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Synonyms

13C Fluxomics
Definition

13C MFA is an experimental approach to compute

intracellular flux pattern. It involves tracer studies

where substrates are labeled with stable isotopes,

such as 13C, and the labeling pattern of metabolites is

subsequently measured. Detailed flux distributions can
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be obtained by a combination of tracer experiments

(intracellular labeling information), measured

extracellular fluxes and stoichiometric balancing.

Nuclear Magnetic Resonance Spectroscopy (NMR)

and, more recently, ▶Mass Spectrometry (MS) have

emerged as interesting tools for measuring the level of
13C enrichment in metabolites (Wiechert 2001). It pro-

vides valuable insights into the cellular metabolism

and is one of the methodologies used in ▶Metabolic

Pathway Analysis.
Characteristics

13C metabolic flux analysis is a powerful technique

for modeling biological systems. 13C metabolic flux

analysis is free of all the short comings of the stoichio-

metric ▶Metabolic Flux Analysis (MFA), though it

needs more information in addition to extracellular

flux data to have the complete flux distribution.

Stoichiometric MFA and ▶Flux Balance Analysis

(FBA) are restricted in their ability to fully quantify

the network because they cannot be applied in

cases involving the following: (1) metabolic pathways

where the energy metabolites, such as ATP, NADH,

NADPH, are not balanced; (2) parallel reactions

where none of the competing branches are directly

coupled to measurable variable or metabolite;

(3) metabolic pathways containing cyclic reaction

chains not linked to a measurable flux; and (4) meta-

bolic cycles having bidirectional reactions (Wiechert

et al. 1997).
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13C Metabolic Flux Analysis, Fig. 1 Different labeling states of a molecule containing 3 C atoms. Labeled C is shown as black
circles. There are eight positional isotopomers and four mass isotopomers (specified as (a–d))
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Certain assumptions and rules need to be applied

while performing 13C metabolic flux analysis as listed

below (Marx et al. 1996):

1. It is based on an assumption of a pseudo steady

state.

2. It assumes that there is no preference of enzymes for

labeled and unlabeled substrates (i.e., no isotope

effect).

3. Bioreactor size should be small to minimize the cost

of the experiment as labeled substrates are quite

costly but it is also necessary that the volume reduc-

tion should not be to the extent where stable

stationary condition cannot be achieved.

4. It is necessary that all the intracellular metabolites

are in steady state both in terms of metabolic fluxes

and isotopomer distribution. Typically it takes 2–4

bioreactor residence times to reach the isotopic

equilibrium state. Time required for intracellular

intermediates to reach isotopic steady state is com-

paratively less than the time taken by the macro-

molecules of biomass (proteins, RNA, DNA, cell

wall) to reach isotopic steady state. The term

isotopomer implies “one of the different labeling

states in which a particular metabolite can

be found.” There can be 2n different labeling

states of a molecule. For example, for a metabolite

with 3 C atoms, there can be eight different

positional isotopomers while only four different

mass isotopomers (Fig. 1). Knowledge of complete

isotopomer distribution yields information regard-

ing the enrichment pattern of different intracellular

metabolites. This fractional enrichment information

reflects how atoms in the reacting species interact

with each other to form product molecules. Thus,

fractional enrichment data along with C atom tran-

sition for all the species involved in a set of reac-

tions defining the intracellular metabolism will

yield intracellular fluxes.
The basic procedure followed for 13C metabolic

flux analysis (Wiechert 2001; Kr€omer et al. 2009) is

to measure the labeling patterns of metabolites.

Carbon labeling experiment consists of growing the

organism of interest on 13C substrate such as glucose

labeled at a specific location. This labeled substrate is

then utilized or consumed across the various path-

ways finally leading to enrichment of the metabolites

intracellular pool. Cells are harvested and are hydro-

lyzed to get metabolite precursors like amino acids.

The pattern of enrichment in these metabolites is

identified or estimated by mass spectrometry (MS)

or NMR. The output from MS or NMR consists of

a spectral pattern. The pattern and the level of enrich-

ment is a fingerprint for a particular kind of pathway

involved. The level of enrichment of certain metabo-

lite is a reflection of the permutation and combina-

tions a labeled molecule has undergone. MS is

becoming the method of choice for 13C analysis due

to its comparatively simpler data interpretation ability

even for multimolecular species. NMR on the other

hand does not require complex sample processing as

MS but its spectral data becomes extremely convo-

luted for molecules with more than three atoms.

A few deconvolution algorithms are available but

are mathematically involved and this restricts its

usage to only few users with time-developed

skill and experience. Thus, this intracellular labeling

information, in combination with extracellular

fluxes, is used to compute the intracellular fluxes.

Several algorithms are available to decipher the

meaningful information from such spectra. OpenFlux

(Quek et al. 2009), FiatFlux (Zamboni et al. 2005),
13C MFA, etc., are some of the examples of the

software available. The enrichment information in

terms of mass isotopomer distribution acts as an

input to the algorithm. Algorithm uses this mass

isotomomer data to obtain the positional isotopomer
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data, which is further used to estimate the fluxes.

Software works by minimizing the error between

the simulated and experimental mass isotopomer

distribution. One fundamental problem of CLE is

that it is usually difficult to measure the labeling

pattern of many important intracellular metabolites

due to their small pool size. To overcome this prob-

lem, the labeling patterns of amino acids are often

measured, since the amino acids reflect the labeling

states of a number of important intermediate metab-

olites through their precursors. These labeling mea-

surement data provide additional and yet independent

constraints on the intracellular fluxes and thus enable

a more refined analysis of metabolic fluxes in the

complex metabolic network. An overall outline of
13C-based metabolic flux analysis methodology is

given in Fig. 2.
Applications of 13C MFA

13C MFA has been widely used in analyzing microbial

metabolism and regulation involved in metabolic net-

works. It is mainly used for analyzing central carbon

metabolism but recently has been applied for genome

scale networks as well. 13C MFA has good predictabil-

ity for prokaryotic systems but application of 13CMFA

to eukaryotic systems, especially to plant and animal

cells, is extremely difficult due to the intracellular

compartmentalization. Information of compartmental-

ization has to be captured bymodel properly in order to

obtain proper fitting of predicted versus experimental

data (Wiechert 2001). Similarly application of 13C

MFA is obscure when multiple carbon substrates are

used. High cost of labeled substrates, need for special-

ized instrumentations (NMR or MS) for determining
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isotopic labeling, and elaborate mathematical and sta-

tistical analysis for isotopomer modeling are some

additional limitations of 13C MFA, which further

restrict its use (Tang et al. 2009). 13C MFA requires

excessive experimental data and is quite complicated

as compared to other methods of flux analysis;

however, for certain cases, 13C MFA is the only

solution. For example as stated in the previous section,
13C MFA can resolve parallel pathways, cyclic meta-

bolic pathways and bidirectional fluxes in the meta-

bolic network. 13C MFA has been extensively used in

studying metabolism of relevant organisms for bio-

technology processes, namely, production of amino

acids (lysine, glutamate, phenyl alanine, methionine,

etc), vitamin (riboflavin), ethanol, glycerol, antibiotics

(penicillin G), and bioplastics (1,3-propanediol)

(Iwatani et al. 2008). It has also been used to test the

validity of the assumptions made in other methods of

flux analysis and about the metabolic network. 13C

MFA has been used in studying single gene disruption

mutant and establishing robustness in the metabolic

network (Blank et al. 2005). 13C MFA has proven to

be quite useful in cancer research to study unique

metabolic characteristics under diseased condition. It

is used to understand flux distribution through impor-

tant pathways for amino acids and fatty acids biosyn-

thesis in cancer cells (Yang et al. 2008). Other

important application of 13C MFA is in identification

of bottlenecks in metabolic network of the industrially

important organisms. Identified target genes, upon

manipulation through genetic engineering techniques,

lead to enhanced productivity of the metabolite of

interest. 13C MFA has also been used in identifying

drug targets for various diseases. By studying flux

distribution in pathogens or diseased cells, it might be

possible to identify a pathway crucial for the survival

of the pathogen inside the host cells. Such pathways

can be potential drug targets (Tang et al. 2009). Thus,

in spite of being a complex methodology for flux

analysis, 13C MFA has wide applicability in different

fields. It provides important insights about the charac-

teristics of a metabolic network, for which this tech-

nique is indispensable.
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Definition

Calibration is the process of finding the input-output

relationship of a system or device (Skoog 2007). Usu-

ally, this term is used if an assay or measurement

technique is characterized. The calibration curve

relates the physical quantity of interest to the experi-

mentally accessible quantities, e.g., the relationship

between the concentration of a compound like protein

or mRNA to intensities or electric current.

Measurement devices are commonly designed to

have a linear calibration curve, e.g., g(x) ¼ a0 + a1x.
Here, a0 denotes an offset or background parameter and

a1 and the scaling parameter. The purpose of calibration

is then to estimate the parameters of the calibration

curve by systematically changing x and evaluating the

output y¼ g(x) + noise. In addition, the range of xwhere
the linear relationship holds has to be detected.

Because a mathematical model of a biological sys-

tem also describes an input-output behavior, estima-

tion of model parameters is termed model calibration.
Cross-References
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Definition

First recognized by ConradWaddington, canalization

means that many perturbations in the genes will

not change the phenotypic output of the process.

Waddington in The Strategy of the Genes

(1957) used the metaphor of “epigenetic landscapes”

(Fig. 1a), genes acting like the nails which hold the

ropes underpinning a valley (Fig. 1b) in such a way

that moving or displacing them does not change much

the general landscape. Canalization occurs also with

regard to the environment. Phenomena like genetic

assimilation mean therefore that new channels have

been created. Canalization also implies that organ-

isms with various genotypes may have the same phe-

notype, which contributes to explain typicality in

various species.

Canalization raises two main sets of questions.

First, developmental and molecular: what are the

mechanisms underlying it (Masel and Siegal 2009)?

Second, evolutionary: given that canalization means

robustness in the face of either mutational or genetic

change, one should ask which came first (Wagner

2005): has canalization evolved as an adaptation in

the face of environmental variations? Or has it been

selected because of the buffering against mutational

perturbation (genetic noise)? Lehner (2010) argued

that it is indeed an adaptation for environmental

variation, and robustness versus mutational robustness

is a by-product.

Besides the evolutionary cause of canalization,

biologists also investigate its evolutionary effects. It

has been argued that canalization, as a form of robust-

ness, indeed increases evolvability: even if it seems to

decrease phenotypic variability and then the opportu-

nities for selection, it appears that canalized develop-

mental systems, because of their robustness across

a wide range of variations, allow more evolution,

since genotypic variation can accumulate without

hampering the production of a viable phenotype.
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Canalization,
Fig. 1 Canalization (after

Waddington). (a) Epigenetic

landscape, figuring the

robustness of developmental

fates. (b) Genetic

underpinning of canalization
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Synonyms

Malignant tumors; Neoplasms
Definition

Cancer is a generic term for a class of diseases

characterized by the rapid uncontrolled growth of

abnormal cells which can invade adjacent body parts

and spread to other organs. The process of spreading to

other organs or other locations of the body is known as

metastasis and is a major cause of death from cancer

(WHO 2011).
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Definition

Cancer is a multifactorial multistage disease. Environ-

mental influences are implicated in the etiology of

cancer at all stages of the life cycle, though particularly

during the developmental period. The mechanisms

underlying the development of cancer are critical to

an understanding of the magnitude of environmental

influences.
Characteristics

Background

The environment can be defined as the totality of the

biological and nonbiological influences that act upon

an organism, a population of organisms, or an
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ecological system and that can influence survival. Bio-

logical factors include the organisms, their food, and

their interactions. Nonbiological factors can be divided

into physical and chemical and usually act in combi-

nations. Purely physical influences include all electro-

magnetic radiations, temperature, and meteorology.

Purely chemical influences include soil constitution,

water and air quality, and chemical pollution. Organ-

isms respond to environmental changes by evolution-

ary adaptations.

The etiology of cancer remains unknown, in that

a detailed mechanistic description of how cancers arise

is lacking. There are many correlations with factors

that are associated with an increased or decreased

incidence of cancer. Environmental factors can influ-

ence cancer incidence and such factors are normally

loosely classified into “lifestyle factors” and “external

factors.” Lifestyle factors are generally regarded to be

under the control of the individual and include

smoking, drinking, diet, drug taking, exercise level,

sexual behavior, and occupation. External factors

include background ionizing radiation, ambient chem-

ical pollution, and poor air quality. This entry will

concentrate on the effects of chemical pollution on

cancer incidence, emphasizing some recent advances

in knowledge on the effects of epigenetic influences

during development. That is not to ignore the widely

studied and highly significant effects of radiation and

lifestyle factors, such as tobacco smoking, on cancer

incidence. The main tool used to detect alterations in

the distribution of disease in human populations is

epidemiology. A number of seminal contributions in

the eighteenth century contributed to the early devel-

opment of cancer epidemiology. In 1713, Bernadino

Ramazzini (the “father of occupational medicine”)

reported a relatively high incidence of breast cancer

in nuns, linked to a very low incidence of cervical

cancer. He pondered whether this might be related to

a celibate lifestyle. In 1761, in his book “Cautions

Against the Immoderate use of Snuff,” John Hill

made the first observations linking tobacco use with

the development of cancer. Then in 1775, Sir Percival

Pott described an increased incidence of carcinoma of

the scrotum in chimney sweeps, an occupational

disease.

The industrialized world has seen a steady increase

in the incidence of cancer throughout the past 150

years. In the UK immediately after the Second World

War, the lifetime risk of developing cancer was 1 in 4.
By the year 2000, it was less than 1 in 3. The risk of

women developing breast cancer in the UK in 1960

was 1 in 20. The latest figures indicate that 1 in

8 women in the UK will now develop breast cancer.

These trends are described for a variety of cancers

across a large number of countries. Developed coun-

tries have become used to high levels of cancer in their

populations as “the norm.” It has been demonstrated

that, for some cancers, the average age of onset within

the UK population is decreasing (Newby et al. 2007).

This provides strong evidence that an environmental

factor is operating.

However, it is a valid question to enquire whether

members of traditional preindustrial societies who

lived into old age, invariably demonstrate increasing

cancer incidence? An examination of the observations

made on those societies, whose lifestyles had remained

virtually unchanged for hundreds of years, shows

a remarkably consistent pattern: an almost total

absence of cancer. To investigate this, it is necessary

to go back quite a long way into the written record.

A key source of information on this topic is a book, by

Vilhjamur Stefansson (1960), in which he cites

a variety of authors who reported little or no signs of

cancer occurring in unindustrialized societies living

traditional lifestyles. The correspondents were medi-

cally qualified doctors visiting so-called primitive

societies in many and widespread communities in

Canada, Africa, India, and South America.

In 1915, a report entitled “The Mortality from

Cancer Throughout the World” was authored by Fred-

erick L Hoffman, the then chairman of the committee

on statistics of the American Society for the Control of

Cancer. It analyzed literally thousands of separate

reports and all of the data available at that time.

A major conclusion was “the rarity of cancer among

native man suggests that the disease is primarily

induced by the conditions and methods of living

which typify our modern civilization.” The

author went on to explain that “. . . a large number of

medical missionaries and other trained medical

observers living for years among native races through-

out the world, would long ago have provided a more

substantial basis of fact regarding the frequency of

occurrence of malignant disease among the so-called

uncivilised races, if cancer were met with among them

to anything like the degree common to practically

all civilised countries”. . . “Quite to the contrary, the

negative evidence is convincing that, in the opinion of
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qualified medical observers, cancer is exceptionally

rare among the primitive peoples. . .”

It is easy to dismiss such evidence as “anecdotal.”

However, with the reliably observed continuation of

the trend to increased cancer incidence in developed

countries, combined with the absence of any evidence

at all about substantial cancer incidence rates in

preindustrial societies, it seems reasonable to conclude

that cancer as a disease is related primarily to industri-

alization. Other arguments can be brought into play to

counter this assertion. For example, average life expec-

tancy is higher in developed countries, and cancer

incidence is a function of age (though if one is living

in a “soup” of carcinogenic influences from conception

to grave, then length of exposure would be expected to

be significant, though not necessarily causal in itself).

It should be noted though that average life expectancy

itself, as a measure, can be deceptive. It has been used

to assert that life in earlier times was brutal and short

with most adults dying in their third decade. This is

a very simplistic explanation. In preindustrial socie-

ties, the death rate in infancy was high, but if adoles-

cence was reached then, according to the same

medically qualified observers mentioned above, the

chances of living a reasonable life span in good health

were high and unlikely to end in the development of

cancer. These observations are supported by the rec-

ognition among most epidemiologists that the major

contribution to the rise in average life expectancy in

developed countries has been the reduction in infant

mortality.

Nature Versus Nurture

Epidemiological studies of monozygous twins are

regarded as the golden yardstick for deciding whether

a disease is predominantly determined either by

genetic or, on the other hand, environmental factors.

Lichtenstein et al. (2000) reported a study of the con-

cordance of similar cancers in 45,000 pairs of identical

twins. The average rate of concordance was rather low

�10–15%. The conclusion from the study was that

environmental factors far outweigh genetic influences

in the etiology of cancer. Czene et al. (2002) reported

similar conclusions. The concept should not be

surprising, because Doll and Peto (1981) showed, in

their study of cancer incidence in native Japanese

compared to émigré Japanese in Hawaii, that breast

cancer rates were four times higher in the emigrants,

approaching the incidence prevailing in the indigenous
Caucasian inhabitants. The topic has been addressed

more recently by Howard and Newby (2004) and

Irigaray et al. (2007).

Low-Dose Epigenetic Phenomena and Cancer

There is increasing emphasis on the influence of low-

dose intrauterine exposure of the fetus to ubiquitous

environmental pollutants on the subsequent risks for

cancer in later life. This rather subtle form of environ-

mental chemical exposure, associated with long

latency periods, has been prompted by the demonstra-

tion in animal models that doses of certain chemicals,

several orders of magnitude below the concentration

required to produce measureable effects in adults,

appear to be able to perturb normal development. The

explanation for this is likely to be found in considering

the physiological concentrations at which cell signal-

ing molecules, such as hormones, operate. This is

typically very low, in parts per trillion. Moreover,

dose-response curves tend to be nonlinear and with

an inverted U shape. This indicates that there is an

optimal concentration at which such cell signaling

molecules operate, that is, there can be too little and/

or too much, as is typical with receptor-mediated

events.

In adult animals, cell signaling molecules are

involved in maintaining homeostasis in an intact

organism in which most structural and functional ele-

ments are relatively stable. In the fetus, on the other

hand, cell signaling molecule expression is intimately

tied up with control of cell proliferation and apoptosis

during windows of developmental activity. Perturba-

tion of the tightly regulated levels of key cell signaling

molecules can lead to subtle changes in the phenotype

which can be expressed anatomically as tissue dysgen-

esis or physiologically as functional deficits. Such

mechanisms appear to be highly conserved between

species, making animal studies potentially more com-

parable across species than for adult high-dose

toxicology.

Hitherto, classical toxicology has mainly been pred-

icated on adult animal studies. Teratological studies

have mainly been restricted to the detection of naked

eye malformations. Why is this of relevance to the

study of environmental causes of cancer? It is known

that any child born with a malformation is marginally

more likely than average to develop cancer in their

lifetime. There is a connection, as yet not fully under-

stood, between the ways that tissues are assembled in
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the fetus and the subsequent development of cancers.

This process is normally associated with long

latencies.

Cell Signaling Disruption in the Fetus and Cancer

Themost widely studied group of chemicals capable of

affecting the function of natural cell signaling mole-

cules are classed as endocrine-disrupting substances

(EDSs). There is general agreement that high-dose

therapeutic exposure to synthetic hormones at critical

stages of development can cause cancer, for example,

intrauterine exposure to diethylstilboestrol (DES) led,

after a �20-year latency period, to clear cell adenoma

of the vagina in female offspring. However, a recurring

argument against the causal link between environmen-

tal exposure to such environmental pollutant EDS and

subsequent carcinogenesis, predicated on classical

high-dose toxicology, is that pollutants are simply not

present in sufficient environmental quantities to lead to

a human exposure level that could cause cancer.

Another aspect is that many EDS are not genotoxic,

which under the somatic mutation theory (SMT) (see

entry ▶Cancer Theories), Boveri (1929), would put

a question mark over their ability to cause cancer. Such

conclusions, however, are usually based on the logic of

cancer induction toxicology performed on adult labo-

ratory animals.

Human evidence of links between exposure to envi-

ronmental pollutants, at background, and cancer is

beginning to emerge, as illustrated in a paper by

Hardell and Eriksson (2003) which showed a positive

correlation between higher current levels of PCBs,

HCB, and chlordanes (long lived pollutants) in

mothers with sons who have developed testicular can-

cer. However, the majority of our current knowledge

concerning low-dose fetal exposure to EDS and sub-

sequent cancer development comes from animal

studies.

The Endocrine Society has published a Scientific

Statement on endocrine-disrupting chemicals

(Diamanti-Kandarakis et al. 2009). When considering

the role played by EDS in the etiology of breast cancer

the report concludes that “Collectively, these data sup-

port the notion that endocrine disruptors alter mam-

mary gland morphogenesis and that the resulting
dysgenic gland becomes more prone to neoplastic

development.” The study in question, Murray et al.

(2007), was the demonstration of the development of

carcinoma in situ of the breasts in 33% of fetal rats
exposed in the womb to the EDS bisphenol A between

gestational day 9 and postnatal day 1, at concentrations

200 times lower than the current regulatory tolerable

daily intake. The exposed rats developed such tumors

in early adulthood, while there were no such changes in

the breasts of the untreated control group. Morpholog-

ical changes to breast architecture in mice were shown,

Markey et al. (2001), at even lower doses.

The Endocrine Society Scientific Statement was

less emphatic about the role of EDS in male genital

tract tumors. However, the testicular dysgenesis syn-

drome (TDS) is of relevance. TDS consists of four

interlinked conditions: cryptorchidism, hypospadias,

oligospermia, and testicular germ cell cancer

(TGCC). The incidence of all four of these conditions

has been rising sharply over the past decades in many

developed countries. TGCC is typically a cancer of

younger men, the peak age range for incidence is

between 25 and 40. When a child has a cryptorchid

testis, then it is either brought down into the scrotum by

orchidopexy or removed (orchidectomy). The reason

for this is that an intra-abdominal undescended testis is

dysgenic and carries a higher risk of developing

TGCC.

Skakkebaek et al. (2001) examined bilateral biop-

sies, one from each testis, in cases of unilateral TGCC

demonstrated carcinoma in situ in both testes. The

conclusion drawn was that TGCC cancer is

a developmental disease. They also demonstrated that

hypofertile males were more likely to develop TGCC

than average for the population.

Epidemiological evidence for the hypothesis that

human exposure to EDCs causes TGCC remains

scarce. There are some indications that exposure to

PCBs and mono-butyl phthalate may be implicated

but the evidence is not conclusive. Migration studies

have shown that first generation migrants retain the

incidence level of TGCC that prevails in their coun-

tries of birth, while second and subsequent generations

had rates similar to their adoptive country. This gives

strong evidence that TGCC is a developmental condi-

tion and that it is mediated via environmental factors.

Mechanisms of Cancer Induction

It is clearly beyond the scope of this entry to discuss all

the evidence on EDSs and cancer induction. However,

the point of the previous section has been to empha-

size that a low-dose mechanism mediated through

fetal exposure can and does lead to tissue dysgenesis.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1383
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This is essentially a non-genotoxic process. How then

does it relate to the somatic mutation theory (see entry

▶Cancer Theories)? Well, maybe not very much! An

alternative hypothesis has been proposed by

Sonnenschein and Soto (1999), the tissue organization

field theory (TOFT), which provides a more logical

explanation of low-dose fetal exposure mechanisms

(see entry ▶Cancer Theories). Under this hypothesis,

it is proposed that, as in other life forms, all cells in the

body are in a “default” state of proliferation, rather

than “quiescence,” as previously assumed. In

multicellular organisms, where cells must exist in an

ordered “society of cells,” the desire to proliferate has

become continuously suppressed by the evolution of

inhibitory juxtacrine and autocrine (i.e., local hor-

monal) influences. This local control is intimately

bound up with local architecture of the tissue at

a microscopic level. The balance of the stroma to the

parenchyma and the relationship of one cell type to

another in 3D space are probably of high significance

(Kaufman and Arnold 1996). The TOFT proposes that

carcinogens alter tissue interactions, such as those

occurring between the stroma and the epithelium, that

in turn cause the architectural changes found in carci-

nomas, which, in turn, facilitates an increased local cell

proliferation rate. The control of the micro-

architecture of organs by epigenetic factors (external

influences), throughout the developmental period, is

a delicate process. Some of these factors are known

but most are not fully understood. Hormones, which

are known to be involved in the control of organogen-

esis, act in concentrations in the parts per trillion

ranges. Xeno-chemicals, which may mimic hormones,

are present in the populations of industrialized coun-

tries at similar concentrations. From our current

knowledge base, they are likely to be inducing tissue

dysgenesis in the fetus.

Complexity

Another feature of human exposure to potential car-

cinogens is the extreme complexity of the mixture of

xeno-chemicals to which populations are exposed,

which consists of hundreds of chemical groups. If

these groups are broken down into individual com-

pounds, then there are tens of thousands of individual

chemicals in the mixture. For example, the organo-

chlorine pesticide toxaphene, which in many classifi-

cations would be regarded simply as one chemical, has

over 62,000 theoretically possible variants if all
congeners and enantiomers (mirror image isomers)

are taken into account (Vetter and Luckas 1995,

1998). Other groups of organic chemicals also have

high numbers of variants. We simply do not possess

the tools in toxicology to analyze complex mixtures.

Even testing mixtures of two chemicals at a time is

quite laborious (Axelrad et al. 2002). There are some

bio-monitoring methods being developed for estimat-

ing the total dioxin-like activity or estrogen-like activ-

ity of mixtures (Murk et al. 1996; Soto et al. 1997), but

these do not identify individual components of the

mixture. However, many of these components are

acknowledged to be carcinogenic or cancer promoters.

Under such circumstances, the power of epidemiol-

ogy to determine outcome against exposure in human

populations is rather weak and requires enormous bio-

monitoring programs involving hundreds of thousands

of participants. Some such programs are getting under

way but will not report on cancer outcomes for several

decades. In the meantime, Sir Bradford Hill

(1960) criteria on causation are worth revisiting. He

gave a list of criteria that can be considered when

addressing the causation of disease in occupational

medicine. Now it is realized that they have much

wider significance and applicability to other fields of

medicine. It is not essential that all the criteria be

fulfilled to establish causation. We discuss each

Bradford Hill criteria with respect to the etiology of

cancer from environmental pollution, in order of

decreasing strength, as previously considered by

Nicolopoulou-Stamati, Howard and Gaudet (2004).

1. Temporal sequence: The suspected causal agent

must appear in the environment prior to the effect

it is assumed to be causing. Preindustrialization

levels of cancer were low. There has been a steady

increase in cancer incidence following the start of

industrialization. The incidence of certain hormone

related cancers has increased rapidly following the

introduction of EDSs into the general environment,

and there is universal exposure of the population.

This provides strong evidence of causality related

to industrial development as measured by this

criterion.

2. Experimental evidence: There is strong experimen-

tal evidence that many of the chemical pollutants in

the environment and the food chain are carcino-

genic in animal models. To this, we must add radi-

ation exposure as a major influence, where the

experimental evidence is overwhelming.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1383
http://dx.doi.org/10.1007/978-1-4419-9863-7_1383
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3. Biological plausibility: Exposure to environmental

pollution commences pre-conceptually and con-

tinues throughout all stages of life. This exposure

therefore covers vulnerable windows of develop-

ment. There is very high biological plausibility

that exposure to a mixture of known carcinogens

would be causally related to the postindustrial

increase in cancer incidence. Furthermore, cancer

incidence would be age related as this is a measure

of the length of exposure to these influences.

4. Reasoning by analogy: We can reason that pollut-

ants that are known to cause cancer in animal

models are likely to cause cancer in humans. This

is indeed the basis of animal testing for the licensing

of pharmaceutical and agrochemical agents, and

therefore the analogy is widely accepted by

governments.

5. Coherence with biological background and

previous knowledge: We know that there has been

environmental contamination with bioactive sub-

stances which, prior to their invention and produc-

tion, had never been part of the environment.

Animal detoxification systems are generally well

adapted to natural biochemicals that they have

coevolved with, which is often not the case with

novel xeno-chemicals. Bioaccumulation is an

example of such an incompatibility. In addition,

the effects of low-dose endocrine-disrupting

chemicals on development, a newly discovered

mechanism, have to be considered in the context

of non-genotoxic mechanisms of carcinogenesis.

There is considerable prior biological knowledge

to support a coherent theory for such exposures to

be able to lead to cancer. The causation of cancer

by environmental pollutants is in keeping with this

criterion.

6. Biological gradient (dose-response relationship):

Dose-response relationships to chemical pollutants

have been demonstrated in animal studies, though

in the case of EDS they frequently are non-

monotonic. Data on humans is weak, with many

gaps in knowledge. There are many confounding

factors, such as the complexity of the mixture to

which the population is exposed. Dose-response

relationships to radiation exposure are strong and

well documented.

7. Strength of association: This is generally a weak

criterion for general chemical pollution. Exceptions

are, for example, the relationship between asbestos
exposure and pleural mesothelioma and radiation

and leukemia. However, apart from the undisputed

rise in cancer incidence and its temporal sequence

considered in association with the rise in environ-

mental pollutant exposure, added to the small num-

ber of published reports discussed in the biological

gradients section, there is in general weak associa-

tion. However, this is largely attributable the lack of

specificity of association with a complex mixture of

influences.

8. Specificity: This is the weakest of the associations

with the Bradford Hill criteria with respect to the

environmental causation of cancer. The reasons for

the lack of specificity are clear; humans are exposed

to diffuse and multiple influences, including radia-

tion, chemicals, lifestyle choices, and changes in

dietary habits. Epidemiology, one of the main

tools for making specific associations in human

disease, is a relatively weak tool when a mixture is

the causal factor under examination, given also that

there is very little fetal exposure data. This is par-

ticularly true if the effect is to alter the frequency in

the population of a common condition. The power

of epidemiological studies is further weakened by

the fact that there are no true control groups, that is,

everybody has some degree of contamination with

such pollutants. Therefore, although this criterion

cannot be met, there are perfectly good reasons for

understanding why it cannot be met, and they

should not necessarily be used as a reason for

avoiding the use of precaution. However, opponents

of the theory of the environmental etiology of can-

cer adopt this very lack of specificity as the main

plank of their arguments.

It appears therefore that five out of the eight

Bradford Hill criteria support the argument that

environmental pollutants are causally linked to the

rise in human cancer incidence. Of the remaining

three criteria, one offers some evidence, and the

other two are weak. However, the reasons for this

weakness are perfectly understandable, and the

inability to detect any effect does not preclude its

presence but is more likely a commentary on the

unsatisfactory nature of the investigatory tools that

we have at our disposal.

Conclusions

• The incidence of cancer in preindustrial societies

was low.
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• Since the beginning of the industrial revolution,

there has been an inexorable rise in human cancer

incidence, which is still continuing.

• The fact that environmental rather than genetic

influences predominate in the causation of cancer

has been shown through human twinning studies.

• Low-dose exposure to cell signaling disrupting

chemicals during windows of vulnerability in the

fetal and infant stages of development, resulting in

tissue dysgenesis, appears to be an important influ-

ence in adult cancer formation.

• Cancer is a disease associated with industrializa-

tion. It is likely that there is a predominantly epige-

netic (non-genotoxic mechanism) influence; this

means that the process should be reversible if the

causative agents can be removed from the

environment.

• The proportion of cancers caused by “lifestyle fac-

tors” as opposed to “external factors” remains to be

determined. However, the current state of knowl-

edge indicates that the statement by the late Sir

Richard Doll that only 1–4% of cancers can be

attributed to environmental pollution is a gross

underestimate. Even using Doll’s estimate, the

basis of which was never adequately explained

would mean that many millions of cancers are

already attributable to environmental chemical pol-

lution. The likelihood is that a much higher propor-

tion of human cancers, maybe a majority, is

attributable to external factors.
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Definition

Development of anticancer drugs provides a crucial

component of the repertoire of therapeutic interven-

tions, in addition to surgery and radiation therapy.

While existing drugs have led to important treatment

advances, much remains to be done to discover new

drugs that effectively target key molecular mechanisms

contributing to cancer pathogenesis. This is only possi-

ble through an understanding of the complex nonlinear

molecular networks that mediate drug actions and are

responsible for the de novo or acquired resistance of

tumor cells to many existing drugs. The field of systems

biology is focused on precisely such networks and

therefore holds the promise of changing the paradigm

of drug discovery from one focused on individual pro-

tein targets to one that targets networks instead.
Characteristics

As our understanding of the molecular basis of cancer

grows, a picture emerges of a complex multi-faceted
disease whose pathogenesis involves genetic muta-

tions as well as epigenetic changes, leading to altered

gene expression, signaling, andmetabolic activity. The

enormous individual variation in these changes adds to

the challenge of developing effective targeted drugs

for even a single known cancer type. Currently, the

most common drug treatment for cancer is through the

use of low-specificity cytotoxic chemotherapy drugs

that affect different aspects of cellular function and

whose effects are particularly damaging to fast-

dividing cells. In many cases, tumor cells either are

or become resistant to such drugs, resulting in limited

efficacy. Another, more recent approach has been to

develop drugs that target abnormalities specific to

tumor cells, such as mutations in specific receptors.

Several such drugs are in use that affect intracellular

signaling pathways altered in cancer (see, e.g.,

(Alvarez 2010)). They take advantage of our increased

knowledge about the link between genetic lesions and

the capabilities normal cells acquire as they undergo

the transition to become malignant cells.

Two relatively recent developments in biology

research promise a paradigm change in cancer drug

development: systems biology and cheap high-

throughput sequencing. The fundamental relevance

of systems biology to the understanding and treatment

of cancer is the insight that genes and proteins do not

act in isolation, but rather as nodes in complex inter-

active networks that include multiple feedback mech-

anisms and redundancies. The design of effective

drugs to battle cancer will depend on the understanding

of these networks and of the specific network alter-

ations present in an individual tumor (Goodarzi et al.

2009; Erler and Linding 2010; Klipp et al. 2010). This

will allow the discovery of tailor-made combination

therapies that target specific network perturbations.

High-throughput sequencing has made possible the

identification of the genetic changes in an individual

patient, which provide crucial information about how

to target the network. Thus, systems biology is affect-

ing a paradigm shift away from single proteins as the

target of drugs toward the network as a target (Baggs

et al. 2010). The result will be what has been called

systems pharmacology (Yang et al. 2010), a systems

biology approach to drug design. Its hallmark will be

combination therapy, guided by an analysis of the

complex signaling networks involved in malignant

changes (Wu et al. 2010). Mathematical modeling

and computer simulation are essential tools both for

http://dx.doi.org/10.1007/978-1-4419-9863-7_49
http://dx.doi.org/10.1007/978-1-4419-9863-7_49
http://dx.doi.org/10.1007/978-1-4419-9863-7_571
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the understanding of the nonlinear dynamic networks

involved, and for the study of effective control mech-

anisms (Feala et al. 2010).

The two case studies below illustrate the systems

biology approach to cancer drug design. The first,

focused on breast cancer, shows how one can use

systems biology to address the limited efficacy of

existing drugs by identifying new additional targets

that can be used to amplify their effect. The second,

focused on melanoma, shows how an understanding of

signaling networks can lead the way to appropriate

choices for combination therapy.

CASE STUDY 1: Breast cancer drugs

There are currently three types of drug therapy avail-

able for breast cancer patients: conventional cytotoxic

chemotherapy, hormone-based therapy, and targeted

therapy based on monoclonal antibodies (Alvarez

2010) The first two drug types are systemic, in the

sense that their effects are not specifically restricted

to cancer cells. For instance, cytotoxic chemotherapy

drugs inhibit cell division in some way or target DNA

repair mechanisms or interfere with metabolism, and

are particularly damaging to fast-dividing cells. While

this includes cancer cells, in particular small, fast-

growing tumors, it also includes normal cells in, e.g.,

the bone marrow, intestinal tract, and hair follicles.

What fundamentally distinguishes targeted therapy

drugs from the others is that they are based on cellular

abnormalities specific to some cancer cells, and

thereby represent an entirely new and more sophisti-

cated class of chemotherapeutics. For breast cancer

cells, an important molecular target that has been iden-

tified is the human epidermal growth factor receptor 2

(HER2). Systems biology can play a key role in iden-

tifying such targets and understanding the network of

interconnected pathways that propagate their signals

and their redundancy that helps cancer cells to develop

resistance to drugs that interfere with their action. The

example of the drug trastuzumab that targets the HER2

pathway and its role in controlling the cell cycle is

instructive.

Members of a family of receptor tyrosine kinases,

the ErbB family, are frequently overexpressed in epi-

thelial tumors and promote tumor cell proliferation in

several cancers, including breast cancer. Four homol-

ogous members of the HER receptor family have been

identified to date, HER1-4 (also known as ErbB1-4).

After ligand binding to ErbB family members 1
(EGFR) or 2 (HER2) the ErbB receptor is activated,

followed by a cascade of phosphorylation events that

regulate apoptosis and cellular proliferation pathways,

mediated by cyclin-dependent kinases. The drug

trastuzumab, approved by the U.S. Food and Drug

Administration in 1998, is a recombinant humanized

monoclonal antibody that binds with high affinity to

the extracellular domain of the HER2 receptor, and is

applied in patients that exhibit HER2 overexpression.

However, at least two thirds of patients are de novo

resistant to the effects of this drug. One possible expla-

nation for this resistance on the cellular level could be

that cancer cells are able to exploit the redundancy of

the signaling network between EGFR and the proteins

controlling cell cycle progression, primarily the reti-

noblastoma protein pRB, to avoid cell cycle arrest.

Thus, additional targets within this network need to

be identified in order to overcome resistance. In other

words, instead of individual proteins, the network has

to become the target.

In (Sahin et al. 2009) this is done through the use of

a dynamic mathematical model of the network.

A computer implementation of the model enables sim-

ulation studies that can explore the effect of targeting

other proteins in the network for their therapeutic

potential. New potential targets were identified,

through in silico experiments that were then confirmed

in the laboratory or the literature, including cyclin D1

and CDK4, as well as transcription factors c-MYC and

ER-a. These could be exploited either instead of or in

combination with HER2 to attack the entire network

structure.

CASE STUDY 2: Melanoma drugs

Melanoma is a very aggressive cancer with few effec-

tive treatment options. However, a recent increased

understanding of the genetic events underlying mela-

noma pathogenesis and the signaling pathways

affected by mutations common in melanoma has

opened the door to a systems biology approach to the

discovery of targeted therapeutics. The review (Ko and

Fisher 2010) surveys some of these developments and

makes clear the need for combination therapies that

target the entire signaling network rather than individ-

ual pathways, similar to the case of breast cancer

described above.

Several signaling cascades have been discovered as

important in melanoma. One is the RAS-RAF-MAPK-

ERK growth factor pathway. In virtual all human
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melanoma cases this signaling cascade has been altered

in some way, in particular through NRAS or BRAF

mutations. Several agents targeting proteins in this

pathway are available, such as the BRAF inhibitor

PLX4032, currently in clinical trials. Another pathway,

also subject to RAS signaling, is the PI3K-AKT-mTOR

pathway, whose activation has the effect of suppressing

apoptosis. Several small molecule inhibitors are avail-

able that target mTOR signaling. It is thought that none

of the actors in these pathways stand alone in the

pathogenesis of melanoma, and it is therefore likely

that no single-agent approach to this disease will be

successful in affecting a cure. The signaling network

including the proteins in the two pathways mentioned

here is complex, with feedback loops and redundant

pathways, thus, combination therapies targeting several

network nodes at the same time hold the most promise

for success. Here too, detailed computer models of the

network are essential tools for the discovery of effec-

tive drug combinations. Probably, the computer model

will ultimately have to be enlarged to also take into

account other apoptosis pathways as well as growth

factor signaling.
Discussion

The experience with cancer drugs that target individual

proteins suggests that combination therapies have the

greatest promise of being effective. To identify the

right combination of targets for a particular tumor it

is essential to understand the signaling network that is

perturbed through mutations and that mediates the

drugs’ action. It is the aim of systems biology to

provide the link between an organism’s genomic

sequence and its phenotype through an understanding

of the various dynamic networks that connect the two.

Thus, a systems biology approach to drug discovery

and design of combinatorial therapies is indispensable.
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Definition

A cancer network is a developmental network

(▶Developmental Control Networks) or ▶ cene that

contains one or more self-regenerating loops resulting

in endless cell proliferation. The nodes in the network

are cell states. The branches denote cell division or

jump to a new cell state.

b

Cancer Networks, Fig. 1 A linear, first-order cancer stem

cell network. It generates cells B if the condition F1 is

met (Werner 2011b). In cancer, the condition F1 may be

locked into being satisfied, so that we have endless cell

proliferation.
Characteristics

Cancer networks come in two basic forms: cancer

▶ stem cell networks and exponential networks,

where cancer stem cell networks are further divided

into linear stem cell networks and more general

geometric networks:

• Cancer stem cell networks

– Linear cancer networks

– Geometric cancer networks

• Exponential networks

Cancer networks like all ▶ developmental control

networks can be further divided into deterministic and

stochastic networks. Networks may also involve cell

signaling. Based on the topology of their ▶ develop-

mental control networks, there exist a vast number of

possible cancer networks. The monograph

(Werner 2011b) gives a kind of periodic table of all

possible cancer networks together with their salient

proliferative and phenotypic properties.

Linear Cancer Networks

A linear cancer stem cell is a self-regenerating cancer

cell that generates other terminal progenitor cells. If

the network allows stochastic dedifferentiation then

these terminal cells may dedifferentiate to cancer

stem cells. A linear cancer network G1 contains one

self-regenerating loop and one link to a terminal devel-

opmental network. They have many of the character-

istics of linear ▶ stem cell networks (Werner 2011b;

Fig. 1).

Cancer Meta-Stem Cells

A cancer meta-stem cell or second-order cancer stem

cell, G2, is a cancer stem cell that generates other

cancer stem cells. They have many of the characteris-

tics of normal meta-stem cell developmental networks

(Werner 2011b). See ▶Stem Cell Networks (Fig. 2).
Stem Cell Hierarchy

Stem cell networks form a natural hierarchy based

on the number of loops in their networks. For

this reason, we distinguish between first-order,

second-order, third-order, and further higher-order

▶ stem cell networks.

Geometric Networks

We call these networks geometric (control) networks

because their proliferative properties are related

to properties of geometric numbers (also called

the figurative numbers). They are also related to the

coefficients of Pascal’s triangle (Werner 2011b;

Fig. 3).

The general case of k loops in cancer ▶ stem cell

networks: A higher-order geometric network Gk

containing k loops and one link to a terminal develop-

mental network after n rounds of synchronous

divisions has an ideal proliferation rate that given by

the following formula, when n > 0:
Cellsðn; kÞ ¼ 1þ nþ nðn� 1Þ
2

þ nðn� 1Þðn� 2Þ
6

þ . . .

þ n!

k!ðn� kÞ! (1)

Cellsðn; kÞ ¼
Xk
i¼0

n

i

 !
(2)
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Cancer Networks, Fig. 2 A cancer meta-stem cell network is

a second-order geometric network. It consists of a second-order

loop at A2 linked to a first-order loop at A1 (Werner 2011b).

A cell in state A2 is a cancer meta-stem cell that generates

first-order linear cancer stem cells. In cancer, one or both of

the conditions Fi may be locked into being satisfied, so that we

have endless cell proliferation. In an ideal space with no resis-

tance, synchronous divisions, and when both conditions Fi are

satisfied, this network generates a triangle

A1Ak−1

ak−1 d

Ak D

ak−1 a1ak

Cancer Networks, Fig. 3 A

kth-order stem cell network

(Werner 2011b). The network

contains k loops at control
states Ak . . . A1 and end in

a terminal developmental

network D
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Limited Exponential Growth with Geometric

Networks

When the number of rounds of division n is less than

the number of loops k, i.e., 0� n� k, then a geometric

stem network exhibits exponential growth since the

following holds:
Xn
i¼0

n

i

 !
¼

n

0

 !
þ

n

1

 !
þ

n

2

 !
þ . . .þ

n

n

 !

¼ 2n

(3)
Metastatic Hierarchy

The stem cell network hierarchy generates a hierarchy

of cancer metastases (Werner 2011b). A first-order

cancer stem cell generates terminal cells.

A second-order cancer stem cell generates first-order

stem cells which then generate terminal progenitor

cells. A third-order stem cell generates second-order

stem cells which generate first-order stem cells which

generate terminal progenitor cells. Hence, in a given
tumor formed by a third-order stem cell, we will see

second-order stem cells and first-order stem cells

with a majority being terminal or terminal progenitor

cells (Fig. 4).

First-order cancer stem cells are slow growing with

linear proliferation rates and can be relatively harmless

if there is no stochastic dedifferentiation. A second-

order stem cell tumor grows more quickly (adding the

triangular number) with an ideal proliferation rate

given by the following formula, given n > 0:
Cellsðn; 2Þ ¼ 1þ nþ nðn� 1Þ
2

(4)

A third-order stem cell tumor grows even more

quickly (adding the tetrahedral number) with an ideal

proliferation rate as follows:
Cellsðn; 3Þ ¼ 1þ nþ nðn� 1Þ
2

þ nðn� 1Þðn� 2Þ
6

(5)



Cancer Networks, Fig. 4 A metastatic hierarchy with one red

G3 stem cell, and the rest are orange G2, green G1, and blue
terminal cells growing in a background of light beige cells. For

details, see Werner 2011b

A B C

a1

a2

Cancer Networks, Fig. 5 An exponential cancer network

where a cell in control state A divides into daughter cells that

self-loop and differentiate to control state A. For details, see

Werner 2011b
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Tumor Properties of Stem Cell Networks

The tumor has interesting properties. Initially, the

growth rate is exponential for all cells whose division

cycle is less than or equal to the number of loops in the

stem cell network. Then, the higher the number of

loops, the greater the percentage of cells in the tumor

that are actively proliferating. For example, with

a tumor generated by a stem cell controlled by

a third-order stem cell network, a high percentage of

the cells will be proliferating (a ratio that relates

the volume of a tetrahedron to the area of the base of

that tetrahedron).

Exponential Networks

An exponential network X contains two control loops

from two daughter cells that lead back to the parent cell

(Fig. 5).

As with linear and geometric networks, exponential

networks can have a great variety of forms depending

on the subnetworks they contain and the other net-

works that they activate.
Subnetworks and Tangentially Activated

Networks

Any loop can include a path that is a subpath of another

developmental network. This means the loop has

further developmental progeny generated by that

subpath. This ability to link to subnetworks and other

developmental networks is a basic characteristic of

▶ developmental networks (Werner 2011a, b).

These tangentially activated networks can generate

the dominant phenotype of a tumor or cancer. For

example, with meta-stem cell cancer networks, the

dominant phenotype may consist of terminal or

terminal progenitor cells that are non-cancerous. Ter-

atoma tumors also may result from a small set of

cancer cells with the vast majority being terminal

cells of various tissue types.
Conclusion

Cancer networks can exist in a vast space of ▶ devel-

opmental networks. The space of all possible cancer

networks is described in Werner 2011b.
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Characteristics

Cancer pathology is the study of structural (morphol-

ogy), biochemical, molecular, or genotypic alterations

and the functional or clinical manifestations associated

with disorders of growth of tissues. Tumors are defined

by disorganized tissue architecture and excessive cell

proliferation. A tumor, translated as “swelling,” is

a general term used in pathology to designate a mass

associated with disorders of growth (Fig. 1). The suffix

“oma” is used to designate a mass of tissue or tumor.

Tumors may be “congenital” or develop after birth.

Congenital tumors are classified as ▶ hamartomas

or ▶ choristomas.

Tumors that represent disturbances of growth after

birth are classified as ▶ hyperplasia, ▶ dysplasia, or

▶ neoplasia (Fig. 1).

A neoplastic growth may be ▶ benign or

▶malignant.

Amalignant neoplasm (or may also be referred to as

a malignant tumor) is generally synonymous with the

term “cancer.” That is, the use of the term “cancer” in
medicine refers to a malignant neoplasm. The spread

of a malignant cancer is referred to as ▶metastasis.

Tumors are further defined by their cell and tissue of

origin (Fig. 2).

Solid Tumors

Solid Tumors are tissue-based masses and represent an

imitation of the tissue and tissue components they are
derived from including neoplastic cells, supporting

connective tissue and mesenteries, blood vessels, lym-

phatics, nerves, and immune cells. Solid tumors are

subclassified generally based on the tissue and embry-

ological cell of origin into epithelial, mesenchymal,

or mixed tumors. Embryologically, epithelial tumors

are those derived from ectoderm and endoderm. Mes-

enchymal tumors are derived frommesoderm or neural

crest cells. The distinction is important because the

biological behavior and the course of treatment vary

with cell type.

The nomenclature of the tumor is then defined by

the origin of the cell and whether it is benign or malig-

nant (Table 1).

Benign epithelial tumors are called adenomas, pap-

illomas, polyps; malignant epithelial cancers are

called carcinomas. For further clarification, the tissue

or cell of origin is also included in the name. For

example, a malignant cancer of the cells that form the

liver parenchyma, or the hepatocytes, is called

a hepatocellular carcinoma, while a cancer of the

cells that form the bile transport system in the liver,

or the bile ducts and cholangioles, is called

a cholangiocellular carcinoma.

Benign mesenchymal tumors are named with refer-

ence to the tissue of origin. For example, a benign

mesenchymal tumor of connective tissue is called

a “fibroma.” A benign tumor of smooth muscle origin

is a leiomyoma. Malignant mesenchymal cancers are

called sarcomas. A malignant cancer of connective

tissue is called a fibrosarcoma. A malignant cancer of

a smooth muscle cell is a leiomyosarcoma.

Mixed tumors are tumors in which the progenitor

cells develop features of both epithelial and mesenchy-

mal components and are named according to tissue and

behavior. For example, a tumor of benign mixed tumor

of a mammary (breast) gland may be called

a fibroadenomas or benign mixed tumor; a malignant

mixed tumor is called a carcinosarcoma.

There is also special consideration given to tumors

derived from subtypes of cells within tissues such as

those from neuroendocrine cells. These are more com-

mon in the gastrointestinal tract, but also found in

respiratory tract, and other sites. Neuroendocrine

tumors are called “carcinoids” and may be considered

benign, but most are considered malignant or with

malignant potential.
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Tumor (mass of tissue)

Congenital

Harmatoma Choristoma

Growth Disturbance

Hyperplasia Dysplasia
Neoplasia

Benign Malignant
“Cancer”

Cancer Pathology,
Fig. 1 Classification scheme

for identification of masses or

“tumors”

Neoplasia

Solid tissue

Epithelial Mesenchymal Mixed 

Liquid blood

Lymphoma Leukemia
Cancer Pathology,
Fig. 2 Classification of

tumors based on origin
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Neural crest cells give rise to pigmented melanin-

producing cells called melanocytes. A benign tumor of

melanocytes is called a “nevus” or melanocytoma.

A malignant melanocytic cancer is called a melanoma

or malignant melanoma.

Special consideration and nomenclature is also

used for tumors of specialized tissue such as the

nervous system and the gonads. In the brain, tumors

may be classified as neuroepithelial and non-

neuroepithelial tumors and have special stains to dif-

ferentiate their origin. In the gonads, the totipotent
germ cells may give rise to tumors of embryonic

origin such as teratomas, choriocarcinomas, or even

yolk sac tumors.

Hematopoietic tumors

Hematopoietic tumors are also referred to as “liquid

tumors” and are of blood-based origin. This category

includes cells that make up the immune white blood

cell system such as the lymphocytes and granulocytes

and red blood cell systems such as erythrocytes and

megakaryocytes. Terms such as hyperplasia,



Cancer Pathology, Table 1 Examples of tumor nomenclature by tissue of origin and behavior

Benign Malignant

Epithelial Adenoma Carcinoma

Papilloma

Polyp

Of tissue Skin Papilloma Squamous cell carcinoma

Basal cell carcinoma

Gastrointestinal tract Polyp or adenoma Adenocarcinoma

Bladder Polyp Transitional cell carcinoma

Kidney Oncocytoma Renal cell carcinoma

Clear cell variant

Papillary carcinoma

Juxtaglomerlar Tumor

Renal pelvis squamous cell carcinoma

Liver hepatocytes Hepatoma Hepatocellular carcinoma

Liver bile duct Cholangioma Cholangiocarcinoma

Mesenchymal “oma” Sarcoma

Of tissue Connective tissue Fibroma Fibrosarcoma

Smooth muscle Leiomyoma Leiomyosarcoma

Skeletal muscle Rhabdomyoma Rhadomyosarcoma

Endothelial cells Hemangioma/angioma Hemangiosarcoma or angiosarcoma

Cartilage Chondroma Chondrosarcoma

Bone Osteoma Osteosarcoma

CNS Neuroepithelial

Astrocytes Astrocyoma Anaplastic astrocytoma

Glial cells Glioblastoma multiforme

Oligodendrocytes Oligodendroglioma Anaplastic olgiodendroglioma

Ependymal cells Ependymoma Anaplastic epednymoma

Choriod plexus Papilloma Carcinoma

Embryonic origin Medulloepithelioma
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dysplasia, and neoplasia are similarly used to define

disorders of altered architecture of these lineages as

well. Cancer of lymphoid organs is termed lym-

phoma. Cancer of circulating bone marrow cells is

termed leukemia.

Diagnosis

The diagnosis of a mass is based on the gross appear-

ance and behavior of the tumor and the histological

appearance (Fig. 3).

For microscopic assessment, the tumor is sampled

during an in-life surgical procedure called a biopsy or

after death as an autopsy. The preparation of the tumor

includes fixation of the mass in a preservative;

processing the tissue through a series of alcohol dehy-

dration steps to remove water and replace it with

a transparent harder material which is usually wax

paraffin; embedding the tissue in a mold; sectioning
or “trimming” the mold with the tissue; and then plac-

ing the tissue on a glass slide. The tissue will then be

stained for visual examination. Preservatives include

10% buffered formalin, which is the most common

routinely used tissue preservative. Other preservatives

that may be used are methanol or 80% alcohol, 2% or

4% paraformaldehyde, glutaraldehyde, and “special”

fixatives such as Bouin’s fixative, which includes

picric acid. Tissues may also be frozen in a container

in liquid nitrogen. The tissue is then stained –

hemotoxylin and eosin (or H&E) staining is most com-

monly used on a routine basis.

The determination of whether the mass is hyper-

plastic, dysplastic, or neoplastic, of epithelial, mes-

enchymal, or mixed (or “other”) origin, and whether

it has features of a benign or malignant tumor is based

on the microscopic pattern using criteria including

the tissue of origin, level of organization, or



Cancer Pathology, Fig. 3 (a) Photograph of liver with a tan irregularly nodular and cavitated mass. A section of mass is dissected,

fixed in a preservative (formalin), and processed to make a tissue section and stained for microscopic examination. (b) Photomicro-

graph of a tissue section of the mass in (a) stained with hemotoxylin and eosin (H&E). The pattern and location is consistent with

a diagnosis of cholangiocellular carcinoma, a neoplasm arising from the biliary epithelium

Cancer Pathology,
Fig. 4 Photographs of

examples of (a) normal

(arrow) and hyperplastic (*)

and (b) dysplastic squamous

epithelium of mucosa; (c)

Normal mucosa intestinal

epithelium compared to (c)

adenoma or polyp

characterized by disorganized

proliferation of epithelium

supported by a fibrovascular

stalk of connective tissue; and

(d). Adenocarcinoma

characterized by disorganized

proliferation of pleomorphic

epithelium cells invading into

the subjacent submucosa and

muscular wall of the intestine

(box) and (e) higher

magnification of invading

carcinoma
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differentiation and level of containment (Fig. 4). The

mass is identified and described as to whether it has

a connective tissue capsule or not, whether it is

compressing adjacent tissue or invading adjacent
tissue, and whether the pattern most closely resem-

bling the tissue or cell of origin. For example, neo-

plastic epithelial cells tend to arrange as glands of

acini or tubules, nests or islands. Neoplastic



Cancer Pathology,
Fig. 5 Photograph of

a section of H&E stained

breast tissue diagnosed as

carcinoma in situ (a) with

intraductular but not invasive

masses of disorganized

pleomorphic epithelial cells

that are confined to the

basement membrane boxed

and shown in (b)
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mesenchymal cells tend to arrange in interlacing or

intersecting bundles, whorls, or palisades. In addition

to the overall pattern, the morphology of the cells is

also important in the diagnosis. Neoplastic epithelial

cells are generally cuboidal, columnar, or polygonal;

neoplastic mesenchymal cells are generally elongated

or “spindle-shaped.” Additional criteria include

▶ anaplasia, cell ▶ pleomorphism, nuclear to cyto-

plasmic ratios, the appearance of the nucleus,

▶ anisocytosis, ▶ anisokaryosis, ▶mitotic figures,

and their appearance (normal alignment or bizarre).

Characteristics such as how fast the tumor grew,

whether there were previous tumor diagnoses, or

whether the mass represents a “re-growth” of

a previously excised tumor are also important in the

consideration of the diagnosis.

Benign tumors are considered well differentiated,

encapsuled with usually scant and normal mitotic fig-

ures, and usually normal mitotic figures. Malignant

tumors breech the basement membrane if epithelial in

origin and show local invasion, lymphatic or vascular

invasion, and destruction of surrounding tissue. A few

malignant tumors do not metastasize like basal cell

carcinoma or gliomas, and sarcomas tend to be locally

invasive. ▶Carcinoma in situ also has characteristics

of malignancy but does not invade the local tissue

(Fig. 5). Tumor metastasis may occur as seeding of

peritoneal cavity or other spaces (ovarian carcinomas,

mesothelioma); spread through lymphatics (most com-

mon); or invasion and spread through the vasculature.

The liver and lungs are common sites for metastasis

because of blood flow to these organs through first pass

and capillary beds.

In addition, special enzyme-based stains can be

used to reveal cellular components. Staining tissues

with antibodies for a colorimetric process, called
▶ immunohistochemistry is also commonly used to

further define the tissue or cell of origins.

For the diagnosis of solid tumors, IHC is used to

differentiate epithelial tumors and mesenchymal

tumors based on the type of intermediate filaments.

Intermediate filaments are structural proteins that

help determine the cell shape. Neoplastic epithelial

cells retain cytokeratins and react with antibodies

directed at these intermediate filaments (Fig. 6). Neo-

plastic mesenchymal cells retain vimentin microfila-

ments. Mixed tumors will show staining for both

cytokeratins and vimentin. For hematopoietic tumors,

IHC is used routinely to differentiate lymphocytic

tumors (lymphoma) derived from B-cells or T-cells

(Fig. 7).

IHC methods have also been developed as diagnos-

tic and prognostic indicators such as in breast cancers

where the status of estrogen receptor, progesterone

receptor, and HER2/neu status is determined prior to

and in support of the type of therapy that will be used.

Evaluation of the ultrastructural features of cells via

electron microscopy is also valuable in diagnostic

evaluation of the origin of some samples that do not

have characteristic features or for which enzyme or

immunohistochemistry are not diagnostic.

Grading and Staging

A grade is the qualitative or semiqualitative determi-

nation or assessment of the degree of differentiation of

the tumor. It includes a number of mitosis, cellular

cytoplasmic, and nuclear features. Grading schemes

developed over time for each tumor type when appro-

priate. Schemes may be in two categories – “high”

grade or “low” grade or low, intermediate, or high

grade. Grading is subjective and has proven less valu-

able clinically than staging.
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Cancer Pathology,
Fig. 6 Photographs of

biopsies from (a) H&E stained

section of a poorly

differentiated neoplastic

cancer confirmed to be

a carcinoma based on

identification of (b) positive

brown cytoplasmic staining in

a section stained for

cytokeratin intermediate

filaments using

immunohistochemistry; (c)

H&E stained section of

a intersecting bundles of

spindle-shaped cells

confirmed to be a sarcoma

based on identification of (d)

positive brown cytoplasmic

staining in a section stained for

vimentin intermediate

filaments using

immunohistochemistry

Cancer Pathology,
Fig. 7 Photograph of a H&E

stained biopsy from an

enlarged lymph node

consistent with lymphoma and

confirmation of subtype of

a B-cell origin using

immunohistochemistry with

antibodies to CD79a, which is

expressed on B-cells, or CD3,

which is expressed on T-cells

but not B-cells
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The stage of tumor is based on the size of the

primary tumor and the extent and spread to

regional lymph nodes or blood-borne metastasis.

The staging of tumor is designated by the abbrevia-

tion “TNM” for Tumor size, regional Node, and
Metastasis followed by a numerical assignment for

each category. The designations are: T1-T4; N1-N3;

and M1, 2.

For carcinoma in situ, the stage would be designated

as T0.
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Definition

▶Cancer resources provide information about cancer,

researches and clinical trials, and tools in cancer

research and analysis. Other cancer resources that are

intended for patients and caregivers provide informa-

tion on cancer pain management, support groups,

financial assistance, and palliative care. The selected

cancer resources described here focus on resources for

health professionals, researchers, and students in the

field of systems biology. These resources are available

in different formats. There are printed publications,

online references, databases, and also software pack-

ages for cancer data management and research

analysis.
Characteristics

Printed Publications and Online References

Basic information about cancer can be found in many

medical textbooks and other references. As a reference

specific on ▶Cancer Systems Biology, the book of

Wang (2010) provides not only basic concepts on

cancer and systems biology but also applications,

information on software tools, data resources, and

a significant collection of research updates. This is

the first book written specially for computational and

experimental biologists. Another reference is that of
Cesario and Marcus (2011) on cancer systems biology,

bioinformatics, and medicine. This book describes

systems approaches to cancer research and spans

a variety of topics from laboratory to clinical aspects

of cancer. In some publications (e.g., Yan 2010),

cancer systems biology is included as a major book

chapter.

Several journals (e.g., BMC Systems Biology,

Cancer Discovery) provide information on latest

results about systems biology and cancer research.

BMC Systems Biology (http://www.biomedcentral.

com/bmcsystbiol/) is an open access journal published

by BioMed Central. It includes original peer-reviewed

research articles on the functions of biological sys-

tems. The Cancer Discovery journal (http://

cancerdiscovery.aacrjournals.org/) is a new cancer

information resource that also publishes review arti-

cles aside from articles on major advances in cancer

research and clinical trials. Monographs and published

articles about cancer research are also provided by the

International Agency for Research on Cancer (IARC)

which is part of the World Health Organization. Pub-

lications of the IARC can be freely downloaded from

http://www.iarc.fr/.

One comprehensive online resource on cancer is the

Website of the National Cancer Institute (NCI, http://

www.cancer.gov/) which provides information on the

different types of cancer, clinical trials, and cancer

statistics. Beyond information, NCI also provides

funding and support to cancer researches and

also conducts its own laboratory and clinical studies.

Another useful Website is the Cancer Systems

Biology Resource of the University of Utah (https://

cancersystemsbiology.utah.edu/) which provides links

to topics such as basic gene and protein information,

▶ Pathways, tissue distribution and ▶Gene Expres-

sion information among others.

There are numerous printed and online publications

on cancer in addition to the resources described above.

Many of them share common references and links as

the ones already mentioned. One can also consult the

▶Disease Databases and specific cancer (e.g., http://

www.breastcancer.org/) sites for searching additional

details about cancer.

Cancer Databases

Cancer databases may contain collated information

about different types of cancers, cancer genes, or

other clinical data related to cancer. As data sources,

http://dx.doi.org/10.1007/978-1-4419-9863-7_1291
http://dx.doi.org/10.1007/978-1-4419-9863-7_924
http://www.biomedcentral.com/bmcsystbiol/
http://www.biomedcentral.com/bmcsystbiol/
http://cancerdiscovery.aacrjournals.org/
http://cancerdiscovery.aacrjournals.org/
http://www.iarc.fr/
http://www.cancer.gov/
http://www.cancer.gov/
https://cancersystemsbiology.utah.edu/
https://cancersystemsbiology.utah.edu/
http://dx.doi.org/10.1007/978-1-4419-9863-7_101119
http://dx.doi.org/10.1007/978-1-4419-9863-7_819
http://dx.doi.org/10.1007/978-1-4419-9863-7_819
http://dx.doi.org/10.1007/978-1-4419-9863-7_1055
http://www.breastcancer.org/
http://www.breastcancer.org/
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they are useful especially for conducting research on

analysis methods. One commonly used cancer

database is the Cancer Chromosomes Database which

will be soon part of the dbVar database, a database of

genomic structural variation. Both databases are

maintained by the United States National Center for

Biotechnology Information (NCBI). The Cancer

Chromosome Database is integrated into the

NCBI ▶Entrez system and is actually composed of

three sub-databases containing cytogenetic

(▶Cytogenetics), clinical, and/or reference

information.

The National Cancer Institute (NCI) provides

access to cancer data and also tools for its analysis

in their statistics’ web page http://www.cancer.gov/

statistics/tools. For studies on cancer incidence and

population data associated by age, sex, race, year of

cancer diagnosis, and geographic areas, their Surveil-

lance, Epidemiology, and End Results (SEER, NCI

2005) data are commonly used. For data that are

more specific to genes and pathways, the data portal

of the International Cancer Genome Consortium

(ICGC, http://www.icgc.org/) would be a useful

source. The Cancer Genome Atlas (TCGA, http://

cancergenome.nih.gov/) also provides a data portal

for researchers on cancer. The data available at

TCGA contains clinical information, ▶Histopathol-

ogy slide images, and molecular information of high-

quality tumor samples. For pathway analysis, the

▶KEGG Pathway database is a useful resource. For

interests in mutation data and sequencing (▶DNA

Sequencing) data, the COSMIC database (Forbes

et al. 2008) which can be downloaded from http://

www.sanger.ac.uk/genetics/CGP/cosmic/ is a good

reference. The Website also provides other cancer-

related data and information. For other data on

mutations, one can also check the SH2base site

(http://bioinf.uta.fi/SH2base/).

Omics data or data in the field of biology ending in

“–omics” (e.g., ▶ Pharmacogenomics, ▶ Proteomics)

are also commonly used in the study of cancer and

systems biology. Omics data enable the study of com-

plex pathways in cancer etiology. Example of online

resources that provide information on omics data are

the Biodatabase (http://biodatabase.org/) and the

Omics World Websites (http://www.omicsworld.

com/). The Biodatabase contains links to cancer gene

databases, protein, genomic databases, and others,
while the Omics World provides links to resources on

genomics, genetics, experimental protocols, reagents,

instruments, and also software.

There are more data sources available online for

cancer research. An attempt to collate and interconnect

all these data was done by the National Cancer Institute

(NCI) through the cancer Biomedical Informatics Grid

(caBIG®, https://cabig.nci.nih.gov/). It was launched

by the National Cancer Institute to create a virtual

network of interconnected cancer data and people

working together in cancer research. The caBIG® com-

munity Website has tools and facility for data sharing

and also workspaces where members can conduct vir-

tual activities, discussions, and exchange of ideas.

Membership to the network is open to the public

for free.

Software for Data Management and Analysis

Many of the cancer data providers previously

mentioned also provide data management and analysis

tools. For example, the SEER Website offers analysis

software for the SEER data and other cancer-related

databases for studying the impact of cancer in the

population. The ICGC Data Portal also runs a freely

available software called BioMart which is used for

data mining. The caBIG® Website offers quite

a comprehensive collection of tools for cancer research

(NCI 2009). One of the commonly availed tools in

caBIG® is the caArray which is used for microarray

(▶DNA Microarrays) data management system. The

caIntegrator is another tool that allows users to set up

web portals for integrative search. For integrated

genomics, the geWorkbench tools can be used for

visualization and analysis of gene expression and

sequence data. One can also find tools in caBIG® for

molecular analysis, cancer genome-wide association

scan (▶Genome-wide Association Study), clinical

trials management, and many more. Currently, more

than 40 tools are available in caBIG®.

Other software packages and tools for specialized

analysis are also available online. Vital to cancer

systems biology research are computational platforms

such as software for simulation, analysis, and method-

ologies for modeling. For visualization, mining, anal-

ysis, and modeling of biological networks, an

integrated software platform called VisANT

(Hu et al. 2009) can be accessed at http://visant.bu.

edu/. Additional resources on computational platforms

http://dx.doi.org/10.1007/978-1-4419-9863-7_1292
http://dx.doi.org/10.1007/978-1-4419-9863-7_1293
http://www.cancer.gov/statistics/tools
http://www.cancer.gov/statistics/tools
http://www.icgc.org/
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://dx.doi.org/10.1007/978-1-4419-9863-7_1295
http://dx.doi.org/10.1007/978-1-4419-9863-7_1295
http://dx.doi.org/10.1007/978-1-4419-9863-7_472
http://dx.doi.org/10.1007/978-1-4419-9863-7_1294
http://dx.doi.org/10.1007/978-1-4419-9863-7_1294
http://www.sanger.ac.uk/genetics/CGP/cosmic/
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http://dx.doi.org/10.1007/978-1-4419-9863-7_861
http://dx.doi.org/10.1007/978-1-4419-9863-7_1003
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http://dx.doi.org/10.1007/978-1-4419-9863-7_743
http://dx.doi.org/10.1007/978-1-4419-9863-7_267
http://visant.bu.edu/
http://visant.bu.edu/
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are also accessible at the Website of the Systems

Biology Institute (SBI, http://www.sbi.jp/index.htm)

based in Japan. SBI is a nonprofit private research

institution that promotes systems biology research

and its application to medicine and global sustainabil-

ity. They have played a major part in the development

of the Systems Biology Markup Language (SBML,

Hucka et al. 2003) which is used in software packages

for graphical editing and simulation of molecular

networks.

One software which uses SBML is the CellDesigner

(http://celldesigner.org/), a structured diagram

editor for drawing gene regulatory and biochemical

networks (▶Gene Regulatory Networks).
Cross-References
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Synonyms

Cancer-initiating cells; Tumor stem cells; Tumor-

initiating cells; Tumor-rescuing units
Definition

Cancer stem cells possess seemingly unlimited prolif-

eration capacity and the ability to give rise to

a heterogeneous population of cancer stem cells

and mortal non-stem daughters (Al-Hajj et al. 2003).

During mitosis, cancer stem cells may undergo either

Asymmetric Division to simultaneously self-renew

and generate one new non-stem cancer cell, or

Symmetric Division to yield two identical cancer

stem cells (Morrison and Kimble 2006; Dingli et al.

2007). Over many generations, a heterogeneous

population emerges, within which cancer stem cells

are uniquely able to initiate, sustain, and reinitiate

tumors after cytotoxic insults and/or at distal sites.

Cancer stem cell longevity and self-renewal is, in

part, due to upregulation of telomerase that prevents

telomere erosion (Blackburn and Gall 1978; Bodnar

et al. 1998).
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Characteristics

While cancer stem cells can be an infinitesimal sub-

population of the whole tumor (in theory, one cell), the

cancer stem cell hypothesis does not exclude cancer

stem cells being the dominant phenotype in a tumor or

even the trivial case of the cancer stem cell subpopu-

lation being equal to the total tumor population. Let us

denote the total tumor population with T and the pop-

ulation of cancer stem cells with C. Then the cancer

stem cell hypothesis can be expressed using set theory

as C 2 T. All sets of C shown in Fig. 1 are subsets (�)
or true subsets (�) of T:

Cancer Stem Cell Hierarchy

It is often argued that tumors follow a unidirectional

hierarchy (Fig. 2). Cancer stem cells sit on top of the

lineage tree and give rise to mortal non-stem cancer

cells with limited proliferation capacity. Let us denote

the ith generation non-stem cancer cells with Ni. The

kinetics of the cancer stem cell and non-stem cancer

cell populations can be described by a term for prolif-

eration (only for cancer stem cells), gain from the

previous generation compartment and loss due to

advancement into the next generation compartment
Cancer Stem Cell Kinetics,
Fig. 1 Different cancer stem

cell (C) subsets of a tumor

population (T)

Cancer Stem Cell Kinetics,
Fig. 2 Tumor hierarchy

initiated by self-renewing

cancer stem cells (round red
cell, left)
(only for non-stem cancer cell generations), and

a cell death term:

cancer stem cells C :
dC

dt
¼ pdC� aC

1st generation non - stem cancer cells N:

dN1

dt
¼ ð1� pÞdC� g1N1 � b1N1

2nd generation non - stem cancer cells N:

dN2

dt
¼ 2g1N1 � g2N2 � b2N2

:

:

:

n�1st generation non - stem cancer cells N:

dNn�1
dt
¼ 2gn�2Nn�2 � gn�1Nn�1 � bn�1Nn�1

nth generation non - stem cancer cells N:

dNn

dt
¼ 2gn�1Nn�1 � bnNn;

where p is the probability of symmetric cancer stem

cell division, d, a and gi, bi are proliferation and apo-

ptosis rates of cancer stem cells and ith generation of
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non-stem cancer cells, respectively. n is the number of

divisions non-stem cancer cells can undergo before

cell death (proliferation capacity). The parameters d
and gi can be replaced by a function of tumor size f(C +

∑Ni) to account for kinetics, including linear, logistic

or Gompertzian growth.

Parameter Estimation

It is evident that without cancer stem cells, the popu-

lation will inevitably die out. Furthermore, tumors can

only progress when cancer stem cell proliferation and

symmetric division rate is higher than cell death rate,

i.e., pd> a, and any increase in cell death rates a and bi
yields a reduction in tumor size. For pd¼ a and pd> 0,

the tumor is mitotically active at the cellular level but

may exhibit macroscopic tumor dormancy. The fre-

quency of cancer stem cells in the population is depen-

dent on the values of probability of symmetric cancer

stem cell division p, cancer stem cell death rate a, non-

stem cancer cell proliferation and death rates gi and bi,
as well as proliferation capacity of non-stem cancer

cells n (Enderling et al. 2009;Morton et al. 2011).With

adequately chosen parameters, the frequency of cancer

stem cells varies enormously (Fig. 1). Experimentation

and empirical observations are essential to reliably

parameterize the kinetics of all cells in the system.
Cross-References
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Definition

Tumors are heterogeneous cellular entities whose

growth is dependent on dynamical interactions

between cancer cells themselves and the continually

varying microenvironment these cells live in (Bissell

and Radisky 2001). It is very difficult if not impossible

to investigate these dynamic interactions by using wet-

lab experiments only because experimental complex-

ity usually restricts observations to single or very lim-

ited spatial and/or temporal scales without allowing to

reproducibly and quantitatively analyze relationships

between these scales. Hence, a more recent paradigm

shift within the cancer research community is to rec-

ognize and study cancer as a systems disease.

Cancer systems biology is an emerging multidis-

ciplinary field that focuses on the systemic understand-

ing of cancer initiation and progression by

investigating how individual components interact and

collaborate to give rise to the function and behavior of

the tumor system as a whole (Deisboeck et al. 2001). In

addition to conventional biomedical experiments,

a systems approach often involves computational

modeling to help decipher the massive amount of

data generated today especially in molecular and cell

biology. In silico cancer models are necessarily sim-

plified, yet are beginning to adequately represent spe-

cific cancer phenomena. In fact, it has been

increasingly recognized that such a theoretical

approach may help to simulate, predict, and optimize

procedures, experiments, and therapies, to test and

refine hypotheses. The development of a successful in

silico cancer model is expected to be iteratively

http://dx.doi.org/10.1007/978-1-4419-9863-7_1533
http://dx.doi.org/10.1007/978-1-4419-9863-7_1532
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conducted, with available experimental data used to

guide, support, and shape the model design, and to

verify and validate model results.

The discrepancy between the in vitro and the clin-

ical settings has significantly affected the ability of

researchers to design and develop successful cancer

therapeutics (Khalil and Hill 2005). Hence, one of the

most important challenges facing cancer researchers

currently is how to better translate in vitro discoveries

to clinical application. Data-driven, predictive cancer

systems models can help bridge this gap and expedite

the development of effective cancer therapeutics.

Although still at an early stage, cancer systems biology

has begun to provide useful insights into the disease

mechanisms involved by providing a systematic and

integrative framework for incorporating data, generating

testable hypotheses, and guiding further experiments.
Cross-References
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Definition

Scientific theories serve the purpose of making the

world intelligible. They provide organizing principles

and construct objectivity by framing observations and

experiments.
Characteristics

John Cairns (1997) rightfully stated: “Biology

and cancer research have developed together. Invari-

ably, at each stage, the characteristics of the

cancer cell have been ascribed to some defect in

whatever branch of biology happens at the time to

be fashionable and exciting. . .” This statement pro-

nounced 15 years ago applies to the status of cancer

research today, and thus justifies a brief historical

note to introduce the two currently competing

theories of carcinogenesis, namely, the somatic muta-

tion theory and the tissue organization theory of

carcinogenesis.

Historical Perspective

The modern view of ▶ neoplasms can be traced

back to the second half of the nineteenth century,

following the advent of the cell theory and the

development of modern pathology spearheaded

by Virchow, Thiersch and Waldeyer, in Germany.

In the view of these German pathologists, the bases

of organismic order resulted from embryonic

development and were due to interactions of multiple

mutually dependent systems within the organism.

Neoplasms were viewed as a disorder of these

normally interdependent parts (Moss 2003;

Sonnenschein and Soto 2008).

All along the twentieth century, the full range of

phenotypic potentials available to cells and tissues

interacting within the organism was gradually

replaced by a more reductionist conceptualization of

vital processes (Moss 2003). This shift from the

organismic view to a new cell-based and eventually

gene-based view started in 1914 when Theodor

Boveri claimed in his book entitled The Origin of

Malignant Tumors that “the problem of tumors is

a cell problem” and that cancer was due to “a certain

permanent change in the chromatin complex” which,

“without necessitating an external stimulus, forces

the cell, as soon as it is mature, to divide again”

(Boveri 1929). Ever since, cancer was considered as

a problem of ▶ control of cell proliferation due to

permanent changes in the “chromatin”, which in

Boveri’s time was already known to contain the her-

itable material. Boveri’s theory represents the precur-

sor of what became to be known later in the twentieth

century as the ▶ somatic mutation theory of carcino-

genesis (SMT).
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The Somatic Mutation Theory

The premises adopted by the SMT are: (1) cancer is

derived from a single somatic cell that, over time,

accumulate multiple DNA mutations, (2) the default

state of cells in metazoa is quiescence, and (3) cancer is

a disease of the ▶ control of cell proliferation caused

by mutations in genes that affect steps within the cell

cycle (Hahn and Weinberg 2003). During the last

decades of the twentieth century until now, the SMT

became the dominant view in carcinogenesis.

From this perspective, cancer was perceived as being

a disease caused by mutations in the DNA of a single

founder cell and, therefore, cancer has been considered

as a clonal disease.

In spite of the dominance of the SMT, until the

advent of the ▶ oncogene hypothesis in the 1970s,

there were several competing theories to explain

cancer; they differed at the level of biological orga-

nization in which carcinogenesis occurred. Thus, dis-

cussions centered on whether cancer was either

a problem of ▶ control of cell proliferation and/or

of cell differentiation, or else, of tissue organization.

From the 1950s to the 1970s, D.W. Smithers, C.

Dawe, J.W. Orr, B. Mintz, G.B. Pierce, and several

others offered compelling evidence for carcinogene-

sis to be considered as a tissue-based phenomenon

akin to development gone awry (Soto and

Sonnenschein 2012). Notwithstanding, around the

1960s and 1970s, the reductionist view became dom-

inant based on in vitro transformation assays

which replaced the animal models that were used

until then. Philosophers, historians, and sociologists

of biology have advanced explanations about how

this view achieved dominance. One of them, Joan

Fujimura, proposed a sociological explanation that

connected the interests of molecular biologists and

the rise of the genetic engineering biotechnology

industry into constructing “doable problems” such

as “Are there molecular changes in the cellular

proto-oncogenes of tumor cells?” Michel Morange

proposed, instead, an epistemic explanation whereby

the oncogene hypothesis became attractive to

researchers because it suggested a straight-forward

research program. In this context, the products of

oncogenes participated in signal transduction

conveying messages from the extracellular milieu

through membrane receptors to the nucleus and

these messages regulated ▶ cell proliferation (Soto

and Sonnenschein 2012).
The Tissue Organization Field Theory

An alternative theory of carcinogenesis, namely, the

tissue organization field theory (TOFT) is based on

principles similar to those adopted by cancer researchers

at the end of the nineteenth century. The TOFT directly

challenges the core premises of the SMT by positing

that (1) carcinogenesis, like histogenesis (the formation

of tissues) and organogenesis (the formation of organs),

is a supracellular, emergent phenomenon occurring at

the tissue level of biological organization. From this

perspective, regardless of its many causes, cancer

becomes “development gone awry.” An additional fun-

damental premise of the TOFTs is that (2) as in unicel-

lular organisms and metaphyta, the default states of

metazoan cells, are proliferation and motility. By “the

default state of cells is proliferation” is meant that the

state that cells assume in the presence of abundant

building blocks (nutrients) needed to synthesize new

cells is proliferation. The TOFT stems from a body of

literature showing that cells that once belonged to

a neoplasm could be “normalized” upon recombination

with normal tissue. The SMT precludes this eventuality

(Sonnenschein and Soto 2008).

The Hybrid Theories of Carcinogenesis

During over 40 years of dominance by the original and

the updated SMT (the oncogene hypothesis), hundreds

of oncogenes and dozens of suppressor genes have

been described (Hanahan and Weinberg 2011). Origi-

nally, Hanahan and Weinberg, proposed what they

called the Hallmarks of Cancer, i.e., “. . .the basic

rules governing the neoplastic transformation of

normal human cells”. These originally six rules postu-

lated that the properties of cancer cells were “. . .to

generate their own mitogenic signals, to resist

exogenous growth-inhibitory signals, to evade apopto-

sis, to proliferate without limits (i.e., to undergo

immortalization),to acquire vasculature (i.e., to

undergo angiogenesis), and in more advanced cancers,

to invade and metastasize.” Later on, two extra rules

were added, namely: reprogramming of energy metab-

olism and evading immune destruction (2011).

Central to their original and to their updated view

remains the idea that carcinogenesis is a cell-based

problem due to mutations that cause the founder can-
cer cell and its progeny to “proliferate without limits”.

In his analysis of the metaphysical presuppositions

and scientific practices in cancer research, the philos-

opher James Marcum (2005) observed an ideological

http://dx.doi.org/10.1007/978-1-4419-9863-7_100185
http://dx.doi.org/10.1007/978-1-4419-9863-7_1078
http://dx.doi.org/10.1007/978-1-4419-9863-7_100185
http://dx.doi.org/10.1007/978-1-4419-9863-7_100185
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and practical shift among the supporters of the SMT

who adopted concepts of the TOFT, shared by other

researchers (Xu et al. 2009). For example, for those

who are committed to explaining carcinogenesis

through a sub-cellular (mutational) strategy, the causal

role of the ▶ stroma in carcinogenesis is transformed

into the problem of how mutated genes can affect the

interactions of the cancer cells harboring these genes

with otherwise normal neighboring cells. This

“hybrid” theory has been criticized on the grounds

that the premises of the SMT and the TOFT contradict

each other (Soto and Sonnenschein 2012).

Systems Biology, Heuristics and Theory Testing

Systems Biology offers an opportunity to explore the

▶ heuristic value and usefulness of the two main the-

ories of carcinogenesis. Mathematical modeling and

computer simulation enables researchers the boldness

to choose premises and temporarily reject data sets

without having to commit prematurely to a program

of expensive and time-consuming ‘wet’ experiments.

This exploratory role of Systems Biology may become

central to breaking the habit of fixing lacks of fit with

ad hoc explanations instead of taking a bold and

critical look at the premises that were adopted

(Enderling and Hahnfeldt 2011; Soto and

Sonnenschein 2012).

In an ultimate analysis, the passage of time will be

the final arbiter in deciding which of the two main

theories of carcinogenesis has been most useful in

organizing principles and constructing objectivity by

framing observations and experiments.
Cross-References

▶Cell Proliferation

▶Heuristic Optimization

▶Neoplasms

▶Oncogene

▶ Somatic Mutations

▶ Stroma
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Cancer-initiating Cells

▶Cancer Stem Cell Kinetics
Canonical Model

Eberhard O. Voit

The Wallace H. Coulter Department of Biomedical

Engineering, Georgia Institute of Technology and

Emory University, Atlanta, GA, USA
Definition

A canonical model is a mathematical representation of

a biological phenomenon that is constructed according

to strict rules and therefore has a regularly structured

format. In contrast to ad hoc models, which are com-

posed from a variety of known or alleged functions that

seem to be best suited for the specific modeling pur-

pose, each canonical model is obtained from a single

type of approximation for all processes within the

modeled system. Linear models are canonical, because

all processes are represented with linear functions.

Nonlinear canonical models include S-systems,

Generalized Mass Action systems, Lotka-Volterra

systems, and lin-log models. Canonical models are

particularly useful if specific mechanisms or process

descriptions are not known.
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Canonical Network Motifs

Arun S. Konagurthu1 and Arthur M. Lesk2

1Clayton School of Information Technology,

Monash University, Clayton, VIC, Australia
2Department of Biochemistry and Molecular Biology,

and Huck Institutes of Genomics, Proteomics, and

Bioinformatics, Pennsylvania State University,

University Park, PA, USA
Synonyms

3-Cycle; Bifan; FFL; MIM; Network building blocks;

SIM; Subgraph patterns
Definition

A system-wide view of complex interactions involved

in biological processes finds a natural description as

networks or directed graphs. Systematic enumeration

of small subgraphs in various biological networks has

identified preponderant patterns, which are often

described as motifs. Many authors accept the follow-

ing as a canonical set of network motifs: single-input

motif (SIM), multiple-input motif (MIM), and feed-

forward loop (FFL). There is consensus that motifs

are “building blocks” of various biological networks,

naturally selected to contribute to their functional

architecture. In some networks, especially in those

describing genome-wide transcription regulation, spe-

cific functional roles have been suggested for motifs

(Shen-Orr et al. 2002; Zaslaver et al. 2004; Mangan

et al. 2006). For example, SIMs are commonly asso-

ciated with temporal ordering of gene expression,

MIMs with combinatorial gene regulation, and

FFLs with filters that do not pass on transient signals.

These functions depend not only on the topology of

the subgraph, but on the logic at nodes receiving

multiple inputs.
Characteristics

There follows a formal description of commonly enu-

merated subgraph patterns in various biological net-

works. The description of these patterns and their
enumeration algorithms are described in detail in

Konagurthu and Lesk (2008a). A study analyzing the

preponderance of various subgraph patterns in large

natural networks can be found in Konagurthu and Lesk

(2008b).

Common Subgraph Patterns in Biological

Networks

These patterns represent some of the commonly enu-

merated subgraph patterns in biological networks:

feed-forward loop (FFL), 3-Cycle (3-CYC), single-

input motif (SIM), multiple-input motif (MIM), and

bifan. (See Fig. 1.)

The following statements formally define these sub-

graph patterns. The definitions are, in a sense, “orthog-

onal.” That is, our definitions are chosen to avoid

ambiguity in classification of any subgraph of

a network. (Usage in the literature often allows, for

example, MIMs to contain SIMs as subgraphs, leading

to difficulty in formulating the problem of motif

enumeration.)

Feed-forward loop: (Fig. 1a) A FFL is a set of three

vertices (source, intermediate, and target) with one

direct path, and another indirect path through an inter-

mediate vertex, from source to target.

3-Cycle: (Fig. 1b) A 3-CYC is a three-vertex

directed cyclic graph.

Single-input motif: (Fig. 1c) A SIM in a large

directed graph G(V, E), with a vertex and directed

edge (arc) set V and E respectively, is a bipartite sub-
graph G0(P [ C, E0) containing two disjoint sets

(layers) of vertices P and C (denoting parent and

child vertex sets, respectively), subject to the following

constraints:

1. |P| (¼ the number of elements of P) and |C| � 2.

2. There is an outgoing edge from the vertex in P to

every vertex in C. (E0 is the edge set containing these
arcs.)

3. There are no arcs between any two vertices in C.
4. There are no incoming edges to any vertex in C from

any other vertex (outside the SIM) in the set of

vertices V � P � C 2 G. (Note that this constraint
does not prohibit outgoing edges from any vertex in

C to a vertex outside of the SIM.)

5. For the singleton vertex in P, C is a maximal set
under the above constraints. (That is, C cannot be

extended by conforming to the above constraints.)

Multiple-input motif: (Fig. 1d) AMIM inG¼ (V, E)
is a bipartite subgraph G0 ¼ (P [ C, E0) containing two

http://dx.doi.org/10.1007/978-1-4419-9863-7_100011
http://dx.doi.org/10.1007/978-1-4419-9863-7_100106
http://dx.doi.org/10.1007/978-1-4419-9863-7_100494
http://dx.doi.org/10.1007/978-1-4419-9863-7_100889
http://dx.doi.org/10.1007/978-1-4419-9863-7_101008
http://dx.doi.org/10.1007/978-1-4419-9863-7_101349
http://dx.doi.org/10.1007/978-1-4419-9863-7_101421
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disjoint sets (layers) of vertices P and C subject to the

following constraints:

1. |P| � 2 and |C| � 2.

2. There are outgoing edges from every vertex pi 2 P
to every vertex cj 2 C. (E0 is the edge set containing
these arcs.)

3. There are no arcs between any two vertices in P.
4. There are no arcs between any two vertices in C.
5. Both P and C are maximal sets under the above

constraints.

Bifans: (Fig. 1e) We note that MIMs arose as a gen-

eralization of bifans in the literature. To enforce

orthogonality of motif definition, consider a bifan

only as a maximal 2 � 2 MIM, where |P| ¼ |C| ¼ 2.

(See section below for more details.)

Maximality and Orthogonality of Motif Definitions

We emphasize that the criterion of maximality is cru-

cial to maintain independence (orthogonality) in enu-

merating the above motifs. In case of SIM, the set C is
maximal, whereas with MIMs, both P and C sets are
maximal. Without this constraint, it is easy to overcount

non-maximal subgraphs of the type MIMs and SIMs.

For example, a maximal MIM with p parents and c

children contains [2p � (p + 1)] � [2c � (c + 1)] � 1

easily enumerable non-maximal “sub-MIMs,” includ-

ing
p
2

� �
� c

2

� �
non-maximal bifans. Similarly,

a maximal SIM with one parent and c children contains

2c � c � 2 non-maximal “sub-SIMs.”

The definitions of the SIM exclude the counting of

subgraphs of MIMs as SIMs. Without the in-degree

constraint (4) on a SIM, everyMIM containing p parents

and c children would contain p � (2c � (c + 1))

subgraphs that form either a SIM or a subset of a SIM

with two or more children (in set C).
Enumeration

Enumerating Feed-forward loops: FFLs can be enu-

merated in a number of ways. A simple procedure to

enumerate all FFLs in a directed graph G(V, E) is as

follows: At each vertex vi 2 V, for each pair of outgo-

ing edges from vi to distinct vertices vj and vk in G,
count a FFL if there is an arc from either vj to vk or

vice versa.

Enumerating 3-Cycles: Enumerating 3-CYCs is

similar to the procedure above. At every vertex vi, for

each pair of outgoing and incoming arcs to-vj and
from-vk respectively, count a 3-CYC if there is an arc

from vj to vk. Note that, since a 3-Cycle has an auto-

morphism number of 3 – that is, there are three

different permutations of vertices giving an indistin-

guishable connectivity of 3-CYC – this procedure

results in overcounting 3-CYCs by three times. This

can be avoided if the 3-CYC list is generated under

some canonical ordering of vertex labels.

Enumerating Single-input motifs: For each vertex vi
in the full graphG¼ (V, E) find the set C(vi)	 Ci of all

its children – the set of vertices that are targets of an arc

from vi. Shrink the set Ci by eliminating vertices which

have incoming edges from vertices outside vi [ Ci. The

reduced Ci, provided it contains at least two vertices,

forms the candidate set from which maximal indepen-

dent sets of vertices – that is, set of vertices without

links between them – are extracted.

Use Bron and Kerbosch algorithm (Bron and

Kerbosch 1973) for finding all cliques in graphs as

follows. (A clique is a maximal complete subgraph,

a subgraph with an edge between every two vertices.)

Consider the undirected complement of the graph

induced by reduced Ci. This is created by deleting all

edges originally present, and introducing an undirected

edge between any two vertices originally unconnected.
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Then the condition that a subgraph of the reduced Ci

set has no edges becomes that the corresponding sub-

graph of the inverted graph is completely connected.

Each possible clique (of size �2 vertices) in the com-

plement graph gives us the disjoint set C of a SIM for

every vertex vi 	 P, satisfying all the constraints in its
definition.

Enumerating Multiple-input motifs: For each vertex

vi 2 V find the set Ci of all its children. Let P(c) be the
set of vertices (“parents” of vertex c) which have an

incoming edge to c. For each pair c1, c2 2 Ci, find the

maximal subset of nodes that are parents of c1 and c2,
that is, the intersection of the parents of c1 and the

parents of c2: P(c1) \ P(c2).

By considering all pairs of elements from the child

sets derived from every node, we build up a list of child

and corresponding parent sets such that all

parents have arcs to all children. Initially, c1, c2 and

P(c1)\ P(c2) form a child and corresponding parent set

(provided that P(c1) \ P(c2) contains �2 nodes). If

another pair c3, c4 gives us the same intersection of

parents – P(c1) \ P(c2)¼ P(c3) \ P(c4) – we merge the

child sets, updating our list to contain: c1, c2, c3, c4 and

P(c1) \ P(c2) (¼ P(c3) \ P(c4)). We build up maximal

child and corresponding parent sets. The process is

repeated for all pairs in the parent sets that share the

same children.

This step has built up candidate MIMs that are

complete as far as parent-child arcs are concerned.

The next step is finding subsets of candidate MIMs

free of parent-parent and child-child edges.

In the induced undirected version of the graph

containing parent and child sets of a candidate MIM,

consider the parent set and “invert” the edges between

vertices in this set by deleting all originally present

edges, and introducing an edge between any two nodes

originally unconnected. Repeat the same procedure for

the vertices in the child set. Preserve the edges (ignor-

ing the direction) linking vertices in the parent set to

nodes in the child set – we know by construction that

there is an edge between every parent and every child

node.

Then the problem of finding MIMs – maximal

subsets of parent and child graphs, that contain

no interparent edges and no interchild edges but

all parent-child edges – is equivalent to finding

all cliques in this transformed graph of each candidate

MIM.
Note on densely overlapping regulons: Shen-Orr
et al. (2002) introduced densely overlapping regulon

(DOR). DORs can be thought of as an incomplete

MIM, from which some of the arcs between P and C
are absent.

The method for enumerating MIMs described

above can be extended to count DORs. The sets P
and C are first calculated such that there is an arc

between every node in P and every node in C. Subse-
quently, relaxing the constraint of having “complete”

sets of edges between the two sets, P and C can be

iteratively extended such that they now include nodes

that share at least a certain user-defined threshold on

number of edges between the sets. Once extended, the

edges betweenP and C can be assumed to be complete,

and DORs (free of parent-parent and child-child edges)

extracted using the procedure discussed earlier.
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Capacity

▶Disposition
Capacity to Evolve

▶Evolvability, Generalized Biology
Capillary Electrophoresis Mass
Spectrometry–based Metabolomics

▶CE-MS-based Metabolomics
Carbon Assimilation

▶ Photosynthesis
Carboxyfluorescein Succinimidyl Ester
(CFSE)

▶Lymphocyte Labeling, Cell Division Investigation
Carcinogens

▶Xenobiotics
Carcinoma In Situ

Barbara J. Davis

Section of Pathology, Tufts Cummings School of

Veterinary Medicine Biomedical Sciences,

North Grafton, MA, USA
Definition

A specific designation for neoplasia derived from

epithelial dysplastic changes that occur in all the
layers of epithelium but do not breach the basement

membrane. They may or may not progress to

malignancy.
Cross-References

▶Cancer Pathology
Case-based Reasoning

Eyke H€ullermeier, Thomas Fober and Marco

Mernberger

Philipps-Universit€at, Marburg, Germany
Definition

Case-based reasoning (CBR) is a computational prob-

lem solving methodology offering a principled

approach to knowledge engineering and knowledge-

based systems design. Being rooted in cognitive psy-

chology, CBR essentially seeks to formalize a problem

solving paradigm upon the basis of a simple rule of

thumb, namely, that “similar problems tend to have

similar solutions” (Kolodner 1993). More specifically,

the idea of CBR is to store and exploit the experience

from similar problems in the past, and to adapt then

successful solutions to the current situation. Thus,

the core of every case-based problem solver is the

case base or case library, which is a collection of

memorized “chunks of experience” called cases.

Moreover, the concept of similarity plays a key role

in CBR systems. Inference in CBR can be considered

as a specific form of analogical reasoning.
Characteristics

CBR is a subfield of artificial intelligence (AI) (see

▶Evolutionary Algorithms) with close connections to

machine learning, information retrieval (see ▶ Identi-

fication of Gene Regulatory Networks, Machine

Learning), databases, semantic web, and▶ knowledge

management. It combines methods from these and

related areas to tackle specific problem tasks, such as

diagnosis, planning, product recommendation, and
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experience management (Bergmann et al. 2003). From

a knowledge-based systems perspective, CBR can be

seen as an alternative to the rule-based paradigm for

expert systems design. In this regard, it offers a number

of advantages, especially from a knowledge acquisi-

tion and maintenance point of view. In fact, knowledge

in the form of individual cases (often specified as

problem/solution tuples (x, y), indicating that y is the

best or at least a sufficiently good solution to the

problem x) is in general more readily available than

generally valid rules, which are difficult to elicit from

human experts. Moreover, whereas rule-based infer-

ence normally requires a knowledge base to be com-

plete and correct in a logical sense, analogical and

similarity-based inference are more tolerant toward

the incompleteness and inconsistency of knowledge

(H€ullermeier 2007).

Applying CBR principles in a machine learning

context, for example, for ▶ classification, comes

down to realizing “lazy,” instance-based instead of

“eager,” model-based learning (like rule induction).

The nearest neighbor method can be seen as the sim-

plest form of case-based reasoning and is a typical

example of the so-called structural approach to CBR.

In structural CBR, cases are represented according to

a structured vocabulary, that is, an ▶ ontology. The

describing features of a case can be organized as flat

attribute-value tables, in an object-oriented manner, as

graph structures, or by sets of atomic formulas of

a logic language. Although the structural approach

is most widely used in practice and arguably most

relevant for the biological sciences, it is worth men-

tioning the existence of other types of CBR, such

as textual and conversational CBR, which can differ

significantly with regard to case representation and

reasoning.

By reasoning on the basis of specific cases instead

of first principles, CBR is of particular relevance for

scientific fields that are characterized by a lack of such

principles, and which are more data- than theory-

driven. From this point of view, CBR is especially

interesting for the biological and life sciences, includ-

ing systems biology, in which data abounds, analogi-

cal/similarity-based reasoning is omnipresent, and

theory formation is largely founded on individual

case studies. CBR systems have already been devel-

oped for a number of problems in this field, such as

gene finding, knowledge discovery in sequence data-

bases, protein-structure determination and the
planning of crystallization (Jurisica and Glasgow

2004), or more recently the analysis of microarray

data (Bangpeng and Shao 2010).

The CBR Cycle

Despite the diversity of concrete implementations, the

essentials of the CBR methodology are captured by

a surprisingly simple and uniform process model,

referred to as the CBR cycle (Aamodt and Plaza

1994). It consists of four sequential steps organized

around the knowledge of the CBR system: retrieve,

reuse, revise, and retain (see Fig. 1).

Problem solving starts when a new problem (the

query) must be solved. First, in the retrieve phase,

one or several cases with the highest similarity to the

query are selected from the case base, where similarity

is determined by an underlying similarity measure.

Since the efficiency of the retrieval step critically

depends on the size of the case base, a branch of

CBR research deals with methods that improve

retrieval efficiency through the use of specific index

structures.

In the subsequent reuse phase, the solutions of the

retrieved cases are adapted according to the require-

ments of the query. In simple tasks like ▶ classifica-

tion, where the number of solutions (classes) is limited

and typically much smaller than the number of cases,

no adaptation is needed at all. On the other hand,

for synthetic tasks such as configuration of technical

systems or planning, where the solution space is

potentially infinite and exceeding the number of avail-

able cases, solution adaptation becomes essential.

Several techniques for adaptation in CBR, including

transformational and generative adaptation, have been

proposed so far (Lopez Mantaras et al. 2005).

In the revise phase, the solution determined so far is

verified and possibly corrected or improved, for exam-

ple, through intervention by a domain expert. Feed-

back can be given in the form of a rating of the result or

a manually corrected revised case.

Finally, the retain phase adopts the feedback

from the revise phase and updates the knowledge. In

particular, by adding the revised case to the case

base and thus making the new problem solving expe-

rience available for future problem solving episodes,

a simple form of learning can be realized. However,

the continuous growth of the case base causes

a utility problem as it may compromise retrieval

efficiency. Explicit competence models have therefore

http://dx.doi.org/10.1007/978-1-4419-9863-7_606
http://dx.doi.org/10.1007/978-1-4419-9863-7_488
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been developed to enable the selective retention of

cases (Smyth and McKenna 2001).

Representing and Structuring Knowledge in CBR

A unified view of the knowledge contained in

a (structural) CBR application employs the metaphor

of a knowledge container, typically referring to four

such containers: the vocabulary, the case base, the

similarity measure, and the adaptation knowledge.

The vocabulary (often called ontology today) is the

basis of all knowledge and experience representation

in CBR. The vocabulary defines the information enti-

ties and structures (e.g., classes, relations, attributes,

data types) that can be used to represent cases, simi-

larity measures, and adaptation knowledge. The case

base is the primary form of knowledge in CBR. Tradi-

tionally, a case is considered as an instance in the

representation space defined by the vocabulary, for

example, a vector in an attribute-value representation.

From a knowledge representation point of view,

vocabulary and case base representations are standard

applications of AI and database technology.

Since cases are selected based on their similarity to

the current problem, the similarity measure used in a

CBR system encodes important knowledge of the

domain. It is usually formalized in terms of a function

that maps a pair of problem descriptions to a real

number, often restricted to the unit interval, with the

convention that a high value indicates a high similarity.

The semantics of such similarity degrees can be

defined via the notions of preference and utility:

A higher degree of similarity suggests that a case

is more useful for solving the current problem.
As a means for modeling similarity functions, the so-

called local–global principle is widely used: The

similarity function is decomposed according to the

vocabulary, in such a way that local similarity func-

tions pertaining to individual attributes are used to

model the preference according to the corresponding

attributes. These local similarities are then aggregated

into the global similarity by means of an appropriate

aggregation function.
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Causal Bayesian Networks

Daniel Polani

Adaptive Systems Research Group, School of

Computer Science, University of Hertfordshire,

Hatfield, UK
Synonyms

Causal probabilistic graphical models
Definition

Causal Bayesian networks are an extension of

▶ probabilistic graphical models by the concept of

(causal) intervention which states how the joint

probability changes if variables in the network are

externally coerced into a given value. This can be

seen as modeling the influence of experimental

modification of a system as opposed to observing an

unperturbed system.
Formally, if one intervenes in a given causal

Bayesian network, say by setting a variable Xl to

a fixed value xl, then the joint distribution is changed to

pðx1; :::; xl�1; xlþ1; :::; xnjx̂lÞ :¼
Yn
i¼1
i6¼l

p xijPa½xi
ð Þ

where x̂l denotes the intervention in the given variable

and thus random variables Xi with Xl as parent use the

fixed value xl instead of the parent variable Xl. The

definition extends to sets of intervention variables.
Characteristics

Consider, as example, the Causal Bayesian Network

(see also ▶ Probabilistic Graphical Model)
X1 ! X2 ! X4

& " %
X3 ! X5

Intervening in X2 by setting it to the value x2, essen-

tially changes the network to:
X1 x2 ! X4

& " %
X3 ! X5

whose probability is to be read as:
pðx1;x3;x4;x5jx̂2Þ :¼ pðx1Þpðx3jx1Þpðx4jx2;x3Þpðx5jx3Þ

Note that this intervention in X2 is the same as

modifying the original Causal Bayesian network to

remove the incoming connections to X2, to fix the

variable’s value to x2, and considering the resulting

joint distribution of the other variables.
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▶Causal Bayesian Networks
Causal Relationship
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Synonyms

Bayes rule; Bayesian network model; Conditional dis-

tribution; Conditional Independence; Correlation

relationship
Definition

A causal relationship is when one variable causes

a change in another variable. In other words, when

an event (the cause) occurs, the second event

(the effect) is understood as a consequence of the

first. Note that a causal relationship cannot be

defined from a joint distribution of observed variables

alone, while any correlation (associational) relation-

ship can be defined in terms of the distribution

(Pearl 2009).
Cross-References

▶Bayesian Network Model

▶Conditional Independence

▶Correlation Relationship
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Synonyms

Causation
Definition

Causality is a philosophical concept that expresses

a relation or a process linking two (or more) distinct

events or facts, which consists in one bringing about

the other. Ordinary language contains many expres-

sions denoting causation: x makes y happen, x pro-

vokes y, x produces y, x brings y about, x gives rise to

y, x induces y, etc. Many verbs express particular types

of causation, both in common sense and science: break,

bend, link, release, trigger, modify, influence, produce,

transfer, catalyze, etc. Many philosophical analyses of

the concept of causation have been developed but none

has won universal acceptance.
Characteristics

Causality (or causation) has always been a focus of

philosophical controversy. One debate, which is today

as lively as ever, is about the correct analysis of the

concept: What is a causal relation, and what are its

terms: objects, events, or facts? However, since the

Renaissance, this debate coexists with a more funda-

mental debate on whether causality is a legitimate

notion in science at all. I start with the latter issue,

and then present the most influential and relevant

accounts of causation.

