
189K. Miller (ed.), Biomechanics of the Brain, Biological and Medical Physics,
Biomedical Engineering, DOI 10.1007/978-1-4419-9997-9_9,
© Springer Science+Business Media, LLC 2011

9.1 � Introduction

Modeling of the brain responses due to injury-causing transients and surgery is a
problem of continuum mechanics that involves irregular geometry, complex loading
and boundary conditions, non-linear materials, and large deformations (see Chaps.
5 and 6). Finding a solution for such a problem requires computational algorithms of
non-linear continuum mechanics.

As stated in Chap. 5, modeling for brain injury simulation has been driven by the
idea that numerical surrogates of the human brain can be used in the design of coun-
termeasures mitigating the traumatic brain injury. Such modeling has been done with
significant contribution and involvement of the automotive manufacturers [1] and
participation of organizations responsible for traffic safety (e.g. National Highway
Traffic Safety Administration NHTSA) [2]. Because of these industrial links, model-
ing of the brain for injury simulation has been dominated by the explicit dynamics
(i.e. utilizing explicit integration in time domain) non-linear finite element algorithms
available in commercial finite element codes, such as LS-DYNA [3], PAM-SAFE
[4], RADIOSS [5], that are routinely used by the automotive industry.

In computational biomechanics for medicine, on the other hand, significant
research effort has been directed into the development of specialized algorithms that
can provide the results within the real-time constraints of surgery. For instance,
great interest was given to mass-spring method [6, 7] in which the analyzed
continuum is modeled as a discrete system of nodes (where the mass is concen-
trated) and springs. Due to its simplicity and low computational complexity, this
method was applied in simulation software for virtual reality training systems for

A. Wittek (*)
Intelligent Systems for Medicine Laboratory, School of Mechanical
and Chemical Engineering, The University of Western Australia,
35 Stirling Highway, Crawley, WA 6009, Australia
e-mail: adwit@mech.uwa.edu.au

Chapter 9
Algorithms for Computational
Biomechanics of the Brain

A. Wittek, G. Joldes, and K. Miller

190 A. Wittek et al.

minimally invasive surgery [8]. However, the behavior of the mass-spring models
strongly depends on the topology of the spring network and spring parameters are
difficult to identify and express in terms of the soft tissue constitutive parameters
(such as Young’s modulus and Poisson’s ratio) that are used in continuum mechanics
[9]. Therefore, in recent years, more interest has been given to the finite element
method [10] that utilizes the principles of continuum mechanics and does not suffer
from the limitations of the mass-spring method.

Traditionally, real-time computations for biomechanics for medicine relied on lin-
ear finite element algorithms that assume infinitesimally small deformations [9, 11–14].
However, this assumption is not satisfied in surgical procedures where large deforma-
tions of the organ undergoing surgery occur. Examples include the brain deformations
due to craniotomy (referred to in the literature as brain shift [15]) (see Fig. 6.1 in
Chap. 6) and needle insertion (Fig. 9.1 above). Therefore, we focus on the algorithms
that utilize fully non-linear (i.e. accounting for finite deformations and non-linear
stress–strain relationships of soft tissues) formulation of solid mechanics that can be
applied to any situation. In such a formulation, the current volume and surface of the
modeled body organ (over which the integration of equations of continuum mechanics
is to be conducted) are unknown. They are part of the solution rather than input data
(Fig. 9.2). The literature indicates that taking into account geometric non-linearity
(through finite deformation formulation of the equations of continuum mechanics) is
needed to ensure accuracy of prediction of soft organ deformations even for applica-
tions that do not involve very large strains (e.g. brain shift) [16, 17].

In the subsequent sections of this chapter, we discuss the following topics:

Section •	 9.2: Non-linear explicit dynamics finite element algorithms implemented in
commercial finite element codes applied to modeling brain injury biomechanics.
Section •	 9.3: A specialized non-linear finite element algorithm for surgery
simulation that utilizes explicit integration in time domain and Total Lagrangian
incremental formulation of continuum mechanics.
Section •	 9.4: A specialized non-linear finite element algorithm that utilizes Dynamic
Relaxation and Total Lagrangian formulation for computation of steady-state brain
deformation within the real-time constraints of image-guided neurosurgery.

Fig. 9.1  Swine brain deformation during needle insertion. (a) Before insertion; (b) during the
insertion (note the deformation in the insertion area); (c) during the needle removal. The experi-
ments were conducted at the laboratory of the Surgical Assist Technology Group, Group, Institute
for Human Science and Biomedical Engineering, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba, Ibaraki, Japan. For the experiment description, see [31]

1919  Algorithms for Computational Biomechanics of the Brain

Section •	 9.5: Element formulation for the specialized algorithms for surgery sim-
ulation and neurosurgery modeling. This includes non-locking tetrahedral ele-
ment and efficient hourglass control for hexahedral element.
Section •	 9.6: An efficient sliding contact algorithm for modeling of brain–skull
interaction for image-guided neurosurgery.
Section •	 9.7: Meshless algorithms that utilize a computational grid in the form of
a cloud of points as one possible remedy for the limitations of finite element
algorithms (including time-consuming generation of patient-specific computa-
tion grids as well as deterioration of the computation accuracy and instability due
to very large strains induced by surgery).
Section •	 9.8: Implementation of the specialized non-linear finite element algo-
rithms for neurosurgery modeling on graphics processing units (GPUs) for real-
time solution of the brain models for computer-assisted neurosurgery.
Section •	 9.9: Algorithm verification.

9.2 � Algorithms for Injury Simulation

Impact/injury biomechanics of the brain deals with events of very short duration
(hundreds of milliseconds) in which the head is subjected to transient loading due
to either direct impact or rapid acceleration that results in large deformation (or even

Fig. 9.2  Computational biomechanics as a non-linear problem of continuum mechanics. During
impact and surgery, human body organs undergo large displacements (composed of rigid body
motions and local deformations). Consequently, the equations of continuum mechanics governing
the organ behavior need to be integrated over the current surface s and volume v

192 A. Wittek et al.

mechanical damage) of the brain tissue. As indicated in [10, 18, 19], non-linear
finite element procedures with explicit integration in time domain outperform other
algorithms in modeling of three-dimensional continua in such events. Therefore,
they have been a preferable choice in brain injury biomechanics (see also Chap. 5)
and implemented in numerous finite elements codes (such as e.g. LS-DYNA, PAM-
CRASH, ABAQUS, RADIOSS) industrially applied in impact injury simulation.

In impact injury simulation and other transient dynamics problems, the global
system of finite element equations to be solved at each time step is:

	 + + + ++ = 1 1 1 1()· ,n n n nMu K u u R 	 (9.1)

where u is a vector of nodal displacements, M is a mass matrix, K is a stiffness
matrix non-linearly dependent on the deformation (because of the non-linear mate-
rial model), and R is a vector of nodal (active) forces. The product of the stiffness
matrix and nodal displacements vector gives the nodal reaction forces vector F. In
explicit dynamics finite element procedures, the accelerations determined from
equation of motion (9.1) are integrated to calculate the displacements using differ-
ence methods. Although many difference methods exist [10], the central difference
method is the most commonly used due to its efficiency [10, 18]:

	

2
1 1 1

1
,

2n n n n n nu u t u t u+ + += + ∆ + ∆  	 (9.2)

	
1 1 1

1
().

2n n n n nu u t u u+ + += + ∆ +    	 (9.3)

Combining the central difference method given by (9.2) to (9.3) with the global
system of finite element (9.1) yields the following formula for the vector of nodal
displacements u

n+1
 at integration step n + 1:

	

2 ()
1 1(2).i

n n n n n
i

t+ −
 

= ∆ − − −  ∑Mu R F M u u
	

(9.4)

Formally (9.4) represents a system of equations. This system can be decoupled
by using a lumped mass matrix M. For lumped mass matrices, all non-diagonal
components equal zero (i.e. the mass distribution is discretized by placing the par-
ticle masses at the nodes of an element). For such matrices, (9.4) becomes an explicit
formula for the unknown nodal displacements u

n+1
:

	

2 ()
1 1/ (2),j j i j j j

n n n jj n n
i

t m+ −
 = ∆ − − − 
 

∑u R F u u
	

(9.5)

where 1
j
n+u is a vector of nodal displacements at node j at intergation step n + 1, m

jj

is the component of the lumped mass matrix corresponding to node j (i.e. mass
lumped to node j), j

nR is the vector of external forces applied to node j, ()i j
ni∑ F is

1939  Algorithms for Computational Biomechanics of the Brain

the vector of nodal reaction forces at node j (sum of the contribution of the elements
i to which the node belongs), and Dt is the integration step.

