
Chapter 7

He II Heat and Mass Transfer

Chapter 6 emphasized the physics of He II including heat transport in the laminar

flow and the turbulent mutual friction regimes. These mechanisms are fundamental

to the behavior of He II, although that discussion mostly described idealized

behavior. In the present chapter we will build on the fundamental understanding

of He II to treat practical heat and mass transfer problems that may occur in He II

systems. In doing so, the concepts already developed must be extended into regimes

that are more usable in engineering calculations. To be more specific, the emphasis

of Chap. 6 has been to understand the interactive mechanisms and the two fluid

nature of He II. Thus, of principal concern is the behavior of the transport properties

including mainly the normal fluid viscosity mn and the turbulent state with the

associated mutual friction parameter AGM. Of interest now is to use these concepts

in understanding such phenomena as the maximum heat flux, q*, the maximum

energy deposition, DE*, and the corresponding temperature difference, which can

be either within the fluid or across a solid-fluid interface. The goal of the present

chapter is to establish a connection between the engineering parameters q*, DE*,
and DT and the physical properties of the fluid and solid-fluid boundaries.

In establishing this connection there are a number of subjects of practical interest

which must be addressed. These include steady-state heat transport, transient heat

transport, forced flow pressure drop and heat transport, surface Kapitza boundary

conductance, and film boiling. Some of these phenomena are also important in pool

boiling He I heat transfer, which is the subject of Chap. 5.

Before delving into these individual subjects, it is worth describing, in a general

way, the surface heat transfer character of liquid He II. This character in actuality is

quite similar qualitatively to that of He I or other conventional fluids, although as

we will see the numerical values and physical explanations are considerably

different. Figure 7.1 shows a typical steady-state heat transfer curve for a metal

surface at the end of a duct containing He II, see Fig. 7.2. As is discussed below, the

duct also may contain a temperature difference (Tm – Tb). Figure 7.1 is intended

only to display the regions of heat transfer. As is demonstrated in what follows,

actual numerical values of these regimes are strongly dependent on geometry,

temperature, pressure, and surface conditions. That the heat transfer surface is
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located at the end of a channel rather than in an open bath is also important in

determining critical values. As we will see, the very high effective thermal conduc-

tivity of He II results in a thermal boundary layer that can take on the dimensions of

the duct, thus controlling much of the heat transfer process.

For small q up to q*, the surface temperature difference, DTs, is governed by

interfacial phenomena having more to do with the character of the solid than that of

the liquid helium. This is called the Kapitza regime. In this regime, there is no

surface boiling, rather the temperature difference is a result of thermal impedance

between the two dissimilar materials, the metal or insulating solid and liquid He II.

Also, the maximum heat flux q* is strongly geometry and helium state dependent

and is characterized by the point where the helium adjacent to the interface exceeds

the local boiling point. The maximum heat flux is also time dependent, achieving

very high values for short-duration heat pulses. Once this maximum is exceeded, the

heat transfer transitions to a film boiling process where a film consisting of either He

I, vapor, or both blankets the surface. Finally, in some configurations there is

Fig. 7.1 A typical steady-state beat transfer curve for a metal surface at the end of a duct

containing He II

Fig. 7.2 Schematic of a horizontal duct of length L containing He II
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observed a hysteresis in the heat transfer curve exemplified by the requirement to

reduce q below q* in order to return to theKapitza regime. This process is reasonably

well understood in He I and other classical fluids, being described by a hydrody-

namic instability which leads to an engineering correlation. However, in He II the

problem is more complex and has received less attention, owing to the experimental

difficulty of achieving steady state and strong variations with configuration. It is the

physical understanding of this heat transfer curve that is the goal of the present

chapter. The description is based heavily on the physics of heat transport in He II

contained in Chap. 6.

7.1 Steady-State He II Heat Transport in Wide Channels

The first question to ask is: What are the limitations to heat transport in a channel

containing He II? Since the heat transport equations for He II have already been

developed, it should be straightforward to apply this theory to determine practical

heat transfer limitations. In doing so, it is assumed that the heat transport

equations can be applied over finite temperature differences simply by taking into

consideration the temperature dependence of the fluid properties. Note that He II

cannot exist above the l-transition, 2.177 K at SVP, which at least establishes

liquid temperature boundaries to the heat transfer problem. For a channel of finite

length L, as shown in Fig. 7.2, subjected to a constant heat flux q, there is a

temperature difference established across its length, that is DTHe II ¼ Tm – Tb.
In general, this temperature difference occurs because of two loss mechanisms

discussed in Chap. 6: (1) the normal fluid viscous interactions with the channel

walls and (2) the mutual friction between the two fluid components. We therefore

consider here two classes of problems. The first concerns the heat and mass

transfer in large systems such as occur in superconducting magnets and particle

accelerators. In this case, the channel diameters and heat fluxes are sufficiently

large to allow the mutual friction term to dominate the heat flow process. Thus, for

this class of problems, the normal fluid viscous contribution to the temperature and

pressure gradient can be neglected. The second class of problems which we will

discuss subsequently involve heat and mass transfer through very small diameter

capillaries or porous media. This heat transfer regime is mostly of interest in space

applications and small scale cooling channels such as occur in some high current

density magnets. In this latter case, at low heat fluxes, the flow is ideal and the

pressure and temperature gradients obey London’s equation with viscous flow

dominating the normal fluid. At moderate to high heat fluxes, both laminar and

turbulent contributions must be included in the analysis. Problems in this regime are

the most complex to analyze.
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7.1.1 He II Heat Conductivity Function

Forwide channels, the normal fluid viscous term can generally be neglected so that the

He II temperature gradient equation (6.101) may be simplified in one dimension as,

dT

dx
¼ �f ðT; pÞqm (7.1)

where we define f(T, p) ¼ AGMrn/(rss
4T3) with AGM being the mutual friction

parameter and rn and rs are the normal and superfluid densities, respectively.

According to theory m ~ 3; however, experimentally m has been shown to vary

from about 3 to nearly 4 as the temperature approaches Tl [1, 2].A good mean value

for practical calculations is to setm ¼ 3.4, which is consistent with experiment over

the temperature range from 1.7 K to Tl [3–5]. The physics behind (7.1) is discussed
extensively in Sect. 6.5. The quantity f –1(T, p) behaves much like a thermal

conductivity in that it is a fluid property that controls the temperature gradient

in the presence of a heat flux. It is therefore of interest to understand the variation

of f –1(T, p) with state variables. Plotted in Fig. 7.3 is this function as it depends on

temperature and pressure between 1.4 K and Tl and p ¼ SVP and 2.5 MPa for the

case where m ¼ 3. Note that the temperature dependence is quite strong with a

maximum occurring around T � 1.9 K at SVP. The pressure dependence is weaker.

Fig. 7.3 Heat conductivity function for turbulent He II
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In the data presented in Fig. 7.3, Vinen’s [1] values for the Gorter-Mellink parameter

have been used. Furthermore, it has been assumed that AGM ~ rr2n=r
3 which is

based on theory [6]. Then based on an empirical fit to the Gorter-Mellink parameter,

it is possible to write an analytic expression for the heat conductivity function,

f�1 T; pð Þ ¼ gðTlÞ t5�7ð1� t5�7Þ� �3
(7.2)

where g(Tl) ¼ r2s4lT
3
l=Al, t ¼ T/Tl, Sl ¼ 1559 J/kg�K, and Al ¼ AGM(Tl) ’ 1450

m�s/kg. Note the maximum in (7.2) occurs at t ¼ 0.885, which is 1.929 K at SVP.

The values presented in Fig. 7.3 are good to about�10% at saturated vapor pressure

and have been compared to experiment up to about 0.7 MPa. Numerical values for

f –1(T, p) are listed in Appendix A.3.

Recently, Sato et al. [7–10] performed extensive measurements of the average

heat conductivity in turbulent He II over a wider range of temperatures and

pressures up to 1.5 MPa. This work confirmed that the best fit to the heat conduc-

tivity function follows a power law m ¼ 3.4 � 0.1. This extensive set of data was

then used by Sato to develop an improved correlation for the turbulent heat

conductivity function. The form of this correlation is similar to (7.1) where

m ¼ 3.4 and the heat conductivity function is written as a product of two terms,

f�1 T; pð Þ ¼ hðtÞgpeakðpÞ (7.3)

where the reduced temperature t ¼ T/Tl and h(t,p) and gpeak(p) are empirical

functions. The normalized empirical function h(t, p) is shown in Fig. 7.4 indicating
a high quality correlation. This function has a peak at tpeak ¼ 0.882.

Sato fit this quantity to a polynomial function,

hðtÞ ¼ 1þ t� tpeak
� �2X9

n¼0

an t� 1ð Þnf g (7.4)

where the polynomial coefficients are given in Table 7.1

The pressure dependent function was also fit to a polynomial as,

gpeakðpÞ ¼ exp aþ bpþ cp2
� �

(7.5)

where the coefficients (a, b and c) and the fit are shown in Fig. 7.5. This correlation

is clearly an improvement over (7.2) and Fig. 7.3 and is recommended for more

accurate numerical calculations. However, for approximate calculations particu-

larly when they involve analytic solution, it is often more convenient to use the

simplified form and keep the value of m ¼ 3.
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7.1.2 Peak Heat Flux in Wide Channels

We now consider the limits to steady state heat transport in a finite-length channel.

For a given steady heat flux, it is possible to determine the corresponding DT by

integration of (7.1) (or the more refined Sato correlation, 7.3) for specified boundary

conditions, e.g. Tb ¼ constant. The maximum heat flux q* is then established

according to the maximum allowable temperature difference the channel, which

for a given bath temperature Tb is DTm ~ (Tl � Tb). It follows that for a channel of
length L

q� ¼ 1

L

ðTl
Tb

dT

f ðT; pÞ
� �1=m

(7.6)

Table 7.1 Polynomial

coefficients for (7.4)

(Sato [6])

a0 ¼ �71.818 a1 ¼ 1.2172617 � 103

a2 ¼ �1.4992321 �104 a3 ¼ �3.9491398 � 105

a4 ¼ �2.9716249 � 106 a5 ¼ �1.2716045 � 107

a6 ¼ �3.8519949 � 107 a7 ¼ �8.6644230 � 107

a8 ¼ �1.2501488 � 108 a9 ¼ �8.1273591 � 107

Fig. 7.4 Normalized thermal conductivity function at various pressures (Sato [6])
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This integral is mostly a function of Tb and only weakly dependent on other

factors such as pressure. The integrated heat conductivity function is then defined as,

q�L1=m � ZðTbÞ ¼
ðTl
Tb

dT

f ðT; pÞ
� �1=m

(7.7)

which should be independent of channel length. Plotted in Fig. 7.6 are experimentally

determined peak heat fluxes q* for different channel lengths varying everywhere from
0.1 to 3 m. Two different correlations of the data are displayed: Z’(Tb) for m ¼ 3 and

Z(Tb) the other form ¼ 3.4. In either case, the agreement between data and correlation

is acceptable.

By a similar analysis it is possible to determine the pressure dependence of the

maximum heat flux q*. Integration of the corresponding heat conductivity function
f –1(T, p) predicts a decreasing maximum heat flux with elevated pressure. By

analytic integration of (7.2), a prediction can be made for the behavior of q* with

pressure. The results of this analysis for four bath temperatures are displayed in

Fig. 7.7. Also displayed are experimentally observed [4, 12] maximum heat fluxes

for short channels up to 0.3 MPa. The agreement is again reasonable for the

available data. As discussed above, an improved correlation can be obtained by

using m ¼ 3.4 and the Sato form for the heat conductivity function.

Fig. 7.5 Pressure dependence of the peak value of the thermal conductivity function (Sato [6])
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Fig. 7.6 Generalized steady-state limiting heat flux in He II (as compiled by Seyfert [11]). (a) is

for the case wherem ¼ 3.4; (b) for the case withm ¼ 3. The dashed line in (b) corresponds to near
saturation boiling for a hydrostatic head of 0.1 m

Fig. 7.7 Maximum heat flux in a He II-containing channel as a function of pressure (Data from

Refs. [4] and [12])
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It should be kept in mind that the form and physical explanation for heat transport

in He II place no fundamental limit to the maximum steady state value for q*.
Everything depends on the allowable temperature difference. For example, with

Tb ¼ 1.8 K and m ¼ 3, Fig. 7.4 predicts a product q*L1/3 ¼ 7.4 W/cm5/3. Therefore,

for a channel of length 10 mm, this analysis would predict a q* in excess of 70W/cm2

(700 kW/m2) truly a remarkable heat flux for liquid helium temperatures.

Example 7.1

Consider a 1 m long, 1 cm2 cross section channel (see Fig. 7.2) containing He II

at 2 K but pressurized to 0.5 MPa. Calculate the maximum heat flux in the He II

channel.

To calculate the maximum heat flux, one needs to integrate the function. We use

the simplified correlation with m ¼ 3.

q�L1=3 � ZðTbÞ ¼
 ðTl

Tb

dT

f T; pð Þ

!1 3=

Between 2 K and Tl (p ¼ 0.5 MPa). Since the channel is pressurized to

0.5 MPa, however, the appropriate form for f-1(T,p) must be used, see Fig. 7.3.

Fortunately, this integration has already been performed in Fig. 7.7. At 2 K and

0.5 MPa, q*L1/3 ¼ 3 W/cm5/3. Thus, the a 1 m long, 1 cm2 cross section channel,

Q* ¼ 0.65 W.

7.1.3 Peak Heat Flux in Saturated He II

In the discussion above, it has been assumed arbitrarily that the peak heat flux q* is
determined by the condition where the helium adjacent to the heater surface reaches

the l-point. This limit is not always met particularly in He II near its saturated vapor

pressure for reasons having to do with the helium temperature distribution and the

phase diagram, displayed in Fig. 7.8. We begin with the assumption that due to the

high effective thermal conductivity of He II, the helium within the heat transfer

region obeys equilibrium thermodynamics. This assumption allows the state of the

helium everywhere in an experiment or engineering system to be described by a

point on the equilibrium phase diagram.

Now consider a simple example, that of the heat transfer process occurring at the

bottom of a vertical channel containing saturated liquid helium at 1.8 K, 1.6 kPa

(12.5 torr). The heat transfer process is occurring at a certain depth, h, below the

liquid-vapor interface; see Fig. 7.9. Thus, without any heat being applied, the state

of the helium at the bottom of the channel can be described by location ① on the

phase diagram in Fig. 7.8. The pressure applied at the heat transfer surface is

therefore p ¼ p0 + rgh, where h is the hydrostatic head of the liquid helium. If heat
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is applied to induce heat transfer in the system, there will be a local temperature

excursion DT that is determined by heat flow mechanisms as discussed above. The

local temperature increases but the pressure is fixed, unless the experimental

configuration is small enough for the thermomolecular effect to make a significant

contribution. Neglecting this complication for the time being, as an increasing heat

flux is applied, the temperature at the bottom of the channel will increase following

a horizontal line as shown in the inset of Fig. 7.8 until at a certain heat flux it meets

the liquid-vapor interface at which point boiling commences.

The value of the maximum temperature excursion is determined by the slope of

the vapor pressure curve such that for finite DT,

DTm ¼
ðp0þpgh

p0

dT

dp

� �
dp (7.8)

Fig. 7.8 Phase diagram of helium showing condition ① of near saturation and condition ②
of subcooled helium to p ¼ 100 kPa
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The slope of the pressure curve, (dT/dp)sat can be obtained from helium property

tables or database codes. However, it is also known from thermodynamics through

the Clausius-Clapeyron equation,

dp

dT

����
sat

¼ hfg
TDv

� hfg
Tvg

(7.9)

which can be further simplified by assuming the helium vapor to be an ideal gas, that

is vg ¼ RT/p. This results in an approximate form for the allowable temperature

increase,

DTm ’ RT2

hfg
ln 1þ rgh

p0

� �
(7.10)

This expression is suitable for DTm 	 Tb. For larger values of DT it is better to

evaluate the saturation temperature at the pressure corresponding to the given

hydrostatic head.

Under saturation conditions, this means that the maximum DTm the He II can

sustain may be less than that in pressurized liquid where Tm ¼ Tl. How does this

impact the maximum heat flux? Returning to (7.6) and replacing Tl with Tm, we
note that the peak heat flux, q* will be suppressed relative to the results shown in

Fig. 7.6 with the amount of suppression dependent on h, the hydrostatic head.

Considering the example above and let h ¼ 0.1 m, we can recalculate the quantity

q*L1/3 for is case. The result as a function of bath temperature is shown by the

dashed line in Fig. 7.6b. Note that the magnitude of the suppression is small near Tl,
but becomes significant at lower temperatures since in that case, the maximum

temperature, Tm is well below Tl.

Fig. 7.9 Vertical channel

containing in near saturated

He II
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It is worth noting that the pressure corresponding to the l-point is pl ¼ 4.97 kPa

(37 torr), which is equivalent to a column of helium about 3.55 m high. This fact is

important because if a saturated vapor pressure He II system with vertical dimen-

sion larger than several meters is constructed, it would experience a heat transfer

limitation determined by Tl rather than the saturation line.

Example 7.2

Consider a 0.1 m long vertical channel (see Fig. 7.9) containing He II boiling at

1.638 kPa corresponding to a saturated vapor pressure at 1.8 K. Thus, the liquid

free surface is at 1.8 K. If a heat flux is applied to the bottom of the channel, the

temperature at that point will increase until it reaches local saturation at which

point local boiling will occur. Calculate the maximum temperature of the He II

at the bottom of the channel.

Since the liquid level is not very large, we can use the approximate expression

for DTm (7.10),

DTm ffi RT2

hfg
ln 1þ rgh

p0

� �

Substituting values, h ¼ 0.1 m, hfg ¼ 23 kJ/kg, the resulting DTm ¼ 0.025 K and

Tm ¼ 1.825 K. As indicated, this is an approximate result. The more accurate

result would be obtained by calculating the saturation temperature, Ts, corres-
ponding to the pressure p ¼ p0 + rgh ¼ 1,638 Pa + 145 kg/m3 � 9.8 m/s2 �
0.1 m ¼ 1,780 Pa. Then referring to a data base code, one obtains Ts
(p ¼ 1780 Pa) ¼ 1.824 K. These values are very close, since the head is not

large. The result would not be as good if the level were significantly larger.

