
Chapter 12
Linear dynamics in topological vector
spaces

So far, we have been working with operators on Banach or Fréchet spaces.
One of the main reasons was that we then had the Baire category theorem
at our disposal, which is a basic tool in hypercyclicity.

We have made one exception. In Chapter 10, the left-multiplication opera-
tors that we needed were defined on the space L(X) with the strong operator
topology, which is not a Fréchet space unless X is finite dimensional. But
even there, in the final analysis, we worked in a separable Fréchet space K of
operators on X.

Dealing with more general spaces in which Baire category arguments can-
not be applied makes life certainly more difficult for hypercyclicity; but there
are several dynamical properties, like mixing or weak mixing, where the previ-
ous arguments extend, essentially unchanged, to arbitrary topological vector
spaces. Also, several interesting and natural operators are defined on non-
Fréchet topological vector spaces, which is a good motivation to study linear
dynamics in a wider context. This is the purpose of this chapter.

12.1 Topological vector spaces

A topological vector space is a vector space X over the scalar field K =
R or C endowed with a Hausdorff topology such that addition and scalar
multiplication,

+ : X ×X → X, (x, y) → x + y,

· : K ×X → X, (λ, x) → λx,

are continuous maps. We recall that a topology is Hausdorff if any two distinct
points in the space have disjoint neighbourhoods.
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332 12 Linear dynamics in topological vector spaces

Many arguments in Banach and Fréchet spaces use the triangle inequality
of the norm or the seminorms. In general topological vector spaces, such
arguments are replaced by operations with 0-neighbourhoods.

A subset A of a vector space X is called balanced if λA ⊂ A whenever
λ ∈ K, |λ| ≤ 1.

Proposition 12.1. Let X be a topological vector space.
(a) A set U is a neighbourhood of a point x ∈ X if and only if there is a

0-neighbourhood W such that

x + W ⊂ U.

(b) Let W be a 0-neighbourhood. For any λ, μ ∈ K there is a 0-neighbour-
hood W1 such that

λW1 + μW1 ⊂ W.

In particular, there is a 0-neighbourhood W1 such that

W1 + W1 ⊂ W and W1 −W1 ⊂ W.

(c) If W is a 0-neighbourhood and M > 0, then there is a 0-neighbourhood
W1 ⊂ W such that λW1 ⊂ W for every λ ∈ K with |λ| ≤ M . In particular,
every 0-neighbourhood contains a balanced 0-neighbourhood.

Proof. Properties (a) and (b) are easy consequences of the continuity of the
vector operations. For property (c), given W and M , by the continuity of
scalar multiplication we can find ε > 0 and a 0-neighbourhood W0 such
that λW0 ⊂ W for every λ ∈ K with |λ| < ε. Let δ = ε/(M + 1), and
consider W1 = δW0, which is a 0-neighbourhood since multiplication by a
fixed nonzero scalar is a homeomorphism of X. If |λ| ≤ M then λW1 =
(λδ)W0 ⊂ W . As a consequence,

⋂
|λ|≥1 λW is a balanced 0-neighbourhood

contained in W . ��

Let us apply the proposition to obtain some basic facts.

Proposition 12.2. Let X be a topological vector space.
(a) If A is an arbitrary subset of X and U an open set then A+U is open.
(b) For any 0-neighbourhood W there is a 0-neighbourhood W1 such that

W1 ⊂ W ;

in particular, every 0-neighbourhood contains a closed 0-neighbourhood.

Proof. (a) Let x = y + z, y ∈ A, z ∈ U . Since U is open there is a 0-
neighbourhood W such that z+W ⊂ U . Then x+W = y+(z+W ) ⊂ A+U ,
so that x is an interior point of A + U . This proves the claim.

(b) By Proposition 12.1(b) there is a 0-neighbourhood W1 such that W1−
W1 ⊂ W . Let x ∈ W1. Then (x + W1) ∩W1 	= ∅, hence x ∈ W1 −W1 ⊂ W .
��
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In view of Propositions 12.1(c) and 12.2(b), the set of all closed and
balanced 0-neighbourhoods of a topological vector space X is a base of 0-
neighbourhoods in X, which will be denoted by U0(X).

There are some classes of topological vector spaces that deserve special
consideration.

To start with, any finite-dimensional topological vector space X is isomor-
phic to K

N , for some N ≥ 0, where K is the scalar field of X; see Exer-
cise 12.1.2.

If a topological vector space X admits a countable base (Wn)n of 0-
neighbourhoods, then there is a translation-invariant metric d on X gen-
erating the topology of X. If, moreover, (X, d) is complete, then X is called
an F-space. Metrizable topological vector spaces are, thus, exactly the topo-
logical vector spaces admitting a countable base of 0-neighbourhoods, and
the completion X̂ of a metrizable topological vector space is an F-space. See
also the related discussion in Section 2.1.

A topological vector space X whose topology is defined by a family of
seminorms is called a locally convex space; that is, X is locally convex if
there is a family (pα)α∈A of seminorms on X such that a subset W of X is
a 0-neighbourhood if and only if there are α1, . . . , αn ∈ A, n ≥ 1, and ε > 0
such that

{x ∈ X ; pαk
(x) < ε for k = 1, . . . , n} ⊂ W.

Fréchet spaces are, precisely, the locally convex F-spaces.
A subset A of a vector space X is called absolutely convex if, for any

x1, x2 ∈ A and λ1, λ2 ∈ K with |λ1| + |λ2| ≤ 1, the absolutely convex com-
bination λ1x1 + λ2x2 belongs to A. An easy observation is that, if A ⊂ X is
absolutely convex, xk ∈ A, λk ∈ K, k = 1, . . . , n, with

∑n
k=1 |λk| ≤ 1, then

n∑

k=1

λkxk ∈ A.

Also, if p is a seminorm on X and M ≥ 0, then the set A = {x ∈ X ; p(x) ≤
M} is absolutely convex. Conversely, if A ⊂ X is an absolutely convex set,
then the associated gauge of A, also called its Minkowski functional, is defined
as

pA(x) = inf{λ > 0 ; x ∈ λA}, x ∈ spanA.

One can verify that pA is a seminorm on spanA; see Exercise 12.1.5. There-
fore, a topological vector space X is locally convex if, and only if, it has a
base of 0-neighbourhoods (Wα)α∈A consisting of absolutely convex sets.

Example 12.3. In Sections 8.3 and 10.2 we considered the space L(X) of op-
erators on a Fréchet space X, endowed with the strong operator topology
(SOT). In this topology, a base of neighbourhoods of T ∈ L(X) is given by

Ux1,...,xn(T, ε) = {S ∈ L(X) ; ‖Txk − Sxk‖ < ε for k = 1, . . . , n},
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where x1, . . . , xn, n ≥ 1, is an arbitrary collection of linearly independent
vectors of X, ‖ · ‖ is an F-norm defining the topology of X, and ε > 0. We
immediately obtain that L(X) with the strong operator topology is a locally
convex space.

