
Chapter 5

Classical Helium Heat Transfer

Normal helium (He I) is a simple liquid with state properties that can be described

reasonably well by classical models of the type introduced in Chap. 3. However, the

dynamics of heat and mass transfer are of particular interest to engineering

applications. Heat transfer, which is the subject of the present chapter, is probably

the most important single characteristic of cryogenic fluids. The subject has con-

siderable physical basis, and the models used to describe the phenomena are a

combination of fundamental physics and engineering correlations. Pool boiling heat

transfer is an often studied engineering problem related to cryogenic fluids includ-

ing liquid helium. Pool boiling is a common term used to describe an experimental

configuration consisting of a heater, either a plate or wire, immersed in a large bath

of the fluid. Normally, the bath has such an extent that it is possible to assume it to

be infinite in size relative to the heater sample. This problem is a classic in heat

transfer research; although more complex configurations are needed to model true

engineering systems. Heat transfer to forced flow helium is also an important topic

as it relates to the design of heat exchangers and superconducting magnets.

The fluid dynamics of forced flow helium was covered extensively in Chap. 4.

Here we concentrate on the processes of heat exchange. Of course, in the case of

forced flow helium the fluid dynamics problem and the heat transfer problem are

not completely separable.

There are a number of general characteristics of He I which are worth noting in

the context of heat transfer. First of all, it has a rather small thermal conductivity

and large specific heat, suggesting that conduction heat transport is of little signifi-

cance to the overall heat transfer picture. Particularly in the steady state, the heat

transport is dominated by convection mechanisms.

The traditional approach to the interpretation of heat transfer is best suited for

engineering applications. The general philosophy is to assume that the heat transfer

process is too complicated to understand from basic principles. A specific problem

requires solution of a complex set of equations which are only treatable in the

simplest geometries. Therefore, engineering problems are scaled on the basis

of dimensionless variables, which are functions of the properties of the system.

It is then possible to construct non-dimensional relationships which when fit to
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experimental data can be applied universally to other systems. The strength of this

approach is in its relative ease of application. These dimensionless relationships

have been explored extensively and their forms are available in the literature [1, 2].

Furthermore, the computation of the parameters for a given set of conditions allows

straightforward predictions for experimental data. When carried out correctly,

the correspondence between experiment and correlations is quite satisfactory. The

essential ingredient to this approach is sufficient quantity of experimental data, not

only for the particular fluid in question but also for other fluids with widely varying

properties. This need must be satisfied to instill reasonable confidence in the

particular correlation at hand. Fortunately, for most liquids this kind of ground

work has already been laid and the behavior of He I is in satisfactory agreement

with the accepted correlations. The quality of the agreement is in part the subject of

the present chapter.

For problems of heat transfer, the most important dimensionless quantity to

consider is the Nusselt number, Nu. It represents a dimensionless heat transfer

coefficient defined by the relationship

Nu ¼ hL

kf
(5.1)

where h ¼ q/(Ts – Tb), the heat transfer coefficient of the surface, Ts and Tb are the
local surface and bath temperatures, kf is the thermal conductivity of the fluid, and

L is the characteristic length scale in the problem. In pool boiling, L is the

dimension of the heater, that is, its diameter or width. In forced flow the length

scale is the diameter of the tube or cylinder. As we will see below, the Nusselt

number appears in correlations used to describe both free convection and forced

convection heat transfer.

In the case of free convection and pool boiling heat transfer the two relevant

dimensionless numbers are the Grashof number (Gr) and Prandtl number (Pr).

The Grashof number indicates the ratio of buoyancy forces relative to viscous

forces; it is represented by the relationship

Gr ¼ gb Ts � Tbð ÞL3
v2

(5.2)

where g is the acceleration of gravity, b is the bulk expansivity, and v is the

kinematic viscosity. The Prandtl number, discussed in Chap. 3, is the ratio of

the mass to thermal diffusivities of the fluid

Pr ¼ v

Dth
¼ mCp

k
(5.3)

where Dth ¼ k/rCp. For systems that are dominated by natural convection

mechanisms, that is, with negligible forced flow, the Nusselt number is a function

of these two numbers,
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Nu ¼ f Grð Þ cðPrÞ (5.4)

where f and c are functions that can be determined by the empirical correlation

of data.

Most empirical correlations for natural convection are given in terms of the

Rayleigh number, which is simply the product of the Grashof and Prandtl numbers,

Ra � Gr Pr ¼ gb Ts � Tbð ÞL3
Dthv

(5.5)

Simplified correlations can then be written in the form

Nu ¼ C Ran (5.6)

where C is an empirically determined parameter. The coefficient n is dependent

mostly on the geometrical and flow conditions. For a vertically oriented plate in an

open bath, n ¼ 1
4
and C ¼ 0.59 when the flow is laminar while n ¼ 1

3
and C ¼ 0.1

in the turbulent regime [2]. The type of heat transfer condition that exists in a

particular system can be described by the corresponding value of the Rayleigh

number. The critical Rayleigh number Rac defines the transition between these

regimes. For flat plates, the transition between pure conduction and convection

occurs for Rac � 103, while the transition between laminar and turbulent convec-

tion heat transfer usually occurs for Rac � 109. These concepts assume single-

phase heat transfer and consequently are not applicable in heat transfer processes

that involve change of phase.

5.1 Regimes of Heat Transfer

To obtain a better physical feeling for pool boiling heat transfer, it is helpful to

consider a hypothetical experimental system. Such an experiment, shown in

Fig. 5.1, consists of a flat heated plate with some arbitrary orientation exposed to

an effectively infinite bath of liquid helium. The experiment consists of heating the

plate from inside the insulated region and measuring the temperature difference

between the bath and surface, DTs, as it varies with heat flux q. There are a number

of variables that affect the results in this experiment. Among these are bath

temperature and pressure, surface orientation, physical characteristics of the heated

surface including coatings, and frequency of heat flux. The general impact of these

variables is described further below.

Given this experimental configuration, a measurement consists of determining

a relationship between the heat flux q and DTs. A typical example of such a

relationship is shown in Fig. 5.2. There are principally three regimes of heat transfer

as indicated in the figure: (1) natural convection, (2) nucleate boiling, and

5.1 Regimes of Heat Transfer 117



(3) film boiling. Each of these regimes has a characteristically different physical

description, a schematic representation of which is shown in Fig. 5.3. At the lowest

heat fluxes up to a few W/m2, heat is transferred by natural convection; see

Fig. 5.3a. No phase change is evident. This mechanism is characterized by den-

sity-driven convection currents near the heated surface. Surface temperature

differences can be determined by the type of correlation given in (5.6). As the

heat flux is increased, bubbles of helium vapor begin to form at preferred sites on

the surface. These are typically surface imperfections. In the natural convection

region, a certain amount of hysteresis in the heat transfer curve results from

the activation and deactivation of these nucleation sites.

Fig. 5.1 Schematic of pool

boiling heat transfer process

from a planar surface of

arbitrary orientation

Fig. 5.2 Typical heat

transfer relationship for pool

boiling liquid
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As the heat flux is increased further, the nucleation sites get fully activated,

meaning that each site contains one bubble. At this point the surface is referred to as

being “educated” since now increasing the heat flux only serves to accelerate the

rate of bubble growth and detachment. In the nucleate boiling regime, Fig. 5.3b,

there is a layer of superheated liquid adjacent to the heater surface. As a bubble

detaches, cold liquid from above rushes down to cool the surface. This bubble

growth and detachment causes macroscopic turbulence.

At still higher heat fluxes, the nucleate boiling bubbles get so large and are

detaching at such a great rate that they become unstable and coalesce into a

continuous vapor film; see Fig. 5.3c. The heat flux at which this occurs is referred

to as the peak nucleate boiling heat flux q*. This regime is called film boiling. The

condition is unstable and causes hysteresis in the heat transfer curve, as shown by

the upper region in Fig. 5.2. On decreasing the heat flux, it is necessary to go to a

value lower than q* for recovery to the nucleate boiling regime. This recovery value

is referred to as the minimum film boiling heat flux qmfb or recovery heat flux qR.
In the film boiling regime, the surface temperature difference is typically an order of

magnitude higher than with nucleate boiling. The hysteresis in this regime of heat

transfer is associated with the stability of a vapor film below a higher-density liquid.

Fig. 5.3 Schematic

representation of regimes

of heat transfer: (a) natural

convection, (b) nucleate

boiling, and (c) film boiling
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Numerous factors affect these heat transfer characteristics. For example, the

surface condition of the heat transfer sample can affect both the peak heat flux q*
and DTs, in the nucleate boiling regime. It is possible to obtain variations in these

quantities by as much as a factor of 2–3 between samples. The mechanism by which

surface preparation affects the heat transfer characteristics is believed to be

associated with the number of available nucleation sites.

Surface orientation has a profound effect on the heat transfer behavior. Variation

of the surface orientation with respect to the gravitational force can cause signifi-

cant changes in the heat flux and minimum film boiling heat flux. The highest

values for both these quantities occur with the surface facing upward, because the

buoyancy force aids bubble detachment. This argument supports the observed result

that q* and qmfb are minimum with the surface facing downward.

The thermodynamic state of the liquid helium bath is also an important para-

meter in the heat transfer process. The bath temperature has a significant effect on

various heat transfer parameters, particularly the peak nucleate boiling heat flux q*.
Similarly, the bath pressure affects these values, particularly when considering the

subcooled or supercritical state. These variables can be taken into account through

the changes in the helium properties with temperature and pressure.