Alternatively, it is possible to create a subcooled liquid condition whereby the

pressure at the heat transfer surface is higher than that due to the hydrostatic head.

This condition can occur, for example, in a closed volume He II region cooled by a

saturated bath heat exchanger. In this case, the pressure on the closed volume can

take on any value between saturation and the solid line at 2.5 MPa. The subcooled

He II state is shown on the phase diagram, Fig. 7.8, by position②. Here it is assumed

that the applied pressure is 100 kPa. A similar argument to that presented above

applies when determining the temperature excursion; however, in the subcooled

case the maximum temperature is governed by the l-transition (at p ¼ 100 kPa,

Tl ¼ 2.168 K). In this case, the limit on maximum temperature relatively well fixed

and only weakly dependent on applied pressure.

The conditions that exist once the maximum heat flux is exceeded are of great

importance to understanding the heat transfer in this regime, a topic which is

discussed more extensively in Sect. 7.6. Generally, there are two cases that can
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occur, each of which is associated with one of the two conditions indicated on

the phase diagram in Fig. 7.8. For the saturation case, which applies to position ①,

q* corresponds to the helium adjacent to the interface achieving saturation

conditions. A schematic representation of the resulting physical condition for

q > q* is shown in Fig. 7.10a. Displayed is a solid heat transfer surface blanketed

by a vapor film which in turn is bounded by the He II at local saturation

temperatures. This phase boundary is defined clearly because the He II-vapor

transition is first order.

The alternative film boiling heat transfer situation occurs whenever q* is

exceeded under subcooled conditions, such as ② in Fig. 7.8. For this case the

phase transition is between He II and normal liquid He I. Since, with rare

exception, the maximum heat flux in He I is substantially less than that in He II,

exceeding q* under subcooled conditions invariably results in a double transition,

first creating a film of liquid He I followed by boiling of the He I to form a vapor

film. This triple-phase phenomenon brings all three helium states in close proximity

to the heat transfer interface. A schematic representation of this process is shown

in Fig. 7.10b. Through the He II–He I interface, shown as a dotted line in the

figure, the density r and temperature T should be continuous. Visualization

experiments of boiling in saturated and subcooled He II have observed the

interfaces between the vapor-He I and the He I-He II phases [13]. This result

is shown in Fig. 7.11. Being able to observe the He I – He II phase boundary is

particularly significant since the physical properties of helium should be continuous

through the phase transition.

7.1.4 He II Heat Transfer in Cylindrical Geometries

Besides the simple linear geometry represented by a one-dimensional tube with

constantheat flux, there has been considerable work carried out on cylindrical

geometries consisting of a heated cylinder or wire immersed in a large bath of

He II [14–16]. It is easy to show, by assuming that the Gorter-Mellink equations

Fig. 7.10 Schematic of boiling in He II: (a) saturation condition and (b) subcooled condition
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apply in cylindrical geometry, that the steady-state heat transport equation can be

written as

dT

dr
¼ �f ðTÞqm0

r0
r

	 
m
(7.11)

where q0 is the heat flux per unit area of the heated cylinder of radius r0. The
difference in (7.11) occurs because the heat flux decreases as the radius increases.

Comparison of (7.11) with experiment has given reasonable agreement, with

essentially the same heat conductivity function as applies in linear geometries

[17, 18]. In a similar fashion to that applied to (7.3), integration of (7.11) leads to

the maximum heat flux,

q�0 ¼
m� 1

r0

ðTl
Tb

dt

f ðTÞ

 !1=m

(7.12)

The important observation to make about (7.12) is that the peak heat flux q�0 has
as its scaling length r0 rather than L as in the linear system. This means that,

provided the radius of the container is much larger than that of the heater, the

boundary conditions far from the heater should not affect q* significantly. This is

certainly contrary to the behavior in linear geometries.

Fig. 7.11 Subcooled He II boiling showing the He I-vapor and He II – He I phase boundaries [13]
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Unlike the linear one-dimensional system, there have been fewer attempts to

correlate the peak heat transport in cylindrical geometries with that of (7.12). This is

due in part to the lack of reliable data, which are more difficult to obtain in

cylindrical geometries. In one experiment, data were fit for small temperature

differences DT � 10 mK in the range of Tb ¼ 1.8 K [17, 18]. It was found that

the expression given by (7.11) is not entirely suitable to correlate the experimental

values of q�0 without introducing a radius-dependent quantity C defined by

q�0 ¼
2C
r0

ðT0

Tb

dT

f ðTÞ

 !1=3

(7.13)

where T 0 ’ Tb + 0.01 K. C was found empirically to depend on radius, being

roughly proportional to r
1=2
0 . The results of this correlation are shown in Fig. 7.12.

Note thatC is always less than 1, indicating that the peak heat flux is always less than

that predicted by the idealized theory. This fact is somewhat surprising because the

temperature gradients appear to be given accurately by (7.11).

7.1.5 Static Bath He II Heat Exchangers

He II heat exchangers are indispensable components for superconducting magnets

and other systems cooled with pressurized He II. However, because of the unusual

properties of He II, specifically the high effective heat conductivity and strong

Fig. 7.12 Empirical correlating function for heat transfer in cylindrical geometries [17, 18]
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temperature dependent heat capacity, conventional heat exchanger design methods,

such as effectiveness or NTU, are not suitable. In this section, we discuss the design

of He II heat exchangers based on the available transport equations.

There have been a number of He II heat exchangers designed and developed for

applications. The most common of these is the static bath type system, shown

schematically in Fig. 7.13. The principal component of this system is a saturated He

II reservoir of active length L and cross section A in thermal contact through its

surface to a surrounding pressurized He II reservoir. Any heat generated in the

pressurized He II reservoir must be transferred through the solid wall to the

saturated bath where it is removed by evaporation of the liquid. For this type of

system, there are three design criteria:

1. The surface area of the heat exchanger must be large enough to transfer the heat

with minimal DT between the two reservoirs. Normally, the surface heat transfer

process is controlled by the Kapitza conductance of the heat exchanger material

and possibly thermal conduction through the solid wall. These quantities com-

bine into an overall heat transfer coefficient, U. It is important to make the heat

exchanger of copper or other high conductivity material to avoid a significant

conduction thermal resistance.

2. Boiling in the bulk liquid within the heat exchanger should be avoided. This

means that the liquid should be subcooled by the hydrostatic head enough to

avoid surface boiling which could degrade performance.

3. There must be sufficient He II cross section in the saturated bath to transport the

heat by counterflow with a small temperature gradient.

The beginning point for the analysis of a static He II heat exchanger is the steady

state He II heat equation with surface heat transfer,

d

dx
f ðTÞ�1 @T

@x

� �1
3

� PU

A
T � Tbð Þ ¼ 0 (7.14)

Fig. 7.13 Schematic of a

simple static He II heat

exchanger

242 7 He II Heat and Mass Transfer



where f(T)�1 is the He II heat conductivity function appropriate for fully developed

turbulent conditions and T is the temperature of He II within the heat exchanger.

U is the overall heat transfer coefficient between the two reservoirs. Equation (7.14)

can be simplified by making the following change of variables:

Y ¼ Tb � T

Tb � T0
(7.15a)

and

mHeII ¼ PU Tb � T0ð Þ2 3=

f�
1
3A

" #3
4

(7.15b)

With the constant properties assumption the following dimensionless equation

results,

d

dx

dY
dx

� �1 3=

� mHeII
4
3Y ¼ 0 (7.15c)

Equation (7.15a) is analogous to the classical fin equation in conduction heat

transfer except for the non-linear thermal conduction feature of the He II. However,

the solution to (7.15a) is similar and can be preformed semi-analytically depending

on boundary conditions [19]. Just as in the case of the fin equation, the boundary

condition at the end of the heat exchanger determines the exact form of the solution.

If we define the origin at the surface of the He II, the boundary condition at x ¼ 0

isY ¼ 1 by definition. The fluid temperature increases away from the free surface.

The boundary condition at the bottom of the heat exchanger (x ¼ 1) can have

difference cases:

1. Convection heat transfer: f�1 dY
dx

� �1
3 ¼ UYL Tb � T0ð Þ23

2. Adiabatic: dY
dx

� �1
3

L
¼ 0

3. Prescribed temperature: Y x ¼ Lð Þ ¼ YL

4. Infinite length: Yðx ¼ LÞ�!L¼1
0

and mHeIIL is dimensionless fin length. Each case has a slightly different form for

the solution. Typically, in a good design mHeIIL ~ 1; however, it can take on any

value. If mHeIIL >> 1, then the heat transfer process is only weakly affected by the

boundary condition at x ¼ L and the infinite length solution is a good approxima-

tion for all cases.

To calculate the total heat transfer through the heat exchanger, one integrates

(7.15c) one time to obtain the temperature gradient, dY/dx. This quantity is then

evaluated at x ¼ 0 such that,

Q ¼ �A f�1 dT

dx

� �1
3

x¼0

(7.16)
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The result of this calculation is an expression for the total heat transfer,

Q ¼ MHeII 1� gð Þ14 (7.17)

Where MHeII ¼ 1.19A[mHeII f
�1(Tb – T0)]

1/3 which is analogous to the total heat

transfer expression obtained from the fin equation. The dimensionless quantity g is

a function of the particular boundary conditions imposed at x ¼ L. The

corresponding form for g is listed in Table 7.2. Note that if g << 1, the total heat

transfer is only a weak function of the boundary conditions at x ¼ L and the infinite

length heat exchanger is a good approximation with Q ¼ MHeII.

The temperature profile along the heat exchanger can be further calculated by

integrating (7.15c) a second time. This solution depends on the choice of boundary

condition at x ¼ L. The resulting general solution for the temperature profile is

obtained by solving the integral,

ð1
YL

dY

Y2 � g
� �3

4

¼ 1:68mHeIIx (7.18)

For all boundary conditions except the infinite heat exchanger, the solution of

(7.18) requires numerical methods. For the special case of the infinite channel,

g ¼ 0 and QL ¼ 0, which leads to the closed form solution,

YðxÞ ¼ 1

0:84mHeIIxþ 1

� �2
(7.19)

One can compare the numerical solution for fixed boundary conditions at x ¼ L
to that of the infinite channel. The results for adiabatic solution are shown in

Fig. 7.14.

The performance of a He II heat exchanger can also be treated in a fashion

similar to that of ordinary fins. Using the conventional expression for the effective-

ness of a fin, we obtain

Table 7.2 Coefficients of (7.17) for different boundary conditions:

b ¼ AU3 Tb � T0ð Þ2=2Pf�1 (From Ref. [19])

Boundary condition g Y2
L

Convection heat transfer Y2
L � bY2

L 1
2b � 1

4b2
� 1�ðQ=MHellÞ4

b

h i1=2
Adiabatic Y2

L 1� ðQ=MHellÞ4
Prescribed temperature { {
Infinite length 0 0
{Value is determined by implicit solution
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ef ¼ Qactual

UA Tb � T0ð Þ ¼
2Pf�1ð1� gÞ
U3A Tb � T0ð Þ2
" #1

4

(7.20)

Note that for typical values, f -1 ¼ 10,000 kW3/m5 K, U ¼ 2 kW/m2 K and

(Tb – T0) ¼ 50 mK we obtain ef ~ 30 (P/A)1/4 in SI units. Therefore, for all

reasonable geometries, ef >>1. For short heat exchangers with YL ~ 1, ef is
simply equal to the ratio of the actual surface area to the base area. For long

heat exchangers, whereYL <<1, the effectiveness is still generally much greater

than unity because of the high effective thermal conductivity of the He II.

In a similar fashion, the fin efficiency can be defined as,

�f ¼
Q

UAfinðTb � T0Þ ¼ ef
A

Afin

� �
(7.21)

This quantity is almost always of order unity unlessYL << 1. Typically, �f ~ 1

unless mHeIIL > 1.

Before leaving the subject of He II heat exchangers, it is important to comment

on one of the other limitations to the performance of static saturated bath heat

exchangers. This is related to item 2 above in the list of design considerations. For a

heat exchanger to perform well, the heat transfer process should be only governed

by Kapitza conductance at the heat exchange surface. However, if boiling occurs

Fig. 7.14 Dimensionless temperature profile along a He II heat exchanger. The data points are

obtained by numerical solution of (7.15) for adiabatic boundary conditions with different values of g.
Also shown by the solid line is the analytic solution for g ¼ 0 (7.19)
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within the heat exchanger, it is possible that the performance will be degraded. To

avoid bulk boiling in the bath, we therefore need to ensure that nowhere the heat

exchanger does the He II reach saturation conditions. Such conditions can occur at

various points within the heat exchanger due to the non-linear temperature profile

and varying heat flux within the He II column.

Figure 7.15 illustrates this situation. The free surface of the heat exchanger is

assumed to be fixed at T0, while below that point the liquid is subcooled by the

hydrostatic head (rgh). With no heat load, the temperature in the heat exchanger is

uniform at T0. However, with a heat load, the temperature below the surface

increases due to the Gorter-Mellink heat transfer. The temperature profile is

steepest at the surface of the liquid due to the accumulation of heat flux (q(x))
along the channel. Two representative temperature profiles are shown in the figure.

Boiling will occur if the predicted temperature profile crosses the saturation line,

see Tq2(x). In this case, the slope of the temperature profile at the surface is steeper

than the slope of the saturated vapor curve allowing the bulk liquid to boil locally. If

the heat flux is increases, the boiling region will expand within the heat exchanger.

The critical condition for boiling can be made more quantitative by equating the

slope of the temperature profile at the free surface (x ¼ 0) to the slope of the

saturated vapor pressure line,

dT

dx

����
x¼0

¼ rlg
dT

dp

����
svp

(7.22)

As before, the slope of the saturated vapor pressure line is given by the Clausius-

Clapeyron equation as,

dp

dT

����
svp

¼ hfg
TDv

� hfgp

RT2
(7.23)

Fig. 7.15 Localized region

of the He II phase diagram

illustrating the boiling

condition that can occur in a

static, saturated bath heat

exchanger
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where the last approximate form results from assuming the saturated helium vapor

obeys the ideal gas law. Substituting the form for the counterflow heat transport in

the He II (7.1) and assuming for simplicity that m ¼ 3, the following expression

occurs,

qmax ¼ rlgRT
2f�1

hfgp0

� �1
3

(7.24)

This expression has a peak near 1.87 K at qmax ¼ 14 kW/m2. It decreases from

the peak dominated by the temperature dependence of the heat conductivity func-

tion, f�1(T, p).

7.1.6 He II Two Phase Heat Transfer and Flow

In recent years, applications have emerged that use of He II in a horizontal tube in

co-existence with its saturated vapor. The first of these involves the use of a near

horizontal He II – vapor heat exchanger to cool subcooled He II for the LHC

accelerator magnets [20]. The other recent application involves the use of horizon-

tal two phase He II – vapor lines in large RF cavity accelerators [21]. Proper design

of these systems depends on a thorough picture of the relevant helium

hydrodynamics.

We begin by considering a long, horizontal tube that is partially filled with near

static He II, see Fig. 7.16. In such a system, there are three basic heat transfer

mechanisms: (1) Gorter-Mellink counterflow in the bulk liquid; (2) forced convec-

tion mass transport in the vapor phase; and (3) mass exchange by evaporation or

condensation between the two phases. The addition of the mass transfer between

the two phases makes the heat transfer process in two-phase He II far more complex

problem than that of single-phase He II.

Fig. 7.16 Schematic of He II-vapor two phase flow system
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We first discuss the semi-analytic solution to this problem for which several

simplifying assumptions required. First, the liquid within the tube is assumed to be

in a stratified flow condition with a near horizontal interface between the liquid and

vapor. This is a reasonable assumption based on experiments. Next, thermal

gradients normal to the axis of the tube are assumed to be negligible so that the

problem becomes that of two coupled one-dimensional systems. Finally, the liquid

is assumed to be in local thermodynamic equilibrium with its vapor so that TL(z)
¼ Tv(z), where z is the axial dimension coordinate. The goal is to construct a model

to predict the behavior of the temperature profile, T(z), liquid level or void fraction

(a ¼ Av/A), and liquid, vapor mass flow rates, _ml; _mv and total heat transfer, Q.
For most cases of interest the liquid is nearly static so that the pressure drop

along the tube is determined primarily by friction in the vapor phase, which is given

by the expression,

dp

dz
¼ � 2fF

rvDH

_mv

aA

� �2

(7.25)

where fF is the Fanning friction factor, a is the void fraction and A is the total cross

section of the tube. In (7.25), _mv and a will in general be functions of z so that dp/dz
is not a constant. In a stratified flow system, a is directly related to the liquid level.

At any point along the channel, the total heat flux is a combination of two terms:

the flux of vapor due to evaporation and the counterflow heat flux through the He II.

These two terms sum directly,

QðzÞ ¼ _mvhfg � 1� að ÞA f�1 dT

dz

� �1
3

(7.26)

where the first term on the right is the heat carried by convection of the vapor and

the second is the liquid counterflow heat transport. hfg is the heat of vaporization. In
(7.26) there are three unknowns: _mv, a and dT/dz.