Example 12.4. Given 0 < p < 1 and a < b, let

Lp[a, b] =
{
f : [a, b] → K ; f is measurable and

∫ b

a

|f(t)|p dt < ∞
}
.

We set Wn = {f ∈ Lp[a, b] ;
∫ b
a
|f(t)|p dt < 1/n}, n ∈ N. Then the sequence

(Wn)n defines a base of 0-neighbourhoods and, by translation, a topology on
Lp[a, b] that makes it an F-space that is not locally convex; see Exercise 12.1.3.
Therefore, Lp[a, b] is not a Fréchet space.

Example 12.5. Let (Xn)n be an increasing sequence of Banach spaces such
that each inclusion map in : Xn → Xn+1, n ≥ 1, is continuous. We consider
X =
⋃∞

n=1 Xn. For each sequence δ = (δn)n of strictly positive numbers, let

Wδ =
∞⋃

n=1

n∑

k=1

δkBk,

where Bk is the open unit ball of Xk, k ∈ N. The family of absolutely convex
sets {Wδ ; δ = (δn)n ∈ ]0,∞[N} forms a base of 0-neighbourhoods for a locally
convex topology on X, called the inductive limit of (Xn)n; see Exercise 12.1.7.

12.2 Hypercyclicity, topological transitivity, and linear
chaos

We are now in a position to study linear dynamics in its widest possible
framework, that of operators on arbitrary topological vector spaces.

In the sequel we will not always define a notion when its generalization
from the Fréchet space setting is evident. Still, we cannot help stating the
following.

Definition 12.6. An operator T on a topological vector space X is called
hypercyclic if there is some x ∈ X whose orbit under T is dense in X. In such
a case, x is called a hypercyclic vector for T . The set of hypercyclic vectors
is denoted by HC(T ).

Clearly, separability of a space is again a necessary condition for the ex-
istence of a hypercyclic operator. Moreover, any finite-dimensional topolog-
ical vector space is isomorphic to some K

N and therefore cannot support
a hypercyclic operator. But unlike for the case of Fréchet spaces there are
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infinite-dimensional separable topological vector spaces that do not admit
any hypercyclic operator.

Example 12.7. We consider the space ϕ of finite sequences,

ϕ = {(xn)n ∈ K
N ; there is some m ∈ N such that xn = 0 for all n > m}.

The space ϕ has a natural locally convex topology, which is the strongest one
that can be defined on it; it is generated by the family of norms

‖x‖v =
∞∑

n=1
|xn|vn, x ∈ ϕ,

where v = (vn)n is an arbitrary sequence of strictly positive numbers. Now
let x ∈ ϕ be a hypercyclic vector for an operator T on ϕ. We set En = {x ∈
ϕ ; xk = 0 for k > n}, n ∈ N. Suppose that each En contains only a finite
number of elements of the orbit of x. We define F1 = orb(x, T ) ∩ (E1 \ {0})
and Fn = orb(x, T )∩ (En \En−1), n > 1. Then each Fn is finite, orb(x, T ) =⋃∞

n=1 Fn, and every element y ∈ Fn satisfies yn 	= 0. We can therefore define

vn =
1

min{|yn| ; y ∈ Fn}
, n ∈ N,

if Fn is nonempty, and vn = 1 otherwise. Considering the sequence v = (vn)n
we then find that ‖y‖v ≥ 1 for every y ∈ orb(x, T ), which contradicts the
hypercyclicity of x. Therefore, some En, n ≥ 1, must contain an infinite
number of elements of orb(x, T ), which is impossible because En is finite di-
mensional and the vectors in a dense orbit are linearly independent; note that
Proposition 2.60 continues to hold. Consequently, ϕ admits no hypercyclic
operator.

By the Birkhoff transitivity theorem, an operator on a separable Fréchet
space is hypercyclic if and only if it is topologically transitive. One implication
remains true since no topological vector space has isolated points.

Observation 12.8. Any hypercyclic operator on a topological vector space is
topologically transitive.

But the converse is no longer true, as the following example shows.

Example 12.9. We consider again the space X = ϕ of finite sequences, but
this time endowed with the topology inherited from �2. Consider the multiple
of the backward shift operator T = 2B : X → X, B(xn)n = 2(xn+1)n. Then
T is topologically transitive, and even mixing, because Rolewicz’s operator
is. On the other hand, T cannot be hypercyclic since the orbit of any vector
in X is finite.
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Example 12.10. For a separable Banach space X, let us consider the space
L(X) of operators on X, endowed with the strong operator topology. In
Theorem 10.20 we proved that an operator T on X satisfies the Hypercyclicity
Criterion if, and only if, the left-multiplication operator LT : L(X) → L(X),
S → TS, is hypercyclic. This characterization provides a good collection of
hypercyclic operators on the non-metrizable locally convex space L(X).

Since hypercyclicity and topological transitivity no longer coincide, we
adopt Devaney’s original definition of chaos in the general setting.

Definition 12.11 (Linear chaos). An operator T on a topological vector
space X is said to be chaotic if it satisfies the following conditions:

(i) T is topologically transitive;
(ii) T has a dense set of periodic points.

We recall the useful result, Proposition 2.33, that the set Per(T ) of periodic
points for an operator T on a complex space X is given by

Per(T ) = span{x ∈ X ; Tx = eαπix for some α ∈ Q},

whose density can often be checked easily for a concrete operator T .

Example 12.12. Let T be a chaotic operator on a separable Banach space X.
Then there is a countable dense set E ⊂ X such that each element of E is a
periodic point for T . In the proof of Proposition 10.14 we showed that, if Φ
is a countable weak-∗-dense subset of X∗, then the countable set

F = FΦ,E =
{ m∑

j=1

〈 · , y∗j 〉ej ; y∗j ∈ Φ, ej ∈ E, 1 ≤ j ≤ m
}

of operators on X is SOT-dense in L(X). We have that every element of
F is periodic for the left-multiplication operator LT on L(X). On the other
hand, hypercyclicity, and therefore topological transitivity, of LT follows from
Theorem 10.20 and the fact that chaotic operators satisfy the Hypercyclicity
Criterion; see Theorem 3.18. We thus conclude that LT is chaotic.

We next want to show that many fundamental results for hypercyclic op-
erators on Fréchet spaces extend to arbitrary topological vector spaces. For
this we need the notion of a quotient space.

Let X be a vector space and L ⊂ X a subspace. Defining x ∼ y if x−y ∈ L,
we obtain an equivalence relation on X. Let us denote by [x] = x + L the
equivalence class of x ∈ X, and by X/L the set of equivalence classes. Then
X/L inherits in a natural way a vector space structure, and we denote by
q : X → X/L, x → [x], the quotient map, which is linear and surjective.

If, now, X is a topological vector space and L ⊂ X is a closed subspace,
then X/L becomes a topological vector space, called the quotient space of X
modulo L, when endowed with the induced topology:
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U ⊂ X/L is open if and only if there is an open set Ũ ⊂ X with q(Ũ) = U.