The frequency with which the heat transfer event occurs is also important for

both the peak heat flux and temperature difference. At low frequencies up to

perhaps 10 Hz, the behavior does not deviate significantly from that of the

steady-state process. Heat transfer is controlled largely by convection mechanisms.

However, at higher frequencies approaching the kilohertz range there is insufficient

time for the bubble nucleation to occur. Consequently, the behavior becomes

dominated by simple heat diffusion in the liquid adjacent to the solid. Then

temperature differences are caused by two physical mechanisms – the thermal

conductivity of the helium and interfacial conductance (Kapitza conductance).

Finally, variations in geometry can have a profound effect on the heat transfer.

Many engineering systems consist of channels, tubes, or other complex geometries,

which are vastly different from the open infinite bath configuration. Such factors

can cause differences in the heat transfer at least in part caused by the limited

coolant volume. Some of the physical phenomena that can occur include heat-

induced natural circulation and vapor locking in narrow channels. In the following

sections, these issues will be discussed in further detail.

5.2 Convective Heat Transfer

At very low heat fluxes in liquid helium, q � 1 W/m2, heat is transferred by a

combination of conduction and convection. It is described by a heat transfer

coefficient h ¼ q/DTs, where h is only weakly dependent on DTs. This regime of

heat transfer has only limited technological application in liquid helium because the

heat fluxes are quite small. However, the problems of low heat flux heat transfer and

of transitions between conduction and convection do have fundamental physical
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significance. Certain special cases of heat transfer fall in the general area of exactly

soluble classical physics problems.

A good example of such a special interest is the problem of convection onset in a

layer of fluid that is heated from below. The main difference between this problem

and similar ones concerning pool boiling heat transfer is that the fluid layer is

to have a thickness dimension d that enters into the problem in one of the

dimensionalized parameters. This problem is referred to as Bénard convection

and the instability associated with the transition is called the Rayleigh-Bénard

instability. The transition is between conductive heat transfer and steady convec-

tion. As the heat flux is increased, the condition where the fluid is at rest carrying

heat by conduction is transformed to that where a polygonal convective cell

structure occurs. This type of structure has been observed in visual experiments

with room temperature fluids. These flows exhibit regularity and structure that have

inspired considerable theoretical research into the dynamics of small perturbations

in fluids heated from below. Theoretical modeling is achievable because the

disturbances are assumed to be sufficiently small that their description, at most,

adds linear terms to the fluid equations.

The theoretical description of Bénard convection begins with the continuity

equation and the equations for conservation of momentum and energy. The growth

or decay of perturbations in the velocity and temperature fields is governed by

the following linearized equations [3]:

r � v ¼ 0 (5.7a)

@v

@t
¼ � 1

r0
rpþ vr2v� gbT (5.7b)

@T

@t
¼ Dr2T � wg (5.7c)

Solutions to these equations establish the regions of convection growth or decay.

The boundary between these regions is defined by a “critical” Rayleigh number

which effectively is a nondimensional temperature difference. The most interesting

of the three equations is (5.7c) which describes the effect of motion on the

temperature gradient. Without the second term, wg, the expression is simply the

heat diffusion equation. The parameter g is defined as the undisturbed temperature

gradient due only to conduction (g ¼ q/k). The physical meaning of the term wg is
that of the motion generator. Heat is swept upward while the cold fluid returns. Heat

conduction is necessary to generate the initial temperature gradient, but since mass

flow is involved, viscosity enters to resist the growth of the perturbation.

The problem of Bénard convection in He I has been studied by a number of

workers. Experimental measurements normally consist of determining the variation

of the Nusselt number with the normalized Rayleigh number (Ra/Rac). For any

fluid, the Nusselt number represents the ratio of the effective thermal conductivity

to the actual thermal conductivity obtained without convection. Plotted in Fig. 5.4 is
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the normalized Nusselt number for one set of experiments on He I [4]. A number of

interesting facts can be gleaned from these data. For example, above Rac the

Nusselt number increases quite strongly with Ra. This is to be expected because

the convection currents improve the heat transport. However, it is worth noting that

the behavior of the Nu versus Ra/Rac plot appears to be somewhat universal in

form. Slight differences in the data displayed in Fig. 5.4 are attributed to geometri-

cal factors in the experiment.

The Rayleigh-Bénard instability is an interesting classical fluids problem.

Its connection with helium heat transfer in practical configurations is limited,

yet it does give fundamental insight into the fluid flow problem. As the heat flux

is increased above about 0.1 W/m2 bubbles begin to nucleate on the surface and

simple convection is no longer the generally applicable solution. This problem is

discussed in the next section.

Free convection heat transfer in cold helium gas is a more practically significant

process because it can involve large heat fluxes. Helium near the critical point and

in the supercritical regime has been studied fairly extensively [5–7]. Near the

critical point, the heat transfer is seen to be enhanced considerably. For example,

near 0.224 MPa, heat transfer coefficients as high as 100 kW/m2 K have been

observed. Such results correlate with the maxima in the thermodynamic properties

near the critical point. Away from the critical point, the results are correlated best as

a function of the Rayleigh number as (5.6). A reasonable fit to much of the helium

data in this regime can be obtained from the expression [8],

Nu ¼ 0:615 Ra0:258 (5.8)

Fig. 5.4 Nusselt number as a

function of Ra/Rac for

Rayleigh-Bénard instability

(From Behringer and

Ahlers [4])
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which is close to the form expected for laminar free-convection heat transfer.

A compilation of convective heat transfer results for supercritical helium is

shown in Fig. 5.5 along with several correlations. There is a characteristic trend

to the data; however, the agreement between various experiments is variable.

5.3 Nucleate Boiling Heat Transfer

Above a heat flux of a fewW/m2 in liquid helium the heat transfer surface begins to be

covered with a large number of small vapor bubbles. This heat transfer process is quite

different from that of natural convection because it is controlled mostly by the

hydrodynamics of bubble growth and detachment rather than convection in the liquid.

Two conditions must exist at or near the heat transfer interface before there can

be activation of bubble nucleation sites. First, there must be a boundary layer of

liquid adjacent to the surface which is in the superheated condition. The thickness

of this layer is determined by the thermal conductivity of the liquid, k, and the

allowable superheat, DTs ¼ Ts – Tb, where Ts is the maximum superheat tempera-

ture and Tb is the bath temperature. The thermal boundary layer thickness can

therefore be written

d � k DTs
q

(5.9)

Fig. 5.5 Comparison of data and correlations on free convection heat transfer to supercritical

helium (From Hilal [8])
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Typically, d is of the order of 1–10 mm for liquid helium near its normal boiling

point.

Second, local surface imperfections must exist. These imperfections are neces-

sary to provide preferential regions where bubbles can form. Shown schematically

in Fig. 5.6, these imperfections usually are envisioned to be grooves or slots which

allow a bubble to form with negative curvature, thus taking advantage of surface

tension to stimulate the bubble nucleation. There are two principal reasons why

the superheated boundary layer must form near the interface before substantial

vapor nucleation can occur. First, the liquid near the interface is subcooled by the

hydrostatic head (Dp ¼ rgh) such that the local temperature must increase above

ambient before the saturation condition can be attained. Second, and probably

more important, in order to have vapor bubbles of positive radius of curvature,

the surface tension of the liquid must be overcome.

5.3.1 Nucleation Theory

So far the discussion of nucleate boiling has been quite general and qualitative.

However, it is worth considering two specific questions of quantitative nature.

These concern the general vapor nucleation problem but are worked out as

examples for the case of boiling liquid helium. The first question pertains to the

growth of a vapor bubble on a nucleation site or actually anywhere in the bulk fluid.

For a given amount of superheat, a bubble will be stable against the surface tension

which is trying to collapse it. This problem involves consideration of the stability

of a vapor bubble immersed in the bulk liquid – a case similar to that shown

schematically in Fig. 5.6c.

The stability of a vapor bubble in the liquid can be evaluated in terms of the

Clausius–Clapeyron equation. Considering the change of state between the liquid and

vapor, thermodynamic stability requires that the vapor pressure derivative be given by

dp

dT

����
sat

¼ Ds
Dv

¼ hfg
T Dv

(5.10)

Fig. 5.6 Bubble nucleation on an imperfect surface: (a) negative radius of curvature, (b) positive

radius of curvature, and (c) critical radius
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where hfg is the latent heat of the liquid and Dv ¼ vg – vl is the difference between
the specific volumes of the vapor and liquid. For the interface of the bubble to be

stable, it must have a pressure inside, pv, which exceeds the local saturation

pressure, ps, by an amount related to the surface tension s. For a spherical bubble,
this requirement leads to the expression

pv � ps ¼ 2s
r

(5.11)

where r is the local bubble radius. Obviously, the smaller the bubble the larger must

be the pressure difference.

