → ∞ monotonically. Show that there is no entire function f

that is hypercyclic for Bw and that satisfies

|f(z)| ≤ M μw(r) for |z| = r > 0

with some M > 0. (Hint: Determine μw(ρ) for ρ = |wn|.)
Deduce Theorem 4.22 from this.

Exercise 4.3.1. Show in detail that H(Ω) is a separable Fréchet space and that its
topology is independent of the exhaustion chosen. (Hint: For separability, fix an ex-
haustion (Kn)n of Ω by Ω-convex compact sets. In each connected component of the
complements of the Kn fix one point outside Ω, possibly ∞; this set is denumerable.
Now use Runge’s theorem.)
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Exercise 4.3.2. Let Ω be a domain and ϕ : Ω → Ω a holomorphic self-map that is not
necessarily an automorphism of Ω. Show that Cϕ : H(Ω) → H(Ω), Cϕf = f ◦ϕ, defines
an operator on H(Ω), also called a composition operator . Moreover, show the following:

(i) if Cϕ is hypercyclic then ϕ is injective;
(ii) let Ω be simply connected; then Cϕ is hypercyclic if and only if ϕ is injective and

(ϕn)n is a run-away sequence.

Exercise 4.3.3. Let Ω be a domain, ϕ : Ω → Ω an injective holomorphic self-map and
Cϕf = f ◦ϕ the corresponding composition operator on H(Ω); see the previous exercise.

(a) Based on the proof of Theorem 4.32, find a sufficient condition under which Cϕ

is hypercyclic.
(b) Let ϕ : D → D be given by ϕ(z) = z

4 + 3
4 . Let K = {z ∈ C ; |z| ≤ 1

2}
and Ω = D \

⋃∞
n=0 ϕ

n(K). Show that the restriction of ϕ to Ω defines a hypercyclic
composition operator Cϕ on H(Ω).

Exercise 4.3.4. Let Ω = C\Z. Then ϕ(z) = z+1 is an automorphism of Ω. Show that
the composition operator Cϕ is chaotic on H(Ω). (Hint: Show that the linear span of
the functions eλz , eλN = 1 for some N ≥ 1, and limm→∞

∑m

ν=−m
1

(z−k−νN)α , k ∈ Z,
α > 1, N ≥ 1, forms a dense set of periodic points.)

Exercise 4.4.1. Let ϕ be a holomorphic function on D such that ϕf ∈ H2 for all
f ∈ H2. Use the closed graph theorem to show that the mapping Mϕ : f → ϕf is
continuous. Deduce that ϕ is necessarily bounded, and ‖Mϕ‖ = supz∈D

|ϕ(z)|. (Hint:
ϕn(z) = 〈(Mϕ)n1, kz〉.)

Exercise 4.4.2. Let Ω ⊂ C be a domain and H 
= {0} a Hilbert space of holomorphic
functions on Ω. Suppose that each point evaluation f → f(λ), λ ∈ Ω, is a continuous
linear functional on H. Use the closed graph theorem to prove that the canonical em-
bedding H ↪→ H(Ω) is continuous, so that convergence in H implies locally uniform
convergence on Ω.

Exercise 4.4.3. Let Ω ⊂ C be a domain and H 
= {0} a Hilbert space of holomorphic
functions on Ω such that each point evaluation f → f(λ), λ ∈ Ω, is continuous on H.

(a) By the Riesz representation theorem (see Appendix A), there is a unique function
kλ ∈ H, again called a reproducing kernel, such that

f(λ) = 〈f, kλ〉, f ∈ H.

Prove an analogue of Lemma 4.39 and deduce that H is separable.
(b) Now let ϕ be a nonconstant bounded holomorphic function on Ω for which Mϕf =

ϕf defines an operator on H. Let M∗
ϕ be the corresponding adjoint multiplier on H.

Show that M∗
ϕ is chaotic and mixing as soon as ϕ(Ω) ∩ T 
= ∅. Show that, in this case,

for some λ ∈ C, λM∗
ϕ is chaotic. Deduce that M∗

ϕ is supercyclic.
(c) Finally, suppose that every bounded holomorphic function ϕ on Ω defines a

multiplication operator with ‖Mϕ‖ ≤ supz∈Ω |ϕ(z)|. Show that if ϕ is a nonconstant
bounded holomorphic function on Ω such that M∗

ϕ is hypercyclic then ϕ(Ω) ∩ T 
= ∅.
(d) Deduce that Theorem 4.42 holds also for the Bergman space A2; see Example

4.4(b).

