
Chapter 12

Random Forests

Building a single decision tree provides a
simple model of the world, but it is of-
ten too simple or too specific. Over many
years of experience in data mining, it has
become clear that many models working
together are better than one model doing
it all. We have now become familiar with the idea of combining multiple
models (like decision trees) into a single ensemble of models (to build a
forest of trees).

Compare this to how we might bring together panels of experts to
ponder an issue and to then come up with a consensus decision. Gov-
ernments, industry, and universities all manage their business processes
in this way. It can often result in better decisions compared to simply
relying on the expertise of a single authority on a topic.

The idea of building multiple trees arose early on with the develop-
ment of the multiple inductive learning (MIL) algorithm (Williams, 1987,
1988). In building a single decision tree, it was noted that often there
was very little difference in choosing between alternative variables. For
example, two or more variables might not be distinguishable in terms of
their ability to partition the data into more homogeneous datasets. The
MIL algorithm builds all “equally” good models and then combines them
into one model, resulting in a better overall model.

Today we see a number of algorithms generating ensembles, including
boosting, bagging, and random forests. In this chapter, we introduce the
random forest algorithm, which builds hundreds of decision trees and
combines them into a single model.
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12.1 Overview

The random forest algorithm tends to produce quite accurate models
because the ensemble reduces the instability that we can observe when
we build single decision trees. This can often be illustrated simply by
removing a very small number of observations from the training dataset,
to see quite a change in the resulting decision tree.

The random forest algorithm (and other ensemble algorithms) tends
to be much more robust to changes in the data. Hence,it is very robust
to noise (i.e., variables that have little relationship to the target vari-
able). Being robust to noise means that small changes in the training
dataset will have little, if any, impact on the final decisions made by the
resulting model. Random forest models are generally very competitive
with nonlinear classifiers such as artificial neural nets and support vector
machines.

Random forests handle underrepresented classification tasks quite
well. This is where, in the binary classification task, one class has very
few (e.g., 5% or fewer) observations compared with the other class.

By building each decision tree to its maximal depth, as the random
forest algorithm does (by not pruning the individual decision trees), we
can end up with a model that is less biased. Each individual tree will
overfit the data, but this is outweighed by the multiple trees using dif-
ferent variables and (over) fitting the data differently.

The randomness used by a random forest algorithm is in the selection
of both observations and variables. It is this randomness that delivers
considerable robustness to noise, outliers, and overfitting, when com-
pared with a single-tree classifier.

The randomness also delivers substantial computational efficiencies.
In building a single decision tree, the model builder may select a random
subset of the observations available in the training dataset. Also, at each
node in the process of building the decision tree, only a small fraction
of all of the available variables are considered when determining how to
best partition the dataset. This substantially reduces the computational
requirement.

In the area of genetic marker selection and microarray data within
bioinformatics, for example, random forests have been found to be par-
ticularly well suited. They perform well even when many of the input
variables have little bearing on the target variable (i.e., they are noise
variables). Random forests are also suitable when there are very many
input variables and not so many observations.
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In summary, a random forest model is a good choice for model build-
ing for a number of reasons. Often, very little preprocessing of the data
needs to be performed, as the data does not need to be normalised and
the approach is resilient to outliers. The need for variable selection is
avoided because the algorithm effectively does its own. Because many
trees are built using two levels of randomness (observations and vari-
ables), each tree is effectively an independent model and the resulting
model tends not to overfit to the training dataset.

12.2 Knowledge Representation

The random forest algorithm is commonly presented in terms of deci-
sion trees as the primary form for representing knowledge. However, the
random forest algorithm can be thought of as a meta-algorithm. It de-
scribes an approach to building models where the actual model builder
could be a decision tree algorithm, a regression algorithm, or any one of
many other kinds of model building algorithms. The general concepts
apply to any of these approaches. We will stay with decision trees as the
underlying model builder for our purposes here.

In any ensemble approach, the key extension to the knowledge rep-
resentation is in the way that we combine the decisions that are made
by the individual “experts” or models. Various approaches have been
considered over the years. Many come from the knowledge-based and
expert systems communities, which often need to consider the issue of
combining expert knowledge from multiple experts. Approaches to ag-
gregating decisions into one final decision include simple majority rules
and a weighted score where the weights correspond to the quality of the
expertise (e.g., the measured accuracy of the individual tree).

