
Chapter 1
Topological dynamics

This chapter provides an introduction to the theory of (not necessarily linear)
dynamical systems. Fundamental concepts such as topologically transitive,
chaotic and (weakly) mixing maps are defined and illustrated with typical
examples. The Birkhoff transitivity theorem is derived as a crucial tool for
showing that a map has a dense orbit. Moreover we obtain several character-
izations of weakly mixing maps that will be of great significance later on.

The interest in this chapter is that it derives results on dynamical systems
that do not require linearity. From Chapter 2 onwards, all our systems will
be linear.

1.1 Dynamical systems

The theory of dynamical systems studies the long-term behaviour of evolving
systems.

As a motivating example we consider the size of a population, which we
assume to be given by the value Nn at discrete times n = 0, 1, 2, . . . . In a
simple model the size at time n + 1 will only depend on the size at time n.
The population is then described by a law

Nn+1 = T (Nn), n = 0, 1, 2, . . . ,

where T is a suitable map. It follows that

Nn = (T ◦ . . . ◦ T )(N0), n = 1, 2, . . .

with n applications of the map T . Thus the behaviour of the population is
completely determined by the initial population N0 and the map T .

More generally, we assume that the possible states of a (physical, biologi-
cal, economic, . . . , or abstract) system are described by the elements from a
set X and that evolution of the system is described by a map T : X → X;
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4 1 Topological dynamics

that is, if xn ∈ X is the state of the system at time n ≥ 0, then

xn+1 = T (xn), n = 0, 1, 2, . . . .

Since we want to measure changes in the values xn, we require the underlying
space to be a metric space. And since we want small changes in xn only to
result in small changes in xn+1 we require continuity of T .
Definition 1.1. A (discrete) dynamical system is a pair (X,T ) consisting of
a metric space X and a continuous map T : X → X.

Often we will simply call T (when the underlying space X is taken for
granted) or T : X → X a dynamical system. Moreover we adopt the notation
used in operator theory to write Tx for T (x).

What we are interested in is the evolution of the system that starts with
a certain state x0. For this we define the iterates Tn : X → X, n ≥ 0, by the
n-fold iteration of T ,

Tn = T ◦ . . . ◦ T (n times)

with
T 0 = I,

the identity on X.
Definition 1.2. Let T : X → X be a dynamical system. For x ∈ X we call

orb(x, T ) = {x, Tx, T 2x, . . .}

the orbit of x under T .
Returning to the previous discussion, suppose that the size Nn of a pop-

ulation changes proportionally to its actual size, that is, it follows the law

Nn+1 −Nn

Nn
= γ, n ≥ 0,

with some constant γ > −1. One may write this equivalently as

Nn+1 = (1 + γ)Nn,

so that the corresponding dynamical system is given by

T : R+ → R+, Tx = (1 + γ)x.

The orbit of x ∈ R+ can be calculated explicitly as

orb(x, T ) = {(1 + γ)nx ; n ≥ 0}.

Thus, the orbit tends to 0, x and ∞ for −1 < γ < 0, γ = 0 and γ > 0,
respectively.
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As a more realistic model for the evolution of a population the following
has been suggested. If we assume that the environment limits the size of the
population by a certain number L > 0 then we might assume the law to be

Nn+1 −Nn

Nn
= γ(L−Nn), γ > 0.

Rescaling by Mn = (L + γ−1)−1Nn and setting μ = γL + 1 we obtain that

Mn+1 = μMn(1 −Mn), n ≥ 0.

This refined model leads to the following dynamical system.
Example 1.3. (Logistic map) Let μ ∈ R. The logistic map Lμ : R → R is
given by Lμx = μx(1−x), x ∈ R. Figure 1.1 shows the graph of Lμ for μ = 3.

Fig. 1.1 The logistic map L3 Fig. 1.2 The tent map T

We introduce several other popular dynamical systems.
Example 1.4. (a) (Quadratic map) A quadratic map is defined by the real
dynamical system Qc : R → R, x → x2 + c, with a parameter c ∈ R, or by
the corresponding complex dynamical system Qc : C → C, z → z2 + c, with
c ∈ C.

(b) (Doubling map on the circle) Let T : C → C denote the square
function Tz = z2. Its iterates are Tnz = z2n . It follows that the orbits
for points z with |z| < 1 tend to 0, while for |z| > 1 the orbits tend to
infinity. As we will see later, the dynamics of T for points on the unit circle
T = {z ∈ C ; |z| = 1} are much more interesting. Since T (T) ⊂ T, we usually
consider the dynamical system T : T → T, z → z2, the so-called doubling
map. The name refers to the fact that T doubles the argument of the complex
number z.
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(c) (Circle rotation) The system T : T → T, z → eiαz, α ∈ [0, 2π[,
describes the rotation of the point z on the unit circle by the angle α. We
will see that its dynamical behaviour depends to a large extent on the question
of whether the rotation is rational (α ∈ πQ) or irrational (α /∈ πQ).

(d) (Tent map) The tent map is given by T : [0, 1] → [0, 1], Tx = 2x, if
x ∈ [0, 1

2 ], and Tx = 2 − 2x, if x ∈ ] 12 , 1]. The name derives from the shape
of its graph; see Figure 1.2.

(e) (Doubling map on the interval) We consider the interval [0, 1] in
which we identify 0 and 1; the metric on this space is given by d(x, y) =
min(|x− y|, 1 − |x− y|). Then T : [0, 1] → [0, 1], x → 2x (mod 1) describes a
dynamical system.

(f) (Shift on the interval) When we identify again 0 and 1, the map
T : [0, 1] → [0, 1], x → x + α (mod 1) with α ∈ [0, 1[ describes the shift by α,
modulo 1, of any point on the unit interval.

Every mathematical theory has its notion of isomorphism. When do we
want to consider two dynamical systems S : Y → Y and T : X → X as
equal? There should be a homeomorphism φ : Y → X such that, when
x ∈ X corresponds to y ∈ Y via φ then Tx should correspond to Sy via φ. In
other words, if x = φ(y) then Tx = φ(Sy). This is equivalent to saying that
T ◦ φ = φ ◦ S.

We recall that a homeomorphism is a bijective continuous map whose
inverse is also continuous. In many applications, however, it is already enough
to demand that φ is continuous with dense range.

Definition 1.5. Let S : Y → Y and T : X → X be dynamical systems.
(a) Then T is called quasiconjugate to S if there exists a continuous map

φ : Y → X with dense range such that T ◦ φ = φ ◦ S, that is, the diagram

Y
S−−−−→ Y

φ

⏐
⏐
�

⏐
⏐
�φ

X
T−−−−→ X

commutes.
(b) If φ can be chosen to be a homeomorphism then S and T are called

conjugate.

Conjugacy is clearly an equivalence relation between dynamical systems,
and conjugate dynamical systems have the same dynamical behaviour. What
makes this notion even more interesting is the fact that it is by no means
always obvious if two systems are conjugate or not.

Example 1.6. We refer to the various dynamical systems introduced above.
(a) For any μ �= 0, 2, the logistic maps Lμ and L2−μ are conjugate; one

can take an affine function x → ax+ b for φ, as is easily verified. It therefore
suffices to study these maps for μ ≥ 1.
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(b) Any logistic map Lμ, μ �= 0, is conjugate to a suitable real quadratic
map Qc; again, the conjugacy can be given by an affine function.

(c) The logistic map L4, when restricted to the interval [0, 1], is conjugate
to the tent map. In fact, an easy calculation shows that one may take φ(x) =
sin2(π2x).

(d) When we identify the points 0 and 1, the map φ : [0, 1] → T, x → e2πix

is a homeomorphism. It clearly defines a conjugacy between the doubling
map on [0, 1] and the doubling map on the circle; and it defines a conjugacy
between the shift by α on [0, 1] and the circle rotation by the angle 2πα.

Definition 1.7. We say that a property P for dynamical systems is preserved
under (quasi)conjugacy if the following holds: if a dynamical system S : Y →
Y has property P then every dynamical system T : X → X that is (quasi)
conjugate to S also has property P.

For example, the property of having dense range is clearly preserved under
quasiconjugacy, while the property of being surjective is preserved under
conjugacy but not under quasiconjugacy.