Since the He II and vapor are in thermodynamic equilibrium, it follows that the

pressure gradient may be written in terms of the derivative along the saturation line

of He II and the local temperature gradient,

dp

dz
¼ dp

dT

����
svp

dT

dz
� rvhfg

T

dT

dz
(7.27)

where use has been made of the Clausius-Clapeyron equation, dp/dT)svp ¼ Ds/Dv �
rvhfg/T for an ideal gas which approximates low density helium vapor. Combining

(7.25) and (7.27), we obtain a relation for the temperature gradient in terms of the

vapor mass flux,

dT

dz
¼ �2fDT

r2vhfgDH

_mv

aA

� �2

(7.28)

which is again a relationship between three unknowns dT/dz, _mv and a.
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The third relationship between the unknowns in the problem is obtained by

considering the He II to be essentially static, vl � 0 and using the hydrostatic head

condition on the pressure. In this case with the saturation condition, we can state

that the pressure at the bottom of the channel is a sum of the saturation pressure plus

the hydrostatic head, p0 ¼ ps(T) + rgy where y is the liquid level. Taking p0 to be a
constant and differentiating, it follows that the pressure gradient is directly propor-

tional to the void fraction gradient or slope in the liquid/vapor interface,

dp

dz
¼ �rlg

dy

dz
(7.29)

Again making use of the chain rule and Clausius-Clapeyron equation for an ideal

gas, we obtain a relationship between the temperature and void fraction gradient,

dy

dz
¼ � rvhfg

rlgT
dT

dz
(7.30)

Equation (7.30) suggests that a large temperature gradient will result in a large

slope of the liquid/vapor interface as indicated in Fig. 7.16.

The above expressions has an analytic solution for a rectangular cross section

channel with a constant heat flux [22], which simplifies the problem of relating the

liquid level (y) to the void fraction, a. The results of the analysis were successfully
compared to experiment. An important outcome of the analysis was to show that for

typical geometries of horizontal He II heat exchangers, the heat transported by the

coexisting vapor is roughly ten times as efficient as that carried by counterflow.

Thus, the benefits of horizontal two phase He II cooling systems are evident.

Numerical studies of near horizontal two phase He II-vapor systems has been

performed in the context of RF cavity accelerator development [23]. The goal of

this work was to be able to model the temperatures, flow rates and liquid levels in

existing cryogenic facilities. Such a modeling effort has been sufficiently successful

to add credence to the belief that similar two phase He II systems can be designed

and successfully operated.

An important application of a near horizontal He II – vapor system is the so

called bayonet heat exchanger developed for the LHC, shown schematically in

Fig. 7.17 [24]. This unique design uses a corrugated tube partially filled with He II

to extract the heat loads from the accelerator magnets. The two phase liquid from

Fig. 7.17 Configuration of the He II bayonet heat exchanger [24]
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the refrigerator is expanded into the far end of the heat exchanger with the vapor

returning above the stratified liquid. The heat exchanger works by a similar

principle as discussed above, but in this case the heat flux is determined by the

heat exchange through the wall of the tube into the saturated two phase flow.

The heat transfer rate is determined by the overall heat transfer coefficient of

the heat exchanger, which is equal to the series thermal resistance of the two surface

heat transfer coefficients and the thermal resistance of the corrugated tube. Since

the saturated bath side of the heat exchanger is only partially filled with liquid,

the wetted surface area is not well defined. However, experiments have shown that

a combination of He II film flow and liquid droplet entrainment in the vapor

provides a very effective heat exchange process even for high void fraction [25].

A simplified analysis [24] of the bayonet heat exchanger is based on similar

assumptions as were discussed above in two phase He II flow modeling. In the case

of the heat exchanger, the following assumptions are made. First, the void fraction is

sufficiently high that the pressure drop is determined entirely by the vapor flow rate,

dp

dz
¼ � 2fD

rvDH

_mv

A

� �2

(7.31)

Second, that the total heat transfer, Q ¼ qL, determines the overall change in the

vapor mass flow rate,

Q ¼ qL ¼ hfg _mout � _minð Þ (7.32)

where q ¼ UP(To�Ti), the heat removed per unit length of the heat exchanger.

Third, the vapor quality, w ¼ _mv _mout= at the outlet is assumed to be unity, pure

vapor flow and w0 ¼ _min _mout= . For these conditions, (7.31) can be integrated over

the length of the heat exchanger assuming a circular cross section tube of diameter

D, to yield the total pressure drop,

Dp ¼ 32fD
3p2

q2

rvh
2
fg

L3

D5

1� w30
1� w0ð Þ3

 !
(7.33)

This equation establishes the minimum diameter that meets the pressure drop

requirements. In addition, a criterion is suggested on the maximum vapor velocity

of 5 m/s to ensure that the flow is stratified. This leads to,

A� qL

hfgrvvmax

1

1� w0
(7.34)

Depending on boundary conditions, the two criteria based on (7.33) and (7.34)

yield similar constraints on the heat exchanger design. For example, a 100 m long

bayonet heat exchanger with a 1 W/m heat load would need to have diameter of
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about 50 mm for a DT of 50 mK. This is to be compared to 180 mm diameter tube

that would be required to carry the same heat load over the same temperature

difference in pure thermal counterflow in bulk He II.

7.2 Transient Heat Transport in Wide Channels

A thorough understanding of the time evolution of the temperature distribution in He

II is of the utmost importance to fully describe the heat transfer process. Up until this

point, the assumption has been made that the heat transfer is steady-state and can be

interpreted by using equilibrium thermodynamic models and the helium phase

diagram. This assumption is certainly an oversimplification because there are a

number of time-dependent phenomena that affect the heat transport properties of

He II. To determine the relative significance of transient phenomena in a heat

transfer problem, the following questions must be asked: At what point in time

does a system exposed to some change in the heat flux reach steady state? What are

the physical processes that control this time development? To answer these

questions it is necessary to take account of the energy scales associated with heat

transport in He II.

We begin by considering a one-dimensional channel of length L cooled by a

constant temperature bath at one end, see Fig. 7.2. Initially, the temperature of this

system is uniform at Tb. However, if a heat flux is applied at the end away from the

bath, a temperature distribution will evolve until eventually a steady-state condition

is achieved with the temperature at the heated end being Tm > Tb. Typical transient
and steady-state temperature distributions are shown schematically in Fig. 7.18.

There are a number of energy inputs required to achieve the steady-state

temperature distribution in He II. The first of these we may associate with the

acceleration of the two fluid components, normal and superfluid, to vn and vs,

respectively. Since the fluids are initially at rest, it is necessary to apply sufficient

kinetic energy for steady-state counterflow to be established. For typical heat

Fig. 7.18 Schematic

temperature distributions in

He II under steady-state and

transient conditions
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fluxes, the normal fluid and superfluid velocities are of the order of a few tens of

mm/s. This value leads to a kinetic energy density of considerably less than 1 J/m3,

which we will see is very small on the scale of interest.

Since the He II is initially in the non-turbulent state, a second energy flux which

must be applied to the system is that necessary to create the turbulence. This process

has been described physically in Chap. 6 with an expression for the time required to

create turbulence in a channel being,

t ¼ aq�3=2 (6.109)

The coefficient a is a temperature-dependent function of the order of 105W3/2�s/m3.

Equation (6.109) has no length dependence, presumably because the growth of

turbulence travels at the velocity of second sound and therefore would be essentially

uniform in a short channel at moderate heat flux. Rearranging (6.109) we can

determine the energy required to produce turbulence as,

qt ¼ aq�1=2 (7.35)

which for heat fluxes in the range of a few tens of kW/m2 gives an estimated value

of about 1 kJ/m2. For a channel having a length of the order of 1 m, the energy

density associated with the creation of turbulence works out to be qt � 1 kJ/m3
.

Also of concern is the energy carried by the second sound pulse itself. This

mechanism is probably most important at the highest values of heat flux. Second

sound shock was discussed in Chap. 6 and it was shown that depending on

conditions, an energy as large as 100 J/m2 can propagate along a channel in advance

of the turbulent front. For very short times, this can be the dominant mechanism for

heat transfer and as was mentioned above is probably the mechanism for turbulence

propagation. Still this is not a large amount of energy compared to the heat content

of the He II itself.

The final principal energy input required to create the steady-state temperature

distribution in Fig. 7.18 is that of the enthalpy content of the He II itself. The heat

capacity of liquid helium is very large, particularly near the l-transition where on a
volumetric basis it is of the order of 1 MJ/m3 K. Therefore to establish the steady-

state temperature distribution sufficient heat must be applied to increase the fluid

temperature from that of the bath to its local steady-state value T(x). In practical

systems this increase is of the order of 0.1 K. The required energy density needed to

achieve a given temperature distribution can be written

eC ¼ r
A0L

ðL
0

dx

ðTðxÞ
Tb

CpðTÞdT (7.36)

which is of the order of 100 kJ/m3. Furthermore, as the length of the channel

increases the dominance of this term increases, particularly for long channels with

L ≳ 1 m. Because the enthalpy profile dominates the transient heat input, other
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energies associated with this problem rarely are considered. Therefore, it is

assumed that at least for engineering systems experiencing moderate heat fluxes

(q ~ 10 kW/m2), the transient temperature distribution is controlled by heat trans-

port and enthalpy considerations. As a result, a diffusion like model has been shown

to describe the problem effectively.

7.2.1 He II Diffusion Equation

For background, we consider the time dependent heat transport in a conductive

solid. This process is described by a well-known diffusion equation, which in one

dimension is,

@T

@t
¼ Dth

@2T

@x2
(7.37)

whereDth ¼ k/rC is the thermal diffusivity having units of m2/s. The form of (7.37)

has the inherent assumption of constant properties, k, r, and C. Otherwise, the
equation is somewhat more complex. Equation (7.37) has been solved for a wide

variety of boundary conditions with non-dimensional results applicable to many of

the problems. However, without going through a specific solution for a particular

set of conditions, some physical discussion of its implications can be made.

In particular, it is possible to construct a characteristic time, called the diffusion

time tD, which is obtained by non-dimensionalizing (7.37) and has the form

tD ¼ L2

Dth
(7.38)

where the length L is the total length of the conduction path. For the case of the one-

dimensional rod heated at one end, L is the overall length. The diffusion time is a

measure of the thermal relaxation of the system. In most diffusion problems, the

solution is scaled in terms of the dimensionless Fourier number,

Fo ¼ t

tD
(7.39)

Since the conduction is dominated by exponential terms, tD is not the actual

relaxation time but is proportional to the time required to reach the steady state. For

Fo >> 1, the problem is essentially in steady state, while for Fo ≲ 1, the full

diffusion equation must be considered.

To achieve a high rate of heat diffusion it is necessary to have a high thermal

diffusivity. Solids possessing the largest values of Dth are high-conductivity metals

at low temperatures, where not only if k large, but the specific heat C is small.
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For example, high-purity copper near 4 K has rC � 1 kJ/m3 and a thermal

conductivity k � 1 kW/m K which gives Dth � 1 m2/s. For high-purity metals at

low temperatures the diffusion time constant, assuming a characteristic length

L � 1 m, is of the order of seconds.

Although He II clearly does not obey the simple diffusion equation (7.37), it is

useful nonetheless for physical understanding to make some order-of-magnitude

comparisons. Since turbulent He II in one dimension obeys the nonlinear heat flow

equation given by (7.1), it is possible to define an effective thermal conductivity,

albeit dependent on heat flux,

keff ¼ 1

f ðT; pÞq2 (7.40)

As can be seen in Fig. 7.3, the quantity, f �1(T, p) typically has a value around

10,000 kW3/m5 K near 1.8 K and saturated pressure. Therefore, for a heat flux

q ¼ 10 kW/m2, the effective thermal conductivity is of order 100 kW/m K, which

is about two orders of magnitude larger than for high-purity metals at low temper-

atures. Of course, the heat flux dependence of keff works against the transport of large
heat fluxes. At 100 kW/m2, keff, is reduced by two orders of magnitude to around

1 kW/m K, which is comparable to that of copper in the same temperature range.

The effective thermal diffusivity of He II, Deff, can also be defined according to

the analogy with solid conduction. Around 1.9 K, rC � 0.5 MJ/m3 K, which gives

a value for Deff � 0.2 m2/s. For a characteristic length of 1 m, this effective thermal

diffusivity leads to a characteristic time constant tD � 5 s. Furthermore, since the

diffusion time goes as the square of the characteristic dimension, larger systems

have time constants that can be very long compared to other time constants in

the problem.

To properly treat transient heat transfer problems in He II; however, it is necessary

to use a general heat diffusion equation. The derivation of the equation is analogous to

that of the ordinary diffusion equation although the thermal conduction relationship

must be replaced with the nonlinear Gorter-Mellink expression (7.1). The result may

be written in the form of a one-dimensional heat diffusion-like equation,

rCp
@T

@t
¼ @

@x

1

f ðTÞ
@T

@x

� �1=3
(7.41)

where again we assume for simplicity thatm ¼ 3 in the counterflow heat conduction

term. This expression has a very similar appearance to the ordinary diffusion

equation, with the one exception that it involves an unusual power of the temperature

gradient. Because of the nonlinear character of (7.41), it is apparent that extraordi-

nary efforts are needed to solve this equation. There are in fact several methods

available to treat this equation, here we will only consider approximate analytic

solutions. Numerical solution of the He II energy equation will be discussed in a

subsequent section.
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We begin by casting (7.41) into a dimensionless form by introducing the

variables,

Y� ¼ T � Tb
Tl � Tb

(7.42a)

and

x� ¼ x

L
(7.42b)

t � t

f 1=3rCðTl � TbÞ2=3L4 3=
(7.42c)

Which then reduces (7.41) to dimensionless form as,

@Y�

@t
¼ @

@x�
@Y�

@x�

� �1=3
" #

(7.43)

By analogy to (7.37) one can interpret the quantity DHeII ¼ 1=f 1 3= rC Tl � Tbð Þ2 3=

like a thermal diffusivity for He II with the characteristic diffusion time being

proportional to L4/3. This is a notable difference from classical heat diffusion. In that

case, doubling the characteristic length increases the thermal relaxation time by a

factor of four, while in He II the increase is by a factor of 24/3 ¼ 2.52.

7.2.2 Analytic Solution Methods

One solution method for the nonlinear heat transport equation (7.43) employs a

technique known as similarity solutions [26–28]. This approachmakes use of changes

of variables which reduce the nonlinear partial differential equation (7.43) to a

nonlinear ordinary differential equation that is inherently easier to solve. Thenmaking

the approximation that the heat conductivity function and specific heat are constant

over the range of interest (7.43) can be integrated to obtain the solution. Note that the

constant properties assumption is only a good approximation forY* << 1.

The similarity solution method uses what are termed stretching transformations

which leave the partial differential equation unchanged. The solution of (7.43) is

then determined by choice of boundary conditions. We considered here two

problems of interest. The first problem concerns the application of a constant heat

flux q at x ¼ 0, which is referred to as the clamped flux problem. It leads to

boundary conditions of the form

@Y�

@x�

����
x¼0

¼ � q3fL

Tl � Tb
for all t (7.44a)
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and

Y�ðx; 0Þ ¼ 0 (7.44b)

Y�ð1; tÞ ¼ 0 (7.44c)

The first of these conditions originates from the requirement that the heat flux

q obey the nonlinear heat conductivity equation at x ¼ 0.

It can be shown that the general solution for the temperature distribution should

take a functional form [26],

Y=t1=2 ¼ yðx=t1=2Þ (7.45)

Therefore, a plot of experimental data in this form should provide a universal curve

representing the function y. Displayed in Fig. 7.19 are interpolated results from the

long one-dimensional channel described earlier. The data do in fact follow a

universal curve. In addition, the magnitude of the general solution can be deter-

mined to have a simple form when evaluated at x ¼ 0, that is

DT
t1=2

����
x¼0

¼ a2q2
f

rC

� �1=2

(7.46)

Fig. 7.19 Calculated normalized temperature profile for clamped flux in He II at Tb ¼ 1.8 K and

q ¼ 22 kW/m2 model by Dresner [26] compared to experimental data (inset) [29]
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where a is a proportionality constant of order unity. At large values of x, the result
approaches an asymptotic dependence such that

DT
t1=2

���� ¼ 4
ffiffiffi
3

p

9

� �
1

rC

� �3=2
1

f

� �1=2 t

x2
(7.47)

This expression is exemplified by the linear region on a log-log plot for large x/t1/2.
The above analysis is also able to predict the critical energy flux DE* beyond

which the heat transfer enters film boiling. For the clamped flux problem, this

quantity has been measured experimentally by detecting the time to film boiling,

Dt*, for a given heat flux. A relationship that fits the experimental data has the

simple form

Dt� ¼ kq�4 (7.48)

where k is a temperature-dependent function [29]. The same relationship also

follows from the above theoretical analysis, and k is predicted to take the form

k ¼ rcðTl � TbÞ2
fa4

(7.49)

where a is the same numerical coefficient as given in (7.46). By inserting average

values for the heat conductivity function and the volumetric specific heat into (7.49),

the predicted coefficient k agrees with experiment to within about 20%.

The other problem of interest in one-dimensional transient heat transfer is the

determination of the temperature profile resulting from a given energy deposition.

This pulsed-source problem, which can also be solved by the similarity solution

method, must obey the boundary conditions

ð1
�1

rCðT � TbÞdx ¼DE for all time (7.50a)

Yðx; 0Þ ¼ 0 (7.50b)

Yð1; tÞ ¼ 0 (7.50c)

where DE ¼ qDt is the total thermal energy applied per unit channel area. Again

using the similarity solution method, it can be shown that the pulsed-source

problem has a general solution of the form [27],

Yt3=2 ¼ y0ðx=t3=2Þ (7.51)
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where y0 is another undetermined function. As in the clamped flux problem, (7.51)

is a powerful result because it indicates the form in which to plot data. Plotted in

terms of these variables, the experimental data should follow a universal curve.

By substitution of (7.51) into (7.43), a solution to the temperature distribution

can be obtained with the simplifying assumption of constant properties. The

resulting equation takes the form

DT t3=2 ¼ 4

3
ffiffiffi
3

p DE
f

rC

� �1=2
1

Z4 þ b4

� �1=2

(7.52a)

where

Z ¼ xDEðrCf Þ1=2t�3=2 (7.52b)

and

b ¼ 2 G 1
4

� �� �
3
ffiffiffi
3

p
p

2

¼ 2:855 (7.52c)

That this solution fits the original heat conductivity equation can be verified by the

reader.

Experimental verification of the above analysis is displayed in Fig. 7.20. The

inset shows the time variation of the temperature distribution after a discrete energy

pulse is applied. These data, plotted in the form suggested by the similarity solution,

map out the universal curve given by (7.52a). The universal curve plotted in the

figure has as its necessary input average values for the heat conductivity function

and heat capacity, but when DT is small, these properties do not vary substantially

over the range of interest. The agreement between experiment and theory is entirely

adequate for engineering applications.