Contemporary debates about the legitimacy of the

concept of causation in science have been structured

by Russell’s 1912 essay “On the notion of cause.”

Here are two of his reasons for doubting that science

looks for or analyzes causal relations or processes.

1. The “principle of causality” says that “the same

causes have the same effects.” In other words,

http://dx.doi.org/10.1007/978-1-4419-9863-7_1550
http://dx.doi.org/10.1007/978-1-4419-9863-7_388
http://dx.doi.org/10.1007/978-1-4419-9863-7_387
http://dx.doi.org/10.1007/978-1-4419-9863-7_425
http://dx.doi.org/10.1007/978-1-4419-9863-7_425
http://dx.doi.org/10.1007/978-1-4419-9863-7_452
http://dx.doi.org/10.1007/978-1-4419-9863-7_390
http://dx.doi.org/10.1007/978-1-4419-9863-7_390
http://dx.doi.org/10.1007/978-1-4419-9863-7_387
http://dx.doi.org/10.1007/978-1-4419-9863-7_452
http://dx.doi.org/10.1007/978-1-4419-9863-7_390
http://dx.doi.org/10.1007/978-1-4419-9863-7_100164


Causality 207 C

C

there are strict lawful regularities where instances

of a first type of event, A, are invariably followed by

instances of a second type of event, B. There are two

reasons for doubting that such laws exist in

advanced sciences. The first is that events recur

only insofar as they are conceived vaguely: Once

an event is described in a quantitatively precise

manner, as required by advanced science, the prob-

ability of its recurrence tends toward zero.

However, this claim is more plausible for macro-

scopic events such as throwing bricks than for

microscopic events, such as the oxidation of

a carbon atom yielding a carbon dioxide molecule.

The second reason holds for both macro and micro

events: A type of event can only recur if it is nar-

rowly construed: Abstracting away from the cir-

cumstances, which will never exactly recur, the

event must be circumscribed to a narrow space-

time region. The problem is that the narrow locali-

zation of the first event A prevents the regularity of

its being followed by a second event B from being

strict: The circumstances being unspecified, noth-

ing precludes them from containing factors that

interfere with the processes leading from A to B.

The regularity that As are followed by Bs may be

only a “ceteris paribus law” (see definition).

2. The second reason is that science looks, and should

look, for laws rather than for causes: The laws

discovered in advanced sciences have the form of

functional equations, in particular differential

equations. Russell gives two reasons for why such

laws cannot be considered to be causal: First, func-

tional determination is independent of the direction

of time, whereas causality is essentially directed

from past to future. In mechanics, the same laws,

together with the description of a system at time t,

can be used to calculate future and past states of the

system. The same is true for reversible biochemical

reaction equations (these are exceptional, most bio-

logically relevant reactions being irreversible).

Moreover, laws expressing the functional depen-

dence of different quantities in the equilibrium

state of a system, such as the ideal gas law

pV ¼ nRT or the equation indicating the equilib-

rium constant of a biochemical reaction, cannot be

causal because the dependence holds at a given

instant of time, whereas causality requires that the

cause determines an effect that takes place later.
Second, laws relate certain properties of objects and

events, not particular events that have many prop-

erties, whereas causes and effects are particular

events.

It is controversial whether Russell was right (1) on

fundamental physics and on (2) whether all other

sciences, including biology, would eventually come

to resemble fundamental physics in abandoning causal

concepts (Price and Corry 2007). Independently of the

issue of that debate, it has often been argued that

the concept of causation is required to make sense,

not only of many common sense judgments but also

of experimental and applied science.

Several analyses of the meaning of causal

statements, both in science and common sense, have

been elaborated in philosophy. Until the mid-twentieth

century, the deductive-nomological (DN) analysis

(definition) was generally accepted as an adequate

account of both scientific explanation and causation.

However, it has now been widely abandoned because it

abolishes the distinction between causal and noncausal

scientific explanations. Constitutive explanations seem

to be noncausal: The conformation of a macromole-

cule can be explained in terms of its constituents and

the laws applying to the constituents in virtue of their

properties, such as the distribution of electric charges.

Mechanical explanations can also be seen to be

noncausal, insofar as they do not provide the cause of

some phenomenon, event, or fact, but show how the

parts of a complex system are articulated to guarantee

the functioning of the whole system, i.e., its evolution

from an initial state to an end state.

Here is a brief sketch of the guiding ideas of the

most influential recent accounts of causation. They are

grounded on the following concepts respectively:

(1) counterfactual dependence, (2) process, (3) proba-

bility raising, (4) intervention or manipulation.

1. The counterfactual approach develops the intuition

that causes make a difference to their effects.

Its leading hypothesis is that the meaning of the

statement that event c is the cause of event e can

be analyzed in terms of counterfactual conditionals

such as: “If c had not occurred, e would not have

occurred.” David Lewis (1973) has elaborated

a semantic analysis of the truth conditions of such

counterfactuals. Assume that events c and e have

occurred in the actual world. Then “c causes e” is

true if and only if the closest of all non-actual
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possible worlds in which c does not occur is such

that e does not occur in it either. Causation cannot

be directly analyzed in terms of counterfactual

dependence. Such an analysis fails, e.g., in

situations of redundant causation, which are fre-

quent in biology. Assume that a chemical reaction

R can be catalyzed by each of two enzymes, E1 and

E2, and take a particular situation in which enzyme

E1 was active but not E2. In this situation, there is

no counterfactual dependence of R on E1, for even

if E1 had not catalyzed the reaction, E2 would have.

This type of situation is also a case of “preemption”:

The influence of E2 on R is preempted by the

influence of E1. To say that E1 preempts E2 from

causing Rmeans that E2 would have caused R in the

absence of E1, but that E1 has blocked E2’s influ-

ence on R. The problem for the counterfactual anal-

ysis is that the presence of the preempted cause E2

removes the counterfactual dependence of R on its

cause E1. This problem can be solved by allowing

that the causal influence from E1 to R runs through

a chain of intermediate steps. To cope with other

problematic situations, the counterfactual analysis

has been modified in several other ways.

Furthermore, probabilistic processes have been

taken into account: What is counterfactually

dependent (directly or indirectly) on the cause is

the probability of the effect, rather than the effect.

Finally, our intuitive concept of causation makes

a difference between causes and background con-

ditions. This can be made explicit in counterfac-

tuals: “c rather than c* caused e rather than e*”

can be analyzed as “if c* had occurred instead of

c, then e* would have occurred instead of e.”

2. Another intuition has it that causation requires the

existence of a continuous process that stretches

from cause to effect. Salmon (1984) has combined

Russell’s (1948) analysis of causal processes in

terms of world-lines (as they have been introduced

in special relativity by Minkowski diagrams) and

Reichenbach’s (1991) idea that causal processes are

characterized by their capacity to transmit marks.

The paradigm case of this analysis is the propaga-

tion of a radio signal, which is a local modification

of a structure spreading along a continuous world-

line from a sending event to a receiving event.

The use of tracers in biomedical research makes

sense in the framework of such process accounts:
A tracer allows to track causal influence along

a “causal line,” which is a world-line consisting of

a series of contiguous regions of space-time, which

are connected by the transmission of the tracer.

A scientist who undertakes uncovering the causal

structure of a complex situation may follow two strat-

egies: She may either search for statistical correlations

among the variables characterizing the situation, or

experimentally manipulate these variables. Each of

these research strategies – analysis of observations

and experimentation – provides the central idea of

a philosophical strategy for analyzing the concept

of causation.

3. The main hypothesis of probabilistic analyses of

causality (Eells 1991) is that a variable (or factor,

or “event” in the language of probability theory)

A causes a variable B if and only if P(B|A) >

P(B|:A). Such theories are usually intended as ana-
lyses of generic causation (definition), as opposed

to singular causation (definition). However,

P(B|A)> P(B|:A) is insufficient to justify the judg-
ment that A causes B. It must also be excluded that

A and B are effects of some common cause C,

which is called a screening factor (definition). Prob-

abilistic analyses can also be adapted to account for

situations in which a factor diminishes the

probability of one of its effects: If factor F, which

enhances the risk of a disease M, is positively

correlated to factor S, which diminishes the risk

of M, it is possible that P(M|F) ¼ P(M|:F) or even
P(M|F) < P(M|:F), because the negative influence
of S on M cancels out (first case) or even over-

compensates (second case) the positive influence

of F on M.

4. The most important recent analysis of causation is

intended as a model of another fundamental

research strategy for the discovery of causes in

complex situations, as it is used in sciences such

as economics, sociology, epidemiology, or systems

biology: To find out whether one variable X has

a causal influence on another variable Y in the

system, one holds fixed all variables Z that cause

Y but are not caused by X, and then manipulates

X by an intervention (definition) (Woodward 2003).

X is a cause of Y if and only if this change of the

value of X also changes the value of Y. Ideally, this

strategy leads to the discovery of the complete

network of influences among all variables



Causation, Generic and Singular 209 C

C

characterizing the system. It can be expressed either

by structural equations, which represent the value of

each variable as a function of all variables that have

a direct causal influence on it, or equivalently by

oriented graphs, in which variables are represented

by nodes and influences by edges connecting these

nodes. However, this analysis cannot be used to

discover causal influences from scratch: In order

to find out whether X causally influences Y, one

must already presuppose knowledge about which

other variables influence Y.

By requiring that causes of Y which are not effects

of X must be held fixed during the intervention on X,

the problem of preemption (mentioned above) is

avoided: In the situation sketched above, in which

reaction R is caused by enzyme E1 but could also

have been caused by “back-up” enzyme E2, the value

of E2 is set to 0, because E2 does not intervene in the

actual situation. If E2 is “blocked,” then manipulation

of E1 shows that E1 causes R: The value of variable

R is a function of E1.

The interventionist analysis also correctly ana-

lyzes situations in which causes diminish the proba-

bility of their effect, if a distinction between “total

cause” and “contributing cause” is introduced. If

F enhances the probability of M but also the proba-

bility of S, which in turn diminishes the probability of

M, F may not be a total cause of M, if the positive

(direct) and negative (indirect, through S) effects of

F on M just cancel out. However, by holding fixed S,

it is possible to discover that F is nevertheless

a contributing cause of M.

Initially developed to analyze generic causation

(among variables), the interventionist framework has

recently been adapted to the analysis of token

causation: This “actual causation” is modeled by

representing influences among particular values of

the variables in the network.

In comparing and evaluating such accounts, one

must bear in mind that philosophical analyses may

pursue different goals: The counterfactual analysis is,

e.g., intended to be an a priori analysis of our common

sense concept of causation. This implies that it is

intended to be applicable to physically impossible

situations, such as fictions describing magical

interactions. Process accounts have no such ambition.

Their aim is to discover the “real essence” of causality

as it is in the real world.
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▶Causality
Causation, Generic and Singular

Max Kistler

IHPST, Université Paris 1 Panthéon-Sorbonne,

Paris, France
Definition

Generic causation is a relation between two “factors,”

“properties,” or “events” (in the language of probabil-

ity theory) represented by variables. The meaning of

the statement that smoking (A) (generically) causes

lung cancer (B) can be analyzed according to several

proposals: In the probabilistic framework, it means

that, within a given population, belonging to set

A raises the probability of belonging to set B. In the

http://plato.stanford.edu/entries/causation-metaphysics/
http://plato.stanford.edu/entries/causation-metaphysics/
http://dx.doi.org/10.1007/978-1-4419-9863-7_53


C 210 Causation, Origination
interventionist framework, it means that an interven-

tion that changes the value of variable A, for example,

by making some nonsmokers smokers, changes the

value of variable B. It is not possible to draw any

inference from the existence of a relation of generic

causation between factors A and B in a given popula-

tion to causal processes at the level of individuals

possessing properties A and B (or belonging to sets

A and B), in other words to the existence of relations of

singular causation: In a given population, A (smoking)

may cause B (having lung cancer), John may smoke

(John is A) and have lung cancer (John is B), and yet,

John’s smoking may not be the (or even a) cause of his

cancer. The cause of John’s having cancer may be the

fact that he has inhaled asbestos dust.
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Definition

Causation is the physical process assumed by

▶ causality to link one occurrence, the cause, to

a second occurrence, the effect, which is understood

to occur as a consequence of the cause. A central

challenge for the study of causation is origination:

How are events in the physical world originally

caused?
Characteristics

Aristotle distinguishes in Metaphysics V 2 between

four types of cause:

• Material cause is the intrinsic physical constitution

of an entity: “The charge of an electron causes it to
react to an electric field.”
• Efficient cause is the primary exogenous source of

change in an entity or system: “An earthquake
caused the tsunami.”

• Formal cause is the relational organization which is

responsible for properties of a system: “The charge
distribution on a water molecule causes water to be

wet.”
• Final cause is the purpose or meaning which moti-

vates an action: “Hunger caused me to hurry home.”

Dynamical systems theory describes causation in

terms of 6systems of first-order differential equations

_x ¼ f x; tð Þ, where x is a vector of state variables of

a dynamical system S, t is time, and f is the set of

structural relations which determine the dynamic

behavior _x of S. This suggests several kinds of formal

causation:

• Upward causation: Change Dxi in an individual

state variable causes a change D _x ¼ f xþ Dxið Þ in
the collective macro-behavior of S.

• Downward causation: A collective change Dx in all
variables causes a change D _xi ¼ f i xþ Dxð Þ in

a specific micro-behavior.

• Reciprocal causation: A change Dxijj in either of

two variables xi or xj causes a change

D _xijj ¼ f ijj xþ Dxjji
� �

in the other’s behavior.

These distinctions are of fundamental importance

for understanding the origination of phenotypic nov-

elty, environmental effects, and disease. For example,

one approach to carcinogenesis seeks efficient, upward

causes in the accumulation of genetic mutations within

a single originator cell (somatic mutation theory),

while another seeks formal, downward cause from

tissue-organization fields (tissue-organization field

theory).

Physicalism traditionally reduces explanation to

material and efficient causes. This reductive program

stems from the explanatory benefits of Descartes’ and

Newton’s partitioning of the world into two domains:

the physical domain of material and efficient cause

operating on inert matter, and the epistemic domain

of final causes operating through human agents. The

epistemic domain was thus bracketed out of physical

science, and formal cause assumed a twilight role as

action-at-a-distance fields.

Physicalism achieved its crowning triumph in the

theory of relativity. The special theory is founded on

efficient time-like interaction between observers,

while in the general theory, geometry becomes the

material cause of dynamics. However, mass-energy

http://dx.doi.org/10.1007/978-1-4419-9863-7_53
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equivalence and nonlinearity of the gravitational field

equations elevated the relativistic field concept to

a new status: formal cause as the bearer of material

properties. This inclusion of formal cause into the

physicalist fold was consolidated by quantum field

theory, which shifts emphasis from particle-bound

properties and interactions as material and efficient

causes to the formal cause of nonlocal field

configurations.

This trend is paralleled in biology, where living

systems were traditionally explained in terms of effi-

cient cause: Mayr’s proximate developmental causes

and ultimate evolutionary causes. Yet this scheme is

incomplete on two counts:

• Developmental systems theory (DST)

(▶Developmental Systems Theory) stresses the

formal reciprocity of gene-organism-environment

relations, which complicates views of gene or envi-

ronment as efficient developmental causes (Oyama

et al. 2001).

• Acknowledging gene-plus-environment as efficient

evolutionary cause still neglects the role of the organ-

ism as the formal confluence of both – particularly

with regard to the origination of phenotypic and

genotypic novelty (M€uller and Newman 2003).

These issues have shifted the focus of biological

explanation toward formal cause. Systems biology in

particular, in studying the influence of structural and

dynamical organization on ontogeny, claims an unam-

biguous allegiance to formal cause.

The rehabilitation of formal cause has prompted

a search for the origination of action in formal cause.

A system-level behavior B of a deterministic dynami-

cal system S is emergent if it is sufficiently irreducible

to micro-behaviors b of S’s components as to constitute

an originator of efficient cause. Attempts to formalize

this notion of irreducibility have led to introduction of

the term supervenience: B supervenes on b if b logi-

cally determines B; B is then emergent if it supervenes

on no set of micro-behaviors.

A litmus test for coherence of the emergence con-

cept is its relation to downward causation, which per-

mits an emergent behavior BðtÞ of S at time t to

influence a micro-behavior b of S’s own components.

For example, a weasel’s cells generate a white winter

coat which is a formal cause of its survival, and thus

also of the very cells which generated it. To claim that

coloration is non-supervenient on these cellular behav-

iors seems to invoke a contradictory circular causality.
Kim (in Bedau and Humphreys 2008) interprets

downward causation in two ways: synchronic (BðtÞ
conditions bðtÞ at the same instant t) and diachronic
(BðtÞ conditions b tþ Dtð Þ at a later instant). He argues
that synchronic downward causation is logically inco-

herent, but acknowledges (footnote 37, p. 153) that

diachronic downward causation in nonlinear dynami-

cal systems may be feasible.

Pursuing this idea further, Soto et al. (2008) argue

for diachronic downward causation. They propose

a materialistic non-physicalist ontology in which sys-

tems of natural events operate historically to generate

ontological novelty (novel qualities and novel struc-

tures). Thompson (2007) maintains that diachronic

downward causation is coherent in cases where BðtÞ
is non-separable into individual micro-behaviors by

reason of its dependence on interactions between

these behaviors. This form of emergence is clearly

irreducible to individual micro-behaviors, yet even

Thompson (pp. 429–30) seems doubtful of its ade-

quacy as a basis for ontological origination. The prob-

lem is that dynamic co-emergence cannot escape

determination by its component micro-behaviors

because even in a nonlinear dynamical system, it still

supervenes on the formal organization of the structural

relationships f.

Seeking a locus of origination in formal cause

descends philosophically from the later Wittgenstein,

who sought to define meaning in terms of an irreduc-

ible closed set of formal language-usage relations, or

language game. Yet as Putnam (1980) demonstrated,

a closed formal system, by abandoning dependence on

external context, loses all causal relevance to that

context. By definition, it is then difficult to see how

such a system can originate from its context.

Appeal to external context suggests a way to eman-

cipate formal cause from internal organization by sim-

ply opening S up to interaction with its context. The

weasel’s coat-change is conditioned in part by the

changing autumnal day-length, and so does not super-

vene on the weasel’s internal organization. Yet mere

openness is an inadequate basis for origination.

Inserting a coin into a coffee-machine is a contextual

interaction which results in a cup of coffee, yet we

consider the coin, not the machine, the efficient cause

of this activity, because a small variation, or defect, in

the coin prevents coffee-making from occurring.

By contrast, the weasel’s color-change is self-
organizing (▶ Self-Organization): It proceeds even

http://dx.doi.org/10.1007/978-1-4419-9863-7_1453
http://dx.doi.org/10.1007/978-1-4419-9863-7_82


0
0

C
on

ce
nt

ra
tio

n

0.5

1

1.5

2

2.5

3

3.5

50 100 150 200
time
250 300 350 400 450 500

Demand
Insulin
Glucagon
Glucose

Causation, Origination,
Fig. 1 Self-organized

buffering of blood-glucose

level against varying demand

C 212 Causation, Origination
if clouds obscure the day-length. Self-organizing

systems generate reliably similar outcomes

from dissimilar initial conditions; Fig. 1 illustrates

self-organized buffering of blood-glucose against

variations in demand in the mammalian insulin-

glucagon system. Swenson (2010) uses the term

autocatakinetic (ACK) to describe systems which

self-organize using contextual resources. The weasel

is an ACK system which buffers its coat-change

against fluctuations in its context, so its winter

coat is neither supervenient on the weasel’s internal

structure nor is it determined by its context. So is

the weasel qua organism the causal origin of the

coloration change?

This is the question of final cause, and goes to the

heart of physical-epistemic dualism. In his Critique
of Judgment, Kant argued for a distinction between

physical and biological explanation, characterizing

physical systems as heteronomous (other-governed),
and living organisms as the autonomous (self-

governing) originators of final cause. Autonomous

systems are certainly ACK, and ACK systems have

the capacity to assert their autonomy against the

dictates of context; however, Kant’s definition of

autonomous systems (▶Autonomy) as final causes

depends on their ability to construct meaning from

environmental cues, enabling them to predict and

respond to future events.

ACK systems can potentially construct meaning,

since they necessarily exhibit ▶ complex behavior,
bifurcating into qualitatively distinct system behaviors

BðtÞ in response to small quantitative changes in some

critical parameter P. If these changes in P stem from

S’s context, they constitute environmental cues which

S amplifies into vigorous responses BðtÞ (see Fig. 2).

However, for Kant, meaning is also essentially per-

sonal: S must itself determine the dynamics of its own

meaning-constructions.

Since S’s behavior _x is determined by its structure

f x; tð Þ, we may ask who determines this structure. We

might assume the weasel’s coloration change to be

meaningful, relying as it does on an interpretation of

day-length in terms of future snow. However, the

structures generating this dynamic arise from propen-

sities of the weasel species-niche system, so the inter-

pretation “snow” does not originate in this individual

weasel. The status of organisms as final causes there-

fore hangs on one question: Do individual organisms

determine their own structure?
To attribute this determination to efficient

cause would be to accept Cartesian dualism; however,

the ability of complex open systems to amplify min-

imal contextual variation makes their context

a rich source of internal dynamical variation. If this

variation is dynamically coupled to the very struc-

tures which generate it, any consequent stabilization

of those structures would necessarily be compensated

by a corresponding increase in ▶ entropy production

by the system. Swenson’s (2010) proposed Law of

Maximum Entropy Production (LMEP) stipulates

http://dx.doi.org/10.1007/978-1-4419-9863-7_51
http://dx.doi.org/10.1007/978-1-4419-9863-7_1454
http://dx.doi.org/10.1007/978-1-4419-9863-7_1554
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that such variation is subject to differential selection

on its ability to maximize entropy production. LMEP

can therefore be expected to drive dynamic stabiliza-

tion (Thompson 2007), the differential selection

of behaviors on their ability to stabilize their

structural base.

Structures which generate stable, ordered dynamics

are thus an expected feature of LMEP selection, raising

the question: Who determines this choice of structure?

Sober andWilson (1998) analyze this question in terms

of multilevel targets of selection – groups of individ-

uals (for example, cells or organisms) whose collective

stability depends on interaction with each other, but

not with individuals outside the group. On this account,

autonomous systems may be understood as ACK sys-

tems which determine their own structure not effi-

ciently, but by presenting a unitary target to dynamic

stabilization.

In summary, current scientific understanding

appears compatible with an account of causation

which resolves the physical-biological dualism of

Kant. In particular, concepts of final cause, emergence,

and origination are compatible with autonomous

(dynamically stabilizing, ACK) dynamical systems.

These owe their autonomy to their engagement as

a systemic unity in meaning-making: the dynamic sta-

bilization of meaningful responses through the praxis

of meaning-construction. LMEP suggests that autono-

mous systems are an expected feature of the natural

world.
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Definition

CD8+ cytotoxic T lymphocytes are a subgroup of

T lymphocytes whose main function is to induce the

apoptosis of infected (e.g., viruses, bacteria, parasites,

or fungi), mutated (e.g., cancer), or foreign (e.g., trans-

plants) cells.
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Definition

CDK inhibitors are proteins that suppress CDK-cyclin

protein kinase activity in the G1 phase of the cell cycle

and promote G1 arrest in response to environmental or

intracellular stimuli (▶Cyclins and Cyclin-dependent

Kinases).

Oscillations in CDK-cyclin activity are accurately

regulated in order to ensure the correct sequence of cell

cycle events (▶Cell Cycle). This regulation occurs at

several levels, including cyclin binding to CDKs, CDK

phosphorylation, and CDK-cyclin activity inhibition
carried out by CDK inhibitors (CKIs). CKIs play

a key role in G1 regulation (Sherr and Roberts 1999).

In late G1, at the restriction point in mammals and Start

in yeasts, cells must decide to progress into a new cell

cycle or to enter a quiescent state. After this point, cells

become insensitive to mitogenic or antimitogenic sig-

nals, and are committed to complete the new cell cycle

(Morgan 2007).
Characteristics

Two Families of CKIs Regulate Cell-Cycle

Progression and Differentiation

In mammals, CKIs are included in one of two families

according to their structure and CDK targets:

1. The INK4 (INhibitors of CDK4) family of CKIs

includes p16INK4a, p15INK4b, p18INK4c, and

p19INK4d. They bind CDK4 and CDK6 and form

binary complexes with these kinases, preventing

CDK interaction with cyclin D. The four INK4

proteins share a similar structure composed of mul-

tiple ankyrin repeats (Cánepa et al. 2007).

2. The Cip/Kip (CDK-interacting protein/Kinase

inhibitor protein) family of CKIs comprises

p21Cip1, p27Kip1, and p57Kip2. These proteins have

both a positive and a negative role on CDK activity:

they act as cofactors required for CDK4/6-cyclin

D complex assembly but inhibit CDK2-cyclin E,

CDK2-cyclin A, and CDK1-cyclin B activity.

Cip/Kip inhibitors share a conserved N-terminal

domain, which binds to CDKs and cyclins, but

differ in the rest of the sequence (Besson et al.

2008; ▶Cell Cycle of Mammalian Cells) (Fig. 1).

In other organisms, proteins functionally related to

mammalian CKIs also play key roles in cell-cycle

regulation and in promoting cell-cycle exit during dif-

ferentiation processes (See Table 1; De Clercq and

Inzé 2006).

In Drosophila melanogaster, there are two Cip/

Kip-related CKIs, Dacapo and Roughex. Dacapo reg-

ulate the exit from the cell-cycle during embryonic

development, and Roughex contributes to the estab-

lishment of G1 through downregulation of CDK-cyclin

A complexes.

The Caenorhabditis elegans genome encodes two

CKIs, cki-1 and cki-2, belonging to the Cip/Kip family

of CDK inhibitors, and both are required for cell-cycle

exit into quiescence during development.

http://dx.doi.org/10.1007/978-1-4419-9863-7_110
http://dx.doi.org/10.1007/978-1-4419-9863-7_10
http://dx.doi.org/10.1007/978-1-4419-9863-7_10
http://dx.doi.org/10.1007/978-1-4419-9863-7_115
http://dx.doi.org/10.1007/978-1-4419-9863-7_20
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In Xenopus, Cip/Kip-related protein p27Xic1 is

involved in cell-cycle exit and differentiation in

myogenesis and neurogenesis (▶Cell Cycle of Early

Frog Embryos).

Yeasts’ CKIs share no sequence homology with

metazoan CKIs, but they are functionally and structur-

ally related. In the budding yeast Saccharomyces
cerevisiae, two CKIs regulate cell-cycle progression,

Sic1 and Far1. Sic1 is required for the establishment of

a G1 phase and to delay entry into S phase until

▶ prereplicative complexes are built. In the absence

of Sic1, cells show defects in G1 progression,

and this impairs S phase dynamics. Cells start DNA

replication from fewer origins, extending S phase

and entering mitosis with unreplicated chromosomes

that inefficiently separate during anaphase. As

a consequence, sic1-defective cells show increased

genomic instability. All these defects are rescued

by delaying CDK activation and S phase, indicating

that the primary function of Sic1 is at the end of

G1 (Lengronne and Schwob 2002). Although the
primary function of Sic1 appears to be at this point of

the cycle, Sic1 is also required at mitotic exit,

contributing with its accumulation, together with

Clb2 degradation, to the irreversibility of this transi-

tion (▶Cell Cycle Dynamics, Irreversibility). Far1 is

induced in response to pheromones, leading to the G1

arrest that precedes mating (▶Cell Cycle, Budding

Yeast).

In the fission yeast Schizosaccharomyces

pombe, a single Sic1-related inhibitor, Rum1,

carries out the functions in cell proliferation and

differentiation of budding yeast Sic1 and Far1,

respectively. Rum1 regulates progression through

the G1 phase of the cell cycle and is essential in

processes that require lengthening the G1 phase,

such as the responses to pheromones and nutrient

starvation. Also, Rum1 is required to prevent CDK1

(Cdc2) activation at Start until the critical cell size is

reached (Labib and Moreno 1996). (▶Cell Cycle,

Cell Size Regulation; ▶Cell Cycle, Fission Yeast)

(Fig. 2).

http://dx.doi.org/10.1007/978-1-4419-9863-7_18
http://dx.doi.org/10.1007/978-1-4419-9863-7_18
http://dx.doi.org/10.1007/978-1-4419-9863-7_1060
http://dx.doi.org/10.1007/978-1-4419-9863-7_22
http://dx.doi.org/10.1007/978-1-4419-9863-7_16
http://dx.doi.org/10.1007/978-1-4419-9863-7_16
http://dx.doi.org/10.1007/978-1-4419-9863-7_8
http://dx.doi.org/10.1007/978-1-4419-9863-7_8
http://dx.doi.org/10.1007/978-1-4419-9863-7_17
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Species Name Target Function

Human p16INK4a CDK4/6-cyclin D inhibition Prevention of G1/S transition. Induction of senescence.

p15INK4b CDK4/6-cyclin D inhibition Prevention of G1/S transition. Mediator of TGFb
cell-cycle inhibitory effects.

p18INK4c CDK4/6-cyclin D inhibition Prevention of G1/S transition. Exit from the cell cycle

and cell differentiation.

p19INK4d CDK4/6-cyclin D inhibition Prevention of G1/S transition. Exit from the cell cycle

and cell differentiation.

p21Cip1 CDK4/6-cyclin D assembly and

CDK2-cyclin A/E inhibition

DNA-damage-induced cell cycle arrest in G1 and G2.

p27Kip1 CDK4/6-cyclin D assembly and

CDK2-cyclin A/E inhibition

Cell-cycle exit into quiescence.

p57Kip2 CDK4/6-cyclin D assembly and

CDK2-cyclin A/E inhibition

G1 arrest in embryonic development. Maintenance of

endocycles.

Drosophila Roughex CDK1-cyclin A Exit from mitosis. Establishment of G1 phase.

Dacapo CDK2-cyclin E Cell-cycle exit during embryonic development.

Establishment of endocycles.

Xenopus p27Xic1 CDK2-cyclin E/A Establishment of G1 phase in somatic cell cycle.

Differentiation in muscle and neural cells.

C. elegans cki-1 CDK2-cye1(cyclin E) Developmental cell-cycle quiescence.

cki-2 CDK2-cye1(cyclin E) Developmental cell-cycle quiescence.

Fission yeast

S. pombe
Rum1 Cdc2(CDK1)-Cig2/Cdc13 Regulation of G1 progression. G1 arrest in response to

pheromones or nitrogen starvation.

Budding yeast

S. cerevisiae
Sic1 Cdc28(CDK1)-Clb5/6 Establishment of the G1 phase.

Far1 Cdc28(CDK1)-Cln1/2/3 G1 arrest and differentiation in response to mating

pheromones.
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Role of Mammalian CKIs in Tumorigenesis and

Phenotypes of CKI Knockouts

Cip/Kip Inhibitors

According to its function limiting cell-cycle progres-

sion, p27Kip1-deficient mice display cell proliferation

defects: increased body size, multiple organ hyperpla-

sia, and pituitary tumors. Unlike other tumor suppres-

sor genes, p27Kip1 is rarely mutated in cancer but

appears frequently downregulated by increased degra-

dation, decreased transcription or cytoplasmic

mislocalization. Besides, the simultaneous inactiva-

tion of other ▶ tumor suppressor genes enhances the

tumor-prone phenotype of p27Kip1 knockout (▶Cell

Cycle, Cancer Cell Cycle and Oncogene Addiction).

In contrast to p27Kip1, p21Cip1 knockout mice do not

display a hyperproliferative defect. They show

increased predisposition to tumor development in

combination with mutations in other tumor suppressor

genes. As with p27Kip1, mutations in p21Cip1 gene are

rare in tumors. In addition, cells lacking p21Cip1 fail to

arrest in response to DNA damage (see below).
p57Kip2 is required for embryonic development, and

p57Kip2-null mice have major developmental defects

and mostly die perinatally. This inhibitor shows

a tissue-specific pattern of expression both in the

adult and during embryogenesis.

INK4 Inhibitors

Members of the INK4 family display different patterns

of expression: p16INK4a and p15INK4b are not expressed

during embryonic development but are induced in

response to oncogenic stress, and p18INK4c and

p19INK4d are expressed during embryogenesis and at

later stages in adults, carrying out their function during

organismal development. Mice deficient in any of

these proteins are viable.

p16INK4a is an important tumor suppressor that is

frequently mutated or downregulated inmany different

forms of human cancer in contrast to the other three

INK4 genes, which are rarely mutated in cancer. It is

not generally expressed during fetal development but

accumulates in adults during ▶ senescence. In the

http://dx.doi.org/10.1007/978-1-4419-9863-7_1065
http://dx.doi.org/10.1007/978-1-4419-9863-7_49
http://dx.doi.org/10.1007/978-1-4419-9863-7_49
http://dx.doi.org/10.1007/978-1-4419-9863-7_1064
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budding and fission yeast. Top: In budding yeast, Sic1 delays

entry into S phase through binding to Cdc28-Clb5,6 complexes.

At G1/S transition, Sic1 is phosphorylated by Cdc28-CIn1,2,

thereby inducing ubiquitylation of Sic1 by SCFCdc4 and

proteasome-dependent degradation. In response to pheromones,

Far1 induces cell-cycle arrest in G1 prior to cell fusion by

inhibiting Cdc28-Cln1,2 complexes. Bottom: In fission yeast,

Rum1 regulates progression through G1 and induces a cell-cycle

arrest in the absence of nutrients and in response to pheromones

by inhibiting the activity of Cdc2-Cig2 and Cdc2-Cdc13

complexes. Phosphorylation of Rum1 by Cdc2-Cig1 targets it

to ubiquitylation by SCFPop1,Pop2, prior to degradation by the

proteasome
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absence of p16INK4a, p15INK4b has an essential function

as a tumor suppressor.

The loss of p18INK4c and p19INK4d leads to male

reproductive defects, and mice lacking p19INK4d also

display progressive hearing loss. In addition, inactiva-

tion of p18INK4c predisposes to cancer development

and is a haploinsufficient tumor suppressor in mice.

By contrast, p19INK4d null mice do not display tumors

nor are more susceptible to cancer development in

response to carcinogens.

Function of p21Cip1 in the DNA-Damage Response

p21Cip1 increases following DNA damage in a

p53-dependent manner, and it makes an essential
contribution to the DNA-damage response in human

cells regulating multiple processes, such as cell cycle

progression, ▶ apoptosis, and transcription (Cazzalini

et al. 2010).

Regulation of cell cycle progression occurs by

inhibition of CDK2-cyclin E and CDK2-cyclin

A complexes, required for phosphorylation of ▶ reti-

noblastoma, but also by binding to PCNA (proliferat-

ing cell nuclear antigen), which interferes with PCNA

function during DNA replication.

Another part of the response of p21Cip1 to DNA

damage is transcriptional regulation, where p21Cip1

has both a positive and a negative role. This regulation

occurs through different mechanisms. Inhibition of

http://dx.doi.org/10.1007/978-1-4419-9863-7_860
http://dx.doi.org/10.1007/978-1-4419-9863-7_1062
http://dx.doi.org/10.1007/978-1-4419-9863-7_1062
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CDK activity prevents retinoblastoma phosphoryla-

tion, thus leading to inhibition of E2F-dependent

transcription. Besides, p21Cip1 associates with the

DNA-binding proteins E2F1, STAT3, and MYC,

suppressing their transcriptional activity, and dere-

presses p300-CREBBP targets.

In contrast to the role of p53 in the induction of

apoptosis in response to DNA damage and oxidative

stress, p21Cip1 protects cells from apoptosis, although

in some cases it may show a pro-apoptotic role. Since

an active cell cycle is required for apoptosis, p21Cip1

may prevent apoptosis through its role in suppressing

cell-cycle progression, but also it may inhibit apoptosis

directly, blocking pro-caspase-3 processing or

preventing stress-induced apoptosis by binding to

ASK1/MEKK5 or JNK1/SAPK.

Role of CKIs in Endocycles

CKIs play an essential role in the control of CDK

activity in endocycling cells, which undergo multiple

rounds of DNA replication without an intervening

mitosis (Ullah et al. 2009).

p57kip2 triggers genome ▶ endoreplication during

differentiation of trophoblast stem (TS) cells into tro-

phoblast giant (TG) cells. It is expressed at the end of

S phase, preventing entry into mitosis and inducing the

accumulation of cells in G2. As CDK activity is low,

▶APCCdh1 is activated instead of APCCdc20. One of

the targets of APCCdh1 is geminin, an inhibitor of the

licensing factor Cdt1. The destruction of geminin and

other targets, such as cyclin A, creates a window in G2

with low CDK activity, which permits the formation of

prereplicative complexes. p57kip2 disappears after

phosphorylation by CDK2-cyclin E and degradation

by the 26S▶ proteasome, to allow the onset of S phase.

Oscillations of p57kip2 and cyclin E protein levels

maintain the endocycles. In Drosophila, endocycles

in nurse cells are maintained through oscillations in

the levels of Cyclin E and the CKI Dacapo.

Regulation of CKIs by Mitogenic and

Antimitogenic Signals

In mammalian cells, in response to mitogenic signals

and activation of the Ras-MAP kinase pathway, cyclin

Ds are synthesized, and stable cyclin Ds-CDK com-

plexes containing the p27kip1 inhibitor as a cofactor

form, thus taking p27kip1 from CDK2-cyclin E/A com-

plexes. This leads to the activation of these complexes
and the G1/S transition. Mitogenic stimulation also

inhibits, through PI3K and AKT, GSK3b phosphory-

lation of cyclin Ds, thereby inhibiting their nuclear

export and enhancing the nuclear accumulation of

active cyclin Ds-CDK complexes. Inhibition of

GSK3b also stimulates expression of cyclin Ds

through regulation of the transcription factors AP-1

and Myc.

Transforming growth factor (TGFb) antimitogenic

signal induce a G1 block, causing synthesis of CKIs

p15INK4b and p21Cip1. p15INK4b levels increase through

the Smad complex. Smad proteins inhibit expression

of Myc, and, after Myc has been repressed, expression

of p15INK4b increases (Morgan 2007).

Degradation of CKIs at the G1/S Transition

Irreversible entry into the cell cycle at Start is con-

trolled by positive ▶ feedback loop that generate irre-

versible CDK activation (▶Cell Cycle Dynamics,

Irreversibility). Proteolytic degradation of CKIs at

G1/S, triggered by a starter kinase, is essential for

Start in yeast and mammalian cells (Morgan 2007;

Novak et al. 2007).

In human cells, different pathways lead to p27kip1

phosphorylation, ubiquitylation, and proteasome-

mediated destruction at G1/S:

1. In late G1, p27kip1 is phosphorylated at T187 by

CDK2-cyclin E and CDK2-cyclin A complexes.

This phosphorylation targets p27kip1 for

ubiquitylation by SCFSkp2 (▶ Skp1/Cul1/F-Box-

containing Complex (SCF)) and subsequent degra-

dation by the 26S proteasome. The interaction

between p27kip1 and Skp2 is enhanced by additional

factors, such as Cks1 (CDK subunit 1). Also, inter-

action between CDK2-cyclin A and T187-

phosphorylated p27kip1 stimulates p27kip1

ubiquitylation by SCFSkp2.

2. Phosphorylation of p27kip1 at S10 by AKT pro-

motes its nuclear export through interaction with

the nuclear export protein Crm1. The stability of

cytoplasmic p27kip1 is regulated by the E3 ligase

KPC (Kip1 ubiquitylation-promoting complex),

which targets it to degradation by the proteasome

(Fig. 3).

In addition, G1/S transition in cycling cells and

after DNA-damage repair requires degradation of

p21Cip. p21Cip1 is degraded at the proteasome by

ubiquitin-dependent and ubiquitin-independent
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CDK Inhibitors, Fig. 3 Regulation of p27Kip1 by phosphoryla-

tion and proteasome degradation. CDK2-cyclin E phosphory-

lates p27Kip1, promoting its ubiquitylation by SCFSkp2 and

degradation at the proteasome. Phosphorylation of p27Kip1 by

AKT promotes p27Kip1 translocation to the cytoplasm and

KPC-dependent ubiquitylation
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mechanisms. Phosphorylation by CDK2-cyclin E at

S130 promotes SCFSkp2-dependent degradation,

which occurs in part after translocation of phosphory-

lated p21Cip1 to the cytoplasm. p21Cip1 reacummulates

again in G2, and it is degraded at the G2/M transition

by the proteasome after ubiquitylation by the E3 ligase

APCCdc20. In addition, the CRL4Cdt2 E3 ubiquitin

ligase promotes p21Cip1 degradation during S phase

and in response to damage (Lu and Hunter 2010).

In yeasts, CKI degradation is initiated by phosphor-

ylation of the CKI by CDK-cyclin complexes different

from those inhibited by the CKI:

In fission yeast, phosphorylation of Rum1 at T58

and T62 by CDK1-Cig1 is required for Rum1

ubiquitylation by the SCFPop1,Pop2 and degradation by

the 26S proteasome, thus leading to CDK1-Cig2/

Cdc13 activation.

In budding yeast, G1/S Sic1 destruction by the

proteasome depends on phosphorylation at multiple

CDK consensus sites (S/T)PX(K/R) by CDK1

(Cdc28)-Cln1/2 complexes. Once phosphorylated,

Sic1 binds to SCFCdc4, which ubiquitylates Sic1 and
targets it for destruction by the proteasome, leading to

CDK1-Clb5/6 activation and the onset of S phase.
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Introduction

Cell cycle is the sequence of events whereby

a growing cell duplicates all of its components and

divides them between two daughter cells. This bio-

logical process is essential for reproduction, thus, it is

a basic principle of life. There is a long history of cell

cycle research and the discoveries of the key regula-

tors of the underlying machinery have been recog-

nized by Nobel Prize awards. The cell cycle was also

an early target of mathematical modeling and

pioneering work in systems biology. One of the first

systems biology approaches realizing the experiment-

model-experiment loop was concerned with the cell

cycle regulation of budding yeast cells as well as

some of the earliest system-level measurements of

this system. Further research on cell cycle regulation

in various organisms included diverse systems biol-

ogy techniques. This work has made considerable

contribution to our understanding of key principles

of cell cycle regulation. Nevertheless, there are still

many open questions that could be answered by

a combination of computational and experimental

approaches.

In this essay, we cover the basics of cell cycle

physiology, molecular biology and the modeling the

underlying processes and mechanisms. This discussion

serves as a context for all articles on the cell cycle.

Here, we cover historical discoveries both on the

experimental and theoretical sides, explaining what

led to a Nobel Prize in cell cycle research and how

mathematical models of the cell cycle contributed to

the success of systems biology.
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Biology of the Cell Cycle

Adequate cell cycle regulation is needed to ensure that

each daughter cell inherits accurate copies of the

mother’s DNA, thus cell cycle separates the duplica-

tion and the separation of chromosomes in time. Dur-

ing S-phase of the cell cycle the ▶DNA replication

takes place while later in M-phase, the chromosome

segregating ▶mitosis occurs. These two phases are

separated by two gap phases, leading to a full cell

cycle with G1-S-G2-M phases in this order (Morgan

2006). At the end of M-phase, the cell nucleus divides,

which is followed by ▶ cytokinesis when the two

daughter cells separate. The gap phases are also needed

for proper homeostasis of cells: the newborn daughter

cells should have a cell size more or less similar to the

birth size of the mother cell to keep the cell size close

to constant between generations. The G1 and G2

phases are used to extend the required time to pick up

this extra cell growth that is needed to duplicate cell

size before cell division. This balance between cell

growth and division in many cell types is established

by active cell size regulation (▶Cell Cycle, Cell Size

Regulation): either in G1 or G2 phase the cells check if

their size is large enough to, so that the cell can proceed

to the next cell cycle stage (S orM-phase respectively).

Proper cell cycle physiology (▶Cell Cycle,

Physiology) also requires that the S and M phases

happen in the correct order. This is achieved through

▶ cell cycle checkpoints. The above mentioned G1 and

G2 phase size checks occur together with a check on

the successful completion of the earlier mitosis (at the

G1 to S checkpoint) or DNA replication (at the G2 to

M checkpoint). These checks ensure that the DNA is

replicated only after it is successfully segregated and

cells start mitosis only after DNA replication is com-

pleted (Hartwell and Weinert 1989; Lukas et al. 2004).
A third checkpoint exists in M-phase, where the cell

ensures that chromosome segregation starts only when

all chromosomes are properly bound to the separation

machinery (Ciliberto and Shah 2009). Several other

checkpoints exist in which cells monitor external and

internal conditions and proceed only if all checks are

passed. An example is the budding yeast morphogen-

esis checkpoint, where cells check if the bud formation

is properly initiated, before mitosis starts (Sia

et al. 1998).

These checkpoints work through a cross-talking

network of signaling pathways that talk to the core
cell cycle machinery to halt progress as long as prob-

lems remain. Metabolic pathways inform the cell cycle

(▶Cell Cycle Signaling, Metabolic Pathway) about

the presence or absence of nutrients in the environ-

ment. Stress pathways (▶Modeling Approaches of

Cell Cycle Regulation by Signaling Pathways for

External Stress) monitor other external and internal

conditions, such as osmotic pressure, oxidative state

of the cells (▶Cell Cycle Signaling, Hypoxia), DNA

(▶Cell Cycle Arrest After DNADamage), and spindle

damage (▶Cell Cycle Signaling, Spindle Assembly

Checkpoint). All of these pathways control activities

of key proteins in the core cell cycle machinery.

The central members of this core cell cycle machin-

ery are the complexes of ▶ cyclins and cyclin-

dependent kinases. These complexes can induce the

phosphorylation of various target molecules that signal

to downstream cell cycle processes. Such phosphory-

lation events control the initiation of DNA replication

and mitosis directly by the effect of cyclin-dependent

kinases or through the regulation of centrosomal and

mitotic kinases. The cyclin-dependent kinase (Cdk)

can phosphorylate substrates only if a cyclin molecule

is bound to it. This cyclin is responsible for the sub-

strate recognition of the complex (Bloom and Cross

2007). As the name suggests, most cyclins appear only

periodically during the cell cycle, their production and

degradation can be regulated by both external and

internal signals of the cell. The activity of Cdk/cyclin

complexes are regulated throughout the cell cycle by

control of the synthesis or degradation of cyclins

(Zachariae and Nasmyth 1999), by binding the com-

plex to stoichometric ▶Cdk inhibitors (CKI), or by

controlling the kinase activity of Cdk through phos-

phorylation of its regulatory sites (Lindqvist et al.

2009) (Fig. 1a). These Cdk regulators ensure that Cdk

activity is low in G1 phase, it appears at the G1/S

transition point (also called Start or Restriction point

(▶Cell Cycle Transition, Principles of Restriction

Point)), it increases in G2 phase and reaches its max-

ima at the G2/M transition (▶Cell Cycle Transitions,

G2/M), and it sharply drops at mitotic exit (▶Cell

Cycle Transitions, Mitotic Exit) (Fig. 1b). Checkpoints

freeze Cdk activity, thus, the subsequent cell cycle

transition cannot be initiated until the checkpoint sig-

nal is not removed: DNA damage does not allow the

sharp increase in Cdk activity and the spindle check-

point inhibits the drop in Cdk activity, ensuring that the

upcoming cell cycle transitions are inhibited.
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Cell Cycle, Fig. 1 Regulation of Cdk activity during the cell
cycle. (a) Possible ways Cdk activity is regulated: CKI –

Stochiometric Cdk inhibitor acts in G1, where Cdh1/APC

complex induces cyclin degradation through the proteasome.

Synthesis of cyclin could be also regulated by transcriptional

factors. Wee1 and Cdc25 are the most important kinase/

phosphatase pair that regulates Cdk in G2 phase and Cdc20/APC

induces cyclin removal at the end of the cell cycle. (b) Temporal

pattern in Cdk activity during the cell cycle and cell cycle

transitions (Rp – Restriction point, exit – mitotic exit). In

S phase, the DNA replicates, in G2 two copies are present and

Cdk activity is low but not zero. Sharp increase in Cdk activity

induces mitosis, where the nuclei divide and the drop in the

activity triggers cell division
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Crucial functions of the core cell cycle machinery in

eukaryotic cells are the following:

• The alternation of DNA replication (S-phase) and

mitosis (M-phase) is essential in normally prolifer-

ating somatic cells. This is achieved by changing

Cdk activity in each phase, and ensuring that the

cycle proceeds only in one direction. Incidental (or

regulated) drop in Cdk activity in G2 phase can

induce ▶ endoreplication, when two rounds of

S phase happen without mitosis and two nuclear

divisions occur in ▶meiosis, when the DNA con-

tent is halved. These processes normally occur only

during development and embryogenesis, they are

avoided in normal somatic cells by careful control

of Cdk activity.

• Checkpoint mechanisms stop the cell cycle, by

freezing Cdk activity, if some previous event has

not been properly completed and ensure that repair

mechanisms are initiated to “solve” the problem. In

higher eukaryotes, similar pathways eventually

induce the suicide of the cell if the repair fails to

avoid the spreading of the mutant, which could lead

to tumor formation (▶Cell Cycle, Cancer Cell

Cycle and Oncogene Addiction).

• Growth in cellular mass could be rate-limiting, thus,

the DNA replication-division cycle is “slowed

down” by inserting gap phases (G1- and
G2-phase). Such size control (▶Cell Cycle, Cell

Size Regulation) clearly works in yeast cells, but

its role in higher eukaryotes is still not fully

understood.

The basic controls are conserved in all eukaryotic

organisms from yeast to human. Indeed, human Cdks

can rescue Cdk mutants of yeast cells and many other

core molecules are similarly highly conserved.

Although the cell cycle regulatory molecules of pro-

karyotes (▶Cell Cycle, Prokaryotes) are highly dis-

similar, their interaction network and the resulting cell

cycle dynamics are very similar to the yeast system.
Historical Discoveries of Cell Cycle Research

Systematic analysis of cell cycle mutants in the 1970s

by Lee Hartwell and Paul Nurse led to the discovery of

Cdk while cyclin was discovered by Tim Hunt. These

researchers received the Nobel Prize in 2001 for their

breakthroughs in understanding cell cycle regulation

(Nasmyth 2001).

The first results toward the identification of

a biochemical component governing cell cycle pro-

gression came from investigations on cell extracts

from frog eggs (▶Cell Cycle of Early Frog Embryos).

Studies in the early 1970s described the existence of
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a maturation promoting factor (MPF) whose function

was related to induction of quiescent cells into division

(Masui and Markert 1971). At the same time, yeast

genetic approaches lead to the discovery of the most

important genes of cell cycle regulators: Hartwell

identified cell division cycle (Cdc) genes in the bud-

ding yeast Saccharomyces cerevisiae (▶Cell Cycle,

Budding Yeast) through a genetic screen of

temperature-sensitive mutants (Hartwell et al. 1973).
Paul Nurse isolated temperature-sensitive mutants of

the rod shaped fission yeast, Schizosaccharomyces

pombe (▶Cell Cycle, Fission Yeast), and found cell-

cycle-blocked long cells, but also noticed unusually

small cells that seemed to be able to proliferate nor-

mally (Nurse 1975). He named this mutant “wee”

(meaning small in Scottish) and realized that the

related genes must have an important role in control-

ling proper cell division. Nurse also figured out that

one of the genes with wee phenotype can be mutated in

another domain to produce cell-cycle-blocked elon-

gated cells, discovered that this gene (Cdc2) is homo-

logues to Hartwell’s most important budding yeast

gene, and found the human version of it (▶Cell

Cycle of Mammalian Cells). Tim Hunt contributed to

the previous work of Hartwell and Nurse when he

studied the control of mRNA translation and found

proteins whose abundance oscillated (Evans et al.
1983). He referred to these periodically degraded mol-

ecules as “cyclins.” Later discoveries showed that the

complex of cyclin and Cdc2 (generally now called

Cdk) is responsible for the MPF activity in frog

embryos. After these breakthrough discoveries, several

cell cycle regulators and their functions have been

identified in various organisms. We learned that simi-

lar molecules control the cell cycle of plants, worms,

and flies and began to understand the intricacies of

their regulation in the different organisms. Indeed,

not only cyclin and Cdk proteins are conserved

among eukaryotes, but most of the cell cycle regulator

proteins as well as their interactions (Nurse 1990).

Here, we present the generic features of the cell cycle

regulatory network (Csikasz-Nagy et al. 2006)

together with the regulators in most important cell

cycle test organisms (Fig. 2 and Table 1).

These interactions can drive the periodic appear-

ances of the various cyclins. CycD is present through-

out the entire cell cycle, CycE, and CycA appears at the

G1/S transition restriction point and CycB activity

increases at G2/M transition and drops at mitotic exit.
The system-level interactions depicted in Fig. 2 cannot

be easily understood by reductionistic thinking. Math-

ematical and computational models can help to under-

stand such wiring diagrams and test if the current

knowledge on molecular interactions is sufficient to

describe experimental observations (Csikasz-Nagy

2009). Figure 3 shows simulation results of the wiring

diagram of Fig. 2. It explains how the waves of the

different cyclins overlap with the inactivation of Cdk/

cyclin inhibitors (CKI, Cdh1 and Wee1).
Initial Steps inMathematical Modeling of the
Cell Cycle

Mathematical modeling of the cell cycle has been

started already when scientists were only guessing

the mechanisms that could drive the processes of the

cell division cycle. Early efforts considered the phe-

nomenon as a black box but could still discover some

of the rules that determine the observed physiology of

cells. From the 1960s, we can find mathematical

models that explain some key aspects of cell cycle

regulation from phenomenological observations on

cell size and cell cycle time distributions (Koch and

Schaechter 1962). The great interest in the newly dis-

covered chemical oscillations in the 60s made consid-

erable contributions to research on theoretical physical

chemistry and later to mathematical biology as well.

Researchers, such as Albert Goldbeter, John J. Tyson,

Arthur Winfree, and others, realized that the theories

and tools to analyze chemical oscillations might help

to understand biological oscillations. They started to

investigate calcium oscillations, circadian clocks, and

many other biological oscillators, among them the

oscillations that drive cell division. As the first exper-

imental results on cell cycle regulation appeared (see

above), theoreticians started to create models to predict

how Cdk controls the cell cycle. Some of these models

led to a better understanding of the basic dynamical

properties of the cell cycle regulatory network

(Csikasz-Nagy 2009).
Predictive Models of the Cell Cycle

In the early 1990s, several hypotheses emerged

concerning the origin of cell cycle oscillations. Theory

tells us that for oscillations the system needed to

http://dx.doi.org/10.1007/978-1-4419-9863-7_16
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Cell Cycle, Fig. 2 Generic cell cycle regulatory network. Solid
arrows depict molecular transitions, molecules “sitting” on

arrows and dashed arrows represent activations; dashed blunted

end lines stand for inhibition effects. Gray squares behind

cyclins (CycA-D) represent their constantly bound Cdk partners
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contain a negative feedback loop (auto-inactivation),

some nonlinearity, and either a delay or a positive

feedback loop (auto-activation) (Novak and Tyson

2008). For the cell cycle oscillations, Albert Goldbeter

proposed a molecular cascade mechanism that pro-

duces a limit cycle originating from a pure negative

feedback of Cdk and its degradation machinery

(Goldbeter 1991). John J. Tyson and Bela Novak

predicted a more complex mechanism producing

a relaxation oscillator that moves around a hysteresis

loop as a result of a combination of positive and neg-

ative feedbacks (Novak and Tyson 1993). The Novak-

Tyson model proposed that the positive feedback loop

between Cdk/CycB and Cdc25 and the double negative

(thus also positive) loop between Cdk/CycB andWee 1

create a situation where cyclin levels needs to reach
a critical value to induce an abrupt activation of

Cdk/CycB.

Nonlinear positive feedback loops can create

multistability (Ferrell 2002) when, in a given parameter

range, the system can exist inmore than one stable states

and only the history of the system determines in which

of these states we will find it (this is the concept of

hysteresis). Transitions from one stable state to another

can happen very abruptly when one of the controlling

parameters reaches a critical value. To set back the

system to the original state, the same parameter has to

decrease to a much lower value. This can ensure that

transitions between the two stable states are quite robust,

for small fluctuation these transitions are irreversible.

Now we understand the importance of hysteresis and

irreversible switches (▶Cell Cycle Dynamics,

http://dx.doi.org/10.1007/978-1-4419-9863-7_22


Cell Cycle, Table 1 List of key cell cycle regulators in the most important cell cycle research model organisms

Function Name in Fig. 2 Budding yeast Fission yeast Xenopus laevis Mammalian

Starter CDK/cyclin complex CycD Cdc28/Cln3 Cdc2/Puc1 Cdk4,6/CycD Cdk4,6/CycD1–3

(G1/S transition inducers) CycE Cdc28/Cln1,2 - Cdk2/CycE Cdk2/CycE1,2

S-phase promoting factor (SPF) CycA Cdc28/Clb5,6 Cdc2/Cig2 Cdk1,2/CycA Cdk1,2/CycA1,2

M-phase promoting factor (MPF) CycB Cdc28/Clb1,2 Cdc2/Cdc13 Cdc2/CycB Cdk1/CycB1,2

Stoichiometric kinase inhibitor CKI Sic1 Rum1 Xic1 p27Kip1

Mitotic cyclin degradation

regulator (with APC)

Cdh1 Cdh1 (Hct1) Ste9 (Srw1) Fzr Cdh1

Cyclin B, Cyclin A degradation

regulator (with APC)

Cdc20 Cdc20 Slp1 Fizzy p55Cdc

Retinoblastoma protein Rb Whi5 - RBL1,2 Rb1

Cyclin E, Cyclin A transcription factor TFE Swi4/Swi6

Mbp1/Swi6

Cdc10/Res1 XE2F E2F1–3

CDK/cyclin B inhibitor kinase Wee1 Swe1 Wee1 Xwee1 Wee1

CDK/cyclin B activator phosphatase Cdc25 Mih1 Cdc25 Xcdc25 Cdc25C

Phosphatase working against the CDKs Cdc14 Cdc14 Clp1/Flp1 Xcdc14 Cdc14
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Irreversibility) in the cell cycle: the cell must complete

one state before starting another event, avoiding the

same phase to repeat twice (Novak et al. 2007).
As a result of the positive feedback in the Novak-

Tyson model, the removal of some CycB cannot inac-

tivate Cdk immediately – showing hysteresis and

bistability in the cell cycle (▶Cell Cycle Dynamics,

Bistability and Oscillations). This prediction was inde-

pendently experimentally verified by two groups

(Pomerening et al. 2003; Sha et al. 2003), and it was

also discovered that by removing the negative effect of

Wee1 on Cdk (thus disrupting the positive feedback

loop), the oscillations became less robust and their

amplitude was reduced (Pomerening et al. 2005).

These insights highlighted the importance of positive

feedbacks in cell cycle regulation.

Hysteresis and multistability was also proposed by

mathematical modeling and verified later experimen-

tally for the cell cycle regulation of yeast cells. The two

landmark papers by Katherine C. Chen and colleagues

from the Tyson lab dealt with the cell cycle of budding

yeast cells. The models that were created in this work

are now the influential mathematical models of cell

cycle regulation (Chen et al. 2004; Chen et al. 2000).

These models are based on an extensive literature data

collection on more than 100 budding yeast cell cycle

mutants. The final model can simulate the findings of

almost all of these experiments. In their first paper,

Chen et al. (2000) examined the molecular events

regulating the START transition of the cell cycle.

The model accounts for many details of the cells’
physiology (viability-lethality, cell size, lengths of dif-

ferent cell cycle phases) in wild-type and �50 mutant

cells. The authors proposed that G1 and S/G2/M

phases are alternative states and cells switch between

them during the G1/S transition, when CDK activity

abruptly increases. The bistability of the system is

given by the antagonism between CDK/cyclin com-

plexes and their inhibitors CKI (Sic1 in budding yeast)

and Cdh1 (Fig. 4). The authors also proposed an exper-

iment which could verify the existence of this

bistability. In 2002, Fredrick R. Cross and his group

performed experiments following these suggestions

and confirmed the prediction (Cross et al. 2002). In

this groundbreaking study, Cross went much further

and carried extensive experimental tests of various

properties of the model while also performing some

crucial measurements to help further model develop-

ment. This milestone study was one of the first that was

fully devoted to test a mathematical model, and could

therefore be viewed as one of the first true systems

biology studies. Two years later, the measurements

and corrections by Cross were implemented into

a new version of Chen’s model (Chen et al. 2004). It
was also extended to cover detailed regulation of

mitotic exit. The resulting model was tested against

the behavior of 131 mutants and marginally failed only

on 11 of them – highlighting the aspects of the model

that lacked sufficient experimental evidence. This

model also predicted the presence of a mitotic exit

regulatory phosphatase that was later experimentally

identified (Queralt et al. 2006).

http://dx.doi.org/10.1007/978-1-4419-9863-7_22
http://dx.doi.org/10.1007/978-1-4419-9863-7_21
http://dx.doi.org/10.1007/978-1-4419-9863-7_21


Cell Cycle, Fig. 3 Simulation of a “generic” cell cycle model.
Temporal fluctuations in molecular levels of the most important

cell cycle regulators (notations as in Table 1 and Fig. 2). Plots

show that the level of CycD is not fluctuating during the cell

cycle, still its activity together with the increasing CycE depen-

dent Cdk activity can induce CKI degradation and activation of

further CycE and CycA production (after inactivation of Rb and

activation of E2F, as noted on Fig. 2). Cdk/CycA and Cdk/CycE

induce Cdh1 inactivation and drive the cell into S-phase. Wee1

keeps Cdk/CycB inactive in G2. Later, as the autocatalytic loops

of Cdk/CycB activation turn on, Wee1 gets inactivated and the

increase in Cdk/CycB activity induces M-phase. At the end of

mitosis, when the spindles are properly aligned, Cdc20 activa-

tion is not halted anymore and the active Cdc20/APC induces

CycB degradation and CKI and Cdh1 activation to finish the cell

cycle. The drop in Cdk/CycB activity induces cell division
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Cell Cycle Modeling Techniques

The most common approach to describe a system com-

posed of biochemical reactions is to translate the inter-

actions of a molecular wiring diagram into ordinary

differential equations (ODEs) (▶Cell Cycle

Modeling, Differential Equation). These can be either

solved analytically or, in the case of larger models,

numerically by computational means. The solutions of

ODEs can be compared with existing experimental

data, thus some of the kinetic rate constants of the
model can be defined. ODEs have been used for

many years to create mathematical models of eukary-

otic cell cycle regulation, since this was the technique

that was used to investigate chemical and physical

oscillators. Thus, all the developed tools of dynamical

systems theory could be used to understand ODE

models of cell cycle regulation. Maybe to most fre-

quently used technique is bifurcation analysis (▶Cell

Cycle Model Analysis, Bifurcation Theory), which

follows the steady state solutions of the system of

differential equations. These steady states can identify

http://dx.doi.org/10.1007/978-1-4419-9863-7_23
http://dx.doi.org/10.1007/978-1-4419-9863-7_23
http://dx.doi.org/10.1007/978-1-4419-9863-7_28
http://dx.doi.org/10.1007/978-1-4419-9863-7_28


Cell Cycle, Fig. 4 Bistability in the budding yeast cell cycle.
The signal-response curve (left) shows how the steady state Cdk/

Cyc activity depends on cell mass (solid and dashed lines stand
for stable and unstable steady states respectively). In early G1

phase only one steady state exists, with low Cdk/Cyc activity. As

the cell grows the second stable state appears as well, but the

original G1 steady state still remains until the cell mass reaches

a critical value where this disappears and only the high Cdk

activity state remains. As the cell grows (dotted lines) Cdk gets

abruptly activated at the critical cell mass what drives the cell

into S-phase. Small fluctuations cannot drive the system back to

G1 phase. Unless the cell mass sensing pathway activity drops

below the lower boundary of the bistabile zone (gray back-
ground), the cell will stay in the high Cdk activity S/G2/M

state. The bistability is a result of an antagonistic, double nega-

tive (thus positive) feedback loop, where Cdk inhibits Cdh1 and

CKI activity, while Cdh1 induces cyclin degradation and CKI

inhibits Cdk/Cyc complexes (Fig. 1a)
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the phases of the cell cycle and cell cycle transitions

could be associated with bifurcations. Indeed Fig. 4 is

a bifurcation diagram where cell mass is a bifurcation

parameter and Cdk activity is the state variable.

The major problem with most biological systems is

the fact that very few rate constants can be measured

directly. Parameter sensitivity analysis (▶Cell Cycle

Models, Sensitivity Analysis) is used to identify the

parameters that have the highest influence on model

behavior. This method could help to reduce the number

of parameters that need to be measured or estimated.

Several techniques exist to estimate the parameters of

a particular model, from manual parameter “twid-

dling” based on “educated guesses” to highly sophis-

ticated parameter inference using software tools

(Panning et al. 2008; Schmidt and Jirstrand 2006).

Almost all of these have been used in various cell

cycle models. Metabolic control analysis is mostly

used to identify key reactions of metabolism, but

recent studies showed that similar technique could be

used to identify key reactions of the cell cycle as well

(▶Cell Cycle Signaling, Metabolic Pathway).

Our knowledge about the regulatory network of the

cell cycle and its interactions with other cellular path-

ways is constantly growing. As a consequence, the
complexity of mathematical models is growing as

well. Detailed analysis and parameterization of such

large systems can be difficult when the number of

ODEs is large. Simplification by logical modeling

has been proposed to overcome this problem (▶Cell

Cycle Modeling Using Logical Rules). Logical model-

ing has a long tradition in biology and recently some

applications to cell cycle research also appeared. These

models are based on Boolean algebra, where the activ-

ity of each component is represented by two states: ON

and OFF, providing a method which is computation-

ally less expensive. Behaviors that originate from the

topology of the system can be investigated this way. In

their pioneering study, Li et al. (2004) showed that the

network of the budding yeast cell cycle regulation is

robustly designed, as 86% of all possible initial states

lead the system to the same stable cell cycle path. This

result underlines that the biochemical network of cell

cycle regulation can function in a parameter-

insensitive way.

Fluctuations in the average behavior of a cell popula-

tion can be described by deterministic ODE models or

logicalmodels, but thebehavior of individual cells cannot

be simulated that way. Stochastic modeling approaches

(▶Cell Cycle Modeling, Stochastic Methods) are

http://dx.doi.org/10.1007/978-1-4419-9863-7_30
http://dx.doi.org/10.1007/978-1-4419-9863-7_30
http://dx.doi.org/10.1007/978-1-4419-9863-7_42
http://dx.doi.org/10.1007/978-1-4419-9863-7_24
http://dx.doi.org/10.1007/978-1-4419-9863-7_24
http://dx.doi.org/10.1007/978-1-4419-9863-7_25
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becoming more and more popular as they provide

ameans to analyze single cells and find relevant results

in cooperation with novel single-cell experimental

techniques such as quantitative flow cytometry and

fluorescence microscopy. Some cell cycle models are

already using stochastic simulation techniques, such

as Langevin-type stochastic ODEs or the exact sto-

chastic simulation algorithm (Gillespie 2007). The

effect of noise in nonsymmetrical cell division on cell

size distribution on the population level has been also

investigated.Muchmore detailed stochasticmodels of

cell cycle regulation are appearing. Such models take

into account measured molecular levels, protein, and

mRNA half-lives and several other noisy processes.

Most of thesemodels are based on earlier ODEmodels

that are “unpacked” into elementary reactions to be

able to run stochastic simulations on them.

A successful approach along these lines uses Petri

nets (▶Cell Cycle Modeling, Petri Nets) which allow

to move between deterministic and stochastic simula-

tions and to follow molecule numbers instead of con-

centrations. Some other modeling concepts from

computer science are adopted and adapted to model

biological systems. Rule-based modeling and espe-

cially various process algebras (▶Cell Cycle Model-

ing, Process Algebra) are able to handle combinatorial

complexity caused by complex formation and various

protein modifications. These allow an easier handling

of multisite phosphorylation and multi-component

complex formations, which are both relevant issues

for cell cycle regulation.
System Level Cell Cycle Experiments

Many models are parameterized by fitting data on

physiological observations: cell sizes, cell cycle

phase distributions, and viabilities of mutants – after

painstaking literature mining for these data. The

advanced large-scale measurements and the related

databases provide modelers data to help them formu-

lating larger, more detailed, and more precise models

in the near future.

Results collected over the last 40 years, including

recent system-level experiments have extended our

knowledge and now allow us to construct much more

detailed interaction maps of key cell cycle regulatory

steps (▶Cell Cycle Transition, Detailed Regulation of
Restriction Point). Classical flow cytometry was first

used in 70s to determine DNA content and with that,

the cell cycle stage of cell populations. Now, with the

help of fluorescence proteins, it could be used in

a much more sophisticated way to determine molecule

number changes during the cell cycle (▶Cell Cycle

Analysis, Flow Cytometry). Fluorescence proteins and

advanced microscopy techniques also allow analysis

of single cells and even localization of single mole-

cules during the cell cycle (▶Cell Cycle Analysis,

Live-Cell Imaging). The periodic oscillations in tran-

scription during the cell cycle was an early target of

transcriptomics research (▶Cell Cycle Analysis,

Expression Profiling) indeed, one of the first genome-

scale microarray experiments was performed on the

budding yeast cell cycle. Protein level fluctuations are

classically followed by Western blots, but now large-

scale mass spectrometry analysis is widely used to

follow protein level fluctuations during the cell cycle

and to indentify the phosphorylation states of Cdk-

regulated proteins (Aebersold and Mann 2003).

Advanced ChIP–chip techniques help to reveal the

transcriptional network of cell cycle regulation (Bahler

2009) and, essentially, all molecular and systems

biology methods are used in cell cycle research.

The collected data is stored in various databases on

protein interactions, transcriptional interactions, post-

translational modifications, etc (▶Cell Cycle Data

Analysis). There are some cell cycle specific databases

that contain information on periodically transcribed

genes during the cell cycle (Gauthier et al. 2010) and

that introduce related mathematical models as well

(Alfieri et al. 2008). Furthermore, literature mining

tools are helping us in searching for specific experi-

mental results on our favorite proteins. Large-scale

gene perturbation experiments are also being used to

investigate the cell cycle: studies on single- or double

gene-deletion strains (Hillenmeyer et al. 2008) and phe-

notype analysis of protein overexpressing cells are all

giving important results to cell cycle research (▶Cell

Cycle Analysis, Systematic Gene Overexpression).

All these resources are being used to support the

development of computational models of cell cycle

regulation. The phenotypes of the deletion and

overexpression mutant strains provide physiological

constrains for such models, while time-course mea-

surements of mRNA and protein levels provide data

to be fitted by the simulation of the models.
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Models Beyond the Cell Cycle

Cell cycle of individual cells in multicellular organ-

isms (such as humans) is controlled by the environ-

ment as well as it is influenced by its neighboring cells.

Cell–cell interactions make the modeling of cell cycle

in a cellular tissue a multilevel problem (▶Multilevel

Modeling, Cell Proliferation). Not only the internal

molecular interactions of each individual cell, but

their incoming and outgoing signals to their neighbors

need to be tracked. Cell cycle modules could be intro-

duced into agent-based models to simulate how cell

cycle is controlled in individual interacting cells. Fur-

thermore, the core cell cycle engine should properly

regulate important downstream processes, such as

DNA replication and cell division. To carry out

a proper function, it is interlocked with several other

pathways. Various environmental effects (stress, light,

temperature, etc.) can influence progression through

cell division cycles, and several drugs, external signal-

ing molecules, and metabolites could also affect cell

proliferation (Csikasz-Nagy 2009). Many of these

upstream and downstream pathways of cell cycle reg-

ulation have been investigated in great detail by sys-

tems biology techniques. The yeast osmotic pressure

sensing pathway is one of the most investigated path-

ways; several experiments and computational models

are dealing with it (Klipp et al. 2005). Computational

models of the mammalian system are focusing on the

regulation of the cell cycle by the low oxygen induced

hypoxia pathway, on the Src and NFkB pathways, as

well as on the interactions between DNA damage,

apoptosis, and the cell cycle. A recent discovery on

the connection between the circadian clock and the cell

cycle in mammalian cells (▶Cell Cycle, Coupled with

Circadian Clock) also initiated some computational

modeling work along these lines. Likewise, the role

of micro RNAs in relation to cell cycle regulation are

also being investigated by computational modeling

(▶Cell Cycle Regulation, microRNAs). Also, some

of the downstream processes induced by the cell

cycle machinery have been studied by mathematical

modeling. The regulation of cell growth, cell division,

DNA replication and several aspects of mitosis are all

described in some detail in the literature (Lygeros et al.
2008; Mogilner et al. 2006), but none of these are

connected to a model of the core cell cycle regulatory

network. Thus, we still need to wait to see the results
describing the crosstalk between the various upstream

and downstream pathways and the core cell cycle

machinery.
Summary

A full systems biology workflow of experiment !
database ! model ! experiment was applied to

understand the role of positive feedback in the cell

cycle regulation. To realize the entire loop took more

than 10 years in the case of the frog egg studies, but it

took only 4 years in the case of the budding yeast cell

cycle control. We are hoping that with the emergence

of systems biology, stimulating interactions between

experimentalists and theoreticians could lead to more

detailed, more precise and realistic models. For

instance, we will need more sophisticated experimen-

tal techniques to measure protein activity fluctuations

in time – desirably in individual cells. At the same

time, better modeling and parameter estimation soft-

ware is needed to deal with the increasing amounts of

data and to accommodate new types of measurements

on individual cells. Even though we have learned

a great deal about cell cycle regulation in the last

40–50 years, there are still gaps in our knowledge

that need bridged, and experimentalists and theoreti-

cians need to work together to accomplish this.
Cross-References

▶CDK Inhibitors

▶Cell Cycle Analysis, Expression Profiling

▶Cell Cycle Analysis, Flow Cytometry

▶Cell Cycle Analysis, Live-Cell Imaging

▶Cell Cycle Analysis, Systematic Gene

Overexpression

▶Cell Cycle Arrest After DNA Damage

▶Cell Cycle Checkpoints

▶Cell Cycle Data Analysis

▶Cell Cycle Dynamics, Bistability and Oscillations

▶Cell Cycle Dynamics, Irreversibility

▶Cell Cycle Model Analysis, Bifurcation Theory

▶Cell Cycle Modeling Using Logical Rules

▶Cell Cycle Modeling, Differential Equation

▶Cell Cycle Modeling, Petri Nets

▶Cell Cycle Modeling, Process Algebra

http://dx.doi.org/10.1007/978-1-4419-9863-7_50
http://dx.doi.org/10.1007/978-1-4419-9863-7_50
http://dx.doi.org/10.1007/978-1-4419-9863-7_48
http://dx.doi.org/10.1007/978-1-4419-9863-7_48
http://dx.doi.org/10.1007/978-1-4419-9863-7_46
http://dx.doi.org/10.1007/978-1-4419-9863-7_12
http://dx.doi.org/10.1007/978-1-4419-9863-7_31
http://dx.doi.org/10.1007/978-1-4419-9863-7_32
http://dx.doi.org/10.1007/978-1-4419-9863-7_34
http://dx.doi.org/10.1007/978-1-4419-9863-7_33
http://dx.doi.org/10.1007/978-1-4419-9863-7_33
http://dx.doi.org/10.1007/978-1-4419-9863-7_47
http://dx.doi.org/10.1007/978-1-4419-9863-7_9
http://dx.doi.org/10.1007/978-1-4419-9863-7_35
http://dx.doi.org/10.1007/978-1-4419-9863-7_21
http://dx.doi.org/10.1007/978-1-4419-9863-7_22
http://dx.doi.org/10.1007/978-1-4419-9863-7_28
http://dx.doi.org/10.1007/978-1-4419-9863-7_24
http://dx.doi.org/10.1007/978-1-4419-9863-7_23
http://dx.doi.org/10.1007/978-1-4419-9863-7_27
http://dx.doi.org/10.1007/978-1-4419-9863-7_26


C 230 Cell Cycle
▶Cell Cycle Modeling, Stochastic Methods

▶Cell Cycle Models, Sensitivity Analysis

▶Cell Cycle of Early Frog Embryos

▶Cell Cycle of Mammalian Cells

▶Cell Cycle Regulation, microRNAs

▶Cell Cycle Signaling, Hypoxia

▶Cell Cycle Signaling, Metabolic Pathway

▶Cell Cycle Signaling, Spindle Assembly Checkpoint

▶Cell Cycle Transition, Detailed Regulation of

Restriction Point

▶Cell Cycle Transition, Principles of Restriction

Point

▶Cell Cycle Transitions, G2/M

▶Cell Cycle Transitions, Mitotic Exit

▶Cell Cycle, Budding Yeast

▶Cell Cycle, Cancer Cell Cycle and Oncogene

Addiction

▶Cell Cycle, Cell Size Regulation

▶Cell Cycle, Coupled With Circadian Clock

▶Cell Cycle, Fission Yeast

▶Cell Cycle, Physiology

▶Cell Cycle, Prokaryotes

▶Cyclins and Cyclin-Dependent Kinases

▶Cytokinesis

▶DNA Replication

▶Endoreplication

▶Lymphocyte Dynamics and Repertoires,

Biological Methods

▶Meiosis

▶Mitosis

▶Modeling Approaches of Cell Cycle Regulation by

Signaling Pathways for External Stress

▶Multilevel Modeling, Cell Proliferation
References

Aebersold R, Mann M (2003) Mass spectrometry-based proteo-

mics. Nature 422:198–207

Alfieri R, Merelli I, Mosca E, Milanesi L (2008) The cell cycle

DB: a systems biology approach to cell cycle analysis.

Nucleic Acids Res 36:D641–D645

Bahler J (2009) Global approaches to study gene regulation.

Methods 48:217

Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in

cell-cycle control. Nat Rev Mol Cell Biol 8:149–160

Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ

(2000) Kinetic analysis of a molecular model of the budding

yeast cell cycle. Mol Biol Cell 11:369–391

Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B,

Tyson JJ (2004) Integrative analysis of cell cycle control in

budding yeast. Mol Biol Cell 15:3841–3862
Ciliberto A, Shah JV (2009) A quantitative systems view of the

spindle assembly checkpoint. EMBO J 28:2162–2173

Cross FR, Archambault V, Miller M, Klovstad M (2002) Testing

a mathematical model for the yeast cell cycle. Mol Biol Cell

13:52–70

Csikasz-Nagy A (2009) Computational systems biology of the

cell cycle. Brief Bioinform 10:424–434

Csikasz-Nagy A, Battogtokh D, Chen KC, Novak B, Tyson JJ

(2006) Analysis of a generic model of eukaryotic cell-cycle

regulation. Biophys J 90:4361–4379

Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983)

Cyclin: a protein specified by maternal mRNA in sea urchin

eggs that is destroyed at each cleavage division. Cell

33:389–396

Ferrell JE (2002) Self-perpetuating states in signal transduction:

positive feedback, double-negative feedback and bistability.

Curr Opin Cell Biol 14:140–148

Gauthier NP, Jensen LJ, Wernersson R, Brunak S, Jensen TS

(2010) Cyclebase.org: version 2.0, an updated comprehen-

sive, multi-species repository of cell cycle experiments

and derived analysis results. Nucleic Acids Res 38:D699–

D702

Gillespie DT (2007) Stochastic simulation of chemical kinetics.

Annu Rev Phys Chem 58:35–55

Goldbeter A (1991) A minimal cascade model for the mitotic

oscillator involving cyclin and cdc2 kinase. Proc Natl Acad

Sci USA 88:9107–9111

Hartwell LH, Weinert TA (1989) Checkpoints: controls that

ensure the order of cell cycle events. Science 246:629–634

Hartwell LH, Mortimer RK, Culotti J, Culotti M (1973) Genetic

control of the cell division cycle in yeast: V. Genetic analysis

of cdc mutants. Genetics 74:267–286

Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S,

Lee W, Proctor M, St Onge RP, Tyers M, Koller D,

Altman RB, Davis RW, Nislow C, Giaever G (2008) The

chemical genomic portrait of yeast: uncovering a phenotype

for all genes. Science 320:362–365

Klipp E, Nordlander B, Kruger R, Gennemark P, Hohmann S

(2005) Integrative model of the response of yeast to osmotic

shock. Nat Biotechnol 23:975–982

Koch AL, Schaechter M (1962) A model for statistics of the cell

division process. J Gen Microbiol 29:435–454

Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-

cycle network is robustly designed. Proc Natl Acad Sci USA

101:4781–4786

Lindqvist A, Rodriguez-Bravo V, Medema RH (2009) The deci-

sion to enter mitosis: feedback and redundancy in the mitotic

entry network. J Cell Biol 185:193–202

Lukas J, Lukas C, Bartek J (2004) Mammalian cell cycle check-

points: signalling pathways and their organization in space

and time. DNA Repair (Amst) 3:997–1007

Lygeros J, Koutroumpas K, Dimopoulos S, Legouras I,

Kouretas P, Heichinger C, Nurse P, Lygerou Z (2008) Sto-

chastic hybrid modeling of DNA replication across

a complete genome. Proc Natl Acad Sci USA

105:12295–12300

Masui Y, Markert CL (1971) Cytoplasmic control of nuclear

behavior during meiotic maturation of frog oocytes. J Exp

Zool 177:129–145

Mogilner A, Wollman R, Civelekoglu-Scholey G, Scholey J

(2006) Modeling mitosis. Trends Cell Biol 16:88–96

http://dx.doi.org/10.1007/978-1-4419-9863-7_25
http://dx.doi.org/10.1007/978-1-4419-9863-7_30
http://dx.doi.org/10.1007/978-1-4419-9863-7_18
http://dx.doi.org/10.1007/978-1-4419-9863-7_20
http://dx.doi.org/10.1007/978-1-4419-9863-7_46
http://dx.doi.org/10.1007/978-1-4419-9863-7_45
http://dx.doi.org/10.1007/978-1-4419-9863-7_42
http://dx.doi.org/10.1007/978-1-4419-9863-7_44
http://dx.doi.org/10.1007/978-1-4419-9863-7_37
http://dx.doi.org/10.1007/978-1-4419-9863-7_37
http://dx.doi.org/10.1007/978-1-4419-9863-7_36
http://dx.doi.org/10.1007/978-1-4419-9863-7_36
http://dx.doi.org/10.1007/978-1-4419-9863-7_38
http://dx.doi.org/10.1007/978-1-4419-9863-7_39
http://dx.doi.org/10.1007/978-1-4419-9863-7_16
http://dx.doi.org/10.1007/978-1-4419-9863-7_49
http://dx.doi.org/10.1007/978-1-4419-9863-7_49
http://dx.doi.org/10.1007/978-1-4419-9863-7_8
http://dx.doi.org/10.1007/978-1-4419-9863-7_48
http://dx.doi.org/10.1007/978-1-4419-9863-7_17
http://dx.doi.org/10.1007/978-1-4419-9863-7_7
http://dx.doi.org/10.1007/978-1-4419-9863-7_15
http://dx.doi.org/10.1007/978-1-4419-9863-7_10
http://dx.doi.org/10.1007/978-1-4419-9863-7_14
http://dx.doi.org/10.1007/978-1-4419-9863-7_40
http://dx.doi.org/10.1007/978-1-4419-9863-7_41
http://dx.doi.org/10.1007/978-1-4419-9863-7_95
http://dx.doi.org/10.1007/978-1-4419-9863-7_95
http://dx.doi.org/10.1007/978-1-4419-9863-7_113
http://dx.doi.org/10.1007/978-1-4419-9863-7_13
http://dx.doi.org/10.1007/978-1-4419-9863-7_43
http://dx.doi.org/10.1007/978-1-4419-9863-7_43
http://dx.doi.org/10.1007/978-1-4419-9863-7_50


Cell Cycle Analysis, Expression Profiling 231 C

C

Morgan DO (2006) The cell cycle: principles of control. New

Science Press, London

Nasmyth K (2001) A prize for proliferation. Cell 107:689–701

Novak B, Tyson JJ (1993) Numerical analysis of

a comprehensive model of M-phase control in Xenopus
oocyte extracts and intact embryos. J Cell Sci

106(Pt 4):1153–1168

Novak B, Tyson JJ (2008) Design principles of biochemical

oscillators. Nat Rev Mol Cell Biol 9:981–991

Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A (2007) Irrevers-

ible cell-cycle transitions are due to systems-level feedback.

Nat Cell Biol 9:724–728

Nurse P (1975) Genetic control of cell size at cell division in

yeast. Nature 256:547–551

Nurse P (1990) Universal control mechanism regulating onset of

M-phase. Nature 344:503–508

Panning T, Watson L, Allen N, Chen K, Shaffer C, Tyson J

(2008) Deterministic parallel global parameter estimation for

a model of the budding yeast cell cycle. J Global Optim

40:719–738

Pomerening JR, Sontag ED, Ferrell JE Jr (2003) Building a cell

cycle oscillator: hysteresis and bistability in the activation of

Cdc2. Nat Cell Biol 5:346–351

Pomerening JR, Kim SY, Ferrell JE Jr (2005) Systems-level

dissection of the cell-cycle oscillator: bypassing positive

feedback produces damped oscillations. Cell 122:565–578

Queralt E, Lehane C, Novak B, Uhlmann F (2006)

Downregulation of PP2A(Cdc55) phosphatase by separase

initiates mitotic exit in budding yeast. Cell 125:719–732

Schmidt H, Jirstrand M (2006) Systems biology toolbox for

MATLAB: a computational platform for research in systems

biology. Bioinformatics 22:514–515

Sha W, Moore J, Chen K, Lassaletta AD, Yi CS, Tyson JJ,

Sible JC (2003) Hysteresis drives cell-cycle transitions in

Xenopus laevis egg extracts. Proc Natl Acad Sci USA

100:975–980

Sia RA, Bardes ES, Lew DJ (1998) Control of Swe1p degrada-

tion by the morphogenesis checkpoint. EMBO J

17:6678–6688

Zachariae W, Nasmyth K (1999) Whose end is destruction: cell

division and the anaphase-promoting complex. Genes Dev

13:2039–2058
Cell Cycle Analysis, Expression Profiling

J€urg B€ahler and Samuel Marguerat

Department of Genetics, Evolution and Environment

and UCL Cancer Institute, University College London,

London, UK
Synonyms

Expression profiling; Transcriptome profiling;

Transcriptomics
Definition

Gene expression (or ▶Transcriptome) profiling refers

to the simultaneous measurement of the activities of

most or all genes present in a cell, a tissue, or a whole

organism. The activity of a given gene is determined

by the number of RNA transcripts (expression level)

derived from this gene under a specific condition.

Using cells that are synchronized for the cell cycle

(▶Cell Cycle, Synchronization), gene expression pro-

filing enables the large-scale identification of genes

that are periodically expressed as a function of the

cell cycle (▶Cell Cycle-Regulated Gene Expression).

This approach thus provides global data of gene regu-

lation during the cell cycle, which supports a systems-

level understanding of cell-cycle control.
Characteristics

Methods for Gene Expression Profiling

Gene expression profiling has been enabled by the

development of large-scale technologies such as

▶DNA microarrays and, more recently, next-

generation sequencing-based approaches such as

▶RNA-seq. These genome-wide approaches are

quite straightforward experimentally, and the biggest

challenge is often to extract biologically meaningful

information from the huge data sets generated. Com-

putational data mining is therefore a central aspect of

gene expression profiling, including a range of special-

ized approaches such as ▶ clustering.

Besides methods for gene expression profiling to

measure ▶ transcriptome levels during the cell cycle,

complementary large-scale technologies are available

for global insight into ▶ cell-cycle-regulated gene

expression. For example,▶ chromatin immunoprecip-

itation (ChIP) combined with ▶DNA microarrays

(ChIP-chip) or sequencing (ChIP-seq) provide

a means to determine the genome-wide binding sites

of transcription factors controlling gene expression.

Moreover, recent developments in ▶ proteomics are

now allowing the global measurement of protein levels

and post-translational modifications as a function of

the cell cycle.

Gene Expression Profiling During the Cell Cycle

Periodic control of transcription seems to be

a universal feature of the cell-division cycle.
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profiles of fission yeast transcripts peaking in levels before

M-phase (red) or S-phase (blue). Transcriptomes were analyzed

by microarrays every 15 min after cell-cycle synchronization for

two full cell cycles. Data from Rustici et al. (2004)
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Gene expression profiling of proliferating cells after

▶ cell-cycle synchronization have identified hundreds

of periodically expressed genes, in organisms ranging

from bacteria to humans (Breeden 2003). Periodically

expressed genes often play specific roles in the cell

cycle, and their expression levels typically peak just

before the phase during which they function. Particu-

larly rich genome-wide data are available for budding

and fission yeasts, which provide complementary

models for cell-cycle-regulated ▶ gene expression

(B€ahler 2005). About 10–20% of all yeast genes are

periodically expressed during the cell cycle, many of

them in three transcriptional waves that roughly coin-

cide with major cell-cycle transitions: initiation of

DNA replication, entry into mitosis, and exit from

mitosis (Fig. 1).

Control of Cell-Cycle-Regulated Gene Expression

Periodic gene expression is integrated with cell-cycle

progression by multiple feedback loops at both tran-

scriptional and post-translational levels (B€ahler 2005;

Futcher 2002). Some cell-cycle transcription factors

are functionally conserved from yeast to human. For

example, proteins of the forkhead family, such as Fkh2

in yeast and FoxM in human, control genes whose

transcript levels peak before M-phase. Other transcrip-

tional regulators, such as MBF/SBF in yeast and E2F
in human, are not conserved at the sequence level but

play analogous roles in controlling genes whose tran-

script levels peak before S-phase.

Cell-cycle-regulated gene expression often shows

serial regulation, whereby transcription factors func-

tioning during one cell-cycle phase up-regulate tran-

scripts that encode downstream transcription factors

functioning during the next phase (Fig. 2) (Futcher

2002). Such a network of sequentially expressed tran-

scription factors may act as a cell-cycle oscillator that

regulates the periodic gene expression program inde-

pendently of, and in addition to, cyclin-dependent

kinases (Simmons Kovacs et al. 2008).

Budding and fission yeasts show similarities as well

as intriguing differences in their ▶ transcriptional reg-

ulatory networks, revealing evolutionary plasticity of

gene expression control (B€ahler 2005): Regulatory

circuits between conserved transcription factors have

been rewired, and periodic transcription of many

orthologous genes is not conserved, except for a core

set of genes that may be universally regulated during

the eukaryotic cell cycle andmay play key roles in cell-

cycle progression.

Although protein complexes involved in the cell

cycle are largely conserved among eukaryotes, their

http://dx.doi.org/10.1007/978-1-4419-9863-7_740
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regulation has changed considerably during evolution

(de Lichtenberg et al. 2007). Most protein complexes

contain both periodically and constitutively expressed

subunits, but the periodically expressed subunits differ

between organisms. Moreover, the periodically

expressed subunits, which may control complex

activity by just-in-time assembly, tend to be coordi-

nately controlled at transcriptional as well as

post-translational levels, highlighting that multiple

regulatory layers are often integrated to drive cell-

cycle progression (Fig. 3).

Metabolic Cycle

An intriguing special case for periodic gene expression

is the metabolic cycle. When continuously grown

under nutrient-limiting conditions, budding yeast

exhibit highly periodic cycles of respiratory bursts,

and microarray studies revealed that over 50% of the

genes are expressed periodically during these

metabolic cycles. The cell-division cycle is gated by

this metabolic cycle, with DNA replication being seg-

regated away from the oxidative phase when cells are

actively respiring. This temporal compartmentaliza-

tion ensures that DNA is replicated when oxidative

stress is lowest, in order to minimize genome damage.

The coordination between metabolic and cell-division

cycles may be related to the coupling between circa-

dian and cell-division cycles in other organisms (Chen

and McKnight 2007).
Cross-References
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Definition

▶Cell cycle analysis commonly denotes a group of

analytical processes used to estimate the fraction of

cells that are resident in cell cycle phases, states, or

stages by cell-based measurement methods. Generally,

the measurements are performed with optical instru-

ments connected to photosensitive components

(photomultiplier tubes, photo diodes, and charge

coupled devices [CCD]) and associated electronics to

digitize light that is emitted (fluorescence, phosphores-

cence) or scattered (not absorbed) by individual cells.

The digitization process converts a uniform pulse of

light to a usable number that represents the quantity of

some biochemical entity (usually, DNA), “reported”

by the fluorescent label.
Characteristics

Instrumentation

▶ Flow cytometers generally employ optical elements

(lenses, fiber optics, filters, and mirrors) to direct

focused beams of monochromatic or a restricted

band of light from either lasers or arc-lamps to

a spot within a flowing stream that contains cells

that move, single file, under forces of laminar flow.

Cells, in suspension, are introduced to flow

cytometers from tubes and plate wells. Laser scan-

ning cytometers employ moving stages, laser light

sources, and modulated mirrors to scan cells that are

stationary with respect to an optically transparent

substrate that is scanned by a moving beam spot in

one direction while the microscope stage moves in the

orthogonal direction. The single existing commercial

imaging flow cytometer uses the same principles as

ordinary flow cytometers but uses a CCD to capture

several images of each cell moving through the inter-

rogation region and integrates data on a per pixel

basis. A variant of flow cytometry, “cell sorting,”

employs a flow cytometer with inline mechanisms

for undulating and charging the fluid stream to create

charged droplets containing one or more cells as the

stream exits a nozzle. Charged plates then deflect the

droplets in one of 2–4 directions based on computa-

tion that occurred upstream at the interrogation point.

This latter technology, while useful in cell cycle
research, is not required for cell cycle analysis.

Some major sources of commercial instrumentation

are listed in Table 1.

Key Features of Cytometry

There are two principle features of cytometry that

distinguishes it from other approaches to cell biology.

The first is that the data are a set of measurements with

each element a measurement on a single cell. The

value of that distinction is that for any given asynchro-

nous population, under specific conditions, cells can be

observed at some frequency at all possible states for

the system. For example, proliferating cells will be

measured at all cell cycle phases or states related to

the specific cell type and environment. An element that

is related to this is that in multivariate cytometry, all

measurements are correlated. This means that if mea-

surement a represents state 1 in the system, that state is

also characterized with respect to measurement b. The

second feature of cytometry is that it is quantitative. In

the design and manufacture of the instruments, empha-

sis is on obtaining quantitative measurement with high

precision – i.e., if two particles, one containing 1x and

one containing 2x of fluorescent dye molecules,

emphasis is placed on minimizing error when 1x +

error and 2x + 2error represents reality. In cell cycle

analysis, it is not uncommon to measure cells with one

genome (G0/G1) and cells with two genomes (G2/M)

at a G2/G1 ratio of 1.95 or better and coefficients of

variation (CV) of 1–4%.

Basis for Cell Cycle Analysis

Figure 1a shows a simulated expression profile for

DNA or genome content for a cycling mammalian

somatic cell with a cell cycle time (Tc) of 15.4 h. The

time spent with one genome is the length of the G1

phase of the cell cycle – in this case, 5.6 h. The time

spent synthesizing a second genome is the length of

S phase (6.8 h), and the length of time with two

genomes is 2.8 h (G2 + M). S phase is defined by

genomic DNA synthesis. Figure 1b shows a simulated

age distribution for a proliferating population on

a fractional cell cycle time (Tc) basis. This distribution

accounts for binary division at the end of the cycle. If

the expression profile (A) is transformed to account for

overrepresentation in the population due to binary

division; and normally distributed random numbers

http://dx.doi.org/10.1007/978-1-4419-9863-7_31
http://dx.doi.org/10.1007/978-1-4419-9863-7_1080


Cell Cycle Analysis, Flow Cytometry, Table 1 Commercial research cytometersa

Instrumentation Company City, state/country Web address

Flow cytometers/Cell sorters BD biosciences San Jose, CA bdbiosciences.com

Beckman coulter Miami, FL coulterflow.com

i-Cyt/Sony Champaign, IL i-cyt.com

Flow cytometers Partec company M€unster, Germany partec.com

Millipore Billerica, MA millipore.com

Invitrogen Carlsbad, CA invitrogen.com

Accuri Ann Arbor, MI accuricytometers.com

Laser scanning cytometers Compucyte Westwood, MA compucyte.com

Imaging flow cytometers Amnis Seattle, WA amnis.com

aThis list is not comprehensive
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Cell Cycle Analysis, Flow Cytometry, Fig. 1 Relationship

between cell cycle-related DNA expression and cytometry of

DNA content. Panel (a) represents DNA expression over the life

of a cell with the values G1 ¼ 5.8 h, S ¼ 6.8 h, and G2 +

M¼2.8 h, which are values that we have previously measured

for NIH3T3 cells growing in 10% serum at a density of 87–121

cells/cm2 (Disalvo et al. 1995). Panel (b) shows the age distri-

bution of a population of asynchronously growing cells,

accounting for the generation of two cells at birth, plotted as

a function of the fractional cell cycle time. See (Walker 1954) for

the logic. Panel (c) shows simulated DNA content measure-

ments that would be measured for cells programmed to express

DNA as in A. To generate these data, the X axis of A is

transformed as Xt ¼ (2*exp(-0.6931*Xi/Tc))*(X/Tc),

Tc ¼ cell cycle time (15.4), Xt ¼ transformed X, Xi ¼ original

X. Xts are unitless fractions of Tc. Panel (d) is a histogram of the

data in Panel (c)
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are generated along the adjusted “expression” curve to

simulate cytometric measurements, we get Fig. 1c. If

we then create a histogram from the simulated data

(Fig. 1d), one obtains a simulated DNA content distri-

bution for a proliferating cell population with an aver-

age cell cycle time of 15.6 h. This model does not

account for any phase specific cell death. For further

reading, see Walker (1954), Mitchison (1971), Watson

(1991), Bagwell (1993).

Extension of the Logic

The illustrated logic of Fig. 1 was first enunciated in

1954 (Walker 1954) and later developed within the

context of data from flow cytometry by several groups.

The logic can be extended to multiple parameters.

Figure 2 shows simulated plots for DNA and cyclin

A2 (Fig. 2f) compared to real data (Fig. 1a) fromwhich

the fraction profiles (Fig. 2b, c) were derived and noise

added (Fig. 2d, e). By reversing the logic shown in

Fig. 1, the programmed cell cycle expression (Fig. 2g, h)

can be derived for any parameter, provided a set of

continuous measurements can be made covering the

cell cycle in a nonredundant manner. It is relatively

easy to see that the logic can be extended to an unlimited

number of parameters and that from primary cytometric

data, expression profiles for any measurable biochemi-

cal feature can be derived. This has distinct implications

for mathematical models of cell cycle regulation (e.g.,

Csikasz-Nagy et al. 2006), since the expression profiles

are not different in a relative sense from model outputs

of state variable levels over time.

DNA Content Analysis for Simple Proliferating

Populations

Practical use of DNA content measurements is to cal-

culate the fractions of G0/G1, S, and G2/M cells.

Because the error in the measurements are normally

distributed (given that cell fixation and staining, and

instrument operation are within standard practice),

a typical analysis is performed by fitting a complex

function composed of summed normal distributions

centered on the primary and secondary peaks (G0/G1

and G2/M) and an S phase component that is either

(1) a series of Gaussian functions, (2) a series of trap-

ezoids with Gaussian “broadened” ends, or

(3) a polynomial with “broadened” ends. Generally,

the terms (mean and standard deviation) of the Gauss-

ian functions are defined by the G0/G1 peak and all
subsequent Gaussian standard deviation terms are cal-

culated from that using the coefficient of variation

(standard deviation/mean) multiplied by the mean of

the subsequent Gaussian. The same logic is used to

“broaden” the ends of either a trapezoid series or

a single polynomial function. Broadening either starts

at the center of each peak or some fractional value

toward the S phase side of each peak (see Fig. 3b).

The purpose is to account for statistical overlap of each

component (G0/G1, S, and G2/M). Although the

Gaussian series is the most appealing from

a statistical principles point of view, in practice the

approach is the least robust and is generally used for

perturbed populations. The polynomial model works

well for asynchronous, unperturbed populations, since

it robustly accounts for the theoretical, expected shape

of S phase. The trapezoid model is a good compromise

between the other two, able to robustly fit S phases of

almost any shape. Most commercial software contains

some form ofDNA content distribution fitting. Figure 3

shows a typical analysis using a polynomial fit to

S phase.

Limitations

Cell populations like liver parenchyme cells in vivo,

most mammalian cell cultures, and mammalian tumor

cells often undergo endoreduplication (failure to

undergo mitosis and cytokinesis during a mitotic

cycle). Tumor cells and mammalian cell cultures also

fail to undergo binary division (cytokinesis) and thus

create cycling cell populations with two or more nuclei

that cycle together. Additionally, as tumor cells and

tumorigenically transformed mammalian cell cultures

evolve, multiple stable stem lines with fractional

genomes (aneuploidy) are present in the populations.

Most of these features can be dealt with using single

parameter DNA content analysis with sound logic,

a theoretical underpinning, and robustness obtained

by years of practice and widespread use. At some

point, these analyses become tortured. ModFit LT

(Verity House, Topsham, ME) and MultiCycle AV

(Phoenix Flow Systems, San Diego, CA) are two soft-

ware packages that support complex models.

Further Reading

There are many good reviews and chapters describing

DNA content analysis (Dean 1987; Gray et al. 1990;

Watson 1991; Bagwell 1993; Rabinovitch 1993).
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Cell Cycle Analysis, Flow Cytometry, Fig. 2 Relationship

between cell cycle-related expression and cytometry of two

parameters. Panel (a) shows data from exponentially growing

RKO cells that were stained for cyclins A2, B1, DNA content,

and phospho-S10-histone H3 (Yan et al. 2004). The cell popu-

lation frequency profiles for DNA content and cyclin A2 calcu-

lated from the data shown in Panel (a) are shown in Panels (b)

and (c). Calculation of these profiles was performed generally as

described in Frisa and Jacobberger (2009). A lengthy, more

detailed description is described in Jacobberger et al. (2011b).

Panels (g) and (h) are the calculated cell cycle–related expres-

sion of DNA and cyclin A2, calculated by reversing the logic in

Fig. 1. Panel (f) is a bivariate plot of the data in Panels (d) and

(e). Note the similarity of the simulated data (f) and the

real data (a)
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Two Parameter Cell Cycle Analysis

Analysis of the cell cycle in more than one parameter is

almost always aimed at increasing the number of cell

cycle compartments that can be monitored. The fol-

lowing entries are a sampling of the major approaches

for extending cell cycle analysis by adding another

parameter to DNA content.
Double-Stranded and Denatured DNA

There are many nucleic acid-binding dyes that, in

conjunction with RNase treatment, produce results

like those shown in Fig. 3. In addition, there are dyes

like Hoechst 33,258 and DAPI that bind nucleic acids

but only fluoresce significantly when bound to DNA.

Metachromatic dyes like acridine orange fluoresce at
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Cell Cycle Analysis, Flow Cytometry, Fig. 3 Common DNA

content analysis. The data are from a human T lymphoma cell

line (Molt4). (a): The model is composed of three components,

two Gaussian functions (red) and a “broadened” polynomial

(blue, hatched) that are used to fit the areas under the data that

can be attributed to cells with 2C and 4C DNA (G1 and G2 + M)

and for S phase (G1< S<G2). (b): Illustrates the fitting of the

central S phase data (circles) to a second-order polynomial

function (black line), extending that line to some predefined

point under the Gaussian distributed data in either direction

(here, the means of each Gaussian component), then “broaden-

ing” or “tailing” the curve with partial Gaussian functions using

the coefficients of variation from Gaussian components (red
components in a) and the amplitudes at the ends of the polyno-

mial. (ModFit LT was used to fit the distribution in a; Graphpad

Prism was used to generate b)
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one wavelength when intercalated into double-

stranded nucleic acids and at another wavelength

when bound to single-stranded nucleic acids. This

characteristic can be exploited by treating fixed

cells with RNase to remove RNA and acid to partially

denature residual DNA. The level of denaturability

of DNA changes within the cell cycle, and by measur-

ing fluorescence at the two wavelengths, then plotting

total fluorescence (adding the two measurements)

versus the fluorescence for single-stranded DNA,

one can identify five cell cycle compartments –

G1 can be subdivided in two, G1A or G1B (early

and late), S, G2, and M. For further reading, see

Darzynkiewicz et al. (1980), Darzynkiewicz and

Traganos (1990).