1.2 Topologically transitive maps

One way of defining a new dynamical system from a given dynamical system
T is by restricting it to a subset. However, one has to ensure that T maps
this subset into itself.

Definition 1.8. Let T : X → X be a dynamical system. Then a subset
Y ⊂ X is called T -invariant or invariant under T if T (Y ) ⊂ Y .

Thus, if Y ⊂ X is T -invariant, then T |Y : Y → Y is also a dynamical
system.

Example 1.9. The interval [0, 1] is invariant under the logistic map Lμ for
0 ≤ μ ≤ 4.

The study of a mathematical object is often simplified by breaking it up
into smaller parts and by studying these separately. If such a splitting is not
possible then one usually says that the object is irreducible. In the case of
dynamical systems, we might regard T : X → X as irreducible if X cannot be
divided into two T -invariant subsets with nonempty interior. In that direction
we have the following result.

Proposition 1.10. Let T : X → X be a dynamical system. Then we have
the implications (i) ⇐= (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v), where

(i) X cannot be written as X = A ∪ B with disjoint T -invariant subsets
A,B such that A and B have nonempty interior;
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(ii) X cannot be written as X = A∪B with disjoint subsets A,B such that
A is T -invariant and A and B have nonempty interior;

(iii) for any pair U, V of nonempty open subsets of X there exists some n ≥ 0
such that Tn(U) ∩ V �= ∅;

(iv) for any nonempty open subset U of X the set
⋃∞

n=0 T
n(U) is dense in

X;
(v) for any nonempty open subset U of X the set

⋃∞
n=0 T

−n(U) is dense in
X.

Proof. (ii)=⇒(i) is trivial.
(ii)=⇒(iv). Let A =

⋃∞
n=0 T

n(U) and B = X \ A. Then A is T -invariant,
and it has nonempty interior since it contains U . By (ii), B must have empty
interior, which implies that A is dense.

(iii)=⇒(ii). Suppose that X = A ∪ B, A ∩ B = ∅ and T (A) ⊂ A. Then
int(A) and int(B) are open sets with Tn(int(A))∩ int(B) ⊂ A∩B = ∅ for all
n ≥ 0. By (iii) this can only be the case if either A or B has empty interior.

We clearly have that (iii)⇐⇒(iv). For (iii)⇐⇒(v) one need only note that
Tn(U) ∩ V �= ∅ is equivalent to U ∩ T−n(V ) �= ∅. ��

We see that condition (iii) is slightly stronger than the irreducibility of a
dynamical system; see also Exercise 1.2.1. Since this condition will turn out
to be of fundamental importance for the theory it is given its own name.

Definition 1.11. A dynamical system T : X → X is called topologically
transitive if, for any pair U, V of nonempty open subsets of X, there exists
some n ≥ 0 such that Tn(U) ∩ V �= ∅.

Fig. 1.3 Topological transitivity

Example 1.12. (a) The tent map is topologically transitive. To see this, note
that Tn is the piecewise linear map with Tn( 2k

2n ) = 0, k = 0, 1, . . . , 2n−1,

and Tn(2k−1
2n ) = 1, k = 1, . . . , 2n−1; see Figure 1.4. Thus, let U ⊂ [0, 1] be

nonempty and open. Then U contains some interval J := [ m2n , m+1
2n ]. But

since [0, 1] = Tn(J) ⊂ Tn(U), Tn(U) in fact meets every nonempty set V .
(b) The doubling map on the circle, T : T → T, z → z2, is also topolog-

ically transitive. In fact, every nonempty open set U ⊂ T contains a closed
arc of angle 2π

2n , for some n ≥ 1. Since the map T doubles angles, we have
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that Tn(U) contains a closed arc of angle 2π, hence Tn(U) = T meets every
nonempty set V .

(c) No rational rotation T : T → T, z → eiαz, is topologically transitive.
For example, if α = 2π

n then the iterates of an open arc γ of angle π
n never meet

the arc ei
π
n γ. In contrast, every irrational rotation is topologically transitive;

see Exercise 1.2.9.

Fig. 1.4 The iterates T 2 and T 3 of the tent map

Proposition 1.13. Topological transitivity is preserved under quasiconjuga-
cy.

Proof. Let T : X → X be quasiconjugate to S : Y → Y via φ : Y → X,
and let U and V be nonempty open subsets of X. Since φ is continuous and
of dense range, φ−1(U) and φ−1(V ) are nonempty and open. Thus there are
y ∈ φ−1(U) and n ≥ 0 with Sny ∈ φ−1(V ), which implies that φ(y) ∈ U and
Tnφ(y) = φ(Sny) ∈ V . ��

The equivalence of conditions (iv) and (v) in Proposition 1.10 implies the
following.

Proposition 1.14. Let T : X → X be a dynamical system with continuous
inverse T−1. Then T is topologically transitive if and only if T−1 is.

Topological transitivity can be interpreted as saying that T connects all
nontrivial parts of X. This is automatically the case whenever there is a point
x ∈ X with dense orbit under T .

Proposition 1.15. Let T be a continuous map on a metric space X without
isolated points.

(a) If x ∈ X has dense orbit under T then so does each Tnx, n ≥ 1.
(b) If T has a dense orbit then it is topologically transitive.
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Proof. (a) This follows easily from the fact that orb(x, T )\{x, Tx, . . . , Tn−1x}
is contained in orb(Tnx, T ) and that, in every metric space without isolated
points, a dense set remains dense even after removing finitely many points.

(b) Suppose that x ∈ X has dense orbit under T . Let U and V be nonempty
open sets in X. Then there is some n ≥ 0 such that Tnx ∈ U . By (a), also
Tnx has dense orbit, so that there is some m ≥ n such that Tmx ∈ V . This
implies that Tm−n(U) ∩ V �= ∅. ��

What is less obvious is that, in separable complete metric spaces, the
converse of this result is also true: topologically transitive maps must have a
dense orbit. The importance of this result for the theory of dynamical systems
can hardly be overemphasized. It was first obtained in 1920 by G. D. Birkhoff
in the context of maps on compact subsets of R

N .

Theorem 1.16 (Birkhoff transitivity theorem). Let T be a continuous
map on a separable complete metric space X without isolated points. Then
the following assertions are equivalent:

(i) T is topologically transitive;
(ii) there exists some x ∈ X such that orb(x, T ) is dense in X.

If one of these conditions holds then the set of points in X with dense orbit
is a dense Gδ-set.

Proof. By the previous proposition, (ii) implies (i). For the converse, let T
be topologically transitive, and let D(T ) denote the set of points in X that
have dense orbit under T . Since X has a countable dense set {yj ; j ≥ 1},
the open balls of radius 1

m around the yj , m, j ≥ 1, form a countable base
(Uk)k≥1 of the topology of X. Hence, x belongs to D(T ) if and only if, for
every k ≥ 1, there is some n ≥ 0 such that Tnx ∈ Uk. In other words,

D(T ) =
∞⋂

k=1

∞⋃

n=0
T−n(Uk).

By continuity of T and Proposition 1.10, each set
⋃∞

n=0 T
−n(Uk), k ≥ 0, is

open and dense. The Baire category theorem then implies that D(T ) is a
dense Gδ-set, and hence nonempty. ��

We note that the absence of isolated points was not needed for the proof
that (i) implies (ii).

Example 1.17. It follows from Example 1.12 that the tent map and the dou-
bling map have dense orbits. Irrational rotations (that is, with α /∈ πQ) have
the stronger property that each of their orbits is dense; see Exercise 1.2.9.

Let us briefly reflect on the usefulness of the transitivity theorem. Sup-
pose that we are interested in the existence of a dense orbit under a given
map. Sometimes such a point presents itself with little effort, as is the case
for irrational rotations. But what if this is not the case? Without further
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information we will never be likely to stumble on a point with dense orbit.
In contrast, topological transitivity seems much easier to prove, as we have
seen, for example, in the case of the tent map: we need only connect any two
nonempty open sets by suitable iterates.

We stress, however, that in more general spaces topological transitivity
and the existence of a dense orbit need not coincide.