The random forest algorithms will often build from 100 to 500 trees.
In deploying the model, the decisions made by each of the trees are com-
bined by treating all trees as equals. The final decision of the ensemble
will be the decision of the majority of the constituent trees. If 80 out
of 100 trees in the random forest say that it will rain tomorrow, then
we will go with that decision and take the appropriate action for rain.
Even if 51 of the 100 trees say that it will rain, we might go with that,
although perhaps with less certainty. In the context of regression rather
than classification, the result is the average value over the ensemble of
regression trees.
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12.3 Algorithm

Chapter 11 covered the building of an individual tree, and the same
algorithm can be used for building one or 500 trees. It is how the training
set is selected and how the variables to use in the modelling are chosen
that differs between the trees built for a random forest.

Sampling the Dataset

The random forest algorithm builds multiple decision trees, using a con-
cept called bagging, to introduce random sampling into the whole process.
Bagging is the idea of collecting a random sample of observations into a
bag (though the term itself is an abbreviation of bootstrap aggregation).
Multiple bags are made up of randomly selected observations obtained
from the original observations from the training dataset.

The selection in bagging is made with replacement, meaning that
a single observation has a chance of appearing multiple times within a
single bag. The sample size is often the same as for the full dataset, and so
in general about two-thirds of the observations will be included in the bag
(with repeats) and one-third will be left out. Each bag of observations is
then used as the training dataset for building a decision tree (and those
left out can be used as an independent sample for performance evaluation
purposes).

Sampling the Variables

A second key element of randomness relates to the choice of variables for
partitioning the dataset. At each step in building a single decision node
(i.e., at each split point of the tree), a random, and usually small, set of
variables is chosen. Only these variables are considered when choosing a
split point. For each node in building a decision tree, a different random
set of variables is considered.

Randomness

By randomly sampling both the data and the variables, we introduce
decision trees that purposefully have different performance behaviours
for different subsets of the data. It is this variation that allows us to
consider an ensemble of such trees as representing a team of experts with
differing expertise working together to deliver a “better” answer.
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Sampling also offers another significant advantage—computational
efficiency. By considering only a small fraction of the total number of
variables available, whilst considering split points, the amount of com-
putation required is significantly reduced.

In building each decision tree, the random forest algorithm generally
will not perform any pruning of the decision tree. When building a single
decision tree, it was noted in Chapter 11 that pruning was necessary to
avoid overfitting the data. Overfitted models tend not to perform well
on new data. However, a random forest of overfitted trees can deliver a
very good model that performs well on new data.

Ensemble Scoring

In deploying the multiple decision trees as a single model, each tree has
equal weight in the final decision-making process. A simple majority
might dictate the outcome. Thus, if 300 of 500 decision trees all predict
that it will rain tomorrow, then we might be inclined to expect there to
be rain tomorrow. If only 100 trees of the 500 predict rain tomorrow,
then we might not expect rain.

12.4 Tutorial Example

Our task is again to predict the likelihood of rain tomorrow given to-
day’s weather conditions. We illustrate this using Rattle and directly
through R. In both cases, randomForest (Liaw and Wiener, 2002) is
used. This package provides direct access to the original implementation
of the random forest algorithm by its authors.

Building a Model using Rattle

Rattle’s Model tab provides the Forest option to build a forest of decision
trees. Figure 12.1 displays the graphical interface to the options for
building a random forest with the default values and also shows the top
part of the results from building the random forest shown in the Textview
area.

We now step through the output of the text view line by line. The
first few lines note the number of observations used to build the model
and then an indication that missing values in the training dataset are
being imputed. If missing value imputation is not enabled, then the
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Figure 12.1: Building a random forest predictive model.

number of observations may be less than the number available, as the
default is to drop observations containing missing values.

Summary of the Random Forest model:

Number of observations used to build the model: 256

Missing value imputation is active.

The next few lines record the actual function command line call that
Rattle generated and passed onto R to be evaluated:

Call:

randomForest(formula = RainTomorrow ~ .,

data = crs$dataset[crs$sample,

c(crs$input, crs$target)],

ntree = 500, mtry = 4, importance = TRUE,

replace = FALSE, na.action = na.roughfix)

A more detailed dissection of the function call is presented later, but
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in brief, 500 trees were asked for (ntree=) and just four variables were
considered for the split point for each node (mtry=). An indication of the
importance of variables is maintained (importance=), and any observa-
tions with missing values will have those values imputed (na.action=).

