Erol Gelenbe - Ricardo Lent
Georgia Sakellari Editors

Computer and
Information
Sciences ||

26th International Symposium on
Computer and Information Sciences

@ Springer

Computer and Information Sciences II

Erol Gelenbe - Ricardo Lent
Georgia Sakellari
Editors

Computer and Information
Sciences 11

26th International Symposium on Computer
and Information Sciences

@ Springer

Erol Gelenbe Georgia Sakellari

Department of Electrical University of East London
and Electronics Engineering London

Imperial College UK

London

UK

e-mail: e.gelenbe @imperial.ac.uk

Ricardo Lent

Imperial College

London

UK

e-mail: r.lent@imperial.ac.uk

ISBN 978-1-4471-2154-1 e-ISBN 978-1-4471-2155-8
DOI 10.1007/978-1-4471-2155-8
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011938586

© Springer-Verlag London Limited 2012

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Cover design: eStudio Calamar S.L.
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 26th Annual International Symposium on Computer and Information Science
was held in London at the Royal Society, on 26-28 September 2011.

The symposium included presentations of the papers in these proceedings
which were selected from some 140 submission through a refereeing process
carried out by both the programme committee members and additional referees. In
addition there were several other invited papers and special sessions.

Special thanks go to both the programme committee members and to the ref-
erees, for the diligent efforts that they have made to select the best of the submitted
papers, and then for their generous help to the authors so that they could improve
the final versions through constructive suggestions and comments.

The topics included in these proceedings cover timely topics such as Web
Computing and Search, Data Engineering, Green ICT which aims at saving energy
in information processing and communication systems, Wireless Networks,
Computer Networks, Discovery Science, Computer Vision and Image Processing,
Machine Learning, Agent Based Systems, Security and Safety, Modelling and
Simulation, Architecture and Systems, and Algorithms.

As computer science and engineering has matured, we see that the emphasis of
much of the research in this conference turns towards the interaction between basic
scientific problems and the important areas of application. In a way, this leads to a
more exciting proceedings volume with broader appeal both for industry and for
the research community.

Erol Gelenbe
Ricardo Lent
Georgia Sakellari

Contents

Search Computing: Addressing Complex Search on the Web 1
Stefano Ceri and Marco Brambilla

Part I Web Computing and Search

Hypergraph-Theoretic Partitioning Models for
Parallel Web Crawling 19
Ata Turk, B. Barla Cambazoglu and Cevdet Aykanat

Web Service Discovery: A Service Oriented, Peer-to-Peer Approach
with Categorization. 27
Mustafa Onur Ozorhan and Nihan Kesim Cicekli

Finding High Order DependenciesinData. 35
Rosa Meo and Leonardo D’ Ambrosi

Heuristic Algorithms for Real-Time Unsplittable Data
Dissemination Problem 43
Mustafa Miijdat Atanak and Atakan Dogan

Automatic Categorization of Ottoman Literary Texts
by Poet and Time Period. 51
Ethem F. Can, Fazli Can, Pinar Duygulu and Mehmet Kalpakli

An Empirical Study About Search-Based Refactoring Using

Alternative Multiple and Population-Based Search Techniques. 59
Ekin Koc, Nur Ersoy, Ali Andac, Zelal Seda Camlidere,

Ibrahim Cereci and Hurevren Kilic

vii

http://dx.doi.org/10.1007/978-1-4471-2155-8_1
http://dx.doi.org/10.1007/978-1-4471-2155-8_2
http://dx.doi.org/10.1007/978-1-4471-2155-8_2
http://dx.doi.org/10.1007/978-1-4471-2155-8_3
http://dx.doi.org/10.1007/978-1-4471-2155-8_3
http://dx.doi.org/10.1007/978-1-4471-2155-8_4
http://dx.doi.org/10.1007/978-1-4471-2155-8_5
http://dx.doi.org/10.1007/978-1-4471-2155-8_5
http://dx.doi.org/10.1007/978-1-4471-2155-8_6
http://dx.doi.org/10.1007/978-1-4471-2155-8_6
http://dx.doi.org/10.1007/978-1-4471-2155-8_7
http://dx.doi.org/10.1007/978-1-4471-2155-8_7

viii Contents

Part II Data Engineering

Unsupervised Morphological Analysis Using Tries
Koray Ak and Olcay Taner Yildiz

A Novel Approach to Morphological Disambiguation for Turkish. . . .
Onur Gorgiin and Olcay Taner Yildiz

A Small Footprint Hybrid Statistical and Unit Selection
Text-to-Speech Synthesis System for Turkish
Ekrem Guner and Cenk Demiroglu

Enhancing Incremental Feature Subset Selection
in High-Dimensional Databases by Adding a Backward Step
Pablo Bermejo, Luis de La Ossa, Jose A. Gamez and Jose M. Puerta

Memory Resident Parallel Inverted Index Construction
Tayfun Kucukyilmaz, Ata Turk and Cevdet Aykanat

Dynamic Programming with Ant Colony Optimization Metaheuristic
for Optimization of Distributed Database Queries
Tansel Dokeroglu and Ahmet Cogar

Part II Green ICT

Energy Cost Model for Frequent Item Set Discovery

in Unstructured P2P Networks
Emrah Cem, Ender Demirkaya, Ertem Esiner, Burak Ozaydin

and Oznur Ozkasap

Towards a Fairer Energy Consumption in Wireless
Ad hoc Networks.
Maurizio D’ Arienzo

Energy Efficient Resource Allocation Strategy

for Cloud Data Centres.,
Dang Minh Quan, Robert Basmadjian, Hermann De Meer, Ricardo Lent,
Toktam Mahmoodi, Domenico Sannelli, Federico Mezza,

Luigi Telesca and Corenten Dupont

A Survey of Recent Work on Energy Harvesting Networks
H. Erkal, F. M. Ozcelik, M. A. Antepli, B. T. Bacinoglu
and E. Uysal-Biyikoglu

69

77

85

93

99

http://dx.doi.org/10.1007/978-1-4471-2155-8_8
http://dx.doi.org/10.1007/978-1-4471-2155-8_9
10.1007/978-1-4471-2155-8_10
10.1007/978-1-4471-2155-8_10
http://dx.doi.org/10.1007/978-1-4471-2155-8_11
http://dx.doi.org/10.1007/978-1-4471-2155-8_11
http://dx.doi.org/10.1007/978-1-4471-2155-8_12
http://dx.doi.org/10.1007/978-1-4471-2155-8_13
http://dx.doi.org/10.1007/978-1-4471-2155-8_13
http://dx.doi.org/10.1007/978-1-4471-2155-8_14
http://dx.doi.org/10.1007/978-1-4471-2155-8_14
http://dx.doi.org/10.1007/978-1-4471-2155-8_15
http://dx.doi.org/10.1007/978-1-4471-2155-8_15
10.1007/978-1-4471-2155-8_16
10.1007/978-1-4471-2155-8_16
http://dx.doi.org/10.1007/978-1-4471-2155-8_17

Contents ix

Distributed Energy-Aware Routing Protocol. 149
Erol Gelenbe and Toktam Mahmoodi

Part IV Wireless Networks

A Distributed Scheme to Detect Wormhole Attacks in
Mobile Wireless Sensor Networks 157
Oya Simsek and Albert Levi

Cross-Layer Optimization with Two-Group Loading
for Ad hoc Networks. 165
Hadhrami Ab Ghani, Mustafa Gurcan and Zhenfeng He

Algorithms for Sink Mobility in Wireless Sensor Networks
to Improve Network Lifetime 173
Metin Ko¢ and Ibrahim Korpeoglu

A Hybrid Interference-Aware Multi-Path Routing Protocol
for Mobile Ad hoc Network. 179
Phu Hung Le and Guy Pujolle

Providing Automated Actions in Wireless Multimedia Sensor
Networks via Active Rules. 185
Hakan Oztarak, Kemal Akkaya and Adnan Yazici

File Transfer Application For Sharing Femto Access 191
Mariem Krichen, Johanne Cohen and Dominique Barth

Part V Computer Networks

Time Parallel Simulation and hv-Moneotonicity. 201
J. M. Fourneau, 1. Kadi and F. Quessette

A Prediction Based Mobility Extension for eHIP Protocol 209
Zeynep Gurkas Aydin, A. Halim Zaim, Hakima Chaouchi
and Tulin Atmaca

Performance Evaluation of a Multiuser Interactive

Networking System: A Comparison of Modelling Methods 215
Tadeusz Czachoérski, Krzysztof Grochla, Adam Jozefiok,

Tomasz Nycz and Ferhan Pekergin

http://dx.doi.org/10.1007/978-1-4471-2155-8_18
http://dx.doi.org/10.1007/978-1-4471-2155-8_19
http://dx.doi.org/10.1007/978-1-4471-2155-8_19
http://dx.doi.org/10.1007/978-1-4471-2155-8_20
http://dx.doi.org/10.1007/978-1-4471-2155-8_20
http://dx.doi.org/10.1007/978-1-4471-2155-8_21
http://dx.doi.org/10.1007/978-1-4471-2155-8_21
http://dx.doi.org/10.1007/978-1-4471-2155-8_22
http://dx.doi.org/10.1007/978-1-4471-2155-8_22
http://dx.doi.org/10.1007/978-1-4471-2155-8_23
http://dx.doi.org/10.1007/978-1-4471-2155-8_23
http://dx.doi.org/10.1007/978-1-4471-2155-8_24
http://dx.doi.org/10.1007/978-1-4471-2155-8_25
http://dx.doi.org/10.1007/978-1-4471-2155-8_26
http://dx.doi.org/10.1007/978-1-4471-2155-8_27
http://dx.doi.org/10.1007/978-1-4471-2155-8_27

X Contents

Auction-Based Admission Control for Self-Aware Networks 223
Georgia Sakellari, Timothy Leung and Erol Gelenbe

Complexity Reduction for Multi-hop Network End-to-End
Delay Minimization. 231
Mustafa Gurcan, Irina Ma, Hadhrami Ab Ghani and Zhenfeng He

Performance Improvement of an Optical Network Providing

Services Based on Multicast. 239
Vincent Reinhard, Johanne Cohen, Joanna Tomasik, Dominique Barth

and Marc-Antoine Weisser

Part VI Discovery Science

FLIP-CPM: A Parallel Community Detection Method 249
Enrico Gregori, Luciano Lenzini, Simone Mainardi and Chiara Orsini

G-Network Modelling Based Abnormal Pathway Detection
in Gene Regulatory Networks 257
Haseong Kim, Rengul Atalay and Erol Gelenbe

DeDALO: A Framework for Distributed Systems Dependencies
Discovery and Analysis 265
Emiliano Casalicchio, Antonello Paoletti and Salvatore Tucci

A Content-Based Social Network Study of Evliya Celebi’s
Seyahatname-Bitlis Section 271
Ceyhun Karbeyaz, Ethem F. Can, Fazli Can and Mehmet Kalpakli

On the Parameterised Complexity of Learning Patterns. 277
Frank Stephan, Ryo Yoshinaka and Thomas Zeugmann

Using SVM to Avoid Humans: A Case of a Small Autonomous

Mobile Robot in an Office 283
Emi Matsumoto, Michele Sebag and Einoshin Suzuki

Part VII Computer Vision and Image Processing

Palmprint Verification Using SIFT Majority Voting. 291
H. Pasindu Abeysundera and M. Taner Eskil

http://dx.doi.org/10.1007/978-1-4471-2155-8_28
http://dx.doi.org/10.1007/978-1-4471-2155-8_29
http://dx.doi.org/10.1007/978-1-4471-2155-8_29
http://dx.doi.org/10.1007/978-1-4471-2155-8_30
http://dx.doi.org/10.1007/978-1-4471-2155-8_30
http://dx.doi.org/10.1007/978-1-4471-2155-8_31
http://dx.doi.org/10.1007/978-1-4471-2155-8_32
http://dx.doi.org/10.1007/978-1-4471-2155-8_32
http://dx.doi.org/10.1007/978-1-4471-2155-8_33
http://dx.doi.org/10.1007/978-1-4471-2155-8_33
http://dx.doi.org/10.1007/978-1-4471-2155-8_34
http://dx.doi.org/10.1007/978-1-4471-2155-8_34
http://dx.doi.org/10.1007/978-1-4471-2155-8_35
http://dx.doi.org/10.1007/978-1-4471-2155-8_36
http://dx.doi.org/10.1007/978-1-4471-2155-8_36
10.1007/978-1-4471-2155-8_37

Contents xi

3D Object Exploration Using Viewpoint and Mesh
Saliency Entropies. 299
Ekrem Serin, Candemir Doger and Selim Balcisoy

Boundary Descriptors for Visual Speech Recognition 307
Deepika Gupta, Preety Singh, V. Laxmi and Manoj S. Gaur

Semi-Automatic Adaptation of High-Polygon Wireframe Face
Models Through Inverse Perspective Projection. 315
Kristin S. Benli, Didem Agdogan, Mete Ozgiiz and M. Taner Eskil

A Fuzzy Metric in GPUs: Fast and Efficient Method
for the Impulsive Image Noise Removal 323
Maria G. Sanchez, Vicente Vidal, Jordi Bataller and Josep Arnal

Improved Secret Image Sharing Method By Encoding
Shared Values With Authentication Bits 331
Guzin Ulutas, Mustafa Ulutas and Vasif Nabiyev

Part VIII Agent Based Systems

Intelligent Navigation Systems for Building Evacuation 339
Gokce Gorbil, Avgoustinos Filippoupolitis and Erol Gelenbe

Automatic Population of Scenarios with Augmented Virtuality 347
Oscar Ripolles, Jose Simo and Roberto Vivo

Support for Resilient Communications in Future
Disaster Managementttt 355
V. M. Jones, G. Karagiannis and S. M. Heemstra de Groot

Agent-Based Modeling of a Price Information Trading Business. 361
Saad Ahmad Khan and Ladislau B616ni

Modeling Lane Preferences in Agent-Based Multi-Lane
Highway Simulation 369
Yi Luo and Ladislau Boloni

Chromosome Coding Methods in Genetic Algorithm
for Path Planning of Mobile Robots. 377
Adem Tuncer and Mehmet Yildirim

http://dx.doi.org/10.1007/978-1-4471-2155-8_38
http://dx.doi.org/10.1007/978-1-4471-2155-8_38
http://dx.doi.org/10.1007/978-1-4471-2155-8_39
http://dx.doi.org/10.1007/978-1-4471-2155-8_40
http://dx.doi.org/10.1007/978-1-4471-2155-8_40
http://dx.doi.org/10.1007/978-1-4471-2155-8_41
http://dx.doi.org/10.1007/978-1-4471-2155-8_41
http://dx.doi.org/10.1007/978-1-4471-2155-8_42
http://dx.doi.org/10.1007/978-1-4471-2155-8_42
http://dx.doi.org/10.1007/978-1-4471-2155-8_43
http://dx.doi.org/10.1007/978-1-4471-2155-8_44
http://dx.doi.org/10.1007/978-1-4471-2155-8_45
http://dx.doi.org/10.1007/978-1-4471-2155-8_45
http://dx.doi.org/10.1007/978-1-4471-2155-8_46
http://dx.doi.org/10.1007/978-1-4471-2155-8_47
http://dx.doi.org/10.1007/978-1-4471-2155-8_47
http://dx.doi.org/10.1007/978-1-4471-2155-8_48
http://dx.doi.org/10.1007/978-1-4471-2155-8_48

xii Contents
Part IX Security and Safety

Client-Based CardSpace-OpenlD Interoperation. 387
Haitham S. Al-Sinani and Chris J. Mitchell

An Artificial Immune Classifier Using Pseudo-Ellipsoid Rules. 395
Aris Lanaridis and Andreas Stafylopatis

Contextually Learnt Detection of Unusual Motion-Based Behaviour
in Crowded Public Spaces 403
Ognjen Arandjelovi¢

Grid Security Loopholes with Proposed Countermeasures 411
Nureni Ayofe Azeez, Tiko Iyamu and Isabella M. Venter

Detection of Broken Link Fraud in DSDV Routing. 419
Rajbir Kaur, Vijay Laxmi and Manoj Singh Gaur

Strategies for Risk Facing in Work Environments 425
MariaGrazia Fugini, Claudia Raibulet and Filippo Ramoni

Part X Modelling and Simulation

Numerical Integration Methods for Simulation
of Mass-Spring-Damper Systems 435
Mete Ozgiiz and M. Taner Eskil

Multi-Layered Simulation Architecture: A Practical Approach. 439
Okan Topgu and Halit Oguztiiziin

Variable Threshold Based Cutting Method for Virtual
Surgery Simulations L 445
Omer Cakir, Fatih Cakir and Oguzhan Cakir

Model Based Approach to the Federation Object Model
Independence Problem 451
Mehmet Fatih Uluat and Halit Oguztiiziin

http://dx.doi.org/10.1007/978-1-4471-2155-8_49
http://dx.doi.org/10.1007/978-1-4471-2155-8_50
http://dx.doi.org/10.1007/978-1-4471-2155-8_51
http://dx.doi.org/10.1007/978-1-4471-2155-8_51
http://dx.doi.org/10.1007/978-1-4471-2155-8_52
http://dx.doi.org/10.1007/978-1-4471-2155-8_53
http://dx.doi.org/10.1007/978-1-4471-2155-8_54
http://dx.doi.org/10.1007/978-1-4471-2155-8_55
http://dx.doi.org/10.1007/978-1-4471-2155-8_55
http://dx.doi.org/10.1007/978-1-4471-2155-8_56
http://dx.doi.org/10.1007/978-1-4471-2155-8_57
http://dx.doi.org/10.1007/978-1-4471-2155-8_57
http://dx.doi.org/10.1007/978-1-4471-2155-8_58
http://dx.doi.org/10.1007/978-1-4471-2155-8_58

Contents xiii
Part XI Architecture and Systems

Secondary Bus Performance in Retiring Cache

Write-Backs to Memory 463
John W. O’Farrell, Rakshith Thambehalli Venkatesh

and Sanjeev Baskiyar

Runtime Verification of Component-Based Embedded Software 471
Hasan Sozer, Christian Hofmann, Bedir Tekinerdogan
and Mehmet Aksit

Model-Based Software Integration for Flexible Design
of Cyber-Physical Systems. 479
K. Ravindran

Generating Preset Distinguishing Sequences Using SAT 487
Canan Giinigen, Uraz Cengiz Tiirker, Hasan Ural and Hiisnii Yenigiin

A Decision-Making Ontology for Analytical Requirements
Elicitation. e 495
Fahmi Bargui, Hanene Ben-Abdallah and Jamel Feki

Part XII Maching Learning

Spatio-Temporal Pattern and Trend Extraction
on Turkish Meteorological Data. 505
Isil Goler, Pinar Senkul and Adnan Yazici

Contrastive Learning in Random Neural Networks
and its Relation to Gradient-Descent Learning. 511
Alexandre Romariz and Erol Gelenbe

A Genetic Algorithms Based Classifier for Object Classification
inImages 519
Turgay Yilmaz, Yakup Yildirim and Adnan Yazici

Two Alternate Methods for Information Retrieval from
Turkish Radiology Reports 527
Kerem Hadimli and Meltem Turhan Y6ndem

Scaled On-line Unsupervised Learning Algorithm for
a SOM-HMM Hybrid 533
Christos Ferles, Georgios Siolas and Andreas Stafylopatis

http://dx.doi.org/10.1007/978-1-4471-2155-8_59
http://dx.doi.org/10.1007/978-1-4471-2155-8_59
http://dx.doi.org/10.1007/978-1-4471-2155-8_60
http://dx.doi.org/10.1007/978-1-4471-2155-8_61
http://dx.doi.org/10.1007/978-1-4471-2155-8_61
http://dx.doi.org/10.1007/978-1-4471-2155-8_62
http://dx.doi.org/10.1007/978-1-4471-2155-8_63
http://dx.doi.org/10.1007/978-1-4471-2155-8_63
http://dx.doi.org/10.1007/978-1-4471-2155-8_64
http://dx.doi.org/10.1007/978-1-4471-2155-8_64
http://dx.doi.org/10.1007/978-1-4471-2155-8_65
http://dx.doi.org/10.1007/978-1-4471-2155-8_65
http://dx.doi.org/10.1007/978-1-4471-2155-8_66
http://dx.doi.org/10.1007/978-1-4471-2155-8_66
http://dx.doi.org/10.1007/978-1-4471-2155-8_67
http://dx.doi.org/10.1007/978-1-4471-2155-8_67
http://dx.doi.org/10.1007/978-1-4471-2155-8_68
http://dx.doi.org/10.1007/978-1-4471-2155-8_68

Xiv Contents

Sequential Pattern Knowledge in Multi-Relational Learning. 539
Carlos Abreu Ferreira, Jodo Gama and Vitor Santos Costa

Part XIII Algorithms

Zoom-In/Zoom-Out Algorithms for FCA
with Attribute Granularity 549
Radim Belohlavek, Bernard De Baets and Jan Konecny

A Hyper-Heuristic Based on Random Gradient, Greedy
and Dominance 557
Ender Ozcan and Ahmed Kheiri

A Class of Methods Combining L-BFGS and Truncated Newton. 565
Lennart Frimannslund and Trond Steihaug

Adaptation and Fine-Tuning of the Weighted Sum Method

on Personnel Assignment Problem with Hierarchical Ordering

and Team Constraints. 571
Yilmaz Arslanoglu and Ismail Hakki Toroslu

An Option Pricing Model Calibration Using
Algorithmic Differentiation 577
Emmanuel M. Tadjouddine and Yi Cao

Author Index e e 583

http://dx.doi.org/10.1007/978-1-4471-2155-8_69
http://dx.doi.org/10.1007/978-1-4471-2155-8_70
http://dx.doi.org/10.1007/978-1-4471-2155-8_70
http://dx.doi.org/10.1007/978-1-4471-2155-8_71
http://dx.doi.org/10.1007/978-1-4471-2155-8_71
http://dx.doi.org/10.1007/978-1-4471-2155-8_72
http://dx.doi.org/10.1007/978-1-4471-2155-8_73
http://dx.doi.org/10.1007/978-1-4471-2155-8_73
http://dx.doi.org/10.1007/978-1-4471-2155-8_73
http://dx.doi.org/10.1007/978-1-4471-2155-8_74
http://dx.doi.org/10.1007/978-1-4471-2155-8_74

Search Computing: Addressing Complex
Search on the Web

Stefano Ceri and Marco Brambilla

Abstract Web search is considered a playground for a few giants—such as
Google, Yahoo! and Bing—that relegate the other players to market niches.
However, Web search is far from satisfying all information needs, because many
search queries are complex, require information integration, and go beyond what
can be offered by a single Web page; on these queries, generalized search engines
do not perform well enough. This paper addresses a new paradigm for search-
driven data integration, called Search Computing, based on combining data
extraction from distinct sources and data integration by means of specialized
integration engines. The Search Computing project has the ambitious goal of
lowering the technological barrier required for building complex search applica-
tions, thereby enabling the development of many new applications which will
cover relevant search needs.

Keywords Search computing - Software engineering - Search engine - Conceptual
models - Ranking - Information retrieval

1 Introduction

Searching for information is perhaps the most important application of today’s
computing systems. In the new century, all the World’s citizens have become
accustomed to thinking of the Web as the source for answering their information

S. Ceri (X)) - M. Brambilla

Dipartimento di Elettronica ed Informazione,
Politecnico di Milano, V. Ponzio 34/5,
20133 Milan, Italy

e-mail: ceri@elet.polimi.it

M. Brambilla
e-mail: mbrambil @elet.polimi.it

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 1
DOI: 10.1007/978-1-4471-2155-8_1, © Springer-Verlag London Limited 2012

2 S. Ceri and M. Brambilla

needs, and search engines as their Web interface. If any Web page in the world
stores the answer to our information need, then we expect the search engine to link
that page and describe it through a snippet appearing in the first page of the search
results. A few search engine companies are able to meet such expectations, and
completely cover the search engine market.

However, offering a link to a Web page does not cover all information needs.
The notion of “best page” for solving a given problem is typically inadequate
when the query is complex and requires composing information spanning over
multiple pages. Even simple problems, such as “which theatre offers a at least-
three-stars action movie in London close to a good Italian restaurant”, can only be
solved by searching the Web multiple times, e.g. by extracting a list of the recent
action movies filtered by ranking, then looking for movie theatres, then looking for
Italian restaurants close to them. While doing so, the user is applying ranking
while extracting movies, then Italian restaurants based on proximity with the
theatres showing them; the best way for building the matching is to use the search
engine itself, by entering movie’s names as keywords, and then theatre’s locations
to search for restaurants, and looking at them upon city maps. While the search
engine hints to useful information, the user’s brain is the fundamental platform for
information integration.

Complex queries are supported in certain domains, such as travels, hotel
booking, and book purchasing, by specialized, domain-specific search integrators.
It is instructive to assess how travel assistants solve the problem: they offer a few,
predefined queries to build the itinerary, then offer additional services (e.g., car
rentals, hotels, local events, insurance) so as to complete the plan around the
itinerary. Thus, they perform specialized steps of integration and then let the user
enrich the solution incrementally and interactively, with customized interfaces.
Search integrators outperform general search engines in many domains, which in
turn exhibit regular query patterns and are associated with substantial business.

The search computing project (SeCo), funded by the European Research
Council as an advanced IDEAS grant, aims at building concepts, algorithms, tools,
and technologies to support complex Web queries. The project, described in [1, 2],
is now in the third of a five-year lifespan (Nov. 2008-2013); it proposes a new
paradigm for solving complex queries based on combining data extraction from
distinct sources and data integration by means of specialized integration engines.
The search computing project has the ambitious goal of lowering the technological
barrier required for building complex search applications, thereby enabling the
development of many new applications which will cover relevant search needs.

Search computing covers many research directions, which are all required in
order for providing an overall solution to complex search. The core of the project
is the technology for search service integration, which requires both theoretical
investigation and engineering of efficient technological solutions. The core theory
concerns the development of result integration methods that not only denote “top-
k optimality”, but also the need of dealing with proximity, approximation, and
uncertainty. Such a theory is supported by an open, extensible and scalable
architecture for computing queries over data services, designed so as to

Search Computing: Addressing Complex Search on the Web 3

incorporate the project’s results by adding new operations, by encoding new join
methods, and by injecting new features dealing with incremental evaluation and
adaptivity.

A number of further research dimensions complement such core. Formulation
of a complex query and browsing over solutions is a complex cognitive task,
whose intrinsic difficulty has to be lowered as much as possible so as to meet
usability requirements. Therefore, we are investing a consistent effort in the
development of user-friendly interfaces which are targeted at assisting users in
expressing their needs and then browsing on results. Solving a complex problem
requires supporting users in the interactive and incremental design of their queries,
thereby assisting search as a long-term process for exploring the solution space;
result differences can be better appreciated by visualizing results (e.g., through
maps or timelines).

The project success depends as well on the ability of registering new sources
and making them available for solving complex problems; therefore, we have
designed abstractions, architectural solutions, and model-driven design tools for
service registration and for application development, aiming at assisting service
publishing, application design, and query execution tuning. While the current
description of Web resources is very simple, so as to enable an equally simple
description of Web interactions, we aim at linking the service description to
ontological sources, so as to enable high-level expressive interfaces covering the
gap from high-level interactions to query expression.

Figure 1 shows an overview of the Search Computing framework, constituted
by several sub-frameworks. The service mart framework provides the scaffolding
for wrapping and registering data sources in service marts. The user framework
provides functionality and storage for registering users, with different roles and
capabilities. The query framework supports the management and storage of queries
as first class citizens: a query can be executed, saved, modified, and published for
other users to see. The service invocation framework masks the technical issues
involved in the interaction with the service mart, e.g., the Web service protocol
and data caching issues.

The core of the framework aims at executing multi-domain queries. The query
manager takes care of splitting the query into sub-queries (e.g., “Which are the
at-least-three-stars action movies?”’; “Which theatres show them?”; “Where are
Italian restaurants nearby those theatres?”) and bounding them to the respective
relevant data sources registered in the service mart repository; starting from this
mapping, the query planner produces an optimized query execution plan, which
dictates the sequence of steps for executing the query. Finally, the execution
engine actually executes the query plan, by submitting the service calls to des-
ignated services through the service invocation framework, building the query
results by combining the outputs produced by service calls, computing the global
ranking of query results, and producing the query result outputs in an order that
reflects their global relevance (Fig. 1).

This paper is organized as follows: Sect. 2 describes service registration,
Sect. 3 describes the query engine and the process of query planning and

4 S. Ceri and M. Brambilla

SeCo Service Expert End
expert publisher user user #

P : Client
. L. Liquid Queries
Query Plan Service Application € l?l’ application
Refinement Registration | |Configuration r r
Tool Tool Tool } Queries &results | Read &
: : : v \ write >
Queries & results lT ! ! i [ExternalAPI (REST) | ————- Application
A\ A\ A\ Repository
‘ Internal API |
Orchestration ué\
——r—= IS Read& oy
| € = 1E| U K write P ——
| S Eig—> ser Framework | _—_"_ User data
} £ ‘é“}g {"Cache repository
@
I g z
| |
I 2131
L

Read2 uNEREL
- Query Framework _Wwrite Query
{"Cache Repository
Read&
e Execution Engine Lo i Service Mart Framework | """ _ Service
Cache results t———————— {""Cache Repository

X ! Service calls
77777 > Controldependencies (uses) o~ __s R i
: Service call results Service Invocation Services
e Data flows (queries, results) Fr k Cackra T

Fig. 1 Overview of the search computing framework

Dataretrieval

Legend

execution, Sect. 4 describes the liquid query interface, Sect. 5 describes the
exploration and visualization activities, Sect. 6 describes the process of application
development.

2 Service Registration

Service registration is an essential aspect of the Search computing project; the
process is very critical because it must satisfy two conflicting requirements. On
one side, services must be described with enough details about their interfaces and
deployment so as to support their composition and invocation by means of fully
automatic processes. On the other side, the actual mapping of services to real-
world objects and facts must be exposed, so as to enable the construction of
high-level user interfaces covering the semantic gap between user interaction and
service selection.