Example 1.18. Let X be the set of all points on the unit circle that are 2nth
roots of unity, for some n ≥ 1. By Example 1.12(b) the doubling map, re-
stricted to X, is topologically transitive, but clearly has no dense orbits.

This example shows that the completeness assumption in the Birkhoff
transitivity theorem cannot be dropped.

Proposition 1.19. The property of having a dense orbit is preserved under
quasiconjugacy.

Proof. Let T : X → X be quasiconjugate to S : Y → Y via φ : Y → X,
and let y ∈ Y have dense orbit under S. If U is a nonempty open subset of
X then φ−1(U) is nonempty and open, so that some Sny, n ≥ 0, belongs to
φ−1(U). But then Tnφ(y) = φ(Sny) belongs to U . ��

Example 1.20. By Examples 1.6(c) and 1.17, the logistic map L4 on [0, 1] has
a dense orbit.

1.3 Chaos

What is chaos? Even when we restrict the meaning of this word to determin-
istic chaos, that is, chaotic behaviour of a dynamical system, mathematicians
have come up with different answers to this question. We will follow here the
definition that was suggested by Devaney in 1986. It has three ingredients,
which we discuss in turn.

The first ingredient tries to capture the idea of the so-called butterfly
effect: small changes in the initial state may lead, after some time, to large
discrepancies in the orbit. In order to be able to perturb points we consider
only spaces without isolated points.

Definition 1.21. Let (X, d) be a metric space without isolated points. Then
a dynamical system T : X → X is said to have sensitive dependence on
initial conditions if there exists some δ > 0 such that, for every x ∈ X and
ε > 0, there exists some y ∈ X with d(x, y) < ε such that, for some n ≥ 0,
d(Tnx, Tny) > δ. The number δ is called a sensitivity constant for T .

We stress that the definition involves the metric of the space. In the fol-
lowing examples we will always work with the usual metric.
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Example 1.22. (a) Using our knowledge of the iterates of the tent map (see
Example 1.12), we can easily show that it has sensitive dependence on initial
conditions with sensitivity constant 1/4, say. Indeed, if x ∈ [0, 1] and ε > 0
then there is some n ≥ 0 such that the open ball of radius ε around x contains
points y1 and y2 with Tny1 = 0 and Tny2 = 1; thus |Tnx− Tnyj | ≥ 1/2 for
some j ∈ {1, 2}.

(b) A similar argument, based on the fact that the doubling map doubles
angles, shows that it has sensitive dependence on initial conditions.

(c) No circle rotation has sensitive dependence on initial conditions because
we clearly have that |Tnz1 − Tnz2| = |z1 − z2| for any z1, z2 ∈ T.

The second ingredient of chaos demands that the system is irreducible in
the sense that the map T connects any nontrivial parts of the space. We saw
in Section 1.2 that this idea is well captured by the notion of topological
transitivity of the system.

The third ingredient demands that the system has many orbits with a
regular behaviour; more precisely, there should be a dense set of points with
periodic orbit.

Definition 1.23. Let T : X → X be a dynamical system.
(a) A point x ∈ X is called a fixed point of T if Tx = x.
(b) A point x ∈ X is called a periodic point of T if there is some n ≥ 1

such that Tnx = x. The least such number n is called the period of x. The
set of periodic points is denoted by Per(T ).

A point is periodic if and only if it is a fixed point of some iterate Tn,
n ≥ 1. Thus, for real functions T , one easily detects them by searching for
the points where the graphs of Tn and the identity function meet.

Example 1.24. (a) Considering the iterates of the tent map (see Example
1.12), we find that in every interval [ m2n , m+1

2n ] there is a periodic point of
period n. Thus, the tent map has a dense set of periodic points.

(b) The periodic points of the doubling map on the circle are exactly the
(2n − 1)st roots of unity, n ≥ 1, so that also the doubling map has a dense
set of periodic points.

(c) For any rational rotation T there is some N ≥ 1 such that TN = I, so
that every point is periodic. In contrast, irrational rotations have no periodic
points at all.

Proposition 1.25. The property of having a dense set of periodic points is
preserved under quasiconjugacy.

Proof. Let T : X → X be quasiconjugate to S : Y → Y via φ : Y → X,
and let U ⊂ X be a nonempty open set. Then φ−1(U), being also open and
nonempty, contains a point y with Sny = y for some n ≥ 1. Hence φ(y) ∈ U
and Tnφ(y) = φ(Sny) = φ(y). ��

Summarizing, we are led to Devaney’s definition of chaos.
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Definition 1.26 (Devaney chaos – preliminary version). Let (X, d) be
a metric space without isolated points. Then a dynamical system T : X → X
is said to be chaotic (in the sense of Devaney) if it satisfies the following
conditions:

(i) T has sensitive dependence on initial conditions;
(ii) T is topologically transitive;
(iii) T has a dense set of periodic points.

Example 1.27. By Examples 1.12, 1.22 and 1.24, the tent map and the dou-
bling map are chaotic, but no circle rotation is chaotic.

The definition of chaos has a serious blemish: sensitive dependence on
initial conditions is not preserved under conjugacy, or, which is the same,
it depends on the metric on the underlying space. We illustrate this by an
example.

Example 1.28. Let T : ]1,∞[ → ]1,∞[ be given by Tx = 2x. Since |Tnx −
Tny| = 2n|x − y| → ∞ whenever x �= y, we have that T has sensitive
dependence on initial conditions with respect to the usual metric on ]1,∞[.
But if we define d(x, y) = | log x − log y| then d is an equivalent metric for
which d(Tnx, Tny) = d(x, y) for all x, y ∈ ]1,∞[, which shows that T does
not have sensitive dependence on initial conditions with respect to d. On the
other hand, the two versions of T are conjugate when we take the identity
map as the linking homeomorphism.

Fortunately, one can drop sensitive dependence from Devaney’s definition
because it is implied by the other two conditions.

Theorem 1.29 (Banks–Brooks–Cairns–Davis–Stacey). Let X be a
metric space without isolated points. If a dynamical system T : X → X
is topologically transitive and has a dense set of periodic points then T has
sensitive dependence on initial conditions with respect to any metric defining
the topology of X.

Proof. We fix a metric d defining the topology of X. We first show that there
exists some constant η > 0 such that, for any point x ∈ X there is a periodic
point p such that

d(x, Tnp) ≥ η for all n ∈ N0.

Indeed, since X has no isolated points it is an infinite set, so that we can find
two periodic points p1, p2 whose orbits are disjoint. Hence,

η := inf
m,n∈N0

d(Tmp1, T
np2)/2 > 0.

It then follows from the triangle inequality that, for any x ∈ X, either for
j = 1 or for j = 2 we have that d(x, Tnpj) ≥ η for all n ∈ N0.
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We now claim that T has sensitive dependence on initial conditions with
sensitivity constant δ := η/4 > 0. To this end, let x ∈ X and ε > 0. By
assumption there is a periodic point q such that

d(x, q) < min(ε, δ). (1.1)

Let q have period N . As we have seen above there is also a periodic point p
such that

d(x, Tnp) ≥ η = 4δ for n ∈ N0. (1.2)

Since T is continuous there is some neighbourhood V of p such that

d(Tnp, Tny) < δ for n = 0, 1, . . . , N and y ∈ V . (1.3)

Finally, by topological transitivity of T we can find a point z and some k ∈ N0
such that d(x, z) < ε and T kz ∈ V . Let j ∈ N0 be such that k ≤ jN < k+N .
The triangle inequality, together with (1.2), (1.3) and (1.1), then yields that

d
(

T jNq, T jNz
)

= d
(

T jNq, T jN−kT kz
)

= d
(

q, T jN−kT kz
)

≥ d
(

x, T jN−kp
)

− d
(

T jN−kp, T jN−kT kz
)

− d(x, q)
> 4δ − δ − δ = 2δ.

This implies that either d(T jNx, T jNq) > δ or d(T jNx, T jNz) > δ. Since
both z and q have a distance less than ε from x, the claim follows. ��

This allows us to drop sensitive dependence from Devaney’s definition of
chaos; for simplicity we also extend it to all metric spaces.

Definition 1.30 (Devaney chaos). A dynamical system T : X → X is said
to be chaotic (in the sense of Devaney) if it satisfies the following conditions:

(i) T is topologically transitive;
(ii) T has a dense set of periodic points.