To get a feel for the order of magnitude of the quantities involved, assume that

helium vapor obeys the ideal gas law and that the specific volume of the vapor is

much greater than that of the liquid. These assumptions lead to the following

approximation:

Dv � vg � RT

p
(5.12)

Substituting (5.12) into (5.10) leads to a differential relationship

dp

p
¼ hfg

R

dT

T2
(5.13)

This expression must be integrated between saturation (Ts, ps) and the condition

inside the bubble (Tv, pv) as determined by the stability relationship (5.11). Such

a procedure yields a common relationship for the required vapor pressure within a

bubble.

pv ¼ pse
hfgDTs=RT2

s (5.14)

where a further approximation has been made that the temperature difference,

DTs ¼ Tv – Ts, is small compared to Ts.
The present discussion is aimed at determining the minimum radius of a stable

vapor bubble in the bulk liquid. Substituting the expression for equilibrium of a

vapor bubble (5.11) and allowing the radius to be undetermined, we obtain an

expression for the critical radius,

rc ¼ 2s
ps

ehfgDTs=RT
2
s � 1

� ��1

(5.15)

which subsequently can be solved to determine the approximate value of rc for

any fluid.
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Example 5.1

Calculate the critical radius for a vapor bubble in liquid helium at 4.2 K,

100 kPa. Assume that the vapor is superheated by 0.3 K. Estimate the number

of helium molecules within the bubble.

Under the assumed conditions, hfg ¼ 82 J/mol and s ¼ 0.15 mJ/m2 for a critical

temperature difference assume DT � 0.3 K. Inserting these numerical values

into (5.15)

rc ¼ 2s
ps

ehfgDTs=RT
2
s � 1

� ��1

yields a critical radius rc � 16.4 nm. The volume of the sphere is then,

V ¼ 4

3
pr3 ¼ 1:8� 10�23m3

But the number density of helium molecules at 4.2 K is about 2.6 � 1027/m3 so

the sphere contains approximately 104 atoms. It is reasonable to assume that the

bubble containing this many molecules represents a thermodynamic system.

Note that the above calculation is limited by the assumptions that vg � vl and the
ideal gas behavior for the vapor phase. These assumptions can lead to considerable

inaccuracies in calculations of both the critical radii and the nucleation temperature.

The above calculation contains an assumed value for the superheat required to

initiate the nucleation process, DTs. Experimentally determined superheats actually

vary by as much as half an order of magnitude. The highest values are obtained

for the most ideal surfaces where nucleation is assumed to be homogeneous. These

systems give nucleation superheats around 0.35 K at 4.2 K, 0.1 MPa. In fact,

homogeneous nucleation superheat has been measured over the entire He I range

and shown to agree with the empirical relationship [9]

DTs ¼ 4:322 1� Tb
Tc

� �1:534

(5.16)

An expression can be derived for the homogeneous nucleation temperature

based on a model suggested by Frenkel [10]. The analysis yields the rate of

formation of bubbles having the critical radius rc as defined by (5.11). As a function
of the fluid properties, the rate is given by

R ¼ nl
s
m

� �1=2
exp � 4p

3

s r2c
kBTs

� �
(5.17)

where nl is the number density in the liquid and m is the mass of a helium atom. The

critical radius rc is a function of the superheat DTs, as well as other parameters such

as absolute temperature Ts.
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The expression given by (5.17) can be used to calculate the critical radius rc or
preferably the superheat DTs. Such a calculation requires one arbitrary assumption:

that of the reaction rate for the onset of nucleation. However, since the critical

parameters enter into the exponential, the results are only weakly dependent on

the choice of R. Typical values for this quantity are assumed to be 1 cm–3�s–1.
Furthermore, it is not possible to use the form developed above for the critical

radius because the nonideality of the vapor phase plays an important role. Flint and

Van Cleve [11] were able to obtain good agreement between experiment and theory

if they used the actual behavior of the helium vapor pressure curve. The results of

their calculation are shown in Fig. 5.7 along with experimental values for the

nucleation superheat. These results were obtained on polished silicon chips oriented

vertically in a bath of saturated liquid helium. The critical temperature differences

are determined by noting the point where the hysteresis ended in a q versus DT
curve; see Fig. 5.2. These data indicate a close correspondence between homo-

geneous nucleation theory and experiment. Typically, nucleation temperatures on

real roughened surfaces are lower than those indicated in Fig. 5.7.

5.3.2 Heat Transfer Correlations

Once nucleation has occurred and the bubbles are large enough to be stable

against collapse in the bulk fluid, the heat transfer becomes dependent on the

hydrodynamics of bubble detachment and growth. To model the nucleate boiling

heat transfer in this regime, it is necessary to know a number of quantities including

Fig. 5.7 Homogeneous

nucleation limit for liquid

helium heat transfer (From

Flint and Van Cleve [11])
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the rate of bubble growth, frequency of detachment, and something of the

hydrodynamics of the two-phase fluid consisting of the liquid in the vicinity of

the bubble. A conceptual picture of the hydrodynamics of an individual bubble is

beneficial in understanding the heat transfer mechanisms.

In the vicinity of the nucleation site, it was observed by Hsu and Graham [12]

that a departing bubble took with it an area of superheated liquid equal to approxi-

mately twice the projected area of the bubble. Based on this hypothesis, shown

schematically in Fig. 5.8, it is possible to account for the heat removed by one

bubble as a sum of two quantities [13]

qb ¼ 4p
3
hfgrv

Z
A

nfr3b dAþ 2pDTsClrld
Z
A

nfr2b dA (5.18)

where n is the number of nuclei per unit area of surface and the integrals are over the

entire heat transfer surface area. The first quantity on the right-hand side is that due

to the latent heat of the helium within the bubble, while the second is the heat

required to superheat a new layer of liquid that replenishes the layer taken away

with the departing bubble. The difficulties associated with applying (5.18) to real

problems are multifold. First, the frequency of detachment f is involved with both

terms in (5.18). The heat flux is proportional to f, which is largely an experimental

quantity. The quantity is dependent on n, the number of nucleation sites per area,

and rc, the critical size of a departing bubble. The amount of superheat DTs also
enters (5.18) in the second term. In principle, this quantity can be determined from

(5.17); however, for real surfaces it can vary considerably.

An additional complication enters when attempting to determine the total heat

transferred in the nucleate boiling regime. In an actual process, there are two

heat transfer terms: one due to bubble hydrodynamics, qb, and one due to natural

convection in the bulk fluid, qnc:

qnb ¼ qb þ qnc (5.19)

There may be an additional contribution due to the interaction between natural

convection and boiling, but it is unclear what form it would take. It is tempting to

Fig. 5.8 Schematic of

departing bubble and area

of superheated liquid

(From Bald [13])
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neglect the natural convection term, assuming it is small; however, this is not

always possible. Except in very special geometries, it is not possible to determine

qnc exactly. Therefore, engineering correlations are needed to describe the second

term in (5.19). In general, the natural convection heat transfer can be written as a

function of the dimensionless Rayleigh number as given by (5.6).

The above analysis has the potential of being able to describe the heat transfer in

the nucleate boiling region. However, difficulty arises when determining the

variables that enter (5.18) and (5.19). These variables mostly include the functional

form of the natural convection, the amount of superheat DTs, the bubble density n,
and detachment frequency f. Since this analysis has limited practical usefulness,

the preferred approach is to characterize the total heat transfer in terms of an

engineering correlation.

The most popular and probably the best correlation used to describe the nucleate

boiling regime is due to Kutateladze [14]. It is based on theory and experimental

scaling of heat transfer to many different fluids:

h

kl

s
grl

� �1=2

¼ 3:25� 10�4 qCplrl
hfgrvkl

s
grl

� �1=2
" #0:6

� g
rl
ml

� �2 s
grl

� �3=2
" #0:125

p

sgrlð Þ1=2
 !0:7

(5.20)

where g is the acceleration of gravity and hfg is the latent heat of vaporization.

Although (5.20) is a complex expression, it does predict a reasonably correct

functional dependence for the nucleate boiling heat transfer. Rearranging (5.20)

into a more manageable form leads to the relationship

q ¼ 1:90� 10�9 g
rl
ml

� �2

w3
" #0:3125

pw
s

� �1:75 rl
rv

� �1:5

� Cpl

hfg

� �1:5 kl
w

� �
Ts � Tbð Þ2:5 (5.21a)

where

w ¼ s
grl

� �1=2

(5.21b)

and Ts and Tb are the surface and bath temperatures, respectively. The expression

given by (5.21) is evaluated more easily. For the case of He I at 4.2 K, 0.1 MPa,

the coefficient of proportionality can be calculated to equal 58 kW/m2K5.

The Kutateladze correlation is in reasonable accord with experimental measure-

ments of heat transfer in He I. However, there is a wide variation in experimental
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data owing to the differences in sample preparation and surface material and

orientation [15]. It is not too surprising, based on the hydrodynamic arguments

above, that different surface preparations would yield much different results.

Figure 5.9 is a compilation of nucleate pool boiling data for flat copper surfaces

facing upward and experiencing an increasing heat flux. The data vary over at least

half an order of magnitude in DT with the smoothest surfaces apparently allowing

a larger superheat. The larger superheat seen in smooth surfaces is consistent with

the homogeneous nucleation arguments presented at the beginning of this section.

Finally, note that an empirical fit used by Schmidt [16] to describe the data is also

plotted in Fig. 5.9. This fit, which is quite close to the Kutateladze correlation with

the exception of the coefficient of proportionality, is a conservative form useful for

engineering applications.

5.3.3 Maximum Nucleate Boiling Heat Flux

The qualitative picture applied to the understanding of the maximum heat flux in

pool boiling He I is as follows. Imagine a surface populated with a number of

nucleation sites. At high heat fluxes, these sites are actively nucleating bubbles that

grow to a stable size and detach at a frequency f controlled by buoyancy forces.