The service model used for registration must describe not only the object or fact
exposed by a service, but also the logic that a specific service performs while
accessing an object, so that an interpretation system can select the specific service
which best matches the user’s requirements expressed in an informal or semi-
formal way. Moreover, the model must support processes that aim at recognizing,
at service registration time, when services describe the “same” objects or prop-
erties through “different” notations (e.g., names or types), so as to support
matching processes. The scope of service registration in SeCo is therefore quite
broad, as it must cover aspects ranging from performance indicators up to the
semantic description of services and of their parameters.

Search Computing: Addressing Complex Search on the Web 5

Fig. 2 Overview of the
service description and
annotation frameworks

Reference KB

1

Semantic Annotation Framework

Service Mart Proxy KB
Access Pattern Domain Diagram

1

Service Interface

Service Description Framework

An overview of the approach is described in Fig. 2: during registration, each
data service becomes known in terms of: the concepts that it describes (conceptual
view), its access pattern, i.e. the input—output parameters (logical view), and the
actual supported interaction protocol, with a variety of quality parameters
(physical view); these three views describe the Service Description Framework
(SDF) at different levels of abstractions.

In addition, information about services being used constitutes a Service
Annotation Framework (SAF), which helps the query system in understanding the
query and selecting the appropriate services. Access pattern information from all
the services is used to create the Domain Diagram (DD), a simple ER model of the
concepts which are used by services; these may reference the Knowledge Base
Proxy (KBP), which in turn refers to one or more Knowledge Bases (KB). In
SeCo, we use general-purpose knowledge bases, such as Yago, or domain-specific
knowledge bases, such as the Gene Ontology. The Proxy represents a subset of the
knowledge base summarizing the concepts that are most useful for query analysis.

The Service Description Framework adopted so far in SeCo for service
description [3] uses a multi-level modeling approach, consisting of conceptual,
logical, and physical layers. The conceptual level is a very simple model which
characterizes real world entities, called Service Marts (SM), structurally defined by
means of attributes, and their relationships. The logical level describes the access
to the conceptual entities in terms of data retrieval patterns (called Access
Patterns, AP) described by input and output attributes. Finally, the physical level
represents the mappings of these patterns to concrete Web Service Interfaces (SI),
which incorporate the details about the endpoint and the protocol to be used for the
invocation, together with some basic statistics on the service behavior that can be
used for granting some given levels of quality of service (QoS). Figure 3 provides
an example of presents the concept Movie, registered as a service mart, together
with two associated access patterns and service interfaces, with the respective
attribute mappings (notice that mappings are shown only for the first access pattern
for clarity).

A three-layered architecture fulfills the following needs: (1) abstracting the
conceptual properties of objects from the large amount of services that access

6 S. Ceri and M. Brambilla

Service Mart (SM) I

Movie(Title, Director, Score, Year, Genres(Genre), Openings(Country, Date), Actors{Name))]

Access Pattern (AP)

[MovieByTitte: Tile' | Director® | Score® | Year®.. | [MovieByYear: Tile® | Year! | Director® | Score®.. |

Service Interface (S1) _ . 1 -~
|l o | GoogleMovie: THle? | Year'| Diroctor® | Scoref |...]
ImdbMovie: Tiie! | Director® | Score® | Yeard...] Phizical
Phisical f | params. J
params.
MyMovie: Title' | Director® | Score® | Year®,.. I OtherMovie: Tile® | Year | Director® | Score® |...]
Phisical Phisical
params, params.

Fig. 3 Multi-level description of Web services about “movies”

them; (2) applying the separation of concerns principle to the service description
task, by granting the independence of concept definitions, access methods, and
concrete service descriptions.

3 Query Execution

The execution of multi-domain queries upon search services is assigned to the
query process, which deals with the problem of scheduling service calls, taking
into account their invocation constraints, pursuing some optimization objectives at
compile-time, and then dealing at run-time with their actual, possibly unexpected,
behaviour during the execution [4, 5]. Figure 4 summarizes the architecture of the
query execution component and shows the inputs, outputs, and interplay between
its components.

The system processes multi-domain queries. Independently of the higher-level
languages and representations in which queries are formulated at the user interface
level, any query is, from the engine’s perspective, the specification of a collection
of services to be invoked and a set of conjunctive conditions over their results.
SeCoQL, the declarative textual language chosen to represent abstract queries,
serves well as matching point between different components, is easily generated by
the UI modules and easily parsed by the underlying modules, and is compact and
readable enough to be convenient also for expert users and developers. SeCoQL
has a declarative SQL-like syntax, in which the query result is defined as the
concatenation of the tuples qualifying from the services listed in the FROM clause
by means of the evaluation of the predicates listed in the WHERE clause and
projected according to the list of attributes of the SELECT clause.

A compile-time analysis of the SeCoQL query performs a cost-driven optimi-
zation of the scheduling of service invocations, producing logical plans. The input
of this stage is a SeCoQL query in which the Service Interfaces to be invoked have
already been chosen by higher layers, and the join types (pipe vs parallel) are
therefore already fixed. The planner exploits the remaining available degrees

Search Computing: Addressing Complex Search on the Web 7

SeCoQL

SELECT M.Title, T.TAddress, R RName, R RPhone,
R T

wee LOgical Level

FROM Movie AS M, Theater AS T. Restaurant AS R
WHERE Shows{M.T) AND Watch&Eat(T,R) AND
M.Genres. Genre » "Action’ AND
M.Country = "USA" AND
R.Category = ‘Mexican’ AND
T.UAddress = SINPUT
LIMIT 50 TUPLES AND 35 CALLS AND 60 SECONDS

Restaurant

| Interaction
Designer SeCo
&Logﬁcamuanes U1 detnit Tool Developer
@ | Query Analyzer /T)
Query 2 +Lowfovoi queries || _9...-., Query Workbench
Processor ué'\ | Query Planner | Managemen ?::.1 testing
X
2 iExecurm plans Cgmp:led Tool o6l
| ueries
i) l Execution Engine
y Service calls : -« Service
- Regisiz=* -
[Service Invocator || & Physical Level
Invocations Panta Rhei :...,J@ =
r) (D
'8 | Wrapper Environment I o—(TH @
‘huE: §Adapted calls et v o
i‘” | Existing Services I definitions = :'_'/_@)

Fig. 4 Overview of the query execution flow

of freedom to decide the topology, the number and sequence of service invoca-
tions, and the join strategies. The output is a logical plan, i.e., a specification of a
workflow with quantitative estimates of the size of partial results and of the
number of invocations to be performed on each service in order to produce these
results.

Logical plans are then translated into physical plans that are directly executable
by the query engine. These plans are expressed in Panta Rhei, a unit-based
language with support for parallelism, stateless and stateful execution, and back-
wards and forward control. Panta Rhei was designed to bridge the gap from the
compile-time analysis performed by the query planner at the logical level to the
run-time enactment of the query. It was designed with the objective of providing a
clear specification of the engine behaviour and also enabling runtime adaptivity in
the form of reactions to events that do not match the expectations of the user or the
assumptions made by the system at compile-time. Distribution, parallelization, and
replication issues have also been considered.

The query engine is implemented as an interpreter of Panta Rhei plans. The
execution of a query is based on the simple assumption that any query consists of
either (a) a simple invocation of a service interface, or (b) the combination of the
results of two subqueries. In the former case, the engine supports the invocation of
service interfaces that wrap data sources of many different kinds. As for the latter
case, the results of the sub-queries can only be joined in series (pipe join) or in

8 S. Ceri and M. Brambilla

Demo Description Table View (® | Atom View = Parallel Coordinates =
The server retrieved 27 combinations... Get More... Show Columns = Group Results =

Showming § a3 of 33 antvies 2INextlast Search

Combinations | Events Hotels Restavrant

o9 0.521 L3 2010-06-11| 15:00:00 | The reh

0509

012 o888 L6 |2000-06-13 15:00:00

<€ = 3

Fig. 5 Tabular representation of liquid queries

parallel (parallel join), and the interleaving of invocations performed on the sub-
queries is handled by interpreting the signals sent by operators dedicated to this
task, called strategy units. Also, the execution of a query can be monitored in all its
stages by means of a workbench tool.

4 Liquid Query Paradigm

The Liquid Query interface is used to present composite answers produced by
joins over results of registered search services [6]. Google Squared and Google
Fusion Tables are the closest approaches to Liquid Query, but the emphasis on
search service federation gives to our tabular structures an additional dimension
which emphasizes the source of results and provides a more powerful
representation.

The tabular format, shown in Fig. 5, presents the result set in terms of projected
attributes (i.e., shown columns), ordering attributes, clustering attributes, grouping
attribute, and expansions. A liquid result instance is shown as a row in the tabular
representation of the liquid result schema. A liquid result page is a set of liquid
result instances that are shown altogether in the user interface. Notice that users
can dynamically change the order within the list of selected services and within the
lists of their projection attributes and ordering attributes. Figure 5 depicts the
Liquid Result page for the running example.

When browsing the result set, the end user is expected to perform a set of
interaction primitives that refine or change the shape of the query, the content of
the result set, and the visualization format of the results. Such primitives may need
to access the server-side (Remote Query Interaction Primitives), or could impact

Search Computing: Addressing Complex Search on the Web 9

; ™
! 3 Concerts o} 6 Hotels ¥ 7 Restaurants
[Get More] ' Get More I I [Get More]]
The Deedles &5 [Hampton Inn and Suites | BT [Lodo's Bar & Grille (L]
Rocfeaogras <o [oenver Downtomn I - — L
ecks Who Drink Presents g (7] = ——
Westword Music Knowcase ﬁ e [Strings :3
- B et -
Afternoon Tea ot the 7. T —
Brown Palace Pete's Kitchen Erid
[AAE 11th Avenue Hostel B0 [Wynkoop Brewery (2]
|Regency Hotel &&d [Jax Fish House - Denver L]
|ouxtord Club [1F
|
v
< f - B
— - —
Result Combination mbinations More Combinations
D w Rank: 0.51 h N z
1D: 0_26
F 41 >
.

Fig. 6 Atom view of liquid queries

only the client-side version of the extracted result set (Local Resultset Interaction
Primitives). The exploration primitives include:

Expand (target service, selected tuples) The operation expands the result
schema by adding one new target service and joining it with selected tuples. The
expansion causes a set of exact queries to the expanded service interface, on the
values selected by the user. If the expansion requires additional inputs, a dialog
box could be shown to the user for submitting the needed parameters. As an
example, an expand operation could get other events scheduled in the same days
as some specific events selected from the initial result set. The interface will ask
the user to provide the missing parameters (e.g., the event type) and will produce
a new service result, with the new events matching the selected one.

MoreAll The operation loads additional tuples from all the selected services in
the currently specified query (excluding extensions); this command is typically
executed as reaction to a user interaction asking for more information about the
information need as a whole.

MoreOne (service) The operation asks for additional tuples from a specific
service interface in the currently defined query. This command is typically
executed as reaction to a user interaction asking more information on a specific
domain (e.g., more movies or restaurants), leaving the others unchanged.

To improve over the tabular representation, we implemented a result visuali-

zation called atom view, which forms the basis for the exploration of the resource
graph and the iterative expansion of the query. Instead of showing the combina-
tions as table rows, the atom view adopts the visualization strategy shown in
Fig. 6: items are shown in separate lists, one for each entity involved in the query:
in the example of Fig. 6 (central part), the set of hotels is shown side by side with
the list of events. The lists are completely independent and show the top-k items
retrieved by the query for each entity. In the atom view the unified global ranking

10 S. Ceri and M. Brambilla

| mestaurant _{_':lﬁuf.‘ml
Concert | —-‘/.——' Co.ll.(tﬂ }
| Artist | ¥
) Photo
Hotel L J
C) (b)

Fig. 7 Moving “forward” and “backward” on the SRF

is displayed in a dedicated widget (Fig. 6, bottom part), where the joined com-
binations of objects are represented (and ordered) by their global ranking score:
relative importance of combinations is represented by the ordering of items, while
absolute value of the ranking score is shown through appropriate visual clues (like
colour gradient or object size). By moving the mouse over the list of combinations,
the user can select one and automatically highlight the items in the various object
lists that contribute to the combination; vice versa, he can select one element from
a list and thus highlight the combinations comprising it. The advantage of this
view is the good simultaneous visibility of the items extracted, of their combi-
nations and of the global ranking.

5 Exploration and Visualization

The exploration activities is shown in Fig. 7 as a navigation of the Data Dictionary
in the Service Annotation Framework [7]. Users express their queries directly upon
the concepts that are known to the system, such as hotels, restaurants, or movie
shows; moreover, users are aware of the connections between the concepts, and
therefore they can, e.g., select a show and then relate it to several other concepts:
the performing artist, the close-by restaurants, the transportation and parking
facilities, other shows being played in the same night in town, and so on.

The exploratory query interaction paradigm proceeds as follows. The user starts
by selecting one of the available objects, and submits an “object query” to extract
a subset of object instances. For example, a user could choose a “concert” object,
and ask for “jazz” concerts in a “club” in the “Village” area of “New York”, or
choose a “restaurant” object, and ask for “vegetarian” restaurants in the “south
end” of “the city” in a given “price range”. Object queries are conjunctions of
selection predicates: each predicate is represented in the user interface as a widget
for inputting the corresponding selection parameters, e.g. a drop-down list for
choosing a value among the available restaurant types or city districts, or a slider
bar for setting price ranges. Queries results are ranked and the user interface also

Search Computing: Addressing Complex Search on the Web 11

lets the user specify his ranking preferences, e.g. “distance”, “quality”, “price
range” or a combination of them.

At this point, the user can select the most relevant object instances and continue
with the exploration by choosing the next concept among the various ones that can
be connected to the selected objects; the system will then retrieve connected object
instances and form a “combination” with the objects retrieved at the preceding
steps. Result combinations at any given step of the search process are ranked
according to the global ranking criterion. Continuing in the above example, after
selecting three or four “jazz clubs”, the user is offered to add to this plan several
additional options: restaurants, exhibitions, movies, music shows, dancing places,
and other amenities. If they select a “restaurant”, the connection to “concert”
maps concerts to the restaurant instances that are close to the concert instances,
and then the connection to “restaurants” adds them to the solution. If users further
select “metro”, they are asked to indicate the starting point of their ride, and the
search obtains for every selected object instance at the previous interaction the best
metro station and ride, with the detail of trains, line changes, and expected time.

At any stage, users can “move forward” in the exploration, by adding a new
object to the query, starting from the connections available in the data dictionary
and from the objects that have been previously extracted. Forward path exploration
can be applied to all previously extracted objects/combinations or to a subset only,
manually “checked” by the user. Users can also “move backwards” (backtrack) in
the exploration, by excluding one of the objects from the query, or by
“unchecking” some of their previous manual selections of relevant object
instances. For example, a user may decide that the bus ride is too inconvenient,
prefer to use a car instead, and then explore parking opportunities for the selected
restaurants. Figure 7a, b show how nodes can be added to and removed from a
given query.

Visualization of results can be optimized according to the type of their attri-
butes. Types are classified as:

e Interval Quantitative attributes measured relative to an arbitrary interval
(e.g., Celsius degrees, latitude and longitude, date, GPA). In this class, two
important subclasses are further distinguished for visualization purposes:

— Geographic points and addresses They admit domain specific operations like
the computation of distance, the visualization on maps, the determination of
routes, etc.

— Time points They admit the representation on time scales and calendars,
at different domain-specific granularity.

e Ratio Quantitative attributes measured as the ratio with a known magnitude unit
(e.g., most physical properties).

e Nominal Categorical labels without notion of ordering (e.g., music genre). They
can be visualized by means of textual labels (for example within tables). In case
of a low number of categories, they can be represented through visual clues, for
example different shapes or colors.

12 S. Ceri and M. Brambilla

e Ordinal Data values that admit order, but not size comparison (e.g., quality
levels).

The process of generating the visualization aims at producing a representation
that maximizes the understandability of the result set, by considering the type and
semantics of data and the functions of multi-domain search [8]. The visualization
maps the result set onto a presentation space by considering the types of attributes
that describe the properties of combinations and the visualization families that are
best usable for rendering the data dimensions.

In order to identify the primary visualization dimension, one can assume that an
ordering of data type exists and that it guides the selection of the primary attributes
determining the visualization space. Such ordering depends on the capacity of the
data types to “delimit” a visualization space where single objects and combina-
tions included in the result set can be conveniently positioned. For example, if a
given object O has a geo-referenced attribute, then its instances can be represented
on a map by using that attribute as a primary visualization; similarly, objects with
attributes representing temporal events can be placed on a timeline. Representing a
combination then amounts to finding suitable representations for the majority of its
objects, by highlighting them upon a given visualization space, and then relating
together the object instances of a combination through orthogonal visual mecha-
nisms. Once placed on the visualization space, an object is succinctly represented
by some of its attributes (e.g., identifiers); typically the local ranking of the object
can also be visually represented (e.g., through conventional shapes, or colors).
Other attributes are omitted from the visualization, and can be accessed through
secondary visualization methods, such as pop-up windows.

For example, the results of queries about geo-localized can use maps. When the
user searches for upcoming events (concert, sport matches, movie shows, and so
on) close to a specified location, considering also availability of close-by hotels, he
may be offered a map as primary visualization, together with visual clues that
indicate the object’s rankings. The user controls the progression of search, can
backtrack, and can turn to totally different solutions, as if he were operating on the
Liquid Query framework (Fig. 8).

6 Search Computing Tools

Building and configuring search computing applications may become a non-trivial
task for a designer. To ease his work, the proper set of development, configuration
and monitoring tools are needed. The tools should support all the development
phases necessary to support all the aspects of a multi-domain search application,
according to sensible development process guidelines [8]. The development pro-
cess is structured into service registration and application configuration; the latter,
in turn is composed by query specification and user interface definition. Service
registration comprises several substeps, corresponding to the different abstraction

Search Computing: Addressing Complex Search on the Web 13

2 o s W\ Wi 0;‘“ ‘\ N
i e - @ i. e -’ k L
“a- i e B E iy | e
B LDy e
T e eERil e v -

g 6 e (e R

(©))

Fig. 8 Result Exploration in the entertainment planning scenario. a Visualization and selection
of ranked combinations b display of details of a specific object (hotel Hyatt Regency), including
non geo-referenced objects, such as reviews ¢ menu of exploration options relevant for the
selected hotel d exploration additional geo-referenced objects, such as shopping centers
(now included in the combinations)

levels that describe the resources: Service Mart (SM), Access Pattern (AP), and
Service Interface (SI); as well as their annotations in the Data Dictionary (DD) and
Knowledge Proxy (KP). Application configuration consists in configuring a search
computing application for a vertical domain; in particular, this task includes query
specification, which is performed with a mashup-based approach [9], illustrated in
Fig. 9, and user interface configuration, i.e. choosing the interfaces of query
submission forms and the display style of the result set, including the choices on
the initial display of the result set (e.g., sorting, grouping, and clustering attributes
or the size of the result list) and on specific visual representations (e.g., maps or
timelines).

14 S. Ceri and M. Brambilla

movie

* m iGeese e
ke

* m_direcior & m_name

g o m_adden 3 restaurant [x |

* m_year * meny

g il * m_souslry _

* m_genses (m_gene) » m_phoue gty

e il o m_movics (m_tidle. m_Jengh, m_show Times) .

Acerns Patterns (1) ¥ Aceess Patterns (3) +

.
® m_calegosies {m_category)

Accens Fatterms (1) +

Fig. 9 Tool user interface for query configuration

7 Conclusions

While currently search in the Web is dominated by giant companies and
monolithic systems, we believe that a new generation of search computing systems
will soon be developed, with a much more composite software organization,
addressing the needs of complex queries over a fragmented market. Generic
search systems are already dominated by domain-specific vertical search systems,
e.g. with travels and electronic bookstores. When the threshold complexity of
building such verticals will be lowered, a variety of new market sectors will
become more profitable.

We also expect that the future will support easy-to-use software systems
interfaces for combining sources; application developers will act as brokers of new
search applications built by assembling data sources, exposed as search services.
We envision a growing market of specialized, localized, and sophisticated search
applications, addressing the long tail of search needs (e.g., the “gourmet sug-
gestions” about slow-food offers in given geographic regions). In this vision, large
communities of service providers and brokers (e.g., like ProgrammableWeb.com
and Mashape.com for mashups) could be empowered by support design environ-
ment and tools for executing search service compositions and orchestrations.

Thanks to the lowering of programming barriers one could expect an ultimate
user’s empowerment, whereby end users could compose data sources at will from
predefined data source registries and collections; e.g., the interaction could be built
progressively, by starting from simple, menu-driven interfaces where the user is
just asked to select the concepts and the orchestration is then inferred. Demos
providing some evidence of the feasibility of this approach were recently presented
at WWW [10] at ACM-Sigmod [11]. We also envision that, with suitable onto-
logical support and possibly within a narrow domain, queries could be generated
from keywords, as with conventional search engines.

Acknowledgments This research is part of the Search Computing (SeCo) project, funded by the
European Research Council (ERC), under the 2008 Call for “IDEAS Advanced Grants”, a
program dedicated to the support of frontier research. The project lasts from November 2008 to
October 2013.

Search Computing: Addressing Complex Search on the Web 15

References

10.

11.

. Ceri, S., Brambilla, M. (eds.): Search Computing Challenges and Directions, vol. 5950.

Springer, Heidelberg (2010)

. Ceri, S., Brambilla, M. (eds.): Search Computing Trends and Developments, vol. 6585.

Springer, Heidelberg (2011)

. Campi, A., Ceri, S., Maesani, A., Ronchi, S.: Designing Service Marts for Engineering

Search Computing Applications. International Web Engineering (ICWE) Conference,
Vienna, Austria (2010)

. Braga, D., Corcoglioniti F., Grossniklaus, M., Vadacca, F.: Efficient computation of search

computing queries, in [2]

. Braga, D., Grossniklaus, M., Paton, N.W.: Run-time adaptivity for search computing, in [2]
. Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid query: multi-domain exploratory

search on the web. WWW 2010, Raleigh, USA, ACM, April 2010

. Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Information exploration in search

computing, in [2]

. Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P., Matera M., Catarci, T.: Visualization of

multi-domain ranked data, in [2]

. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Mashing up search services. IEEE. Internet.

Comput. 12(5), 16-23 (2008)

Brambilla M., Bozzon A., Ceri S., Fraternali P., Vadacca S.: Exploratory search in multi-
domain information spaces with Liquid Query, WWW Conference, Demo session, 31 Mar
2011

Brambilla M., Bozzon A., Ceri S., Corcoglioniti F., Fraternali P., Vadacca S.: Search
Computing: Multi-domain search on ranked data. ACM-Sigmod Conference, Demo session,
June 2011

Part I
Web Computing and Search

Hypergraph-Theoretic Partitioning
Models for Parallel Web Crawling

Ata Turk, B. Barla Cambazoglu and Cevdet Aykanat

Abstract Parallel web crawling is an important technique employed by large-scale
search engines for content acquisition. A commonly used inter-processor coordi-
nation scheme in parallel crawling systems is the link exchange scheme, where
discovered links are communicated between processors. This scheme can attain the
coverage and quality level of a serial crawler while avoiding redundant crawling of
pages by different processors. The main problem in the exchange scheme is the high
inter-processor communication overhead. In this work, we propose a hypergraph
model that reduces the communication overhead associated with link exchange
operations in parallel web crawling systems by intelligent assignment of sites to
processors. Our hypergraph model can correctly capture and minimize the number of
network messages exchanged between crawlers. We evaluate the performance of our
models on four benchmark datasets. Compared to the traditional hash-based
assignment approach, significant performance improvements are observed in
reducing the inter-processor communication overhead.

1 Introduction

In order to maintain the accuracy of the information presented to their users, search
engines build very large document repositories, trying to cover the entire Web
while maintaining the freshness of constructed repositories. Web crawlers are
among the most important software employed in forming these repositories. A web
crawler is mainly responsible for locating, fetching, and storing web pages by
following the link structure between them.

A. Turk - C. Aykanat (D<)
Computer Engineering Department, Bilkent University, Ankara, Turkey
e-mail: aykanat@cs.bilkent.edu.tr

B. B. Cambazoglu
Yahoo! Research, Barcelona, Spain

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 19
DOI: 10.1007/978-1-4471-2155-8_2, © Springer-Verlag London Limited 2012

20 A. Turk et al.

There are many challenges in sequential web crawling [1]. Efficient web
crawling requires the use of distributed systems having high network bandwidth,
large processing power, memory, and disk capacities [2, 3]. Consequently, in
state-of-the-art search engines, the web crawling problem is addressed by parallel
crawlers running on distributed memory parallel architectures, where each
processor hosts a separate crawler. In [4], a taxonomy of parallel crawlers is
provided, based on the coordination among processors. As explained in [4], the
exchange scheme is one of the best inter-processor coordination schemes for
parallel crawling. In the exchange scheme, the retrieval task for a link is
assigned to the processor that has the responsibility of storing the page pointed
by the link.

The hash-based task assignment scheme [4—7] has been widely used in parallel
web crawling systems that utilize the exchange coordination scheme. In [7], the
hashes are computed over the whole URLSs to assign pages to crawlers, whereas, in
[4-6], the hashes are computed over the host component of URLs. Compared to
the page-hash-based scheme, the site-hash-based scheme has the advantage of
reducing the number of inter-processor links since pages within the same site are
more likely to link each other.

The above-mentioned page-to-processor assignment schemes implicitly address
the load balancing problem, but they do not capture the cost of inter-processor
communication. In [8], a greedy constructive algorithm is proposed to integrate the
cost of communication into the execution cost of a crawling task on a processor
in a heterogeneous system. In [9], we proposed a graph-partitioning-based
(GP-based) model for page-to-processor assignment. In this model, the partitioning
constraint addresses the load balancing problem while the partitioning objective of
minimizing the cutsize defined over the edges that span more than one parts
corresponds to minimizing the total volume of inter-processor communication.
In parallel crawling, the messages exchanged are relatively small in size (around
50 bytes), but many. Hence, the latency overhead, which can be expressed in terms
of the number of messages exchanged between processors, is a better indicator of
the communication overhead. In [10], a GP-based page-to-processor assignment
scheme is proposed to improve the partitioning strategy of a geographically
distributed crawler by utilizing geographical information (server location and
geographic scope of web pages).

The state-of-the-art parallel crawling systems generally have a distributed
architecture, and crawling agents are connected through a wide area network.
Depending on the characteristics of the underlying communication network, the
message latency overhead in link exchanges between processors may become
a bottleneck. We try to minimize this latency overhead (number of network
messages) in the exchange scheme via a hypergraph-partitioning-based assignment
model that minimizes the total message count while enforcing two load balancing
constraints. The first constraint enforces a balance on the retrieval and storage task
loads of processors while the second constraint enforces a balance on the number
of issued page download requests.

Hypergraph-Theoretic Partitioning Models for Parallel Web Crawling 21

2 Preliminaries

We represent the Web as a two-tuple (P, L), where P and L indicate the set of
pages and the set of links between pages, respectively. Without loss of generality,
multiple links from a page p; to page p; in P are assumed to be coalesced into
a single link /; in L. For efficient crawling, our models utilize the web structure
obtained in the previous crawling session to provide a better page-to-processor
mapping for the following crawling session.

A hypergraph H = (V, N) is defined as a set of vertices V and a set of nets
(hyperedges) AV, where each net connects a number of distinct vertices. The vertices
connected by a net n; are said to be its pins and denoted as Pins(n;). A cost ¢(n;) is
assigned as the cost of anetn; € A Multiple weights w! (v;), w?(v), . . ., w®(v;) may
be associated with a vertex v; € V.

O={Vy,Vs,..., Vk} is said to be a K-way partition of a given hypergraph H if
vertex parts (i.e., every Vi, forke{l,...,K}) are mutually disjoint and their
union is exhaustive. The K-way hypergraph partitioning (HP) problem can be
defined as finding a K-way vertex partition II that optimizes a partitioning
objective defined over the nets that connect more than one part while satisfying
a given partitioning constraint. The partitioning constraint is to satisfy multiple
balance criteria on part weights, i.e.,

W' (Vi) < W,

avg

(I1+¢€),fork=1toK,r=1toR. (1)

For the rth constraint, weight W’ (V) of a part V; is defined as the sum of the
weights w'(v;) of vertices in Vy, Wy s the weight that each part should have in
the case of perfect balancing, and € is the maximum imbalance ratio allowed.

In a partition IT of hypergraph H, a net is said to connect a part if it has at least
one pin in that part. The connectivity set A(n;) of a net n; is the set of parts
connected by n;. The connectivity A(n;) =|A(n;)| of a net n; is the number of parts
connected by n;. A net n; is said to be cut if it connects more than one part
(i.e., A(nj)>1) and uncut otherwise. In our particular problem, the partitioning
objective is to minimize the connectivity—1 metric

Cutsize(TT) = > c(n;)(A(nj) — 1), (2)

VleNcm

defined over the set Ny of cut nets. The HP problem is known to be NP-hard
[11, 12]. However, there are successful HP tools (e.g., hMeTiS [13] and PaToH [14]).

3 Site-Based Partitioning Model

In our site-based HP model, we represent the link structure (P, L) by a site
hypergraph H=(V,). We assume that a set S = {8}, S,,...} of sites is given,

22 A. Turk et al.

Table 1 Properties of the datasets

% of Site-based hypergraph

Number of intra-site Number of
Dataset Pages Sites Links links Vertices Nets Pins
google* 913,569 15,819 4,480,218 87.42 15,819 86,552 277,805
in-2004 [15, 16] 1,382,908 4,380 16,917,053 95.92 4,380 205,106 555,195
de-fr [17]° 8,212,782 38,741 39,330,882 75.06 38,741 2,091,986 4,968,036

indochina [15, 17] 7,414,866 18,984 194,109,311 92.80 18,984 250,931 799,783

Google contest, available at http://www.google.com/programming-contest.
" Crawled with Larbin: multi-purpose web crawler, available at http://larbin.sourceforge.net.

where sites are mutually disjoint and exhaustive page subsets of P. All pages
belonging to a site S; are represented by a single vertex v;€V. The weights
w!(v;) and w?(v;) of each vertex v; are set equal to the total size of pages (in bytes)
and the number of pages hosted by site S;, respectively.