In (9.5), the computations are done at element level eliminating the need for
assembling the stiffness matrix of the entire analyzed continuum. The mechanical
properties of the analyzed continuum are accounted for in the constitutive model and
included in the calculation of nodal reaction forces F. Thus, computational cost of
each time step and internal memory requirements are very low. It is worth noting that
there is no need for iterations anywhere in the algorithm summarized in (9.5), even
for non-linear problems. This implies the following advantages of non-linear finite
element procedures utilizing explicit integration in time domain and mass lumping:

Straightforward treatment of non-linearities•	
No iterations required for a time step•	
No need to solve a system of equations•	
Low computational cost for each time step•	
Low internal memory requirements•	

However, explicit methods are only conditionally stable. A restriction (Courant
criterion [20]) on the time step size has to be included in order to obtain stable simu-
lation results. The time step (referred to as a critical time step) that ensures the
computation stability is equal to the smallest characteristic length of an element in
the mesh divided by the dilatational (acoustic) wave speed [18, 20, 21]:

	
∆ ≤ e ,

L
t

c 	
(9.6)

where L
e
 is the smallest characteristic element length in the model and c is the dila-

tational (acoustic) wave speed. The formulae for calculating L
e
 for various com-

monly used elements are given in [22].
Equation (9.6) is equivalent to setting the condition that the time step cannot be

longer than the travel time of the wave across the smallest element in the mesh [18].
Based on [22], the acoustic wave speed can be expressed as

	

(1)
,

(1)(1 2)

E
c

−
=

+ −
ν

ν νr 	
(9.7)

where E is the Young’s modulus, r is the density, and n is the Poisson’s ratio.
It should be noted that the stability limit given in (9.6) has been derived for linear

problems. However, according to [18], there is considerable empirical evidence that
it is also valid for non-linear problems.

Equations (9.6) and (9.7) imply that the critical time step can be increased by
increasing the density (and hence the mass) of the smallest elements (as determined
by the characteristic length L

e
) in the mesh. This process is referred to as mass scal-

ing [3, 23]. Moderate mass scaling does not significantly change the responses of
the analyzed continuum and is regarded as a powerful method for decreasing the

194 A. Wittek et al.

computation time [24]. However, it is also acknowledged that too severe scaling can
introduce non-physical inertia effects [24]. Formal guidelines for determining
permissible mass scaling limits for injury simulation have not yet been formulated
and the quantitative information about the scaling that is used is rarely provided in
the biomechanical literature. Majumder et al. [25] reported a significant reduction
in computation time for scaling resulting in the total model mass increase as low as
0.016%. ABAQUS finite element solver manual [26] recommends that, after applying
mass scaling, the kinetic energy of the system should not exceed 5% of the total
energy over most of the analysis.

Stress calculation for obtaining the nodal forces F is the major computation cost
of the explicit dynamic finite element procedures summarized in (9.4) and (9.5).
This implies that the complexity of the elements and the number of integration
points per element are the key factors determining the number of computations in
these procedures. Therefore, as mentioned in Chap. 5, in injury simulation utilizing
non-linear finite element procedures with explicit integration in time domain,
8-noded hexahedron [27, 28] and 4-noded tetrahedron [27, 28] with linear shape
functions and one integration (Gauss) point are the most commonly used elements.

The 8-noded hexahedron with one integration point is an under-integrated ele-
ment (or low-order Gauss quadrature element), i.e. an element for which the stiffness
matrix rank is lower than the number of element’s degrees of freedom minus the
number of rigid body modes [29]. Under-integrated elements exhibit an instability
known as hourglassing or zero-energy modes, i.e. there are nodal displacement vec-
tors which produce no strain energy, but do not define a rigid body motion [27, 29].

The 4-noded tetrahedral elements with linear shape functions and one Gauss point
do not suffer from hourglassing. However, for incompressible (or nearly incompress-
ible) continua, such as soft tissues, 4-noded tetrahedral elements exhibit artificial stiff-
ening known as volumetric locking [20, 30]. A more detailed discussion on algorithms
for hourglass control and volumetric locking reduction is provided in Sect. 9.3.

9.3 � Algorithms for Surgery Simulation

As discussed in Chap. 6, surgical simulation systems are required to provide visual
and haptic feedback to a surgeon or trainee. Such systems must provide a time accurate
prediction of the deformation field within an organ and interaction force between
the surgical tool and the tissue at frequencies of at least 500 Hz. From the perspective
of continuum mechanics, such prediction requires solving the problem involving
large deformations, non-linear constitutive properties and non-linear boundary
conditions within the very strict time constraints of haptic feedback.

For relatively slow varying loads, such as those that occur due to interactions
between tissue and surgical tool, non-linear finite element algorithms utilizing implicit
integration in time domain are traditionally recommended in the literature for solving
non-linear problems of solid mechanics [10]. Such procedures rely on solving systems
of algebraic equations and require computationally expensive iterations. In contrast,
the algorithms for injury simulation lead to an explicit formula for unknown nodal

1959  Algorithms for Computational Biomechanics of the Brain

displacements (9.5). For such algorithms, the number of operations per integration step
is typically three orders of magnitude smaller than for the ones relying on implicit
integration [18]. Despite the fact that surgical simulations involve phenomena with
durations that are orders of magnitude longer than those that are of interest in injury
simulation, the restrictions on the time step size (Courant criterion) required for solu-
tion stability (9.6) do not compromise efficiency of explicit time integration in such
simulations. This is because the acoustic wave speed is proportional to the square root
of the analyzed continuum Young’s modulus (9.7) which is very low (under 104 Pa) for
brain tissue. For instance, in the simulation of needle insertion into brain conducted
using non-linear explicit dynamics finite element procedures reported in [31], the time
step was over 1.5 × 10−2 ms. In contrast, typical engineering applications, such as metal
forming, use integration steps that are of an order of 10−5 ms [32].

In commercial finite element codes utilizing explicit time integration, the calcu-
lated variables (such as displacement, strain and stress) are incremented by referring
them to the current configuration of the analyzed continuum. This method is known
as the Updated Lagrangian formulation [10]. However, for surgical simulation, we
advocate the Total Lagrangian (TL) formulation of the finite element method in
which all variables are referred to the original configuration of the system [33]. The
decisive advantage of this formulation is that all derivatives with respect to spatial
coordinates are calculated with respect to the original configuration and therefore
can be pre-computed as shown in the flowchart of the Total Lagrange Explicit
Dynamics (TLED) algorithm presented in Fig. 9.3 (a detailed description of the
algorithm is given in [33]).

Following the approach typically applied in explicit dynamics finite element
analysis, for computational efficiency of our TLED algorithm we used single point
integration for all elements of the mesh (improved linear tetrahedrons [34] and
under-integrated linear hexahedrons). Therefore, the nodal forces for each element
are computed as:

	 =0 int 0 0 0 0· · · ,t t t VF X S B 	 (9.8)

where, according to the notation used in [10], the left superscript represents the cur-
rent time, the left subscript represents the time of the reference configuration, F

int
 is

the matrix of nodal forces, B
0
 is the matrix of shape function derivatives, S is the

second-Piola Kirchoff stress matrix, X is the deformation gradient and V
0
 is the

initial volume. In (9.8), the matrix of shape function derivatives B
0
 and the initial

volume V
0
 are constant and therefore can be pre-computed (see Fig. 9.3).

The main benefits of the TLED algorithm in comparison to the explicit dynamics
algorithms using Updated Lagrangian formulation are:

Allows pre-computing of many variables involved (e.g. derivatives with respect •	
to spatial coordinates), Fig. 9.3
No accumulation of errors – increased stability for quasi-static solutions•	
Second-Piola Kirchoff stress and Green strain are used – appropriate for handling •	
geometric non-linearities
Easy implementation of the material law for hyperelastic materials using the •	
deformation gradient

196 A. Wittek et al.

The fact that many quantities involved in the computation of nodal forces can be
pre-computed leads to a significant decrease in the computational effort. For instance,
the TLED algorithm using eight-noded hexahedral under-integrated elements
requires approximately 35% fewer floating-point operations per element, per time
step than the Updated Lagrangian explicit algorithm using the same elements [33].

9.4 � Algorithms for Neurosurgery Modeling

As explained in Chap. 6, accurate warping of high-quality pre-operative radio-
graphic images to the intra-operative (i.e. deformed) brain configuration in a process
known as non-rigid registration is a key element of image-guided neurosurgery. In
order to perform such warping, only the final (deformed during surgery) state of the
brain needs to be predicted. This requires algorithms for determining steady-state
solution for the brain deformations. The deformations at the steady-state must be
obtained within the real-time constraints of image-guided neurosurgery, which
practically means that the results should be available in 40–80 s.