The next few lines summarise some of the same information in a
more accessible form. Note that, due to numerical differences, specific
results may vary slightly between 32 bit and 64 bit deployments of R.
The following was performed on a 64 bit deployment of R:

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 4

Performance Evaluation

Next comes an indication of the performance of the resulting model.
The out-of-bag (OOB) estimate of the error rate is calculated using the
observations that are not included in the “bag”—the “bag” is the subset
of the training dataset used for building the decision tree, hence the
“out-of-bag” terminology.

This “unbiased” estimate of error suggests that when the resulting
model is applied to new observations, the answers will be in error 14.06%
of the time. That is, it is 85.94% accurate, which is a reasonably good
model.

OOB estimate of error rate: 14.06%

This overall measure of accuracy is then followed by a confusion ma-
trix that records the disagreement between the final model’s predictions
and the actual outcomes of the training observations. The actual obser-
vations are the rows of this table, whilst the columns correspond to what
the model predicts for an observation and the cells count the number of
observations in each category. That is, the model predicts Yes and the
observation was No for 26 observations.

Confusion matrix:

No Yes class.error

No 205 10 0.04651

Yes 26 15 0.63415
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We see that the model and the training dataset agree that it won’t
rain for 205 of the observations. They agree that it will rain for 15
of the observations. However, there are 26 days for which the model
predicts that it does not rain the following day and yet it does rain.
Similarly, the model predicts that it will rain the following day for ten of
the observations when in fact it does not rain.

The overall class errors, also calculated from the out-of-bag data, are
included in the table. The model is wrong in predicting rain when there
is none in only 63.41% of the observations when there is no rain. This
is contrasted with the 4.65% error rate in predicting that it does rain
tomorrow.

Underrepresented Classes

The acceptability of such errors (false positives versus false negatives)
depends on many factors. Predicting that it will rain tomorrow and
getting it wrong (false positive) might be an inconvenience in terms of
carrying an umbrella around for the day. However, predicting that it
won’t rain and not being prepared for it (false negative) could result in
a soggy dash for cover. The 63.41% error rate in predicting that it does
not rain might be a concern.

One approach with random forests in addressing the “seriousness”
associated with the false negatives might be to adjust the balance between
the underrepresented class (66 observations have RainTomorrow as Yes)
and the overrepresented class (300 observations have RainTomorrow as
No). In the training dataset the observations are 41 and 215, respectively
(after removing any observations with missing values).

We can use the Sample Size option to encourage the algorithm to be
more aggressive in predicting that it will rain tomorrow. We will balance
up the sampling so that equal numbers of observations with Yes and No

are chosen. Specifying a value of 35,35 for the sample size will do this.
The confusion matrix for the resulting random forest is:

OOB estimate of error rate: 28.52%

Confusion matrix:

No Yes class.error

No 147 68 0.3163

Yes 5 36 0.1220
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The error rate for when it does rain tomorrow is now 12.2%, and now
we’ll get wet 5 days out of 41 when it does rain, which is better than 26
days out of 41 days on which we’ll end up getting wet.

The price we pay for this increased accuracy in predicting when it
rains, is that we now have more days predicted as raining when in fact
it does not rain. The “business problem” here indicates that carrying an
umbrella with us unnecessarily is less of a burden than getting wet when
it rains and we don’t have our umbrella. We are also assuming that we
don’t want to carry our umbrella all the time.

Variable Importance

One of the problems with a random forest, compared with a single de-
cision tree, is that it becomes quite a bit more difficult to readily un-
derstand the discovered knowledge—there are 500 trees here to try to
understand. One way to get an idea of the knowledge being discovered
is to consider the importance of the variables, as emerges from their use
in the building of the 500 decision trees.