7.2.3 Numerical Solution of the He II Diffusion Equation

The above analytical treatment is useful for providing a physical description of the

problem as well as developing scaling relationships to correlate data. However, a

complete solution including the temperature dependence of the physical parameters

is only possible by numerical methods. The usual approach is to apply finite

difference methods. Here the exact differentials in T, x, and t are replaced by finite

differences with an appropriate choice of mesh size. These in turn lead to a set of

simultaneous equations for the temperature at the nodes in the mesh. Solutions of

this type have been carried out for two different boundary conditions [30]. In both

cases the clamped heat flux condition at x ¼ 0 is assumed. However, different
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boundary conditions are applied at x ¼ L where the channel contacts the reservoir.

These conditions have two forms,

dY
dx

����
x¼L

¼ 0 adiabatic end (7.53a)

and

Yjx¼L ¼ 0 isothermal end (7.53b)

Particularly for the first case, it is useful to scale the data in terms of a ratio of

energies (DE*/DE0), where these quantities are defined individually as

DE� ¼ q Dt� (7.54)

Fig. 7.20 Normalized temperature distribution for the helium channel subjected to a pulsed heat

source (From Dresner [27])
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and

DE0 ¼ L

ðTl
Tb

rCp dT (7.55)

Therefore, (7.55) represents the energy applied through the heat transfer surface

which is necessary to reach film boiling at Dt*. The other energy, DE0, represents

the total enthalpy available within the constant cross section channel of length L.
Obviously, for the adiabatic end condition, the ratio DE*/DE0 �1. For short, high-
energy heat pulses such that the heat diffusion length is much shorter than the total

channel length L, the solution is independent of choice of boundary condition

established at x ¼ L.
Plotted in Fig. 7.21 are the numerical solutions to the one-dimensional heat

transfer problem for two different bath temperatures, 1.8 and 2.0 K. In either case

the ratio of energy is plotted versus the scaling parameter qL1/m, where in this case

m ¼ 3.4 by selection of the authors [30]. The data give comparable agreement

for m ¼ 3. Note that for values of qL1/.34 in excess of 10 at 1.8 K and 5 at 2.0 K,

there is no significant difference between the two boundary conditions at x ¼ L.
The steady-state limit corresponds to the results presented in Sect. 7.1.2.

In conclusion, a general comment is in order concerning transient heat transfer in

He II. As noted above the time constant to establish the steady state can be quite

Fig. 7.21 Maximum energy flux for a step-function heat pulse. Steady-state peak heat flux

represents the open-channel solution. DE*/DE0 � 1 is the closed-channel solution: (a) 1.8 K

and (b) 2.0 K (as compiled by Seyfert et al. [30])
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large, particularly in long one-dimensional system. Although this fact may be

surprising considering the extremely high effective thermal conductivity of He II,

it is due to the large heat capacity of He II resulting in a finite thermal diffusivity.

Therefore, care should be exercised when applying steady-state heat transfer

models. It is best first to estimate the thermal diffusion time to determine whether

the system is actually in the steady state. For transient problems, the heat diffusion

model is generally suitable. Unfortunately, it is not known whether there are limits

of this model, and extrapolation beyond the regions where experimental data exist

should be avoided.

7.3 Forced Convection Heat Transport in Wide Channels

We now extend the topic of turbulent He II heat transport to include the effect of

forced convection or net flow velocity. This subject is a somewhat more general

heat transport problem than has been considered so far because it includes an

additional variable, the net flow velocity, v. Forced convection was introduced in

Chap. 6 as part of the two-fluid model applied to He II heat transport.

A general configuration for a forced flow heat transfer problem is shown in

Fig. 7.22. A channel of constant cross section and length L connects two reservoirs

at temperatures T1 and T2. A steady state or transient heat q flux is applied in this case
at one end of the channel and the temperature gradient within the fluid is established.

Breakdown of heat transfer occurs at a peak heat flux, q*, which depends on a

number of factors including the fluid velocity. In fact, this configuration is not easily

obtainable because a temperature difference normally corresponds to a pressure

difference under saturation conditions. However at least in principle, it is possible to

create the appropriate conditions with a frictionless piston that forces the liquid from

volume 1 to volume 2 at velocity v. Alternatively, one could establish these

conditions by forcing He II to flow through a channel of length 2L with both ends

in thermal contact with a reservoir at temperature T2.

Fig. 7.22 Schematic representation of configuration required to obtain forced flow He II
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7.3.1 He II Energy Equation

We begin by developing the heat balance equation that describes the forced flow He

II system [31]. In developing this equation, two fundamental assumptions are made

about the physical behavior of He II. These assumptions are not proved here but are

justified by the analysis of experimental data.

The first assumption is that the heat flow by internal convection mechanisms is

not affected by the net velocity of the fluid. This point has been discussed as part of

the two-fluid model in Chap. 6. As an aside, it is possible to understand physically

the invariance to velocity by analogy to an ordinary heat conduction mechanism. In

the latter case, heat transported by conduction in a moving medium is no different

from that of the medium at rest provided v 	 c, the speed of sound. Furthermore, by

making the normal set of simplifications to reduce the problem to one-dimensional

heat flow in turbulent He II, the nonlinear heat conductivity equation can be used to

describe the heat conducted by internal convection,

qic ¼ � f ðT; pÞ�1 dT

dx

� �1=3

(7.56)

where f-1(T,p) is the same temperature-dependent heat conductivity function. The

power law dependence of (7.56) has been assumed to be 1/3 although the analysis

follows essentially the same procedure if a different coefficient is assumed.

The second assumption is that the heat carried by ordinary convection

mechanisms can be described by the flow of enthalpy between two points in the

system,

qfc ¼ rv Dh (7.57)

where dh ¼ h1 – h2 represents the specific enthalpy difference between

temperatures T1 and T2. For simplicity (7.57) assumes the fluid density to be

constant, which is a reasonably good approximation for He II.

The above two assumptions lead to an equation that is appropriate for analyzing

the temperature profile in forced flow He II. This is achieved by combining

differential forms of (7.56) and (7.57) and equating them to the time rate of change

of the local enthalpy. The resultant equation is similar to the time-dependent heat

equation for static He II except that it contains the extra convection term. In one

dimension this expression takes the form,

r
@h

@t
� @

@x

1

f

@T

@x

� �1=3
" #

þ rv
@h

@x
¼ q0 (7.58)

where the temperature and pressure dependence of the heat conductivity function

is implied. This equation is sometimes referred to as the He II energy equation.
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Given the boundary conditions for a channel containing He II, it is a straightforward

problem to integrate (7.58) and thus determine the temperature profile as a function of

flow velocity and time. Unfortunately, a general solution to (7.58) requires numerical

methods because the equation is nonlinear and the functions such as h and f have rather
strong temperature dependencies.

7.3.2 Steady State Heat Transport: Analytic Solution

A good approximate solution to the steady-state problem, @h @t= ¼ 0, can be

obtained by assuming constant properties, f and Cp, and neglecting pressure drop

effects such that dh ¼ Cp dT. This approximation leads to an exactly soluble one

dimensional differential equation. Making the following change of variables,

Y� ¼ T � T2
T1 � T2

(7.59a)

x� ¼ x

L
(7.59b)

and defining the dimensionless variable,

Kv ¼ rCpvðfLÞ1=3ðT1 � T2Þ2=3 (7.59c)

an exactly soluble form of the Bernoulli equation results,

� d

dx�
dY�

dx�

� �1=3
" #

þ Kv
dY�

dx�
¼ 0 (7.60)

where q0 ¼ 0 has been assumed. Equation (7.60) coupled with the appropriate

boundary conditions can determine the steady-state temperature profile in a one-

dimensional channel.

Before proceeding to the solution, the physical interpretation of the dimension-

less number Kv deserves some comment. As it represents the ratio of the heat

carried by forced convection, rCpvDT, to that carried by counterflow, (f-1DT/L)1/3,
Kv is analogous to the classical Peclet number, Pe ¼ rCpvL k= , that is the ratio of

forced convection to thermal conduction in classical liquids. Therefore, Kv ~ 1

marks the boundary between thermal counterflow dominated heat transfer and

forced convection dominated heat transfer in He II.

The results of integrating (7.60) for a channel of length 2L with its center at T1
and ends fixed at T2 are displayed in Fig. 7.23. The left-hand side of the figure can

be interpreted as the case where the velocity of flow is in the opposite direction to

the heat flow by counterflow while the right-hand side refers to these quantities

working in parallel. Note that the limitations of to the accuracy of this solution are
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primarily in terms of the temperature dependence of the heat capacity Cp and heat

conductivity function f-1(T,p). The solution should be quite good for small DT ¼ T1
– T2 such that DT/T 	 1. The impact of this approximation is seen in the zero

velocity profile (Kv ¼ 0) which is linear, while in fact for large DT the profile has

considerable curvature. Also note that the nonzero velocity profiles for positive and

negative Kv are symmetric about the line corresponding to Kv ¼ 0.

There have been several reports of measured temperature profiles within forced

flow He II which have been compared to numerical analyses based on the theory

described above [32–34]. In general, these measurements have shown temperature

profiles analogous to those displayed in Fig. 7.23. In those cases, (7.60) was solved

numerically and compared to experimental data with good agreement.

Given the solution to the temperature profile it is straightforward to determine

the total heat transport, q ¼ qfc + qic, by integration of (7.60). This result can be

normalized to the form

q

q0
¼ � dY�

dx�

� �1=3

þ KvY� (7.61)

where Kv is defined above and

q0 � T1 � T2
fL

� �1=3

(7.62)

which represents the heat carried by the internal convection mechanisms for He II

having zero velocity (Kv ¼ 0). The results of this calculation are shown by the solid

Fig. 7.23 Normalized temperature distribution in forced flow He II with fixed temperature

boundary conditions Kv ¼ rCpvðfLÞ1=3ðT1 � T2Þ2=3
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curves in Fig. 7.24. The data points are from an experiment by Johnson and Jones [34].

Although there is considerable enhancement of heat transport in the direction of flow

even for small Kv, values of Kv greater than unity are required before the total heat

transport is enhanced significantly in a midpoint heated channel of length 2L. This
result occurs because forced flow suppresses the total heat transport when the velocity

and heat flux are anti-parallel.

7.3.3 Pressure Drop in Turbulent He II

The above solution to the steady state He II energy equation neglected any effect

due to the pressure drop along the channel thus allowing the simplification, dh ¼
Cp dT. However, in forced flow He II, there can be a significant pressure drop

associated with flow. The pressure drop in fully turbulent He II has been measured

for a variety of channel geometries with the most notable feature of these

measurements being the similarity of friction factor to that for classical fluids. In

other words, the pressure drop may be correlated with the expression,

Dp ¼ 2f
F
rv2

L

D

� �
(7.63)

Fig. 7.24 Normalized peak heat flux for forced flow He II with Kv ¼ rCpv(.fL)
1/3 (T1 – T2)

2/3

(Data from Jones and Johnson [34])
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where the Fanning friction factor, fF, is similar to that observed for classical fluids.

For example, for a smooth tube, the friction factors for He II in the Reynolds

number regime ReD > 2 � 104 appear to be fairly well described by the von

Karman-Nikuradse correlation,

1

fF
1
2

¼ �1:737 ln
1:25

ReDfF
1
2

 !
(7.64)

where the Reynolds number is defined by ReD ¼ rvD mn= . At high Reynolds

number, the tube surface roughness begins to play a role in the observed friction

factor tending to an almost constant value. In this regime, the Colebrook correlation

is preferred,

1

fF
1
2

¼ �1:737 ln
k

3:7D
þ 1:25

ReDfF
1
2

 !
(7.65)

Note that both these correlations were discussed in Chap. 4 in the context of

pressure drop in classical helium flow. For non circular cross section channels,

present evidence suggests that the friction factor may also be correlated by classical

correlations based on the Reynolds number.

Figure 7.25 shows measurements of the turbulent friction factor for He II

compared to the classical correlations above [35]. Similar results have been obtained

for other geometries [36–39]. One can easily see that the agreement is reasonable.

Fig. 7.25 Friction factor for He II forced flow compared to classical correlations (Fuzier [35])
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This result can be understood in terms of the two fluid model. In relatively high

Reynolds number flows, both fluid components can be assumed to be fully turbulent

with the superfluid component containing a very high vortex line density that

interacts with the normal fluid component. In this case, the two fluids are strongly

coupled together in motion. On the other hand in the viscous boundary layer, the

normal fluid velocity profile is what controls the wall friction. Thus, the friction

factor should scale with the classical Reynolds number with the relevant density and

velocity being that of the total fluid while the viscosity scale is that of the normal

fluid component, mn.
The above development for the most part assumes that the helium flow is fully

developed and turbulent. This allows both the use of the turbulent pressure drop

correlations and the turbulent heat transport relation. More complex phenomena

can occur particularly in flow systems consisting of narrow channels in laminar

flow, which can lead to fountain effect driven flows. We return to this topic in a later

section.

7.3.4 He II Joule Thomson Effect

Walstrom considered the problem of steady state forced flow He II with pressure

drop [40]. In this case, the enthalpy gradient must include the pressure terms,

@h

@x
¼ @h

@T

� �
p

@T

@x
� @T

@p

� �
h

@p

@x

� �� �
¼ Cp

@T

@x
� mj

@p

@x

� �
(7.66)

where mj ¼ bT�1
rCp

is the Joule Thomson coefficient with b being the bulk expansivity.

For He II, b is relatively small and negative (b ~ �0.01 K-1) so that mj is negative
and dominated by the incompressible term. In addition, since the pressure gradient

may be large in this case, it is no longer possible to neglect that contribution to the

He II two fluid equations (6.98) and (6.99). If one further makes the assumption that

the pressure gradient can be replaced by Dp/L and replace mj by �1/rCp, then the

full energy equation results,

rCp
@T

@t
� @

@x

1

f

1

rs
Dp
L

þ @T

@x

� �� �1
3

þ rvCp
@T

@x
� v

Dp
L

¼ q0 (7.67)

The full solution to this equation requires numerical methods.

Before discussing the solution to (7.67), it is instructive to gauge the relative

importance of the pressure and temperature gradient terms. Obviously, if the pres-

sure drop is small, then (7.67) reduces to (7.58). On the other hand, if the pressure

drop approaches Dp ~ rCpDT, then its impact must be considered. A typical value

for rCp ~ 1 MJ/m3 K and DT ~ 0.1 K. Therefore, as long as Dp<<100 kPa (1 atm)
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the impact on the temperature profile will be small. For high velocity flows or very

long channels, this condition is not met and one must use the full energy equation.

In steady state He II flow, the above expression predicts a monatonically

increasing temperature profile along the channel. Walstrom solved the steady

state problem analytically by making the following substitutions,

T0 ¼ 1

rCp

q0L

v
þ Dp

� �
(7.68a)

x� ¼ x

L
(7.68b)

t ¼ T

T0
(7.68c)

b ¼ fL rvCp

� �3
T2
0 (7.68d)

and

c ¼ Cp=s

1þ q0L vDp=ð Þ (7.68e)

Note that according to the empirical fit to the heat capacity of He II (6.29b), the

numerator in (7.68e) can be approximated by a constant, Cp s= � 5:6.
Consider the case where q0 ¼ 0, such that the resulting temperature gradient is

entirely due to friction. In classical non-conductive fluids, this condition results in a

continuous temperature increase with the slope of the temperature profile is directly

proportional to the Joule-Thomson coefficient, mj. Figure 7.26 shows the calculated
temperature profile for fixed temperature boundary conditions.

7.3.5 Transient Heat Transport in Forced Flow He II:
Numerical Solution

There have been a number of efforts at modeling transient heat transport in forced

flow He II [41–44]. In the present context, there is insufficient space to discuss the

methods in detail and the reader is encouraged to consult the original references for

more information. Here we summarize the methods used by Fuzier to model this

problem [44].

The principal challenge to the numerical solution of (7.67) is the non-linear

nature of the partial differential equation. In particular, the fractional power to the
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heat conductivity function must be handled with care to avoid numerical

instabilities. Fuzier used a semi-implicit finite difference scheme to discretize the

energy equation:
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(7.69)

where Xn
i represents the value of X at the node i after n time intervals. This scheme is

first order accurate in time and second order accurate in space. This model was used

to compare to transient heat transfer measurements on a 0.86 m long, 10 mm ID

channel at fluid velocities up to 20 m/s. A uniform grid consisting of 8,000 nodal

Fig. 7.26 Dimensionless temperature profile due to the Joule Thomson effect in He II forced

flow with constant temperature boundary conditions. In this case, q0 ¼ 0 and T0 ¼ Dp/rCp (From

Walstrom [40])
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points was used to represent the length of the test section. Time steps of order 10 ms
were typically used for the solution. The initial condition before the generation of

the pulse corresponds to the steady-state, linearly increasing temperature profile in

the test section due to the Joule-Thomson effect.

A heat pulse that is deposited locally in a channel containing forced flow He II

will produce a temperature rise that propagates along the channel at approximately

the net flow velocity, v. As the thermal pulse moves along the channel, it will

experience an overall increase in its background temperature due to the Joule

Thomson effect. For example, at a velocity of 10 m/s and T ¼ 1.7 K, forced flow

He II increases its temperature at about 30 mK/m of channel length. In addition, the

pulse temperature profile will broaden due to diffusion in the He II. The time scale

for this process is similar to that discussed in Sect. 7.2, but is not generally

dependent on the fluid velocity.

As an example, Fig. 7.27 displays two cases of transient heat transfer experimental

results compared to the numerical model. Both are for the same base temperature,

Tb ¼ 1.7 K and the same heat pulse, 99 kW/m2 for 20 ms. The only difference is the

fluid velocity which is 2 m/s in Fig. 7.26a and 16m/s in Fig. 7.26b. It is quite apparent

that the He II energy equation does a good job of modeling the shape and propagation

of the heat pulse. One should note that this level of agreement is not always achieved.