As stated in Chap. 6, neuroimage registration is a non-linear problem of compu-
tational mechanics as it involves large deformations, non-linear material properties
and non-linear boundary conditions. However, it is a less demanding problem than
surgery simulation as only the steady-state solution for deformations is of interest,

Fig. 9.3  Flowchart of the total lagrange explicit dynamics (TLED) finite element algorithm for
surgery simulation. Detailed description of the algorithm is given in [33]

1979  Algorithms for Computational Biomechanics of the Brain

i.e. the time history of forces and deformations does not have to be obtained.
Therefore, for image registration, we advocate Dynamic Relaxation (DR), which is
an explicit iterative algorithm that relies on the introduction of an artificial mass-
dependent damping term in the equation of motion. The damping attenuates the
oscillations in the transient response, increasing the convergence towards the steady-
state solution. Because of DR’s explicit nature, there is no need for solving large
systems of equations. All quantities can be treated as vectors, reducing the imple-
mentation complexity and the memory requirements. Although the number of itera-
tions to obtain convergence can be quite large, the computation cost of each iteration
is very low, making it a very efficient solution method for non-linear problems.

9.4.1 � Dynamic Relaxation Algorithm

The basic Dynamic Relaxation (DR) algorithm is presented in [35]. The main idea
is to include a mass-proportional damping in the equation of motion (9.1) (see
Sect. 9.2), which will increase the convergence speed towards the steady-state. The
obtained damped equation is then solved using the central difference method
(explicit integration). After the inclusion of mass-proportional damping, the equa-
tion of motion (9.1) becomes

	 + + = · () ,cMu Mu F u R 	 (9.9)

where c is the damping coefficient.
By applying the central difference integration method to the damped equation of

motion (9.9), the equation that describes the iterations in terms of displacements
becomes:

	
−

+ −= + − + −1
1 1() (),n n n nu u u u M R Fb a 	 (9.10)

	 22 /(2), (2)/(2)h ch ch ch= + = − +a b 	 (9.11)

where h is a fixed time increment.
The iterative method defined by (9.10) is explicit as long as the mass matrix is

diagonal. As the mass matrix does not influence the deformed state solution, a
lumped mass matrix can be used that maximizes the convergence of the method.

In [35], the convergence of the DR algorithm is studied for linear structural
mechanics equations, when the nodal forces can be written as

	 =() · ,F u K u 	 (9.12)

with K being the stiffness matrix.
We extend this study to the non-linear case. We propose to use the linearization

of the nodal forces obtained by expanding them in a Taylor series and keeping the
first two terms:

	 = + −() () · (),n k k n kF u F u K u u 	 (9.13)

198 A. Wittek et al.

where u
k
 is a point close to u

n
 and K

k
 is the tangent stiffness matrix evaluated at

point u
k
.

By substituting F from (9.13) into (9.10), we obtain the equation that advances
to a new iteration for a non-linear problem as:

	 1 1()n n n n n+ −= + − + −u u u u b Aub a a 	 (9.14)

with

	
1 1(()), .k k k k

− −= − + =b M R F u K u A M K 	 (9.15)

It is worth noting that (even if (9.14) has the same form as in the linear case) the
point u

k
 is not fixed during the iteration process (as it must be close to u

n
 in order for

the Taylor series expansion to be accurate). Therefore, the tangent stiffness matrix
(and matrix A) changes.

The error after the nth iteration is defined as:

	 = − *,n ne u u 	 (9.16)

where u* is the solution. Substituting (9.16) in (9.14) gives the error equation (valid
only close to the solution):

	 1 1()n n n n n+ −= − + −e e Ae e ea b 	 (9.17)

and by assuming that

	 + =1 ·n ne ek 	 (9.18)

the following relation is obtained for computing the eigenvalues k of matrix k:

	 − + − + =2 (1) 0,Ak b a k b 	 (9.19)

where A denotes any eigenvalue of matrix A.
The fastest convergence is obtained for the smallest possible spectral radius

r = |k|. The optimum convergence condition is obtained when:

	

* * 1/2 0

m

| | 1 2 ,
A

A
= = ≈ −r k b

	
(9.20)

	 m max2/ 2/ ,h A≈ = w 	 (9.21)

	 0 02 2 ,c A≈ = w 	 (9.22)

where A
0
 and A

m
 are the minimum and maximum eigenvalues of matrix A and there-

fore w
0
 and w

max
 are the lowest and highest circular frequencies of the un-damped

equation of motion [35].
The effect of eigenvalue estimation accuracy on the convergence of the

method is presented in [36]. To ensure convergence, it is critical that the maximum

1999  Algorithms for Computational Biomechanics of the Brain

eigenvalue A
m
 is over-estimated, even if this will lead to a decreased convergence

speed. If, at the same time, the minimum eigenvalue A
0
 is under-estimated, then

uniform convergence will be obtained for all eigenvalues, with a further decrease
in convergence speed. If A

0
 is over-estimated then it is possible to increase the

convergence speed for all eigenvalues except a very narrow range of small
eigenvalues.

9.4.1.1 � Dynamic Relaxation Algorithm: Maximum Eigenvalue
Am and Mass Matrix

Using the Rayleigh quotient, it has been demonstrated that the maximum eigenvalue
of an assembled finite element mesh is bounded by the maximum eigenvalue of any
of the elements in the mesh [10]:

	 ≤m maxmax().eA λ 	 (9.23)

Therefore, an estimation of the maximum eigenvalue can be obtained by estimat-
ing the maximum eigenvalue of each element in the mesh. Such estimations for
different element types are presented in [37].

In the case of a non-linear problem, the maximum eigenvalue changes during the
simulation as the geometry of the elements changes and therefore it must be esti-
mated after every iteration step.

Because the mass matrix has no influence on the steady-state (as the time
derivatives in (9.9) become zero), a fictitious mass matrix that improves the
convergence rate can be used. The mass matrix can be chosen such that it
reduces the condition number of matrix A, leading to a decrease in the spectral
radius r (see (9.20)).

In order to reduce the condition number, we propose to align the maximum
eigenvalue of all elements in the mesh to the same value by changing the density of
each element. By doing this, we can still use (9.23) for estimating the maximum
eigenvalue, and the condition number is at least preserved and generally decreased,
as shown in [35]. This process guarantees that the selected maximum eigenvalue A

m

is an over-estimation of the actual maximum eigenvalue during the simulation,
therefore ensuring the convergence.

9.4.1.2 � Dynamic Relaxation Algorithm: Estimation
of the Minimum Eigenvalue A0

Estimating the minimum eigenvalue is difficult, especially for non-linear problems,
where an adaptive procedure should be used in order to obtain the optimum conver-
gence parameters. An overview of the procedures proposed by different authors in
the context of DR (including an adaptive one) is presented in [35].

200 A. Wittek et al.

The adaptive method proposed in [35] is based on Rayleigh’s quotient and the
use of a local diagonal stiffness matrix. The elements of this matrix are computed
using finite differences, which can be very difficult to do for degrees of freedom
which have small displacement variation.

In this section, we propose a new adaptive method for computing the minimum
eigenvalue, which is also based on Rayleigh’s quotient, but does not have the short-
comings of the method proposed in [35].

We consider a change of variable:

	 = − ,n n kz u u 	 (9.24)

where u
k
 is the point used for linearization of the nodal forces in (9.13). The lin-

earised nodal forces can therefore be expressed as:

	 = +() () · .n k k nF u F u K z 	 (9.25)

After replacing (9.24) and (9.25) in (9.1), the linearized equation of motion
becomes:

	 + = −· · ().k kM z K z R F u 	 (9.26)

We can now rely on (9.26) to estimate A
0
 using Rayleigh’s quotient and the cur-

rent value of the displacements:

	
≤

T

0 T

()
.

()
n k n

n n

A
z K z

z Mz 	
(9.27)

We consider the right-hand side of (9.27) as an estimate of the minimum eigen-
value. Using (9.24) and (9.25), this estimate becomes:

	

T

0 T

() (() ())
,

() ()
n k n k

n k n k

A
− −

≈
− −

u u F u F u

u u M u u 	
(9.28)

where u
k
 is a fixed point that must be close to u

n
. We choose the solution from a

previous iteration as the fixed point u
k
 and update it after a number of steps in order

to keep it close to the current solution u
n
. No additional information (such as esti-

mates of the stiffness matrix) is required and only vector operations are performed
(as M is a diagonal lumped mass matrix).

During the iterative dynamic relaxation DR procedure, the high frequencies are
damped out and the system will eventually oscillate on its lowest frequency.
Therefore, (9.28) will converge towards the minimum eigenvalue. This estimation
process, combined with our parameter selection process, leads to an increased con-
vergence rate, because it always offers an over-estimation of the minimum eigen-
value. The higher the over-estimation of the minimum eigenvalue, the higher the
reduction of the high frequency vibrations (see [36]), and therefore (9.28) will con-
verge faster towards the real minimum eigenvalue.

2019  Algorithms for Computational Biomechanics of the Brain

9.4.1.3 � Dynamic Relaxation Algorithm: Termination Criteria

One very important aspect of any finite element (FE) algorithm is the termination
criterion used. If the criterion is too coarse, then the solution might be too inaccurate
and if the criterion is too tight, then time is lost for unnecessary computations.