A variable importance table is the next piece of information that
appears in the text view (we reformat it here to fit the limits of the
page):

Variable Importance

No Yes Accu Gini

Pressure3pm 1.24 2.51 1.33 4.71

Sunshine 1.24 1.72 1.23 3.82

Cloud3pm 1.13 1.90 1.16 3.19

WindGustSpeed 0.99 0.97 0.91 2.58

Pressure9am 1.03 -0.11 0.87 2.89

Temp3pm 0.83 -0.50 0.71 1.50

Humidity3pm 0.79 0.04 0.65 2.27

MaxTemp 0.61 -0.10 0.55 1.73

Temp9am 0.52 0.20 0.50 1.50

WindSpeed9am 0.56 -0.12 0.46 1.39

The table lists each input variable and then four measures of importance
for each variable. Higher values indicate that the variable is relatively
more important. The table is sorted by the Accuracy measure of impor-
tance.
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A näive approach to measuring variable importance is to count the
number of times the variable appears in the ensemble of decision trees.
This is a rather blunt measure as, for example, variables can appear at
different levels within a tree and thus have different levels of importance.
Most measures thus incorporate some measure of the improvement made
to the tree by each variable.

The third importance measure is a scaled average of the prediction
accuracy of each variable. The calculation is based on a process of ran-
domly permuting the values of a variable across the observations and
measuring the impact on the predictive accuracy of the resulting tree.
The larger the impact then the more important the variable is. Thus
this measure reports the mean decrease in the accuracy of the model.
The actual magnitude of the measure is not so relevant as the relative
positioning of variables by the measure.

The final measure of importance is the total decrease in a decision tree
node’s impurity (the splitting criterion) when splitting on a variable. The
splitting criterion used is the Gini index. This is measured for a variable
over all trees giving a measure of the mean decrease in the Gini index of
diversity relating to the variable.

The Importance button displays a visual plot of the accuracy and
the Gini importance measures, as shown in Figure 12.2, and is more
effective in illustrating the relative importance of the variables. Clearly,
Pressure3pm is the most important variable, and then Sunshine. The
accuracy measure then lists Cloud3pm and the next most important. This
is consistent with the decision tree we built in Chapter 11. What we did
not learn in building the decision tree is that Pressure9am is also quite
important, and that the remainder are less so, at least according to the
accuracy measure.

We also notice that the categoric variables (like the wind direction
variables WindGustDir, WindDir9am, and WindDir3pm) have a higher im-
portance according to the Gini measure than with the accuracy measure.
This bias towards categoric variables with many categories, exhibited in
the Gini measure, is discussed further in Section 12.6. It is noteworthy
that this bias will mislead us about the importance of these categoric
variables.
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Figure 12.2: Two measures of variable importance as calculated by the random
forest algorithm.

Time Taken

The tail of the textview provides information on how long it took to build
the random forest of 500 trees. Note that even though we are building
so many decision trees, the time taken is still less than 1 second.

Tuning Options

The Rattle interface provides a choice of Algorithm for building the ran-
dom forest. The Traditional option is chosen by default, and that is what
we have presented here. The Conditional option uses a more recent con-
ditional inference tree algorithm for building the decision trees. This is
explained in more detail in Section 12.6. A small number of other tun-
ing options are also provided, and they are discussed in some detail in
Section 12.5.

Error Plots

A useful diagnostic tool is the error plot, obtained with a click of the
Error button. Figure 12.3 shows the resulting error plot for our random
forest model.

The plot reports the accuracy of the forest of trees (in terms of error
rate on the y-axis) against the number of trees that have been included



256 12 Random Forests

Figure 12.3: The error rate of the overall model gnerally decreases as each new
tree is added to the ensemble.

in the forest (the x-axis). The key point we take from this plot is that
after some number of trees there is actually very little that changes by
adding further trees to the forest. From Figure 12.3 it would appear that
going beyond about 20 trees in the forest adds very little value, when
considering the out-of-bag (OOB) error rate.

The two other plots show the changes in error rate associated with
the predictions of the model (here we have two classes predicted and so
two additional lines). We also take these into account when deciding how
many trees to add to the forest.

Conversion to Rules

Another button available with the Forest option is the Rules button,
with an associated text entry box. Clicking this button will convert the
specified tree into a set of rules. If the tree specified is 0 (rather than,
for example, the default 1), then all trees will be converted to rules. Be
careful, though, as that could take a very long time for 500 trees and 20
or more rules per tree (10,000 rules). The first two rules from tree 1 of
the random forest are shown in the following code block.