Exercise 4.4.4. The Dirichlet space D is defined as the space of all holomorphic func-
tions f on D such that

‖f‖2 := |f(0)|2 + 1
π

∫

D

|f ′(z)|2 dλ(z) < ∞,

where λ denotes two-dimensional Lebesgue measure. Show the following:
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(i) if f(z) =
∑∞

n=0 anz
n then ‖f‖2 = |a0|2 +

∑∞
n=1 n|an|

2;
(ii) D is a Hilbert space with continuous point evaluations;
(iii) D ⊂ H2 ⊂ A2, where A2 is the Bergman space (see Example 4.4);
(iv) if ϕ is a bounded holomorphic function on D such that ϕ′ is also bounded then Mϕ

defines an operator on D;
(v) if ϕ(z) =

∑∞
n=0 bnz

n with
∑∞

n=0 |bn| < ∞ and
∑∞

n=0 n|bn|
2 = ∞ (existence?)

then ϕ is a bounded holomorphic function on D for which Mϕ does not define an
operator on D;

(vi) if ϕ is a nonconstant bounded holomorphic function on D such that Mϕ defines an
operator on D and if ϕ(D) ∩ T 
= ∅ then M∗

ϕ is mixing and chaotic;
(vii) the function ϕ(z) = z, z ∈ D, defines a hypercyclic adjoint multiplier M∗

ϕ on D,
but ϕ(D) ∩ T = ∅; is M∗

ϕ mixing or chaotic? (Hint: Identify M∗
ϕ with a weighted

shift on a weighted �2-space.)

Exercise 4.4.5. Let X 
= {0} be a Banach space of holomorphic functions on a domain
Ω ⊂ C. Suppose that X is reflexive, that is, X∗∗ = X. Suppose further that the point-
evaluations f → f(λ), λ ∈ Ω, are continuous on X and that every bounded holomorphic
function ϕ on Ω defines a multiplication operator Mϕ with ‖Mϕ‖ ≤ supz∈Ω |ϕ(z)|. Then
show the analogue of Theorem 4.42 for M∗

ϕ, the (Banach space) adjoint of Mϕ. (Hint:
Use reflexivity and the Hahn–Banach theorem to obtain the analogue of Lemma 4.39.)

Exercise 4.4.6. Let X be one of the complex spaces �p, 1 ≤ p < ∞, or c0. Let a, b ∈ C,
b 
= 0. Show that the following assertions are equivalent:

(i) aI + bB is chaotic on X;
(ii) |b| > |1 − |a||.

Exercise 4.4.7. Generalize part of Theorem 4.43 as follows: let X = �p(v) = {(xn)n ∈
C

N;
∑∞

n=1 |xn|pvn < ∞}, 1 ≤ p < ∞, where v = (vn)n is a positive weight sequence
such that M := supn∈N

vn

vn+1
< ∞. Let R := (lim supn→∞ v

1/n
n )−1 > 0, which is finite,

and let ϕ(z) =
∑∞

n=0 anz
n be a nonconstant function that is holomorphic in Dr for

some r > M . Then ϕ(B) =
∑∞

n=0 anB
n defines an operator on X, and if

ϕ
(
R1/p

D

)
∩ T 
= ∅ (4.15)

then ϕ(B) is a chaotic operator on X. (Hint: See Appendix A for the dual of X.)

Exercise 4.4.8. In the setting of Exercise 4.4.7, let vn = 1/n2, n ≥ 1.
(a) Show that B is chaotic but condition (4.15) does not hold.
(b) Show that the operator 1

2 (I+B) has a nontrivial periodic point but is not chaotic.

Exercise 4.4.9. Let w = (wn)n be a weight sequence, and let f be a nonconstant
polynomial. Show that f(Bw) is (well defined and) chaotic on ω = K

N. (Hint: For the
density of eigenvectors for Bw show that they are contained and dense in a suitable
weighted �1-space; see Appendix A.)

Exercise 4.5.1. The aim of this exercise is to prove Littlewood’s subordination principle:
if ϕ : D → D is a holomorphic self-map then Cϕ : f → f ◦ ϕ defines an operator on H2

with ‖Cϕ‖ ≤ ( 1+r
1−r )1/2, where r = |ϕ(0)|.