With increasing heat flux, the number and size of these bubbles grow until a point

is reached where they cover a sizable fraction of the heater surface. At this point,

the individual bubbles are no longer the lowest-energy condition. They will prefer

Fig. 5.9 Nucleate boiling heat transfer to He I (Compilation of data and suggested correlation

from Schmidt [16])
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to coalesce into a continuous vapor film which will blanket the entire heat transfer

surface. This condition usually is referred to as the onset of film boiling. The

difficulty is in being able to understand and predict the value of heat flux at

which this event occurs, q*.
To obtain some physical feeling for the occurrence of the maximum heat

flux, consider an idealized surface facing upward as in Fig. 5.3b. The vapor bubbles

are departing at velocity vv while the replenishing liquid moves in the opposite

direction at velocity vl. These velocities are not independent variables because

the heat flow is determined by the rate of growth and departure of the vapor

bubbles.

The hydrodynamics of this process is described by the Helmholtz instability

[17], which pertains to the critical velocity of immiscible fluids moving relative

to each other. Assume the liquid and vapor phases represent these two immiscible

fluids. Then the boundary separating the two fluids would show an upward-moving

vapor and downward-moving liquid. For these two fluids to pass each other

undisturbed, the boundary that separates them must remain stable. The stability

of this boundary is a function of a number of parameters including the relative

velocities and densities of the two fluids. This is believed to be the condition that

imposes the peak heat flux limit in classical liquids including He I.

Because of the relative motion of each fluid, there can be a surface wave set

up at the interface. The velocity of this wave, cs, is dependent on a number of

factors including the surface tension and properties of the individual phases.

The relationship for the surface wave velocity is

c2s ¼
sm

rl þ rv
� rlrv

rl þ rvð Þ2 vv � vlð Þ2 (5.22)

where m ¼ 2p/l is the wave number of the surface wave. Since (5.22) consists of a

difference between two positive quantities, it is possible for c2S to have either a

positive or negative value. For c2S>0 the surface wave can exist. If c2S>0 the surface

wave velocity is imaginary, implying an instability in the interface. Therefore, the

condition for maximum vapor velocity is obtained by equating c2S to zero. Using

conservation of mass flow, that is, rvvv + rlvl ¼ 0, a simple expression is obtained:

v�v ¼ rlsm
rv rl þ rvð Þ
� �1=2

(5.23)

If the vapor velocity exceeds the value given by (5.23) there should be an unstable

two-phase flow. The result is destruction of the interface between the two phases,

which in turn leads to a condition where the vapor film blankets the heat transfer

surface. This condition occurs at the maximum heat flux.

Zuber et al. [18] used the above reasoning to predict analytically the maximum

heat flux q*. Assuming that the heat is transported primarily by the vapor velocity

and that the latent heat of the liquid that goes into the formation of the bubble is the
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dominant energy, Zuber and coworkers argued that the maximum heat flux can be

written as a product of these quantities, that is,

q� ¼ Khfgrv
s rl � rvð Þg

r2v

� �1=4 rl
rl þ rv

� �1=2

(5.24)

where K is a numerical factor which in the case under consideration has a value of

p/24. It is possible to derive a similar relationship for q* from dimensionless group

analysis. Based on experimental evidence, a similar relationship has developed

acceptance [19, 20] that is,

q� ¼ 0:16hfgr1=2v sg rl � rvð Þ½ 	1=4 (5.25)

which is in close agreement with (5.24) with the exception of the last factor. The

numerical factor in (5.25) is determined by correlation of numerous experimental

results. For a numerical comparison, (5.25) predicts for liquid helium at 4.2 K,

0.1 MPa a value of q* ¼ 8.5 kW/m2, which is in reasonable agreement with

experimental results ranging from 5 kW/m2 to around 15 kW/m2. However, to test

the relationship represented by (5.25) for a particular fluid, it is necessary to make

measurements over a wide range of vapor densities or temperatures. Furthermore,

to determine whether the correlation is universally acceptable, measurements of q*
for a variety of fluids are required. These experimental investigations determine the

empirical constant of proportionality. Plotted in Fig. 5.10 are normalized measure-

ments of q*/hfgrv versus the density function given in (5.25) [20]. Reasonable

agreement with the correlation is seen for the three cryogenic fluids considered.

Fig. 5.10 Comparison of

peak nucleate boiling heat

fluxes with Kutateladze

correlation (From Lyon [20])
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It is worthwhile considering the temperature and orientation dependencies of q* in
comparison to (5.25). At high temperatures, q* would be expected to decrease

because as the critical point is approached there is no phase change associated with

boiling and the latent heat vanishes. The theoretical expression indicates that the peak

heat flux should go as the latent heat times the fourth root of the density difference.

Both quantities vanish at the critical point. At low temperatures the latent heat

approaches a constant and the temperature dependence is determined by the square

root of the vapor density, which in turn decreases with temperature. Therefore, there

should be a maximum in the peak heat flux. Analogous although somewhat less

successful arguments can be used to describe the orientation dependence of q*. Since
the peak heat flux is proportional to the square root of the gravitational acceleration g,
the buoyancy effects should decrease as the surface is turned from facing upward to

facing downward. In fact, based on this simple argument, a surface facing downward

should have q* ¼ 0. Experimentally, q* obtains a minimum value a 180
 orientation
although its value is considerably greater than zero.

Measurements of the temperature and orientation dependence of q* have been

conducted most comprehensively by Lyon [20]. The orientation dependence of the

maximum nucleate boiling heat flux is shown in Fig. 5.11. Note that for these

experiments q* ¼ 8 kW/m2 at 4.2 K which is quite close to the theoretical predic-

tion. Furthermore, for each orientation there is a maximum value in the temperature

dependence of q*. Experimentally, this maximum occurs around 3.6 K. Finally, the

Fig. 5.11 Orientation

dependence to the nucleate

boiling heat flux (From Lyon

[20])
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orientation dependence is in qualitative agreement with theory. A minimum in q*
does occur at y ¼ 180
, that is facing downward. However, the value of q* at

y ¼ 180
 is still quite sizable, being about 25% of q* for y ¼ 0
.
The above correlations do not apply when the helium is subcooled to a state

substantially off the saturated vapor pressure curve. In this case there can be no

coexisting vapor. Some work [21–23] on the effect of subcooling on heat transfer

has attempted to treat the peak heat flux correlation in terms of a subcooled

temperature difference DTsub. The subcooled temperature difference is defined as

the difference between the bath temperature Tb and the temperature corresponding

to saturation Tsat. As heat is applied from the heat transfer surface, the temperature

rises. However, in subcooled He I a larger temperature difference is required than in

saturated He I. This is due to the need to bring the local environment first to

saturation followed by the amount of superheat needed to initiate nucleate boiling.

Therefore, the absolute temperature needed to cause boiling at a given pressure

should be independent of bath temperature. Such a hypothesis leads to a correlation

for the enhancement of peak heat flux q* with subcooling

q�sub
q�sat

¼ 1þ aCpDTsub
hfg

(5.26)

where a is an empirical parameter found to be close to 1.75. Comparison of

experimental results with the correlation given by (5.26) are shown in Fig. 5.12.

Agreement is reasonable although the theory has received only limited application.

5.4 Film Boiling

Once the film boiling condition has been established, normally by exceeding q*
under steady-state conditions, a wholly different heat transfer process takes place.

In the vicinity of the heat transfer interface the helium takes on a stable two-phase

Fig. 5.12 Variation of the

peak nucleate boiling heat

flux with subcooling (From

Ibrahim et al. [21])
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condition with a thin vapor layer blanketing the surface from the He I bath. For a

surface facing upward, this condition is gravitationally unstable since the density

of the liquid is considerably greater than that of the vapor. Experimentally, it is

found that return to the nucleate boiling state requires a decrease in heat flux to qR
or qmfb, which can be substantially less than q* for most configurations. It follows

that there are two principal issues that should be addressed when evaluating the

film boiling state. First, given the conditions of film boiling, how is the recovery

process explained? In particular, is it possible to predict qR? This process has to

do with the stability of the He I–vapor interface. The second question pertains to

the need to correlate the heat transfer coefficient in the film boiling condition.

This process normally relies on dimensionless group analysis developed for

other liquids.

5.4.1 Minimum Film Boiling Heat Flux

The stability of the vapor film blanketing the heat transfer surface can be evaluated

in terms of a hydrodynamic condition referred to as the Taylor instability [17].

This interpretation is a standard approach to treating the interface between two

dissimilar fluids. Imagine the condition shown in Fig. 5.13 which is an idealized

film boiling heat transfer process. The liquid helium is heavier than the vapor so it

would prefer to rewet the surface; however, it is being maintained in the present

condition by the high-temperature vapor film. The stability of the liquid-vapor

interface is controlled by the behavior of surface wave oscillations. The wave can

be assumed to have an amplitude �0, and a wavelength l. Surface waves must be

damped for the interface to be stable, otherwise the amplitude would grow beyond

the vapor film thickness and rewet the surface. It is therefore reasonable to

construct a model based on the assumption that the stability of these waves controls

the recovery process.