12.4 Tutorial Example 257

Random Forest Model 1

Tree 1 Rule 1 Node 28 Decision No

1: Sunshine <= 6.45

2: Cloud9am <= 7.5

3: WindGustSpeed <= 43.5

4: Humidity3pm <= 36.5

5: MaxTemp <= 22.45

Tree 1 Rule 2 Node 29 Decision Yes

1: Sunshine <= 6.45

2: Cloud9am <= 7.5

3: WindGustSpeed <= 43.5

4: Humidity3pm <= 36.5

5: MaxTemp > 22.45

Building a Model Using R

As usual, we will create a container into which we place the relevant
information for the modelling. We set up some useful variables within the
container (using evalq()) as well as constructing the training and test
datasets based on a random sample of 70% of the observations, including
only those columns (i.e., dataset variables) that are not identified as
being ignored (which is a list of negative indices, and thus indicates
which columns not to include).

> library(rattle)

> weatherDS <- new.env()

> evalq({

data <- na.omit(weather)

nobs <- nrow(data)

form <- formula(RainTomorrow ~ .)

target <- all.vars(form)[1]

vars <- -grep('^(Date|Location|RISK_)', names(data))

set.seed(42)

train <- sample(nobs, 0.7*nobs)

}, weatherDS)
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Considering the formula, the variable RainTomorrow is the target,
with all remaining variables (~ .) from the provided dataset as the input
variables.

Next we build the random forest. We first generate our training
dataset as a random sample of 70% of the supplied dataset, noting that
we reset the random number generator’s seed back to a known number
for repeatability. The data itself consists of the observations contained
in the training dataset.

> library(randomForest)

> weatherRF <- new.env(parent=weatherDS)

> evalq({

model <- randomForest(formula=form,

data=data[train, vars],

ntree=500, mtry=4,

importance=TRUE,

localImp=TRUE,

na.action=na.roughfix,

replace=FALSE)

}, weatherRF)

The remaining arguments to the function are explained in Section 12.5.

Exploring the Model

The model object itself contains quite a lot of information about the
model that has been built. The str() command gives the definitive list
of all the components available within the object. An explanation is also
available through the help page for randomForest():

> str(weatherRF$model)

> ?randomForest

We consider some of the information stored within the object here.
The predicted component contains the values predicted for each

observation in the training dataset based on the out-of-bag samples. If
an observation is never in an out-of-bag sample then the prediction will
be reported as NA. Here we show just the first ten predictions:
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> head(weatherRF$model$predicted, 10)

336 342 94 304 227 173 265 44 230 245

No No No No No No No No No No

Levels: No Yes

The importance component records the information related to measures
of variable importance as discussed in detail in Section 12.4, page 253.
The information is reported for four measures (columns).

> head(weatherRF$model$importance)

No Yes MeanDecreaseAccuracy

MinTemp 0.0031712 0.0056410 0.0036905

MaxTemp 0.0092405 0.0003834 0.0077143

Rainfall 0.0014129 -0.0033066 0.0005476

Evaporation 0.0006489 -0.0040790 -0.0002857

Sunshine 0.0211487 0.0445901 0.0251667

WindGustDir 0.0020603 0.0028510 0.0021905

MeanDecreaseGini

MinTemp 2.2542

MaxTemp 1.8281

Rainfall 0.7377

Evaporation 1.3721

Sunshine 3.9320

WindGustDir 1.2739

The importance of each variable in predicting the outcome for each
observation in the training dataset can also be available in the model
object. This is accessible through the localImp component:

> head(weatherRF$model$localImp)[,1:4]

336 342 94 304

MinTemp 0.011834 0.016575 0.021053 0.00000

MaxTemp 0.000000 0.005525 0.010526 -0.07143

Rainfall 0.005917 -0.005525 0.005263 0.00000

Evaporation 0.000000 0.000000 0.000000 -0.02976

Sunshine 0.035503 0.038674 -0.010526 0.03571

WindGustDir 0.005917 -0.005525 0.005263 0.04762

The error rate data is stored as the err.rate component. This can
be accessed from the model object as we see in the following code block:
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> weatherRF$model$err.rate

In Rattle, we saw an error plot that showed the change in error rate as
more trees are added to the forest. We can obtain the actual data behind
the plot quite easily:

> round(head(weatherRF$model$err.rate, 15), 4)