In particular, at intermediate velocities (4 m/s < v < 14 m/s), the model deviates

from the experimental results. At present, this observation appears to be the result of

the formulation of the solution. In the case where there is significant pressure drop, the

heat flux in the He II is given by,

q ¼ � 1

f

1

rs
Dp
L

þ @T

@x

� �� �1
3

(7.70)

The problem occurs when the pressure drop and temperature gradient are of roughly

equal magnitude and opposite sign, which can occur in regions on the trailing edge

of the pulse. This is a physically unrealistic aspect of the model.

7.4 Heat and Mass Transfer in Porous Media

7.4.1 Steady Laminar Heat Transport in He II

The problem of He II heat and mass flow through porous media is significantly

different from flow in wide channels. In particular, much of the porous media fluid

dynamics is in the laminar regime and the transition to turbulence. Further, the

geometry of porousmedia is not well characterized as one has with a one-dimensional

channel and involves multidimensional flow. Thus, we need to consider issues of how

to model the geometry of the porous media. These issues are similar to those

appropriate for classical fluids in porous media, a subject introduced in Sect. 4.4.
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As was discussed in Chap. 6, laminar flow conditions occur in He II whenever

the fluid velocity is below the critical velocity. These conditions can occur even in

static He II, since heat transport causes a relative velocity of the two fluid com-

ponents. In He II there are two relevant critical velocities: vsc which is associated

with the onset of turbulence in the superfluid component and vnc for the normal fluid

component. vsc depends strongly on the method by which it is measured. To remind

the reader from Chap. 6, most experimental data are correlated to the empirical

relationship,

Fig. 7.27 Experimental and numerical time evolution of the temperature profile at various

locations in a 0.86 m long, 10 mm ID channel. The smooth lines correspond to the numerical

model. A 20 m long, rectangular heat pulse of power density 99 kW/m2 was generated at t ¼ 0.

Tb ¼ 1.7 K. The flow velocity: (a) 2 m/s, (b) 16 m/s [44]
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vsc ’ d�1=4 in cgs units (6.86)

where d is the characteristic diameter of the channel. On the other hand, the normal

fluid critical velocity is interpreted in terms of classical turbulent onset such that,

vnc � mnRec
rd

(6.88)

where the critical Reynolds number is Rec � 1,200. Note that this relationship

involves the normal fluid viscosity but the total density.

Laminar heat flow in He II, which occurs for low normal fluid velocities in narrow

channels, the heat conductivity equation may be written in a form similar to Fourier’s

law although the function of proportionality varies as the square of the diameter,

q ¼ �ðrsdÞ2T
b�n

dT

dx
¼ �gðTÞ d

2

b
dT

dx
(7.71)

where g(T) ¼ (rs)2T/mn. b is a numerical coefficient that depends on channel

geometry; b ¼ 12 for parallel plates and b ¼ 32 for circular tubes. The laminar

flow heat conductivity function, g(T), increases strongly with temperature

dominated by the dependence of (rs)2T ~ T12. Figure 7.28 displays g(T) between
1.2 K and Tl. Appendix A.3 gives numerical values for this coefficient at saturated

vapor pressure.

Fig. 7.28 Proportionality function in the He II laminar flow equation
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In the laminar flow regime, due to the isentropic nature of the system, the pressure

drop due to flow is related to the temperature gradient through London’s Equation,

dp

dx
¼ rs

dT

dx
(7.72)

The Fountain Effect, a unique feature of He II, can be understood in terms of this

expression. Specifically, in ideal superflow, a temperature gradient induces a

pressure gradient, which in practice can lead to net mass flow of the fluid.

In the laminar flow regime, the heat flow induced pressure gradient is related to

the temperature gradient through London’s equation. The result is given by,

q ¼ � rsd2T
bmn

dp

dx
¼ �gðTÞ d2

rsb
dp

dx
(7.73)

where b is the same geometrical factor as in (7.71). This relationship can be easily

integrated over finite lengths and temperature difference to give practical results.

7.4.2 He II Heat and Mass Transfer Through Porous Media

In porous media, the geometry is not as well defined and the characteristic dimen-

sion, d, is more difficult to know. In laminar (Darcy) flow, the pressure gradient is

related to the permeability KD of the medium,

dp

dx
¼ � m

KD
U (7.74)

where U is the average approach velocity. KD is proportional to the square of the

pore diameter times the porosity, a. For a typical pore diameter dp ¼ 1 mm and

porosity of 10%, that means the KD ~ 10-13 m2. By analogy in the case of He II flow

through porous media, one can write the laminar flow equation as,

dp

dx
¼ �o

mn
KDn

Un (7.75)

where Un is the normal fluid velocity averaged over the sample cross section. This

equation also contains the tortuosity factor, o, to account for the increase in

effective path length compared to the overall thickness of the sample. By definition,

Un ¼ avn, where vn is the normal fluid velocity in the pores. In pure counterflow,

q ¼ rsTvn, so one can substitute for the normal fluid velocity,

dp

dx
¼ �o

mn
KDn

�q

rsT

� �
(7.76)

where as written �q is the heat flux averaged over the sample area, �q ¼ aq.
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In the laminar regime, He II obeys London’s equation (7.72), so the temperature

gradient may simply be written,

dT

dx
¼ �o

mn
KDn

�q

ðrsÞ2T

 !
(7.77)

which can be rearranged to,

�q ¼ �gðTÞKDn

o
dT

dx
¼ � gðTÞ

rs
KDn

o
dp

dx
(7.78)

where KDn is the permeability for the normal fluid and g(T) is the temperature

dependent function in Fig. 7.27.

Equation (7.78) can be used to measure the permeability of a porous medium by

recording either the pressure or temperature difference across a sample subjected to

a heat flux [45, 46]. Note that the the value of KDn/o may be different from the

permeability measured by other methods due to the unique properties of He II.

Baudouy et al. [47] even found KDn to be temperature dependent.

Above the critical velocity, the flow through the porous media is no longer ideal

and mutual friction begins to contribute to the temperature gradient. In that case, the

temperature gradient through the material should be described by a modified

version of (7.1),

dT

dx
¼ �f ðT; pÞq3

which becomes,

dT

dx
¼ �of ðT; pÞ �q

a

� �3

(7.79)

where x is the dimension measured through the sample.

Equations (7.77) and (7.79) probably oversimplify the difficulty in calculating

the temperature gradient in He II counterflow through porous media. The quantities,

KDn, a and o are at best approximately known and depend on the method of

measurement. In the turbulent regime, the situation is even more complex due to

the non-linear heat equation (7.1). In the porous medium, the channel cross section

can vary significantly through out the material. Since the temperature gradient is

proportional to q3, regions that constrict the flow will have an even larger effect on

the temperature difference. In fact, there is not much known about the behavior of

the Gorter-Mellink equation in regions of high gradient. Thus, this is a topic worthy

of continued study.

274 7 He II Heat and Mass Transfer



7.4.3 He II Fountain Pumps

Fountain Effect Pumps (FEPs), shown schematically in Fig. 7.29, are unique to

He II. Essentially, this type of pump uses the Fountain Effect to force He II to flow

through a porous plug. A heater at the outlet of the pump provides the chemical

potential difference to drive the fluid flow. Such a device, which has been devel-

oped and demonstrated for space based applications, usually consists of a sintered

ceramic disk or plug with a heater located on the downstream side. Typical pore

size of the material is of order 0.1 mm.

An ideal fountain pump obeys the London Equation and produces a pressure

head corresponding to the temperature difference produced by a heater down-

stream of the flow. If one integrates the London equation (7.72) along lines of

constant chemical potential the corresponding static pressure head is given in

Fig. 7.30. Thus, for an ideal fountain pump, the maximum pressure head is about

50 kPa for a bath at 1.8 K. Higher pump heads can be accomplished by running

several pumps in series. However, the pump head decreases significantly with

increasing mass flow rate.

For an ideal fountain pump, the corresponding mass flow rate is given by the

relationship,

Q ¼ _mSoTo (7.80)

where the subscript o applies to the conditions at the pump outlet. This relationship

suggests that the pump flow rate can be increased by simply adding more heat

downstream, but there are limitations [49]. In a FEP, the addition of heat increases

the temperature of the helium on the upstream side of the pump due to the removal of

the superfluid component. This heat must be extracted by a He II refrigeration system

to maintain low temperature at the pump inlet. Another important limit is the onset of

turbulence above the superfluid critical velocity. To avoid this limit the design a

fountain pump must have sufficient cross sectional area to ensure that the velocity

within the pores does not exceed vc, typically about 100 mm/s for porous media.

Fig. 7.29 Schematic of a Fountain effect pump
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For a porosity of 30%, this velocity corresponds to an approach velocity of about

30 mm/s. Equation (7.80) can be rearranged in terms of the inlet conditions to yield,

_m ¼
_Q

ð1þ Cp=sÞDp rþ siTi=
(7.81)

where si is the entropy at the inlet to the fountain pump and Dp is the hydraulic

pressure head.

Another limitation to the application of FEP is the overall low thermodynamic

efficiency. For an ideal FEP, the ideal thermodynamic efficiency is given as,

� ¼ Dp
rq

¼ 1

1þ Cp=s
ffi 1

6:6
¼ 15% (7.82)

Fig. 7.30 He II phase diagram showing lines of constant chemical potential [48]
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However, this is an upper limit and real pumps have even lower performance. This

efficiency should be compared to typical mechanical pump efficiencies which is of

order 50%. Therefore, the main advantage of a fountain pump is in its ease of

application. The pump consists of a heater and porous plug. There are nomoving parts.

The design of practical FEPs goes beyond the above discussion. To maintain

ideal flow conditions in the pump corresponding to an approach velocity below a

few 10s mm/s, the pump surface area is frequently much larger than the pipe cross

section in the attached flow circuit. If these conditions are exceeded, pump perfor-

mance will degrade; however, the FEP will continue to pump the helium until the

inlet temperature exceeds Tl.

7.4.4 He II Vapor: Liquid Phase Separators

Another unique application for porous media is with He II- vapor phase separators

(VPS) that have been developed for containment of He II in space applications. A

VPS consists of a porous plug, frequently made from sintered stainless steel

powder, which extracts the heat from a He II reservoir by allowing evaporation at

the surface of the plug. In this application, the characteristic pore size is larger than

for the FEP, because it is required to have some flow of the normal fluid component

to ensure operation. A schematic of a VPS is shown in Fig. 7.31.

A He II-vapor phase separator provides a pressure difference across it given by

the London equation (7.72). In use, the upstream side of the phase separator is

wetted with He II while the downstream side is pumped to low pressure, lower than

the saturated vapor pressure of the liquid. The phase separator works in the

following way. Heat generated in the He II reservoir is carried through the porous

plug by thermal counterflow to the liquid-vapor interface, which preferably occurs

within the body of the plug. The heat is then removed by evaporation of the liquid at

low pressure. The associated temperature difference across the plug provides the

fountain pressure to hold the liquid within the He II reservoir. The total vapor mass

flow is determined by this rate of heat generation, _m ¼ Q=hfg. To supply the vapor,

p0, T0 pHe II, THe II

Dp = rsDT

liquidvapor
m

Liquid–vapor phase boundary

VPS

Q

Fig. 7.31 Schematic of a vapor phase separator
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liquid must flow through the plug to the liquid-vapor interface. The heat flow in the

liquid is also given by,

Q ¼ aArsT vn � vð Þ (7.83)

where A is the plug cross section and a is the void fraction. Setting the two forms of

the heat flow equal to each other and substituting v ¼ _m raA= one obtains an

expression for the pressure drop as a function of vn. Then assuming purely laminar

flow in the phase separator, v < vc, the critical velocity, the mass flow rate can then

be written as,

_m ¼ rKDn

b�n

sT

sT þ hfg

� �
Dp
L

(7.84)

where KDn is defined in (7.75). This relationship appears to fit experimental data for

small mass flow rates. If the velocity within the plug exceeds vc, turbulence in the

superfluid degrades the performance and themass flow increasesmore slowlywithDp.
The design of a porous plug phase separator is dependent on first knowing the

mass flow needed to extract the heat load to the He II reservoir. The pressure drop

across the plug is determined by the desired operating temperature of that reservoir.

The physical dimensions and pore size of the porous plug follow by analysis of

(7.84). Most phase separators developed for space applications consist of a sintered

stainless steel structure with a typical pore size is between 1 and 10 mm [50, 51].

7.5 Kapitza Conductance

A very different problem of heat transfer in He II relates to that which occurs at an

interface between a solid and the liquid. This process is in contrast to heat transport

in the bulk fluid, which has been the subject so far. Surface heat transfer is more

controlled by the interfacial character, including the properties of the solid state,

rather than that of the bulk He II. In general, there are two regimes of surface heat

transfer in He II as exemplified by the two positive slope portions of the heat

transfer curve; see Fig. 7.1. At low DT, no boiling occurs and the heat transfer is

controlled by a phenomenon called Kapitza conductance. At high DT and for heat

fluxes greater than q*, the surface is blanketed by a film of He I or vapor or both. In

this region, the heat transfer is determined primarily by the character of the vapor

film. The present section concerns itself with the first problem, that of heat transfer

directly from the solid surface into the liquid He II or Kapitza conductance.

Section 7.6 overviews the subject of film boiling heat transfer.

Thermal boundary conductance occurring at the interface between a solid and

liquid He II was first studied by Kapitza [52] in 1941 during an experiment on the

flow of heat around a copper block immersed in the liquid. Within the liquid helium
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the temperature gradients were seen to be negligible; however, a sizable temperature

difference did occur between the copper block and the He II. This discovery

spawned a considerable quantity of fundamental and applied research some of

which is discussed in the present section. However, Kapitza conductance is also of

great technical interest because it often results in the largest temperature differences

in a He II heat transfer problem. For an order of magnitude comparison, a heat flux of

1 kW/m2 can lead to a temperature difference of about 0.1 K across an interface due

to this effect. Within turbulent He II the same heat flux would require about 1,000 m

of one-dimensional channel to produce an equivalent temperature difference!

The general term Kapitza conductance has taken on much broader connotation

over the years since its discovery. In particular, it now refers to the interfacial

thermal boundary conductance which occurs between any two dissimilar materials

where electronic transport does not contribute. Thus, Kapitza conductance occurs at

the interface between a metal and water at room temperature. However, since the

effect is strongly temperature dependent it makes a negligible contribution to the

heat transfer coefficient except at low temperatures. For example, Kapitza conduc-

tance does contribute to the heat transfer process between a metal and He I at high

heat flux, as is discussed in Chap. 5, but in general is neglected in classical fluid heat

transfer because the thermal boundary layer dominates the process.

The measurement of Kapitza conductance is achieved by a method shown

schematically in Fig. 7.32a. A solid of some finite thermal conductivity is in

intimate contact with He II in a one-dimensional configuration. The temperature

at various points within the solid and He II are measured as they vary with applied

heat flux q. In the steady state, a temperature profile is obtained as shown

schematically in Fig. 7.32b. The profile can be extrapolated to the He II-solid

Fig. 7.32 Schematic of Kapitza conductance experiment: (a) temperature sensors located in the

vicinity of a solid-He II interface and (b) temperature profile
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interface to determine the surface temperature difference DTs. By this method, the

bulk properties of the two media can be eliminated from the measured temperature

differences.

Kapitza conductance usually is given an empirical definition; ideally defined in

the limit where q and DTs are vanishingly small,

hK0
¼ lim

DTs!0

q

DTs
(7.85)

where the 0 subscript refers to the limit asDTs ! 0. This quantity has a fairly strong
temperature dependence going as T n with n varying anywhere between 2 and 4. A

more general definition of Kapitza conductance simply relates it to finite values of

q and DTs:

hK ¼ q

DTs
(7.86)

Because of its nonlinear nature, definition (7.86) is of more practical interest to

engineering applications.

There are a number of applications for He II where knowledge of the Kapitza

conductance is of substantial importance. In refrigeration involving He II, its value

strongly impacts the proper design of components, particularly heat exchangers.

Because of the strong temperature dependence, the importance of Kapitza conduc-

tance to heat transfer problems increases with decreasing temperature. In very-low-

temperature dilution refrigeration the Kapitza conductance becomes the

dominating heat transfer process. Knowledge of the Kapitza conductance of

materials at higher temperatures, T > 1 K, is also important. Here the desire is to

cool large devices such as superconducting magnets or space instruments. For

proper design of these devices, it is necessary to have a good knowledge for the

effective heat transfer coefficient.

Although Kapitza conductance is an experimentally defined quantity, there has

been considerable theoretical work aimed at understanding this complex phenome-

non. Therefore, before discussing the empirical behavior of hK any further, a review
of the physical theories used to explain its behavior is presented.

7.5.1 Phonon Radiation Limit

The first theory to successfully characterize the qualitative features of Kapitza

conductance is referred to simply as the phonon radiation limit [53, 54]. The

model is an overestimate of the true Kapitza conductance because it includes too

many energy transport mechanisms. However, the theory does show the proper

temperature dependence of hK.
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A body above absolute zero contains thermal energy, which in the case of

insulators is in the form of a phonon spectrum while for conductors it may be due

partially to the electrons. Phonons are quantized lattice vibrations and are analo-

gous to photons, which of course are quantized electromagnetic radiation. Ignoring

for the moment any effect electrons may have on these concepts, it is reasonably

straightforward to identify the phonon energy spectrum for a particular solid (see

Chap. 2). Since the Kapitza conductance is mainly of interest at low temperatures, it

is not a bad approximation to use the Debye theory to describe this energy

spectrum. In the Debye model, the internal energy may be written as a tempera-

ture-dependent quantity,

Eph ¼ aT4 (7.87)

where a ¼ 3
5
p4ðN=VÞ kB=Y3

D and T 	 YD, the Debye temperature. For most

solids, the Debye temperature is in the range of several hundred Kelvin, making

this approximation quite reasonable for the Kapitza conductance at helium

temperatures.