DNA and RNA Content

Early protocols used metachromatic dyes like acridine

orange which fluoresces green when intercalated into

double-stranded nucleic acids and red when bound to

single-stranded nucleic acids or other polyanions.

Because DNA is double stranded and cellular RNA is

largely single stranded, acridine orange can be used to
quantify DNA and RNA. Later efforts rely on DNA-

specific dyes (DAPI, Hoechst 33,258) coupled with the

RNA binding dye, Pyronin Y. These approaches can

distinguish deep G0 (non-cycling) cells from cycling

cells in addition to the typical G1, S, and G2/M anal-

ysis of DNA content. The acridine approach requires

some skill and knowledge of chemistry. Ribosomal

RNA is essentially what is measured. For further read-

ing, see Darzynkiewicz et al. (1980), Darzynkiewicz

and Traganos (1990).

DNA and Protein Content

Using dyes that covalently couple with primary amines

or dyes that preferentially bind protein, protein content

measurements can be coupled with DNA content. In

general, these approaches are not often used. Protein

content correlates with RNA content. In principal, the

approach should be useful for studying imbalanced

growth (an imbalance between the mitotic cycle and

the process of synthesizing approximately twice the

cell’s mass). For further information, see Crissman and

Steinkamp (1987), Darzynkiewicz and Traganos

(1990).
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DNA Content and BrdU

The fluorescence from the DNA binding dyes, Hoechst

33,342 or 33,258, is quenched when the dye is bound to

▶ 5-Bromo-2-deoxyuridine (BrdU) substituted DNA.

By coupling this dye with a dye that does not quench

and fluoresces at different wavelengths, this feature

has been exploited elegantly by two laboratories to

measure the phase fractions of successive cell cycles.

For further reading, see Poot et al. (1994).

DNA Content and Immunofluorescence

Immunofluorescence coupled with DNA content

cytometry opens up a very broad ability to probe biol-

ogy related to the cell cycle. Immunofluorescence

probes can home in on a population of interest in

complex mixtures, e.g., markers for keratin can isolate

the epithelial component in a solid tumor (Glogovac

et al. 1996). Other cell processes can be queried with

respect to the cell cycle, e.g., activation of DNA repair

pathways using the gH2Ax epitope (Tanaka et al.

2007). Below, two common immunofluorescence

approaches are described.

DNA Content and BrdU BrdU-substituted DNA can

be detected by antibodies. This is commonly used to

either prove that the S phase cells detected by DNA

content analysis were synthesizing DNA at the time of

sampling (other possibilities are that the cells were

dead, dying, or quiescent) or to determine the average

phase times by pulse-chase or continuous labeling

experiments. For further reading, see Gray et al.

(1990), Gray et al. (1987), Dean (1987), Terry and

White (2001).

DNA and a Mitotic Marker Many proteins are spe-

cifically phosphorylated or phosphorylated more often

when cells enter mitosis. Phospho-specific antibodies

can be raised to these epitopes. These antibodies cou-

ple well with DNA content to provide G0/G1, S, G2,

andM analysis. Figure 4 shows typical data. For a short

but comprehensive review, see Darzynkiewicz (2008).

For methods, see Juan et al. (2001).

Multiparametric Cell Cycle Analysis

Almost all cytometry assays of the cell cycle are

multiparametric. Commonly, even for DNA content

alone, measuring the pulse height and the integrated
pulse (the single cell pulse as viewed on an oscillo-

scope) provides an ability to eliminate aggregates from

the assay, and measurement of excitation light scatter

provides a discriminator based on cell size and granu-

larity or surface geometric complexity. However, these

are largely utilitarian. Conversely, measuring epitopes,

the expression profiles of proteins or protein modifica-

tions that oscillate within the cell cycle and that oscil-

late out of phase with each other provides an analytical

paradigm for creating cell states that can be used to

parse, in a very fine manner, the effects of various

treatments on the cell cycle, e.g., drug effects.

DNA, Cyclin A2, and Phospho-S10-Histone H3 (pH3)

Many epitopes that report the levels of proteins or

other parent molecules can be coupled to provide addi-

tional sub-compartmentalization of the cell cycle or

other information. The triad of DNA, cyclin A2, and

pH3 deserves special mention because their joining

into one assay provides the ability to deal with

endoreduplication/binucleate cycles (see Limitations,

above). Figures 4 and 5 show the principal features of

this analysis. Figure 5 shows the capture of the primary

(stem line) cycle (2C ! 4C). Figure 5a shows

a “region,” R2, set around mitotic cells. Figure 5b is

“NOT gated” on R2 and a region was set around the

2C ! 4C interphase cells (R3). The data of both 5A

and 5B have been gated to include singlet cells and

exclude aggregates as in Fig. 4. Figure 5c shows all the

events including singlet interphase cells (green), singlet
mitotic cells (blue), and debris/dead cells/outliers and

aggregates (red), which are not used in the analysis.

Figure 5e is a look at the discarded data. The labels

2X, 3X, and 4X point to G1 aggregates (containing 2, 3,

or 4 cells) together with endoreduplicated/multinucleate

cycling cells for which each event is a single cell.

Finally, Fig. 5c shows cyclin A2 versus pH3 for the

2C ! 4C stem line. Regions are contiguously set

around clusters defined either by changes in cell fre-

quency or by changes in the “direction” of the data

(arrows). The arrows show “movement” of an ideal

cell through the data space. Div is the interface where

cell division occurs. Figure 5e is particularly relevant to

Systems Biology, since it is easy to see that the expres-

sion pattern of pH3 and cyclin A2 form a unidirectional

closed loop, and this renders the ability to extract

programmed expression profiles of these and other

http://dx.doi.org/10.1007/978-1-4419-9863-7_100013
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Cell Cycle Analysis, Flow Cytometry, Fig. 4 DNA content

analysis that differentiates mitotic cells. Exponentially growing

HeLa cells were fixed and stained for DNA content, cyclin A2,

and histone H3 phosphorylated at serine 10 (pH3). Panel (a) is

a plot of the DNA signal trace* peak height versus the integrated

area under the peak. This plot is used to reduce the fraction of

aggregate cells in the analysis. See Rabinovitch (1993) for

a discussion of the logic, theory, and practical considerations

supporting this method. Singlet events, falling within the region

labeled “Single cells,” are colored green. Debris (events with

less than a G1 level of fluorescence) and aggregate events are

colored red. Mitotic cells are selected in Panel (b) by selecting

the cells within the cluster with 4 C DNA content and high

expression of pH3 (rectangle label “M”). The mitotic events

are colored blue. Panel (c) shows the distribution of pH3 for

the 2 C ! 4 C interphase (green line) and M cells (blue line).

Quantification of the fractions of 2 C ! 4 C interphase and

M cells can be done from this plot. Panel (d) shows the DNA

content for all of the 2 C! 4 C cells (yellow line), the 2 C! 4 C

interphase cells (green line), and the 2 C ! 4 C M cells (blue

line). Both plots in panels (c) and (d) were obtained by using the

gate: [(Single cells AND R3) OR M]. (R3 is a region on cyclin

A2 versus DNA, not shown in this figure, but shown in Fig. 5).

Quantification of the fractions of 2 C! 4 C G1, S, and G2 are

performed on a plot of the green line in Panel (d), using the

methods illustrated in Fig. 3.*the digitized electrical measure-

ment as a function of time as a cell or particle moves through the

laser beam
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state variables. By calculating the mean levels of these

or other parameters and the frequency of cells within

each region, the programmed expression profile can be

obtained by the principles outlined in sections Basis for
Cell Cycle Analysis and Extension of the Logic.

For further reading, see Jacobberger et al. (2008), Soni

et al. (2008), Avva et al. (2011), Jacobberger et al.

(2011a, b).



104
104

103

103
103

103103

104104

105105

–103–103

00

00 500500 1,0001,000 1,5001,500 2,0002,000 2,5002,500

104

102

103 104–103 0

Div

102

pH
3-

A
48

8

500 1,000 1,000500

R2

a b

d e

c
R3

DAPI (Integral) (× 100) DAPI (Integral) (× 100)

DAPI (Integral) (× 100)DAPI (Integral) (× 100)

1,500 1,5002,000 2,000

0

cy
c 

A
2-

P
E

cy
c 

A
2-

P
E

cy
c 

A
2-

P
E

Outliers

Debris
2X 3X

4X

Cell death ?

cyc A2-PE

pH
3-

A
48

8

Cell Cycle Analysis, Flow Cytometry, Fig. 5 Complex cell

cycle analysis. The data file is the same as in Fig. 4. Panel (a)

represents the same view as Panel (b) in Fig. 4, except that these

data have been gated on the “Single cells” region. Panel (b)

shows cyclin A2 versus DNA content, Boolean gated on “Single

cells” AND NOT “M,” which equals 2 C! 4 C and 4 C! 8 C

interphases. The gate, (“Single cells” AND R3) OR R2,

recombines interphase with mitosis, including mitotic cells that

are excluded in the singlet region (arrow, Fig. 4a). This gate has

been applied to Panel (c), which provides a bivariate view of the

entire 2 C! 4 C cycle starting from a state that is equivalent to

“birth/early G1” and one equivalent to the end of the cell cycle.

These states are separated by “Div.” The arrows show the uni-

directional movement of cells through the state space defined by

DNA content, cyclin A2, and pH3. Panels (d) and (e) are

identical plots of cyclin A2 versus DNA content, showing the

2 C! 4 C interphase population (green dots) and mitotic cells

(blue dots) in Panel (d) and the events that are not used with these
data removed from the plot (Panel e)
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Cell Cycle Analysis, Live-Cell Imaging

Andreas Doncic and Jan M. Skotheim

Department of Biology, Stanford University School of

Medicine, Stanford, CA, USA
Synonyms

Single-cell time-lapse microscopy; Time-lapse

microscopy
Definition

Time-lapse microscopy is a form of live-cell imaging

(▶Cell Cycle Analysis, Live-Cell Imaging) where liv-

ing cells are grown and monitored over time. Single-

cell analysis of the cell cycle has been used to study the

genetic networks regulating ▶ cell cycle transitions.

This technique is able to leverage variability in indi-

vidual cells to uncover regulatory features of the

underlying molecular network. In addition, the long

durations of time-lapse experiments can be used to

minimize the influence of stress from sample prepara-

tion. However, care must be taken regarding illumina-

tion levels and environmental conditions so that

photodamage or a variable environment does not per-

turb the cell cycle. Environmental conditions may be

accurately controlled using microfluidic devices per-

mitting imaging. In summary, the confluence of

improved fluorescent proteins and ever-increasing

computational speed and memory has led to new age

in live-cell imaging.
Characteristics

Requirements: Stable Conditions

Live-cell microscopy requires cells to be kept alive

during the course of the experiment. At a minimum,

this necessitates reliable temperature control and con-

sistent nutrient supply. For metazoan cells, such as

mammalian tissue culture cell lines frequently used

in biomedical research, care must also be taken to

control the CO2-concentration. In addition, growth

http://dx.doi.org/10.1007/978-1-4419-9863-7_101356
http://dx.doi.org/10.1007/978-1-4419-9863-7_101506
http://dx.doi.org/10.1007/978-1-4419-9863-7_101506
http://dx.doi.org/10.1007/978-1-4419-9863-7_34
http://dx.doi.org/10.1007/978-1-4419-9863-7_38
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and proliferation of mammalian cells depends on their

cell density so studies of cell cycle kinetics are neces-

sarily affected. Thus, cell cycle researchers using

mammalian systems should carefully control for cell

density.

Requirements: Conditions for Optimal Imaging

It is helpful for cells to remain in place for imaging.

Steady temperature control will remove a certain

amount of drift in the z-direction. Mammalian cells

will adhere to the hard surfaces at the bottom of tissue

culture dishes, some of which have glass slide bottoms

for imaging purposes. In addition, hard dishes or soft

hydrogels can be coated with fibronectin or collagen to

promote adherence and proliferation. For many mam-

malian cell applications, it is preferable to use rela-

tively lowmagnification (4�, 10� or 20�) because the
larger depth of focus of low magnification dry lenses

makes it easier to keep the cells in focus over long

times. Unless the dynamics of small cellular structures

need to be resolved, it is recommended to use low

magnification, which can be easily used to quantify

fluorescence in either the whole cell or the nucleus.

To constrain yeast cells, they are normally either

sandwiched between two surfaces in the imaging

chamber (agar/flowcell) or physically attached to the

cover slip. Attaching yeast with the lectin protein con-

canavalin A (conA) might work for some applications

but it is not recommended for long-time imaging since

new buds either disappear or grow out of the imaging

plane. If only one condition/medium is going to be

used, yeast can be forced to grow in 2D by

sandwiching the cells between the cover glass and

a slab of ~1.5% low-melt agar mixed with the growth

medium (Fig. 1a). For yeast imaging, we recommend

63� high NA oil-immersion lenses. These lenses bal-

ance the need for magnification with the need to

collect as much light as possible and 100� lenses

will produce substantially darker images, which is

a drawback for photosensitive yeasts. A drawback of

high magnification oil-immersion lenses is the thin

focal plane, which requires careful focusing in the z-

direction through the course of the experiment. In

particular, the focusing problem is exacerbated when

multiple x-y positions are used because moving the

lens will produce a high pressure in the lubricating

oil film tending to push the slide out of focus.
Thus, either software or hardware-based auto-focusing

routines must be used to keep the sample in focus

through the experiment. We recommend hardware-

based focusing (e.g., Zeiss Definite Focus; Nikon

Perfect Focus), which is rapid and accurate.

Requirements: Environmental Control

The integration of live-cell imaging with microfluidic

devices (flowcell) capable of accurately controlling

and rapidly changing the extracellular environment

will prove increasingly useful. Rapid change in the

extracellular media can be used to analyze responses

to environmental change (e.g., adding mating phero-

mone to budding yeast as in Fig. 2) and to exogenously

control expression of synthetic constructs. For exam-

ple, in budding yeast, the MET3 promoter can be

placed ahead of any gene of interest so that expression

occurs only in media lacking methionine. It takes

5–10 min to activate gene expression upon methionine

removal, while the addition of methionine to the

medium shuts off expression in approximately 5 min

(Charvin et al. 2008).

Even though a variety of microfluidic devices exist,

handling different types of analysis (large/small-scale)

or different cell types (yeast, mammalian, etc.), the

basic principle behind them remains the same

(Fig. 1b): Cells are trapped in a chamber where the

influx of media and temperature is precisely con-

trolled. The chamber is located on top of the micro-

scope objective for imaging. The commercially

available yeast flowcell from Cellasic is easy to use

and functions well for low throughput experiments

(www.cellasic.com). The high throughput system

from the Hansen group is currently the state of the art

for yeast work (Taylor et al. 2009). A similar platform

for mammalian cell imaging from the Quake lab is also

recommended (Gomez-Sjoberg et al. 2007).

Regardless of the type of experimental setting it is

important not to overexpose the cells while using

▶ fluorescence microscopy. Overexposure may lead

to cell cycle arrest and/or cell death. It is recommended

to control for overexposure by measuring cell cycle

kinetics (rate of cell division) with and without fluo-

rescence. Particular care must be taken when multiple

images of a z-section are desired. Budding and fission

yeasts are more sensitive to fluorescence imaging than

human cell lines.

http://www.cellasic.com
http://dx.doi.org/10.1007/978-1-4419-9863-7_188
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Cell Cycle Analysis, Live-Cell Imaging, Fig. 1 Two ways to

prepare yeast cells for imaging: (a). Add 3–4 ml of 1.5% low-

melt agar, heated to �60�C, to a cover glass. Leave it to cool

a few minutes and then sandwich the agar with a cover slip and

wait until the agar cools completely. Once the agar is cool,

remove the top cover glass and add the cells on top of the agar.

Cut out the region of agar containing the cells and flip it 180�

onto the imaging cover glass/dish used for microscope imaging.

(b). Schematic of a microfluidic device. Cells are grown in

a flowcell where media influx and temperature are controlled

externally
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Data Acquisition

There are two general ways to monitor cells through

time: Either track the individual cells through time or

sample large numbers of cells without replacement

(population-based measurements) after cell cycle syn-

chronization. On one hand, single-cell analysis does

not require perturbative synchronization methods,

reveals sharper transitions, and can be used to measure

cell-to-cell variation due to stochastic fluctuations.

On the other hand, population-based methods

(e.g., flow cytometry, coulter counter) can be used to

rapidly acquire large numbers of measurements, and

can be used in conjunction with standard biochemical

techniques.

Image acquisition is normally done using ▶ fluo-

rescence microscopy in combination with an addi-

tional imaging technique (e.g., bright field, phase

contrast, or differential interference contrast) to deter-

mine the location of the cells. Depending on the cellu-

lar process studied, a variety of ▶ fluorescent markers

may be used. Recent technical advances by the Tsien

group have greatly expanded the quality and color

spectrum of available fluorophores (Shaner et al.
2005). The best ▶fluorescent markers used for cell

cycle analysis have the following qualities:

• Bright enough to yield a good signal at low intensity

illumination that does not induce photodamage.

Enhanced fast folding GFP, or Venus (yellow) are

both excellent; mCherry (red) is much dimmer and

has slower maturation kinetics.

• Clearly mark one/several cell cycle events. In gen-

eral, measurements of changes in protein localiza-

tion or degradation are preferable to measurements

of changing concentration because even fast matur-

ing GFP proteins fold in ~10–15 min.

• Do not interfere with the natural function of the

fluorescently labeled protein.

Commonly used markers for some cell cycle tran-

sitions can be found in Table 1:

A novel technique for live-cell imaging developed

by the Pines group relies on a FRET (fluorescence

resonance energy transfer) sensor to measure

CDK-Cyclin B activity in single live cells (Gavet and

Pines 2010) Similarly, the Kapoor lab used FRET

probes to measure spatial and temporal gradient

of aurora B activity during mitosis in live cells

http://dx.doi.org/10.1007/978-1-4419-9863-7_188
http://dx.doi.org/10.1007/978-1-4419-9863-7_188
http://dx.doi.org/10.1007/978-1-4419-9863-7_192
http://dx.doi.org/10.1007/978-1-4419-9863-7_192
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Cell Cycle Analysis, Live-Cell Imaging, Fig. 2 (a). Compos-

ite phase and fluorescence images of budding yeast cells grown

in a flowcell with synthetic complete glucose medium (SCD).

This strain contains integrated Htb2-mCherry (a nuclear marker)

and Whi5-GFP fusion proteins (marking early G1, see table1).

Note that the cells arrest after addition of a-factor (mating

pheromone). (b). Example nuclear Whi5-GFP time series of a

cell grown in SCD. Whi5-GFP enters the nucleus at anaphase

and exits the nucleus at the point of commitment to cell division

in mid-G1. (c). Example nuclearWhi5-GFP time course of a cell

arrested in a-factor (added at time ¼ 0) and then forced out

of arrest using the inducible MET3-promoter to express the

G1-cyclin CLN2 (see text)
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(Fuller et al. 2008). The ability to measure protein

activity, rather than protein concentration, in individ-

ual cells is a great advantage because of the various

inhibiting and activating post-translational modifica-

tions affecting function. Thus, we expect FRET-based

techniques to become increasingly important.

Analysis

Image Analysis

To obtain single-cell data it is necessary to segment

(finding the cell outline) and track individual cells over

time. Segmentation is normally done on the entire cell or

on some subcellular compartment of special interest like

the nucleus (Sigal et al. 2006). In general, segmentation

starts by manipulating the original image to enhance the

difference between “cell” and “non-cell” regions. The

exact nature of this step depends on the imaging and the

markers used. Next, a threshold is applied to distinguish

cells from non-cells. After the cells are identified,

parameters useful for cell cycle data analysis such as

size, average fluorescence, and timing of signal appear-

ance/disappearance can be extracted.
Although standard algorithms and commercial

products exist for image analysis, each application

tends to be unique enough to require customization.

As the image processing needs of the scientific com-

munity increase in the coming decade, we expect com-

mercial products to improve and be more widely

applied.

An example of Cell Cycle Analysis Using Live-Cell

Imaging

A striking example of the potential in single-cell cell

cycle analysis can be seen in the work by Di Talia et al.

to measure size control in budding yeast (Di Talia et al.

2007). Yeast exhibit size homeostasis: Small cells

must grow more than larger cells through their cell

cycle (▶Cell Cycle, Cell Size Regulation). To exam-

ine this outstanding problem, Di Talia and colleagues

used yeast labeled with a Myo1-GFP fusion protein

(used to divide the cell cycle into G1 and S/G2/M

intervals) and ACT1pr-DsRed, a red fluorescent

protein under the control of the strong and constitu-

tive ACT1-promoter (used to measure cell size).

http://dx.doi.org/10.1007/978-1-4419-9863-7_8
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Cell cycle event/phase Cellular process/localization Gene(s)

Organism/

cell type Ref

Cytokinesis/G1

initiation

Disappearance of the septin ring Cdc10, Myo1 Budding

yeast

(Di Talia et al.

2007)

Start transition
(mid G1)

Whi5 export from the nucleus Whi5 Budding

yeast

(Di Talia et al.

2007)

S-phase initiation Reappearance of the septin ring Cdc10, Myo1 Budding

yeast

(Di Talia et al.

2007)

Metaphase to anaphase

transition

Nuclear separation (also gives

lineage information)

Htb2 or any other nuclear marker Budding

yeast

Many

Cell cycle transitions,

mitotic exit

Clb2 degradation/Cdc14

localization

Clb2, Cdc14 Budding

yeast

(Drapkin et al.

2009)

Mitosis Anaphase spindle status Tub1 Budding

yeast

(Drapkin et al.

2009)

G1 & G2 Sensor nuclear Proliferating cell nuclear antigen

(PCNA)-based biosensor

Human cell

line

(Hahn et al. 2009)

S Sensor nuclear at replication foci PCNA-based biosensor Human cell

line

(Hahn et al. 2009)

M Sensor located throughout the cell PCNA-based biosensor Human cell

line

(Hahn et al. 2009)

End of M-phase to

G1/S

Sensor nuclear Truncated human DNA helicase

B (HDHB)-based biosensor

Human cell

line

(Hahn et al. 2009)

S & G2, cell cycle

transitions, G2/M

Sensor cytoplasmic HDHB-based biosensor Human cell

line

(Hahn et al. 2009)

M Sensor located throughout the cell HDHB-based biosensor Human cell

line

(Hahn et al. 2009)

G1 to S & G1 Licensing Fragment of Cdt1 bound to mKO

(red/orange)

Metazoan

cells

(Sakaue-Sawano

et al. 2008)

S, G2 & M Licensing inhibition Fragment of geminin bound to

mAG (green)

Metazoan

cells

(Sakaue-Sawano

et al. 2008)
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Using these markers, Di Talia and colleagues were

able to measure both cell sizes and the duration of

G1-periods for single cells. Because individual cells

are of various sizes at birth and budding, correlation

between cell size and interval duration is possible.

Thus, single-cell variability is leveraged to infer regu-

latory properties. Di Talia et al. found that only smaller

daughter cells exhibited size control (an inverse corre-

lation between size at birth and G1 duration).
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Cell Cycle Analysis, Systematic Gene
Overexpression

Hisao Moriya

Okayama University Research Core for

Interdisciplinary Sciences, Kita-ku, Okayama, Japan
Definition

The ▶ cell cycle is achieved by the regulators that

are expressed in appropriate amounts, in appropriate

cell cycle periods. To elucidate the regulatory

mechanism of the cell cycle, experiments in which

the regulators are artificially overexpressed and the

effects are observed have often been performed. By

performing this gene overexpression experiment
(▶Cell Cycle Analysis, Systematic Gene

Overexpression) systematically, novel cell cycle regu-

lators that could not be isolated by loss-of-function

experiments can be identified. There is also an

approach to analyze ▶ robustness of the cell cycle by

measuring limits of gene overexpression.
Characteristics

Introduction

Overexpression is artificially performed by ▶ pro-

moter-swapping or copy number increase of the target

gene. In model organisms in which these genetic

manipulations are available, the cell cycle analyses

by the systematic gene overexpression have been

performed. Genes produce cell cycle defects upon

overexpression have been isolated by the phenotype

of transformed cells or individual organisms with

cDNAs or genomic fragments expressed under the

control of strong inducible promoters. In the post-

genomic era, DNA libraries containing each of every

protein-coding sequence on the genome have been

constructed. Using those libraries, genuine whole

genome overexpression-based screenings have been

performed. Currently the budding yeast is the only

model organism in which these analyses have been

done.

In addition to the screening, there is an approach to

study the robustness of the cell cycle by the systematic

measurement of limits of overexpression of the cell

cycle–related genes. The limit data was also used to

evaluate and refine an integrative cell cycle model. The

concrete examples of the cell cycle analysis of individ-

ual model organisms using systematic gene

overexpression are introduced below.

Budding Yeast (Saccharomyces cerevisiae)

Several extensive screenings to identify genes that

cause the cell cycle defect upon overexpression have

been performed in the budding yeast (Stevenson et al.

2001; Sopko et al. 2006; Niu et al. 2008). In all these

studies, GAL1 promoter by which the target gene is

highly expressed in galactose medium was used, and

▶ flow cytometry was used to detect the cell cycle

defects. Through these analyses, about 250 genes

were identified. Because the set of genes includes

cyclin genes that play central roles in the cell cycle,

the set should include the genes directly involved in the

http://dx.doi.org/10.1007/978-1-4419-9863-7_32
http://dx.doi.org/10.1007/978-1-4419-9863-7_115
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cell cycle regulation. On the other hand, many genes

those are known to be involved in other processes than

the cell cycle were also identified, though for all

genetic experiments it is difficult to circumvent

obtaining indirect factors.

Along with the extension of our understanding of the

cell cycle mechanisms, an integrative mathematical

model of the cell cycle has been constructed (Chen

et al. 2004). Robustness against parameter fluctuations

is useful to evaluate the plausibility of biological models

(Morohashi et al. 2002). By measuring limits of gene

overexpression systematically, promoter of the cell

cycle of real cell against (gene expression) parameter

fluctuations can be measured. genetic Tug-Of-War

(gTOW) method is used for this purpose. In gTOW,

instead of promoter swapping, the target gene with its

native promoter is cloned into a plasmid of which the

copy number increases in the leucine-limiting condition.

If overexpression of the target gene causes the cell cycle

defect, the copy number of the plasmid (and the gene)

per cell must be less than the overexpression limit.

Using gTOW, limits of overexpression of about 30 cell

cycle regulator genes were measured, and the data was

used to evaluate and refine the integrative mathematical

model (Moriya et al. 2006; Kaizu et al. 2010).

Fission Yeast (Schizosaccharomyces pombe)

The fission yeast is another model organism in which

the regulatory system of the cell cycle has been exten-

sively studied. In this yeast, the target gene can be

artificially overexpressed using nmt1 promoter that is

induced in thiamine-limiting condition. Although the

induction of nmt1 promoter is relatively slower

(�18 h) than the budding yeast GAL1 promoter

(�1 h), defects of the fission yeast cell cycle can be

easily observed with the elongated morphology (cdc
phenotype) under the microscope. Until now, 21 genes

were isolated by the systematic screening with cdc

phenotype of the transformants of a cDNA library

(Tallada et al. 2002). Technically, genuine exhaustive

genomic screening and gTOW can be performed in the

fission yeast as well.

Higher Eukaryotes

In higher eukaryotes (multicellular organisms), in addi-

tion to the difficulty in genetics manipulations, it is

a matter how defects in the cell cycle are observed.
There are thus few examples of the systematic screen-

ings of the genes that cause the cell cycle defects upon

overexpression. In the fruit fly, there is a system (GAL4
driving systems) by which the target gene can be

overexpressed in organ specific manner. Using 2,300

fly lines in which each target locus (gene) is

overexpressed, 32 genes were isolated by the “small

eye phenotype” that is an indicator of the cell cycle

defects (Tseng and Hariharan 2002). It is estimated

that only less than 10%genes are studied in this analysis.

The Future of the Cell Cycle Analysis Using

Systematic Gene Overexpression

Genetic screening using overexpression enables us to

isolate genes that do not show any cell cycle defect

upon gene disruption. For example, cyclin genes that

make gene family in the budding yeast does not show

significant phenotype upon disruption, but they show

strong cell cycle defect upon gene overexpression.

However, while the gene knockout experiment gives

the unified result because the target gene is completely

inactivated, gene overexpression experiments usually

do not give unified results because there are many ways

to overexpress the target gene (i.e., promoter swapping

using different promoters, copy number increase),

which lead to the different expression levels. In fact,

there are surprisingly few overlaps among the gene sets

isolated in the three budding yeast genome-wide

screening described above (Niu et al. 2008).

To obtain the unified result in the overexpression of

every gene, we need to systematically measure the

overexpression limit that causes certain cell cycle

defect. An experiment to continuously observe the

cell cycle defect upon gradual increase of the target

gene expression will be a one suitable way. Such

experiment can be done in the model organisms such

as the budding yeast (e.g., Charvin et al. 2008). In

higher eukaryotes, the similar technology needs to be

developed using cultured cell first.
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Cell Cycle Arrest After DNA Damage

Jared Toettcher

University of California, San Francisco, CA, USA
Synonyms

Cell cycle arrest mechanisms; DNA damage response;

Extrinsic DNA damage checkpoints; p53 and the cell

cycle
Definition

Cell cycle arrest after DNA damage describes the

interconnection between two complex signaling pro-

cesses – DNA damage sensing and the cell cycle – by

a variety of biochemical interactions. Damage may

arise from various sources, including radiation, chem-

ical agents, or errors during DNA synthesis or cell

division. The resulting damage is sensed by

a signaling network that halts the cell cycle by modu-

lating cyclin/Cdk activity. Cell cycle arrest can be

transient to allow repair of DNA damage, or can persist

indefinitely as a senescence-like state. This essay

describes mechanisms of DNA damage-induced cell

cycle arrest, their dynamics, and their effect on even-

tual cell fate. It also discusses mathematical modeling

approaches used to gain insight into these processes.
Characteristics

Arrest Mechanisms: Connecting DNA Damage

Signaling to the Cell Cycle

Progression through the cell cycle can be viewed as

having two fundamental goals: the duplication of

genetic information during the synthesis phase

(S phase), and the division of this material among

daughter cells during mitosis (M phase) (▶Cell

Cycle of Mammalian Cells). Damage to the cell’s

DNA interferes with both goals, leading to the possi-

bility of erroneous genetic material being replicated or

partitioned among daughters. Such errors can drive

mutagenesis, and play a central role in cancer

progression.

The first line of defense against such errors is to stop

the cell cycle when damage is sensed, preventing the

initiation of DNA replication or cell division. This

process, known as cell cycle arrest, must satisfy three

criteria: it must be activated quickly after damage is

delivered, to prevent cell cycle progression in the pres-

ence of damage; it must remain active as long as

damage is present; and finally, if cells resume cycling

after arrest, they must reenter the cell cycle in the same

phase fromwhich they exited. Violation of any of these

conditions could lead to mutagenic errors. A group of

molecular interactions that transmit the presence of

damage to halt the cell cycle is known as a cell cycle
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Cell Cycle Arrest After DNA Damage, Fig. 1 DNA damage

signaling and its connection to the cell cycle. (a) DNA damage

signaling connects damage sensors to cell fate through multiple

levels of effectors. The presence of damage leads to the local

activation of sensor proteins at the damage sites. These sensors

in turn activate kinase cascades leading to growth arrest (indi-

cated by red boxes), DNA repair (green boxes) or apoptosis

(black boxes). (b) Multiple mechanisms of arrest connect DNA

damage to the cell cycle. Pictured here are arrest mechanisms

implicated in the response to DNA double-stranded breaks. Post-

translational catalytic steps (solid lines), stoichiometric inhibitor

binding (dotted lines) and transcriptional activation or repression
(dashed lines) for each arrest mechanism are indicated
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arrest mechanism. Many arrest mechanisms are

known, and can act to halt the cell cycle in G1, S,

G2, or M phase.

The DNA Damage Response: Multiple Branches

and Timescales

Damage to the cell’s DNA is sensed by proteins of

three different classes: sensors that interact directly

with damaged DNA; effectors that undergo post-

translational modification, allowing them to mediate

a downstream signaling response; and in some cases

transcription factors that mediate longer-term tran-

scriptional responses (Fig. 1a).

The first two classes – sensors and effectors – act

quickly to halt the cell cycle, and are often considered

together as the mediators of extrinsic cell cycle

checkpoints (Reinhardt and Yaffe 2009). They are

discussed in more detail in the corresponding Essay
(▶Cell Cycle Checkpoints). DNA damage leading

primarily to double-stranded breaks (DSBs) is sensed

by the Mre11-Nbs1-Rad50 (MRN) protein complex

binding at the site of damage. The MRN complex

activates an effector kinase cascade including the

phosphoinositide 3-kinase (PI3K) ataxia telangiectasia

mutated kinase (ATM) and checkpoint kinase 2

(Chk2). A positive feedback loop whereby ATM phos-

phorylates histone H2AX at the site of damage leading

to additional ATM activation ensures a strong damage

response even to a single DSB. A second PI3K, DNA-

PK, is also activated at the site of DSBs.

Other forms of damage, including DNA adducts

and single-stranded breaks (SSBs), are sensed by

a homologous, parallel kinase cascade. Again, DNA

binding proteins such as RPA localize at damage sites,

and proceed to activate kinases such as ATM-related

kinase (ATR) and thousand-and-one amino acid

http://dx.doi.org/10.1007/978-1-4419-9863-7_9
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kinase (TAO). Subsequent kinase cascades activate

checkpoint kinase 1 (Chk1) and the mitogen-activated

protein kinase p38. This is by no means an exhaustive

list of components involved in sensing and transmit-

ting damage signals, and many additional regulators

affect the activity of the components described here. In

addition, specific programs of DNA repair induced by

each damage type depend highly on the subset of

damage sensors and transducers activated as well as

the current cell cycle phase (▶DNA Repair).

In contrast to the sensor-effector machinery, much

of which is broadly conserved from yeast to mammals,

the slower transcriptional arm of DNA damage-

induced cell cycle arrest appears to be restricted to

multicellular organisms. It plays a similar role in

species ranging from Drosophila melanogaster to

humans. Its central player is the stress-induced tran-

scription factor p53. In mammals, the DNA damage

kinases p38, ATM, ATR, DNA-PK, Chk1, and Chk2

can all phosphorylate p53, protecting it from homeo-

static degradation by ubiquitin ligases such as Mdm2.

A variety of other post-translational modifications can

tune p53 stability and transcriptional activity (acetyla-

tion, methylation, SUMOylation, etc.). Elevated levels

of modified p53 lead to both the induction and repres-

sion of various genes involved in the cell cycle, apo-

ptosis, and DNA repair.

p53 activation is itself regulated by multiple posi-

tive and negative feedback loops that serve to integrate

information between cell survival and stress pathways

or maintain low levels of p53 under unstressed condi-

tions (Harris and Levine 2005). Moreover, this feed-

back regulation has consequences for p53’s temporal

activation. DSB induction across a broad range of

mammalian contexts – from cultured fibroblasts to

live mice – leads to a series of pulses of p53 activation

on a timescale of hours (Batchelor et al. 2009). It has

been shown that oscillation depends on two negative

feedback connections: p53 transcriptionally induces its

negative regulator Mdm2 as well as the phosphatase

Wip1, which can inactivate p38, ATM, and Chk2

(Batchelor et al. 2008).

The Molecular Logic of DNA Damage Signaling to

the Cell Cycle

Many connections between DNA damage signaling

and the cell cycle have been identified. These connec-

tions have largely been uncovered through experi-

ments identifying interacting partners of key cell
cycle regulators (e.g., cyclins, Cdc25 phosphatases,

Plk1), and overexpressing or disrupting them individ-

ually to induce or abrogate arrest. They act on both G1

and G2 cell cycle components by a variety of biochem-

ical mechanisms, including stoichiometric inhibition,

enzymatic modification, and transcriptional induction/

repression of cell cycle proteins.

Kinase, phosphatase and protease activity provide

the fastest mode of regulation on the cell cycle

(Fig. 1b). These connections proceed from DNA dam-

age effector kinases such as ATM, Chk1, and Chk2 to

phosphorylate various cell cycle targets. For instance,

to signal G1 arrest, ATM can phosphorylate cyclin D

to target it for degradation. ATM can also act on

G2 cells by phosphorylating Plk1, preventing cyclin

B/Cdk1 activation. The dual specificity phosphatases

Cdc25A, Cdc25B, and Cdc25C are key substrates of

the DNA damage effector kinases. Chk1 phosphoryla-

tion of Cdc25A leads to its degradation and G1 arrest,

while phosphorylation by Chk1/2 of Cdc25B/C leads

to their inhibition by 14-3-3 proteins and G2 arrest.

In addition, stoichiometric inhibitors can play

a crucial role in cell cycle regulation. The transcrip-

tional induction of these stoichiometric cell cycle

inhibitors, as well as direct transcriptional repression

of cyclins, constitutes a slower but potentially longer-

lived response to DNA damage (Fig. 1b). For instance,

p53 can induce expression of the CDK inhibitor p21

and the Cdc25C inhibitor 14-3-3s (▶CDK Inhibitors).

p53 also plays a role in the transcriptional repression of

cyclins A and B.

It should be noted that not all of these mechanisms

described in this section have been shown to be active

in all cell types, or in response to all stimuli. We still

lack a comprehensive picture of which combinations

of arrest mechanisms control an individual cell’s

response to damage. However, from those few studies

addressing combinations of arrest mechanisms in the

same cells, a key motif emerges: that of fast (post-

translational) p53-independent arrest initiation acting

in parallel with slower (transcriptional) p53-dependent

arrest maintenance. For instance, in G1 arrest induced

by ionizing radiation, cyclin D is promptly

ubiquitinated in a p53-independent fashion, followed

by the slower induction of the p53 transcriptional tar-

get p21 (Agami and Bernards 2000). Similarly, G2

arrest is induced quickly by Cdc25C phosphorylation

by Chk2, followed by p53-dependent downregulation

of cyclins A and B (Toettcher et al. 2009).

http://dx.doi.org/10.1007/978-1-4419-9863-7_725
http://dx.doi.org/10.1007/978-1-4419-9863-7_12
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Understanding Cell Cycle Arrest via Computation

Differential equation models of the cell cycle typically

undergo autonomous oscillation under normal

conditions (▶Cell Cycle Modeling, Differential Equa-

tion). Cell cycle arrest arises naturally from such

a model, when some parameter or modeled species

is modified such that oscillation ceases and

a stable steady state is reached. In contrast to the

checkpoint-centered view in which the cell cycle

“checks” the status of damage signaling before com-

mitting to S or M phase, this dynamical systems-

centered view holds that damage signaling modifies

the cell cycle oscillator such that it settles to a stable,

arrested state. Upon removal of the arrest stimulus,

the arrested state may either persist or oscillation may

resume. Notably, there is no guarantee that cycling

continues from the same phase at which it arrested.

Modeling approaches have the advantage that cell

cycle arrest mechanisms can be tested individually – or

in combination – for their ability to promptly elicit

arrest, maintain arrest, and resume cycling after dam-

age repair. An attempt to characterize all 24 possible

arrest mechanisms in a recent model of the eukaryotic

cell cycle (Csikász-Nagy et al. 2006) identified five

classes of arrest states corresponding to G1, S, G2, and

M phase arrest, as well as a G1-like state with G2 DNA

content (Toettcher et al. 2009) (Table 1). Such models

can also be fit to experimental data to determine which

classes of arrest mechanisms govern the response

in vivo. These experimentally driven approaches are

complementary to theoretical investigations of

models’ oscillation and steady state behavior using

techniques such as bifurcation analysis (▶Cell Cycle

Model Analysis, Bifurcation Theory).

The modeler faces two challenges in developing

quantitative models of DNA damage and the cell

cycle, discussed in this and the following paragraph.

First, it is crucial to inform a model by fitting its

parameters to account for a number of experimental

observations. Typical data might include the amount

time spent by freely cycling cells in each cell cycle

phase, whether certain cell cycle mutants are able to

cycle, and how protein levels change during arrest.

Fitting this data accurately and efficiently requires

computing the sensitivity of protein levels and the

times of cell cycle transitions from a model (▶Cell

Cycle Models, Sensitivity Analysis). While it is

straightforward to compute the sensitivity of protein

concentrations at fixed timepoints, it is more
challenging to compute the sensitivity of the times at
which cell cycle transitions occur. If the time of cell

cycle transition can be associated with a local maxi-

mum or minimum of the ith species concentration

(e.g., cyclin E/Cdk2 to mark the G1/S transition, or

cyclin A/Cdk1 to mark S/G2), the sensitivity of this

time t� to model parameters p can be represented as
dt�

dp
¼ Hxfi

Hxfið Þ  f
@x

@p
� Hpfi

Hxfið Þ  f

where @x
@p is the standard concentration sensitivity of

state variables x with respect to model parameters

(Rand et al. 2006). This quantitative approach enables

the generation of models that match a variety of exper-

imental observations.

Second, the modeler must be able to generate exper-

imentally relevant predictions. Many experimental

studies are based onmeasurements from large numbers

of cells. These might be either population-averaged

techniques such as Western blots, or population distri-

bution measurements such as flow cytometry (▶Cell

Cycle Analysis, Flow Cytometry). To afford compar-

ison to data, populations of models must be simulated

representing collections of cells. However, there is

a subtlety associated with properly sampling

populations of dividing cells: since a freely cycling

cell population contains twice as many newborn cells

as cells that are just about to divide, the distribution of

cell ages in the population is skewed toward younger

cells. Generally, the probability of finding a cell at age

t since its last division can be represented by the

relation

pðtÞ ¼ 2 ln 2ð Þ2�t=T

where T is the cell cycle length (Mitchison 1971).

Thus, the modeler must sample the model’s initial

states according to this distribution. A corollary to

this observation is that the fraction of freely

cycling cells observed in G1, S, and G2 (e.g., by

flow cytometry) is not equal to the amount of

time spent by a cell in those phases, but must be

corrected accordingly.

Consequences of Cell Cycle Arrest

Cell cycle arrest is typically considered to be

a temporary and reversible state, persisting until dam-

age is repaired, after which cycling is resumed. This is

http://dx.doi.org/10.1007/978-1-4419-9863-7_23
http://dx.doi.org/10.1007/978-1-4419-9863-7_23
http://dx.doi.org/10.1007/978-1-4419-9863-7_28
http://dx.doi.org/10.1007/978-1-4419-9863-7_28
http://dx.doi.org/10.1007/978-1-4419-9863-7_30
http://dx.doi.org/10.1007/978-1-4419-9863-7_30
http://dx.doi.org/10.1007/978-1-4419-9863-7_32
http://dx.doi.org/10.1007/978-1-4419-9863-7_32


Cell Cycle Arrest After DNA Damage, Table 1 Computational analysis of individual arrest mechanisms affecting eight key cell

cycle species by stoichiometric inhibition, enzymatic inactivation, or transcriptional repression. Entries are grouped first by the arrest

state induced by the each mechanism, and second by the species inhibited

Arrest type Inhibited species Stoichiometric Enzymatic Transcriptional

G1 Cyclin D ✓ ✓ ✓

Cyclin E ✓ ✓ ✓

S Cdc25 ✓ ✓ ✓

Cyclin B ✓ ✓

G2 E2F ✓ ✓ ✓

Cyclin A ✓

M APCCdh1 ✓ ✓ ✓

Cdc20 ✓ ✓ ✓

G1 cyclins; 8N DNA Cyclin A ✓ ✓

Cyclin B ✓

✓ Predicted to cause cell cycle arrest
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indeed in many contexts, especially for low levels of

damage where repair is concluded quickly. However,

two alternatives to this course of action can be

observed: adaptation, in which cells resume cycling

even in the presence of damage; and senescence,

where cells remain arrested permanently, even after

damage is repaired. Adaptation plays a role in bacteria

and yeast, but is largely detrimental to multicellular

organisms due to the risk of mutagenesis it carries.

In contrast, senescence is the safest course of action,

provided nearby undamaged cells can compensate for

the loss of the damaged cell’s replicative capacity.

A growing body of work suggests a connection

between senescence and DNA damage (Toettcher

et al. 2009; Bartkova et al. 2006; Di Micco et al.

2006). A senescence-like arrest state can result from

DSB-inducing irradiation (Toettcher et al. 2009), and

the DSB response is required for oncogene-induced

senescence (▶Cell Cycle, Cancer Cell Cycle and

Oncogene Addiction) (Bartkova et al. 2006; Di

Micco et al. 2006). During this response, even G2-

arrested cells appear to enter a G1-like arrest state,

with high levels of cyclin E and p21, and low levels

of cyclins A and B. When such an arrest state is

disrupted (e.g., by deletion of p21) cells can undergo

a second round of DNA replication, a phenomenon

known as endoreduplication (▶Endoreplication).
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▶Cell Cycle Arrest After DNA Damage
Cell Cycle Checkpoints
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Synonyms

Adaptation; Cell cycle; DNA damage checkpoint;

Recovery; Spindle checkpoint.
Definition

In this entry we describe the molecular mechanisms of

the cell cycle checkpoints. We focused our attention on

the DNA damage checkpoint and on the spindle assem-

bly and spindle positioning checkpoints, controlling

chromosome segregation in mitosis.
Characteristics

Intrinsic and Extrinsic Cell Cycle Checkpoints

The checkpoints are evolutionarily conserved surveil-

lance mechanisms controlling the order and timing of

cell cycle transitions. They are organized as signal
transduction cascades blocking or slowing down cell

cycle progression at specific stages. Checkpoints are

triggered by sensor proteins detecting, directly or indi-

rectly, cell cycle perturbations and transmitting the

signal, through the action of protein kinases, to effector

proteins that stop cell cycle progression until the signal

activating the checkpoint has been turned off. These

mechanisms have been highly conserved during evo-

lution, and checkpoint defects result in genome insta-

bility, which is frequently associated to tumor

development. The checkpoint controls are elicited

through molecular events regulating their activation,

maintenance, and inactivation resulting, respectively,

in cell cycle arrest, maintenance of the arrest for

a certain time and recovery of cell cycle progression.

These surveillance mechanisms can be divided into

intrinsic regulatory pathways, ensuring the orderly

progression of cell cycle events under physiological

conditions, and extrinsic pathways that are activated in

response to specific clues, such as damage to DNA or

cellular structures. The intrinsic checkpoints act by

controlling the activity of cell cycle dependent kinases

(CDKs) mainly at the G1/S boundary and at the meta-

phase to anaphase transition in mitosis; such mecha-

nisms are described in other entries of the

encyclopedia.

DNA Damage Checkpoints

The DNA damage checkpoint is required for the effi-

cient response to genotoxic stress. The checkpoint is

activated when lesions in the DNA are detected and the

mechanisms involved differ slightly at various cell

cycle phases. DNA damage during the G1 phase acti-

vates the G1/S checkpoint preventing entry into

S phase. The presence of DNA lesions while cells rep-

licate their genome slows down the kinetics of DNA

replication (intra-S checkpoint), and if the chromo-

somes are damaged in G2, the activation of the G2/M

checkpoint avoids chromosome segregation before

repair.

Precise and complete DNA replication in every cell

cycle and repair of DNA lesions are critical for the

maintenance of genetic stability; failures in these pro-

cesses reduce cell survival and lead to cancer suscep-

tibility. Cell cycle arrest is not the only final outcome

of the DNA damage checkpoint response; indeed, it

has been demonstrated that checkpoint activation reg-

ulates the choice of recombination pathways, influ-

ences transcription of DNA repair genes, stabilizes

http://dx.doi.org/10.1007/978-1-4419-9863-7_47
http://dx.doi.org/10.1007/978-1-4419-9863-7_896
http://dx.doi.org/10.1007/978-1-4419-9863-7_115
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http://dx.doi.org/10.1007/978-1-4419-9863-7_101381


Cell Cycle Checkpoints, Table 1 Major orthologous checkpoint proteins in budding yeast and mammalian cells

S.cerevisiae Mammal Function

RFA 1, 2, 3 RPA 1, 2, 3 ssDNA binding protein

MEC1/DDC2 ATR/ATRIP Sensor (PI3K kinase)

TEL1 ATM Sensor (PI3K kinase)

DDC1-RAD17-MEC3 RAD9-RAD1-HUS1 Sensor (9-1-1 PCNA-like clamp)

DPB11 TOPBP1 Relevant for MEC1/ATR activation

RAD9 BRCA1/53BP1 Adaptor

MRE11-RAD50-XRS2 (MRX) MRE11-RAD50-NBS1 (MRN) Lesion processing

SAE2 CtIP Lesion processing

SGS1 BLM, WRN Lesion processing

EXO1 hEXO1 Lesion processing

CHK1 CHK1 Effector kinase (S/T kinase)

RAD53 CHK2 Effector kinase(S/T kinase)
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stalled replication forks and, in multicellular eukary-

otes, it may promote apoptosis when the damage is

irreparable.

MEC1/ATR DNA Damage Checkpoint Signaling

In Saccharomyces cerevisiae, the two main players of

the DNA damage checkpoint activated in response to

many DNA helix-distorting lesions are two kinases

encoded by the MEC1 and RAD53 genes. They are

the orthologues of ATR and CHK2 in human cells

(Table 1).

In budding yeast, MEC1 acts as the apical kinase

in the checkpoint cascade and likely senses

abnormal amounts of single-stranded (ss) DNA

stretches covered by the replication protein A (RPA),

which are generated by processing of various DNA

lesions (Fig. 1).

RPA-coated ssDNA is thought to recruit the apical

checkpoint kinase (MEC1-DDC2 or TEL1, in budding

yeast; ATR-ATRIP or ATM in mammalian cells), and

the 9-1-1 complex (RAD17-MEC3-DDC1 in budding

yeast) triggering the signal transduction cascade (Zou

and Elledge 2003). As a consequence of this activation,

MEC1 phosphorylates, directly or indirectly, a number

of factors (e.g. DDC2, H2A, DDC1, RAD9, DPB11/

TOPB1, RAD53/CHK2, CHK1, etc.) and these subse-

quent phosphorylation events are used to follow

the signal through the cascade (Fig. 1). Activated

RAD53/CHK2 amplifies the signal through

autophosphorylation events and inhibits the cell cycle

machinery by phosphorylating various targets, leading

to cell cycle arrest (Harrison and Haber 2006).
RAD53/CHK2 and CHK1 activation influence various

DNA metabolic pathways, like homologous recombi-

nation, origin firing during S phase, nuclease activity,

and gene expression.

Another essential player of checkpoint activation is

represented by the 9-1-1 complex. This heterotrimeric

complex show limited sequence homology to the

PCNA homotrimeric clamp and it is therefore often

referred to as the checkpoint clamp (Table 1 and

Fig. 1). The 9-1-1 complex is loaded onto DNA by

a checkpoint clamp loader, a form of replication factor-

C (RFC), in which the RFC1 subunit is substituted by

RAD24 (S. cerevisiae) or RAD17 (mammalian cells)

(Majka and Burgers 2003). The 9-1-1 clamp promotes

checkpoint activation in vivo by influencing MEC1/

ATR recruitment and its substrate specificity; the 9-1-1

clamp has a role in modulating chromatin binding of

RAD9/53BP1 and subsequent RAD53/CHK2 phos-

phorylation events.

Checkpoint Signaling in Response to Double

Strand Breaks (DSBs)

When the DNA integrity is challenged by discontinu-

ities in the helix backbone, as those generated by

double strand breaks, the checkpoint human kinase

ATM is loaded near the DSBs and, together with

ATR, activate the checkpoint response. ATM activa-

tion requires the presence of the MRN complex, which

has a DNA tethering capacity and possesses both endo-

and exo-nucleolytic activities. Although the nuclease

activity of the MRX/MRN complex is not critical for

checkpoint activation, the presence of a physically
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assembled complex and the action of other nucleases

and helicases (such as EXO1 and SGS1) are important.

In S. cerevisiae TEL1, the ATM orthologue, partic-

ipates only marginally in the checkpoint response

induced by a single DSB, but its role becomes relevant

in the presence of multiple DSBs and/or when the

initiation of DSB ends processing is defective. In this

organism, a single irreparable DSB triggers the MEC1

pathway, which is activated by extensive resection of

the DSB DNA ends (Lazzaro et al. 2009). If the break

is not rapidly repaired, nucleolytic activities produce

long ssDNA regions that, via the ssDNA binding pro-

tein RPA, recruit MEC1 activating the checkpoint

cascade (Fig. 1).

Chromatin Remodeling and Checkpoint

Maintenance

Chromatin modifications contribute to checkpoint func-

tion. In fact, histone proteins are also modified in

response to DNA damage. In S. cerevisiae, the Ser129

residue of H2A is phosphorylated in aMEC1-dependent
manner in response to a variety of genotoxic treatments

and the modified gH2A molecules localize near a DSB

(van Attikum and Gasser 2009); the same modification

occurs on the Ser139 conserved residue of the mamma-

lian H2AX histone variant. It is assumed that RPA-

coated ssDNA is required to activate the checkpoint,

but the MEC1/ATR and TEL1/ATM-dependent phos-

phorylation of the H2A/H2AX histones (Fig. 1) is rele-

vant for checkpoint maintenance, since in its absence

the checkpoint signal is turned off prematurely. In yeast,

one of the major roles of H2A phosphorylation is the

recruitment of chromatin remodeling complexes near

the DNA lesions. Another histone modification impor-

tant for the activation of the DNA damage checkpoint is

methylation of Lys79 of histone H3 (H3-Lys79Me) by

the specific methyl transferase DOT1. In fact, the main

mediator proteins in the checkpoint cascade (RAD9 in

S. cerevisiae and 53BP1 in mammals) can be recruited

near a chromatin damaged site through two parallel

pathways. The first one is dependent upon H3-Lys79

methylation, while the second pathway acts through
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the function of the DPB11/TOPB1 adaptor proteins

(Fig. 1).

Turning Off the DNA Damage Checkpoint Signal

In cells with repairable DNA damage, the checkpoint

arrest is maintained until repair is completed. Then,

cells can resume the cell cycle turning off the check-

point signal in a process known as recovery. Instead, if

an irreparable lesion is present, cells eventually over-

ride the cell cycle arrest in a process called adaptation.

In mammals, it has been proposed that adaptation to

damage is linked to cancerogenesis and, likely, this

event is normally prevented by inducing the apoptotic

pathway. Inactivation of the RAD53 kinase is required

to recover from checkpoint-mediated cell cycle arrest

in S. cerevisiae. Various protein phosphatases, includ-

ing PTC2, PTC3, PPH3, and GLC7, have been found

to be important for checkpoint inactivation. Interest-

ingly, their relative contribution to the recovery pro-

cess seems to be influenced by the type of genotoxic

stress causing checkpoint activation (DSBs, alkylating

agents, hydroxyurea). The same phosphatases act on

phosphorylated gH2A and, not surprisingly, homolo-

gous phosphatases influence checkpoint inactivation

also in human cells.

While it was somehow expected that reversal of

checkpoint signaling would involve the action of phos-

phatases acting on the master effector kinases of the

cascade, it was interesting to learn that POLO-like

kinases (such as PLK1 and CDC5) also play an impor-

tant role in switching off the checkpoint. It is likely that

recovery and adaptation, being two sides of the same

coin, are going to share common players and mecha-

nisms. However, genetic screenings in budding yeast

revealed that some mutations allow to distinguish

between the two processes. For example, the cdc5-ad
allele and deletions of certain recombination genes

(such as KU70/80, TID1 and RAD51) prevent the

adaptation process without affecting recovery.

S. cerevisiae Spindle Assembly and Spindle

Position Checkpoints

Chromosome segregation at mitosis is controlled by

two surveillance mechanisms: the spindle assembly

and the spindle positioning checkpoints. Accurate seg-

regation requires bipolar attachment of sister chroma-

tids to the mitotic spindle, which is mediated by

a proper connection between kinetochores and spindle

microtubules. Kinetochore capture and microtubules
bi-orientation are stochastic processes taking

a variable amount of time to complete. During that

time individual chromosomes may be detached from

the microtubules or be connected only to one spindle

pole. The spindle assembly checkpoint (SAC) delays

the metaphase to anaphase transition until the sister

chromatids are properly attached to the spindle in

a bipolar orientation. In budding yeast, cell cycle arrest

at the G2/M transition is mediated by inhibition of the

CDC20-anaphase promoting complex (APC) ubiquitin

ligase, thus preventing proteolysis of the securin PDS1

until complete bi-orientation is achieved (Fig. 2).

Checkpoint proteins (MAD1, MAD2, BUB1,

BUBR1, BUB3, and MPS1) all accumulate at unat-

tached kinetochores and form various complexes,

many of which can inhibit the APC (Fang et al. 1998)

(Fig. 2). APC is a multiprotein complex that targets

several proteins for degradation during mitosis through

the associated specificity factor CDC20. Securin and

cyclins are ubiquitylated by CDC20-APC; therefore, to

delay anaphase onset in the presence of spindle

defects, the checkpoint must block CDC20-APCmedi-

ated PDS1 degradation. Experimental evidence sug-

gests that in response to spindle defects, MAD2

exchanges from a MAD1/MAD2 complex to

a CDC20/MAD2 complex sequestering CDC20 away

from the APC and blocking PDS1 degradation (Fig. 2).

In S. cerevisiae, spindle misorientation is detected

by the spindle positioning checkpoint (SPOC) which

prevents mitotic exit. The target of this control is the

mitosis exit network (MEN), and more specifically the

activation of the TEM1 GTPase (Adames et al. 2001).

TEM1 cycles between GDP- and GTP-bound states,

regulated by the putative guanine nucleotide exchange

factor (GEF) LTE1 and the two-component GTPase

activating protein (GAP) BFA1/BUB2. The last one

recruits TEM1 to the bud-directed spindle pole, where

TEM1 is kept inactive until the pole crosses the neck

into the bud. GTP-TEM1 then binds to the protein

kinase CDC15, which phosphorylates and activates

the protein kinase DBF2. MOB1 binds to DBF2 and,

in a poorly understood manner, MOB1/DBF2 stimu-

lates the release of the CDC14 phosphatase from the

nucleolus and contributes to cytokinesis. CDC14

dephosphorylates CDH1, leading to the activation of

CDH1-APC complex, which triggers cyclin degrada-

tion and exit from mitosis. A possible crosstalk

between the SAC and SPOC is likely, but not yet

fully demonstrated (Lew and Burke 2003).
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Summary

The maintenance of genome stability is an essential

process, which needs a careful control. Indeed, all

eukaryotic cells evolved surveillance mechanisms,

called checkpoints, sensing the presence of DNA

damage in the genome or alterations in cellular

structures controlling chromosome segregation in

mitosis. DNA integrity can be challenged by lesions

caused by a variety of chimico-physical agents,

or by replication stress caused by special DNA

structures or by a limited supply of deoxyribonucle-

otides. The DNA integrity checkpoint is a signal

transduction cascade conserved from yeast to man

and the apical factors in the pathway are protein

kinases. The spindle assembly checkpoint controls

the status of kinetochore/microtubule attachment

delaying exit from mitosis until all kinetochores

have formed correct bipolar connections with the

spindle. In budding yeast, and likely in all eukary-

otes, the alignment of the mitotic spindle with the
axis of cell polarity is controlled by another surveil-

lance mechanism, called the spindle positioning

checkpoint.
Cross-References

▶DNA Damage

▶DNA Repair

▶Histones

▶Kinetochores

▶Mitosis

▶ Protein Kinases

▶ Phosphatases
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Definition

Cell cycle data analysis is an umbrella term used to

describe a variety of related methods for analyzing

large datasets related to the cell cycle. These data

typically come in the form of time courses a high-

throughput assay, for example, DNA microarrays, are

applied to samples from multiple time points during

one or more cell cycles. Key aspects of cell-cycle

analysis include data quality assessment, identification

of cell-cycle-regulated genes and proteins, integrative

analysis of different data types, and evolutionary com-

parisons across species.
Characteristics

Like in many other parts of molecular biology, the

advent of high-throughput assays has had a major

impact on cell-cycle research. ▶DNA microarray

technologies have been particularly influential, as
they enabled systematic, genome-wide studies of

▶ gene expression through the cell cycle of

a ▶model organism (▶Cell Cycle Analysis, Expres-

sion Profiling). Today several such studies have been

performed, measuring the expression of every gene at

many time points during the cell cycles of budding

yeast (▶Cell Cycle, Budding Yeast), fission yeast

(▶Cell Cycle, Fission Yeast), and cell lines of

human (▶Cell Cycle of Mammalian Cells) or plant

origin. Other large-scale studies include mass spec-

trometry data on protein levels and phosphorylation

states in different phases of the cell cycle and system-

atic screens for substrates of cyclin-dependent kinases

(▶Cyclins and Cyclin-dependent Kinases).

The sheer size of these types of datasets implies that

computational methods are needed to analyze them.

Because most of the datasets are expression time

courses covering one more cell cycles, a central prob-

lem is to identify cell-cycle-regulated (cycling) genes

or proteins based on expression profiles. This is

a nontrivial problem because the data may contain

considerable amounts of noise and because they may

contain other biological signals than the one of interest

(e.g., stress response caused by the synchronization of

cell cultures). Over the past few years numerous

methods for identification of cycling genes have been

developed; a brief description and a ▶ receiver oper-

ating characteristic (ROC) curve can be found for most

of them in Gauthier et al. (2010). Key features of all the

best performing approaches are that they integrate all

available data, that they search specifically for

a ▶ periodic oscillation consistent with the length of

the cell cycle, and that they take into account the

▶ oscillation amplitude (as opposed to only the

period).

The availability of genome-wide expression data

frommultiple model organisms also allows for analyses

of the evolution of cell-cycle regulation. Once a set of

cycling genes or proteins has been identified for each of

several organisms, cross-species comparisons can be

performed (de Lichtenberg et al. 2008). Mapping the

expression data onto ▶ functional modules and com-

plexes can give a higher-level view of cell-cycle regu-

lation that is not obvious from analyses performed at the

level of individual genes or proteins (de Lichtenberg

et al. 2008). Finally, correlations can be discovered

between different layers of cell-cycle regulation –

for example, transcriptional and post-translational

regulation – by using ▶Fisher’s exact test to compare

http://dx.doi.org/10.1007/978-1-4419-9863-7_743
http://dx.doi.org/10.1007/978-1-4419-9863-7_819
http://dx.doi.org/10.1007/978-1-4419-9863-7_76
http://dx.doi.org/10.1007/978-1-4419-9863-7_31
http://dx.doi.org/10.1007/978-1-4419-9863-7_31
http://dx.doi.org/10.1007/978-1-4419-9863-7_16
http://dx.doi.org/10.1007/978-1-4419-9863-7_17
http://dx.doi.org/10.1007/978-1-4419-9863-7_20
http://dx.doi.org/10.1007/978-1-4419-9863-7_10
http://dx.doi.org/10.1007/978-1-4419-9863-7_242
http://dx.doi.org/10.1007/978-1-4419-9863-7_242
http://dx.doi.org/10.1007/978-1-4419-9863-7_520
http://dx.doi.org/10.1007/978-1-4419-9863-7_523
http://dx.doi.org/10.1007/978-1-4419-9863-7_478
http://dx.doi.org/10.1007/978-1-4419-9863-7_478
http://dx.doi.org/10.1007/978-1-4419-9863-7_451


C 260 Cell Cycle Database
the gene and protein lists obtained through analysis of

different types of high-throughput data (de Lichtenberg

et al. 2008).
Cross-References
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▶ Fisher’s Test

▶ Functional Modules and Complexes

▶Gene Expression

▶Model Organism

▶Oscillation Amplitude

▶ Periodic Oscillation
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Synonyms

Cell division database
Definition

The Cell Cycle Database is a biological resource,

which collects the most relevant information related
to genes and proteins involved in human and yeast cell

cycle (see also ▶Cell Cycle, Biology) processes, one

of the most studied complex system in biology (see

also ▶Complex System). The database, which is

accessible at the web site http://www.itb.cnr.it/

cellcycle, has been developed in a systems biology

context, since it also stores the cell cycle mathematical

models (see also ▶Mathematical Model, Model The-

ory) published in the recent years, with the possibility

to simulate them directly from the web interface. Cell

cycle information from humans is primary considered

since this resource aims to support biomedical studies

in the context of cancer research. Then the database

content is extended toward the budding yeast cell cycle

because of the genomic similarity between human and

budding yeast and the large number of models avail-

able for this organism. According to this choice, the

data integration (see also▶Data Integration) concerns

all genes and proteins involved in the cell cycle models

of both the budding yeast S. cerevisiae and the

H. sapiens. This information is taken from the most

recent literature and plays a crucial role to contextual-

ize behavior of each cell cycle component.
Characteristics

Motivation

The aim of our initiative is to give an exhaustive view

of the cell cycle process starting from its building

blocks, genes and proteins, arriving to the pathway

they create, represented by the models, as summarized

in Fig. 1.

The principal goal here is the integration of cell

cycle information, which can be useful for researchers

in the context of systems biology studies. From the

user’s point of view, this initiative presents two impor-

tant features: the first is a data integration system for

genes and proteins involved in yeast and human cell

cycle processes; the second is a section dedicated to

cell cycle models and their mathematical simulation.

The significant information related to cell cycle

genes and proteins is a useful annotation of the models’

components and facilitates the exploration of the

relevant features of the whole network. The structure

of this resource allows the storage of new data deriving

from cell cycle models (▶Cell Cycle Models, Sensi-

tivity Analysis), due to its particular structure and the

pipeline for the automatic data updating: the database
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Cell Cycle Database, Fig. 1 Architecture of the Cell Cycle

Database. The core of the resource is a data warehouse system,

which collects data from the most relevant bioinformatics

resources (Data Sources) and provides links to external

resources (Linked Resources). The Cell Cycle Database com-

prises user-friendly interfaces which show information and, in

general, provide the functions of the resource, even relying on

third party free software
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administrator can update the database content by

gene or protein name through the web interface.

When a new entry is inserted in the core table, all

the external tables will be updated in cascade,

while when a new entry is inserted in one of the

external table no inward updating occurs. As a result

all tables of the database are updated according to the

infrastructure, which is designed for automated data

integration.

This database is able to collect the most important

information related to cell cycle genes and proteins,

which are drawn from the analysis of the cell cycle

information available in literature and the existing

pathway databases. The database also contains pro-

tein-protein interactions taken from several resources

making the information on the cell cycle interaction

network as complete as possible.
Furthermore, a repository of the most recent

published cell cycle models to allow the exploration

of their mathematical structure through SBML (Sys-

tems Biology Markup Language) (Hucka et al. 2003)

components and their mathematical simulation is

available.

Functionality

The database stores 26 models of the cell cycle inter-

action networks and it allows the mathematical simu-

lation over time of the quantitative behavior of each

model component. To accomplish this task, a web

interface for browsing information related to cell

cycle genes, proteins, and mathematical models is

available.

Models and proteins information are directly linked

in the resource: for each protein we provide
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information on the models in which it is involved. In

the protein report a list of the published models is

available with a direct link to the specific model report.

In this framework a pipeline, which allows users

to deal with the mathematical part of the models, in

order to solve, using different variables, the ordinary

differential equation systems that describe the biolog-

ical process, has been implemented. Up to now among

the 26 models stored in the database, 13 models have

the related SBML file and for 12 of them it is possible

to run simulations.

The flexibility of this database allows the addition of

mathematical data, which are used for simulating the

behavior of the cell cycle components in the different

models. The resource is useful both to retrieve informa-

tion about cell cycle model components and to analyze

their dynamical properties. The Cell Cycle Database

can be used to find system-level properties, such as

stable steady states and oscillations, by coupling struc-

ture and dynamical information about models.

Accessibility

The web interface allows to retrieve model-related

information and a pipeline has been implemented to

deal with the mathematical part of the models, in order

to solve the ordinary differential equations systems

that describe the biological processes. This pipeline

essentially consists in the XHTML-MML-XSL style

sheet implementation, as it will be discussed below. In

fact, using this system it is possible to visualize the

mathematical description of the model and to run sim-

ulations by introducing modifications of the initial

conditions of state variables and parameters.

Each model is presented in a report structured in

three sections: the publication data, the SBML data

structure, and the numerical simulation part. The first

section contains the detailed publication data, the dia-

gram of the model, the related XML file, and the list of

all the proteins involved in the model, which are linked

to the related Cell Cycle Database protein report.

In the SBMLdata structure section, users can explore

the SBML components of the selected model including

its mathematical expressions. Mathematical formulas

within the SBMLmodels are expressed using the Math-

ematical Markup Language (MML). To visualize the

expressions on the web our resource relies

on a XHTML + MML page, following the w3c specifi-

cations. In this pageMML is in-lined with HTML and at
the beginning of the page an instruction calls a XSL

stylesheet, which allows the formulas to be viewed

correctly. This technology allows using the browser

functions to find strings insidemathematical expressions

and to change their size, operations which are usually

not possible using images to represents formulas.

The simulation section allows users to simulate

a model using the software XPPAUT (Ermentrout

2002) and to plot results on the fly in order to capture

the dynamical properties of the biological process. In

order to enable the simulation, this section lists the

model species (state variables, typically protein con-

centrations), its parameters (such as kinetic constants),

its algebraic rules, and XPPAUT internal options,

using default values. Users can change the initial

values in order to analyze the different natures of the

system dynamics, performing sensitivity and bifurca-

tions analysis. Once the computation is completed

users can download XPPAUT input and output files

and plot results. The web interface allows users to plot

both time courses and phase diagrams for each model

after the simulation step. Results are shown with

images exported by GNUPLOT (Williams and Kelley

1998), the popular portable command-line function

plotting software.

Model Annotation

As the primary data source we consider the BioModels

Database (Le Novere et al. 2006) from which we

collect the mathematical model specifically developed

for yeast and mammalian cell cycles. We also integrate

other published models, which are not stored in the

BioModels Database, manually retrieving them from

literature or from the CellML repository (Cuellar et al.

2003).

Each model is presented in a report, which is struc-

tured in three sections: the publication data, the SBML

data structure, and the numerical simulation part. The

first section contains the detailed publication data

(such as the authors, PubMed ID, the abstract, and

journal information), the diagram of the model and

the related XML file, if available, and the list of all

the proteins involved in the model, which are linked to

the related Cell Cycle Database protein report. The

protein identifiers are chosen according to the UniProt

Database annotation.

More in detail, the Cell Cycle Database contains the

literature information related to each model, the input



Cell Cycle Dynamics, Bistability and Oscillations 263 C

C

for the simulation software, and the XML file coded

with SBML specifications (Hucka et al. 2003). We

choose SBML since it is an internationally supported

and widely used language for metabolic networks,

cell-signaling pathways, regulatory networks, and

many other biological pathways. However, there

are published cell cycle models not yet implemented

in SBML: for this reason, some SBML models

included in the database are manually generated

using the JigCell Model Builder software (Vass et al.

2004), a model editor which allows the construction

of biochemical reaction networks in SBML

format, and are validated using the Systems Biology

Workbench SBML validator. Mathematical formulas

within the SBML models are expressed using

Mathematical Markup Language (MathML or MML)

(▶Systems Biology Markup Language (SBML);

▶MathML) (Ausbrooks et al. 2003).

Model Curation

As discussed before, the Cell Cycle Database contains

models from Biomodels, literature, and authors’

websites, where available. Concerning the models

from Biomodels, the model curation is ensured from

the database reliability, which we trusted in. To ensure

the model curation for the literature models, we tested

and simulated them in order to reproduce the results

shown in the related publication papers.

New Model Additions

The addition of new model in the Cell Cycle

Database is manually curated. We periodically mon-

itor both Biomodels and CellML repositories and

select the new cell cycle models. Moreover we peri-

odically analyze literature publications in order to

discover new mathematical models about the cell

cycle which are not stored in the model repositories.

New models will undergo the annotation process

described before and they will be included in the

database.
Cross-References

▶Cell Cycle, Biology

▶Complex System

▶Data Integration

▶Mathematical Model, Model Theory
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Multiple steady states; Toggle switch
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A molecular regulatory system can maintain itself

indefinitely at a steady state where, for every time-
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chemical is exactly balanced by its total rate of

removal. In mathematical terms, we can write
dxi
dt
¼ fi x1; x2; :::; xnð Þ � ri x1; x2; :::; xnð Þ;

i ¼ 1; :::; n
(1)

where xi is the concentration of species i, and fi(x1,
x2, . . ., xn) and ri(x1, x2, . . ., xn) are its rates of formation

and removal. At a steady state, dxi/dt ¼ 0 for all i,
fi x1; x2; :::; xnð Þ ¼ ri x1; x2; :::; xnð Þ; i ¼ 1; :::; n: (2)

For any well-specified chemical reaction network,

there always exists at least one steady state solution;

call it x0 ¼ x01; x
0
2; :::; x

0
n

� �
. Such a steady state can be

classified as either stable or unstable with respect

to small perturbations away from the steady state. If

all small perturbations (in any direction in the

n-dimensional state space of the reaction network)

eventually return to x0, then this steady state is said

to be (locally asymptotically) stable. If there exist

small perturbations (in some particular directions in

state space) that depart from x0 and never return, then

the steady state is said to be unstable.

Since the rates of formation and removal of any

chemical species in a reaction network are algebraic

functions of species concentrations, Eq. 2 is a system

of n nonlinear algebraic equations, which in general

may have multiple solutions in the positive orthant: xi
� 0 for all i. In this case, we can denote the different

steady states as x0j, where j ¼ 1, . . ., m. A typical

situation is the case of three steady states (m ¼ 3),

where two of the steady states are stable and one is

unstable. This case is called bistability. In general,

there may be more than two stable steady states, in

which case we refer to tristability or multistability. We

may describe a system with m > 1 as having multiple
steady states when we are not sure of the total number

of stable steady states.

Bistability is a typical feature of reaction networks

with positive feedback, although one must be aware

that positive feedback is not always readily apparent in

reaction networks as they are conventionally drawn.

Double-negative feedback is a particularly common

motif for bistability: X1 inhibits X2, and X2 inhibits

X1. In this case, the two stable steady states are
(X1 active, X2 inactive) and (X1 inactive, X2 active).

The intermediate steady state (X1 semi-active, X2

semi-active) is unstable.

Multistability plays an important role in the theory

of cell cycle progression. It is proposed that the

characteristic states of cell cycle arrest (G1-arrest,

G2-arrest, metaphase-arrest) correspond to alternative

stable steady states of the underlying chemical reaction

network controlling the activities of cyclin-dependent

kinases (CDKs). In this view, cells progress through

the cell cycle (G1 ! S/G2 ! M ! G1 ! . . .) by

irreversible transitions from the G1 steady state to the

S/G2 steady state (the G1-S transition, also called

“Start” or the “Restriction Point”), from the S/G2

steady state to theM steady state (the G2-M transition),

and from the M steady state to the G1 steady state (the

metaphase-anaphase transition, also called “exit from

mitosis”). In this view, cell cycle checkpoints work by

stabilizing one of these three steady states and

preventing the transition to the next phase of the cell

cycle.

Bistability is intimately connected to the

existence of spontaneous limit cycle oscillations in

regulatory networks with both positive feedback (to

create alternative stable steady states) and negative

feedback (to induce spontaneous switching between

the two stable steady states). This combination of

positive and negative feedbacks is precisely the case

in the regulatory system governing the eukaryotic

cell cycle (Tyson and Novak 2008). In somatic

cells, checkpoint signals prevent spontaneous

cycling, but in some circumstances these checkpoints

are removed, and the cell cycle proceeds as

a spontaneous, unfettered, limit cycle oscillation.

For example, during early embryogenesis, the fertil-

ized egg undergoes a series of rapid cell divisions

without growth, until it reaches the “mid-blastula

transition,” when checkpoint proteins are expressed

and the cell cycle regains the characteristic G1-S, G2-

M, and M-G1 transitions of somatic cells. It is also

possible to create mutant yeast cells that lack check-

point controls; these cells divide faster than they

grow, getting smaller and smaller each cycle until

they die. These observations suggest that, under

most circumstances, periodic cell divisions are

governed not by spontaneous limit cycle oscillations

but by multistability and irreversible transitions

(Tyson and Novak 2008).
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Fig. 1 CDK regulatory network for frog egg cell cycles. In

this network diagram, a solid arrow represents a biochemical

reaction, and a dashed arrow represents a catalytic effect on

a reaction. A T-shaped arrow represents the association of two

proteins to form a complex. Black balls on the crossbar indicate

a reversible binding reaction. The small gray balls represent

proteolytic fragments of a protein. Newly synthesized cyclin

B combines with CDK subunits (in excess) to form active

CDK-cyclin dimers (called MPF). The CDK subunit is phos-

phorylated by Wee1 to form a less active form of MPF, called

preMPF. The inhibitory phosphate group can be removed by

Cdc25. Wee1 and Cdc25 activities are also regulated by phos-

phorylation, catalyzed by MPF: Wee1P is the less active form,

and Cdc25P is the more active form. Cyclin B is labeled for

proteolysis by an E3 ubiquitin ligase, the APC, which works in

collaboration with a targeting subunit, Cdc20. The synthesis of

Cdc20 is activated by MPF
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Characteristics

History

In an influential review of cell cycle regulation, Mur-

ray and Kirschner (1989) asked whether progression

through the cell cycle is more like “dominoes”

(a dependent sequence of events: one falling domino

pushing over the next) or a “clock” (an autonomous

oscillation, ticking along independent of the events

being timed). There is good experimental evidence

for both views. Early genetic analysis of the budding

yeast cell cycle provided evidence for two parallel

dependent sequences (the budding sequence and the

DNA replication sequence) that diverged in G1 phase

(at the Start transition) and reconnected at the end of

the cycle (exit from mitosis). On the other hand, bio-

chemical studies of frog egg extracts suggested an

autonomous oscillation of mitosis-promoting factor

(MPF) that drives periodic DNA replication and mito-

sis, but generates periodic bursts of MPF activity quite

independently of chromosomes and nuclei. In the first

view, cell cycle progression is orchestrated by a gene

regulatory network flipping genes on and off in a strict

sequence intimately connected to cell growth. In the

second view, cell cycle progression is governed by
a protein interaction network that drives MPF activity

up and down in waves of synthesis and degradation of

cyclin proteins.

Systems Biology

These two views were brought together by Novak and

Tyson (1993) in an early example of “molecular sys-

tems biology.” They used the wiring diagram in Fig. 1

to derive a mathematical model of spontaneous MPF

oscillations in frog egg extracts and (in later papers) of

cell cycle mutants in fission yeast. According to their

theory, the regulation of CDK-cyclin activity by tyro-

sine phosphorylation and dephosphorylation of the

CDK subunit, by Wee1 (the kinase) and Cdc25 (the

phosphatase), creates a bistable switch that governs

the transition from G2 phase into mitosis (a state of

high CDK activity); see Fig. 2a. This switch has all the

properties of a classic cell cycle checkpoint. To pass

the checkpoint, a cell must fully replicate its DNA and

grow to a sufficient size. Once past the checkpoint the

transition is irreversible; the cell does not slip back into

G2 phase and try to enter mitosis a second time.

Rather, the cell must complete the stages of mitosis

and activate cyclin degradation at the metaphase-

anaphase transition. Cyclin degradation allows the
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Cell Cycle Dynamics, Bistability and Oscillations,
Fig. 2 Signal-response curves: MPF activity as a function of

total cyclin. (a) Bistable switch. If cyclin synthesis and degra-

dation are blocked, then the total cyclin concentration ([MPF] +

[preMPF]) in a frog egg extract can be manipulated experimen-

tally. For [total cyclin] between the two thresholds, yinact and
yact, the control system has two stable steady states separated by

an unstable steady state. The dotted line shows howMPF activity

will respond to slowly increasing [total cyclin] and then slowly

decreasing [total cyclin]. (b) Relaxation oscillations. If cyclin is

steadily synthesized, then [total cyclin] will increase when MPF

is in the low-activity state, because Cdc20 is unavailable, but

once the system flips to the state of high MPF activity, then

Cdc20 is produced and cyclin is degraded faster than it is syn-

thesized. The bistable switch flips back to the low-activity state

once [total cyclin] drops below the inactivation threshold. The

white circle represents an unstable steady state. (c) Damped

sinusoidal oscillations. If the CDK phosphorylation site (a tyro-

sine residue) is mutated to phenylalanine, then the positive

feedback loops involving Wee1 and Cdc25 are disengaged and

bistability is lost. The system now undergoes damped oscilla-

tions to a stable steady state (black circle). If there is enough time

delay in the negative feedback loop through Cdc20-APC, then

the control system might exhibit sustained oscillations, but they

are quite distinct from the relaxation oscillations in panel B
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bistable switch to be reset to the state of low CDK

activity. Repeated cycles of DNA synthesis and mito-

sis correspond to repeated flipping of the switch from

a stable steady state of low CDK activity (interphase)

to a stable steady state of high CDK activity (M phase)

and back again. (Physicists and engineers call this

behavior a “hysteresis loop”.)

Novak and Tyson showed, furthermore, that under

the special conditions in an early frog embryo or in

a frog egg extract, the CDK-cyclin control system can
generate spontaneous oscillations of MPF activity,

unconstrained by requirements of cell growth, DNA

synthesis, DNA damage, or mitotic spindle functions.

The spontaneous oscillations are driven by periodic

bursts of cyclin degradation, which are in turn gener-

ated by the periodic activation of MPF by dephosphor-

ylation of the CDK subunit. These spontaneous

oscillations result from an interplay between the

bistable switch and a negative feedback loop (MPF

activates the cyclin degradation machinery which
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destroys cyclin subunits, causing a loss of MPF activ-

ity); see Fig. 2b. (Physicists and engineers call this

behavior a “relaxation oscillator.”)

The mathematical model of Novak and Tyson not

only gave a systematic account of a variety of experi-

mental observations on fission yeast, budding yeast,

and frog eggs, but also made a series of striking

predictions:

1. The “cyclin threshold for MPF activation” that had

been observed by Solomon et al. (1990) is only one-

half of a hysteresis loop. There should be a separate,

distinctly lower cyclin threshold for MPF inactiva-

tion (Fig. 2a).

2. For cyclin levels well above threshold, the time lag

for MPF activation should be roughly constant (as

observed by Solomon et al. (1990)), but as cyclin

level approaches the activation threshold from

above, the time lag for MPF activation should

increase dramatically.

3. The cyclin level for MPF activation should be an

increasing function of unreplicated DNA in an

extract.

4. If the bistable switch is disabled by interfering with

the inhibitory phosphorylation of CDK, then MPF

oscillations may still be possible, but they will be

faster, more smooth (not abrupt bursts of MPF

activity), and probably damped (Fig. 2c).

Predictions 1 and 2 are generic properties of

bistable systems with hysteresis. Prediction 3 was

a novel proposal for the mode of action of

a checkpoint signal that delays entry into mitosis.

Prediction 4 relates to classic properties of oscillations

driven by a “simple negative feedback loop” in com-

parison to relaxation oscillations in a “substrate-

depletion relaxation oscillator.”

Experimental Verification

The first three predictions of the Novak-Tyson model

were confirmed in frog egg extracts independently and

simultaneously by Sha et al. (2003) and Pomerening

et al. (2003); see Fig. 3. Slightly later, Pomerening

et al. (2005) confirmed prediction 4 in a thorough and

careful study of MPF oscillations in frog egg extracts;

see Fig. 4.

In 1996, Kim Nasymth (1996) proposed that, at its

heart, the budding yeast cell cycle is a repetitive alter-

nation between two “self-maintaining” states (i.e., sta-

ble steady states): a G1 state with low CDK activity

and an S-G2-M state with high CDK activity.
This notion became the basis of a successful kinetic

model of the budding yeast cell cycle by Chen et al.

(2000). The model made many predictions that were

tested in Fred Cross’s laboratory. In particular, Cross

et al. (2002) tested the idea that, under “neutral” con-

ditions, budding yeast cells could persist indefinitely in

either the G1 state, with low CDK activity, or the

S-G2-M state, with high CDK activity, depending on

the immediately prior history of how the cells are

brought into the neutral conditions. This experiment is

explained in the article on “Cell cycle, budding yeast.”

Irreversibility

The concept of bistability provides an immediately

obvious and intuitively satisfying explanation of the

irreversibility of progression through the cell cycle. If

cell cycle transitions are a result of passing from one

stable steady state to another, then it is clear that the

reverse transition cannot follow the same path. Once

the transition is made, then a completely different set

of circumstances must be brought into play to accom-

plish the reverse transition. For example, in Fig. 2a the

activation of MPF is accomplished by increasing total

cyclin concentration above the threshold, yact, where
the unstable steady state merges with and annihilates

the steady state of low MPF activity and forces the

system to switch to the steady state of high MPF

activity. If subsequently the cyclin level is caused to

decrease, the control system does not jump back to the

lower steady state at yact, which would be the case for

a “reversible” transition. Rather, the cyclin level must

decrease below a much smaller threshold, yinact, before
the down-jump occurs.

In the budding yeast case, the switch from the low-

CDK state to the high-CDK state is driven by Cln-

dependent kinase activity, but the switch back is driven

by a completely different mechanism, dependent on

the activities of Cdc20-APC (degradation of B-type

cyclins) and Cdc14 (a CDK-counteracting phospha-

tase). In this case, the up-jump is a one-way switch: it

is induced by Cln-dependent kinase, but after the

switch is made, the Cln-kinase activity can drop to

0 and the CDK activity will remain high. Down-jump

occurs by means of a different one-way switch. In the

“neutral” condition (Cln ¼ Cdc20 ¼ Cdc14 ¼ 0), the

control system can persist indefinitely in either the

low-CDK or the high-CDK state. For more details,

see the articles on “Cell cycle, budding yeast” and

“Cell cycle dynamics, irreversible transitions.”



32 4024

Entry into mitosis 1

Exit from mitosis 1

160

32 40

M

MMM

24160

Δ90 cyclin B (nM) :

Δ90 cyclin B (nM) :

0min

60min

140min

90min

b

a

Cell Cycle Dynamics, Bistability and Oscillations,
Fig. 3 Experimental confirmation of bistability in frog egg

extracts. From Sha et al. (2003), used by permission. (a) A frog

egg extract, containing all the proteins in Fig. 1 except for cyclin,

is prepared in the presence of sperm nuclei (indicators of MPF

activity) and cycloheximide (a drug that prevents the synthesis

of cyclin protein from endogenous mRNA). In the absence of

cyclin subunits, the extract is blocked in interphase (t ¼ 0), as

indicated by the compact nucleus with intact nuclear membrane

and dispersed chromatin (stained blue). At t ¼ 0 the extract is

supplemented with a measured amount of nondegradable (D90)
cyclin, and 90 min later the extract is observed to see if the nuclei

are in interphase (dispersed chromatin, intact membrane, low

MPF activity) on in mitosis (condensed chromatin, breakdown

of nuclear membrane, highMPF activity). Cyclin concentrations

less than �35 nM are insufficient to induce entry into mitosis,

but [total cyclin] ¼ 40 nM is above the threshold (blue up-

triangle) for mitotic entry. (b) In a second experiment, the extract

is supplemented with variable amounts of nondegradable cyclin

at t ¼ 0, but cycloheximide is not added until t ¼ 60 min. By

t ¼ 60 min, the nuclei in each sample have been driven into

mitosis 1 by a combination of the nondegradable cyclin added at

t ¼ 0 and the degradable cyclin subunits synthesized from the

extract’s endogenous mRNA. As the extracts try to exit from

mitosis 1, the endogenous cyclin subunits are degraded by

Cdc20-APC, but the exogenous D90 cyclin subunits resist deg-

radation. Cycloheximide prevents any further cyclin synthesis in

the extracts. At t ¼ 140 min the extracts are assayed for the cell

cycle phase of the nuclei. Cyclin concentrations greater than

�20 nM are sufficient to maintain the nuclei in a mitotic state.

[Total cyclin] ¼ 16 nM is below the threshold (blue down-

triangle) for inactivation of MPF and exit from mitosis. Cyclin

concentrations of 24 and 32 nM are clearly in the bistable region:

the nuclei can persist stably in interphase or in mitosis,

depending on whether they are prepared initially in interphase

or mitosis
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Checkpoints

The concept of bistability also provides a natural frame-

work for understanding the mechanisms of checkpoint

controls. The function of a checkpoint is to block or

delay progression of a damaged cell into the next phase

of the cell cycle. For example, DNA damage should

block cells from entering S phase, incomplete DNA

ligation should block cells from entering M phase, and

misaligned chromosomes should block cells from
exiting mitosis. If these transitions are governed by

saddle-node bifurcations of a bistable system (as in

Fig. 2a), then the transition can be delayed or blocked

completely by raising the threshold for the transition

(yact). From the mathematical model of the transition it

is immediately obvious which components control the

location of the threshold. For example, in Fig. 1, it is the

activity of the CDK-counteracting phosphatase (PPase)

that is the vulnerable point.
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Fig. 4 Experimental confirmation of relaxation oscillations in

frog egg extracts. From Pomerening et al. (2005), used by

permission. (a) In a “cycling” extract, cyclin subunits are con-

tinuously synthesized (blue curve), but MPF activity (red curve)

is low until total cyclin exceeds the threshold for MPF activa-

tion. The abrupt activation of MPF drives nuclei into mitosis

(M). As the extract exits from mitosis, cyclin is degraded by

Cdc20-APC, and MPF activity falls as a result. (b) The data in

panel A is projected onto state space (MPF activity versus total

cyclin level), as in panel A of Fig. 2bB. (c) Confirmation of

prediction 4. To a cycling extract, containing �200 nM

endogenous Cdc25wt (wild-type) protein, is added 200nM of

either Cdc25wt protein or Cdc2AF protein, which cannot be

phosphorylated and inhibited by Wee1. Hence, in the extract

on the right there are roughly equal amounts of Cdc2wt and

Cdc2AF subunits, compared to the “control” extract on the left

which contains �400 nM Cdc2wt subunits. The mutant kinase

subunits compromise the positive feedback loops in the model

(Fig. 1) and change the properties of MPF oscillations. Com-

pared to the blue curve, the MPF oscillations in the red curve are

faster, more sinusoidal and noticeably damped, exactly as

predicted by the mathematical model
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Bistability; Checkpoints; Hysteresis
Definition

The cell cycle is the sequence of events whereby a cell

replicates its chromosomes and partitions the identical

sister chromatids to two separate nuclear compart-

ments (Morgan 2007). In eukaryotic cells, the phases

of DNA synthesis (S phase) and mitosis (M phase) are

temporally distinct and separated by gap phases (G1 –

unreplicated chromosomes, and G2 – replicated chro-

mosomes). To maintain the proper ploidy of a cell

lineage, generation after generation, it is essential

that S and M phases are strictly alternating. This alter-

nation is enforced by the irreversibility of three crucial

transitions in the cell cycle: the G1/S, G2/M, andM/G1
transitions (Novak et al. 2007). By “irreversibility” we

understand that, once cells have committed to a new

round of DNA replication (at the G1/S transition), they

do not typically slip back into G1 phase and do

a second round of DNA replication. Similarly, once

cells have committed to mitosis (at the G2/M transi-

tion), they do not typically slip back into G2 phase and

try for a second mitotic division.

Like most “rules” in biology, this one has important

exceptions (Morgan 2007). Some cells carry out

repeated rounds of DNA replication without interven-

ing mitoses, becoming polyploid. During meiosis,

a germ line cell undergoes two meiotic divisions with-

out an intervening S phase. But these exceptions only

reinforce the centrality of the general rule of somatic

cell cycles, namely, irreversible progression through

the cell cycle phases (G1, S, G2, M) in strict order.

The irreversibility of the three transitions is inti-

mately connected with cell cycle checkpoints, which

halt further progression through the cell cycle when-

ever serious problems are detected (Murray 1992). For

example, DNA damage incurred during G1 phase will

block the G1/S transition until the damage is repaired.

Failure to fully replicate and ligate DNA molecules

during S phase will block the G2/M transition. Incom-

plete alignment of replicated chromosomes on the

mitotic spindle will block the M/G1 transition. When

a checkpoint is lifted, the cell proceeds irreversibly to

the next phase of the cell cycle.

These irreversible transitions and checkpoints are

controlled by complex molecular regulatory networks

with both positive and negative feedback. Positive

feedback creates a bistable switch, and negative

feedback allows the switch to be flipped from one

stable state to another (Tyson and Novak 2008).

These systems-level properties of the regulatory net-

work are crucial to irreversible progression through the

cell cycle, and when they are disturbed by mutation,

drugs, or disease, then cells make mistakes in DNA

replication and partitioning, often with fatal conse-

quences for the cell or for the multicellular organism

harboring the rogue cells.
Characteristics

Physiology and Molecular Biology

Progression through the cell cycle is governed by a set

of cyclin-dependent kinases (CDKs) that initiate DNA

http://dx.doi.org/10.1007/978-1-4419-9863-7_526
http://dx.doi.org/10.1007/978-1-4419-9863-7_100201
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Cell Cycle Dynamics, Irreversibility, Fig. 1 Three check-

points/irreversible transitions in the eukaryotic cell cycle. G1

phase: low CDK activity. S-G2 phase: CDK-cyclinS activity is

high, CDK-cyclinM activity is low. M phase: CDK-cyclinM

activity is high. At the G1/S transition, cyclin synthesis is turned

on, cyclin degradation is turned off, and CDK inhibitors are

destroyed. At the M/G1 transition, these switches are reversed.

In S-G2 phase, CDK-cyclinM activity is kept low by phosphor-

ylation of the CDK subunit. At the G2/M transition, this inhib-

itory phosphorylation is removed
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replication and mitosis and that inhibit the transition

from metaphase to anaphase-telophase-cytokinesis

(“exit from mitosis”). G1 phase cells are uncommitted

to the cell cycle because they lack the necessary CDK

activities. They are devoid of S- and M-phase cyclins

because the transcription factors that would drive pro-

duction of these cyclins are inactive, and the ubiquitin-

ligating enzymes (ULE) that label these cyclins for

proteolysis are active. In addition, G1 phase cells

contain generous amounts of CDK inhibitors (CKIs)

that bind to and inhibit CDK-cyclin dimers.

At the G1/S transition (called “Start” in budding

yeast and the “Restriction Point” in mammalian cells),

a cell must do three things: (1) turn on the synthesis of

S- and M-phase cyclins, (2) turn off their degradation,

and (3) get rid of the G1-phase CKIs (See Fig. 1). At

the M/G1 transition (“Exit”), these three switches must

be reversed. As cells proliferate, a lineage (mother-

daughter-granddaughter) toggles back and forth

between states of low CDK activity (G1) and high

CDK activity (S-G2-M).

Embedded inside this fundamental toggle switch is

a secondary toggle switch governing the transition into
M phase (see Fig. 1). During S and G2 phases, the cell

is producing M-phase cyclins, but CDK/cyclin-M

activity is low because of inhibitory phosphorylation

of the CDK subunit. At the G2/M transition, the

kinases that impose this inhibition must be inactivated,

and the phosphatases that remove this inhibition must

be activated, thereby allowing the cell to transit

abruptly into mitosis. At the M/G1 transition, these

two switches must be reversed as well.

The scenario just described is a generic account of

molecular events at the three basic transitions of the

cell cycle. In any specific type of cell (e.g., budding

yeast, fission yeast, mammalian cell) there may be

variations on this general scheme, but most cell types

studied in depth show evidence of CDK-governing

toggle switches that are flipped on and off at alternat-

ing transitions of the cell cycle.

The greatest exception to this rule is the newly

fertilized egg, a gigantic cell that undergoes rapid

S-M cycles, lacking gap phases and checkpoints. It is

arguable whether these cell cycles are governed by

irreversible toggle switches or a simple periodic oscil-

lator. Nonetheless, it is true that early embryonic cell

cycles often make serious mistakes (producing poly-

ploid or aneuploid cells) that lead ultimately to death of

the embryo. These errors seem to be a price that organ-

isms are willing to pay in order to hurry through the

most vulnerable phase of their life cycle. In this con-

text, these errors reinforce the notion that toggle

switches and irreversible transitions are crucial to

maintaining genomic integrity of proliferating eukary-

otic cells.

Bistability and Hysteresis

From a theoretical perspective, irreversible transitions

are intimately related to bistability of molecular regu-

latory networks. The article on “cell cycle dynamics,

bistability and oscillations” discusses the molecular

mechanisms underlying bistability and hysteresis at

the G2/M transition. Here we describe the molecular

basis of irreversibility at Start and Exit. Figure 2 illus-

trates the generic interactions among CDK-cyclin, its

transcription factors, its ubiquitin-ligating enzymes,

and its stoichiometric inhibitors. In each case, CDK

is involved in a positive feedback interaction with

a “friend” (TF) or a double-negative feedback interac-

tion with an “enemy” (ULE or CKI). These interac-

tions create the possibility of bistability: two stable

steady states (“nodes”) separated by an unstable steady
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Cell Cycle Dynamics, Irreversibility, Fig. 2 CDK regulatory

network for a generic eukaryotic cell. Cyclin synthesis is regu-

lated by a transcription factor (TF), and cyclin degradation is

regulated by a ubiquitin-ligating enzyme (ULE). CDK-cyclin

dimers can also be inhibited by binding to an inhibitor protein

(CKI). CKI stability is controlled by phosphorylation: PCKI is

a good substrate for a different ubiquitin-ligating enzyme, which

labels CKI for degradation by proteasomes. Because TF is acti-

vated by phosphorylation by CDK-cyclin, these two components

are involved in a positive feedback loop. Because ULE is

inactivated by phosphorylation by CDK-cyclin, these two com-

ponents are involved in a double-negative feedback loop, as are

CKI and CDK-cyclin. These interactions create a bistable

control system, with a stable steady state of low CDK activity

(G1 phase) and an alternative stable steady state of high CDK

activity (S-G2-M phase); see Figs. 1 and 3. Starter kinase activ-

ity (SK) tips the control system toward the high CDK state, and

exit phosphatase activity (EP) tips the system toward the low

CDK state. SK and EP are related to CDK by negative feedback

loops. SK upregulates CDK-cyclin by flipping the switch to the

high CDK state, but high activity of CDK-cyclin downregulates

the synthesis of SK. On the other hand, high activity of CDK-

cyclin activates EP, which flips the switch to the low CDK state

and consequently EP is inactivated
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state (a “saddle point”). The stable steady states are

characterized by either low or high CDK activity

(Fig. 3). The CDK control system can persist in either

of these stable steady states, corresponding to G1 or

S-G2-M phases of the cell cycle, respectively.

For a G1 cell to commit to a new round of DNA

replication and division, it must be promoted from the

G1 steady state to the S-G2-M steady state. This is the

job, generically speaking, of a “starter kinase” (SK),

typically a special cyclin-CDK pair (Cln3-Cdc28 in

budding yeast, cyclin D-Cdk4/6 in mammalian cells).

Transient activation of SK can induce a transition from

G1 to S-G2-M. Even if SK activity disappears after the

transition, the control system will remain in the stable

steady state of high CDK activity. In this sense, the

G1/S transition is irreversible. To exit mitosis and

return to G1, the cell must transit from the high- to

the low CDK steady state. This is the job of generic

“exit phosphatases” (EP) that are activated during ana-

phase and telophase of the cell cycle. These phospha-

tases push ULE and CKI toward their “on” states and
TF toward its “off” state, allowing the bistable switch

to flip off. The M/G1 transition is irreversible because,

even though EP activity disappears in early G1, the

control system remains in the stable G1 steady state

(Tyson and Novak 2008).

Irreversibility and Proteolysis

For a time it was fashionable among molecular biolo-

gists to attribute irreversibility of cell cycle transitions

to the proteolysis of key cell cycle regulators at each

transition. Not only are cyclins dramatically degraded

at the M/G1 transition (Minshull et al. 1989), but also

CKIs are degraded at the G1/S transition (Schwob et al.

1994) and CDK-inactivating kinases are degraded at

the G2/M transition (Michael and Newport 1998). As

simple and appealing as this idea might be, it is clearly

insufficient to explain the irreversibility/directionality

of cell cycle progression.

First of all, proteolysis is not irreversible in a kinetic

sense; its opposing process is protein synthesis. In

general, the rates of protein synthesis and degradation
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Cell Cycle Dynamics, Irreversibility, Fig. 3 Bistability, irre-

versibility, and hysteresis. The steady states of the control system

in Fig. 2 are related to SK and EP activities by this bifurcation

diagram. When SK ¼ EP ¼ 0, the control system has two stable

steady states (black circles) separated by an unstable steady state

(white circle). The cell can be in either G1 phase or S-G2-M

phase, depending on its recent history. A newborn cell, by

definition, is in G1 phase. For it to start a new round of DNA

synthesis and degradation, a starter kinase (SK) must be acti-

vated. Activation of SK is controlled by checkpoint signals, such

as growth factors, DNA damage sensors, size sensors, etc. Once

SK flips the switch into the CDK-active state, it is no longer

needed: SK activity can drop to 0, and the control system remains

in the CDK-active state. For the cell to exit mitosis, undergo

cytokinesis, and return to G1 phase, an exit phosphatase (EP)

must be activated. EP activation depends on other checkpoint

signals, such as complete replication of DNA and successful

alignment of all replicated chromosomes on the mitotic spindle
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will balance each other at a unique, stable steady state

of protein abundance. To upset this balance, it is nec-

essary to switch the rates of protein synthesis and

degradation between low and high values, and such

switching behavior is a property of feedback interac-

tions in a regulatory network.

In addition, it is possible, by mutations and/or drug

treatments, to eliminate proteolysis at any one of the

three cell cycle transitions without compromising its

irreversibility. For example, ckiD mutants in budding

yeast proceed irreversibly through the G1/S transition

without proteolysis of any of the remaining regulatory

proteins (TF and ULE). Proteasome-inhibited mam-

malian cells, blocked in mitosis by nocodazole, can

be induced to exit mitosis irreversibly by transient

inhibition of CDK activity by flavopiridol (Potapova

et al. 2006). Frog egg extracts, without either cyclin

synthesis or degradation, can be induced to enter or

exit mitosis simply by manipulating the activities of

the CDK-inhibiting kinase and/or the CDK-activating

phosphatase.
In conclusion, the irreversibility of cell cycle tran-

sitions, which is crucial to maintaining the genomic

integrity of proliferating cells, is a systems-level

property of the molecular networks that regulate

CDK activity in eukaryotic cells. Positive feedback

loops in the control system generate multiple

stable steady states (G1, S-G2 and M states), and

abrupt, irreversible transitions between these stable

steady states are induced by pro-proliferative signals

(growth factors, size increase, successful completion

of prior cell cycle events) and inhibited by checkpoint

signals (indicators of potentially fatal mistakes in

the genome replication process). Irreversibility is

not a property of any single gene, protein, or reaction

but rather an emergent property of systems-level

interactions.
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Synonyms

Nonlinear dynamical systems theory
Definition

Bifurcation theory provides a classification of the

expected ways in which the number and/or stability

of invariant solutions (“attractors” and “repellers”) of

nonlinear ordinary differential equations may change

as parameter values are changed. The most common

qualitative changes are “saddle-node” bifurcations,

“Hopf ” bifurcations, and “SNIPER” bifurcations. At

a saddle-node bifurcation, a pair of steady states,

usually a stable node and an unstable saddle point,

coalesce and disappear. At a Hopf bifurcation,

a stable focus changes to an unstable focus and

makes way for a small amplitude periodic solution

(“limit cycle”). At a SNIPER bifurcation, the coales-

cence of a saddle point and a stable node creates an

infinite-period limit-cycle solution. These bifurca-

tions have clear physiological correlates in the regu-

lation of DNA replication, mitosis, and cell division.

Saddle-node bifurcations are related to checkpoints in

the cell cycle: The establishment and removal of

checkpoints correspond to the creation and annihila-

tion of stable steady states at saddle-node bifurca-

tions. The repetitive nature of the cell cycle (G1-S-

G2-M-G1-etc.) is related to limit-cycle solutions of

the underlying kinetic equations: The ability to oscil-

late spontaneously arises at either a Hopf or

a SNIPER bifurcation.
Characteristics

Historical Background

Since the days of Isaac Newton, ordinary differential

equations (ODEs) have been used throughout the

physical and life sciences to describe the temporal

development of dynamical systems: from the solar

system, to the clock radio, to the regulation of DNA

replication and cell division. Initially the focus was on

ODEs that could be solved exactly in terms of

“elementary” functions of high school algebra and

trigonometry or “special” functions of mathematical

physics. But in the 1890s Poincaré (1899) introduced

the “qualitative” theory of dynamical systems, i.e.,

systems of n nonlinear ODEs
dx

dt
¼ fðx; pÞ; xðtÞ ¼ x1; :::; xnf g ¼ Variables;

p ¼ p1; :::; pmf g ¼ Parameters

(1)

Poincare proposed to interpret these equations as

a vector field in n-dimensional state space, x, and to

characterize this vector field by its invariant solutions,

which can be either attractors or repellers. The crucial

question for Poincare was not “what is the exact solu-

tion of the ODE?” but “how do the qualitative features

of the attractors and repellers depend on the values of

the parameters?” This latter question is the subject of

bifurcation theory (Odell 1980; Strogatz 1994), which

was developed in the mid-twentieth century by

Andronov’s school of Russian physicists and engineers

for n¼ 2 (Andronov et al. 1966), and later by a host of

mathematicians for the general case (Kuznetsov 2004).