OOB No Yes

[1,] 0.2738 0.2143 0.5714

[2,] 0.2701 0.2261 0.5000

[3,] 0.2560 0.2340 0.3704

[4,] 0.2273 0.1728 0.4722

[5,] 0.2067 0.1361 0.5128

[6,] 0.1872 0.1061 0.5500

[7,] 0.1570 0.0984 0.4250

[8,] 0.1689 0.1081 0.4500

[9,] 0.1404 0.0691 0.4750

[10,] 0.1223 0.0529 0.4500

[11,] 0.1223 0.0582 0.4250

[12,] 0.1048 0.0317 0.4500

[13,] 0.1310 0.0582 0.4750

[14,] 0.1354 0.0529 0.5250

[15,] 0.1223 0.0476 0.4750

Here we see that the OOB estimate decreases quickly and then starts
to flatten out. We can find the minimum quite simply, together with a
list of the indexes where each minimum occurs:

> evalq({

min.err <- min(data.frame(model$err.rate)["OOB"])

min.err.idx <- which(data.frame(model$err.rate)["OOB"]

== min.err)

}, weatherRF)

The actual minimum value together with the indexes can be listed:

> weatherRF$min.err

[1] 0.1048

> weatherRF$min.err.idx

[1] 12 45 49 50 51
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We can then list the actual models where the minimum occurs:

> weatherRF$model$err.rate[weatherRF$min.err.idx,]

OOB No Yes

[1,] 0.1048 0.03175 0.450

[2,] 0.1048 0.02116 0.500

[3,] 0.1048 0.01587 0.525

[4,] 0.1048 0.01587 0.525

[5,] 0.1048 0.01587 0.525

We might thus decide that 12 (the first instance of the minimum OOB
estimate) is a good number of trees to have in the forest.

Another interesting component is votes, which records the number
of trees that vote No and Yes within the ensemble for a particular obser-
vation.

> head(weatherRF$model$votes)

No Yes

336 0.9467 0.053254

342 0.9779 0.022099

94 0.8263 0.173684

304 0.8690 0.130952

227 0.9943 0.005682

173 0.9950 0.005025

The numbers are reported as proportions and so add up to 1 for each
observation, as we can confirm:

> head(apply(weatherRF$model$votes, 1, sum))

336 342 94 304 227 173

1 1 1 1 1 1

12.5 Tuning Parameters

Rattle provides access to just a few basic tuning options (Figure 12.1)
for the random forest algorithm. The user interface allows the number
of trees, the number of variables, and the sample size to be specified. As
is generally the case with Rattle, the defaults are a good starting point!
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These result in 500 trees being built, choosing from the square root of
the number of variables available for each node, and no sampling of the
training dataset to balance the classes.

In Figure 12.1, we see that the number of variables has automatically
been set to 4 for the weather dataset, which has 20 input variables.
The user interface options correspond to the function arguments ntree=,
ntry=, and sampsize=. Rattle also sets importance= to TRUE, replace=
to FALSE, and na.action= to na.roughfix().

A call to randomForest() including all arguments covered here will
look like:

> evalq({

model <- randomForest(formula=form,

data=data[train, vars],

ntree=500,

mtry=4,

replace=FALSE,

sampsize=.632*nobs,

importance=TRUE,

localImp=FALSE,

na.action=na.roughfix)

}, weatherRF)

Number of Trees ntree=

This specifies how many trees are to be built to populate the random
forest. The default value is 500, and a common recommendation is that a
minimum of 100 trees be built. The performance of the resulting random
forest model tends not to degrade as the number of trees increases, though
computationally it will take longer and will be more complex to use when
scoring, and often there is little to gain from adding too many trees to a
forest. The error matrix and error plot provide a guide to a good number
of trees to include in a forest. See Section 12.4 for examples.

Number of Variables ntry=

The number of variables to consider for splitting at every node is specified
by ntry=. This many variables will be randomly selected from all of
those available each time we look to partition a dataset in the process of
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building the decision tree. The general default value is the square root
of the total number of variables available, for classification tasks and
one-third of the number of available variables for regression.

If there are many noise variables (i.e., variables that play little or
no role in predicting the outcome), then we might consider increasing
the number of variables considered at each node to ensure we have some
relevant variables to choose from.

Sample Size sampsize=

The sample size argument can be used to force the algorithm to select
a smaller sample size than the default or to sample the observations
differently based on the output variable values (for classification tasks).
For example, if our training dataset contains 5,000 observations for which
it does not rain tomorrow and only 500 for which it does rain tomorrow,
we can specify the sample size as 400,400, for example, to have equal
weight on both outcomes. This provides a mechanism for effectively
setting the prior probabilities. See Section 12.4 for an example of doing
this in Rattle.