To quantify the problem of phonon radiation between two media, assume there is

a unit interfacial area dA on which phonons are incident at velocity c. A schematic

of the hemispherical region surrounding this elemental area is shown in Fig. 7.33.

The angle of incidence of the phonon is given in spherical coordinates by y and C,
but only the perpendicular component of the incident phonon transmits the energy.

More detailed theory discussed later includes the coupling of transverse phonons at

the interface, but for simplicity the present treatment will neglect this effect. The

perpendicular component of the velocity can be writtenin terms of the angle y such
that

c? ¼ c cos y (7.88)

The heat flux into the area dA is the then product of the energy density and

perpendicular velocity component such that dq ¼ c⊥ Eph. It follows that the net heat

Fig. 7.33 Hemispherical

region surrounding an

elemental surface area for

phonon heat transfer
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flux per unit area is obtained by integration of dq over the hemisphere in y and C.
This procedure yields

q ¼ 1

4p

ð2p
0

cEph sin y cos ydy ¼ 1

4
cEph (7.89)

In the Debye approximation, the speed of sound in a solid is given as

c ¼ kBYD

�h

6p2N
V

� ��1=3

(7.90)

where for solids c is of the order of 3 km/s while for He II the speed of sound never

exceeds 240 m/s. Substituting (7.90) and (7.87) into (7.89), we obtain an equation

for the total heat flux carried by phonon radiation:

q ¼ sT4 (7.91a)

and

s ¼ p4

10�h

kB
YD

� �2
3N

4pV

� �2=3

(7.91b)

The reader who is familiar with radiation heat transfer should recognize this

form to be analogous to the heat transported by photon radiation. Note that (7.91b)

includes the variable material properties through the molar volume (N/V) and

Debye temperature. The quantity s can vary considerably between materials,

which according to the theory leads to a quite different heat transfer coefficients.

For example, since s is inversely proportional to c2, it follows that the ratio of heat

fluxes by phonon radiation should differ by a factor of 100 between He II and solids

at low temperatures. This is one of the major weaknesses of the phonon radiation

theory in that it only considers the thermal character of the solid.

Now consider the radiation of phonons between two different media, between

which there exists an interface. For the sake of discussion, assume there is no

appreciable temperature gradient occurring in either bulk material and that the flow

of heat from one side to the other produces an interfacial temperature difference

DTs. In order for this interface to be defined as a boundary between two bulk media,

it must be confined to a thickness that is small compared to the characteristic

phonon wavelength, lD ¼ hc/kBYD. For solids lD � 100 mm, which is large

compared to most interfacial dimensions.

The net heat flux through the interface is actually a difference between two

values, the radiant energy incident on the high-temperature side, q(T + DT ),minus

that incident from the low-temperature side, q(T ),

qnet ¼ q T þ DTð Þ � qðTÞ (7.92)
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Assuming that both these quantities can be described in terms of the phonon heat

flux expression (7.91a) and also that the coefficient s is the same in either media, it

follows that the net heat flux is a difference between the phonon radiation

expressions of the two media:

qnet ¼ s T þ DTð Þ4 � sðTÞ4 (7.93a)

which can be expanded to

qnet ¼ 4sT3DT 1þ 3

2

DT
T

þ DT
T

� �2

þ 1

4

DT
T

� �3
" #

(7.93b)

In the limit of small DT, (7.93b) gives an explicit definition for the phonon

radiation limit Kapitza conductance in terms of s:

hpK ¼ 4sT3 (7.94)

where the superscript p refers to the phonon radiation limit. The assumption that s
is independent of media clearly is not accurate, particularly when dealing with

interfaces between solids and He II. However, it is argued that the smaller value of

s (that of the solid) controls the heat transfer because the net heat flux qnet must be

in the direction from high to low temperature. As a reference point, the phonon

radiation limit applied to copper (YD ¼ 343 K, N/V ¼ 0.86 � 1023 cm–3) predicts

a Kapitza conductance of

hpK ¼ 4:4T3 kW/m2 � K (7.95)

or 30 kW/m2 K at 1.9 K. We now compare the Kapitza conductance predicted by

the phonon radiation limit with experiment values.

Listed in Table 7.3 are calculated values from the phonon radiation limit and the

highest values obtained experimentally for typical metals and nonmetals. It is

important to note that the experimental values for the same material vary consider-

ably, in some cases by as much as an order of magnitude. However, since the

phonon radiation limit should represent an overestimate of hK, it is most appropriate

to compare it to the highest measured values. The first result gleaned from this

comparison is that the phonon radiation calculation always gives values for hK that

are higher than experiment, sometimes by as much as an order of magnitude. This

fact is consistent with the understanding that the phonon radiation limit overe-

stimates hK. Second, although it is not apparent from the tabular data, the general

temperature dependence of hK predicted by the phonon radiation limit is borne out.

Recall that experiment yielded a form for hK � T nwith 2 < n < 4. Finally, as with
the phonon radiation limit, there is a measurable dependence of hK on the value of

YD for the particular solid. This fact can be seen most clearly in Fig. 7.31, which is

7.5 Kapitza Conductance 283



a log plot of hK versus Y�1
D . The linear interpolation indicates there is a coloration

of the form

hK / Y�n
D (7.96)

where the phonon radiation limit predicts n ¼ 2 and experiment, as shown in

Fig. 7.34, yields values of n � 1.

There are a number of problems with the phonon radiation limit, particularly

when it applies to solid–He II interfaces. It is clearly a crude approximation to a

complex problem and is limited by the numerous factors incorrectly accounted for

in the theory. These factors include:

1. A failure to distinguish adequately between the different media on either side of

the interface. The Debye temperatures that enter the problems are associated

with the solid media. Any correction to the theory should include the

characteristics of both media.

2. An assumed coupling between both longitudinal and transverse phonon modes.

This is particularly a problem for He II where transverse phonons cannot be

sustained.

3. Reflections at boundaries are not considered, implying a perfect transmission

coefficient. This assumption clearly overestimates the heat transport. A finite

reflection coefficient at the interface would be expected, particularly for

solid–He II interfaces where the phonon spectra are so different.

4. Crystal structure at the interface is ignored. This is potentially an important

factor owing to the solid having long-range order while the liquid is not periodic.

5. Phonons are assumed to be the only heat transport mechanism. However, some

experiments have shown that electrons in metals play a significant role in the

heat transfer at the interface.

Table 7.3 Comparison of highest experimental values for the Kapitza conductance with the

phonon radiation limit (Compiled by Snyder [54])

Solid YD (K) hPK (1.9 K) (kW/m2�K) h K (1.9 K) (kW/m2�K)
Hg 72 440 30

Pb 100 190 32

In 111 171 11

Au 162 155 8.8

Ag 226 55 6

Sn 195 54 12.5

Cu 343 30 7.5

Ni 440 19 4.0

W 405 18 2.5

KCI 230 22 6.9

SiO2 (quartz) 290 19 5.7

Si 636 6.4 4.2

LiF 750 5.1 4.5

A12O3 1,000 1.5 1.6
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6. The existence of interfacial films or impurities is not considered. Layers of

adsorbed impurities can have substantial effect on the heat transfer from practi-

cal surfaces. However, even for clean surfaces the detailed character of the

helium adjacent to the interface must be considered.

The above factors are part of improved theories of Kapitza conductances. The

first such improvement was due to Khalatnikov in 1952 [56]. It basically addresses

the first three objections to the phonon radiation limit as listed above.

7.5.2 Acoustic Mismatch Theory

The first real advance in the theory of Kapitza conductance was made by the

development of the acoustic mismatch theory of Khalatnikov [56]. This theory is

based on an analogy with classical acoustics or boundary scattering in optics.

Fig. 7.34 Kapitza conductance at 1.5 K —largest values observed for each solid (Compiled by

Challis [55])
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In some ways the theory is similar to the phonon radiation limit except that it

includes a very important additional mechanism; that of the finite reflection coeffi-

cient at the boundary between the two media. The basic approach involves the

derivation of the phonon transmission coefficient using conservation of momentum

and energy at the boundary. Because the acoustic mismatch theory explicitly

accounts for the difference between the two media, it is expected to be a better

description for the solid–He II case where the speed of sound differs by an order of

magnitude on either side of the interface.

Consider an interfacial region between two media, for example, a solid and He

II. This example is of current interest so it will be emphasized throughout the

following discussion. The liquid is able to transmit only longitudinal phonons. A

schematic of the interface is shown in Fig. 7.35. By analogy with optics, these

regions can be thought of as a low-refractive-index solid adjacent to a high-

refractive-index liquid. Because of the difference in refractive index, a phonon

that is incident on the boundary from the liquid side would be reflected off the

interface unless its angle of incidence is less than a critical value, ycL. Within this

angle the transmitted phonons are diffracted to an angle ys, on the solid side. The

locus of maximum angles ycL forms a cone of transmission which is determined

solely by the speed of sound ratio in the two media:

ycL ¼ arcsin
cL
cs

� �
(7.97)

For interfaces between metals and He II, the ratio cL/cs is about 0.1, which

corresponds to a critical angle of about 6
. The acoustic mismatch theory assumes

Fig. 7.35 Schematic of

interface between solid and

He II
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that phonons strike the interface between the two media at an angle ys, but only
those that are scattered into an angle less than ycL can be transmitted. All other

phonons are reflected internally.

The above argument can be extended to describe the phonon heat transport

across an interface. The total heat transport is determined by integration over the

cone of transmission, much as was accomplished above for phonon radiation

although now only angles less than ycL are allowed:

q ¼ 1

4p

ð2p
0

dC
ðycL
0

cLEph sin y cos ydy ¼ 1

4
csEph

cL
cs

� �3
(7.98)

Note that (7.98) is similar in form to the phonon radiation limit result except that it is

modified by the ratio (cL/cs)
3, which for solid–He II interfaces is of the order of 10–3.

The above expression theoretically predicts the heat transport carried by

phonons that are refracted into the angle ycL. However, not all phonons that fall

within this cone are actually transmitted, because there is a finite transmission

coefficient for phonons incident on the boundary. This transmission coefficient t is
given in terms of the acoustic impedance Z of each medium:

t ¼ 4ZLZs

ZL þ Zsð Þ2 (7.99)

where ZL ¼ rLcL and Zs ¼ rscs. For the case concerning the solid–He II interface it
is apparent that Zs � ZL and (7.99) can be simplified such that

t ¼ 4
ZL
Zs

¼ 4
rLcL
rscs

(7.100)

As an example, consider the interface between He II and copper. In this case

Zs � 103 ZL, which corresponds to a transmission coefficient of approximately 0.5%.

Combining the equations for the heat flux (7.98) and the transmission coefficient

(7.100), we find that an expression for the transmitted heat flux is

q
t
¼ q� t ¼ rLc

4
L

rsc4s

� �
csEph (7.101)

which is similar to the phonon radiation limit except for the extra term in the

parentheses.

An additional aspect to the acoustic mismatch theory concerns the fact that the

fluid can sustain only longitudinal phonons. Instead of the expression for the energy

density used in the phonon radiation limit, in the acoustic mismatch theory the

expression must include only longitudinal phonons. Thus, the corresponding form

for the energy density is
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EL
ph ¼

4p5k4BT
4

15�h3c3L
(7.102)

Combining the energy density equation for longitudinal phonons (7.102) with

the transmitted heat flux, we obtain qt given by (7.101), a temperature-dependent

expression for the transmitted heat flux:

qt ¼ 4p5k4BrLcL
15�h3rsc3s

T4 (7.103)

As with the phonon radiation limit it is possible to replace the prefactor in

(7.103) by s.
The net heat flux across the interface is obtained by subtracting the incident flux

on either boundary. By suitably redefining s it is possible to use (7.93) and (7.94) to

predict the Kapitza conductance in the acoustic mismatch theory. For a small

interfacial temperature difference, the result is

hAK ¼ 16p5k4BrLcL
15�h3rsc3s

T3 (7.104)

where the superscript A refers to the acoustic mismatch theory. Note that the

expression for the Kapitza conductance derived from the acoustic mismatch theory

is determined by the properties of both media, a dependence left out of the phonon

radiation limit. A more rigorous calculation in the acoustic mismatch theory

replaces the sound speed in the solid, cs, by its transverse component, ct.
It is more convenient to have an expression for the Kapitza conductance in terms

of the Debye temperature and other properties of the media. By replacing the

transverse speed of sound ct by its expression in terms of the Debye temperature

YD, a simplified expression is obtained:

hAK ¼ 6p4

5

� �
RFrLcLT

3

MY3
D

(7.105)

where R ¼ 8.31 J/mol K is the universal gas constant and M is the molecular

weight. The multiplicative factor F, which is a function of the ratio ct/c, is included,
but for most solids, F is of the order of unity and so is not a particularly important

factor in (7.105). For helium properties at saturation pressure and assuming

F ¼ 1.6, we can simplify to a useful form,

hAK ¼ 5:5� 107
T3

MY3
D

� �
kW=m2 � K� �

(7.106)
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where M is in units of g/mol. As is the case with the phonon radiation limit, the

acoustic mismatch theory predicts a variation of hAK with the Debye temperature as

hAK �Y�3
D .This dependence is similar to that of the phonon radiation limit, hPK � Y�2

D .
However, both theoretical approaches overestimate the experimentally determined

Debye temperature variation, hK � Y�n
D where n � 1.

7.5.3 Small Heat Flux Kapitza Conductance (DT 	 T)

Now consider the relationship between the above theoretical treatments and actual

experimental data. Plotted in Fig. 7.35 are model calculations and experimental data

for the Kapitza conductance of a He II-copper interface at temperatures above 1.3 K.

As can be seen in the figure, the phonon radiation limit forms an upper bound to

experimental data consistent with the model excluding boundary scattering effects.

Similarly, the Khalatnikov acoustic mismatch theory predicts a Kapitza conduc-

tance about 200 times smaller than the phonon radiation limit. Insertion of numerical

values for copper into (7.106) results in the expression for the Kapitza conductance,

hAK ¼ 0:021T3 kW/m2 � K (7.107)

The experimental data displayed in Fig. 7.35 show basically the same tempera-

ture dependence with some variations. The best fit to these data indicate hK
proportional to Tn with n ranging between 2 and 4. Perhaps more surprisingly

from the experimental viewpoint is that the magnitude of hK at a given temperature

varies by at least an order of magnitude among samples. Part of this variation can be

attributed to surface morphology. The upper shaded region in the figure is for

copper surfaces that are cleaned carefully either chemically or mechanically and

perhaps recrystallized at room temperature to reduce surface strain. On the other

hand, lower values are generally obtained for dirty surfaces, indicated by the lower

shaded region, for which less effort was made to maintain surface cleanliness.

Based on the available experimental data, approximate forms for the Kapitza

conductance in this temperature range are suggested:

hK ’ 0:9T3 kW/m2 � K for clean surface (7.108)

’ 0:4T3 kW/m2 � K for dirty surface (7.109)

with potentially as much as a factor of two variation in value.

It can be seen from Fig. 7.36 that although the theoretical treatments bracket the

experimental data, neither does a particularly good job of predicting the results.

Nevertheless, the physical interpretation contained in the acoustic mismatch theory

generally is believed to be correct. In fact, the theory does a much better job of

interpreting the magnitude of hK in the very-low-temperature regime, T < 0.3 K [57].
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Therefore, the problem with the theory appears to be that it does not include additional

thermal coupling mechanisms which can make a large contribution, particularly at

relatively high temperatures, T > 1 K.

A number of improvements to the acoustic mismatch theory have attempted to

bring the calculations in closer agreement with experiment. One such improvement

adds to the model a high-density helium layer at the interface between the solid and

bulk liquid [57–60]. The existence of this layer has been demonstrated in helium

adsorption studies, see Sect. 10.2. It occurs because the helium molecules are bound

tightly to the surface by van der Waal interactions. Since the interfacial region

consists of several components––the solid, perhaps two high-density atomic layers

of solid helium, and then the liquid – it is possible to have boundary scattering occur

at each of these interfaces. Finite phonon transmission and reflection coefficients

can be assumed to occur at each boundary. Defining the phonon absorption coeffi-

cient v as the fraction of incident phonons that are absorbed, we can make this an

adjustable parameter and fit the data to the best choice of 0 < v < l. This approach

allows for a good fit to experimental data above 0.5 K [54].

Fig. 7.36 Experimental values for the Kapitza conductance of copper between 1.3 K and Tl
(Compiled by Snyder [54])
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There are several additional features to the Kapitza conductance which are worth

noting, partly because they prove the existence of additional physical processes but

also because they relate to problems of applied interest. The first feature to consider

is the dependence of the Kapitza conductance on externally applied pressure.

Plotted in Fig. 7.37 are the ratio of the measured Kapitza resistance (1/hK) at

2 MPa to that at saturated vapor pressure [58, 62]. Also displayed in the figure

are two theoretical treatments, the Khalatnikov theory and the same theory

modified to include the dense helium layer without finite reflection coefficients.

Note first that the experimentally determined ratio is not much different from unity,

particularly in the range of technical interest, above 1 K. The unmodified

Khalatnikov theory on the contrary predicts a sizable effect for all temperatures,

mostly due to the variation of the fluid properties with pressure. For the modified

theory a smaller ratio is predicted, particularly at high temperatures, although it is

still above the experimental results. Because the pressure dependence of the

Kapitza conductance is not a large effect, it is generally not considered in practical

calculations.

A second factor that leads to variations in hK is the application of a magnetic

field. This is an important physical observation for it indicates that there must be

other heat transport mechanisms contributing at the interface. In particular, since

electrons in the solid are affected by a magnetic field, there must be a coupling

between electrons in the metal and phonons in the helium adding to the heat

transport. Two types of experiment have been performed to investigate this effect.

The first has shown a larger Kapitza conductance for a Type I superconductor for

fields above BC. For lead the ratio hK (normal)/hK (superconductor) has been shown

to vary between 1.3 and 3 for different samples. This observation is probably the

most direct evidence of some type of electron-phonon coupling at the interface. For

normal metals such as copper, there have been fewer investigations of the effect of

magnetic field on Kapitza conductance. Some reports have indicated hK for normal

metals increases by about 10% in a 1 T magnetic field. However, there is insuffi-

cient data available to predict this effect to higher magnetic fields.