To be more quantitative about the above argument, assume that the stability of a

surface wave is assured if the energy associated with surface tension exceeds the

combination of the kinetic and potential energies in the wave. Both these terms are

related to the amplitude of the surface oscillation �0, as well as physical parameters

Fig. 5.13 Idealized film

boiling heat transfer process
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such as densities and surface tension. The kinetic and potential energies can be

related as

E

l�

������
KP

¼ g rl þ rvð Þ�20
2

(5.27)

where l� is the wavelength of the surface oscillation and g is the gravitational

acceleration. Similarly, the surface term can be written

E

l�

������
s

¼ 1

l�

Z l�

0

Dp � dx (5.28)

where Dp is taken to be the pressure difference and � is a sinusoidal varying wave,

that is � ¼ �0 sin 2px=l�. By integrating over the wavelength of the oscillation and

using the approximation that the surface wave oscillation is small compared to l� ,
we can evaluate the integral (5.28):

E

l�

������
s

¼ 4ps�20
l�
2

(5.29)

As already stated, the condition for stability demands that the surface energy

exceed the dynamic energy. This leads to a condition on l� by demanding that

(5.29) not exceed (5.27), that is,

l�<2p
2s

g rl � rvð Þ
� �1

2

(5.30)

For liquid helium near 4.2 K, (5.30) is obeyed for wavelengths less than about

2 mm, a dimension that must be comparable to a characteristic distance in the heat

transfer problem, for example, the typical bubble dimension.

The minimum film boiling heat flux qR can be understood by application of the

Taylor instability theory to the film boiling heat transfer condition. Lienhard and

Wong [24] and Zuber [18] used this analysis, identifying the breakdown of film

boiling with the amplitude of the surface wave. The general relationship has one

empirical constant and an explicit diameter dependence. For the special case of a

flat plane, the correlation is simplified considerably:

q
R
¼ 0:16 hfgrv

gs rl � rvð Þ
rl þ rvð Þ2

 !1=4

(5.31)

136 5 Classical Helium Heat Transfer



It is interesting to compare (5.31) with (5.24), which predicts the peak heat flux

q*. Taking a ratio of these two expressions, the only important parameters turn out

to be the relative densities of the liquid and vapor,

q
R

q� ¼ rv
rl þ rv

� �1=2

(5.32)

For example, considering liquid helium at 4.2 K, we find that the ratio described

by (5.32) has a value of 0.35 at atmospheric pressure. Therefore, assuming

q* ¼ 8.5 kW/m2 as measured by Lyon [21] we find that (5.32) predicts a minimum

film boiling heat flux of about 3 kW/m2 in close agreement with experimental

measurements.

The pressure dependence of the recovery heat flux is worth considering in light

of the noted behavior of q*(p). As was observed in the previous section, subcooling
increases q* by about 50% per degree of DTsub near atmospheric pressure. The

subcooling effect on qR is greater, as can be seen in Fig. 5.14. Note that qR increases
by about 90% per degree of DTsub near atmospheric pressure [18]. The correlating

relationships for the minimum film boiling heat flux predict this effect. Subcooling

increases the ratio of the vapor to liquid density at saturation, which would result in

an increase in qR/q*, as observed by experiment.

Fig. 5.14 Minimum film boiling heat flux for subcooled He I (from Ibrahim et al. [21])
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5.4.2 Heat Transfer Correlations

Once stable film boiling is established, it is of interest to be able to predict the

magnitude of the film boiling heat transfer coefficient hfb or the rate of heat flux qfb
for a given DT. Experimentally, hfb has values that range over more than an order of

magnitude between about 0.3 kW/m2 K and nearly 10 kW/m2 K, with the latter

being achieved for fine wires with diameters of ~10 mm. The film boiling heat

transfer also depends on fluid properties, being a function of the vapor and liquid

densities, latent heat, and surface tension s.
A number of semi-empirical correlations exist for prediction of heat transfer on

the film boiling condition. The best known and perhaps most accepted of those is

due to Breen and Westwater [25]. As in the case of the minimum film boiling heat

flux qR, these authors base their theory on the Taylor instability. They consider the

wavelength condition given by (5.30) as the minimum required to release vapor

bubbles into the bulk fluid from the boiling film. The correlation depends on the

thermal properties of the fluid including specific heat and viscosity in addition

to geometrical conditions such as the diameter of the heat transfer sample.

The correlation relates the film boiling heat transfer coefficient to these quantities

and a number of numerical constants:

hfb
s

g rl � rvð Þ
� �1=8 mv Ts � Tbð Þ

k3vrv rl � rvð Þgl0
� �1=4

¼ 0:37þ 0:28
s

gD2 rl � ruð Þ
� �1=2

(5.33a)

where

l0 ¼ hfg þ 0:34Cpv Ts � Tbð Þ� �2
hfg

(5.33b)

and represents an effective latent heat. Ts and Tb are the surface and bath

temperatures, respectively. D is the diameter of the heater surface, which for film

boiling has an effect on the heat transfer coefficient. For the special case where the

heater diameter is greater than a few millimeters, the second term on the right-hand

side is small and (5.33) may be approximated by the relationship

hfb ¼ 0:37
g rl � rvð Þ

s

� �1=8 k3vrv rl � ruð Þgl0
mv Ts � Tbð Þ

� �1=4

(5.34)

Furthermore, in helium for moderate temperature differences, that is DT ≳ 5 K,

the second term in (5.33b) is dominant. Under these conditions, it can be shown

easily that film boiling heat transfer q � (Ts – Tb)
3/4

.
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In summary, Fig. 5.15 is a plot of the various predictive relationships for nucleate

and film boiling heat transfer [26]. A Comparison between data for nucleate boiling

and minimum film boiling has been made already. For the case of film boiling heat

transfer, the Breen–Westwater correlation is onlymoderately successful a predicting

experimental data [19]. In general, film boiling heat transfer coefficients measured

on fine wires has yielded consistently higher heat transfer coefficients than

calculated from the above correlation.

5.5 Surface Effects

For the most part, heat transfer analysis for He I takes little account of the character

of the surface. In steady-state heat transfer, the surface is discussed only qualitatively

in terms of activated nucleation sites. Heat transfer correlations used to describe

nucleate boiling and both critical heat fluxes make no attempt to include the surface

character in their treatment. This clearly is a weakness in the theory for there are

considerable surface-induced changes in these values. For transient heat transfer, a

greater effort is put forth to include the surface physics. As was discussed in Sect. 5.6

Kapitza conductance, which is a solid-state interfacial result, must be included when

attempting to understand the transient conduction heat transfer. Since surface

characteristics are not generally included in engineering correlations, it is of interest

to consider how variations in surface character affect experimental results.

There has not been a great deal of research conducted on surface-dependent

heat transfer in He I [27–29]. In the case of steady-state investigations, surface

Fig. 5.15 A summary of pool boiling heat transfer correlations for He I
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roughness, as measured by the coarseness of the surface abrasive, strongly affects

the nucleate boiling regime. This effect can be understood qualitatively by consid-

ering arguments of activated nucleation sites. The smoother the surface, the fewer

active nucleation sites. Since activated sites induce convection, a polished surface

should have a larger surface temperature difference DTs for the same heat flux. This

result has been observed by Boissin et al. [27]. Chemical treatment also has shown

to affect the nucleate boiling regime [29]. These coatings combined with gross

surface roughness have been employed to enhance cooling of composite conductors

for large superconducting magnets.

Surface coatings also have been shown to affect the values of peak and recovery

heat fluxes, q* and qR. The correlations used to describe these events in heat transfer
do not include any of the surface characteristics. Cummings and Smith [28]

have shown a clear increase in both the peak heat flux q* and recovery value qR
with increased surface coatings. In their results shown in Fig. 5.16, the coatings

were obtained by condensing H2O crystals on the surface. Similar behavior was

observed by Ogata and Nakayama [29] on chemically treated surfaces. These

results are not understood in terms of heat transfer models, but they represent

interesting and technically significant improvements.

5.6 Channel Heat Transfer

As a very interesting and technically significant special case of pool boiling heat

transfer, consider the channel heat transfer problem described schematically in

Fig. 5.17. A channel of width w is formed between a heat transfer surface and a

Fig. 5.16 Influence of H2O coatings on pool boiling heat transfer (From Cummings and Smith

[28])
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second adjacent surface. The channel may be oriented at any angle between vertical

and horizontal leading to variations of the heat transfer conditions. This particular

problem is significant because it models an open cooling channel in a technical

device such as a superconducting magnet. When heat is applied to the surface, the

liquid can circulate owing to the thermosiphon effect where bubbles are transported

under the influence of buoyancy forces, as discussed in Sect. 4.3.3.

If the channel is heated over its length, then the fluid accumulates vapor and

the quality increases. If a low-quality fluid enters a heated tube section from below.

Initially, nucleate boiling occurs at the fluid-tube interface. These bubbles are

stripped from the wall and produce local bubbly flow. As the fluid continues through

the tube more heat is transferred, increasing the vapor quality until slug flow and

finally annular flow occur. This sequence of events is illustrated in Fig. 5.18.

Also, as the heat flux from the surface is increased, film boiling may eventually

initiate at the top of the channel where the vapor quality is greatest. Because of

the induced flow, the peak heat flux at the channel bottom can be quite large.

The position dependence of the peak heat flux in one set of experiments is shown in

Fig. 5.19. For vertically oriented surfaces in an open bath at 4.2 K, the peak heat

flux is usually in the neighborhood of 6 kW/m2. Therefore, the bottom of the

channel has q* quite close to that observed in an open bath. As the helium is

vaporized and transported up the channel, the local peak heat flux is depressed.