Variable Importance importance=

The importance argument allows us to review the importance of each
variable in determining the outcome. Two importance measures are cal-
culated in addition to importance of the variable in relation to each out-
come in a classification task. These have been described in Section 12.4,
and issues with the measures are discussed in Section 12.6.

Sampling with Replacement replace=

By default, the sampling is performed when the training observations
are sampled for building a particular tree within the forest samples with
replacement. This means that any particular observation might appear
multiple times within the sample, and thus some observations get over-
represented in some datasets. This is a feature of the approach. The
replace= argument set to FALSE will perform sampling without replace-
ment.
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Handling Missing Values na.action=

The implementation of the randomForest() algorithm does not directly
handle missing values. A common approach on finding missing values
is simply to ignore the observation with missing values by specifying
na.omit as the value of na.action=. For some data, this could actually
end up removing all observations from the training dataset. Another
quick option is to replace missing values with the median (for numeric
data) or the most frequent value (for categoric data) using na.roughfix.

12.6 Discussion

Brief History and Alternative Approaches

The concept of an ensemble of experts was something that the knowledge
based and expert systems research communities were exploring in the
1980’s. Some early work on building and combining multiple decision
trees was undertaken at that time (Williams, 1988). Multiple decision
trees were built by choosing different variables at nodes where the choice
of variable was not clear. The resulting ensemble was found to produce
a better predictive model.

Ho (1995, 1998) then developed the concept of randomly sampling
variables to build the ensemble of decision trees. Half of the available
variables were randomly chosen for building each of the decision tree.
She noted that as more trees were added to the ensemble, the predictive
performance increased, mostly monotonically.

Breiman (2001) built on the idea of randomly sampling variables by
introducing random sampling of variables at each node as the decision
tree is built. He also added the concept of bagging (Breiman, 1996) where
different random samples of the dataset are chosen as the training dataset
for each tree. His algorithm is in common use today, and his actual
implementation can be accessed within R through randomForest.

In some situations we will have available a huge number of variables
to choose from. Often only a small proportion of the available variables
will have some influence on the target variable. By randomly selecting
a small proportion of the available variables we will often miss the more
relevant variables in building our trees.

An approach to address this situation introduces a weighted variable
selection scheme to implement an enriched random forest (Amaratunga
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et al., 2008). Weights can be based on the q-value, derived from the
p-value for a two-sample t-test. We test for a group mean effect of a
variable, testing how well the variable can separate the values of the
binary target variable. The resulting weights then bias the random se-
lection of variables toward those that have more influence on the target
variable.

An extension to this method allows it to work when the target vari-
able has more than two values. In that case we can use a chi-square
or information gain measure. The approach can be shown to produce
considerably more accuracte models, by ensuring each decision tree has
a high degree of independence from the other trees and by weighting the
sampling of the variables to ensure important variables are selected for
each tree.

Using Other Random Forests

The randomForest() function can also be applied to regression tasks,
survival analysis, and unsupervised clustering (Shi and Horvath, 2006).

Limitation on Categories

An issue with the implementation of random forests in R is that it can
not handle categoric data with more than 32 categoric values. Statistical
concerns also suggest that categoric variables with more than 32 cate-
gories don’t make a lot of sense, and thus little effort has been made in
the R package to rectify the issue.

Importance Measures

We introduced the idea of measures of variable importance in building a
model in Section 12.4. There we looked at the mean decrease in accuracy
and the mean decrease in the Gini index as two measures calculated
whilst the trees of the random forest are being built.

These variable importance measures provided by randomForest()

have been found to be unreliable under certain conditions. The issue
particularly arises where there is a mix of numeric and categoric vari-
ables or the numeric variables have quite different scales (e.g., Age versus
Income), or then categoric variables have very different numbers of cat-
egories (Strobl et al., 2007). Less important variables can end up having
too high an importance according to the measures used, and thus we will
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be misled into believing the measures provided. Indeed, the Gini mea-
sure can be quite biased, so that categorics with many categories obtain
a higher importance.

The cforest() function of party (Hothorn et al., 2006) provides
an improved importance measure. This newer measure can be applied
to any dataset, using subsampling without replacement, to give a more
reliable measure of variable importance. A key aspect is that rather
than sampling the data with replacement to obtain a same size sample,
a random subsample is used.