A K-way partition is applied on H for a parallel system that contains
K crawlers/processors. In a K-way partition = (1}1,1}2, .. .,V~K) of 'I‘Z, each
vertex part Ve corresponds to a subset Sy of the set S of sites, where pages of each
site S; € S are to be retrieved and stored by processor Py.

In the site-based hypergraph H, vertices are in site granularity, whereas nets are
in page granularity. For each page p; having at least one outgoing inter-site link,
there exists a net n; with cost ¢(n;) = 1. Vertex vy is a pin of net n; if and only if site
Sk contains page p; or a page p; pointed by link ;. That is,

Pins(n;) = {vi : pj € S} U{ve : € € L Ap; € Sk} (3)

Pages of a site that does not have outgoing links to page(s) of any other site do not
incur nets in H.

4 Experimental Results

To validate the applicability of the proposed model, we run simulations over a set
of precrawled page collections. These collections are converted into hypergraphs
as described in Sect. 3. Properties of the test datasets and respective site-based
hypergraphs are displayed in Table 1. Since the page size information is not
available for the in-2004, indochina, and de-fr datasets, unit page sizes are
assumed for vertex weighting in hypergraphs corresponding to these datasets.
As seen in the table, in all datasets, more than 75% of the links remain among the
pages belonging to the same site.

The state-of-the-art HP tool PaToH [14] is used to partition constructed
hypergraphs. The imbalance tolerance is set to 5% for both weight constraints. Due
to the randomized nature of PaToH, experiments are repeated 8§ times, and average
values are reported.

http://www.google.com/programming-contest
http://larbin.sourceforge.net

Hypergraph-Theoretic Partitioning Models for Parallel Web Crawling 23

Table 2 Load imbalance values and message counts

Load imbalance (%) Message count (10%)
Dataset (K) Hash-based HP-based Hash-based HP-based
4 14.57 4.99 24.0 8.4
8 20.79 4.99 40.0 9.3
google 16 22.34 4.99 56.4 10.9
32 70.18 4.99 71.7 12.3
64 131.46 4.79 84.7 13.7
4 11.69 4.84 53 1.4
8 25.00 4.29 8.9 1.9
in-2004 16 40.58 8.20 12.8 2.5
32 73.47 9.54 16.6 3.1
64 142.86 10.80 19.9 3.6
4 12.75 5.00 52.6 9.5
8 34.51 5.00 86.8 10.9
de-fr 16 58.62 5.00 128.8 10.7
32 81.95 10.33 177.8 124
64 203.39 91.61 231.9 14.1
3.71 5.00 184 4.1
8 9.91 5.00 337 5.2
indochina 16 21.77 5.00 54.5 6.4
32 41.97 5.00 80.0 7.6
64 51.91 8.62 109.8 8.1

Table 2 displays the performance of the proposed site-based HP model against
the site-hash-based model in load balancing and reducing the number of messages.
In terms of load balance, only computational load imbalance values related to the
page download request counts of processors are reported. Storage imbalance
values are not reported since actual storage requirements are not used due to their
unavailability in three out of four datasets. The communication overhead due
to the link exchange operation is reported in terms of the number of messages
exchanged between crawlers. We use K values of 4, 8, 16, 32, and 64. As seen in
Table 2, the HP model performs significantly better than the site-hash-based model
in balancing the page request loads of processors. We observe that, the load
balancing performance of the site-hash-based model drastically deteriorates with
increasing K values. This is basically due to the high variation in the sizes of the
sites in the datasets used. This experimental observation shows the need for
intelligent algorithms instead of hash-based algorithms even solely for load bal-
ancing purposes in site-based assignment, especially for large K values.

As also seen in Table 2, the HP model performs significantly better than the
hash-based model in reducing the message latency overhead as well. More spe-
cifically, on average, the HP model produces partitions with 4.9, 4.9, 7.3, and 8.7
times fewer number of messages than the partitions produced by the site-
hash-based model in google, in-2004, de-fr, and indochina datasets, respectively.
In general, the performance ratio between the HP and hash-based models increases

24 A. Turk et al.

with increasing number of processors. For example, for the largest number of
processors (K = 64), the site-based HP model produces partitions which incur 6.2,
5.5, 16.5, and 13.6 times fewer number of messages than the site-hash-based
model in google, in-2004, de-fr, and indochina datasets, respectively.

These experimental findings confirm the need for intelligent algorithms such as
HP models in order to maintain the message latency overhead at acceptable levels
for large K values.

5 Conclusion

In this paper, we proposed a model for minimizing the communication overhead of
parallel crawlers that work in the exchange mode. The model provides consider-
able improvement in terms of the number of network messages exchanged
between the crawlers, relative to the hash-based assignment approach.

References

1. Lee, H.-T., Leonard, D., Wang, X., Loguinov, D.: IRLbot: scaling to 6 billion pages and
beyond. In: Proceedings of the 17th International Conference on World Wide Web,
pp. 427-436 (2008)

2. Baeza-Yates, R., Castillo, C., Junqueira, F., Plachouras, V., Silvestri, F.: Challenges in
distributed information retrieval. In: International Conference on Data Engineering, pp. 620
(2007)

3. Cambazoglu, B.B., Plachouras, V., Junqueira, F., Telloli, L.: On the feasibility of
geographically distributed web crawling. In: Proceedings of the 3rd International
Conference on Scalable Information Systems, pp. 1-10 (2008)

4. Cho, J., Garcia-Molina, H.: Parallel crawlers. In: Proceedings of the 11th Int’l Conference on
World Wide Web, pp. 124-135 (2002)

5. Edwards, J., McCurley, K., Tomlin, J.: An adaptive model for optimizing performance of an
incremental web crawler. In: Proceedings of the 10th International Conference on World
Wide Web, pp. 106-113 (2001)

6. Heydon, A., Najork, M.: Mercator: a scalable, extensible web crawler. World Wide Web
2(4), 219-229 (1999)

7. Shkapenyuk, V., Suel, T.: Design and implementation of a high-performance distributed web
crawler. In: Proceedings of the 18th International Conference on Data Engineering,
pp. 357-368 (2002)

8. Teng, S.-H., Lu, Q., Eichstaedt, M., Ford, D., Lehman, T.: Collaborative web crawling:
information gathering/processing over Internet. In: Proceedings of the 32nd Annual Hawaii
International Conference on System Sciences (1999)

9. Cambazoglu B, B., Turk, A., Aykanat, C.: Data-parallel web crawling models. Lect. Notes.
Comput. Sci. 3280, 801-809 (2004)

10. Exposto, J., Macedo, J., Pina, A., Alves, A., Rufino, J.: Efficient partitioning strategies for
distributed web crawling. Lect. Notes. Comput. Sci. 5200, 544-553 (2008)

11. Berge, C.: Graphs and Hypergraphs. North-Holland Publishing Company, New York (1973)

12. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, UK (1990)

Hypergraph-Theoretic Partitioning Models for Parallel Web Crawling 25

13. Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning. In: Proceedings of the
36th annual ACM/IEEE Design Automation Conference, pp. 343-348 (1999)

14. Catalyiirek, U.V., Aykanat, C.: PaToH: a multilevel hypergraph partitioning tool, version 3.0.
Technical report, Bilkent University. Department of Computer Engineering (1999)

15. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: UbiCrawler: a scalable fully distributed web
crawler. Softw. Pract. Experience 34(8), 711-726 (2004)

16. Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In: Proceedings
of the 13th International Conference on World Wide Web, pp. 595-602 (2004)

17. Jean-Loup, G., Latapy, M., Viennot, L.: Efficient and simple encodings for the web graph.
In: Proceedings of the 3rd International Conference on Advances in Web-Age Information
Management, pp. 328-337 (2002)

Web Service Discovery: A Service
Oriented, Peer-to-Peer Approach
with Categorization

Mustafa Onur Ozorhan and Nihan Kesim Cicekli

Abstract This paper discusses automated methods to achieve web service
advertisement and discovery, and presents efficient search and matching tech-
niques based on OWL-S. The service discovery and matchmaking is performed via
a centralized peer-to-peer web service repository. The repository has the ability to
run on a software cloud, which improves the availability and scalability of the
service discovery. An OWL-S based unified ontology—Suggested Upper Merged
Ontology—is used in web service annotation. User-agents generate query speci-
fication using the system ontology, to provide semantic unification between the
client and the system during service discovery. Query matching is performed via
complex Hilbert Spaces composed of conceptual planes and categorical similari-
ties for each web service.

Keywords Peer-to-peer web service discovery - Categorization - Cloud
Ranking

1 Introduction

Service oriented technologies revolutionized the modern world of computing with
the paradigm shift they brought. However, to be able to use a Web Service, a
service user must have access to the descriptor of the service. Then again, the
service user should be able to access the Web Service descriptions of multiple

M. 0. Ozorhan
Central Bank of Turkey, Ankara, Turkey
e-mail: onur.ozorhan@tcmb.gov.tr

N. K. Cicekli (I)

Department of Computer Engineering, Middle East Technical University,
Ankara, Turkey

e-mail: nihan@ceng.metu.edu.tr

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 27
DOI: 10.1007/978-1-4471-2155-8_3, © Springer-Verlag London Limited 2012

28 M. O. Ozorhan and N. K. Cicekli

Web Services from a preferably single, but pre-defined location. In general, pre-
defined locations containing service descriptions are called service repositories.
There are mainly three types of service repositories, (i) centralized service reg-
istries, (ii) peer-to-peer service registries and (iii) service search engines [1]. Web
services are traditionally described with the use of the WSDL [2], which unfor-
tunately cannot adequately represent their actual semantics. Most prominent
ontology—based approaches in Web services description are OWL-S [3], WSMO
and SAWSDL [4]. Using ontological concepts for service description in OWL-S
files, the meaning of the functionality of a service can be passed to a software-
agent, eliminating human intervention in many processes such as service discovery
and service composition. For a software agent to be able to properly execute a web
service, first a selection from a set of web services should be made. This process is
called Web Service Discovery. The main problems faced in Web Service Dis-
covery are the availability of the Service Repositories, availability of the Web
Services and semantically deficient Web Services.

This paper solves these problems by a semi-decentralized, peer-to-peer service
repository, which runs on a cloud computing architecture on the service repository
side. The provided architecture provides solutions to the service semanticity related
problems with semi-automatic methods for WSDL to OWL-S conversion, and
annotation via a unified ontology which merges a wide range of ontologies together
in a single ontology, namely SUMO [5]. WSDL is selected as the source for service
descriptor conversion, since it is the current standard for web service description,
and is widely used in the industry. The contributions of this paper can be summarized
as follows: 1) Web service similarity computation based on categories and concepts
in Hilbert Spaces. 2) Automated semantic web service discovery, with web service
ranking. 3) Web service semanticization via web service discovery queries.

The rest of the paper is organized as follows. Section 2 shows how we use
Hilbert Spaces in our work. Section 3 outlines the system architecture, and
describes the modules participating in our solution. Section 4 describes the
methodology proposed in Semi Automated Service Publishing technique. In
Sect. 5, the algorithms used in query processing and service ranking are described.
Section 6 concludes the paper, and provides a pathway for the future work.

2 Hilbert Spaces

Hilbert Spaces are complex multi-dimensional spaces with applications in various
disciplines including mathematics, physics and engineering. In Mathematics,
Hilbert Spaces are used for Functional Analysis, which mostly deals with infinitely
dimensional, topological vector spaces. In our system, Hilbert Spaces are used in a
similar manner in order to represent web services and queries in infinite dimen-
sional spaces with ontologies. Hilbert Spaces are selected in our system for three
main reasons: 1) Hilbert Spaces are infinitely dimensional. 2) New dimensions can
be added to a Hilbert Space in time, since data points are represented with infinite

Web Service Discovery 29

Fig. 1 Three dimensional Category
view of a concept 4

Concept
[

» Weight

v

Level

coordinates. 3) Hilbert Spaces support the Skew Coordinate system, with which
we can mathematically model the relationships between categories.

Our system uses the unified ontology SUMO, which is created by merging
ontologies of multiple categories. Our idea is to represent the concepts and cate-
gories of SUMO in a space. Firstly, the concepts in the ontology are clustered by
their categories. Each category is represented with a dimension in the Hilbert Space.
Each dimension carries concepts from their own category. Since an infinite number
of dimensions are available in the Hilbert Space, additional dimensions can be added
to the space, if the ontology is modified, and new conceptual categories are provided.
Our Hilbert Space also contains weight and level dimensions, as shown in Fig. 1.

Both of these dimensions are orthogonal to the remaining dimensions in the
complex space. The weight dimension is used to store the weight information
about the concepts added to the space; and the level dimension is used to store the
hierarchical levels of the concepts.

Another property of Hilbert Spaces is that, they do not need to be square
summable. This means that only countably finite axes that are orthogonal are
enough to form an orthonormal basis for the entire space [6]. Hilbert Spaces can
use coordinates that intersect with different angles. In our space, similar categories
have less than 90° intersection angles, and dissimilar categories have more than
90° intersection angles. Since each dimension interacts with any other dimension
in the space, the similarities between each dimension are computed by the algo-
rithm described later (Sect. 4).

3 System Architecture

The system is built on a cloud computing architecture. It is composed of three
main components: Service Discovery Client (SDC), Service Publisher Peer (SPP)
and Service Repository Cloud (SRC).

30 M. O. Ozorhan and N. K. Cicekli

The SDC is the part of the system built for the use of human user agents. This
client helps users specify queries to find a certain web service, or a web service
providing certain functionality. The queries are composed of one or more criteria
combined with a filter operator. The criteria can be about the structure of the web
service, or they can be about the semantic properties of the web service. The query
is submitted to SRC. The repository is searched for matching services, and a set of
Service Match Records are returned to the user. Service Match Records contain
Service Name, Publisher Name and a URL where more details about the service
can be obtained.

The SPP is used by the web service publishers. With SPP, a web service
publisher can publish services to the SRC. With the embedded Service Repository
Peer (SRP) component, a publisher can opt to function as a relay station for the
SRC. The SPP also allows the publisher to annotate the OWL-S Service Profile of
the service with the concepts from SRC’s unified ontology SUMO.

The SRC is the main component of the proposed system, and consists of a set of
modules responsible for service publishing, discovery and presentation. The SRC
runs on a cloud computing architecture, and is hosted at Google App Engine.
When a web service publisher publishes a web service, the OWL-S service
descriptor files and additional semantic information (i.e. the name of the service,
the main category of the service) are transferred to the SRC. When a query is
received, the Service Discovery Manager searches the web service space in the
Data Store for matching services, ranks them for similarity, and sends the
responses to the SDC.

Service oriented computing defines an architectural style whose goal is to
achieve loose coupling among interacting software entities [7]. In this respect all
of the services provided by the system are built as web services themselves. API
users can search for services using the interfaces of the Service Discovery Man-
ager to receive programmatically readable data.

4 Semi-Automated Service Publishing

In the present web service environment, services are prevalently described by
WSDL files. The main problem regarding WSDL files as service descriptors is
their lack of semantic information. OWL-S files on the other hand enable the
expression of semantic properties for the service. The problem can be overcome by
converting the WSDL files to OWL-S syntax. The WSDL2OWL-S [8] library is
used for a preliminary WSDL to OWL-S conversion. The Service Profile file
generated by the system is presented to the user for annotation in an easy to use
editor that allows further OWL-S annotation. The annotatable nodes currently
include the Input, Output, Precondition and Effect types. The publisher can also
specify a main category for the service to be published.

The SUMO ontology contains links to WordNet ontology. Our system uses both
of these ontologies for service publishing and annotation purposes. The

Web Service Discovery 31

categorization of the semantic entities is made based on the root nodes in mid-level
ontologies, just after ontology import procedure is completed. A recursive algo-
rithm traverses all the nodes in the data store to label each node with a category
plane. Each semantic node in the SRC is assigned numeric level information, to be
used in Service Match ranking.

When a service is uploaded to our system, a Hilbert Space is generated for the
service, and the space is used for service and query match score computation
during web service discovery. There are an undefined number of dimensions in the
created complex space for each uploaded service, limited by the categories
defining the service. The lifecycle of the Hilbert Space for the uploaded web
services are discussed below.

For SRC, there are two types of data that needs to be processed: (i) conceptual
data (i.e. type information of IOPE and Service Main Category) and (ii) semantic,
non-conceptual data (i.e. id information of IOPE, Service Name and Service
Description). Usually the data points accumulated by the IOPE types are not
enough to accurately annotate a service, due to their low number. Therefore, the
categorical spaces are enriched with concepts by other concepts that in one way
relate to the already present concepts. The weight of a data point decreases as
relationship links are followed.

There are multiple dimensions in the complex space computed for a web ser-
vice, and all of these dimensions contribute to the service discovery procedure.
Our system computes a dimension significance score for each dimension, and
includes this score in the discovery process to make sure that the data points
generated in the categories that are important to the web service has more impact
in a service discovery [9].

There are multiple dimensions and category planes in the complex category
space generated for the web services. However, an explicit relationship is not
present between these categories. This introduces a problem since inter-category
plane relationships play an important role on web service discovery at most times.
The algorithm for the computation of the category plane similarity score is similar
to Google’s Page Rank [10] algorithm, in which links between two entities bond
the entities together. There are two types of links: (i) incoming links and (ii)
outgoing links. If a concept A has a relationship to a concept B, the relationship is
an outgoing link for concept A and an incoming link for concept B. For each
category, the incoming and outgoing links with any other category are counted,
and the categories with most links in between are evaluated to be more similar.

5 Automated Semantic Service Discovery

The query for a service discovery can be generated by: (i) a user-agent or (ii) a
software-agent. The data in a query needs to be: a number of query criterion and a
filter operator. A sample query is illustrated in Table 1.

32 M. O. Ozorhan and N. K. Cicekli

Table 1 Example query

Join operator Parameter Parameter
generated by user agent - -

AND(Input = Pricel Output = Ticket)

OR(Input = Movie Namel Output = Ticket)

Table 2 Query criteria

: Query criteria
importance order

Input = Output > Precondition = Effect > Service Name
> Full Text

The criteria in a query can be of different importance levels. The SRC processes
the given query to find the individual criteria, and sorts the criteria in the order of
importance. The importance of the query criteria is shown in Table 2.

In order to create a main category for the query, the criteria containing the
Input, Output, Precondition and Effect variables are examined, and the category of
the conceptual data points rooting from these are evaluated. The first data nec-
essary for the matching algorithm is created when a web service is published to the
SRC: a permanent conceptual space is created for the given service, and stored for
future use in service discovery. The second data necessary for the matching
algorithm is created when the query is sent to the system: a temporary conceptual
space is created for the given query. These conceptual spaces, dimension signif-
icance values and category plane similarities are used by the service match ranking
algorithm to obtain the most similar services [9]. When certain conditions are
satisfied, the SRC might forward the service discovery request of an agent to a
SRP. A query forward might mean one of the following three: (i) there is not a
reasonable number of available services in the cloud to make an accurate service
ranking, (ii) there is an adequate number of services in the cloud, however none of
the services are suitable enough for the received query or (iii) there is a SRP
specialized to the main category of the query, which might contribute better results
to the service discovery. In these cases, the SRC returns a forward message,
bundled with the Service Match Record list to the query owner agent. The agent is
free to follow or discard the forward.

6 Conclusions

This paper proposes a software system which allows web service publishers to
convert their WSDL web service descriptions to OWL-S web service descriptions,
annotate their web service descriptions, and publish the descriptions to a semi-
decentralized peer-to-peer network using a client application or a software APL
Publishing and discovery operations are performed via a single, unified ontology.
The proposed approach is different from existing systems in architectural and
semantic areas. Architecturally, it is highly scalable and service oriented.
Semantically, the web service similarities are computed with a novel approach, the

Web Service Discovery 33

Hilbert Space approach, based on categories and concepts. Web service seman-
ticity is enhanced via web service discovery queries, which is again a new
approach.

A future work might be allowing transparent structural and semantic compo-
sition for the provided queries. With this advancement, our system can transpar-
ently compose web services in the repository to create a web service that matches
the complex solid described by the query Hilbert Space. The composition can
simply be modeled as the unification of solids to create a bigger multi-dimensional
object.

References

1. Verma, K.: METEOR-S WSDI: a scalable P2P infrastructure of registries for semantic
publication and discovery of web services. Inf. Technol. Manag. 6(1), 17-39 (2005)

2. Christiensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description
Language 1.1. http://www.w3.org/TR/wsdl

3. W3C, OWL-S: Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S

4. Pantazoglou, M., Tsalgatidou, A.: A P2P platform for socially intelligent web service
publication and discovery. The third international multi-conference on computing in the
global information technology, pp. 271-276 (2008)

5. Pease, A.: Suggested Upper Merged Ontology. http://www.ontologyportal.org/

6. Hilbert, D., von Neumann, J., Nordheim, L.: Uber die grundlagen der quantenmechanik.
MathematischeAnnalen 98(1), 1-30 (1928)

7. Amoretti, M., Zanichelli, F., Conte, G.: Enabling peer-to-peer web service architectures with
JXTA-SOAP. In: Proceedings of IADIS International Conference e-Society, pp. 75-90.
Algarve, Portugal (2008)

. CMU Atlas Project Group, WSDL2OWL-S. http://www.daml.ri.cmu.edu/wsdl2owls/

9. Ozorhan, M.O.: A service oriented peer to peer web service discovery mechanism with
categorization. http://etd.lib.metu.edu.tr/upload/12611634/index.pdf

10. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order

to the web. Stanford InfoLab, 66 (1999)

e}

http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/OWL-S
http://www.ontologyportal.org/
http://www.daml.ri.cmu.edu/wsdl2owls/
http://etd.lib.metu.edu.tr/upload/12611634/index.pdf

Finding High Order Dependencies in Data

Rosa Meo and Leonardo D’Ambrosi

Abstract We propose DepMiner, a method implementing a simple but effective
model for the evaluation of the high-order dependencies in a set S of observations.
S can be either ordered—thus forming a sequence of events—or not. DepMiner is
based on A, a measure of the degree of surprise of S based on the departure of the
probability of S from a referential probability estimated in the condition of max-
imum entropy. The method is powerful: at the same time it detects significant
positive dependencies as well as negative ones suitable to identify rare events. The
system returns the patterns ranked by A; they are guaranteed to be statistically
significant and their number results reduced in comparison with other methods.

1 Introduction

In statistics, machine learning and data mining the problem of the determination of
set of variables whose values are correlated represents an important knowledge in
many fields such as in feature selection, database design, market basket analysis,
information retrieval, machine translation, biology, etc. Often in the scientific
literature, the study of the dependence between variables is limited to pairs [1]
but finding correlations among more than two variables is essential for many
commercial and sociological studies (collaborations and interaction networks),
bio-medical (interaction among drugs and proteins) and scientific domains.
Furthermore, many observations have a special meaning if considered as
sequentially ordered: examples span from the nucleotide sequences of the

R. Meo (X))
University of Torino, Torino, Italy
e-mail: meo@di.unito.it

L. D’ Ambrosi
Regional Agency for Health Care Services—A.Re.S.S, Piemonte, Italy

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 35
DOI: 10.1007/978-1-4471-2155-8_4, © Springer-Verlag London Limited 2012

36 R. Meo and L. D’ Ambrosi

organisms genome to the series of events generated in a network of interactions
(like a social network, a hypertext or a computer network), to the analysis of web
server logs or the detection of intrusion attempts in information systems.

Formally, a set of observations I = {iy, i, ..., ix} is named itemset where all the
elements or items of the set occur together in the same example (or transaction). Here
the term transaction denotes a group of events occurring at the same time-stamp and
sharing the same order number. Any single observation or item #; represents a pair
(Variable, Value) that means that the Variable describing one of the attributes of the
observation assumes the indicated value. The set of items / is defined as a non-empty
subset of elements from a language £, the item collection. In this manner, an itemset
represents the set of items that occur together and have the same order number.

A sequence S is an ordered list of itemsets S = <[y, l,...,I, > . A sub-
sequence S’ of S, constituted by m<n itemsets, is denoted by §' C S and is
constituted by a subset of the itemsets of S in which the precedence relationship
between any pair of itemsets is maintained.

In this paper we deal with both itemsets and sequences of itemsets and we are
able to model both of them with the same probabilistic model. We treat an
itemset as a composite event and we represent it in our model by the joint
probability that all its items occur together. Our model is based on the probability
of occurrence of events. We model the probability of the sequences by means of
the probability of the events represented by the sequence members. For the
itemsets we record the frequency with each all the items occur together; for
sequences, we record the frequency with which each of the event sequence occurs
in the correct order. In order to unify the two concepts of itemsets and sequences
we use the common term pattern. In practical cases, often it happens that the set
of returned patterns is large and much of the information is redundant because
many of the patterns are returned together with some of their subsets. The
reduction of the redundancy in the result set answers to two major challenges:
reducing the overwhelming size of the mining results and eliminating redundancy
in the information content and the overlapping between the patterns.

Deciding which patterns are redundant is not straightforward. It might depend
on the applications. For instance, the inclusion of patterns with some common
elements could be acceptable because the itemsets might have different meaning
or occur in different situations. Instead, the inclusion in the result of both subsets
and their super-sets is not acceptable if the super-sets do not add new information
to the information carried by the subsets. In literature, redundant itemsets are
detected in many different and sometimes opposite ways. Calders and Goethals
[2] allows the reduction of the number of the itemsets with a loss-less com-
pression of the result because all the information lacking from the result can be
restored by application of the concept of closed itemsets. Zhang et al. [3]
considers the correlation among the items as strong only when all the items are
considered together and when their subsets have instead a weak correlation.
On the opposite side, Duan and Street [4] considers interesting an itemset if all its
subsets are closely related to all other subsets.

Finding High Order Dependencies in Data 37

In data mining there exist computationally efficient methods to discover
significant dependencies and correlations among the items of a frequent pattern
[5-7]. In itemsets mining, in order to determine the dependencies in patterns
composed by more than 2 items, either they make the multi-way independence
assumption or they evaluate the contribution to the overall itemset of each var-
iable separately [3, 5, 6]. The difficulty stems from the fact that there is not an
easy way to determine a referential probability of an itemset [that represents a
condition of independence among the subsets if we do not suppose independence
among all the single variables in 1. Gallo et al. [5] ranks the frequent itemsets
according to the unlikelihood that they appear under the hypothesis that all the
items in the itemset are independent. But the multi-way independence condition
gives a problem: according to this definition of independence, if a dependence
already exists in a subset of I, this dependence is “inherited” from the subset to
I and to all the super-sets of I [8]. Thus we do not have a way to distinguish if an
intrinsic dependence exists in an itemset / in addition to the dependencies
inherited from its subsets.

We can solve the problem in terms of quantity of information that an itemset
provides. Chakrabarti et al. [9] proposes the use of Minimum Description length to
identify the interesting sequences. Similarly, we are interested in identifying the
surprising patterns whose probability, as derived by the number of their obser-
vations, has a great departure w.r.t. a referential, estimated probability as deter-
mined only by its subsets. We are interested in patterns that add any information to
their subsets while we want to discard those itemsets that can be foreseen given the
observation of their subsets. We proposed in [10] a solution based on the maxi-
mum entropy. The entropy of an itemset / is computed by an estimation of the
probability of I computed on the basis of the probability of its subsets. The
probability of I at which the entropy is maximum (denoted by Pg(I)) corresponds
to the probability that the itemset I would have in the condition in which it carries
the maximum amount of information in addition to its subsets. The interest
measure that we proposed for an itemset / is the departure of the probability of
I w.r.t. the referential value computed at maximum entropy: A(I) = P(I) — Pg(I).
The higher the departure between the two probabilities, the less the itemset can be
correctly foreseen from the observation of its subsets. This departure identifies a
dependence between the items and tells us that this dependence is not due to the
subsets only. As a consequence the itemset is non-redundant.

A(I) decreases with the increase in the cardinality of itemsets and it is not suitable
for the comparison of itemsets of different cardinality. For this purpose in this paper
we propose A, a version of A normalized w.r.t. the probability of the itemset:

P(I) — Pg(I)

An(l) = P(I)

Similarly it happens with a sequence pattern S. Its probability is computed on the
basis of the occurrence of all its sequence elements (itemsets) when these
occurrences respect the correct order in the sequence.

38 R. Meo and L. D’ Ambrosi

A, takes both positive and negative values, in the range from [—oo,1].
Specifically, if the value is positive, it means a positive dependence, i.e., a pattern
that is more frequent than expected; if the value if negative it means a negative
dependence, i.e., a pattern that occurs rarer than expected. In this paper we present
a method for the computation of the interesting and non redundant patterns based
on the above observations. A, is used as a score function to rank the patterns.
In Sect. 3 we show how we succeeded to determine the significance level of A,
and to identify the significant patterns.

The rest of the paper is organized as follows. In Sect. 2 we summarize how
A is computed. Section 3 shows how to determine the significance level of A,.
Section 4 presents an empirical evaluation study on the results of the system on
some common data-sets. Finally, Sect. 5 draws the conclusions.