(a) First prove the result when ϕ(0) = 0 by proceeding as follows:
(i) show that, for any f ∈ H2, Cϕf = f(0) + MϕCϕBf , where we write B for

M∗
z (see Proposition 4.41(ii));

(ii) using orthogonality, deduce that, for any polynomial f , ‖Cϕf‖2 ≤ |f(0)|2 +
‖CϕBf‖2;

(iii) deduce that ‖Cϕf‖2 ≤
∑n

k=0 |(B
kf)(0)|2 + ‖CϕB

n+1f‖2;
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(iv) deduce that ‖Cϕf‖ ≤ ‖f‖;
(v) conclude that Cϕf ∈ H2 and ‖Cϕf‖ ≤ ‖f‖ for all f ∈ H2.

(b) Prove the result by factorizing Cϕ = Cϕ1Cϕ2 with ϕ1(0) = 0 and ϕ2 ∈ Aut(D).

Exercise 4.5.2. For the following linear fractional transformations decide if they are
automorphisms of D; in the case of an automorphism, determine if the corresponding
composition operator Cϕ is hypercyclic on H2:

(i) ϕ(z) = 2z − 1
2 − z

;

(ii) ϕ(z) = 1 + (i− 1)z
(i + 1) − z

;

(iii) ϕ(z) = 4 − 5z
5 − 4z

;

(iv) ϕ(z) = z + 1
2

.

Exercise 4.5.3. Let α > −1. Then the weighted Bergman space A2
α is defined as the

space of all holomorphic functions f on D such that

‖f‖2 := 1
π

∫

D

|f(z)|2
(
1 − |z|2

)α
dλ(z) < ∞,

where λ denotes two-dimensional Lebesgue measure; see Example 4.4(b).
(a) Let f be a holomorphic function on D with f(z) =

∑∞
n=0 anz

n, z ∈ D.
Show that ‖f‖2 =

∑∞
n=0 |an|

2 Γ (α+1)Γ (n+1)
Γ (α+n+2) and deduce that f ∈ A2

α if and only if∑∞
n=0 |an|

2 1
(n+1)α+1 < ∞. (Hint: Stirling’s formula.)

(b) Let ϕ ∈ Aut(D). Show that Cϕ is an operator on A2
α with ‖Cϕ‖ ≤ ( 1+r

1−r )1+α/2,
where r = |ϕ(0)|. (Hint: Show that if w = ϕ(z) then dλ(z) = |ϕ′(z)|−2 dλ(w), and use
(4.12).)

Exercise 4.5.4. Let α > −1. Then the weighted Dirichlet space Dα is defined as the
space of all holomorphic functions f on D such that

‖f‖2 := |f(0)|2 + 1
π

∫

D

∣∣f ′(z)
∣∣2 (1 − |z|2

)α
dλ(z) < ∞,

where λ denotes two-dimensional Lebesgue measure; see Exercise 4.4.4 and the previous
exercise.

(a) Let f be a holomorphic function on D with f(z) =
∑∞

n=0 anz
n, z ∈ D. Show that

f ∈ Dα if and only if
∑∞

n=0 |an|
2(n + 1)1−α < ∞.

(b) Let ϕ ∈ Aut(D). Show that Cϕ is an operator on Dα.
(c) Let α > 0. Show that Theorem 4.48 remains true for Dα. (Hint: Proceed as in the

proof of that theorem; use the change of variables w = ϕn(z); note that 1−|ϕ−n(w)|2 →
0.)

Exercise 4.5.5. Let ϕ ∈ Aut(D). By the previous exercise, Cϕ is an operator on the
Dirichlet space D. Show that, for any f ∈ D,

‖Cϕf‖2 ≥ 1
π

∫

D

∣∣f ′(z)
∣∣2 dλ(z).