Fig. 1.5 Devaney chaos
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By Theorem 1.29, this is consistent with Definition 1.26. Proposition 1.13
and 1.25 immediately show the following.

Proposition 1.31. Devaney chaos is preserved under quasiconjugacy.

As an application of this fact we obtain the following from Examples 1.6
and 1.27.

Example 1.32. The logistic map L4 is chaotic on [0, 1].

For the tent map and the doubling map we have shown explicitly that they
satisfy the defining conditions of chaos. But their dynamics remain myste-
rious. To get a better feeling for the origin of chaos in a dynamical system
we now want to discuss briefly a special chaotic dynamical system whose
dynamical behaviour is quite transparent. On the space

Σ2 = {(xn)n∈N0 ; xn ∈ {0, 1}}

of all 0-1-sequences we study the map

σ : Σ2 → Σ2, σ(x0, x1, x2, . . .) = (x1, x2, x3, . . .).

As usual, sequences (xn)n, (yn)n, . . . will be denoted by x, y, . . . . We define a
topology on Σ2 by the metric

d(x, y) =
∞∑

n=0

|xn − yn|
2n

.

Under this metric, σ is clearly a continuous map.

Definition 1.33. The dynamical system (Σ2, σ) is called the shift on two
symbols.

For topological considerations in Σ2 the following easy result will be of
constant use.

Lemma 1.34. Let x, y ∈ Σ2.
(a) If xj = yj for j = 0, 1, . . . , n then d(x, y) ≤ 1

2n .
(b) If d(x, y) < 1

2n then xj = yj for j = 0, 1, . . . , n.

In particular, a sequence of points in Σ2 converges if and only if each
coordinate converges. It also follows easily that Σ2 is a compact metric space
without isolated points; in fact it is homeomorphic to the Cantor set.

As promised, the dynamics of this system are completely transparent.

Proposition 1.35. (a) A point x ∈ Σ2 is periodic under σ if and only if the
sequence x = (xn)n is periodic.

(b) A point x ∈ Σ2 has dense orbit under σ if and only if every finite
0-1-sequence appears as a block in x.
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Proof. (a) is obvious from the definition of the map σ.
For (b), suppose that x has dense orbit. Let (y0, . . . , ym) be a finite 0-1-

sequence and let y = (y0, . . . , ym, 0, 0, . . .). Since there is some n ≥ 0 such that
d(y, σnx) < 1

2m , Lemma 1.34(b) implies that (xn, . . . , xn+m) = (y0, . . . , ym).
The converse follows similarly with Lemma 1.34(a). ��

Theorem 1.36. The shift on two symbols is chaotic.

Proof. Since the set of all finite 0-1-sequences is countable, one can construct
a 0-1-sequence that contains each finite 0-1-sequence as a block. Hence, by
Proposition 1.35(b), σ has a dense orbit, which shows that it is topologically
transitive because Σ2 has no isolated points.

Now, let x ∈ Σ2 and m ∈ N. Then the sequence y defined by yj(m+1)+k =
xk, 0 ≤ k ≤ m, j ≥ 0 is periodic, hence a periodic point for σ. Moreover, by
Lemma 1.34, we have that d(x, y) ≤ 1

2m . This shows that the periodic points
are dense in Σ2.

Altogether, σ is chaotic. ��

It will be a recurrent theme in this book that shifts create chaos. And in
many cases maps are chaotic precisely because there is an underlying shift.
We illustrate this by the doubling map.

Example 1.37. The doubling map is given by Tz = z2, z ∈ T. If we write
z = exp(2πiα) with 0 ≤ α < 1 then we may represent α in binary form as

α =
∞∑

n=0

xn

2n+1 , xn ∈ {0, 1}.

In this representation we have that T maps z into

z2 = exp(2πi2α) = exp
(

2πix0 + 2πi
∞
∑

n=1

xn

2n
)

= exp
(

2πi
∞
∑

n=0

xn+1

2n+1

)

.

In other words, the doubling map acts as a shift on the binary representation
of the argument of z. In this form the dynamics of the doubling map become
much clearer. To put it formally, the map

φ : Σ2 → T, (xn)n → exp
(

2πi
∞∑

n=0

xn

2n+1

)

provides a quasiconjugacy from the shift on two symbols to the doubling
map. This proves once more that the doubling map is chaotic.
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1.4 Mixing maps

We return to the discussion of topologically transitive maps. As we saw in
Example 1.12, the tent map and the doubling map have a strong form of
transitivity: Tn(U) intersects V not only for some n but for all sufficiently
large n ∈ N0. This property carries a special name.

Definition 1.38. A dynamical system T : X → X is called mixing if, for
any pair U, V of nonempty open subsets of X, there exists some N ≥ 0 such
that

Tn(U) ∩ V �= ∅ for all n ≥ N.

Example 1.39. As noted above, both the tent map and the doubling map are
mixing. An example of a topologically transitive system that is not mixing
will be given in Example 1.43.

As in the case of topological transitivity one obtains the following.

Proposition 1.40. The mixing property is preserved under quasiconjugacy.

Mixing maps have a remarkable permanence property. In order to describe
this we need to define products of maps.

Let S : X → X and T : Y → Y be dynamical systems. The Cartesian
product X×Y is endowed with the product topology, which is induced by the
metric d((x1, y1), (x2, y2)) = dX(x1, x2)+dY (y1, y2), where dX and dY denote
the metrics in X and Y , respectively. A base for the topology is formed by
the products U × V of nonempty open sets U ⊂ X and V ⊂ Y .

Definition 1.41. Let S : X → X and T : Y → Y be dynamical systems.
Then the map S × T is defined by

S × T : X × Y → X × Y, (S × T )(x, y) = (Sx, Ty).

Then S × T is clearly continuous, and for the iterates we have that

(S × T )n = Sn × Tn.

Products of more than two spaces or maps are defined similarly.

Proposition 1.42. Let S : X → X and T : Y → Y be dynamical systems.
Then we have the following:

(i) if S × T has a dense orbit then so do S and T ;
(ii) if S × T is topologically transitive then so are S and T ;
(iii) if S × T is chaotic then so are S and T ;
(iv) if S and T are topologically transitive and at least one of them is mixing

then S × T is topologically transitive;
(v) S × T is mixing if and only if both S and T are.
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Proof. Obviously, S and T are quasiconjugate to S × T under the maps
(x, y) → x and (x, y) → y, respectively. Thus the preservation results ob-
tained so far imply (i), (ii) and (iii).

The assertions (iv) and (v) follow directly from the identity

(S × T )n(U1 × U2) ∩ (V1 × V2) = (Sn(U1) ∩ V1) × (Tn(U2) ∩ V2),

the fact that topological transitivity and the mixing property can be tested
on a base of the topology, and, for (iv), the observation of Exercise 1.2.4. ��

In general, however, the product of two topologically transitive maps need
not be topologically transitive, even if S = T , as the following example shows;
hence some extra condition, as in the previous proposition, is needed.

Example 1.43. Let T : T → T, z → eiαz be a circle rotation. Then (T ×
T )n(z1, z2) = (einαz1, einαz2), and we observe that the quotient of the two
coordinates is z1/z2, independent of n. This is easily seen to imply that
T × T cannot be topologically transitive. On the other hand we know that
any irrational rotation is topologically transitive; see Exercise 1.2.9. This also
shows that no irrational rotation is mixing.

1.5 Weakly mixing maps

Having looked at the question of when a product of two topologically transi-
tive systems is topologically transitive, one may wonder when the product of
a topologically transitive map with itself is again topologically transitive. We
saw in Example 1.43 that this is not always the case. On the other hand, for
any mixing map T the product T × T is topologically transitive. This leads
us to the following notion.

Definition 1.44. A dynamical system T : X → X is called weakly mixing if
T × T is topologically transitive.

Since the products U × V of nonempty open sets U, V ⊂ X form a base
of the topology of X ×X, T is weakly mixing if and only if, for any 4-tuple
U1, U2, V1, V2 ⊂ X of nonempty open sets, there exists some n ≥ 0 such that

Tn(U1) ∩ V1 �= ∅ and Tn(U2) ∩ V2 �= ∅.