In the present example, the peak heat flux near the top approaches 3.4 kW/m2,

almost a 50% reduction.

Wilson [31] conducted one study of channel heat transfer in an experiment

having variable height and width. The following set of observations were made.

Fig. 5.17 Schematic of a

heat transfer channel
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First, for small width w, the peak heat flux averaged over the entire surface area

was directly proportional to the heat flux in the helium channel and therefore

proportional to w. This suggests that the peak heat flux is governed by the bulk

fluid flow. Second, for constant w, the peak heat flux was found to be inversely

proportional to the square root of the channel height z. Based on the results as they

depend on w, this indicates that the bulk heat flow varies as z–1/2. Finally, it was
found that for w/z > 0.1, the channel behaved effectively as an open bath with q*
approaching that of a vertically oriented surface, q* ~ 6 kW/m2.

Sydoriak and Roberts [32] derived a general relationship for frictionless homo-

geneous flow of a fluid in a evaporator, which Wilson applied to this channel heat

Fig. 5.18 Flow patterns in

a vertical heated channel

(From Tong [17])

Fig. 5.19 Position

dependence of the peak heat

flux in a He I cooled channel

(Lehangre et al. [30])
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transfer problem. The prediction for the critical power per unit area of heated

surface, Q*/As, is given by

Q�
As

¼ wffiffi
z

p hfgrl
2

g~q

b� 1
1� ln 1þ ~q b� 1ð Þ½ 	

~q b� 1ð Þ
� �
 �1=2

(5.35)

where b ¼ rl/rv and ~q is the “critical quality” – the mass ratio of vapor to total

(liquid plus vapor) at the channel top when film boiling initiates. This last quantity

must be determined empirically although in general it should be a scalable function

for different fluids.

A plot of the critical power versus channel width w for different channel lengths

z should give a linear plot from which the proportionality function Q*z1/2/wAs can

be determined. Such a plot is displayed in Fig. 5.20 for four different channel

heights. The linear plot obtained yields a critical quality ~q ranging from 0.33 to

0.26 in the case of the largest channel. Thus, for calculations, (5.35) should be a

reasonable approximation for Q*/As assuming a constant value for ~q � 0:3.
One difficulty with the above described analysis is that it does not naturally lead

into the open bath limit for w/z > 0.1. In an effort to develop a more general

equation for channel heat transfer, Lehangre et al. [30] suggested a correlation

based on a series of experiments of different configuration:

Q�
As

¼ 10

1:7þ 0:125 z=Dhð Þ0:88 (5.36)

Fig. 5.20 Critical power versus channel width for He I heat transfer (From Wilson [31]).
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where Q*/As is in kW/m2. The quantity Dh is the hydraulic diameter which is

equal to four times the ratio of the flow cross section to the heated perimeter.

Equation (5.36) has the appropriate limit for w/z large; however, for channels other
than in the vertical orientation it is not applicable.

Chen and Van Sciver [33] noted that for wide channels the maximum heat flux

q* should correlate with the open bath pool boiling results by Lyon [20]

(see Fig. 5.11). The results of these experiments are shown in Fig. 5.21, where

the angle y is measured from the vertical orientation. There are two physical

processes that lead to the observed angular dependence of q*. The first process is

nucleate boiling associated with movement of vapor bubbles normal to the heated

surface. This effect, which is maximum at an angle of 90
, can be assumed to

control the heat transfer process for large w. The other process is associated with

the natural circulation of the heated fluid, where the movement is parallel to the

heated surface. The natural circulation process is a maximum at y ¼ 0
 and should

Fig. 5.21 Variation of the peak heat flux with channel orientation and width at 4.2 K. Channel is

127 mm in length [33]
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dominate the heat transfer in the limit of small w. The combination of these two

processes is necessary to describe the variation of q* with y and w. In particular,

one would expect the maximum value of q* to vary continuously between 0
 and
90
 as the channel width is increased.

A general correlation used to describe the angle and width dependencies of q* is
of the form

q� ¼ b sin
yþ 90


2

� �
þ c cos yð Þ1=2 (5.37)

where b and c are adjustable parameters, which should be functions of w only.

The width dependence of these parameters is shown in Fig. 5.22. The basis for

(5.37) is purely empirical evidence. The first term is used to describe the nucleate

boiling heat transfer process. The angular dependence is in reasonable agree-

ment with Lyon’s pool boiling data. The second term represents the natural

circulation process. The (cos y)1/2 angular dependence not only fits the experi-

mental data for small w but is consistent with the Wilson’s correlation which

predicts q* / g1/2.

Fig. 5.22 Parameters used to fit the variation of q* with y in (5.37)
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As a final comment on channel heat transfer, the steady-state conditions as

described above generally take a considerable time to become established. This is

because the natural circulation requires a substantial temperature rise and vapor

production before it is fully established. Naturally, the time to reach steady state

depends on the magnitude of Q*/As, but for significant heat fluxes, of the order of

1 kW/m2, this characteristic time can be as much as a second. The existence of a

characteristic time for the development of steady-state heat transfer has strong

impact on technical applications. Since many systems experience transient heat

transfer processes, which are on the millisecond time scale, it is important to

appreciate that these heat transfer processes are far from steady state.

5.7 Forced Convection Heat Transfer

The process of heat transfer to forced flow helium is closely tied to the dynamics of

the flow states, a topic covered in Sect. 4.1. In the present section, we would like to

extend that discussion to include solutions to the energy equation that can be used

to treat convective transfer.

5.7.1 General Considerations

The problem of interest involves heat transfer from a surface exposed to flowing

liquid helium. If the predominant flow is in the x-direction and the heat transfer is

in the direction perpendicular to that of the flow (y-direction), the energy equation

may be simplified by using the thermal boundary layer approximation,

@T

@y
� @T

@x

which is analogous to that assumed for the velocity profile. Assuming for simplicity

that the fluid possesses constant properties r, Cp, k, and m, we obtain the corres-

ponding thermal boundary layer equation [2],

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
þ m
rCp

@u

@y

� �2

(5.38)

where a ¼ k/rCp is the thermal diffusivity. The first term on the right-hand side

of (5.38) represents thermal diffusion. For most fluids of interest in cryogenics, this

term is not large and can be neglected.

By suitable normalization, (5.38) can be shown to lead to the definition of the

Nusselt number as a general function of Reynolds number and Prandtl number, that is,

Nu ¼ f ReD; Prð Þ (5.39)
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For internal flow, the Nusselt number is defined as:

NuDh
¼ hDh

kf
(5.40)

where k is a suitably averaged fluid thermal conductivity. In fact, (5.40) is general

and not dependent on the boundary layer approximation. Most empirical heat

transfer correlations are constructed in a form consistent with (5.39).

5.7.2 Heat Transfer Correlations

Investigations of heat transfer to forced convection helium have shown that tradi-

tional engineering correlations are best at describing the data. Results of analysis of

the thermal boundary layer indicate that the average Nusselt number should be

couched in a form consistent with (5.39). As an aside, be aware that the local heat

transfer coefficient can be a considerable function of temperature and therefore

varies along the length of the tube. The local heat transfer coefficient is also defined

in terms of the local mean fluid temperature,

h ¼ q

Ts � Tm
(5.41)

where Tm is obtained by taking an appropriate average across the channel.

There are numerous single-phase fluid heat transfer correlations for internal

flow. Several important factors must be considered when selecting a correlation

to apply to a particular system. First, determine whether the fluid is in the laminar

or turbulent flow regime. The critical Reynolds number for single-phase internal

flow is around 1,200. Second, determine whether the entry region has significant

impact on either the hydrodynamics or temperature development. This requirement

demands fairly large L/D ratios. Helium has a Prandtl number of the order of unity,

so it is expected that these developments will occur almost simultaneously. Finally,

once the conditions of flow are established, it is necessary to select among several

possible correlations dependent on whether the range of parameters is appropriate

for the particular empirical fit.

In fully developed laminar internal flow, there are analytic solutions to the

thermal boundary layer equations of the form,

NuD ¼ constant (5.42)

Where theconstantdependsonboundary conditions being4.36 for constant heat flux

boundary conditions and 3.66 for constant wall temperature boundary conditions.

However, for most helium cryogenic problems, laminar flow almost never occurs.

One exception involves flow within porous media a topic discussed below.
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For turbulent flows, all engineering correlations are of the form of (5.39) where

the average Nusselt number is a function of the fluid Reynolds and Prandtl numbers.

In this regime, a number of good correlations exist for single-phase turbulent heat

transfer. The Dittos–Boelter expression is perhaps the most common such

heat transfer correlation [2],

Nu ¼ 0:023Re
4 5=
D Pr2=5 (5.43)

where Nu represents the average Nusselt number over the tube length. Correct

application of this expression demands consideration of the temperature depen-

dence of the fluid properties. The appropriate properties must be evaluated at the

film temperature Tf, defined by

Tf ¼ Ts þ Tm
2

(5.44)

which is a simple average between the surface and mean fluid temperatures. The

Dittus-Boelter correlation has been used quite effectively for a variety of cryogenic

heat transfer problems [34].