The criteria used by commercial FE software are usually based on residual forces,
displacements or energy. None of these criteria gives any information about the absolute
error in the solution and selecting any of these termination criteria is very difficult.

We propose a new termination criterion that gives information about the absolute
error in the solution, particularly suited for our solution method. Because DR itera-
tions lead to a strong reduction of the high frequencies, the displacement vector will
oscillate around the solution vector with a frequency that converges towards the
smallest oscillation frequency. This implies that the error vector e will converge
toward the eigenvector corresponding to the lowest eigenvalue. Therefore, we can
make the following approximation:

	 ≈ 0· · .n nAA e e 	 (9.29)

By substituting (9.29) in (9.17) and considering relations given in (9.19) and
(9.20), we obtain:

	 + − ≈ −* *
1 · ().n nu u u ur 	 (9.30)

Therefore, after each iteration step, the error is reduced by a ratio equal to r. We
can now obtain an approximation of the absolute error in the solution by applying
the infinity norm to (9.30):

	 + ∞ ∞ + ∞ + ∞− ≈ − ≤ − + −* * *
1 1 1|| || · || || · (||| || || ||),n n n n nu u u u u u u ur r 	 (9.31)

	
+ ∞ + ∞− ≤ −

−
*

1 1|| || · || || .
1n n nu u u u

r
r 	

(9.32)

Therefore, the convergence criterion can be defined as:

	
+ ∞− ≤

− 1· || || ,
1 n nu u

r e
r 	

(9.33)

where e is the imposed absolute accuracy. This convergence criterion gives an
approximation of the absolute error based on the displacement variation norm from
the current iteration.

Because our parameter estimation procedures over-estimate the maximum eigen-
value A

m
 and under-estimate the minimum eigenvalue A

0
, the value of the computed

spectral radius r
c
 we use in (9.33) can be lower than the real value of the spectral

radius (see (9.20)). This can lead to an early termination of the iteration process.
Therefore, in (9.33) we use a corrected value of the computed spectral radius:

	 = + −co c c· (1),ζr r r 	 (9.34)

202 A. Wittek et al.

where z is a correction parameter with values between 0 and 1, defining the maxi-
mum under-estimation error for the spectral radius r. In our simulations we use
z = 0.2.

9.5 � Element Formulation for Finite Element Algorithms
for Surgery Simulation and Neurosurgery Modeling

9.5.1 � Volumetric Locking

As stated in Chap. 6, due to stringent computation time requirements, the finite
element meshes for models applied in surgery simulation and image registration
must be constructed using low-order elements that are computationally inexpen-
sive. Mixed meshes consisting of tetrahedral and hexahedral element are most
convenient from the perspective of automation of simulation process. However, the
standard formulation of the tetrahedral element exhibits volumetric locking, espe-
cially in case of soft tissues such as the brain, which are modeled as almost incom-
pressible materials [38–44]. There are a number of improved linear tetrahedral
elements already proposed by different authors [45–48]. The average nodal pressure
(ANP) tetrahedral element proposed by Bonet and Burton in [45] is computation-
ally inexpensive and provides much better results for nearly incompressible materi-
als than the standard tetrahedral element. Nevertheless, one problem with the ANP
element and its implementation in a finite element code is the handling of interfaces
between different materials. In [34], we extended the formulation of the ANP
element so that all elements in a mesh are treated in a similar way, requiring no
special handling of the interface elements.

9.5.2 � Stability of Under-Integrated Hexahedral
Elements; Hourglassing

As stated in Chap. 6, low-order hexahedral elements with one Gauss point (referred
to in Chap. 1 as a linear under-integrated hexahedral elements) are the preferred
choice for explicit dynamics-type algorithms from the perspective of computa-
tional efficiency. However, such elements exhibit unphysical zero-energy defor-
mation modes (hourglassing). The hourglass modes can be controlled by calculating
hourglass forces that oppose the hourglass deformation modes. We have shown in
[49] that the hourglass control forces for each element can be computed (in matrix
form) as:

	 =Hg T
0 0 0 0· · · ,t tkF Y Y u 	 (9.35)

2039  Algorithms for Computational Biomechanics of the Brain

where k is a constant that depends on the element geometry and material properties,

0
Y is the matrix of hourglass shape vectors and u is the matrix of current displace-

ments. In (9.35), all quantities except u are constant and can be pre-computed,
which makes the hourglass control mechanism very efficient.

9.6 � Modeling of the Brain–Skull Interactions for Image-
Guided Neurosurgery: Efficient Finite Sliding Contact
Algorithm

Modeling of interactions between continua (e.g. soft organs) undergoing deforma-
tions is a challenging task. To facilitate such modeling, many sophisticated contact
algorithms have been proposed in the literature (e.g. [50–53]) and implemented in
commercial finite element codes such e.g. ABAQUS [26] and LS-DYNA [3].
Application of such algorithms tends to consume significant computing resources,
which substantially increases the solution time.

When computing the brain deformation for neuroimage registration, we are
interested in the interactions between the brain and the rigid skull that provide
constraints for the brain tissue deformation and brain rigid body motion. Accurate
modeling of such interactions can be done using a very efficient algorithm that
treats these interactions as a finite sliding, frictionless contact between a
deformable object (the brain) and a rigid surface (the skull) [54]. The main parts
of such a contact algorithm (for detailed description see [54]) are, first, the detec-
tion of nodes on the brain surface (also called the slave surface) which have
penetrated the skull surface (master surface) and second, the displacement of
each slave node that has penetrated the master surface to the closest point on the
master surface.

An efficient penetration detection algorithm can be formulated based on the clos-
est master node (nearest neighbor) approach [3]. As the surfaces of the anatomical
structures of the segmented neuroimages are typically discretized using triangles, the
skull surface can be treated as a triangular mesh. We refer to each triangular surface
as a “face”, to the vertices – “nodes” and to the triangles’ sides – “edges”. Using this
terminology, the basic brain–skull contact algorithm is described as follows:

For each slave node P:––

Find the closest master node C (global search).•	
Check the faces and edges surrounding C for penetration (local search).•	
Check additional faces and edges that might be penetrated by P (identified in •	
the master surface analysis stage – because the master surface is rigid, this
analysis can be done pre-operatively).

Further improvement of efficiency of the penetration detection algorithm and
computation speed is done by implementing bucket sort [3, 53] in the global search
phase.

204 A. Wittek et al.

9.7 � Alternatives to Finite Element Method for Image-Guided
Neurosurgery and Surgery Simulation: Meshless
Algorithms

There are two important factors limiting the application of finite element methods for
predicting brain responses in image-guided neurosurgery and surgery simulation:

	1.	 Time-consuming generation of patient-specific finite element meshes of the brain
and other body organs (more detailed discussion on generation of patient-specific
computational grids is provided in Chap. 6).

	2.	 Deterioration of the solution accuracy and instability as the elements undergo
distortion (inversion) when surgical tools induce large deformations [31].

Meshless algorithms [55], in which the analyzed continuum is discretized by
nodes (where forces and displacements are calculated) with no assumed structure
on the interconnection of the nodes and integration points (where stresses and strains
are calculated) (Fig. 9.4), have been proposed in the literature for generating com-
putational grids of domains of complex geometry and providing reliable results for
large deformations [56–58].

Smoothed particle hydrodynamics SPH is regarded as the first meshless method.
It utilizes a strong form of equations of continuum mechanics, and the nodes are
also the integration points [59]. SPH and other particle methods (such as material
point method in which a weak form of equations of continuum mechanics is used)
were applied in injury biomechanics [60, 61]. However, the literature indicates sev-
eral important shortcomings of the SPH method. These include instabilities in ten-
sion and accuracy inferior to that of the finite element method [55]. Therefore, we

Fig. 9.4  Background regular integration grid for a patient-specific meshless model of the brain
with tumor. The integration points are indicated as black dot. Note that the background grid does
not conform to the geometry boundary. Adapted from [69]

2059  Algorithms for Computational Biomechanics of the Brain

focus on meshless methods that utilize the weak form of the equations of continuum
mechanics and background integration grid. As an example, we discuss the Meshless
Total Lagrangian Explicit Dynamics algorithm [56] which is motivated by the need
for simple, automatic model creation for real-time simulation.

9.7.1 � Meshless Total Lagrangian Explicit Dynamics
(MTLED): Algorithm Description

In the Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithm, the inte-
gration of equations of continuum mechanics is done over a background grid of
hexahedral cells with a single integration point per cell (the idea similar to the one
used in under-integrated hexahedral elements described in Sect. 9.2) [56] (Fig. 9.4).
As this grid does not have to conform to the boundary of the analyzed continuum, it
can be generated automatically even for complicated geometry. The nodes where
the displacements are calculated are independent of the background integration
grid. Almost arbitrary placement of the nodes throughout the analyzed continuum
can be used, which is well suited for complicated geometry. However, restrictions
(discussed later) on the ratio of the number of integration points and nodes apply.