The quotient map q is then a continuous and open map. The requirement
that L be closed is necessary for the Hausdorff property of X/L; see Exer-
cise 12.2.5.

The following result, which generalizes Bourdon’s theorem, is the key to
the announced extensions.

Lemma 12.13 (Wengenroth). Let T be an operator on topological vector
space X. If either

(i) T is topologically transitive, or
(ii) T has a somewhere dense orbit,

then, for any nonzero polynomial p, the operator p(T ) has dense range.

Proof. We will only show the complex case. The real case can be deduced in
a similar way after some minor considerations; see Exercise 12.2.6.

As in the proof of Bourdon’s theorem it suffices to show that T − λI has
dense range for every λ ∈ C. Let L = (T − λI)(X), which is a closed subspace
of X, and suppose that L 	= X. We then consider the quotient space X/L,
which is nontrivial, and the quotient map q : X → X/L. Since, for any x ∈ X,
q((T −λI)x) = 0 we have that q(Tx) = λq(x). Hence the operator S on X/L
given by S[x] = λ[x] is quasiconjugate to T via q and therefore inherits the
stated properties from T ; see the following section.

Under assumption (i), S is topologically transitive. On the other hand, let
[x] ∈ X/L, [x] 	= 0. By the Hausdorff property there is an open neighbourhood
U of [x] and a balanced 0-neighbourhood W such that U ∩W = ∅. Now, if
|λ| ≥ 1, then W ⊂ λnW , and therefore Sn(U) ∩W = ∅ for all n ∈ N0. And
if |λ| < 1, then λnW ⊂ W , and therefore Sn(W ) ∩ U = ∅ for all n ∈ N0.
Thus, for any λ ∈ C, S is not topologically transitive, a contradiction.

Under assumption (ii), S has a somewhere dense orbit {λn[x] ; n ∈ N0}.
Then span{[x]} = span{[x]} = X/L (see Exercises 12.1.1(v) and 12.1.2), so
that X/L is isomorphic to C. But every orbit {λnz ; n ∈ N0}, z ∈ C, is
nowhere dense, a contradiction. ��

Now, looking back at the proofs of the following fundamental results we
see that they work unrestrictedly once one has Wengenroth’s lemma at hand.
They therefore hold for operators on all topological vector spaces.

Herrero–Bourdon theorem. Any hypercyclic operator admits a dense in-
variant subspace consisting, except for zero, of hypercyclic vectors.

Ansari’s theorem. Any power of a hypercyclic operator is hypercyclic.

Costakis–Peris theorem. Any multi-hypercyclic operator is hypercyclic.

Bourdon–Feldman theorem. Any somewhere dense orbit is (everywhere)
dense.

Indeed, each result holds in the more detailed form given in Chapters 2 and 6.
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12.3 Dynamical transference principles

Working with general topological vector spaces instead of F-spaces sometimes
requires some abstract considerations; for example, instead of sequences,
balls, or the distance one needs to use notions like nets or neighbourhoods. In
addition, of course, one has to do without the Baire category theorem. There
do exist topological vector spaces beyond F-spaces in which Baire’s theorem
holds but they are rare.

In this section we want to discuss three techniques that allow us to transfer
dynamical properties from operators on F-spaces to operators on general
topological vector spaces.

The first technique is by now well known, that of quasiconjugacies. As
before, if X and Y are topological vector spaces then an operator T on X is
called quasiconjugate to an operator S on Y via a continuous map φ : Y → X
with dense range if T ◦ φ = φ ◦ S. Then the usual notions of linear dynamics
are preserved under quasiconjugacy: hypercyclicity, topological transitivity,
(weak) mixing, chaos, frequent hypercyclicity, etc. Moreover, if y ∈ Y is a
hypercyclic vector for S, then x := φ(y) is hypercyclic for T .

A particular case of quasiconjugacy that frequently occurs naturally is
when one can find a T -invariant dense subspace Y ⊂ X that carries its own,
not necessarily the induced, vector space topology such that the restriction
T |Y is an operator Y . If, in addition, the embedding Y → X is continuous,
then T is quasiconjugate to T |Y , so that T inherits dynamical properties from
T |Y . This is commonly known as the hypercyclic comparison principle; see
Exercise 2.2.6.

Now, if Y is, in particular, an F-space, then the results of the previous
chapters can be applied. We illustrate this by an example.

Example 12.14. Let (Xn)n be an increasing sequence of Banach spaces with
continuous inclusions, and let X be the inductive limit of (Xn)n; see Example
12.5. Suppose that T is an operator on X such that, for some n ≥ 1, Xn is
dense in X, T (Xn) ⊂ Xn and T |Xn is continuous and hypercyclic. Then, by
the comparison principle, T is hypercyclic.

As a particular case, let 1 < p ≤ ∞, and consider the space �p− :=
⋃

q<p �
q.

Obviously, �p− =
⋃∞

n=1 �
pn for any strictly increasing sequence (pn)n in ]1, p[

tending to p. A natural topology on �p− is the corresponding inductive limit
topology. If λ ∈ K is any scalar with |λ| > 1, then the multiple T = λB of the
backward shift satisfies the above requirements and is therefore hypercyclic
on �p−.

The second method is a kind of converse to the first technique. Of course,
if, for a given operator T , all operators S that are quasiconjugate to T are
hypercyclic then T itself must be hypercyclic; one may simply take S =
T . It is, however, remarkable that the result remains true when we only
admit operators S defined on F-spaces. In addition, the map φ defining the
quasiconjugacy may be required to be linear.
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Proposition 12.15. Let T be an operator on a topological vector space X,
and x ∈ X.

(a) If every operator S, defined on an F-space and quasiconjugate to T
via a linear map, is hypercyclic (topologically transitive, weakly mixing, or
mixing), then the same holds for T .

(b) If for any operator S, defined on an F-space and quasiconjugate to
T via a linear map φ, φ(x) is (frequently) hypercyclic for S, then x is (fre-
quently) hypercyclic for T .

(c) If X is a locally convex space then it suffices in (a) and (b) to allow
operators S on Fréchet spaces.

Proof. We will only show assertion (a) for the mixing property; the remaining
cases follow similarly.

Let U, V ⊂ X be arbitrary nonempty open subsets. Let x1 ∈ U , x2 ∈ V ,
and choose W ∈ U0(X) such that x1+W ⊂ U and x2+W ⊂ V . By continuity,
we obtain a decreasing sequence (Wn)n of closed balanced 0-neighbourhoods
such that W1 = W , Wn+1 + Wn+1 ⊂ Wn, and T (Wn+1) ⊂ Wn, n ∈ N. Let
L :=

⋂∞
n=1 Wn, which is easily seen to be a closed T -invariant subspace of

X. We set Y ′ = X/L, and endow it with the topology τ generated by the
family of neighbourhoods {y′ + W̃n ; y′ ∈ Y ′, n ∈ N}, where W̃n is the
image of Wn under the quotient map q : X → Y ′, n ∈ N. It is routine to
verify that (Y ′, τ) is a topological vector space, which is metrizable since it
has a countable base of 0-neighbourhoods, and that the operator T induces
an operator S′ : Y ′ → Y ′ that is quasiconjugate to T via q.