Observation 1.45. For any dynamical system,

mixing =⇒ weak mixing =⇒ topological transitivity.

Remark 1.46. By Example 1.43, any irrational circle rotation is topologically
transitive but not weakly mixing. On the other hand, it is not an easy matter
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to construct examples of weakly mixing maps that are not mixing. How-
ever, in the context of linear operators that will be discussed in the following
chapters, such examples will appear abundantly as consequences of our in-
vestigations there; see, for example, Remark 4.10.

Proposition 1.47. The weak mixing property is preserved under quasicon-
jugacy.

Proof. If φ : Y → X defines a quasiconjugacy from S : Y → Y to T : X → X,
then φ × φ defines a quasiconjugacy from S × S to T × T . Now the result
follows from Proposition 1.13. ��

As a consequence, we have the following as in Proposition 1.42.

Proposition 1.48. Let S : X → X and T : Y → Y be dynamical systems. If
S × T is weakly mixing then so are S and T .

In order to formulate the arguments involving weakly mixing maps more
succinctly we introduce the following useful concept.

Definition 1.49. Let T : X → X be a dynamical system. Then, for any sets
A,B ⊂ X, the return set from A to B is defined as

NT (A,B) = N(A,B) = {n ∈ N0 ; Tn(A) ∩B �= ∅}.

We usually drop the index T when this causes no ambiguity. In this nota-
tion, T is topologically transitive (or mixing) if and only if, for any pair U, V
of nonempty open subsets of X, the return set

N(U, V ) is nonempty (or cofinite, respectively);

and T is weakly mixing if and only if, for any 4-tuple U1, U2, V1, V2 ⊂ X of
nonempty open sets,

N(U1, V1) ∩N(U2, V2) �= ∅.

Note also that if T is topologically transitive then the return sets N(U, V )
are even infinite for any nonempty open sets U, V ; see Exercise 1.2.4.

Incidentally, we observe that the larger the sets A and B are, the larger
also is the return set N(A,B).

It is our aim to give several characterizations of the weak mixing property.
To do this we will provide a useful lemma that, due to its form, we will call
the 4-set trick. We note that the return sets N(A,B) refer to T .

Lemma 1.50 (4-set trick). Let T : X → X be a dynamical system, and let
U1, V1, U2, V2 ⊂ X be nonempty open sets.

(a) If there is a continuous map S : X → X commuting with T such that

S(U1) ∩ U2 �= ∅ and S(V1) ∩ V2 �= ∅,
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then there exist nonempty open sets U ′
1 ⊂ U1, V ′

1 ⊂ V1 such that

N(U ′
1, V

′
1) ⊂ N(U2, V2) and N(V ′

1 , U
′
1) ⊂ N(V2, U2).

If, moreover, T is topologically transitive then N(U1, V1) ∩N(U2, V2) �= ∅.
(b) If T is topologically transitive then

N(U1, U2) ∩N(V1, V2) �= ∅ =⇒ N(U1, V1) ∩N(U2, V2) �= ∅.

Fig. 1.6 The 4-set trick

Proof. (a) Since S is continuous, it follows from the hypothesis that we can
find nonempty open sets U ′

1 ⊂ U1 and V ′
1 ⊂ V1 such that S(U ′

1) ⊂ U2 and
S(V ′

1) ⊂ V2. If n ∈ N(U ′
1, V

′
1), then there exists some x ∈ U ′

1 with Tnx ∈ V ′
1 .

Therefore TnSx = STnx ∈ V2 and Sx ∈ U2, which yields that n ∈ N(U2, V2).
By symmetry we also obtain that N(V ′

1 , U
′
1) ⊂ N(V2, U2). If, moreover, T is

topologically transitive then

∅ �= N(U ′
1, V

′
1) ⊂ N(U1, V1) ∩N(U2, V2).

(b) If T is topologically transitive and n ∈ N(U1, U2) ∩ N(V1, V2), then
N(U1, V1) ∩N(U2, V2) �= ∅ follows if (a) is applied to S := Tn. ��

The 4-set trick, simple as it is, already implies an important result that is
at first sight quite surprising: as soon as the product T × T is topologically
transitive, every higher product T × · · · × T also is.

Theorem 1.51 (Furstenberg). Let T : X → X be a weakly mixing dynam-
ical system. Then the n-fold product T × · · · × T is weakly mixing for each
n ≥ 2.

Proof. Since the n-fold product being weakly mixing amounts to the 2n-fold
product being topologically transitive, it suffices to show that every n-fold
product T × · · · × T is topologically transitive for n ≥ 2.
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We proceed by induction, the case of n = 2 being trivial by definition.
Thus, suppose that the n-fold product T× . . . × T is topologically transitive.
To prove topological transitivity of the corresponding (n+1)-fold product we
need to show that, given nonempty open sets Uk, Vk ⊂ X, k = 1, . . . , n + 1,
we have that

n+1⋂

k=1

N(Uk, Vk) �= ∅. (1.4)

Indeed, since T is weakly mixing there is some m ∈ N0 such that Tm(Un) ∩
Un+1 �= ∅ and Tm(Vn)∩ Vn+1 �= ∅. The 4-set trick then yields the existence
of nonempty open sets U ′

n ⊂ Un, V ′
n ⊂ Vn with N(U ′

n, V
′
n) ⊂ N(Un, Vn) ∩

N(Un+1, Vn+1). On the other hand, the induction hypothesis implies that

n−1⋂

k=1

N(Uk, Vk) ∩N(U ′
n, V

′
n) �= ∅,

which implies (1.4). ��

The next results show that in the definition of weak mixing one may reduce
the four open sets to three, and then to two open sets.

Fig. 1.7 Weak mixing (Propositions 1.52 and 1.53)

Proposition 1.52. A dynamical system T : X → X is weakly mixing if and
only if, for any nonempty open sets U, V1, V2 ⊂ X, we have that

N(U, V1) ∩N(U, V2) �= ∅.

Proof. We need only show sufficiency of the condition. Thus, let U1, U2, V1,
V2 ⊂ X be arbitrary nonempty open sets. By hypothesis there is some n ∈
N(U1, U2) ∩ N(U1, V2). In particular U := U1 ∩ T−n(U2) and T−n(V2) are
nonempty open sets. By another application of the hypothesis we find some
m ∈ N(U, V1) ∩N(U, T−n(V2)). In particular, there exists some x ∈ U with
Tmx ∈ T−n(V2). We then conclude that TmTnx = TnTmx ∈ V2 and Tnx ∈
U2, which yields that m ∈ N(U1, V1) ∩N(U2, V2). ��



22 1 Topological dynamics

Proposition 1.53. A dynamical system T : X → X is weakly mixing if and
only if, for any nonempty open sets U, V ⊂ X, we have that

N(U,U) ∩N(U, V ) �= ∅.

Proof. It suffices to show that the stated condition implies the condition of
Proposition 1.52. Thus, let U, V1, V2 ⊂ X be arbitrary nonempty open sets.
By hypothesis there exists some n ∈ N0 such that U1 := U ∩ T−n(V1) is a
nonempty open set. Since topologically transitive maps have dense range, the
hypothesis also implies that T−n(V2) is nonempty and open, so that there
exists some m ∈ N(U1, U1) ∩N(U1, T

−n(V2)). Therefore there are x, y ∈ U1
with Tmx ∈ U1 and TnTmy ∈ V2. We then have that TnTmx ∈ V1, which
implies that n + m ∈ N(U, V1) ∩N(U, V2), as desired. ��

For more characterizations of weak mixing in the same spirit we refer to
Exercise 1.5.1.

We finally characterize the weak mixing property in terms of the size of the
return sets N(U, V ), or equivalently, in terms of the topological transitivity
of certain subsequences (Tnk)k; for the notion of topological transitivity for
a sequence of maps we refer to the next section.

A strictly increasing sequence (nk)k of positive integers is called syndetic
if

sup
k≥1

(nk+1 − nk) < ∞.

Likewise, a subset A of N0 is called syndetic if the increasing sequence of
positive integers forming A is syndetic, or equivalently, if its complement
does not contain arbitrarily long intervals.