In the case of supercritical helium, Giarratano et al. [35] have suggested

that a prefactor of 0.022 gives a better fit to their data with a standard deviation of

Fig. 5.23 Experimental and predicted heat transfer results for supercritical helium using (5.45)

(From Giarratano et al. [35])
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14.8% obtained between experimental results and correlation. An improved fit to

the experimental data was achieved by use of a slightly modified correlation of

the form [13]

Nu ¼ 0:0259 Re
4=5
D Pr2=5

Ts
Tm

� ��0:716

(5.45)

where now explicit temperature variation of the properties is taken into account

by the last factor. The relationship given by (5.45) correlated to a standard devia-

tion of 8.3% with several sources of experimental data. A normalized form of this

comparison is shown in Fig. 5.23, where the heat transfer coefficient is plotted

against reduced temperature Tb/Tc, where Tc is the critical temperature.

In general, heat transfer to fully developed forced flow single phase helium can

be assumed to have a well-established engineering basis. Since the fluid is single

phase, its hydrodynamics can be evaluated in terms of the Navier–Stokes equation

of motion including compressibility factors. This problem is quite difficult owing to

the variability of physical properties with pressure and temperature. Consequently,

its solution requires numerical integration of complicated nonlinear equations.

Be aware that this particular problem represents only one special case of forced

flow helium. Other problems concerning two-phase flow and transient effects,

subjects of subsequent sections in this chapter, are more complex in physical nature.

Example 5.2

Consider a thin walled copper tube of diameter 10 mm carrying liquid helium

at 1 g/s and subject to a surface heat flux of 0.1 kW/m2. The helium enters the

tube at 4.2 K and 0.2 MPa. Calculate the tube wall temperature.

At the given temperature and pressure, the properties of helium are: r ¼ 125 kg/

m3; m ¼ 3 � 10�6 Pa s; kf ¼ 0.018 W/m K; Pr ¼ 0.792

For the given flow conditions, the Reynolds number is,

ReD ¼ ruD
m

¼ 4 _m

pmD
¼ 42; 441

Using the Dittus Boelter correlation,

Nu¼ 0:023Re
4 5=
D Pr2 5= ¼ 105

And the heat transfer coefficient,

h ¼ Nu � kf
D

¼ 190W m2 K
�

For a surface heat flux of 1 kW/m2, this means that the tube surface is 0.526 K

above that of the fluid or 4.726 K.
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5.7.3 Two Phase Flow Heat Transfer

Two-phase flow in subcritical helium is a complex problem as was discussed in

section 4.3; however, the difficulty in understanding the processes involved in two

phase flow increases significantly when heat transfer is included. In addition to

mass flow rate, vapor quality, and void fraction determining the flow conditions, the

effect of heat flux into the fluid also must be considered. In particular, heat transfer

can lead to rapid variations of vapor quality along the tube section.

Experimental investigations of two-phase flow heat transfer have been carried

out by de La Harpe et al. [36] and Johannes [37]. These studies consist principally

of forced flow helium at 4.2 K confined to a tube of a few mm ID with temperature

and pressure probes necessary to determine the heat transfer coefficient and critical

heat flux for boiling. The latter quantity is strongly geometry dependent and cannot

be generalized easily in other systems.

The heat transfer coefficient obtained for two-phase helium is discussed best in

terms of classical correlating relationships. The approach is to determine first the

Nusselt number corresponding to the Dittus–Boelter equation for the liquid flow

only, that is,

Nul ¼ 0:023 Relð Þ0:8 Prlð Þ0:4 1� wð Þ0:8 (5.46)

where the last multiplier is to indicate the contribution of only the liquid. Note

that Nul ¼ hDh/kl, where kl is the liquid thermal conductivity. Measurements

of the two-phase heat transfer coefficient have shown that the actual Nusselt

number normalized to (5.46) can be correlated to the Lockhart–Martinelli para-

meter, wtt, as

Nuexp
Nul

¼ Aw�n
tt (5.47)

where wtt is discussed in Chap. 4 and repeated here for convenience,

w2tt ¼
dp=dxð Þv
dp=dxð Þl

(4.37)

The best fit to the data of Johannes [37] of the form of (5.47) are displayed in

Fig. 5.24 for which the appropriate values are A ¼ 5.40 and n ¼ 0.385. Results of

de La Harpe [36] are also displayed as the dashed line in the figure with agreement

in form to the data of Johannes, although possessing substantially different values

for the coefficient A. Although the above correlation seems appropriate for low to
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moderate values of the Lockhart–Martinelli parameter, in the limit of large wtt,
which occurs for small vapor quality, the ratio given by (5.47) must approach unity.

Therefore, to be universally applicable the correlation should reflect this fact.

Two-phase heat transfer as with two-phase flow is a complex process which is

very difficult to understand fully. If faced with a problem in this area, the best

approach is to apply one of the accepted correlations. However, these calculations

are only approximate and should be used only as a guide. If greater accuracy

is required, experimental modeling is the required approach.

5.8 Transient Heat Transfer

In the previous sections, it was assumed that the heat transfer process had been

underway for sufficient time that steady-state conditions existed. The characteristic

time required for the steady state to be achieved is equivalent to the time required

for convection to become fully established. For nucleate boiling, enough heat must

be transferred to vaporize bubbles and allow them to detach. In film boiling the

characteristic time is associated with sufficient energy flux to vaporize a layer of

helium. This can be represented approximately by

Dt � rhfgd
q

(5.48)

where d is the vapor film thickness. For an order-of-magnitude analysis assume that

d � 10 mm. Using the physical quantities for He I at 4.2 K, 0.1 MPa, (5.48) predicts

Dt � 3/qms, where q is in W/cm2. For a heat flux of a few W/cm2, the steady-state

conditions are not established until well in excess of a few milliseconds. For times

shorter than this value, the heat transfer processes are governed by nonconvective

mechanisms such as conduction and radiation.

It is of considerable importance to be able to understand transient heat transfer in

liquid helium. Transient heat transfer is fundamental to the analysis of a number of

problems including the stability of superconducting magnets. There are several

Fig. 5.24 Two-phase heat

transfer correlation for helium

(From Johannes [37]). The

dashed line is a comparison to

previous measurements of de

La Harpe et al. [36]
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aspects to this problem which are worth noting at the beginning. First, for very short

times, that is, Dt < 1 ms, heat transfer processes turn out to be controlled by

physical mechanisms similar to those developed for the case of He II, that is,

Kapitza conductance. Second, the transition between the region of heat transfer

space governed by conduction and that which resembles the steady-state process

is important. This transition occurs on time scales consistent with the rough

calculation in above. There are several parameters that are associated with transient

heat transfer. (1) the peak heat flux q*(t) or critical energy DE* ¼ q* Dt*; (2) the
interfacial temperature difference DTs; and (3) the effective heat transfer

coefficient h. These parameters are governed primarily by the physical properties

of helium and the rate of heat transfer.

The various regimes of transient heat transfer can be described best in terms of

an idealized experiment, which in fact is not very different from actual experiments

performed to investigate the problem. Imagine a solid heat transfer surface as

shown in Fig. 5.25, which in this particular case is oriented vertically. Recall that

the peak steady-state heat flux for this configuration is in the neighborhood of

6 kW/m2. In this experimental configuration, a step function heat flux q0 beginning
at t0 is applied to the sample. With suitable thermometry, which must have a

response time faster than a millisecond, the surface temperature is recorded as it

varies with time following the initiation of heat transfer.

As an example of the kind of data collected from this type of experiment,

measurements by Steward [38] are shown in Fig. 5.26. In this particular case, the

heat transfer surface is a thin carbon film which is both heater and thermometer.

Fig. 5.25 Schematic

representation of the transient

heat transfer process
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Note that for very short times, the surface temperature rise is not large, although it is

an increasing function of heat flux. This short time regime, which is generally much

less than 1 ms, is controlled by transient conduction mechanisms. As time

progresses, the nucleation of convective mechanisms begins. For low heat fluxes,

the heat transfer process eventually transforms to steady-state nucleate boiling.

At high heat fluxes, that is, q > 10 kW/m2 (1 W/cm2), there is a transition to the

film boiling state. This latter transition has associated with it an increase in DTs of
about an order of magnitude, consistent with the steady-state film boiling heat

transfer characteristics. In the steady-state regime, the temperature differences

presumably can be described in terms of the correlations introduced in previous

sections of this chapter. There are, however, two effects in these data which need

further discussion: (1) the size of the heat transfer coefficient in the transient

conduction regime and (2) the time associated with the transition to steady-state

heat transfer mechanisms.

5.8.1 Surface Temperature Difference

Consider first the problem of the surface temperature difference during transient

conduction. Since this mechanism is conduction dominated, it should be possible

to understand in terms of diffusion theory. Returning to Fig. 5.25, imagine a steady

heat flux through the interface. There are two potential contributors to the

associated temperature difference. First, there is a thin fluid layer of thickness d
into which the heat diffuses. The temperature difference across the layer, defined as

DTf, should be determined exclusively by heat diffusion in the bulk fluid. Second,

there is an interfacial temperature difference that is due to the mismatch of phonon

heat transport between the two media. This mechanism, referred to as Kapitza

conductance, which will be discussed in Chap. 7. It is a truly interfacial process

occurring within a few atomic layers of the solid-helium boundary. The temperature

difference due to Kapitza conductance is given the designation DTk.
To evaluate the heat diffusion temperature difference, it is necessary to solve

the heat diffusion equation with the proper set of boundary conditions. In one

dimension this equation can be written

@2DTf
@x2

¼ 1

D

@DTf
@t

(5.49)

given a number of simplifying assumptions. In particular, it is assumed that the

thermal diffusivity,D ¼ k/rC, is a constant independent of temperature or position.