Construction of the shape functions is the crucial difference between the MTLED
algorithm and the Total Lagrangian Explicit Dynamics (TLED) finite element algo-
rithm described in Sect. 9.3. In the MTLED algorithm, we use Moving Least-
Squares shape functions that were initially applied in the Diffuse Element Method
by Nayroles et al. [62]:

	 = T() ()· (),hu x p x a x 	 (9.36)

where uh is the approximation of the displacement u, p(x) is the vector of monomial
basis function, a(x) is the vector of coefficients that need to be calculated, and x is the
point belonging to the analyzed continuum but not located at the node. In the MTLED
algorithm, low-order (up to quadratic order) monomial basis functions are used [56]:

	 =T 2 2 2() (1 | | |).x y z xy xz yz x y zp x 	 (9.37)

It has been shown that for a stable solution, the nodal support domains need to
overlap (i.e. a given node must belong to more than one support domain) and that
the number of nodes in a given support domain should be approximately twice the
length of the vector of basis functions [56] (for (9.37) the possible vector lengths are
4 for linear basis functions and 10 for quadratic ones). Therefore, from the perspec-
tive of solution accuracy, stability and computation efficiency, a trade-off exists
between the number of nodes and the total number of integration points. Through
parametric study, it has been estimated in [56] that the number of integration points
should be twice the number of nodes to ensure accuracy and convergence. According
to [56], increasing the number of integration points beyond this ratio exerts negli-
gible effects on the results.

206 A. Wittek et al.

9.8 � Real-Time Computations without Supercomputers:
Increasing Computation Speed Through Algorithm
Implementation on Graphics Processing Unit (GPU)

The algorithms for surgery simulation and image-guided surgery discussed in this
chapter facilitate efficient and robust computations. For instance, they make it pos-
sible to compute the deformation field within the brain for an image registration
problem in under 40 s on a standard personal computer for non-linear finite element
models consisting of around 30,000 elements. However, predicting the time history
of the force between the soft tissue and the surgical tool at a frequency of 500 Hz
(required for haptic feedback) poses a challenge even for very efficient non-linear
algorithms deployed on a personal computer.

For hardware-based increase of computation speed, we advocate the implementa-
tion of our algorithms on graphics processing units (GPUs). This is done by using a
GPU as a coprocessor for the computer’s central processing unit (CPU) for executing
sections of the code that can be run in parallel. Before the introduction of NVIDIA’s
Compute Unified Device Architecture (CUDA), general-purpose computations on
GPUs were done by recasting the computations in graphic terms and using the graph-
ics pipeline [63]. Therefore, a scientific or general-purpose computation often required
a concerted effort by experts in both computer graphics and in the particular scientific
or engineering domain. With the introduction of CUDA, in November 2006, NVIDIA
proposed a new parallel programming model and instruction set for their GPUs that
can be used for performing general-purpose computations. CUDA comes with a soft-
ware environment that allows developers to use C as a high-level programming lan-
guage. A minimum set of keywords are used to extend the C language in order to:
identify the code that must be run on the GPU as parallel threads, identify each thread
(and the block of threads it belongs to) and to organize and transfer the data in the
different GPU memory spaces. CUDA also exposes the internal architecture of
the GPU and allows direct access to its internal resources. The programmer has more
control over the internal hardware resources of the GPU, but this comes at the expense
of an increased programming effort compared to a CPU implementation.

The GPU has a highly parallel, multithreaded, many core processor architecture
and its cost (under US$3,000 for a general-purpose GPU) is orders of magnitude
smaller than that of a supercomputer with a comparable number of parallel threads.
GPU architecture is well suited for problems that can be expressed as data-parallel
computations with high arithmetic intensity, where the same program is executed on
many data elements in parallel. CUDA is a general purpose parallel computing
architecture that allows the development of application software that transparently
scales with the number of processor cores in the GPU.

Because it only uses vectors, an explicit integration algorithm is perfectly suited
for parallel implementation on a GPU. We implemented the Dynamic Relaxation
algorithm presented in Sect. 9.4 – on GPU using CUDA. We transferred all the
computationally intensive parts of the algorithm (element force computation, dis-
placement vector computation, contact handling, parallel reduction – including
infinity norm computation and scalar product of vectors) to the GPU, to take advantage

2079  Algorithms for Computational Biomechanics of the Brain

of its massive parallelism. The code was run on a NVIDIA Tesla C870 computing
board, which has 16 multiprocessors with eight scalar processor cores each and
single-precision floating-point operations. A detailed description of the implemen-
tation can be found in [64]. The GPU implementation performs 2,000 iterations of
the brain shift simulation in 1.8 s, offering real-time computation capabilities.

9.9 � Algorithm Verification

The general guidelines for verification in computational solid mechanics have been
proposed by the American Society of Mechanical Engineers ASME in [65]. These
guidelines underscore the importance of establishing confidence through collection
of evidence that the solution algorithms are working correctly. As for non-linear
problems of computational solid mechanics, analytical solutions typically do not
exist. Therefore, we advocate collecting such evidence by comparing the results
obtained through new algorithms with the solutions from established algorithms
(such as those implemented in commercial finite element codes).

In the following sections, we will present verification results for some of the
algorithms described in this chapter: hourglass control, volumetric locking, dynamic
relaxation and brain–skull interaction (contact).

9.9.1 � Hourglass Control

This verification experiment was artificially designed to compound difficulties asso-
ciated with hourglass control: large deformations, bending and rigid body motions.
A column having a height of 1 m and a square section with the side size 0.1 m was
meshed using hexahedral elements (Fig. 9.5a). The mesh has 496 nodes and 270 ele-
ments. A Neo-Hookean almost incompressible material model was used, having the
mechanical properties similar to those of the brain (mass density of 1,000 kg/m3,
Young’s modulus in undeformed state equal to 3,000 Pa and Poisson’s ratio 0.49).

The deformation was imposed by constraining the lower face and displacing the
upper face of the column, with maximum displacements of 0.5 m in the x direction
and 0.3 m in the z direction.

The deformed shape obtained using the TLED algorithm is presented in Fig. 9.5b
for the under-integrated hexahedral elements with no hourglass control. The influ-
ence of the presented hourglass control mechanism can be clearly seen in Fig. 9.5c.

The displacements of a line of nodes from the side of the column (in the plane
y = 0) are presented in Fig. 9.6. These displacements are compared with the results
obtained using the commercial finite element software ABAQUS (fully integrated
linear hexahedral elements with hybrid displacement-pressure formulation).

The displacement maximum relative error, defined as the ratio between the maxi-
mum displacement difference and the imposed displacement, was 1.4% in the case
of column deformation. This demonstrates the good accuracy of the elements using
the proposed hourglass control mechanism.

208 A. Wittek et al.

9.9.2 � Volumetric Locking

Because the only difference between our improved ANP (IANP) element and the
standard ANP element consists in the way interfaces between different materials are
handled, we designed a simulation experiment that highlights these differences. We
considered a cylinder with a diameter of 0.1 m and a height of 0.2 m made out of
alternating sections with two different material properties, as shown in Table 9.1.
We used a Neo-Hookean material model for both materials.

Half of the nodes on the upper face of the cylinder were displaced in order to
create a complex deformation field at different material interfaces (Fig. 9.7a).

Using the cylindrical geometry, we created a hexahedral mesh (13,161 nodes and
12,000 elements) and a tetrahedral mesh (11,153 nodes and 60,030 elements). The
behavior of the following elements was compared:

Fig. 9.5  Verification of hourglass control algorithm using deformation of a column as an example.
(a) Undeformed shape; (b) deformed shape with no hourglass control; and (c) deformed shape
with successful hourglass control. Copied from [49]

Fig. 9.6  Deformation of a column (middle line displacements). Comparison of results between
TLED and ABAQUS finite element solver. Copied from [49]

2099  Algorithms for Computational Biomechanics of the Brain

	1.	 Fully integrated linear hexahedra, with selectively reduced integration of the
volumetric term (Hexa), which should offer a benchmark solution [66]

	2.	 Standard average nodal pressure elements (ANP)
	3.	 Our improved average nodal pressure elements (IANP)
	4.	 Linear standard tetrahedron (Tetra)

All the computations were done using the TLED algorithm. Based on the dis-
placement differences presented in Fig. 9.7, we note that the usage of standard lock-
ing tetrahedral elements can lead to errors of up to 3.8 mm in the deformation field.
The use of ANP elements reduces the maximum error to 2.3 mm, while the use of
IANP elements leads to a maximum error of 1.5 mm (all errors are considered rela-
tive to the results of the model that uses Hexa elements).