A one-parameter bifurcation diagram begins with

a plot of the steady-state value of a chosen dynamical

variable, xi, as a function of a chosen parameter, pj, the

“bifurcation parameter.” In Fig. 1a, we plot a typical

bifurcation diagram for a bistable system. Between the

two thresholds, yinact< pj< yact, the system can persist

in either of two stable steady states (xi small or xi
large). Precisely at the thresholds, pj ¼ yinact and

pj ¼ yact, the dynamical system undergoes

a bifurcation from one type of behavior (a single stable

steady state) to a qualitatively different type of behav-

ior (bistability). This type of bifurcation is called

a “saddle-node” or “fold.” In Fig. 1b, we illustrate

a “Hopf” bifurcation, in which a stable steady state

loses stability and gives rise to stable limit-cycle

http://dx.doi.org/10.1007/978-1-4419-9863-7_11
http://dx.doi.org/10.1007/978-1-4419-9863-7_101043


Hopf

SN

qactqinact

SN

pj
pj

xi xi

a b

Cell Cycle Model Analysis, Bifurcation Theory, Fig. 1 One-

parameter bifurcation diagrams. (a) Saddle-node bifurcation.

Solid line: stable steady state; dashed line: unstable steady

state. (b) Hopf bifurcation. Thin solid line: stable steady state;

thin dashed line: unstable steady state; thick solid line: maximum

and minimum values attained by a stable limit-cycle oscillation
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oscillations. The limit cycles are born with small

amplitude and grow in size as the parameter value

pulls away from the bifurcation point. We shall meet

some other types of bifurcations shortly.

Of special interest to systems biologists are the

musings of Rene Thom (1989) on “structural stability

and morphogenesis.” Thom was highly regarded

among mathematicians for his study of gradient

dynamical systems,
dx

dt
¼ =Uðx1; :::; xnÞ (2)

where U(x) is a scalar function of the variables (think

of it as the “potential energy” of the system) and

= ¼ @=@x1; :::; @=@xnð Þ is the gradient operator. The

steady-state solutions of Eq. 2 are places where

=U ¼ 0, i.e., “singularities” of the potential function.

Thom’s great contribution was to classify the topolog-

ically distinct types of singularities of potential func-

tions in n dimensions. Next, Thom took the unusual

step – unusual for a famous mathematician – to spec-

ulate that the bifurcations he had characterized might

underlie the “unfolding” of a fertilized egg into a larva.

Following Waddington’s hypothesis that embryonic

development is the evolution of a dynamical system

on an “energy landscape,” Thom pointed out that his

complete classification of the qualitative changes of

behavior that could be observed under this type of

gradient dynamic must provide the key to understand-

ing morphogenetic transitions.

Thom’s ideas were bitterly opposed by both theo-

retical and experimental biologists of his generation,
and (perhaps) for good reasons. First of all, morpho-

genesis is governed, we know, by the interactions of

genes and proteins (i.e., a biochemical interaction net-

work), which is not a gradient dynamical system.

Hence, the bifurcations of relevance to molecular cell

biologists are not the singularities of potential func-

tions (Thom’s case) but rather the generic bifurcations

of nonlinear ODEs (the case of Andronov et al.). But

Thom’s more fundamental idea (stripped of its unfor-

tunate alliance to Waddington’s energy landscape) –

that qualitative changes in cell physiology should be

correlated with qualitative changes in the attractors

and repellers of a vector field (a system of nonlinear

ODEs) – is absolutely correct. It is the basis of the

application of bifurcation theory to problems in molec-

ular cell biology.

One-Parameter Bifurcation Diagrams and Signal-

Response Curves

The connection between bifurcation theory and cell

physiology is the signal-response curve. In a typical

experiment, a molecular cell biologist might challenge

cells with increasing amounts of an extracellular signal

molecule and measure whether certain downstream

genes are expressed or not. And a typical result is

that, for low signal levels there is no expression, but

for signal levels above a certain threshold there is

strong expression of the gene (Fig. 2). In this circum-

stance, it is natural to ask what happens if the signal

level is steadily decreased in cells that are expressing

protein R? Do they turn off at the same signal strength

where they turned on? Or at a much lower signal

strength? Or not at all?

In the first case, the signal-response curve is

perfectly smooth and reversible; there are no qualita-

tive changes in the behavior of the control system as

the signal varies up and down. In the second case,

there is a region of bistability between the two

thresholds, and the behavior of the control system is

qualitatively different over three ranges of signal

strength: for S < yinact there is a single stable steady

state with R small; for yinact < S < yact the control

system can persist in either of two attractors (R small

or R large) that are separated by an unstable steady

state; and for S > yact there is a single stable

steady state with R large. This is exactly the case of

a one-parameter bifurcation diagram with saddle-

node bifurcations bounding a zone of bistability

(Fig. 1a).
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Fig. 2 Signal-response curve. The experimentalist can vary

the signal strength S (say, the concentration of an extracellular

ligand) and observe the response R (say, the expression level of

a gene induced by S). As S is slowly increased, the expression of
R turns on abruptly; a typical threshold-type response. What

happens as S is slowly decreased? There are three possibilities.

(a) The gene expression turns on and off at the same threshold

signal strength: the signal-response curve is smooth and revers-

ible; e.g., a Hill function. (b) The threshold for gene inactivation

(yinact) is lower than the threshold for gene activation (yact): The
signal-response curve has a region of bistability and functions

like a toggle switch. (c) The gene cannot be inactivated by

lowering the signal strength even to zero: The control system

functions as a one-way switch

Cell Cycle Model Analysis, Bifurcation Theory,
Table 1 Generic bifurcations of dynamical systems

Name Characteristics Cell cycle correlate

Saddle-node Creation and

annihilation of pairs of

steady states

Irreversible transitions;

checkpoints

Hopf,

supercritical

Birth of stable limit

cycles of small

amplitude and finite

frequency

Spontaneous MPF

oscillations in embryos

Hopf,

subcritical

Birth of unstable limit

cycles of small

amplitude and finite

frequency

Subcritical Hopf and

cyclic fold bifurcations

occur in pairs and may

correlate with

embryonic MPF

oscillations
Cyclic fold Creation and

annihilation of pairs of

limit cycles

Saddle-loop Annihilation of a limit

cycle by a homoclinic

orbit at a saddle point;

finite amplitude and

small frequency

SL and SNIPER

bifurcations are closely

related; they are

involved in irreversible

transitions in the yeast

cell cycle (budding

yeast and fission yeast)
SNIPER1 or

SNIC2

(synonomous)

Annihilation of a limit

cycle by a homoclinic

orbit at a saddle-node;

finite amplitude and

small frequency

1SNIPER ¼ saddle-node infinite-period
2SNIC ¼ saddle-node invariant-circle

C 276 Cell Cycle Model Analysis, Bifurcation Theory
It is possible that yinact< 0, in which case the signal,

S ¼ [S] (a positive number), cannot be made small

enough to flip the switch off. In this case, the control

system is said to be a one-way switch. By increasing S,
the switch can be turned on, but it cannot be turned off

by decreasing S.

There are many convincing examples of toggle

switches in molecular and cell biology generally

(Tyson et al. 2003) and in cell cycle regulation partic-

ularly (▶Cell Cycle Dynamics, Bistability and

Oscillations).

In another common physiological situation,

a cellular process begins to oscillate when

a stimulating signal gets large enough (Goldbeter

1996). In this case, the signal-response curve exhibits

a Hopf bifurcation, as in Fig. 1b.
These examples suggest that the signal-response

curves often measured by cell physiologists are none

other than one-parameter bifurcation diagrams in the

parlance of applied mathematicians. If we may associ-

ate abrupt, qualitative changes in signal-response char-

acteristics of living cells with bifurcations in vector

fields of nonlinear dynamical systems, then it is natural

to ask howmany different types of generic bifurcations

are exhibited by dynamical systems and what do they

look like? Are there hundreds of different types of

bifurcations to match the seemingly boundless variety

of cellular behaviors? Or are all the peculiarities of

cellular signal processing simply variations on a few

common themes? (Table1)

The answer is the latter. In addition to the saddle-

node and Hopf bifurcations illustrated in Fig. 1, there

are only a few other common, generic, one-parameter

bifurcations: subcritical Hopf, cyclic fold, saddle-loop,

and SNIPER bifurcations (Fig. 3).

http://dx.doi.org/10.1007/978-1-4419-9863-7_21
http://dx.doi.org/10.1007/978-1-4419-9863-7_21
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Cell Cycle Model Analysis, Bifurcation Theory, Fig. 3 The other common types of bifurcation points. (a) Subcritical Hopf

bifurcation and cyclic fold (CF) bifurcation. (b) Saddle-loop (SL) bifurcation. (c) Saddle-node infinite-period (SNIPER) bifurcation
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Of this we can be certain: Cell physiology is

governed by underlying regulatory networks that con-

sist of biochemical reactions among genes, RNAs,

and proteins. These networks are dynamical systems;

their dynamics are governed by nonlinear ODEs

(biochemical kinetic equations). The solutions of

these equations determine the time-dependent behav-

ior of the cell, and the nature of these solutions are

determined by the attractors and repellers of the

dynamical vector field in state space. Qualitative

changes in the behavior of cells must be reflections

of qualitative changes in the nature of these attractors

and repellers, i.e., on the generic bifurcations of

nonlinear vector fields. Hence, the six types of bifur-

cations we have introduced must be the basic building

blocks of all cellular signal-response curves. It is this

connection between signal-response curves of living

cells and one-parameter bifurcation diagrams of

dynamical systems that is the heritage of Rene

Thom’s proposal.

An important caveat to this interpretation of bifur-

cation theory is the fact that single cells are very small,

with limited numbers of molecules (10s, 100s, 1,000s)

of each of the interacting species. Hence, continuous

ODEs are only a first approximation to the dynamics of

intracellular molecular control systems. The effects of

stochastic variations of small numbers of molecules

can have significant effects on the qualitative features

of dynamical systems. Stochastic effects must be given

due consideration, but subsequent to a thorough study

of the system by bifurcation theory.
Relation to Cell Cycle Regulation

Bifurcation theory has been used to study the molec-

ular basis of cell cycle regulation (e.g., Borisuk and

Tyson 1998; Tyson et al. 2003; Csikász-Nagy et al.

2006). The basic idea behind these papers is that

a eukaryotic cell progresses through the DNA repli-

cation–division cycle by a series of transitions (G1/S,

G2/M, M/G1) that correspond to bifurcations of

the underlying molecular control system. Before

each transition, the cell is arrested in a stable steady

state of the dynamical system that corresponds to

a particular physiological state: G1-arrest, G2-arrest,

or metaphase-arrest. To pass to the next stage of

the cell cycle, the stable arrested state must be

lifted, either by annihilation (at a SN or SNIPER

bifurcation) or by losing stability (at a Hopf bifurca-

tion). To prevent a transition, e.g., if there is some

damage to the DNA or some problem in aligning

chromosomes on the metaphase plate, then a “check-

point” mechanism stabilizes the arrested state

by moving the bifurcation point to some higher

value of the progression signal(s). For example,

a schematic diagram of the fission yeast cell cycle is

provided in Fig. 4.

During early embryogenesis, from fertilization to

the mid-blastula transition, mitotic cycles proceed rap-

idly and synchronously, without checkpoint controls.

In this case, the DNA replication–division cycles seem

to be driven by spontaneous limit-cycle oscillations.

For more details, see the entry▶Cell Cycle Dynamics,

Bistability and Oscillations.

http://dx.doi.org/10.1007/978-1-4419-9863-7_21
http://dx.doi.org/10.1007/978-1-4419-9863-7_21
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Fig. 4 A schematic diagram of the fission yeast cell cycle.

The bifurcation diagram in Fig. 3c is interpreted here as a sig-

nal-response curve relating cyclin-dependent kinase (CDK)

activity to cell growth. CDK is a protein kinase that governs

progression through the cell cycle. In fission yeast, low CDK

activity corresponds to a G1/S/G2 state and high activity to

mitosis. Cell size can be thought of as a bifurcation parameter:

Cell size increases slowly as the cell grows, and the CDK control

adapts quickly to an attractor of the vector field at the current size

of the cell. The red curve is a “cell cycle trajectory.” At the size

of a newborn cell (size ¼ 1), the only attractor is a stable steady

state of low CDK activity. After a brief G1 period, the cell

replicates its DNA and then pauses in G2 phase until it grows

large enough to surpass the SNIPER bifurcation. The bifurcation

point is the “critical size” for the G2/M transition in fission yeast.

The dynamical system is attracted to a large amplitude limit

cycle, which carries the cell into mitosis (CDK increasing).

The cell exits mitosis when CDK activity is destroyed, and this

is the signal for the cell to divide. Cell size is abruptly halved,

and the newborn cells (each of size¼ 1) are attracted to the stable

G1/S/G2 steady state. Notice that the cell cycle time (the time

required to progress around the red loop) is identical to the mass-

doubling time (the time necessary to grow from birth size¼ 1 to

division size ¼ 2)
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Synonyms

Boolean modeling of cell cycle control; Logical

modeling of cell cycle control
Definition

This essay provides a short overview of recent appli-

cations of Boolean and multilevel logical approaches

to cell cycle modeling.
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Characteristics

Introduction

Extensively studied, the intricate regulatory circuits

controlling cell cycle (▶Cell Cycle) in Eukaryotes

constitute a daunting challenge and a recurrent refer-

ence in systems biology. Although quantitative data

may be sometimes more easily obtained at the system

level (as it is the case with cell cycle time length or

mass at division), cell cycle progression is essentially

described as a succession of qualitatively different

phases. The phases G1, S, G2, M, and G0 (and sub-

phases) can be characterized by the qualitative level of

key markers, most particularly the different cyclins

(▶Cyclins and Cyclin-Dependent Kinases). Further-

more, mutant phenotypes observations are often

limited to qualitative assessment of viability or arrest

in a specific phase.

Consequently, the logical formalism (▶Logical

Model) has been recurrently used to build qualitative

dynamical models of the regulatory networks control-

ling cell cycle in different organisms. Notably, as bud-

ding yeast (▶Cell Cycle, Budding Yeast) and fission

yeast (▶Cell Cycle, Fission Yeast) have served as

model organisms for pioneering experimental studies

of cell cycle control, they constitute reference systems

for many modeling studies.

Phenomenological models can already bring inter-

esting insight into biological mechanisms. For exam-

ple, the Boolean model published by B€ahler and

Svetina (2005) focuses on the different growth modes

displayed by the fission yeast. Mutants are then defined

as deletions of specific arrows in the model and com-

pared to known mutations that affect growth modes.

Such phenomenological understanding hints toward

the underlying molecular mechanism.

In the recent years, several groups have focused on

the development of predictive logical models for the

molecular regulatory networks controlling cell cycle in

budding yeast and fission yeast (Li et al. 2004;

Bornholdt 2008; Irons 2009; Fauré et al. 2009). Several

of these models have been used to assess novel simu-

lation methods or model-building strategies, or yet to

address theoretical questions regarding modularity

(Irons 2009; Fauré et al. 2009) or dynamical robustness
(Mangla et al. 2010). Globally, the success of logical

approaches at reproducing complex wild-type and
mutant phenotypes demonstrates that the dynamics of

the cell cycle can be captured independently of quan-

titative assumptions on kinetic parameters (Bornholdt

2008; Fauré and Thieffry 2009).

In what follows, we start by illustrating the logical

approach through its application to the definition and

the analysis of a simplified model of the regulatory

network controlling the cell cycle in budding yeast.

This reference model is used to emphasise variations in

the definition of logical rules or yet regarding the use of

different updating assumptions. The following section

introduces more recent, prospective studies devoted to

mammalian cell cycle control. The essay ends by

a brief outlook section.

Boolean Modeling of the Molecular Network

Controlling Budding Yeast Cell Cycle

The focus of published studies ranges from molecular

regulatory networks to phenomenological models, the

different scales being sometimes integrated in the

same network. For example, some models explicitly

incorporate variables representing cell cycle phases

(Irons 2009), while others implicitly deduce them

from the level of key variables (Li et al. 2004; Fauré

et al. 2009).

Accordingly, as discussed by B€ahler and Svetina

(2005), there is no direct relationship between regula-

tory circuits and the molecular processes they repre-

sent. The same type of regulatory arc may be used to

represent different processes, such as transcriptional

activation of a gene, or post-translational modification

of a protein. Conversely, similar processes may be

represented differently, in particular those involving

the representation of mass flow, such as multiproteic

complex formation (Fauré and Thieffry 2009).

Regarding the definition of the logical rules asso-

ciated with each regulatory component, two main

approaches are used. A first approach consists in

simply summing the positive and negative influences

on each node (sometimes considering different

weights for different edges of the network);

depending on whether this sum lies below, above, or

at a given threshold, the value of the variable will tend

to decrease, increase, or remain unchanged, respec-

tively. This formalism was used in the seminal Bool-

ean model shown in Fig. 1, left. Using a generic

summation rule with a threshold set to zero, the

http://dx.doi.org/10.1007/978-1-4419-9863-7_115
http://dx.doi.org/10.1007/978-1-4419-9863-7_10
http://dx.doi.org/10.1007/978-1-4419-9863-7_366
http://dx.doi.org/10.1007/978-1-4419-9863-7_366
http://dx.doi.org/10.1007/978-1-4419-9863-7_16
http://dx.doi.org/10.1007/978-1-4419-9863-7_17
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Cell Cycle Modeling Using Logical Rules, Fig. 1 Boolean

models of the Budding yeast cell cycle. Left: Original Boolean
model presented in (Li et al. 2004). This model was simulated

synchronously (see Fig. 2) using a generic summation rule. In

this framework, self-inhibiting arrows had to be introduced to

account for degradation of components that only have positive

regulators. Right: Boolean model adapted from the previous one

using specific logical formulae (see Table 1). Both graphs have

been drawn using GINsim (Naldi et al. 2009). Green normal

arrows stand for activation, red T-arrows stand for inhibition,

yellow T-arrows represent the “self-degradation” loops intro-

duced in (Li et al. 2004)
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authors had to include “self-degradation” loops

(in yellow in Fig. 1, left), which do not represent

true auto-inhibitory processes. Using a synchronous

(deterministic) updating strategy, they identified

seven stable states as the sole attractors of the system

and further established that the large majority of

Boolean states lead to the same stable state,

which corresponds to the G1 phase. Furthermore,

starting with initial conditions matching the entry

into cell cycle, as shown in Fig. 2 (left), the system

follows a trajectory consistent with the succession

of molecular events and phases along budding yeast

cell cycle.

A second approach consists in defining

a specific logical rule for each node in the network.

Fig. 1 (right) shows a transposition of the model by Li

et al. (2004) into a logical regulatory graph, while

Table 1 lists the logical rules associated with each

component of the network. Notice that the network is

somewhat simplified (elimination of the auto-

inhibitory loops), while we have now different types

of regulatory rules combining NOT, AND, and OR
logical operators. In the absence of Cln3, this model

has a unique stable state corresponding to the G0

phase. Starting with initial conditions enabling the

initiation of the cell cycle (with Cln3 ON), this sim-

plified model yields a cyclic attractor, which recapit-

ulates the sequence of events along the cell cycle (see

Fig. 2, right).

Using this second approach, several groups have

designed more sophisticate models encompassing

additional regulatory components (e.g., checkpoints

(▶Cell Cycle Checkpoints)) and recapitulating

the behavior of the systems following various

kinds of perturbations (e.g., single or multiple loss-

of-function mutations) (Irons 2009; Fauré et al.

2009). Interestingly, these studies show that various

kinetic assumptions lead to similar consistent

dynamical behaviors, indicating that the control net-

work is sufficiently robust to cope with stochastic

fluctuations of synthesis/degradation rates. The

multi-level model presented by Fauré et al. is argu-

ably the most comprehensive logical cell cycle

model to date.

http://dx.doi.org/10.1007/978-1-4419-9863-7_9
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Cell Cycle Modeling Using
Logical Rules, Fig. 2 Left:
simulation of the original

model by Li et al. (2004) (cf.

Figure 1, left). Starting from an

initial state corresponding to

G1, simulation yields

a sequence of states that

follows the normal course of

the cell cycle through the

different phases G1, S, G2, and

M, until reaching a stable G1

state. The initial state

corresponds to an “excited”

G1 stable state, with the Cln3

variable set to 1. Right:
simulation of the revised

model, with the input Cln3

always ON (cf. Figure 1,

right). Black cells denote

activity of the corresponding

components, white cells

denote inactivity

Cell Cycle Modeling Using Logical Rules, Table 1 Specific

logical rules associated with the revised version of the model by

Li et al. (2004) presented in Figure 1 (right). “&”, “|”, and “!”

stand for the Boolean operators AND, OR, and NOT,

respectively

Components Logical rules

MBF Cln3 & !Clb1_2

SBF Cln3 & !Clb1_2

Cln1_2 SBF

Cdh1 !(Cln1_2 | Clb5_6 | Clb1_2) | Cdc20_Cdc14

Swi5 ((Mcm1_SFF | Cdc20_Cdc14) & !Clb1_2) |

(Mcm1_SFF & Cdc20_Cdc14 & Clb1_2)

Cdc20_Cdc14 Clb1_2 | Mcm1_SFF

Clb5_6 (MBF | !Sic1) & !Cdc20_Cdc14

Sic1 (Swi5 & Cdc20_Cdc14) |

!(Cln1_2 | Clb5_6 | Clb1_2)

Clb1_2 !(Cdh1 | Sic1 | Cdc20_Cdc14) |

(Clb5_6 & Mcm1_SFF)

Mcm1_SFF Clb1_2 | Clb5_6
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Toward the Modeling of Mammalian Cell Cycle

Networks

Proper modeling of the regulatory network controlling

mammalian cell cycle remains a daunting challenge.

Most published models concentrate on the control of

the G1-S transition (see Fauré et al. 2006, for a generic

Boolean model). Various groups are currently devel-

oping models of human cell cycle in connection with

cancer studies, with the aim of identifying intervention

points to block uncontrolled proliferation. One diffi-

culty is that the actors to consider depend to some

extent on the cellular context (cell type, environmental

signals, presence of mutations).

For example, Sahin et al. developed a Boolean

model of the control of the G1-S transition by the

EGF pathway to predict potential targets for the treat-

ment of trastuzumab-resistant breast cancer (Sahin

et al. 2009). Predictions yielded by loss-of-function



C 282 Cell Cycle Modeling, Differential Equation
simulations were assessed using RNA interference and

proteomic (RPPA) essays. A refined version of the

model was then derived to cope with observed

inconsistencies.

In order to account for the spatial aspects of tumor

formation, logical models of regulatory networks can

be combined with other formal frameworks to generate

multiscale models. For example, a model for avascular

tumor growth has been proposed (Jiang et al. 2005),

where the upper, extracellular layer consists of

reaction-diffusion equations for growth and inhibitory

factors; the middle, cellular layer is a lattice Monte

Carlo model (▶Monte Carlo Simulation); and the

lower layer is a simplified Boolean model of the regu-

latory network that controls the G1-S transition simu-

lated synchronously. To each updating corresponds

a fixed amount of time, during which simulation of

the upper levels proceeds proportionately. This

integration of a simple logical model of the molecular

cell cycle network with the other two layers proved

accurate enough to match observed upper-level tumor

properties. Furthermore, based on this model, the

authors where able to infer that tumor cell quiescence

is more likely due to failure to enter the S phase

rather than to mechanical constraints exerted by the

surrounding cells.

Outlook

Arguably, logical approaches are well suited to cope

with large regulatory networks, in particular when

most available data are qualitative or semi-

quantitative. Furthermore, consistent logical models

can serve as templates to define more quantitative

models using more differential or stochastic formal-

isms, as exemplified by the recent modeling study

devoted to DNA repair mechanism by Abou-Jaoudé

et al. (2009). Although logical models have yielded

only limited impact onto experimental studies, this

situation should change in the future as collaborations

between modelers and experimentalists intensify.
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Cell CycleModeling, Differential Equation, Fig. 1 A typical

molecular regulatory network. In this diagram, letters denote

chemical species (proteins) and solid arrows represent chemical

reactions transforming substrate(s) into product(s). A letter

sitting next to an arrow denotes the enzyme catalyzing the

reaction. Dashed arrows represent “influences” of one protein

on another. Barbed arrows denote “activation” and blunt arrows

denote “inhibition.” The dynamics of this reaction network is

represented by the system of five ODEs in Eq. 2
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Definition

The physiological properties of cells – their growth,

division, movement, signaling, metabolism, differentia-

tion, and death – are all controlled by gene-protein

regulatory networks of considerable complexity.

Thanks to the revolutionary advances of molecular

genetics in the latter part of the twentieth century,

much is known now about the genes and proteins that

constitute these networks and about their interactions, as

well as the meso-scale topology of particular regulatory

networks and the global topology of genome-wide sur-

veys of gene, mRNA and protein interactions. The anal-

ysis of genome-wide (“omics”) data is still very much

dominated by statistical methods, but at the local and

meso-scale of network complexity it is possible to build

detailed, accurate, and predictive models of the dynam-

ics of network behavior by using differential equations.

The applicability of differential equations to model-

ing network dynamics in general, and cell cycle regu-

lation in particular, is based on the following logic

(Tyson et al. 2001). A molecular regulatory network

can be described, depending on the level of detail

available from experimental investigations, by

(1) a system of biochemical reactions or (2) an “influ-

ence” diagram or (3) a hybrid of the two types. These

types of descriptions are illustrated in Fig. 1. Realistic

networks are, of course, much more complex than the

example given. Whether the network is described by

chemical reactions or influences or a hybrid of the two,

the network diagram is trying to tell us how one bio-

chemical species is affecting the rates of production or

removal of another species. As such, the network dia-

gram can be converted into a set of ordinary differen-

tial equations (ODEs), one ODE for each time-varying

biochemical concentration:
d½Xi

dt
¼
X
j

Pij ½X...
; ½M...
; kj
� �

�
X
l

Ril ½X...
; ½M...
; klð Þ (1)

In this equation, [Xi] ¼ concentration of species i,

Pij ¼ rate of the j-th reaction that produces species i,
[X. . .] ¼ concentrations of the time-varying biochem-

ical species that participate in each of these reactions,

[M. . .] ¼ constant concentrations of the time-invariant

biochemical species (“modifiers”) that participate in
each of these reactions (e.g., the total concentration of

the enzyme that catalyzes reaction j), and kj ¼ the rate

constant(s) needed to express the material flux through

reaction j. Similarly, Ril ¼ rate of the l-th reaction that

removes species i, etc.

Regulatory networks like Fig. 1 are sometimes

called “wiring” diagrams, in analogy to the schematic

diagrams of electrical devices. Just like the dynamical

behavior of an electrical device can be predicted (in

practice) from Kirchoff’s Laws (ODEs for the voltages

at various points in the circuit), so the dynamics of

a molecular regulatory network can be predicted (in

principle) from ODEs (Eq. 1). Unfortunately, the anal-

ogy to electrical engineering goes no further. For an

electrical device, we can obtain a schematic wiring

diagram from the manufacturer, as well as

a specification of the numerical values of the parame-

ters that characterize each component (resistances,

capacitances, etc.). For the living cell, we must guess

the wiring diagram, and we must estimate the rate

constants from the very experiments we are trying to

explain. In essence, we must “reverse engineer” the

cell’s circuitry by performing well-designed experi-

ments to probe the input-output (signal-response) char-

acteristics of the cell under normal and contrived

conditions (including mutations which scramble the

wiring diagram in controlled ways).

For the many ways that differential equations have

been used in molecular and cell biology, see the classic

books by Edelstein-Keshet (1988), Murray (1989),

Goldbeter (1996), Fall et al. (2002), and Keener and

Sneyd (2009).
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Wiring Diagrams and Rate Equations

Figure 1, which will serve as our example of modeling

by ODEs, can be interpreted as a model of MPF

dynamics in a fertilized egg (▶Cell Cycle Dynamics,

Bistability and Oscillations.) In this example, X ¼
MPF ¼ dimer of Cdk1 and cyclin B,

XP ¼ preMPF ¼ phosphorylated (inactive) form of

MPF, G ¼Wee1 ¼ kinase that inactivates MPF, H ¼
Cdc25¼ phosphatase that converts preMPF into active

MPF, F ¼ APC/Cdc20 ¼ ubiquitin-ligase that labels

cyclin B for proteolysis. The production and removal

of X and XP are described by chemical reactions

(synthesis, degradation, phosphorylation, dephosphor-

ylation), and kinetic equations for the rates of change

of X and XP can be written by standard principles of

biochemical kinetics:
dX

dt
¼ ksx � kdxFX � kgGX

Kmg þ X
þ khHXp

Kmh þ Xp

dXp

dt
¼ �kdxFXp þ kgGX

Kmg þ X
þ khHXp

Kmh þ Xp

(2a, b)

In each case, the rate of a reaction is given either by

the law of mass action (for synthesis and degradation

reactions) or by the Michaelis-Menten rate law (for the

phosphorylation and dephosphorylation reactions).

(Which rate law we use for an enzyme-catalyzed reac-

tion depends on whether the enzyme tends to work in

its “linear” regime or in its “saturated” regime.) Reg-

ulation of the enzymes, F, G, and H in Fig. 1, is only

specified as “influences”: X “activates” F and H, and

X “inhibits” G. We choose to describe these influences

by generic ODEs:
dF

dt
¼ lf Cðsf  fof0 þ of1XgÞ � F½ 


dG

dt
¼ lg Cðsg  fog0 þ og1XgÞ � G

� �
dH

dt
¼ lh Cðsh  foh0 þ oh1XgÞ � H½ 


(2c, d, e)

whereCðxÞ ¼ 1 1þ e�x
� ��

is a “soft Heaviside” func-

tion;C(x) varies smoothly from 0 for x < < �1 to 0.5
for x¼ 0 to +1 for x>> 1. According to Eq. 2c, d, e, F,

G, and H are continually changing to keep up with the

soft Heaviside functions, which are changing in
response to the dynamical variable X. In return, the

dynamical variables X and XP are changing in response

to F, G, and H according to Eq. 2a, b. It would be

impossible to keep track of the implications of all these

changes in one’s head; it is the job of the ODEs to track

the variables for us.

Numerical Simulation of ODEs: Parameter Values

and Initial Conditions

Before we can solve the ODEs (Eq. 2) we must specify

numerical values for all the “parameters” (rate con-

stants, Michaelis constants, o’s and s’s); see Table 1.
Usually, these parameters must be estimated from

experimental data, but in this example we assign

values to illustrate some interesting and physiologi-

cally relevant solutions of the ODEs. In addition to

parameter assignments, we must also specify “initial

conditions” (values at t ¼ 0) for the five time-varying

species: X(0), XP (0), F(0), G(0), H(0); see Table 2.

With this information, we can now instruct a com-

puter, using the ODEs (Eq. 2), to take small time steps,

dt, and update the values of the dynamical variables:
Xðtþ dtÞ ¼ XðtÞ

þ ksx� kdxXðtÞ � kgGXðtÞ
KmgþXðtÞ þ

khHXPðtÞ
KmhþXPðtÞ

	 

 dt

XPðtþ dtÞ ¼ XPðtÞ

þ �kdxXPðtÞ þ kgGXðtÞ
KmgþXðtÞ �

khHXPðtÞ
KmhþXPðtÞ

	 

 dt

etc:

(3a, b, c, d, e)

The computer starts at t ¼ 0, with the given initial

conditions, computes the instantaneous rates of change

(the functions in [. . .] above), and then uses Eq. 3 to

compute the values of the five dynamical variables at

t¼ 0 + dt. The computer then repeats the process to get

the values of the dynamical variables at t ¼ 2dt, 3dt,

etc. For dt small enough, this procedure gives an accu-

rate numerical solution of the ODEs. Of course, there

are more sophisticated and efficient algorithms for

solving nonlinear ODEs, but they are all based on the

fundamental procedure just described.

In Fig. 2, we present numerical simulations of

ODEs (Eq. 2) for the parameter values in Table 1,

with modifications given in the figure legend. For the

case in Fig. 2a, the ODEs have a single stable steady

http://dx.doi.org/10.1007/978-1-4419-9863-7_21
http://dx.doi.org/10.1007/978-1-4419-9863-7_21
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kg ¼ kh ¼ 10 Kmg ¼ Kmh ¼ 0.05 lf ¼ lg ¼ lh ¼ 1 of1 ¼ 1

sg ¼ 3 og0 ¼ 0.2 og1 ¼ �0.7 sh ¼ 3 oh0 ¼ �0.2 oh1 ¼ 0.8

Fig. 2a Fig. 2b Fig. 2c Fig. 2a Fig. 2b Fig. 2c

ksx ¼ 0.04 ksx ¼ 0.1 ksx ¼ 0.1 kdx ¼ 1 kdx ¼ 1 kdx ¼ 0.5

sf ¼ 20 sf ¼ 20 sf ¼ 5 of0 ¼ �0.3 of0 ¼ �0.3 of0 ¼ �0.4

Cell Cycle Modeling, Differential Equation, Table 2 Initial

conditions for the simulations in Fig. 2

X XP F G H

Fig. 2a 0.1149 1.5459 0.0241 0.5887 0.4197

Fig. 2b 0.1036 1.0602 0.0181 0.5961 0.4111

Fig. 2c(low) 0.1058 0.9649 0.1868 0.5933 0.4143

Fig. 2c(med) 0.1946 0.526 0.318 0.544 0.471

Fig. 2c(high) 0.3327 0.1472 0.4167 0.4753 0.5495
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state solution. In Fig. 2b the steady state solution is

unstable and the system of ODEs exhibits spontaneous

oscillations of all the variables. In Fig. 2c, the system

exhibits a phenomenon called “bistability,” i.e., two

stable steady states separated by an unstable steady

state.

Analysis of Nonlinear Ordinary Differential

Equations

Why does the system of nonlinear ODEs in Eq. 2 show

the many different sorts of behavior illustrated in

Fig. 2? Might the system show other, qualitatively

different sorts of behavior? For what values of the

parameters are each of the types of solutions expected?

The answers to these sorts of questions are provided by

bifurcation theory, which is described in the article

“cell cycle model analysis, bifurcation theory.”

Parameter Estimation

If we have experimental measurements of some of the

dynamical variables at a sequence of time points, under

a variety of experimental conditions, both natural and

contrived (e.g., in mutant cells), then it is sometimes

possible to estimate the parameters in a dynamical

model (and to test the adequacy of the wiring diagram)

by least-squares fitting of numerical simulations of the

model to the experimental data. For instance, the

curves in Fig. 2b look very much like the measure-

ments of Pomerening et al. (2005; their Fig. 1V). How-

ever, even for a modest network such as our example,

with five dynamical variables and 18 parameters,
fitting simulations to experimental data can be a very

difficult task. It requires careful choice of experimental

conditions and sophisticated methods of searching the

parameter space. A lead-in to this extensive literature

is provided by Apgar et al. (2010).

Alternative Modeling Strategies

In this chapter, we have discussed modeling by

nonlinear ODEs, assuming that the cell is a well-

mixed chemical reactor. Surprisingly, in some cases

this is not a bad approximation. For example, the time

it takes for a typical protein to diffuse across a yeast cell

(diameter�5 mm) is only about 10 s, which is very short

compared to the interdivision time (at least 90 min) of

a yeast cell. Hence, for models of the yeast cell cycle,

the cytoplasm is essentially well-mixed. Of course, one

might want to distinguish between nuclear and cytoplas-

mic compartments, but this situation can be handled

with nonlinear ODEs by including fluxes of components

into and out of the nucleus.

In other situations, where the time scale is shorter

and/or the space scale is larger, one must take into

account the coupling of local chemical reactions with

molecular diffusion (and possibly vectorial transport

processes, e.g., along microtubules). In these cases, the

correct modeling approach might be partial differential

equations.

In some cases, when very little is known about the

underlying biochemistry of a control system, systems

biologists prefer to model the system with a Boolean

network, an approach described in the article on “cell

cycle modeling, logical rules.”

Software for Dynamic Modeling

There are several convenient software packages for

modeling molecular regulatory networks with differ-

ential equations:

Copasi www.copasi.org

XPP http://www.math.pitt.edu/~bard/xpp/xpp.html

Madonna http://www.berkeleymadonna.com/

download.html

http://www.copasi.org
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.berkeleymadonna.com/download.html
http://www.berkeleymadonna.com/download.html
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Cell Cycle Modeling, Differential Equation, Fig. 2 Repre-

sentative simulations of ODEs (Eq. 2). The parameter values and

initial conditions for these simulations are given in Tables 1 and 2.

(a) A unique stable steady state (sss). Small perturbations away

from the steady state return immediately. A larger perturbation,

X(0) ¼ 0.5, exhibits a transient pulse of MPF activity before

returning to the steady state. This behavior is called “excitability.”

(b) A stable limit cycle oscillation. In addition to X(t) ¼ [MPF],

we also plot XT(t) ¼ X(t) + XP(t) ¼ [total cyclin]. The period of

oscillation is 29 min. Compare to Fig. 1V in Pomerening et al.

(2005). (c) Two coexisting stable steady states separated by an

unstable steady state (uss)
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Reaction-diffusion modeling with partial differen-

tial equations is best done by

Virtual Cell http://www.nrcam.uchc.edu/
Cross-References

▶Cell Cycle Dynamics, Bistability and Oscillations

▶Cell Cycle Dynamics, Irreversibility

▶Cell Cycle Model Analysis, Bifurcation Theory

▶Cell Cycle Modeling Using Logical Rules

▶Cell Cycle Modeling, Stochastic Methods

▶Cell Cycle Models, Sensitivity Analysis

▶Cell Cycle of Early Frog Embryos

▶Cell Cycle, Budding Yeast

▶Cell Cycle, Fission Yeast
References

Apgar JF, Witmer DK, White FM, Tidor B (2010) Sloppy

models, parameter uncertainty, and the role of experimental

design. Mol Biosyst 6:890–900

Edelstein-Keshet L (1988) Mathematical models in biology.

Random House, New York

Fall CP, Marland ES, Wagner JM, Tyson JJ (2002) Computa-

tional cell biology. Springer-Verlag, Berlin

Goldbeter A (1996) Biochemical oscillations and cellular

rhythms. Cambridge University Press, Cambridge

Keener J, Sneyd J (2009) Mathematical physiology, 2nd edn.

Springer-Verlag, Berlin

Murray JD (1989) Mathematical biology. Springer-Verlag,

Berlin

Pomerening JR, Kim SY, Ferrell JE Jr (2005) Systems-level

dissection of the cell-cycle oscillator: bypassing positive

feedback produces damped oscillations. Cell 122:565–578

Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell

physiology. Nat Rev Mol Cell Biol 2:908–916

http://www.nrcam.uchc.edu/
http://dx.doi.org/10.1007/978-1-4419-9863-7_21
http://dx.doi.org/10.1007/978-1-4419-9863-7_22
http://dx.doi.org/10.1007/978-1-4419-9863-7_28
http://dx.doi.org/10.1007/978-1-4419-9863-7_24
http://dx.doi.org/10.1007/978-1-4419-9863-7_25
http://dx.doi.org/10.1007/978-1-4419-9863-7_30
http://dx.doi.org/10.1007/978-1-4419-9863-7_18
http://dx.doi.org/10.1007/978-1-4419-9863-7_16
http://dx.doi.org/10.1007/978-1-4419-9863-7_17


Cell Cycle Modeling, Petri Nets 287 C
Cell Cycle Modeling, Petri Nets

Ivan Mura

The Microsoft Research - University of Trento Centre

for Computational and Systems Biology, Trento, Italy
C

Synonyms

Place/transition net
Definition

Petri Nets are a graphical modeling formalism with

numerous applications to the modeling and analysis

of systems composed by multiple concurrent pro-

cesses, including the molecular kinetics of cell cycle

regulation networks. They are named after Carl Adam

Petri, who originally defined them in his dissertation

thesis in 1962 (Petri 1962).

Petri Net models consist of four types of elements:

• Places, depicted as hollow circles, represent vari-

ables of the model.

• Tokens, depicted as black dots, are contained into

places and provide the numerical value associated

to the variable.

• Transitions, depicted as bars, represent events

affecting the variables. The occurrence of the

event associated to a transition is referred as the

firing of the transition.

• Arcs, linking transitions to places and places to

transitions (but not places to places nor transitions

to transitions), carry multiplicities defining the

changes on variables as a result of transitions fir-

ings. Incoming arcs to a place add tokens to the

place, whereas outgoing arcs remove tokens.

The intuitive graphical formalisms of Petri Nets

coupled with the considerable amount of theoretical

results supporting their analysis (see for instance the

work of Murata 1989) have favored the spread of this

modeling formalism in various scientific and technical

fields, among them being Systems Biology. There is

quite an immediate mapping between reaction-

oriented descriptions of biological systems and places,

arcs, and transitions. We show in Fig. 1 a Petri Net

model composed by four places, seven transitions, and

18 arcs, encoding the interactions between the APC
molecule Cdh1 and the CycB-Cdk1 dimer. The

modeled reactions are shown in Eqs. 1–5, and include

two possible reversible bindings of Cdh1 with the

cyclin dimer (Eqs. 1 and 2), two possible degradation

ways of the Cdh1 molecule (Eqs. 3 and 4), and the

CycB-Cdk1 catalysis reaction operated by Cdh1

(Eq. 5):
Cdh1þ CycB� Cdk1 ! Cdh1� CycB� Cdk1 (1)

CycB� Cdk1þ Cdh1 ! CycB� Cdk1� Cdh1 (2)

Cdh1� CycB� Cdk1! CycB� Cdk1 (3)

CycB� Cdk1� Cdh1! CycB� Cdk1 (4)

Cdh1� CycB� Cdk1! Cdh1 (5)

Tokens are not represented in the Petri Net model in

Fig. 1, neither are arc cardinalities, which are all

unitary.

A very good reference textbook to the applications

of Petri Nets for the modeling of living systems is

(Koch et al. 2010). We concisely describe in the fol-

lowing several features of Petri Nets, providing in

particular details and references to their applications

to the modeling of cell cycle regulation networks.
Characteristics

Semantics of Transitions Firing

The marking of a Petri Net is the amount of tokens

contained in the places. It evolves as a consequence of

transition firings, i.e., the occurrence of events

modeled in a Petri Net. A transition of the model is

said to be enabled if and only if each place connected

to the transition by an input arc contains a number of

tokens greater or equal to the multiplicity of the arc. An

enabled transition may fire. Upon firing, the marking of

each input place is updated by subtracting a number of

tokens equal to the arc multiplicity. Simultaneously,

the marking of each place connected to the firing

transition by an output arc is updated by adding to it

a number of tokens equal to the multiplicity of the

connecting arc.

http://dx.doi.org/10.1007/978-1-4419-9863-7_101156
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Starting from the initial marking, the net can reach

new markings, which represent the evolution of the

state of the modeled variables. In our context, the firing

of transitions usually corresponds to the occurrence of

reactions and the changes in the marking of the places

caused by the firing corresponds to the updates of the

abundance of reactants and products of reactions.

It is quite immediate to realize that several concepts

need a more precise definition to reach a complete

characterization of the firing semantics. Consider for

instance the case when multiple transitions are

enabled: obviously, rules are needed for defining the

order of firings, as different orders may result in dif-

ferent final markings of the net.

Qualitative Modeling with Petri Nets

The earliest definition of Petri Nets introduced a non-

deterministic choice of the firing, which is the same as

to say that each order is possible, compatibly with the

enabling rules of the firing. Basically, a non-

deterministic firing policy assigns an equal occurrence

priority to each transition, irrespective of the time

dimension of net evolution, as determined by the rela-

tive speed with which reactions take place in the

modeled system. This type of firing semantics is useful

when no quantitative information is available about the

speed of reactions, and can nevertheless provide a view

of the possible markings a given Petri Net model can

reach. Thus, it can help in showing that some features

of the model exist no matter which speed the real

kinetics of reactions possesses. An example of this

Petri Net qualitative modeling can be found in

(Sackmann et al. 2006), where the mating pheromone

response pathway of budding yeast, which is
responsible for cell cycle arrest in G1 phase, is studied

through the techniques of p-invariant and t-invariant

analysis (Murata 1989).

Petri Nets with Stochastic Firing Times

The quantitative information about the speed of reac-

tions is introduced into Petri Net models by various

extensions of the firing semantics. The first one we

consider here proposes a stochastic formulation of

reaction occurrence times (Marsan 1990), where the

competition among concurrently enabled transitions is

broken down through a random choice modulated by

the speed of the competing transitions. More precisely,

each transition firing occurs with a time that follows

a probability distribution law, and in a set of simulta-

neously enabled transitions the smallest random time

determines which transition will fire first. This firing

semantics is called race policy. In the case of contin-

uous-time distributions of the firing times, no simulta-

neous firings of transitions are thus allowed. Petri Nets

adhering to this semantics of firing are commonly

called Stochastic Petri Nets.

Of particular interest in Systems Biology are the

Stochastic Petri Nets whose firing times are distributed

as negative exponential ▶ random variables, in which

case the marking evolution process over time is equiv-

alent to a discrete-space continuous-time Markov pro-

cess (▶Cell Cycle Modeling, Stochastic Methods;

▶ Stochastic Processes, Fokker-Planck Equation).

This class of models lend themselves to naturally rep-

resent the stochastic molecular kinetics as described by

Gillespie (1977), and their evolution can be studied

through ▶Gillespie stochastic simulation algorithm

(Gillespie 1977).

http://dx.doi.org/10.1007/978-1-4419-9863-7_424
http://dx.doi.org/10.1007/978-1-4419-9863-7_25
http://dx.doi.org/10.1007/978-1-4419-9863-7_279
http://dx.doi.org/10.1007/978-1-4419-9863-7_360
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Among the modeling works that resort to stochastic

methods (▶Cell Cycle Modeling, Stochastic

Methods), we found in the literature a few applications

of Stochastic Petri Nets to the modeling and analysis of

yeast cell cycle. The work in (Mura and Csikász-Nagy

2008) provides a model of budding yeast (▶Cell

Cycle, Budding Yeast) cell cycle regulation network.

The model validation is performed with a comparison

of simulated results against a set of experimental

results about wild type as well as budding yeast mutant

cells. The authors demonstrate how the Stochastic

Petri Net model can be used to obtain statistics of the

key cell cycle parameters such as duration and cellular

mass, beyond the average one. This information pro-

vides insights on cell cycle characteristics. For

instance, Fig. 2 compares the simulated cell mass dis-

tribution of wild type budding yeast with that of the

sic1D mutant, where the Cdk inhibitor of cyclins is

removed. The chart clearly shows that the spread of the

cell mass distribution is quite different in the two

modeled organisms. The mutant mass distribution

exhibits a higher variability, in agreement with exper-

imental observations. Thus, the stochastic model

reveals a characteristic of the phenotype of sic1D
cells that could not be anticipated by deterministic

models.

In (Csikász-Nagy and Mura 2010), Stochastic Petri

Nets are used to explore the effects of intrinsic noise

propagation on the variability of cell cycle duration

and cell mass at division time in fission yeast (▶Cell

Cycle, Fission Yeast). In particular, the authors show

that the variance of RNA synthesis and RNA
degradation times of the key regulator Cdh1, and not

only their average values, are critical in determining

the overall variability of cell cycle statistics. This

result provides an important argument for supporting

the validity of pursuing a stochastic modeling of cell

cycle regulation networks.

Hybrid Petri Nets

Hybrid Functional Petri Nets are another popular

timed extension of Petri Nets that has been used to

model cell cycle regulation. This modeling formalism

allows the coexistence of both continuous and dis-

crete processes. Both the set of places and that of

transitions is divided in a discrete and a continuous

part. Enabled discrete transitions fire after a deter-

mined delay, consuming and producing discrete num-

bers of tokens as in regular Petri Nets. Enabled

continuous transitions fire continuously at a given

rate. This latter feature provides a convenient abstrac-

tion mechanism for directly representing into the

model processes that are difficult to model with

a discrete number of tokens, such as very high molec-

ular concentrations, as well as external driving vari-

ables such as cell mass.

The cell cycle regulatory network of fission

yeast (▶Cell Cycle, Fission Yeast) has been modeled

and analyzed by Hybrid Functional Petri Nets in

(Fujita et al. 2004). This study demonstrate the versa-

tility of the Hybrid Functional Petri Net modeling

formalism in representing a broad range of molecular

regulation mechanisms and the intuitiveness of

the modeling process. A comprehensive model of the

http://dx.doi.org/10.1007/978-1-4419-9863-7_25
http://dx.doi.org/10.1007/978-1-4419-9863-7_25
http://dx.doi.org/10.1007/978-1-4419-9863-7_16
http://dx.doi.org/10.1007/978-1-4419-9863-7_16
http://dx.doi.org/10.1007/978-1-4419-9863-7_17
http://dx.doi.org/10.1007/978-1-4419-9863-7_17
http://dx.doi.org/10.1007/978-1-4419-9863-7_17
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cell division process of Xenopus frog embryo

(▶Cell Cycle of Early Frog Embryos), which includes

the molecular dynamics of cyclins and of the S-phase

and M-phase promoting factors as well as the DNA

damage (▶Cell Cycle Arrest After DNA Damage)

checkpoint, has been proposed in (Matsui et al.

2004). This latter model is able to reproduce the

changes in the cell division cycles from synchronous

to asynchronous.
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Synonyms

Algorithmic modeling languages; Computational

modeling languages; Rule-based languages
Definition

Process algebras are formal languages originally con-

ceived for modeling concurrent systems and are also

a conceptual tool for the high-level description of

interactions, communications, and synchronizations

between a collection of independent processes.

Concurrent computing systems do not allow assump-

tions on the relative speed of their components, and

therefore, a certain degree of non-determinism

emerges in systems behavior.

Several approaches have been developed and

used to model and study complex interaction mecha-

nisms in biological systems, and different process

algebra–derived languages have been used, in particu-

lar, to build models of cell cycle at different levels of

abstraction.

In seminal work, Regev and Shapiro (2001)

suggested an abstraction of cells-as-computation and

proposed that process algebras formerly used in the

study of interacting computational entities could be

usefully employed and extended to model biological

processes (Table 1).

The strategy used by process algebras diverges from

classical mathematical modeling because it can

describe the flow of control between species and reac-

tions, i.e., not only the time, but also the causality

relation among the events that constitute the very

essence of the mechanistic steps describing the

emergent behavior of the modeled systems.
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picture of the mapping between biology and process algebras.

In the process algebras interpretation, a biological entity

(e.g., a protein) is seen as a computation unit (i.e., a process)

with interaction capabilities abstracted as communication chan-

nel names. Similarly to biological entities, which interact/react

through complementary capabilities, processes synchronize/

communicate on communication channels complementary

send/receive actions. The modifications/evolutions of molecules

after reactions are represented by state changes following

communications

Biology Process algebras

Entity Process

Interaction capability Communication channel name

Interaction Synchronization/communication

Modification/evolution State change
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This interpretation is very similar to programming the

behavior of a system rather than describing only its

outcome with respect to time (Priami 2009).

A number of process algebras have been

adapted or newly developed for building biological

models and performing stochastic simulations (i.e.,

▶ Stochastic pi-calculus, ▶BioSPI, ▶ κ-Calculus,
▶Bio-PEPA,▶BlenX). For a comprehensive picture

of the state of the art of process algebras abstraction

for biology, see (Guerriero et al. 2009). It is important

to notice that each modeling language requires

a different modeling style because it maps molecular

components to interactions, process communication,

and process composition in a quite different way.

So by choosing a formalism, a modeler is often

making implicit choices (we refer the reader to

(Calder and Hillston 2009) for details about the

abstractions used by many of the aforementioned

process algebras).
Characteristics

Process Algebras, the Approach

A system is represented by a collection of entities

(processes) that define the possible behaviors of the

components of the system. Algebras are equipped with

an operational semantics, which consists in an induc-

tive system of logical rules that implicitly define a state

transition function (Plotkin 1981) and allow users to

automatically derive the possible future states of the

system. The fact that process P evolves into process

Q is generally written as P! Q.
The basic steps of process algebras are encoded by

actions. In the simplest case, actions are input/output

operations on communication channels. Actions can be

composed sequentially, meaning that a process can

perform an action after the other one (“a.Q”). Pro-

cesses can also be composed in parallel: (“P1 | P2”)

meaning that P1 and P2 run simultaneously, although

they can synchronize and communicate if they share

a communication channel. Moreover, most of the alge-

bras are equipped with some sort of restriction operator

which defines the scope of actions. For instance,

assuming “a” to be an action, and using “v” to denote

restrictions, “P1 | va.P2” means that action a is private

to process P2.

The interaction policy assumed by each algebra is

one of its main distinguishing features, and it drives the

design of its primitive operators. This is a list of the

most used ones:

• Two-way synchronization (see, e.g., [Milner

1999]). Each action has a complementary action,

typically called co-action. Actions and co-actions

can synchronize with each other. For instance,

assuming a and �a to be complementary actions,

the following interaction would be possible:

a:P1 �a:P2!j P1 P2j where “.” is the sequential

operator.

• Multi-way synchronization (see, e.g., [Hoare

1985]). The parallel composition operator is

parametric with respect to a set of actions (some-

times called cooperation set) on which all the par-

allel processes are obliged to synchronize. In

this case, there is no need to resort to complemen-

tary actions. For example, a:P1 af ga:P2 af g
����

a:P3! P1 af g
�� P2 af gP3:

�� :::.

• Name-passing (see, e.g., [Milner 1999]). In this

case, actions have either the form �a bh i or the form
aðcÞ. The first one stands for “output the channel

name b along the channel named a,” and the second

one stands for “input any name from channel a and

then use it instead of the parameter name c.” The

name-passing interaction policy is a specific

instance of the two-way communication paradigm:

The actions �a bh i and aðcÞ are complementary to

each other, and they can be involved in an interac-

tion. In this case, more than simple synchronization

occurs: Channel names flow from senders to

receivers, thus dynamically changing the intercom-

munication topology of processes. For instance,

�a bh i:P1 a cð Þj :P2! P1 P2fb=cgj , where fb=cg

http://dx.doi.org/10.1007/978-1-4419-9863-7_767
http://dx.doi.org/10.1007/978-1-4419-9863-7_764
http://dx.doi.org/10.1007/978-1-4419-9863-7_766
http://dx.doi.org/10.1007/978-1-4419-9863-7_765
http://dx.doi.org/10.1007/978-1-4419-9863-7_763
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tools and case studies of process algebras used for modeling

biological systems

Simulation Case studies

Biochemical

pi-calculus

BioSPI, SPiM Autoreactive lymphocyte

recruitment, gene regulation,

cell cycle, Rho GTP-binding

in phagocytosis, FGF

pathway

Bio-PEPA PEPA

workbench,

eclipse plug-in

ERK signaling pathway, cell

cycle, epidemiological

models, genetic networks,

NF-kB

BlenX CoSBiLab

(BetaWorkbench)

Cell cycle, circadian clock,

actin polymerization, NF-kB,

MAPK, EGFR

k-calculus Kappa factory Cellular signals
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denotes the substitution of the free occurrences of c

by the actually received name b.
Since names can be transmitted in interactions, the

restriction operator plays a special role in name-

passing algebras. Restricted names cannot be used as

transmission media; they can, however, be used as

transmitted data and, once transmitted, they become

private resources shared by the sender and the receiver.

The mentioned operators are those common to var-

ious process algebras; in addition to these, each calcu-

lus adopts a few specific operators (see specific entries

▶ Stochastic pi-calculus, ▶ κ-Calculus, ▶Bio-PEPA,

▶BlenX for more details)

Process Algebras, Comparing Different Languages

Table 2 schematically reports a comparison between

different process algebras with the availability of sim-

ulation platforms (usually implementing some variants

of the ▶ Stochastic simulation algorithm) and the

investigation of some complex case studies.

Process Algebras, Applications in Biology (Cell

Cycle)

As the best of our knowledge, the only three process

algebras used to study different aspects of the cell

cycle are ▶BioSpi, ▶Bio-PEPA, and ▶BlenX.

Here we just sketch the main characteristic of the

chosen model with respect to the peculiar feature of

those languages just to give to the reader a flavor of

how different process algebras handle various aspect

of the cell cycle, usually studied in the deterministic

framework. We refer the reader to the original publi-

cations for more detailed discussions.

A Cell Cycle Model in BioSpi

Lecca and Priami (2003) chose to implement the con-

trol mechanism of the cell cycle (modeled by Novak in

1999) that is accounting for the antagonistic interac-

tion between cyclin-dependent kinase dimers and the

anaphase-promoting complex: The APC extinguishes

cdk activity by destroying its cyclin partners, whereas

cyclin/cdk dimers inhibit APC activity by phosphory-

lating Cdh1 (the interaction is also mediated by

a cyclin-dependent kinase inhibitor).

The system is composed by six concurrent pro-

cesses, corresponding to the main five species of pro-

teins, which regulate the cell cycle: CYCLIN, CDK,

CDH1, CKI, CDC14 plus an auxiliary process

CLOCK. First, cyclin subunits bind to CDKmonomers
and make them active; then the dimers CYCLIN/CDK,

the activator CDC14, and the CDH1 are involved in

a negative feedback loop: CYCLIN/CDK turns on

CDC14, which activates CDH1, which inhibits the

CYCLIN/CDK activity, destroying the cyclin sub-

units. The model includes also another possibility of

inhibition of CYCLIN/CDK: the stoichiometric bind-

ing with CKI.

So the main events that the code simulates are: the

dimers CYCLIN/CDK formation (by the usage of pri-

vate channels between the two processes), phosphory-

lation, and dephosphorylation of CDH1 by CDC14

(by changing of the current state of the process) and

the protein degradation (by changing the current state

of the process to the constant empty process). All the

events occur on global channels at different suitable

rates (with the exception of the dimer formation that

occurs on a private channel between the two pro-

cesses). The different reactions in which the compo-

nents of the system are involved are implemented as

a multiple non-deterministic choice, that is then turned

into a probabilistic one by the BioSpi simulator

(See ▶ stochastic simulation algorithm for more

details about the logic behind the simulator engine).

A Cell Cycle Model in Bio-PEPA

Ciocchetta and Hillston (2009) chose the model

presented by Goldbeter in 1991 and was later extended

by Gardner et al. in 1998. Broadly speaking, the model

describes the negative feedback loop obtained by

the fact that the cyclins promote the activation of

http://dx.doi.org/10.1007/978-1-4419-9863-7_767
http://dx.doi.org/10.1007/978-1-4419-9863-7_766
http://dx.doi.org/10.1007/978-1-4419-9863-7_765
http://dx.doi.org/10.1007/978-1-4419-9863-7_763
http://dx.doi.org/10.1007/978-1-4419-9863-7_768
http://dx.doi.org/10.1007/978-1-4419-9863-7_764
http://dx.doi.org/10.1007/978-1-4419-9863-7_765
http://dx.doi.org/10.1007/978-1-4419-9863-7_763
http://dx.doi.org/10.1007/978-1-4419-9863-7_768
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a cdk (cdc2) which in turn activates a cyclin protease

which in turn promotes cyclin degradation. In order to

represent a control mechanism for the cell division

cycle, Gardner and colleagues introduced a protein

that initiates and concludes the cell division phase

and modulates the frequency of oscillations.

The Bio-PEPA model of the system has been built

following this simple sequence of steps:

• Definition of the initial and the maximum concen-

trations (information derived from the paper) and

choice of the appropriate level/step size that define

the level of granularity at which the user wants to

study the system.

• Definition of functional rates and parameters of the

model. Concerning the kinetic laws, some of the

reactions in the input model follow mass-action

kinetics, whereas all the others have Michaelis–

Menten kinetics.

• Definition of species components (i.e., the reagents/

products of the different reactions) and of the model

component (i.e., the composition of the species

components).

The Bio-PEPA model has then been analyzed, and

some interesting properties about different parameter

sets and their effect on the underlying Continuous

Time Markov Chain have been investigated.

A Cell Cycle Model in BlenX

Palmisano et al. (2009) illustrates an easy translation to

BlenX of one of the most popular deterministic model

of the budding yeast cell cycle developed by Novak

and Tyson in 2003. This model contains species

involved in reactions at very different levels of abstrac-

tion: There are elementary reactions following mass-

action kinetics and more complex interaction mecha-

nisms abstracted as cooperative reactions with

Michaelis–Menten and Hill kinetics. Moreover, con-

tinuous variables (e.g., the mass of the cell) are intro-

duced and they influence the rate of many other

reactions.

In BlenX, it is easy to code all the features listed

above considering the following ideas:

• Species can be modeled as simple boxes, with inter-

action capabilities defined only between the species

involved in pure mass-action reactions.

• Complex mathematical formula used as kinetic

laws can be simply copied in the input file of

the model and assigned as rate of BlenX events.

The simulator takes care of calculating their
appropriate values at each simulation step and put

them in the classical race condition with the ele-

mentary reaction rate, following the ▶ stochastic

simulation algorithm strategy.

• Continuous variables can be defined in the input file

and their value is updated by the simulator so that

the user can define functional rates that refer to

them and that are updated by the simulator when-

ever the continuous variable is recalculated.

The BlenX model has been used for performing

stochastic simulations of wild type and mutants cells,

showing how the effect of the noise is important to

characterize partially viable mutants at the border of

life and death.
Cross-References

▶Bio-PEPA

▶BioSPI

▶BlenX

▶ κ-Calculus
▶ Stochastic Pi-calculus

▶ Stochastic Simulation Algorithm
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Synonyms

Probabilistic methods
Definition

Stochastic methods of modeling include randomness

as a way to represent the occurrence of events that,

because of their very nature or due to practical

impossibilities, can only be predicted in probabilistic

terms. Thus, the diffusion of molecules through

a membrane, the dynamic instability of microtubules,

and the spontaneous switch from the non-lytic to the

lytic behavior of the l-phage can all be modeled as

stochastic processes.

Various modeling studies of cell cycle regulation

networks have been proposed in the literature, which

include stochastic parts of behavior. The abstraction

level at which stochasticity is included in the model

can provide a convenient classification criterion.

Going down to the highest to the lowest level we

distinguish the following four classes:

• Stochasticity at cell division time. The elements of

randomness considered are those related to the

process of cell division, which is the asymmetric

division of cells with unequal partitioning of cyto-

plasmic and/or nuclear material between the mother

and daughter cells. The weights determining the rel-

ative partitioning of the cellular content are charac-

terized by discrete or continuous random variables.

• Stochasticity at cell cycle phases duration.

The duration of the various cell cycle phases

depends on a number of factors, including

genotypic differences, intrinsic molecular noise,

and external factors such as the abundance of

nutrients and DNA damage inducing events.

Therefore, cell cycle phase duration is not constant

in a population of cells, neither is across subsequent

rounds of duplication of the same cell. The duration
of cell cycle phases can be modeled as continuous

time random variables.

• Stochasticity as molecular noise. The molecular

dynamics of the proteins that participate to the cell

cycle regulation network can be modeled by adding

to a pure deterministic process that represents the

average change, a stochastic process that represents

molecular noise. In line with this approach we find

probabilistic versions of Boolean networks, where

the deterministic causality dictated by the structure

of the model is relaxed through the introduction

of probabilities of state change. Another way to

represents stochastic changes in the molecular

concentrations is through a differential ▶Langevin

equation with multiplicative noise, as shown

in Eq. 1:
d

dt
xðtÞ ¼ f xðtÞð Þ þ Nð0; 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2  D  xðtÞ

p
(1)

where xðtÞ is the concentration of species x at time t,

f ð Þ is a deterministic function, Nð0; 1Þ is a standard
Gaussian noise (null expectation and unitary

variance), and D is the noise amplitude.

• Stochastic kinetics. The randomness is directly

introduced at the level of molecular interactions,

according to the formulation of stochastic kinetics

used in▶Gillespie stochastic simulation. Under a set

of hypotheses about the homogeneity and the

thermal equilibrium of the system, the times to

the occurrence of reactions in the system can be

faithfully modeled by negative exponential ▶ ran-

dom variables. This allows describing the evolution

of the system over time through a simple system

of first order linear differential equations, known as

the Chemical ▶Master equation, or equivalently, as

a discrete space continuous-time Markov process

(▶Markov Chain). The cell cycle regulation net-

work is thus modeled by assigning to each reaction,

for each possible state of the system, a rate of occur-

rence that is interpreted as the rate of a negative

exponential distribution. Various high-level lan-

guages for specifying stochastic kinetics models

exist, we cite here the stochastic Petri net (▶Cell

Cycle Modeling, Petri Nets) and stochastic process

algebra (▶Cell Cycle Modeling, Process Algebra)

formalisms as they have been recently applied to the

modeling of cell cycle regulation networks.

http://dx.doi.org/10.1007/978-1-4419-9863-7_101207
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Characteristics

The four stochastic modeling approaches presented

above have been applied, sometimes combined with

each other and mixed with deterministic parts of

modeling, to define in-silico models of cell cycle

regulation networks. The vast majority of modeling

studies that are of interest here deal with the cell

cycle of yeast. The corpus of deterministic models of

yeast cell cycle, based on Ordinary Differential

Equations (▶Ordinary Differential Equation (ODE)),

has been extended in various ways with the stochastic

methods to represent extrinsic and intrinsic molecular

variability. A few stochastic models of higher organ-

isms cell cycle regulation are also found in the

literature.

Fission Yeast

In a pursuit to determine the origin of the observed

variability in cell cycle duration, Sveiczer et al. (2001)

modified a pure deterministic model of fission yeast

(▶Cell Cycle, Fission Yeast) cell cycle by intro-

ducing into it the asymmetric results of ▶ cytokinesis.

The cell size at birth is modeled as the product of

a Gaussian random variable – with average

value ¼ 0.5 and standard deviation ¼ 0.016 – and the

size of the mother cell, whereas the initial nuclear

volume is assumed to be Gaussian, with average

value ¼ 1.0 (in arbitrary units) and standard

deviation ¼ 0.07 (determined from the fit with exper-

imental data, due to the unknown distribution of real

nucleus size). The inclusion of this stochasticity

allowed the model to reproduce the experimentally

observed levels of variability for both wild type and

wee1- mutant fission yeast cell population. An exten-

sion of a deterministic model of fission yeast cell cycle

molecular machinery through Langevin equation noise

terms has been proposed in (Steuer 2004). The author

rewrites a model composed by ordinary differential

equations by adding stochastic noise to each of

them. The simulation results demonstrate that the

introduction of noise makes the model able to account

for emerging properties, such as existence of quantized

cycle times, thus showing that fluctuations cannot

always be treated as small perturbations to the

deterministic behavior. The effects of both intrinsic

(stochastic molecular kinetics) and extrinsic

(asymmetrical split at division time) are studied by
Kar et al. (2009) with a Gillespie simulation scheme.

The model shows that both intrinsic and extrinsic

noises contribute significantly to the variability

of cell cycle progression. Nonetheless, intrinsic

molecular fluctuations in the control system are

considerably noisier, mostly due to the low numbers

of mRNA molecules reported for yeast cells.

Budding Yeast

The cell cycle of budding yeast (▶Cell Cycle, Bud-

ding Yeast) has also been the subject of modeling

studies employing stochastic methods. A modeling

work based on a ▶Boolean network by Zhang et al.

(2006) encodes the activation/repression relationships

among the key molecular species, and a perturbing

probabilistic noise is considered when evaluating the

state update rules. The authors show that the model is

quite robust and that the main cycling behavior is

conserved with high probability even for very noisy

models. Similar conclusions were also drawn by

Sabouri-Ghomi et al. (2008), in a study that explored

the effects of molecular intrinsic noise in cell cycle

progression of budding yeast by a stochastic kinetic

model a la Gillespie. They demonstrated that the

molecular switches controlling the Start (entry into

S phase) and the Finish (exit fromM phase) transitions

are robust even for low molecular counts of the key

regulating molecules. The works in (Mura and

Csikász-Nagy 2008) and in (Palmisano et al. 2009)

introduce, through the application on the budding

yeast cell cycle regulation networks, a procedure to

translate deterministic models based on ordinary

differential equations into stochastic kinetic models

for Gillespie simulation specified as stochastic Petri

net and stochastic process algebra models,

respectively. The authors demonstrate how stochastic

models can be used to obtain statistics of key cell cycle

parameters, such as duration and cellular mass, beyond

the average one, information useful to revealing

characteristics of the phenotypes that could not be

anticipated by deterministic models. Finally,

a stochastic kinetics model of the core of budding

yeast cell cycle regulation network was studied

through a combination of stochastic simulation and

model checking techniques in (Ballarini et al. 2009)

to characterize the elements of the network determin-

ing the irreversibility (▶Cell Cycle Dynamics,

irreversibility) of phase transitions.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1419
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A hybrid Petri net model of the cell division process

of Xenopus frog embryo (▶Cell Cycle of Early Frog

Embryos) has been proposed in (Matsui et al. 2004).

This model output is able to reproduce the changes

in the cell division cycles from synchronous to

asynchronous. The cell cycle desynchronization in

a culture of proliferating mammalian cells

(▶Cell Cycle of Mammalian Cells) is the subject of

Olofsson and McDonald (2010), where the stochastic

characterization of phase duration is taken as an

input to a branching process model of replicating

cells, able to match the experimentally observed per-

centages of cells in the various phases of the cycle.

We finally mention the modeling study of Zamborsky

et al. (2007), which deals with the cross-talking upon

the Wee1 kinase between circadian rhythm and

cell cycle regulation networks in mammalian cells.

A stochastic model of cell cycle regulation network

expressed through Langevin equation is coupled with

circadian clock (▶Cell Cycle, Coupled with Circa-

dian Clock) deterministic model. The model suggests

that the circadian clock may contribute to enforce

a cell size control on the cell cycle when the mass

doubling time is quite different from the circadian

period.
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Definition

Sensitivity analysis is the name of a family of mathe-

matical methods that investigate the relation between

the values of the parameters and the output of models.

Local sensitivity analysis explores the effect of small

parameter changes, while the methods of global sensi-

tivity analysis may explore large parameter domains.
0 t1 t2 time

Cell Cycle Models, Sensitivity Analysis, Fig.1 Concentration
Characteristics

Local Sensitivity Analysis

A dynamical model can be characterized by the fol-

lowing initial value problem

– time solution of a model (solid line) and the modified solution

when one of the parameters is changed at time t1 (dashed line)

dY=d t ¼ fðY;pÞ Yð0Þ ¼ Y0 (1)

where t is time, Y is the n-vector of variables, p is the

m-vector of parameters, Y0 is the vector of the initial

values of the variables, and f is the right-hand-side of

the differential equations.

Local sensitivity analysis means the calculation of

partial derivative @Yi @pj
�

, which is called the first

order local sensitivity coefficient. The meaning of

a local sensitivity coefficient is visualized in Fig. 1.

The concentration–time curve, as obtained by the solu-

tion of the original model, is plotted with solid line. If

parameter j is changed by Dpj at time t1, then the

solution of the modified model will deviate (see

the dashed line) from the original solution. Denote

DYi the change in the calculated solution at time t2.
The finite difference approximation can be used for the

calculation of the local sensitivity coefficient:
@Yi
@pj
� DYi

Dpj
(2)

Local sensitivity coefficient @Yi @pj
�

depends on the

time of parameter perturbation t1 and the time of

observation t2. If the time of perturbation t1 is fixed,

then the local sensitivity coefficient is a function of

time t ¼ t2�t1.
The error of the finite difference approximation

cannot be controlled effectively, therefore the local

sensitivity function sik(t) is usually calculated by
solving the following initial value problem (Tomović

and Vukobratović 1972):
_S ¼ JSþ F Sðt1Þ ¼ 0 (3)

where S(t) ¼ {sij(t)} ¼ {@Yi @pj
�

} is the time-

dependent local sensitivity matrix, matrix J is the

Jacobian (J ¼ {@fi @Yk= }), and matrix F contains the

derivatives of the right-hand-side of the ODE with

respect to the parameters (F ¼ {@fi @pj
�

}). Matrices J

and F are functions of time t2. The sensitivity

coefficients are usually used in normalized

pj Yi=
� �

@Yi @pj
�� �

or semi-normalized pj @Yi @pj
�� �

form. The normalized sensitivity coefficients are

dimensionless and show the percentage change of

model solution i as a result of +1% change of the

value of parameter j.

Global Sensitivity Analysis

Textbooks about the various methods of global sensi-

tivity analysis and their applications in science have

been published by Saltelli et al. (2004, 2008). The most

frequently applied methods of global sensitivity anal-

ysis are the Monte Carlo method with Latin hypercube

sampling, application of pseudo random numbers (e.g.,

a Sobol’ sequence), Fourier Amplitude Sensitivity Test

(FAST), and High Dimensional Model Representation

(HDMR). These methods are able to determine the
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uncertainty of each model output (like the concentra-

tion at a given time or the period time) knowing the

uncertainty of each parameter. The ultimate informa-

tion (usually obtained by the combined application of

several methods) is the calculation of the joint proba-

bility density function (pdf) of the model outputs and

the contribution of each parameter to it knowing the

joint pdf of the parameters.

Raw and Cleaned Local Sensitivity Functions

The concentration–time curves of a cell cycle model

are always nearly periodic and in most models the

concentration–time curves are truly periodic having

elapsed a transition time. In this case one period time

t later the concentrations are identical:
YðtÞ ¼ Y tþ tð Þ (4)

It is possible to investigate how period time t
depends on the values of the parameters. Using

a local sensitivity approach, this information is

provided by the period time sensitivities @t @pj
�

.

One might assume that the sensitivity functions

of a model having periodic solution are also

periodic. However, it is true only for the local sensi-

tivity functions belonging to parameter pk, if the

corresponding period time sensitivity is zero

(∂t/∂pk ¼ 0). If ∂t/∂pk is not zero, then the maxima

of the sensitivity–time curves are continuously

increasing. It has been shown by several authors

(see (Tomović and Vukobratović 1972), (Edelson and

Thomas 1981), (Larter 1983), (Zak et al. 2005)) that

the original (“raw”) sensitivity functions @Yi @pj
�� �

can be separated to truly periodic (“cleaned”) sensitiv-

ity functions @Yi @pj
�� �

t and a secular term:

@Yi
@pj
¼ @Yi

@pj

� �
t
� t

t
@t
@pj

@Yi
@t

(5)

These authors suggested several methods for the

accurate determination of the period time sensitivity

@t @pj
�

and the cleaned sensitivity functions from the

raw sensitivity functions (Fig. 2).

The Similarity of the Local Sensitivity Functions

In the case of a general mathematical model, no rela-

tion is expected among the rows and/or the columns of
the sensitivity matrix. However, in several chemical

kinetic systems the following relations have been

observed (see Rabitz 1989; Zsély et al. 2003):

1. Local similarity: Value
lijðtÞ ¼ sikðtÞ
sjkðtÞ (6)

depends on time t and the model results Yi and Yj
selected, but is independent of the parameter pk
perturbed.

2. Scaling relation: Equation
dYi dt=ð Þ
dYj dt=
� � ¼ sikðtÞ

sjkðtÞ (7)

is valid for any parameter pk. Existence of scaling

relation includes the presence of local similarity.

3. Global similarity: Value
mikm ¼
sikðtÞ
simðtÞ (8)

is independent of t (within an interval).

Zsély et al. (2003) have shown that the existence of

low-dimensional manifolds in variable space may

cause local similarity. Global similarity emerges if

local similarity is present and the sensitivity differen-

tial equations are pseudo-homogeneous. The latter is

related to the existence of excitation periods, like the

autocatalytic runaways of concentrations.

In cell cycle models low-dimensional manifolds

and excitation periods may occur (Lovrics et al.

2006), and accordingly all the three types of relations

between the sensitivity functions were found (Lovrics

et al. 2008). If the maxima of the sensitivity functions

are continuously increasing, then the cleaned sensitiv-

ity functions @Yi @pj
�� �

t should be investigated.

Detection of the global similarity of sensitivity

functions has a special importance. If sensitivity

functions @Yi @pj
�

and @Yi @pk= are globally similar,

then changing parameter j causes exactly the same

effect on concentration–time curve YiðtÞ during the

whole time period than a (different extent) change of

parameter k. This means that the effect of the change

of parameter j can be compensated by an appropriate

modification of the value of parameter k. As

a consequence, an infinite number of parameter sets
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may result in the same simulation results. Also, the

effect of a physical change of a parameter in

a biological system (e.g., due to the change of the

environment) can be fully compensated by the appro-

priate change of another parameter, which is a form of

▶ robustness in biological systems.
Cross-References

▶Robustness
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Cell Cycle of Early Frog Embryos

Joseph R. Pomerening

Department of Biology, Indiana University,

Bloomington, IN, USA
Synonyms

Cyclin-dependent kinase 1 (CDK1)/Anaphase-

promoting complex (APC) oscillator; Early embryonic

oscillator; Xenopus laevis embryonic cell cycle
Definition

Early frog embryos – including those of thewell-studied

genus Xenopus – exhibit a cell cycle with unique

characteristics. These include a lack of growth phases,

as well as an inability to arrest despite chemical or

physical insult, including DNA-damaging or cytoskele-

ton-disrupting agents, as well as nuclear ablation.

Alternation of genome replication (S-phase) and daugh-

ter chromosome segregation followed by cell cleavage

(M-phase) occurs quickly in frog embryos (Fig. 1).

Egg-borne maternal stores of mRNA and protein

drive these oscillations, with the duration of cycles

2–12 being roughly 30 min, following an initial

75–90 min cycle. Due to the rapid and independent

nature of these frog early embryonic cycles, the

enzymatic tandem that drives it – the stimulatory

phospho-transferase, cyclin-dependent kinase 1

(CDK1), and the inhibitory ubiquitin ligase,
anaphase-promoting complex (APC) – is known to

behave as an autonomous, clock-like cell cycle oscil-

lator. Following the first 12 cleavages, at a stage known

as the mid-blastula transition (MBT), the frog embryo

cell cycle is modified to include zygotic transcription,

and slows due to the incorporation of growth phases,

lengthened S-phases, and the ability to induce cell

cycle arrest due to the activation of checkpoints.
Characteristics

No Gap or Growth Phases, and Zygotic

Transcription is Inhibited

Frog eggs and early embryos have been a long-utilized

experimental system due to the ease of care of parental

populations, their large size lending to the ease of

manipulation and observation, and the ability to easily

collect an abundance of eggs suitable for use in bio-

chemical studies – primarily in the pseudo-tetraploid

Xenopus laevis – or for genetic manipulation in the

diploid Xenopus tropicalis. Cell cycles in the early

embryos of these frogs – from the period of fertiliza-

tion up until MBT, when the zygotic genetic program

is initiated – exhibit unique characteristics that distin-

guish it from the cycles that occur in somatic cells later

in development, as well as in their mammalian embry-

onic counterparts (Murray and Hunt 1993). The frog

early embryonic cell cycle, however, does share simi-

larities to the early cycles of other amphibians, fish,

and insects. One similarity is that the earliest cleavages

that occur following fertilization do not accommodate

periods for growth, while rapid exchanges between

the periods of DNA replication and mitosis occur.

http://dx.doi.org/10.1007/978-1-4419-9863-7_100303
http://dx.doi.org/10.1007/978-1-4419-9863-7_100303
http://dx.doi.org/10.1007/978-1-4419-9863-7_100426
http://dx.doi.org/10.1007/978-1-4419-9863-7_100426
http://dx.doi.org/10.1007/978-1-4419-9863-7_101632
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Xenopus laevis eggs – and developing one-cell

blastomeres – are roughly 1 mm in diameter, and

remain this size until their cell cycle is modified to

include growth phases after the onset of MBT

(Bernardini et al. 1999). The maternal contribution of

protein and mRNAs to the frog egg is critical to these

early cell cleavages, because its genome remains tran-

scriptionally inactive until the embryo reaches MBT.

Experimental evidence points to this transition corre-

lating strongly with the nuclear-to-cytoplasmic vol-

ume (N-to-C) ratio in cells, but what triggers the cell

cycle to behave more deliberately with its inclusion of

growth phases and checkpoints remains unknown

(Newport and Kirschner 1982).

No Checkpoints in Response to Unreplicated DNA,

DNA Damage, or Mitotic Defects

After fertilization, frog early embryos continue their

rapid cell cycles unimpeded, even if exposed to agents

that block the processes required for DNA replication

and cell division (Morgan 2006). Treatment with DNA

synthesis inhibitors prevents S-phase completion, but

cell cleavages will continue. In fact, the presence of

a nucleus is not a requirement: enucleation of fertilized

eggs has been shown inconsequential to oscillations of

the biochemical clock that drives the frog early embry-

onic cell cycle. Poisons including nocodazole and taxol

inhibit the assembly and disassembly of the mitotic

spindle, respectively, but even these cell division inhib-

itors fail to block the activities of the oscillating

enzymes that drive the cycles. Frog early embryos

treated with these drugs do not undergo cleavages, but

do exhibit waves of cortical/cell surface contractions

that mirror the timing when mitosis would be expected

to occur. DNA-damaging agents – including UV irradi-

ation – are also insufficient to halt progression through

the cell cycle in these early embryos. Altogether, these

traits exemplify the fact that the cell cycle and its control

system in frog early embryos is a clock-like, autono-

mous oscillator that is not susceptible to perturbations

that affect the genome, or the subcellular structures that

are necessary for cell division.

Frog Early Embryonic Cell Cycles Are Driven by

Alternating Oscillations of CDK1 and APC

Activities

During the late 1980s, extensive physiological and

biochemical studies led to the purification of the

M-phase-promoting factor from unfertilized Xenopus
laevis eggs (Lohka et al. 1988). This activity was

ascribed to a heterodimeric complex of proteins com-

prising the cyclin-dependent kinase 1 (CDK1), and its

activating counterpart, cyclin B. In 1995, the enzyme

responsible for targeting cyclin B for proteolysis by the

proteasome – called the anaphase-promoting complex

(APC) – was also purified from Xenopus eggs and

clams (King et al. 1995; Sudakin et al. 1995).

Together, the M-phase stimulatory CDK1 protein

kinase and the CDK1-inhibiting APC ubiquitin ligase

were found to be the system that drives the clock-like

oscillations during the early embryogenesis of frogs, as

well as other amphibians, marine invertebrates (such

as clams and starfish), and insects. Cycling extracts

derived from parthenogenetically activated Xenopus

eggs exhibit rapid and sustained oscillations of CDK1

activity, and provide a useful tool to study the dynam-

ical behaviors of this enzyme and others within the

frog early embryonic oscillatory system (Murray

1991). CDK1 activity is assayed in these cytoplasmic

extracts by measuring its phosphorylation of

a preferred substrate, histone H1 (Fig. 2).

Positive Feedback Generates Bistability in the

Response of CDK1 to Cyclin, and Confers

a Relaxation Oscillator Design in the Frog Early

Embryo

The activation of CDK1 is under the control of inhibi-

tory kinases and activating phosphatases (Morgan

2006). Upon binding of cyclin, phosphorylation of

CDK1 on residues of its ATP-binding site (Thr14/

Tyr15) by the kinase Wee1 (as well as another, called

Myt1) inhibits its activity. Activation of the phosphatase

Cdc25 counteracts this inhibition, but also initiates two
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critical positive-feedback loops. CDK1 phosphorylates

and inhibits the Wee1 and Myt1 kinases – causing

a double-negative (positive)-feedback loop – while

also further activating additional Cdc25, and inducing

a second positive-feedback loop (Fig. 3).

This activation, in turn, stimulates the APC-

mediated negative-feedback loop, and induces mitotic

exit and interphase by resetting CDK1 to an inactive

state through targeting the cyclin subunit for proteoly-

sis. Together, these positive- and negative-feedback

subcircuits provide the basis for CDK1 activation and

inactivation, respectively, during the cell cycle.

Systems-level studies into the dynamical nature of

CDK1 activation – that included a fusion of both

computation and experiment – revealed that the

steady-state threshold for CDK1 activation is higher
Cell Cycle of Early Frog Embryos, Fig. 3 Positive-feedback

loops in CDK1 activation

Cell Cycle of Early Frog
Embryos, Fig. 4 Hysteresis

and bistability in CDK1

activation
(when leaving the off-state), than the threshold level of

cyclin that must be surpassed to switch CDK1 from on

to off (Pomerening et al. 2003; Sha et al. 2003). This

steady-state behavior is known as hysteresis, and this

means that there is bistability in response of CDK1

to cyclin stimulus: depending on where the system

starts – either in the off or on state – it can exist in

either of those two states for a range of cyclin concen-

trations (Fig. 4).

In other words, within the hysteretic range of cyclin

stimulus, if CDK1 starts in the on state (mitosis) and

the stimulus decreases, CDK1 will remain active

(though its activity would be decreased, since there

would be less cyclin present) and the cell would remain

in mitosis. If the system starts in the off state and the

stimulus increases to the same level as mentioned

previously, CDK1 would remain off and the cell

would not leave interphase. Combining positive feed-

back and bistability with the APC-driven negative-

feedback loop, the CDK1-APC oscillator in frog

early embryos behaves as a relaxation oscillator –

producing rapid and spike-like bursts of CDK1

activity – followed by its rapid APC-mediated inacti-

vation. Lessening of this positive feedback through the

addition of a non-phosphorylatable (Wee1-insensitive)

mutant of CDK1 was found to cause damped CDK1

activity oscillations (Pomerening et al. 2005). This

caused defects in cell cycle progression – namely, the

premature inhibition of DNA synthesis – by rendering

egg extracts incapable of sustaining periods of low
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CDK1 activity. Therefore, on the systems-level, posi-

tive feedback and bistability in this oscillator help to

ensure sustained, pulsatile oscillations of CDK1 activ-

ity to properly drive cell cycle progression during frog

early embryogenesis.
C
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Cell Cycle of Mammalian Cells
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Synonyms

Cell division; Cell growth; Proliferation
Definition

The cell cycle is the regulated, ordered progression of

steps bywhich a cell commits to proliferation, replicates

its DNA, and divides into two daughter cells. The mam-

malian cell cycle is coupled to normal and aberrant

biological processes unique to multicellular organisms

including development, differentiation, tissue forma-

tion, wound healing, and cancer. Numerous signal trans-

duction pathways link these processes to mammalian

cell cycle entry and progression. Cancer is the disease

state that results from excessive cellular proliferation.

Cancer results when mechanisms for regulating the cell

cycle are lost, as such the complexities of the mamma-

lian cell cycle have received significant attention from

the research community. Mammalian cells have signal

transduction pathways that monitor aberrant prolifera-

tion and in response commit the cell to either senescence

or apoptosis as a barrier to tumorigenesis. The complex,

multivariate relationship between the cell cycle and

the context of the cell necessitates a systems biology

approach to understanding how the cell cycle is regu-

lated and importantly for understanding how this

regulation fails in cancer cells.
Characteristics

Fundamentals

Mammals are complex, multicellular organisms

possessing diverse tissues and organs containing

a plethora of cell types. All of these diverse cell types

are generated during development and arise from the

totipotent fertilized egg. The process that generates

distinct cell types is known as cellular differentiation.

The overwhelming majority of cells in a mature mam-

mal are somatic cells, which are terminally differenti-

ated and no longer proliferate. Mammals maintain

pluripotent stem cells that drive tissue regeneration

and wound healing.

The cell cycle of a proliferating mammalian cell

consists of four phases G1, S, G2, and M. Mitosis (M)

is the ordered series of events that result in the replicated

chromosomes being physically separated, i.e., segre-

gated, and cytokinesis in which two daughter cells

with equal amounts of genetic material are produced.

Replication occurs during the synthesis (S) phase. G1 is

the gap period betweenM and S phase and G2 is the gap

period between S and M phase. Actively proliferating

http://dx.doi.org/10.1007/978-1-4419-9863-7_100178
http://dx.doi.org/10.1007/978-1-4419-9863-7_100182
http://dx.doi.org/10.1007/978-1-4419-9863-7_101218
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mammalian cells, such as cancer cells in tissue culture,

move through the cell cycle in 12–24 h. Cells with the

potential to proliferate but which are not proliferating

are in the G0 phase of the cell cycle and are described

as quiescent. As in yeast, progression through the

cell cycle is driven and regulated by cyclin–

cyclin-dependent kinase (CDK) pairs responsible for

promoting and regulating each of the four transitions

G0-G1, G1-S, S-G2, G2-M. Mammalian cells have a

larger and more diverse set of cyclins than yeast and

these cyclins allow for tissue and context-specific

regulation of the cell cycle (see article by Malumbres).

Cell Cycle Entry

It is extremely difficult to monitor cell growth and

proliferation in vivo. As such, much of our understand-

ing of the mammalian cell cycle is from experiments

performed in tissue culture where it is possible to

control cellular exposure to many of the variables

that determine whether cells proliferate including

exposure to growth factors and nutrient availability.

Removal of nutrients and growth factors, aka serum

starvation, drives many immortal cell lines out of the

cell cycle and into quiescence (G0). Quiescence is

characterized by hypophosphorylated Rb that binds

E2F1 thereby blocking transcription of genes essential

or cell cycle entry. Addition of nutrients and growth

factors activates signal transduction pathways that

upregulates gene expression that results in phosphory-

lation of Rb and causes Rb to no longer bind E2F1.

Released E2F1 upregulates the expression of Cyclin D

and Cdk1, and this cyclin-CDK pair regulates the

transition from G0 to G1. Once cells have passed the

restriction point (link to article by You et al.) then they

move into S and are committed to moving through the

entire cell cycle even if serum starved again.

A complex set of signal transduction pathways

communicates extracellular cues to the cell cycle

machinery. A canonical example is the extracellular

growth factor (EGF) pathway. EGF binds its receptor,

EGFR, activating the mitogen-activated protein kinase

(MAPK aka ERK) pathway, which in turn activates

transcriptional programs (via c-Myc and CREB) that

induce cell cycle entry. The Akt pathway also trans-

duces extracellular growth factor signal into cell cycle

entry. Many components of the MAPK and Akt path-

ways are oncogenes. Mutations in these proteins can

drive oncogenesis, and cancer cells often exhibit
oncogene addiction (link to article by Frick et al.).

Nutrient availability, a prerequisite for growth and

proliferation, is communicated via the mTor pathway

(Hay and Sonenberg 2004). The EGFR signaling path-

way has received considerable attention from systems

and computational biologists and highly detailed mass-

action kinetic models have been published (Chen et al.

2009). These models are being used to generate molec-

ular targets for anticancer therapeutics (Schoeberl et al.

2009).

Cell Cycle Quality Control

For proliferation to succeed both daughter cells must

receive accurate and complete copies of the genome.

Replicating the genome by unwinding, transcribing,

and accurately segregating chromosomes (S phase)

causes numerous sites of DNA damage such as single

and double strand breaks. In addition, there are numer-

ous additional sources of DNA damage including free

radicals from the cell’s own metabolism and environ-

mental sources of damaging agents such as back-

ground radiation. DNA damage is detected and

responded to by an extensive molecular machinery of

proteins that recognize DNA damage and signal its

presence and extent to the cell and DNA repair

machinery. In mammalian cells the protein p53

functions as a signal integration node coupling DNA

damage to cell cycle arrest, senescence, and apoptosis.

In addition, the signaling kinases of the DNA damage

response, Chk1 and Chk2, directly couple the DNA

damage response to the cell cycle machinery. For more

details on how DNA damage is coupled to the cell

cycle, see Cell cycle signaling, DNA damage by

Toettcher in this volume.

Cell fate after DNA damages is a function of the

amount of damage, the dynamics of the damage, and

interplay with extracellular cues. Low levels of tran-

sient DNA damage induce a temporary cell cycle arrest

that permits repair. In the G2 phase of the cell cycle the

cell possesses two copies of each chromosome, which

allows the cell to correct damage generated in S phase

through coupled homologous recombination and

repair. High and/or persistent levels of DNA damage

signal through p53 to induce either senescence or apo-

ptosis. Differentiated mammalian cells do not express

telomerase and as such each round of replication trun-

cates their telomeres. Telomeres completely eroded by

excessive rounds of replication are recognized by the
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DNA damage machinery which induces a persistent

DNA damage response that drives the cell into a state

of permanent cell cycle referred to as replicative senes-

cence. These cellular responses are unique departures

from the mammalian cell cycle and function as barriers

to tumorigenesis (Bartkova et al. 2006). Interestingly,

cell fate determination after DNA damage is strongly

influenced by extracellular cues, such as cytokines and

growth factors, implying that a multivariate systems

approach is necessary for understanding how cells

couple extracellular signal transduction to the DNA

damage response and the cell cycle machinery to

commit to these cell fates.
Cross-References
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Synonyms

Application ontology; Domain ontology
Definition

Application ontologies are engineered for a specific

research area or domain. They often use canonical

ontologies to construct ontological classes and rela-

tionships between classes. Ontologies (▶Ontology)

are a means by which knowledge is captured according

to a common conceptualization of a domain, and they

are commonly used within the molecular biology

subdiscipline of the life sciences (Stevens and Lord

2008). The cell cycle ontology (CCO, Antezana et al.

2009) is an application ontology, developed to inte-

grate knowledge of the eukaryotic cell cycle process

(▶Cell Cycle). It facilitates scientific discovery in the

area of cell cycle research.
Characteristics

Requirements of CCO

CCO brings together a variety of knowledge from the

cell cycle domain, following a standard ontology-

based integration paradigm. The knowledge in this
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domain is constantly evolving, and covers a variety of

organisms. This poses a range of requirements:

1. CCO integrates cell cycle knowledge across

several model organisms: H. sapiens, S. cerevisiae,

S. pombe, and A. thaliana.

2. It presents a common conceptual view of this

knowledge, permitting sophisticated querying in

a variety of forms, across cell cycle knowledge.

3. CCO accommodates frequent changes in data, by

frequent rebuilds through an automated pipeline.

4. CCO performs automatic mapping of biological

entities.

Contents of CCO

The cell cycle ontology covers the following topics:

1. The cell cycle proteins

2. The genes coding for cell cycle proteins

3. The molecular function of cell cycle proteins

4. The cellular localization of cell cycle proteins

5. Cellular processes associated with cell cycle

proteins

6. Post-translational modifications of cell cycle

proteins

7. Protein-protein interactions among cell cycle

proteins

8. Phylogenetic information for the supported organ-

isms through orthology relationships among cell

cycle proteins

The cell cycle ontology integrates the following

resources:

1. Genes, proteins, and their post-translational modi-

fications from the UniProt database

2. The cell cycle, cell division, cell proliferation, DNA

replication branches of the gene ontology biological

process branch (▶Gene Ontology)

3. The complete molecular function branch from the

gene ontology

4. The complete cellular component branch from the

gene ontology

5. The relation ontology provided by the Open Bio-

medical Ontologies Consortium (OBO) (Smith

et al. 2007)

6. The gene ontology annotations (Camon et al. 2004)

of UniProt proteins for the cell cycle (these are the

attachments of GO Cellular Component concepts to

protein to describe their location); GO biological

process and molecular function concepts to

describe their functionality
7. Biological species relationships as described by the

NCBI taxonomy (▶NCBI BioProject Genome

Resources)

8. Protein-protein interactions involving cell

cycle proteins from the IntACT database

(▶ Protein–Protein Interaction Databases)

Core Concepts of CCO

Protein, Modified protein, Gene, Molecular interac-

tion, Molecular function, Biological process, Cellular

component, and Organism. All these entities in the

CCO (proteins – including their modified forms,

genes, interactions, etc.) are modeled as classes since

they gather shared commonalities that are present in all

the individuals (instances) they represent (Fig. 1).

Upper Level Ontology

An upper level ontology (ULO) connects the inte-

grated resources. A ULO is an ontology that structures

general types of concepts (such as a process) in generic

as well as specific domains to provide an integration

scaffold for including other ontologies. The CCO-

ULO is based on the basic formal ontology (BFO,

Grenon et al. 2004) to ensure interoperability of the

CCO with ontologies from OBO. The CCO-ULO has

been customized for the CCO by inclusion of a few

high-level concepts, such as “cell cycle protein” (see

Fig. 2).

Construction of CCO

The cell cycle ontology is constructed in several steps:

1. The process starts by selecting portions from vari-

ous OBO source ontologies. This “pre-cell cycle

ontology” constitutes a backbone for the complete

CCO and the four species-specific sub-ontologies

thereof.

2. The OBO relations ontology is fully incorporated,

together with the “interaction type” branch from the

molecular interaction ontology from OBO.

3. A specific taxonomy is built on the basis of

the NCBI taxonomy for H. sapiens, S. cerevisiae,

S. pombe, and A. thaliana.

4. Protein “hubs” that connect their relevant annota-

tion data (such as the molecular functions in

which they participate) are generated. All proteins

described with cell cycle concepts in gene

ontology annotation (GOA) files (Camon et al.

2004) are named “core cell cycle proteins.”

http://dx.doi.org/10.1007/978-1-4419-9863-7_489
http://dx.doi.org/10.1007/978-1-4419-9863-7_1035
http://dx.doi.org/10.1007/978-1-4419-9863-7_1035
http://dx.doi.org/10.1007/978-1-4419-9863-7_1046
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These proteins are added to the CCO as the chil-

dren of the concept core cell cycle protein (CCO:

B0000000) and used as seeds for the data integra-

tion process.

5. The “core cell cycle” protein section of the CCO is

expanded to include the proteins known to interact

with the core cell cycle proteins, as documented in

IntACT (Kerrien et al. 2007). These new protein

classes are included as subclasses of the class cell

cycle protein. Then, protein information (such as

synonym names, encoding genes, and cross-

references) is fetched from the UniProt knowledge

base. In addition, post-translational modification

data, when available in UniProt, are also added by

creating new concepts defined by their specific

modification.

6. Clusters of putative orthologs of the four species

are generated with the OrthoMCL clustering utility
(Li et al. 2003). This tool is used to infer evolution-

ary relationships between classes of proteins. The

proteins from the clusters containing at least one

core cell cycle protein are added to the CCO as

subclasses of the class cell cycle protein. All the

imported entries from the sources are cross-

referenced so that the data can be traced back to

its source.

7. The four organism-specific ontologies and the com-

posite cell cycle ontology are checked and made

available producing the official release of the

system.

8. Now that the CCO is available with all the knowl-

edge in place, semantic enrichment can occur. We

use the Ontology PreProcessor Language (OPPL,

http://oppl2.sourceforge.net/) to further transform

the CCO with application of ontology design

patterns.

http://oppl2.sourceforge.net/
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Cell Cycle Ontology (CCO), Table 1 Numbers of classes,

breadth, and depth of the CCO hierarchy

Structure and cohesion of CCO

Metric Asserted CCO

No. of classes 89,532

No. of leaf classes 85,235

Max. depth 33

Mean depth 15.35

Mean number of subclasses per

class

4.61

Max. number of subclasses 24,021

No. of properties 52

Property with maximum usage has_source used 65 110 times

Mean usage per property 6,673.69

Mean property usage per class 3.87
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9. Finally, validation and verification processes are

carried out while building the CCO to ensure its

soundness. The ontologies generated in the previ-

ous phase are manually and automatically checked

by ontology editors, validators, and reasoners. In

addition, the pipeline log execution files are

inspected in detail. These files are sufficiently

detailed to point out any possible problem. This

has allowed us to assemble a fully automated pipe-

line that uploads the ontologies and their exports in

the different formats to the CCO website and to all

related and supporting repositories (Table1).

Examples of Other Application Ontologies

The experimental factor ontology (EFO, Malone et al.

2010), developed by the European Bioinformatics

Institute (EBI), represents sample variables from

gene expression experimental data. The NIFSTD

ontology, developed by the NeuroInformatics Frame-

work (NIF, Bug et al. 2008), has produced an inventory

of Web-based neuroscience resources, integrating an

ontology with separate modules covering major

domains of neuroscience: anatomy, cell, subcellular,

molecule, function and dysfunction, and concepts for

describing experimental techniques, instruments, and

other resources.
Cross-References

▶Cell Cycle

▶Gene Ontology
▶NCBI BioProject Genome Resources

▶Ontology

▶ Protein–Protein Interaction Databases
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Synonyms

Post-transcriptional regulation of gene expression
p16 24-1

15a/16let-7

34a
17 / 20

cycD CDK4,6

Rb

Myc

E2F

cdc25AcycE

let-7 15a/1615a/1634a

CDK2p27Kip1

221 / 222

17 93p21Cip1

17/20
let-7

17/20
34a

17/20

let-7
34a
15a / 16

Cell Cycle Regulation, microRNAs, Fig. 1 MicroRNAs

targeting key cell cycle genes in G1 and S phases. Cell cycle

genes are shown in boxes. Gene abbreviations: cycD (cyclin D),

cycE (cyclin E),Myc (c-myc), Rb (Retinoblastoma protein), E2F

(E2F1, E2F2, E2F3). Small black squares indicate microRNAs

targeting the genes beside them. Labels beside black squares

give the shortened names of the microRNAs (e.g., 17/20 means

miR-17 and miR-20). Dashed arrows mean transcriptional

induction of gene expression (e.g., cycD, Myc, and E2F induce

the expressions of miR-17, andmiR-20). Qualitative interactions

(edges between genes) are symbolized by hammerheads (inhibi-

tion) and arrows (activation)
Definition

MicroRNAs are short (~21 nucleotides) non-coding

RNAs that are endogenous in the genomes of ani-

mals and plants, and have been shown to induce

cleavage or suppression of translation of their

target mRNAs. Thus, microRNAs are generally

known as post-translational negative regulators of

gene expression, although there are a few recent

reports that some microRNAs act as positive regu-

lators. The mRNA target is recognized through

binding of a seed sequence in the microRNA to

a complementary sequence in the mRNA. Using

this sequence complementarity, several computer

programs have been created to predict microRNA

targets. Some examples of the more popular pro-

grams publicly available on the Internet are the

following:

TargetScan (http://www.targetscan.org/)

Microcosm (http://www.ebi.ac.uk/enright-srv/micro-

cosm/htdocs/targets)

mirWalk (http://www.ma.uni-heidelberg.de/apps/zmf/

mirwalk/).

It has been estimated that the expression of at least

a third of human genes is post-transcriptionally regu-

lated by microRNAs. To date, there are more than 700

microRNAs identified in the human genome. The com-

plexity of the regulation of gene expression by

microRNAs stems from the possibility of multiple

targets per microRNA (in some cases, a single

microRNA is predicted to target up to several hundred

mRNAs) and the possibility of multiple microRNAs

targeting per gene.
Characteristics

Cell Cycle Genes Directly Regulated by microRNAs

Shown in Fig. 1 are some of the experimentally

validated microRNAs targeting key cell cycle genes

involved in the early phases (G1 and S) of the mam-

malian cell cycle (Chivukula and Mendell 2008;

Yu et al. 2010). Myc and E2F are transcription

factors that induce expression of cell cycle genes

such as cyclins (e.g., cyclin E) and cyclin-dependent

kinases (e.g., CDK4). Note that Myc and E2F

promote each other’s expression. As shown in

Fig. 1, these transcription factors also induce the

expression of miR-17/20 (which is the abbreviated

name for two microRNAs, namely, miR-17-5p and

miR-20a). In return, miR-17/20 target and inhibit the

expression of Myc and E2F, thus forming negative

http://dx.doi.org/10.1007/978-1-4419-9863-7_101176
http://www.targetscan.org/
http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets
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Cell Cycle Regulation, microRNAs, Fig. 2 Modeling the neg-

ative feedback loop between miR-17/20 and Myc/E2F. (a)

Shown inside the gray box are the proteins Myc, E2F1, E2F2,

and E2F3 inducing each other’s expression. All of these proteins

also induce the expression of the miR-17-92 cluster pictured by

the row of seven microRNAs at the bottom of the figure. Two

members of the cluster, miR-17-5p and miR-20a, target and

inhibit Myc and E2F1-3. (b) A reduced model involving an

autocatalytic protein module, p, and a microRNA module, m
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feedback loops. A third negative feedback shown

in Fig. 1 is between miR-17/20 and cyclin D.

Mathematical Modeling of the Negative Feedback

Loops Involving miR-17/20 and Myc/E2F

The microRNA cluster called miR-17-92 is composed

of seven microRNAs as shown in the bottom of Fig. 2a.

Members of this cluster, particularly miR-17-5p and

miR-20a, have been implicated in various human

cancers – that is, their specific deletions in the genome

or overexpressions are associated with cancer initia-

tion (Chivukula and Mendell 2008). The negative

feedback loop between miR-17/20 and Myc/E2F was

modeled by Aguda et al. (2008) to explore how

changes in miR-17/20 expression affect Myc/E2F acti-

vation (and thereby the rate of G1-to-S transition in the

cell cycle). The detailed network shown in Fig. 2a was

abstracted to the two-variable model shown in Fig. 2b.