Deduce that Cϕ is not hypercyclic on D. (Hint: Change of variables w = ϕ(z).)
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Exercise 4.5.6. Let β = (βn)n≥0 be a sequence of strictly positive numbers such that∑∞
n=0 β

−2
n rn < ∞ whenever 0 ≤ r < 1. Then the weighted Hardy space H2(β) is defined

as the space of all holomorphic functions f on D such that

‖f‖2 :=
∞∑

n=0

|an|2β2
n < ∞,

where f(z) =
∑∞

n=0 anz
n, z ∈ D. By the assumption on (βn)n, this condition alone

implies that f ∈ H(D).
Let ϕ ∈ Aut(D) and suppose that Cϕ defines an operator on H2(β). Show the

following:
(i) if

∑∞
n=0 β

−2
n < ∞ then Cϕ is never hypercyclic on H2(β);

(ii) if
∑∞

n=0 β
−2
n = ∞ and ϕ is elliptic then Cϕ is not hypercyclic on H2(β).

(Hint for (i): Show that all functions in H2(β) have a continuous extension to D; and
use the fact that ϕ has a fixed point in D.)

Exercise 4.5.7. Let ν ∈ R. Then the space Sν is defined as the space of all holomorphic
functions f on D such that

‖f‖2 :=
∞∑

n=0

|an|2(n + 1)2ν < ∞,

where f(z) =
∑∞

n=0 anz
n, z ∈ D. In particular, S0 is the Hardy space H2, S−1/2 is the

Bergman space A2, and S1/2 is the Dirichlet space D under an equivalent norm.
(a) Show that f ∈ Sν if and only if f ′ ∈ Sν−1. If ν ∈ N, show that f ∈ Sν if and only

if f (ν) ∈ H2.
(b) Show that the multiplier Mz is an operator on each Sν , and calculate the norm

of Mn
z , n ≥ 0. More generally, let ϕ be holomorphic on D, ϕ(z) =

∑∞
n=0 bnz

n, such that∑∞
n=0 |bn|(n + 1)ν < ∞. Show that Mϕ is an operator on Sν .
(c) Let ϕ ∈ Aut(D). Deduce from Exercise 4.5.3 that Cϕ defines an operator on Sν

for ν < 0. Use parts (a) and (b) to conclude that Cϕ defines an operator on Sν for any
ν ∈ R. (Hint: (Cϕf)′ = Mϕ′Cϕf

′.)
(d) Let ϕ(z) =

∑∞
n=0 bnz

n with
∑∞

n=0 |bn| ≤ 1 and
∑∞

n=0 |bn|
2n = ∞ (existence?).

Show that ϕ is a holomorphic self-map of D for which Cϕ does not define an operator
on the Dirichlet space D.

Exercise 4.5.8. Let ν ∈ R and ϕ ∈ Aut(D). By Exercise 4.5.7, Cϕ is an operator on
Sν . Deduce the following from the previous exercises:

(i) if ν ≥ 1
2 then Cϕ is never hypercyclic on Sν ;

(ii) if ν < 1
2 then Cϕ is hypercyclic on Sν if and only if ϕ is not the identity and

non-elliptic.
Spell out these results for the (weighted) Bergman and Dirichlet spaces.

Sources and comments

Section 4.1. Rolewicz’s multiples of the backward shift were the first Banach space op-
erators to be proved hypercyclic [268]. Due to its simple structure, the class of weighted
shifts is a favorite testing ground for operator-theorists (Salas [274]). Accordingly, when-
ever a new notion in linear dynamics is introduced it is usually first tested on weighted
shifts.
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Salas [274] characterized hypercyclic and weakly mixing unilateral and bilateral
weighted shifts on �2 and �2(Z), respectively. The characterizations for more general
sequence spaces and of chaos are due to Grosse-Erdmann [180], see also Martínez and
Peris [229] in the special case of Köthe sequence spaces, while mixing shifts on �2 and
�2(Z) were characterized by Costakis and Sambarino [124]. The approach chosen here of
first studying the unweighted shift and then using suitable conjugacies is due to Martínez
and Peris [229].

The first example of a hypercyclic operator whose adjoint is also hypercyclic (see
Proposition 4.16) was found by Salas [273]. He later showed [276] that every separa-
ble Banach space with separable dual supports such an operator. The observation that
T ⊕ T ∗ is never hypercyclic is due to Deddens; see [273].

Section 4.2. The investigation of hypercyclicity for differential operators ϕ(D) is due to
Godefroy and Shapiro [165]. Theorem 4.22 on the rate of growth of MacLane’s operator
was obtained independently by Grosse-Erdmann [178] and Shkarin [283]. The corre-
sponding result for Birkhoff’s operators was obtained by Duyos-Ruiz [137]; alternative
proofs can be found in Chan and Shapiro [106] and in Exercise 8.1.3.