Fig. 9.7  Deformation of a cylinder made out of sections with different material properties. (a) The
undeformed configuration and the nodal displacements applied. The color bars show the differ-
ence in positions of the surface nodes, in millimeters, between the models using hexahedral ele-
ments and models using (b) locking tetrahedral elements (c) ANP elements and (d) IANP elements.
Copied from [34]

Property Material 1 Material 2

Young’s modulus E [Pa] 3,000 30,000
Poisson ratio n 0.49 0.48
Density r (kg/m3) 1,000 1,000

Table 9.1  Material
properties

210 A. Wittek et al.

The reaction forces computed on the displaced face are presented in Fig. 9.8.
The results obtained using the IANP elements are the closest to the benchmark
results given by the Hexa elements. Therefore, the IANP elements offer the best
performances both in terms of displacements and reaction forces, while the standard
tetrahedral element offers the worst performances, as expected.

Fig. 9.8  Reaction forces on the displaced face (a) in the y direction (b) in the z direction. Adapted
from [34]

2119  Algorithms for Computational Biomechanics of the Brain

9.9.3 � Dynamic Relaxation: Steady-State Computation

We use this verification example to demonstrate the accuracy of our steady-state com-
putation method. For an ellipsoid having approximately the size of the brain, we fixed
a set of nodes (at the bottom) and displaced another set of nodes (at the top) in order to
obtain a deformation field similar to what happens in brain shift. The mesh was created
using hexahedral elements and has 2,200 elements and 2,535 nodes. We used an almost
incompressible Neo-Hookean material model and a large displacement value (2 cm).

We performed the displacement computation first by using our algorithm and
second by using ABAQUS [26]. For computational efficiency, we use under-
integrated hexahedral elements with the hourglass control implementation based on
the relations presented in [49]. In ABAQUS, we used hybrid displacement-pressure
hexahedral elements, which are the “gold standard” for almost incompressible
materials. We used the static solver with the default configuration and assumed that
the ABAQUS simulation provides accurate results.

The error distribution (absolute difference in nodal position between the two
simulations) is presented in Fig. 9.9. The maximum error magnitude of 0.6 mm is
obtained at the edge of the displaced area and it is mainly an artifact of using
under-integrated elements. Nevertheless, the average error is 0.025 mm which
demonstrates that our simulation results are more than acceptable (as the error is
much smaller than the accuracy of image-guided neurosurgery).

Fig. 9.9  Absolute difference (gray-scale coded) in nodal positions between our algorithm and
ABAQUS. Dimensions are in meters. Copied from [36]

212 A. Wittek et al.

Fig. 9.10  Displacement differences (in millimeters) between our results and LS-DYNA
simulations are presented using color codes. The transparent mesh is the master contact.
(a) Ellipsoid model; (b) brain model. Adapted from [54]

9.9.4 � Brain–Skull Interface: Contact Algorithm

In order to assess the performance of our brain–skull interface algorithm, we performed
simulations using our implementation of the contact algorithm (combined with
Dynamic Relaxation as a solution method) and the commercial finite element solver
LS-DYNA [3], and compared the results. The same loading conditions and material
models were used for both solvers. The loading consisted of displacements applied to
the nodes in the craniotomy area using a smooth loading curve. Neo-Hookean material
models were used for the brain and tumor tissues, and a linear elastic model was used
for the ventricles. In order to obtain the steady-state solution, the oscillations were
damped using both mass and stiffness proportional damping in LS-DYNA.

2139  Algorithms for Computational Biomechanics of the Brain

In a first simulation experiment, we displaced an ellipsoid (made of a hyperelas-
tic Neo-Hookean material) with the approximate size of a brain inside another ellip-
soid simulating the skull. The maximum displacement applied was 40 mm. The
average difference in the nodal displacement field between our simulation and the
LS-DYNA simulation was less than 0.12 mm (Fig. 9.10a).

In the second simulation experiment, we performed the registration of a patient-
specific brain shift. The LS-DYNA simulations for this case have been done previ-
ously and the results were found to agree well with the real deformations [67]. We
performed the same simulations using Dynamic Relaxation and our contact algo-
rithm. The average difference in the nodal displacement field was less than 0.2 mm
(Fig. 9.10b).

9.9.5 � Meshless Total Lagrangian Explicit
Dynamics (MTLED) Algorithm

The MTLED algorithm has been verified by comparing the results obtained using this
algorithm with those of an established finite element code (ABAQUS implicit non-
linear solver was used) when modeling semi-confined uniaxial compression and
shear of a cylinder made from a very soft (shear modulus of 1 kPa) hyperelastic (Neo-
Hookean) material. In meshless discretization of the cylinder, almost arbitrary node
placement and integration points non-conforming to geometry were used (Fig. 9.11).

Fig. 9.11  Meshless model of a cylinder used in verification of the MTLED algorithm by Horton
et al. [56]. The nodes are indicated as dot and integration points as plus. Note almost arbitrary node
placement. The integration points do not conform to geometry. The boundary conditions are shown
in the right-hand side figure: the nodes on the top boundary were constrained and the prescribed
displacement was applied to the nodes on the bottom boundary. Adapted from [56]

214 A. Wittek et al.

Fig. 9.12  Comparison of the results obtained when modeling 20% compression and shear of a
cylinder using meshless (MTLED) and finite element (ABAQUS implicit solver) algorithms.
(a) Reaction force vs. time; (b) contour of the deformed cylinder at time of 3 s. The displacement
u was enforced over a period T = 3 s using a 3-4-5 polynomial that ensures zero velocity and accel-
eration at time t = 0 and time t = T [70]. The displacement magnitude was 0.02 in z direction for
compression and 0.02 in x direction for shear. x and z directions are defined in Fig. 9.11. Adapted
from [56]

For 20% compression and shear of the cylinder, the difference in the total reac-
tion force on the displaced cylinder surface between MTLED and ABAQUS implicit
finite element solver was no more than 5% (Fig. 9.12a). The forces obtained using
the meshless algorithm were qualitatively similar to those of the finite element
method. The maximum relative difference in displacement between MTLED and
ABAQUS was around 3.5% (it can be seen in Fig. 9.12b that some of the meshless
nodes do not sit exactly on the deformed finite element boundary).

The MTLED algorithm produces stable results even for very large deformations
as indicated by the energy – time histories obtained when modeling the cylinder
compressed to 20% of its original height (Fig. 9.13). For such large compression, no
verification against the ABAQUS finite solver could be done as the finite element
solution became unstable.

2159  Algorithms for Computational Biomechanics of the Brain

9.10 � Conclusions

Modeling of the brain for injury simulation and computer-assisted neurosurgery is
a non-linear problem of continuum mechanics and involves large deformations,
very large strains, non-linear material models, complex loading and boundary con-
ditions and complex geometry. Various finite element (FE) algorithms have been
applied for solving this problem.

Modeling of the brain for injury simulation has been often conducted with the
idea in mind that numerical surrogates of the human head can be used in the design
of countermeasures for traumatic brain injury mitigation. Such modeling has been
almost exclusively conducted using non-linear explicit dynamics (i.e. utilizing
explicit integration in time domain) finite element algorithms implemented in com-
mercial finite element codes that are routinely used in the automotive industry for
transient dynamics problems involving rapid (impact-type) loading such as car
structure responses during collision and metals sheet forming.

However, the computational efficiency of the algorithms available in commer-
cial finite element codes is insufficient for computer-integrated neurosurgery where
the solution needs to be provided within the real-time constraints of neurosurgery.
This led to development of specialized non-linear finite element algorithms aiming
at satisfying these constraints. We advocate the application of non-linear finite ele-
ment algorithms utilizing explicit integration in the time domain (and therefore
requiring no iteration for non-linear problems) and Total Lagrangian incremental

Fig. 9.13  MTLED algorithm. External work and strain energy when compressing a cylinder to
20% of its original height (and returning to the initial state). The displacement was enforced using
a 3-4-5 polynomial [70]. Adapted from [56]

216 A. Wittek et al.

formulation of continuum mechanics (as it allows pre-computing of the derivatives
with respect to the spatial coordinates):

Total Lagrangian explicit dynamics (TLED) finite element algorithm for time •	
accurate solution for surgery simulation.
Dynamic Relaxation (DR) Total Lagrangian algorithm for computing steady-•	
state deformations for neurosurgical modeling.

For hardware-based increase of computation speed, we propose the implementa-
tion of these algorithms on graphics processing units (GPUs) by using a GPU as a
coprocessor for the computer’s CPU. It has been shown in [64] that the implementa-
tion of the finite element Dynamic Relaxation algorithm on NVIDIA Tesla C870
GPU performs 2,000 iterations of the brain shift simulation in under 2 s, offering
real-time computation capabilities at a fraction of a traditional supercomputer or PC
cluster cost. It can be expected that for newer generation of GPUs this already excel-
lent performance would appreciably improve due to significant increase in the num-
ber of streaming processor cores (e.g. NVIDIA Tesla C870 GPU had 128 cores
while NVIDIA Fermi GPUs released in 2009 have 512 cores [68]) and available
shared memory (e.g. 16 kb for NVIDIA Tesla and 48 kb for NVIDIA Fermi).