Now let Y be the completion of (Y ′, τ), which is an F-space, S : Y → Y
the extension of S′ to the completion, and φ : X → Y the operator induced
by q, which has dense range. It is clear that S is quasiconjugate to T via
the linear map φ. It then follows from the assumption that S is a mixing
operator. Therefore, also S′ is mixing, so that there is some N ∈ N0 such
that

q(Tn(x1 + W2)) ∩ q(x2 + W2) = (S′)n
(
q(x1) + W̃2

)
∩
(
q(x2) + W̃2

)
	= ∅

for every n ≥ N . This implies that

Tn(U) ∩ V ⊃ Tn(x1 + W ) ∩ (x2 + W ) ⊃ Tn(x1 + W2) ∩ (x2 + W2 + L) 	= ∅

for every n ≥ N , so that T is mixing.
In the case that X is a locally convex space, the 0-neighbourhoods Wn,

n ∈ N, can be chosen to be absolutely convex, and Y is a Fréchet space. ��

An application of this result yields the generalization of the León–Müller
theorem to arbitrary complex topological vector spaces.

Corollary 12.16. Let T be an operator on a complex topological vector space
X. Then, for any λ ∈ C with |λ| = 1, T and λT have the same hypercyclic
vectors, that is, HC(T ) = HC(λT ).
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Proof. Let x ∈ HC(T ) and λ ∈ C with |λ| = 1. By Proposition 12.15 it
suffices to show that every operator S, defined on an arbitrary F-space Y and
quasiconjugate to λT via a linear map φ : X → Y , has φ(x) as a hypercyclic
vector. But under these assumptions, λ−1S is quasiconjugate to T via φ, so
that φ(x) is a hypercyclic vector for λ−1S. Since Y is an F-space, we can
apply Theorem 6.7; note that its proof also works in arbitrary F-spaces. We
then obtain that φ(x) is hypercyclic for S, as demanded. ��

As another application of Proposition 12.15 we show that the space ϕ of
finite sequences supports a mixing operator, which is surprising in view of
the fact that ϕ does not admit any hypercyclic operator.

Example 12.17. We claim that the operator T = I +B on ϕ is mixing, where
B is the backward shift. Thus, let S : Y → Y be an operator on an arbitrary
Fréchet space Y that is quasiconjugate to T via a linear map φ : ϕ → Y . We
fix an increasing sequence of seminorms (pn)n on Y generating its topology;
by the continuity of φ there are strictly positive sequences v(n) = (vn,k)k,
n ∈ N, such that pn(φ(x)) ≤ ‖x‖v(n), for any n ∈ N and x ∈ ϕ; see Example
12.7. Defining v = (vk)k by vk = maxn,m≤k vn,m, k ∈ N, a simple calculation
shows that there are constants Mn > 0 such that pn(φ(x)) ≤ Mn‖x‖v for
any n ∈ N, x ∈ ϕ. Since Y is complete, there is a continuous extension
φ : �1(v) → Y , and S is quasiconjugate to I +B : �1(v) → �1(v) via φ. Since,
by Theorem 8.2, I + B is mixing on �1(v), so is S on Y . Proposition 12.15
then implies that T is mixing on ϕ.

We turn to the third transference principle. For this we need a new concept.
A projective spectrum X of Fréchet spaces consists of a family (Xα)α∈I of
Fréchet spaces, where I is a directed index set, and operators �αβ : Xβ → Xα

for α ≤ β, called the spectral maps, that satisfy �αβ ◦ �βγ = �αγ and �αα = IXα ,
the identity on Xα, for any α ≤ β ≤ γ. The projective limit of X is defined
as

projX =
{

(xα)α∈I ∈
∏

α∈I

Xα ; �αβxβ = xα for all α ≤ β
}
,

endowed with the topology inherited from the product topology on
∏

α∈I Xα;
in this way, projX is a locally convex space. We denote by �α : projX → Xα

the projection onto the component with index α. It is not difficult to see that
the sets (�α)−1(Wα), Wα ∈ U0(Xα), α ∈ I, form a base of 0-neighbourhoods
for the topology of projX . We say that X is strongly reduced if for each α
there is a larger β such that �αβ (Xβ) is contained in the closure of �α(projX )
in Xα.

Now, a family (Tα)α∈I of operators Tα on Xα is called an endomorphism
of X if their elements commute with the spectral maps in the sense that, for
any α ≤ β, Tα ◦ �αβ = �αβ ◦ Tβ . The projective limit of the endomorphism is
the operator T on projX defined by T (xα)α∈I = (Tαxα)α∈I .
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Proposition 12.18. Let X be a strongly reduced projective spectrum of
Fréchet spaces, (Tα)α∈I an endomorphism of X , and T its projective limit.

(a) If every Tα, α ∈ I, is topologically transitive (mixing, weakly mixing)
on Xα then T is topologically transitive (mixing, weakly mixing) on projX .

(b) If x ∈ projX is such that, for every α ∈ I, �αx ∈ Xα is (frequently)
hypercyclic for Tα then x is (frequently) hypercyclic for T .

Proof. (a) We will only show the result for the mixing property. Let x, y ∈
X := projX and W0 ∈ U0(X) be given. Then there are α ∈ I and
W1 ∈ U0(Xα) with W0 ⊃ (�α)−1(W1), and there is some β ≥ α with
�αβXβ ⊂ �α(X). For each W ∈ U0(Xα) we obtain that �αβ (Xβ) ⊂ �α(X) +
W , and thus Xβ ⊂ �β(X) + (�αβ)−1(W ). This means that the image of
�β is dense in Xβ with respect to the vector space topology τ having
{(�αβ )−1(W ) ; W ∈ U0(Xα)} as a base of 0-neighbourhoods. Moreover, Tβ

is continuous on (Xβ , τ) since T−1
β ((�αβ )−1(W )) = (�αβ)−1(T−1

α (W )) ∈ τ for
every W ∈ U0(Xα), and Tβ is mixing on (Xβ , τ) since τ is coarser than the
original topology on Xβ .

Hence there is some N ∈ N0 such that

Un := (�βx + (�αβ )−1(W1)) ∩ (T−n
β (�βy + (�αβ )−1(W1))) 	= ∅

for all n ≥ N . Since Un is open with respect to τ , there are zn ∈ X such that
�βzn ∈ Un for all n ≥ N . Then we have that �α(zn − x) = �αβ(�βzn − �βx) ∈
W1, that is, zn ∈ x + W0, and

�α(Tnzn) = �αβ (�β(Tnzn)) = �αβ(Tn
β (�βzn)) ∈ �αy + W1,

which gives that Tnzn ∈ y + W0 for every n ≥ N . This proves that

(x + W0) ∩ (T−n(y + W0)) 	= ∅,

for each n ≥ N , and therefore that T is mixing on X.
(b) Now let x ∈ X be such that, for every α ∈ I, �αx ∈ Xα is hypercyclic

for Tα. Let y ∈ X and W0 ∈ U0(X) be given. Then there are α ∈ I and
W1 ∈ U0(Xα) with W0 ⊃ (�α)−1(W1). It follows that there is some n ∈ N0
such that �αTnx = Tn

α �
αx ∈ �αy + W1, hence Tnx− y ∈ (�α)−1(W1) ⊂ W0.