Underneath, cforest() builds conditional decision trees by using the
ctree() function discussed in Chapter 11. In the following code block
we first load party into the library and we create a new data structure
to store our forest object, attaching the weather dataset to the object.

> library(party)

> weatherCFOREST <- new.env(parent=weatherDS)

Now we can build the model itself with a call to cforest():

> evalq({

model <- cforest(form,

data=data[vars],

controls=cforest_unbiased(ntree=50,

mtry=4))

}, weatherCFOREST)

We could now explore the resulting forest, but here we will simply list
the top few most important variables, according to the measure used by
party:

> evalq({

varimp <- as.data.frame(sort(varimp(model),

decreasing=TRUE))

names(varimp) <- "Importance"

head(round(varimp, 4), 3)

}, weatherCFOREST)

Importance

Pressure3pm 0.0212

Sunshine 0.0163

Cloud3pm 0.0150
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12.7 Summary

A random forest is an ensemble (i.e., a collection) of unpruned decision
trees. Random forests are often used when we have very large training
datasets and a very large number of input variables (hundreds or even
thousands of input variables). A random forest model is typically made
up of tens or hundreds of decision trees.

The generalisation error rate from random forests tends to compare
favourably with boosting approaches (see Chapter 13), yet the approach
tends to be more robust to noise in the training dataset and so tends
to be a very stable model builder, as it does not suffer the sensitivity to
noise in a dataset that single-decision-tree induction does. The general
observation is that the random forest model builder is very competitive
with nonlinear classifiers such as artificial neural nets and support vec-
tor machines. However, performance is often dataset-dependent, so it
remains useful to try a suite of approaches.

Each decision tree is built from a random subset of the training
dataset, using what is called replacement (thus it is doing what is known
as bagging) in performing this sampling. That is, some observations will
be included more than once in the sample, and others won’t appear at
all. Generally, about two-thirds of the observations will be included in
the subset of the training dataset and one-third will be left out.

In building each decision tree model based on a different random
subset of the training dataset a random subset of the available variables
is used to choose how best to partition the dataset at each node. Each
decision tree is built to its maximum size, with no pruning performed.
Together, the resulting decision tree models of the forest represent the
final ensemble model, where each decision tree votes for the result, and
the majority wins. (For a regression model, the result is the average
value over the ensemble of regression trees.)

In building the random forest model, we have options to choose the
number of trees, the training dataset sample size for building each deci-
sion tree, and the number of variables to randomly select when consid-
ering how to partition the training dataset at each node. The random
forest model builder can also report on the input variables that are ac-
tually most important in determining the values of the output variable.

By building each decision tree to its maximal depth (i.e., by not prun-
ing the decision tree), we can end up with a model that is less biased. The
randomness introduced by the random forest model builder in selecting

https://secure.wikimedia.org/wikipedia/en/wiki/Random_forest
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the dataset and the variable delivers considerable robustness to noise,
outliers, and overfitting when compared with a single tree classifier.

The randomness also delivers substantial computational efficiencies.
In building a single decision tree, the model builder may select a random
subset of the training dataset. Also, at each node in the process of build-
ing the decision tree, only a small fraction of all of the available variables
are considered when determining how best to partition the dataset. This
substantially reduces the computational requirement.

In summary, a random forest model is a good choice for model build-
ing for a number of reasons. First, just like decision trees, very little, if
any, preprocessing of the data needs to be performed. The data does not
need to be normalised and the approach is resilient to outliers. Second,
if we have many input variables, we generally do not need to do any vari-
able selection before we begin model building. The random forest model
builder is able to target the most useful variables. Third, because many
trees are built and there are two levels of randomness, and each tree is
effectively an independent model, the model builder tends not to overfit
to the training dataset. A key factor about a random forest being a col-
lection of many decision trees is that each decision tree is not influenced
by the other decision trees when constructed.

12.8 Command Summary

This chapter has referenced the following R packages, commands, func-
tions, and datasets:

cforest() function Build a conditional random forest.
ctree() function Build a conditional inference tree.
evalq() function Access environment for storing data.
na.roughfix() function Impute missing values.
party package Conditional inference trees.
randomForest() function Implementation of random forests.
randomForest package Build ensemble of decision trees.
str() function Show the structure of an object.
weather dataset Sample dataset from rattle.
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