Application of the most efficient finite element algorithms in surgery simula-
tion and neurosurgery modeling is limited by time-consuming generation of
patient-specific finite element meshes and deterioration of the solution accuracy
when the elements undergo distortion induced by large deformations. As a solu-
tion for overcoming these limitations, we advocate meshless algorithms in which
the computational grid has the form of a “cloud” of points. The Meshless Total
Lagrangian Explicit Dynamics (MTLED) algorithm described in this chapter has
been proven to be capable of providing a stable solution in situations (such as
compressing of a cylinder made of soft hyperelastic material to 20% of its original
height) where the well-established and extensively verified non-linear finite element
algorithms fail.

The instabilities due to element distortion are not limited to simulation and neu-
rosurgery modeling using finite element algorithms. They are even more pronounced
in modeling for injury simulation where the brain is exposed to transient loads due
to rapid acceleration and/or direct impact to the head. Therefore, although the
Meshless Total Lagrangian Explicit Dynamics algorithm described in this chapter
was developed in the context of real-time patient-specific surgery simulation, its
ability to provide a stable solution for very large strains is relevant also for injury
simulation. Development of meshless algorithms that facilitate modeling of surgical
dissection and injury-related rupture of soft tissues provides the next challenge in
injury and surgery simulation.

Acknowledgements  The financial support of the Australian Research Council (grants no.
DP0343112, DP0664534, DP1092893 and LX0560460) and NIH (grant no. R03-CA126466-01A1)
is greatly acknowledged.

We thank our collaborators Dr Ron Kikinis and Dr Simon K. Warfield of Harvard Medical
School (Boston, MA, USA), and Dr Kiyoyuki Chinzei and Dr Toshikatsu Washio of Surgical
Assist Technology Group of AIST (Tsukuba, Japan) for help in various aspects of this work.

2179  Algorithms for Computational Biomechanics of the Brain

References

	 1.	Fressmann, D., Munz, T., Graf, O., et al.: FE human modelling in crash – aspects of the numer-
ical modelling and current applications in the automotive industry. LS-DYNA Anwenderforum.
DYNAmore GmbH, Frankthenhal, Germany, pp. F-I-23–F-I-34 (2007)

	 2.	Takhounts, E.G., Eppinger, R.H., Campbell, J.Q., et al.: On the development of the SIMon finite
element head model. Stapp Car Crash J. 47, 107–133 (2003)

	 3.	Hallquist, J.O.: LS-DYNA Theory Manual. Livermore Software Technology Corporation,
Livermore (2005)

	 4.	PSI: Pam-System Programs in Applied Mechanics. PAM-CRASH, PAM-SAFE Version 1998.
Release Note. ESI Group Software Product Company (1998)

	 5.	Mecalog: RADIOSS Users’ Manual, Paris, France (1994)
	 6.	Baumann, R., Glauser, D., Tappy, D., et al.: Force feedback for virtual reality based minimally

invasive surgery simulator. Stud. Health Technol. Inform. 29, 564–579 (1996)
	 7.	Cover, S.A., Ezquerra, N.F., O’Brien, J.F., et al.: Interactively deformable models for surgery

simulation. IEEE Comput. Graph. Appl. 13, 68–75 (1993)
	 8.	Kühnapfel, U., Çakmak, H.K., Maaß, H.: Endoscopic surgery training using virtual reality and

deformable tissue simulation. Comput. Graph. 24, 671–682 (2000)
	 9.	Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deforma-

tions, and force feedback for surgery training and simulation. Vis. Comput. 16, 437–452
(2000)

	10.	Bathe, K.-J.: Finite Element Procedures. Prentice-Hall, New Jersey (1996)
	11.	Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86, 490–503 (1998)
	12.	Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation

using finite elements and condensation. Comput. Graphics Forum 15, 57–66 (1996)
	13.	DiMaio, S.P., Salcudean, S.E.: Interactive simulation of needle insertion models. IEEE Trans.

Biomed. Eng. 52, 1167–1179 (2005)
	14.	Warfield, S.K., Talos, F., Tei, A., et al.: Real-time registration of volumetric brain MRI by

biomechanical simulation of deformation during image guided neurosurgery. Comput. Vis.
Sci. 5, 3–11 (2002)

	15.	Roberts, D.W., Hartov, A., Kennedy, F.E., et al.: Intraoperative brain shift and deformation: a
quantitative analysis of cortical displacement in 28 cases. Neurosurgery 43, 749–758 (1998)

	16.	Miller, K., Wittek, A.: Neuroimage registration as displacement – zero traction problem of
solid mechanics (lead lecture). In: Miller, K., Poulikakos, D. (eds.) Proc. of Computational
Biomechanics for Medicine I. Workshop affiliated with Medical Image Computing and
Computer-Assisted Intervention MICCAI 2006, Copenhagen, Denmark, 1st October p. 2–13,
Samfundslitteratur Grafik, Copenhagen, ISBN 10: 87-7611-149-0 (2006)

	17.	Wittek, A., Hawkins, T., Miller, K.: On the unimportance of constitutive models in computing
brain deformation for image-guided surgery. Biomech. Model. Mechanobiol. 8, 77–84 (2009)

	18.	Belytschko, T.: A survey of numerical methods and computer programs for dynamic structural
analysis. Nucl. Eng. Des. 37, 23–34 (1976)

	19.	Bathe, K.-J.: Crush simulation of cars with FEA. Mechanical engineering http://www.
memagazine.org/backissues/november98/features/crushcar.html (1998)

	20.	Cook, R.D., Malkus, D.S., Plesha, M.E.: Finite elements in dynamics and vibrations. In:
Concepts and Applications of Finite Element Analysis, pp. 367–428. Wiley, New York (1989)

	21.	Hallquist, J.O.: LS-DYNA Theoretical Manual. Livermore Software Technology Corporation,
Livemore (1998)

	22.	Belytschko, T.: An overview of semidiscretization and time integration procedures. In:
Belytschko, T., Hughes, T.J.R. (eds.) Computational Methods for Transient Analysis, vol. 1,
pp. 1–66. North-Holland, Amsterdam (1983)

	23.	Dassault Systèmes Simulia Corp.: ABAQUS Theory Manual Version 6.5, Providence, RI,
USA (2010)

	24.	Olovsson, L., Simonsson, K., Unosson, M.: Selective mass scaling for explicit finite element
analyses. Int. J. Numer. Methods Eng. 63, 1436–1445 (2005)

218 A. Wittek et al.

	25.	Majumder, S., Roychowdhury, A., Subrata, P.: Three-dimensional finite element simulation of
pelvic fracture during side impact with pelvis-femur-soft tissue complex. Int. J. Crashworthiness
13, 313–329 (2008)

	26.	Hibbitt, D., Karlsson, B., Sorensen, P.: Abaqus Analysis User’s Manual Version 6.5. ABAQUS
Inc., Providence, RI (2005)

	27.	Flanagan, D.P., Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal
hourglass control. Int. J. Numer. Methods Eng. 17, 679–706 (1981)

	28.	Cifuentes, A.O., Kalbag, A.: A performance study of tetrahedral and hexahedral elements in
3-D finite element structural analysis. Finite Elem. Anal. Des. 12, 313–318 (1992)

	29.	Cook, R.D., Malkus, D.S., Plesha, M.E.: Concepts and Applications of Finite Element
Analysis. Wiley, New York (1989)

	30.	Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis. Dover, Mineola (2000)

	31.	Wittek, A., Dutta-Roy, T., Taylor, Z., et al.: Subject-specific non-linear biomechanical model
of needle insertion into brain. Comput. Methods Biomech. Biomed. Eng. 11, 135–146 (2008)

	32.	Rojek, J., Oñate, E., Postek, E.: Application of explicit FE codes to simulation of sheet and
bulk metal forming processes. J. Mater. Process. Technol. 80–81, 620–627 (1998)

	33.	Miller, K., Joldes, G., Lance, D., et al.: Total Lagrangian explicit dynamics finite element algorithm
for computing soft tissue deformation. Commun. Numer. Methods Eng. 23, 121–134 (2007)

	34.	Joldes, G.R., Wittek, A., Miller, K.: Non-locking tetrahedral finite element for surgical simula-
tion. Commun. Numer. Methods Eng. 25, 827–836 (2009)

	35.	Underwood, P.: Dynamic relaxation. In: Belytschko, T., Hughes, T.J.R. (eds.) Computational
Methods for Transient Analysis, vol. 1, pp. 245–265. New-Holland, Amsterdam (1983)

	36.	Joldes, G.R., Wittek, A., Miller, K.: Computation of intra-operative brain shift using dynamic
relaxation. Comput. Meth. Appl. Mech. Eng. 198, 3313–3320 (2009)

	37.	Hughes, T.J.R.: Analysis of transient algorithms with particular reference to stability behavior.
In: Belytschko, T., Hughes, T.J.R. (eds.) Computational Methods for Transient Analysis, vol. 1,
pp. 67–155. New-Holland, Amsterdam (1983)

	38.	Miller, K.: Biomechanics of the Brain for Computer Integrated Surgery. Publishing House of
Warsaw University of Technology, Warsaw (2002)

	39.	Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. J. Biomech. 35,
483–490 (2002)

	40.	Miller, K., Chinzei, K., Orssengo, G., et al.: Mechanical properties of brain tissue in-vivo:
experiment and computer simulation. J. Biomech. 33, 1369–1376 (2000)

	41.	Miller, K.: Constitutive modelling of abdominal organs. J. Biomech. 33, 367–373 (2000)
	42.	Miller, K., Chinzei, K.: Constitutive modelling of brain tissue; experiment and theory.