This shows that x is hypercyclic for T . The same argument also shows the
claim for frequent hypercyclicity. ��

We single out a particular case of this result. Let (Xn)n be a decreasing
sequence of Fréchet spaces such that each inclusion map in : Xn+1 → Xn,
n ≥ 1, is continuous. For any n ≥ 1, let (pn,k)k be an increasing sequence
of seminorms defining the topology of Xn. We then consider the space X :=⋂∞

n=1 Xn with the locally convex topology induced by the seminorms pk(x) :=
maxn≤k pn,k(x), x ∈ X. Then X is a Fréchet space, also called the projective
limit of (Xn)n.
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Taking the inclusion maps as spectral maps, we see that (Xn)n is also
a projective spectrum, and projX is the space of constant sequences with
entries from X =

⋂∞
n=1 Xn. It is then clear that projX is isomorphic to X.

Moreover, the projective spectrum is strongly reduced if, for example, X is
dense in each Xn, n ≥ 1.

Corollary 12.19. Let (Xn)n be a decreasing sequence of Fréchet spaces with
continuous inclusion maps such that X =

⋂∞
n=1 Xn is dense in Xn for all

n ≥ 1. Let T : X → X be an operator that can be extended to an operator
Tn : Xn → Xn for any n ≥ 1.

(a) If every Tn, n ≥ 1, is topologically transitive (mixing, weakly mixing)
on Xn then T is topologically transitive (mixing, weakly mixing) on X.

(b) If x ∈ X is (frequently) hypercyclic for every Tn, n ≥ 1, then x is
(frequently) hypercyclic for T .

Proof. This follows directly from Proposition 12.18 because, by the assump-
tions, (Tn)n is an endomorphism of projX and the projective limit of (Tn)n
on projX turns into T via the identification of projX with X. ��

We note that, by quasiconjugacy, the conditions in the corollary are also
necessary.

Example 12.20. Let X = L∞−[0, 1] :=
⋂

p<∞ Lp[0, 1] be endowed with the
Fréchet space topology induced by the increasing sequence of norms (pn)n,
where pn is the norm of Ln[0, 1], n ∈ N. Let C : L∞−[0, 1] → L∞−[0, 1] be
the Cesàro operator given by Cf(t) = 1

t

∫ t
0 f(s) ds. By Exercise 3.1.4, C is

mixing on Lp[0, 1] for any 1 < p < ∞. Hence C is mixing on L∞−[0, 1].

12.4 Mixing and weakly mixing operators

In this section we will convince ourselves that the central results of Sections
2.4 and 2.5 remain true in general topological vector spaces when we replace
the assumption of hypercyclicity there by topological transitivity. We will
omit the proofs when the arguments given in those sections translate directly
to the general situation.

Proposition 12.21. An operator T on a topological vector space X is mixing
if and only if, for any nonempty open set U ⊂ X and any 0-neighbourhood
W , the sets

N(U,W ) and N(W,U)

are cofinite.

Example 12.22. We pointed out in Example 12.17 that there are mixing op-
erators on ϕ. Another easy example of a mixing operator is T = λB, |λ| > 1,



12.4 Mixing and weakly mixing operators 343

on the inductive limit �p− for 1 < p ≤ ∞; see Example 12.14. Also, if X is
an arbitrary topological vector space, then the product space XN, endowed
with the product topology, is a topological vector space, and the backward
shift B : XN → XN, (x1, x2, . . . ) → (x2, x3, . . . ) is a mixing operator. Thus,
if I is an infinite set then the space XI , endowed with the product topology,
is isomorphic to (XI)N and therefore admits a mixing operator.

We turn to the weak mixing property. As before, under mild additional
assumptions, topologically transitive operators turn out to be weakly mixing.
We start with a useful auxiliary result.

Lemma 12.23. Let T be a topologically transitive operator on a topological
vector space X. Then, for any nonempty open sets U and V in X and for
any 0-neighbourhood W , there is a nonempty open set U1 ⊂ U and a 0-
neighbourhood W1 ⊂ W such that

N(U1,W1) ⊂ N(V,W ) and N(W1, U1) ⊂ N(W,V ).

From this we can deduce the main result of this section.

Theorem 12.24. Let T be a topologically transitive operator on a topolog-
ical vector space X. If, for any nonempty open set U ⊂ X and any 0-
neighbourhood W , there is a continuous map S : X → X commuting with T
such that

S(U) ∩W 	= ∅ and S(W ) ∩ U 	= ∅,

then T is weakly mixing.

Recall that an operator T is flip transitive if, for any pair U, V ⊂ X of
nonempty open sets, N(U, V ) ∩N(V,U) 	= ∅. Thus we have in particular:

Corollary 12.25. Every flip transitive operator is weakly mixing.

Theorem 12.24 also implies that Theorem 2.47 extends to general topo-
logical vector spaces.

Theorem 12.26. An operator T on a topological vector space X is weakly
mixing if and only if, for any nonempty open sets U, V ⊂ X and any 0-
neighbourhood W ,

N(U,W ) ∩N(W,V ) 	= ∅.

Another application of Theorem 12.24 provides us with a useful sufficient
condition for a topologically transitive operator to be weakly mixing; see
Exercise 12.2.4 for the notion of a bounded set.

Theorem 12.27. Let T be a topologically transitive operator on a topological
vector space X. If there exists a dense subset X0 of X such that the orbit of
each x ∈ X0 is bounded, then T is weakly mixing.
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Proof. In order to adapt the proof of Theorem 2.48 one need only note that,
for any x ∈ X0 and any 0-neighbourhood W , there is some ε > 0 such that
εTnx ∈ W for all n ∈ N0. ��

Recall that the generalized kernel of an operator T is given by
⋃∞

n=0 kerTn.

Corollary 12.28. Let T be a topologically transitive operator on a topological
vector space X. If one of the following conditions is satisfied:

(i) T is chaotic;
(ii) T has a dense set of points for which the orbits converge;
(iii) T has dense generalized kernel;
then T is weakly mixing.

As a final application of Theorem 12.24 we will characterize weakly mixing
operators by the behaviour of multiples of iterates of T . For the notion of
topological transitivity for sequences of operators we refer to Section 1.6.

Theorem 12.29. Let T be an operator on a topological vector space X and
λ, μ ∈ K \ {0} with λ 	= μ. Then the following assertions are equivalent:

(i) T is weakly mixing;
(ii) for any M > δ > 0 and for any (λn)n with δ ≤ |λn| ≤ M , n ∈ N0, the

sequence (λnT
n)n is topologically transitive;

(iii) for any (λn)n with {λn ; n ∈ N0} ⊂ {λ, μ}, the sequence (λnT
n)n is

topologically transitive.