2 Estimation of the Referential Probability

Here we generalize our model based on A to generic patterns, including also
sequences. Consider a pattern W = {wy,wy,...,w;} where w; might represent
either a single item or an itemset in an ordered sequence. Henceforth, we will
use the generic term pattern element. Entropy H(W) = — > P(w},wh,...,w})
log[P(w}, w3, ..., w;)] with wy representing the element w; either affirmed (rep-
resenting an event present in an observation) or negated (absent event). Summa-
tion ranges over the probabilities of all the combinations of the k elements taken
affirmed or negated. H(W) is not computed by assumption that singletons are
independent but taking in consideration the actual probability of occurrence of
each subset of W, as observed from the database. The exclusion-inclusion principle
[2] is adopted to compute the entropy of W starting from the probability of
the subsets of W and it is a function of the probability of W. The estimate of the
probability of Wis the probability value that maximizes the entropy and corresponds
to the case in which the amount of information on the presence of W is minimum
given the knowledge on the presence of the subsets of W. Notice that in making the
estimate we considered only the observed probabilities of the subsets. Thus, if the
dependence in a pattern W is intrinsic, due to the synergy between all its elements,
then the observed probability of W departs with respect to the estimate. As a result,
A, (W) makes emerge the intrinsic, actual dependencies, existing among all the
elements in W.

3 Setting a Threshold for A

Another problem that we have to solve is how large must be A, such that a pattern is
deemed significant. We use a null model in which there are not dependencies
between the variables. The null model is generated empirically via a randomization

Finding High Order Dependencies in Data 39

of the original data-set. Randomization is generally accepted as a way to allow a
statistical test on significance of results [11]. Randomization occurs by indepen-
dently shuffling the variable values among the examples. As a result, the new data-set
will have the same marginal probabilities of the single variables but the dependencies
between them are spoiled.

In a successive step, we compute patterns both from the real and the ran-
domized data. Next, we compute the minimum negative value of A, (denoted by
UB) and the maximum positive value of A, (denoted by LB) in randomized data.
Then, we use UB as an upper bound for rare patterns in real data and use LB as a
lower bound for the frequent patterns in real data. This is a sort of statistical test on
A, that accepts as dependent a pattern if its A, is higher (resp. lower) than the
maximum (resp. minimum) A,, of the patterns extracted from the randomized data.

Consider the public data-set Mushroom (down-loadable from the repository of
UCI). After randomization, we observed the maximum value of A, = 0.04 and the
minimum value of A, = —0.03. In real data, the maximum is A, = 0.85 and the
minimum is A, = —0.45. Thus in Mushroom the positive dependencies are more
abundant and marked than the negative dependencies. In Table 1 we show an
output of DepMiner, with the ranking of patterns (itemsets) extracted from
Mushroom. The significant itemsets (whose value of A, exceeds the observed
range of values in randomized data) are highlighted and shown over a gray
background. Over a normal, white background, instead, are shown the other
itemsets. Notice that both rarer and more frequent itemsets are interesting.

4 Experimental Evaluation

We run a set of experiments on 5 real data-sets (from FIMI and UCI Machine
Learning repositories) and on 2 real data-sets coming from NASDAQ stock
exchange index (from January 2001 to May 2009) and from the Italian lottery
(with data on the numbers drawn from 1939). The lottery data-set is important
in order to check the behavior of A, on complete random data where even the
marginals were uniform.

In Table 2 we include the total number of examples, minsup threshold, the total
number of itemsets generated (N), execution times to compute A, (in seconds).

We performed two experiments: the first one on the compression capability and
the second one on the capability of DepMiner to determine the dependencies in
contrast to methods that assume the multi-way independence condition.

1. In this experiment, to be further conservative, we compare DepMiner results at
many levels. We denote as itemsets clearly non independent, the itemset whose
A, # 0. Thus we include in the results both these latter ones and the itemsets
whose A, is acceptable by the significance test on the lower and upper bounds
obtained in randomized data. We include in Table 2 three ratios: the ratio
between the number of itemsets with A, # 0 and N (Dep/N), the ratio between
the significant dependencies and N (SDep/N) and the ratio between non

40

R. Meo and L. D’ Ambrosi

Table 1 DepMiner output: itemsets ranking with significant itemsets highlighted over a gray

background
Delta/Po Delta Freq. Itemsets
0.0188 0.0075 3256 Class = poisonous, ring-number = one, bruises? = no
0.0138 0.0059 3272 stalk-surface-above-ring = smooth, ring-number = one,
Class-edibility
0.0121 0.0045 3032 stalk-surface-below-ring = smooth, ring-number = one,
Class = edibility
0.0055 0.0023 3376 stalk-surface-above-ring = smooth, Class = edibility,
gill-size = broad
0.0007 0.0003 3216 Class = edibility, gill-size = broad, odor = none
—0.0006 —0.0002 3128 bruises? = bruises, gill-space = close, stalk-surface-above-
ring = smooth
—0.0014 —0.0006 3728 veil-color = white, Class = edibility, gill-size = broad
—0.0020 —0.0008 3128 veil-color = white, ring-type = pendant, gill-size = broad
—0.0026 —0.0013 3964 gill-attach = free, stalk-above-ring = smooth, stalk-below-
ring = smooth
—0.0049 —0.0021 3488 gill-attach = free, ring-number = one, Class = edibility
—0.0051 —0.0021 3368 gill-attach = free, ring-number = one, ring-type = pendant
—0.0061 —0.0022 3016 stalk-surface-above-ring = smooth, ring-type = pendant,

gill-size = broad

Table 2 Experimental results

Data-set Minsup Itemsets Dep/N SDep/N NDI/N Time(s) y(DM,MINI) y(RDM,RMINI)
(%) (N) (%) (%) (%)
Accidents 35 65,500 13.5 0.1 22.93 4294 —0.84 0.16
Chess 75 20,582 1.2 0.34 2.11 135 —0.95 —-0.91
Nasdaq 0.14 242 95.8 46.69 100 107 —0.05 0.27
Kosarak 1.01 21,934 825 10.39 95.55 2221 —0.56 0.28
Mushroom 22.15 14,189 1.48 1.03 5.84 115 —0.94 —0.29
Retail 4.53 22,524 79.7 5.9 99.56 1322 0.02 0.55
Lottery 0.006 91,499 99.1 0 100 5804 0.81 0.77

derivable itemsets (NDI) obtained by the competitor method [2] and N
(NDI/N). These ratios quantify the volume of found dependencies in data and
clearly demonstrate the increased ability of DepMiner to reduce redundancies
than NDI.

. In the second experiment we compare the results of DepMiner with MINI [5],
in order to determine the difference between DepMiner and another method
based on the multi-way independence assumption. The last columns of Table 2
report the result of a comparison between DepMiner ranking (denoted by DM)
and MINI. As said, our method does not consider dependencies inherited by the
subsets; it coincides with the multi-way independence assumption only for
patterns with cardinality 2. In order to measure the correlation between our
ranking (DepMiner) and MINI’s we adopted an objective measure: y [1]. Since
the methods differ in the referential probability estimate, y quantifies the effect
of this difference.

Finding High Order Dependencies in Data 41

In Table 2 we also compared the two rankings computed on randomized data
(RDM and RMINT). All the values reported by y denote disagreement. The amount
of discrepancies decreases (y increases) if we move from real data to randomized
data (since the high-order dependencies are spoiled during randomization).
Furthermore, on complete random data (Lottery) the two methods agree.

5 Conclusions

We have presented DepMiner, a method for the extraction of significant depen-
dencies between the values assumed by database variables. DepMiner gave good
results in comparison with [5] and demonstrated a superior capability to compress
results than NDI [2].

References

1. Goodman, L.A., Kruskal, W.H.: Measures of association for cross classifications. J. Amer.
Stat. Ass. 49(268), 732-764 (1954)

2. Calders, T., Goethals, B.: Non-derivable itemset mining. Data Min. Knowl. Discov. 14(1),
171-206 (2007)

3. Zhang, X., Pan, F., Wang, W., Nobel, A.B.: Mining non-redundant high order correlations in
binary data. PVLDB 1(1), 1178-1188 (2008)

4. Duan, L., Street, W.N.: Finding maximal fully-correlated itemsets in large databases.
In: Proceedings of the IEEE International Conference on Data Mining, pp. 770-775 (2009)

5. Gallo, A., Bie, T.D., Cristianini, N.: Mini: Mining informative non-redundant itemsets.
In: Proceddings of PKDD Conference, pp. 438—445 (2007)

6. Xin, D., Cheng, H., Yan, X., Han, J.: Extracting redundancy-aware top-k patterns.
In: Proceedings of the ACM SIGKDD Conference, pp. 444-453 (2006)

7. Omiecinski, E.: Alternative interest measures for mining associations in databases. TKDE
15(1), 57-69 (2003)

8. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: Generalizing association rules
to correlations. In: Proceedings of the ACM SIGMOD conference, pp. 265-276 (1997)

9. Chakrabarti, S., Sarawagi, S., Dom, B.: Mining surprising patterns using temporal description
length. In: Proceedings 24th International Conference on Very Large Data Bases,
pp. 606-617 (1998)

10. Meo, R.: Maximum independence and mutual information. TOIT 48(1), 318-324 (January 2002)

11. Gionis, A., Mannila, H., Mielikdinen, T., Tsaparas, P.: Assessing data mining results via swap
randomization. In: Proceedings of the SIGKDD, pp. 167-176 (2006)

12. Aggarwal, C.C., Yu, P.S.: A new framework for itemset generation. In: Proceedings of the
PODS, pp. 18-24 (1998)

Heuristic Algorithms for Real-Time
Unsplittable Data Dissemination Problem

Mustafa Miijdat Atanak and Atakan Dogan

Abstract In real-time communication, the timely delivery of the data transfer
requests needs to be guaranteed. This work formally introduces the Real-Time
Unsplittable Data Dissemination Problem (RTU/DDP), which is a generalization
of the unsplittable flow problem (UFP). RTU/DDP problem is NP-hard. Therefore,
heuristic approaches are required to acquire good solutions to the problem.
The problem is divided into two sub-problems: path selection and request packing.
Each of these sub-problems is formally defined and heuristic algorithms are
proposed for both sub-problems. The performance of these algorithms is compared
with a heuristic from the literature that can solve RTU/DDP, namely Full Path
Heuristic (FPH). The results and discussions of the comparisons between the
proposed heuristics and FPH are presented.

Keywords Real-time - Data dissemination - Unsplittable flow problem -
Computer networks - Performance evaluation

1 Introduction

For the applications with real-time requirements, the timely delivery of related
data is of utmost importance. Unlike the best effort data transfer requests that need
to be completed as early as possible, real-time data transfer requests come with
a deadline, before which they have to be completed in order for them
to be considered successful. Applications with real-time data transfer requests may

M. M. Atanak (<) - A. Dogan

Department of Electrical and Electronics Engineering,
Anadolu University, Eskisehir, Turkey

e-mail: mmatanak @anadolu.edu.tr

A. Dogan
e-mail: atdogan@anadolu.edu.tr

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 43
DOI: 10.1007/978-1-4471-2155-8_5, © Springer-Verlag London Limited 2012

44 M. M. Atanak and A. Dogan

arise in defense and surveillance [1], wireless sensor networks [2], and Grid
systems [3, 4].

In this study, we will formally introduce the Real-Time Unsplittable Data
Dissemination Problem (RTU/DDP), which is a generalization of the well-known
Unsplittable Flow Problem. Based on [5-9] and the related studies, the network is
assumed to support end-to-end guaranteed service in which a share of any link
bandwidth can be reserved and then released afterwards. RTU/DDP tries to find
out the routes and the amount of flow that should be assigned to each request that
maximizes the number of real-time requests that are delivered successfully.

Section 2 introduces the RTU/DDP. Then, it divides the problem into two
sub-problems. Sections 3 and 4 concentrate on these two sub-problems. Section 5
presents simulation results. The last section provides conclusions.

2 Problem Formulation

A data grid system is modeled by an undirected graph G = (V, E), where
V = {v,...,v,} defines the heterogeneous machines and E = {e,,...,e,,} denotes
the links each of which connects any two machines of the system. The machines
can be storage elements with limited storage space as well as network routers
(or switches). Each e; € E is associated with a bandwidth value ¢; > 0 and a delay
value d; > 0. Let R = {r,...,r;}denote a set of real-time data transfer requests.
Each request r; € R is modeled with <s,, ¢, f;, ;> quadruple in which s; is the
source machine, #; is the destination machine, f; is the requested data item, and
d; > 0 is the deadline of the request. It is assumed that the centralized scheduler is
able to reserve and use the system resources for the duration of file transfers.
A request r; € R is assumed to be satisfied if its file f; is transferred from the source
storage machine s; to the destination storage machine ¢; through one of the (simple)
paths between these two machines before the request deadline §; has passed.
Let P; = {pi,...,p; tand [; > O define the set of paths and the number of paths
for request r; € R, respectively; Pi(ex) = {p; : p; € P; and ¢; € E} denote a set of
paths p; € P;(j <I;) each of which includes link ¢; € E for request r; € R.

Definition 1 Given a data grid system G = (V, E) and a set of real-time data
transfer requests R, the RTU/DDP seeks to maximize the number of satisfied
requests where each requested file is required to be transferred over a single path.

RTU/DDP : max Y) " x;

ri€R p;EP;
Z xj<lforallr; € R
pjePi
Z Z mix; <cy,forallr; € Rand ¢, € E
ri€R p;eP;(er)

x; € {0,1} for all ; € R and p; € P;

Heuristic Algorithms for Real-Time Unsplittable Data Dissemination Problem 45

where x;; is 1 if request r; € R is satisfied over path p; € P;, and O otherwise;
n;; denotes the bandwidth demand of request r; € R when path p; € P; is chosen for
the request, and it is computed as follows:

Vi
5i - Zekepj dk

TC,‘J':

where|f;| denotes the file size.

RTU/DDP problem is a generalization to the unsplittable flow problem (UFP),
which is known to be NP-hard [10]. Therefore, an optimal solution to RTU/DDP
cannot be found in a polynomial time, unless P = NP. Heuristic approaches,
e.g. [1, 6], are adopted to find good solutions to RTU/DDP. In this study, RTU/
DDP is split into two sub-problems, namely path selection and request packing.
The path selection determines one path for each request and passes these paths
to the second phase. Request packing selects the satisfiable requests that maximize
the number of satisfied requests while respecting link capacity constraints.

3 Path Selection

Minimum hop minimum delay feasible path first (MinMin/FPF). This algorithm is
based on the presumption that it is best if the requests get routed over a feasible
path with minimum number of hops incurring a small path delay.

Definition 2 A path p; € P; for request r; € R is feasible iff the bottleneck
bandwidth (bbw) of p; € P; is greater than the bandwidth demand of request r; € R
for path p; € P;, where bbw is the minimum of available bandwidth values of the
links on path.

MinMin/FPF is based on the Bellman-Ford shortest path algorithm, and it is
inspired by [11]. The algorithm tries to find the minimum hop count path between
the source and destination. If more than one path has the same hop count, the path
with minimum bandwidth is favored. The path found by the algorithm is, then,
checked for feasibility. If the path is not feasible, an empty path is returned.
The time complexity of minimum hop Bellman Ford algorithm is O (IVIIEI).
MinMin/FPF additionally calculates path delays in each step, which takes |El steps
in the worst case. Thus, MinMin/FPF runs in O (IVIIEIZ) for a single request. Since
MinMin/FPF should be run for each request r; € R, the time complexity of overall
procedure becomes O(IVIIElleI).

Edge disjoint minimum hop minimum delay FPF (ED MinMin/FPF). ED
MinMin/FPF tries to route every request over a feasible path with minimum
number of hops incurring a small path delay that are largely edge disjoint. The
requests are sorted based on their bandwidth requirements and they are marked as
unprocessed. The main loop begins by marking every link as available. For each
unprocessed request, if a minimum hop minimum delay path is found with

46 M. M. Atanak and A. Dogan

available links, the links that are used by this path are marked as unavailable and
the request is marked as processed. The loop is repeated as long as at least one
unprocessed request exists. Main loop is repeated IR times in the worst case. Each
loop finds a minimum hop minimum delay path. Therefore, overall procedure is
O(IVIEPIRP).

4 Request Packing

Definition 3 Given G = (V, E) and R, in which r; € R is modeled with <p;, m;>
tuple, request packing problem (RPP) seeks to maximize the number of satisfiable
requests.

RPP: max Z X;
ri€ER

Z Z mx; <ck, forallr; € Rand e € E
1i€R p;ePr(ex)

x; € {0,1} forallr; €R

where x; is 1 if request r; € R is satisfied and O otherwise; Pr = {p;: p; €
P;and 1 < i <r} where p; € P; is a feasible path for request r; € R; P(e;) is the
set of feasible paths which include link e¢; € E. RPP is a generalization to the
Multidimensional 0-1 Knapsack Problem (MKP), which is NP-hard [12]. Exact
algorithms based on branch and bound and dynamic programming can solve RPP,
but they work in modest size problems only.

Maximum number of outgoing flows first (MNOFF). MNOFF first produces
a contention graph based on the paths chosen by the respective path selection
algorithm. A contention graph (a bipartite graph) is formed as follows: for each
link, the requests that require bandwidth allocation on the link are determined.
Assuming that all requests are sent through the network with minimum required
bandwidth, the bottleneck links whose bandwidth capacity is exceeded are
determined. The vertices on the left column of the contention graph are the
requests and vertices on the right are the bottleneck links. The contention graph is
formed by drawing an edge between request and bottleneck link if the request’s
path includes the link.

In each iteration, MNOFF drops the request with the maximum number of
outgoing flows (the vertex with the maximum number of edges in the contention
graph) and updates the contention graph. In the case of equality, MNOFF picks the
request with the highest minimum bandwidth requirement. Iterations continue as
long as there exists at least one edge in the contention graph.

Heuristic Algorithms for Real-Time Unsplittable Data Dissemination Problem 47

Table 1 Parameter values in Parameter
the base set

Value in base set

NUMBER_OF_MACHINES 50

NUMBER_OF_LINKS 100 (undirected)

MAX_BANDWIDTH 1 (Gbit/s)

MAX_DELAY 10 (m s)

NUMBER_OF_REQUESTS 500

MAX_REQUEST _SIZE 10 (Gbit)

MAX_DEADLINE 100 (s)

Table 2 Base results Path selection Request packing Base results

Min-Min MNOFF 37.10
MOFF 50.54

ED Min-Min MNOFF 30.90
MOFF 43.16

FPH 11.18

Finding the request with maximum number of outgoing flow is O(IEIRI) and
updating the contention graph takes O(IEIIRI) in the worst case. Since each iteration
marks one request as unsatisfiable, the loop repeats IRI times. Therefore, the time
complexity of MNOFF algorithm is O(/EIIRI).

Maximum outgoing flows first (MOFF). Key difference between MOFF and
MNOFF is the criterion used to choose unsatisfiable requests. That is, the
MNOFF’s criterion is the number of edges leaving a request vertex, while the
MOFF’s is the number of edges leaving a request vertex times the request mini-
mum required bandwidth. Note that time complexity of MOFF is the same as that
of MNOFF.

5 Experimental Results

In order to evaluate the performance of the algorithms, the authors have written the
simulator in C++. First, a heterogeneous computing system is randomly created
based on two parameters: NUMBER_OF_MACHINES, NUMBER_OF_LINKS.
The links have bandwidths uniformly distributed between 0 and MAX_BAND-
WIDTH; and delays uniformly distributed between 0 and MAX DELAY. After
generating >the network topology, NUMBER_OF_REQUESTS requests are gener-
ated with the following parameters: MAX_REQUEST_SIZE and MAX_DEADLINE.

Using the simulator developed, a set of simulation studies were conducted.
First, a base set of results was established with parameter values shown in Table 1.
The performances of the proposed heuristics are compared against Full Path
Heuristic (FPH) [1]. As seen from Table 2, the best performance is acquired when
(MinMin/FPF, MOFF) is chosen as the (path selection, request packing) mecha-
nism. Result is about 40% better than FPH.

48 M. M. Atanak and A. Dogan

Table 3 Effect of varying MAX_BANDWIDTH
MAX_BANDWIDTH (Mb/s)

Path selection Request packing 100 500 1000 5000 10000
Min—-Min MNOFF 7.72 21.56 37.10 64.20 73.38
MOFF 16.08 34.70 50.54 77.22 85.48
ED Min-Min MNOFF 6.94 20.04 30.90 60.34 70.68
MOFF 13.70 32.14 43.16 72.06 81.50
FPH 5.94 9.70 11.18 23.16 24.34

Table 4 Effect of varying MAX_DEADLINE
MAX_DEADLINE

Path selection Request packing 10 50 100 500 1000
Min-Min MNOFF 5.98 21.44 37.10 67.90 79.72
MOFF 12.08 32.98 50.54 79.20 88.84
ED Min-Min MNOFF 5.60 21.36 30.90 63.50 76.22
MOFF 11.50 32.52 43.16 76.14 86.18
FPH 2.62 9.02 11.18 25.96 48.06

Table 3 shows the effect of varying MAX_BANDWIDTH. Increasing
MAX_BANDWIDTH has positive effect on the performance. MOFF is clearly
a better choice than MNOFF. MinMin/FPF shows better performance than ED
MinMin/FPF on average. The performance difference between the (MinMin/FPF,
MOFF) tuple and FPH increases as MAX_BANDWIDTH increases.

Table 4 shows the effect of varying MAX_DEADLINE. According to
Table 4, the real-time performances increase with increasing MAX_DEADLINE.
(Min—Min/FPF, MOFF) tuple is still the best choice as far as the performance is
concerned.

6 Conclusion

This study deals with a more general case of the unsplittable flow problem, namely
RTU/DDP. A formal definition of the problem is provided. Then, the problem is
divided into two sub-problems: path selection and request packing. Formal defi-
nitions of both of the sub-problems as well as some heuristics to be employed in
their solutions are also presented. From the results shown in previous section, it is
evident that underlying protocols as well as the system parameters have significant
effect on the real-time performance of the heterogeneous system. Among the
simulated algorithms, the best real-time performance for the RTU/DDP is acquired
when the path selection is made by MinMin/FPF and the request packing is
handled with MOFF algorithms. As a future work, the authors will consider the
more general splittable case, Real-Time Splittable Data Dissemination (RTS/DDP)
problem, in which more than one path can be used to satisfy a given request.

Heuristic Algorithms for Real-Time Unsplittable Data Dissemination Problem 49

Acknowledgments This material is based on work supported by Institute of Scientific and
Technological Research of Turkiye under Grant No. 108E232.

References

—_
S O 0

11.

12.

. Theys, M.D., Tan, M., Beck, N., Siegel, H.J., Jurczyk, M.: A mathematical model and

scheduling heuristic for satisfying prioritized data requests in an oversubscribed
communication network. IEEE Trans. Parallel. Distrib. Syst. 11(9), 969-988 (2000)

. Hea, T., Stankovic, J. A., Lub, C., Abdelzahera, T.: SPEED: a stateless protocol for real-time

communication in sensor networks. In: Proceedings of International Conference on
Distributed Computing Systems (ICDCs), pp. 46-55 (2003)

. Foster, 1., Kesselman, C., Lee, C., Lindell, R., Nahrstedt, K., Roy, A.: A distributed resource

management architecture that supports advance reservation and co-allocation. In:
Proceedings of International Workshop Quality of Services, pp. 27-36 (1999)

. De Assungdo, M.D., Buyya, R.: Performance analysis of allocation policies for interGrid

resource provisioning. Inf. Softw. Technol. 51, 42-55 (2009)

. Orda, A.: Routing with end to end qos guarantees in broadband networks. IEEE/ACM Trans.

Netw. 7(3), 365-374 (1999)

. Eltayeb, M.S., Dogan, A., Ozgﬁner, F.: Concurrent scheduling: efficient heuristics for online

large-scale data transfers in distributed real-time environments. IEEE Trans. Parallel. Distrib.
Syst. 17(11), 1348-1359 (2006)

. RFC 1633 Integrated services in the internet architecture: an overview.

. RFC 2212 Specification of guranteed quality of service.

. RFC 2205 Resource reservation protocol (RSVP).

. Kleinberg, J.: Approximation algorithms for disjoint paths problems, PhD Thesis,

Department of EECS, MIT (1996)

Guerin, R., Orda, A.: Computing shortest paths for any number of hops. IEEE/ACM Trans
Netw 10(5), 613-620 (2002)

Freville, A.: The multidimensional 0-1 knapsack problem: an overview. Eur. J. Oper. Res.
155, 1-21 (2004)

Automatic Categorization of Ottoman
Literary Texts by Poet and Time Period

Ethem F. Can, Fazli Can, Pinar Duygulu and Mehmet Kalpakli

Abstract Millions of manuscripts and printed texts are available in the Ottoman
language. The automatic categorization of Ottoman texts would make these doc-
uments much more accessible in various applications ranging from historical
investigations to literary analyses. In this work, we use transcribed version of
Ottoman literary texts in the Latin alphabet and show that it is possible to develop
effective Automatic Text Categorization techniques that can be applied to the
Ottoman language. For this purpose, we use two fundamentally different machine
learning methods: Naive Bayes and Support Vector Machines, and employ four
style markers: most frequent words, token lengths, two-word collocations, and
type lengths. In the experiments, we use the collected works (divans) of ten
different poets: two poets from five different hundred-year periods ranging from
the 15th to 19th century. The experimental results show that it is possible to obtain
highly accurate classifications in terms of poet and time period. By using statistical
analysis we are able to recommend which style marker and machine learning
method are to be used in future studies.

E. F. Can - F. Can (I<) - P. Duygulu

Department of Computer Engineering, Bilkent University,
06800 Ankara, Turkey

e-mail: canf@cs.bilkent.edu.tr

E. F. Can
e-mail: efcan@cs.bilkent.edu.tr

P. Duygulu
e-mail: duygulu@cs.bilkent.edu.tr

M. Kalpakli
Department of History, Bilkent University, 06800 Ankara, Turkey
e-mail: kalpakli@bilkent.edu.tr

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 51
DOI: 10.1007/978-1-4471-2155-8_6, © Springer-Verlag London Limited 2012

52 E. F. Can et al.

1 Introduction

Automatic Text Categorization (ATC) methods aim to classify natural language
texts into pre-defined categories and are used in different contexts ranging from
document indexing to text mining [1]. In the literature there are a variety of studies
in ATC; however, studies on historical manuscripts are rare. One reason for this is
the fact that old documents are scarce in the digital environment. Resources such
as Ottoman Text Archive Project (OTAP) and Text Bank Project (TBP) release
transcribed versions of handwritten Ottoman literary texts [2]. There are millions
of pages of texts in Ottoman that are to be analyzed and classified after tran-
scription [3]. By considering the gap in the studies for the Ottoman language, this
paper is motivated to classify a text with unknown poet or time period by
employing automatic text categorization methods and ultimately show the
achievability of effective automatic categorization of historical Ottoman texts so
that it can be employed when these documents are transcribed.

The contributions of this study are the following. We provide the first style-
centered ATC study on the Ottoman language. Within the context of this language,
we evaluate the performance of two different machine learning methods in ATC by
using four style markers. By using statistical analysis we are able to recommend
which machine learning method and style marker are to be used in future studies.
The availability of huge amount of text in the Ottoman language, especially the
Ottoman archives [3], confirms the practical importance and implications of
our study.

2 Related Work

In ATC, style markers are used in analyzing the writing styles of authors. Holmes
[4] gives a detailed overview of the stylometry studies in the literature within a
historical perspective and presents a critical review of numerous style markers.
Statistical methods have been used for a long time in authorship and categorization
tasks and machine learning methods are used in relatively more recent works.
A Bayes’ theorem-based algorithm is firstly used to classify twelve disputed
Federalist Papers in [5]. McCallum and Nigam [6] compare a multivariate Ber-
noulli model, and multinomial model. SVM (Support Vector Machines) is another
machine learning method used in authorship attribution studies. Joachims makes
use of SVM in the task of text classification and observes that SVM is robust and it
does not require parameter tuning for the task [7]. Kucukyilmaz et al. [8] use
machine learning approaches including k-nearest neighbor (k-NN), SVM, and
Naive Bayes (NB) to determine authors of chat participants by analyzing their
online messaging texts. Yu [9] focuses on text classification methods in literary
studies and uses NB, and SVM classifiers. In her work, the effects of common and
function words are investigated.

Automatic Categorization of Ottoman Literary Texts by Poet and Time Period 53

Table 1 Ottoman literary texts used in this study

Life No. of No. of
Text (no. of poems) Century span tokens types
Mihri Hatun’s divan (245) 15th 1,460-1,512 34,735 9,188
Sinan Seyhi’s divan (221) 15th 13717-1431 27,743 10,784
Hayali Bey’s divan (619) 16th 1,500-1,557 54,338 15,727
Revani’s divan (141) 16th 1,475-1,524 24,881 8,315
Nef’1’s divan (224) 17th 1,572-1,635 51,075 14,492
Nesati’s divan (186) 17th 7-1,674 23,799 7,984
Osmanzide Ta’ib’s divan (189) 18th 1,660-1,724 19,610 8,772
Seyh Galip’s divan (580) 18th 1,757-1,799 59,301 18,506
Sanizade’s Ataullah’s divan (125) 19th 1771-1826 8,265 4,409
Yenigehirli Avni’s divan (425) 19th 1826-1884 54,927 18,785
Total - - 358,674 62,609

To the best of our knowledge there is no previous categorization study on the
Ottoman language; however, there are studies on contemporary Turkish. Can and
Patton [10] analyze change of writing style with time by using word lengths and
most frequent words for the Turkish authors Cetin Altan and Yasar Kemal. In
another study they analyze the Ince Memed tetralogy of Yasar Kemal [11].

3 Corpus and Experimental Design

In this study, we focus on Ottoman literary texts of ten poets and five consecutive
centuries. Table 1 gives information about these texts. The text associated with
each poet is called divan which is an anthology of the poet’s work, as it might be
selected poems or all poems of the same poet. The poets in this study are selected
in such a way that they all together provide a good representation of the underlying
literature. There are nine male and one female poets from five different centuries.
The works of the picked poets given in Table 1 acquire almost all characteristics
of the Ottoman lyric poetry [12]. In our study, the poets whose life spanned two
centuries are associated with the century they died (only exception is Mihri Hatun
since she lived in the sixteenth century for a relatively short period of time).