J. Biomech. 30, 1115–1121 (1997)
	43.	Bilston, L.E., Liu, Z., Phan-Tien, N.: Linear viscoelastic properties of bovine brain tissue in

shear. Biorheology 34, 377–385 (1997)
	44.	Margulies, S.S., Thibault, L.E., Gennarelli, T.A.: Physical model simulations of brain injury in

the primate. J. Biomech. 23, 823–836 (1990)
	45.	Bonet, J., Burton, A.J.: A simple averaged nodal pressure tetrahedral element for incompress-

ible and nearly incompressible dynamic explicit applications. Commun. Numer. Methods Eng.
14, 437–449 (1998)

	46.	Bonet, J., Marriott, H., Hassan, O.: An averaged nodal deformation gradient linear tetrahedral
element for large strain explicit dynamic applications. Commun. Numer. Methods Eng. 17,
551–561 (2001)

	47.	Zienkiewicz, O.C., Rojek, J., Taylor, R.L., et al.: Triangles and tetrahedra in explicit dynamic
codes for solids. Int. J. Numer. Methods Eng. 43, 565–583 (1998)

	48.	Dohrmann, C.R., Heinstein, M.W., Jung, J., et al.: Node-based uniform strain elements for
three-node triangular and four-node tetrahedral meshes. Int. J. Numer. Methods Eng. 47,
1549–1568 (2000)

	49.	Joldes, G.R., Wittek, A., Miller, K.: An efficient hourglass control implementation for the
uniform strain hexahedron using the total Lagrangian formulation. Commun. Numer. Methods
Eng. 24, 315–323 (2008)

2199  Algorithms for Computational Biomechanics of the Brain

	50.	Hallquist, J.O., Goudreau, G.L., Benson, D.J.: Sliding interfaces with contact-impact in large-
scale Lagrangian computations. Comput. Meth. Appl. Mech. Eng. 51, 107–137 (1985)

	51.	Doghri, I., Muller, A., Taylor, R.L.: A general three-dimensional contact procedure for implicit
finite element codes. Eng. Comput. 15, 233–259 (1998)

	52.	Stewart, J.R., Gullerud, A.S., Heinstein, M.W.: Solution verification for explicit transient
dynamics problems in the presence of hourglass and contact forces. Comput. Meth. Appl.
Mech. Eng. 195, 1499–1516 (2006)

	53.	Sauvé, R.G., Morandin, G.D.: Simulation of contact in finite deformation problems – algorithm
and modelling issues. Int. J. Mech. Mater. Des. 1, 287–316 (2004)

	54.	Joldes, G., Wittek, A., Miller, K., et al.: Realistic and efficient brain-skull interaction model for
brain shift computation. In: Miller, K., Nielsen, P.M.F. (eds.) Proceedings of Computational
Biomechanics for Medicine III. Workshop affiliated with International Conference on Medical
Image Computing and Computer-Assisted Intervention MICCAI 2008, New York, USA,
pp. 95–105, September 2008

	55.	Belytschko, T., Krongauz, Y., Organ, D., et al.: Meshless methods: an overview and recent
developments. Comput. Meth. Appl. Mech. Eng. 139, 3–47 (1996)

	56.	Horton, A., Wittek, A., Joldes, G.R., et al.: A meshless total Lagrangian explicit dynamics
algorithm for surgical simulation. Int. J. Numer. Methods Biomed. Eng. 26, 977–998 (2010)

	57.	Doblare, M., Cueto, E., Calvo, B., et al.: On the employ of meshless methods in biomechanics.
Comput. Meth. Appl. Mech. Eng. 194, 801–821 (2005)

	58.	Horton, A., Wittek, A., Miller, K.: Subject-specific biomechanical simulation of brain inden-
tation using a meshless method. Proc. of International Conference on Medical Image
Computing and Computer-Assisted Intervention MICCAI 2007; In Lect. Notes Comput. Sci.
4791, 541–548 (2007)

	59.	Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574
(1992)

	60.	Lee, S.-H., Darvish, K., Lobovsky, L.: Fluid-structure interaction in finite element modeling of
traumatic aortic rupture. ASME Conference Proceedings ASME 2004, Advances in
Bioengineering, Anaheim, CA, USA, pp. 337–338, 13–19 November 2004

	61.	 Ionescu, I., Guilkey, J., Berzins, M., et al.: Computational simulation of penetrating trauma in
biological soft tissues using the material point method. Stud. Health Technol. Inform. 111,
213–218 (2005)

	62.	Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approxi-
mation and diffuse elements. Comput. Mech. 10, 307–318 (1992)

	63.	Owens, J.D., Luebke, D., Govindaraju, N., et al.: A survey of general-purpose computation on
graphics hardware. Comput. Graphics Forum 26, 80–113 (2007)

	64.	Joldes, G.R., Wittek, A., Miller, K.: Real-time nonlinear finite element computations on GPU –
Application to neurosurgical simulation. Comput. Meth. Appl. Mech. Eng. 199, 3305–3314
(2010)

	65.	ASME PTC 60/V&V 10: Guide for Verification and Validation in Computational Solid
Mechanics. The American Society of Mechanical Engineers (ASME) Standards Committee on
Verification and Validation in Computational Solid Mechanics PTC 60/V&V 10. http://cstools.
asme.org/csconnect/pdf/CommitteeFiles/24816.pdf (2006)

	66.	ABAQUS: ABAQUS Theory Manual, Version 5.8. Hibbitt, Karlsson & Sorensen, Inc., Rhode
Island (1998)

	67.	Wittek, A., Miller, K., Kikinis, R., Warfield, S.K.: Patient-specific model of brain deformation:
application to medical image registration. J. Biomech. 40, 919–929 (2007)

	68.	NVIDIA: NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. NVIDIA. http://
www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_
Whitepaper.pdf (2009)

	69.	Horton, A., Wittek, A., Miller, K.: Computer simulation of brain shift using an element free
Galerkin method. In: Middleton, J., Jones, M. (eds.) 7th International Symposium on Computer
Methods in Biomechanics and Biomedical Engineering CMBEE 2006, Antibes, France (2006)

	70.	Waldron, K.J., Kinzel, G.L.: Kinematics, Dynamics, and Design of Machinery. Wiley,
New York (1999)

	Chapter 9: Algorithms for Computational Biomechanics of the Brain
	9.1 Introduction
	9.2 Algorithms for Injury Simulation
	9.3 Algorithms for Surgery Simulation
	9.4 Algorithms for Neurosurgery Modeling
	9.4.1 Dynamic Relaxation Algorithm
	9.4.1.1 Dynamic Relaxation Algorithm: Maximum Eigenvalue A m and Mass Matrix
	9.4.1.2 Dynamic Relaxation Algorithm: Estimation of the Minimum Eigenvalue A 0
	9.4.1.3 Dynamic Relaxation Algorithm: Termination Criteria

	9.5 Element Formulation for Finite Element Algorithms for Surgery Simulation and Neurosurgery Modeling
	9.5.1 Volumetric Locking
	9.5.2 Stability of Under-Integrated Hexahedral Elements; Hourglassing

	9.6 Modeling of the Brain–Skull Interactions for Image-Guided Neurosurgery: Efficient Finite Sliding Contact Algorithm
	9.7 Alternatives to Finite Element Method for Image-Guided Neurosurgery and Surgery Simulation: Meshless Algorithms
	9.7.1 Meshless Total Lagrangian Explicit Dynamics (MTLED): Algorithm Description

	9.8 Real-Time Computations without Supercomputers: Increasing Computation Speed Through Algorithm Implementation on Graphics Processing Unit (GPU)
	9.9 Algorithm Verification
	9.9.1 Hourglass Control
	9.9.2 Volumetric Locking
	9.9.3 Dynamic Relaxation: Steady-State Computation
	9.9.4 Brain–Skull Interface: Contact Algorithm
	9.9.5 Meshless Total Lagrangian Explicit Dynamics (MTLED) Algorithm

	9.10 Conclusions
	References