Theorem 1.54. Let T : X → X be a dynamical system. Then the following
assertions are equivalent:

(i) T is weakly mixing;
(ii) for any pair U, V ⊂ X of nonempty open sets, N(U, V ) contains arbi-

trarily long intervals;
(iii) for any syndetic sequence (nk)k, the sequence (Tnk)k is topologically

transitive.

Proof. (i)=⇒(ii). Let U, V ⊂ X be nonempty open sets, and let m ∈ N. As
in the proof of Proposition 1.53, each set T−k(V ), k = 1, . . . ,m, is nonempty
and open. Since, by Furstenberg’s theorem, the m-fold product map T×· · ·×T
is topologically transitive, there is some n ∈ N such that

Tn(U) ∩ T−k(V ) �= ∅ for k = 1, . . . ,m.

This implies that Tn+k(U) ∩ V �= ∅ for k = 1, . . . ,m.
(ii)=⇒(i). By Proposition 1.52 it suffices to show that, given any nonempty

open subsets U, V1, V2 ⊂ X, N(U, V1) ∩N(U, V2) �= ∅. First, by (ii) there is
some m ∈ N(V1, V2) and therefore a nonempty open set V3 ⊂ V1 such that
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Tm(V3) ⊂ V2. Also by (ii) there is some k ∈ N0 such that k + j ∈ N(U, V3)
for j = 0, 1, . . . ,m. In particular we have that k + m ∈ N(U, V1) and

T k+m(U) ∩ V2 ⊃ T k+m(U) ∩ Tm(V3) ⊃ Tm(T k(U) ∩ V3) �= ∅.

We conclude that k + m ∈ N(U, V1) ∩N(U, V2).
(ii)⇐⇒(iii). This follows immediately from the definitions and the fact

that a subset of N0 contains arbitrarily long intervals if and only if it meets
every syndetic sequence. ��

Condition (ii) in this result shows nicely how weak mixing sits between
topological transitivity and mixing.

1.6 Universality

The basic concepts introduced so far in this chapter allow a far-reaching
generalization. The orbit of a point x under a map T is obtained by applying
the iterates Tn, n = 0, 1, 2, . . ., of T to x. Instead, one could think of applying
arbitrary maps Tn, n = 0, 1, 2, . . ., to x; in this case we need not even have
that the Tn are self-maps.

Definition 1.55. Let X and Y be metric spaces, and let Tn : X → Y ,
n ∈ N0, be continuous maps. Then the orbit of x under (Tn)n is defined as

orb(x, (Tn)) = {Tnx ; n ∈ N0}.

An element x ∈ X is called universal for (Tn)n if it has dense orbit under
(Tn)n.

An interesting and nontrivial example is provided by universal Taylor se-
ries: it can be shown that there exists an infinitely differentiable function
f : R → R with f(0) = 0 such that, for any continuous function g : R → R

with g(0) = 0, there exists an increasing sequence (nk)k of positive integers
such that

nk∑

ν=0

f (ν)(0)
ν!

xν → g(x) uniformly on any compact subset of R.

In this case, Tn is the map that associates to f its Taylor polynomial of degree
n at 0.

The theory of universality will not be developed in any depth in this book.
We note that there is a difference in philosophy between universality and
topological dynamics: in the former one is interested in the universal elements
and their properties while in the latter the focus is rather on the map and
its properties.
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However, occasionally the study of the dynamics of a single map requires
looking at orbits under general sequences of maps; Theorem 1.54 has already
provided such an example. For this reason we consider here briefly how the
concepts and results of this chapter can be generalized to universality.

Definition 1.56. Let Tn : X → Y , n ∈ N0, be continuous maps between
metric spaces X and Y . Then (Tn)n is called topologically transitive if, for
any pair U ⊂ X and V ⊂ Y of nonempty open sets, there is some n ≥ 0 such
that

Tn(U) ∩ V �= ∅;

it is mixing if the same holds for all sufficiently large n, and it is weakly
mixing if (Tn × Tn)n is topologically transitive on X ×X.

Now, many of the results in this chapter extend, at least under suitable
assumptions, to general sequences. We will content ourselves here with some
examples.

Theorem 1.57 (Universality Criterion). Let X be a complete metric
space, Y a separable metric space and Tn : X → Y , n ∈ N0, continuous
maps. Then the following assertions are equivalent:

(i) (Tn)n is topologically transitive;
(ii) there exists a dense set of points x ∈ X such that orb(x, (Tn)) is dense

in Y .
If one of these conditions holds then the set of points in X with dense orbit
is a dense Gδ-set.

Proof. Suppose that (ii) holds. If U and V are nonempty open sets of X and
Y , respectively, then there exists some x ∈ U with dense orbit under (Tn)n,
so that there exists some n ≥ 0 with Tnx ∈ V . This implies (i).

The converse implication and the fact that the set of points with dense
orbit is a dense Gδ-set can be proved exactly as in the proof of the Birkhoff
transitivity theorem. ��

Typically, results on iterates of maps have a good chance of extending to
sequences (Tn)n if they consist of commuting self-maps Tn : X → X of dense
range. For example, for such sequences the Birkhoff transitivity theorem has
a perfect analogue; see Exercise 1.6.2.

Remark 1.58. If we define the return sets

N(A,B) = {n ∈ N0 ; Tn(A) ∩B �= ∅}

then part (a) of the 4-set trick remains valid for sequences (Tn)n of self-maps
if the map S commutes with all Tn, n ≥ 0, as does part (b) for commuting
self-maps. As a consequence, Furstenberg’s theorem also holds for commuting
sequences (Tn)n, as does Proposition 1.52.
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Exercises

Exercise 1.1.1. Show that for μ = 2 the iterates of the logistic map L2 are given by

Ln
2x = 1

2

(

1 − (1 − 2x)2
n)

, n ≥ 0.

Deduce from this the long-term behaviour of the orbits orb(x, L2) for x ∈ R.

Exercise 1.1.2. Consider the dynamical system T : ]0,∞[ → ]0,∞[, Tx = 1
2 (x + 2

x ).
Show that there is some q ∈ ]0, 1[ such that |Tx − Ty| ≤ q|x − y| for x, y ≥ 1. Deduce
that |Tnx−

√
2| ≤ qn|x−

√
2| and hence that Tnx →

√
2 for all x ≥ 1.

Exercise 1.1.3. Prove the statements in Example 1.6(a)–(c).

Exercise 1.1.4. Show that the logistic map L4, when restricted to the interval [0, 1], is
quasiconjugate to the doubling map on the interval via φ(x) = sin2(πx). Also show that
the maps are not conjugate.

Exercise 1.2.1. Show that, in general, the implication (i)=⇒(ii) does not hold in Propo-
sition 1.10.

Exercise 1.2.2. Show that the following assertions on a dynamical system T : X → X
are equivalent:

(i) T is topologically transitive;
(ii) for any open set U ⊂ X with T−1(U) ⊂ U , either U = ∅ or U is dense in X;
(iii) for any closed set E ⊂ X with T (E) ⊂ E, either E = X or E is nowhere dense.

Exercise 1.2.3. Suppose that X has at least one isolated point. Prove that, if there is
any topologically transitive map T : X → X, then X is finite and X = orb(x, T ) for any
x ∈ X.

Exercise 1.2.4. Show that, if T : X → X is topologically transitive, then for any pair
U, V of nonempty open subsets of X, the return set N(U, V ) is infinite; see Definition
1.49. (Hint: For the trivial case in which X has isolated points apply Exercise 1.2.3. If
X has no isolated points, then given m ∈ N(U, V ) and W := U ∩T−m(V ), observe that
N(W,W ) ∩ N �= ∅ and m + N(W,W ) ⊂ N(U, V ).)

Exercise 1.2.5. Prove that a dynamical system T : X → X on a metric space X is
topologically transitive if and only if, for any ε > 0 and any pair of points x, y ∈ X,
we can find z ∈ X and n,m ∈ N0 satisfying d(Tnz, x) < ε and d(Tmz, y) < ε. (Hint:
First observe that the above condition is equivalent to the fact that for any pair U, V
of nonempty open subsets of X one can find n,m ∈ N0 with T−n(U) ∩ T−m(V ) �= ∅.
This condition is obviously implied by topological transitivity. For the converse, given
nonempty open sets U, V ⊂ X, either find k ∈ N(U, V ) (in that case you are done) or,
if k ∈ N(V,U), set W = V ∩ T−k(U), note that N(W,W ) is infinite by Exercise 1.2.4,
and then find some j ∈ N(U, V ).)