Each document is split into blocks with k number of words, where & is taken as
200-2,000 with 200-word increments. If the number of words in the last block is
smaller than the chosen block size that block is discarded. Blocking is a common
approach used in stylometric studies [13].

Can and Patton [10] show that most frequent words and word lengths (in the
form of token and type lengths) as style markers have remarkable performance in
determining the change of writing style with time in Turkish. Because of their
observations and since Turkish is the basis of the Ottoman language we use these
text features in our study. We also use two-word collocations as another style
marker, since phrases are one of the characteristic features of the Ottoman lan-
guage and poets. Accordingly, the style markers used in the study are: Most

54 E. F. Can et al.

Frequent Words (MFW), Token Lengths (TOL), Two-word Collocations -two
consecutive words- (TWC), and Type Lengths (TYL). In our study, a token is a
word and a continuous string of letters. Besides, a word that involves a dash is
counted as one token. Only word of length one is ‘o’ (the third person and singular
pronoun). Type is defined as a distinct word. For example, the following line from
Yenisehirli Avni: ‘Yahii ne kdtib ol ne miihendis ne vezneddr’ contains eight
tokens and six types.

We employ two machine learning-based classifiers: Naive Bayes (NB)- a
generative classifier and Support Vector Machines (SVM)- a discriminative
classifier [14, 15]. The use of fundamentally different classifiers provides us a wide
test spectrum to investigate the performance of machine learning methods in ATC
of Ottoman literary texts. Furthermore, NB and SVM are commonly used in
similar studies. For example, Yu [9] indicates that SVM is among the best text
classifiers. In the same work it is also indicated that NB is a simple but effective
machine learning method and often used as a baseline.

In this study we employ the model used in [16] for NB. In SVM we employ two
different kernel functions; polynomial (poly or p), and radial-basis-function (rbf)
kernels. We refer to these methods as SVM-poly (or SVM-p) and SVM-rbf,
respectively. These choices are motivated by the successful results obtained by
them in [17]. For the construction of training and test corpora, we prefer K-fold
cross validation in which division of data is not important compared to splitting the
corpus as training and test set. In our study, we use ten for K. In the experiments
with SVM for the polynomial kernel we run tests when the degree is set to 1, 2, 3,
4 and 5. For the radial-basis-function kernel, we set y (width of the kernel) to 0.6,
0.8, 1.0, 1.2, and 1.4. Similar settings for SVM are used in [17] for text classifi-
cation and successful results are obtained.

We conduct a two way analysis of variance (ANOVA) in order to see if the
classification performances of the tested cases are significantly different from each
other. When the main effects of the factors, style markers and machine learning
algorithms, are statistically significantly different in explaining the variance of
classification accuracy, we conduct post-hoc multiple comparisons using Scheffe’s
correction [18] for the levels of each factor (an abridged presentation is provided
in the next section).

4 Experimental Results
4.1 Classification by Poet

In Table 2, we provide poet classification accuracies of the style markers MFW,
TOL, TWC, and TYL with the machine learning methods NB, and two versions of
SVM for different block sizes. The table shows that for MFW with SVM-poly, we
obtain the best accuracy score when the polynomial degree is 1; similarly, we
obtain the best accuracy score for SVM-rbf when y is 1.2. In the table the values of

55

Automatic Categorization of Ottoman Literary Texts by Poet and Time Period

pop1aoid os[e are ‘synsar p)si| oY) Pk jey) JQI-INAS IoJ & pue (d-INAS) A[0d-]INAS 10F (Sop) 2a130p [erwoukjod ‘siojowrered ayf,

99°Y 6°Sy 65°1S 61°6S 9L°8S TL8S €TSH 1444 09°9% 68°88 0L'88 LT€8 Bay
€SPS €9°¢S L1°6S WL WL €6'IL 1YY ov'zs 8L'LS 08°26 08°26 S0'L8 000°C
€98 9L'9S wTH9 01°89 W69 96'69 8895 8€°SS (4973 1S°26 1$°26 LS'88 008°1
S99t ov'6¥ 80°SS 06°69 €5'89 0£°89 ¥9'8% 61’8y 0S°0S 116 w6 ¥9°68 009°1
96°8Y ¥T°0S $S°6S 69°69 12°69 SH¥9 9t'8Y 0Ly 9¢°1S TI'16 8CT'16 99°16 00%°1
LYy 6T'8Y €6'9S €L'Y9 LL'S9 €9 08°6% 9I'6% €18 €16 €16 6598 00T°1
€T8Y SeSy 00°0S 0S°19 19 96°19 SSer 6’y LLYY w6 80°16 L1'S8 000°1
sy YEHy S9'6Y 8S'LS S LOLS 06t 434 69°SY 6t°06 0016 17°68 008
€6°'LE 8L°0F 8T9Y LS'6Y 66'8Y 166 8P I €CoY 99°¢cy LE'SS 88°L8 1L°18 009
%93 8L°SE 68°LE €9'¢y reTy 00°SY 19¢ SEPE Sese L6H8 0S'+8 LY€EL 00%
8L°SE S9Pe TrLE 9L°6¢ €THE S8'e 66'9C ST'8T 86°0€ SLYL 9¢°¢L €1'¢€9 002
TI=4 ¢=39p 01=4 =39 T1=4 ¢=3op T1=4 =39 azI§
JA-INAS - d-INAS aN JA-INAS d-WAS AN J9-INAS d-INAS dN JA-INAS d-IWAS aN yoorg
TAL oML TOL MAN

$9ZI5 J00[q JUIISHIP 10§ JGI-INAS Pue ‘A[0d-INAS ‘AN WM TXL ‘DML “TOL ‘MAN JO SAI0RINOOR UOHROYISSEIO 190d T AqEL

56 E. F. Can et al.

these parameters that provide the best performances of TOL, TWC, and TYL are
also given.

For MWF for all block sizes SVM-poly and -rbf provide better results than
those of NB. Both versions of SVM have similar results. For TOL for almost all
block sizes NB provides slightly better results than those of SVM-poly and -rbf.
Scores of SVM-1bf are slightly better than the scores of SVM-poly. For TWC all
methods yield similar accuracy scores. For TYL for all block sizes NB provides a
slightly better performance that those of the SVM classifiers and both versions of
SVM have similar performances. From the table we can see that for MFW the
difference between NB and SVM classifiers are noticeable for the other cases NB
and SVM classifiers performances are mostly compatible with each other.

Statistical Analysis We do the multiple comparisons of the style markers and
machine learning algorithms in poet categorization for p <0.05 using Scheffe’s
method. According to comparisons, TOL and TYL are not significantly different
from each other; whereas, other pairs of style markers are significantly different
from each other. Considering the machine learning algorithms, the SVM classifiers
with different kernels are not significantly different from each other, but they are
significantly different from the NB classifier.

4.2 Classification by Time Period

In addition to classifications of texts by poet, in this study we also study classifi-
cations of texts by time period. In the corpus, there are ten divans from 15th to 19th
centuries (two divans per century). In the classification of texts by time period, MFW
(Most Frequent Words) provides the best classification scores (up to 94%) with the
SVM classifier. TWC provides the second best performance, and TOL and TYL
follow the style marker TWC. SVM mostly performs better than NB with MFW. For
TOL and TYL, NB provides slightly more accurate results than SVM. The NB and
SVM classifiers have almost the same performance with TWC.

Statistical Analysis As in the poet classification section, we do the multiple
comparisons of the style markers and machine learning algorithms in period cat-
egorization for p<0.05 using Scheffe’s method (they are obtained by using the
results as in Table 2). According to comparisons, TOL and TYL are not signifi-
cantly different; whereas, other pairs of style markers are significantly different
from each other. Moreover, considering the machine learning algorithms, they are
significantly different from each other for combinations of all pairs.

5 Conclusion

We present the first style-centered ATC study on Ottoman literary texts particu-
larly on collected poems (divans) of ten different Ottoman poets from five different
centuries. The statistical tests show that SVM and MFW yield performances that

http://dx.doi.org/
http://dx.doi.org/

Automatic Categorization of Ottoman Literary Texts by Poet and Time Period 57

are mostly statistically significantly different from their counterparts. Based on
these observations we recommend the use the SVM classifier and MFW style
marker in future related studies on this language.

The availability of huge amount of text to be digitized in the Ottoman language
confirms the practical importance and implications of our results. We hope that our
work and results would serve as an incentive for more research using these
documents.

Acknowledgments This work is partially supported by the Scientific and Technical Research
Council of Turkey (TUBITAK) under the grant number 109E006. Any opinions, findings and
conclusions or recommendations expressed in this article belong to the authors and do not
necessarily reflect those of the sponsor.

References

1. Sebastiani, F.: Machine learning in automatic text categorization. ACM Comput. Surv. 34(1),

1-47 (October 2002)

. Ottoman Text Archive Project. http://courses.washington.edu/otap/ (2011)

. Bagbakanlik Devlet Arsivleri, T.C.: http://www.devletarsivleri.gov.tr (2011)

. Holmes, D.I.: Authorship attribution. Comput. Human. 28(2), 87-106 (October 1994)

. Merriam, T.: An experiment with the federalist papers. Comput. Human. 23(3), 251-254

(1989)

6. McCallum, A., Nigam, K.: A comparison of event models for naive bayes text classification.
In: AAAI-98 workshop on learning for text categorization (1998)

7. Joachims, T.: A statistical learning model of text classification for support vector machines.
In: Proceedings of the 24th ACM SIGIR conference, 128-136 (2001)

8. Kucukyilmaz, T., Cambazoglu, B.B., Aykanat, C., Can, F.: Chat mining: Predicting user and
message attributes in computer-mediated communication. Inf. Process. Manag. 44(4),
1448-1466 (2008)

9. Yu, B.: An evaluation of text classification methods for literary study. Lit. Ling. Comp. 23(3),
327-343 (2008)

10. Can, F., Patton, J.M.: Change of writing style with time. Comput. Human. 38(1), 61-82
(2004)

11. Patton, .M., Can, F.: A stylometric analysis of Yasar Kemal’s Ince Memed tetralogy.
Comput. Human. 38(4), 457467 (2004)

12. Andrews, W.G., Black, N., Kalpakli, M.: Ottoman lyric poetry. University of Texas Press,
Austin, Texas, USA (1997)

13. Forsyth, R.S., Holmes, D.I.: Feature-finding for text classification. Lit. Ling. Comput. 11(4),
162-174 (June 1996)

14. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification (2nd edn.). Wiley-Interscience,
New York (2000)

15. Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)

16. Zhao, Y., Zobel, J.: Effective and scalable authorship attribution using function words. Lect.
Notes Comput. Sci. 3689, 174—-189 (November 2005)

17. Joachims, T.: Text categorization with support vector machines: learning with many relevant
features. In: ECML-98, 137-142 (1998)

18. Scheffe, H.: A method for judging all contrasts in the analysis of variance. Biometrica 40,
87-104 (1953)

[T R SRS)

http://courses.washington.edu/otap/
http://www.devletarsivleri.gov.tr

An Empirical Study About Search-Based
Refactoring Using Alternative Multiple
and Population-Based Search Techniques

Ekin Koc, Nur Ersoy, Ali Andac, Zelal Seda Camlidere,
Ibrahim Cereci and Hurevren Kilic

Abstract Automated maintenance of object-oriented software system designs via
refactoring is a performance demanding combinatorial optimization problem.
In this study, we made an empirical comparative study to see the performances of
alternative search algorithms under a quality model defined by an aggregated
software fitness metric. We handled 20 different refactoring actions that realize
searches on design landscape defined by combination of 24 object-oriented
software metrics. The investigated algorithms include random, steepest descent,
multiple first descent, multiple steepest descent, simulated annealing and artificial
bee colony searches. The study is realized by using a tool called A-CMA devel-
oped in Java that accepts bytecode compiled Java codes as its input. The empiricial
study showed that multiple steepest descent and population-based artificial bee
colony algorithms are two most suitable approaches for the efficient solution of the
search based refactoring problem.

Keywords Search-based software engineering - Combinatorial optimization -
Automated refactoring - Software maintenance - Software metrics

E. Koc - N. Ersoy - A. Andac - Z. S. Camlidere - I. Cereci - H. Kilic (<)
Department of Computer Engineering, Atilim University, Incek, Ankara, Turkey
e-mail: hurevren@gmail.com

E. Koc
e-mail: antimon@gmail.com

N. Ersoy
e-mail: nersoy88@gmail.com

A. Andac
e-mail: alyandac @gmail.com

Z. S. Camlidere
e-mail: zelalseda@gmail.com

I. Cereci
e-mail: icereci @atilim.edu.tr

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 59
DOI: 10.1007/978-1-4471-2155-8_7, © Springer-Verlag London Limited 2012

60 E. Koc et al.

1 Introduction

Search based optimization techniques have become popular in software
engineering research, in last decade [1]. There are diverse application areas
ranging from requirements engineering, quality assessment, service-oriented
software engineering, to project planning where the techniques are successfully
applied. Among the application areas, automated software maintenance [2—4]
requires some special elaboration due to its representational and descriptive dif-
ficulties in terms of candidate solutions and objective functions. In order to cope
with the design corruption [5] problem, in object-oriented software systems,
maintenance programmers are required to execute periodic and systematic refac-
toring activities. Although one can use CASE products for the purpose, it still
requires too much effort and time of maintenance programmers. Automation of
this critical software engineering task which is guided by some quality model,
defined by related software metrics, supports sustainability/improvement in design
quality and provides highly maintainable software products. In fact, the problem is
a combinatorial optimization problem in which fitness function can be charac-
terized as an aggregate of object-oriented metric results. Once the problem is
defined in terms of solution representation, fitness function and change operator,
there are wide variety of candidate metaheuristic search techniques.

In this paper, we reported the results of our empirical study including
comparison of 5 alternative search algorithms and Random (RND) search in the
context of the search based refactoring problem. The algorithms include steepest
descent (SD), multiple first descent (MFD), SA, multiple steepest descent (MSD)
and artificial bee colony (ABC) searches. The goal of this research is to investigate
the potential of alternative search techniques in the automated software refactoring
domain. Note that, among the alternatives to the best of the authors’ knowledge,
the ABC search [6] has not been applied in search-based refactoring problem
before. In literature, one can find alternative approaches based on different
biological metaphors [7]. Throughout the experiments, all searches are executed at
the design level of abstraction and realized at the design space. The general
architecture of the A-CMA tool and the details of the adopted methodology are
given in Sect. 2. Section 3 describes the experimental set up and the results
obtained through excessive amount of runs taken for different parameter values.
Finally, the conclusions are given.

2 Tool and Methodology

A-CMA consists of 3 major modules; one for carrying out modifications on a
design, one for the actual searching operation and the final one for representing
a solution. The Modification module is responsible for choosing applicable
modifications on a current design. The static input, denoted as “Modifications”

An Empirical Study About Search-Based Refactoring 61

represents a set of refactoring actions that can be applied. The “Checker” module
is responsible for determining possible modifications that should guarantee that an
action does not change the functional properties of the design. When a modifi-
cation is chosen among this set, the “Modification Applier” module carries out
necessary operations on the given design. “Search Expander” module is the
central building block of the operation. It is responsible for carrying out the search
process on possible designs and tries to find an optimal design using several
algorithms. The search “Algorithms” are static inputs as well. “Design Repre-
sentation” module is responsible for providing a design abstraction for a given
object oriented software. The abstraction is modifiable by other modules, easily.
Finally, the “Metrics Calculation” module is responsible for providing ability to
measure design quality. “Metrics” are static inputs. A-CMA produces a refac-
toring suggestion sheet as output of a search procedure. The suggestion sheet
contains initial and final design information regarding to the found refactoring path
and a step by step refactoring suggestion list for the developer. A-CMA uses a Java
bytecode manipulation and analysis framework named ASM [8]. All abstract
design representations of given benchmark programs has been constructed using
ASM framework. In A-CMA, each refactoring action type has a checker function
that can evaluate a given design to find all appropriate actions of the given type
that can be applied to the design. The static analysis method consists of several
condition checks on a possible refactoring action that results in a filtering over
actions. A-CMA implements 20 refactoring actions: Move Up/Down Method,
Move Method, Move Up/Down Field, Instantiate Method, Freeze Method, Make
Class Abstract/Final/Non-Final, Inline Method, Remove Class/Interface/Method/
Field, Introduce Factory, Increase/Decrease Method Security, Increase/Decrease
Field Security. Evaluation of a design is better to be based on some justifiable
quality model. For example, in [9], Quality Model for Object Oriented Design
(QMOQOD) [10] which adopts weighted sum of 7 object-oriented metrics has been
used. In our case, we have implemented 24 object-oriented metrics (5 of these
metrics intersects with QMOOD model) selected from various sources including
[11] without any weight consideration. A-CMA works on normalized metric
values. Complexity related metrics should be minimized during a search for a
better design [12]. However, it is not possible to set a precise goal for many other
software metrics in such way. Since the optimization process cannot rely on
subjective opinions, objectives for such metrics should be regarded as “unknown”.
Furthermore, in order to prevent possible conflicts, those metrics that require value
maximization are also treated as minimized metrics by using the multiplicative
inverses of the values.

The considered minimized metrics include: The number of the fields/methods
in a class; the average number of the field/method visibility of a class; the nesting
level of a class; the number of the methods of a class in a package; and the number
of classes/interfaces in a package. The metrics with unknown objective values
include: The number of constant fields/setter/getter methods in a class; the average
number of the static methods of a class; the number of interfaces a class imple-
ments; the number of children/descendants/ancestors of a class; the number

62 E. Koc et al.

of elements on which this class depends; the number of elements that depend on
this class; the number of times the class is externally used as attribute type; the
number of attributes in the class having another class or interface as their type; the
number of times the class is externally used as parameter type; the number of
parameters in the class having another class or interface as their type; nesting level
of a package and the ratio of abstract classes in a package. While it is obvious that
the objective value of minimized metrics should be set to O (assuming no negative
values possible), there is a requirement to set objectives for unknown metrics. Our
normalization schema uses a comparative approach in this manner. Instead of
setting precise objectives, it is decided to use an optimum design set as a feedback
mechanism. Therefore, the current design is compared against the norm of a given
optimum design set and the distances can be used as a metric score to be mini-
mized during search. Assuming there are k metrics, M, M,,..., My and n designs
in the optimum (or ideal) design set, D;, D»,..., D, along with the current design,
D, to calculate the normalized metric score for. Hence, for each metric, the
Distance function is defined as:

|[NormVal(M;(Dey), 1) — NormVal(0,i)|, M; € Minimized
|NormVal(M; (Dey), 1), M; € Unknown

(D)

where the NormalVal function calculates the normalized value of x against the
values of ith metric in the optimum design set, given as:

Dist(M;, Deyr) = {

NormVal(x, i) = Normg_1(M;(Dy), M;(D2),..., M;(Dy)), (2)

Hence, the overall metric score of D, to be minimized is defined as;

k
Eval(DW) = ZDisr(Mthur) (3)

i=1

3 Experimental Results

To the best of authors’ knowledge, there is no widely accepted benchmark input
program set that can be used for an empirical study on search based refactoring
problem. Therefore, we have included 6 input programs written in Java where 5 of
them being open source programs under heavy development [13—17], the last one
being a student project: Beaver (a parser generator); Mango (a collections library);
JFlex (lexical analyzer generator); XML-RPC (XML-based remote procedure call
library); JSon (Java library for data exchange format) and Mosaic (a student
project). During experiments, Java.Math, Java.Text, Java.Util, and Javax.Swing
packages from the base Java library have been chosen as the members of optimum

An Empirical Study About Search-Based Refactoring 63

design set since they provide most of the core functionality of the library. The
experiments have been carried out on 20 computers with Intel Core2DUO CPUs
and 4 GBs of memory. The underlying operating system was Ubuntu-Linux (fully
patched) with Sun JRE 6. A-CMA has client/server architecture to simplify
work distribution amongst several computers. We took 4 different ascent values
(5, 10, 15 and 20) with 30 restarts for both MFD and MSD searches; 3 different
initial temperature values (1.5, 2.5, 4.0) for SA search and 7 different food source
sizes (20, 40, 60, 80, 100, 120 and 200) for ABC search. There were no alternative
parameter setting values for RND and SD searches. Each run was repeated
10 times for each of 6 input programs. So, the number of total runs was
I0x6xA+1+4+4+3+7) = 1200 runs.

The results include relative and absolute quality gains for different algorithms
using all 6 input programs. The mean gains obtained for all 6 input programs using
MFD algorithm were varying between 5.31 and 5.39. The values did not show any
dramatic change against different ascent values applied in each restart. The sear-
ches were not affected too much by the depth of random bad movements in the
design space while increased number of bad movements mostly resulted in quality
gain decrements. Similar conclusions were drawn for MSD where mean absolute
quality gains for 5, 10, 15 and 20 ascent values were 5.64, 5.60, 5.54 and 5.53,
respectively. As a result, when we consider the mean absolute quality gains, MSD
search outperformed MFD search for each of different ascent depth values. While
the implementation of SA has been relatively straightforward, it has been difficult
to decide on the ideal cooling schedule and initial temperature values. The mean
absolute quality gains obtained for all 6 input programs using simulated annealing
with initial temperature values 1.5, 2.5 and 4.0 were 4.80, 4.45 and 4.22,
respectively. Lower initial temperature values resulted in higher mean absolute
gain scores. The mean quality gain results obtained for SA search were not as good
as that obtained for MFD and MSD searches. Mean absolute quality gains obtained
for all 6 input programs using ABC algorithm with 200, 120, 100, 80, 60, 40 and
20 food sources were 5.76, 5.68, 5.65, 5.64, 5.50, 5.45 and 5.32, respectively.
Higher mean absolute quality gains were attained for higher number of food
sources. One can still expect better gain values for higher number of food sources.
The ABC search algorithm was able to outperform the MSD algorithm for the
highest trial of 200 food sources. In ABC implementation, we applied the discrete
version to the refactoring domain [18]. Figure 1 shows the mean quality increase
for each search technique for the entire set of input programs. The values are
normalized against the SD performance for each program. For almost all input
programs, mean normalized quality gain values were consistent for each program.

For all initial temperature values, the SA search was outperformed by almost all
other techniques including baseline SD search. Except for input program Mango,
the MSD and ABC searches gave mostly better results than the MFD search
known to be well performing in the literature [8]. MSD outperformed SD for all
mean quality gain values obtained for input programs. For the sake of reliability,
we prefer higher quality gains with small standart deviations. Especially for the
Beaver input program, we observed relatively high standart deviations in mean

64 E. Koc et al.

Mean Normalized Quality Gain

Relative to SD
1.6

1.4+
1.2 -+

14
0.8 -
0.6
0.4 -
0.2 +

0
02 - Beaver Mango Xmlrpc Jflex Json_ Mosaic

ESD BMFD EBMSD EABC BSA @RND

r

(A
L

Fig. 1 Mean normalized quality gain values obtained for MFD, MSD, ABC, SA and RND
searches that are calculated relative to the baseline SD search for all 6 input programs

Overall Mean Normalized Quality Gain

Relative to SD
14+

124
14
0.8+ :
0.6
0.4+ : : :
0.2+
sD MFD MsD ABC SA RND

Fig. 2 Overall mean normalized quality gain values obtained for MFD, MSD, ABC, SA and
RND searches that are calculated relative to the baseline SD search

absolute quality gains. When we consider the best performances attained for
alternative parameter settings of each algorithm, the ABC search gave the highest
mean normalized relative quality gain results for all input programs (see Fig. 2).

ABC outperformed the MSD for 3 (Beaver, XML-RPC and JSon) of 6 of the
input programs in terms of mean quality gains obtained. However, high standart
deviations of the gain obtained by ABC makes relatively less reliable. Therefore,
we can only say that ABC and MSD results are highly competitive and do not
dominate each other. The reason behind success of MSD and ABC searches is
directly related with the design landscapes of the input programs defined by the
aggregate software metric and available refactoring actions. Except for the input

An Empirical Study About Search-Based Refactoring 65

programs Json and Mosaic, the initial number of applicable refactoring instances
were considerably high (being >500). The high value has been observed not only
for the initial step of the search but also throughout the all search steps. Such an
observation implied high branching factor of search space. As a consequence, the
steepest descent technique with multiple applications MSD search performed
well in most of the runs. On the other hand, success of ABC search was due to
populated investigation of better designs that enables examination of alternative
regions of the search space.

4 Conclusions

Based on the input programs used, quality model described and possible refact-
orings considered, we conclude that multiple steepest descent and artificial bee
colony algorithms are two most suitable competitive approaches for the efficient
solution of the search based refactoring problem. The common property of
expanded search horizon of MSD and ABC makes them well performing alter-
natives at the cost of relatively higher execution times. MSD expands the search
horizon via sequential multiple trials of full neighbors in design space while
allowing bad movements in order to escape from local minima. ABC, on the other
hand, expands the search horizon via memorization and improvement of more than
one candidate designs, simultaneously. Our lightweight solution representation
enabled us to expand search horizon efficiently which resulted in high quality
designs to be found. The intensive computation requirement of the refactoring
problem implies the necessity for parallel implementation of the algorithms under
consideration. Also, relatively high quality results obtained via population based
ABC algorithm encourage us to try parallel implementation of the population/
swarm based alternative algorithms, in future.

Acknowledgements The authors would like to thank Atilim University ARGEDA department
for its financial support.

References

1. Harman, M.: The current state and future of search based software engineering. In:
Proceedings of Future of Software Engineering, pp. 342-357. IEEE Press, Washington (2007)

2. Bouktif, S., Antoniol, G., Merlo, E., Neteler, M.: A novel approach to optimize clone refactoring
activity. In: Proceedinds of GECCO 2006, vol. 2, pp. 1885-1892, Washington (2006)

3. O’Keeffe, M., Cinneide, M.O.: Search-based software maintenance. In: Proceedings of
Conference on Software Maintenance and Reengineering (CSMR’06), pp. 249-260, Italy (2006)

4. Seng, O., Stammel, J., Burkhart, D.: Search-based determination of refactorings for
improving the class structure of object-oriented systems. In: Proceedings of GECCO, vol. 2,
pp- 1909-1916, Washington (2006)

5. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addision Wesley,
Massachusetts (1999)

66

10.

11.

12.
13.
14.
15.
16.
17.
18.

E. Koc et al.

. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function

optimization: artificial bee colony algorithm. J. Glob. Opt. 39, 459-471 (2007)

. Gelenbe, E., Kaptan V. Wang, Y.: Biological metaphors for agent behavior. In: LNCS- ISCIS,

pp. 667—675 (2004)

. OW2 Consortium, ASM, http://asm.ow2.org/
. O’Keeffe, M., Cinneide, M.O.: Search based refactoring: an empirical study. J. Soft. Maint.

Evol.: Res. Pract. 2, 345-364 (2008)

Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality assessment.
IEEE Trans. Softw. Eng. 28, 4-17 (2002)

Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng. 20, 476493 (1994)

SDMETRICS tool, http://www.sdmetrics.com/

Beaver—a LALR Parser Generator, http://beaver.sourceforge.net

The Mango Library, http://www .jezuk.co.uk/cgi-bin/view/mango

JFlex—The Fast Scanner Generator for Java, http://jflex.de/

Apache XML-RPC, http://ws.apache.org/xmlrpc/

JSON in Java, http://www.json.org/java/index.html

Pan, Q., Tasgetiren, M.F., Suganthan, P.N., Chua, T.J.: A discrete artificial bee colony
algorithm for the lot-streaming flow shop scheduling problem. Inf. Sci. (2010, in Press)

http://asm.ow2.org/
http://www.sdmetrics.com/
http://beaver.sourceforge.net
http://www.jezuk.co.uk/cgi-bin/view/mango
http://jflex.de/
http://ws.apache.org/xmlrpc/
http://www.json.org/java/index.html

Part 11
Data Engineering

Unsupervised Morphological Analysis
Using Tries

Koray Ak and Olcay Taner Yildiz

Abstract This article presents an unsupervised morphological analysis algorithm
to segment words into roots and affixes. The algorithm relies on word occurrences
in a given dataset. Target languages are English, Finnish, and Turkish, but
the algorithm can be used to segment any word from any language given the
wordlists acquired from a corpus consisting of words and word occurrences. In each
iteration, the algorithm divides words with respect to occurrences and constructs
a new trie for the remaining affixes. Preliminary experimental results on three
languages show that our novel algorithm performs better than most of the previous
algorithms.

Keywords Unsupervised learning - Morphology - Word decomposition

1 Introduction

Natural Language Processing (NLP) is a field of computer science that investigates
interactions between computers and human languages. NLP is used for both
generating human readable information from computer systems and converting
human language into more formal structures that a computer can understand.
Well known problems of NLP are morphological analysis, part of speech tagging,
wordsense disambiguation, and machine translation.

K. Ak (<) - O. T. Yildiz

Department of Computer Science and Engineering, Isik University,
34980 Sile, Istanbul, Turkey

e-mail: koray @isikun.edu.tr; korayak @gmail.com

O. T. Yildiz
e-mail: olcaytaner @isikun.edu.tr

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 69
DOI: 10.1007/978-1-4471-2155-8_8, © Springer-Verlag London Limited 2012

70 K. Ak and O. T. Yildiz

Morphological analysis or decomposition studies the structure of the words and
identifies the morphemes (smallest meaning-bearing elements) of the language.
Any word form can be expressed as a combination of morphemes. For instance,
the English word “enumeration” can be decomposed as e+number+ate+ion and
“interchangeable” as inter+change+able, and the Turkish word “isteyenlerle” as
iste+yen+ler+le. Generally words are known as the basic units of the language but
morphemes are the smallest syntactic unit and they reveal the relationship between
word forms. In this respect, morphological analysis investigates the structure,
formation and function of words, and attempts to formulate rules that model the
language.