This simple model predicts that there is an all-or-none

switching behavior of Myc/E2F activity as miR-17/20

expression is increased. This bistable switch is gener-

ated by the autocatalytic nature of the protein module,

p, as indicated by step 1 in Fig. 2b. The model further

predicts that oscillations in the activities of p and m are

possible due to the presence of the negative feedback

loop between p and m.
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Definition

Hypoxia refers to a state of inadequate oxygen supply in

cells, tissues, or organisms. Among many other cellular

processes, hypoxia affects cell cycle progression.
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Characteristics

Oxygen is the terminal electron acceptor of the mito-

chondrial respiratory chain, and an adequate oxygen

supply is a fundamental requirement for the survival

and proper function of all metazoan cells (Semenza

2007). Higher animals have evolved sophisticated

organ systems such as the cardiovascular and respiratory

systems to supply all body tissues with sufficient

amounts of oxygen at all times. Disruption of adequate

oxygen supply leads to tissue hypoxia, a conditionwhich

features prominently in pathophysiological contexts

such as anemia, ▶ ischemic disease, and tumor forma-

tion. However, hypoxic episodes may also be encoun-

tered in physiological contexts such as embryonic

development, exercise, or altitude adaptation. At the

cellular level, the intracellular oxygen tension is contin-

uously monitored. Many cell types are able to adapt to

hypoxic conditions by systemic strategies such as meta-

bolic reprogramming and energy preservation. The for-

mer strategy is exemplified by the upregulation of the

glycolytic pathway and by the shutdown of mitochon-

drial respiration; the latter strategy includes the inhibi-

tion of protein translation, cell growth, and cell

proliferation. By secreting pro-angiogenic growth fac-

tors, cells signal their hypoxic status to the surrounding

tissue to induce blood vessel formation and to restore the

oxygen supply to the hypoxic area. In cases where these

adaptive strategies fail, prolonged hypoxia can lead to

either cell necrosis or programmed cell death.

A substantial proportion of the cellular adaptation

to hypoxia in animals is regulated by the

ab-heterodimeric transcription factor hypoxia-

inducible factor (HIF), which is thought to be

a master regulator of the hypoxic response (Semenza

1999). HIF is activated by low oxygen tensions.

Briefly, in normoxic conditions, the HIFa-subunit is
highly unstable owing to its post-translational hydrox-

ylation, which is catalyzed by the prolyl-hydroxylase

domain (PHD or EGLN) family of oxygen-dependent

dioxygenases (Schofield and Ratcliffe 2004). Hydrox-

ylation of two proline residues in HIFa by these

enzymes very substantially increases the interaction

of HIFa with the tumor suppressor protein von Hippel

Lindau (▶PVHL), the targeting component of an

E3-ubiquitin ligase complex that triggers rapid

proteasomal degradation of HIFa. In hypoxic condi-

tions, when oxygen becomes limiting for the
PHD-dependent hydroxylation reaction, HIFa escapes

degradation and accumulates. Binding of HIFa to

HIFb, which is constitutively present and identical to

the aryl hydrocarbon receptor nuclear translocator

(ARNT) then yields the transcriptionally active,

heterodimeric transcription factor. This mechanism is

evolutionarily conserved in all metazoans and has been

put forward as the primary cellular oxygen-sensing

mechanism (Kaelin and Ratcliffe 2008).

In most primary and also immortalized cell lines,

one of the functional consequences of the HIF-induced

transcriptional program is the inhibition of cell prolif-

eration, caused by a cell cycle arrest. The point in the

cell cycle at which the arrest occurs seems to depend

on the severity of the hypoxic stress. Broadly speaking,

moderate hypoxia leads to an arrest in the G1 phase of

the cell cycle, which is mostly reversible upon

▶ reoxygenation. Severe hypoxia or anoxia can addi-

tionally arrest cells in S-phase as a consequence of the

hypoxic activation of the DNA damage checkpoint.

Interestingly, this occurs in the absence of any detectable

DNAdamage. Finally, reoxygenation after stringent hyp-

oxia can causeDNA single- and double-strand breaks via

the formation of reactive oxygen species, leading to a G2

arrest downstream of the DNA damage checkpoint. To

date, insight into mechanistic aspects of the link between

hypoxia and reduced cell cycle progression is limited, as

is the understanding of its functional consequences. The

following section briefly reviews the available informa-

tion and attempts to connect isolated observations into

a more coherent picture (Fig. 1).

The best characterized effect of hypoxia on the

regulatory network controlling cell cycle progression

is the HIF-dependent transcriptional induction of the

cyclin-dependent kinase inhibitors (CDKIs) (▶CDK

Inhibitors) p21 (also known as CDKN1A) and p27

(also known as CDKN1B). In the G1 phase of the

cell cycle, these CDKIs inhibit CDK2/Cyclin E, and

prevent the phosphorylation of the Retinoblastoma

protein and thus the release of the E2F-transcription

factors, arresting the cells at the restriction point

(▶Cell Cycle Transition, Principles of Restriction

Point; ▶Cell Cycle Transition, Detailed Regulation

of Restriction Point) in the G1 phase of the cell cycle

(Morgan 2007). The restriction point is the point in G1

after which mammalian cells are committed to com-

pleting their division cycle, even in the absence of

growth factors. Mechanistically, HIF is thought to

http://dx.doi.org/10.1007/978-1-4419-9863-7_770
http://dx.doi.org/10.1007/978-1-4419-9863-7_769
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Cell Cycle Signaling, Hypoxia, Fig. 1 Cartoon representation

of the signaling pathways causing cell cycle arrest at different

points in the cell cycle (red circles) in response to hypoxia and

reoxygenation. (1) Moderate hypoxia arrests cells at the restric-

tion point (START) of the G1-phase in a HIF-dependent manner.

pRB indicates the phosphorylated Retinoblastoma protein.

(2) Severe hypoxia or anoxic conditions additionally cause an

arrest in S-phase. This is most likely caused by an inhibition of

replication origin firing downstream of a signaling cascade trig-

gered by stalled replication forks, which themselves may be

a consequence of insufficient metabolite concentrations or an

unfavorable energy charge. (3) Finally, reoxygenation after

severe hypoxia produces significant levels of reactive oxygen

species (ROS), which can lead to DNA damage and activation of

the DNA damage checkpoint. This prevents entry into mitosis

and arrests cells in the G2-phase. For details, see text
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upregulate both the CDKN1A and CDKN1B genes by

counteracting ▶ c-Myc, which normally represses

these genes (Dang et al. 2008). Conversely, the phos-

phatase CDC25A, an activator of CDK/cyclin com-

plexes and thus a positive regulator of cell cycle

progression, is normally activated by Myc. In hypoxic

conditions, HIF represses CDC25A by counteracting

Myc (Huang 2008). All these regulatory events con-

tribute to a reversible G1 arrest in hypoxia: Upon

restoration of sufficiently high oxygen levels, HIFa is

rapidly degraded, its effects are abolished, and the cell
cycle proceeds through the restriction point. In addi-

tion to this direct regulation of the cell cycle machinery

by HIF, a number of other HIF-dependent, but less

direct, effects likely contribute to this G1 arrest. Exam-

ples are a reduced protein translation, slowed cellular

mass gain, and extensive metabolic reprogramming,

processes which, at least in part, have been attributed

to the HIF/Myc antagonism.

In addition to the reversible G1 arrest observed in

response to moderate hypoxia, very stringent hypoxia

or ▶ anoxia additionally activates components of the

DNA damage checkpoint. This occurs in the absence

of any detectable DNA damage and is possibly a DNA

damage-independent process, most likely triggered by

a hypoxia-induced replication arrest. Among other

possible mechanisms, stringent hypoxia has the poten-

tial to cause a DNA replication arrest by HIF-

dependent repression of the gene CAD, which codes

for multiple enzymatic activities that are required for

pyrimidine biosynthesis (Gordan et al. 2007),

a metabolic pathway essential for DNA replication.

Interestingly, another enzyme required for pyrimidine

biosynthesis is strictly oxygen dependent (Loffler

1989). Thus, repression of this biosynthetic pathway

has the potential to contribute to a replication arrest in

response to severe hypoxia in both a HIF-dependent

and a HIF-independent manner. Stalled replication

forks then trigger the activation of the kinase ATR,

which causes an S-phase or replication arrest in

response to stringent hypoxia. This arrest is accom-

plished by the prevention of replication origin firing by

CHK1-dependent inhibition of CDC25A and the con-

sequent high activity of cyclin/CDK2 complexes,

which is required for the initiation of replication

forks (Morgan 2007). Signaling downstream of stalled

replication can also induce apoptosis by activating p53

(Hammond et al. 2007). The evolutionary advantage of

an activation of the DNA damage checkpoint under

hypoxic conditions is disputed; however, it has been

speculated that this occurs in anticipation of the DNA

damage caused by the production of reactive oxygen

species (ROS) during reoxygenation. Such

reoxygenation-induced DNA damage triggers ATM-

dependent CHK2 activation, and phosphorylation and

inactivation of the phosphatase CDC25C, which nor-

mally allows mitotic entry by activating CDK1/CycB

complexes. In this way, ROS ultimately arrest cells in

the G2 phase of the cell cycle (Hammond et al. 2007).

http://dx.doi.org/10.1007/978-1-4419-9863-7_771
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In summary, insufficient oxygen levels block cell

cycle progression in distinct phases of the cycle by var-

ious mechanisms. The consequences on cell fate depend

on the cell type and the degree and duration of the

hypoxic stress, ranging from a perfectly reversible, tran-

sient arrest to the induction of apoptotic cell death.
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Definition

Cell proliferation requires growth and division.

Growth is connected to cell cycle progression on

multiple levels, such as the metabolic state, nutrient

signaling programs, and cell homeostasis. An illustra-

tion of this linkage is the Warburg effect. Cancer cells

propagate by exclusively using an anaerobic metabolic

program. Forcing them to an aerobic program slows

down the cell cycle and thereby inhibits cancer

progression (Hsu and Sabatini 2008). This effect is

not only used for diagnostic purposes, but also

as a cancer treatment.

Cells seem to segregate their metabolic activity to

different phases in the cell cycle. S. cerevisiae cells

grown under carbon limitation in a chemostat can

show robust oscillations in their oxygen consumption

as they alternate between glycolytic and respiratory

metabolism, and their cell cycle is synchronized to

these oscillations (Tu et al. 2005). The metabolic cycle

can be divided into three major phases: oxidative,

reductive/building, and reductive/charging, where

S phase of the cell cycle is restricted to the reductive

phases. Interestingly, individual S. cerevisiae cells

grown under similar conditions show the same coupling

(Silverman et al. 2010). This synchrony provides

a unique experimental approach for further studying

the coupling of metabolism and cell cycle.
Characteristics

Nutrient Availability and Cell Cycle Progression

Metabolism can regulate the cell cycle by different

means, mostly by controlling the availability of

crucial molecules. For example, the cycle arrests or

slows down in S phase upon depletion of any

nucleotide via drugs or removal of nucleotide

biosynthesis pathways (Brauer et al. 2008). Similar

effects are observed during M phase upon reduced

lipid biosynthesis. However, we have to consider
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possible laboratory artifacts since S. cerevisiae
mutants in nucleotide biosynthesis show a defective

metabolic regulation similar to the Warburg

effect when the corresponding nucleotide is limiting.

Interestingly, S. cerevisiae cells limited for any

nutrient in its basic form (P, N, S ¼ inorganic salts,

C ¼ carbohydrates) correctly regulate metabolism and

therefore sensing mechanisms link metabolism and

cell cycle progression (Brauer et al. 2008).

Nutrient signaling influences the cell cycle state at

multiple points. Unicellular organisms (and presum-

ably stem cells) measure their size before they commit

to a new round of division (Fantes et al. 1975).

While the nature of the size signal remains unclear,

cells are able to sense key metabolites; in bacteria,

genetic evidence suggests that cells measure their

nucleotide content (Weart et al. 2007) while simple

eukaryotes such as S. cerevisiae measure stored

carbohydrates in the form of trehalose (Paalman et al.

2003). As for higher eukaryotes not much is known.

Interestingly, transcriptional regulation of metabolic

pathways seems to be coupled with the cell cycle.

In S. cerevisiae, the P, N, and S pathways are

upregulated around “Start” (the equivalent of the

restriction point in mammalian cells) in G1 (Tu et al.

2005). It is not clear whether this is directly required

for progression, and if and how metabolite sensing

mechanisms link to the cell-size checkpoint.

Moreover, cells adjust the timing of the cell cycle to

nutrient availability (Fantes and Nurse 1977). Often,

the phase where the nutrient limitation is sensed is

affected and extended. For example, S. cerevisiae cell

cycle length differs on respiratory compared to fer-

mentative carbon sources, and the timing correlates

with the energy gained from these sources. In general,

slower mass accumulation under limiting C, S,

or P sources predominantly either expands G1

(S. cerevisiae and cultured cells from multicellular

organisms) or G2 (S. pombe), but effects on other

phases cannot be ruled out (especially in S. pombe).

In contrast, N limitation affects all phases and the cell

cycle arrest point in S. pombe is less well defined than

for the other nutrients (Sveiczer et al. 2004).

All those nutrients are sensed within the cell

cycle at the cell-size checkpoint called “Sizer.”

In S. cerevisiae, D. melanogaster, and human cells,

size control is effective at “Start,” whereas in

S. pombe it is in G2 before entering M phase.

The molecular details of “Sizer” are unknown in all
systems. In S. cerevisiae, ribosome biogenesis,

translational efficiency, and carbohydrate storage

appear to be sensed. This is consistent with the

observation that cell cycle progression depends on

translational regulation of key cell cycle proteins.

In addition, S. pombe employs a length-sensing

network by limiting key cell cycle inhibitors to the

growing tips (Moseley et al. 2009).

Nutrient-Controlled Signaling Pathways

Metabolism and the available nutrients generate

signals that are received by the cell cycle, with the

cAMP/PKA, AMPK/Snf, and TOR pathways being

the most prominent signaling pathways. It is assumed

that the first two pathways are controlled by

carbon sources (Santangelo 2006) while the TOR

pathway is downstream of different nitrogen sources

(Wullschleger et al. 2006). For S, the signal seems to

be directly linked to a misregulation of cystein and

methionin biosynthesis. Regulation of intracellular

polyphosphate levels or direct control of cyclin

translation conveys P availability.

AMP-kinase is activated by high AMP levels,

which occur upon energy shortage. AMPK and cell

cycle are linked around “Start” and overexpression of

hyperactivated AMPK leads to a G1/S arrest, while

loss of AMPK function results in small cells and

ultimately cell death (Baena-González et al. 2007).

In higher eukaryotes, AMPK controls p53 and thereby

delays the G1/S transition. In S. cerevisiae, the

evidence is less clear, but AMPK seems to directly

control the transcription factor (TF) necessary for

B type cyclin synthesis and therefore S phase entry. It

is unclear whether this direct transcriptional effect

exists in higher eukaryotes.

High cAMP levels activate PKA through direct

binding to its regulatory domain. In contrast to

AMPK, energy shortage inactivates PKA through

a drop in cAMP. S. cerevisiae cells with defective

cAMP metabolism arrest at “Start,” and addition of

exogenous cAMP rescues this defect (Tamaki 2007).

PKA influences the cell cycle by multiple processes:

regulation of cyclin transcription, of translation

efficiency, and of protein degradation. Interpreting

the PKA effects is not trivial because the phenotypes

are often pleiotropic and not necessarily related to cell

cycle defects. Moreover, in S. cerevisiae, PKA can be

bypassed by deleting TFs not involved in cell cycle

progression. Interestingly, carbon-limited S. cerevisiae
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cells activate PKA predominately in G1 as cAMP

increases shortly before “Start.” This seems to be

necessary for cell cycle progression and it is controlled

by the trehalose pathway.

TOR regulates protein synthesis. While high doses

of the TOR inhibitor rapamycin lead to a phase-

independent cell cycle arrest, lower concentrations

and conditional TOR loss-of-function alleles arrest

the cycle at the respective nutrient restriction point.

Similarly, cells with low TOR activity cannot commit

to a new cycle but they still grow. While the exact

molecular mechanism is unclear, data from

S. cerevisiae suggest that translation efficiency is

sensed because overexpression of key cell cycle and

translational regulators can compensate for deficient

TOR signaling (Danaie et al. 1999).

Systems Biology Approaches

Many genome-wide studies of the cell cycle were

performed. Most of them do not specifically address

the connection between metabolism and cell cycle,

except the above studies on the metabolic cycle of

budding yeast that combine transcriptome and

metabolome data.

Most computational studies of the cell cycle either

assume a direct control of the cell cycle by key metab-

olites such as nucleotides or energy equivalents, or

they include a growth-dependent effect on general

translational (Csikász-Nagy et al. 2008). While these

approaches capture the cellular behavior, they await

further detailing of the metabolic input. Therefore,

key challenges are to mechanistically capture the

connection between metabolic state and cell cycle as

well as to unravel the cell-size checkpoint.
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Definition

When a cell divides, each of the daughter cells receives

the same number of chromosomes from the mother.

When the process of chromosome segregation, or

anaphase, goes awry daughter cells receive an unequal

number of chromosomes, a condition known as

aneuploidy. Although unbalanced gene dosage is not

necessarily lethal, aneuploidy can seriously affect the

viability of cells. Moreover, it is a typical trait in cancer

cells where aneuploidy is thought to contribute to the

progression to malignancy. Not surprisingly, cells

have developed a signaling pathway that ensures sister

chromatids are properly segregated to daughter cells.

The pathway, known as the Spindle Assembly

Checkpoint (SAC), delays sister chromatid separation

until all kinetochores are attached to microtubules

coming from the opposite spindle poles (a condition

known as metaphase). When all kinetochores are

attached in a bipolar manner, the checkpoint-mediated

inhibition is lifted and cells undergo the transition from

metaphase to anaphase.

While the SAC pathway is not essential in budding

yeast, in mammals the checkpoint is activated during

every cell cycle, ensuring that mitosis lasts long

enough to allow proper microtubule/kinetochore

attachment. However, it can be artificially induced

by drugs that either depolymerize (e.g., nocodazole)

or stabilize (e.g., Taxol) microtubules of the mitotic

spindle. Genes coding for proteins of this pathway

were originally identified in budding yeast by treating

cells with microtubule-depolymerizing drugs (Li and

Murray 1991; Hoyt et al. 1991). Components of the

SACwere identified whenmutant cells did not arrest in

response to microtubule depolymerization.

Consistent with the notion that the SAC monitors-

microtubule/kinetochore attachment, the “wait
anaphase” signal originates at the unattached kineto-

chores. The target of the pathway is the Anaphase

Promoting Complex or Cyclosome (APC/C), an E3

ubiquitin ligase which ubiquitinates, thus tagging

for degradation, two fundamental players of the

metaphase-to-anaphase transition: Cyclin B and

securin. The first is the mitotic cyclin, which in

complex with Cyclin Dependent Kinase 1 (CDK1)

drives the cell cycle into mitosis. The latter is

a stoichiometric inhibitor of separase, a protease that

cleaves cohesin, the molecular glue holding duplicated

chromatids together, and in so doing allows them to

be segregated. The degradation of the two proteins

following their ubiquitination is carried out by the

proteasome, and is required for the exit from mitosis

(Cyclin B degradation) and the segregation of sister

chromatids toward the opposite poles (securin

degradation).

The SAC inhibits APC/C activity, and it does so

indirectly. APC/C recognizes Cyclin B and securin

only when it is bound to its co-activator Cdc20.

As a result of SAC activation, Cdc20 cannot activate

the APC/C, and Cyclin B and securin are stabilized.

From a molecular standpoint, the inhibition requires

the formation of a multiprotein complex, the Mitotic

Checkpoint Complex or MCC, which comprises

Cdc20 and several SAC components (Mad2, Bub3,

BubR1). Another critical complex is the one formed

by Mad1 and Mad2 that localizes at the unattached

kinetochore where it catalyzes the formation of the

MCC. Finally, several kinases have been implicated

in SAC functioning: Aurora B, Mps1, and Cyclin

B/CDK1 itself. Thus, the current model of the check-

point (Fig. 1a) includes a sensor (Mad1:Mad2) which

by inducing the structural rearrangement of Mad2

favors the formation of the Cdc20:Mad2 complex

(Musacchio and Salmon 2007), the first step to the

formation of the MCC. It is widely assumed that the

MCC binds to APC/C with higher affinity than Cdc20

alone, and thus as long asMCC is formed it keeps APC/

C inhibited in the APC/C:MCC complex. After the last

kinetochore has attached,Mad1:Mad2 is displaced from

the last kinetochore preventing further MCC produc-

tion, and energy-dependent reactions drive the dissoci-

ation of the MCC and the ensuing activation of APC/C

(Fig. 1b). Observations of SAC dynamics implicate the

presence of feedback loops, in addition to the reactions-

described above, that give the checkpoint interesting

systems level properties.
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Spindle assembly checkpoint

maintenance. Mad1:Mad2

localize at unattached

kinetochores (layered

structures) where they

catalyze the conversion of

Mad2 into an active

conformation, capable of

binding Cdc20. Cdc20:Mad2

binds to the APC/C, inhibiting

its activity. As a consequence,

Cyclin B and securin are

stable, cohesin is not

degraded, and cells are

arrested in prometaphase.

(b) When kinetochores attach,

to microtubules Mad1:Mad2

are displaced, Mad2 is not

converted into a form capable

of fast binding to Cdc20 which

can now bind and activate

APC/C. As a consequence,

Cyclin B and securin are

degraded, and (not shown)

cohesin can be proteolysed by

separase driving sister

chromatids separation
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Fig. 2 Proposed positive

feedback loops in the SAC

network. (a) The Mad2-

template model (De Antoni

et al. 2005) proposes that

Cdc20:Mad2 catalyzes the

formation of more Cdc20:

Mad2 complexes similarly to

Mad1:Mad2. (b) Activated

APC/C:Cdc20 has been

proposed to induce the

formation of more APC/C:

Cdc20 complexes, possibly

via the ubiquitination of

Cdc20. (c) A double-negative

feedback loop involving the

SAC and APC/C:Cdc20 has

also been suggested. The

double negative behaves like

a positive feedback loop and

could be important for SAC

maintenance and

disengagement
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Characteristics

Systems Level Properties and Models

The checkpoint is characterized by three key systems

level properties: (1) as long as there is one single

unattached kinetochore, the checkpoint is active and

can arrest cells for several hours (Rieder et al. 1995);

(2) as soon as the last kinetochore is attached the

checkpoint is disengaged in a matter of few minutes,

and cells transit into anaphase (Clute and Pines 1999);

and (3) after it is disengaged, the checkpoint can be

re-activated, and its key substrates (Cyclin B and

securin) stabilized when cells are treated with micro-

tubule stabilizing drugs (Clute and Pines 1999). To

explain these properties, several positive feedback

loops have been proposed. Although no existing model

has been conclusively proven, it is worth going through

the suggested loops, addressing first those involved
in checkpoint maintenance and then those proposed

to govern checkpoint inactivation (Fig. 2).

Checkpoint maintenance: The fact that one

unattached kinetochore can fully arrest cell cycle

progression for hours (systems level property (1))

naturally raises the question whether this is the out-

come of one kinetochore only, or whether it is due to

the additional contribution of circuits away from the

kinetochore. Given that only a few thousand SAC

molecules localize at the unattached kinetochore

(Howell et al. 2000), simplified models (Doncic et al.

2005) of the checkpoint came to the conclusion that

amplification away from kinetochores is required,

a result further reinforced when the fluxes of check-

point components at the unattached kinetochores are

taken into account (Sear and Howard 2006). However,

the nature of the amplification process still requires

much clarification. Based on structural data, it was
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Table 1 Concentrations of molecular species belonging to the

SAC pathway in HeLa cells

Species Value Reference

APC/C 80 nM Tang et al. (2001)

65 nM Sudakin et al. (2001)

Bub1 100 nM Howell et al. (2004)

BubR1 90 nM Tang et al. (2001)

52 nM Sudakin et al. (2001)

127 nM Fang (2002)

Cdc20 100 nM Tang et al. (2001)

285 nM Fang (2002)

Mad1 20 nM Shah et al. (2004)

1/4 of Mad2 Luo et al. (2004)

Mad2 120 nM Tang et al. (2001)

400 nM Sudakin et al. (2001)

100–300 nM Luo et al. (2004)

200 nM Shah et al. (2004)

100 nM Howell et al. (2000)

230 nM Fang (2002)
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proposed that the MCC itself (or better, one of its

constituents, the Mad2:Cdc20 complex) is capable of

propagating the formation of new MCC complexes,

the so-called Mad2-template model (Fig. 2a and De

Antoni et al. 2005). This idea, never confirmed in vivo,

was initially criticized on the basis that such a loop

could make the checkpoint independent from kineto-

chores and thus potentially impossible to be switched

off, but it should be noticed that the positive feedback

loop does not introduce energy in the system, and thus

is conceivable there exists regimes of autocatalysis

where the non-kinetochore-mediated MCC production

is still dependent on the kinetochore-mediated cataly-

sis (Simonetta et al. 2009).

Checkpoint inactivation: Positive feedback loops

were also proposed to explain the rapid inactivation

of the SAC (systems level property (2)). First, it was

suggested that active APC/C:Cdc20 could help the

transformation of APC/C:MCC complexes into active

APC/C:Cdc20 via the ubiquitination of Cdc20 (Fig. 2b

and Reddy et al. 2007). This positive feedback loop

could accelerate the release of APC/C inhibition once

MCC production is shut off. Later, it was proposed that

a double-negative feedback loop comprising APC/C:

Cdc20 and the checkpoint could explain the

rapid checkpoint inactivation after the last kinetochore

has attached (Fig. 2c and He et al. 2011; Zeng et al.

2010). While the SAC inactivating APC/C has been

well documented, the mechanism whereby APC/C

inactivates the SAC has not been so thoroughly exam-

ined. It should be noted that SAC components are

substrates of APC/C (e.g., Mps1), and Cyclin B itself

is widely recognized as required for SAC activation,

and it is of course a substrate of APC/C:Cdc20. Impor-

tantly, the presence of feedback loops involved in SAC

inactivation needs to be reconciled with its reported

reversibility (system level property (3)).

Quantitative Measurements

The circuits depicted above provide only a qualitative

description of the SAC pathway. In this section, we

report the most relevant experimental measurements

that are needed to understand how the SAC might

actually work. Given the basic structure of SAC

signaling, the most relevant parameters would seem

to be the balance ofMCC production andMCC:APC/C

dissociation. Currently only the former has been

measured quantitatively. This work stems from the

measurement of the number of SAC molecules,
specifically Mad2 molecules, at an unattached kineto-

chore (�1,500 molecules/unattached kinetochore)

(Howell et al. 2000). Subsequent to this work,

a number of groups have measured Mad2 turnover at

the unattached kinetochore (t1/2 � 10–25 s) (Howell

et al. 2000; Shah et al. 2004) providing an upper bound

to the MCC generation rate (�35–65 molecules/

kinetochore/s).

This generation rate must be matched or be greater

than the dissociation rate of the MCC:APC/C complex

to permit robust inhibition. The dissociation rate, at

this time, has only been estimated from measurements

of mitotic timing. Observations of live cells have

provided detailed measurements of anaphase onset

after the establishment of complete bipolar attachment.

While the numbers vary, the consensus is that in

mammals from last kinetochore attachment anaphase

ensues in � 25 min, and from the loss of Mad2 at the

last unattached kinetochore anaphase begins� 10 min

later. From these measurements and known concentra-

tions of SAC and APC/C proteins (see Table 1), we can

estimate that the dissociation rate of the MCC:APC/C

is near 0.0013/s. For �100,000 APC/C molecules

in the cell, this is a molecular dissociation rate of

130 molecules/s. This does not match the MCC

production rate from the kinetochore, a fact pointing

to the little knowledge we have about the ways cells

inactivate the SAC. Although different mechanisms
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have been proposed to explain SAC switching off (the

stripping Mad1:Mad2 away from unattached kineto-

chores, the degradation of Cdc20, the phosphorylation

of Mad2, the ubiquitination of Cdc20), no consensus

has been reached yet, making SAC silencing a major

field of investigation.
C
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Synonyms

G1 checkpoint; R-point
Definition

The restriction point is an irreversible transition occur-

ring in late G1 phase after which the cell commits to

DNA replication and cell cycle progression. Using

a systems biology approach, detailed molecular maps

are built and reveal a highly complex architecture

governing the regulation of this transition.
Characteristics

Basic Concepts of the Restriction Point

Progression and coordination of the cell cycle are

governed by complex molecular processes (▶Cell

Cycle). Throughout the cycle, different safety mecha-

nisms verify that proper conditions are met for cell

cycle events such as DNA replication, chromosome

http://dx.doi.org/10.1007/978-1-4419-9863-7_100533
http://dx.doi.org/10.1007/978-1-4419-9863-7_101309
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alignment, etc. (▶Cell Cycle Checkpoints). The

restriction point (▶Cell Cycle Transition, Principles

of Restriction Point) is one of these checkpoints. It

blocks entry into S phase upon growth-limiting

constraints.

In the absence of mitogens, the cell enters a G0 (or

quiescent) state. In the presence of mitogens, growth is

stimulated and the cell advances through G1 phase.

During the time preceding the restriction point transi-

tion, the cell is responsive to both positive (e.g., mito-

genic growth factors) and negative (e.g., transforming

growth factor b) external factors. However, when it

passes through the restriction point in late G1, the cell

commits to cell cycle events and proceeds to DNA

synthesis. After that point, even if the mitogens are

removed, the cell completes its cycle before stopping

at the following round (▶Cell Cycle Transition,

Principles of Restriction Point).

What is the molecular machinery behind the cell

decision to either halt and enter a quiescent state or

replicate its DNA and progress through M phase?

Biochemical Interactions Involved in the

Restriction Point Transition

To recapitulate all the key players and understand the

intricate processes governing this decision, a thorough

description of the molecular machinery controlling the

restriction point is proposed.

Processing the Information

A specific family of kinases has first been identified as

cell growth sensors (▶Cyclins and Cyclin-dependent

Kinases). They link external stimuli to the intracellular

machinery. These sensors are composed of a kinase

subunit, Cdk, and a cyclin partner, which determines

the localization and the function of the complex. If

these complexes can sense growth signals, how exactly

is the signal transmitted to them?

The sequence of events leading to the activation of

these kinases can be characterized as follows: The

binding of growth factors to their receptors lead to

the activation of cytoplasmic proteins such as Ras,

which passes on the signal to a cascade that ultimately

turns on the transcription of cell cycle genes (▶Tran-

scription). The growth factor-mediated activation of

these genes operates through two distinct paths. On

one hand, it leads to the accumulation of the proto-

typical G1 cyclin, CyclinD1, in the nucleus and pro-

motes its association with the cyclin-dependent
kinases CDK4 or CDK6 to trigger the G1/S transition.

On the other hand, it suppresses the activity of ▶Cdk

inhibitors (or CKI, such as p16INK4a or p15INK4b),

which prohibit the association of the CyclinD1/

CDK4,6 complexes. However, the transition is not

governed by the sole activation of these complexes.

As long as proper intracellular conditions are not met,

a checkpoint prevents entry into S phase until the cell

is ready.

RB, the Guardian of the Restriction Point Gate

The tumor suppressor gene retinoblastoma (RB) plays
the role of gatekeeper. It is the main target of

CyclinD1/CDK4,6 complexes. During the G1 phase,

RB sequesters a family of key ▶ transcription factors,

the E2Fs, that mediates the transcription of many genes

involved in cell cycle events and in the apoptotic

pathway (DeGregori and Johnson 2006). Upon mitotic

stimulation, CyclinD1/CDK4,6 complexes start phos-

phorylating RB, which releases and activates E2Fs.

E2Fs activation terminates G1 phase and leads to

entry into S phase. CyclinE1, one of E2F target

genes, binds to CDK2 and collaborates with

CyclinD1/CDK4,6 to maintain the hyperpho-

sphorylated state of RB, thereby ensuring the irrevers-

ibility of the transition. The processes described above

are illustrated in Fig. 1.

The study of RB in the context of the restriction

point is critical for several reasons. First, RB inactiva-

tion and the passage through the restriction point occur

concomitantly (Bartek et al. 1996). Furthermore, RB is

an anti-oncogene and its activity is deregulated in

virtually all types of cancers (▶Cell Cycle, Cancer

Cell Cycle and Oncogene Addiction) (Weinberg

2006), including familial and sporadic forms (osteosar-

comas, breast carcinomas, small cell lung carcinomas,

bladder carcinomas, melanomas, etc.).

The deficiency of the RB pathway is observed in

cancers when (1) the external stimulation is constant,

for example, when the growth factors are always pre-

sent or when their receptors are mutated and as a result

the signal is always considered to be on, (2) the cell is

insensitive to antimitogenic factors (e.g., TGFb), or
(3) when processes that control the passage through

the restriction point are perturbed by mutations or

diverse dysfunctions (Sherr 1996). More precisely, in

cancer samples, dysfunctions of RB itself have been

found to arise from the deletion of the gene, from

epigenetic mutations, from the presence of viral

http://dx.doi.org/10.1007/978-1-4419-9863-7_9
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Cell Cycle Transition, Detailed Regulation of Restriction
Point, Fig. 1 Simple representation of the interactions involved

in the restriction point transition
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oncoproteins, or as a result of a deregulation of the

kinases – and the kinase inhibitors – that control its

activity.

Comprehensive Maps of the Restriction Point

Transition

The real events behind the restriction point transition

are, of course, much more complex than the one

depicted in Fig. 1. In this representation, a precise

and explicit molecular characterization of the protein

interactions and transformations is missing. A simple

inhibition in Fig. 1 can be interpreted as an inhibitory

sequestration, a degradation process, or a (de)phos-

phorylation. Such network representation may lead to

ambiguous conclusions.

The complexity increases exponentially as more

details are included in the description. For instance,

let us consider only the interactions between RB and

E2F: RB, alongwith its family members, binds to some

but not all of the eight E2F genes (E2F1-8), some of

them being activators and others inhibitors of cell

cycle advance.

Complex Interactions Between RB, E2F and Their Family

Members

• RB protein family

RB (RB1) is present in quiescent and proliferating

cells; RB has 16 sites of phosphorylation.

p107 (RBL1) is present in proliferating cells; p107

has 10 sites of phosphorylation.
p130 (RBL2) is present in quiescent cells; p130 has

22 sites of phosphorylation.

• E2F transcription factors

Activators of transcription: E2F1, E2F2, E2F3a.

Inhibitors of transcription: E2F3b, E2F4, E2F5,

E2F6, E2F7a, E2F7b, E2F8.

The E2F transcription factors are active as dimers.

E2F1 to E2F6 dimerize with DP1 or DP2.

E2F7 and E2F8 are active as homodimers.

• Association between RB family members and the

E2Fs

E2F1, E2F2 and E2F3 bind RB.

E2F4 binds RB, p107 or p130.

E2F5 binds p130 (and to some extent p107).

E2F6 binds proteins from the polycomb group.

E2F7 and E2F8 form homodimers and do not bind

to other known proteins.

The Comprehensive Map

Network representations can be used to visualize what

is known about a biological process. It offers the pos-

sibility to integrate heterogeneous data from sparse

sources of information from both individual and high

throughput studies and summarize them into

a synthetic picture. It also provides a tool to replace

a mechanism or a gene in its context, identify contra-

dictions from the literature, and anticipate the effects

of a local perturbation on the global system.

Networks illustrating any biological mechanisms

need to be (1) biologically accurate, coherent, and

unambiguous, (2) understandable and human-

readable, (3) easily extensible when new information

is added, (4) computable, i.e., ready for modeling,

and machine-readable, (5) accessible in standard

format (SBGN, Le Novère et al. 2009) and (6) hierar-

chical, with different levels of description (Kitano

et al. 2005).

There exist different kinds of representations in

numerous databases recapitulating heterogeneous

types of information and for which the nodes and

edges have different meanings (Pathway Interaction

Database from Nature: http://pid.nci.nih.gov/;

Biocarta: http://www.biocarta.com/; KEGG: http://

www.genome.jp/kegg/; Reactome: http://www.

reactome.org, etc.).

Considerable efforts have been made to produce

detailed and accurate maps of the mammalian cell

cycle molecular machinery (Kohn 1999 and in various

databases cited above) and more specifically that of the

http://pid.nci.nih.gov/
http://www.biocarta.com/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.reactome.org
http://www.reactome.org
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Cell Cycle Transition, Detailed Regulation of Restriction
Point, Fig. 2 Detailed map of the retinoblastoma (RB) network
emphasizing the passage through the restriction point. The map

is constructed using standard SBGN language in CellDesigner

(http://www.celldesigner.org). It comprises 80 proteins, 176

genes, 165 interactions, and established from circa 350 publica-

tions. Upper panel: biochemical reactions regulating the

modifications of the major proteins involved in RB regulation.

Blue rectangles refer to tumor suppressor genes and red rectan-

gles to proto-oncogenes. Lower panel: mRNA and gene targets

of the eight E2F transcription factors. A readable and clickable

version of the map can be found at http://bioinfo-out.curie.fr/

projects/rbpathway/interactive/rb_network.html
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restriction point (Calzone et al. 2008). In the latter

map, the focus is put on the biochemical reactions

and transformations (edges) of species (nodes) that

play an important role in the regulatory process

(Fig. 2).

Use of the Map

Beyond the role of integrating knowledge in an unam-

biguous form, these molecular maps can be used to

interpret biological data or reason on unexpected

behaviors of the system in specific conditions. The

map can be viewed as an electronic circuit and inter-

rogated based on its sole topology. It can be compared

to a map of the NewYork subway which allows to find,

for example, the simplest way from one station to

another or suggest an alternative route if one station

is closed. All the important partners or catalyzers for

a particular activation can be identified. All or one

path(s) between two species can be isolated and the

necessary partners or intermediaries of a
transformation distinguished. Some links can be bro-

ken and alternative – or back-up – pathways, etc.,

proposed.

Modular View of the Comprehensive Map

To improve the readability of the map, one can sim-

plify it without losing information about regulations.

For that purpose, from the initial comprehensive map,

groups of components can be identified from data

▶ clustering, when the data is available, or from

graph theory techniques (▶Module Network). Here,

the reaction network of Fig. 2 is transformed into an

influence network (Fig. 3) in which each node corre-

sponds to a set of connected species in the comprehen-

sive map. The sets of proteins are grouped into

modules. The nodes are connected either by positive

or negative arrows based on the available biological

information derived from the complete map. The

resulting graph is an abstraction of the initial complex

and detailed map.

http://dx.doi.org/10.1007/978-1-4419-9863-7_511
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Cell Cycle Transition, Detailed Regulation of Restriction
Point, Fig. 3 Modular view of RB pathway. The nodes of this

graph represent modules – or groups of interacting proteins –

derived from the comprehensive map (Fig. 2). The nodes are

connected by influence arrows, either positive or negative,

deduced from the initial network and based on biological knowl-

edge of the nature of the interactions
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The different versions of the RB network proposed

here (Figs. 1–3) can then be translated into mathemat-

ical formulas. Ordinary differential equations are often

used for a reaction-based network (▶Cell Cycle

Modeling, Differential Equation), whereas discrete
modeling can be applied to influence network (▶Cell

Cycle Modeling Using Logical Rules), etc.

More generally, the construction of the map of

a particular process and the gathering of biological

knowledge from heterogeneous sources is the first

http://dx.doi.org/10.1007/978-1-4419-9863-7_23
http://dx.doi.org/10.1007/978-1-4419-9863-7_23
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step toward the elaboration of a mathematical model

(Novák and Tyson 2004; Alfieri et al. 2009). Mathe-

matical modeling provides a formal tool to answer

specific biological questions. More importantly, it

allows to test and predict, in silico, different perturba-

tions of a biological process that would be too complex

to understand by simple intuitive reasoning.
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Synonyms

G1 phase checkpoint; Start
Definition

The restriction point (R-point), similar to the “Start”

point in yeast (▶Cell Cycle, Budding Yeast), is a G1

phase checkpoint (▶Checkpoints) at which mamma-

lian cells commit to proliferation (▶Mitosis; ▶Cell

Cycle of Mammalian Cells) and become independent

of growth signals for the completion of the cell cycle

(Fig.1).
Characteristics

Discovery of the R-point

The key concept of the R-point is the irreversible

commitment of a cell to proliferation (▶Cell Cycle

Dynamics, Irreversibility). The R-point was first pro-

posed by Pardee in 1974 (Pardee 1974), when he

observed a single, unique arrest point in the G1 phase
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Fig. 2 Rates of synthesis (f(X)) and degradation (d(X)) deter-

mine the dynamics of the system described in Equation 1. Sup-

pose d(X) is always first order in terms of X and is sufficiently

small. (a) If f has ultrasensitive dependence on [X], the system is

bistable with two stable steady states (filled circles) separated by
an unstable one (open circle). (b) Otherwise, the system is

monostable with one unstable steady state and a stable one. If

d(X) is too large, the system is monostable for both cases, with

a single trivial steady state ([X] ¼ 0)
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of the cell cycle associated with different starvation

conditions. That is, cells arrested at quiescence by

different starvation regimens resumed DNA synthesis

at apparently the same time point. With sequential

applications of different starvation regimens, cells did

not escape from any previous arrest condition (indicat-

ing overlapping arrest points). Pardee and colleagues

further demonstrated that the R-point is located several

hours before the S-phase. Passing this critical time

point, cells commit to proliferation and continue to

transit the cell cycle even when the exogenous growth

condition was removed (Yen and Pardee 1978). The

transition between proliferative and quiescent states

was further analyzed by Zetterberg and colleague

(Zetterberg and Larsson 1985), who measured the

timing of the irreversible commitment to proliferation

in individual cells by time-lapse cinematograph, and

found the R-point occurs at a remarkably constant time

after mitosis in exponentially growing cells.

R-point Governed by a Bistable Switch

The R-point has two main characteristics: first, an

initial high threshold on growth-stimulating signals,

which ensures a tight control of cell growth; second,

a low-maintenance mechanism, which ensures that

once committed, cell proliferation will be completed

even in the absence of sustained growth signals.

Theoretical studies have suggested potential mecha-

nisms underlying the R-point control of cell cycle
entry (Thron 1997; Aguda and Tang 1999; Novak

and Tyson 2004). While these studies differed in

molecular details, their consensus is that the R-point

is regulated by a bistable switch (▶Bistability), which

can generate all-or-none and hysteretic (history-

dependent) response.

A bistable switch can result from one or more pos-

itive feedback loops with sufficient nonlinearity

(Ferrell 1996). For example, consider that X regulates

its own synthesis via a positive feedback loop,
dX

dt
¼ f ðXÞ � dðXÞ; (1)

where f and d denote the synthesis and degradation

rates of X, respectively. When the synthesis of X is

ultrasensitive (e.g., due to cooperativity, multistep,

zero-order, or inhibitor ultrasensitivity (Ferrell

1996)), the f(X) curve and the d(X) curve can cross at

three steady states ( dxdt ¼ 0, Fig. 2a). This will generate

two stable steady states (and thus, a bistable system)

separated by an unstable one. When the system at the

http://dx.doi.org/10.1007/978-1-4419-9863-7_526
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inhibition feedback involving E2F, CycE/Cdk2, and Rb
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Fig. 4 Hysteresis in E2F activation. E2F follows two different

trajectories when switching from OFF to ON and ON to OFF.

The “activation threshold” is where E2F switches from OFF to

ON, and the “maintenance threshold” is where E2F switches

from ON to OFF. The region between the two thresholds is

a “bistable region” where E2F can be either at ON or OFF

state, depending on the history of the system
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unstable steady state is subjected to minor perturba-

tions, the system will move away from the unstable

steady state towards the stable ones. Without ultrasen-

sitivity in the synthesis of X, the system is always

monostable. For example, it can have an unstable

steady state and a stable one (Fig. 2b).

Molecular Interactions at the G1/S Transition: The

Rb-E2F Switch

The molecular events leading to the traverse of the

R-point involve a sophisticated network of molecules

and interactions (defined as the Rb-E2F network,

▶Cell Cycle Transition, Detailed Regulation of

Restriction Point) (Calzone et al. 2008). Here we pre-

sent a highly simplified model that focuses on the cell

cycle entry events (Yao et al. 2008), as shown in Fig. 3.

In this simplified model, the node Rb represents the

entire pocket protein family (RB, p107, and p130), and

the node E2F represents all E2F activators (E2F1,
E2F2, and E2F3a). E2F is a transcriptional factor that

can activate a large battery of genes encoding activities

involved in DNA replication and cell cycle progres-

sion. In quiescent cells, E2F protein is bound and

repressed by tumor suppressor Rb, and transcription

from the E2F promoter is also inhibited by Rb. Upon

sufficient growth stimulation, Myc and cyclin D

(CycD) are induced. CycD associates with and acti-

vates Cyclin dependent kinases (Cdk4,6), which phos-

phorylate Rb and release E2F. Myc directly binds to

the E2F promoter, facilitating E2F binding to nearby

sites. E2F then activates its own transcription, forming

a positive feedback loop. In addition, E2F also acti-

vates Cyclin E, which forms a complex with Cdk2 to

further phosphorylate Rb and relieve its repression of

E2F, constituting another positive feedback loop. The-

oretical studies suggested that the positive feedback

mediated by E2F and the ultrasensitivity created by the

Rb repression of E2F could potentially generate

a bistable switch (Fig. 4,▶Cell Cycle Model Analysis,

Bifurcation Theory) (Thron 1997).

Recent experimental analysis has demonstrated that

the Rb-E2F network indeed functions as a bistable

switch and generates bimodal and history-dependent

E2F activities (Yao et al. 2008). Mammalian cells in

http://dx.doi.org/10.1007/978-1-4419-9863-7_37
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quiescence remain in the OFF state of E2F when

deprived of growth stimulation. Following sufficient

growth stimulation, these cells eventually activate

E2F and commit to proliferation. Afterward, E2F

stays at the ON state to drive the completion of the

cell cycle, even after the growth stimuli are removed.

For a given serum concentration, the transition

timing has been found to be highly variable, which

can be described with a stochastic model (Lee et al.

2010). A similar bistable switch mechanism was

identified in yeast for the control of the Start point

(Charvin et al. 2010).
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Synonyms

Entry into mitosis; G2/M transition; Mitotic entry
Definition

G2/M transition (or mitotic entry) is the progression

from G2-phase to M-phase (also referred to as

“mitosis”) of the mitotic cell division cycle.
Characteristics

Eukaryotic cells govern a repetitive series of events

that result in self-reproduction (Morgan 2006). The

cell cycle (▶Cell Cycle) consists of four different

stages: G1-, S-, G2-, and M-phase by which

a growing cell replicates all its components and divides

into two nearly identical daughter cells (▶Cell Cycle,

Physiology). The alteration between cell cycle phases

is sophisticatedly controlled, ensuring appropriate

timing and order of sequential action (G1-phase,

G1/S transition, DNA replication, G2-phase, G2/M

transition, mitosis, and mitotic exit (▶Cell Cycle

Transitions, Mitotic Exit)). Transitions are tightly

monitored by “surveillance mechanisms” (checkpoints

(▶Cell Cycle Checkpoints)) (Kastan and Bartek

2004). Checkpoints are control mechanisms governing

crucial irreversible transitions of the cell division cycle

(▶Cell Cycle Dynamics, Irreversibility). Monitoring

the environmental conditions (nutrient, hormones,

etc.) and the stage of the DNA (if there are lesions or
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Cell Cycle Transitions, G2/M, Fig. 1 Regulatory mechanism

of the G2/M transition. The active forms of the enzymes (kinases

and a phosphatase) are able to phosphorylate their target (dashed

arrows). The active CDK/Cyclin B phosphorylates (thus inhibits

and activates) Wee1 and Cdc25. Active Wee1 (and Cdc25)

modify the CDK/Cyclin B complex by adding (and removing)

phosphate groups to (from) the active (and inactive) form
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chromosome aberrations) or check of the size of the

cell (if it is large enough for the process of the cycle)

are important regulations for the maintenance of geno-

mic stability. Chromosome breaks or rearrangements

are known to decrease survival of an individual cell,

thus proper checkpoint control is crucial for cancer

prevention in multicellular organisms (Kastan and

Bartek 2004) (▶Cell Cycle, Cancer Cell Cycle and

Oncogene Addiction).

The cell cycle transitions are controlled through cell

cycle proteins’ activities (▶Cyclins and Cyclin-

dependent Kinases). Cyclin-dependent kinases

(CDKs) are responsible for most basic cell cycle pro-

cesses and their role is crucial in cell cycle progression

(Morgan 1995). CDKs’ activity depends on (1) their

regulatory cyclin subunits (those are specific to the

different cell cycle phases), (2) their phosphorylation

state, and (3) the presence of proteins forming inhibi-

tory complexes with CDKs.

The G2/M transition is triggered by the increased

activity of CDK in combination with B-type cyclins;

and the active CDK/Cyclin B complex has several

substrates that are responsible for mitotic events

(▶Mitosis) afterward. CDK activity in G2-phase

depends on phosphorylation or dephosphorylation

reactions (▶ Post-translational Modifications) of spe-

cific tyrosine and threonine residues.

First of all, phosphorylation of CDK on a conserved

threonine residue (T161 in mammals) by cdk-

activating kinase (CAK) is crucial for its kinase activ-

ity (Kaldis et al. 1996) (Activator).

Second, phosphorylation of CDK (Cdc2 in mam-

mals) within the active site of the kinase (at tyrosine 15

(Y15) and threonine 14 (T14) in mammals) prevents

CDK activity and mitosis (▶Cdk Inhibitors). This

modification is carried out by inhibitory protein

kinases of theWee1-class (Wee1,Mik1,Myt1 inmam-

mals; Swe1 in budding yeast; all referred as “Wee1” in

the latter text) (Coleman and Dunphy 1994). Thus,

during the G2-phase, the presence of active Wee1

inactivates the CDK/Cyclin B complex and blocks

the cell cycle entry into M-phase while cells are grow-

ing and preparing for mitosis.

However, when cells are ready to divide,

a phosphatase of the Cdc25-class removes the inhibi-

tory phosphate groups from the inactive CDK that

results in activation of the complex (Coleman and

Dunphy 1994). This modification facilitates the
G2/M transition as the active CDK/Cyclin B becomes

able to beat the inhibitory effect of Wee1.

Regulation of CDK is more complex: CDK feeds

back (▶ Feedback Regulation) by phosphorylating

both Wee1 and Cdc25 (Solomon et al.1990, Hoffmann

et al. 1993) (Fig. 1). The phosphorylation of Wee1 by

CDK inactivates Wee1, creating a mutual inhibitory

link between the two kinases. One should think about

the relation between CDK and Wee1 as they are ene-

mies inhibiting (phosphorylating) each other, provid-

ing a double-negative feedback regulation (also called

as antagonism (▶Negative Feedback)). This molecu-

lar network structure has been shown to be able to form

a bistable system (▶Bistability,▶Cell Cycle Dynam-

ics, Bistability and Oscillations) with either a state of

low CDK and high Wee1 activity (in G2-phase) or

a high CDK and low Wee1 activity (in mitosis). The

latter stage is appropriate for triggering mitotic entry as

the active CDK dimer is required for the control of

several crucial molecular mechanisms of M-phase

(mitosis (▶Mitosis)).

The phosphorylation of Cdc25 phosphatase by

CDK presents a mutual activation as both enzymes

“help” each other: CDK activates its phosphatase

Cdc25 which in return removes the inhibitory phos-

phate groups from CDK. This is remarkably a different
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type of positive feedback regulation than the CDK-

Wee1 link (Fig. 2).

In sum (Fig. 3), during the G2-phase of the cell

cycle, CDK activity is kept low with inhibitory phos-

phorylation events carried out by the Wee1 kinase. As

the activity of CDK/Cyclin B increases in time, it

activates its helper phosphatase Cdc25 which in return

removes the inhibitory phosphate groups from CDK.

The sudden increase of CDK activity triggers inacti-

vation of Wee1 kinase by its phosphorylation. The

active CDK generates mitotic events (e.g., chromo-

some condensation, nuclear envelope breakdown,

chromatid segregation, assembly of mitotic spindle

(▶Mitosis, ▶Cell Cycle, Physiology)) and cells

enter the M-phase.

The two positive feedback loops (▶ Feedback

Regulation, ▶ Positive Feedback) described previ-

ously act synergistically and provide an abrupt

increase in the activity of CDK making the G2/M

transition an irreversible, switch-like event
(▶Cell Cycle Dynamics, Irreversibility, ▶Cell Cycle

Dynamics, Bistability and Oscillations, ▶Cell Cycle

Model Analysis, Bifurcation Theory). Bistability (and

hysteretic transitions) of the Wee1-CDK-Cdc25 con-

trol system in frog egg cells has been experimentally

tested in Jill Sible’s lab (Sha et al. 2003) and in Jim

Ferrell’s lab (Pomerening et al. 2003).

The switches of cell cycle phases are triggered by

transient signals that emerge when the checkpoint con-

ditions are satisfied. The irreversibility of these transi-

tions ensures that when the generated signal

disappears, cells do not step back into their previous

stage resulting in aberration of cells (▶Cell Cycle

Dynamics, Irreversibility). For instance, if cells escape

the checkpoint in G2-phase, they might end up with

nonidentical daughter cells with extra or less DNAs

than the mother cell, rolling over the stability of the

genome that causes fatal errors (Kastan and Bartek

2004).

Upon DNA damage, the checkpoint proteins are

often recruited to DNA lesions by repair complexes

that generate signals to activate the checkpoint

response pathway (▶Cell Cycle Arrest After DNA

Damage). Transducers transmit and amplify the signal

to downstream targets switching on the DNA-repair

apparatus and blocking the cell cycle machinery

(Kastan and Bartek 2004). In case of activated

http://dx.doi.org/10.1007/978-1-4419-9863-7_13
http://dx.doi.org/10.1007/978-1-4419-9863-7_7
http://dx.doi.org/10.1007/978-1-4419-9863-7_813
http://dx.doi.org/10.1007/978-1-4419-9863-7_813
http://dx.doi.org/10.1007/978-1-4419-9863-7_528
http://dx.doi.org/10.1007/978-1-4419-9863-7_22
http://dx.doi.org/10.1007/978-1-4419-9863-7_21
http://dx.doi.org/10.1007/978-1-4419-9863-7_21
http://dx.doi.org/10.1007/978-1-4419-9863-7_28
http://dx.doi.org/10.1007/978-1-4419-9863-7_28
http://dx.doi.org/10.1007/978-1-4419-9863-7_22
http://dx.doi.org/10.1007/978-1-4419-9863-7_22
http://dx.doi.org/10.1007/978-1-4419-9863-7_47
http://dx.doi.org/10.1007/978-1-4419-9863-7_47


Cell Cycle Transitions, G2/M, Table 1 Different names used for functional homologues of the regulatory elements in the G2/M

transition network

Generic name Function Mammals Budding yeast Fission yeast Xenopus laevis

CDK Cyclin-dependent kinase Cdc2 Cdc28 Cdc2 Cdc2

Cyclin B Regulatory subunit of CDKs in mitosis CycB Clb1,2 Cdc13 CycB

Wee1 CDK/Cyclin B inhibitory kinase Wee1 Swe1 Wee1, Mik1 Wee1, Myt1

Cdc25 CDK/Cyclin B activatory phosphatase Cdc25 Mih1 Cdc25 Cdc25

CAK Cyclin-dependent kinase activating kinase CAK Cak1 Csk1 MO15
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checkpoint response in G2-phase, Cdc25 activation is

downregulated resulting in G2 arrest as CDK is not

able to overcome and eliminate its “enemy,” the Wee1

kinase. However, when DNA repair is complete,

among several actions, Wee1 is degraded which leads

to activation of CDK that allows G2/M transition.

There are two important exceptions from the com-

mon regulatory way of G2/M transition. During oogen-

esis, the egg cell grows without dividing as its G2

checkpoint is blocked by Wee1 activation or Cdc25

inhibition. At the same time, the fertilized egg

undergoes a series of rapid mitotic cycles without

growth due to its removed checkpoints (▶Cell Cycle

of Early Frog Embryos).

Research of the mechanisms underlying G2/M tran-

sition is crucial as cells with defective checkpoints

have progeny with damaged or lost chromosomes,

which can result in loss of viability or abnormal

growth. Checkpoint defects cause genetic instability

that can result in tumors of multicellular organisms.

The basic concept of G2/M transition has been discov-

ered with the active help of theoretical work of systems

biology (▶Cell Cycle Modeling, Differential

Equation, ▶Cell Cycle Model Analysis, Bifurcation

Theory). Among several researchers, the contribution

of the groups of Béla Novák and John J Tyson always

had a great importance to our knowledge (Tyson et al.

2001). With the assistance of biological modeling and

the usage of dynamical systems theory in cell cycle

research, we became able to understand the underlying

logic of interconnected feedback loops of the cell cycle

providing crucial phenomena, such as bistability, hys-

teresis, or irreversible transition. The differences in the

network between organisms and the variety of molec-

ular elements playing role in the G2/M transition raise

further questions to be answered in the future

(Table 1).
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Cell Cycle Transitions, Mitotic Exit
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Oxford, UK
Definition

Mitotic exit refers to the completion of mitosis with

dephosphorylation of cyclin-dependent kinase (Cdk)

substrates triggered in response to cyclins destruction

and phosphatase(s) regulation.
Characteristics

Cell cycle events are tightly regulated such that DNA

replication (S phase) is always followed by mitosis

(M phase). In eukaryotic cells, such a strict alteration

of S and M phases is largely dependent on the periodic

activation of cyclin-dependent protein-kinases (Cdks)

activated by their specific cyclins partners (Morgan

2007). The underlying molecular machinery compris-

ing of systems-level feedbacks ensures periodic rise

and drop in Cdk activities that drive the cell cycle

progression.

In eukaryotic cells, mitosis is brought about by

intense phosphorylation of cellular proteins initiated

by the activation of Cdk1/Cyclin-B complex. During

early stages of mitosis (metaphase), replicated chro-

mosomes are still held together by cohesin complexes,

and they align (biorient) on the bipolar mitotic spindle

with the sister chromatids attaching to the opposite

poles. During the following phase of mitosis (ana-

phase), cohesins holding sister-chromatids together
are cleaved by a specific protease (separase) and sister-

chromatids are pulled apart by the elongating spindle.

Anaphase requires the activation of the Anaphase

Promoting Complex (or Cyclosome, APC/C) by its co-

activator Cdc20 (also called Fizzy in some organisms)

(Morgan 1999). APC/CCdc20 is an ubiquitin-ligase that

targets the separase inhibitor, securin and the Cdk1

activator, Cyclin-B (CycB) for proteasome-dependent

degradation. Securin degradation relieves the inhibi-

tion of separase and triggers anaphase. In addition,

CycB degradation inactivates Cdk1 and thereby

reduces the rate of protein phosphorylation, which

helps in mitotic exit. Since returning to interphase

depends on dephosphorylation of the mitotic phospho-

proteins, CycB degradation alone is insufficient for

mitotic exit which requires the action of a protein-

phosphatase (Queralt and Uhlmann 2008). In princi-

ple, the phosphatase could have a constant activity and

can dephosphorylate mitotic phospho-proteins once its

activity overcomes the falling protein-kinase activity.

However in budding yeast, where the mitotic exit

process is known best, the mitotic exit phosphatase

(Cdc14) is regulated and it gets activated at the end

of mitosis. In the following, we describe the details of

the budding yeast mitotic exit process.

In budding yeast, APC/CCdc20-mediated degrada-

tion of mitotic CycBs (called Clbs) is incomplete and

Cdk1 downregulation requires the activation of either

another APC/C activator (Cdh1) or a stoichiometric

Cdk inhibitor (Sic1). APC/CCdh1 targets CycB to

proteasome-dependent degradation similar to APC/

CCdc20, while Sic1 binds to and inhibits the Cdk1/

CycB complexes. However, Cdk1/CycB complexes

downregulate both Cdh1 and Sic1 thereby creating an

antagonistic relationship between Cdk1/CycB and

these Cdk1 regulators (Fig. 1). Cdk1/CycB phosphor-

ylated Cdh1 cannot bind to APC/C; therefore, it is

inactive while Cdk1/CycB complex inhibits the syn-

thesis and promotes the degradation of Sic1: The Swi5

transcription factor of Sic1 is inactivated by Cdk1/

CycB and phosphorylated form of Sic1 gets rapidly

ubiquitinated and degraded.

Antagonism between Cdk1/CycB and its negative

regulator (Cdh1 and Sic1) forms the underlying prin-

ciple of cell cycle regulation in budding yeast, which

makes the control system bistable, with alternative

steady states of high and low Cdk1 activities (Chen

et al. 2004). At mitotic exit, APC/CCdh1 is directly
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Cell Cycle Transitions, Mitotic Exit, Fig. 1 Interaction net-

work for the mitotic exit in budding yeast. Cdc20 initiates the

network by degradation of Clb2, Clb5, and securin (Pds1). This

trigger the downregulation of Cdk1 activities and upregulation

of a phosphatase, Cdc14 leading to the activation of Cdh1 and

Sic1. Cdh1/Sic1 exists in antagonist relationship with Cdk1 and

helps in the mitotic exit by further reducing the Cdk1 activity.

Cdc14 release from the nucleolus is crucial for the mitotic exit,

which is inhibited by Net1 until anaphase. Cdc14 inhibition is

relieved through Net1 phosphorylation controlled by Clb2,

Cdc5, MEN (mitotic exit network), and separase (Esp1). Esp1

activates Cdc14 release through its non-proteolytic (PP2A

downregulation) and proteolytic (MEN activation) functions
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activated by Cdc14-mediated dephosphorylation,

whereas the level of Sic1 gets upregulated by Cdc14-

dependent activation of its transcription factor, Swi5

and turning off Sic1 degradation. In addition, Cdc14

also dephosphorylates other Cdk1 substrates at the end

of mitosis and thereby promotes mitotic exit directly

as well.

Cdc14 is kept inactive in the nucleolus during most

of the cell cycle by its inhibitor, Net1. As cells enter

into anaphase, Cdc14 is activated and released from

nucleolus by two regulatory networks, Cdc-Fourteen

Early Anaphase Release (FEAR) network and Mitotic

Exit Network (MEN) (D’Amours and Amon 2004;

Stegmeier and Amon 2004). Both of these networks

bring about phosphorylation of Net1 which allows

Cdc14 release. The FEAR network–mediated Cdc14

release is important for proper anaphase progression

but it is dispensable for mitotic exit. On other hand,

MEN is required to sustain the released Cdc14 in

nucleus and to disperse it into cytoplasm during later

stages of mitosis. MEN is essential for mitotic exit,
therefore loss of its function arrest cells in telophase

with relatively high Cdk1 activity. Phosphorylated

Cdh1 and Swi5 are both concentrated in the cytoplasm

and hence their dephosphorylation and activation

requiresMEN-dependent cytoplasmic release of Cdc14.

Cdk1 and polo-kinase (Cdc5) are responsible for

Net1 phosphorylation in the FEAR network, and the

FEAR also includes separase (Esp1), Slk19, and Spo12

(D’Amours and Amon 2004). Phosphorylated Net1

gets dephosphorylated by PP2ACdc55 and by released

Cdc14 itself, the later mechanism creates a negative

feedback in the network. Separase (Esp1) promotes

Net1 phosphorylation and thereby Cdc14 release

by inhibiting PP2ACdc55 but this action does not

require the proteolytic function of separase (Queralt

et al. 2006). Active PP2ACdc55 keeps Net1

dephosphorylated and Cdc14 inactive until the degra-

dation of securin (Pds1 in budding yeast) by APC/

CCdc20 at anaphase, which activates separase (Esp1 in

budding yeast). However, FEAR-dependent Cdc14

release is also limited by APC/CCdc20-dependent

CycB degradation, which partially inactivates Cdk1.

Since this makes Cdc14 release transient, the MEN is

required to sustain Net1 phosphorylation and Cdc14

release at later stages of mitosis. In addition to that, the

MEN also helps in the cytoplasmic accumulation of

Cdc14 by restricting its nuclear import.

Activation ofMEN is complex and it is linked to the

entry of a spindle-pole-body (SPB) into the bud. This

control allows the cells to exit mitosis only after proper

positioning of anaphase spindle (spindle orientation

checkpoint) (Bardin and Amon 2001; Stegmeier and

Amon 2004). Movement of SPB into bud depends on

the cleavage of sister-chromatid cohesins which is

catalyzed by the proteolytic activity of separase. The

MEN component, Tem1 is a small G-protein localized

at the SPB and it is negatively regulated by GTPase

activating protein (GAP) complex, Bfa1/Bub2. Tem1

activation depends on a putative GDP:GTP exchange

factor, Lte1, present at the bud cortex. In this way,

Tem1 activation depends on sister-chromatid separa-

tion and anaphase spindle elongation which brings

Tem1 and its activator, Lte1 in proximity. Tem1 trig-

gers the activation of two MEN kinases, Cdc15 and

Mob1- Dbf2, which are localized at the daughter SPB.

Both Cdc15 and Mob1 are inactivated by Cdk1/CycB-

mediated phosphorylation, and they undergo
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dephosphorylation in Cdc14-dependent manner during

mitotic exit. Therefore, MEN activation and Cdc14

release comprise a positive feedback loop by which

they activate each other. The early release of Cdc14 by

FEAR network provides an initial activation for MEN

which helps to turn on the positive feedback loop

(Queralt et al. 2006). This coordination ensures that

the Cdc14-MEN positive feedback depends on the

activation of separase and thereby on the execution of

anaphase. In the absence of FEAR network function,

activation of the Cdc14-MEN positive feedback is

delayed and hence cells exit from mitosis only after

a time delay.

It can be seen that during mitotic exit budding yeast

cells control the Cdk1/Cdc14 activity ratio to flip the

Cdk1-Cdh1/Sic1 bistable switch from high to low Cdk1

activity. APC/CCdc20 functions as a critical node by

controlling both the kinase (Cdk1) and phosphatase

(Cdc14) branches of the network required for mitotic

exit (Fig. 1). APC/CCdc20 activation decreases the Cdk1/

Cdc14 ratio by decreasing the Cdk1 and increasing the

Cdc14 activities. APC/CCdc20-dependent degradation of

its substrates (the major mitotic and S phase CycBs,

Clb2 and Clb5 respectively as well as securin) is the

trigger required to flip the bistable switch (Shirayama

et al. 1999).

Once budding cells exited from mitosis in a Cdc14-

dependent manner, Cdc14 activity is not required any-

more as it can interfere with the entry into next cell

cycle. Therefore, the MEN is inactivated and Cdc14

gets re-sequestered into the nucleolus. This is mainly

achieved by APC/CCdh1-dependent degradation of

Cdc5, a key component of MEN. This creates the

following negative feedback: Cdc5 ! Cdc14 !
Cdh1 —| Cdc5 in the regulatory network which can

produce free running oscillations (so-called Cdc14

endocycles) in the presence of nondegradable Clb2

(Lu and Cross 2010). But Clb2 degradation entrains

these free running Cdc14 endocycles with the periodic

activation and inactivation of Cdk1. Thus, Cdk1 inac-

tivation during mitotic exit is required for restricting

endocycles besides initiating cytokinesis and promot-

ing entry into G1 phase of the next cycle.

Although Cdc14 is essential in budding yeast, it is

dispensable for mitotic exit in several other eukary-

otes. This could be because in budding yeast Cdc14

activation is required for Cdk1 downregulation
(through Cdh1/Swi5 dephosphorylation) besides to

dephosphorylate several other Cdk1 substrates. How-

ever, in other organisms the Cdk1 inactivation is

achieved by APC/CCdc20-dependent degradation of

CycB only, thereby exit from mitosis can be driven

by a constitutive phosphatase. In fission yeast, Clp1

(Cdc14 homologue) phosphatase is not crucial for

mitotic exit but it regulates G2/M transition. Clp1

and Cdk1 exist in antagonistic relationship, which

helps to upregulate the phosphatase with Cdk1

downregulation by APC/Ccdc20 and provide switch

like behavior to mitotic exit. Similar to MEN, fission

yeast has septation initiation network (SIN), but it only

has a role in cytokinesis and not in mitotic exit (Bardin

and Amon 2001).

Hence, the mitotic exit control in the cell cycle

regulation depends on how the Cdk downregulation is

coordinated with phosphatase(s) regulation. There is true

lack of knowledge about the phosphatases and their

regulation with regard to mitotic exit in several other

organisms. As seen in budding yeast, Cdc14 upregulation

helps to flip the bistable switch Cdk1-Cdh1 toward lower

Cdk1 activity. A positive feedback loop on the MEN

helps to accelerate the Cdc14 release and exit. It has to

be seen whether such an upregulated phosphatase control

is required to drive mitotic exit in other eukaryotes.
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Definition

The archaea, the “third domain of life” (as distinct

from bacteria and eukaryotes), have some of the gen-

eral features of bacteria, notably single, circular chro-

mosomes, but the biochemistry of the archaeal cell

cycle is much more closely related to that of eukary-

otes than it is to that of bacteria.
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Synonyms

Cell division cycle; Cell proliferation process
Definition

The cell cycle is a complex and crucial event for the

life of every organism (Mitchison 1971; Nurse 2000).

It consists of a series of ordered events, which

regulate the cellular growth and the division

depending on external stimuli. The cell cycle can

also be defined as the space which elapses from the

formation of a cell as result of mitosis and its com-

plete division into two daughter cells. Cell division

can occur in two different ways, depending on the

nature of the cells themselves: A somatic cell

undergoes a cellular division named mitosis while

a germ cell undergoes a cellular division named mei-

osis (Jorgensen and Tyers 2004).

Cell division consists of two consecutive processes,

mainly characterized by DNA replication and segrega-

tion of replicated chromosomes into two separate cells.

Originally, cell division was divided into two stages:

mitosis (M), i.e., the process of nuclear division; and

interphase, the interlude between twoM phases. Stages

of mitosis include prophase, metaphase, anaphase, and

telophase. The interphase cells simply grow in size, but

different techniques revealed that the interphase

includes G1, S, and G2 phases (Norbury and

Nurse 1992; Blow and Tanaka 2005). Replication of

DNA occurs in a specific part of the interphase

called S phase.
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Synonyms

Saccharomyces cerevisiae
Definition

The cell cycle of budding yeast has become a hallmark

problem of molecular systems biology for a number of

reasons. (1) The cycle of DNA replication, mitosis, and

cell division is crucial to all aspects of biological

growth, development, and reproduction. (2) The

genes and pathways for cell cycle control seem to be

very similar in all eukaryotes, including mammals.

(3) Budding yeast is exceptionally good for genetic

analysis of cell cycle controls because it can proliferate

as haploid cells, and its genetic makeup can be easily

altered by standard tools of molecular genetics. For

this reason, a great deal is known about the molecular

machinery regulating the events of the budding yeast

cell cycle. (4) The machinery is very complicated, and

its properties cannot be worked out reliably by intui-

tive reasoning alone. (5) Comprehensive mathematical
models of the budding yeast cell cycle have been built

and tested against a wide range of experimental obser-

vations. (6) The models make interesting predictions

that have been confirmed, in large part, by experimen-

tal tests.
Characteristics

Physiology

Budding yeast gets its name from its unusual style of

asymmetric division into a large mother cell and

a small daughter cell (Pringle and Hartwell 1981).

After a G1 period, the budding yeast cell initiates

a new bud at about the same time that it enters

S phase (DNA synthesis). Also, at this time, the

yeast cell replicates its spindle pole bodies and begins

preparations for mitosis. These cotemporaneous

events of the budding yeast cell cycle are referred to

as START. The bud first emerges from the cell in

a burst of polarized growth but quickly switches

to isotropic growth, to form an expanding spherical

protrusion. Most of the net cell growth after this

time goes into the bud. After DNA synthesis is fin-

ished, an intranuclear mitotic spindle is built and the

replicated chromosomes are aligned at the metaphase

plate. Simultaneously, the G2/M nucleus migrates

to the neck between the mother and bud compart-

ments and orients itself with one pole of the mitotic

spindle in the mother cell and the other pole in the

bud. During anaphase, the replicated chromosomes

are partitioned into two groups: one group is pushed

into the mother cell and the other into the bud.

The stretched nucleus divides in two, and the cell

separates at the bud neck to produce mother and

daughter cells. The daughter cell generally has a con-

siderably longer G1 period than the mother cell. It

must grow to a certain threshold size before it can

initiate a new round of budding, DNA replication, and

division.

Progression through the budding yeast cell cycle is

governed by a series of checkpoints. For instance, we

have already mentioned that daughter cells must

grow to a critical size before they can execute START.

Also, DNA damage can delay execution of START

until the damage is repaired. These cells will not

execute the metaphase/anaphase transition until all

http://dx.doi.org/10.1007/978-1-4419-9863-7_101311
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chromosomes are fully replicated and properly

aligned on the mitotic spindle (the “spindle assembly

checkpoint” or SAC). Budding yeast cells have a

“morphogenetic checkpoint” which blocks mitosis if

the bud is not properly formed, and a spindle align-

ment checkpoint that blocks cell division if the

daughter cell nucleus is not properly pushed into the

bud compartment.

Molecular Cell Biology

Genetic analysis of the molecular machinery control-

ling the major events of the cell cycle was begun in

budding yeast by Leland Hartwell, who identified

dozens of genes that induced the “cell division cycle”

phenotype. By Hartwell’s definition, a CDC gene is

a gene that, when mutated, arrests all cells in a specific

stage of the cell cycle. For example, cdc7 mutant cells

do not replicate their DNA or divide, but bud emer-

gence and growth continue as normal. Mutant cdc

genes are isolated as temperature-sensitive alleles

that on replicate plates form colonies at 25�C but not

at the restrictive temperature (36�C). Presumptive

mutant cells on the high temperature plate must be

examined microscopically to determine that the cells

have uniformly arrested at a particular morphological

stage of the cell cycle. Hartwell’s first set of CDC

genes defined two parallel pathways (Hartwell et al.

1974): one pathway relating to bud emergence, isotro-

pic growth, and nuclear migration, and the other relat-

ing to DNA replication and mitosis. These two

pathways diverge at START and come together finally

at mitotic exit. The gene with the earliest effect, whose

mutation blocked cells before the START transition, was

CDC28.

Hartwell’s work set off a landslide of activity

identifying CDC genes in a variety of organisms,

finding other genes that interacted with CDC genes,

and later cloning these genes and characterizing their

protein products and the interactions among these

proteins (for review, see Morgan 2007). Worthy of

note was Paul Nurse’s discovery of a fission yeast

gene, cdc2+, which seemed to encode the same pro-

tein as CDC28 in budding yeast. Nurse went on to

show, quite unexpectedly, that a human gene, later

called CDK1, encodes a protein that can rescue cdc2�

mutant fission yeast cells. In 1989 a consortium of

geneticists and biochemists demonstrated that MPF

(mitosis promoting factor in frog eggs, a master
controller for the progression of the cell cycle) is

a dimer of a protein kinase, encoded by the CDC28/

cdc2+/CDK1 gene, and a regulatory subunit called

cyclin B which had been identified years earlier by

Tim Hunt. Because the cyclin subunit is required for

activity of the protein kinase, the kinase is called

cyclin-dependent kinase, or CDK for short. The dis-

covery of the composition of MPF was the beginning

of the modern era of molecular biology of cell cycle

control in eukaryotic cells. In 2001 the Nobel Prize in

Physiology or Medicine was shared by Hartwell,

Nurse, and Hunt.

In the 1990s a host of cell cycle genes were identi-

fied in budding yeast, including:

CLN1,2: encoding G1 cyclins important for START and

bud emergence

CLB1-6: encoding B-type cyclins essential for DNA

synthesis and mitosis

CDC20: encoding a ubiquitin-ligase component essen-

tial for sister chromatid separation and cyclin deg-

radation in anaphase

CDC14: encoding a phosphatase essential for mitotic

exit

CDH1, SIC1: encoding proteins that stabilize G1 phase
of the cell cycle

The Heart of the Budding Yeast Cell Cycle

Kim Nasmyth (1996) proposed to think of the budding

yeast cell cycle as two alternative, self-maintaining

states: G1 (unreplicated chromosomes, growing but

not committed to proliferate), and S/G2/M (committed

to chromosome replication and mitosis). START is the

transition from G1 to S/G2/M, and mitotic exit is the

transition from S/G2/M back to G1. The molecular

correlates of these two states are G1: high activity of

Cdh1 and Sic1, no kinase activity associated with

Clb1-6; and S/G2/M: low activity of Cdh1 and Sic1,

high Clb-dependent kinase activity. Finally, Nasmyth

recognized that a possible reason for these alternative,

self-maintaining states was the antagonism between

Cdh1 and Sic1 on one side (destroying the activity of

the Clb-dependent kinase complexes) and the B-type

cyclins, Clb1-6, on the other side (inactivating Cdh1

and Sic1).

Nasmyth stopped short of identifying his idea with

a bistable control system flipping back and forth

between two stable steady states as cell-cycle-

progression signals pushed the control system past



Growth
damage

problems

Chromosome
alignment
problems

G2

SK

CDK

Enemies

CDK

EP

S

M A

G1

SK EP

G1

T

SK EP
CDKEnemies

G1 G2 M AS T G1

Cell Cycle, Budding Yeast, Fig. 1 The heart of the budding

yeast cell cycle. Adapted from Tyson and Novak (2008). (Top
center) Cyclin-dependent kinase (CDK) and its enemies (Cdh1

and Sic1) are involved in an antagonistic (double negative)

feedback loop, which can persist in either of two stable steady

states: a G1-like state with low CDK activity and prominent

enemy forces, and anM-like steady state with high CDK activity

and the enemies in retreat. These two stable steady states are

represented by black circles along the CDK axis (middle center).
The pairs of circles side-by-side are meant to represent the same

steady state under conditions when both the starter kinase (SK)

and exit phosphatase (EP) are close to zero. The two stable

steady states are separated by an unstable steady state (open
circle). A newborn cell in G1 (middle left) can be induced to

enter S/G2/M by activation of SK (Cln-dependent kinase),

which phosphorylates and weakens Cdh1 and Sic1, allowing

CDK activity to rise and trigger S phase (follow the blue arrow
for the cell’s passage through the cell cycle). Among other

duties, CDK downregulates SK, but the bistable switch remains

in the upper state. Notice that, as SK activity increases, the stable

G1-like steady state merges with and is annihilated by the

unstable steady state at a saddle-node bifurcation. Exit from

mitosis (middle right) is induced by EP (Cdc14 phosphatase),

which activates the proteins that destroy CDK activity. When the

upper steady state merges with the unstable steady state, the cell

returns to the G1 state. Because EP activity depends on CDK,

after CDK falls, EP activity also disappears, but now the enemies

have the upper hand. The two blue arrows together form

a “hysteresis loop” that switches the CDK-control system from

OFF to ON and back again during each cell cycle. (Bottom) Pro-
gression around the hysteresis loop corresponds to periodic

changes in the activities of CDK, enemies, SK, and EP. At

START, a burst of SK activity flips the CDK switch ON, and at

EXIT, a burst of EP activity flips the CDK switch OFF. (Top left

and right) Checkpoints function by inhibiting either SK or EP.

Growth requirements and damage repair processes typically halt

the cell cycle in G1 phase by preventing up-regulation of SK

activity. Misalignment of chromosomes on the spindle blocks

exit from mitosis by preventing activation of EP
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Cell Cycle, Budding Yeast, Fig. 2 Experimental confirmation

of alternative stable states with low or high Clb2-dependent

kinase activity. Adapted from Cross et al. (2002). To test the

prediction that a stable G1 state of low Clb-dependent kinase

activity coexists with a stable S/G2/M state of high Clb-

dependent kinase activity when SK ¼ EP ¼ 0, Fred Cross and

colleagues measured Clb2 abundance and cell-cycle phase in

a mutant strain of budding yeast, cln1D cln2D cln3DGAL-CLN3
cdc14ts. When grown in raffinose or glucose, the GAL promoter

is repressed, and the cells are unable to make any Cln proteins, so

they have no Cln-dependent kinase activity (SK ¼ 0 in Fig. 1).

When grown at 37�C, this strain has no Cdc14 activity (EP¼ 0 in

Fig. 1). In raffinose or glucose at 37�C, this strain has neither

Cln3 nor Cdc14 activity, i.e., it is in the “neutral” position in

Fig. 1. In galactose-rich medium (GAL promoter active) at 23�C,
the cells have both SK and EP, so they are able to progress

around the cell cycle (the blue hysteresis loop in Fig. 1). Under

these conditions, the cells proliferate asynchronously, as indi-

cated (upper left) by the facts that 45% of the cells are unbudded

(in G1) and the remainder of the cells are in S/G2/M with

significant amounts of Clb2 protein. When this asynchronous

population of cells is shifted to raffinose medium at 23�C for 6 h

(i.e., deprived of SK), the cells arrest primarily in G1 phase (88%

unbuddded) with undetectable levels of Clb2 (lane R). This is the

G1 steady state in Fig. 1. Next, the culture is shifted to galactose
+ raffinose medium at 23�C to induce production of Cln3. At the

end of the indicated periods of time, two aliquots of the culture

are removed. One aliquot is analyzed immediately for bud index

and Clb2 content (lanes 3, 4, 5 of upper gel); the other aliquot is
shifted to glucose medium at 37�C for 2.5 h and then analyzed as

before (lower gel). During the variable period of exposure to

galactose, the cells produce increasing amounts of Cln3 protein

(i.e., increasing pulses of SK in Fig. 1). Cells exposed to a small

pulse of Cln3 (0 or 0.5 h in galactose) remained in the stable G1
state, as indicated by lack of buds and little or no Clb2 protein

(lanes 1 and 2 of lower gel). Cells that got a larger pulse of Cln3
(1 h in galactose) switched to the stable S/G2/M state (mostly

budded cells with abundant Clb2 – lane 3 of lower gel) and

stayed there because EP was disabled at the higher temperature.

The cells in all three lanes of the lower gel are exposed to the

same conditions (SK¼ EP¼ 0), but the cells in lanes 1 and 2 are

in the G1 state, whereas the cells in lane 3 are in the S/G2/M
state; i.e., the system is bistable
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saddle-node bifurcations. But this connection became

the basis of a series of mathematical models of the

budding yeast cell cycle control system developed by

Novak, Tyson, and coworkers (Chen et al. 2004; Tyson

and Novak 2008) and by Alberghina et al. (2009).

A brief overview of these models is presented in

Fig. 1, and the interested reader is referred to the

original literature for details.

Experimental Tests

Cross and collaborators (Cross et al. 2002) have con-

firmed experimentally a number of predictions of the

Chen model, including the idea of two alternative

stable steady states (see Fig. 2).
Cross-References
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Web Resources

Model webpage: http://mpf.biol.vt.edu/research/

budding_yeast_model/pp/
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Cell Cycle, Cancer Cell Cycle and Oncogene Addiction,
Fig. 1 A schematic of the classic six hallmarks of cancer

taken from the original article (Hanahan and Weinberg 2000),

courtesy of Elsevier Limited
Definition

Cancer Cell Cycle

Cancer is a disease of cell proliferation, whereby

cancer cells progressively and inexorably lose normal

cell cycle control. As a consequence of tumor growth,

the burden on patients increases and tumors eventu-

ally spread and metastasize. Cancers evolve through

a multistep progression of accumulating somatic

genetic changes (Vogelstein and Kinzler 1993)

accompanied with epigenetic abnormalities (Jones

and Baylin 2002). These alterations lead to an

increasing departure from regular cellular function

and confer progressively tumorigenic phenotypes.

Cancers arise out of normal tissues, and it is generally

thought that they originate from a single cell. This cell

loses the intrinsic cellular processes that prevent

abnormal cell division and acquires a conserved set

of traits – hallmarks – characteristic of all cancers

(Hanahan and Weinberg 2000). Of these hallmarks,

three relate to the ▶ cell cycle: self-sufficiency in

proliferative signals, insensitivity to anti-

proliferative signals, and limitless replicative poten-

tial. Normal cells require environmental cues to

divide, may receive signals to stop dividing, and

have a limited number of replicative cycles; the can-

cer cell cycle, by definition, contains alterations that
bypass these regulatory mechanisms. Any cancer

therapy must therefore address the uncontrolled cell

proliferation driven by the dysregulated cell cycle

(Fig. 1).
Characteristics

Oncogene Addiction

While a minimalistic phenotypic description can

describe all cancers, cancer types are heterogeneous

with respect to diverse molecular and clinical descrip-

tions. A variety of molecular alterations can synergis-

tically act to dysregulate the cell cycle. In the past

decade, it has become apparent that subset of cancers

displays a profound dependence on one or a few onco-

genes – so-called oncogene-addicted cancers

(Weinstein 2002). While cancers typically incur con-

siderable genetic damage, these oncogene-addicted

cancers rely heavily on the activity of few oncogene

products. The induced signaling from these genes sup-

ports the tumor phenotype and is necessary for its

maintenance. Inhibition or deletion of these proteins

leads to a reversal of the tumorigenic phenotype.

http://dx.doi.org/10.1007/978-1-4419-9863-7_100145
http://dx.doi.org/10.1007/978-1-4419-9863-7_101067
http://dx.doi.org/10.1007/978-1-4419-9863-7_115
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Cell Cycle, Cancer Cell Cycle and Oncogene Addiction,
Fig. 2 EGFR and erlotinib in cancer signaling. Ligand binding

induces dimerization (left), subsequent phosphorylation and ini-

tiation of downstream signaling (right). In cancer, EGFR signal-

ing can drive the tumorigenic phenotype. Clinically used

inhibitors such as Erlotinib prevent the phosphorylation of the

intracellular substrate and can prevent EGFR signaling

(Figure taken from (Minna and Dowell 2005), courtesy of Nature

Publishing Group)
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Recognition of the oncogene-addiction phenomenon

has opened the way to an extremely promising thera-

peutic opportunity: dramatic clinical responses and

minimal patient toxicity (Sawyers 2003). Transgenic

mouse models and cell lines validate this prospect, but

ultimately, patient tumor regressions (such as Chronic

Myeloid Leukemia patients treated with a BCR-ABL

inhibitor, Imatinib) constitute the most convincing

proofs. In the context of the cancer cell cycle, the

deactivation of a single oncogene in these addicted

cancers may overcome the ability of a cancer cell to

bypass normal cellular regulation. However, it should

be noted that the molecular basis for oncogene addic-

tion is not fully understood.

Oncogene Addiction and the Cell Cycle

The relationship between oncogene addiction and the

cell cycle is perhaps best illustrated by an example,

activating mutations in the epidermal growth factor

receptor (EGFR) driving cell cycle progression. The

EGFR is a transmembrane receptor tyrosine kinase

that, upon ligand binding, propagates downstream

signaling to elicit primarily pro-survival and prolifer-

ative responses. A subset of lung cancer patients has

a conserved set of EGFR mutations causing ligand-

independent signaling; these mutations predict favor-

able patient responses to specific EGFR inhibitors,

e.g., erlotinib, gefitinib (Pao and Chmielecki 2010).

Studies in cultured cancer cell lines with addictive

EGFR mutations suggest that EGFR inhibition leads

to quiescence and apoptosis. Molecular antagonism

of EGFR in these cases shows how therapeutics

may effectively target the altered cancer cell cycle.

More accurately, it is the inhibition of biochemical

signaling downstream of EGFR that mediates

cellular responses to the drug, i.e., pathway inactiva-
tion. Drug-induced alternative receptor signaling,

e.g., MET amplification, illustrates this point,

because it can rescue drug-mediated pathway inhibi-

tion in these EGFR-reliant cells even in the presence

of successful EGFR inhibition. Therefore, our

example shows an important paradigm: Cell cycle

pathway regulation correlates with phenotypic cellu-

lar changes. Notably, many proteins implicated in

oncogene addiction have established roles in cell

cycle regulation – EGFR, HER2, MYC, BCR-ABL,

Cyclin D, RAS, WNT, etc. (Fig. 2) (Weinstein and

Joe 2008).
Limitations

Oncogene addiction, however, comprises only

a fraction of all cancers. Most cancers also have dereg-

ulation of other pathways along with altered molecular

feedback mechanisms, thus reducing the opportunity

for single-agent therapy. Even in oncogene-addicted

cancers, tumor heterogeneity and genetic instability

prevent lasting treatment responses in patients. Still,

the pathway inhibition concept suggests that proper

inhibition of tumor cell signaling may effectively over-

come deregulation of the cancer cell cycle. Indeed, the

late I. Bernard Weinstein highlighted the need for

rational drug combinations and the promise of systems

biology approaches to understand complex cancer sig-

naling (Weinstein and Joe 2008). At the cellular level,

▶ cancer systems biology may also aid cancer thera-

peutics by lending insight into the dynamics underly-

ing cancer treatment (Abbott and Michor 2006).
Cross-References
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Synonyms

Size checkpoint; Size control
Definition

Cell size regulation during the cell cycle is

a mechanism coordinating growth and division. It

ensures that cell size distribution of a population

remains constant in consecutive generations.
Characteristics

Size homeostasis is a general characteristic feature of

populations of unicellular organisms, at least in steady-

state conditions. It means that an "average" cell must

double its size and all its components between two

successive divisions. At the individual cellular level,
size control mechanisms operate, which ensure that at

specific checkpoints the cell cycle progression is

blocked, unless a critical size has been reached. Such

▶ cell cycle checkpoints exist both in G1 and G2

phases, which regulate the onset of S and M phases,

respectively (Alberts et al. 2009). However, in

a specific cell type, both size checkpoints do not nec-

essarily work efficiently: one might dominate, while

the other becomes cryptic. In the absence of both size

controls, cells would be smaller and smaller from cycle

to cycle and finally probably lose viability (Fantes and

Nurse 1981; Sveiczer et al. 1996). The reason is that

growth (cytoplasmic) cycle was normally longer than

chromosome (nuclear) cycle; therefore the cell would

not double its components and its size before cytoki-

nesis (Fig. 1). By contrast, size control extends the

duration of either G1 or G2 phase by blocking the

next phase transition, ensuring a compensation mech-

anism, that is, the larger the cell at birth is, the shorter

its cycle will be. With other words, size homeostasis is

achieved via negative signal(s), which are generated

by the growth cycle and affect progression of the

chromosome cycle. This entry summarizes how size

checkpoints act in the most important model organisms

studied so far, namely, budding yeast, fission yeast,

early embryonic cells, and finally mammalian cells. In

every case, we will briefly discuss the methods used

in size control studies and the conclusions drawn.

http://dx.doi.org/10.1007/978-1-4419-9863-7_101362
http://dx.doi.org/10.1007/978-1-4419-9863-7_101363
http://dx.doi.org/10.1007/978-1-4419-9863-7_9
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Cell Cycle, Cell Size Regulation, Fig. 2 The existence of

a size checkpoint in fission yeast is indicated by a strong nega-

tive correlation between total length extension and birth length.

In extremely oversized cells, size control is abolished
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At the end, we will give a generalized view of size

regulation in eukaryotes from aspects of systems biol-

ogy. Another important side of size control is its mod-

ulation by changes in the environment (shift-up and

shift-down experiments); however, due to space limi-

tations this point will not be discussed here.

Cell Size Regulation in Budding Yeast

Unicellular models like the budding yeast Saccharo-
myces cerevisiae are practically able to grow and

divide infinitely, if the required nutrients (C-source,

N-source, minerals, etc.) are available in the environ-

ment and the physical factors (pH, temperature, water

activity, etc.) also support proliferation. Although

some cells age and even die, the whole population

may increase exponentially for many generations if

the milieu does not change. Coupling growth and divi-

sion happens in late G1, controlling the G1/S transi-

tion, and the control point is called the Start event in

this organism (Morgan 2007). The mechanism of the

intracellular size measurement is mainly obscure. An

indirect indicator of cell size is probably the protein

synthesis rate, which is proportional to the number of

ribosomes and also to cell mass. Budding yeast has

only one type of cyclin-dependent kinase (Cdk), called

Cdc28; however several different cyclins (Clns and

Clbs) are activated at different cell cycle stages, more-

over, the different cyclin-Cdc28 complexes have dif-

ferent substrate specificities, leading to an irreversible

progression through the whole cycle (▶Cell Cycle,

Budding Yeast). Cln3 is the first cyclin emerging in

G1, and this protein is highly unstable. Therefore, Cln3

is a good candidate to be a size-sensing protein, whose

concentration reflects translation rate in the cell

(Morgan 2007). This hypothesis is also supported by

the fact that cells overproducing Cln3 are abnormally

small. Probably the most relevant effect of the

Cln3-Cdc28 kinase complex is that it directly phos-

phorylates a nuclear Start inhibitor, the Whi5 protein.

Phosphorylated Whi5 is exported from the nucleus,

allowing a specific transcription program to start, lead-

ing (among many other proteins) to Cln1 and Cln2

production, and finally to initiation of ▶DNA replica-

tion (Di Talia et al. 2007).

Cell Size Regulation in Fission Yeast

Its regular cylindrical shape, tip growth with constant

diameter, and symmetric division make the fission
yeast Schizosaccharomyces pombe an attractive

model in size control studies. Cell length, which is

proportional to volume and mass, is an easily measur-

able variable, if cells have been grown under

a thermostated photomicroscope on an agar surface.

After measuring many cells from time-lapse films, and

plotting the total length extension versus birth length

(Fig. 2), a strong negative correlation indicates the

existence of a size checkpoint (Fantes 1977). The

closer the slope of the regression line to �1 is,

the stronger the size control is. In abnormally over-

sized temperature-sensitive cdc mutants generated by

a block and release experiment, however, size control

is abolished, as indicated by the lack of negative cor-

relation. This size checkpoint, in contrast to budding

yeast, regulates the onset of ▶mitosis, acting some-

where in the middle of G2 phase (Sveiczer et al. 1996).

In small wee1 mutants, this checkpoint no more

operates; however, a strong G1/S size regulation is

turned on here, which mechanism is cryptic in nor-

mal-sized wild type cells. The main cyclin-dependent

kinase complex in fission yeast is the Cdc13-Cdc2

dimer, also known as the M phase promoting factor

(MPF). Its activity in G2 is mainly regulated by

a kinase-phosphatase pair, Wee1 and Cdc25, phos-

phorylating and dephosphorylating the inhibitory

Tyr-15 site of Cdc2, respectively (▶Cell Cycle, Fis-

sion Yeast). Similarly to budding yeast, a translational

control seems to be involved in size sensing, in the case

http://dx.doi.org/10.1007/978-1-4419-9863-7_16
http://dx.doi.org/10.1007/978-1-4419-9863-7_16
http://dx.doi.org/10.1007/978-1-4419-9863-7_40
http://dx.doi.org/10.1007/978-1-4419-9863-7_40
http://dx.doi.org/10.1007/978-1-4419-9863-7_13
http://dx.doi.org/10.1007/978-1-4419-9863-7_17
http://dx.doi.org/10.1007/978-1-4419-9863-7_17
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of fission yeast both on the levels of Cdc13 and Cdc25

(Morgan 2007). Analyzing time-lapse films of several

cell cycle mutants of S. pombe, however, indicates that
its mitotic size control acts mainly through the Wee1

protein, while the cryptic Start size checkpoint

operates via the cyclin-dependent kinase inhibitor,

Rum1 (Sveiczer et al. 1996).

Cell Size Regulation in Early Embryos

In early embryos of multicellular animals, cell growth

and division are uncoupled, that is, size homeostasis is

not maintained by any regulatory mechanisms. The

most frequently studied models are embryos of the

fly Drosophila and of the frog Xenopus (▶Cell Cycle

of Early Frog Embryos). First, giant eggs are produced

by the females, in which the cell cycle is blocked in G2,

but growth is continued, stockpiling huge amounts of

maternal proteins and mRNA, required later for

embryogenesis (Morgan 2007). After maturation and

fertilization, rapid and synchronous cycles occur prac-

tically without any growth, consisting of only S and

M phases, but neither G1 nor G2. Size checkpoint is

lost here, or more precisely, the large size makes it

cryptic. During about a dozen of these size-

independent cycles, cell size dramatically decreases.

At around the midblastula transition, however, when

cell size reaches a critical level from above, size control

starts to operate. Cycle time increases as G1 and G2

phases are involved, and cell divisions are no more

synchronous during the following developmental

stages. In experiments with Xenopus, plotting cycle

time as a function of cell radius at birth, similar charac-

teristics were found to those ones discussed above for

fission yeast. In cells before the midblastula transition,

cycle time was found to be totally independent of birth

size; by contrast, after this stage, a strong negative

correlation arose between them (Wang et al. 2000).

The main cellular parameter controlling these cycles

was found to be the nucleocytoplasmic ratio, that is,

the DNA content of the cell divided by its cell mass.

Cell Size Regulation in Mammalian Cells

Mammalian cells, similarly to yeasts, require nutrients

for proliferation, but they also need growth factors

generated normally by other cells of the same organ-

ism. With other words, division of these cells is under

strict tissue control; in the absence of growth factors

the cells are in a phase called G0, and they neither grow
nor divide in this stage (Morgan 2007). The effect of

growth factors results in passing the G0/G1 transition,

when the cell starts to proliferate (▶Cell Cycle of

Mammalian Cells). Their most important checkpoint

is the Start control in late G1, similarly to that of

budding yeast; however, it is rather called the restric-

tion point (▶Cell Cycle Transition, Detailed Regula-

tion of Restriction Point) in animal cells. The main

molecular regulators of the restriction point are E2F

transcription factors required for G1/S progression, an

inhibitor of E2Fs (the retinoblastoma protein or RB),

and different ▶ cyclins and cyclin-dependent kinases.

To get rid of problems of tissue control, in experiments

cultured animal cells are generally involved, supplied

artificially with growth factors. A further problem is

the irregular shape of cells, causing uncertainties in

size determination. One possibility is to measure total

protein content or protein synthesis rate in the cells, or

the other one is to measure cell volume by an electronic

cell counter. A very long debate has been continued on

to decide whether cell size affects or not the restriction

point in animal cells (Morgan 2007). The answer to

this question may alter in different cell types; however,

a seminal paper suggests us that probably size control

mechanisms generally operate in higher eukaryotes

(Dolznig et al. 2004), which conclusion has recently

been confirmed (Tzur et al. 2009).

Systems Biology of Size Control

How a cell measures its size during the cell cycle is not

clear, however, any size-sensing mechanism must

work via the biochemical cell cycle engine, driving

any cell from birth to division. Therefore, cyclins,

Cdks, their inhibitors, and other regulators are gener-

ally thought to be involved in size regulation. As

discussed above, translational control on highly unsta-

ble proteins is hypothesized to have a general role here.

So, in mathematical models of the cell cycle consisting

of ordinary differential equations on the biochemical

reactions of the most important proteins, cyclins are

generally assumed to accumulate in the nucleus pro-

portional to cell mass. Such models were shown to

describe correctly the size checkpoints in different

cell types; for example in the case of fission yeast,

even a stochastic version of a former deterministic

model was successfully developed (Sveiczer et al.

2001). However, a novel way of size sensing was

recently discovered in rod-shaped cells, like in fission

http://dx.doi.org/10.1007/978-1-4419-9863-7_18
http://dx.doi.org/10.1007/978-1-4419-9863-7_18
http://dx.doi.org/10.1007/978-1-4419-9863-7_20
http://dx.doi.org/10.1007/978-1-4419-9863-7_20
http://dx.doi.org/10.1007/978-1-4419-9863-7_37
http://dx.doi.org/10.1007/978-1-4419-9863-7_37
http://dx.doi.org/10.1007/978-1-4419-9863-7_10
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may measure their size by generating a spatial gradient of

a cell cycle inhibitor protein at the cellular cortex. In small

cells (top), the inhibitory effect from the tips is large in the

middle, which blocks the nuclear cycle. In large cells (bottom),

the inhibitory effect from the tips is little in the middle, which

releases the block
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yeast and even in some bacteria (Bacillus subtilis). In

these cells, a spatial gradient of some proteins is

formed at the cortex, having a maximal local concen-

tration at the cell tips, and a continuous decrease in the

direction of the middle (Fig. 3). These proteins inhibit

cell cycle progression in the middle of the cell, when

the cell is small. As the cell becomes larger and larger,

the protein in the middle dilutes, and at a critical cell

length, it loses its efficient inhibitory effect (Moseley

and Nurse 2010). How far this mechanism is really

involved in size regulation and how universal this

way might be are interesting questions for the future

to be studied.
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Definition

Cell cycle and ▶ circadian rhythms carry out specific

functions to regulate cell divisions and provide

temporal controls, respectively. These two distinct

mechanisms interact with each other via molecular
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coupling factors such as WEE1 and CHK2. WEE1 is

directly regulated by a heterodimeric circadian

transcription factor, BMAL1/CLOCK. On the other

hand, a cell cycle checkpoint regulator, CHK2,

phosphorylates one of the core clock components,

mPER1, and leads to its subsequent degradation upon

DNA damage. This bidirectional coupling between the

cell cycle and the circadian clock is conserved from

filamentous fungi, Neurospora crassa, to mammals.
Characteristics

In most eukaryotic organisms, networks of cell cycle

and circadian rhythms coexist and work in harmony to

create optimum conditions for cells to grow and

adapt to surrounding environment. The underlying

molecular mechanisms of cell cycle are conserved

from yeast to mammals (Nurse 2000). This robust

control system is equipped with multiple checkpoints

for controlled growth and cell divisions. Cell cycle

produces an oscillatory phenomenon of repeated

growth and division. The period of this oscillation,

however, varies with external conditions such as

nutrient and temperature. Cell cycle system is

optimized for growth and division, but not for time

keeping. Circadian rhythms keep track of time and

provide temporal regulations in most eukaryotic

organisms with a period of about 24 h (Dunlap 1999).

In contrast to the period of cell division cycle, the

period of circadian clock is relatively insensitive to

external conditions such as nutrients or temperature.

These two molecular mechanisms for distinct

functions are connected by molecular coupling

components, which are addressed below.

Molecular mechanisms of cell cycle progress and

their dynamical properties are identical in all eukary-

otes, and extensively studied in various ways including

mathematical modeling (Csikasz-Nagy et al. 2006).

Key regulatory components are conserved across

different species. In mammals, four different

complexes of Cyclin-dependent-kinases (CDKs) and

their regulatory Cyclin partners (Cdc2/CycB, Cdk2/

CycA, Cdk2/CycE, and Cdk4/CycD) orchestrate cell

cycle progressions. Their appearances, activities, and

disappearances are regulated by multiple components

such as inhibitors (Rb, p27Kip1), transcription factors

(c-Myc, E2F, Mcm), and degradation factors (p55Cdc/

APC, Cdh1/APC). For this entry, it is important to note
two cell cycle components: (1) an inhibitory kinase,

WEE1, that inactivates the activity of Cdc2 and

determines the entry into the mitosis, and (2) a cell

cycle checkpoint regulator, CHK2, that is induced

upon DNA damage to relay proper signals for DNA

damage responses.

In mammals, circadian rhythms are present in

various cell types including liver, fibroblasts,

etc. The circadian clock is robust and stable at

a single cell level. In fibroblasts, however, cells do

not communicate with each other, and they are

asynchronous as a population. The master clock

resides in the suprachiasmatic nucleus (SCN), which

is situated in the hypothalamus. These neuronal cells

do communicate and synchronize with each other,

receive input signals, and relay output signals to other

cells. Both SCN neurons and peripheral tissues have

identical molecular components that constitute a

24-h oscillator. A conserved PAS domain containing

heterodimeric transcription factors, BMAL1/CLOCK

or BMAL1/NPAS2, activates transcriptions of core

clock components such as mPers (mPer1 and mPer2)

andmCrys (mCry1 andmCry2) (Ukai and Ueda 2010).

Translated products from these transcripts, mPERs and

mCRYs, translocate into the nucleus and negatively

regulate their own transcription factors creating a

time-delayed negative feedback loop. In a simplified

picture, this feedback circuit generates a stable

oscillator. The circadian clock system, however, is

much more complex with other interlocked

feedback loops with components such as RevErb-a.
Furthermore, transcriptional, post-transcriptional,

post-translational, and nuclear import/export

regulations play important roles in the circadian

clock dynamics adding multiple layers of controls.

Cell cycle and circadian rhythms are coupled

together despite their discrete functions. The circadian

clock–gated cell division cycles are observed in

various organisms from cyanobacteria to mammals

(Yang et al. 2010; Sahar and Sassone-Corsi 2009).

From 1950s, scientists observed cell divisions that

only occur during particular times of the circadian

cycle (Sweeney and Hastings 1958). However, it was

only recently that scientists identified molecular

coupling factors between the cell cycle and the

circadian clock (Sahar and Sassone-Corsi 2009).

A circadian transcription factor, BMAL1/CLOCK,

directly binds to Wee1’s E-box elements and activates

the transcription ofWee1. Both the abundance and the
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activity of WEE1 oscillate and are high during

the evening. These, in turn, determine the duration of

G2-phase. Cells divide in late evening when WEE1

level decreases in order to allow cells to enter into the

M-phase.