Fig. 7.37 The ratio of the

Kapitza resistance under

saturated vapor pressure and

under a pressure of 2 MPa

(R0/R20): �, experimental

points; - - -, Khalatnikov

theory; –––, dense-layer

theory (From Wilks [61])
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Beyond the above two experimental features, there is evidence that the Kapitza

conductance is affected strongly by the application of interfacial coatings to the

solid, either in the form of applied materials or adsorbed gases. Generally, coatings

decrease the apparent Kapitza conductance because they tend to the insulating

materials with low thermal conductivities. The effect of a few monolayers of

adsorbed gas has not been investigated thoroughly, although it has little importance

for practical applications where the surfaces are not kept very clean.

7.5.4 Large Heat Flux Kapitza Conductance (DT � T)

Up until this point, the theory and experiments associated with the Kapitza conduc-

tance for small DT have been emphasized. However, in applications of He II large

heat fluxes can occur, which in turn result in large temperature differences across

the interface such that DT � T. Because of this occurrence, it is desirable to

develop a method of handling the heat transfer process for finite DT. Returning to

the simplest theories, either phonon radiation limit or acoustic mismatch for finite

DT, the heat flux through the interface may be written as a sum of terms involving

the ratio (DT/T ), (7.93). It follows that the Kapitza conductance for finite DT is

larger than hK, by the magnitude of this expansion,

hKðDTÞ ¼ hK0
1þ 3

2

DT
T

þ DT
T

� �2

þ 1

4

DT
T

� �3
" #

(7.110)

where for DT/T � 0.5, the bracketed quantity is approximately equal to 2. Note that

the expansion given by (7.110) makes the initial assumption of an explicit T3

dependence of hK0 consistent with theory. However, experimental measurements

vary considerably from this exact form, obeying power laws varying between T2

and T4. Some additional characteristic to the Kapitza conductance may also be

expected to occur when the surface temperature exceeds Tl.
There have been several attempts [62–67] to correlate the Kapitza conductance

for finite DT with the form of (7.110). These have not been entirely successful

largely because of the deviation between the theory and experimental temperature

dependence of this effect. An alternative correlation suggested [65] for practical

applications is:

qs ¼ a Tn
s � Tn

b

� �
(7.111)

where a and n are adjustable parameters. Note that if one equation is able to fit the

experimental data for one sample over the whole temperature difference range, then

it should be possible to expand (7.111) consistent with the low heat flux temperature

dependence. Similar to the behavior of the experimental data for small DT, the high
DT Kapitza conductance also varies considerably with sample. Plotted in Fig. 7.38
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are measurements of Ts as it depends on qs for different materials. A range of results

for copper are shownwhich indicate the variation with surface preparation. Listed in

Table 7.4 is a summary of published data for Kapitza conductance of pure metals at

high DT. Displayed are the surface preparation, surface temperature at a heat flux

q ¼ 10 kW/m2, and the best-fit functional form to these data. Note that most of the

fits give values of n ¼ 3 � 0.5, which is systematically lower than the theoretical

value of n ¼ 4. Also, the best fit to the coefficient in (7.111) is for a ’ 0.05

W/cm2�Kn+1 but with substantial variation. Finally, it is interesting to note that the

variation in Kapitza conductances at large DT is not nearly as great as is obtained in

the limit DT ! 0, where an order-of-magnitude deviation in hk is seen.

Fig. 7.38 Surface temperature versus heat flux for large DT Kapitza conductance

Table 7.4 High heat flux Kapitza conductance fitting parameters for metals at 1.8 K

Metal Surface condition Ts at 10 kW/m2 a (kW/m2�Kn) n References

Cu As received 3.1 0.486 2.8

Brushed and baked 2.85 to

Annealed 2.95 0.2 3.8 [65]

Polished 2.67 0.455 3.45 [67]

Oxidized in air for 1 month 2.68 0.46 3.46 [67]

Oxidized in air at 200
C for 40 min 2.46 0.52 3.7 [67]

50-50 PbSn solder coated 2.43 0.76 3.4 [67]

Varnish coated 4.0 0.735 2.05 [67]

Pt Machined 3.9 0.19 3.0 [62]

Ag Polished 2.8 0.6 3.0 [62]

Al Polished 2.66 0.49 3.4 [63]
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Example 7.3

Calculate the temperature of an “as received” copper surface when subjected to

a heat flux of 5 kW/m2 at 2.1 K using both the small DT approximation and the

empirical correlation for large DT.

For small DT, the Kapitza conductance of as received (dirty) copper is given by

the expression (7.109),

kK ¼ 0:4T3 kW/m2 K ¼ 3:7 kW/m2 K

Ts ¼ Tb þ q=hK ¼ 2:1þ 1:35 ¼ 3:45 K

For large DT, the empirical correlation is given by,

qs ¼ a Tn
s � Tn

b

� �
where for “as received” samples a ¼ 0.486 kW/m2 Kn and

n ¼ 2.8.

Solving for Ts,

Ts ¼ q

a
þ Tn

b

	 
1
n ¼ 2:82K

Note that this is about a factor of two difference in DT, being 1.35 K in the

small DT approximation and 0.72 K in the large flux correlation.

In classical fluid heat transfer, the heat transfer coefficient usually increases with

fluid velocity or Reynolds number, see Chap. 5. This is because the net flow

velocity thins the boundary layer at the heater surface and induces convection. It

is therefore reasonable to ask whether non-boiling heat transfer in He II can

similarly be enhanced by flow. There have been several experimental investigations

on this topic [68, 69].

At first glance, one would not expect enhancement to heat transfer in the Kapitza

regime as long as the fluid remains below Tl. This is because the heat exchange is

controlled by phonon transport and that there is no significant thermal boundary

layer contribution the heat transfer coefficient. Experiments have generally

supported this position, however, the situation is not so simple when the helium

locally transitions to He I by exceeding Tl. In that case, since the fluid near the

heater is either He I or vapor, the helium flow can significantly improve the process.

Furthermore for local heat transfer within a tube, the action of the fluid flow will

also tend to sweep the hot helium away from the heated region which will allow a

more rapid recovery to the non-boiling state once the heat flux is reduced. This

effect is in addition to the overall enhancement to the He II heat transport that can

occur for relatively high fluid velocities, see Sect. 7.3.
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7.6 Film Boiling Heat Transfer

Until now the existence of boiling phenomena in He II has been mentioned only as

the condition reached when the critical heat flux q* is exceeded. However, there are
a number of complicated heat transfer processes that can occur above q* that

deserve more discussion. This regime of heat transfer is of significant technical

importance for its occurrence can lead to catastrophic events in cryogenic systems

where good heat transfer must be maintained continuously. Unfortunately, boiling

heat transfer in He II is one of the least understood process in He II heat transfer.

In He II above the peak heat flux, the fluid in the region of heat transfer can contain

several phases in coexistence. Consequently, the physical interpretation of the heat

transfer processes is more difficult than in single-phase He II. For heat fluxes above

q* there occurs a discontinuous jump in the surface temperature. This transition

marks the formation of a film of helium vapor, liquid He I, or both blanketing the heat

transfer surface. These general characteristics of the transition to film boiling are best

couched in the context of the surface heat transfer curve such as Fig. 7.1. In the film

boiling state, the heat transfer is much less effective because of the low thermal

conductivity vapor film insulating the surface from the bulk He II. Typical values for

the film boiling heat transfer coefficient hfb ¼ q/DTs are 10–100 times smaller than

the Kapitza conductance coefficient. However, these values are strongly dependent of

a number of physical parameters including heater configuration, bath temperature,

pressure, and saturated versus subcooled liquid state. An additional feature in the

heat transfer curve, also commonly observed in He I, is the occurrence of a recovery

heat flux qR that is less than q*. The existence of qR < q* causes hysteresis in the heat
transfer curve, see Fig. 7.1. However, unlike pool boiling He I, this hysteresis is not

observed universally in all He II heat transfer experiments.

There are three possible film boiling conditions that can exist in He II above q*.
To establish which condition is expected for a given set of externally imposed

factors, it is necessary to consider the helium state in the vicinity of the heat transfer

surface. The first condition corresponds to the local pressure at the heated surface

being less than the saturation pressure at the l-point, that is pl ¼ 5.04 kPa. This is

referred to as the saturation boiling condition. It is achieved by having a local

temperature excursion above Tsat, the saturation temperature at the local pressure.

The resulting boiling state is a coexistence of two phases; saturated vapor and He II.

The second condition occurs when the local pressure at the heat transfer surface

is large enough to exceed pl at the heat transfer surface. A consequence of

exceeding q* is the production of a film of low-thermal-conductivity He I which

covers the surface. If the heat flux q is not greater than the corresponding critical

heat flux in He I for that configuration, the heat transfer process will be stable,

allowing nucleate boiling to occur in the He I film and heat conduction in He II.

Note that the boundary between the He II and He I is not clearly defined in this case

because the phase transition from He I to He II is second order, allowing only a

continuous density profile. It is important to be aware that, because q* in He II is

under most circumstances much higher than that in He I, the limiting of this process

to two phases usually only occurs for temperatures near Tl.
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The third boiling condition occurs at the solid-helium interface when q* is

exceeded in subcooled He II for temperatures well below Tl, that is Tb < 2.1 K.

In this regime, the critical heat flux is greater than that in He I and the He I film

becomes unstable and enters film boiling. The result is a triple-phase process

consisting of vapor film blanketing the surface, a very thin He I film, and bulk He

II. As with the second condition, the He I-He II boundary is not sharply defined. It is

apparent that this third film boiling condition, although occurring commonly in

engineering systems employing subcooled He II, is the most complex to understand

because of the existence of multiphase processes.

There exists one additional type of boiling in He II which does not fall in any of

the three above categories. This type of boiling occurs in the bulk fluid rather than at

the interface. It can be achieved only in special configurations where the surface

heat flux does not exceed q* but the channel heat flux surpasses the local boiling

condition. For example, this condition was discussed in the context of the design of

static He II heat exchangers, Sect. 7.1.4. As a result, He I and vapor are nucleated in

the bulk and the heat transport properties of the fluid are modified. This process is

analogous to bulk boiling in ordinary fluids.

The fundamental description of the film boiling heat transfer clearly requires a

more complex theoretical description than considered so far. Furthermore, it appears

that there is no broadly applicable theory capable of handling the multiphase boiling

processes. As a result, most research on this problem is of the category of engineering

correlations combined with empirical evidence. Since the understanding of the

process relies heavily on suitable experimental data, a review of measurements of

film boiling heat transfer coefficients is presented first. Subsequently, a comparison is

made between the available theories and experimental results. Finally, a description

is included of some of the less understood heat transfer phenomena such as recovery

from the film boiling state and time-dependent effects.

7.6.1 Film Boiling Heat Transfer Experiments

The film boiling heat transfer process depends strongly on several factors. The first

of these has to do with the configuration of the heater. Experiments to date have

mainly focused on two heater configurations, flat surfaces and round wires. In the

case of the flat surfaces, some are placed at the end of a He II duct while others are

in an open bath. Round wire heat transfer experiments are almost all done within an

open bath. Recall that the onset of film boiling is determined by the integrated

thermal gradient in the He II, thus in a one-dimensional linear geometry the duct

length and cross section are important factors affecting q*. On the other hand, in a

cylindrical geometry, as discussed in Sect. 7.1.4, the thermal boundary layer is

restricted to occur within a few radii of the heater. Thus, the heat transfer from

cylinders can be studied in a large bath without loss of generality.

The experimental measurements of the film boiling heat transfer coefficient for

various heater configurations have been extensive; however, they have also been

rather restrictive in regime of investigation. The most obvious restriction is
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associated with the total allowable heat transfer, which is a system limitation.

Therefore, film boiling heat transfer surfaces are usually much less than 1 cm2 in

area, which places rather strict constraints on the sample. Historically, most

experiments have been carried out in near saturated He II, leading to a boiling

state consisting of vapor-He II coexistence. More recently, more measurements

have been performed in subcooled He II primarily due to the interest in its

application in large superconducting magnet systems. Thus, the second important

factor impacting the film boiling heat transfer process is the state of the He II bath;

mainly its temperature and pressure.

In near saturation He II, there exist two different regimes of film boiling heat

transfer. These are referred to as “noisy” and “silent” boiling. Noisy boiling is

apparent by the existence of audible sound emanating from the heat transfer region.

Silent boiling, on the other hand, is film boiling without this audible sound.

Frequencies observed in noisy boiling can vary anywhere from a few Hz to tens

of kHz. The frequency is generally a function of heat flux although in no well-

established pattern. The regions of noisy and silent boiling are seen to depend on

bath temperature and depth of immersion.

Plotted in Fig. 7.39 is a map of these two regimes based on one set of data on

wire heaters [70]. This map should not be construed as universally applicable.

It appears from these results that noisy boiling occurs for larger immersion depths

and lower temperatures. The occurrence of noisy or silent boiling also has a

significant effect on the heat transfer coefficient hfb. In regimes of overlap where

either noisy or silent boiling is seen to occur, it is usually the case that a slightly

higher heat transfer coefficient is measured during silent boiling. This effect, which

appears systematic in published experiments, is nonetheless only of the order of

10–20% in the majority of reported results [71–75].

Fig. 7.39 Regimesof noisy and silent boiling fromwire heaters in saturatedHe II (FromLeonard [70])
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Recent experiments performed in saturated and subcooled He II have revealed

the existence of four film boiling regimes in He II [76]. These are the two saturated

boiling states, noisy and silent boiling and two new subcooled boiling states:

strongly and weakly subcooled boiling. A map showing the regime of existence

for these four states for a flate heater is given in Fig. 7.40. Note that the strongly and

weakly subcooled boiling states only exist at pressures above pl.
The existence of the four film boiling states have been confirmed by a variety of

measurement techniques including pressure and temperature fluctuations as well as

visualization. In particular, Takada et al. [77] performed a series of visualization

studies on film boiling on a 50 mm diameter round wire. This work revealed clear

differences in the hydrodynamics of boiling as can be seen in Fig. 7.41. Of note is

the periodic nature of the film boundary for silent and subcooled boiling states

while the noisy boiling is more stochastic. These results can also be used to obtain

an average vapor film thickness that can be correlated with the heat transfer

coefficient.

Fig. 7.40 Regimes of noisy and silent boiling from wire heaters in saturated He II. q ¼ 10 W/cm2

(From Nozawa et al. [76])

298 7 He II Heat and Mass Transfer



We now consider the film boiling heat transfer coefficient. Table 7.5 lists some

typical values for hfb under different conditions and for different configurations.

There is a notable wide range of values of hfb depending on surface temperature,

fluid pressure and heater configuration. However, a few trends are immediately

evident from the data in Table 7.5. First, hfb is generally largest for small diameter

wires such that there occurs approximately a factor of two increase in value with an

order-of-magnitude decrease in heater diameter, dH. As is discussed below, this

behavior can be interpreted in terms of a fairly simple vapor film conduction model.

In addition to the diameter dependence, hfb for cylindrical heaters as well as for flat
plates is also a function of depth of immersion in the saturated helium or externally

applied pressure. Any theoretical effort to model the film boiling heat transfer

coefficient therefore must consider these issues.

As mentioned above, the film boiling heat transfer coefficient is seen to depend

on diameter in a significant way. Plotted in Fig. 7.42 is typical behavior of hfb for
fixed bath temperature and a specific hydrostatic head [72]. The general tendency is

for hfb to increase with decreasing diameter. Also, plotted in Fig. 7.43 are typical

heat transfer coefficients for heated wires as a function of hydrostatic head h and

Fig. 7.41 Visualization of four boiling states in He II heat transfer from a round wire: (a) silent

boiling at 2 K under saturated vapor pressure, q ¼ 19.3 kW/m2; (b) noisy boiling at 2.1 K and

5.3 kPa, q ¼ 373 kW/m2; (c) weakly subcooled boiling at 2.1 K and 16 kPa, q ¼ 601 kW/m2;

(d) strongly subcooled boiling at 2.1 K and 100 kPa, q ¼ 396 kW/m2 (From Takada et al. [77])
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surface temperature, Ts. In general, the heat transfer coefficient increases with

helium head and decreases with surface temperature. At small depths, the relation-

ship is roughly linear with h [72].

The situation that occurs in subcooled He II, where the boiling is associated with

multiphase phenomena, is generally more complex. In addition, there have been

fewer experiments performed under these conditions so data are less prevalent.

Table 7.5 Typical film boiling heat transfer coefficients

Sample Tb (K) Ts (K) Dp (kPa)a h (kW/m2�K) References

Wire (d ¼ 25 mm) 1.8 150 0.56 2.2 [79]

Wire (d ¼ 50 mm) 2.1 80 100 3.6 [77]

2.1 50 10 6.2 “

Wire (d ¼ 76 mm) 1.8 150 0.42 1.1 [79]

Wire (d ¼ 200 mm) 2.05 150 0.14 0.66 [74]

Cylinder (d ¼ 1.45 mm) 1.78 80 0.06 0.22 [75]

Cylinder (d ¼ 14.6 mm) 1.88 40 0.10 0.2 [73]

2.14 40 0.10 0.2 “

Flat plate

Flat rectangular plate 1.8 75 0.14 0.22 [72]

(39 mm � 11 mm) 1.8 75 0.28 0.3 “

1.8 75 0.84 0.55 “

Flat surface (d ¼ 13.7 mm) 2.01 40 0.13 0.69 [4]

2.01 25 0.237 0.98 “
a1 kPa ¼ 7.5 torr ¼ 703 mm He II

Fig. 7.42 Film boiling heat transfer coefficients as a function of heater diameter for constant

hydrostatic head (h ¼ 10 cm)
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However, in general it is observed that the film boiling heat transfer coefficient is

higher in the subcooled condition compared to that at saturation. Furthermore,

higher pressures on subcooled He II tend to increase hfb. This latter effect may be

caused by the increased thermal conductivity of the helium vapor film for higher

pressures. Few investigations of the dependence of hfb on heater diameter have been

reported for subcooled He II.