Morphological analysis is widely used in different areas such as speech
recognition, machine translation, information retrieval, text understanding, and
statistical language modeling. In many languages this task is both difficult and
necessary, due to the large number of different word forms found in the text
corpus. Highly inflecting languages may have thousands of different word forms of
the same root, which makes the construction of an affixed lexicon hardly feasible.
As an alternative to the hand-made systems, there exist algorithms that work
unsupervised manner and autonomously do morphological analysis for the words
in an unannotated text corpus.

In this paper, an unsupervised learning algorithm is proposed to extract
information about the text corpus and the model of the language. The proposed
algorithm constructs a trie that consists of characters and the occurrences of the
words as nodes. The algorithm then detects roots of the given words by examining
the occurrences in the path of the word. When the root is revealed, the algorithm
creates a new trie from the affix parts, left after the root for each word. The
algorithm continues recursively until there is no affix left to process.

The paper is organized as follows: In Sect. 2, we present previous work in the
field. In Sect. 3, we present proposed algorithm. We give the results of our
experiments in Sect. 4 and conclude in Sect. 5.

2 Related Work on Unsupervised Morphological Analysis

Morpho Challenge [1] is one of the competitions of the EU Network of Excellence
PASCAL?2 Challenge Program working on unsupervised morphological disam-
biguation since 2005. The objective of the challenge is to design an unsupervised
machine learning algorithm that discovers which morphemes the words consist of.

In Morpho Challenge 2005, Bernhard [2] propose a method that relies on
transitional probabilities of each substring of the word in the lexicon, and distin-
guishes stems and affixes by examining the differences in lengths and frequencies
of the words.

Keshava [3] used a simple approach to gather morphemes based on finding
substring words and transitional probabilities. The algorithm constructs two trees;

Unsupervised Morphological Analysis Using Tries 71

a forward tree where each node from top to the leaf corresponds to a word in the
corpus and a backward tree to find suffix probabilities easily.

For the Turkish task in 2007, Zeman [4] proposed a paradigm based approach.
All possible suffix-stem pairs are grouped into paradigms. Since all possible
segmentation points are considered, the number of paradigms is huge and they are
filtered. In the segmentation phase; each possible segmentation of the word is
searched in the paradigms.

ParaMor [5] dominated the Morpho Challenge 2008 in all languages. Each
word is examined by segmenting from every character boundary. When two or
more words end in the same word-final string, ParaMor constructs a paradigm
seed. Paradigms are then expanded to full candidate paradigms by adding addi-
tional suffixes.

In 2009, Monson et al. [6] proposed an improved version of ParaMor [5]. In the
original version, ParaMor did not assign a numeric score to its segmentation
decisions. A natural language tagger is trained to score each character boundary in
each word. Using ParaMor as a source of labeled data, finite-stage tagger is trained
to identify, for each character, c, in a given word, whether or not ParaMor will
place a morpheme boundary immediately before c.

3 REC-TRIE

The input of the Morpho Challenge is a corpus and word list of the words with
frequencies as appeared in the corpus. Since character encodings differ in the
datasets, some modifications are done. English dataset consists of standard text
and all words are lower-cased. Finnish dataset uses ISO Latin 1 (ISO 8859-1).
The Scandinavian special letters &, 4, 0 are rendered as one-byte characters.
Turkish dataset is standard text and all words except the letters specific to Turkish
are lower-cased. The letters specific to the Turkish language are replaced by
capital letters of the standard Latin alphabet, “acikgoriisliiliigiinii” is converted to
“aClkgOrUSIUIUGUnU”.

As mentioned in the first section, one of the problems in unsupervised mor-
phological analysis is the data sparsity. Given a large dataset, most of the root
words appear in the corpus. For example, in the datasets of challenge, there exist
15545 root words among 617298 words where total root count for Turkish is
23470 [7], that is 66% of the roots appeared in the dataset.

The pseudo code of our proposed algorithm (REC-TRIE) is given in Fig. 1.
We simply populate word trie with words from the list that occurred more than
5 times and store the corresponding character, the number of occurrence in the
corpus and the number of times that character is used in this path in this depth
(Line 3). With the fact explained above, we assume the smallest most occurred
word in a path is the root of the words in the path.

Once the algorithm finds root morphemes in each word, it saves the corre-
sponding segmentation into a table and continues to the next iteration (Line 7).

72 K. Ak and O. T. Yildiz

1 Read words from Wordlist W

2 1=1

8 Construct word T'rie;

4 Construct word Table

5 Do until no unsegmented words remain

6 For each word in the Table

7 Find boundary for unsegmented part with T'rie and update Table
8 If the word is not fully segmented

9 Add unsegmented part to T'rie;+1
10 End If

11 End For

12i=1+1

13 End Do

Fig. 1 The pseudocode of REC-TRIE

-~ ~occe 1464

® Q.
(a) o @ |

© ® @
occ=168 ocn-SH. @m—“s‘l @oﬂc’:??
00c=2430 C“j"”

(c) (d)

Fig. 2 Sample run from REC-TRIE. a A sample trie initialized. b After first iteration root words
detected. ¢ First affix trie is constructed with the extracted affix parts left from roots and first
affixes are found. d Second iteration REC-TRIE created new affix tree and found the last affix

In each iteration, the rest part of the word is put on a new trie (Line 9) and affix
boundaries are found recursively with the same method applied for root extraction.
The algorithm continues until no affix candidate is left.

We present a sample run of REC-TRIE in Fig. 2. After initializing word trie the
algorithm traverses each path and chooses the most occurred smallest word as root.
The word “ada” is segmented as ad + a since the most occurred character is d with
944 occurrence in the path. However the words “adl”, “adIn”, “adIna”, “adInl”,

Unsupervised Morphological Analysis Using Tries

73

Table 1 Precision, Recall, and F-Measure of REC-TRIE compared with other algorithms in
Morpho Challenge 2009 for Turkish

Author Method Precision Recall F-Measure
(%) (%) (%)
Monson et al. Paramor-Morfessor Mimic 48.07 60.39 53.53
Monson et al. ParaMor-Morfessor Union 47.25 60.01 52.88
Monson et al. Paramor Mimic 49.54 54.77 52.02
Our Algorithm REC-TRIE 53.40 43.06 47.68
Lavallée and Langlais RALI-COF 48.43 44.54 46.40
- Morfessor CatMAP 79.38 31.88 45.49
Spiegler et al. PROMODES 2 35.36 58.70 44.14
Spiegler et al. PROMODES 32.22 66.42 43.39
Bernhard MorphoNet 61.75 30.90 41.19
Can and Manandhar 2 41.39 38.13 39.70
Spiegler et al. PROMODES committee 55.30 28.35 37.48
Golénia et al. UNGRADE 46.67 30.16 36.64
Virpioja and Kohonen Allomorfessor 85.89 19.53 31.82
- Morfessor Baseline 89.68 17.78 29.67
Lavallée and Langlais =~ RALI-ANA 69.52 12.85 21.69
- Letters 8.66 99.13 15.93
Can and Manandhar 1 73.03 8.89 15.86

and “adInlz” is segmented from adlI since the most occurred character in these paths
are [with 5293 occurrence (b). Next REC-TRIE constructs affix tries to find affix
boundaries. In (c), affixes are inserted in a new trie. Note that “a” is merged from
ab+a and ad+a and occurrence is summed. Again first affixes are found by selecting
the most occurred character. This procedure continues until there is no affix
candidate left. The final affix is found in (d) and REC-TRIE finish segmentation.

4 Experiments

Morpho Challenge gives two perl scripts to evaluate algorithms. These scripts

simply compare the results against a linguistic gold standard. In the evaluation,

only a subset of all words in the corpus is included. For each language, a random

subset was picked, and the segmentations of these words were compared to the

reference segmentations in the gold standard. The evaluation of an algorithm is

based on the F-measure, which is the harmonic mean of precision and recall.
These metrics are calculated by

e Hit (H): The word is cut at the right place.
e Insertion (I): The word is cut at the wrong place.
e Deletion (D): A valid cut is ignored.

74 K. Ak and O. T. Yildiz

Based on these metrics; precision is the number of hits divided by the sum of
the number of hits and insertions, and recall is the number of hits divided by the
sum of the number of hits and deletions. So the measures are:

.. H 2H
Precision = ——Recall = ———F — Measure = ————— (1)
(H+1) (H+D) (2H+1+D)

We have used the dataset of the Morpho Challenge 2009 and evaluate results
with the perl scripts provided. Table 1 show the results of our algorithm compared
with other algorithms for Turkish. Our algorithm has better F-Measure in Turkish
and English than Finnish. This is due to fact that our algorithm finds roots and
suffixes by traversing the trie one character at a time so found roots and suffixes are
generally short. However, Finnish root words are rather long in the average due to
the conservativeness of the language. Especially deletions are fairly more in
Finnish since the algorithm oversegments the words. As a result, recall values for
Finnish is low and pulls down the F-Measure dramatically.

5 Conclusions

We propose a novel algorithm for unsupervised morphological analysis, based on
trie data structure and word occurrences. The algorithm constructs a word trie and
finds root words according to the occurrences of characters in the path. After root
detection is completed, remaining affix parts are used to construct affix tries.
In each iteration, affix boundaries are detected and results are updated.

Although our proposed algorithm is simple, the results are encouraging. Our
approach ranks 4’th in Turkish when compared with other competitors. The recall
values states that we have missed some of the boundaries especially for Finnish.

The algorithm does not have any methods for prefix detection and there is no
control for the irregular changes of the words or umlauts, so we should develop
some strategies to cope with these situations.

References

1. Kurimo, M., Krista Lagus, S.V., Turunens, V.: Morpho challenge. http://research.ics.tkk.fi/
events/morphochallenge2010/

2. Bernhard, D.: Unsupervised morphological segmentation based on segment predictability and
word segments alignment. In: Proceedings of the PASCAL Challenge Workshop on
Unsupervised Segmentation of Words into Morphemes (2006)

3. Keshava, S.: A simpler, intuitive approach to morpheme induction. In: Proceedings of the PASCAL
Challenge Workshop on Unsupervised Segmentation of Words into Morphemes (2006)

4. Zeman, D.: Unsupervised acquiring of morphological paradigms from tokenized text. Adv.
Multiling. Multimodal Inf. Retr. 5152, 892-899 (2008)

5. Monson, C., Carbonell, J., Lavie, A., Levin, L.: Paramor and morpho challenge 2008.
In: Proceedings of the 9th Cross-language evaluation forum conference on evaluating systems

http://research.ics.tkk.fi/events/morphochallenge2010/
http://research.ics.tkk.fi/events/morphochallenge2010/

Unsupervised Morphological Analysis Using Tries 75

for multilingual and multimodal information access. Cross-Language Evaluation Forum’08,
pp. 967-974 (2009)

6. Monson, C., Hollingshead, K., Roark, B.: Probabilistic ParaMor. In: Working Notes for the
CLEF 2009 Workshop, Corfu, Greece (2009)

7. Solak, A., Oflazer, K.: Design and implementation of a spelling checker for turkish.
In: Literary and Linguistic Computing, vol. 8 (1993)

A Novel Approach to Morphological
Disambiguation for Turkish

Onur Gorgiin and Olcay Taner Yildiz

Abstract In this paper, we propose a classification based approach to the
morphological disambiguation for Turkish language. Due to complex morphology
in Turkish, any word can get unlimited number of affixes resulting very large tag
sets. The problem is defined as choosing one of parses of a word not taking the
existing root word into consideration. We trained our model with well-known
classifiers using WEKA toolkit and tested on a common test set. The best
performance achieved is 95.61% by J48 Tree classifier.

1 Introduction

Morphological disambiguation problem is defined as the task of selecting
the correct morphological parse of a word among its parses. According to the
morphophonemic structure of the language and morphotactics which define
the ordering of morphemes, a word may have many parses. These parses may
share the same root word or may have different root words. Morphological
disambiguation is considered as a preliminary step for higher level language analysis.

Turkish is one of the morphologically rich languages. Like other agglutinative
languages, due to its free constituent order nature, Turkish has a large number of
possible tags. There have been studies for morphological disambiguation problem
in Turkish. These studies can be categorized under two main approaches: rule-

O. Gorgiin (<) - O. T. Yildiz

Department of Computer Science and Engineering,
Isik University, Sile, 34980 istanbul, Turkey
e-mail: onurg@isikun.edu.tr

O. T. Yildiz (&)
e-mail: olcaytaner @isikun.edu.tr

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 77
DOI: 10.1007/978-1-4471-2155-8_9, © Springer-Verlag London Limited 2012

78 O. Gorgiin and O. T. Yildiz

based approaches and statistical approaches. In statistical approaches, a large
corpus is used to train the statistical model and the trained model is tested on an
unseen test corpus [1]. However, due to the large number of tags in Turkish, data
sparseness is a serious problem. To cope with the data sparseness problem,
morphological parses are divided into smaller parts called inflectional groups [2].
The most recent approach to the morphological disambiguation problem is pre-
sented in [3]. The methodology employed is based on ranking of the most possible
parse sequences (determined by the baseline statistical model represented in [1])
with Perceptron algorithm. The very early rule-based approach to Turkish used
hand-crafted rules [5]. The combination of both rule-based and machine learning
approaches also exists such as [4].

In this paper we propose a classification approach to the morphological
disambiguation problem. The idea behind our algorithm is as follows: Considering
each set of distinct possible parses as a classification problem, one can divide the
morphological disambiguation problem into multiple classification problems. Then
each classification problem can be solved independently using any machine
learning classifier. The inputs (features) of the classification problem are the
existence of the part of speech tags in the previous two neighbor words.

The paper is organized as follows: In Sect. 2 we introduce the morphological
disambiguation problem and formalize it. In Sect. 3, we will review the previous
approaches to the morphological disambiguation problem in Turkish. In Sect. 4 we
introduce our proposed approach. We give our experiments results in Sect. 5 and
conclude in Sect. 6.

2 Morphological Disambiguation

Morphological disambiguation is the problem of selecting accurate morphological
parse of a word given its possible parses. These parses are generated by a
morphological analyzer [6, 7]. In morphologically rich languages like Turkish, the
number of possible parses for a given word is generally more than one. Each parse
is considered as a different interpretation of a single word. Each interpretation
consists of a root word and sequence of inflectional and derivational suffixes.
Table 1 illustrates different interpretations of the word “lizerine”.

As seen above, the first two parses share the same root but different suffix
sequences. Similarly, the last two parses also share the same root, however
sequence of morphemes are different. Given a parse such as

iiz + Verb + Pos + Aor +" DB + Adj + Zero +" DB + Noun + Zero + A3sg
+ P3sg + Dat

each item is separated by “+” is a morphological feature such as Pos or Aor.
Inflectional groups are identified as sequence of morphological features separated by

A Novel Approach to Morphological Disambiguation for Turkish 79

Table 1 Four possible parses of word “iizerine”

izer+Noun+A3sg+P3sg+Dat
tizer+Noun+A3sg+P2sg+Dat
iz+Verb+Pos+Aor+" DB+Adj+Zero+" DB+Noun+Zero+A3sg+P3sg+Dat
iiz+Verb+Pos+Aor+" DB+Adj+Zero+" DB+Noun+Zero+A3sg+P2sg+Dat

derivational boundaries (ADB). The sequence of inflectional groups forms the term
tag. Root word plus tag is named as word form. So, a word form is defined as follows:

IGroot + IG, +"DB + IG, +"DB + - - - +"DB + IG,,

Then the morphological disambiguation problem can be defined as follows: For
a given sentence represented by a sequence of words W = w| = wi,wa,...,w,,
determine the sequence of parses T =t = t,1,...,t,, where f; represents the
correct parse of the word w;. Using the Bayesian approach, the problem is
formulated as follows:

P(T)P(WIT)

arg ;naxP(T|W) = POW) (1)

where P(W) is constant for all P(W|T).P(W|T) is equal to 1, since given
a tag sequence, there is only one possible word form corresponding to it. So the
morphological disambiguation problem is simplified as the following:

arg max P(T|W) = arg max P(T) (2)
T T

3 Related Work

The baseline model described in [1] generates the most probable tag sequence for
a given word sequence using Viterbi decoding. First, they break down the tag from
derivation boundaries called inflectional group (IG). The problem is formulated as
follows:

P(T) = HP(ti|ti727 l‘,',l)
i=1

= [[(.1Gi,, . . . 1Gin)| (3)
i=1

(}’1;2, IGi72,17 DY) IGZ'*Z-’ZFZ)
(rict, IGi—1 1, - 1G24,)

80 O. Gorgiin and O. T. Yildiz

where n; represents the number of inflectional groups associated with the ith parse
and G, represents the jth inflectional group of parse i. The baseline trigram-based
model is based on two basic assumptions: (1) root of the current word only
depends on root of two previous words, and (2) presence of sequence of IGs in the
current word depend only the last IG of two previous words. Under these
assumptions, P(T) is re-formulated as:

n

P(T) = [T(PGilri-, riet) [[PUGiKIGi 2, 511G 1,) (4)
i=1 k=1

The trigram probabilities are estimated using standard n-gram probability esti-
mation methods using morphologically disambiguated training data.

The Greedy Prepend Algorithm is a rule-based approach, based on decision lists
[4]. Each pattern is formed by surface attributes of surrounding words of the
current word. The decision lists are formed for each of the 126 distinct morpho-
logical features that exist. In the model, a 5-word (including word W, the first two
left and two right neighbors), window is used. Greedy Prepend list reduction
algorithm is used to generate the decision lists. The algorithm starts with the most
general rule which covers all instances. The algorithm adds rules one by one where
the best rule is determined using information gain. The algorithm stops when no
improvement can be made.

The Perceptron Algorithm [3] is a combination of statistical and machine
learning approaches. They use the Baseline Trigram-Based Model to generate
n-best parses for each sentence. A feature set consisting of 23 features is used to
disambiguate the current parse. The model also takes into account previous two
words. Using the n-best parses as input to the algorithm, the algorithm makes
multiple iterations over the training set to estimate parameter values. The highest
scoring candidate is then selected using current parameter values. If the highest
scoring candidate is different than the correct one, parameter values are updated.

4 Proposed Approach

We define the disambiguation task as identifying the correct parse from N possible
parses excluding the root word. Consider the example in Table 2 for the word
“iizerine”. Our approach defines the classification problem as follows:

Class 1:Noun+A3sg+P3sg+Dat
Class 2:Noun+A3sg+P2sg+Dat
Class 3:Verb+Pos+Aor+"DB+Adj+Zero+"DB+Noun+Zero+A3sg+P3sg+Dat
Class 4:Verb+Pos+Aor+"DB+Adj+Zero+"DB+Noun+Zero+A3sg+P2sg+Dat

where the correct parse is Class 1. Although a word can take theoretically unlimited
number of suffixes [5], the number of distinct problems (classification problem) is

A Novel Approach to Morphological Disambiguation for Turkish 81

Table 2 Distribution of

. Number of instances Number of problems
problems with respect to the #
of instances 1-10 7213
11-100 1617
101-1000 427
1001-10000 60
10001-100000 3
WORD: “askerlik”
asker+Noun+AI;sg+Pnon+Nom+'\DB+Adj +FitFor PROBLEM
asker+Noun+A3sg+Pnon+Nom+"DB+Noun+Ness+
A3sg+Pnon+Nom REDUCT I ON

askerlik+Noun+A3sg+Pnon+Nom

WORD: “giivenlik”
giiven+Noun+A3sg+Pnon+Nom+*DB+Adj+FitFor
gliven+Noun+A3sg+Pnon+Nom+"DB+Noun+Ness+
A3sg+Pnon+Nom
giivenlik+Noun+A3sg+Pnon+Nom

Problem-1

Class 0: Noun+A3sg+Pnon+Nom+"DB+Adj+FitFor

Class 1: Noun+A3sg+Pnon+Nom+"DB+Noun+Ness+
A3sg+Pnon+Nom

Class 2: Noun+A3sg+Pnon+Nom

Initial problem set of 399223 problems

Problem-9320

Class 0: Noun+A3sg+P3sg+Dat

Class 1: Noun+A3sg+P2sg+Dat

Class 2: Adj+"DB-+Noun+Zero+A3sg+P2sg+Dat

Reduced problem set of 9320 problems

Fig. 1 Problem reduction step of the training phase. The parses of “askerlik” and “giivenlik”
map to problem 1

9320 for a 1M size disambiguated train set. If # problems are same, only one of them
is kept and others are discarded from the problem set. After this preprocessing the
distribution of the problems with respect to the number of instances are given in
Table 2.

Training data is processed sentence by sentence. We used 3-word window
representation for each ambiguous token including it, where neighbor tokens are
2 words from left. Each neighbor is represented by a vector of 126 morphological
features. Since, a neighbor may have more than one parse; each vector is formed
based on the existence of morphological features. Any morphological feature that
exists in any parses of neighbor words is represented by 1. Illustrations for the
problem generation phase is given in Fig. 1.

82 O. Gorgiin and O. T. Yildiz

Table 3 Comparison of our proposed approach (using 10 different classifiers) with three
different approaches

Method Acc. (%) Method Acc. (%)
NaiveBayes 93.83 Logistic Regression 94.67
Conjunctive Rule 66.25 SVM 94.98
k-NN(k=10) 95.40 LWL 94.67
J48 Tree 95.61 Baseline Trigram-Based Model 95.48
J48 Tree(no prunning) 95.09 Greedy Prepend Algorithm 95.82
KStar 94.36 Perceptron(23 Features) 96.28
NNge 90.49

Testing is done in a similar way as done in the training phase. The test set is
divided into sentences. For each sentence, we select the tokens having more than
one parses and form the instance vector using 3-word window. Then, we determine
the corresponding problem. Using the model of the corresponding classifier we
classify the test instance.

5 Experiments
5.1 Experimental Setup

We use atraining set of approximately 1M semi-automatically tagged disambiguated
tokens (including end-of-sentence, end-of-title, and end-of-document markers)
taken from Turkish newspapers. The training data consists of 50673 sentences where
about 40% of them are morphologically ambiguous [6]. The test set consists of 958
tokens including markers mentioned above, where 42 sentences and 379 tokens are
morphologically ambiguous. Performance criterion is formulated as:

of correctly disambiguated tokens
of tokens

(5)

Performance =

5.2 Results

We have compared our approach with other morphological disambiguation
approaches for Turkish presented in Sect. 3 We used 10 different classification
algorithms in the WEKA toolkit. The results of the classification algorithms and
the previous approaches are given in Table 3. According to emprical results, J48
Tree classifier has the best performance among 10 classifier and Baseline Trigram-
Based Model.

Although it cannot can attain the performance of the other previous approaches,
the difference is not significant for the best performer namely J48 Tree classifier.

A Novel Approach to Morphological Disambiguation for Turkish 83

6 Conclusion

We presented a new approach to the morphological disambiguation problem for
Turkish. Our proposed approach converts original morphological disambigua-
tion problem into multiple classification problems. Each classification problem
corresponds to a set of possible parses (not including the root words) where each
parse maps to a class and correct parse map to the correct class for that instance.
We used 10 different classifiers from WEKA toolkit for solving the classification
problems.

Our experimental results show that the best classifier is J48 Tree classifier.
Although this is only better than the Baseline Trigram-Based approach among the
previous aproaches, we believe that by expanding our feature set and/or applying
a linear/nonlinear feature extraction mechanism, we will achieve much better
disambiguation performance.

References

1. Hakkani-Tiir, D.Z., Oflazer, K., Tiir, G.: Statistical morphological disambiguation for
agglutinative languages. Comput. Humanit. 36(4), 381-410 (2002)

2. Oflazer, K., Hakkani-Tiir, D. Z., Tiir, G.: Design for a Turkish treebank. In: Proceedings of the
Workshop on Linguistically Interpreted Corpora (1999)

3. Sak, H., Giingor, T., Saraglar, M.: Morphological disambiguation of Turkish text with
perceptron algorithm. In: Gelbukh, A. (ed.) CICLING 2007, LNCS 4394, pp. 107-118 (2007)

4. Yiiret, D., Tiire, F.: Learning morphological disambiguation rules for Turkish. In: Proceedings
of HLT-NAACL (2006)

5. Oflazer, K., Kuruoz, I.: Tagging and morphological disambiguation of Turkish text. In:
Proceedings of the 4th Applied Natural Language Processing Conference, pp. 144—-149 (1994)

6. Oflazer, K.: Two-level description of Turkish morphology. Lit. Linguist. Comput. 9(2),
137-148 (1994)

7. Sak, H., Giingor, T., Saralar, M.: Turkish language resources: morphological parser,
morphological disambiguator and web corpus. In: GoTAL 2008, volume 5221 of LNCS,
pp. 417427, Springer (2008)

A Small Footprint Hybrid Statistical
and Unit Selection Text-to-Speech
Synthesis System for Turkish

Ekrem Guner and Cenk Demiroglu

Abstract Unit selection based text-to-speech synthesis (TTS) can generate high
quality speech. However, The HMM-based text-to-speech (HTS) has also
advantages such as the lack of spurious errors that are observed in the unit
selection scheme. Another advantage is the small memory footprint requirement.
Here, we propose a novel hybrid statistical/unit selection TTS system for agglu-
tinative languages that aims at improving the quality of the baseline HTS system
while keeping the memory footprint small. Listeners preferred the hybrid system
over a state-of-the-art HTS baseline system in the A/B preference tests.

Keywords Speech synthesis - Hybrid TTS - HMM-based TTS - Turkish TTS -
Small memory footprint - Agglutinative languages

1 Introduction

HMM-based and unit selection TTS are currently the two dominant approaches to
speech synthesis. In general, unit selection systems can generate higher quality
speech than the HTS systems when spurious errors are not present. However, HTS

This Research is supported by TUBITAK. Project no: 109E281

E. Guner (<)) - C. Demiroglu

Ozyegin University, Kusbakisi Cad. No:2,
34662 Istanbul, Turkey

e-mail: ekrem.guner@ozyegin.edu.tr;
ekremgunerozu@gmail.com

URL: http://www.ozyegin.edu.tr

C. Demiroglu
e-mail: cenk.demiroglu@ozyegin.edu.tr
URL: http://www.ozyegin.edu.tr

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 85
DOI: 10.1007/978-1-4471-2155-8_10, © Springer-Verlag London Limited 2012

86 E. Guner and C. Demiroglu

approach has advantages such as the the small memory footprint of the voice
database. As opposed to the large databases needed for the unit selection systems,
a couple of megabytes is enough to store the voice database in HTS which is
important in where small memory footprint is a key requirement.

Besides HTS and unit selection approaches, there are hybrid systems. In one
approach, parameter training for HTS can be improved by minimizing the error of
selecting the wrong unit from the database when the HT'S parameters are used to cal-
culate the target costs in unit selection [1-4]. In another approach, HTS-generated
waveforms are interweaved with the speech units selected from the database [5,6]. The
idea is to use smooth HTS-generated waveforms when a unit with a low transition cost
cannot be found in the database. In a third approach, synthetic speech generated with
unit selection is smoothed at the unit boundaries using an HTS approach [7].

As opposed to most of the existing hybrid methods that are focused on
improving the quality of a unit selection system, here, we propose a hybrid
HTS/unit selection algorithm to boost the performance of our Turkish HTS system.
In the existing hybrid systems, small memory footprint advantage of the HTS
system 1is lost since both a unit selection and an HTS system are used. A key
novelty in this work is a hybrid system that keeps the voice database size small
while improving the quality of the HTS system. Turkish is an agglutinative lan-
guage and many different words can be generated from the same root word by
using a limited set of suffixes. In the proposed system, a database for the most
frequently occurring suffixes in Turkish is created in training. In synthesis, best
fitting suffixes are selected using the proposed suffix selection algorithms. Then,
the selected suffixes are used in HTS within the proposed parameter generation
algorithms. Although, the idea is applied to Turkish TTS here, it can also be used
for other morphologically rich languages such as Finnish, Estonian and Czech.

This paper is organized as follows. An overview of the proposed hybrid system
is given in Sect. 2. The suffix selection algorithms are presented in Sect. 3,
parameter generation algorithms are presented in Sect. 4. Finally, experiment and
discussions are given in Sect. 5.

2 Overview of the Hybrid System

An overview of the training and synthesis phases of the proposed system is shown
in Fig. 1. In the training phase, HMM models and a decision tree are generated for
the target speaker using speaker dependent training with the HTS tools. Then, a
morphological analyzer is used to analyze the words in the speech database. To
create a suffix database, waveforms that correspond to the suffixes labeled by the
morphological analyzer should be extracted from speech. Forced alignment is used
with the speaker-dependent HMM models to align text and speech data. Suffix
units are then extracted from the speech signal using the alignment information.

Suffix units are parametrized using LPC analysis and only the LSF and pitch
parameters are stored. Besides those parameters, each entry in the suffix database

A Small Footprint Hybrid Statistical 87

Fig. 1 Overview of the

e !
proposed hybrid system L Speaker :
|
| Speaker Dependent !
| Dependent Trainin I
: Speech Database J :
| ~— e e
|
|
|
|
‘ [R P ‘
I I
| | G |
| Morphologic : I Decision |
: Analyzer | : Trees :
! ‘ : Labeler !
| |
! |
l l Lo l
: Forced : : :
Alignment ! I | Morphologic
: & | ‘ Anl;lyzef Dyn. :
\ | ! Time \
: | | Warping :
I Suffix : : l I
: Analysis | | Suffix :
I : : Selection HMM I
: I I Parameter :
e Ty : : Generation I
| " |
; Suffix o :
! l
e J e T I
Training Synthesis

contains a flag that indicates the presence of silence at the right context of the
suffix (phrase ending) and another flag that indicates the presence of stress on the
suffix. Moreover, beginning and end times of the state-level segments are also
stored in the database.

In the synthesis phase, HMM models that correspond to the input text is
determined using the decision tree. Input text is analyzed using the morphological
analyzer, and, for each suffix in the text, the best fitting suffix is selected using the
algorithms described in Sect. 3. The statistics predicted by the decision tree and
the parameters of the unit that is selected from the suffix database are combined
together and fed into the parameter generation algorithms described in Sect. 4.
Finally, the parameter sequences generated are used in an LSF vocoder to syn-
thesize speech. The morphological analyzer described in [8] is used here. The
analyzer generates the root word and the morphemes of a given word.