Proof. (i) =⇒ (ii). Given (λn)n with δ ≤ |λn| ≤ M , n ∈ N0, we let U, V ⊂ X
be nonempty open sets. By Exercise 12.1.1 there are nonempty open sets U1
and V1 and a 0-neighbourhood W such that U1+W ⊂ U and V1+W ⊂ V . By
Proposition 12.1, if L = max(1

δ ,M), then there is a 0-neighbourhood W1 such
that λW1 ⊂ W , for any λ ∈ K with |λ| ≤ L. Now, since T is weakly mixing,
there are n ∈ N0, u ∈ U1 and w ∈ W1 such that Tnu ∈ W1 and Tnw ∈ V1.
Thus u + λ−1

n w ∈ U1 + W ⊂ U and λnT
n(u + λ−1

n w) = λnT
nu + Tnw ∈

W + V1 ⊂ V . Hence (λnT
n)n is topologically transitive.

(ii) =⇒ (iii) is trivial.
(iii) =⇒ (i). By taking (λn)n to be a constant sequence, T is easily seen

to be topologically transitive. It therefore suffices to verify the hypothesis of
Theorem 12.24. Thus let W be a 0-neighbourhood and U ⊂ X a nonempty
open set. Let x ∈ U . Using the properties of Proposition 12.1 we can find
some M > 0 and an open neighbourhood U1 ⊂ U of x such that

U1 ⊂ M(λ− μ)
λ

W, U1 − U1 ⊂ M−1W, and
λ

λ− μ
U1 −

μ

λ− μ
U1 ⊂ U.

Let α = M(λ − μ). The hypothesis implies that there is some n ∈ N0 such
that λTn(U1) ∩ αU1 	= ∅ and μTn(U1) ∩ αU1 	= ∅; otherwise there would
exist a sequence (λn)n with entries λ or μ such that λnT

n(U1) ∩ αU1 = ∅

for all n ∈ N0. Thus there are u1, u2 ∈ U1 with Tn(α−1λu1) ∈ U1 and
Tn(α−1μu2) ∈ U1. Then
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α−1λu1 ∈ λ

M(λ− μ)
U1 ⊂ W, Tn(α−1λu1) ∈ U,

and

Mα−1(λu1 − μu2) ∈ U, Tn(Mα−1(λu1 − μu2)) ∈ M(U1 − U1) ⊂ W.

We then conclude with Theorem 12.24. ��

12.5 Criteria for weak mixing, mixing and chaos

We extend here the criteria of Chapter 3 to general topological vector spaces.
Since the arguments given there can be adapted directly to the general situ-
ation we omit the proofs.

Following the same order, we start with the criterion based on a large
supply of eigenvectors.

Theorem 12.30 (Godefroy–Shapiro criterion). Let T be an operator on
a topological vector space X. Suppose that the subspaces

X0 := span{x ∈ X ; Tx = λx for some λ ∈ K with |λ| < 1},

Y0 := span{x ∈ X ; Tx = λx for some λ ∈ K with |λ| > 1}

are dense in X. Then T is mixing.
If, moreover, X is a complex space and also the subspace

Z0 := span{x ∈ X ; Tx = eαπix for some α ∈ Q}

is dense in X, then T is chaotic.

Kitai’s Criterion for mixing extends likewise.

Theorem 12.31 (Kitai’s criterion). Let T be an operator on a topological
vector space X. If there are dense subsets X0, Y0 ⊂ X and a map S : Y0 → Y0
such that, for any x ∈ X0, y ∈ Y0,

(i) Tnx → 0,
(ii) Sny → 0,
(iii) TSy = y,
then T is mixing.

Example 12.32. Let X = Lp[0, 1], 0 < p < 1, be the space of p-integrable
functions on [0, 1]; see Example 12.4. Let ϕ : [0, 1] → [0, 1] be the invertible
function given by ϕ(t) = t/2 if t ∈ [0, 1/2], and ϕ(t) = (3/2)t − 1/2 if
t ∈ ]1/2, 1]. We then consider the composition operator Cϕ : X → X, Cϕf =
f ◦ ϕ. The set
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X0 = Y0 = {f ∈ X ; f is continuous and f(0) = f(1) = 0},

is dense in X, and for S : Y0 → Y0 we choose the composition operator S =
Cϕ−1 , so that TSf = f for all f ∈ Y0. Moreover, it is easy to check that, if t ∈
[0, 1[, then limn→∞ ϕn(t) = 0, which implies that Cn

ϕf → 0 for every f ∈ X0
by the dominated convergence theorem. Analogously, limn→∞(ϕ−1)n(t) = 1
for all t ∈ ]0, 1], so that Cn

ϕ−1f → 0 for every f ∈ Y0. An application of
Kitai’s criterion shows that T is mixing.

Finally, the Hypercyclicity Criterion turns out to be a weak mixing crite-
rion within the general framework.

Theorem 12.33. Let T be an operator on a topological vector space X. If
there are dense subsets X0, Y0 ⊂ X, an increasing sequence (nk)k of positive
integers, and maps Snk

: Y0 → X, k ≥ 1, such that, for any x ∈ X0, y ∈ Y0,
(i) Tnkx → 0,
(ii) Snk

y → 0,
(iii) TnkSnk

y → y,
then T is weakly mixing.

By Example 12.9 then, an operator satisfying this criterion need not be
hypercyclic. With this realization that the Hypercyclicity Criterion is a mis-
nomer we conclude the book.

Exercises

Exercise 12.1.1. Let X be a topological vector space. Prove the following assertions:
(i) if x ∈ X and W is a 0-neighbourhood, then there exists some M > 0 and a

neighbourhood U of x such that U ⊂ MW ;
(ii) if U is a nonempty open set, then there is a 0-neighbourhood W and a nonempty

open set U1 ⊂ U such that U1 + W ⊂ U ;
(iii) if U is a nonempty open set, λ, μ ∈ K with λ + μ �= 0, and x ∈ U , then there is a

neighbourhood U1 ⊂ U of x such that λU1 + μU1 ⊂ (λ + μ)U ;
(iv) for any λ ∈ K \ {0} and y ∈ X, the operators Mλ : X → X, x → λx, and

Ty : X → X, x → x + y, are homeomorphisms;
(v) if A ⊂ X is somewhere dense in X then spanA is dense in X.

Exercise 12.1.2. Show that every finite-dimensional topological vector space X over
the field K = R or C is isomorphic to K

N , where N is the dimension of X. Deduce that
finite-dimensional subspaces of topological vector spaces are closed. Here, as usual, an
isomorphism between two topological vector spaces is, by definition, a linear homeomor-
phism.

Exercise 12.1.3. Given 0 < p < 1 and a < b, show that the vector space

X = Lp[a, b] =
{
f : [a, b] → K ; f is measurable and

∫ b

a

|f(t)|p dt < ∞
}
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is an F-space if we endow it with the base of neighbourhoods (g + Wn)n, g ∈ X, where
Wn = {f ∈ X ;

∫ b

a
|f(t)|p dt < 1/n}, n ∈ N. Prove that X is not a Fréchet space.