7.6.2 Theoretical Models for Film Boiling Heat Transfer

A simple model can be constructed to show the origin of the diameter dependence

to the film boiling heat transfer. The model is based on an assumption that heat is

transported through the vapor film by thermal conduction only. The conceptual

picture therefore would represent a stable vapor film of constant thickness d
surrounding the heat transfer surface. Consider a cylindrical heater of radius r as
shown in Fig. 7.43. An estimate of the vapor film thickness d can be obtained from

the relationship

d ¼ k

hfb
(7.112)

where the mean thermal conductivity �k is taken over the temperature range between

the bath Tb and surface Ts. As an example, in Table 7.5 the heat transfer coefficient

for a 76 mm diameter wire is about 1.1 kW/m2 K, obtained for a surface tempera-

ture of 150 K. The average thermal conductivity of helium gas in this temperature

Fig. 7.43 Film boiling heat transfer coefficients versus immersion depth (From Betts and Leonard

[72])
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range is �k � 0:06 W/m K, which corresponds to d ~ 50 mm. This thickness is fairly

large compared to typical heater wire diameter. Also, note that the mean free path in

the vapor is of the order of 1 mm, which is much shorter than the film thickness so

this thermal conduction model could provide a reasonable approximation.

The simple heat conduction model can be used to interpret the diameter depen-

dence of hfb shown in Fig. 7.42. Making one further assumption that the vapor film

thickness does not vary appreciably with heater radius, a relationship can be derived

for the ratio of heat transfer coefficients by simply integrating the conduction heat

transfer through the film (Fig. 7.44):

hðrÞ
h0

����
fb

¼ d=r
ln 1þ d=rð Þ (7.113)

where h0 refers to the film boiling heat transfer coefficients obtained for flat plates.

Thus, as the radius of the heater decreases the film boiling heat transfer coefficient

is expected to increase purely as a result of radial heat conduction. Generally, such a

result is borne out by experiment, see Fig. 7.42.

An alternative model suggested by Takada et al. [77] is based on the steady state

heat transport equation in cylindrical coordinates (7.13). The basis of the model is

to assume that the heat flux through the surface of the vapor film is equal to the heat

conducted through the bulk He II. The stable thickness of the vapor film is then set

by the condition that the heat flux in the He II is q*. Therefore, as the heat generated
in the wire increases, the outer radius of the vapor film must increase to limit the

heat flux. The thicker film would have a lower average thermal conduction, which

would translate to a lower overall heat transfer coefficient. Such a trend can be seen

in Fig. 7.43 as the average heat transfer coefficient decreases with increasing heater

temperature.

A more detailed theoretical attempt to correlate film boiling heat transfer is due

to Rivers and McFadden [78]. This work treats film boiling heat transfer in

saturated He II in terms of a boundary layer model. The equations that describe

Fig. 7.44 Schematic of

cylindrical beater surrounded

by a vapor film

302 7 He II Heat and Mass Transfer



the problem are conservation of mass, momentum, and energy for two-dimensional,

steady-state heat transfer. In rectangular coordinates these equations may be written

@u

@x
þ @v

@y
¼ 0 (7.114)

u
@u

@x
þ v

@v

@y
¼ 1

rf
Fb þ

mf
rf

@2u

@x2
(7.115)

and

u
@T

@x
þ v

@T

@y
¼ kf

rf Cpf

@2T

@x2
(7.116)

where the body force Fb represents the buoyancy of the vapor film. The solution of

this set of equations has been accomplished by assuming fourth-order polynomials

for the temperature and velocity profiled and matching boundary conditions at the

wall and the vapor–He II interface. The result is a dimensionless form to the Nusselt

number,

Nu Gr�1=4 ¼ f Qb;Gr,Hi;Prð Þ (7.117)

where the Prandtl number for the film is

Pr ¼ mfCpf

kf
(7.118)

and the Grashof number,

Gr ¼
g D3rf rb � rf

	 

m2f

(7.119)

describes the heat transfer process. To determine the exact form of (7.117) for a

given problem it is necessary to apply numerical integration. The end product of

this analysis is a solution for the Nusselt number and steady-state film thickness as a

function of the interfacial heat flux. Two regimes become evident in this result. The

transition between these two regimes occurs at a value of Qb Gr
–1/4 � 1, where Qb

is the dimensionless interfacial heat flux,

Qb ¼ Dqb
kfDTf

(7.120)
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For values of Qb Gr
–1/4 < 1, the heat transfer is dominated by convection. In

this regime, the heat transfer coefficient is a function of the integral enthalpy which

can be normalized to the form

Hi ¼ Dhi
CpfDTf

(7.121)

For values of Qb Gr
–1/4 > 1, the heat transfer is via conduction mechanisms.

Comparison between experiment and the theory described above is only partially

successful.

An alternative approach to the theory of film boiling heat transfer has been

suggested by Labuntzov and Ametistov [79]. This theory is based on the idea that

film boiling is a nonequilibrium process involving heat and mass transfer at the

vapor–He II interface. Thus, it is essential to account for the processes of vaporiza-

tion and condensation. These processes have been investigated theoretically in

detail; the following relationships for the dimensionless fluxes of mass, momentum,

and heat have been obtained:

D~p� 2
ffiffiffi
p

p 1� 0:4b
b

~j ¼ 0:44~q (7.122a)

where

D~p ¼ p00 � ps
ps

(7.122b)

�q ¼ q

ps 2R0Tið Þ1=2
(7.122c)

~j ¼ j

rs 2R0Tið Þ1=2
(7.122d)

In theaboveequationsR’ is thegasconstant forhelium(R’ ¼ R/M ¼ 2,079 J/kg •K),

Ti is the temperature of the liquid helium at the interface, b is the condensation

coefficient,rs andps are the equilibriumdensity and pressure corresponding toTi, and
p" is the vapor pressure corresponding to the helium vapor film at the interface. The

derivation of (7.122a) is beyond the scope of the present treatment although it is

obtained analytically from the Boltzmann kinetic equation [80]. Equation (7.122a)

can be applied to the solution of interface mass and heat transfer for ordinary liquids

as well as He II. However, for ordinary liquids heat transfer is controlled by convec-

tive processes in the bulk. For He II these convective processes are enhanced by two-

fluid internal convectionwhich dominates the heat transfer inmost cases. The formof

(7.122a) is approximate since it is assumed thatD ~P	 1, ~j	 1. If this is not the case,
it is necessary to use the full nonlinear solutions.
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Now consider the existence of a film boiling state as shown schematically in

Fig. 7.45. In the steady state the vapor film is of constant thickness d, and

consequently j ¼ 0. There is no net mass flow across the He II–vapor interface.

Under these conditions, (7.122a) can be simplified to

D~p ¼ 0:44~q (7.123)

or for a given hydrostatic head

q ¼ 2:27rgh 2RTið Þ1=2 (7.124)

The physical meaning of (7.124) is that it represents the heat flux necessary to

establish a stable vapor film in He II. Note that this is a considerably different

interpretation for the critical heat flux than that based on the peak temperature

difference within the bulk fluid. Thus, there is some contradiction between the

results of Sect. 7.1 and (7.124). There are several possible resolutions for this

contradiction.

The first explanation is to imagine conceptually that the film boiling state can be

obtained spontaneously anytime the condition described by (7.124) is satisfied.

However, this argument is contradictory to experiment, particularly for critical heat

fluxes in one-dimensional channels. On the other hand, there is some disagreement

between experiment and the He II peak heat flux predicted by turbulent heat

transport in cylindrical geometries. It is possible that the condition described by

(7.124) is a clue to this discrepancy; however, this point has yet to be analyzed.

As an alternate explanation [80], it is to suggest that the film boiling state once

established obeys the kinetic relationship derived above. This idea is not contradic-

tory to the peak heat flux being the point where the helium temperature near the

Fig. 7.45 Heat mass transfer

process in film boiling He II

7.6 Film Boiling Heat Transfer 305



interface reaches Tsat or Tl. However, once this film is established it will remain

stable against collapse until the heat flux falls below the value given by (7.124),

provided it is less than the applied heat flux. Thought of in this manner, the

molecular kinetic theory provides a mechanism of interpreting the minimum film

boiling heat flux in He II, that is qR.
The connection between these two alternate concepts for recovery from film

boiling has been investigated analytically for heated cylinders in saturated He II.

The comparison of this model with experiment has been carried out for the few

configurations where minimum film boiling heat flux data are available [81]. The

best agreement occurs with data acquired on small-diameter wires. Plotted in

Fig. 7.46 are the experimentally measured peak and minimum film boiling heat

fluxes versus temperature for a cylindrical wire of diameter 76.2 mm [82]. The

theoretical plot for qR is also shown to provide quite close agreement with experi-

ment. Unfortunately, the correspondence between theory and experiment for other

Fig. 7.46 Comparison of calculations using the kinetic theory with experimental results (From

Kryukov and Van Sciver [81])
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configurations of larger dimension is not nearly as close. Consequently, there is still

considerable disagreement as to the correct mechanism needed to describe the film

boiling state in He II.

An alternate approach for the recovery from the film boiling state has been

suggested by experiments that have shown a correlation between the minimum film

boiling heat flux and the film boiling heat transfer coefficient. For a specific configu-

ration consisting of a flat plate at the end of a duct, the value of qR was shown to

increase monotonically with hfb. This condition was observed to prevail in both

saturated and subcooled He II. Furthermore, the ratio qR/hfb was found to take on an

essentially constant value of about 23 K, suggesting the existence of a critical

temperature difference for recovery from film boiling. This critical temperature

difference should be related in some fundamental way to the collapse of the vapor film.

7.6.3 Transient Film Boiling Heat Transfer

Typically, the heat transfer process to He II is transient in nature with associated

time dependent phenomena. This occurs when film boiling is caused by a rapid

transient disturbance such as might happen when a superconducting magnet

quenches or a He II cryostat has a loss of vacuum accident. Understanding the

heat transfer in this regime is helpful with the design and safe operation of large

scale He II systems.

We consider the case where film boiling has been established by exceeding the

critical heat flux followed by a reduction of the heat flux to some lower value. If the

heat flux is reduced below the minimum film boiling flux qR, recovery to the

nonboiling state should begin. This dynamic process is governed by transient heat

transfer within the system.

We first consider the time dependent recovery from the film boiling state. It is

assumed that at time t ¼ 0 the film boiling state is initiated and that a steady heat

rate Q is applied for a time Dtf. Since Q is greater than the peak heat flux, the

temperature of the surface will increase dependent on the mass and heat capacity of

the heated section. For long times, this process would lead to a steady temperature

based on the balance between the heat rate and film boiling heat transfer. After Dtf,
the heat generation ceases (Q ¼ 0) and the recovery process begins. Empirically,

the recovery process is found to take a length of time DtR which is a function of Dtf
before the vapor film collapses [83]. It is assumed further that the controlling

mechanism for recovery is the enthalpy stored within the heated sample and the

film boiling heat transfer coefficient is a constant, h. The fluid simply acts as a

constant temperature bath. Using the Debye approximation to the specific heat, we

can show that the above assumptions lead to a correlation between Dtf and DtR
which can be written explicitly as

7.6 Film Boiling Heat Transfer 307



QDtf ¼ 0:176YD
M

mR

� �1=3

hADtRð Þ4=3 1þ 4

5
aþ 4

6
a2 þ :::

� �
(7.125)

where a ¼ hTm/Q � 1 with Tm being the maximum temperature of the heat transfer

surface. The total mass of the heat transfer sample is m and its cooled surface has

area A. The properties of the heat transfer sample enter through its molecular weight

M and Debye temperature YD.

The correlation suggested by (7.125) has shown reasonable agreement with

experiment. By allowing the heat transfer coefficient h to be a constant adjustable

parameter, one can fit experimental data for the relationship between Dtf and DtR.
This fit is shown in Fig. 7.47. By establishing the correlation based on only the

leading term in (7.125), the best-fit heat transfer coefficients are h ¼ 0.18 kW/m2 K

at SVP and h ¼ 0.62 kW/m2 K at 0.13 MPa. It is interesting to note that these

values of h are roughly 60% of typical steady-state film boiling heat transfer

coefficients for flat plates.

The other problem of interest is to the understand transient recovery in

subcooled He II. This problem has more to do with the time-dependent heat

transport in the bulk fluid than film boiling heat transfer. Rather than correlating

the time to recovery based on the thermal capacity of the heater, the approach here

is to determine the maximum steady-state heat flux which allows recovery after an

intense short-duration heat pulse is applied to a heat transfer sample. The short-

duration heat pulse is assumed to be larger than the maximum energy flux to locally

Fig. 7.47 Correlation between the energy applied to a film boiling heat transfer sample and the

time to recovery
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bring the He II to Tl and thus break down heat transfer. Consequently, the heat

transfer at the solid-helium interface breaks down and further heat is stored in the

solid or in the helium adjacent to the heater. After the heat pulse, the excess heat can

be transferred through the He II by the established transient heat transfer

mechanisms. Now if the steady-state heat flux is not too large, the combination of

it with the remaining excess energy being released from the heat transfer sample

will not exceed the maximum transient energy flux in the He II. The result is a

temporary recovery to the non-boiling state. Recovery is temporary only if the

steady-state heat flux is larger than the maximum steady-state heat flux in He II for

that particular configuration.

The above set of conditions are illustrated graphically in Fig. 7.48, which is a

normalized transient heat transfer plot for He II at 1.8 K. The solid curve represents

the maximum heat flux that can be applied for a given time before breakdown of He

II heat transfer occurs. This condition is established according to Sect. 7.2. Now

consider a short-duration, high-level heat pulse applied to the heat transfer sample.

Since this energy is larger than that transferable by the He II, the excess is stored in

the heat transfer sample. The total energy contained in the pulse is shown by region

I in the figure. Subsequent to the pulse, the heat flux is dropped to a lower level qp
which is still above the maximum steady-state meat flux q*. However, temporary

recovery will occur because the transient heat transfer mechanism can continue.

Fig. 7.48 Schematic description of the transient recovery process in He II with post-heating

(From Seyfert [30])

7.6 Film Boiling Heat Transfer 309



Thus, the sum of the two areas I and P determines the length of time before

unrecoverable thermal breakdown occurs. This model has been compared success-

fully to transient heat transfer experiments in He II [60]. The problem is of

significant practical interest to superconducting magnet technology.

Example 7.4

For the rectangular flat plate film boiling heat transfer data at T ¼ 1.8 K and

Dp ¼ 0.14 kPa in Table 7.5, estimate the thickness of the vapor film assuming

that heat is carried only by gaseous conduction. Compare the calculated thick-

ness to the mean free path in the vapor.

In this case, the average thermal conductivity can be approximated bykHeð40ÞK
¼ 0.4W/m K. The approximate thickness of the film is then,

t ¼ �k hfb
� ¼ 0:4 W/m K/220 W/m2 K ¼ 2 mm

The mean free path is calculated by

The mean free path is calculated by,

l � 1

ns
� kBT

pd2p
¼ 1:38� 10�23J=K � 40K

p 2:56� 10�10m
� �2 � 1600Pa

¼ 1:67 mm

Questions

1. Heat transfer from a solid surface to a bath of He II does not have a nucleate

boiling regime. Why?

2. One method to increase the heat transfer coefficient in the Kapitza regime would

be to roughen the surface, thereby increasing the effective area. What are the

practical limits to this approach? [Two points to keep in mind are that the surface

material has a finite thermal conductivity and the phonon coupling is over a

certain range.]

3. Assume that you wish to design a He II heat exchanger that consists of a U-tube

immersed in a pressurized He II reservoir. The upper ends of the tube empty into a

saturated bath of He II maintained at a constant 1.7 K. For these conditions, draw a

sketch of the temperature profile along the U-tube from one end to the other.

4. For Question 3 above, suppose that you wanted to enhance the performance of

the heat exchanger. Would there be a benefit to putting a pump in the line to

force the He II through the U-tube. List the design constraints on selecting the

parameters for the circulation system.

Problems

1. Consider a sphere of radius r0 in a large bath of He II. Derive an expression for

the steady-state temperature gradient as a function of radial coordinate r.
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Determine the peak heat flux as it depends on bath temperature. Assume that

mutual friction is the only important interaction and the ambient pressure is 0.1

MPa. [Hint: This problem is analogous to that of heat transfer in cylindrical

geometries discussed in Sect. 7.1.4.]

2. Estimate the maximum surface heat flux q0 for a cylindrical wire of diameter 1

mm in He II at 1.8 K, 0.1 MPa. What would be the effect of increasing the

external pressure to 1 MPa?

3. Show that the transient heat transfer solution given by (7.52) for the fixed energy

deposition obeys the heat conductivity equation for He II.

4. Estimate the Kapitza conductance at 1.9 K of aluminum for small DT, by each of
the following methods:

a. Phonon radiation limit.

b. Acoustic mismatch theory.

c. Experimental results listed in Table 7.3.

5. Show that the variation of the film boiling heat transfer coefficient with heater

radius may be written in the form given by (7.113). For the data listed in

Table 7.5 from Ref. [79] (d ¼ 25 and 76 mm), estimate the film thickness d
and the limiting heat transfer coefficient h0 for large radii.

6. A metallic copper heater is located at the bottom of a 50 cm long vertical channel

containing He II at 1.9 K. Assume the pressure at the top of the channel is

saturation and that heat flow is governed by mutual friction.

a. Find the peak heat flux q*. [Note: Although (7.10) is valid for this case, it is

more accurate to use tabulated vapor pressure of helium].

b. Estimate the heater surface temperature just below q*.

7. Consider a 2 m long, 5 mm ID smooth tube which contains 1.8 K He II flowing at

a mass flow rate of 20 gm/s. Calculate the total pressure drop across the tube

assuming the flow is fully developed and turbulent. Estimate the total tempera-

ture rise in the He II flow due to the Joule Thomson effect. [Hint: you may use

the simplified form for the JT coefficient of an incompressible liquid].

8. Derive (7.84) for the mass flow through an ideal vapor – He II phase separator.
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