3 Suffix Selection

When synthesizing utterance i, using the morphological analyzer, we determine

the set of suffixes {S{ } in the utterance where j = 1,2,...,N; and N; is the total
number of suffixes in the i th utterance. For the j th suffix, the initial set of available

88 E. Guner and C. Demiroglu

units in the database is denoted by {U { }. In the initial set, only the stress flag of the
suffix is used for selection. Two different targets are selected for LSF and pitch
parameters. Moreover, the cost calculation for those features are also different.

The proposed unit selection algorithm uses a maximum likelihood (ML) cri-
terion as the target cost. However, we have found in our experiments that the ML
criterion does not always return a proper suffix that has a good concatenation cost.
To reduce the possibility of an artifact, for the pitch parameter, we have used two
heuristics to filter out the set of available units in the database for a given suffix.
The heuristics are described below.

During parameter generation, the pitch trajectory of the selected unit is time-
warped so that it can fit into the synthetic duration estimated with HTS. In our
experiments, expanding the pitch trajectory did not cause any audible artifacts.
However, compressing the pitch trajectory occasionally caused sudden pitch
changes which are perceived as artifacts by the listener. To avoid that problem, the

units in {U{ } that are R, percent longer than the synthetic duration of the suffix S{
are filtered out. The reduced set of units after filtering is denoted by {Ué }.

Pitch fall at the end of phrases is especially important in perception. Thus, if
there is a pause or a short pause at the right context of S{ , which indicates the end
of a phrase, then the units that do not have a pause or a short pause at their right
contexts are filtered out from {Ué }, and the reduced set of units are denoted with
{vi). |

Finally, an ML criterion is used to select the suffix from {Uj}. Log-likelihood
for each unit in {U]} is computed as follows. For each unit U, from {U]}, the
average log-likelihood is computed by

—1
/k__zz [D/2 |Z 1|1/2] _%(X{n_ﬂm)TZ(X];;_um>

kalfl m

where N is the total number of frames in the unit, M is the total number of states,
my is the total number of frames in state m, X, is the covariance matrix in state m,
I, is the mean vector in state m and X/, is the f th observation of state m. X/,
contains static, delta and delta-delta features.

The heuristics used in calculating the cost function for pitch are not used for the

LSF features. Thus, the ML cost is the only criterion in selecting the appropriate
suffix for LSFs.

4 Parameter Generation for the Hybrid System

In HTS, each utterance i is composed of a sequence of states and each state s has
a set of models A;; for LSF and pitch features. For LSFs, the probability
distribution is defined by a multivariate Gaussian specified by the parameter set

A Small Footprint Hybrid Statistical 89

2= {,ufS{ ,X”}. For pitch, the probability distribution is defined by a multivar-
iate Gaussian specified by the parameter set 47 = {4, X} }. These pdf’s are used
to generate the feature trajectories using the ML method.

In the hybrid system, once the best matching suffixes are selected for the LSF
and pitch parameters, the features extracted from those suffixes are used to modify
the parameter generation process of HTS. Similar to suffix selection, different
parameter generation algorithms are used for the two features to obtain the best
quality speech. The hybrid parameter generation algorithms for the LSF and pitch
features are described below.

4.1 Parameter Generation for LSF

If state s in utterance i occurs within a suffix, the LSF model of the state is updated
with {7 £} where 17" is the feature vector in the suffix that has the

smallest distance to the mean parameter ,uff The distance is measured with the

Itakura-Saito measure which is given by

+n
dis = /

where X;(w) is the spectrum specified by the LSF parameters of the mean vector

X . Xaw)| | dw
A AR AR

(1)

,ufsf , and X, (w) is the spectrum specified by the LSF parameters of a feature vector
in the target suffix.

After the pdf’s are updated for each state that falls within a suffix, the ML-based
HTS parameter generation process is used to create the final LSF trajectories.

4.2 Parameter Generation for Pitch

For the pitch parameters, preserving the intonation pattern of the target unit is
important for improving the naturalness of the synthetic speech. Therefore, instead
of changing the model parameters of the states, pitch trajectory of the target unit is
directly concatenated with the synthetic speech. The trajectory is warped to fit into
the HTS estimated suffix duration. Every phoneme in the suffix is warped indi-
vidually as opposed to warping the whole suffix to compensate for the large
phoneme duration variabilities in the suffixes.

Directly concatenating the pitch trajectory of the target unit into the HTS
generated trajectory creates discontinuities at the boundaries. To address this
problem, HTS parameter generation process is used to smooth out the trajectory
around the concatenation points. However, besides smoothing the trajectory at the
concatenation point, this approach also distorts the target unit trajectory which is

90 E. Guner and C. Demiroglu

undesirable. That problem is solved by setting the variances of the pitch models on
the suffix to e. Because the parameter generation process uses an ML-based
measure, the system is effectively enforced to preserve the target trajectory while
smoothing out the trajectory at the concatenation points.

5 Experiments and Discussions

500 utterances, 75 minutes of speech, were spoken by a female speaker. Systems
in the experiments were trained using HTS 2.1 toolkit with 30 dimensional vectors
consisting of 24 LSFs, 1 log FO coefficient and 5 voicing strength parameters.
Voicing strengths are computed using normalized auto-correlation measure for
five evenly spaced spectral bands between 0 and 8000 Hz. The duration heuristic
parameter R, for the pitch parameter defined in Sect. 3 is experimentally set to 20
for hybrid system. In the target cost, log-likelihood is computed only for vowels,
nasals, liquids and glides. Those long duration sounds have the most impact in the
quality. Moreover, consonants can introduce significant amount of noise to the log-
likelihood calculation because of their stochastic nature. We have observed that
using only vowels, nasals, liquids and glides in the likelihood computation
improves the suffix selection process.

A state-of-the-art baseline system is used to assess the quality improvement
with the hybrid approach, using A/B preference test. 50 utterances from a Turkish
novel were used in the test. Seven listeners took the test. In 34 percent of the
utterances, listeners preferred the hybrid system. In 27 percent of the utterances,
listeners preferred the baseline system, and in 39 percent of the cases, the listeners
thought the quality was the same. Thus, there is a preference for the hybrid system
over the baseline system. However, the difference is not large. The test results are
further analyzed and it was observed that discontinuities that sometimes occur with
the hybrid system had an impact on the listener preference. That same effect was
also found to have a significant impact on the Blizzard Challenge tests. In fact,
some of the HTS systems outperformed the unit selection systems in those tests
due to the discontinuity problem [9].

In Turkish, question sentences typically have special suffixes, such as /mi/,
/midir/, at the end of the verbs. In some significant number of cases with the
baseline system, we have noticed over smoothed question tags which significantly
hurt the listener preference. Most of those issues are resolved with the hybrid
system since stress patterns of the question sentences are captured better by the
hybrid system. The hybrid system generated more natural prosody for most of the
suffixes since their intonation patterns are selected from the natural units in the
suffix database.

The hybrid system improved the intonation contours and the clarity of suffixes.
The LSF features improved the clarity and reduced the buzzy quality of the long
duration sounds such as long vowels. For the shorter sounds, the effect is less
noticeable since the trajectory is smoothed by the parameter generation algorithm.

A Small Footprint Hybrid Statistical 91
References

1. Lu, H., Ling, Z.H., Lei, M., Wang, C.C., Zhao, H.H., Chen,L.H., Hu,Y. Dai,L.R., Wang, R.H.:
The USTC system for Blizzard challenge 2009. In: Blizzard Challenge Workshop (2009)

2. Kawai, H., Toda, T., Ni, J., Tsuzaki, M., Tokuda, K.: XIMERA: a new TTS from ATR based
on corpus-based technologies. In: Fifth ISCA Workshop on Speech Synthesis (2004)

3. Rouibia, S., Rosec, O.: Unit selection for speech synthesis based on a new acoustic target cost.
In: INTERSPEECH, pp. 2565-2568. (2005)

4. Qian, Y., Yan, Z.J., Wu, Y., Soong, F.K., Zhuang, X., Kong, S.: An HMM trajectory tiling
(HTT) approach to high quality TTS. In: INTERSPEECH, pp. 422-425. (2010)

5. Tiomkin, S., Malah, D., Shechtman, S., Kons, Z.: A hybrid text-to-speech system that
combines concatenative and statistical synthesis units. In: Audio, Speech, and Language
Processing, IEEE Transactions on, vol. pp. 99 (2010)

6. Pollet, V., Breen, A.: Synthesis by generation and concatenation of multiform segments. In:
INTERSPEECH, pp. 1825-1828. (2008)

7. Plumpe, M., Acero, A., Hon, HW., Huang, X.: HMM-based smoothing for concatenative
speech synthesis. In: Fifth International Conference on Spoken Language Processing (1998)

8. Oflazer, K., Inkelas, S.: A finite state pronunciation lexicon for Turkish. In: Proceedings of the
EACL Workshop on Finite State Methods in NLP, vol. 82, pp. 900-918. Budapest (2003)

9. Black, A.W., Zen, H., Tokuda, K.: Statistical parametric speech synthesis. In: Proceedings of
ICASSP, vol. 4, pp. 1229-1232. (2007)

Enhancing Incremental Feature Subset
Selection in High-Dimensional Databases
by Adding a Backward Step

Pablo Bermejo, Luis de La Ossa, Jose A. Gamez and Jose M. Puerta

Abstract Feature subset selection has become an expensive process due to the
relatively recent appearance of high-dimensional databases. Thus, the need has
arisen not only for reducing the dimensionality of these datasets, but also for doing
it in an efficient way. We propose the design of a new backward search which
performs better than other state-of-the-art algorithms in terms of size of the
selected subsets and in the number of evaluations, by removing attributes given a
smart decremental approach and, besides, it is guided using a heuristic which
reduces the needed number of evaluations commonly expected from a backward
search.

1 Introduction

In the last 2 decades the evolution in technology has derived in new sources
of information which must be stored, automatically classified and retrieved:
e.g. microarrays gene expressions or textual databases, which contain records
described by thousands or even tens of thousands (high-dimensional databases)
variables. This way, lately the task known as feature subset selection (FSS) [3, 4]

P. Bermejo (X)) - L. de La Ossa - J. A. Gamez - J. M. Puerta
Castilla-La Mancha University, I3A, Albacete, Spain
e-mail: Pablo.Bermejo@uclm.es; pbermejo@dsi.uclm.es

J. A. Gamez (D<)
e-mail: jose.gamez@uclm.es

J. M. Puerta (X))
e-mail: jose.puerta@uclm.es

L. de La Ossa
e-mail: luis.delaossa@uclm.es

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 93
DOI: 10.1007/978-1-4471-2155-8_11, © Springer-Verlag London Limited 2012

94 P. Bermejo et al.

has been an active area of research. This work focuses on hybrid (filter-wrapper)
deterministic sequential search. The problem of forward search is that some
attributes might be judged as relevant in a moment of the search but, once a new
attribute is added to the set of selected features, a former relevant attribute might
become non-relevant. This problem is tackled and alleviated in [2]; however, the
complexity in practice is increased from ((n) to (¢/(n'?) (and having a (/(n*) worst
case complexity). The method we propose in this work tries to detect irrelevant
selected attributes by improving the incremental search with a new smart and also
sequential backward stage. Backward search is a natural and well-known method
to explore the search space, but it might result in a very expensive process.
Thus, we provide a new criterion to search and choose features which should be
removed from the current selected subset. The obtained algorithm is compared to
several state-of-the-art sequential FSS algorithms, resulting that we obtain a better
performance in terms of number of selected attributes, while maintaining the linear
complexity of the search.

2 Incremental-Backward Wrapper Subset Selection (IWSS,)

IWSS [1, 5] is a sequential hybrid search algorithm which uses a filter measure in
order to obtain a marginal ranking of the attributes’ relevance with respect to the
class. Then, a forward best-first search is run over the ranking by incrementally
adding those variables judged as relevant (given an acceptance criteria >) to the
classification process, the relevance of new variables being measured in a wrapper
way. The IWSS, algorithm [2] is an improvement to IWSS in which at each step of
the forward search, not only the addition of a new attribute is evaluated but also to
swap it with one of the features in the current subset of selected features. The idea
is to detect conditional (in)dependencies of attributes respect to the class given the
current subset of selected attributes. This improvement increases the worst-case
complexity from linear to (/(n*). We propose the implementation of an heuristic-
driven decremental-backward Wrapper Subset Search (IWSS;) which takes the
advantages of IWSS (hybrid, linear complexity, smart acceptance criteria), while
adding a second step which starts from the reduced subset found by IWSS and then
expands the search space by removing attributes given the same acceptance
criteria of IWSS but used as removal criteria, which requires that the reduced
subset does not perform significantly worse. By removing features from the
selected subset in a smart way, we aim to discover those attributes which were
selected in the first hand but they are not relevant anymore due to some other
attribute(s) being selected afterwards. In order to obtain a canonical IWSS,
algorithm, the code shown in Fig. 1 is run over the output .¥ obtained by IWSS.

By preliminary experimentation we found more suitable for the backward step
to analyze the attributes in S in reverse-order of inclusion, that is, backward phase
first tries to remove in-S younger attributes. From the study carried out in [1] we
propose to use mf = 2 as acceptance crietrion both in the forward and backward

Enhancing Incremental Feature Subset Selection in High-Dimensional Databases 95

backwardSearch method.
In T training, ¥ classifier,. current subset, best. empty set
Out . final selected subset
1 BestPerformance=evaluate(%’,.7,T)
2 while(best. = null)
3 best.=null

4 fori=|s|-1tol //find best&youngest

5 Foux = - L]

6 AuxPerformance = evaluate(€, . %4yx, T)

7 if (AuxPerformance - BestPerformance)
8 best. = Sy

9 break

11 if best.” = null
12 BestPerformance = evaluate(%, best., T)
13 S =best.S

Fig. 1 Our heuristic-driven backward method IWSS,,

phase. That means, that a given attribute is worth to be included (to remain) in
S only if after an inner 5-cross-validation it gets better mean accuracy (does not get
worse mean accuracy) and also better accuracies (not worse accuracies) in at least
2 out of the 5 folds, in the forward and backward stages. Our contribution is then
a fully sequential rank-guided forward-backward method, which results in an
efficient algorithm with linear complexity and that outperforms compared state-
of-the-art algorithms.

3 Experiments

In order to evaluate our proposal we downloaded a corpus composed of 9 datasets
from the ASU Feature Selection Repository', ranging from 2400 to 46151 features.
The methodology of our experiments is to find out if our proposed algorithm
IWSS, outperforms other state-of-the-art feature selection algorithms: SFS [3],
IWSS and IWSS,. Results are shown in Table 1, where the last two rows show
the statistical tests results (paired one-tail Wilcoxon signed-ranks test [6]); with
confidence level o = 0.001. We first compare by accuracy; then by number of
attributes selected and finally those remaining are compared by number of eval-
uations. At each step, those algorithms found to be statistically worse than IWSS,
are crossed-out

The conclusions shown by the statistical tests are that /WSS, performs statis-
tically better in both terms of number of selected attributes than SFS, IWSS and

' http://featureselection.asu.edu

http://featureselection.asu.edu

P. Bermejo et al.

96

6'TE6TT §'S69701 S[eAT#
8L ot 9€l L'L smquV#
86°€L P9°bL PObL €9°0L foeamay

SIS,
6TE6TT 8L 0bL €0PLTTL TOL 9FL 0068TL 9€L OFPL SS69T01 LL 90L SLI9TL uedy
vL6sy TPl €88 TITESL 8SI 188 0798 I'LI 088 ITII6L €SI 9L8 798 yooyaseq
LULIEE 9€l 678 SL6Ipy SSI 8T8 068t 8SI €8 8IS I'SI TT8 68CE oewod
POSEIl 09 $6S 96IPHOI 98 0v9 OO0WEIl LTI 985 €4T9¥9 LY 859 OPEIL 111-40S- 11D
§LIT6Y 16 VP9 €6689SS ¥II 689 OISI6r TLI TT9 THOPI6r 06 68y 1S9 081-VIE-VIO
91870 €T $9L I'6LSY8 8T vI8 0€8TeT 0€ 88L 66ISEL €T L¥8 €8TTT ¢8-I'1O
L'8200C S8 90L 9FL09IT L0l €99 0€6661 6El 619 tLOSE]T T8 CES €6661 L81-NVO-INS
6618 66 9¢s TI8TI8 0PI 965 O8PLS €0T 9SS 8066ES 8 LS 6hLS 1L1-XOL
POPEOl 8% 09L L8E6L8 9L 09 0F0E0I ¥TI OSL t665PS €F 00L $0£0I dO1SMeI[I0
060001 ¥T 076 TTE88y 6€ 0v6 0000000 S¥ 06 8S66E€ +T 068 00001 dormerxd
065hT €L 00L L6199T SOl O0L 000bT TSI O0L O€EIT 6L 809 00T doryvdem
cL8vT 8L I'8L €0865T 66 008 00ThT SLI £€8 €£S600T ¥L 'Ll e do1a1ddmes
S[EAG# WV# oY S[EAT# WV# 00V S[BAF# WY# 00V S[EAG# WV# 0V SV JoseIR(

Ju SSMI JuSSMI uSSMI SdS

TOYISSE[D G0 Pue ADOT ‘SWIPLIOS[E YOIEdS 1oy10 IsureSe - thwkﬁ I dqel

Enhancing Incremental Feature Subset Selection in High-Dimensional Databases 97

IWSS, and number of evaluations. Furthermore, we can observe that our proposal
IWSS,, provides a linear complexity, way far from /WSS, and SFS.

4 Conclusions

Our proposal, IWSS,,, presents a design of the backward search which is heuristic-
driven and is run over a reduced start set. IWSS;, has been compared to three
sequential algorithms known in the literature, using the same acceptance/removal
criterion. The obtained results conclude that IWSS, behaves the same in terms of
classification rate than SFS, IWSS and IWSS,, while reducing the cardinality of
the final subset and, which is very important for high-dimensional databases,
maintaining an in-practice linear complexity for the 11 datasets used in our
experiments.

Acknowledgments This work has been partially supported by the JCCM under project
PCI08-0048-8577 and CICYT under project TIN2010-20900-C04-03.

References

1. Bermejo, P., Gamez, J., Puerta, J.: On incremental wrapper-based attribute selection:
experimental analysis of the relevance criteria. In: IPMU’08: Proceedings of the 12th
International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, Malaga (2008)

2. Bermejo, P., Gdmez, J.A., Puerta, J.M.: Incremental wrapper-based subset selection with
replacement: an advantageous alternative to sequential forward selection. In: Proceedings of
the IEEE Symposium on Computational Intelligence and Data Mining (CIDM-2009), Malaga
(2009)

3. Guyon, L, Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res.
3, 1157-1182 (2003)

4. Liu, H., Motoda, H.: Feature Extraction Construction and Selection: A Data Mining
Perspective. Kluwer Academic Publishers, Boston (1998)

5. Ruiz, R., Riquelme, J.C., Aguilar-Ruiz, J.S.: Incremental wrapper-based gene selection from
microarray data for cancer classification. Pattern Recogn. 39, 2383-2392 (2006)

6. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1, 80-83
(1945)

Memory Resident Parallel Inverted Index
Construction

Tayfun Kucukyilmaz, Ata Turk and Cevdet Aykanat

Abstract Advances in cloud computing, 64-bit architectures and huge RAMs
enable performing many search related tasks in memory.We argue that term-based
partitioned parallel inverted index construction is among such tasks, and provide
an efficient parallel framework that achieves this task. We show that by utilizing an
efficient bucketing scheme we can eliminate the need for the generation of a global
index and reduce the communication overhead without disturbing balancing
constraint. We also propose and investigate assignment schemes that can further
reduce communication overheads without disturbing balancing constraints. The
conducted experiments indicate promising results.

1 Introduction

Inverted index is the de-facto data structure used in state-of-the-art text retrieval
systems. Even though it is quite simple as a data structure, Web-scale generation of a
global inverted index is very costly [2]. Since the data to be indexed is crawled and
stored by distributed or parallel systems (due to performance and scalability
reasons), parallel index construction techniques are essential. Despite the popularity
of document-based partitioned inverted indices, term-based partitioning has
advantages that can be exploited for better query processing [4].

The following studies on index construction [3, 5, 6] extend disk-based
techniques for parallel systems. In [5, 6], authors propose a parallel disk-based
algorithm with a centralized approach to generate the global vocabulary. In [5]
authors analyze the merging phase of the inverted lists and present three algorithms.
In [3], authors start from a document partitioned collection and proposed a software-
pipelined inversion architecture.

T. Kucukyilmaz - A. Turk - C. Aykanat (D<)
Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey
e-mail: aykanat@cs.bilkent.edu.tr

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 99
DOI: 10.1007/978-1-4471-2155-8_12, © Springer-Verlag London Limited 2012

100 T. Kucukyilmaz et al.

With the advent of 64-bit architectures, huge memory spaces are available to
single machines and even very large inverted indices can fit into the total
distributed memory of a cluster of such systems, enabling memory-based index
construction. Given the current advances in network technologies and cloud
computing and the high availability of low cost memory, in-memory solutions for
parallel index construction should be considered seriously.

In this work, we propose an efficient, memory-based, parallel index construc-
tion framework for generating term-based partitioned inverted indices starting
from a document-based partitioned collection (possibly due to parallel crawling).
In this framework, we propose to mask the communication costs associated with
global vocabulary construction and communication with a term-to-bucket
assignment schema. Furthermore, we investigate several assignment heuristics for
improving both the final storage balance and the communication costs of inverted
index construction. Here, storage balance is important since it relates to query
processing loads of processors, whereas the communication cost is important since
it determines the running time of parallel inversion. Our contributions in this work
are prior to optimizations such as compression [7].

2 Parallel Inversion

Our overall parallel inversion scheme has the following phases: local inverted
index construction, term-to-processor assignment, and inverted list exchange and
merge. In this section we describe these three phases in detail.

The first task in our framework is generating local inverted indices for all
local document collections on each processor. As each processor contains a
non-overlapping portion of the whole document collection, this operation can be
achieved concurrently without communication.

After local inverted index construction phase, a term-to-processor assignment
phase has to follow. In order to achieve a term-to-processor assignment, normally
a global vocabulary has to be generated. This could be done by sending each term
string, in its word form, to a host processor, where a global vocabulary is
constructed. However in such a scheme, a particular term would be sent to the
host machine by all processors if all processors contain that specific term. Thus
we propose to group terms into a fixed number of buckets prior to the term-
to-processor assignment. Using hashing, each word in a local vocabulary is
assigned to a bucket. Afterwards, a host processor computes a bucket-to-processor
assignment and broadcasts this information to the processors.

At the end of local inversion phase, each processor has a local vocabulary and a
set of inverted lists for its terms. However, different processors may contain
different portions of an inverted list for each term. For the final term-based
partitioned inverted index to be created, the inverted list portions of each term
should be accumulated to a single processor. To this end, each term in the global
vocabulary should be assigned to a particular processor. This term-to-processor

Memory Resident Parallel Inverted Index Construction 101

assignment depicts an inverted index partitioning problem. Many different criteria
can be considered when finding a suitable index partitioning, but we focus on
balancing the storage loads of processors and minimizing the communication
overhead of the inversion process. The storage balance guarantees an evenly
distribution of the final inverted index. As the memory is assumed to be limited
throughout this work, with an even distribution of the storage loads, larger indices
can fit in the same set of processors. Storage balancing is also expected to infer
balancing on the query processing loads of the processors. Since inversion is a
highly communication-bound process, the minimization of the communication
overhead ensures that the inverted list exchange phase of the parallel inversion
process takes less time. In this work, we model the minimization of the commu-
nication overhead as the minimization of the total communication volume while
maintaining balance on communication loads of processors.

At the end of the bucket-to-processor assignment phase, all assignments are
broadcast to processors and processors exchange their partial inverted lists in an
all-to-all fashion. When sending the local inverted lists to their assigned processor,
the vocabulary should also be sent since processors do not necessarily contain all
vocabulary terms and do not know which terms will be retrieved from other
processors. Although such a communication incur additional costs, since the
processor-to-host bottleneck due to global vocabulary construction is already
avoided, this additional communication cost is easily compensated.

The inverted-list exchange between processors is achieved in two steps. In the
first step, the terms (in word form) and their posting sizes are communicated.
At the end of this step, all processors obtain their final local vocabularies and can
reserve space for their final local inverted index structures. Then the inverted lists
are exchanged. At the end of inverted list exchange, posting lists for each term are
merged and written into their reserved spaces in local inverted indices.

3 Bucket-to-Processor Assignment Schemes

In the forthcoming discussions we use the following notations: The vocabulary of
terms is indicated with 7. The posting list of each term #; € 7 is distributed among
the K processors. wy(t;) denotes the size of the posting list portion of term #; that

resides in processor p; at the beginning of the inversion, whereas w,o,(tj) =

S &, wi(t;) denotes the total posting list size of term .

We assume that prior to bucket-to-processor assignment, each processor has
built its local inverted index Z; and partitioned the vocabulary 7 = {#1,t,...,1,}
containing n terms, into a predetermined number m of buckets. The number of
buckets m is selected such that m < n and m > K. Let B=1II(T)={7,=
by, Ty=by,...,Ty=by} denote a random term-to-bucket partition, where 7;
denotes the set of terms that are assigned to bucket b;. In B, wy,(b;) denotes the
total size of the posting lists of terms that belong to b;.

102 T. Kucukyilmaz et al.

In an m-bucket and K-processor system, the bucket-to-processor assignment can
be represented via a K-way partition I1(B)={B,B,,...,B;} of the buckets
among the processors. In TI(B), wi(b;) denotes the total size of the posting list
portions of terms that belong to b; and reside in processor p; at the beginning of the
inversion. The performance of a bucket-to-processor assignment is measured in
terms of two metrics. The storage load balance and the communication cost. The
storage load S(py) of a processor p; induced by the assignment I1(B) is defined as

follows:
S(Pk) = Z Zwtor(tj)- (1)

b;€By ijh,‘

The communication cost of a processor p; induced by assignment I1(B) has two
components. Each processor must receive all portions of the buckets assigned to
itself from other processors. Thus total receive cost/volume of a processor py is:

Recv(pe) = D Y (Wiort) — wi(1))). (2)

bieBy tieb;

Each processor also sends all postings that are not assigned to it to some other
processor. The total send cost of py is:

Send(py) = Z ZWk(tj) 3)

h,QBk Iij,‘

Total communication cost of a processor is defined as the sum of its send and
receive costs.

The MCA scheme is based on the following simple observation [1]. If we
assign each bucket b; € B to processor py that has the largest wy(b;) value, we will
achieve an assignment with globally minimum total communication volume.

The BLMCA scheme incorporates a storage balance heuristic to MCA [1]. This
scheme works in an iterative manner assigning one bucket to a processor at a time.
For each bucket, first the processor that will cause the minimum total communi-
cation is determined using MCA scheme. If this processor is not the bottleneck
processor (in terms of storage load) at that iteration, the bucket is assigned to that
processor. Otherwise, the bucket is assigned to the minimally loaded processor.

In BLMCA, two cost metrics, storage load balance and communication cost are
calculated and at each iteration an assignment decision that optimizes only one
of these metrics is made. The decisions of MCA and BLMCA regarding the
communication cost minimization only optimizes the total communication cost
and ignores the maximum communication cost of a processor. In order to mini-
mize maximum communication cost, we should consider both the receive cost of
the assigned processor and the send costs of all other processors.

To this end we define the energy E of an assignment I1(B) based on the storage
loads and communication costs of processors. We define two different energy
functions for a given term-to-processor assignment I1(B):

Memory Resident Parallel Inverted Index Construction 103

E'(TI(B)) = Max{Max, < < x{ Comm(pi) }, Max << k{S(pi) } } 4)

Z Comm(pk z:(S(pk))2 (5)
1 1

Utilizing these energy functions, we propose a constructive algorithm that assigns
buckets to processors one-by-one. The energy increase in the system by K possible
assignments of each bucket are considered, and the assignment that incurs the
minimum energy increase is performed. That is, for the assignment of a bucket b;
in the given order, we select the assignment that minimizes E(II(B;_; U {b;})) —
E(I1(Bi-1), where B;_; denotes the set of already assigned buckets. We call
E'-based and E?-based assignment schemes as E'A and EA respectively in our
experiments.

4 Experiments

In order to test the performance of the proposed assignment schemes for parallel
inversion, we conducted two types of experiments. The first set of experiments are
simulations to report on the storage imbalance and communication volume
performances of the assignment schemes. The second set of experiments are actual
parallel inversion runs provided in order to show how improvements in perfor-
mance metrics relate to parallel running times. These experiments are conducted
on a PC-cluster with K = 32 nodes, where each node is an Intel Pentium IV
3.0 GHz processors with 1 GB RAM connected via an interconnection network of
100 Mb/sec fast ethernet.

We conducted our experiments on a realistic dataset obtained by crawling
educational sites across America. The raw size of the dataset is 30 GB and
contains 1,883,037 pages from 18,997 different sites. The biggest site contains
10,352 pages while average number of pages per site is 99.1. The vocabulary of
the dataset consists of 3,325,075 distinct terms. There are 787,221,668 words in
the dataset. The size of the inverted index generated from the dataset is 2.8 GB.