Exercise 1.2.6. Let T be a topologically transitive dynamical system on a separable
complete metric space X without isolated points. Prove constructively, not using the
Baire category theorem, that T has a dense set of points with dense orbit. (Hint: Let
(yn)n be a dense sequence in X. Start with x0 ∈ X. Then find x1 close to x0 and a
positive integer m1 so that Tm1x1 is close to y1. Then find x2 close to x1 and a positive
integer m2 so that Tm1x2 is close to Tm1x1 and Tm1+m2x2 is close to y2. Continue.)
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Exercise 1.2.7. Let T be a dynamical system on a metric space X without isolated
points. A backward orbit of a vector x is a sequence (xn)n≥0 in X (if it exists!) such
that x0 = x and Txn = xn−1, n ≥ 1. Show the following:

(i) if T is topologically transitive and X is separable and complete then there exists
a dense set of points with dense backward orbits;

(ii) if T has a dense backward orbit then T is topologically transitive.
(Hint: See the previous exercise.)

Exercise 1.2.8. Let T : X → X be a dynamical system. For x ∈ X the J-set JT (x) =
J(x) is defined as the set of all points y ∈ X for which there is a strictly increasing
sequence (nk)k of positive integers and a sequence (xk)k in X such that xk → x and
Tnkxk → y as k → ∞.

(a) Show that J(x) is a closed T -invariant set.
(b) Suppose that X has no isolated points. Show that J(x) = X if and only if, for

any pair U, V of nonempty open subsets of X with x ∈ U , there exists some n ≥ 0 such
that Tn(U) ∩ V �= ∅.

(c) Suppose that X has no isolated points. Show that the following assertions are
equivalent:

(i) T is topologically transitive;
(ii) for any x ∈ X, J(x) = X;
(iii) there is a dense set of points x ∈ X such that J(x) = X.

Exercise 1.2.9. Show that every orbit under an irrational rotation is dense. (Hint: Use
the pigeonhole principle to show that, for any ε > 0, some arc of angle ε must contain
two iterates of 1, Tm1 and Tn1, m > n. Then look at the iterates of Tm−n.)

Exercise 1.2.10. A dynamical system T : X → X is called minimal if every orbit under
T is dense. Find a characterization of minimality in the spirit of Exercise 1.2.2.

Exercise 1.2.11. Consider the dynamical system T : [−1, 1] → [−1, 1] given by

Tx =

⎧

⎨

⎩

2 + 2x, if − 1 ≤ x < −1/2,
−2x, if − 1/2 ≤ x < 1/2,
−2 + 2x, if 1/2 ≤ x ≤ 1.

(a) Show that T has a dense orbit but that T 2 does not.
(b) Show that there are two points x, y ∈ [−1, 1] such that orb(x, T 2) ∪ orb(y, T 2) is

dense in [−1, 1] but neither of them has a dense orbit under T 2.
(c) Show that there is a point x ∈ [−1, 1] such that orb(x, T 2) contains a nonempty

open set but x does not have a dense orbit under T 2.
(Remark: We will prove in Chapter 6 that none of these properties can hold in a

linear setting.)

Exercise 1.3.1. Show that none of the three conditions in Definition 1.26 alone implies
chaos.

Exercise 1.3.2. Let X be a finite set, endowed with the discrete metric. Describe all
maps on X that are chaotic. Do the same for countably infinite sets under the discrete
metric.

Exercise 1.3.3. Suppose that (X, d) is a metric space without isolated points and T :
X → X is a contracting map, that is d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X. Show that if
T has one dense orbit then T is minimal (see Exercise 1.2.10); in particular, it cannot
be chaotic.
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Exercise 1.3.4. Show that T : X → X is chaotic if and only if every finite family of
nonempty open sets shares a periodic orbit, in the following sense: for each finite family
Uj ⊂ X, j = 1, . . . , n, of nonempty open sets there is a periodic point x ∈ U1 such
that T kjx ∈ Uj for some kj ≥ 0, j = 2, . . . , n; see Figure 1.8. (Hint: One implication is
trivial; for the other one use continuity of T and an induction process.)

Fig. 1.8 Exercise 1.3.4

Exercise 1.3.5. Show that the space Σ2 is a complete metric space without isolated
points. Show also that the sequences with only finitely many nonzero entries form a
dense set.

Exercise 1.3.6. Why is the quasiconjugacy of Example 1.37 between the shift on two
symbols and the doubling map not a conjugacy? Use this quasiconjugacy to find a
representation of the periodic points and the points with dense orbit for the doubling
map.

Exercise 1.4.1. Show that the shift on two symbols is mixing.

Exercise 1.4.2. Prove that a dynamical system T is mixing if and only if, for any
strictly increasing sequence (nk)k of positive integers, the sequence (Tnk )k is topologi-
cally transitive; see Definition 1.56 for the notion of topological transitivity for sequences
of maps.

Exercise 1.4.3. Let X be a complete metric space. Prove that a dynamical system
T : X → X is mixing if and only if, for every sequence (xn)n in X and for every strictly
increasing sequence (nk)k of positive integers for which {xnk ; k ∈ N} is relatively com-
pact there exists a dense Gδ-set of points y ∈ X such that lim infk→∞ d(xnk , T

nky) = 0.
(Hint: Use the previous exercise; a subset A of a metric space X is relatively compact if
and only if every sequence in A has a subsequence that converges in X.)

Exercise 1.4.4. Let T : X → X be a dynamical system. For x ∈ X, the set Jmix
T (x) =

Jmix(x) is defined as the set of all points y ∈ X for which there is a sequence (xn)n in
X such that xn → x and Tnxn → y as n → ∞; see also Exercise 1.2.8.

(a) Show that Jmix(x) is a closed T -invariant set.
(b) Show that Jmix(x) = X if and only if, for any pair U, V of nonempty open subsets

of X with x ∈ U , there exists some N ≥ 0 such that Tn(U) ∩ V �= ∅ for all n ≥ N .
(c) Show that the following assertions are equivalent:

(i) T is mixing;
(ii) for any x ∈ X, Jmix(x) = X;
(iii) there is a dense set of points x ∈ X such that Jmix(x) = X.
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Fig. 1.9 Weak mixing (Exercise 1.5.1(iii) and (iv))

Exercise 1.4.5. Show that minimality and mixing are independent properties of a dy-
namical system.

Exercise 1.5.1. Let T : X → X be a dynamical system. In the following, U,U1, U2, V
will denote arbitrary nonempty open subsets of X. Prove that any of the following
conditions is equivalent to T being weakly mixing:

(i) for any U, V ⊂ X we have N(U, V ) ∩N(V, V ) �= ∅;
(ii) for any U1, U2, V ⊂ X we have N(U1, V ) ∩N(U2, V ) �= ∅;
(iii) for any U1, U2, V ⊂ X we have N(U1, U2) ∩N(U2, V ) �= ∅;
(iv) for any U1, U2, V ⊂ X we have N(U1, U2) ∩N(V, V ) �= ∅;
see Figure 1.9. (Hint: To prove sufficiency of (i) use the 4-set trick and Proposition 1.53;
this will then imply the sufficiency of the other conditions.)

Exercise 1.5.2. A dynamical system T : X → X is called totally transitive if every
power T p, p ∈ N, is topologically transitive. Show that any weakly mixing map is totally
transitive.

Exercise 1.5.3. Prove that every chaotic and totally transitive dynamical system T :
X → X is weakly mixing. (Hint: Verify the hypothesis of Proposition 1.53 by finding a
periodic point in U , of period k say, and then by using topological transitivity of T k.)

Exercise 1.5.4. A dynamical system T : X → X is called flip transitive if, for any pair
U, V ⊂ X of nonempty open sets, N(U, V ) ∩ N(V,U) �= ∅. Show that the map T of
Exercise 1.2.11 is flip transitive but not weakly mixing.