WEE1 undergoes complex regulation, because cell

cycle–controlled WEE1 is in concert with another

regulation that is periodically imposed by the circadian

clock. The period of cell division cycle varies as tem-

perature and/or nutrient conditions change while the

period of circadian clock remains relatively constant.

This fact sets up a stage for in silico studies for the cell
cycle and the circadian clock as coupled oscillators.

Computational modeling and analysis of this particular

coupling via WEE1 revealed: (1) phase-lock and

synchronization of cell division cycle with circadian

rhythms when the mass doubling time (MDT, or the

period of cell cycle) is close to 24 h, (2) quantized cell

division cycles when the MDT is different than 24 h,

and (3) circadian influenced cell size control

(Zamborszky et al. 2007). If the MDT is close to

24 h, the circadian-regulated WEE1 synchronizes cell

cycle to the phase of circadian rhythms regardless of

initial phase of cell cycle. However, this coupling

results in multi-modal cell cycle distributions or quan-

tized cell cycle lengths if the MDT deviates from 24 h,

because the circadian clock influences different phases

of cell cycle in each generation due to their period

differences. The circadian clock may lengthen

the MDT via WEE1 depending on its influences on

particular cell cycle phase. This periodic break on cell

cycle by the circadian clock enforces cell size control

by regulating the duration of growth at the G2 phase.

These multi-modal distributions are recently reported

in cyanobacteria cell cycle system under the influence

of the circadian clock with single cell measurements

(Yang et al. 2010).

The above seemingly unidirectional coupling was

recently shown to be conditionally bidirectional.

Circadian rhythms show unique phase shifts upon

DNA damage, which involves cell cycle checkpoint

regulator, CHK2. DNA damage induces DNA damage

responses that slow down cell cycle, arrest cell cycle,

or lead to programmed cell death, apoptosis.

In mammalian system, ionizing radiation causes

double-strand breaks that relays signal transduction

cascades via ATM and CHK2. Both ATM and CHK2

interact with mPER1, and CHK2 phosphorylates
mPER1, which leads to its subsequent degradations

(Sahar and Sassone-Corsi 2009). In other words,

CHK2-induced phosphorylation triggers premature

degradation of mPER1, which creates phase shift in

the circadian clock. The DNA damage–induced phase

shifts are unique because DNA damage predominantly

creates phase advances, but not much of delays.

This unique phase response was investigated with

computational modeling and revealed possible

molecular criteria for such phenotype: (1) An autocat-

alytic positive feedback mechanism is required

in addition to the time-delayed negative feedback

loop and (2) CHK2 phosphorylates and triggers

subsequent degradations of mPERs that are not

bound to their transcription factors, BMAL1/CLOCK

(Hong et al. 2009). This in silico study provides

testable hypotheses for the detailed mechanism of

DNA damage–induced phase shifts of circadian

rhythms, which is important in understanding why

DNA damage signaling cascade influences the

circadian clock. The implications of such an interac-

tion are hypothesized that cell cycle machinery utilizes

circadian rhythms to activate WEE1 by prematurely

degrading mPERs, which subsequently releases nega-

tive feedback on BMAL1/CLOCK. The BMAL1/

CLOCK-activated WEE1 will delay cell cycle

progress upon DNA damage, and provide more time

for DNA repair.

There are more clues of coupling between the cell

cycle and the circadian clock. The transcript of c-Myc
oscillates with a circadian period, and BMAL1/NPAS2

suppresses its transcription (Sahar and Sassone-Corsi

2009). Its molecular details, however, remain

unexplored. Additional cell cycle components such as

Cyclin D1, Gadd45a, andMdm-2 show rhythmic tran-

scripts, but their detailed regulations are unknown

(Sahar and Sassone-Corsi 2009). The rhythmic Cyclin

D1 transcripts suggest a role of the circadian clock at

G1-to-S transition in addition to G2-to-M transition via

WEE1. Furthermore, rhythmic Gadd45a and Mdm-2

transcripts suggest potential roles of the circadian

clock in DNA damage responses. It is possible that

there are other molecular coupling components.

These may be clock-controlled genes (CCGs) like

Wee1, conditionally affecting the circadian clock like

CHK2, or novel parts of the circadian clock. Bidirec-

tional communications of these two oscillators require

further investigations.
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In contrast to previous data, a recent effort to study

this coupling indicated that this connection might

depend on cell types (Yeom et al. 2010). Yeom and

colleagues reported the circadian-independent cell

divisions in rat-1 fibroblasts. They showed that

about 13-h cell division cycles at 37�C had no phase

correlations with the 24-h circadian rhythms when

they followed 3–4 generations of cell divisions with

bioluminescence assay. Their data, however, also

indicate variability in cell cycle lengths, which may

reflect quantized cell cycles as shown in

cyanobacteria studies (Yang et al. 2010). For accurate

conclusions, larger data set of cell cycle lengths is

necessary for careful study of coupling between the

cell cycle and the circadian clock.
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Synonyms

Cell division cycle; Mitotic cycle; Schizosac-

charomyces pombe
Definition

Fission yeast is an attractive unicellular model organ-

ism in eukaryotic cell cycle research from several

aspects (morphogenesis, size regulation, checkpoints,

phase transitions, chromosome structure and dynam-

ics, meiosis, mathematical modeling, etc.). Fission

yeasts form four species in the genus Schizosac-

charomyces (Ascomycota, Archiascomycetes),

among which the best known one is S. pombe.
Characteristics

Cell Biology and Physiology of the Fission Yeast

Cell Cycle

The fission yeast Schizosaccharomyces pombe has

very frequently been applied since the 1950s as

a model organism in cell biology, microbial physiol-

ogy (▶Cell Cycle, Physiology), and genetics, and later

also in molecular biology, genomics, and systems biol-

ogy (Mitchison 1990; MacNeill 2002; Sveiczer et al.

2004). As a species, S. pombe belongs to class

Schizosaccharomycetes, subphylum Archiasco-

mycotina, and phylum Ascomycota. The genus

Schizosaccharomyces consists of four species, namely

S. pombe, S. japonicus, S. octosporus, and

S. cryophilus. All are considered to be fission yeasts;

however, S. pombe was the first one to be discovered

and it is also the most known and important. Fission

yeast is a haploid unicellular eukaryote with rod-

shaped cells of almost constant diameter (�3.5 mm).

Cell length at birth is �7–8 mm, which extends to
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�13–14 mm till the end of the mitotic cell cycle by tip

growth (MacNeill and Fantes 1995). Although starva-

tion blocks cell proliferation and induces either sexual

differentiation (mating, meiosis, and sporulation) or

dormancy, all these processes are not discussed in

this essay.

Fission yeast divides symmetrically, producing two

nearly identical progenies. As the sister cells behave

similarly in the next cycle, artificially generated syn-

chronicity in a population remains sufficient for sev-

eral generations. Moreover, cell length correlates with

age; and all these characteristics make S. pombe an

attractive model organism in cell cycle research. The

generation time of its populations is generally�2–4 h,
depending on temperature and the media used for

growth. The fission yeast cell cycle (Fig. 1) contains

short G1, S, and M phases, while G2 is very long

(�70% of total cycle time), because size control

operates in G2 in wild-type cells (Mitchison 1989).

After ▶mitosis, the cells cannot divide immediately,

because septation requires �30–40 min. During this

septation period the cells have two nuclei, which are

mainly in their (next) G1 phase. However, as G1 is

very short, the cells are actually replicating their DNA

(▶DNA Replication) parallel with ▶ cytokinesis.

The first cell division cycle (cdc) mutants of fission

yeast were isolated in the 1970s by classic genetic

methods. Loss-of-function point mutants were gener-

ated, which could grow normally at the permissive

temperature (25�C), but stopped proliferation at the

restrictive temperature (35�C). The terminal pheno-

type was usually a highly elongated cell, blocked at

a specific event in the cell cycle, called the transition

point of the mutated gene. The position of the transi-

tion point discriminated the 25 identified cdc genes

as G1/S, S, G2, G2/M, and septation genes. The

temperature-sensitive mutants also enabled a good

synchronization technique; a simple temperature

block-and-release experiment produced induction

synchrony in the population (MacNeill and Fantes

1995). Among these cdcmutants, some grew normally,

but their size were about half that of wild type cells.

Isolated in Edinburgh (Scotland), they were soon

renamed wee mutants, since wee means small in

ancient Scottish language. Later it became clear that

mutations in only two genes (wee1 and wee2) could

cause wee phenotype; however, wee1– mutants were

found to be loss-of-function point mutants of the

wee1 gene, while wee2– mutants were found to be
gain-of-function point mutants of the cdc2 gene (the

wee2 and cdc2 genes were identical, and named cdc2

afterward). Analyzing the cell cycle of wee1 mutants

revealed that G1 phase was much extended at the

expense of G2 (Fig. 2) (Mitchison 1989). A general

conclusion was drawn that fission yeast has two size

control mechanisms during the mitotic cycle (▶Cell

Cycle, Cell Size Regulation). In wild type cells the G2

size checkpoint operates, while the G1 one is cryptic

because of large cell size. By contrast, in wee mutants

the G2 size control is abolished, cell length decreases,

http://dx.doi.org/10.1007/978-1-4419-9863-7_13
http://dx.doi.org/10.1007/978-1-4419-9863-7_40
http://dx.doi.org/10.1007/978-1-4419-9863-7_14
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and the G1 mechanism maintains size homeostasis at

a reduced level (Fig. 1, Fig. 2).

The time profile of cellular growth during the fis-

sion yeast cell cycle has also been an extensively

studied question for several decades. Although debates

still arise, a more or less generally accepted view is that

length growth starts at birth and lasts until about

mitotic onset, when the cell starts to prepare for cyto-

kinesis. So, the last �25% of the cycle without visible

growth is called the constant volume phase, meanwhile

the first �75% is the growth phase. The latter one is

made up of two linear segments, separated by a rate

change point (RCP) (Fig. 3), i.e., length growth in

fission yeast is not exponential (Mitchison and Nurse

1985). The reason of this RCP is also controversial. In

wild type cells, tip growth is unipolar at the beginning

of the cycle and it is bipolar later, therefore changing

the growth manner in mid G2 phase was thought to

cause a change in growth rate. However, such a general

conclusion has been challenged when different cell

cycle mutants were also studied.

Molecular Biology of the Fission Yeast Cell Cycle

In the 1980s and 1990s novel sophisticated methods

made possible that geneticists could generate several

novel types of fission yeast mutants, for example, gene

deletion, gene over-expressing, and multiple mutants.

At that time, molecular biologists also discovered the

biochemical functions of the most important genes and

proteins. It became clear that these proteins formed

a regulatory network, named the cell cycle engine or
control system, which ensured that discrete events of

the cycle followed each other in the correct order.

Moreover, this control network was found to be evo-

lutionarily conserved (Morgan 2007). Fission yeast

was a crucial model organism in discovering the

engine’s mechanism, because its regulatory network

was probably the simplest among the known recent

eukaryotes, and even simple mutations easily led to

characteristic phenotypes in this haploid species. For

example, deleting the mitotic cyclin gene cdc13 caused

▶ endoreplication cycles (repeated S phases without

intervening M phases) (Hayles et al. 1994); meanwhile

deleting the replication license factor gene cdc18 led to

a mitotic catastrophe (a lethal execution of mitotic and

cytokinetic events from the haploid G1 state)

(Nishitani and Nurse 1995). Furthermore, deleting the

mitotic activator phosphatase gene cdc25 in the tem-

perature sensitive wee1–50 background generated

quantized cycles at the restrictive temperature

(Sveiczer et al. 1996). By the end of the second

millennium, a “wiring diagram” for the fission yeast

cell cycle engine was made (Fig. 4), which was based

on the above mentioned experiments and could be

studied by methods of mathematical modeling

(▶Cell Cycle Modeling, Differential Equation)

(Sveiczer et al. 2004). Since sequencing of the whole

S. pombe genome has been finished (MacNeill 2002),

these models probably contained the major players of

the network; however, novelties in the regulatory

mechanisms still arise. Below we briefly summarize

the conception on how this wiring diagram drives

fission yeast cells through the cycle, from birth to the

next division.

In the center of Fig. 4 is the Cdc2/Cdc13 dimer

protein complex (Sveiczer et al. 2004). Cdc2 is the

regulatory kinase (cyclin-dependent kinase or Cdk)

subunit, which phosphorylates its specific substrate

proteins at specific Ser or Thr residues (▶Cyclins

and Cyclin-dependent Kinases). Cdc13 is the regula-

tory (cyclin) subunit of the dimer, having no enzymatic

activity by itself, but its presence is essential for the

Cdc2 kinase activity. In S and early G2 phases, the

dimer forms even at small cell size, however, it is still

inactive, because the Tyr-15 residue of the Cdc2

subunit is phosphorylated by the Wee1 kinase,

a mitotic inhibitor. In late G2 when the cell is large

enough, by contrast, this inhibitory phosphate group is

removed by the Cdc25 phosphoprotein phosphatase,

a mitotic activator (MacNeill and Fantes 1995).

http://dx.doi.org/10.1007/978-1-4419-9863-7_41
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The Cdc2/Cdc13 dimer gets fully activated, and its

functions help condense chromosomes and remodel

microtubules in fission yeast cells. As a consequence,

the cells pass the G2/M transition (▶Cell Cycle Tran-

sitions, G2/M), therefore this Cdk/cyclin is also known

as the M-phase promoting factor, or MPF. In anaphase

the MPF activity abruptly starts to decrease, as the

anaphase promoting complex (APC), with the help of

its auxiliary subunit Slp1, ubiquitinates Cdc13 cyclin,

marking it for degradation by the proteasome (Morgan

2007). Losing Cdk activity leads to exit of M phase,

i.e., the cell gets into the next G1 phase in a binucleated

state (▶Cell Cycle Transitions, Mitotic Exit). During

early G1, MPF activity is very low for two reasons.

First, APC (with the help of another auxiliary protein

Ste9) continuously ubiquitinates newly synthesized

Cdc13 proteins. Second, Cdc2/Cdc13 dimers are

bound to a stoichiometric inhibitor of Cdk, the Rum1

protein (▶Cdk Inhibitors). In late G1, another cyclin

(Cig2) is formed, also making dimers with Cdc2. This

complex is called the starter kinase, because it helps

the cell pass through the G1/S (or Start) transition,
albeit with the help of the remaining MPF activity.

(Note that Cdc13 is the only known essential cyclin

in fission yeast, i.e., the onset of DNA replication does

not require Cig2.) This transition is under size control

in small weemutants, but it is cryptic in wild type cells

(see above). The length of G1 influences when cell

division occurs (Mitchison 1989): either in G1 (wee
mutant) or rather in S phase (wild type) (for simplicity,

Fig. 4 shows a case, where cytokinesis comes about in

G1). As far as DNA replication starts, the cell returns to

the very point from which our cell cycle journey

started in the previous generation.
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Definition

The physiology of the ▶ cell cycle describes the pro-

cesses that underlie and regulate the cycle under
normal physiological (as opposed to pathological) con-

ditions. Chromosomal replication (▶DNA Replica-

tion) and ordered segregation of the replicated

chromosomes (in eukaryotes by ▶mitosis or ▶meio-

sis) are fundamental aspects of cell cycle physiology

that are common to all proliferating cells. Other events

such as cellular growth and division (▶Cytokinesis)

are features of many cell cycles, but are not universal.

Each of these processes can be regulated by physio-

logical cues from within and outside the cell. Elucida-

tion of cell cycle physiology at the systems level

therefore requires both an understanding of the univer-

sal chromosomal cycle and consideration of the ways

in which other processes are coordinated with these

chromosomal events.
Characteristics

Coordination of cell cycle events with other biological

processes such as macromolecular synthesis, cell

growth, and differentiation is a key aspect of the phys-

iology of all organisms (Alberts et al. 2010; Morgan

2007). This is particularly evident in multicellular

organisms, where the development and maintenance

of complex structures, tissues, and organs are only

possible through timely and highly regulated cell pro-

liferation, differentiation, and, in many cases, ▶ apo-

ptosis. Understanding biological systems of this

complexity constitutes a monumental challenge.

There is therefore much to be gained by studying

comparatively simple and genetically well-defined

multicellular organisms such as Drosophila
melanogaster (▶Model Organism), by studying the

cell cycles of early cleaving embryos, where there is

no appreciable cell growth or differentiation (▶Cell

Cycle of Early Frog Embryos), and by studying cell

cycle regulation in unicellular models (▶Cell Cycle,

Archaea; ▶Cell Cycle, Budding Yeast; ▶Cell Cycle,

Fission Yeast; ▶Cell Cycle, Prokaryotes), including

cell lines derived frommulticellular organisms (▶Cell

Cycle of Mammalian Cells).

Consideration of what constitutes “normal” physi-

ological conditions can be an important aspect of cell

cycle studies. While the conditions experienced by

a cell within a multicellular organism can often be

assumed to be physiologically relevant, it is usually
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difficult to reproduce an authentic “niche” for any

given cell type grown in cell culture. For example,

proliferation and maintenance of mammalian stem

cell cultures depends on engagement of specific com-

binations of cell surface receptor proteins that, in the

authentic stem cell niche, would interact with compo-

nents of the extracellular matrix, soluble ▶mitogens

and/or neighboring cells. Cell culture studies using

defined medium and purified mitogens have allowed

the dissection of pathways linking these signaling pro-

cesses to cell cycle progression, most notably for mam-

malian fibroblasts (▶Cell Cycle Transition, Detailed

Regulation of Restriction Point). This type of study has

given rise to the widely held view that non-

proliferating cells are physiologically arrested in

a protracted G1-like state (often referred to as G0,

though the latter may be identical to G1 at the bio-

chemical level). It is nonetheless important to bear in

mind that, under normal physiological conditions,

numerous non-proliferating cell types are arrested

after ▶DNA replication, in a G2-like state.

Another important aspect of mammalian cell cul-

ture is that standard growth media are routinely

supplemented with serum mitogens, often at high

levels that would not be encountered under physiolog-

ical conditions in the tissue of origin. For many

microbes, unlike mammalian cells, proliferation in

culture is limited only by nutrient availability. Similar

considerations apply here, as the nutrient-rich environ-

ment experienced in the laboratory may bear little

relation to that in which the microbe grows in the

wild. Cell kinetic, biochemical and molecular biolog-

ical parameters measured under non-physiological

conditions may well give a misleading picture of cell

cycle regulation at the systems level.
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Synonyms

Bacterial cell cycle; Cell cycle progression in bacteria
Definition

The bacterial cell cycle is defined as a series of events

that ensure the coordination of three processes in order to

duplicate a cell: DNA replication, cell growth, and cell

division. The cycle is composed by an initial G1 phase

followed by the initiation of DNA replication (S phase),

which is usually paralleled by cell growth; then, when

replication is completed, chromosomes are positioned to

opposite compartments of the predivisional cell (G2

phase); eventually cell division takes place by the poly-

merization of specific proteins that create a septum,

followed by daughter cell separation. In several bacterial

species, the two cells can be functionally and morpho-

logically different, such as a spore of Bacillus subtilis

during the sporulation process or the swarmer cell for-

mation during the cell cycle in Caulobacter crescentus

(see the section “Characteristics” below).
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Characteristics

Bacteria have evolved different systems for the regu-

lation of cell cycle, probably due to different ecologi-

cal and evolutionary constraints. Differently from

eukaryotes, bacteria have no nucleus and usually pos-

sess a single circular chromosome which replicates

starting from a single origin of replication. Initiation

of DNA replication and cell division are processes

conserved in all bacteria as illustrated in the next

section.

Cell Cycle in Bacteria: Escherichia coli and B. subtilis

In E. coli and B. subtilis, cell cycle can be divided (as

illustrated in Fig. 1) in three phases (Wang and Levin

2009): (1) the B Period (Birth) between a cell division

and the initiation of DNA replication (G1); (2) the

C phase, when the chromosome is replicated (S); and

(3) the D period, between the end of replication of

DNA and cell division (G2).

The doubling time of the cell in these species

(defined as the time required to double the mass of

the cell) depends on temperature and nutrient avail-

ability; more nutrients and optimal growth temperature

speed up the doubling time. However, the periods

C and D are always constant. In particular conditions

of high nutrient concentration, the growth rate is faster

than doubling time. In a “slow” cell cycle, replication

of DNA takes place from a single origin of replication,

named oriC. From this single origin, DNA replication

proceeds in two directions, ending at the opposite

region. In the “fast” replication rate, a new round of

replication from oriC starts before the previous one has

terminated and this special case is called “multifork”

replication.
The initiation of DNA replication depends on the

activity of the AAA+ family of ATPases member,

DnaA, which binds at a specific site of oriC, causing
an AT-rich region to open and allowing the replisome

to start its DNA polymerization activity (Zakrzewska-

Czerwińska et al. 2007).

Several mechanisms prevent new rounds of repli-

cation right after the replisome has started: in E. coli,

during DNA elongation, Hda converts the active

DnaA-ATP to the less active DnaA-ADP, while in

B. subtilis YabA blocks DnaA activity by chaining

DnaA to DnaN (the beta clamp, which ensures DNA

polymerase processivity).

When DNA replication is terminated and the con-

densed chromosomes (nucleoids) are segregated in

opposite compartments of the predivisional cell, bac-

terial cells need to position the cell division apparatus

in order to generate cells possessing a sufficient mass

and a complete chromosomal content. Those parame-

ters are monitored by different mechanisms that can

vary across bacteria and a clear model has not been

elucidated yet.

The initial step of cell division is coordinated

by FtsZ, a tubulin-like GTPase, which is able to

polymerase, using GTP. FtsZ is able to form a ring-

like structure (Z-ring) at midcell and this circular

structure serves as scaffold for the formation of

a septum, able to constrict at the end of cell cycle.

The position of the FtsZ polymers and timing of

septum formation depends on different parameters

such as glucose availability in B. subtilis (by the

activity of the UgtP effector protein that senses the

nutrient status and is able to inhibit FtsZ polymeriza-

tion) but largely on DNA replication and chromo-

some segregation.
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In fact, cell division depends on the position of the

two oriCs which are able to inhibit septum formation;

several proteins such as MinC and MinD, which are

localized at the poles, together with the DNA-

associated proteins SlmA in E. coli and Noc in

B. subtilis are ensuring that cell division can take

place only in the midcell (Margolin 2006).

Cell Cycle Regulation in C. crescentus

C. crescentus, a gram negative bacterium of the

alpha subdivision of proteobacteria, has recently

become a model organism for bacterial cell cycle

studies (Ryan and Shapiro 2003). In this organism

each cell division is asymmetric producing always

two functionally and morphologically different

cells, the replicating “stalked” cell type and the veg-

etative “swarmer” type (Fig. 1). After each initiation

of DNA replication, the replication fork is kept

blocked so that the Caulobacter cell cycle can follow

a pattern of once-and-only-once replication per divi-

sion (G1, S, and G2 phases are temporally

distinguished).

Many factors are known to regulate cell cycle

progression and most of them are members of the

family of two-component system proteins, comprised

of histidine kinases, histidine phosphotransferases,

and their response regulator substrates. Among

those proteins CtrA is the master regulator of the

Caulobacter cell cycle; it is an essential response

regulator whose activity as a transcription factor

varies as a function of the cell cycle. CtrA controls

various functions during cell cycle progression by

activating or repressing expression of genes involved

in cell division (ftsZ), flagellum biogenesis genes,

stalk biogenesis regulatory genes, pili biogenesis

genes, and chemotaxis genes. CtrA also blocks the

initiation of DNA replication through binding of the

replication origin, oriC.

CtrA activity and stability varies during the cell

cycle. Oscillation of CtrA levels, peaking at the

predivisional stage before cell division, is achieved

by different mechanisms: transcription, proteolysis,

and phosphorylation control. The result of this oscilla-

tion is that CtrA is present and phosphorylated in

swarmer cells, then is degraded at the G1/S transition

and then transcribed again and phosphorylated in the

predivisional stage. Eventually, at cell division, CtrA
ends up in the swarmer compartments and it is absent

in the stalked cell that can immediately starts a new

round of replication.

All cell cycle regulation factors are schematized in

Fig. 2 where we illustrate the multilevel regulation of

the Caulobacter cell cycle. Two main oscillators are

working during cell cycle progression: (1) the tran-

scriptional and epigenetic circuit (CtrA-DnaA-GcrA-

CcrM); (2) the phosphorylation/proteolysis and

transcription circuit (CckA-CtrA-DivK). The latter

also involves coordination of CtrA proteolysis through

the regulation of DivK activity.

Transcription of ctrA is controlled by circuit com-

posed by DnaA and GcrA, and the DNA

methyltransferase CcrM. DnaA, which is also

involved in initiation of DNA replication, as

discussed for E. coli and B. subtilis, is a key element

in cell cycle regulation in C. crescentus and it also

controls the transcription of about 40 genes involved

in nucleotide biogenesis, cell division, and polar mor-

phogenesis. DnaA also activates the transcription of

the gcrA gene. GcrA controls the de novo transcrip-

tion of ctrA after proteolysis and genes involved in

DNA metabolism and chromosome segregation,

including those encoding DNA gyrase, DNA

helicase, DNA primase, and DNA polymerase III.

The transcriptional loop of ctrA is closed by CcrM.

In fact, CtrA activates the transcription of ccrM,

which encodes for a DNA methyltransferase whose

abundance is cell cycle dependent. CcrM is able to

activate the dnaA promoter region through methyla-

tion, closing the positive feedback composed by

CtrA, DnaA, and GcrA.

CtrA must be phosphorylated to bind DNA and its

phosphorylation depends on cell cycle progression.

An essential phosphorelay, composed by the hybrid

histidine kinase CckA and the histidine

phosphotransferase ChpT, is responsible for CtrA

phosphorylation (Biondi et al. 2006). The membrane

hybrid histidine kinase CckA is dynamically local-

ized during cell cycle progression acting as a kinase

for CtrA when it is localized at the poles, while it acts

as a phosphatase in the delocalized form. DivK,

which is a single domain response regulator that con-

trols CckA localization, plays an essential role as

a positive regulator of cell cycle progression because,

when phosphorylated, it indirectly delocalizes CckA
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repressing CtrA and thus promotes DNA replication.

Two membrane histidine kinases are known to inter-

act with DivK: PleC and DivJ. PleC and DivJ are

considered, respectively, the principal phosphatase

and kinase of DivK and they are in opposite locations

before cell division.

ChpT also transfers the phosphate to a second

response regulator named CpdR, which, together with

RcdA, is a factor required for CtrA proteolysis medi-

ated by the ClpP-ClpX protease. CtrA is degraded at

the stalked pole at the G1/S transition when the origin

of replication needs to be cleared and also in the

stalked compartment, where initiation of DNA repli-

cation occurs immediately after cell division.
Sporulation in B. subtilis

B. subtilis, as discussed before, has a regulation

of cell cycle progression that shares many features

with E. coli. However, B. subtilis is able in

response to starvation to form resistance cell types

called spores. This process, called sporulation

(Fig. 1), represents a special case of asymmetric

cell division and it is discussed separately in this

section.

Cells of B. subtilis can divide centrally in nutrient

rich media leading to identical progeny but, in a specific

cell density and nutritional signals conditions, cells can

sporulate. A complex phosphorelay system composed

by two-component systems proteins is controlling the
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phosphorylation of the master regulator of sporulation,

Spo0A. Activated Spo0A leads to a polar septation that

initially produce a larger mother cell, which eventually

lised, and a smaller forespore surrounded by special

envelops (Piggot and Hilbert 2004).

In B. subtilis, five histidine kinases (KinA, the prin-
cipal kinase, to E) are controlling the phosphorylation

state of Spo0A, through the phosphorylation of Spo0F,

which then transfers to the histidine

phosphotransferase Spo0B and eventually to the

response regulator Spo0A as illustrated in Fig. 3.
Spo0A, which integrates several environmental sig-

nals using its kinases sensing apparatus, is then able to

start a series of steps leading to the formation of a spore

and the decay of the mother cell. This multistep pro-

cess is carried on by different sigma factors acting in

the mother cell or in the forespore. Each sigma factor is

indeed able to activate via many other sporulation

factors the following sigma factor in a different

compartment.

Activated Spo0A and Sigma H are present

and functional in the step right before the asymmetric
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septation and they together activate many

genes including sigma F and sigma E precursors,

respectively, acting in the forespore and in the

mother cell compartment. In order to have a fully

functional Sigma E, Sigma F is required. At this

step, Sigma E activates other factors in order to

have an active Sigma G in the forespore compart-

ment, which is eventually required to activate

Sigma K in the mother cell. Those last two

factors are required for full maturation of the

spore, which is characterized by a special

envelope that is responsible for its special resistance

to stresses.
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Cell Cycle, Synchronization, Fig. 1 Schematic representation

of the two general classes of cell-cycle synchronization methods

applied to an example cell type. The blue inset at the upper right

corner describes the morphological changes of these cells during

the cell cycle
Synonyms

Cell synchronization
Definition

This term refers to experimental methods to obtain

a population of cells that are in the same cell-cycle

stage (Davis et al. 2001). Cell-cycle synchronization

allows the analysis of biological processes that are

specific to certain cell-cycle stages and that would

otherwise be confounded or averaged out in asynchro-

nous populations. Cell-cycle synchronization can be

achieved in two general ways (Fig. 1). (1) Using “block

and release” approaches where all cells are first

arrested in a defined cell-cycle stage (“block”), and

then allowed to cycle again in a synchronous manner

(“release”). This approach involves adding/removing

specific molecules to/from a culture or by using cells

with conditional mutant alleles of cell-cycle regula-

tors. (2) Isolating cells that are in a given stage of the

cell cycle based on a phenotypic characteristic such as

size (centrifugal elutriation) or age (“baby machine”).
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Synonyms

Cell cycle–regulated transcription; Periodic gene

expression
Definition

This term describes a specific mode of gene regulation

where transcript levels peak at a specific cell cycle

phase, creating periodic profiles of gene expression

across several cycles (Fig. 1). Periodic gene expression

is not only found among cell cycle–regulated genes but

also among genes regulated during other periodic pro-

cesses such as the circadian cycle.
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Cell Cycle-regulated Gene Expression, Fig. 1 Expression

profile of a hypothetical gene with a peak in expression level in

the early S-phase
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Synonyms

Lipid-protein interactions; Transmembrane proteins
Definition

Cellular membranes have a thickness of 7–20 nm and

efficiently restrict free passage of nonpolar molecules

and cross-membrane communication. To overcome

this problem, cells have established a massive

membrane protein machinery that regulates most

cellular activities ranging from signal transduction to

energy balance, respiration, reproduction, and cellular

morphology. Thus, the sole existence of multicellular

organisms and cells rely on fully functional cell

membrane protein system.
Characteristics

A cell and its individual internal compartments are

surrounded by a membrane made of lipids. Lipids

have a hydrophilic (water loving) and a hydrophobic

(water repelling) fatty acid tail (a and b in Fig. 1,

respectively). In an aqueous environment, lipids spon-

taneously self-organize to form lipid bilayers (Fig. 1c)
where the hydrophobic parts are shielded from water

between the two outer sheets of hydrophilic head

groups. Like lipids, also some proteins have

a hydrophobic nature arising from either the presence

of a hydrophobic amino acid sequence along the pro-

tein amino acid sequence, or an attached lipid mole-

cule. The need to protect hydrophobic parts from an

aqueous environment is the major driving force for the

membrane attachment of a protein, which is fulfilled

by immersing these parts into the hydrophobic lipid

bilayer (Fig. 1c).

The most common three-dimensional protein struc-

ture traversing the membrane is a a�helix (Fig. 1d):

Formed by of a single peptide sequence with amino

acids rotating along a common center line, the hydro-

phobic nonpolar side chains point outside and face the

inner core of the lipid bilayer (Alberts 1994). A less

frequent membrane-traversing 3D structure is

a b-strand, assembled of two or more peptide

sequences. The hydrophobic side chains of amino

acids in a b-strand interact with equally hydrophobic

head groups of other b-strand structures to form

a larger membrane-traversing b-sheet structure.

Structure-based Classification of Membrane

Proteins (Jennings 1989)

Basic classification of membrane proteins to integral
and peripheral membrane proteins (Fig. 1d, e, respec-

tively) follows the nature of membrane association. As

the name implies, integral membrane proteins are an

integral component of the host membrane and thus

cannot be removed without simultaneously destroying

the lipid membrane, for example, by using detergents.

In contrast, peripheral membrane proteins are not an

integral part of a host membrane, associate with it

weakly, and can be separated from the membranes

with relative ease.

Integral membrane proteins are categorized to

either bitopic or polytopic integral membrane

according to the number of membrane-traversing

domains. A bitopic integral membrane protein

contains a single membrane-spanning domain

(Fig. 1d) whereas a polytopic membrane protein con-

tains two or more membrane-embedded regions

(Fig. 1f). Polytopic membrane proteins are finally

classified either as type I or as type II according to the

relative orientation of the first and last amino acids of

the protein sequence (amino and carboxyl termini,

respectively). In contrast to type I membrane protein,

http://dx.doi.org/10.1007/978-1-4419-9863-7_95
http://dx.doi.org/10.1007/978-1-4419-9863-7_95
http://dx.doi.org/10.1007/978-1-4419-9863-7_192
http://dx.doi.org/10.1007/978-1-4419-9863-7_100777
http://dx.doi.org/10.1007/978-1-4419-9863-7_101563


Cell Membrane Proteins, Fig. 1 Scheme of prominent
features of a biological membrane: Hydrophilic polar head

group (a) and a hydrophobic oily fatty acid group (b) are oriented
to form a lipid bilayer (c) that seals the fatty acid chains between
two layers of polar head groups. A bitopic, type I integral mem-

brane protein (d) has parts on both sides of the membrane.

A polytopic, type II membrane protein (f) has more than one

membrane domains, and both ends of the protein reside within

the same volume separated by a membrane. Another peripheral

membrane protein associated with the membrane via a partially

hydrophobic polypeptide chain is shown in (g). A peripheral

membrane protein (e) with attached lipid modification (h) is

present only on the inner side of the membrane. A lipidated

bitopic integral membrane protein is shown in (i)
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where amino and carboxyl terminals are located at the

opposing sides of the separating membrane (Fig. 1d),

the peptide chain of type II starts and ends both on the

same side of the membrane (Fig. 1f). The membrane

incorporation of an integral membrane protein takes

place already during protein biosynthesis in the lumen

of the endoplasmic reticulum (ER) following the

detection of a signal peptide by the translation

machinery.

Rather than by a membrane-traversing peptide

sequence, peripheral membrane proteins associate

with the membranes through hydrophobic interactions

between the membrane lipids and a hydrophobic

polypeptide sequence (Fig. 1g) or via a lipid molecule

(Fig. 1e). The attachment of a lipid group to a soluble

protein can provide sufficient hydrophobicity to facil-

itate membrane attachment, and the reversible nature

of some lipid modifications can act as a regulatory

switch to concentrate a protein from soluble, cytosolic

form to a membrane-bound form. A signal sequence,

which is recognized by lipid transfer enzymes (such as

palmitoyl-, myristoyl-, and prenyl transferases), leads

to the covalent attachment of a palmitoyl or a myristoyl

fatty acid, an isoprenyl fatty acid lipid group, or

a glycosylphosphatidylinositol-(GPI) anchor attached

to a cysteine or glycine amino acid. Timing of

acylation and the position of the attached fatty acid

group are the major differences between the various
acylation forms. While myristoylation is an event

where a myristoyl fatty acid group (Fig. 1h) is perma-

nently attached exclusively to a glycine amino acid at

the beginning of the newly formed polypeptide

sequence protein (Fig. 1e), the attachment of a palmi-

tate fatty acid group during palmitoylation to any

cysteine residue of a finished protein is a reversible

post-translational modification. Isoprenylation is yet

another form of post-translational lipid modification

where an isoprenyl lipid group, either a farnesyl or

geranylgeranyl lipid, is attached to a cysteine amino

acid resides at the end of the protein. In general,

a lipidated membrane protein can attach itself either

on the outer membrane of a cytosolic organelle, or on

the intracellular leaflet of the plasma membrane, and

thereby executes its function in the cytosolic volume of

a cell. Yet another family of lipid-modified proteins

is formed by glycosylphosphatidylinositol (GPI)-

anchored proteins synthesized directly on a GPI-lipid

residing on the ER membrane. GPI-anchored mem-

brane proteins are transported to the outer surface of

the plasma membrane and since their peptide sequence

is exposed toward the extracellular space, they execute

their function toward the extracellular matrix, i.e.,

outside the cells.

Provided that the required targeting signal is present

within the peptide sequence, an integral membrane

protein can additionally be lipidated in a regulated
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manner, for example, with a palmitate fatty acid. Such

a lipid molecule provides a membrane protein affinity

toward specialized membrane regions, such as

caveolae or other cholesterol- and sphingolipid-rich

lipid microdomains (also termed as lipid rafts, Ikonen

and Simons 1997). Thus, reversible lipidation may act

as a switch in signaling efficiency by moving an inac-

tive protein from the bulk membrane inside

a specialized signaling platform. An example of such

switchable integral membrane protein is the Neuronal

Cell Adhesion Molecule (NCAM) that can not only be

palmitoylated to intracellular cysteine residues by

palmitoyl transferase, but also de-palmitoylated upon

need. The location and function of NCAM critically

depends on its lipidation status and subsequent resi-

dence in cholesterol-rich membrane regions.

Mixed Membrane Attachment Types

Hydrophobic amino acids can be used to build poly-

peptide chains with one-sided hydrophobicity. Upon

orientation of the hydrophobic side of the protein

toward a membrane, it can be protected from aqueous

environment. This facilitates membrane association

and results in a conformation where a part of the

protein rather lays “flat” on the plane of the membrane

(Fig. 1g) while other parts of the protein can freely

move around and possibly also obtain a lipid modifi-

cation (below). Presence of such a amphiphatic

domain in a soluble protein can provide sufficient

affinity for membrane attachment; alternatively, via

such a domain an integral membrane protein can inter-

act with certain lipid groups on the membrane, and

possibly use it for targeting along the membrane

plane to regions with specific properties.

Operation Modes of Membrane Proteins

Basically, two action modes exist for membrane pro-

teins, and the type of membrane attachment is indica-

tive for the functional mode. The activity of

a monotopic membrane protein is restricted to one

side of a membrane (cis-mode). For example,

a lipidated kinase bound on the cytoplasmic side of

the lipid bilayer only phosphorylates other cytoplasmic

proteins (soluble or membrane bound). In contrast,

a membrane-traversing bi- or polytopic membrane

protein is likely to operate on both sides of the mem-

brane in trans-mode. One concrete example are the

family of receptor tyrosine kinases, e.g., the receptor

for epidermal growth factor (EGFR). Here, the binding
of epidermal growth factor (EGF) to the extracellular

binding pocket of EGFR induces a conformational

change to the cytoplasmic tail of the receptor, which

then leads to the assembly of signaling complex and

subsequent downstream events, such as remodelling of

the cellular cytoskeleton. Yet another functional mode

for membrane proteins is the selective transport of

molecules across the membrane via a channel protein

or protein complex. As the hydrophobic lipid bilayer is

not readily passable for nonpolar solutes, their trans-

port is mediated by a physical pore or a channel formed

by one polytopic membrane protein, or as a complex of

several bi- and/or polytopic membrane proteins.

Within such a complex, the hydrophobic amino acid

side chains orient themselves toward the lipid environ-

ment, and the hydrophobic side chains together form

the passage. Traffic through the passage can be pas-

sive, i.e., the solutes flow from higher concentration

toward lower concentration across the membrane; or

active, where the transfer against a chemical gradient is

coupled to the use of energy, such as ATP. So-called

cotransporters couple the chemical concentration gra-

dient to the transport of molecules against a gradient.

Membrane Proteins Move Rapidly in a Regulated

Manner

Experimental work has shown that membrane proteins

are in constant diffusional movement along the mem-

brane plane and around their own axis. An integral

membrane protein can not only freely rotate around

itself at high speed but is also able to diffuse across

a distance, corresponding to the periphery of a cell at

several times per second. Equally, the proteinaceous

part of a lipid-modified peripheral membrane protein

can freely rotate around its lipid anchor and also along

the membrane plane at high speed. However, in cellu-

lar plasma membranes, the lateral movement of inte-

gral and peripheral membrane proteins is restricted by

specialized domains below and upon the membranes.

An example of restricted movement of cell membrane

proteins can be found from epithelial cell layer lining

the digestive system. Here, the surrounding membrane

of the epithelial cells is divided by a tight junction to

basolateral and apical sides both having a uniquemem-

brane protein composition that does not mix with the

other side.

Recent data shows that cellular cytoskeleton just

beneath the cell plasma membrane forms “picket

fences,” or “pockets”. Where the poles are membrane
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proteins interacting with cytoskeletal components,

such as actin fibers (Kusumi et al. 2011). The latter,

in turn, form the boundaries of the pockets. Once inside

such a pocket, a protein is free to move around in

lateral direction; however, due to the restricting cyto-

skeleton, energy is required for an integral membrane

protein to jump from one pocket to another one during

a so-called hop-diffusion. Thus, the lateral movement

along the membrane plane is reduced and controlled by

the cellular cytoskeleton.

Another cellular system provides restriction

toward lateral movement. Clusters of cholesterol and

sphingolipids form lipid microdomains with specific

properties, which are significantly different from the

bulk of the membrane. Such “lipid rafts” attract both

integral and lipid–modified peripheral proteins to form

specialized signaling platforms. Interestingly, raft asso-

ciation can be stimulated and modulated upon post-

translational attachment of specific lipid molecules, as

described above for the NCAM cell adhesion molecule.
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Definition

Any cell is a collection of highly coordinated subcellu-

lar compartments formed by unit membranes. Unit

membranes are highly organized as lipid bilayers with

a hydrophilic external and internal part and

a hydrophobic intermediate part (Lodish et al. 2000).

This basic structure allows the cell to integrate an
enormous number of distinct proteins in order to orga-

nize the myriad of different membrane functionalities

(▶Cell Membrane Proteins). These proteins serve

a variety of essential functions, e.g., establishing and

controlling cell adhesion, inducing intracellular signal-

ing (by behaving as receptors), maintaining the ion

homeostasis (by acting as ion channels), as well as

controlling environmental adaptation. A fundamental

biological question is how the approx. 8,000 distinct

cell surface proteins are spatially organized as supramo-

lecular functional units (toponome) in one and the same

cell membrane, and how these units are altered in

chronic diseases, such as cancer and Alzheimer’s

disease. This field of research is referred to as

membrane toponomics. It is a subdiscipline in

▶ toponomics related to the functional detection of pro-

tein networks of cell membranes in morphologically

intact cells or tissue sections by using TIS (▶TIS

Robot) microscopy. It has been shown that quantitative

information on the subcellular topology and differential

assembly of distinct proteins and their spatial relation-

ships on the cell surface are straightforward to the

detection of lead proteins hierarchically controlling

cell function: For instance, the systematic mapping of

cell surface proteins in rhabdomyosarcoma cells

(Schubert 2010) led to understanding on how tumor

cells establish multi-protein cluster networks composed

of different classes of CD proteins required for cell

polarization/migration and tumor morphogenesis

(Fig. 1). The CD system is a collection of a variety of

distinct molecular classes present on the surface of

leucocytes and, in part, also on the surface of many

other cell types (so-called Cluster of Differentiation
(CD) antigens; Zola 2001; Barclay et al. 1995). CD

antigens are held to belong to the best characterized

molecules of the cell surface membrane. An example

of co-mapping of many CD proteins has revealed a

tumor cell specific surface toponome (Fig. 1): Underly-

ing experiments have shown that blocking the lead pro-

tein CD 13 (present in all multi-protein clusters, or,

▶CMPs) leads to disassembly of the corresponding

protein network and loss of function of the cell to polar-

ize. This underscores the relevance of cell surface

toponomics in understanding chronic disease and finding

novel drug-target candidates. Analyzing the toponome

of cell surface proteins will provide access to the mech-

anisms underlying self-organization and cell control in

health and disease (Schubert et al. 2011; ▶Clinical

Aspects of the Toponome Imaging System (TIS)).
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Cell Membrane Toponomics, Fig. 1 Illustration showing

a scheme of the molecular protein species combined in various

clusters along the cell surface of cell extensions (a and b) of

a rhabdomyosarcoma tumor cell. The sequential arrangement

and geometry of the corresponding multi-protein clusters is

highly similar in both these extensions. Note that the scheme

of the supramolecular structure of the single molecular compo-

nents within these clusters is shown from (c–g). The colors

“red,” “dark blue,” “yellow” “light blue,” “green” and corre-

spond to the colors in the toponome maps in (a) and (b). Scale
bar: 2 mm (Modified after Schubert 2010)
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Xiaojun Liu

Internal Medicine, The Second hospital of Hebei

Medical University, Shijiazhuang, Hebei, China
Definition

Fluorescence-activated cell sorting (FACS): FACS

is a special technique based on flow cytometry
(▶Flow Cytometry http://en.wikipedia.org/wiki/

Flow_ cytometry), it can make a physical separation of

interested cells or particles from a heterogeneous popu-

lation through measure and select user-defined cell

types by illuminating individual cells with a laser and

detecting emitted light which can be spectrally sepa-

rated to show the individual character of the interested

cells. After the interested cells are recognized the FACS

will produce the fluid into single cell containing droplet

and make it electrically charged, then when it passes

through an electric field between two high voltage

deflection plates of opposite polarities, the droplets con-

tain single cell will be deflected into different containers

according to the commander of the user-defined

program.
Characteristics

1. Highly efficient: flow cytometer can examine hun-

dreds of cells in a second and decide which cell or

particle is interested and charge it to be separated;

this is almost the most high-speed sorter now days.

2. High purity: If only the program has been set by the

user, FACS can get a pure group of the interested

cells since the technique is based on the reaction of

antigen and antibody.

3. Accurate number control of sorted cells or particles:

FACS can even put a single cell or particle into

committed container, so it is easy to control the

interested cells number according to the user.

Basic Instruments for Cell Sorting

Cell sorting of FACS needs the help of flow cytometry

which includes the following: the fluidics system, the

optics and detection, the signal processing, and elec-

trostatic cell sorting.

Fluidics System

In order to be interrogated by the machine’s detection

system, the cells or the particles injected into the

machine must be ordered into a steam of single parti-

cle, the fluidics system is designed for this aim. It

consists of a central channel/core through which the

sample is injected, enclosed by an outer sheath that

contains faster flowing fluid. Both of the sample and

sheath are driven by an air pump and the air pressure

for them will be adjusted by their own pressure regu-

lator, respectively, for the sheath at 4.5 psig and for the

http://dx.doi.org/10.1007/978-1-4419-9863-7_714
http://dx.doi.org/10.1007/978-1-4419-9863-7_1070
http://dx.doi.org/10.1007/978-1-4419-9863-7_95
http://dx.doi.org/10.1007/978-1-4419-9863-7_95
http://dx.doi.org/10.1007/978-1-4419-9863-7_1080
http://en.wikipedia.org/wiki/Flow_cytometry
http://en.wikipedia.org/wiki/Flow_cytometry
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sample at 4.6, 4.8, or 5.0 psig according to need of

sample speed. As the sheath fluid moves driven by the

air pump, it creates a massive drag effect on the

narrowing central chamber. This alters the velocity of

the central fluid whose flow front becomes parabolic

with greatest velocity at its center and zero velocity at

the wall. The effect creates a single file of particles and

is called hydrodynamic focusing. Then the particles

will become a single stream after they pass this area

which is ready for the machine to detect.

Optics and Detection

The excitation optics is consisted of a laser, lenses, and

prisms. The laser is the origin of light while the lenses

and prisms are aimed to shape and focus the laser

beam. After the light beam passes the lenses and

prisms it reached a size of 64 � 20 mm light spot.

After hydrodynamic focusing the particles will meet

the light beam of the laser or the arc lamp in the flow

cytometry, then light scattering or fluorescence emis-

sion (if the particles is labeled with a fluorochrome)

will provide information about the particles properties.

The information will be detected by the detections.

There are three kinds of detections in the flow

cytometry: the forward scatter channel (FSC), the

side scatter channel, and fluorescence channel. FSC

collects the light that is scattered in the forward direc-

tion, typically up to 20 offset from the laser beam’s

axis. The intensity of the FSC will show the roughly

relative size of the particles. It can be used to distin-

guish between the cellular debris and living cells. SSC

collects the part of light that is scattered by the particles

at a 90 angle to the excitation line. It gives the infor-

mation of the content within the particles. The fluores-

cence (FL) channel collects the fluorescence emited

from the fluorescence materials conjugated on the anti-

body that are special to the cell marker, different FL

detect special wavelength light, this is controlled by

the optical filter, there different kinds of filter:

long pass filter, short pass filter, and band pass filter.

They selectively pass certain wavelength light while

block the left. Another kind of filter called dichroic

mirror it works in a different way, it can pass certain

kind of light but block left by deflect it. FL1 normally

accepts light with wavelength of 515–545 nm. FL2

564–606 while equal and above 650 nm light will be

collected by FL3. Other FLsmay be designed to collect

special wavelength light according to different

manufacture.
Electronic System

The electronic system is aimed to convert the optical

signals to proportional electronic signals (voltage

pulses), then after analysis of the voltage pulse height

it will convert the signals to digital signals, and at last

the computer will analyze the signals and display so

that we can get the data we want. After the photons are

collected by the photon diode it will turn this signals

into electronic signals, while for the FSC signals they

were first passed on by a pre amp (E00, E01, E02, E-1).

Then they were passed on to the amplifier. The ampli-

fier has two style LIN and LOG, the Lin amplifier will

amplify at levels of 1.00–9.99. FSC always choose this

style. While for the SSC, FL1, FL2, and FL3 they have

different pathways for the amplification course, at the

beginning of photon diode there is a PMT power

supply (levels 150–999 V) connects with it, and after

the current output by the photon diode the detector will

not preamplify the signals, but directly pass it on to the

amplifier. The signals from SSC FL1 FL2 and FL3

normally are amplified by the LOG style. When the

cells or the particles pass through the laser area, signals

of light will be turned into electronic signals and then

will create a pulse.

Sorter

Sorter is the final part of the FACS. It receives instruc-

tions from the flow cytometer set by the user and

divides the cells into interested ones and waste. Differ-

ent type of sorter may have different manners of

harvesting cells, for example, some harvest cells

through controlling a catcher; when the flow detects

an interested cell it will direct the catcher to move to

the fluid stream to catch the cell and then quickly shift

aside when it is finished in order to let the waste pass

through (Fig. 1). While some other type of sorter will

work in a different way they use electric field force to

separate the cells through making the cell-contained

droplet electronic charged. When the cell-contained

droplets pass through the high voltage plate area, the

electric field force will drive the interested cells

contained and waste droplets into different containers,

so that the cells interested can be divided (Fig. 2).

When the cell passes the laser area the signals of the

cell will be detected by the detector and then the

electronic system of the cytometer will wait for

a fixed period of time to allow the interested cell to

reach the catcher tube, then the catcher tube will

swing into the sample stream to capture the interested
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cell (Fig. 1a). When the cell is judged to be the non-

interested cell, the cytometer will switch the capture

tube out of the sample steam, and then the cells will

pass on to the waste (Fig. 1b).

The FACSVantage SE, a stream-in-air flow

cytometer, works in a different way. First, the

sample will be hydrodynamically focused so that the

particles in the stream will pass the beam of light

one after another. Then the character of the particle,

like the FSC, SSC, fluorescence, etc., will be detected
by the machine and is compared to the sort criteria

set on the computer. If the particle character matches

the selection criteria, the particle will be charged

before the nozzle of fluidics system break it down

form the fluid stream which is controlled by the

vibration of the nozzle. After charged and broken

down from the fluid stream the droplet liquid

containing the interested particle will pass through

a strong electrostatic field where the droplets will

be deflected to the harvest tube or the waste tube

(Fig 2).

Channels

Different fluorescence-activated cell sorting machine

from different manufactory may have different chan-

nels for fluorescence detecting. Normally the more

laser source the machine has the more channels detec-

tors will be available on the machine. The followings

are some of the channels that contained by the different

machine.

FACSCalibur benchtop flow cytometer:

FACSCalibur benchtop flow cytometer is a two

laser source machine (488 nm blue laser and

635 nm red diode laser). It has six detector channels

FSC which receive forward scatter light that pass

a filter of 488/10 nm (a wavelength between 488

�10 nm, which means wavelengths of light that are

between 515 and 545 nm). Others are SSC 488/

10 nm, FL1 530/30 nm, FL2 585/42 nm, FL3 670LP

(long pass which means wavelength over 670 nm can

pass the filter and detected by the detector), FL4 661/

16 nm.
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BD LSR benchtop flow cytometer: BD LSR bench-

top flow cytometer is a kind of cytometer that has three

lasers, they are 325, 488, and 633 nm laser respec-

tively. So in this kind of machine, the excitation wave-

length band is relatively wider than the FACSCalibur

which has two lasers, and more detector channels are

set in this kind of machine enable the machine to detect

more surface marker at the same time. The following

are the available detector channels in this kind of

machine: FSC 488 nm, SSC 488/25 nm, FL1 530/

28 nm, FL2 575/25 nm, FL3 670LP, FL4 510/20 nm,

FL5 380LP, FL6 660/13 nm.

With the modern techniques development more

laser and detectors can be used at the same time, enable

the machine to detect more and more parameters

simultaneously so that the machine can get more

details of the particles being detected, for example,

BD influx system has enabled seven laser paths and

supports 24 parameters simultaneously.

Detectable Parameters

Fluorescence-activated cell sorting is based on the

technique of flow cytometry so the detectable param-

eters are the same with flow cytometer and with the

development of flow cytometer, the detectable

parameters will be enriched gradually. The following

are some of the detectable parameters that can be

detected:

1. Size and amount of content of cells through FSC

and SSC

2. Different component of the cells such as: cell pig-

ments such as chlorophyll, total DNA content, total

RNA content, DNA copy number variation (by

Flow-FISH), Glutathione, pH, intracellular ionized

calcium, magnesium, membrane potential, etc.

3. Original function of cells such as: protein modifi-

cations, phospho-proteins, protein expression, and

localization

4. Extra component like transgenic products in vivo,

particularly the Green fluorescent protein or related

fluorescent markers)

5. Antgiens on the cell surface, intracellular, nuclear

such as cluster of differentiation (CD), various cyto-

kines, secondary mediators, etc.

6. Function detection such as enzymatic activity, char-

acterizing multidrug resistance (MDR) in cancer

cells

7. Cell viability, apoptosis (quantification, measure-

ment of DNA degradation, mitochondrial
membrane potential, permeability changes, caspase

activity), and membrane fluidity change

8. Different combinations of the detectable markers

such as DNA/surface antigen, etc.

Application

The aim of sorting is to separate the interested cell

from the sample for further research or clinical use,

and if only the special character that is different from

other cells can be detected by the flow cytometer the

sorter will be able to pick it out. Cell sorting cannot

only give you a pure cell population but also can

control the population’s concise cell number. This

character is very important and can enable us to do

a lot of things we need. The following are some exam-

ples for cell sorting applications:

1. To get pure population of the interested cells for

special research or clinical use.

(a) Eliminating dead cells for accurate internal

staining of cytokines: Cells are incubated with

EMA, produced by Molecular Probes and then

EMA enters dead cells (membranes not intact)

and intercalates into the DNA. Exposure to light

from a fluorescent lamp causes covalent linkage

of EMA to DNA. EMA fluorescence remains

associated with the dead cells then EMA-

stained cells can be gated out before analysis

of the FACS data.

(b) Sex control of birth: The yield of flow

cytometric sorted X- and Y-chromosome-

bearing sperm in a given time period is an

important factor in the strategies used for fertil-

ization and the production of sex-preselected

offspring. With the help of the flow cytometer

sperm can be divided into X-and Y-

chromosome-bearing group, then they can be

used for fertilizer to control the sex of offspring.

2. To control the concise number of the interested cells

for special research or clinical use. For example: the

sorter can easily recognize and drop a single inter-

ested cell to a well or tube so that single cell

research can be done.

3. Get the rare interested cells from vast back ground

cells.

(a) Tumor infiltrating lymphocytes (TILs)

(b) Residual tumor cells

(c) Neonatal blood

(d) Rare event analysis

(e) Fetal cells in maternal blood
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Definition

The cell system ontology (CSO) is a system

dynamics–centered language for modeling, visualiz-

ing, and simulating biological pathways (Jeong et al.

2007a). CSO is a formal ontology that represents com-

putational models as well as visualization of models.
CSO can represent various types of biological pathway

within a unified framework. As an exchange format,

CSO is implemented in a formal ontology (▶Web

Ontology Language (OWL)).
Characteristics

CSO is based on a mathematical model called the

hybrid functional Petri nets with extension (Nagasaki

et al. 2004). Petri nets have graph-like structures

consisting of three elements including place, transi-

tion, and arc. In CSO, the Petri net elements are

renamed as more intuitive terms: entity, process, and

connector, respectively, to bridge the gap between

computer science and biology researchers.

Main Capabilities

CSO is a general framework for understanding the

behavior of cell systems in an integrated way. The

features of CSO are as follows: (1) manipulation of

different levels of granularity and abstraction of path-

ways, for example, metabolic pathways, regulatory

pathways, signal transduction pathways, and cell-cell

interactions; (2) capture of both quantitative and qual-

itative aspects of biological function by using Petri net;

and (3) encoding of biological pathway data related to

visualization and simulation, as well as modeling.

Structure

CSO consists of approximately 200 classes for

a comprehensive representation of cell system. There

are several classes to represent cell system as

a dynamic system.

• CSMLBase is the root class for all classes in CSO.

• All data in CSO is structured around Project which

has slots to represent the comprehensive environ-

ment of a pathway model.

• Each project is required to have only one Model,

which describes pathways via a set of processes.

• Submodel can be defined as a subset of a given

model. Each submodel contains some selected ele-

ments of a model, which may be grouped to convey

any meaning.

A model comprises a set of processes connected to

entities via connectors, and facts to provide more

information related to biological processes. The

ElementBase class contains fundamental concepts

for the model, which has four subclasses: Entity,

http://dx.doi.org/10.1007/978-1-4419-9863-7_1080
http://dx.doi.org/10.1007/978-1-4419-9863-7_1079
http://dx.doi.org/10.1007/978-1-4419-9863-7_1082
http://dx.doi.org/10.1007/978-1-4419-9863-7_1081
http://en.wikipedia.org/wiki/Flow_cytometry#Fluorescence-activated_cell_sorting
http://en.wikipedia.org/wiki/Flow_cytometry#Fluorescence-activated_cell_sorting
http://www.abdserotec.com/support/electrostatic_cell_sorting-711.html
http://www.abdserotec.com/support/electrostatic_cell_sorting-711.html
http://www.cytonome.com/ci/176/Existing_Cell_Sorting_Methods/
http://www.dddmag.com/product-bd-influx-51310.aspx
http://dx.doi.org/10.1007/978-1-4419-9863-7_740
http://dx.doi.org/10.1007/978-1-4419-9863-7_1519
http://dx.doi.org/10.1007/978-1-4419-9863-7_1519


Cell System Ontology 371 C

C

Process, andConnector are Petri net elements and are

all related to dynamic simulation, whereas Fact repre-

sents other properties that cannot be described with

Petri net.

• Entity describes biological entities (e.g., protein,

complex, DNA, and small molecule), cellular com-

partment, and biological environments (e.g., UV,

temperature, and pH).

• Process defines interaction among entities, for

example, degradation, translation, and

phosphorylation.

• Connector links entities and processes.

• Fact is designed for understanding the pathway

functionalities and evaluating the status of dynamic

simulation such as concentrations that should sat-

isfy among simulation steps, view elements that do

not effect among simulation steps, and biological

elements that do not effect among simulation steps.

An entity reflects the concentration of the sub-

stance. A process is linked to entities by connectors

that are incoming from an entity and outgoing to an

entity. A process has a speed that depends on the

concentration of the incoming entity. Each connector

has its own threshold value. During simulation, the

evaluated result of the threshold value decides whether

the linked process is activated by consuming concen-

tration of the input entity.

Several classes are also defined in CSO to represent

various properties.

• BiologicalBase contains biological terms for anno-

tating biological properties. Controlled vocabular-

ies are defined to investigate the reuse of existing

structured information from other sources, such as

biological event, cell component, cell type, and

evidence code.

• SimulationBase describes simulation properties

specific to each Petri net elements, such as kinetics,

thresholds, and variables.

• ViewBase is for visualization of model compo-

nents, including geometric position, graphical

shape, image file–related properties that link each

element to graphical representation.

• ChartBase is for saving the results of model simu-

lation as 2D plots.

Softwares

• Cell Illustrator Online (CIO) is a software platform

for systems biology that uses the concept of Petri

net for modeling and simulating biological
pathways (Nagasaki et al. 2010). Biological path-

ways in CSO can be created, loaded, edited, saved,

and simulated via CIO. The Cell System Markup

Language (CSML) is a primary language of CIO

based on XML and is fully compatible with CSO.

• Data conversion is possible from several formats,

such as CSML to CSO, CSO to CSML, ▶SBML

(http://www.sbml.org/) to CSML, CellML

(▶CellML) to CSML, Transpath to CSML (Naga-

saki et al. 2008), BioPAX (http://www.biopax.org/)

to CSO (Jeong et al. 2007b) for pathway databases

such as KEGG (http://www.kegg.org/), Reactome

(http://www.reactome.org/), CellML repository

(http://www.cellml.org/), and BioModels (http://

www.biomodels.net/). CIO can read and convert

these formats into CSML and CSO.

• As a data repository, the curated executable macro-

phage database MACPAK (http://macpak.csml.

org) (Nagasaki et al. 2011) in CSML can be

accessed from a web browser. TRANSPATH

(Krull et al. 2006) at BIOBASE, focused on signal

transduction pathways, is embedded in CIO and can

be searched and edited on CIO.

• CSO validator (Jeong et al. 2011a, b) is

a semiautomatic validation tool for CSO data,

which reduces time spent on checking annotation

mistakes and correcting problematic parts in terms

of biological meaning and system dynamics.
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Synonyms

Curation; Validation
Definition

▶CellML model ▶ curation refers to the process of

validating and annotating a CellML model. In most

cases, the creation of a CellML model is a multistep

translation process: from computational code to text

and rendered mathematical equations and then back to

code. Once created, a CellML model generally needs

to be curated, since it is rare for a model to reproduce

the published results at the first iteration. Typographi-

cal errors in the publication, missing parameters,

equations, or unit definitions, mean the CellML

model is often incomplete, contains errors, or unit

inconsistencies. Model ▶ curation is an ongoing pro-

cess for which we employ a variety of simulation and

validation tools and often seek help from the original

model author.
Characteristics

Background

Mathematical models play an essential role in

interpreting complex biological processes. However,

as these mathematical models themselves become

increasingly complex, a need has arisen for defined

standards to facilitate model exchange and reuse.

▶CellML (Lloyd et al. 2004), and The Systems Biol-

ogyMarkup Language (SBML) (Hucka et al. 2003) are

two XML-based markup languages that have been

developed in response to such a need. Once a model

has been described in either CellML or SBML, it can

be uploaded into a centralized, online database, such as

the CellML model repository (Lloyd et al. 2008, http://

models.cellml.org/) or the BioModels Database

(Le Novere et al. 2006, http://www.ebi.ac.uk/

biomodels-main/). From there it is freely available to

the public for download, simulation, and reuse.

Unless a modeler chooses to develop their mathe-

matical model in CellML from the outset, the creation

of a CellMLmodel is a multistep translation process. It

begins with a model being developed in a particular

computational language, subsequent code conversion

into text and rendered equations for publication, and

finally translation of the text and equations into

CellML. Once it is written, a CellML model has to be

curated because each step in the translation process is

potentially a source for errors.

Of the �550 models in the CellML model reposi-

tory (August 2012), over half have been curated.

▶Curation can be carried out by the modeler at the

time of CellMLmodel development and/or translation,

or by the team of CellML model curators after the

model has been uploaded into the CellML model

repository.

Curation Workflow

Vaild XML and CellML

The first step in curating a CellMLmodel is to load and

validate it with a CellML-compliant tool such as

▶OpenCell (http://www.cellml.org/tools/opencell) or

Cellular Open Resource, (COR http://cor.physiol.ox.

ac.uk/). These modeling environments provide

a validation service which highlights general errors

and inconsistencies in the CellML model. CellML

model validation is carried out by the software in

a hierarchical manner. The base XML is checked

first, and the tool ensures that it is well defined and
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adheres to the XML standard, for example, that each

opened XML tag is also closed. The next step tests for

syntactic errors as each CellML file must follow gen-

eral syntax rules: variables have to be defined within

components, equations inside MathML elements, and

so on.

These two types of code validation are automati-

cally carried out when the CellML file is opened in

either▶OpenCell or COR, and these errors have to be

fixed before the model can be further edited as these

types of errors render the model invalid CellML, and

the modeling software is unable to work with such

files.

The second stage of software validation is

a semantic check, which is of main interest for

▶ curation. A common source of semantic errors are

connections as any two components are only allowed

a single mapping, and the variables mapped must be

defined in each component and feature appropriate

interfaces (“out” from the component in which the

variable is defined and “in” into the component in

which the variable is simply used). Another form of

semantic errors concerns the mathematical formula-

tion of the model. A model can be underconstrained

if there is insufficient information to run a simulation –

for example, if a variable is missing a defining equation

or an initial condition. Conversely, a model can be

overconstrained, for example, if a variable is both

defined by an equation and is assigned an initial con-

dition (and the equation is not a differential equation).

Furthermore, a model can contain circular dependen-

cies of variables, which in most cases can be detected

by the software.

Units Consistency

One of the requirements of a CellML model is that all

variables and numbers are assigned a unit – even if

that unit declaration is “dimensionless.” Further, as

part of the validation service in the modeling envi-

ronments, ▶OpenCell and COR check for unit con-

sistency. Unit consistency has two parts: across

a model and across an equation. An example of the

former is the variable “time”; if it is first defined

with the unit of “second,” “time” should not appear

later in the model associated with the unit of “minute”

or “hour.” For the latter, the tools report unit in-

balances in each individual equation. For example,

it is incorrect to add together two variables with

different units.
Model Simulation

Once the model is known to be valid CellML, with

a complete set of equations and parameters and bal-

anced units, the model is run and the simulation

output is compared with the results of the original

published model. In most cases, this involves setting

the parameter values and simulation conditions to

reflect those in the publication, and then comparing

the simulation output with a figure or data in the

article (see Fig. 1).

Obtaining the Original Model Code

Unfortunately, due to the error-prone nature of the

multistep model translation process, it is not uncom-

mon to have a valid CellML file which does not

reproduce the published results. In such a situation,

the first step is to compare the list of equations and

parameters present in the journal article with those in

the CellML model to eliminate errors introduced in

the creation of a CellML model. This “by eye” check

is made easier by the verbose ▶MathML equations

being rendered into condensed, human readable equa-

tions (Fig. 2).

If, after this check, the CellML model still will not

run to reproduce the published results, it is likely that

errors were introduced during conversion of the orig-

inal model code into the equations and text present in

the published paper, and if possible a copy of the

original model code is obtained. This primary source

has not undergone any translation and is a true repre-

sentation of the intended form of the published

model.

As the research community has become increas-

ingly aware of the CellML project, our chances of

obtaining a copy of the original model code from the

model authors have improved. However, for some

older models we will have to accept that we are

unlikely to get a copy of the original code. Further,

due to differences in the capabilities of different model

description languages, there may be certain functions

in the original model which cannot be translated into

CellML.

Curation Standards

All the models in the CellML model repository are

assigned a ▶ curation rating in the form of a number

of “stars” (ranging from zero to three) and a more

verbose model status comment, which provides

model-specific information such as whether the

http://dx.doi.org/10.1007/978-1-4419-9863-7_1526
http://dx.doi.org/10.1007/978-1-4419-9863-7_1067
http://dx.doi.org/10.1007/978-1-4419-9863-7_1526
http://dx.doi.org/10.1007/978-1-4419-9863-7_1527
http://dx.doi.org/10.1007/978-1-4419-9863-7_1067


CellMLModel Curation, Fig. 1 (a) Published figure showing the results of the original model (Goldbeter (2005) Proc Biol Sci) and

(b) the simulation output from the CellML version of the model

CellML Model Curation, Fig. 2 A comparison of the verbose raw MathML equation and the same equation rendered in COR
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CellMLmodel was translated from the published paper

or from the original model code.

There are four defined ▶ curation levels:

• Level 0: Not curated.

• Level 1: The CellML model description is consis-

tent with the mathematics in the original published

paper.

• Level 2: The CellML model has been checked for:

– Typographical errors

– Consistency of units

– Completeness, such that all parameters and ini-

tial conditions have been defined

– Overconstraints, such that the model does not

contain equations or initial values which are

either redundant or inconsistent

– Consistency of simulation output with the

published results, such that running the model

in an appropriate simulation environment repro-

duces the results in the original paper

• Level 3: The model has been checked to the extent

that it is known to satisfy physical constraints such

as conservation of mass, momentum, charge,

etc. This level of ▶ curation needs to be conducted

by a specialized domain expert, who is not the

original model author.

However, flaws have been identified in this

▶ curation rating system. The system is not hierarchi-

cal – that is, a model assigned level 2 does not

necessarily meet the criteria for level 1. In fact,

the two levels are often mutually exclusive because

in order to get the CellML model to replicate the

published results (level 2) we have to adjust

the published model description (level 1). Further,

we have observed that the current “star system” can

lead to uncertainty as to how to interpret the

▶ curation status of a model. For example, it is

often a misconception that unless a model has been

assigned three stars, it is not working. The reality

is that domain experts are usually very busy individ-

uals who do not have the time to spend on

checking other people’s models. Also, since most

of the CellML models have been derived from

published papers, we assume that the model has

already undergone peer review and the reviewers

were satisfied.

To solve this problem of misinterpretation, we are

proposing to replace the current star system with
a more descriptive set of ▶ curation flags. Initially,

these will be based on the ▶MIRIAM standard: the

Minimum Information Requested in the Annotation

of Biochemical Models (Le Novere et al. 2005). This

is an agreed set of rules for curating quantitative

models of biological systems which ensure

a consistent standard of curation between models in

distinct databases.

Conclusions

We encourage model developers to publish their com-

putational code in a common format, such as CellML,

concurrent with the manuscript of their paper. Indeed,

certain journals are already encouraging modelers to

submit their model code in SBML. However, until

code submission becomes an obligatory step getting

a model reviewed and published, the processes of

model translation and ▶ curation will remain

essential.
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Synonyms

PMR2; Physiome model repository 2
Definition

The CellML model repository is an online database for

storing mathematical models of physiological and bio-

logical processes. There are currently over 500 models

in the repository, which are freely available for users to

download, simulate, modify, and upload. The reposi-

tory is powered by the ▶ Physiome Model Repository

2 (PMR2) software, which provides a web-based inter-

face to the repository and defines the user workflows,

enabling both human and machine interaction with the

repository content.
Characteristics

The Purpose of the CellML Model Repository

The CellML model repository (Lloyd et al. 2008,

http://models.cellml.org/) is an online database for

storing mathematical models encoded in ▶CellML.

There exist similar efforts, such as the BioModels

Database (Le Novere et al. 2006) which focuses

on biochemical pathway models, described in

peer-reviewed publications, and expressed in the

Systems Biology Markup Language (SBML) (Hucka

et al. 2003), JWS Online (Olivier and Snoep 2004)

which combines a repository of kinetic models with

extensive online simulation and analysis facilities,

and ModelDB (Hines et al. 2004), which stores

published models in the field of computational

neuroscience.

In contrast with these other databases, which tend to

focus on specific areas, such as systems biology path-

way models or computational neuroscience and exclu-

sively contain models which have already been peer

reviewed and published, the CellML model repository
contains models describing a wide range of biological

processes, including signal transduction and metabolic

pathways, gene regulation, the cell cycle, electrophys-

iology, hormone secretion, immunology, and muscle

contraction. In addition, it also supports collaborative

model development, merging and alteration, and

models are not restricted to those which have been

published in journals.

History of the CellML Model Repository

When it was created in 2000 the repository served as

a place to store model test cases while the descriptive

capabilities of the ▶CellML language were explored.

Today (June 2012), there are over 500 models in the

repository and it acts as a valuable resource for

researchers.

From the onset of the project, several objectives for

the CellML model repository were identified. It was

decided that the repository should be designed to:

• Promote the sharing of models

• Be publicly accessible

• Provide a user-friendly interface to access, query,

and store models

• Provide a consistent workflow whereby models can

be submitted, reviewed, validated, and published

• Facilitate feedback on models

• Provide a mechanism for advertising newmodels or

changes to existing models

There have been three different versions of the

CellML model repository. The original repository

achieved few of the goals outlined above; although

models were freely accessible to the public, it had no

mechanism to promote the sharing of models, facilitate

feedback, or track the change history of a model.

Similarly the second version of the repository, the

▶ Physiome Model Repository 1 (PMR1), failed to

address many of the objectives. Finally, in July 2009,

the ▶ Physiome Model Repository 2 (PMR2) was

created, and the design objectives were met.

The Underlying Software

With the introduction of the PMR2 software in July

2009, the CellML model repository became more than

just a place to store models. Some of the key features of

the current model repository are:

• Facilitated model exchange directly between mod-

elers, in possibly distant locations, without reliance

on a central repository

• A detailed change history record for each model

http://dx.doi.org/10.1007/978-1-4419-9863-7_101158
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• User access workflows to control privacy when

required

• Embedded ▶workspaces to enable model reuse

• The ability to include extra information, such as the

experimental data on which the model is based, to

enhance the model descriptions (metadata)

The content of the repository is managed by using

Mercurial (http://mercurial.selenic.com/), a ▶Distrib-

uted Version Control System (DVCS). Such a system

allows modelers, whomay be located on opposite sides

of the world, to work together on the same model

simultaneously. This system tracks every set of

changes made to the model file, by each individual

author, thus safeguarding the data from being

unintentionally overwritten. As it is also a distributed

system, modelers are able to work independent of the

CellML model repository, and can share their changes

directly with each other until they decide the model is

ready to be uploaded into the repository.

The combination of these above features, together

with the CellML language and associated metadata

specifications, provides a collaborative model devel-

opment environment which is capable of enhancing

communication throughout the modeling community.

Repository Users

Several specific classes of CellML model repository

users have been identified. Each of these classes can be

assigned a role, and each role has specific needs:

• Modelers create models and need a centralized

place to store them. The required storage mecha-

nism is a ▶Distributed Version Control System

(DVCS) to allow collaborators to be able to work

on a model simultaneously.

• Curators check the quality of themodels in the repos-

itory. They need to know when new models have

been added, or old models have been updated, so

they can be checked and then published or rejected.

• General users are usually interested in investigating

the stored models. They want to be able to search

the repository for keywords, model categories, or

author names, and need an intuitive interface to

access and download the models.

• Administrators control who has permission to

upload material to the model repository, and they

require an interface to grant or revoke permission

settings for users of the system.

• Senior Investigators, or project leaders, often want

to present the capabilities of the models to funding
bodies or at conferences. They require a web-based

intuitive interface through which they can easily

showcase their group’s research.

Navigating the CellML Model Repository

There are two main methods to locate a particular

model in the CellML model repository:

• Browsing by category: Every model stored in the

repository is tagged with a least one category type.

If a user is interested in metabolism, for example,

they can click on this category heading on the

repository home page, and a list of all the metabolic

pathways models in the repository will be

displayed.

• Keyword search: If a user is interested in all the

models developed by a particular author, or if they

want to view everything related to a particular topic,

such as HIV dynamics, they can carry out a specific

search for the author or topic through the repository

search facility.

Downloading a Model

There are two principal methods to download a model

from the CellML model repository. The chosen

method depends on the intentions of the user.

A casual user may just want to test the capabilities

of a working, fully curated model, to see how it

behaves, while a modeler may want to take an

existing model from the repository and either

improve on it or develop it further. The former user

can either click on a link to a pre-created model

simulation session file (if one is available for that

particular model), or they can download the raw

model file itself and subsequently open it in their

preferred simulation tool and run the model. By con-

trast the latter user needs to take advantage of the

▶Distributed Version Control System (DVCS), they

should clone (or copy) the entire model ▶workspace

(or folder) through a Mecurial client onto their own

computer. This workflow ensures that a model’s mod-

ification history is properly recorded, and enables the

other advantages as were discussed in the software

section above.

Uploading a Model

To upload a model, or any other associated data (such

as an image file or experimental data sets), into the

CellML model repository, a user requires an account.

If the model already exists in the repository and this is

http://dx.doi.org/10.1007/978-1-4419-9863-7_1531
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a newer version, the new model has to be committed to

the local clones of an existing ▶workspace with

a comment on what has been changed, and then pushed

back into the repository. It is then the responsibility of

the curators to check the quality of the model before

they ▶ expose (or publish) it. Alternatively, if the

model being added is a completely new one, the crea-

tion of a new ▶workspace is required. Depending on

the permissions granted to the user, they can either

create a new ▶workspace themselves, or they have

to ask the curators to create one on their behalf. The

same pushing, commenting, exposure, and publication

process then takes place.

Private Models and Password Protection

Sometimes model developers may want to utilize the

▶Distributed Version Control System (DVCS) feature

of the CellML model repository, to track the changes

made to their model during the development process,

without making their model publicly available until it

is complete. They can work in a private ▶workspace

and choose not to ▶ expose their model until the very

end. Until they are made publicly available, models

will not come up in search listings. Alternatively,

a modeler may want to provide only a few, select

individuals with access to their model, such as collab-

orators, or reviewers of a journal article. If this is the

case the model can be ▶ expose but user access to

this exposure can be controlled by the repository

administrator granting permission to only a few spe-

cific users.

Persistent Model References

Each model entry in the repository has a unique iden-

tifier in the form of a unique URL. Even if an older

version of a model is superseded by a newer published

version, the URL of the old model is retained, with

a note that that particular version of the model has been

superseded, or “expired.” This feature allows

a modeler to refer to a specific model version, at

a specific point in time, and they can be confident

that a link in a journal article, or in correspondence

with a colleague, will remain unbroken.
Cross-References

▶BioModels Database: A Repository of

Mathematical Models of Biological Processes
▶Distributed Version Control System (DVCS)

▶ JWS Online

▶ Systems Biology Markup Language (SBML)
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Definition

CellML (Hedley et al. 2001; Cuellar et al. 2006) is

a format for specifying mathematical models, building

upon Extensible Markup Language (XML). It is

supported by a range of software tools and databases,

and is most commonly used to specify mathematical

models of biological systems.
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Characteristics

Systems biology researchers often need to exchange

mathematical models. One approach is to publish

a paper containing the mathematical equations in the

model. However, the process of manually converting

a model to mathematical equations, and then back

into a computer modeling format is both time con-

suming and error prone. Another approach is to

exchange programs for solving the model in

a procedural language (such as Fortran or MATLAB).

This approach has several major drawbacks: it tends

to result in models where the numerical algorithms

used are intermixed with the model, it is difficult to

compose two models to make a model incorporating

features of each model, and it is hard to use the model

for any purpose other than the one it was originally

coded for.

These problems are avoided by the CellML format

(http://www.cellml.org), which acts as a container for

mathematical expressions encoded in Mathematical

Markup Language (MathML), and so can represent

a wide variety of models. CellML tools are generally

focused on supporting the class of problems known

as systems of differential algebraic equations

(DAEs).

CellML has been used to describe a wide range of

models relevant to systems biology. At the time of

writing, the CellML Model Repository included 500

models (including electrophysiology, gene regula-

tion, metabolism, and signal transduction models

(Cooling et al. 2007; Nickerson and Buist 2008;

Terkildsen et al. 2008) through to endocrine models).

CellML allows models to be built in a reusable and

modular fashion, and this has been exploited to build

a modular library of synthetic biology models

(Cooling et al. 2010).

All mathematical expressions in a CellML model

are contained within components. A component is

a container that may represent concrete or abstract

concepts. For example, a component could represent

an ion channel, a compartment in a cell, the surround-

ing environment of a model, or the collection of adjust-

able parameters.

Each CellML component may contain variables,

which are named values that may or may not

change with respect to other variables. Every named

value in the mathematics within a component

needs to be declared as a variable; variables are
used to represent parameters, state variables, and

named constants.

In CellML, the physical units of all variables and

constant numbers (which can be dimensionless) must

be specified. If units are specified, they may either be

one of the standard SI base or derived units, or units

defined in the model. New units can be defined in terms

of other units with specified multipliers and offsets

(e.g., a millimeter can be defined as a thousandth of

a meter, nanomolar can be defined as a billionth of

a mole per liter), and new base units can also be

defined.

A variable in one component can be connected to

a variable in another component. A connection

between two variables means that the two variables

represent the same quantity. If the two connected vari-

ables are in the same physical units, then the connec-

tion is treated as equality. If they are in different, but

dimensionally compatible units, then the CellML

processing software will automatically apply the

appropriate units conversion factor.

In a CellML model, components can be arranged in

an encapsulation hierarchy. This can be used so that

some components (the encapsulation children)

describe the internal details of another component,

which provides a higher level interface (the encapsu-

lation parent). The internal details of each encapsula-

tion child component can in turn be described in the

next level of the encapsulation hierarchy, and so on to

whatever depth is required.

To ensure that there is a distinction between the

internal and externally exposed parts of a model,

components have two types of interface, the public

interface and the private interface. A connection

between variables in encapsulation siblings uses the

public interface of both components. A connection

between an encapsulation parent and an encapsula-

tion child uses the public interface of the encapsula-

tion child and the private interface of the

encapsulation parent. Variables can have different

visibility on the public and private interfaces. Their

visibility is directional, and is set to either “in” or

“out,” which indicates that the variable is visible on

that interface, and may be connected to a variable of

opposite directionality. Visibility defaults to “none,”

meaning that the variable is not visible on that

interface.

In large systems biology models, the same mathe-

matical constructs are often used multiple times, both

http://www.cellml.org
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within a model, and across different models. For exam-

ple, a particular mathematical formulation for an ion

channel might be used to represent both sodium and

potassium channels in a cell model, and might be

reused in other models. Duplicating the markup for

the definition of an ion channel component multiple

times would be a repetitive and error-prone approach,

and improvements to the component would need to be

added manually to all copies. To address this, CellML

1.1 uses a mechanism called importing. Importing

allows components and units to be imported by linking

to the Uniform Resource Identifier (URI) of the

imported model document from within the importing

model document. When a component is imported,

the entire encapsulation hierarchy underneath it is

implicitly imported, including the connections

between components in that encapsulation hierarchy,

so that complex submodels made up of multiple

components can be imported.

Using the structures described so far, CellML

allows the mathematics underlying a model to be

described. However, for a model to be useful, it is

necessary to describe the correspondence between

parts of the model and parts of the real-world system

being modeled. For this reason, CellML models can

include information, known as metadata, about

the model and its parts (Beard et al. 2009). This meta-

data is normally represented within the CellML model

in Resource Description Format (RDF). Metadata

specifications exist for basic information about a

model, such as the details of the publication it is

based on, and the chemical species represented by a

concentration variable. There are also metadata speci-

fications for stipulating parameters to numerical inte-

grators, and how to graphically display simulation

results.

A number of tools and libraries capable of

processing CellML models have been developed

(Garny et al. 2008); a listing can be found at http://

www.cellml.org/tools.

The CellML API (Miller et al. 2010) is a description

of a programming interface for working with CellML

models. Software developers can use the CellML API

when incorporating support for the CellML format into

their software. The API includes a core for performing

basic model manipulations, as well as a number of

optional extension modules. The API comes with an

efficient full reference implementation in C++,
licensed under Free/Open Source licenses so that it

can be freely used. In addition, bindings that

allow this implementation to be accessed from other

languages are available (e.g., for Python and Java).

Modelers can use CellML as the primary source

language for models, while leveraging numerical

tools in other environments. This is achieved using an

API extension module that allows tools to convert

models from CellML into procedural programming

languages like C or MATLAB.

In addition, modelers can make use of several pop-

ular stiff and non-stiff numerical integrators, using an

API module that allows simulations of models to be

run with numerical integrators from the GSL, CVODE,

and IDA packages.

Another API module can be used to validate that

models follow the rules of the CellML specification, as

well as good modeling practices. For example, the

validation service can generate a warning if the units

in a mathematical expression are inconsistent.

There is also a range of tools for use by modelers:

one of these is OpenCell, which is based on the CellML

API. It is intended to be used by people creating or

working with CellML models. Models can be edited

and validated, simulations can be run and results can be

plotted on graph axes. OpenCell is specifically

designed to support working with multiple models

simultaneously, and allows the results from different

models to be compared graphically on the same set of

axes.

OpenCell also supports session files, which

are a stored description of the complete OpenCell work-

ing environment including the list of open models and

information on which graphs to display. Session files

can also include embedded figures; these figures can be

made interactive so that clicking on part of a figure will

bring up a corresponding trace on the graph.

COR (http://cor.physiol.ox.ac.uk) is another popu-

lar software application for modelers, focused on the

editing and use in simulation of CellML, with similar

features to OpenCell. Other end-user tools that do not

focus on CellML, but include support for it are JSim,

VirtualCell, and insilicoIDE.

An important bioengineering application of CellML

is for multiscale organ simulation. Two simulation

systems that allow part of the mathematical model to

be specified by means of CellML are Chaste and

OpenCMISS.

http://www.cellml.org/tools
http://www.cellml.org/tools
http://cor.physiol.ox.ac.uk
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Synonyms

Cellular spaces; Cellular structures; Homogeneous

structures; Iterative arrays; Tessellation automata;

Tessellation structures
Definition

A cellular automaton (pl. cellular automata, abbrev.

CA) is a discrete model studied in computability

theory, mathematics, physics, complexity science

(▶Complexity), theoretical biology, and microstruc-

ture modeling. They are used to build parallel comput-

ing (▶ Parallel Computing, Data Parallelism)

architectures as well as to model and simulate

physical systems. Moreover they can be used to inves-

tigate and reproduce the emergence of patterns

(▶Spatiotemporal Pattern Formation), self-replication

and self-similarity properties in natural systems.
Characteristics

History

CA were first developed in the 1940s by Stanislaw

Ulam, who was investigating the growth of crystals,

using a simple lattice network as his model, and by

John Von Neumann, who was working on the problem

of self-replicating systems (Von Neumann 1966).

In 1946, Norbert Wiener and Arturo Rosenblueth

developed a cellular automaton model of excitable

media. Their specific motivation was the mathematical

description of impulse conduction in cardiac systems.

Their original work continues to be cited in modern

research publications on cardiac arrhythmia and

excitable systems (Wiener and Rosenblueth 1946). In

the 1960s, cellular automata were studied as

a particular type of dynamical systems and the
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connection with the mathematical field of symbolic

dynamics was established for the first time (Hedlund

1969).

In the 1970s, K. Zuse proposed that the physical

laws of the universe are discrete by nature, and that the

entire universe is the output of a deterministic compu-

tation on a giant cellular automaton (Zuse 1982). In

those same years, a two-state, two-dimensional cellu-

lar automaton named “Game of Life” became very

widely known, particularly among the early computing

community. The Life CA is able to perform computa-

tions, and after much effort, it has been shown that the

Game of Life can emulate a universal Turing machine

(Rendell 2002).

In the 1980s, Stephen Wolfram started a

systematical investigation of a very basic but essen-

tially unknown class of cellular automata, which he

called “elementary cellular automata.” The unexpected

complexity of the behavior of these simple automata

led Wolfram to suspect that ▶ complexity in nature

may be due to similar mechanisms (Wolfram 2002).

Cellular Automata Structure

A CA consists of a regular grid of elements, named

cells, each in one of a finite number of states, such as

“On” and “Off” or “0” and “1.” The grid can be in any

finite number of dimensions.

Neighborhood

For each cell, a set of cells called “neighborhood” is

defined, consisting of the cell itself, together with the

surrounding cells within a certain distance. In the case
of two-dimensional CA, the most used neighborhoods

are Moore neighborhood and Von Neumann neighbor-

hood (Fig. 1). More formally, if we refer to a certain

cell in the grid as a location identified by discrete

coordinates (x, y), being (x0, y0) the central cell and

being r the neighborhood radius, we can define its

Moore neighborhood as
NMðx0; y0Þ ¼ fðx; yÞ : jx� x0j <¼ r; jy� y0j <¼ rg;
(1)

while its Von Neumann neighborhood is
NVðx0; y0Þ ¼ fðx; yÞ : jx� x0j þ jy� y0j <¼ rg:
(2)

Given N, the total number of cells, and being a¼ (x, y)

a generic cell, we can define the neighboring function

as (Sipper 1997) g : N � N! 2 N � N, defined as
gðaÞ ¼ faþ d1; aþ d2; . . . ; aþ dng; (3)

for all a 2 N � N, where di 2 N � N, i ¼ 1, . . ., n,
is fixed.
Rule

Each cell contains a copy of the finite automaton

(V, v0, f), where V is the set of cellular states, v0 is

a particular state called quiescent state, and f is the

transition function f : V n ! V. This function is

subject to the constraint f(v0, v0, . . ., v0) ¼ v0, that

http://dx.doi.org/10.1007/978-1-4419-9863-7_55
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is, a cell whose neighborhood is entirely quiescent

remains quiescent. The state vt(a) of a cell a at time

t is precisely the state of its associated automaton at

time t. Each cell a is connected to the n neighbor cells

a + d1, a + d2, . . ., a + dn. The neighborhood state

function ht : I � I! V n is defined by ht(a) ¼ (vt(a),
vt(a + d2), . . ., vt(a + dn)), assuming that d1 ¼ (0, 0).

Nowwe can relate the neighborhood state of a cell a
at time t to the state of that cell at time t + 1 by

f(ht(a)) ¼ vt + 1(a). The function f is referred to as

the CA rule and is usually given in the form of a rule

table, specifying all possible pairs of the form (ht(a),
vt + 1(a)). Such a pair is termed a transition or rule-

table entry. An allowable assignment of states to all

cells in the space is called a configuration. By applying

the transition function to an allowable configuration,

a new configuration is generated and reiterating this

process gives out a succession of configurations, called

evolution. A rule (and its corresponding CA) is said to

be totalistic when the value of a cell at time t depends

only on the sum of the values of the cells in its

neighborhood (possibly including the cell itself) at

time t � 1.

Evolution

An initial state (time t ¼ 0) is selected by assigning

a state for each cell. A new generation is created

(advancing t by 1), according to rule f. For example,

the rule might be that the cell is “On” in the next

generation if exactly two of the cells in the neighbor-

hood are “On” in the current configuration, otherwise

the cell is “Off” in the next generation. In uniform CA,

the rule for updating the state of cells is the same for

each cell, while it may change in nonuniform CA.

Typically, the rule does not change over time, and is

applied to the whole grid simultaneously.
The Game of Life

The best-known two-dimensional cellular automaton

is the famous Game of Life, devised by John H.

Conway in 1970. It consists of a two-dimensional

grid of cells, whose state may be dead (0) or alive

(1), and Let D ¼ fd0; d1; . . . ; d8g ¼ ½�1; 1
 � ½�1; 1
,
being d0 ¼ ð0; 0Þ, and let be S ¼

P8
k¼1

htðaÞðkÞ the sum of

the states of all the neighbors of cell a. The following
rule describes Conway’s Game of Life cellular

automaton:
vtþ1ðaÞ ¼
0; S < 2 _ S > 3

ntðaÞ; S ¼ 2

1; S ¼ 3

8<
: (4)

A compact representation of this rule is“B3/S23”:

This essentially means that, for the next generation,

a cell has a new birth (B) if its neighborhood consists of

exactly 3 alive cells and survives (S) if there are two or

three living cells in its Moore neighborhood (r ¼ 1).

Properties

CA are actually simple computer programs capable of

a remarkable range of behaviors. Some CA have been

proven to be universal computers. Others exhibit prop-

erties familiar from traditional science, such as

thermodynamic behavior, continuum behavior, con-

served quantities, percolation, sensitive dependence

on initial conditions, and others. They have been used

as models of traffic, material fracture, crystal growth,

biological growth, and various sociological, geologi-

cal, and ecological phenomena. Another feature of

simple programs is that making them more compli-

cated seems to have little effect on their overall

▶ complexity and this argument has been used as evi-

dence that simple programs are enough to capture the

essence of almost any complex system (▶Complex

System). Von Neumann showed that some CA can be

universal, in the sense that they can perform every

computation, just like a universal Turing machine.

The Game of Life, given a proper initial configura-

tion, can generate gliders (Fig. 2), or patterns that are

able to replicate and propagate themselves through the

grid. This property has revealed to be useful for

performing calculations, and a universal Turing

machine has been implemented in Life, thus demon-

strating the universality of this CA (Rendell 2002).

Computing Architectures Based on CA

Toffoli and Margolus (1987) have pioneered the idea

of building computer architectures based on cellular

automata. Conventional computer architectures are

optimized for the arithmetic treatment of continuum

models. On the other hand, CA can faithfully model

continuum systems, such as fluids. Unlike differential

equations (▶Ordinary Differential Equation (ODE)),

they can be realized exactly by digital hardware. With

a more appropriate architecture, a performance factor

of at least 104 can be easily gained in the simulation of

http://dx.doi.org/10.1007/978-1-4419-9863-7_55
http://dx.doi.org/10.1007/978-1-4419-9863-7_1073
http://dx.doi.org/10.1007/978-1-4419-9863-7_1073
http://dx.doi.org/10.1007/978-1-4419-9863-7_1419


Cellular Automata, Fig. 2 A glider in the Game of Life: This

pattern can replicate and propagate itself through the CA grid
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Cellular Automata, Fig. 3 Simulation of a flow through

a circular cylinder obtained by means of a lattice-gas cellular

automaton

Cellular Automata, Fig. 4 A CA model of tumor growth
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cellular automata, thus allowing to simulate very com-

plex physical phenomena. This is the case of the CAM

(Cellular Automata Machine) architectures

implemented in hardware by Toffoli and Margolus,

successfully used to model and solve fluid dynamics,

diffusion, and collective phenomena problems.

Applications

The following are some of the many applications of

cellular automata for the simulation of physical systems.

Hydrodynamic modeling: Differential equations,

such as the Navier-Stokes equation, capture important

macroscopic aspects of fluid dynamics; however, their

implementation on a digital computer is not the equa-

tion themselves, but finite models obtained from them

by truncation and roundoff. It is possible to simulate

analogous macrodynamics starting directly from

discrete microscopic models, cellular automata that

idealize the motion and collisions of individual parti-

cles. Figure 3 shows the simulation of a flow through

a circular cylinder obtained by means of a lattice-gas

cellular automaton (Wolf-Gladrow 2005) (Lattice-Gas

Cellular Automaton Models for Biology).

Growth processes: This is useful for the study of

tumor growth dynamics in tissues. Cellular automata

are used to model cell behavior and interactions at the

microscopic level, in order to simulate and evaluate

growth dynamics, vascularization or response to ther-

apy. Figure 4 was originated by a model that takes into

account four cell types: healthy cells, proliferating

tumor cells, non-proliferating tumor cells, and necrotic

tumor cells, using a simple set of rules and a set of four

microscopic parameters that account for the nutritional
needs of the tumor, cell-doubling time, and an imposed

spherical symmetry (Kansal et al. 2000).

Pattern formation: Figures 5 and 6 show example

patterns found in nature (Spatio-temporal pattern for-

mation), together with their reproductions obtained by



Cellular Automata,
Fig. 5 (a) Snowflakes and

(b) a snowflake pattern

reproduced by means of a two-

dimensional CA on

a hexagonal grid

a b

Cellular Automata,
Fig. 6 (a) Cone shell (conus

textile) and (b) pattern

generated by the rule 30 CA
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means of cellular automata evolution. Snowflakes

(Fig. 5) are obtained by running a two-dimensional

CA on a hexagonal grid, while cone shell patterns

(Fig. 6) are generated by a rule 30 CA.
Cross-References
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Definition

Cell communication is an important process by which

a cell sends or receives information from other cells.

Individual cells, such as yeast, need to sense and

respond to their environment, and communicate

with other cells to have any kind of “social life.” For

example, when a yeast is ready to mate, it secrets

a small protein called a mating factor. Neighboring

yeast cells of opposite “sex” can detect this chemical

mating call and respond by halting their cell cycle

progress and reaching out toward the cell that emitted

the signal. In a multicellular organism, cells must

interpret the multitude of signals they receive from

other cells to help coordinate their behaviors, such as

cell fate decision in embryo development (Alberts

et al. 2004).

In typical cell communications, the signaling

cell produces a particular type of signal molecule

that is detected by the target cell. The target cell

possesses receptor proteins that recognize and

respond specifically to the signal molecule. Signals

can act over long or short range, depending on the

way in which the signal is transported. For example,

hormones produced in endocrine cell are secreted

into the bloodstream and are often distributed

widely throughout the body. In embryo development,

signal proteins (morphogens) disperse from localized

synthesis sites to form concentration gradients

across the developing tissue. Neuronal signals

are transmitted along axons to remote target cells.

Cells with membrane-to-membrane interface can

engage in contact-dependent signaling (Alberts et al.

2004).

Each cell can only respond to a limited set of

signals selectively depending on the specific receptor

proteins. Most extracellular signal molecules cannot

pass through the plasma membrane. They bind to

specific cell-surface receptor proteins to induce the

intracellular signal transduction pathway. Receptor

proteins act as transducers, binding to signaling mol-

ecules, and converting the signal from one physical

form to another. Most cell-surface receptor proteins

belong to one of three large families: ion-channel-

linked receptors, G-protein-linked receptors, or

enzyme-linked receptors. These families differ from

each other by the nature of signals they generate when

the extracellular signal molecule binds to them

(Alberts et al. 2004).
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Synonyms

CPM; Glazier–Graner–Hogeweg model; Potts model,

cellular/extended
Definition

A cellular Potts model (CPM) is a spatial lattice-based

formalism for the study of spatiotemporal behavior of

biological cell populations. It can be used when the

details of intercellular interaction are essentially deter-

mined by the shape and the size of the individual cells

as well as the length of the contact area between

neighboring cells.

Formally, a cellular Potts model is a time-discrete

Markov chain (▶Markov Chain). It is a lattice model

where the individual cells are simply connected domains

of nodes with the same cell index. A CPM evolves by

updating the cells’ configuration by one pixel at a time

based on probabilistic rules. These dynamics are

interpreted to resemble membrane fluctuations, where

one cell shrinks in volume by one lattice site and

a neighboring cell increases in volume by occupying

this site. The transition rules follow a modified

▶Metropolis algorithm with respect to a Hamiltonian.

Characteristics

Problem

The biological structure and function typically result

from the complex interaction of a large number of
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Cellular Potts Model,
Fig. 1 Cell-surface

interaction in the Cellular

Potts Model. Three cells, each

one covering several lattice

sites, interact with each other

at the cell surfaces. The

strength J of the interaction

depends on the cell types, type

T1 depicted in red, type T2 in

green. There are also
interactions between the cells

and the medium (white)
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components. When ▶ spatiotemporal pattern forma-

tion in cellular populations or tissues is considered,

one is often interested in concluding characteristics of

the global,▶ collective behavior of cell configurations

from the individual properties of the cells and the

details of the intercellular interaction. However, even

if the basic cell properties and interactions are per-

fectly known, it is possible that – due to the complex

structure of the system – the collective traits cannot be

directly extrapolated from the individual properties.

Therefore, appropriate mathematical models need to

be designed and analyzed that help to accomplish this

task on a theoretical basis. Cellular Potts models con-

stitute a modeling framework that is applicable when

the details of intercellular interaction are essentially

determined by the shape and the size of the individual

cells as well as the length of the contact area between

neighboring cells.

This model class has been developed by Glazier and

Graner (1993) in the context of cell sorting. The latter

refers to the observed segregation of heterotypic cell

aggregates into spatially confined homotypic cell clus-

ters. The CPM was introduced to explore the tissue-

scale consequences of the differential adhesion

hypothesis (▶Differential Adhesion Hypothesis) that

holds that cell-type-dependent disparities in the
expression of molecules that regulate intercellular

adhesion are responsible for cell sorting. Since then,

this formalism has been elaborated and applied to

study a wide range of morphogenetic phenomena in

developmental biology.

The Model

State Space

A CPM assigns a value �ðxÞ from a set

W ¼ f0; 1; :::; ng to each site x of a countable set S,

cp. Fig. 1. The set S resembles the discretized space

and is often chosen as a two- or three-dimensional

regular lattice. The set W ¼ f0; 1; :::; ng contains the
so-called cell indices, where n 2 N is the absolute

number of cells that are considered in the model. The

state of the system as a whole is described by config-

urations Z 2 X ¼ Ws. Given a configuration Z 2 X,

a cell is the set of all points in S with the same cell

index, cellw :¼ fx 2 S : �ðxÞ ¼ wg;w 2 Wnf0g:The
value 0 is assigned to a given node, if this node is not

occupied by a cell but by medium. Each cell is of

a certain cell type, which determines the migration

and interaction properties of the cell, the set of all

possible cell types being denoted by L. Denote by

t : W ! L the map that assigns each cell its cell

type. A cell with index w 2 W has volume (for the

http://dx.doi.org/10.1007/978-1-4419-9863-7_1141
http://dx.doi.org/10.1007/978-1-4419-9863-7_1141
http://dx.doi.org/10.1007/978-1-4419-9863-7_1140
http://dx.doi.org/10.1007/978-1-4419-9863-7_1116
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Kronecker symbol d it holds that dðu; vÞ ¼ 1 if u ¼ v
and dðu; vÞ ¼ 0 otherwise)
Vwð�Þ :¼
X
x2S

dðw; �ðxÞÞ;

and surface length
Mwð�Þ :¼ 1

2

X
interfaces fx;yg

dðw; �ðxÞÞ:

The sum in the last term is taken over all interfaces

of a given configuration � that are all pairs of lattice

neighbors which do not belong to the same cell.

Dynamics

A cellular Potts model (CPM) is a time-discrete

Markov chain (▶Markov Chain) with state space X,

where the transition probabilities are specified with the

help of a Hamiltonian. The latter is a function H: X!
R which often has a special structure. Usually, it is the

sum of several terms that control single aspects of the

cells’ interdependence structure. The standard CPM

uses the following two terms. First a surface interac-

tion term
Hsð�Þ ¼
X

interfaces fx;yg
Jðtð�ðxÞÞ; tð�ðyÞÞÞ; � 2 X; (1)

is specified. Here, J: L � L ! R, the matrix of so-

called surface energy coefficients, is assumed to be

symmetric. Second the volume constraint
Hvð�Þ ¼
X
w2W

ltðwÞðVwð�Þ � vtðwÞÞ2; � 2 X: (2)

is used. Here Vt, the target volume, and lt, the strength
of the volume constraint, are cell-type-specific param-

eters, t2L. Depending on the phenomenon under

investigation, further summands can be included. For

instance, a constraint can be put on the surface length

(Ouchi et al. 2003)
Hmð�Þ ¼
X
w2W

atðwÞðMwð�Þ � mtðwÞÞ2; � 2 X: (3)
Againmt, the target surface length, and at, the strength
of the surface constraint, are parameters, t2L. Thus,
the typical structure of a CPM-Hamiltonian is
H ¼ Hs þ Hv þ H0; (4)

where Hs;Hv are given in (1) and (2) and H0: X! R is

a model-specific addend. See the section “Extensions

and Applications” for additional examples of H0.

Transitions from one configuration to another fol-

low a special rule which is called modified Metropolis

algorithm (▶Metropolis Algorithm). First, two addi-

tional parameters are specified: a so-called temperature

T > 0, which is a biological analogue of the energy of

thermal fluctuations in statistical physics and is

a measure of cell motility, and the transition threshold

h, which accounts for energy dissipation during forma-

tion and breaking of intercellular bonds and avoids

oscillatory behavior (Savill and Hogeweg 1997;

Ouchi et al. 2003). Then, the following algorithm is

performed (1):

1. Start with configuration Z.
2. Pick a target site x 2 S at random with uniform

distribution on S.
3. Pick a neighbor y of x at random with uniform

distribution among all lattice neighbors of x.

4. Calculate the energetic difference

DHy
x :¼ Hð�yxÞ � Hð�Þ of a transition �! �yx,

where �yxðzÞ :¼ �ðyÞ if z ¼ x and �yxðzÞ :¼ �ðzÞ
otherwise.

5. Accept the transition by setting � :¼ �yx with prob-

ability pðDHy
xÞ, or ignore the transition with proba-

bility 1� pðDHy
xÞ, where

pðDHy
xÞ ¼

1 if DHy
x<h

e�ðDH
y
x�hÞ=T otherwise


5. Go to 1 or end the algorithm.

Consequently, only such transitions are possible

where the index of at most one lattice site is changed,

resulting in a shift of the cell’s center of mass. The new

assignment to this lattice site is chosen from the cell

indices of the neighboring lattice sites. These dynam-

ics are interpreted to resemble membrane fluctuations,

where one cell shrinks in volume by one lattice site and

a neighboring cell increases in volume by occupying

this site.