Exercise 12.1.4. (a) Let X be a vector space. Show that a subset A of X is absolutely
convex if and only if it is convex and balanced.

(b) Show that a topological vector space is locally convex if, and only if, it has a base
of 0-neighbourhoods consisting of convex sets.

Exercise 12.1.5. Given a vector space X, prove that, if A ⊂ X is an absolutely convex
set, the associated gauge of A,

pA(x) = inf{λ > 0 ; x ∈ λA}, x ∈ spanA,

is a seminorm on spanA.

Exercise 12.1.6. If X is an infinite-dimensional Fréchet space, then show that L(X)
endowed with the strong operator topology is not metrizable.

Exercise 12.1.7. Let (Xn)n be an increasing sequence of Banach spaces such that each
inclusion map in : Xn → Xn+1, n ≥ 1, is continuous, and set X =

⋃∞
n=1 Xn. Show that

the inductive limit topology defined in Example 12.5 is a locally convex topology on X.
Prove that it is not metrizable unless there is some m ∈ N such that Xn = Xm for all
n ≥ m.

Exercise 12.2.1. The weak topology on a Banach space X is the locally convex topology
on X defined by the seminorms x → |〈x, x∗〉|, x∗ ∈ X∗; that is, it is the topology of
pointwise convergence on X∗. An operator T on a Banach space X is called weakly
hypercyclic if it is hypercyclic on X endowed with the weak topology.

Let X = �p, 1 ≤ p < ∞, or X = c0. Show that a weighted backward shift Bw on X
is hypercyclic if and only if it is weakly hypercyclic.

Exercise 12.2.2. Construct a chaotic and mixing operator that is not hypercyclic.
(Hint: Enlarge the space in Example 12.9.)

Exercise 12.2.3. An operator T on a locally convex space X is called compact if there
exists some W ∈ U0(X) such that T (W ) is compact. Show that no compact operator on
a locally convex space is hypercyclic, and that no compact perturbation of a multiple of
the identity is chaotic. (Hint: If W ∈ U0(X) is absolutely convex and pW is the gauge
of W , then pW induces a norm on X/ ker pW . The completion of this normed space is
called the local Banach space XW . If W ∈ U0(X) is absolutely convex such that T (W )
is compact, then consider the operator TW on XW induced by T .)

Exercise 12.2.4. A subset B of a topological vector space X is called bounded if, for any
W ∈ U0(X), there is some M > 0 such that B ⊂ MW . If, in addition, B is absolutely
convex then XB := spanB is a normed space when endowed with the gauge of B.

An operator T on X is called bounded if there is some U ∈ U0(X) such that T (U) is a
bounded subset of X. Show that a bounded operator T with dense range is hypercyclic
(or mixing, weakly mixing or chaotic) if and only if there is a bounded absolutely convex
set B ⊂ X such that XB is a T -invariant dense subspace of X and the induced operator
TB : XB → XB is hypercyclic (or mixing, weakly mixing or chaotic, respectively).

Moreover, if T is a bounded operator and λ ∈ K, show that there is some M > 0
such that M(λI + T ) is not hypercyclic.

Exercise 12.2.5. Let X be a topological vector space and L a subspace of X. Show that
X/L is Hausdorff if and only if L is closed. (Hint: Use some properties of Exercise 12.1.1.)
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Exercise 12.2.6. Let X be a topological vector space over R, T an operator on X that
is topologically transitive or has a somewhere dense orbit, and p a nonzero polynomial
over R. Prove that p(T ) has dense range. (Hint: Define, as for Fréchet spaces, the com-
plexifications X̃ of X and T̃ of T . As in the proof of Theorem 2.54 it suffices to show that
T̃−λI has dense range for all λ ∈ C. First case: proceed as in the proof of Theorem 2.54,
taking into account that T̃ has the property that, for any U, V ⊂ X open and nonempty,
there is n ∈ N with T̃n(U + iU) ∩ (V + iV ) �= ∅. Second case: there is x ∈ X such
that {Tnx+ iTmx ; n,m ≥ 0} is somewhere dense in X̃. Applying the quotient map q,
deduce that X̃ can be identified with C. By continuity and openness of |q| : X → R+,
{|q(Tnx)| ; n ≥ 0} is somewhere dense in R+, but |q(Tnx)| = |q(T̃nx)| = |λ|n|q(x)|.)

Exercise 12.3.1. Given a compact subset K ⊂ C, a holomorphic germ on K is a
function that is defined and holomorphic on an open set U containing K. Let H(K) be
the space of holomorphic germs on K, and let A(K) be the Banach space of continuous
functions on K that are holomorphic on the interior of K, endowed with the sup-norm.

If (Kn)n is a decreasing sequence of compact sets such that the interior of each Kn

contains K and
⋂∞

n=1 Kn = K, then H(K) can be viewed as the inductive limit of the
increasing sequence (A(Kn))n of Banach spaces. Prove that the differentiation operator
D is a well-defined operator on H(K), and that it is hypercyclic and chaotic if K is
connected with connected complement C \K.

Exercise 12.3.2. Consider the weighted Banach space of holomorphic functions on the
unit disk,

Hvn(D) :=
{
f ∈ H(D) ; ‖f‖ := sup

z∈D

|f(z)|vn(z) < ∞
}
,

where vn(z) := (1 − |z|)n, n ∈ N; the inclusions Hvn(D) ↪→ Hvn+1(D), n ≥ 1, are
continuous. The Korenblum space A−∞ is defined as the inductive limit of (Hvn(D))n.
Show that the differentiation operator D is a well-defined operator on A−∞, and prove
that any finite-order differential operator on A−∞ that is not a multiple of the identity
is chaotic. In contrast, observe that D(Hvn(D)) �⊂ Hvn(D) for any n ∈ N, so that the
argument in Example 12.14 cannot be applied.

Exercise 12.3.3. Let w = (wn)n be a weight sequence and Bw the corresponding
weighted backward shift. Show that T := I +Bw is mixing on ϕ. (Hint: Show that T is
quasiconjugate to I + B on ϕ via a suitable diagonal operator.)

Exercise 12.3.4. Let X be a topological sequence space, that is, a topological vector
space X such that X ⊂ ω = K

N with continuous inclusion. Suppose that ϕ is contained
and dense in X. If the weighted backward shift Bw is a well-defined operator on X,
prove that T := I + Bw is mixing on X.