Tables 1 and 2 compare the storage load balancing and communication
performances of the assignment schemes for K = {4, 8, 16,32,64,128}. We also
implemented a random assignment (RA) algorithm, which assigns buckets to
processors randomly, as a baseline assignment scheme. As seen in Table 1, MCA
achieves the worst final storage imbalance. This is expected since MCA considers
only minimization of the total communication cost, disregarding storage balance
and as seen in Table 2 MCA achieves lowest average communication cost.
BLMCA algorithm on the other hand, achieves best final storage imbalance. This
is also expected since the primary objective of BLMCA is to balance the processor
loads during the assignments instead of minimizing the communication costs. As
seen in Table 2, this storage balancing performance is achieved at the expense of
higher average communication values per processor. Experiments indicate that

104 T. Kucukyilmaz et al.

Table 1 Percent load imbalance values

Initial Final
K RA MCA BLMCA E'A E?A
4 4.4 12.1 38.3 0.0 6.1 5.5
8 11.7 09.9 60.0 0.1 18.2 14.4
16 18.2 27.4 66.2 1.7 272 20.0
32 44.1 29.6 83.0 5.4 35.2 31.1
40 322 37.0 77.4 6.2 384 314
64 44.7 56.6 92.2 11.5 46.9 33.7
128 65.3 94.7 95.6 15.7 64.1 40.4

Table 2 Message volume (send + receive) per processor (in terms of x 10° postings)
RA MCA BLMCA E'A E’A

K Avg Max Avg Max Avg Max Avg Max Avg Max

4 131.19 14571 122.09 150.26 127.45 128.62 124.76 12529 131.24 131.36
8 76.55 90.58 71.45 119.75 7340 7597 72.02 7453 76.67 76.79
16 41.01 49.25 3832 77.11 3922 4344 3852 4233 41.60 41.66
32 21.19 28775 19.82 71.13 2028 26.03 1994 25.08 20.54 21.61
40 17.05 2396 1599 4479 1632 2001 16.03 1922 17.04 17.71
64 10.76 ~ 17.77 10.09 7427 1034 1542 10.15 1475 10.86 11.89
128 542 1197 5.09 6559 522 1098 5.12 10.02 6.81 7.95

Table 3 Parallel inversion times (in seconds) including assignment and inverted list exchange
times for different assignment schemes

K RA MCA BLMCA E'A E’A

4 69.19 81.34 68.63 68.67 68.49
8 51.42 66.76 46.45 46.59 45.74
16 35.89 60.82 33.04 32.90 32.48
32 19.31 49.45 18.20 17.91 17.20

E'A and E’A algorithms both achieve reasonable storage load balance that are
either close or better than the performance of RA scheme. Also as seen in Table 2,
for K values higher than 8, E?A achieves the lowest maximum communication
volumes. Table 2 also indicates that the average and maximum communication
costs induced by EA are very close, which means that E>A manages to distribute
the communication loads among processors evenly.

Table 3 shows the running times of our parallel memory-based index inversion
algorithm under different assignment schemes. In this table, it is assumed that the
local inverted indices are already created and the time for this operation is
neglected. As expected from the results presented in Table 1 and Table 2, MCA
induces the highest inversion time, RA, BLMCA, E 'A, and E?A induce similar
inversion times and the E?A scheme achieves the lowest inversion times.

Memory Resident Parallel Inverted Index Construction 105

5 Conclusions

In this paper, a memory-based parallel inverted index construction framework was
examined. An extensive step-by-step experimentation of our model was presented
and further insight were provided using theoretical results and simulations. Also,
several problems involving the creation of this framework were identified.

References

1. Aykanat, C., Cambazoglu, B.B., Findik, F., Kurc, T.: Adaptive decomposition and remapping
algorithms for object-space-parallel direct volume rendering of unstructured grids. J. Parallel
Distrib. Comput. 67, 77-99 (2007)

2. Cho, J., Garcia-Molina, H.: The evolution of the web and implications for an incremental
crawler. In: Proceedings of the 26th International Conference on VLDB (2000)

3. Melink, S., Raghavan, S., Yang, B., Garcia-Molina, H.: Building a distributed full-text index
for the web. ACM Trans. Inf. Syst. 19, 217-241 (2001)

4. Moffat, A., Webber, W., Zobel, J.: Load balancing for term-distributed parallel retrieval. In:
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 348-355 (2006)

5. Ribeiro-Neto, B., Moura, E.S., Neubert, M.S., Ziviani, N.: Efficient distributed algorithms to
build inverted files. In: Proceedings of the 22nd Annual International ACM SIGIR Conference
on Research and Development in IR, pp. 105-112 (1999)

6. Ribeiro-Neto, B.A., Kitajima, J.P., Navarro, G., Sant’Ana, C.R.G., Ziviani, N.: Parallel
generation of inverted files for distributed text collections. In: Proceedings of the 18th
International Conference of the Chilean Computer Science Society (1998)

7. Zobel, J., Moftat, A., Ramamohanarao, K.: Inverted files versus signature files for text indexing.
ACM Trans. Database Syst. 23, 453-490 (1998)

Dynamic Programming with Ant
Colony Optimization Metaheuristic
for Optimization of Distributed
Database Queries

Tansel Dokeroglu and Ahmet Cosar

Abstract In this paper, we introduce and evaluate a new query optimization
algorithm based on Dynamic Programming (DP) and Ant Colony Optimization
(ACO) metaheuristic for distributed database queries. DP algorithm is widely used
for relational query optimization, however its memory, and time requirements are
very large for the query optimization problem in a distributed database environ-
ment which is an NP-hard combinatorial problem. Our aim is to combine the
power of DP with heuristic approaches so that we can have a polynomial time
approximation algorithm based on a constructive method. DP and ACO algorithms
together provide execution plans that are very close to the best performing solu-
tions, and achieve this in polynomial time. This makes our algorithm viable for
large multi-way join queries.

Keywords Query optimization - Dynamic programming - Ant colony
Metaheuristic

1 Introduction

Research on distributed database management systems (DDBMSs) has been going
on to meet the information processing demands of geographically separated
organizations since 1970s. DDBMSs help reduce costs, increase performance
by providing parallelism and improve accessibility and reliability [1]. A major

T. Dokeroglu () - A. Cosar
Computer Engineering Department, Middle East Technical University, Ankara, Turkey
e-mail: tansel@ceng.metu.edu.tr

A. Cosar
e-mail: cosar@ceng.metu.edu.tr

E. Gelenbe et al. (eds.), Computer and Information Sciences II, 107
DOI: 10.1007/978-1-4471-2155-8_13, © Springer-Verlag London Limited 2012

108 T. Dokeroglu and A. Cosar

problem with DDBMSs is the querying of distributed data. The success of the
querying tools mostly depends on their query optimization technologies. Query
optimizers enumerate alternative plans, estimate costs, manage cost models and
choose the best plan for given queries [2]. The main component of an optimizer is
the algorithm it uses to explore the search space of a query. DP is one of the most
widely used exhaustive enumeration algorithms. IBM’s System R first used this
technique in its query optimizer [3]. Query optimization on a DDB is an NP-hard
problem [4]. Every optimizer must take into account and have a tradeoff between
CPU time and system memory spent in query optimization and the quality of
the generated plans, especially if a query plan will not be saved and thus used
only once.

We present and evaluate DP-ACO algorithm for DDB queries, where the ACO
[5] metaheuristic is combined with DP and its performance is evaluated.
A metaheuristic is a general-purpose heuristic method to guide a problem specific
heuristic towards more promising regions of the search space containing better
solutions. DP-ACO also can produce good plans, as problem size grows, whereas
DP starts suffering from the long execution times and very large memory
requirements. For small queries with up to four relations, DP-ACO can produce
plans very close to the best plans of DP. For larger queries involving more than
five relations, DP-ACO can still produce efficient plans while DP takes prohibi-
tively long execution times to come up with an optimal solution for six relations
and fails due to insufficient memory for seven relations. DP-ACO also has the
advantage that it can be easily adapted to existing query optimizers that commonly
use DP-based algorithms [2]. In Sect. 2, an overview of the related studies is
presented. Section 3 describes DP, Processing Trees (PT), and our cost model.
Section 4 describes our new algorithm DP-ACO. Section 5 presents the results of
our experiments on DP-ACO, DP, and a genetic algorithm (SGAI). Section 6 gives
our conclusions and points at future research directions.

2 Related Work

There are many algorithms proposed for query optimization in DDBMSs [6, 7].
Distributed INGRES, R*, and SSD-1 are the basic algorithms [8]. Query opti-
mization algorithms can be classified as exhaustive (EA), approximation, and
randomized (RA) algorithms. EAs always guarantee to find the best execution
plan. They search the entire problem space and find an optimal solution. The most
famous one of them is DP [3], which is still widely used in contemporary DBMSs.
A* [9] is another representative of this category. Approximation algorithms have
polynomial time and space complexity [2]. They produce sub-optimal, but prov-
ably within a range of the optimum value, execution plans in shorter times. RAs
are non-deterministic algorithms and their results cannot be predicted in advance.
The search space and time requirements of RAs can be controlled to achieve
almost constant running times and minimal memory requirements.

Dynamic Programming with Ant Colony Optimization Metaheuristic 109

A constructive algorithm called ACO-MIJQA is proposed in [10] where a set
of artificial ants build feasible query execution plans. In [11], data allocation
problem is solved with ACO-DAP. More than one hundred NP-hard problems
have been solved by using ACO algorithms so far [12]. Machine learning and
bioinformatics are some of the other areas where ACO has been applied
successfully.

3 Dynamic Programming

DP is the most famous query optimization algorithm in DBMSs [13]. DP
works in a bottom-up manner and constructs all possible sub-plans. Optimal
solution for any given sub-plan is calculated only once and is not computed
again. The algorithm first builds access plans for every relation in the query
and enumerates all two-way join plans in the second phase. All multi-way join
plans are built using access-plans and multi-way join plans as building blocks.
DP continues until it has enumerated all n-way join plans. An efficient plan can
prune another plan with the same output. DP would enumerate (A >< B) and
(B > A) as two alternative plans, but only the better of the two plans would be
kept after pruning. Execution plans are abstracted in terms of PT. The input of
the optimization problem is given as a query graph. The query graph consists
of all the relations that are to be joined as its leaf nodes. The PT is a simple
binary tree. Its leaves correspond to base relations and inner nodes correspond
to join operations. Edges indicate the flow of partial results from leaves to the
root of the tree. Each plan has an execution cost. The aim of the optimization
is to find the evaluation plan with the lowest possible cost [14]. If the inner
relation of every join is a base relation, this type of PT is called a left-deep
tree. There are n! ways to allocate n base relations to the leaves for this type of
PTs. If there is no restriction about the PT, it is called a bushy tree. In our
work we preferred to use only left-deep trees. Left-deep trees are used in most
query optimizers like the optimizer of IBM System R [3].

A total-processing-time (CPU time + I/O time) based cost model has been used
in this work. The cost of a plan is calculated in a bottom-up manner. The first level
is comprised of 2-way joins. Here, all possible pairs of n relations are evaluated for
all sites. If two relations are at the same site, the cost is only the I/O + CPU time
for performing the equijoin operation using the nested-loop join algorithm. If only
one of the relations, say A, is at the join site, total cost is accessing B from its site,
shipping it to the join site over the communication network, matching and joining
tuples of A with tuples of B, and writing the resulting joined (A,B) tuples to the
local disk. If none of the relations are stored at the join-site, total cost is scanning
both A and B, shipping them over the network, performing the join operation and
writing the result to the disk. For the upper levels of PT, intermediate join results
are treated as base tables.

110 T. Dokeroglu and A. Cosar

4 Dynamic Programming with Ant Colony Optimization

Dorigo and his colleagues proposed ACO as a method for solving hard combi-
natorial problems [12]. ACO is a metaheuristic inspired by the behavior of real
ants that cooperate through self-organization. A substance called pheromone is
deposited on the ground while ants are foraging. Pheromone trails are formed on
the ground by this way which also reduces stochastic fluctuations at the initial
phases of search. The shorter trails will be used more frequently by ants and they
gain more pheromone. By modifying appropriate pheromone values associated
with edges of the graph we can simulate pheromone laying by artificial ants.
Evaporation is another mechanism, and it is used so that artificial ants may
forget the history of previously discovered solutions and search for new direc-
tions. We simulate the actions of ants on the graph of PTs. Each process trying
to calculate the running time of execution plans is considered to be an ant in our
algorithm. Solutions represent the food. The earlier the ants reach some food, the
more pheromone they secrete on the way of solution. The more time it takes for
an ant to travel down the path, the more time it has for evaporation. Foraging
ants continuously look for better execution plans. The paths are the combina-
tional alternatives for the plans of DP at each level. If we have five sites for the
join operation of (A < B b« C), there are five different possible paths. (A >« B)
is one of the sub-queries of this plan. For five sites, we have to check the
response times of each. If we can find an optimal solution at site 2, we increase
its pheromone whereas the other solutions of (A 0< B) have their pheromones
reduced with evaporation. We also use a so called Search Space Limit (SSL)
number to help us control the time and space complexity of our algorithm. The
search space is pruned using the pheromones of each sub-plan. Without any
pruning, DP-ACO acts like DP. In our experiments we used (SSL = 1) to be able
to find solutions for large numbers of join operations. Increasing the SSL value
causes an exponential rise in time and space requirements of the algorithm.
Pheromone of each path is evaluated as in (1), where Best_Time(i) is the ith
best plan.

SSL
Pheromone_of (k) = <Z Best_Time(i) x (1/Response time(k))) (1)

Path decisions can be formulated as in (2). p*ij is the transition probability
of kth ant moving from ith sub-solution to jth sub-solution. / is an element of
the sub-solutions. These sub-solutions are ordered as in SQL statement. « and
f control the relative importance of pheromone (tij) versus the heuristic
information (#ij).

..' ﬁ..
s i -0l

= 2
Py S il pfil @)

lesubsolutions

Dynamic Programming with Ant Colony Optimization Metaheuristic 111

| site2 | Sitel | Site6 | Site3 | Site5 | Site4d |

Fig. 1 Chromosome structure for a distributed 7-way chain join

Sub-solutions for each multi-way join are calculated and pheromones are
updated depending on the cardinality of relations. The amount of pruning is
controlled by the SSL parameter.

5 Experimental Setup and Results

DP-ACO is experimentally compared with DP and a simple GA based algorithm
SGAI. Quality of plans, running times, and space complexities of optimization
algorithms are analyzed. We were able to use DP only up to 5-way join queries,
while with DP-ACO and SGA1 we were able to find solutions of up to 15-way join
queries.

In our DDB environment, each site contains exactly one relation. Network is
simulated with a complete graph topology, with no multi-hop transmissions and no
store-and-forward delays. The relations have almost the same cardinality and
referential integrity is guaranteed to be satisfied by all relations. SQL statements
are multi-way chain joins where relations are ordered and unique. We limited
our SQL statements to chain equijoin queries with a single selection predicate.
An example SQL statement that we used with 7-way join can be given as:

SELECT A.Name
FROM A, B,C,D,E,F, G
WHERE (A < B < C <1 D < E <1 F 1 G) AND G.Income > 1.500

In SGAI, we have implemented truncation method to simply eliminate indi-
viduals with the lowest fitness values in the population. Chromosomes are built by
genes that represent the sites where each join operation will be performed, as can
be seen in Fig. 1. Assuming that the execution order of joins is same as given in
the above SQL statement, A and B are joined at Site-2 to build (A > B), resulting
join and C are shipped to Site-1 to build ((A > B) < C), and so on [15]. In SGA I,
initial population size is fixed at 100. Five randomized runs have been performed
and best plans have been reported in the experimental results. To measure the
statistical confidence of SGA I, we calculated standard deviations of each plan and
validated that quality variation of all plans are within acceptable limits.

DP, SGAI, and DP-ACO all have similar results up to 3-way joins. We were not
able to run DP with more than 5-way joins as it exceeds the running time limit
when it reaches 6-way joins. Running time requirements of SGAI algorithm
increases linearly with the increasing number of joins, however it generates lower
quality plans than DP-ACO. SGAI’s generated plan quality degrades as search
space gets larger. In Fig. 2, the quality of plans produced by each algorithm is
given.

112 T. Dokeroglu and A. Cosar

| - sGA1
-=- DP
Best Execution Plans

80,0 i == DP-ACO |

70,0 ! A
. 60,0 ! o
Q 1 <)
& 50,0 _/ _
= s
1—;— 40,0 7
E 300 Y ad | /.-//
- : A =t

20,0 o J//.'ﬁ.: /_ . // W A

10,0 J’ﬁ% _: L LA

oo BT

2 3 4 5 6 7 & 9 10 11 12 13 14 15
Number of Nodes

Fig. 2 Quality of execution plans

When comparing the quality of plans we use the generated plans’ execution
times but we must also consider the optimization times for finding those plans.
DP-ACO can produce better execution plans than SGAI in less time. With the
increase in the number of sites, the quality of plans generated by SGAI decreases
compared to DP-ACO. Experiments show that DP is not a feasible algorithm
with more than 5-way joins whereas DP-ACO and SGAI can easily generate up to
15-way join execution plans.

6 Conclusions

We have presented a new algorithm for optimization of distributed database
queries, DP-ACO. This algorithm is based on DP and its capabilities have been
extended by making use of ACO metaheuristic. When there is limited time and
memory for coming up with a query execution plan, DP-ACO produces good
execution plans, quickly and using very little memory. DP-ACO is also compatible
with and can be easily adopted into the existing DP-based query optimizers. Time
and space complexity of the system can be adjusted by using SSL parameter. As
future work, we plan to implement DP-ACO algorithms to decide fragmentation
and replication choices to design DDBMSs. Comparing DP-ACO with Iterative
DP and analyzing how other exhaustive optimization algorithms behave when
implemented together with ACO are other areas of interest. Designing a DDB on
a parallel cluster machine by extending our model to include updates, replication
and fragmentation, and assigning tasks of an optimized query execution plan to
nodes of a parallel machine for parallel execution are also promising areas of
research [16].

Dynamic Programming with Ant Colony Optimization Metaheuristic 113

References

10.

11.

12.

13.

14.

15.

. Ceri, S., Pelagatti, G.: Distributed Databases: Principles and Systems. McGraw-Hill Inc.,

New York (1984)

. Kossmann, D., Stocker, K.: Iterative dynamic programming: a new class of query

optimization algorithms. ACM Trans. Database Syst. (TODS) 25(1), 43-82 (2000)

. Selinger, P.G., Astrahan, M.M., Lorie, R.A., Price, T.G.: Access path selection in a relational

database management system. In: Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pp. 23-34 (1979)

. Ibaraki, T., Kameda, T.: On the optimal nesting order for computing n-relational joins. ACM

Trans. Database Syst. 9(3), 82-502 (1984)

. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Dipartimento di

Elettronica, Politecnico di Milano, Milan (1992)

. Swami, A.: Optimization of large join queries: combining heuristics and combinational

techniques. In: Proceedings of the ACM Conference on Management of Data (SIGMOD),
pp. 367-376 (1989)

. Vance, B.: Join-order optimization with cartesian products. Ph.D. Dissertation. Oregon

Graduate Institute of Science and Technology, Beaverton (1998)

. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn, pp. 245-293.

Springer, Berlin (2011)

. Kemper, A., Moerkotte, G., Peithner, K.: A blackboard architecture for query optimization in

object bases. In: Proceedings of the Conference on Very Large Data Bases (VLDB),
pp. 543-554 (1993)

Nana, L., Yujuan, L., Yongfeng, D., Junhua, G.: Application of ant colony optimization
algorithm to multi-join query optimization. Lect. Notes Comput. Sci. 5370, 189-197 (2008)
Adl, R.K., Rankoohi, SSM.T.R.: A new ant colony optimization based algorithm for data
allocation problem in distributed databases, pp. 349-373. Springer-Verlag, New York (2009)
Dorigo, M., Birattari, M., Stiitzle, T.: Ant Colony Optimization. Technical Report 2006-023.
Université Libre de Bruxelles, Belgium (2006)

Kossmann, D.: The state of art in distributed query optimization. ACM Comput. Surv. 32,
422-469 (2000)

Swami, A., Iyer, B.: A polynomial time algorithm for optimizing join queries. In:
Proceedings of the 9th International Conference on Data Engineering, pp. 345-354 (1993)
Seving, E., Cosar, A.: An evolutionary genetic algorithm for optimization of distributed
database queries. Comput. J. 54(5), 717-725 (2011)

. Aguilar, J., Gelenbe, E.: Task assignment and transaction clustering heuristics for distributed

systems. Inf. Sci. 97(1-2), 199-219 (1997)

Part 111
Green ICT

Energy Cost Model for Frequent Item Set
Discovery in Unstructured P2P Networks

Emrah Cem, Ender Demirkaya, Ertem Esiner, Burak Ozaydin
and Oznur Ozkasap

Abstract For large scale distributed systems, designing energy efficient protocols
and services has become as significant as considering conventional performance
criteria like scalability, reliability, fault-tolerance and security. We consider fre-
quent item set discovery problem in this context. Although it has attracted
attention due to its extensive applicability in diverse areas, there is no prior work
on energy cost model for such distributed protocols. In this paper, we develop an
energy cost model for frequent item set discovery in unstructured P2P networks.
To the best of our knowledge, this is the first study that proposes an energy cost
model for a generic peer using gossip-based communication. As a case study
protocol, we use our gossip-based approach ProFID for frequent item set dis-
covery. After developing the energy cost model, we examine the effect of protocol
parameters on energy consumption using our simulation model on PeerSim and
compare push—pull method of ProFID with the well-known push-based gossiping
approach. Based on the analysis results, we reformulate the upper bound for the
peer’s energy cost.

Keywords Energy cost model - Energy efficiency - Peer-to-peer - Gossip-based -
Epidemic - Frequent items

This work was partially supported by the COST (European Cooperation in Science
and Technology) framework, under Action IC0804, and by TUBITAK (The Scientific
and Technical Research Council of Turkey) under Grant 109M761.

E. Cem - E. Esiner - B. Ozaydin - O. Ozkasap (D<)
Department of Computer Engineering, Koc University, Istanbul, Turkey
e-mail: oozkasap @ku.edu.tr

E. Demirkaya
Department of Computer Engineering, Bilkent University, Ankara, Turkey

E. Gelenbe et al. (eds.), Computer and Information Sciences I, 117
DOI: 10.1007/978-1-4471-2155-8_14, © Springer-Verlag London Limited 2012

118 E. Cem et al.

1 Introduction

Frequent items in a distributed environment can be defined as items with global
frequency above a threshold value, where global frequency of an item refers to the
sum of its local values on all peers. Frequent Item Set Discovery (FID) problem
has attracted significant attention due its extensive applicability in diverse areas
such as P2P networks, database applications, data streams, wireless sensor net-
works, and security applications.

In this study, we propose and develop an energy cost model for a generic peer
using gossip-based communication for FID. Gossip-based or epidemic mecha-
nisms are preferred in several distributed protocols [1, 2] for their ease of
deployment, simplicity, robustness against failures, and limited resource usage.
In terms of their power usage, the efficiency of three models of epidemic protocols,
namely basic epidemics, neighborhood epidemics and hierarchical epidemics, has
been examined in [3]. Basic epidemics that requires full membership knowledge of
peers was found to be inefficient in its power usage. It has been shown that;
in neighborhood epidemics, peer’s power consumption amount is independent of
population size. For hierarchical epidemics, power usage increases with population
size. In fact, [3] is the only study that considers power awareness features of
epidemic protocols. However, it evaluates different epidemics through simulations
only and provides results on latency and power (proportional to the gossip rate).
Moreover, effects of gossip parameters such as fan-out and maximum gossip
message size were not investigated. In contrast, our study is the first one that
proposes an energy cost model for a generic peer using gossip-based communi-
cation like in ProFID protocol, and examines the effect of protocol parameters to
characterize energy consumption. As a case study protocol, we use our gossip-
based approach ProFID for frequent item set discovery [4]. It uses a novel atomic
pairwise averaging for computing average global frequencies of items and network
size, and employs a convergence rule and threshold mechanism. Due to the page
limitation, we refer interested reader to [4] for details of the protocol.

This paper is organized as follows. Section 2 develops energy cost model for a
gossip-based peer used in our protocol. Section 3 analyzes the effect of protocol
parameters, compares push—pull method of ProFID with the well-known push-
based gossiping that we adapted to frequent item set discovery, and reformulates
the peer’s energy cost. Finally, Sect. 4 states conclusions and future directions.

2 Energy Cost Model

ProFID protocol depends on three main components of operations performed by
each peer: energy consumed while (1) computing new state, (2) sending messages
and (3) receiving messages. Inspired by studies [5, 6], we propose an energy cost
model for a generic peer using gossip-based communication in ProFID. In study [6],

Energy Cost Model for Frequent Item Set Discovery 119

energy cost models for client—server and publish—subscribe styles were developed.
Then, application and platform specific model parameters were also taken into
consideration and energy prediction model was developed. Work of [5] introduces a
quorum-based model to compute energy costs of read and write operations in rep-
lication protocols, and proposes an approach to reduce the energy cost of tree
replication protocol. Different than these prior works, we develop energy cost model
for a peer using gossip-based communication and consider the effects of gossip
parameters on the cost representation.

We start with the analysis of the energy consumption during an atomic pairwise
averaging operation between peers P; and P; Different operations consuming
energy are explained in Table 1. During an atomic pairwise averaging, energy cost
of a peer that initiates a gossip (gossip starter) is represented by:

EgossipSmrter = Esena + Ereceive + ECompStarter (1)

On the other hand, energy cost of the gossip target can be formulated as follows:
EgosxipTarget = Ereceive + Esend + EcompTarget (2)

Note that Ecopprarger and Ecompsiarier are both proportional to the gossip message
size, and they can simply be represented as E.,,,. Hence, E;; (the energy con-
sumption of a peer P; during an atomic pairwise averaging with P;) can be written
as:

Ei.j = Lisend j + Erec‘eive.j + Ecomp +C (3)

where E,;; is the energy consumed while sending a gossip message to
Pj, Ereceivej 18 the energy consumed while receiving a gossip message from
P;, and E,,, is the local computation of the peer. Note that this is the energy cost
of a peer that performs an atomic pairwise averaging operation. In real network
scenarios, energy consumption may include extra factors such as CPU’s energy
consumption during I/O. Hence, a constant C is added to the equation.
To represent the energy cost of a gossip-based peer during an atomic pairwise
averaging operation, the formula was given with respect to the basic conditions
(gossip to one neighbor, one round, one item). Step by step, we now extend this
cost model of a peer for the ProFID protocol. A peer may initiate multiple gossip
operations during a single round depending on the fanout value as well as it may
become gossip target multiple times. The energy cost of P; that gossips a single
item tuple in a round can be formulated as:

Ep,(single round, single item) = Z Ei 4)

jEVow

where V is the set of neighbors chosen by P; as gossip targets, and W is the set of
neighbors that initiates an atomic pairwise averaging with P;. Note that the number
of elements in V corresponds to the fanout value.

120 E. Cem et al.

Table 1 Different operations that consume energy

Value Description

Eona Energy required to send the item tuple

Ereer Energy required to receive the item tuple

E compStarter Energy required to choose tuple to send and update the state

E compTarget Energy required to compute the average and prepare the tuple to send

In general, a gossip message comprises multiple item tuples whose number is
upper-bounded by maximum message size (mms) parameter. Since Eg,pq; and Ereceive,j
are the energies consumed while sending and receiving a single tuple respectively,
total energy consumed during a gossip round would linearly increase with the mms.
Hence, energy cost of P; in a round can be expressed as:

Ep,(single round) < mms - Z E;j (5)
JEVOW

Since a peer repeats those operations in every round, number of rounds R would
increase the energy cost of a peer proportionally. Hence, the overall energy cost of
P; can be written as:

EP,SR-mms- Z E,’J (6)
jevuw

3 Analysis and Results

We have developed a simulation model for ProFID protocol [7] on PeerSim
simulator [8] and analyzed the effects of protocol parameters on the energy con-
sumption. As presented in Eq. 6, energy cost of a peer is proportional to the
convergence time, that is the number of rounds R. In this section, we analyze the
effects of protocol parameters on R, compare push—pull based method of ProFID
with the well-known push-based gossiping, evaluate the effects of convergence
parameters on frequency error (i.e. the percentage of items which were identified
as frequent though they are actually not) and reformulate the upper bound of the
overall energy cost of a peer in terms of protocol parameters.

We performed our evaluations through extensive large-scale distributed sce-
narios (up to 30,000 peers) on PeerSim. We tested different topologies such as
random topology and scale-free Barabasi—Albert topology with average degree 10.
All the data points presented in graphs are the average of 50 experiments. The
default values of parameters used in the experiments are given in Table 2.

Convergence Parameters (convLimit, ¢): Convergence parameters are used
for self-termination of peers and they have direct effects on R. Figure la shows
that R is inversely proportional to loge. This is because convCounter will be

Energy Cost Model for Frequent Item Set Discovery 121

Table 2 Default parameter values

Parameter Value Parameter Value Parameter Value
N 1000 M (number of items) 100 convLimit 10
€ 10 mms 100 fanout 1

30 250

28 100

26 80

¢/loge + k c-convLimit +k

24 60

¢/ fanout+k

22 20 _a’

20

20

18 0

0 10 20 30 40 50 60 0 10 20 30 40 50 0 5 10 15
e(%) convLimit fanout
(a) (b) (c)

Fig. 1 Effects of a ¢ on R, b convLimit on R, ¢ fanout on R

incremented with less chance and it will take longer time to reach convLimit.
However, R is directly proportional to convLimit as depicted in Fig. 1b, and this is
because convCounter needs to be incremented more to take convergence decision.

Fanout: Intuitively, increasing fanout will cause to consume more energy in a
single round. On the other hand, algorithm will converge faster since a peer
exchanges its state with more peers in a single round. Figure 1c depicts that fanout
has an inverse proportion with R. Note also that fanout has a direct proportion with
the upper bound given in Eq. 6 since fanout is the cardinality of set V.

Gossip message size: Parameter mms is the upper bound for a gossip message
size in terms of number of (item,frequency) tuples. Large mms means more state
information is sent in a single gossip message. On one hand, this causes faster
convergence, but on the other hand, the energy consumption of sending a single
gossip message increases. Results in Fig. 2a verify that mms is inversely propor-
tional to R. Note also that mms is directly related with the energy cost of a peer in a
single round, and these cancel each other in our cost formulation. Recal