To complete the model, appropriate boundary con-

ditions must be specified. If the influence of the bound-

ary shall be neglected, periodic boundary conditions

are used. This means that the space can be thought of as

http://dx.doi.org/10.1007/978-1-4419-9863-7_443
http://dx.doi.org/10.1007/978-1-4419-9863-7_1115
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being mapped onto a torus. However, fixed boundary

conditions, where the interaction between cell surfaces

and confining environment is explicitly modeled, can

be defined as well.

Extensions and Applications

The CPM model formalism has been used for several

problem-specific extensions. In general, this is done by

including additional terms into the Hamiltonian (4). In

some cases, these additional terms also depend on the

chosen target spin, thereby changing the weights for

the acceptance of a proposed transition in the modified

Metropolis algorithm. The latter extensions are called

kinetic extensions, since they directly affect the

transition rates.

Cell motility emerges in the CPM implicitly from

the fluctuations of the cells’ center of masses. To

explicitly model physical characteristics of cell motil-

ity such as cell persistence and inertia, additional terms

that constrain the cell displacement per time step can

be added to the difference DH of the standard CPM-

Hamiltonian (4) that is calculated in step (3) of the

modified Metropolis algorithm. Inertia, for example,

has been modeled by constraining the cell velocity

increment via the term
DHinertiaðtÞ ¼
X
w2W

linertiaðwÞ

k vel
�!ðw; tÞ � vel

�!ðw; t� DtÞk2; (5)

where vel
�!ðw; tÞ denotes the instantaneous center-of-

mass velocity of the cell w at time t, linertiaðwÞ is a cell-
specific parameter, and Dt is one or more Monte Carlo

steps (Balter et al. 2007). Since the increment of the

Hamiltonian depends on the proposed transition, this is

a kinetic extension of the CPM.

Cell shapes arise in the CPM implicitly from sat-

isfying the volume constraint. In the two-dimensional

CPM, cells adopt approximately hexagonal

shapes, producing a space tiling pattern comparable

to epithelial tissues. Elongated cell shapes can be

modeled by imposing a cell length constraint

which renders the major axis of the ellipsoidal

approximation of the cell’s shape to be close to

a predefined target length or ratio (Zajac et al.

2003). Rod cell shapes with particular stiffness have

been modeled using a compartmentalized cell
concept, where each cell consists of a row of standard

CPM cells (Starruß et al. 2007).

Chemotactic response to some field c:S ! [0,1) of

signals can be modeled in the simplest form by an

addend Hchemo ¼
P

w2Wnf0g lchemoðwÞ
P

x2cellw cðxÞ to

the Hamiltonian, where lchemo is possibly a cell-type-

specific chemotactic response parameter (Glazier et al.

2007). If lchemo <0, the cells prefer to move up the

chemotactic gradient, for lchemo >0 they prefer to

move down the gradient. There have been several

more refined extensions to the CPM that model che-

motaxis (Glazier et al. 2007). One example is the

following kinetic extension used by Savill and

Hogeweg (1997), where the positions of the target

spin x and the trial spin y in a proposed transition

�! �yx are taken into account,

DHchemo ¼
X
w2W

lchemoðwÞðcðyÞ � cðxÞÞ: (6)

Hybrid and multiscale modeling: The CPM

can be coupled to auxiliary formalisms, typically

using systems of differential equations. A hybrid

approach enables multiscale modeling in which

molecular species are represented as continuous

quantities, and cells are treated as discrete entities.

For instance, CPM parameters pertaining to cellular

properties can be under the control of ordinary differ-

ential equations, representing subcellular processes

such as gene regulation. CPM cell behavior can

also be linked to lattice-based reaction-diffusion

systems representing the biochemical microenviron-

ment through, for example, chemotaxis. A similar

approach can be adopted to spatially represent the

intracellular biochemistry that exerts influence on

the protrusions and retractions in the CPM by kinetic

modulation of transition probabilities (Marée et al.

2006).

Implementations

When applied to specific biological problems, the

CPM framework is typically used with several exten-

sions and modifications. Its analysis comprises exten-

sive numerical simulation studies. In an effort to

provide a common implementation for CPM simula-

tions, CompuCell3D has been developed (Glazier et al.

CompuCell3D). This open source software imple-

ments a large number of common CPM extensions

and provides a graphical modeling interface.
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Limitations and Merits

From a theoretical perspective, the CPM is poorly

understood. Hence, the analysis of CPM models can

effectively only be performed by numerical simula-

tion. Important mathematical methods, such as rigor-

ous spatiotemporal limit procedures to derive the laws

that guide the behavior of certain macroscopic vari-

ables, are not yet available. Since the classical Metrop-

olis algorithm (▶Metropolis algorithm) is modified in

the CPM, these models differ in essential aspects from

classical equilibrium models. In addition, CPMs have

been criticized because their calibration is often

nontrivial. Cellular behaviors are specified in an indi-

rect or phenomenological manner via the Hamiltonian

and the modified Metropolis algorithm. Consequently,

the relation between the parameters that control the

dynamics of the CPM and the biological-physical

quantities they represent often remains allusive.

Despite these limitations, the CPM formalism has

found applications in many topics, mainly in the field

of developmental biology. Its spatial and cell-centered

nature renders it suitable for the study of phenomena

where a mesoscopic description of individual cell

shape and motility is important. It provides a flexible

modeling framework that allows incorporation of

problem-specific extensions. Moreover, coupling the

CPM to auxiliary model formalisms enables the explo-

ration of the complex interplay between several factors

at different biological scales, acting at the intracellular,

the intercellular, and the tissue level.
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Definition

Capillary electrophoresis (CE) mass spectrometry

(MS) is an analytical technique. CE is superior in

separation efficiency of ionic metabolites. MS can pro-

vide high sensitivity. The combination of CE with MS

can lead to achieve the analytical platform with high

separation capacity, resolution, and sensitivity. CE-MS

has been often used for measurements of ionic metab-

olites in metabolomics. CE-MS analysis is not suited to

measurements of neutral metabolites. CE-MS analysis

is a complementary tool to reversed-phase LC-MS

analysis which is specific to measurements of neutral

metabolites.
Characteristics

Selection of Analytical Machines

Most of the metabolites in primary metabolism are

ionic, hydrophilic, and polar. For example, metabo-

lites of glycolysis, TCA cycle, amino acid metabo-

lism, and nucleotide synthesis show these

characteristics. Therefore, CE-MS analysis is suitable

for measurements of metabolites in primary metabo-

lism. Metabolomics using CE-MS analysis could lead

to understandings of biochemical and biological

mechanisms in primary metabolism. On the contrary,

CE-MS analysis is not suited to measurements of

neutral metabolites because they cannot be separated

in CE. LC-MS is suitable for measurements of neutral

metabolites. CE-MS analysis is a complementary tool

to LC-MS analysis. Whether the usage of CE-MS or

LC-MS is selected in metabolomics depends on the

target metabolites.

CE

CE separates polar metabolites on the basis of their

mass-to-charge ratios. The separation capacity of CE is

superior to that of gas chromatography (GC) or liquid

chromatography (LC). Although the sensitivity is low

in CE, it can be sufficiently compensated by high

sensitivity in MS. Low-molecular-weight metabolites

in biological samples can be analyzed in two modes for

cationic and anionic metabolites.

After sample injection, the voltage is applied to

the capillary. Cationic metabolites migrate toward the

cathode side and anionic metabolites migrate toward

the anode side on the basis of electrochemical
property. The migration speed of metabolites is deter-

mined by hydrated ionic radius and valence. Because

even the metabolites with the same mass can be sep-

arated based on the nature of CE, the separation of

structural isomers is possible. For example, glucose

1-phosphate, glucose 6-phosphate, and fructose

6-phosphate can be easily separated in CE. The CE

analysis is also advantageous in terms of small vol-

ume requirement (a few nanoliters) for sample

injection.

TOFMS

Time-of-flight mass spectrometry (TOFMS) is often

used as MS in CE-MS analysis. Accelerated ions by

applied voltage reach the detector under high vacuum.

Ions with low m/z reach the detector earlier than those

with high m/z. The value of m/z is calculated on the

basis of the arrival time. TOFMS provides relatively

high resolution, which enables estimation of composi-

tion formula.

Peak Annotation

Detected peak information including migration time

in CE and m/z is obtained in CE-TOFMS analysis.

Peaks of putative metabolites are assigned to those of

known metabolites according to the peak informa-

tion. Human Metabolome Technologies Inc. pos-

sesses library information about migration time and

m/z of about 900 metabolites. These metabolites can

be identified and quantified in reference to library

information. Most amino acids, organic acids, sugar

phosphates, and nucleotides are included in the

library.

Metabolomics Application

CE-MS based metabolomics is applied to studies in

many fields including basic sciences, medical sci-

ences, nutrition, agriculture, and toxicology.

Metabolomics could lead to elucidating of gene,

enzyme, biomarker, and metabolic network. Specifi-

cally, CE-MS based metabolomics can depict the

details of primary metabolism which consists of

many ionic metabolites. Several applications are

introduced below.

Soga et al. identified an oxidative biomarker in

hepatotoxicity by CE-MS analysis. The changes in

liver metabolites following acetaminophen-induced

hepatotoxicity were examined. Ophthalmic acid

increased in conjunction with glutathione



C 392 Cene
consumption in liver after the addition of acetamino-

phen. The changes were also observed in serum. Oph-

thalmic acid might be a new biomarker for hepatic

oxidative stress.

Ishii et al. performed multi-omics (transcriptomics,

proteomics, and CE-MS-based metabolomics) analy-

sis to examine metabolic regulation of Escherichia

coli in response to gene disruption or changes in

growth rate. Metabolite levels were stable compared

to gene expression and protein levels. The results

showed robustness of metabolic network against per-

turbation such as gene disruption and changes in

growth rate.

Ohashi et al. examined metabolome changes in

histidine-starved E. coli by CE-MS-based

metabolomics. The analysis quantified 198metabolites

among 375 charged and hydrophilic metabolites in

primary metabolism. In E. coli, histidine starvation

induced changes in many metabolic pathways includ-

ing glycolysis, TCA cycle, amino acid metabolism,

and nucleotide biosynthesis.
References

Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A,

Hirasawa T, Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y,

Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N,

Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K,

Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K,

Mori H, Tomita M (2007) Multiple high-throughput analyses

monitor the response of E. coli to perturbations. Science

316(5824):593–597

Monton MR, Soga T (2007) Metabolome analysis by capillary

electrophoresis-mass spectrometry. J Chromatogr A

1168(1–2):237–246

Ohashi Y, Hirayama A, Ishikawa T, Nakamura S, Shimizu K,

Ueno Y, Tomita M, Soga T (2008) Depiction of metabolome

changes in histidine-starved Escherichia coli by

CE-TOFMS. Mol Biosyst 4(2):135–147

Ramautar R, Somsen GW, de Jong GJ (2009) CE-MS in

metabolomics. Electrophoresis 30(1):276–291

Ramautar R, Mayboroda OA, Somsen GW, de Jong GJ

(2011) CE-MS for metabolomics: developments and

applications in the period 2008–2010. Electrophoresis

32(1):52–65

Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T,

Kakazu Y, Ishikawa T, Robert M, Nishioka T, Tomita M

(2006) Differential metabolomics reveals ophthalmic

acid as an oxidative stress biomarker indicating hepatic

glutathione consumption. J Biol Chem 281(24):16768–

16776
Cene

Eric Werner

Department of Physiology, Anatomy and Genetics,

University of Oxford, Oxford, UK

Department of Computer Science, University of

Oxford, Oxford, UK

Oxford Advanced Research Foundation, Fort Myers,

FL, USA

Synonyms

Cancer networks; Cenome; Developmental control net-

works; Developmental networks; Stem cell networks
Definition

A cene is a developmental network (▶Developmental

Control Networks) that controls the development of

multicellular organisms. The nodes in the cene are cell

control states. Edges in the network denote cell actions

including jumps to new cell states. There are branches

in the network that denote cell division where each

daughter cell enters a possibly new control state. Some

branches stand for stochastic changes of control states.

Other branches describe cell signaling protocols

(Werner 2011a, b).

Characteristics

Cenes can be linked together to form larger cenes. The

global developmental control network in a genome is

called the ▶ cenome. The topology of the cene deter-

mines its ideal dynamic phenotype.

Examples of cenes include ▶ stem cell networks,

▶ cancer networks and terminal, and progenitor cell

▶ developmental control networks (for details see

Werner 2011a, b).

Cenes Are Executable Networks

Developmental control networks or cenes are execut-

able networks. The cell has an interpretive executive

system, the IES, that interprets and executes the direc-

tives in developmental control networks. This system

co-evolved with the developmental control networks

(Werner 2011a).
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Sub-cenes Within Cenes

Any cene can link to another cene. This means the link

has further developmental progeny generated by that

sub-cene. In this way more and more complex cenes

are built up.

Evolution of Cenes and Multicellular Organisms

The evolution of multicellular organisms is directly

linked to the increasing complexity of their cenes.

These networks are an autonomous layer on top of

normal gene networks (Werner 2011a, b).

Cross-References

▶Cancer Networks

▶Cenome

▶Developmental Control Networks

▶ Stem Cell Networks
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Synonyms

Cene; Developmental control networks
Definition

A cenome is the global developmental network

(▶Developmental Control Networks) that controls

the development of a multicellular organism.

The cenome is a type of global ▶Cene. The nodes

in the cenome are cell control states. Edges in the

network denote cell actions including jumps to

new cell states. There are branches in the network

that denote cell division where each daughter cell

enters a possibly new control state. Some branches

stand for stochastic changes of control states.

Other branches describe cell signaling protocols

(Werner 2011a, b).
Characteristics

Cenomes consist of linked-together ▶ developmental

control networks or▶ cenes. The global developmen-

tal control network in a genome is called the Cenome.

The topology of the cenome determines part of its

ideal dynamic phenotype. Since most genes are

shared between organisms they cannot be responsible

for the unique morphologies and functional pheno-

types of organisms. Cenes and the global cenome

complement genetic processes with multicellular

control processes.

The cenome consists of cenes (▶Cene)

that can include ▶ stem cell networks, ▶ cancer

networks and terminal, and progenitor cell ▶ devel-

opmental control networks (for details see Werner

2011a, b).

Cenomes Are Executable Networks

The cenome of an organism is an executable network.

Each cell in a multicellular system has an interpretive

executive system, the IES, that interprets and executes

the directives in the cenome. The IES co-evolved with

the cenome (Werner 2011a).
Cenome and Cene Control Have a Subsumption

Architecture

The cenome control network is a higher layer that

subsumes lower level standard gene networks.

Lower level gene networks allow the cell to react

to its local environment, while higher level cenes,
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which make up the cenome, guide the global

development of the embryo.

Evolution of Cenes and Multicellular Organisms

Any cene can link to another cene. This means the link

has further developmental progeny generated by that

sub-cene. In this way, more and more complex cenes

are built up within a cenome. The evolution of

multicellular organisms is directly linked to the

increasing complexity of their cenome (Werner

2011a, b).
Cross-References

▶Cancer Networks

▶Cene

▶Developmental Control Networks

▶ Stem Cell Networks
References

Werner E (2011a) On programs and genomes, arXiv:1110.5265v1

[q-bio.OT]. http://arxiv.org/abs/1110.5265

Werner E (2011b) Cancer networks: a general theoretical

and computational framework for understanding cancer,

arXiv:1110.5865v1 [q-bio.MN]. http://arxiv.org/abs/

1110.5865v1
Centromere

Rosella Visintin

IEO, European Institute of Oncology,

Milan, Italy
Definition

A region on the DNA, usually localized in the center of

chromosomes, where sister chromatids are closely

associated.
Cross-References

▶Mitosis
Ceteris Paribus Laws

Max Kistler

IHPST, Université Paris 1 Panthéon-Sorbonne, Paris,

France
Definition

Regularities in ▶ special sciences typically have

exceptions. A law expressing a regularity that has

exceptions is sometimes called a “ceteris paribus law”

(or “cp-law”). A situation is an exception to a law if it

does not correspond to the regularity expressed by the

law, but is not taken to refute the law, because the

exception can be explained to be the result of interfer-

ences that follow (other) laws. A cp-law expresses

a regularity that exists in “normal” situations, or, liter-

ally, if “all else is equal,” i.e., if there are no perturba-

tions resulting in an exception. In classical genetics,

Mendel’s law of segregation says that, in sexually

reproducing organisms, during gamete formation each

member of an allelic pair separates from the other

member to form the genetic constitution of an individual

gamete, so that there is a 50:50 ratio of alleles in the

mass of the gametes. However, some sets of gametes are

exceptional with respect to this law because some

organisms undergo “meiotic drive” leading to an

overproduction of gametes with one allele at the

expense of gametes with the other allele. No strict law

is true of real systems whose evolution is subject to

perturbations. One proposal for understanding ceteris

paribus laws is to take them to be strictly universal

generalizations that are true of ideal systems. However,

the status of such “ideal systems” is problematic. It is

not clear how laws describing systems that are not real

can help explain and predict real systems. An alternative

is to distinguish between laws of nature and laws “in

situ” (Cummins 2000), which are specific for certain

systems that Cartwright (1999) calls “nomological

machines.” Laws of nature determine relations between

different properties of objects and have unrestricted

scope: All massive objects obey Newton’s law of uni-

versal gravitation. However, no such law determines

directly and by itself the evolution of any particular

system: To obtain the equation of motion of

a particular system, one has to build a model that
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takes into account all properties of the objects

composing the system and all forces due to these prop-

erties. To find the equation of motion of a charged

massive particle p such as a biological molecule, one

has to describe all massive and charged particles qi in

the environment of the object, then calculate the forces

that the objects qi exert on p. Themotion of themolecule

is determined by the sum of all these forces. Exceptions

to generalizations bearing on particular systems can

then be conceived as resulting from the neglect of

some properties of p, or of relevant objects qi in its

environment.
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CFSE

▶Modeling, Cell Division and Proliferation
Chain Type

▶ IMGT-ONTOLOGY, ChainType
Change of Antigenic Properties by
Mutations

▶Antigenic Drift and Shift
Change of Antigenic Properties by
Rearrangement of Viral Genome
Segments

▶Antigenic Drift and Shift
Characteristic Path Length

Falk Schreiber

Leibniz Institute of Plant Genetics and Crop Plant

Research (IPK), OT Gatersleben, Stadt Seeland,

Germany

Martin Luther University Halle–Wittenberg, Halle,

Germany
Synonyms

Average path length
Definition

The characteristic path length l(G) of a ▶ graph

G ¼ (V, E) is defined as the average number of edges

in the shortest paths between all vertex pairs given by

lðGÞ ¼ 1

Vj j � Vj j � 1ð Þ
X
u2V

X
u02Vn uf g

spl u; u0ð Þ; (1)

where spl(u,u0) gives the number of edges in a shortest

path between vertices u and u0. In case of an

unconnected graph, the characteristic path length is

infinite, as the number of edges between two

unconnected vertices is considered infinite. In this

case, formula (1) is often modified to sum over just

all connected vertex pairs. Alternatively, other mea-

sures such as the harmonic mean or the average inverse

path length can be used.
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Checkpoints

▶Cell Cycle Dynamics, Irreversibility
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Chemical Master Equation

Hao Ge1 and Hong Qian2

1School of Mathematical Sciences and Centre for

Computational Systems Biology, Fudan University,

Shanghai, China
2Department of Applied Mathematics, University of

Washington, Seattle, WA, USA
Synonyms

Gillespie algorithm; Stochastic chemical kinetics

Definition

Chemical master equation is the stochastic counterpart

of the chemical kinetic equation based on the law of

mass action. It describes the kinetics of chemical

reactions in a rapidly stirred tank with small volume

in terms of stochastic reaction times giving rise to

fluctuating copy numbers of reaction species.

Consider a system of fixed volume V at constant

temperature T. Let there be well-stirred mixture of

N � 1 molecular species {S1, . . . ,SN} and M � 1

reactions {R1, . . ., RM}. One specifies the dynamical

state of this system by X(t)¼ (X1(t), . . ., XN(t)), where

Xi(t) is the copy number of molecular species Si in the

system at time t.

One describes the time evolution of X(t) from some

given initial state X(t0) ¼ x0. Both single-molecule

experimental measurements and theoretical investiga-

tions have shown that X(t) is a stochastic process

because the time at which a particular reaction occurs

is random.

The chemical master equation kinetics assumes that

the system is well stirred such that at any moment each

reaction occurs with equal probability at any position in

space. Furthermore, it assumes that for each reaction Rj,

there is a corresponding rate function rj and a stoichi-

ometry vector vj ¼ (vj1, . . ., vjN), which are defined as

rj xð Þdt ¼ the probability; given X tð Þ ¼ x;

that one reaction Rj will occur some where

in the next infinitestimal time interval t; tþ dt½ Þ;
ðj ¼ 1;    ;MÞ:

(1)
and
vji ¼ the change in the number of Si molecules

caused by one Rj reaction; ðj¼ 1;    ;M; i¼ 1;    ;NÞ:
(2)

The stoichiometry vector {vji} can be obtained from

the difference between the numbers of a molecular

species that are consumed and produced in the

reaction.

Exact description of the rate function associates

with a reaction that can be either from phenomenolog-

ical models for stochastic chemical kinetics or from

more fundamental molecular physics based on the

concept of elementary reactions. In general, the func-

tion rj has the mathematical form:
rj xð Þ ¼ kjhj xð Þ: (3)

Here kj is the specific probability rate constant for

reaction Rj, which is defined such that kjdt is the

probability that a randomly chosen combination of

the reactants of Rj will react accordingly in the next

infinitesimal time interval dt. kj is intimately related to

the rate constants in the traditional law of mass action

kinetics.

The function hj(x) in Eq. 3 measures the number

of distinct combinations of Rj reactant molecules

available in the state x. It is a combinatorial factor

that can be easily obtained from the reaction Rj, i.e.,

hjðxÞ ¼
QN

k¼1
xk !

mjk !ðxk�mjkÞ!. In the transitional mass-

action kinetics, this term is related to the product of

the concentrations of all reactants.

In general, for a chemical reaction
Rj :mj1S1þ þmjNSN! nj1S1þ þnjNSN; (4)

one has
vji ¼ nji �mji;

rjðxÞ ¼ kj
YN
k¼1

xk!

mjk!ðxk �mjkÞ!
(5)

http://dx.doi.org/10.1007/978-1-4419-9863-7_100581
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If for any k and j, have xk >> mjk, then

approximately
C

rj xð Þ ¼ kj
YN
k¼1

xk
mjk

mjk!
(6)

Then
rjðxÞ
V
¼ kjV

n�1

QN
k¼1

mjk!

0
BBB@

1
CCCA YN

k¼1

xk
V

� �mjk

; n ¼
XN
k¼1

mjk: (7)

is precisely the reaction flux per unit volume in the

mass-action kinetics; the (xk/V) is the concentration of

species k, and the term in the parenthesis, k
0
j ¼ kjV

n�1QN
k¼1

mjk !

,

is the reaction rate constant in the traditional chemical

kinetics. Here, kj is regarded as “stochastic reaction

constant,” while k
0
j is the corresponding reaction

constant for Law of Mass Action.

The reaction rate constant is deduced only from

experiments, or calculated based on Kramers-Marcus

theory. It is usually a function of temperature but

is independent of the volume of a reaction system.

However, the stochastic reaction constant kj depends

on the system volume and the temperature.

From the rate function given from above, the

state vector X(t) is a Markov jump process on the

nonnegative N-dimensional integer lattice.

Any Markov process can be described by two

completely different, complementary mathematical

methods. One follows its stochastic trajectories and

one consider its probability distribution function

changing with time. The Gillespie algorithm gives

the former, and the chemical master equation is for

the latter.

In the chemical master equation perspective, one no

longer asks what are the copy number (or concentra-

tion) of species i at time t, but rather what is the

probability of the system having xi copies of species

Xi at time t.

We focus on the probability
P x; tð Þ ¼ Pr X tð Þ ¼ xf g; (8)
and now derive its evolutionary equations, i.e., the

chemical master equation.

We take a time increment dt and consider the

variation between the probability of X(t) ¼ x and of

X(t + dt) ¼ x. This variation is
P x; tþdtð Þ�P x; tð Þ¼ Increasing of the probability in dt

�Decreasing of the probability in dt

(9)

We take dt so small such that the probability of

having two or more reactions in dt is negligible com-

pared to the probability for only one reaction. Then

increasing of the probability in dt occurs when

a system with state X(t) ¼ x � vj reacts according to

Rj in (t, t + dt), the probability of which is rj(x � vj)dt.

Thus,
Increasing of the probability in dt¼
XM
j¼1

rjðx� vjÞPðx� vj; tÞdt:

(10)

Similarly, when a system with state X(t) ¼ x reacts

according to any reaction channel Rj in (t, t + dt), the

probability P(x, t) will decrease. Thus,
Decreasing of the probability in dt¼
XM
j¼1

rjðxÞPðx; tÞdt:

(11)

Substituting Eqs. 10 and 11 into Eq. 9, we obtain
P x; tþdtð Þ�P x; tð Þ¼
XM
j¼1

rjðx� vjÞPðx� vj; tÞdt

�
XM
j¼1

rjðxÞPðx; tÞdt;
(12)

which yields, with the limit dt ! 0, the chemical

master equation:

@

@t
Pðx; tÞ ¼

XM
j¼1

rjðx� vjÞPðx� vj; tÞ dt

�
XM
j¼1

rjðxÞPðx; tÞ dt: (13)
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Characteristics

Consistent with Law of Mass Action

The relationship between deterministic law of mass

action and stochastic chemical master equation for

chemical reactions was established by T. Kurtz in

a general theory in which a stochastic Markov

chain model for general chemical reaction is studied

alongside its deterministic counterpart. Recall that

both Gillespie algorithm and the chemical master

equation are two different descriptions of the

same stochastic, jump process. Let XV(t) denote this

stochastic process, where V is the volume of the

system, and the initial condition (in the thermody-

namic limit) is
lim
V!1

XVð0Þ
V
¼ x0 (14)

Then, the solution to the initial value problem of the

corresponding chemical kinetics based on the law of

mass action model is denoted by c(t,x0). Kurtz

has shown that the relationship between these two

solutions is
lim
V!1

Pr sup
s�T

XVðtÞ
V
� cðt; x0Þ

����
���� > e

 �
¼ 0;

for every T and e > 0;

(15)

It is important to note the mathematical subtlety of

s � T. The above result is only valid for finite time

interval, even though it can be as long as one likes: The

e is a function of T; greater the T, larger the e.
Compare the solution to the chemical master

equation with initial distribution concentrated at x0,

P(x,t|x0) and the deterministic kinetics c(t,x0); if the
latter approaches to a steady-state value then the

former cumulates probability at the steady state. In

general, there is an agreement between the steady

states of the deterministic kinetics and the peaks of

the stationary distribution of the chemical master

equation.

However, in the limit of infinitely large volume, the

situation is quite different: The peaks of the stationary

distribution of chemical master equation may not

be consistent with the stable fixed points of the
mass-action kinetics. This is exactly due to the s � T
in Eq. 15. This can be explained by a theory of multiple

timescales.

Numerical Simulation: Gillespie Algorithm

We now introduce stochastic simulation methods that

generate the random trajectories of X(t). Once we have

enough sample trajectories of a stochastic process, we

will be able to calculate the probability distribution

function P(x, t) and all other statistical behaviors

including the mean trajectory, variances, and

correlations.

The stochastic simulation algorithm (SSA) (also

known as the Gillespie algorithm) is based on the

following next-reaction probability distribution:

assume the system is in state x at time t, and let
pðt; jjx; tÞ ¼ probability that; given X tð Þ ¼ x;

the next reaction will occur in the

infinitesimal time interval ½tþ t; tþ tþ dtÞ;
and will be the Rj reaction:

(16)

In probability theory, there is an elementary theo-

rem, which states that
pðt; jjx; tÞ¼ rjðxÞexpð�r0ðxÞtÞ; 0� t<1; j¼ 1; :::;M

(17)

where

r0ðxÞ ¼
XM
k¼1

rkðxÞ (18)

The key step of this simulation method is to

generate the pair of numbers (t, j) in accordance with

the probability Eq. 18: First generate two random

numbers a1 and a2 from the uniform distribution in

the unit interval, and then take
t ¼ � lnða1Þ
r0ðxÞ ;

j ¼ the smallest integer satisfying
Xj
i¼1

riðxÞ > a2r0ðxÞ

(19)
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Below are main steps in the stochastic simulation

algorithm.

1. Initialization: Let the initial state as X ¼ X0, and

t ¼ t0.

2. Simulation: Generate a pair of random numbers

(t, j) according to the probability density function

(17).

3. Update: Increase the time by t, and replace the

molecule numbers by X + vj.

4. Iterate: Go back to Step 2 unless the end of the

simulation procedure.

The exact stochastic simulation algorithm consists

with the chemical master equation and gives an exact

sample trajectory of the real system.
Cross-References

▶ Fokker–Planck Equation

▶Law of Mass Action

▶Markov Chain

▶ Stochastic Differential Equation
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ChIP

▶Chromatin Immunoprecipitation
ChIP-on-Chip Assay

Nobuo Shimamoto

Faculty of Life Sciences, Kyoto Sangyo University,

Kyoto, Japan
Definition

ChIP-on-CHIP Assay is a method to determine the

location of the genomic DNA to which a DNA-binding

protein binds. The protein is cross-linked to DNA,

usually in vivo, and the DNA is fragmented.

The DNA fragments cross-linked with the protein are

then immunoprecipitated, and hybridized to DNA chip

or directly sequenced to determine the location.
Cross-References

▶Transcription in Bacteria
Chi-Squared Test

Larissa Stanberry

Bioinformatics and High-throughput Analysis

Laboratory, Seattle Children’s Research Institute,

Seattle, WA, USA
Synonyms

Pearson’s chi-squared test
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Definition

The chi-squared test of goodness of fit evaluates

whether the observed frequencies differ from theoret-

ical values.
Characteristics

The chi-squared test of independence is applied

to count data that could be represented by the I�J
contingency table. For example, counting sightings

of three different bird species in four different

locations would result in a 3 � 4 table, where each

cell frequency nij gives the number of sightings of the

i-th species in the j-th location. One might be inter-

ested to evaluate whether the abundance of species

differ between the locations. The test statistic is

given by:
X2 ¼
XI
i¼1

XJ
j¼1

nij � mij
mij

;

where mij are the expected frequencies under the null

hypothesis. The expected frequencies are typically

unknown, but could be estimated by

m̂ij ¼
P
j

nij
P
i

nij=n, where n is the total number of

counts. Substituting m̂ij in place of mij, we obtain that,

asymptotically, the resulting test statisticX2 follows

a chi-squared distribution with (I�1)(J�1) degrees of
freedom (Agresti 2002).

Conclusions

The chi-square test provides evidence of association

between the variables; however, it does not indicate

how the variables relate to each other. To truly under-

stand the nature of the association, the chi-squared test

alone is not sufficient and should be followed by more

detailed analysis, i.e., residual analysis, decomposi-

tion, odds ratios, etc. The chi-squared test relies on

asymptotic distribution and is applicable only when

the cell frequencies are sufficiently large. For small

sample sizes, the Fisher’s Exact Test can be used.

Furthermore, the chi-squared test is invariant with

respect to reodering of rows and columns. Hence, if

one of the variables is ordinal, the appropriate statistics

that respect the ordinality should be chosen.
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Chondrocytes

Steven D. Rhodes

School of Medicine, Indiana University, Indianapolis,

IN, USA
Definition

Chondrocytes are a special type of connective tissue

cells that form cartilage. They are derived from mes-

enchymal stem cells of the bone marrow cavity and

reside in joints where cartilage is required to cushion

bone-on-bone friction. Chondrocyte differentiation

can be induced in vitro from mesenchymal stem cell

cultures in the presence of ascorbic acid plus cytokines

such as transforming growth factor beta 1 (TGF-b1) or
TGF-b3. Chondrocytes can be defined phenotypically

by the expression of Cbfa1/Runx2, Type-II collagen,

Type-IX collagen, and Aggrecan. Histologically,

mature chondrocytes stain positively with toluidine

blue, signifying an abundance of proteoglycans within

the extracellular matrix.
Cross-References

▶ Single Cell Assay, Mesenchymal Stem Cells
Chorioallantoic Membrane (CAM) Assay

Marsha A. Moses

Department of Surgery/Harvard Medical School,

Vascular Biology Program/Children’s Hospital

Boston, Boston, MA, USA
Definition

The chorioallantoic membrane (CAM) assay is one of

the earliest in vivo angiogenesis assays to be devel-

oped. The CAM of fertilized chicken eggs is
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challenged with either potential stimulators or

inhibitors of neovascularization by placement of

polymers or other delivery systems impregnated

with the test substances at a site on the CAM imme-

diately above the subectodermal plexus (Ausprunk

et al. 1975). Zones of vessel clearance indicate

anti-angiogenic activity, whereas increased vessel

development in a spokewheel configuration indicates

angiogenic stimulation (Fernandez et al. 2003;

Moses et al. 1990).
Cross-References

▶Neovascularization
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Choristoma

Barbara J. Davis

Section of Pathology, Tufts Cummings School of

Veterinary Medicine Biomedical Sciences,

North Grafton, MA, USA
Definition

A heterotopic rest of cells in normally organized tissue

in an abnormal site – common to find pancreatic tissue

in the liver.
Cross-References

▶Cancer Pathology
Chromatin

Vani Brahmachari and Shruti Jain

Dr. B. R. Ambedkar Center for Biomedical Research,

University of Delhi, Delhi, India
Synonyms

Compact DNA, Nucleosomes
Definition

The genome which is a linear DNA molecule is very

long relative to the size of the nucleus in the cells. For

example, it is estimated that all the 23 pairs of

chromosomes present in the human cells if completely

stretched and lined up end to end, it will extend over

2 m, which is of many orders more than the size of the

nucleus in the cell. However, the DNA is wrapped

around a ball of proteins called the histones and further

folded to be accommodated in the nucleus. This

compact DNA-protein complex is called chromatin.

The DNA-protein complex forms repetitive units called

▶ nucleosomes. The compaction state of chromatin is

correlated to the transcriptional activity of DNA. The

chromatin provides the platform for interaction with

various regulatory factors that control transcription.
Cross-References

▶Epigenetics

▶Nucleosomes
Chromatin Immunoprecipitation

Vani Brahmachari and Shruti Jain

Dr. B. R. Ambedkar Center for Biomedical Research,

University of Delhi, Delhi, India
Synonyms

ChIP
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Protein-DNA cross-linked
with formaldehyde &
Chromatin isolated

Immunoprecipitated with
antibodies directed against histone

H3 methylated at lysine 4

DNA purified and
PCR amplified and
sequenced.

Sonicated to break up the cross-
linked chromatin to 500-200base
pair fragments

These fragments are not
precipitated as they do
not have modified histone
H3 (marked as star).

Chromatin
Immunoprecipitation,
Fig. 1 Outline of chromatin

immunoprecipitation (ChIP).

Immunoprecipitation with

anti-H3K4me is shown as an

example. The modification on

histone is marked as a star
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Definition

Chromatin immunoprecipitation (ChIP) is a type of

immunoprecipitation technique used to analyze the pro-

tein-protein andDNA-protein interactions (Collas 2010).

It aims to determine whether specific proteins, like tran-

scription factors are associated with specific genomic

regions like promoter elements or regulatory elements.

It can also be used to determine the specific histone

(▶ epigenetics) modifications associated at the target

sites in the genome, indicating gene expression profiles.

The steps involved are as follows (Fig. 1):

(a) The cells are taken and the protein-DNA

complexes (chromatin) are crosslinked by formal-

dehyde treatment.

(b) The DNA-protein complexes are then sheared and

DNA fragments associated with the protein(s) of

interest are selectively immunoprecipitated using

antibody against the specific protein.

(c) The associated DNA fragments are purified and

sequences are identified by amplification or DNA

sequencing reactions.
Cross-References

▶Epigenetics

▶Epigenetics, Drug Discovery
References
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Chromatin Proteins

▶Histones
Chromodomain Helicase DNA Binding
(CHD)

Tetsuro Kokubo

Department of Supramolecular Biology, Graduate

School of Nanobioscience, Yokohama City

University, Yokohama, Kanagawa, Japan
Definition

In metazoans such as fly and human, the CHD class of

ATP-dependent nucleosome-remodeling factors

http://dx.doi.org/10.1007/978-1-4419-9863-7_567
http://dx.doi.org/10.1007/978-1-4419-9863-7_567
http://dx.doi.org/10.1007/978-1-4419-9863-7_844
http://dx.doi.org/10.1007/978-1-4419-9863-7_850
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includes many members, e.g., CHD1 and Mi-2/NuRD.

In yeast, by contrast, the family has only a single

member, CHD1 (Clapier and Cairns 2009) (summa-

rized in Table 1).

CHD appears to function redundantly and/or

cooperatively with ISWI in remodeling nucleo-

somes. For instance, CHD and ISWI are both

required in yeast for nucleosome eviction from

the PHO5 promoter (Ehrensberger and Kornberg

2011) and for appropriate spacing of nucleosome
Chromodomain Helicase DNA Binding (CHD), Table 1 Remo

Family and composition

Organisms

Yeast

SWI/

SNF

Complex SWI/SNF RSC

ATPase Swi2/Snf2 Sth I

Noncatalytic

homologous subunits

Swi1/Adr6

Swi3 Rsc8/Swh3

Swp73 Rsc6

Snf5 Sfh1

Arp7, Arp9

Unique a b

ISWI Complex ISW1a ISW1b ISW2

ATPase Isw1 Isw2

Noncatalytic

homologous subunits

Itc1

Unique Ioc3 Ioc2,

Ioc4

CHD Complex CHD1

ATPase Chd1

Noncatalytic

homologous subunits

Unique
arrays in the coding region of ADH2
(Xella et al. 2006). CHD is involved in multiple

steps of mRNA biogenesis, including transcrip-

tional initiation, elongation, termination, and

splicing.

Mi-2/NuRD is a multi-protein complex that

contains HDACs and methyl CpG-binding proteins

(see the definition “▶mammalian HDAC”). This

complex plays a crucial role in transcriptional repres-

sion rather than in activation.
deler composition and orthologous subunits

Fly Human

BAP PBAP BAF PBAF

BRM/Brahma hBRM or

BRGI

BRGI

OSA/

eyelid

BAF250/

hOSAI

Polybromo

BAP170

BAF 180

BAF 200

MOR/BAP155 BAF155, BAF170

BAP60 BAF60a or b or c

SNRI/BAP45 hSNF5/BAF47/INII

BAPI11/dalao BAF57

BAP55 or BAP47 BAF53a or b

Actin β-actin

NURF CHRAC ACF NURF CHRAC ACF

ISWI SNF2L SNF2Hc

NURF301 ACF1 BPTF hACFI/

WCRF180

CHRAC14 hCHRAC17

CHRAC16 hCHRAC15

NURF55/

p55

RbAp46

or 48

NURF38

CHD1 Mi-2/NuRD CHD1 NuRD

dCHD1 dMi-2 CHD1 Mi-2α/CHD3,
Mi-2β/CHD4

dMBD2/3 MBD3

dMTA MTA1,2,3

dRPD3 HDAC1,2

p55 RbAp46 or 48

p66/68 p66α,β
DOC-17

(continued)

http://dx.doi.org/10.1007/978-1-4419-9863-7_1622


Chromodomain Helicase DNA Binding (CHD), Table 1 (continued)

Family and composition

Organisms

Yeast Fly Human

INO80 Complex INO80 SWR1 Pho-

dINO80

Tip60 INO80 SRCAP TRRAP/Tip60

ATPase Ino80 Swr1 dIno80 Domino hIno80 SRCAP p400

Noncatalytic

homologous subunits

Rvb1,2 Reptin, Pontin RUVBL1,2/Tip49a,b

Arp5,8 Arp6 dArp5,8

dActin1

BAP55

Actin87E

BAF53a

Arp4, Actin1 Arp5,8 Arp6 Actin

Taf14 Yaf9 dGAS41 GAS41

Ies2,6 hIes2,6

Swc4/

Eaf2

dDMAP1 DMAPI

Sw2/

Vps72

dYL-1 YL-1

Bdf1 dBrd8 Brd8/TRC/

p120

H2AZ,

H2B

H2Av,H2B H2AZ,

H2B

Swc6/

Vps71

ZnF-HITI

dTra1 TRRAP

dTip60 Tip60

dMRG15 MRG15

MRGX

dEaf6 FLJI1730

dMRGBP MRGBP

E(Pc) EPCI, EPC-

like

dING3 ING3

Unique Ies1,les3-5,

Nhp10

Swc3,5,7 Pho d

aSwp82, Taf14, Snf6, SnfI 1
bRsc1 or Rsc2, Rsc3-5, 7, 9, 10, 30, Htl1, Ldb7, Rtt102
cIn addition, SNF2H associates respectively with Tip5, RSF1, and WSTF to form NoRC, RSF, and WICH remodelers
dAmida, NFRKB, MCRS1, UCH37, FLJ90652, FLJ20309

C 404 CIA
Cross-References

▶Mechanisms of Transcriptional Activation and
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CIA

▶CIA/Asf1
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CIA/Asf1

Toshiya Senda1 and Naruhiko Adachi2

1Biomedicinal Information Research Centre (BIRC),

National Institute of Advanced Industrial Science

and Technology (AIST), Tokyo, Japan
2Structure-guided Drug Development Project, JBIC

Research Institute, Japan Biological Informatics

Consortium, Tokyo, Japan
CIA/Asf1, Fig. 1 Crystal structures of CIA/Asf1 and its histone
Synonyms

Asf1; CIA

complex. (a) Crystal structure of CIA (PDB code: 1ROC). (b)

Crystal structure of the CIA–histone-H3–H4 complex (PDB

code: 2IO5). CIA, H3, and H4 are shown in red, blue, and
green, respectively
Definition

CIA (CCG1 interacting factor A)/Asf1 (anti-silencing

function 1) is the most conserved histone chaperone in

eukaryotes and plays important roles in various nuclear

events such as transcription, replication, and DNA

repair (Eitoku et al. 2008). The gene of this factor

was first identified in genetic screening as a factor

with an anti-silencing function. However, at that

time, the biochemical activity of Asf1 was unknown.

After a few years, two groups have independently

rediscovered this factor as one relevant to nucleosome

formation with histone H3–H4-binding activity. One

group identified the CIA/Asf1–histone-H3–H4 com-

plex as an activation factor of CAF-1, which is

involved in the nucleosome formation in DNA

replication. The other group identified CIA/Asf1 as

a histone chaperone that interacts with the CCG1

(cell cycle gene 1) subunit of the general transcription

factor TFIID. Further analysis revealed two subtypes

of CIA/Asf1, Asf1a and Asf1b (CIA-I and CIA-II,

respectively). The CIA/Asf1 molecule is composed

of two parts, the N-terminal structured region with

155 amino acid residues and a C-terminal acidic tail.

The amino acid sequence of the N-terminal structured

region is highly conserved among all eukaryotes;

amino acid sequences of human and yeast CIA/Asf1

show approximately 60% sequence identity. Genetic,

biological, and biochemical studies have revealed that

CIA/Asf1 is involved in transcription, replication, and
DNA repair. In these nuclear processes, CIA/Asf1 seems

to play a role(s) in histone transfer and nucleosome

structural change. Furthermore, CIA/Asf1, as described

above, forms a complex with CAF-1 and HIRA, which

have been considered to be involved in nucleosome

formation in replication-dependent and -independent

manners, respectively. The tertiary structure of CIA/

Asf1 revealed that it has a b-sandwich structure like

immunoglobulin (Fig. 1a). CIA/Asf1 forms a complex

with the histone H3–H4 dimer as elucidated by crystal

structure analyses (Fig. 1b). Biochemical analysis

showed that CIA/Asf1 has an activity that disrupts the

histone (H3–H4)2 tetramer into two dimers through the

formation of a CIA/Asf1–histone-H3–H4 complexes.
Cross-References

▶Histone Post-translational Modification to

Nucleosome Structural Change
References
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▶Circadian Rhythm
Circadian Rhythm

Jinzhi Lei

Zhou Pei-Yuan Center for Applied Mathematics,

Tsinghua University of Beijing, Beijing, China
Synonyms

Biological clock; Circadian; Human clock
Definition

A circadian rhythm is the daily cycle of biological

activity based on a 24-h period and influenced by

regular variations in the environment, such as the alter-

nation of night and day. Circadian rhythms include

sleeping and waking in animals, flower closing and

opening in angiosperms, and tissue growth and differ-

entiation in fungi.
Melatonin secretion starts

Bowel movements supperssed Midnig

21:00

22:30 00:00

12:00
Noon

14:30

15:30

17:00

18:00

Best coordination

Fastest reaction time

Greatest cardiovascular efficiency
and muscle strength

Highest blood pressure 18:30

Highest body temperature
 19:00

Circadian Rhythm, Fig. 1 Diagram of the circadian patterns of a
Figure 1 shows the circadian patterns of typical

human who rises early in the morning, eats lunch

around noon, and sleeps at night.

In mammals, the focus point of circadian

rhythms is a master clock, located in the

suprachiasmatic nuclei (SCN) of the anterior hypo-

thalamus, which orchestrates the circadian program.

Circadian timing in mammals is organized in

a hierarchy of multiple circadian oscillators. The

oscillatory machinery of the master clock is contained

within single neurons (“clock cells”), and the SCN is

composed of numerous clock cells. The SCN receives

light information by a direct retinohypothalamic tract

(RHT) to entrain the clock to the 24-h day, and in turn

coordinates the timing of slave oscillators in other

brain areas and in peripheral organs (Reppert and

Weaver 2002).

Differences in clock protein levels and/or kinetics

are considered as the main molecular basis of circa-

dian timing in slave oscillators. The intracellular

clock mechanism in mammals involves interacting

positive and negative transcriptional feedback loops

that drive recurrent rhythms in the RNA and protein

levels of key clock components (Reppert and Weaver

2002). A detailed predictive model of the mammalian

circadian clock was developed in Forger and Peskin

(2003).
ht
Deepest sleep

02:00

06:00

06:45 Sharpest rise in blood pressure

07:30 Melatonin secretion stops

08:30 Bowel movement likely

09:00 Highest testosterone secretion
10:00 High alertness

Lowest body temperature
04:30

typical human (Smolensky and Lamberg 2000)
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Cis-Acting Sequences in the Core
Promoter

▶Core Promoter Elements
Cis-Elements

▶Transcription Factors and DNA Elements in

Eukaryote
Classification

Eyke H€ullermeier, Thomas Fober and

Marco Mernberger

Philipps-Universit€at Marburg, Marburg, Germany
Definition

In statistics and machine learning, classification refers

to the problem of learning a classifier in the form of

a mapping C from an instance space X to a finite set of

class labels Y ¼ fy1; y2; . . . ; ykg: Thus, classification
is closely related to regression (▶Regression Analy-

sis), where the output space is numerical instead of

categorical. In order to induce a classifier, the

learning algorithm has access to training data,

which typically consists of a set of examples

fðx1; y1Þ; . . . ; ðxn; ynÞg � X � Y, that is, instances

together with a corresponding class label. Classifica-

tion is a specific type of supervised learning (▶Learn-

ing, Supervised), and the main goal is to induce

a classifier that generalizes well beyond the training
data. Roughly speaking, this means that C should be

able to classify so far unseen instances x 2 X correctly.

Apart from predictive accuracy, other criteria may of

course play a role. For example, interpretable classi-

fiers such as rule-based models (▶Rule-based

Methods) are often preferred to “black box” models

delivering predictions which are not comprehensible

by a human user. Besides, the efficiency and scalability

of the underlying learning algorithms is of major

importance.
Characteristics

The predictive accuracy of a classifier C is typically

measured in terms of its expected loss (or risk) R(C),

that is, the expected value of the loss L(C(X),Y), where

(X,Y) is a sample taken at random from X � Y
according to a probability distribution P. Moreover,

L : Y � Y !  is a (real-valued) loss function that

penalizes class predictions ŷ ¼ CðxÞ deviating from

the true class y of an instance x:
RðCÞ ¼ E LðCðXÞ; YÞð Þ ¼
Z
X�Y

LðCðxÞ; yÞdPðx; yÞ

The simplest loss function is the 0/1 loss, defined as

Lðŷ; yÞ ¼ 0 if ŷ ¼ y and Lðŷ; yÞ ¼ 1 otherwise, though

other losses are used as well. In cost-sensitive classifi-

cation, for example, a different loss value

cij ¼ Lðyi; yjÞ can be specified for each pair of classes
ðyi; yjÞ 2 Y2.

Since the probability distribution P is in general not

known, the expected loss of a candidate model can

only be estimated. An obvious estimate is the so-called

empirical risk of a classifier C, namely, the average

loss on the training data:

RempðCÞ ¼ 1

n

Xn
i¼1

LðCðxiÞ; yiÞ

However, for a classifier C learned on the training

data, the empirical risk will normally underestimate

the true risk. Roughly speaking, this is because C has

been optimally adapted to the training data, and thus

may fit this data even better than the true risk mini-

mizer C� ¼ arg minC02HRðC0Þ. In other words, mini-

mizing the empirical risk on the training data comes

with the danger of “▶ overfitting” the data, which

http://dx.doi.org/10.1007/978-1-4419-9863-7_1562
http://dx.doi.org/10.1007/978-1-4419-9863-7_1405
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http://dx.doi.org/10.1007/978-1-4419-9863-7_610
http://dx.doi.org/10.1007/978-1-4419-9863-7_610
http://dx.doi.org/10.1007/978-1-4419-9863-7_601


C 408 Classification
means that the true risk of a classifier C is much higher

than its empirical risk.

The danger of “over-fitting” typically increases

with the flexibility (capacity) of the underlying

▶ hypothesis space H, that is, the set of candidate

models from which a classifier C is chosen. This flex-

ibility depends on the classification method or, more

precisely, on the underlying model representation.

▶Linear models, for example, separate classes by

fitting a hyperplane in the instance space. They are

less flexible than artificial neural networks,▶ decision

trees, or nearest neighbor methods, which can repre-

sent highly nonlinear decision boundaries. The restric-

tion to certain types of decision boundaries is called the

representation bias of a classification method. It

largely determines the inductive bias of the method,

which, informally speaking, produces a preference for

specific types of models. A bias of that kind is needed

to enable a choice between a potentially infinite num-

ber of mappings X ! Y which explain the training

data equally well. Implementing a suitable inductive

bias and finding a proper trade-off between the com-

plexity of a model and its performance on the training

data are key prerequisites for successful learning

(Bishop 2006).

Binary Versus Multi-class Classification

The simplest type of classification problem is

binary (dichotomous) classification, in which Y con-

sists of only two classes, typically referred to as the

positive and negative class, respectively. For such

problems, a multitude of efficient and theoretically

well-founded classification methods exists. In fact,

the representation of models is often geared toward

the binary case, and sometimes even restricted to

this problem class. For example, methods such as

▶ logistic regression and support vector machines

produce decision boundaries in the form of a separat-

ing hyperplane that can only divide the instance space

into two parts.

Other methods, such as decision trees and the naı̈ve

Bayes classifier, are not restricted in this way. Instead,

they are directly applicable to the case of multi-class

(polytomous) classification, that is, problems involv-

ing more than two classes. Algorithms that are inher-

ently binary can still be used in a multi-class setting,

namely, through class binarization techniques.

A popular example is the one-against-rest binarization,

where one takes each class in turn and learns a binary
classifier that discriminates this class (considered as

the positive class) from all other classes (considered as

negative). At prediction time, each binary classifier

predicts whether the query input is positive or not.

Tie breaking techniques (typically based on confidence

estimates for the individual predictions) are used in the

case of a conflict, which may arise when no class or

more than one class is predicted.

Ordinal and Hierarchical Classification

In standard classification, the set of class labels Y does

not have any internal structure. In many applications,

however, the classes are not completely unordered.

Two important special cases are a total order

(y1 � y2 � . . . � yk) and a hierarchy, giving rise,

respectively, to ordinal classification (also called ordi-

nal regression in statistics) and hierarchical classifica-

tion. As examples consider, respectively, learning to

predict the expression of a gene on the scale

Y ¼ {underexpressed, normal, overexpressed} and

the functional class of a protein according to the hier-

archical EC nomenclature for enzymes.

From a learning point of view, the structure of Y is

additional information that a learner should try to

exploit, and this is what existing methods for ordinal

and hierarchical classification essentially seek to do.

The basic assumption in this regard is that the structure

ofY is reflected in the topology of the class distribution

in the instance space X . Moreover, corresponding

algorithms normally seek to minimize loss functions

other than the simple 0/1 loss, which is arguably inap-

propriate for a structured output space Y. For example,

despite being wrong, predicting the functional class

a-amylase (EC 3.2.1.1) for a protein that actually

belongs to the class of b-amylases (EC 3.2.1.2) is still

better than predicting a phosphorylase (EC 2.4.1.1) –

the former two classes are both glycosidases, and

hence functionally related.

Feature Representation

Instances x 2 X are normally described in terms of an

attribute-value representation or “feature vector”,

which means that x is a vector ðx1; . . . ; xmÞ and X the

Cartesian product X1 � . . .� Xm, with X i the domain

of the i-th attribute (i ¼ 1; . . . ;m). In fact, many

methods for classification as well as widely used soft-

ware systems, such as the WEKA machine learning

toolbox (Hall et al. 2009), expect exactly this type of

representation.
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Prior to actually training a classifier, this represen-

tation is normally subjected to a number of

preprocessing steps, including normalization, dimen-

sionality reduction (like▶ Principal Component Anal-

ysis (PCA)), and ▶ feature selection or weighing. The

selection of a small to moderate number of attributes

(features) is important for many learning algorithms,

the performance of which may deteriorate in the pres-

ence of irrelevant, noisy, or simply too many features.

This aspect is especially critical in applications like

gene expression analysis, where the number of features

(the genes) may largely exceed the number of

instances (e.g., different types of tissue).

Classification of Structured Data

Especially in the life sciences, however, a feature rep-

resentation of the above kind is often not natural, and

representing an object in terms of a fixed number of

predefined featuresmay come along with a considerable

loss of information. Instead, other representations, such

as sequences and graphs, appear to be more appealing.

A small molecule, for example, is naturally represented

in terms of a graph, with each atom corresponding to

a node, and a bond between a pair of atoms modeled as

an edge; likewise, biological networks are commonly

represented as graphs or hypergraphs. Another example

is modeling molecular structures on the sequence level,

which comes down to representing them in terms of

a sequence over a finite number of symbols, where

different sequences can differ in length.

Dedicated classification algorithms for handling this

type of data have been developed in the recent years.

Especially interesting in this regard is kernel-based

machine learning (▶Learning, Kernel-based), includ-

ing support vector machines, which allows for general-

izing (“kernelizing”) conventionalmethods bymeans of

amathematical construct called kernel function (Shawe-

Taylor and Christianini 2004). A kernel function K is

a mapping X � X !  satisfying special properties,

and Kðx; x0Þ can often be interpreted as a degree of

similarity between the instances x and x0. A kernel of

that kind can also be defined for structured data objects

like graphs and sequences, therebymaking kernel-based

algorithms amenable to this type of data.

Ensemble Learning

In recent years, several methods for improving predic-

tive performance have been developed that go beyond

the learning of a single classifier. Instead, such
methods can be used on a “meta level,” more or less

independently of the underlying classifier.

An important example of this type of approach is

▶ ensemble learning, where a potentially large number

of classifiers is trained instead of a single one (Rokach

2010). At prediction time, each member of the ensem-

ble is queried, and the predictions thus obtained are

combined in one way or the other, for example, by

means of a simple voting scheme or so-called stacking,

where the optimal combination itself is formalized as

a classification problem. In order to generate

a (diverse) ensemble of classifiers, different methods

can be used, including resampling methods such as

▶ bagging and boosting.

Classification in Systems Biology

Systems biology offers a multitude of applications for

classification methods. For example, classification has

already been used for the construction and analysis of

metabolic networks, signaling and protein interaction

networks, gene regulatory networks, the analysis of

microarray data, and the prediction of the influence

of toxins on biochemical pathways (Muggleton 2005;

Larranaga et al. 2006; Fogel et al. 2007). The use of

powerful predictors for protein–protein or protein–

ligand interactions can help to reduce and organize

the “wet” laboratory work necessary to verify such

interactions in order to construct interaction networks.

Moreover, classification tasks arise when extracting

the information contained in huge biological networks

(Rapaport et al. 2007).
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Classification of Cancer Genesis, Table 1 Types of cancers

(A) Inborn errors of development

(A1) Inherited error of development (�5% of all clinical

cancers)

(A2) Induced errors of development (?% of all clinical

cancers)

(B) Sporadic cancers

�90% (?) of all clinical cancers
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▶Receiver Operating Characteristic (ROC) Curve
Classification of Cancer Genesis
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Definition

Cancers can be grouped into two main types regarding

their genesis in the lifetime of humans. They are:

(a) Inborn errors of development

(b) Sporadic cancers
The sporadic cancers have been estimated to

represent about 95% of the clinical cancers. As of

recently, the inborn errors of development were

considered as representing less than 5% of all cancers.

These percentages are subject to reinterpretation as

new evidence accumulates (Table 1).
Characteristics

Inborn Errors of Development

Among these, two varieties have been distinguished,

namely, (A1) inherited inborn errors of development

and (A2) induced inborn errors of development

(Table 1). The inherited inborn errors of development

are the result of a process initiated by germ line

mutation(s) in the genome of one or both gametes

(sperm and/or ovum). If a mutated conceptus develops

from this mutated egg, necessarily all of its cells will

carry such genomic mutation(s); however, tumors

usually appear in a single organ. This type of tumor

(or malformation) represents the outcome of abnormal

organogenesis in one or more tissue(s) in said

offspring. Examples of this variety of inborn errors

of development include retinoblastoma, Gorlin

syndrome, xeroderma pigmentosa, and BRCA-1 breast

neoplasias. For a comprehensive listing and descrip-

tion of these tumors, see Pizzo and Poplack (2011).

Tumors belonging to the (A2) induced inborn error of

development variety appear either perinatally, during

the first two decades after birth, or even later. Recent

experimental evidence collected in laboratories world-

wide using rodents verified that when embryos, fetuses,

and/or neonates become exposed to chemical (even

minute concentrations of environmental endocrine

disruptors) and/or physical (radiation) carcinogens,

a number of premalignant and malignant neoplastic

lesions appeared in young and adult populations.

There is evidence of a similar process in humans. For

instance, in utero exposure of human fetuses to diethyl-

stilbestrol (DES) during pregnancy was responsible for

the appearance of rare vaginal adenocarcinomas around

puberty and for an increased incidence of breast tumors

in those women at the age of prevalence of this cancer

(Hatch et al. 1998; Palmer et al. 2006). Given the greater

incidence of breast cancers among increasingly younger

women and the experimental data already accumulated,

http://dx.doi.org/10.1007/978-1-4419-9863-7_242
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it has been inferred that a good number of what so far

have been considered sporadic cancers might, instead,

belong to this induced inborn error of development

group (Soto and Sonnenschein 2010). However, data

have yet to be collected before accurate estimates of

the percentage of what have been once considered to

be sporadic cancers become, in fact, examples of

induced inborn errors of development.

Sporadic Tumors

These represent the bulk of tumors seen by clinicians

and diagnosed by pathologists that appear in adults

which have no obvious link to germ line mutations.

Their exact pathogenesis is currently the subject of

intense controversy between the somatic mutation

theory (SMT) (Weinberg 2006) and the tissue organi-

zation field theory of carcinogenesis (TOFT) (Soto and

Sonnenschein 2011) (▶Cancer Theories).

The SMT states that tumor formation is due to the

effect of one or the accumulation of more mutations

over a lifetime in a single founder cell in a host

who was exposed to one or many carcinogens.

Alternatively, the TOFT posits that carcinogens target

tissues as units in the process of carcinogenesis.

According to the TOFT, the disrupted interaction

between tissues and among cells would fully explain

the formation of a tumor. While the SMT explicitly

proposes that all tumors are originally monoclonal, the

TOFT postulates that the tumor mass is made up of

multiple heterogeneous populations of cells that, from

the beginning of the carcinogenic process, have

the capacity to either evolve into a full-blown tumor

or to regress and become normalized depending of the

degree of tissue disruption the target tissue undergoes

(Soto and Sonnenschein 2011).

For the purpose of classifying tumors as either

induced inborn errors of development or of the

sporadic type, a bone of contention has been whether

carcinogens have to be mutagenic. According to

the SMT, carcinogens are mutagens. The TOFT

acknowledges, instead, that disruptors of normal

tissue-tissue or cell-cell interactions can be

carcinogens regardless of whether they are of a

physical or chemical nature. Increasing amounts of

experimental data suggest that carcinogens need not

be mutagenic. This is exemplified by environmental

endocrine disruptors that are not known to be

mutagenic while retaining effective carcinogenic

properties (Sonnenschein et al. 2011).
Regarding ▶metastases, the TOFT proposes that

the microenvironment in which the migrating

cancer cells (epithelial plus stromal emboli) land

plays either a “normalizing” (inhibiting) or a facilitat-

ing effect on the proliferation of those cells. In this

context, the inhibiting or the facilitating effect of

the microenvironments is susceptible to change as

the host ages or if the host is exposed to additional

carcinogens later in life. Additionally, cancer

treatments (chemotherapy, radiation) may affect the

microenvironment in which the cancer cells (epithelial

plus stromal) that became detached from the primary

tumor land. These contingencies will decide whether

or not and when those “seeds” will becomemetastases.

In contrast, the SMT claims that metastases will

develop as a result of the acquisition of additional

mutations or their activation in the cells of the primary

tumor (which would induce them to migrate) and/or in

those cells that already migrated from the primary and

landed at a distance of it.
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▶Decision Tree
Clinical Aspects of the Toponome
Imaging System (TIS)

Michael Khan1 and Christine Waddington2

1Department of Biological Science, Biomedical

Research Institute, University of Warwick,

Coventry, UK
2MOAC/University of Warwick, Coventry, UK
Definition

The Toponome Imaging System (TIS) (▶TIS Robot)

has several key clinical applications including disease

diagnosis and drug design. TIS can visualize the co-

location of many proteins present on the surface and

inside cells. Location patterns of the resulting

protein clusters can be recognized that are disease or

drug reaction specific. Additionally, by using known

protein cluster patterns linked to a cell’s phenotype

(combinatorial molecular phenotype, CMP), and in

combination with other systems biology tools,

conclusions can be made about cell protein networks

as a cell enters the diseased state. Drug therapies

can be targeted so that they are disease specific, and

the opportunities for early disease diagnosis are

enhanced.
Characteristics

The Toponome Imaging System (TIS) (▶TIS Robot)

is an automated fluorescence technique with the ability

to co-map at least 100 different proteins, or other TAG-

recognizable biomolecules, on a single tissue section.

To enable co-mapping, the system will generate

a location image for every protein, or biomolecule,

being studied.

Proteins are known to interact with each other in

a cell, and the challenge of understanding how

this cellular interaction occurs is a major stated

goal in both medical research and systems biology.
Most systems biology techniques, such as gene arrays

or mass spectrometry, rely on tissue disruption before

molecular phenotyping is undertaken. Clearly, as spa-

tial and anatomical information is not preserved, the

resultant lists of genes, transcripts, or proteins can only

be partially translated into putative functional molec-

ular networks by the use of informatics and this will

be “error prone.” There is certainly no possibility to

compare protein anatomical location between chosen

cells, or to directly link molecular phenotype with

visible biology.

The current goal now is to microscopically examine

protein expression in tissue sections or cell cultures.

TIS is a new technique that combines traditional fluo-

rescence microscopy with the ability to visualize

expression of several hundred proteins simultaneously

in the same tissue section or cell culture preparation. In

disease diagnosis and subclassification, it is often crit-

ical to be able to directly relate molecular phenotype to

anatomy. Importantly, to define a particular cell line-

age or stem cell identity, observation of several pro-

teins and other molecules may be needed and with TIS

this can be done in situ, allowing study of such cells in

their relevant “niche.”

Finally, the ability to visualize protein co-

localization on a large scale is potentially a very pow-

erful surrogate for protein interaction. TIS looks

directly at protein co-locations on the cell surface and

inside the cell, and so can infer possible proteins work-

ing together. Although one cannot be certain that pro-

teins co-localizing are physically interacting,

proximity can be employed to greatly narrow down

options defining functional protein networks.

To discover where proteins are co-locating in clus-

ters, comparison is made between the individual pro-

tein fluorescent images. Patterns of clustering between

specimens of similar types can then be determined, and

visualized, as a mosaic of protein clusters directly

linking to the cell’s phenotype, these analyzed results

being known as ▶ combinatorial molecular pheno-

types (CMPs). Combining this with knowledge of

associated protein networks, active proteins can be

identified, and predictions made of the functional

importance of these proteins for the different cell phe-

notypes. Samples from different subjects will have

a natural CMP variation; however, comparable fea-

tures between similar cell types are still observed due

to the similarity of the underlying spatial arrangement

of the protein networks.
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(on the left) and normal colon cells in the same patient (on the right) (Bhattacharya et al. 2010)
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Diseased and nondiseased tissues will show unique

and different CMP patterns, and thus the patterns can

act like “fingerprints” in further comparative analysis

of other tissue. An example of these different CMP

patterns can be seen in Fig. 1. The pictures show the

CMP clusters displayed in color over a visual image

(Phase) and over a fluorescent image (DAPI). The left-

hand side shows colon cancer tissue, and the right-

hand side normal colon tissue (both tissues are from

the same patient). In this example, 21 proteins were

used (given acronyms such as PCNA, Bax, etc.) and it

can be seen for each color of protein cluster which

proteins contribute (shown as a 1 in the table). Lead

proteins (L) are present in all the main CMPs, while

other proteins may be absent in the clusters (A). Wild

card proteins (W) are present in some but not all

protein clusters and may have key significance in the

cell networks.

Using TIS analysis is a clinically powerful method

because, as well as revealing which proteins are pre-

sent and where, it indicates how they are co-located,

giving further information about particular cells and

subcellular regions. Importantly, being able to use

a large number of biomarkers allows subtle differences

between similar samples to be determined. For exam-

ple, compared to normal skin, psoriasis and atopic
dermatitis exhibit distinct protein clusters: Some of

these clusters are specific to either psoriasis or atopic

dermatitis, whereas others are common to both condi-

tions (Schubert et al. 2006). If the clinician knows the

unique “fingerprint” of each disease, only a small skin

sample is needed to give a clear diagnosis. Disease

fingerprinting will also aid the clinician in situations

of uncertain or limited clinical symptoms, helping to

prevent situations of misdiagnosis.

Another example of the clinical possibilities for

using TIS is in cancer studies. In cancer, the ability to

look at the tissue for the visible hallmarks of malig-

nancy alongside molecular phenotype is critical, in

particular, as it enables the examination of single

cells, which may be cancer cells that are invading,

dividing, or could be immune or stromal cells. Because

TIS can detect individual cell protein patterns, a very

small number of affected cells can give a positive

cancer result; this enhances the chances of early detec-

tion, especially because cancer cells show very distinc-

tive differences in their topology in comparison to

normal, noncancerous cells. While much is known

about the biochemical pathways in cancers, an under-

standing is needed in cell organization of functions,

and this can be achieved using▶ toponome analysis to

create insight into the key protein networks driving the

http://dx.doi.org/10.1007/978-1-4419-9863-7_635
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disease. Schubert et al. (2009) analyzed prostate cancer

tissue, determining a mosaic of distinct protein clusters

that were specific to the observed cancerous cells.

Using disease-specific CMP knowledge, two routes

can now be taken: The first to target lead proteins in

the development of the cancer with specifically

designed drug therapies, the second to aid the early

detection of cancer development. In instances where

two diseases can have shared but distinct disease path-

ways, the subtle differences in lead proteins can aid

understanding of the triggers for pathogenic events that

result in cancer. In addition, with the CMP clusters not

likely to occur by chance, a correct diagnosis can still

be made even if the cells are at the early stages of

cancer formation. As technological advances are

made, these protein clusters can be looked for in

other body samples, such as from the blood, enabling

a less invasive method of early cancer detection.

Sometimes the knowledge of genomic loci involved

in the pathogenesis of a disease is limited. Because the

TIS technique can furnish a toponomic picture of what

is occurring in the cell, proteins can be detected assem-

bling on the cell surface. This surface assembly is part

of a complex communication network involved with

many different cell functionalities and, by monitoring

these protein networks, key proteins can be determined

and disease-altered network dynamics detected. This is

valuable in situations where diseases are rare, or there

is limited knowledge of cell protein pathways in

a disease. Given sufficient typical protein clusters, by

using comparisons with protein clusters from known

networks, it is possible to predict disease behavior and

effective therapies.

Using a systems biology approach, by combining

the TIS results with proteome analysis and

transcriptome analysis, an interpretation of multiple

levels of gene expression can take place leading to

further analysis, for example, comparing the effect of

drug interactions on different patients. Drugs are gen-

erally designed to influence protein interactions and so

the effects of the drug can be easily detected using TIS:

Changes in the protein networks of synapses due to the

analgesic drug dipyrone have already been observed

(Linke et al. 2009).

While TIS is a powerful and widely applicable

stand-alone tool, it also works well in complement

with other tools as part of a systems biology pipeline.

The experimenter specifies which proteins or other

molecules to study using TIS, and new target proteins
can be found, for example, by also using mass spec-

trometry or gene analysis. Despite having pre-decided

on the proteins to investigate, TIS remains a tool for

discovery science because previously unsuspected pro-

tein interactions may still be identified. Combining TIS

with new knowledge from genomics, transcriptomics,

and proteomics allows various differentially expressed

proteins to be studied in the context of intact anatomy.

The promise that TIS can detect clear differences

between normal and unhealthy tissue, even if there

are few cells and the differences are subtle, opens up

the prospect of easy, early-stage cancer detection using

blood or, for colon cancer, stool samples. There is

further potential that cancer stem cells will become

detectable, and drug therapies will be developed to

specifically target stem cells restricting cancer growth.

With greater understanding of the cell’s network path-

ways, drug design can be made more disease specific

and enable more precise targeting, whether this is in

the form of an analgesic or perhaps a unique drug for

a rare disease.
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Closed World Assumption, Table 1 Sample instances about

alumni and their degrees obtained

Alumnus Degree obtained

Delani PhD in Molecular Biology

Anna PhD in Ecology
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Clinical Decision Support Systems

▶Biomedical Decision Support Systems
Peter MSc in Informatics

Dalila PhD in Genetics C

Clinical Systems Pathology

▶ Systems Pathology
Cliquishness

▶Clustering Coefficient
Clonal Division

▶Modeling, Cell Division and Proliferation
Closed Chromatin

▶Heterochromatin
Closed World Assumption

C. Maria Keet

KRDB Research Centre, Free University of

Bozen-Bolzano, Bolzano, Italy
Definition

The ClosedWorld Assumption (CWA) is the assump-

tion that that what is not known to be true, is false,

so that absence of information is interpreted as

negative information. It assumes that complete infor-

mation about a given state of affairs is provided,

which is useful for constraining information and

validating data in an application such as a relational

database. This is contrasted with the Open World

Assumption.
Example. Take the sample data in Table 1 and

a query “Which alumni do not have a PhD?”. Then

under the CWA, it answers with “Peter” because under

the CWA the system assumes this information is all

there is in the world.
Closure, Causal

Matteo Mossio

IAS-Research Philosophy of Biology Group,

Department of Logic and Philosophy of Science,

University of the Basque Country (UPV/EHU),

Donostia – San Sebastian, Spain
Definition

In biological systems, closure refers to a holistic fea-

ture such that their constitutive processes, operations,

and transformations (1) depend on each other for their

production and maintenance and (2) collectively con-

tribute to determine the conditions at which the whole

▶ organization can exist.

According to several theoretical biologists, the con-

cept of closure captures one of the central features of

biological organization since it constitutes, as well as

evolution by natural selection, an emergent and dis-

tinctively biological causal regime. In spite of an

increasing agreement on its relevance to understand

biological systems, no agreement on a unique defini-

tion has been reached so far.
Characteristics

The concept of closure plays a relevant role in biolog-

ical explanation since it is taken as a naturalized

grounding for many distinctive biological dimensions,
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as purposefulness, normativity, and functionality

(Chandler and Van De Vijver 2000).

The contemporary application of closure to the bio-

logical domain comes from a philosophical and theoret-

ical tradition tracing back at least to Kant who claimed,

in the Critique of Judgment, that biological

systems should be understood as natural purposes

(Naturzwecke), i.e., systems in which the parts are recip-

rocally causes and effects of the others, such that the

whole can be conceived as organized by itself, self-

organized. The essence of living system is a form of

internal and circular causality between thewhole and the

parts, distinct from both efficient causality of the phys-

icalworld and the final causality of artifacts (Kant 1985).

One of the most influential contemporary charac-

terizations of closure in the biological domain has been

provided by Francisco Varela (1979). In his account,

he builds on an algebraic notion, according to which “a

domain K has closure if all operations defined in it

remain within the same domain. The operation of

a system has therefore closure, if the results of its

action remain within the system (Bourgine and Varela

1992, p. xii).”

Applied to biological systems, closure is realized as

what Varela labels operational (or organizational)

closure, which designates an organization of processes

such that “(1) the processes are related as a network, so

that they recursively depend on each other in the gen-

eration and realization of the processes themselves,

and (2) they constitute the system as a unity recogniz-

able in the space (domain) in which the processes

exist” (Varela 1979, p. 55).

It should be noted that Varela himself has proposed,

over time, slightly different definitions of operational

closure. In addition, more recent contributions have

introduced a theoretical distinction between organiza-

tional and operational closure. Whereas “organiza-

tional” closure indicates the abstract network of

relations that define the system as a unity, “operational”

closure refers to the recurrent dynamics and processes

of such a system (Thompson 2007).

In Varela’s view, operational closure is closely

related to ▶ autonomy, the central feature of living

organization. More precisely, he enunciates the “Clo-

sure Thesis,” according to which “every autonomous

system is operationally closed” (Varela 1979, p. 58). In

principle, the class of autonomous systems realizing

operational closure is larger than the class of biological

systems. As a consequence, operational closure is
taken as a necessary but not sufficient condition to

define biological organization. Biological systems, in

fact, constitute a subclass of autonomous systems,

which realize a specific form of operational closure,

which Varela labels, with Humberto Maturana,

autopoiesis (▶ Systems, Autopoietic) (Varela 1979).

The specificity of operational closure as autopoiesis is

that, unlike other possible forms, it describes the sys-

tem at the chemical and molecular level, and supposes

relations of material production among its constituents.

A crucial distinction is usually made between orga-

nizational/operational and material closure, where the
latter indicates the absence or incapacity to interact.

While being organizationally closed, biological sys-

tems are structurally coupled with the environment,

with which they exchange matter, energy, and infor-

mation. The concept of biological closure implies then

a distinction between two causal levels, an open and

a closed one – an issue which have been more explic-

itly addressed by the account proposed by Robert

Rosen (Rosen 1991).

Rosen’s account is based on a rehabilitation and

reinterpretation of the Aristotelian categories of cau-

sality and, in particular, on the distinction between

efficient and material cause. Let us consider an

abstract mapping f between the sets A and B, such

that f: A¼> > B. Represented in a relational diagram,

we have (Fig. 1):

When applied to model natural systems, Rosen

claims that the hollow-headed arrow represents mate-

rial causation, a flow from A to B, whereas the solid-

headed arrow represents efficient causation,

a ▶ constraint exerted by f on this flow.

Rosen’s central thesis is that “a material system is

an organism [a living system] if, and only if, it is closed

to efficient causation” (Rosen 1991, p. 244), whereas

a natural system is closed to efficient causation if and

only if its relational diagram has a closed path that

contains all the solid-headed arrows. It is worth noting

that, unlike the varelian tradition, Rosen takes closure

as the definition of biological organization.

According to Rosen, the central feature of

a biological system consists in the fact that all compo-

nents having the status of efficient causes arematerially

produced by and within the system itself. At the most

general level, closure is realized in biological systems

among three classes of efficient causes corresponding

to three broad classes of biological functions (▶Func-

tion, Distributed) that Rosen denotes as metabolism

http://dx.doi.org/10.1007/978-1-4419-9863-7_51
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(f: A¼>> B), repair (F: B¼>> f), and replication (B:

f¼>>F) (Fig. 2).
By providing a clear-cut theoretical and formal

distinction between material and efficient causation,

Rosen’s characterization explicitly spells out that bio-

logical organization consists of two coexisting causal

regimes: closure to efficient causation, which grounds

its unity and distinctiveness, and openness to material

causation, which allows material, energetic, and infor-

mational interactions with the environment.

More recently, the scientific work on biological

closure has been developed in various directions

(Chandler and Van De Vijver 2000). In particular,

a thriving research line has specifically focused on

the critical nature of systems realizing closure, which

must maintain a continuous flow of energy and matter

with the environment in conditions far from thermo-

dynamic equilibrium. To capture this dimension of

closure, Stuart Kauffman has proposed the notion of

Work-Constraint cycle (Kauffman 2000).

The Work-Constraint cycle represents an interpreta-

tion of organizational closure that links the idea of

“work” to that of “▶ constraint,” the former being

defined, as “constrained release of energy into relatively

few degrees of freedom.” A system realizes a Work-

Constraint cycle if it is able to use its work to regenerate
at least some of the constraints that make work possible.

The cycle is a thermodynamic irreversible process,

which dissipates energy and requires a coupling

between exergonic (spontaneous, which release energy)

and endergonic (non spontaneous, which require

energy) reactions, such that exergonic processes are

constrained in a specific way to produce a work,

which can be used to generate endergonic processes,

which in turn generate those constraints canalizing

exergonic processes. In Kauffman’s terms: “Work

begets constraints beget work” (Kauffman 2000).

A complementary account of closure has been pro-

posed by Howard Pattee, who focused on its informa-

tional dimension (Pattee 1982). In his view, biological

organization consists of the integration of two

intertwined dimensions, which cannot be understood

separately. On the one side, the organization realizes

a dynamic and autopoietic network of mechanisms and

processes, which defines itself as a topological unit,

structurally coupled with the environment. On the

other side, it is shaped by the material unfolding of

a set of symbolic instructions, stored and transmitted as

genetic ▶ information.

According to Pattee, the dynamic/mechanistic and

informational dimensions realize a distinct form of

closure between them, which he labels semantic clo-

sure. By this notion, he refers to the fact that while

symbolic information, to be such, must be interpreted

by the dynamics and mechanisms that it constrains, the

mechanisms in charge of the interpretation and the

“material translation” require that very information

for their own production. Semantic closure, as an

interweaving between dynamics and information, con-

stitutes then an additional dimension of organizational

closure of biological systems, complementary to the

operational/efficient one.
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Synonyms

Vector quantization
Definition

A large and high-dimensional TIS (TIS robot) (▶Clin-

ical Aspects of the Toponome Imaging System (TIS);

▶TISRobot) data set is reduced to a small set of protein

co-location prototypeswithout the application of thresh-

olds. Different indices are proposed to evaluate the

▶ clustering result or to estimate an appropriate number

of clusters in a data set. To allow visual diagnostics and

to apply biological expert knowledge, a special visual-

ization icon is proposed. This way, important molecular

co-location patterns can be identified and localized in

the image, which helps in different fields of systems

biology (▶Systems Biology Pathway Exchange

(SBPAX)) like ▶ pathway analysis or protein network

analysis or other ▶ toponomics applications.
Characteristics

The main idea behind TIS (TIS robot) (▶Clinical

Aspects of the Toponome Imaging System (TIS);

▶TIS Robot) data clustering is to find a way to interpret

▶ toponome images without applying thresholds. Thus,

a toponome image recorded with an antibody library of

N tags is considered a N-dimensional data of fluores-

cence grey value patterns g(x,y) ¼ (g1, . . ., gN)
(x,y) with

(x, y) as pixel coordinates and gj
(x,y) denoting the grey

value for the j-th tag at pixel (x, y). ▶Clustering pro-

vides a valuable method for partitioning this data into

groups of similar grey value patterns. This partitioning

has two aims: First, clustering achieves a data reduc-

tion, so that data sets can be analyzed and compared on

a meta-level. Second, one wants to address the fact that

similar co-location patterns may also belong to the

same functional group or to the same hierarchically

organized network. If cluster analysis is to be applied

to TIS data, the following aspects have to be

considered.

Like in any other clustering application, it is not

possible to define a criterion for an optimum cluster

result, since clustering tries to achieve two opposing

goals: connectedness and compactness (Handl et al.

2005). Transferred to the context of toponomics data

▶ clustering this can be seen as the conflict between

the two ideas:(1) to generate large clusters that repre-

sent one frequent co-fluorescence pattern with some

variation, and (2) to form small compact clusters that

contain only those proteins which are utmost similar.

Cluster analysis algorithms can be divided into the

following two groups.

Hierarchical cluster analysis methods organize the

input data (i.e., the fluorescence grey value patterns of

one or two TIS images) into a tree structure exposing

the relationships from the most similar to the most

different fluorescence grey value patterns. In contrast,

partitioning or vector quantization cluster algorithms

successively assign each pattern g(x,y) to one distinct

group, i.e., cluster. In the clustering result, each of the

clusters is characterized by a typical representative or

the cluster center, which is usually referred to as the

prototype or the codebook vector. The most popular

partitioning cluster method is the ▶K-means

approach (Lloyd 1982). The objective is to find a set

of K prototypes so that the distances between each
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data item and its closest prototype are minimized.

Although the obtained clustering result may represent

only a locally optimal solution rather than the global

optimum, the strategy is often used due to its algorith-

mic simplicity and efficiency, and has been recently

voted in the list of top ten algorithms in data mining

(Wu et al. 2008). For large data sets such as toponome

data, the consideration of each data item for prototype

adaptation can be computationally expensive, which

motivates an online K-means version applying the

winner-takes-all (WTA) rule. It is common to repeat-

edly run the algorithm with different initializations

(Hastie et al. 2001) and to take that solution as

the clustering result, which shows the smallest

intra-class variance. Neural Gas clustering claims to

be an enhancement as it takes into account

a “neighborhood ranking” of all proteins that are

assigned to a cluster – an advantage bought by an

increase in computational running time. In TIS cluster

analysis, one should usually favor partitioning cluster

algorithms, since the tree plot for an entire image

should be too large for a visual analysis. Thus, the

following part of this entry focuses on partitioning

cluster algorithms.

A number of quality measures have been proposed

to evaluate the outcomes of cluster algorithms.

Because of its opposing goals, no definite criterion

can be formulated that describes an optimal clustering

of a dataset. This pertains not only to the applied

cluster algorithm but also to the “true” number of

clusters of a dataset. Proposed measures that base

solely on the clustering itself and the underlying

dataset range from early approaches (Calinski and

Harabasz 1974; Davies and Bouldin 1979) up to

novel instruments (Yeung et al. 2001; Maulik and

Bandyopadhyay 2002). Another kind of assistance in

choosing a cluster algorithm was recently proposed in

Yeung et al. (2001). They delineated an instrument

called Figure of Merit (FOM) to evaluate cluster solu-

tions. The idea of their method is to integrate a kind of

bootstrapping approach and thereby estimate the pre-

dictive power of a cluster algorithm.

One important aspect in TIS cluster analysis is the

evaluation of the outcome, i.e., the cluster result, which

is, in case of partitioning methods, represented by

the set of K prototypes {c(k)}k ¼ 1,. . ., K. Usually,

the grey values of the images are transformed to
a certain range (e.g., [0; 1]) using a linear scaling or

some nonlinear scaling function such as tan h (gj
(x,y)),

so for all prototype components it is cj
(k) 2 [0; 1]. An

essential first step in the evaluation is the visual inspec-

tion of the prototypes, so a graphical display is needed

to support visual▶ data mining. A visual inspection of

the prototypes allows the identification of interesting

protein co-location patterns in the data and

a comparison with ▶ combinatorial molecular pheno-

types (CMPs), without the need of analyzing single

images which eases the knowledge discovery process.

If interesting prototypes are found, the associated data

items can be analyzed in a subsequent step following

the Shneiderman mantra of “Overview first, zoom in,

and filter, details on demand.” However, suitable pro-

totype visualization is not as straightforward as it

seems. One way to display multivariate data are

glyph or icon displays. According to Colin Ware “A

glyph is a graphical object designed to convey multiple

data values” (Ware 2004, p.145). Each data feature is

mapped to a different graphical attribute of the glyph

such as size, shape, or color. We apply a glyph-based

visualization approach, which has been developed to

suit the needs of non-binarized signal co-location anal-

ysis (Loyek et al. 2011a, b; K€olling et al. 2012). This

glyph approach combines visualization aspects known

from bar charts and star glyphs and is to some extent

inspired by the sequence logo display, which represents

patterns in nucleotide or amino acid sequences. In

a sequence logo, for each position of a set of aligned

sequences, e.g., nucleotide sequences, the four nucleo-

tides are arranged on top of each other sorted according

to their frequency at that position. The character height

represents the frequency of the according nucleotide.

Through this visualization, a rapid identification of

prominent sequence patterns can be achieved as high

frequent nucleotides can directly be “read” from the

logo. To construct a glyph for one signal co-location

c
k (k¼ 1,. . ., K), a horizontal box is drawn for each data
feature (see Fig. 1a). The height, as well as the length, of

each box is scaled according to the feature’s value. To

increase differentiation between neighboring boxes,

they are alternatingly colored in black and light shaded

grey. This follows Ware’s suggestion for star glyphs or

whisker plots to increase the number of dimensions by

changing length and width of the bars as well as using

different luminance levels. Furthermore, by employing

http://dx.doi.org/10.1007/978-1-4419-9863-7_599
http://dx.doi.org/10.1007/978-1-4419-9863-7_634
http://dx.doi.org/10.1007/978-1-4419-9863-7_634


Cluster Analysis, Fig. 1 (a) Generation of a glyph for one

cluster prototype c(k): Each box is scaled in height and width

according to the features’ values. The prototype names (P1, . . .,
PN) are written in the boxes for fast association of the proteins to
the boxes. The relative and absolute abundance of the prototype,

i.e., how many pixel are associated to that prototype, as well as

the assigned prototype color, are given. For comparison, two

classic bar plot displays for two 15-dimensional cluster proto-

types are displayed. Since this glyph display is much more

compact compared to a standard box plot (b), more prototypes

can be displayed on the same screen space and a comparative

analysis is easier
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length as an attribute for data representation, a well-

suited graphical parameter to encode quantitative data

has been chosen, as has already been discussed for the

bar plot. To allow for a fast identification of prominent

proteins, the protein names are directly incorporated

into the visualization. To this end, the associated protein

name is written in each bar and scaled in height and

length analogue to the bar itself. With this strategy,

prominent protein co-localization can easily be identi-

fied by “reading” the glyph analogous to the reading of

a sequence logo. Figure 1a displays the construction of

the glyph display and shows two glyph examples on the

right. In addition to the special box plot display of the

feature vector components, the top bar of the glyph

shows the color which is assigned to the glyph, and

meta-information as the associated data set and the

prototype number can be displayed here as well. How

color will be assigned to each prototype will be

explained below. On the right, the glyph displays infor-

mation about the abundance of the feature combination

in one selected TIS image (or in a set of TIS images of
course). The grey box with the overlaid number shows

the relative abundance, below the absolute abundance

of pixels is displayed, which are assigned to this proto-

type according to the best match criterion. This meta-

information is very valuable for prototype analysis.

If this glyph visualization is compared to a classic bar

graph (see Fig. 1b), it is evident that in the glyph display

the association of proteins to individual graphical attri-

butes is much easier. Furthermore, besides being able to

rapidly identify the dominant proteins, an advantage

of the glyph display is that only features with high

values allocate space, whereas low value features are

squeezed in contrast to Fig. 1a). Thereby, space is only

allocated proportional to the importance of the protein

and the total size of the glyph reflects the amount of

information provided by the prototype. In some appli-

cations, this might not be a desirable feature so that bar

graphs, or glyphs with constant bar width would better

be suited.

Different strategies to assign color to the prototypes

and the corresponding glyphs can be proposed. If one
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wants to achieve preservation of topologies between

the cluster positions in the N- dimensional co-location

space and the color space, i.e., similar clusters get

similar colors, dimensional reduction can be applied.

Using for instance Sammon mapping or ▶ principal

component analysis (PCA), the N-dimensional proto-

types are mapped into a 3D color space where each

prototype is associated with a three-dimensional color

vector h ¼ (h1, h2, h3).. A whole pseudo-color image

can be rendered by finding for each feature vector g(x,y)

its best matching prototype Nearest Neighbor

Method and its color. The pixel position x, y is plotted

in the corresponding color. The most common color

space is the RGB space, where color is produced by

additively mixing red, green, and blue primaries.

Another widely used space is the HSV space, where

color is described by means of hue (H), saturation (S)

and value (V).
Clustering Algorithms and Tools

In general, there is a large variety of clustering algo-

rithms and tools; open source tools widely used in

computational biology include Weka (Weka, Machine

Learning Tool) and R (R, Data Analysis Tool)

▶R, Programming Language.
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Definition

It stands for cluster of differentiation. It is

a method conceptualized in 1st international
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workshop and conference on human leukocyte

differentiation antigens to provide nomenclature to

all the cell surface molecules present on white

blood cells. It includes various molecules some

which either act as ligands or receptors (Zola et al.

2005; Bernard and Boumsell 1984; Fiebig et al.

1984).
Cross-References
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Definition

A loose definition of clustering could be “the process

of organizing objects into groups whose members are

similar in some way.” Each cluster is then character-

ized by the common attributes of the entities it con-

tains. Usually, the objects in a cluster are “more

similar” to each other and “less similar” to the objects
of the other clusters. From different clustering types,

there are three clustering patterns as below.
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Synonyms

Cliquishness; Density of a subgraph; Transitivity;

Watts-Strogatz local clustering coefficient
Definition

Many problems in network analysis converge to the

question of the cohesion of a graph, aiming to determine
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the extent to which the nodes of a network are closely

connected with one another. Numerous strategies exist

to measure the cohesion of a network and therefore

several metrics can be used (Kolaczyk 2009). In this

respect, the clustering coefficient of a graph is widely

used in network analysis. One can distinguish between

local measurements of the clustering of nodes in a graph

and global measurements of the clustering coefficient of

an entire graph.
Characteristics

Local Clustering Coefficient

In a graph G composed of a set of vertices (nodes) V
and a set of edges (links) E, the local clustering coef-

ficient, denoted Cv, measures the local density of edges

in the neighborhood of a node v 2 V.Cv corresponds to

the proportion of links within the immediate neighbor-

hood of v, among all possible links connecting v and its

neighbors.

Let neðvÞ denote the number of edges that connect

the immediate neighbors of a node v. Let kv denote the

node degree of v, that is, its number of immediate

neighbors. The maximal number of possible edges

between the neighbors of v is therefore kvðkv � 1Þ=2
for an undirected graph. Therefore, in an undirected

graph with no self-loops, Cv is given as:

Cv ¼ 2neðvÞ
kv kv � 1ð Þ

With directed edges, the number of possible links in

the neighborhood of v becomes kv kv � 1ð Þ.
Therefore:

Cv ¼ neðvÞ
kv kv � 1ð Þ

In both cases, a clustering coefficient of Cv ¼ 1 will

indicate that v and its neighbors form a clique, that is,

a fully connected cluster of nodes (see Fig. 1).

Inversely, a value of Cv close to zero indicates that v

is part of a loosely connected set of nodes.

Global Clustering Coefficient

The global clustering coefficient cL corresponds to

the number of triangles tD found in a set of nodes
divided by the total number of connected triplets

t3 found in this given set. A connected triplet

corresponds to three nodes connected by at least

two edges. Triangles are cliques of three nodes, in

which each node is directly connected to the two

others.

Therefore, the intuition behind the global cluster-

ing coefficient is to measure the density of connected

triplets that form triangles in a graph, which indicates

how much edges are clustered together. This is also

referred to as the density of a subgraph (Kolaczyk

2009).

For a subset of nodes v 2 V in a graph G;
8v 2 V s:t: t3ðvÞ > 0; cL v 2 Vð Þ ¼ tDðvÞ
t3ðvÞ

For the nodes v being part of connected triplets

(i.e., t3ðvÞ > 0; ) Cv ¼ cLðvÞ. Therefore, the exten-

sion of this definition to a whole graph G; which

defines the global clustering coefficient cLðGÞ;
is equal to the average of the local clustering coeffi-

cient of nodes such that t3ðvÞ > 0. Defining

Vk kas the size of such set of nodes, then cLðGÞ is
obtained by:
cLðGÞ ¼
P

v2V tDðvÞ
t3ðGÞ ¼ 1

Vk k
X
v2V

Cv

This definition is commonly used in network

biology (Dong and Horvath 2007), for instance,

to measure the modular organization of metabolic

networks (▶Metabolic Networks, Structure and

Dynamics).

cLTðGÞ; also referred to as the transitivity of

a graph, is given by:
cLTðGÞ ¼
P

v2V t3ðvÞcLðvÞ
t3ðGÞ ¼ 3tDðvÞ

t3ðGÞ

As for the local definition of the clustering

coefficient, a value of 1 indicates that the graph is

fully connected. Clustering coefficients are often

used in network biology to measure the cohesion

http://dx.doi.org/10.1007/978-1-4419-9863-7_561
http://dx.doi.org/10.1007/978-1-4419-9863-7_561
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Clustering Coefficient, Fig. 1 The density of connections in

a graph can be approached by local and global definitions of the

clustering coefficient. (a) The local clustering coefficient repre-

sents the density of connections among the neighbors of a node,

and ranges from 0 to 1. The higher the value, the more the node is

part of a densely connected cluster of nodes. A value of 1

indicates that the node is part of a clique. (b) The Global

definition of the clustering coefficient relates to the proportion

of triplets that form triangles in a graph. The clustering coeffi-

cient corresponds to the mean value of the local clustering

coefficient (referred to as local density), while the transitivity

of a graph gives the probability that the direct neighbors of

a node are connected
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into modules of protein–protein interactions or

metabolic pathways.

Cross-References

▶Metabolic Networks, Structure and Dynamics
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Synonyms

Automatic classification methods; Numerical taxon-

omy methods; Typological analysis methods;

Unsupervised learning methods
Definition

Clustering methods are unsupervised data mining

methods that assign objects into groups based on simi-

larity. Clustering methods such as k-means clustering,

hierarchical clustering, graph partitioning, spectral clus-

tering, etc., have beenwidely used inmarketing, library,

image processing, medicine, biology, and other fields.
Characteristics

▶Clustering or ▶ clustering analysis is the process of

putting objects into groups whose members are simi-

lar, so an important step in clustering methods is to

define similarity or distance.

Similarity Measure

Similarity or distance (dissimilarity) that determines

the probability of two objects to be in one group is

important in clustering. There are several frequently

used methods to measure similarity or distance. In

Euclidean n-space, if x ¼ x1; x2;    ; xnð Þ; and

y ¼ y1; y2;    ; ynð Þ; then
• The Euclidean distance is defined

as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � yið Þ2
s

• The Manhattan distance is defined as
Pn
i¼1

xi � yij j
• The ▶Pearson’s correlation coefficient is

defined as

Pn
i¼1
ðxi��xÞðyi��yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi��xÞ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðyi��yÞ2

r

Besides, there are also some other distances, such as

Hamming distance, Mahalanobis distance, Chebyshev

distance, Minkowski distance, Euclidean distance,

Spearman distance, Jaccard coefficient, city block

metric, and so on.

Based on similarity, there are many types of

clustering methods with different advantages and

weaknesses.

K-Means Clustering

Given n numeric points in d dimensional space and

fixed integer k, k-means clustering (▶Clustering,

k-Means) attempts to partition these points into k

groups so as to minimize the sum of within-cluster

sum of deviation
Xk
i¼1

X
xj2Gi

xj � mi
�� ��;

where Gi is the ith group, and mi is the mean of points

in Gi

This problem has been proved to be▶NP-hard, and

it can be solved in time Oðndkþ1 log nÞ (Inaba et al.

1994), so it is usually solved with heuristic algorithm

(▶Heuristic optimization) as follows:

Step 1: Assign all points to a group by random;

Step 2: Repeat step 2.1 and step 2.2 until stable:

Step 2.1: Compute centroid of each group;

Step 2.2: Reassign each point to its nearest centroid.

k-Means is simply and easy to understand, so it has

been widely used and works well in most applications,

but the weaknesses are obvious too. The number of

groups k should be artificially chosen. k-Means tends

to identify spherical clusters and is sensitive to outliers.

Centroid positions are easily to be distorted by outliers.

Hierarchical Clustering

Instead of direct partition, hierarchical clustering aims

to build a dendrogram (▶ hierarchy) of groups.

According to the strategy, hierarchical clustering can

be divided into two types, “agglomerative” and “divi-

sive” (Fowlkes and Mallows 1983). “Agglomerative”

is a “bottom up” method following two steps:

Step 1: Treat each object as a group.

Step 2: Merge the closest pair of groups until there is

only one group left.

By contraries, “divisive” starts from one big group,

and follows a “top down” rule to divide groups.
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In hierarchical clustering, it is necessary to measure

the similarity or dissimilarity of two groups to decide

which two groups should be merged or how a group

should be divided. Several methods have been devel-

oped. Single linkage clustering defines distance

between groups as the distance between the closest

pair of objects, one from each group, while complete

linkage is opposite, defining that as the distance

between the most distant pair of objects. Average link-

age clustering defines that as the average of distances

between all pairs of objects, where each pair is made up

of one object from each group. Besides, there are also

some other approaches like average group linkage,

Ward’s hierarchical clustering method, and so on.

Hierarchical clustering is also one of the most com-

monly used clustering methods. It has the advantage

that any valid measure of distance can be used. Com-

paring with k-means, the observations themselves are

not necessary. Hierarchical clustering does not really

produce groups, and the user should artificially decide

where to split the tree into groups. Besides, hierarchi-

cal clustering is also sensitive to noise and outliers.

Spectral Clustering

As described by Luxburg (2007), spectral clustering is

one of the most popular modern clustering algorithms.

The basic idea of spectral clustering is to make use of

the spectrum of the graph Laplacian of data to perform

dimension reduction for clustering in low dimension.

The first step in spectral clustering is to transform

similarities or distances into a similarity graph to

model the local neighborhood relationships between

objects. There are several methods to construct the

graph. e-neighborhood graph connects two objects

when their distance is smaller than given e; k-nearest
neighbor connects an object with k nearest neighbors,
and kernel-based fully connected graph connects each

pair of objects with a weighted edge. Finally,

a similarity graph matrix W is obtained to represent

local relationships between objects. The graph

Laplacian is defined as
L ¼ D�W;

where D is a diagonal degree matrix with dii ¼
Pn
j¼1

wij:

Based on the graph Laplacian, given number

k of clusters, unnormalized spectral clustering algo-

rithms compute the first k eigenvectors to represent
the original n objects with k-dimension vectors.

Then use k-means algorithm to partition all these

vectors into k clusters. Similarly, there are also revised

algorithms like normalized spectral clustering

according to Shi and Malik (2000) and normalized

spectral clustering according to Ng et al. (2002).

Spectral clustering is successful mainly based on

the fact that it does not make strong assumptions on the

form of the clusters, but at the same time spectral

clustering can be quite unstable under different choices

of the parameters or neighborhood graphs. It should be

used with care.

In addition to these classical clustering methods,

there are also some other related methods including

fuzzy c-means clustering (Bezdek and Ehrlich 1984),

graph-theoretic methods (Sharan and Shamir 2000),

biclustering (Madeira and Oliveira 2004), probabilistic

clustering (Nikhil et al. 2005), Markov clustering

(Dongen 2000), support vector clustering (Ben-Hur

et al. 2001), and so on. Clustering methods are useful

in exploring data, but most methods are still very ad

hoc, depending on choosing proper similarity metric

and parameters.
Cross-References

▶Clustering

▶Clustering, k-Means

▶Heuristic Optimization

▶Heuristic Optimization

▶Hierarchy

▶NP-Hard

▶ Pearson Correlation Coefficient
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Definition

Hierarchical clustering represents a collection of

methods which seeks to partition the data into groups

by building a hierarchy of clusters.
Characteristics

The goal of a clustering method is to partition the data

into distinct groups where each group contains objects

with similar characteristics. Hierarchical clustering

refers to the collection of methods which builds

a hierarchy of clusters. The hierarchical clustering

methods are subdivided into two categories

• Agglomerative, where each datum initially repre-

sents a cluster and the two clusters are merged

together at each step of the hierarchy. Hence, the

hierarchy is built from the bottom up.

• Divisive, where initially all data represents a single

cluster that is split as one moves down the

hierarchy.

Agglomerative clustering has been extensively

studied and applied in numerous studies. Hierarchical
clustering is simple to apply and in comparison to other

clustering methods makes no parametric assumptions

about the size, shape, or quantity of clusters (Jain and

Dubes 1988).

Dissimilarity Measure

Unlike k-means clustering (▶Clustering, k-means),

hierarchical clustering does not require one to specify

the number of clusters a priori. In contrast, it uses

a dissimilarity measure.

The choice of the dissimilarity measure depends on

the data type (nominal, ordinal, ratio etc.). Common

examples include Euclidean distance, Mahalanobis

distance, Manhattan distance, and others.

Linkage Method

Recursive splitting or merging of the clusters can be

represented by a binary tree known as dendrogram.

The tree provides a simple and convenient visualiza-

tion of data hierarchy. Based on the dissimilarity

measure, the data are grouped into a hierarchical tree

called dendrogram using a linkage method. The three

most popular linkage methods in hierarchical agglom-

erative clustering are

• Single linkage, or the nearest neighbor, method.

Here, the dissimilarity between two groups is

defined as the minimum pairwise distance of points

in the two groups.

• Complete linkage, or the furthest neighbor, where

the dissimilarity between two clusters is taken as the

maximum distance between points in the clusters.

• Average linkage uses the average dissimilarity

between the groups.

If the grouping structure is compact with

well-separated clusters, all of the three clustering

methods produce a similar result.

Single linkage has certain advantages as compared

to other methods. In particular, it is known to correctly

identify the underlying structure of the data. This is not

necessarily the case for the other linkage methods,

unless points of high density are sufficiently separated.

For example, when sets of original points become

close or overlap, the complete, average, and K-means

clustering (▶Clustering, k-means) yield several large

clusters, giving an impression of distinct grouping in

the data regardless of the density. It has been shown

that the large clusters produced by these algorithms

depend on the range, but not on the true density of the

data set. Single linkage behaves differently, producing

http://dx.doi.org/10.1007/978-1-4419-9863-7_1189
http://dx.doi.org/10.1007/978-1-4419-9863-7_1189
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long-chained clusters that are difficult to interpret. The

“chaining” effect indicates the lack of spatial separa-

tion in case of touching or overlapping clusters.

In addition, the single linkage is fully consistent for

separating two disjoint, high-density clusters in one

dimension, and is fractionally consistent for data in

higher dimensions. The fractional consistency means

that if two disjoint population groups exist, there will

be two distinct single linkage clusters containing

a positive fraction of the sample points from the

corresponding population groups. Hence, the single

linkage is in a sense conservative, as it will not neces-

sarily detect all clusters, but will identify modal

regions separated by a sufficiently deep valley

(Hartigan 1975, 1977).

Cluster Identification

The clusters are typically defined by setting an appro-

priate inconsistency threshold, which is equivalent

to cutting the dendrogram at a certain level. For that

the length of each link in a cluster tree is compared

with the length of neighboring links below it. If the

length of the link does not differ significantly from the

length of the neighboring links, it means that objects,

joined at this level of the hierarchy, have similar

characteristics. Large differences would indicate

some dissimilarity between the objects, and the link

is said to be inconsistent. Alternatively, one can con-

sider an adaptive rule that determines inconsistency

threshold for each link.

Example

To gain a better understanding, consider the following

example of the single linkage algorithm for a small
data set consisting of ten two-dimensional points

labeled from 1 to 10 (Fig. 1). Initially every point is

a cluster. The first step is to compute all pairwise

distances between the points. Here, we use the Euclid-

ean. The two closest points are 5 and 8 and will be

merged to form a new cluster. The next smallest dis-

tance is between points 1 and 5, but 5 has already been

merged with 8, thus 1 is added to a cluster {5, 8}. Next,

points 3 and 4 are merged together and so on. The

process continues until all the nodes form a single

cluster. The result is the single linkage dendrogram

shown in the left plot. The original points are marked

on the tree.

The single linkage clusters can be obtained by cut-

ting the tree at a certain level. In the example, deleting

the largest edge will yield to two clusters a singleton

{2} and a cluster containing all the remaining nine

points. Cutting, for example, at 0.9 would give three

clusters {2}, {3,4,7,9}, and {10,6,1,5,8}.

To demonstrate the performance of the hierarchical

clustering, we classify the famous iris data set that

gives the measurements (in cm) of the four variables,

including sepal length and widths, and petal length and

width. The data was collected on the three species of

Iris setosa, versicolor, and virginica and is freely avail-

able as a part of R package.