Translation and differentiation operators have also been studied on spaces of har-
monic functions on R

N , N ≥ 2. Hypercyclicity of these operators and corresponding
growth results have been obtained by Dzagnidze [138], Aldred and Armitage [6], [7],
[13], and Gómez, Martínez, Peris and Rodenas [166].

Section 4.3. This section draws heavily on the work of Bernal and Montes [64], who
also coined the term “run-away sequence”, and the work of Shapiro [281]. The material
up to Theorem 4.32 can be found in [64], while most of Theorem 4.37 is implicit in
[281]. We mention that Seidel and Walsh [278] were the first to study the analogue of
Birkhoff’s result in the unit disk.

For two different proofs of Proposition 4.31 we refer to Bernal and Montes [64] and to
Grosse-Erdmann and Mortini [184]. Example 4.34 is taken from Kim and Krantz [214];
see also Gorkin, León and Mortini [168].

Section 4.4. The study of the dynamical properties of adjoint multipliers was initiated
by Godefroy and Shapiro [165], who also obtained Theorem 4.42. Functions of the back-
ward shift on the spaces �p and c0 were studied by deLaubenfels and Emamirad [128],
who also obtained Theorem 4.43. An interesting related investigation of functions of the
backward shift on the Bergman space is due to Bourdon and Shapiro [96].

For a more detailed introduction to Hardy spaces we refer to Duren [136] and Rudin
[270].

Section 4.5. In this section we closely follow the book of Shapiro [279]; see also Shapiro
[281]. Proposition 4.45 is a special case of the Littlewood subordination principle; see
Exercise 4.5.1. Theorem 4.48 is due to Bourdon and Shapiro [94], [95]. This result is
only the beginning of a fascinating story on the interplay between operator theory and
complex function theory. The extension of Theorem 4.48, first to non-automorphic linear
fractional transformations and then to more arbitrary holomorphic self-maps of D, can
be found in the cited work of Bourdon and Shapiro. The proofs, however, require a much
deeper understanding, for example, of the (nonlinear) dynamics of self-maps of D.

Hosokawa [204] proved that, for any automorphism ϕ of D, Cϕ is chaotic whenever
it is hypercyclic; see also Taniguchi [298]. Thus one can add chaos to the equivalent
conditions in Theorem 4.48.

We note that Gallardo and Montes [158] have obtained a complete characterization
of the cyclic, supercyclic and hypercyclic composition operators Cϕ for linear fractional
self-maps ϕ of D on any of the spaces Sν , ν ∈ R (see Exercises 4.5.7 and 4.5.8).
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For a more detailed introduction to composition operators on weighted Hardy,
Bergman and Dirichlet spaces we refer to Cowen and MacCluer [125].

Exercises. Exercise 4.1.2 is taken from Bès and Peris [71], Exercise 4.1.3 from Grosse-
Erdmann [180]. For Exercises 4.1.4 and 4.1.5 we refer to Feldman [150], Exercise 4.1.7
states the condition in the form found originally by Salas [274]. But note that the
weighted shifts considered by Feldman and Salas are forward shifts. For Exercise 4.2.1
we refer to Bernal [55] and Shapiro [280], for Exercise 4.2.2 to Shapiro [280], for Exer-
cise 4.2.4 to Chan and Shapiro [106] and to Bernal and Bonilla [60], for Exercise 4.2.5
to Grosse-Erdmann [181]. Exercises 4.3.2 and 4.3.3 follow Montes [241] and Grosse-
Erdmann and Mortini [184], while Exercise 4.3.4 is taken from Shapiro [280]. The mate-
rial for Exercises 4.4.1–4.4.4 can be found in Godefroy and Shapiro [165], with Exercise
4.4.4(vii) being taken from Chan and Seceleanu [104]; for Exercises 4.4.6–4.4.8 we refer
to deLaubenfels and Emamirad [128], for Exercise 4.4.9 to Martínez [228]. For Exercise
4.5.1 we have again followed Shapiro [279]; Exercises 4.5.4(c), 4.5.5 and 4.5.8 are taken
from Gallardo and Montes [158], Exercise 4.5.6 from Zorboska [304] and Exercise 4.5.7
from Hurst [205].
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