Exercise 1.5.5. Show that T is weakly mixing if and only if it is flip transitive and T 2

is topologically transitive. (Hint: To prove the weak mixing property use condition (i)
in Exercise 1.5.1. To do this, given nonempty open sets U, V ⊂ X, find k ∈ N0 with
U ′ := U ∩T−2k(V ) �= ∅ and then some m ∈ N(U ′, T−k(V ))∩N(T−k(V ), U ′). Consider
m + k.)

Exercise 1.5.6. A dynamical system T : X → X is called topologically ergodic if, for
any pair U, V ⊂ X of nonempty open sets, N(U, V ) is syndetic. Prove the following:

(i) any irrational rotation is topologically ergodic but not weakly mixing;
(ii) every mixing and every chaotic dynamical system is topologically ergodic;
(iii) if T : X → X is topologically ergodic and S : Y → Y is weakly mixing, then T ×S

is topologically transitive.

Exercise 1.5.7. Let T : X → X be a dynamical system. Show that any of the following
conditions is equivalent to T being weakly mixing:

(i) for any nonempty open sets U, V ⊂ X and any m ∈ N there is some k with
k, k + m ∈ N(U, V );
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(ii) for any m ∈ N and for any increasing sequence (nk)k with nk+1 − nk ∈ {m, 2m},
k ∈ N, we have that (Tnk )k is topologically transitive.

(Hint: See the proof of Theorem 1.54.)

Exercise 1.5.8. Let T : X → X be a dynamical system. Establish the equivalence of
the following assertions:

(i) T is weakly mixing;
(ii) for any pair U, V ⊂ X of nonempty open sets, N(U, V ) contains two consecutive

integers.
(Hint: Proceeding by induction, show that N(U, V ) contains arbitrarily long intervals:
if k, k + 1 ∈ N(U,U), set U1 := U ∩ T−k(U), U2 := U ∩ T−k−1(U), apply the inductive
hypothesis to the pair (U1, U2) to find an interval [j, j +m] contained in N(U1, U2). By
the selection of U1, obtain that [j, j + m + 1] ⊂ N(U,U).)

Exercise 1.5.9. Given a metric space X, the corresponding hyperspace is defined as
K(X) = {K ⊂ X ; K is compact}. The space K(X) is endowed with the (metrizable)
Vietoris topology, for which a base of open sets is given by the family of sets

V(U1, . . . , Uk) :=
{

K ∈ K(X) ; K ⊂
k⋃

j=1

Uj and K ∩ Uj �= ∅, j = 1, . . . , k
}

,

where U1, . . . , Uk, k ∈ N, are nonempty open sets in X. If T : X → X is continuous,
then it naturally induces a continuous hyperextension T : K(X) → K(X) defined by
T (K) = T (K) = {Tx ; x ∈ K}.

We say that a dynamical system T : X → X is hypertransitive if its hyperextension
T is topologically transitive. Prove that T is hypertransitive if and only if it is weakly
mixing. (Hint: For the sufficiency of weak mixing use Furstenberg’s theorem; for the
necessity use Proposition 1.52.)

Exercise 1.6.1. Let (xn)n be a dense sequence in R
2, and let yn ∈ R

2, n ≥ 1, be
vectors of length n that are orthogonal to xn. Consider the maps Tn : R

2 → R
2 with

Tn(α, β) = αxn +βyn. Determine all points in R
2 with dense orbit under (Tn)n. Deduce

that (Tn)n has a dense orbit but is not topologically transitive.

Exercise 1.6.2. Prove the Birkhoff transitivity theorem for commuting continuous maps
Tn : X → X, n ∈ N0, of dense range on a separable complete metric space X, that is,
that the following assertions are equivalent:

(i) (Tn)n is topologically transitive;
(ii) there exists some x ∈ X such that orb(x, (Tn)) is dense in X.

If one of these conditions holds then the set of points in X with dense orbit is a dense
Gδ-set.

Exercise 1.6.3. Let S be a mixing map on a separable complete metric space X and T
a map on a metric space Y without isolated points that admits a dense orbit orb(y, T ),
y ∈ Y . Show that there exists some x ∈ X such that (x, y) has a dense orbit under the
map S × T . (Hint: Use the previous exercise.)

Exercise 1.6.4. A sequence (Tn)n of continuous maps on a metric space X is called
hereditarily transitive with respect to an increasing sequence (nk)k of positive integers
if (Tmk )k is topologically transitive for every subsequence (mk)k of (nk)k. The sequence
(Tn)n is called hereditarily transitive if it is so with respect to some sequence (nk)k.
Prove that, if X is separable, then a commuting sequence (Tn)n is hereditarily transitive
if and only if (Tn)n is weakly mixing. (Hint: Note that X has a countable base; use
Furstenberg’s theorem for sequences of maps.)
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Exercise 1.6.5. Show that Theorem 1.54 does not hold for sequences (Tn)n even if the
maps Tn : X → X commute and have dense range. (Hint: A weakly mixing sequence
(Tn)n remains weakly mixing when adding arbitrary maps.)

Sources and comments

Section 1.1. A standard reference for the theory of dynamical systems is Devaney [132].
For more recent textbooks we refer to Brin and Stuck [97] and Robinson [267], while
Gulick [188] provides an elementary introduction.

Section 1.2. Kolyada and Snoha [217] give an excellent survey on topological transi-
tivity, with many additional equivalent conditions. The original version of the Birkhoff
transitivity theorem can be found in [74, § 62].

Section 1.3. Chaos in the sense of Devaney was introduced in [132]. While there are
many other definitions of chaos (see for example Kolyada [216] or Forti [154]), Devaney’s
definition has become very popular. The theorem of Banks et al. was obtained in [31];
see also Silverman [294] and Glasner and Weiss [163].

Sections 1.4 and 1.5. For Furstenberg’s theorem see [157], which also contains the
4-set trick implicitly. Theorem 1.54 is due, independently, to Akin [4], Glasner [162],
and Peris and Saldivia [257]; in the context of linear operators on Banach spaces it was
also obtained by Grivaux [172]. The remaining characterizations of weak mixing in Sec-
tion 1.5, including Exercise 1.5.1, are due to Banks [29] and Akin [4]; more precisely,
Proposition 1.53 is called the “Furstenberg Intersection Lemma” in Akin’s book.

Section 1.6. The universal Taylor series mentioned in Section 1.6 is essentially due to
Fekete; see the discussion in [179, Section 3a]. The Universality Criterion was obtained
by Grosse-Erdmann [177].

Exercises. Exercises 1.2.8 and 1.4.4 are taken from Costakis and Manoussos [118, 119].
For Exercise 1.3.4 we refer to Touhey [299], for Exercise 1.4.3 to Moothathu [244], for
Exercise 1.5.3 to Bauer and Sigmund [32] and to Banks (attributed to Stacey) [28], for
Exercise 1.5.5 to Banks [29], and for Exercise 1.5.6 to Moothathu [245]. The two parts
of Exercise 1.5.7 are taken from Grivaux [172] and Peris and Saldivia [257], respectively;
Exercise 1.5.8 is from Grosse-Erdmann and Peris [187] (see also Grivaux [172] and Bayart
and Matheron [45]). The assertion of Exercise 1.5.9 is due to Bauer and Sigmund [32]
(one direction), and, independently, to Banks [30] and Peris [256] (the other direction).
Exercise 1.6.1 is from Godefroy and Shapiro [165], Exercise 1.6.4 from Bès and Peris [71].

Extensions. Let us add a word on the setting chosen in this chapter. Since the over-
whelming majority of linear dynamical systems studied in the literature acts on metric
spaces we have restricted our attention to such spaces. In general, however, a dynamical
system is given by a continuous map T : X → X on a topological space X. The def-
initions of topologically transitive, (weakly) mixing and chaotic maps extend verbatim
to such systems. The same applies to sequences (Tn)n of continuous maps Tn : X → Y
between arbitrary topological spaces X and Y .

Then, as the proofs show, all the results in this chapter on general dynamical systems
remain true in the setting of arbitrary topological spaces. To be more specific, this
concerns all results apart from Proposition 1.15 and the Theorems 1.16, 1.29 and 1.57.
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