Of course, this is not a particularly good assumption for liquid helium, however, it

simplifies the model considerably to do so. Furthermore, it is assumed that the solid

does not play a major role in the heat diffusion. This approximation has a negligible
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effect if the heat transfer surface has small heat capacity. The boundary conditions

which are applied to solve (5.49) include

DTf x; 0ð Þ ¼ 0 (5.50a)

DTf 1; tð Þ ¼ 0 (5.50b)

and

q ¼ �k
@DTf
@x

����
x¼0

(5.50c)

The last condition, being consistent with the constant flux assumption at the

interface, is true only if the heat capacity of the heat transfer surface is neglected.

The general solution to (5.49) with the above set of boundary conditions leads to

DTf ¼ q

k
2

Dt

p

� �1=2

exp
�x2

4 Dt

� �
� x erfc

x

2 Dtð Þ1=2
 !" #

(5.51)

where x is the dimension measured into the fluid. At the solid-fluid interface, x ¼ 0,

the relationship simplifies considerably to yield

DTf ¼ 2qffiffiffi
p

p t

rkC

� �1=2

(5.52)

For example, consider liquid helium at 4.2 K subjected to a heat flux of 1 W/cm2

for a time of 10 ms, which is in the transient conduction regime. These conditions

lead to a computed value for DTf of about 0.3 K, which is approximately equal to

the superheat required to produce homogeneous nucleation computed in Sect. 5.3.

It is also worth noting that DTf � 0.3 K corresponds to about 1/3 the measured DT
in Fig. 5.26.

The second mechanism which can lead to an interfacial temperature difference

during transient heat transfer is due to Kapitza conductance. The temperature

dependence of the Kapitza conductance is understood but the absolute value of

the heat transfer coefficient is not predictable. Assuming. that the mechanisms are

the same independent of whether the fluid is He I or He II, it is reasonable to write

DTK ’ q

hK
(5.53a)

where hK ’ AT3, consistent with experimental measurements of Kapitza conduc-

tance. For a copper surface below Tl, A has been measured to have values around

0.1 W/cm2�K4, but with considerable uncertainty. Using this value for Tb ¼ 4.2 K

in He I, the interfacial temperature difference due to Kapitza conductance should
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vary as DTK � 0.13 q. Therefore, for copper, the Kapitza temperature difference

would be the same order as but somewhat smaller than that due to transient

conduction except at very short times, t ≲ 1 ms.
On a very short time scale the heat flux dependence of the heat transfer coefficient

in He I generally obeys the processes described above. Plotted in Fig. 5.27 is the

surface temperature difference for copper samples measured in He I compared to

that for He II [39]. On the right-hand side, the figure shows a typical DTs versus q
dependence observed for He II. Initially, there is a linear region; however, as the heat

flux increases a considerable deviation from linearity occurs because the actual heat

transfer varies as Tn
s � Tn

b where n � 3. A somewhat different effect is observed for

the case of He I. Here the dependence of DT versus q for high heat fluxes is almost

linear, indicating a constant heat transfer coefficient. However, at low heat fluxes the

surface temperature does not appear to extrapolate to the origin, indicating some

failure in the linear modeling over the regime for which the linear relationship holds.

The Kapitza conductance appears to obey the cubic temperature dependence.

In principle, the temperature difference corresponding to a transient heat transfer

event can be determined by a series summation of the two contributions described

above. It follows that

DTs ¼ DTK þ DTf (5.53b)

where, dependent on the choice of surface materials, one term can dominate the

process. For comparison with theory, it should be possible to separate the two

quantities in (5.53b) based on their different time dependencies.

Fig. 5.27 Surface temperature difference for copper samples versus heat flux: (a) He I at 4.2 K and

(b) He II at 1.8 K. Numbers on the straight lines refer to h values in W/cm�K (From Schmidt [39])
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5.8.2 Transition to Film Boiling

The other fundamental question related to transient heat transfer concerns the onset

of film boiling. For a given heat flux q*, the time required to reach the film boiling

state, Dt*, is of interest. This quantity establishes the limits to which enhanced heat

transfer due to transient conduction can be credited in a heat transfer problem.

The problem is understandable by means of a rather simple picture. Given that the

transition is associated with the formation of a vapor film, a critical energy is

defined as that required to vaporize the helium adjacent to the heat transfer surface

and create the film.

A more quantitative model can be developed by assuming that DE* is the energy
needed to vaporize a layer of thickness d, which corresponds to the diffusion length.
Employing the transient diffusion model, we note that the diffusion length can be

approximated by

d ¼ p
2

Dtð Þ1=2 (5.54)

where again D is the thermal diffusivity. On a unit area basis, the critical energy

is written

DE� ¼ q�Dt� ¼ dhfg (5.55)

where hfg is the heat of vaporization of liquid helium at the existing temperature

and pressure conditions. Substituting (5.54) into (5.55), we find that the heat flux

needed to achieve film boiling is given by

q� ¼ p
2
rhfg

k

rC Dt�
� �1=2

(5.56)

which for values associated with He I at 4.2 K, 1 bar, simplifies to

q� ¼ 0:07 Dt�
 ��1=2
(5.57)

where q* is in W/cm2 and Dt* is in seconds. Note that this correlating equation does
not contain any adjustable parameters. Plotted in Fig. 5.28 are numerous experi-

mentally determined values for q* along with the simple diffusion model fit given

by (5.57). The correspondence is surprisingly good, which supports the basic

physical ingredients to the critical energy analysis included in the simple model.

A more precise empirical fit has been suggested [39]:

q� ¼ 0:127 Dt�
 ��0:4
(5.58)

This form is seen to agree with the data, particularly in the sub-millisecond regime.
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As a final comment, the transient heat transfer analysis given above is

oversimplified. Only two problems have been discussed, the heat transfer coeffi-

cient in the conduction regime and the critical energy for the onset of film boiling.

In between these two regimes is the transition to film boiling including the dyna-

mics of nucleation and the creation of the vapor film. These are considerably more

complex phenomena than can be discussed here. This regime has been analyzed to

some extent by Steward [38] by evaluating the orientation and pressure dependence

to the type of data displayed in Fig. 5.26. The observations gleaned from this

work are more qualitative but suggest that the transition regime is at least in part

controlled by conventional heat transfer phenomena. Further work is required to

grasp more fully the various aspects of the transient heat transfer problem.

Questions

1. For pool boiling liquids, why is the heat transfer coefficient in nucleate boiling

higher than the heat transfer coefficient in free convection?

2. In pool boiling heat transfer, q* depends on surface orientation. Discuss in terms

of the bubble formation and detachment picture, why surface orientation should

make a difference and what would be the expected trend. q* > 0 in pool boiling

heat transfer even for the face down condition, Y ¼ 180. Why?

3. Discuss the trends in the He I nucleate boiling curve (Fig. 5.9). Is there any

correlation with surface roughness? If so, how would this trend be explained in

terms of bubble nucleation theory?

Problems

1. Calculate the critical radius of a vapor nucleus in He I at 4.2 and 2.5 K under

saturated vapor pressure. Assume a reaction rate of 1 cm–3�s–1. Compare this

value with the radius determined from (5.15). Estimate the reaction rate

consistent with the radius determined from (5.15).

Fig. 5.28 Heat flux versus time for transition to film boiling (As compiled by Schmidt [39])
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2. Determine the surface temperature at which the maximum in the peak nucleate

boiling heat flux q* in saturated He I occurs. What would be the change in this

value if the system we pressurized to p ¼ 200 kPa?

3. A vertically oriented, circular cross section channel containing He I at 4.2 K is

exposed to a heat flux which varies linearly with height:

QðzÞ ¼ Qm
z

H

� �

where H is the total channel height. Determine as a function of Qm the position

where the peak heat flux is first exceeded.

4. The Schmidt model for the transition to film boiling during transient heat

transfer, (5.56), implies that the transition occurs when the surface reaches a

temperature that is a constant for a given helium bath. Find an expression for the

critical surface temperature in the Schmidt model and calculate its value for a

saturated He I bath at 4.2 K. Compare your answer with the homogeneous

nucleation temperature for the same conditions.

5. Consider film boiling heat transfer from a flat plate in He I. Calculate the plate

surface temperature at the minimum film boiling heat flux qR.
6. A heat exchanger cools supercritical helium at 1 MPa from 6 to 4.5 K. The

design consists of a tube immersed in the saturated bath of He I at 4.2 K.

Determine the length and diameter of the tube consistent with the following

specification: _m ¼ 1 g s= and Dp ¼ 0:01 MPa . For simplicity assume isothermal

conditions on the external surface of the tube.

7. A pool boiling cooled superconducting magnet uses a monolithic conductor

30 mm wide and 3 mm thick. The conductor is cooled on one face by liquid

helium in the gap between adjacent turns of 0.5 mm. Calculate the peak heat flux

for this conductor in helium at T ¼ 4.6 K, 0.14 MPa, if the wide surface is

vertical. How would this result change if the conductor were exposed to an open

bath of liquid helium instead of a narrow channel?
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