Exercise 12.3.5. For this exercise we will need Young’s inequality: given any x ∈ �p(Z)
and y ∈ �q(Z), 1 ≤ p, q < 2, the convolution product

x ∗ y :=
(∑

k∈Z

xkyn−k

)

n∈Z

,

exists and belongs to �r(Z), where 1/p+ 1/q = 1/r+ 1. Moreover, ‖x ∗ y‖r ≤ ‖x‖p‖y‖q.
We consider the Fréchet space �1+(Z) =

⋂
p>1 �

p(Z). The space �1+ is defined similarly.
(a) Show that, for any y ∈ �1+(Z), the map y∗· : �1+(Z) → �1+(Z) given by x → y∗x

defines an operator on �1+(Z). Deduce that, for any function f(z) =
∑∞

n=0 αnz
n with

(αn−1)n ∈ �1+, T = f(B) =
∑∞

n=0 αnB
n defines an operator on �1+, where B is the

(unweighted) backward shift.
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(b) Let λ ∈ K \ {0}, and suppose that f(z) =
∑∞

n=0 αnz
n with (αn−1)n ∈ �1+ is

a nonconstant function such that there exist z1, z2 ∈ K with |z1|, |z2| < 1 such that
|λf(z1)| < 1 and |λf(z2)| > 1. Show that λf(B) is hypercyclic on �1+. If K = C and,
moreover, there exists z ∈ C with |z| < 1 such that |λf(z)| = 1, show that λf(B) is
chaotic on �1+. As a consequence obtain that λT is chaotic on �1+ for every λ �= 0,
where T :=

∑∞
n=1

1
nB

n. (Hint: If |λ| < 1, then eλ := (λn)n is an eigenvector of f(B).)
Observe that T (�p) �⊂ �p for any p ≥ 1, which shows that the above result cannot be

transferred from the Banach spaces defining the projective spectrum of �1+.

Exercise 12.4.1. Let (Tn)n be a topologically transitive commuting sequence of oper-
ators on a topological vector space X such that, for any nonempty open set U ⊂ X and
any 0-neighbourhood W , there is a continuous map S : X → X commuting with all Tn,
n ∈ N0, such that

S(U) ∩ U �= ∅ and S(U) ∩W �= ∅.

Show that (Tn)n is weakly mixing. (Hint: Given U,W , find U1 ⊂ U and W1 ⊂ W
with U1 − U1 ⊂ W , U1 −W1 ⊂ U . Apply the hypothesis and the 4-set trick to get that
N(U1, U1)∩N(U1,W1) �= ∅. Then deduce the result from the analogue of Theorem 12.24
for sequences of operators.)

Exercise 12.4.2. Inspired by Theorems 1.54 and 12.29, prove that an operator T on a
topological vector space X is weakly mixing if and only if, for any M > δ > 0, for any
(λn)n with δ ≤ |λn| ≤ M , n ∈ N0, and for any syndetic sequence (nk)k, the sequence
(λkT

nk )k is topologically transitive.

Exercise 12.5.1. Let ϕ : [0, 1] → [0, 1] be a continuous, surjective, and strictly increas-
ing function such that ϕ(t) �= t for all t ∈ ]0, 1[. Show that the composition operator Cϕ

is mixing on Lp[0, 1] for any p > 0.

Exercise 12.5.2. Let T be an operator on a separable Banach space X satisfying the
Godefroy–Shapiro criterion (or the Hypercyclicity Criterion with respect to (nk)k).
Prove that the left-multiplication operator LT on L(X), endowed with the strong op-
erator topology, satisfies the hypotheses of Theorem 12.30 (or the hypotheses of Theo-
rem 12.33 with respect to (nk)k, respectively).

Exercise 12.5.3. Let X be a Banach space with separable dual X∗ and T an operator
on X whose adjoint T ∗ : X∗ → X∗ satisfies the Hypercyclicity Criterion (or is chaotic).
Show that the right-multiplication operator RT : L(X) → L(X), S → ST , is hypercyclic
and weakly mixing (or is hypercyclic and chaotic, respectively) on L(X), endowed with
the strong operator topology; see also Exercise 10.2.7.

Sources and comments

Section 12.1. All the basic results of this section can be found in the books by Meise and
Vogt [237] and Rudin [271]. For F-spaces we also refer to Kalton, Peck and Roberts [212].

Section 12.2. Dynamical properties of linear operators on topological vector spaces
beyond F-spaces were apparently first studied by Ansari [10]. The fact that the space
ϕ admits no hypercyclic operators was obtained by Bonet and Peris [85] and Grosse-
Erdmann [179]. The definition of chaos in general topological vector spaces was proposed
by Bonet [78], where one also finds Example 12.9. The crucial Lemma 12.13 is due to
Wengenroth [301].
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We want to mention an interesting result on weakly topologically transitive operators,
that is, operators that are topologically transitive with respect to the weak topology; it
is due to Desch and Schappacher [130] (for Banach spaces) and Shkarin [286].

Theorem 12.34. An operator T on a complex locally convex space is weakly topologi-
cally transitive if and only if T ∗ has no eigenvalues.

Section 12.3. Proposition 12.15 is new, while Corollary 12.16 is due to Shkarin [284]
and Bayart and Matheron [44].

Example 12.17 and Proposition 12.18 are due to Bonet, Frerick, Peris and Wengen-
roth [81]. Since ϕ is thus a topological vector space without hypercyclic operators, but
that admits a mixing, and therefore topologically transitive, operator, one might wonder
if every infinite-dimensional topological vector space necessarily admits a topologically
transitive operator. This is not the case, as Bermúdez and Kalton [52] have shown: there
are (non-separable) Banach spaces, like �∞, or L(�2) with the operator norm, without
any topologically transitive operators. Further existence and nonexistence results con-
cerning hypercyclic or topologically transitive operators on locally convex spaces beyond
Fréchet spaces are due to Bonet and Peris [85], Bonet, Frerick, Peris and Wengenroth [81],
and Shkarin [286, 288, 293].

Example 12.20 solves a problem from León, Piqueras and Seoane [224].

Section 12.4. For the results of this section we refer to Grosse-Erdmann and Peris [187].
Similar investigations can be found in Bayart and Matheron [44], [45] and Moothathu
[245].

Section 12.5. Example 12.32 is from Grosse-Erdmann [179].

Exercises. Exercise 12.2.1 is taken from Chan and Sanders [101], where the authors
also show that there are weakly hypercyclic bilateral shifts that are not hypercyclic.
Exercise 12.2.2 is taken from Bonet [78], Exercise 12.2.3 from Bonet and Peris [85] and
Martínez and Peris [229]. The first part of Exercise 12.2.4 is from Bonet and Peris [85].
The second part is extracted from Bonet [80]; this paper studies the open problem of
the existence of non-normable Fréchet spaces X such that every operator on X is of the
form λI + T with T a bounded operator. It is also asked whether, for every infinite-
dimensional separable non-normable Fréchet space X, there exists an operator T on X
such that λT is hypercyclic for any λ �= 0. Exercise 12.2.6 is taken from Wengenroth
[301]. For Exercise 12.3.2 we refer to Bonet [78], for Exercises 12.3.3 and 12.3.4 to Bonet,
Frerick, Peris and Wengenroth [81], and for Exercise 12.3.5 to Frerick and Peris [155].
Exercise 12.5.3 is taken from Bonet, Martínez and Peris [84].
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