Figure 2 shows the dendrogram trees for the single,

complete, and average linkage. The three iris species

are color coded to show their relative positions in the

tree. The average and single-linkage trees look similar

misplacing only a few versicolor species into the

virginica branch. The complete linkage performs the

worst as it identifies half of the virginica species to be

closer to the setosa and half to the versicolor. The
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misclassification error is about 9% for the average and

single linkage and is 16% for the complete linkage

method.

Divisive Clustering

Divisive clustering was studied and used considerably

less extensively. The divisive method can be accom-

plished by recursively subdividing groups into two

clusters. The splitting continues until every cluster is

a singleton. The divisive clustering does not necessar-

ily leads to the convenient representation of the data as

a binary tree, although somemethods were proposed to

address this issue.

Clustering Software and Tools

There are a number of existing software that offer

various types of hierarchical clustering. The

R Project for Statistical Computing offers a number

of clustering options; for details see the CRAN task

view on Cluster Analysis and Mixture Models. The

statistical package in Matlab (Mathworks) includes

functions for agglomerative hierarchical clustering.
ELKI package implements a single-linkage clustering

among others. Orange is a free data-mining software

that can be used for clustering. Hierarchical Clustering

Explorer is another useful tool for data visualization

and cluster analysis.
Cross-References
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Synonyms

k-means
Definition

K-means is an unsupervised clustering algorithm for

classifying data points into K distinct groups.
Characteristics

K-means algorithm

The K-means algorithm is based on the dissimilarity

measure given by squared Euclidean distance, i.e., for

p-dimensional data vectors x1 ¼ (x11 . . .,,x1p) and x2¼
(x21, . . ., x2p)
dðx1; x2Þ ¼
Xp
i¼1
ðxi1 � x2iÞ2

In K-means, the clusters are determined by mini-

mizing the loss function
LðCÞ ¼
XK
k¼1

Nk

X
CðiÞ¼k

dðxi; �xkÞ;

where k ¼ 1, . . ., K indexes clusters,

�xk ¼ ð�x1k; . . . ; xpkÞ is the mean vector of cluster k,
and Nk is the total number of points in cluster k. The

loss function L(C) is minimized when, within each

cluster, the average distance from any point to the

cluster mean is minimized.
In K-means, the cluster labels are determined by an

iterative algorithm that alternates between the two

steps:

1. Given the set ofKmeans, assign each observation to

the cluster with the closest mean.

2. Update the Kmeans by computing an average of the

observations within each cluster.

The algorithm converges when the cluster assign-

ments no longer change. The iteration steps reduce the

value of the loss function thus assuring convergence.

To initialize, one can either randomly choose K points

to represent cluster means or randomly assign K labels

to N observations.

Note that the cluster assignment may be

suboptimal corresponding to the local rather than

global minimum of the loss function. To elevate this

problem, one can do multiple cluster runs with ran-

dom initializations and choosing the final partition

with the smallest value of the loss function (Hastie

et al. 2009).

Example

Here we demonstrate the performance of the K-means

clustering algorithm on the famous iris data set

that gives the measurements (in cm) of the four vari-

ables including sepal length and widths, and petal

length and width. The data was collected on the

three species of Iris setosa, Iris versicolor, and Iris

virginica. The data set is freely available as a part of

R package.

Figure 1 shows the results of clustering the

data into four groups using K-means method with 25

random initializations. Here, s, v, g stand for the

three different species setosa, versicolor, and

virginica. The cluster assignments are marked by the

three different color. Clearly, K-means exactly iden-

tifies setosa species, but makes some misassignments

by classifying some versicolor with virginica and

vice versa. This is expected, since the setosa species

are well separated, while the other two have some

overlap across different measurements. The

misclassification error for the K-means classification

is about 11%.

Software

The K-means clustering algorithm is available in

a number of software packages both free and commer-

cial including R, S-plus, SAS, Apache Mahout,

Matlab, and Mathematica.

http://dx.doi.org/10.1007/978-1-4419-9863-7_100742
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Clustering, k-Means, Fig. 1 Color-coded K-means cluster assignments for the three different iris species setosa, s, versicolor, v,
and virginica, g
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Conclusion

The K-means clustering is an efficient algorithm for

data classification. The method is intuitively simple

and is easy to implement. The K-means clustering,

however, has a number of assumptions and performs

poorly when these assumptions are violated. In partic-

ular, the method fails when clusters are nonspherical or

differ considerably in size. Furthermore, the algorithm

requires a prior knowledge on the number of clusters
which is not readily available in practice. Numerous

variations have been proposed to improve the perfor-

mance of the algorithm.
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Synonyms

Mixture model
Definition

Model-based clustering is a classification technique

where the data is viewed as arising from the underlying

mixture of probability distributions with each mixture

component representing a cluster.
Characteristics

Overview

Model-based clustering treats data as arising

from the mixture of probability distributions. The

mixture components are assumed to correspond to

distinct clusters. The goal of the clustering approach

is to classify data into distinct groups by assigning

every data point to a mixture component.

More specifically, if y ¼ (y1, y2,yn) is the observed
data, the finite mixture model has a form
Lðy; Y; KÞ ¼
Yn
i¼1

XK
k¼1

pk fkðyi; ykÞ

whereK is the number of mixture components, pk is the
probability that an observation belongs to the kth com-

ponent, fkð; ykÞ is the density of the kth component

with parameter yk, and Y ¼ ðy1; y2; :::; yKÞ are the

parameters of the K components. Note that pk � 0 andPK
i¼1 pk ¼ 1.

The component densities fk are chosen to best reflect
the data-generating mechanism. The most popular

approach is the Gaussian mixture model, where the
data is viewed as a sample from the mixture of normal

distributions. Other examples include beta mixtures,

gamma mixtures, etc.. The K-means clustering algo-

rithm is implicitly based on the Gaussian mixture

model.

Implementation

For estimation purposes, the data is specified as (yi, zi)

where zi ¼ (zi1, zi2, . . ., ziK) is the vector of binary

variables such that zik¼ 1, if yi is in cluster k, and zero

otherwise. The membership vector zi is considered

as a sample from the multinomial distribution of

a single draw from K groups with probabilities

(p1,p2. . ., pk). By maximizing the likelihood function

for the data (yi, zi), one estimates ẑik, which is

the conditional probability of observation yi being in

cluster k. In hard clustering, point yi is ultimately

assigned to a cluster with the largest value of ẑik.
In fuzzy clustering, the data point is not assigned

to any particular cluster, rather the results are returned

as a vector ðẑi1; ẑi2; . . . ; ẑiKÞ which gives the proba-

bilities of the ith point being in any one of the K

clusters.

The model-based clustering can be solved

using the expectation maximization (EM) algorithm

which iterates between computing the estimates

ẑi given the current parameter estimates and estimat-

ing the parameters by maximizing the likelihood

given the current estimates ẑi (Fraley and Raftery

2002).

Estimating Number of Clusters

In real data, the number of clusters is typically

unknown. One can estimate K by comparing models

with different number of mixture components. The

idea is to select a criterion to assess the model fit and

choose the partition that corresponds to the model with

the highest value of the criterion. The most popular

criterion choices include Bayesian information crite-

rion (BIC), Akaike information criterion, and the min-

imum description length.

Software

An R package for normal mixture modeling MCLUST

can be used for model-based clustering. The MCLUST

package includes model-based clustering, the imple-

mentation of the EM algorithm for four different

covariance mixture models, and the BIC approach

to estimating the model and the number of clusters.

http://dx.doi.org/10.1007/978-1-4419-9863-7_100914
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Clustering, Model-based, Fig. 1 Scatter plot of the three clusters identified in the iris data using model-based clustering. Clusters

are color-coded and the three species are labeled, i.e., setosa, s, versicolor, v, and virginica, g
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The package is well documented and provides

enhanced display and visualization tools.

Example

Figure 1 shows the classification of the iris data using

the model-based clustering approach with

unconstrained covariance model as implemented in

MCLUST. The species are labeled with letters and

the three clusters are color-coded. Clearly, there is
a good agreement between the true data and clustering

results. The misclassification rate is 3.3%.
Cross-References

▶Bayesian Information Criterion (BIC)

▶Clustering

▶K-Means
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▶Model Testing, Machine Learning

▶Model Validation

References

Fraley C, Raftery A (2002)Model-based clustering, discriminant
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CMP Motif

▶Combinatorial Molecular Phenotypes (CMPs)
c-Myc

Bernhard Schmierer

Department of Biochemistry, Oxford Centre for

Integrative Systems Biology (OCISB), University of

Oxford, Oxford, UK
Definition

c-Myc is a proto-oncogene and member of the Myc

family of transcription factors. c-Myc is a key activator

of cell proliferation in response to growth factors and,

when activated by mutation or overexpression, can

drive unrestricted proliferation. Hyperactivation of

c-Myc is observed in many cancers.
Cross-References

▶Cell Cycle Signaling, Hypoxia
Coalgebra

Baltasar Trancón y Widemann

Ecological Modelling, University of Bayreuth,

Bayreuth, Germany
Definition

Coalgebra is the field of study of mathematical structures

that are dual to structures studied in the field of algebra.
The term dual is used in the formal sense of category

(▶Mathematical Structure, Category) theory, namely,

that the defining operations are reversed.
Characteristics

Coalgebra for Classical Algebra

Classical algebra studies structures endowed with

binary operations that obey various properties: asso-

ciativity in semigroups, existence of neutral and

inverse elements in groups, distributivity in rings,

commutativity in Abelian algebras, absorption in

Boolean algebras, etc. The corresponding coalgebraic

structures are endowed not with operations that pro-

duce a single element as a combination of two but

conversely with operations that produce a pair of ele-

ments as a decomposition of one. Applications of

coalgebraic structures in science are still extremely

scarce, compared with their algebraic counterparts.

The most important instance is the use of Hopf

coalgebras alongside Hopf algebras in standard

model particle physics (de Wild Propitius and Bais

1995). In biological sciences, coalgebra has been

used for formal accounts of genetics (Tian and Li

2004). There, the operation of genetic combination

from parents to offspring is reversed to a deduction of

genetic traits of the parents from those of their

offspring.

Coalgebra for Universal Algebra

Universal algebra, more abstractly, studies properties

common to all the aforementioned structures and many

others beside. It has been recognized only at the end

of the twentieth century that, when these universal

properties are dualized rather than their specific manifes-

tations, many structures of systems theory and computer

science come into scope, most notably transition systems

(Aczel 1988) and automata (Adámek and Trnková

1990). This insight has attracted theoretical computer

scientists to the field, culminating in the proposal by

Rutten (2000) of universal coalgebra as a general theory

of system dynamics, with applications to stochastic

dynamics (▶Markov Chain) and control.

In the language of category theory, both algebras

and coalgebras are studied relative to a▶ functor F that

specifies an expression language.

An F-algebra is a carrier set S together with an

operation a: F(S) ! S; that is, single elements in S

http://dx.doi.org/10.1007/978-1-4419-9863-7_231
http://dx.doi.org/10.1007/978-1-4419-9863-7_1423
http://dx.doi.org/10.1007/978-1-4419-9863-7_634
http://dx.doi.org/10.1007/978-1-4419-9863-7_45
http://dx.doi.org/10.1007/978-1-4419-9863-7_1540
http://dx.doi.org/10.1007/978-1-4419-9863-7_443
http://dx.doi.org/10.1007/978-1-4419-9863-7_1539
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are produced by combination according to composite

expressions in F(S). Dually, an F-coalgebra is a carrier

set S together with an operation c: S ! F(S); that is,
single elements in S produce decompositions into

composite expressions in F(S).

The appearance of the carrier set S on the left or

right hand side of a mappingmakes a crucial difference

for the interpretation of the operation: Algebras

formalize the construction and hence the causal

explanation of elements (▶Causality; ▶Reduction).

Coalgebras, on the other hand, formalize the

characterization and hence the behavioral explanation

of elements; theymay take existence as granted and are

hence indifferent to infinitely regressing and circular

dependencies (▶Holism).

Mappings and Relations

The notion of homomorphisms as structure-respecting
mappings, classically defined individually for each

class of algebras, can be generalized in the categorical

language to all functors F and to both algebra and

coalgebra as commuting diagrams. The diagrams for

a homomorphism h between two F-algebras and for

a homomorphism k between two F-coalgebras are as

follows:
F(S) F(T )

h

a b

S T S T

F(S) F(T )

c

k

d

F(k)F(h)

(1)

The same statements can be rephrased in equational

form as
h � a ¼ b � FðhÞ FðkÞ � c ¼ d � k (2)

respectively, where ○ denotes the composition of

mappings.

Distinguished (Co)algebras

F-algebras and their homomorphisms form a category,

and so do F-coalgebras and their homomorphisms.

For many functors F, the category of F-algebras has
an initial object: There exists an F-algebra that admits
a unique homomorphism to any other F-algebra and is
isomorphic to the term algebra that consists of finitely

nested composite F-expressions. Thus, universal

algebra is equipped with a universal syntactic structure

for constructions, and the corresponding unique

homomorphism is their systematic bottom-up

interpretation.

Dually, for many functors F, the category of

F-coalgebras has a final object: There exists an

F-coalgebra that admits a unique homomorphism

from any other F-coalgebra. In contrast to the

term algebra, it contains also infinite and circular

expressions in the spirit of the non-well-founded set

theory of Aczel (1988). It can be thought of as the

space of all possible ways of global system behavior

(Jacobs and Rutten 1997), and the corresponding

unique homomorphism is their systematic top-down

representation.

Application Examples

As an example, consider the functor F(X) ¼ 1 + X on

the category of sets, which adds an extra element,

say *, to each set. Its initial algebra consists of the set

N of nonnegative integers and an operation that assigns

zero to * and the successor to each number. Every

deterministic discrete dynamical system can be

represented as an F-algebra, consisting of the state

space S and an operation that assigns a distinguished

initial state x0 to * and the successor to each state. The

unique homomorphism h : N! S then computes

the trajectory of x0.

Dually, the final coalgebra for the same functor F

consists of the set N [ f1g of extended nonnegative

integers and the predecessor operation that maps 1
to itself and zero to *. Every subset U � S of states

of a dynamical system can be represented as an

F-coalgebra, consisting of S and the evolution function

of the system, but restricted to U and mapping

all other states to *. The unique homomorphism

h : S! N [ f1g then assigns to each state the

number of steps the system may take before leaving

the region U. U is stationary if and only if h(x) ¼ 1
for all x 2 U.

Equivalence

Elements of different F-algebras may be related

by originating from the same element of the initial

F-algebra via the respective unique homomorphisms.

In that case, one may speak of them as constructively

http://dx.doi.org/10.1007/978-1-4419-9863-7_53
http://dx.doi.org/10.1007/978-1-4419-9863-7_81
http://dx.doi.org/10.1007/978-1-4419-9863-7_66
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equivalent. Elements of different F-coalgebras may

be related by being mapped to the same element

of the final F-coalgebra via the respective unique

homomorphisms. In that case, one may speak of them

as behaviorally equivalent.

The two relationships are logically similar to the

concepts of homology and analogy of comparative

biology. The genuinely coalgebraic notion of formal

behavioral equivalence has proven very useful in the

abstract modeling of systems and processes in com-

puter science (Milner 1989). The same abstraction can

be used to circumvent the issue of ▶multiple realiza-

tion of biotic phenomena, by modeling and

formalizing the essential behavior rather than the acci-

dental structures that cause it.
Cross-References

▶Category Map

▶Causality

▶ Functor

▶Holism

▶Markov Chain

▶Multiple Realization

▶Reduction
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Coefficient of Correlation

▶Correlation Coefficient
Co-expression

Jiguang Wang

Beijing Institute of Genomics, Chinese Academy of

Sciences, Beijing, Beijing, China
Definition

Co-expression means the simultaneous expression of

two or more genes. Identifying co-expression genes is

an important method in exploring microarray data.

Yu et al. (2003) show that genes targeted by the same

transcription factors tend to show similar expression

profiles. Also, interacting proteins are often

significantly co-expressed (Jansen et al. 2003).
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Co-expression Network

▶ Functional/Signature Network Module for Target

Pathway/Gene Discovery
Cofactors

Tetsuro Kokubo

Department of Supramolecular Biology, Graduate

School of Nanobioscience, Yokohama City

University, Yokohama, Kanagawa, Japan
Synonyms

NC1; NC2; PC1; PC2; PC3; PC4
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Definition

USA (Upstream factor Stimulatory Activity) was

originally identified as an activity promoting

a greater level of transcriptional activation by its dual

function of repressing basal transcription and potenti-

ating activator-dependent transcription (Kaiser and

Meisterernst 1996; Roeder 1998; Thomas and Chiang

2006). Further fractionation of USA revealed that it

contained four positive cofactors (PC1, PC2, PC3, and

PC4) and one negative cofactor (NC1). PC1, PC2,

PC3, and NC1 were later found to be equivalent to

poly(ADP-ribose) polymerase-1, Mediator, DNA

topoisomerase I and HMG1, respectively. PC1 stimu-

lates PIC formation at a post-TFIID binding step, and

PC3 enhances TFIID-TFIIA-DNA complex formation.

PC4 has a single-stranded DNA binding activity and

plays a general role in the stabilization of various

protein-DNA interactions. NC1 binds to the TBP-

TATA complex and prevents the incorporation of

TFIIB into PIC. Notably, each component of USA

shows dual functions (positive and negative),

depending on whether activators are present or absent,

similar to that observed in the original mixed fraction

of USA.

NC2 was isolated from a chromatographic fraction

different from that of USA, as a factor that could

associate with the TBP-TATA complex. This factor

comprises two subunits, NC2a and NC2b, which

interact with each other via their HFD (histone fold

domain). Interestingly, NC2 inhibits TATA-dependent

transcription while it promotes DPE-dependent

transcription. The negative function may be due to

its inhibitory effect on the incorporation of TFIIA

and TFIIB into the PIC, and the positive function

may be related to its remarkable activity that mobilizes

TBP on DNA.
SY

X

Y
Cross-References

▶Transcription in Eukaryote
AND

Z

Coherent Type I FFL, Fig. 1 The coherent type-1 FFL with an

AND input function at the Z promoter. SX and SY are input

signals for X and Y
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Coherent Type I FFL

Jinzhi Lei

Zhou Pei-Yuan Center for Applied Mathematics,

Tsinghua University of Beijing, Beijing, China
Definition

In the coherent type 1 FFL (C1-FFL), both transcrip-

tion factors X and Y are transcriptional activators

(Fig. 1). The C1-FFL is a “sign-sensitive delay” ele-

ment and a persistence detector. This means that this

motif can provide pulse filtration in which short pulses

of signal will not generate a response but persistent

signals will generate a response after short delay

(Mangan and Alon 2003).

The C1-FFL has opposite effect in the OR

input function comparing with those in the AND

input function. With an AND input function, the

C1-FFL shows a delay after stimulation, but no delay

when stimulation stops, while with an OR input

function, the C1-FFL shows no delay after stimulation,

but does show a delay when stimulation stops (Mangan

and Alon 2003; Alon 2007).
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Cohesin

Rosella Visintin

IEO, European Institute of Oncology,

Milan, Italy
Definition

Cohesin is a hetero-tetrameric complex organized in

a ring-like shape whose main function is to hold sister

chromatids together from DNA replication up to

anaphase.
Cross-References

▶Mitosis
Cold and Flu-Like Illness

▶Viral Respiratory Tract Infections
Collaborative and Distributed
Biomedical Applications

Tim Clark

Department of Neurology, Massachusetts General

Hospital and Harvard Medical School, Boston,

MA, USA
Synonyms

Biomedical web communities; Collaboratories;

Virtual laboratories
Definition

Collaborative and distributed biomedical applications

on the World Wide Web or biomedical

“collaboratories” (Olsen et al. 2008) enable and social-

ize multimodal activities critical to biomedical

research, using social media technologies. They enable

near-real-time group discussion of methods and

findings, sharing of reagents, cooperative construction

of databases, and publication and annotation of new

scientific communications.
Characteristics

The use of the Internet to support scientific communi-

cation is one of the major shifts in the practice of

science in this era (Kling 1999).

Collaborative and distributed web applications
(or “collaboratories”) provide biomedical researchers

and clinicians with online facilities for very-large-

scale cross-disciplinary biomedical research commu-

nication. They support essential scientific activities of

reporting, documenting, searching, sharing, validating,

combining, collectively witnessing, critiquing,

reviewing, reproducing, integrating, and extending

the results and methods of experiment, observation,

and theoretical endeavor. As such they are part of an

ongoing transition in science generally from print-

based to web-based scientific communications

(Borgman 2007).

Many biomedical web communities are disease-

focused, such as the pioneering Alzforum (Kinoshita

and Clark 2007) as well as newer offerings such as Pain

Research Forum (http://painresearchforum.org) and

SFARI (https://sfari.org/).

Other collaboratories – many of them wikis – focus
on specific biological entities, such as WikiProteins

(http://conceptwiki.org/index.php/WikiProteins);

domain ontologies, such as NeuroLex (http://

neurolex.org/wiki); or protocols, such as

OpenWetWare (http://openwetware.org/) (Waldrop

2008).

Collaborative workflow repositories such as

myExperiment (http://myexperiment.org) support

archival, retrieval, and discussion of analytical

workflows used in computational systems biology

and other data-intensive disciplines (Goble and

http://dx.doi.org/10.1007/978-1-4419-9863-7_13
http://dx.doi.org/10.1007/978-1-4419-9863-7_112
http://dx.doi.org/10.1007/978-1-4419-9863-7_100126
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http://dx.doi.org/10.1007/978-1-4419-9863-7_101622
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https://sfari.org/
http://conceptwiki.org/index.php/WikiProteins
http://neurolex.org/wiki
http://neurolex.org/wiki
http://openwetware.org/
http://myexperiment.org
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DeRoure 2007). They provide distributed support for

detailed scientific discourse on the computational

methods used to arrive at published results

(Gil et al. 2008).

Collaboratories markedly reduce time and distance

constraints upon participants, while providing essen-

tial computational and communications support for

large-scale cross-disciplinary integration of biological

and clinical findings on a global scale.

Collaboratories are thus core infrastructure for

what Weston and Hood (Weston and Hood 2004)

term “studying biological systems on a global level,”

ideally allowing “as many levels of information as

possible to be integrated,” and are thus fundamental

enabling technology for the development of systems

biology.

Scientific blogs, such as Science in the Open (http://

cameronneylon.net/), Open Reading Frame (http://

www.sennoma.net/) or RRResearch (http://rrresearch.

fieldofscience.com/), are another important form of

scientific social media. However, unlike

collaboratories, which orient strongly toward collec-

tive establishment and refinement of scientific

methods, hypotheses, models, and findings, scientific

blogs typically support group discussion of the peri-

odic publications of a single individual.

An important feature of biomedical and other

collaboratories is the open-access nature of their con-

tent licensing. Creative commons or “CC” (http://

creativecommons.org/) licenses are standardized and

widely recognized legal models for open-access con-

tent sharing. These licenses are frequently used for

collaboratory content, with “CC-BY” (free to share

with attribution to the original author) a popular

option. CC licenses enable legally sound, free of

charge, and end-to-end transactions in copyrighted

works on the web (Carroll 2006).

Collaboratories are increasingly supported by

standard web content management systems (WCMS),

providing reusable and customizable features, such as

Drupal (http://drupal.org); by wiki platforms such as

MediaWiki (http://www.mediawiki.org) and Semantic

Mediawiki (http://semantic-mediawiki.org/); or by

web application frameworks such as Ruby on Rails

(http://rubyonrails.org).

WCMS used to support collaboratories in

bioscience are, as a rule, “open source software” –

that is, their license terms provide for free use,
reuse, modification, and redistribution. In an

open source WCMS, the community of its software

developers is typically organized online using its

own software development collaboratory (e.g.,

http://drupal.org).

Informatics to support collaboratories can now

be considered a distinct research agenda in itself

(Lee et al. 2003).
Cross-References

▶Ontologies

▶Wiki

▶World Wide Web
References

Borgman CL (2007) Scholarship in the digital age: informa-

tion, infrastructure, and the internet. MIT Press, Cambridge,

MA

Carroll MW (2006) Creative commons and the new intermedi-

aries. Mich St L Rev 45:55–59

Gil Y, Deelman E, Ellisman M, Fahringer T, Fox G, Gannon D,

Myers J (2008) Examining the challenges of scientific

workflows. IEEE Computer 40(12):24–32

Goble CA, DeRoure DC (2007) myExperiment: social network-

ing for workflow-using e-scientists. Paper presented at the

proceedings of the 2nd workshop on workflows in support of

large-scale science, Monterey, CA

Kinoshita J, Clark T (2007) Alzforum. Methods Mol Biol

401:365–381. doi:10.1007/978-1-59745-520-6_19

Kling R (1999) What is social informatics and why does it

matter? D-Lib Magazine 5(1)

Lee FSL, Vogel D, Limayem M (2003) Virtual community

informatics: a review and research agenda. J Inf Technol

Theory Appl 5(1):47–61

Olsen GM, ZimmermanA, Bos N (2008) Scientific collaboration

on the internet. MIT Press, Cambridge, MA

Waldrop MM (2008) Science 2.0. Sci Am 298(5):68–73

Weston AD, Hood L (2004) Systems biology, proteomics,

and the future of health care: toward predictive, preventative,

and personalized medicine. J Proteome Res 3:179–196.

doi:10.1021/pr0499693
Collaboratories

▶Collaborative and Distributed Biomedical

Applications

http://cameronneylon.net/
http://cameronneylon.net/
http://www.sennoma.net/
http://www.sennoma.net/
http://rrresearch.fieldofscience.com/
http://rrresearch.fieldofscience.com/
http://creativecommons.org/
http://creativecommons.org/
http://drupal.org
http://www.mediawiki.org
http://semantic-mediawiki.org/
http://rubyonrails.org
http://drupal.org
http://dx.doi.org/10.1007/978-1-4419-9863-7_1471
http://dx.doi.org/10.1007/978-1-4419-9863-7_1470
http://dx.doi.org/10.1007/978-1-4419-9863-7_1472
http://dx.doi.org/10.1007/978-1-4419-9863-7_972
http://dx.doi.org/10.1007/978-1-4419-9863-7_972


C 440 Collective Behavior
Collective Behavior

Andreas Deutsch

Center for Information Services and High Performance

Computing (ZIH), Technical University Dresden,

Dresden, Germany
Definition

The term collective behavior describes the macroscopic

behavior observed in systems that consist of a large

number of interacting components. Collective behavior

can result from self-organization, that is, the emergence

of patternswithout external influence, and the formation

of complex spatiotemporal patterns even from relatively

simple interactions. Examples of collective behavior

include the sorting of cells by differential adhesion, the

formation of fruiting bodies by microorganisms, and

organization of fish into huge swarms.
Colony-Forming Fibroblastic Cells

▶ Single Cell Assay, Mesenchymal Stem Cells
Combinatorial Diversity

▶ Immune Repertoire Diversity
Combinatorial Molecular Phenotypes
(CMPs)

Reyk Hillert

Molecular Pattern Recognition Research (MPRR)

Group, Otto-von-Guericke-University, Magdeburg,

Germany
Synonyms

CMPmotif; Multi-protein cluster; Three-symbol code;

TIS code
Definition

The combinatorial molecular phenotype (CMP)

is calculated from the alignment of a stack of

binary images originating from fluorescence signals

(gray values) generated by a Toponome Imaging

System (TIS) (▶Clinical Aspects of the Toponome

Imaging System (TIS)). A CMP is a bijective

binary vector denoting the presence or absence (1 or

0) of any single out of N marker molecules

co-mapped by TIS (▶Clinical Aspects of the

Toponome Imaging System (TIS)) at a certain pixel/

voxel position or at multiple positions in the

image. A CMP vector includes a certain number of

pixel coordinates, at least one, which determine(s)

the CMP frequency for statistical analysis. Several

distinct CMPs can be grouped as a so-called CMP

motif (Fig. 1). A motif describes a set of CMPs by

using a three-symbol code (Schubert 2007). The sym-

bol L (or 1) describes a marker or protein that all

CMPs of the group have in common. Symbol

A (or 0) is used when a certain marker is always

absent (anti-colocated) in the CMPs of the group. If

a marker is variably present within a CMP group, the

symbol in the corresponding motif is a wild card

W (or *).

A CMP at pixel position x,y is defined as binary

vector as follows:
CMP x; yð Þ ¼ ðs1; s2; s3; . . . ; siÞTx;y
ðsi is a binary signal; s 2 f0; 1g; i ¼ f1; 2; 3; . . . ;Ng
Nj ¼ number of markers ; x; y ¼ pixel coordinatesÞ

CMPs and resulting CMP motifs with their

lead protein(s) are direct quantitative measures of

the hierarchy of proteins interlocked as protein

cluster networks. Lead proteins appear to exert

control over the topology and function of protein

cluster networks (Schubert et al. 2006; Friedenberger

et al. 2007; Schubert et al. 2011; Schubert 2010).

Hence, their detection by hierarchical toponome/

CMP analysis is a new way in medical systems

biology and drug target discovery (Schubert et al.

2008).
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calculation of CMP vectors and the three-symbol code of the resulting CMP motif
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Combinatorial Regulation

▶Combinatorial Transcription Regulatory Network
Combinatorial Transcription Regulatory
Network

Yong Wang

Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing, China
Synonyms

Combinatorial regulation; Transcriptional factor

cooperativity
Definition

A regulatory network consists of regulators such as

transcription factors or kinases that control the expres-

sion or activity of their target genes (Chen et al. 2009).

Compared to more commonplace contexts, these reg-

ulators can be thought of as managers in a social or

corporate setting controlling their common subordi-

nates. Usually, these regulators are not working alone

and, almost always, these multiple regulators are

partnering together to control their targets. Combinato-

rial regulation is not a well-defined term in Biology and

http://dx.doi.org/10.1007/978-1-4419-9863-7_447
http://dx.doi.org/10.1007/978-1-4419-9863-7_100229
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Combinatorial Transcription Regulatory Network,
Fig. 1 TF combinatorial regulation, structure of the a1/a2 com-

plex and their binding DNA fragment. Red: TF a1, green: TFa2,

blue: DNA fragment
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we refer to the combinatorial regulation generally when

the regulators (both TFs and kinases) perform their

function mostly in combination with other regulators

under different spatial and/or temporal conditions.

Specifically, combinatorial transcriptional regula-

tory network describes the combinatory regulatory

relationships among transcription factors. Transcrip-

tion factors (TFs) are proteins that dynamically read

and interpret the static genetic instructions in the DNA.

As mentioned above, transcription factors usually

cooperate with other TFs to facilitate (as an activator)

or inhibit (as a repressor) the recruitment of RNA

polymerase, using complex logic rules building upon

simple ones (AND, OR, and NOT) to control the pre-

cise condition-dependent expression of target genes.

For example, one TF can help another TF to stabilize

onto regulatory DNA sequence and recruit RNAP to

start transcription; several TFs may use diverse and

complex logic rules to control the phased temporal

expression of target genes; also, it has been demon-

strated by computational model that, in yeast cell-cycle

modeling, the inclusion of synergistic interactions can

increase the prediction accuracy of transcriptional reg-

ulation to as much as 1.5–3.5-fold.

Below, we show a picture for TF combinatorial

regulation, which is the structure of the a1/a2 complex

and their binding DNA fragment. The TF a1 is shown

in red and the TFa2 is green and the DNA fragment is

blue (Fig. 1). The interaction interface between two

transcription factors is highlighted by spheres repre-

sentation, which includes residues whose distance is

within 7 Å.

It should be noted that the TF combinatorial regu-

lation is not uniquely defined and can be interpreted in

different ways (transcriptional combinatorial regula-

tion, TF synergism, TF cooperation, TF interaction,

and TF cooperativity). It can refer to TF–TF physical/

genetic/regulatory interaction, co-occurrence of

DNA-binding sites close to each other in the same

promoter region, and TF spatial and temporal

combinatorial co-regulation.
Characteristics

Significance of Combinatorial Regulation

Combinatory regulation is very important since it

allows for a sophisticated response to multiple
conditions in the environment, integration of multiple

signaling inputs, and generation of highly specific

outputs with the help of a relatively small number of

regulators. Overall, transcriptional cooperativity

among several TFs is believed to be the main

mechanism of complexity and precision in transcrip-

tional regulatory programs.

Combinatorial regulation is a common theme

in eukaryotic transcriptional circuits, as transcription

factors often work in different combinations to

regulate different sets of genes under different

conditions. Many combinatorial interactions are due

to direct protein–protein contacts between sequence-

specific DNA-binding proteins. These interactions are

often much weaker than the protein–DNA interactions.

It is therefore not surprising that changes in the

interactions between transcription factors play an

important role in transcriptional rewiring.

Patterns of Combinatory Regulation

There are three different patterns of TF combinatorial

regulation that suggest three possible types of TF

cooperativity mechanisms in transcriptional control

(Fig. 2):

In type-I cooperativity (Subfigure A), TFs cooper-

ate through physical interactions in a transcriptional

complex, and jointly regulate many target genes. Upon

the formation of the complex, the binding probability

of RNA polymerase onto the promoter sequence will

either increase or decrease, thus affecting the
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subsequent transcriptional efficiency. Here, protein

physical interaction is the dominant predictor for this

kind of cooperative relationships. Examples of this

type of cooperativity include the Met4 Complex,

CCAAT-binding factor complex, MBF complex, and

SBF complex in yeast. Since the two TFs cooperate in

a transcriptional complex and they stay together most

of the time, we expect that other features are good

predictors as well. For example, the co-evolution rela-

tionship is a good predictor since interacting TFs tend

to co-evolve in different genomes.

In type-II cooperativity (Subfigure B), TFs cooper-

ate largely through genetic or regulatory interaction,

and jointly regulate many target genes. Different from

the first case, TFs interact in a genetic or regulatory

module that may or may not be explained by the

existence of a physical complex. For example, one

TF can regulate a secondary TF, and they jointly reg-

ulate the target genes. The well-known networkmotifs,

such as the feed-forward loop and the regulator
cascade, belong to this type. Alternatively, one TF

can genetically interact with another TF which leads

to a joint phenotype. Here, TF regulatory or genetic

interactions are the dominant predictors for type-II

cooperativity. Examples of this type of cooperativity

include Sok2-Phd1, Yap6-Cup9, and Skn7-Yap1 pairs

in yeast, which are all detected by ChIP-chip experi-

ments as belonging to regulatory feed-forward motifs

and supported by literature evidences.

In type-III cooperativity (Subfigure C), TFs often

cooperate with each other in a competitive way (TF

competitive regulation), or in a redundant manner. In

this case, the DNA-binding sites of these TFs share

high sequence identity or similarity. Their binding

motifs often overlap with each other, leading to com-

petition between TFs for transcriptional control. In this

case, the motif-occurrence data-based features are the

dominant predictors. Some representative cases of

type-III cooperativity are Pdr1-Pdr3, Cat8-Sip4, and

Msn2-Msn4 in yeast.

Methods to Detect or Predict TF Combinatorial

Regulations

Experimental methods for detecting TF interaction

include co-immunoprecipitation and super-gel shift.

One difficulty for these methods is that the TF interac-

tion is usually transient and hard to be captured. In

addition, these methods are generally time consuming,

and it is difficult to apply them to mapping the whole-

genome TF cooperativity network in the living cell.

Complementarily, a wide variety of computational

approaches have been proposed to predict TF

cooperativity. Intuitive idea is that combinatorial

regulation and higher-order regulatory logic can be

revealed by examining overlaps of target genes and

binding sites between transcription modules. Such

quantitative modeling may provide insight into under-

lying mechanisms and design principles, which can be

tested by experiment.

In addition to some case studies of combinatorial

regulation (Wang et al. 2009; Parisi et al. 2007),

existing methods can be roughly classified into three

catalogs. The first class is the binding motif–based

methods. For example, Wagner (1999) employed

a statistical technique to identity significant homotypic

or heterotypic TF-binding site clusters. (Pilpel et al.

2001) used TF-binding motifs with gene expression

data to look for cooperatively binding TFs.
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(Hannenhalli and Levy 2002) predicted TF synergism

by the co-localization of transcriptional factor–binding

site (TFBS) on the genome at the specific distance

apart. (Das et al. 2004) created a multivariate adaptive

regression splines model to correlate the occurrences

and interactions of TFs to the logarithm of the ratio of

gene expression levels. (Yu et al. 2006) identified

interacting binding motif pairs considering their orien-

tation and distance. Similarly, (Chang et al. 2006) used

promoter sequences and gene expression data to detect

cooperativity. Recently, (Datta and Zhao 2008) used

a log-linear model to infer cooperative binding. The

second class is the target gene (TG)-based methods.

(Banerjee and Zhang 2003) assumed that a TF pair is

cooperative if their TGs are significantly co-expressed

while (Nagamine et al. 2005) considered TG interac-

tions instead of TG co-expression. (Tsai et al.

2005) directly selected TF pairs with significant num-

ber of common TGs and further applied the ANOVA

test to determine synergy. (Balaji et al. 2006) applied

a network transformation procedure to ChIP-chip data

and analyzed combinatorial regulation among multiple

TFs. The third class is the transcription factor activity

(TFA)-based methods. (Yang et al. 2005) inferred the

TFAs from gene expression data then assessed TF

cooperativity by their TFA correlation. Wang

(2007) used the similar framework to study combina-

torial regulation in yeast cell cycle.

In addition to the above case studies and the

unsupervised framework using information from

a single data source such as TF-binding motif, target

gene, and TF activity, Wang (2009) used Bayesian

networks, a supervised learning approach, to system-

atically integrate diverse data sources at different

levels to predict and analyze TF cooperativity. Specif-

ically, they design a Bayesian network structure to

capture the dominant correlations among features and

TF cooperativity, and introduce a supervised learning

framework with a well-constructed gold standard

dataset. This framework allows us to assess the predic-

tive power of each genomic feature, validate the supe-

rior performance of our Bayesian network compared to

alternative methods, and integrate genomic features.

Data integration reveals 159 high-confidence predicted

cooperative relationships among 105 TFs, most of

which are subsequently validated by literature search.

The existing and predicted transcriptional

cooperativities can be further grouped into three cate-

gories based on the combination patterns of the
genomic features, which provide further biological

insights into the different types of TF cooperativity.
Cross-References

▶Gene Regulatory Networks

▶Regulation
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Combinatorics of Sets

▶ Subset Surprisology and Toponomics
C

Committee

▶Ensemble
Common Cold

▶Viral Respiratory Tract Infections
Communication Theory

▶ Information Theory and Toponomics
Community

▶Dynamic Modularity

▶Module Network
Community Database

Sabina Leonelli

ESRC Centre for Genomics in Society, University of

Exeter, Exeter, Devon, UK
Synonyms

Model organism database
Definition

Database collecting diverse types of data documenting

the same (set of) organisms, with the purpose of
(1) facilitating integration across datasets and disci-

plinary approaches to the study of the same organism

and (2) facilitating cross-species comparison across

available datasets (Howe and Rhee 2008; Leonelli

and Ankeny 2012). Examples of community databases

are The Arabidopsis Information Resource, gathering

data about Arabidopsis thaliana (Koornneef and

Meinke 2010); and FlyBase, gathering data aboutDro-

sophila melanogaster (Drysdale and FlyBase Consor-

tium 2008).
Cross-References

▶Data-Intensive Research
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Community Detection

▶Modules, Identification Methods and Biological

Function
Community Genome

▶Metagenome
Community Genomics

▶Metagenomics
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Community Metabolomics

▶Metametabolomics
Community Proteomics

▶Metaproteomics
Community Structure

▶Modular Organization of Gene Regulatory Networks
Community Transcriptomics

▶Metatranscriptomics
Compact Chromatin

▶Heterochromatin
Compact DNA

▶Chromatin
Comparative Analysis of Molecular
Networks

Shihua Zhang1 and Zhenping Li2

1National Center for Mathematics and

Interdisciplinary Sciences, Academy of Mathematics

and Systems Science, Chinese Academy of Sciences,

Beijing, China
2School of Information, Beijing Wuzi University,

Beijing, China
Synonyms

Network alignment; Network querying
Definition

A fundamental goal of biology is to understand the cell

as a system of interacting components which can be

represented as a network (Chen et al. 2009). The dis-

covery, analysis, and understanding of interactions

between molecules as well as the networked system

have received significant attentions in recent years. In

a network, each node corresponds to a molecule and an

edge indicates a direct/indirect interaction between the

molecules. As the number of available molecular net-

works for various species rapidly increases, compara-

tive analysis of them across species is proving to be

increasingly important. The comparative study of

molecular networks can be topologically coarse-level

comparison such as the comparative analysis of degree

distribution, clustering coefficient, diameter, and rela-

tive graphlet frequency distribution, or can be the

discovery of conserved subgraphs among networks.

Actually, the later one which is known as network

alignment problem in bioinformatics field is a well-

known concept for molecular network studies and will

be the key of this entry. We should note here that the

problems similar to network alignment have also been

studied in other fields like graph theory, data mining,

and computer vision. For example, the problem of

matching a query image to an existing image in the

database has been formulated as a graph-matching

problem in computer vision field, where each image

is represented as a graph/network.
Characteristics

The network comparative analysis especially network

alignment is similar in spirit to traditional sequence-

based comparative genomic analyses or structure-based

comparative analysis. It also offers a function-oriented

perspective that complements traditional sequence-

based and structure-based methods. Comparative

network analysis also enables us to uncover the network

(dis)similarity, identify conserved functional modules

across species, perform accurate ortholog prediction

and function prediction as well as transfer insights and

information across species.

In general, the goal of network alignment problem

is to find a common and approximative subgraph with

a set of conserved edges across the input networks

(Fig. 1). There exists a mapping between the nodes of
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the subgraph which may correspond to the sequence

similarity or function similarity of molecules (Ogata

et al. 2000). The goal is to maximize the overlap

between the aligned networks and ensure that the pro-

teins mapped to each other are evolutionarily or func-

tionally related. Moreover, according to the number of

input networks, the network alignment problem can be

formulated as pairwise or multiple alignments. While

according to the scope of node mapping desired, the

alignment can be local or global which is analogous to

sequence alignment or structure alignment problem.

We may also want to align a known or even unknown

small network to a large network or network database

to find the conserved ones which is named as the

network querying problem.

The majority of methods used for alignment of

molecular networks have focused on local alignments

(Berg and L€assig 2004, 2006; Kelley et al. 2004;

Flannick et al. 2006; Liang et al. 2006) which attempts

to find local region similarity and find node mappings

independently for different regions. There have been

many algorithms for local alignment in the literature.

The PathBLAST tool searches for high-scoring linear

or tree substructures between two large networks, by
taking into account both the sequence homology

between the aligned molecules and the probabilities

that interactions in the subnetworks are true or not

(Kelley et al. 2004), while the NetworkBLAST tool

detects conserved protein clusters rather than only

paths across pairwise or multiple networks, by

deploying a likelihood-based scoring scheme that

weighs the denseness of a subnetwork versus the

chance of observing such subnetwork at random

(Sharan et al. 2005). By using this tool to compare

multiple networks across different species, Suthram

et al. (2005) explored whether the divergence of Plas-

modium at the sequence level can be embodied at the

level of the structure of its protein interaction network.

They found that Plasmodium has only three conserved

complexes versus yeast, and no conserved complexes

against fly, worm, and bacteria. But yeast, fly, and

worm share an abundance of conserved complexes

with each other. In another method MaWISh, the

authors formulated network alignment as a maximum

weight induced subgraph problem and implemented an

evolution-based scoring scheme to discover conserved

modules. The method extends the concepts of evolu-

tionary events in sequence alignments to that of
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duplication, match, and mismatch in network align-

ments and evaluates the similarity between network

structures through a scoring function that accounts for

these evolutionary events (Koyut€urk et al. 2005), while

the Graemlin is the first method which can identify

dense conserved subnetworks of arbitrary structure.

This method scores a module by computing the log-

ratio of the probability that it is subject to evolutionary

constraints and the probability that it is under no con-

straints, while taking into account phylogenetic rela-

tionships between species whose networks are being

aligned (Flannick et al. 2006). Another example is

MNAligner (Li et al. 2007), which is designed for

general molecular networks and combines both molec-

ular similarity and topological similarity. This method

can detect conserved subnetworks in an efficient math-

ematical programming manner without requiring spe-

cial structures on the networks.

Local alignments can be ambiguous, in which one

node can have different counterparts in different con-

served modules. By contrast, a global network align-

ment provides a unique alignment for each node in the

smaller network to exactly one node in the larger

network. We have to note that this may lead to

suboptimal alignments in some local regions. Gener-

ally, the local network alignment algorithms have not

been able to identify large subnetworks that have been

conserved during evolution due to the algorithmic

complexity or modeling aspect (Berg and L€assig

2004; Kelley et al. 2004). Recently, global network

alignment methods have been studied and designed for

aligning molecular networks (Singh et al. 2007;

Flannick et al. 2008; Zaslavskiy et al. 2009). Unlike

the local alignment algorithms, the IsoRank method

(Singh et al. 2008) aims to maximize the overall match

between the two networks. The method is based on

spectral graph theory which computes scores of

aligning pairs of nodes according to the score of their

respective neighbors from different networks. In other

words, the score of a protein pair depends on the score

of their neighbors. And then sequence scores are incor-

porated into these “topological” scores in the pairwise

alignment scores. Finally, IsoRank constructs the

node alignment with the repetitive greedy strategy of

identifying among all protein pairs the highest scoring

pair (Singh et al. 2008). Recently, the IsoRankN

has extended based on the notion of node-specific
rankings with other ranking algorithms (Liao et al.

2009). The Graemlin method has also been extended

to allow global network alignment which is based

on a learning algorithm that uses a training set of

known network alignments and their phylogenetic

relationships to learn parameters for its scoring

function, and by automatically adapting the learned

objective function to any set of networks (Flannick

et al. 2008).

Another aspect of network alignment studies is

alignment for multiple networks which has gained

great progress recently. Several of above methods

have also been developed for multiple cases. For

example, Graemlin developed by Flannick et al.

(2006), which uses a probabilistic function for topol-

ogy matching, and can be applied to search for con-

served functional modules among multiple protein

interaction networks. The C3Part-Mmethod (Deniélou

et al. 2009) addressed the problem of multiple network

alignment with an exact and generic approach by

avoiding the explicit construction of the network align-

ment multigraph, and then can deal with a large num-

ber of networks. By using microarray data from

multiple conditions and species, various comparative

studies have been conducted so as to reveal transcrip-

tional regulatory modules, predict gene functions, and

uncover evolutionary mechanisms (Zhou and Gibson

2004). For example, Yan et al. (2007) have developed

a graph-based data-mining algorithm NeMo to detect

frequent co-expression modules among a large number

of gene co-expression networks across various condi-

tions. They found a large number of potential tran-

scriptional modules, which are activated under

multiple conditions.

In addition to the network alignment method

discussed above, the network querying technique is

becoming a new major network comparative analysis

tool. The goal of network querying is to find a small

network against a large-scale network or a database of

large-scale networks which is a NP-hard problem

(Fig. 2). The network querying problem has been stud-

ied in the past few years and a few search tools have

been developed, such as PathBLAST (Kelley et al.

2003, 2004), QPath (Shlomi et al. 2006), TORQUE

(Bruckner et al. 2009), and QNet (Dost et al. 2007).

PathBLAST (Kelley et al. 2003, 2004) developed by

Kelley et al. can query a small pathways with length no
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metabolic pathways querying

in a pathway database,

redrawn from (Pinter et al.

2005)
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more than 5 nodes. MetaPathwayHunter (Pinter et al.

2005) developed by Pinter et al. can fast query for

smaller pathways or trees. QPath (Shlomi et al. 2006)

developed by Shlomi et al. can search for linear

pathways. NetMatch (Ferro et al. 2007) based on

a graph-matching algorithm can find the subgraphs of

the original graph connected in the same way as the

querying graph. The results of NetMatch can be

viewed as candidate network motifs as a result of

their similar topological features (Alon 2007). Besides

the network querying tools discussed above, many

querying tools, such as BLAST for sequence querying

and DALI for structure querying, have been developed

by researchers in other areas of computational biology,

and have had a tremendous impact on the development

of biological science (Zhang et al. 2008).

To benefit from the accumulation of networked data

for different species, it will be important to develop

user-friendly network comparison tool. Recent

advances in the field demonstrate the great potential

of network comparison in elucidating network organi-

zation, function, and evolution. Advances in computa-

tional methods and powerful software tools are being

made by interdisciplinary cooperation across different

fields. With the development of powerful and sophis-

ticated network comparison tools, we expect to gain

deep insight into essential mechanisms of biological

systems at the network level.
Cross-References
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Definition

A compiler is a computer program that translates a

programmer-written code into something a processor

can “understand.” The programmerwriteswhat is called

a “source code” in a specific language. Such a language

is easier to understand to the programmer than a

“machine language” composed of 1s and 0s. The com-

piler then facilitates programming by allowing a much

higher level of abstraction. Compiler development is

a very important field of study as compiled programs’

performances will strongly depend on the compiler

ability to interpret the high level code and optimize it

for the underlying machine it will be executed on.
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Synonyms

CDR-IMGT; Complementarity determining region
Definition

A Complementarity determining region (CDR-IMGT)

is a loop region of a V-DOMAIN (▶Variable (V)

Domain), delimited according to the IMGT unique

numbering for V domain (Lefranc et al. 2003). There

are three CDR-IMGT in a V-DOMAIN: CDR1-IMGT

(loop BC), CDR2-IMGT (loop C0C00), and CDR3-

IMGT (loop FG).

In a V-DOMAIN (V domain of the immunoglobu-

lins (IG) or antibodies and T cell receptors (TR)),

the amino acids of the CDR-IMGT bind to an

antigen (▶Epitope) and confer the specificity to

the IG and TR (▶ Paratope, ▶ IMGT-ONTOLOGY,

SpecificityType). The first two CDR-IMGT are part of

the V-REGION (encoded by a ▶ variable (V) gene),

whereas the CDR3-IMGT corresponds to the junction

and results from the rearrangement between a V gene

and a ▶ joining (J) gene (V-J rearrangement) or

between a V gene, a ▶ diversity (D) gene, and a J

gene (V-D-J rearrangement) (▶ Immunoglobulin Syn-

thesis). The two anchors, 2nd-CYS 104 and J-TRP or

J-PHE 118 (▶ Framework region (FR-IMGT)), are

part of the JUNCTION but do not belong to the

CDR3-IMGT.

Analysis of the JUNCTION and of the CDR3-

IMGT of V-DOMAIN nucleotide sequences is

performed by IMGT/JunctionAnalysis, integrated in

IMGT/V-QUEST, the nucleotide sequence analysis

tool (Lefranc 2009; Ehrenmann et al. 2010) of
IMGT®, the international ImMunoGeneTics informa-

tion system® (http://www.imgt.org) (▶ IMGT® Infor-

mation system).

In a V-LIKE-DOMAIN (V domain of ▶ Immuno-

globulin Superfamily (IgSF) other than IG and TR),

the three loops BC, C’C” and FG correspond,

structurally, to the three CDR-IMGT of a

V-DOMAIN, and are delimited by anchors at the

same positions, 26 and 39, 55 and 66, 104 and 118,

respectively.

Amino acid positions of the CDR-IMGT of a

V-DOMAIN have always the same number according

to the ▶ IMGT unique numbering for V domain

(Lefranc et al. 2003). This allows to define in an

▶ IMGT Collier de Perles the lengths of the CDR-

IMGT. These characteristics, based on the ▶ IMGT-

ONTOLOGY concepts, are managed in the ▶ IMGT®

information system databases and tools. Starting from

amino acid sequences, the CDR-IMGT lengths are

obtained using the IMGT/DomainGapAlign tool

(http:www.imgt.org) (Lefranc 2009; Ehrenmann et al.

2010).

The lengths of the three CDR-IMGT lengths of

a V-DOMAIN are shown between brackets and sep-

arated with dots. For example, the CDR-IMGT

lengths of the V-DOMAIN displayed in Fig. 1 are

[8.10.12]. The CDR-IMGT lengths of a basic

V domain without gaps are [12.10.13]. For CDR3-

IMGT with more than 13 amino acids, additional

positions are added at the top pf the loop (Lefranc

et al. 2003).

The CDR-IMGT lengths of therapeutic

antibodies are required for the World Health

Organization/International Nonproprietary Names

(WHO/INN) and are included in the INN definitions

(Lefranc 2011). The standardized delimitation

of the CDR-IMGT has a crucial importance in anti-

body engineering and antibody humanization by

CDR grafting: it allows to precisely delimit the

CDR amino acids from the original antibody

(murine, rat, etc.) that need to be grafted on an

human antibody framework, in order to preserve the

specificity of the original antibody in the therapeutic

monoclonal antibody, while decreasing its immuno-

genicity (Lefranc 2009, 2011; Ehrenmann et al.

2010).
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Complementarity Determining Region (CDR-IMGT),
Fig. 1 Complementarity determining regions (CDR-IMGT) of

a V-DOMAIN. The CDR-IMGT correspond to three loops in

IMGT Colliers de Perles (on one layer, and on two layers with

hydrogen bonds) and in three-dimensional (3D) structures.

(a) Amino acid sequence (http://www.imgt.org) of an antibody

V-DOMAIN (VH of the IG-Heavy chain) with delimitation of

the three CDR-IMGT. (b) IMGT Collier de Perles on one layer.

(c) IMGT Collier de Perles on two layers. Hydrogen bonds

between the amino acids of the C, C0, C0 0, and F and G strands

and those of the CDR-IMGT are shown. (d) Ribbon 3D

representation. (e) Spacefill 3D representation. The CDR1-

IMGT, CDR2-IMGT and CDR3-IMGT regions are colored in

red, orange and purple, respectively (IMGT Color menu). The

CDR-IMGT lengths are [8.10.12]. The antiparallel beta strands

(A to G) correspond to the ▶ Framework Region (FR-IMGT).

Anchors positions, shown as squares in B and C (26 and 39, 55

and 66, 104 and 118), and as spheres in D, belong to the

FR-IMGT. Hydrophobic amino acids (hydropathy index with

positive value) and tryptophan (W) found at a given position in

more than 50% of analysed IG and TR sequences are shown

in blue in B and C
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Definition

Since the 1990s, the term complexity has played an

increasingly prominent role in our attempts to
understand living systems as being somehow both

lawful and yet also unpredictable. Yet in her book of

the same name, Mitchell (2009) notes the current lack

of a consensual definition of what precisely constitutes

a complex system. She cites definitions of complexity

as the algorithmic information content of a system

(i.e., the minimum coding length of an algorithm

capable of reconstructing the system), as the fractal

dimension of a system, and as the level of composi-
tional hierarchy possessed by a system’s structure. She

concludes from this potpourri of definitions that

“notions of complexity [. . .] have many interacting

dimensions and probably can’t be captured by

a single measurement scale.”

These definitions reflect a marked ambiguity in

what precisely we mean when we describe life

as being complex. Definitions in terms of

algorithmic information content regard complexity

as complicatedness: Humans are more complex than

bacteria because they possess a more complicated

behavioral repertoire. On the other hand, definitions

in terms of compositional hierarchy tackle a more

elusive quality of living systems as organized:

Humans are more complex than bacteria because

their wide behavioral repertoire is organized around

overarching purposes.

A synthesis of these quite differing criteria has

emerged from Kauffman’s (1993) analysis of the

behavior of a family of dynamical systems called NK

Boolean networks. When the connectivity K of

a Boolean network is below a certain threshold, the

network exhibits ordered behavior, converging to

a temporally stable, globally coordinated attractor

state, while at higher values of K, the behavior

becomes chaotic, veering unpredictably between topo-

logically uncoordinated states. At intermediate values

of K the network enters the complex regime, in which

the network divides into connected regions of compar-

atively stable, topologically coordinated states, yet

intermittently redistributing these coordinated states

and regions.

Such complex behavior is certainly visually remi-

niscent of living systems – it is neither random nor

predictably ordered, but is characterized by dynamic

metastability. A dynamical system is metastable with

respect to some parameter l if its dynamics remain

relatively stable over large variational regions of l, but
bifurcate abruptly across specific critical values of l.
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Complex Behavior,
Fig. 1 Complex speciation

of birds under a symmetrical

evolutionary rule
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According to this account, complex behavior is

therefore behavior which is metastable with respect

to one or more parameters which may vary either

spontaneously or in response to environmental inputs.

To put it differently: Complex behavior is the ability to

switch between different, reliably reproducible, varie-

ties of behavior in response to varying environmental

conditions.

For example, the orbiting of the Moon round the

Earth is not complex – it is too predictable. The motion

under gravity of three stars of equal mass about each

other is also not complex, being in general chaotic

and completely unpredictable. By contrast, the

self-organization exhibited by Golubitsky and Stewart

(2002, pp. 3–6: see Fig. 1) model of sympatric speci-

ation is complex. Four distinct interacting groups of

organisms evolve according to a single symmetrical

rule parameterized by an exogenous parameter l.
Although initially the groups have almost identical

traits, as the value of l varies smoothly over time,

this symmetry collapses, and the four trait groups

self-organize into two distinct species with clearly

distinguishable traits. While the final trait value of

any particular group depends sensitively on initial

conditions, the bifurcation into the two species is

predictable.
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Definition

The most important advantage of the ▶Extended

Gaussian Image, the position invariance, is also its

principal drawback: as a consequence, the translation

of a 3D target object cannot be recovered. A solution to

this problem is to represent object surfaces by their

EGI adding a support function: the signed distance of

the oriented tangent plane from a predefined origin. In

this new representation, called Complex EGI (CEGI)

(Kang and Ikeuchi 1991) (Kang and Ikeuchi 1993), the

weight at each patch, representing a discretized cell, is

a complex number that encodes both area and distance

(Fig. 1). The magnitude of the complex number is the

surface area of the object associated with that surface

normal, while the phase, which supports the displace-

ment information, is the signed distance of the surface

patch from a predefined origin in the direction of its

normal.

The complex weight associated with the surface

patch Ai is Ai,nke
jdk, where Ai,nk is the area of patch Ai

with the outward normal nk, and dk is the normal

distance of the plane within which Ai,nk lies to an

assigned origin. For any given point in the CEGI
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corresponding to normal nk, the magnitude of the

point’s weight is IAnke
jdkI. Ank is independent of the

normal distance, and if the object is convex, the distri-

bution of Ank corresponds to the conventional EGI

representation. Equation 1 represents the CEGI com-

plex weight:

W
n k
! ¼

XN k
!

l¼1
Al;nk e

jdl;k (1)

Also in the Enriched Complex Extended Gaussian

Image (ECEGI) (Hu et al. 2010) each patch of the 3D

object surface contributes with a complex weight to the

associated point orientation of the Gaussian sphere.

However, while the CEGI uses only a scalar complex

number, the ECEGI uses a vector of three complex

numbers. The resultant weight is the sum of the

contributions of all surface patches having the normal

in common, where the exponent is given by the
A1
n1

n1

A1e jdl

Complex EGI and Enriched Complex EGI, Fig. 1 Complex

extended Gaussian image

A1

n1

Complex EGI and Enriched
Complex EGI,
Fig. 2 Enriched complex

extended Gaussian image
distance from each one from the coordinate planes.

The magnitude of the ECEGI representation is trans-

lation-invariant. The ECEGI can be viewed as three

independent complex Gaussian spheres, each

corresponding to the axis (x, y, z) (Fig. 2).

The weight is, in this case, represented by three

complex numbers given by (2):
W
x;n k
! ¼

XN k
!

i¼1
Ai;nk e

jXi;k

W
y;n k
! ¼

XN k
!

i¼1
Ai;nk e

jYi;k

W
z;n k
! ¼

XN k
!

i¼1
Ai;nk e

jZi;k

(2)
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Synonyms

Highly structured system
Definition

A complex system is a system composed of

interconnected parts which as a whole exhibit one

or more properties (behavior among the possible

properties) not obvious from the properties of the indi-

vidual parts. This characteristic of every system is

called emergence and is true of any system, not just

complex ones.

Complex systems are usually open systems since

they exist in a thermodynamic gradient and dissipate

energy. In other words, complex systems are fre-

quently far from energetic equilibrium: but despite

this flux, there may be pattern stability (Rocha 1991).

Complex systems may have a memory: the history of

a complex systemmay be important. Because complex

systems are dynamical systems, they change over time,

and prior states may have an influence on present

states. More formally, complex systems often exhibit

hysteresis. Complex systems may be nested since the

components of a complex system may themselves be

complex systems.

Generally relationships in a complex system are

nonlinear. In practical terms, this means a small pertur-

bation may cause a large effect, a proportional effect, or

even no effect at all. In linear systems, effect is always

directly proportional to cause. Moreover, relationships

contain feedback loops: Both negative (damping) and

positive (amplifying) feedback are often found in
complex systems. The effects of an element’s behavior

are fed back to in such a way that the element itself is

altered (Kitano 2007). Emergent behavior in complex

systems arises if all constituents of the system observed

on one level cannot explain the system properties on

a coarser or higher level (Walleczek 2000).
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Synonyms

Complication; Intricacy
Definition

Complex systems are systems which show a range of

different characteristics like the multiplicity of their

parts, the nonlinearity and nonadditivity of the inter-

actions between their parts, the sensitivity of their

behavior to initial conditions, their hierarchical orga-

nization, their self-organization, and the robustness

and the emergence of their behavior. Some of these

characteristics are necessary conditions for a system to

be complex; others are just typical for many complex

systems. The latter is due to the fact that nature exhibits

a variety of different kinds of complexity.
Characteristics

In recent decades, the focus of scientific research has

shifted more and more to trying to understand and

http://dx.doi.org/10.1007/978-1-4419-9863-7_100622
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handle the complexity of nature. In biology, for

instance, the reductionistic assumption (▶Reduction)

that there is a neat, simple gene-protein-trait-fitness

relationship and that the behavior of a biological sys-

tem can be understood merely by studying the parts of

the system in isolation has been rejected. Instead, con-

temporary biologists try to account for the complexity

of nature by recognizing the “wholeness” (▶Holism)

of biological systems (e.g., Chong and Ray 2002), that

is, by paying attention to the various interactions

between the parts of a system and to how these parts

are integrated to the system as a whole. For example,

rather than examining the isolated functions of genes,

biologists study the dynamics of entire ▶ gene regula-

tory networks. This focus shift toward complexity

issues is not restricted to the biological sciences, but

rather, it is a quite general trend. This is why some

authors speak of a “complex system revolution”

(Hooker 2011, 6) that has taken place and still goes

on in contemporary science.

What Is a Complex System?

Despite the fact that complexity issues more and more

gain center stage in several research fields, there exists

neither a unified science of complex systems nor

a consensus about what complexity is and what makes

a system complex. Rather, the characterizations of com-

plexity partially vary from field to field and from author

to author. There are two different ways of how one

could react to this situation. On the one hand, one

could argue that there is still much empirical and con-

ceptual work left to do, and that sometime in the near

future, scientists and philosophers would have figured

out how to specify what a complex system is. On the

other hand, one could point out that the actual disagree-

ment on how to characterize complexity is not due to

our insufficient knowledge. Rather, it arises from the

actual variety of ways that systems are complex. In

other words, nature exhibits different kinds of complex-

ity that cannot be captured by a single definition.

Depending on which claim an author subscribes to,

he will favor one of two strategies for characterizing

complexity: first, several authors try to specify what

complexity is by proposing a list of features, each of

which is necessary and all together are sufficient for

a system to be complex (e.g., Hooker 2011; Ladyman

et al. 2012); the second strategy consists in

distinguishing different kinds of complexity (e.g.,

Mitchell 2003; Kuhlmann 2011). In this section,
some crucial insights of pursuing the first strategy

will be revealed, whereas section “Different Kinds of

Complexity” introduces some classifications of com-

plexity (second strategy).

Before doing so, it should be stressed that the two

strategies are neither opposite nor incompatible. What

distinguishes them is the emphasis they put on the

diversity of complexity. Those who aim at a definition

of complexity which identifies necessary and jointly

sufficient conditions for a system to be complex (first

strategy) focus on the similarities among different

cases of complexity. On the contrary, those who pursue

the second strategy and distinguish different kinds of

complexity put more emphasis on the actual variety of

ways that systems are complex. However, it is also

possible to seek after a list of core features of complex

systems and at the same time account for their diver-

sity. For instance, one could abandon the requirement

that these features must be necessary and allow also

features on the list that are only typical for many (but

not for all) complex systems. Furthermore, one could

also combine the first and the second strategy by at first

distinguishing different kinds of complexity, and then

specifying these types of complexity by identifying

different sets of features that are associated with

these different kinds.

What are the features that are said to be necessary

for complexity or that are at least typical for many

complex systems? The following main features are

widely associated with complex systems (which is

not to say that this list is exhaustive; for alternative

approaches, see Hooker 2011 or Ladyman et al. 2012).

Multiplicity of Parts

Complex systems typically consist of a large number of

parts. In some cases, many of these parts are of the same

or of similar kind (e.g., a swarm of birds is composed of

birds of the same species). Other complex systems are

made of components that belong to several different

kinds (e.g., organ systems like the cardiovascular system,

which consist of different kinds of tissues and cells).

Nonlinearity and Nonadditivity of Interactions

The parts of a complex system causally interact

(▶Causality) with each other in order to bring about

a particular behavior of the overall system. It is char-

acteristic for many complex systems that these inter-

actions are nonlinear, more precisely, that the behavior

of the system is described by a mathematical function
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that is nonlinear (e.g., because the variable of interest is

squared). Nonlinear interactions frequently involve

positive or negative ▶ feedback.

Nonlinear dynamical equations are characterized by

nonadditivity, which means that numerical combina-

tions of solutions are in general not solutions. The

feature of nonadditivity is one reason why complex

systems are said to be “more than the sums of their

parts.” To put it another way, complex systems are not

aggregative systems (Wimsatt 2007) because their

behavior does not remain invariant under interchanging

their parts, under changes in the number of parts, and

under decomposing and rearranging their parts, and the

interactions among their parts are not linear.

Sensitivity to Initial Conditions

The behavior of some complex systems is sensitive to

initial conditions, that is, their behavior differs largely
in the long run even if there are only minuscule differ-

ences at the beginning. This is due to the fact that the

nonlinearity of the interactions between the system’s

parts allows small differences in the system state to be

amplified (▶Amplification) into large differences in

the subsequent system trajectory.

Hierarchical Organization

Complex systems typically possess a hierarchical
nature (▶Hierarchy), that is, they are parts of higher-

level systems and they consist of parts that are them-

selves (lower-level) systems which, in turn, may also

be composed of subsystems, and so on. For instance,

organisms consist of organ systems that are composed

of tissues which consist of cells, etc. This feature is

also referred to as the multilevel character of complex

systems. Recognizing the hierarchical nature of com-

plex systems is important for understanding how com-

plexity can evolve (Simon 1962).

Self-organization

Complex systems are self-organizing systems.

▶ Self-organization means that an initially disordered

system becomes more organized or ordered because of

the interactions of the parts of the system. The process

of self-organization is spontaneous, that is, it is not

centrally controlled by any agent or subsystem.

Robustness

The organization or order of a complex system

is said to be robust (▶Robustness), that is, it
remains stable under a certain range of disturbances

of the parts of the system.

Emergence

The behavior of complex systems is often said to be

emergent (▶Emergence) in the sense of being

unexpected, unpredictable, or unexplainable on basis

of the knowledge about the parts of the system in

isolation (more on this in section “Emergence and the

Limits of Reductionism”).

Different Kinds of Complexity

A second way to characterize the phenomenon of com-

plexity is to distinguish different kinds of complexity.

At least two ▶ classifications of complexity are worth

being mentioned here. The first one has been intro-

duced by Mitchell (2003, 2009). She distinguishes

three different kinds of complexity in biology: consti-

tutive complexity, dynamic complexity, and evolved

complexity. “Constitutive complexity” refers to the

complexity of the structure that biological systems

(like organisms) display. The structure of biological

systems is complex if the system as a whole is being

formed of numerous parts in nonrandom, non-simple

▶ organization (see also Simon 1962; Wimsatt 2007).

“Dynamic complexity” concerns the complexity of the

processes that biological systems are engaged in, for

instance, the developmental or evolutionary processes

that organisms undergo. Finally, “evolving complex-

ity” refers to the domain of alternative adaptive solu-

tions that are available for certain adaptive problems. If

there exists a wide diversity of forms in life which have

evolved as solutions to the same adaptive problem,

there is said to be much evolving complexity.

More recently, Kuhlmann (2011) has argued that it

is important to distinguish compositional complexity

from dynamical complexity. Although he uses similar

words as Mitchell, the two kinds of complexity he

identifies are different from hers. This difference

might (at least partly) be due to the fact that Kuhlmann

is more interested in complex systems from physics

and socio-economics, rather than from biology. What

Kuhlmann means by compositional complexity of

a system is the complicated organization of the setup

conditions of a system, that is, the fact that a system

consists of many parts and that the individual behav-

iors of the parts as well as their organization determine

the overall behavior of a system. Somehow surpris-

ingly, Kuhlmann emphasizes that, in this case, the
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http://dx.doi.org/10.1007/978-1-4419-9863-7_945
http://dx.doi.org/10.1007/978-1-4419-9863-7_477
http://dx.doi.org/10.1007/978-1-4419-9863-7_82
http://dx.doi.org/10.1007/978-1-4419-9863-7_538
http://dx.doi.org/10.1007/978-1-4419-9863-7_116
http://dx.doi.org/10.1007/978-1-4419-9863-7_606
http://dx.doi.org/10.1007/978-1-4419-9863-7_77


Complexity 459 C

C

parts of compositionally complex systems interact

with each other in a linear fashion, which is why the

behavior of the system is a summation of the behaviors

of its parts. Contrary to this, in the case of dynamical

complexity, most facts about the nature of the parts of

the system as well as their initial arrangement have no

bearing on the behavior of the system. Rather, what

makes these kinds of systems complex is that although

they are compositionally simple and the rules that

determine their dynamics are simple (but nonlinear),

they show patterns that are factually unpredictable and

qualitatively unexpectable.

Further Philosophical Issues

Explaining Complexity

One important philosophical question that arises in

the context of complex system research concerns the

nature of scientific ▶ explanation. Do the explana-

tions of the behavior of complex systems constitute

a special kind of explanations, as, for instance, Mitch-

ell (2009) and Kuhlmann (2011) argue? Or do they

belong to one or more of the established kinds of

explanation (like causal-mechanistic explanation,

covering-law explanation, functional explanation,

mathematical explanation, etc.)? A good starting

point for addressing this question is the widespread

claim of biologists that reductionistic-mechanistic

research strategies (▶Reduction; ▶Mechanism) are

inappropriate or, at least, insufficient to investigate

and explain the behavior of complex systems (e.g.,

Gallagher and Appenzeller 1999). This suggests that

explanations that are developed in sciences of com-

plex systems are non-reductive (▶Explanation,

Reductive) and non-mechanistic. However, it is far

from clear what exactly this claim amounts to and

whether it is true for all explanations in this field (e.g.,

whether it also applies to computational explanations

that can be found, for instance, in systems biology).

One reason why the explanation of the behavior of

complex systems might be non-reductive is that these

explanations frequently appeal not only to the parts of

the system, but also to contextual factors and higher-

level factors (which is why they are said to be

multilevel explanations; Mitchell 2009). Moreover,

the behavior of complex systems cannot be explained

by referring only to the parts of the system in isolation

(which is, in turn, typical for reductive explanations;

Kaiser 2011). However, in the last 15 years, several

accounts of mechanistic explanation have been
developed which decouple the concept of

a mechanistic explanation from the concept of

a reductive explanation because they allow higher-

level and contextual factors to figure center stage in

a mechanistic explanation (e.g., Bechtel 2008).

Causality and Complex Systems

A second philosophical question concerns the causal

structure of complex systems (▶Causality). Do any

challenges and constraints for a philosophical theory of

causation arise from the peculiarities of the causal

structure of complex systems?

A possible challenge might be the existence of

downward causation, which is a topic that is also

frequently discussed in science itself. Downward cau-

sation encompasses cases, in which entities from

a higher level of organization causally affect entities

on a lower level (▶ Interlevel Causation). Downward

causation between a whole (i.e., the higher-level

entity) and its parts (i.e., the lower-level entities) is

regarded as particularly problematic because a central

assumption in most theories of causation is that cause

and effect must not be identical. However, if it is true

that the relation between a whole and the set of its

organized parts is one of identity, as one could argue,

the whole cannot be causally related to its parts.

Other challenges and constraints of a theory of

causation that may arise from the investigation of

complex systems concern the context-sensitivity of

their behavior and the nonlinearity of the interactions

between their parts. The latter often involve cyclic

causal relations like ▶ feedback, which constitute

a challenge for some theories of causation (e.g., for

causal graph theories).

Emergence and the Limits of Reductionism

One of the features that are characteristic of complex

systems is that their behavior is said to be emergent

(see section “What Is a Complex System”). However,

despite its ubiquity, the notion of ▶ emergence is left

notoriously vague. Most scientists use the term “emer-

gence” in an epistemic sense, that is, they call

a behavior (or property) of a system emergent if it is

unpredictable, unexpectable, or unexplainable on the

basis of present knowledge about the behavior (or

properties) of its parts in isolation.

Others want to understand emergence ontologically

and link it to irreducibility. According to them, study-

ing emergent behaviors of complex systems reveals the

http://dx.doi.org/10.1007/978-1-4419-9863-7_61
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limits of reductionism (▶Reduction). More precisely,

it discloses the conditions under which the (exclusive)

application of reductive research strategies (like

decomposition, simplification of the system’s context,

and investigating parts in isolation; Wimsatt 2007;

Kaiser 2011) is not adequate any more. In other

words, the emergent behavior of a complex system

cannot be understood by decomposing the system

into its parts, by examining the parts in isolation (i.e.,

separated from the original system), and by ignoring

the context of the system. This is, for instance, due to

the fact that the parts of a complex system are orga-

nized or “integrated” (Bechtel and Richardson 2010) in

such a complicated way that their behavior is co-

determined by the system’s organization. Furthermore,

the behavior of several complex systems heavily

depends on certain parts of their context (i.e., it is

non-robust under variations of these contextual

factors), which is why the context of the system cannot

be ignored altogether or grossly simplified.
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Definition

A set of transcription factor binding motifs, usually

located close to each other on the chromosome, asso-

ciated with a cooperative set of transcription factors. It

is also called cis-regulatory modules.
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Definition

Autopoiesis (“self-production”) denotes a particular

class of “circular” system organization. A system is

said to be autopoietic if its organization satisfies two

separate, but intertwined, “closure” properties:

• Closure in production: The system is composed of

components which give rise to (realize or instanti-

ate) processes of production which, in turn, collec-

tively produce more of those same components

• Closure in space: The self-construction of

a boundary between the system and the world in

which it is embedded, yet from which it distin-

guishes itself

Computational autopoiesis denotes the study of

autopoietic systems realized in computational form –

that is, embedded in artificial, computer-generated,

virtual worlds.
Characteristics

Motivation

The term autopoiesiswas coined in the early 1970s by

Chilean biologists Humberto Maturana and Francisco

Varela. They introduced it in an attempt to character-

ize what they saw as a decisive organizational dis-

tinction between living and nonliving systems –

namely, that even the simplest living system (such

as a bacterial cell) has the capacity both to regenerate

all its own components and also to demarcate itself, as

a distinct system, from its surrounding environment.

In their view, this entails an essential self-referential

circularity in the organization of living systems; and

they conjectured that this self-referential circularity is

at least a necessary (though hardly sufficient) condi-

tion for the distinctive phenomenology of biological

systems. This conjecture is clearly relevant to what is

now called systems biology insofar as if this
demarcation were accepted, then autopoietic organi-

zation would be a required property of all properly

biological systems, that is, of the entire domain of

systems biology. Computational autopoiesis is

concerned with testing the conjecture by building

computational universes (virtual worlds) specifically

designed to facilitate embedding of systems with

autopoietic organization and investigating the extent

to which these can then exhibit lifelike phenomenol-

ogy within those universes (including dynamic

self-maintenance, reproduction, and evolutionary

growth of complexity). Computational autopoiesis is

commonly classified as a subfield within ▶Artificial

Life.

The Minimal Model

Partly because the definition of autopoiesis was still

informal and qualitative, Maturana and Varela offered

what they called a concrete “minimal model” of

autopoietic organization. With this they put forward

a relatively abstract, but still “chemical-like,” world,

incorporating a minimal set of chemical species and

reactions that would still suffice to allow their organi-

zation into an autopoietic system. With Ricardo Uribe,

they took the highly original (for the time) further step

of actually implementing this minimal model in the

form of a computer simulation of their abstract chem-

ical world (Varela et al. 1974).

The minimal (computer-simulated) chemistry takes

places in a discrete, two-dimensional, space. Each

position in the space is either empty or occupied by

a single particle. Particles generally move in random

walks in the space. There are three distinct particle

types (chemical species), engaging in three distinct

reactions:

• Production: Two substrate (S) particles may react,

in the presence of a catalyst (K) particle, to form

a link (L) particle.

• Bonding: L particles may bond to other L particles.

Each L particle can form (at most) two bonds, thus

allowing the formation of indefinitely long chains,

which may close to form membranes. Bonded

L particles become immobile.

• Disintegration: An L particle may spontaneously

disintegrate, yielding two S particles. When this

occurs, any bonds associated with the L particle

are destroyed also.
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Chains of L particles are permeable to S particles

but impermeable to K and L particles. Thus, a closed

chain, or membrane, which encloses K or L particles

effectively traps such particles.

The basic autopoietic system embedded in this

world (Fig. 1) consists of a closed chain (membrane)

of L particles enclosing one or more K particles.

Because S particles can permeate through the mem-

brane, there can be ongoing production of L particles.

Since these cannot escape from the membrane, this

will result in the buildup of a relatively high concen-

tration of L particles. On an ongoing basis, the mem-

brane will rupture as a result of disintegration of

component L particles. Because of the high concentra-

tion of L particles inside the membrane, there should

be a high probability that one of these will drift to the

rupture site and effect a repair, before the K particle(s)

escape, thus reestablishing precisely the conditions

allowing the buildup and maintenance of that high

concentration of L particles.

Practical computer simulation experiments

demonstrated that such dynamic, self-maintaining,

autopoietic systems can indeed both emerge and per-

sist as discrete, self-demarcated, composite individuals

embedded within this abstract world. In the original
model, there was also an additional technical feature

(“chain-based bond inhibition”) which was not made

explicit in the published algorithm but was, in fact,

necessary to the claimed autopoietic operation. This

oversight was subsequently identified through the fail-

ure of some independent attempts to reproduce the

originally described results. The issue was eventually

clarified and resolved (McMullin 2004).

Elaborations

The earliest systematic elaborations of the minimal

model of computational autopoiesis were developed

by Milan Zeleny (1978). In particular, he reported

such phenomena as growth, change in shape, oscilla-

tion in chemical activity, and self-reproduction of

autopoietic entities. Prima facie, these represented

important demonstrations of progressively richer, life-

like, phenomena within the framework of computa-

tional autopoiesis. However, the algorithmic

(“chemical”) basis for these phenomena was not fully

detailed in the published reports. Technological limi-

tations of the time meant that the source code (the

definitive documentation) was not widely distributed,

and, indeed, all copies are now believed to have been

lost. The qualitative descriptions that are available

suggest that, in at least some cases, the original

constraints of local interaction, random motion of

particles, and time-independent particle dynamics

may have been substantially relaxed. If that were so,

the interest of these results would be seriously

diminished – in the sense that the more complex

“macroscopic” phenomena may have been, in effect,

implicitly programmed into individual microscopic

particles. In any case, this particular line of elaboration

was not pursued further.

Some years later, Breyer et al. (1998) described

another series of developments beyond the minimal

autopoiesis model. They first relaxed the original

restrictions on the motion of bound L particles to

allow the formation of flexible chains and, indeed,

membranes. Allowing multiple, doubly bonded,

L particles to occupy a single lattice site further

enhanced membrane motion. Adopting more sophisti-

cated “bond rearrangement” interactions then allows

chain fragments formed within the cell to be dynami-

cally integrated into the membrane. These mechanisms

together obviate the need for the chain-based bond

inhibition mechanisms – since now, even if

L particles spontaneously bond in the interior of the
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cells, the oligomers so formed remain mobile and,

through bond rearrangement, can still successfully

function to repair membrane ruptures. In this way,

the model was reported as successfully supporting

cell growth.

More recently, a variation of the minimal model has

been presented which demonstrates systematic motion

of the autopoietic cell in a manner reminiscent of

chemotaxis (Suzuki and Ikegami 2008).

A specific criticism of the minimal model is that it

provides no mechanism for production of further

K particles (within a functioning autopoietic cell).

This is argued to be both a logical and practical defi-

ciency. Logical because, prima facie, it conflicts with

the stated requirement of autopoiesis for closure of

production. But perhaps more importantly, from

a practical point of view, in the absence of ongoing

production of K, then self-reproduction of this form of

autopoietic entity is impossible; and consequently,

there is also no possibility for spontaneous Darwinian

evolution among variant lineages of such entities.

Breyer et al. (1998) did address this issue to the

extent of presenting a number of specific mechanisms

for production of further K particles but did not pursue

that to the demonstration of autopoietic entities actu-

ally capable of sustained reproduction (i.e., which

could continue up to the limit of available resources

of space and particles).

Further substantive progress in demonstrating evo-

lution of computational autopoietic systems has (to

date) not generally focused on direct elaboration of

the original minimal model but instead has tended to

shift to computer modeling at a more coarse-grained

level. This has been at least partially driven by reasons

of computational cost in the simulations. In the original

model, each lattice site can generally be occupied by at

most one particle: It is fine grained to the single mol-

ecule level. In the so-called lattice artificial chemistry

(LAC) models, by contrast, each single lattice site is

permitted to host many particles, of many distinct

molecular species. Using this approach, a variety of

additional phenomena have been reported, including

self-reproducing autopoietic cells, with (limited) heri-

table variation and Darwinian evolution; for example,

selection between varieties of catalyst particles having

different rates of membrane particle generation (Ono

and Ikegami 2002). Some example phenomena,

including self-reproduction, have also been reported

in three-dimensional LAC models.
Related Concepts

Computational autopoiesis is distinct from, but clearly

related to several other, parallel, developments.

The chemoton concept of Tibor Gánti (2003),

though apparently developed quite independently,

shares significant features with cellular autopoiesis.

It is again a proposal for an abstract, “minimal” cell,

consisting of a collectively autocatalytic network of

reactions which is enclosed within a membrane,

which is also generated and maintained by the reac-

tion network. It differs from the minimal autopoiesis

model in explicitly including a “genetic subsystem.”

It is also rather more detailed in its analysis of the

required chemical dynamics (kinetics, etc.) and aims

at supporting self-reproduction by growth and fission

even in the minimal version. The chemoton has been

subject to various computer simulation studies. How-

ever, these have been based on an ordinary differen-

tial equation approach rather than spatially

distributed molecular (particle) models. This means

that, in particular, the distributed, spatial, dynamics

of membrane growth, fission, and individuation have

not been substantively modeled in the chemoton

context.

Another related line of work involves much more

physicochemically realistic computer models of mini-

mal cellular structures. This line of attack poses some

scaling difficulties, as the computational demands of

physicochemical realism rise very rapidly. On the

other hand, the cost of computation continues to fall,

so this may well be a very fruitful domain of further

research in the near future.

Finally, there are specific conceptual connections

between the idea of autopoiesis and Robert Rosen’s

metabolism-repair (MR) systems and “closure under

efficient causation” (Rosen 1991). However, it must be

noted that Rosen explicitly argued that his form of

closure could not, even in principle, be embeddedwithin

a purely computational system. By contrast, computer

realization has been an explicit exemplar of autopoietic

closure from the very start. The relationship between

autopoiesis (especially in its computational realizations)

and closure under efficient causation is, accordingly, an

issue of continuing active research and debate.
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Synonyms

Ideation; Ingenuity; Innovation
Definition

Computational creativity is the capacity to find solu-

tions that are both novel and appropriate using compu-

tational means.
Characteristics

Understanding brain processes behind creativity and

modeling them using computational means is one of

the grand challenges for systems biology. Computa-

tional creativity is a new field, inspired by cognitive

psychology and neuroscience. In many respects,

human-level intelligence is far beyond what artificial

intelligence can provide now, especially in regard to

the high-level functions, involving thinking, reason-

ing, planning, and the use of language. Intuition,

insight, imagery, and creativity are important aspects

of all these functions. Computational models show

great promise both in elucidating mechanisms behind

such high-level mental functions, and in applications

requiring intelligence (Duch 2007).

Creativity, defined by Sternberg (1998) as “the

capacity to create a solution that is both novel and

appropriate,” has often been understood in a narrow

sense, with a focus on big discoveries, inventions, and

creation of novel theories, arts, and music, but it also

permeates everyday activity, thinking, understanding

language, providing flexible solutions to everyday

problems (R. Richards, in Runco and Pritzke 2005,

pp. 683–688). Creativity research has been pursued

mostly in the domain of philosophy, education, and

psychology, with many research results published in

two specialized journals: Creativity Research Journal
and Journal of Creative Behavior. The “Encyclopedia

of Creativity” (Runco and Pritzke 2005), written by

167 experts, does not contain any testable neurological

or computational models of creativity. MIT Encyclo-

pedia of Cognitive Sciences (Wilson and Keil 1999)

contains only a single page (of about 1,100 pages)

about creativity, does not mention intuition at all, but

devotes six articles to logic, appearing in the

index almost 100 times. Logic has never been too

successful in modeling real-thinking processes that

rely on intuition and creativity. The interest in research

on computational and neuroscience approaches to

creativity is thus quite recent.

Creativity from the Psychological and

Neuroscientific Perspective

D.T. Campbell (1960) described creativity as a two-

stage process of blind variation and selective retention

(BVSR). This idea is the basis of combinatorial models

of creative thinking (Simonton 2010). It is also the

http://alife.rince.ie/bmcm-alj-2004/
http://web.archive.org/web/20040518183545/
http://parallel.hpc.unsw.edu.au/complex/alife8/proceedings/sub2844.pdf
http://parallel.hpc.unsw.edu.au/complex/alife8/proceedings/sub2844.pdf
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http://dx.doi.org/10.1007/978-1-4419-9863-7_100692
http://dx.doi.org/10.1007/978-1-4419-9863-7_100693
http://dx.doi.org/10.1162/artl.2009.15.1.15104
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basis of evolutionary biological processes, where the

mechanisms of blind variations operate on many

levels, with selective retention due to the increased

fitness in a given context. In this sense, one can say

that viruses, bacteria, and other living organisms

exhibit a primitive form of creativity by solving col-

lectively the problem of survival. However, the BVSR

idea is more general as it does not have to rely on

specific Darwinian mechanisms. It has applications in

such diverse fields as immunology, psychiatry, neuro-

science, cognitive sciences, memetics, linguistics,

anthropology, philosophy, and computer science

(Simonton 2010). Blind variation is never random: it

is structured by specific interactions of basic elements,

from molecular to social, determining probabilities of

arising combinations.

Psychological research on creativity has focused on

empirical research with gifted children, distinguishing

creativity from general intelligence, testing fluency,

flexibility, and originality of thought in both visual

and verbal domains (Runco and Pritzke 2005). Suc-

cessful intelligence theory separates creative and cog-

nitive components of intelligence (Sternberg 1998),

with creativity implying not only high quality but

also novelty. Creativity is not reducible to cognitive

thinking skills. The four basic stages of problem solv-

ing according to the widely usedGestalt model involve
preparation, incubation (that may be followed by

a period of frustration), illumination (insight), and

verification of solution, including communication.

These stages, not necessarily in the same sequence,

were identified in creative problem solving by individ-

uals and small groups of people.

Boden (1991) defined creativity as “a matter of

using one’s computational resources to explore, and

sometimes to break out of, familiar conceptual
spaces.” Concepts are patterns of brain activations

(Pulverm€uller 2003; Duch et al. 2008), and exploration

of conceptual spaces may be linked to transitions

between brain activations. Processing remote, loose

associations between ideas is responsible for the asso-

ciative basis of creativity (Mednick 1962; Simonton

2010). Exploratory creativity is incremental and com-

binatorial in nature, usually restricted to personal dis-

coveries (novel only for one person), binding diverse

activity of brain areas in a newway. “Transformational

creativity” leads to ideas that are new for the whole

humanity, i.e., big paradigm shifts (Boden 1991). It is
not clear whether brain mechanisms behind transfor-

mational creativity are really different, requiring

a change of the rules that are used to define conceptual

spaces, or is it rather due to the linking of many brain

patterns that form a new, higher-level complex

representing observations in a more coherent way.

Despite the limitations of the current knowledge of

the neural processes that give rise to the cognitive

processes in the brain, it is possible to propose

a testable, neurocognitive model of creative processes.

Although direct brain imaging of creative thinking has

not been done yet, the “Aha!” phenomenon, or insight
experience (Sternberg and Davidson 1995) during

problem solving, understanding a joke or a metaphor,

has been studied using functional MRI and EEG tech-

niques. Brain states during insight were contrasted

with analytical problem solving that does not require

insight (Kounios and Jung-Beeman 2009). Although

the insight experience is sudden, it is a culmination of

a series of brain processes. A few seconds before the

insight, an alpha burst (i.e., a sudden high amplitude

oscillations in the range of 8–12 Hz) is seen in the right

occipital cortex (i.e., the visual cortex behind the rear-

most portion of the skull), and about 300 ms before the

feeling of insight, a burst of gamma activity (in the

40 Hz range) is observed in the right hemisphere ante-

rior superior temporal gyrus (i.e., the upper ridge of the

temporal lobe cortex, on the side of the brain). Alpha

activity helps to decrease activation of irrelevant cor-

tex after the information stating the verbal problem has

been taken in, while gamma burst reflects the connec-

tion of distantly related patterns. The right brain hemi-

sphere is able to create more abstract associations

based on meanings, avoiding close associations that

the left hemisphere is routinely processing. The same

neural structures are probably involved in creative

thinking. This shows the need for multiple levels of

representations of concepts that help to constraint the

search for solutions of problems requiring creativity.

Intuition is also a concept difficult to grasp

(Lieberman 2000; Myers 2002) but plays an important

role in mathematics, science, and general decision

making. It has been defined as “knowing without

being able to explain how we know.” Intuition relies

on implicit learning, gaining tacit knowledge without

being aware of learning. Insight into structural rela-

tions is usually not present, only fast judgment or

response based on probability estimation. Social
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intuition is the basis of nonverbal communication, and

can be seen as the phenomenological and behavioral

correlate of knowledge gained through implicit learn-

ing (Lieberman 2000).

The measurement of intuition is based on several

tests and inventories (for example, the Myers-Briggs

Type Inventory, or Accumulated Clues Task), but

there is little correlation between them, so the concept

of intuition is not well defined from an operational

point of view. Significant correlations were found

between the Rational-Experiential Inventory (REI)

intuition scale and some measures of creativity (Raidl

and Lubart 2001). Such tests reflect rather complex

cognitive processes, and it is not clear which brain

processes are behind these measures.

From a computational point of view, it is much

easier to create predictive models of data than to pro-

vide explanations (Duch 2007). In particular, it is dif-

ficult to explain decisions made by neural networks or

similarity-based systems. Using such systems for

learning from partial observations can constrain the

search for solutions, avoiding combinatorial explosion

that is a main problem in AI, making the reasoning

process feasible.

Creativity from the Computational Perspective

Psychology and neuroscience agree that creativity is

a product of ordinary cognitive processes. The lack of

understanding of detailed mechanisms involved in cre-

ative activity makes the development of creative com-

puting rather difficult. The need for everyday creativity

has been almost completely neglected by the artificial

intelligence research community and may be credited

for failures of many AI programs. Early attempts to

model intuition, insight, and inspiration from the AI

point of view have been summarized by Simon (1995).

His work has mostly been directed at understanding

historical discoveries of scientific laws, as well as the

search for new scientific knowledge of this kind in

astronomy, physics, chemistry, and biology. Simon

made no attempts to connect search-based AI

approaches to processes in the brain. Research in auto-

matic genetic programming (Koza et al. 2003) can be

credited for useful patentable inventions in automated

synthesis of antennas, analog electrical circuits, con-

trollers, metabolic pathways, genetic networks, and

other areas. These inventions have been mostly

restricted to optimized versions of known designs.

Genetic programming may be capable of creative
problem solving, although the problem of find a good

way to represent knowledge domain in which genetic

processes operate may be as hard as the original prob-

lem. Other approaches to insight include the “small

world” network model of Schilling (2005) and the

work on fluid concepts and creative analogies

(Hofstadter 1995), with some applications to design.

A direct attempt to model creative processes in the

brain is still not feasible, but inspirations from the

BVSR models may be used in a number of ways. The

results of the experimental and theoretical research in

this domain can be summarized in three points:

1. Space: creativity involves neural processes that are

realized in the space of quasi-stable neural activi-

ties, leading to patterns of activity that reflect rela-

tions between concepts in some domain.

2. Blind variation: priming by concepts that represent

the problem leads to distributed fluctuating neural

activity constrained by the strength of associations

between patterns of neural activity coding concepts;

this process is responsible for imagination and the

flexible formation of transient novel associations.

3. Selective retention: filtering of interesting results,

discovering partial solutions that may be useful to

reach goals, amplifying or forming new associa-

tions; in biological systems, this may involve emo-

tional arousal.

The blind-variation process may require some

structuring to be effective. Brainstorming, free associ-

ations, random stimulation, or lateral thinking have not

been very successful in the generation of creative ideas

in advertising and product innovation (Goldenberg and

Mazursky 2002). However, structured approaches,

based on higher-order rules and templates, led to

excellent results. Computer-generated ideas based on

templates were rated significantly higher both for

creativity and originality than the non-template

human ideas. The associative processes may in this

case have been guided by general rules. Connectionist

models for the generation of ideas within the brain-

storming context can successfully predict factors that

enhance brainstorming productivity. The model of Iyer

et al. (2009) is perhaps the most sophisticated, with

features, concepts, and cognitive control components

as separate neural layers. Ideas emerge in a multilevel,

modular semantic space from itinerant attractor

dynamics (i.e., activity of neuronal changes in the

itinerant way, attracted toward quasi-stable states

where it slows down) shaped by context, synaptic
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learning, and ongoing evaluative feedback. This model

generates novel ideas by multilevel dynamical search

in various contexts, capturing the interplay between

semantic representations, working memory, focusing

attention on various features, and using reinforcement

signals. The model is quite useful for the elucidation of

the mechanisms of creativity. For example, it has

found interesting associations for tourist activities

such as “outing and vacation,” depending on the infor-

mation of the context.

The simplest domain in which creativity is fre-

quently manifested and can be studied in experiments

as well as computational models is the invention and

understanding of neologisms. Poems by Lewis Carroll

are full of neologisms, but novel words are also in

great demand for products, web sites, or company

names. In languages with rich morphological and

phonological compositionality (Latin-based, Slavic,

and other families), out-of-vocabulary words appear

fairly often in conversations. In most cases, the mor-

phology of these words gives sufficient information to

understand their meaning. Given keywords or a short

description fromwhich keywords are extracted primes

the brain at the phonetic and semantic level. The

structure of the language is internalized in the neural

space. Priming leads to blind variation at the level of

word constituents (syllables, morphemes), creating

a large number of transient resonant configurations

of neural cell assemblies that remain unconscious.

This process explores the space of possibilities that

agree with internalized constraints on the statistical

probabilities of phonological structure (phonotactics

of the language) and morphological structure. Imag-

ery processes are approximated in a better way by

taking keywords, finding their synonyms to increase

the pool of words, breaking words into syllables and

morphemes, and combining the fragments in all pos-

sible ways. Words that share properties with many

other words (i.e., patterns that code them in the brain

overlap strongly with patterns for other words) have

a higher chance to win the competition for access to

awareness. Many variants of words are created around

the samemorphemes. The same word can be used with

many meanings because the context creates specific

brain activation patterns for this word. Creative brains

spread the activation to more words associated with

initial keywords, produce more combinations,

selecting the most interesting ones using phonologi-

cal, affective, and semantic filters.
In computational models, these cognitive processes

may be implemented in large-scale neural models, but

even the simplest approximations give interesting

results (Duch 2006; Duch and Pilichowski 2007). The

algorithm involves three major components:

1. An autoassociative memory (AM) structure, trained

on a large lexicon to learn statistical properties at

the morphological level, providing the model of

a neural space and storing background knowledge

that is modified (primed) by keywords.

2. Blind-variation process (imagery), forming new

strings from combinations of substrings found in

keywords and their synonyms, with probabilistic

constraints provided by the AM to select only lex-

ically plausible strings.

3. Selective retention ranking the quality of the strings

representing neologisms from a phonological and

semantic point of view.

Filters should estimate phonological plausibility

and “semantic density,” or the number of potential

associations with commonly known words, calculat-

ing the number of substrings in the lexical tokens that

may serve as morphemes in each new candidate

string. Many factors may be included here: general

similarity between morphemes, personal biases,

tweaking phonology for neologisms with interesting

phonetics. The implementation of this algorithm led

to the generation of neologisms with highest ranks

that have actually been used as company or domain

names in about 75% of cases. For example, starting

from an extended list of keywords, portal, imagina-

tion, creativity, journey, discovery, travel, time,

space, infinite, the best neologisms included creatival
(used by creatival.com), creativery (used by

creativery.com). Novel neologisms (not found by

the Google search engine) included discoverity, asso-
ciated with discovery of something true (verity), and

linked to many morphemes: disc, disco, discover,

verity, discovery, creativity, verity, and through pho-

nology to many others. Another interesting word

found is digventure, with many associations to dig

and venture.
These examples show that computational

approaches to creativity can, at least in restricted

domains, lead to results that are comparable with

human ingenuity, and that blind-variation selective

retention ideas based on the generalization of evolu-

tionary processes may be as useful in cognitive science

as they are in life sciences.
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Computational Methods for Mapping
B Cell Epitopes

▶B Cell Epitope Prediction
Computational Methods for
Transcriptional Regulatory Networks

Jianhua Ruan

Department of Computer Science, University of Texas

at San Antonio, San Antonio, TX, USA
Definition

The transcriptional level of gene expression is

controlled, to a large extent, by specific interactions

between transcription factors (TFs) and the promoter

sequences of their target genes. The interactions

between TFs and target genes are combinatorial in

nature, and are typically many-to-many, i.e., each TF

controls many genes, and a gene can be controlled by

many TFs, forming complex transcriptional regulatory

networks (TRNs). To understand gene functions in dif-

ferent biological processes, it is necessary to reconstruct

such regulatory networks from experimental data.

http://dx.doi.org/10.1007/978-1-4419-9863-7_58
http://dx.doi.org/10.1007/978-1-4419-9863-7_1302
http://dx.doi.org/10.1007/978-1-4419-9863-7_158
http://dx.doi.org/10.1007/978-1-4419-9863-7_88
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Characteristics

Data

Input data used for computationally reconstructing

genome-scale TRNs may include gene expression data

measured by DNA microarrays or RNA-seq, promoter

sequences that the cis-regulatory elements may be

located, and protein-DNA interaction data obtained

from high-throughput experiments such as chromatin

immunoprecipitation (ChIP) combinedwithmicroarrays

(ChIP-chip), chromatin immunoprecipitation combined

with next-generation sequencing (ChIP-Seq), and

universal protein-binding microarrays (PBM).

These data sets provide different, orthogonal, infor-

mation and should be combined whenever possible.

ChIP-based protein-DNA interaction data provides

the most direct evidence of physical interactions

between regulators and DNA. However it is relatively

costly and may be limited by the availability of anti-

bodies specific to the regulators of interest. Further-

more, protein-DNA interaction is dynamic and is

affected by many factors, while ChIP-based data only

captures the interaction under a particular condition

and at a specific time point. Gene expression data

combined with promoter sequences can be combined

to reveal dynamic changes of transcriptional regulation

under different conditions. However, the simple

assumption that such method usually relies on, i.e.,

co-expressed genes are transcriptionally co-regulated,

does not always hold.

In addition, using promoter sequences one can only

infer the binding preferences of a transcription factor.

The identity of the actual transcription factor needs to be

resolved, which is often not easy. The PBM technique

may fill this gap by explicitly measuring the affinity

between regulators and all possible DNA subsequences

of a fixed length.

Unsupervised Methods

Identifying Putatively Co-regulated Genes

An unsupervised method for reconstructing transcrip-

tional regulatory networks usually starts with identifying

potentially co-regulated genes. Although co-regulated

genes can be directly obtained from protein-DNA

interaction data, themost common source is gene expres-

sion data analysis, which relies on the simple assumption

that co-expressed genes are likely co-regulated. For

example, genes that show similar transcriptional

responses to the same treatment (“differentially
expressed genes”) are often considered co-regulated.

A number of statistical methods have been developed

to identify differentially expressed genes, for example,

Statistical Analysis of Microarray (SAM) (Tusher et al.

2001), and Rank Products (Breitling et al. 2004).

Statistically, genes exhibiting similar expression patterns

across multiple experimental conditions are more likely

co-regulated than genes co-expressed under very specific

conditions. Therefore, unsupervised methods perform

better when the data set contains a large number of

experimental conditions. Genes can then be grouped

into clusters, where genes in the same cluster have

similar expression patterns. This clustering-based

method is generally considered a more reliably way of

identifying co-regulated genes than methods based on

differentially expressed genes. Many clustering

algorithms have been introduced from the data mining

field, including hierarchical clustering (Eisen et al.

1998), k-means clustering (Tavazoie et al. 1999), self-

organizing maps (Tamayo et al. 1999), and graph-

theoretic algorithms (Xu et al. 2002) (see Belacel et al.

(2006) for a survey). Bi-clustering methods have also

been introduced to find clusters of genes that are

co-expressed under subsets of conditions (Cheng and

Church 2000; Tanay et al. 2002; Turner et al. 2005;

Madeira and Oliveira 2004).

Identifying Common cis-Regulatory Elements

After obtaining a list of putatively co-regulated genes,

the next logical step is to find the common regulators, or

to find common cis-regulatory elements. The latter is

more often used, simply because the former relies on

protein-DNA interaction data which is still relatively

rare andmay not be available for the particular condition

of interest. In contrast, finding cis-regulatory elements

only needs genomic sequence data – it attempts to find

common short subsequences from the promoter regions

of the co-regulated genes (“motif finding”). Motif find-

ing can also be classified into two categories: de novo

motif finding and motif scanning. While de novo motif

finding does not require input of known motifs, motif

scanning relies on databases of known cis-regulatory

elements. With motif scanning, one searches for the

occurrence of a list of known cis-regulatory elements

(with some tolerance ofmismatches) from the promoters

of the co-regulated genes, and then reports the ones with

the highest number of occurrence (or more accurately,

with the highest statistical significance). The de novo

motif finding method does not rely on databases of
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known cis-regulatory elements; instead, it attempts to

identify a subsequence pattern that appears more

frequently in the co-regulated genes than would be

expected. Such subsequence patterns are often compared

with the known cis-regulatory elements for validations.

The actual algorithm usually depends on the representa-

tion of motifs.

Motif representation. A cis-regulatory element (motif)

can be represented by either a consensus or

a position-specific weight matrix. A consensus

describes the most frequent nucleotide in each posi-

tion of the binding motif, while a position-specific

weight matrix depicts the frequency of each nucle-

otide occurring at each position of the binding

motif.

De novo motif finding. Many computational motif

finding approaches have been developed. These

methods differ from one another in their ways of

defining motifs, the objective functions for calculat-

ingmotif significance, and the search techniques used

to find the optimal (or near optimal) motifs. Most of

these algorithms can be classified into one of two

broad categories: heuristic optimization algorithms

based on position-specific weight matrices (PSWM),

and enumerative algorithms based on consensuses.

Examples of the first category include the well-

known programs such as MEME (Bailey and Elkan

1994), AlignACE (Roth et al. 1998), Gibbs Sampler

(Lawrence et al. 1993), and BioProspector (Liu et al.

2001), while the second category can be exemplified

by Weeder (Pavesi et al. 2001), YMF (Sinha and

Tompa 2002), MultiProfiler (Keich and Pevzner

2002), and Projection (Buhler and Tompa 2002).

Motif scanning. Motif scanning is relatively straight-

forward. Regardless of the motif representation,

two issues need to be decided. First, how to score

the matches between a known motif and

a subsequence of the same length on a promoter

sequence; second, what cutoff should be used to

select true matches instead of random matches. In

the case of consensuses, the simplest scoring func-

tion can be the number of matched nucleotides, and

a cutoff is typically decided empirically based on

the number of mismatches that can be allowed.

Some programs can also take into consideration

the nonuniform distribution of the different nucle-

otides and assign them different scores. In the case

of position-specific weight matrices, the scoring

function is usually based on the information score.
Supervised Methods

Another major direction to model transcriptional reg-

ulatory networks from high-throughput data relies on

supervised machine learning. Unlike the unsupervised

methods, the supervised methods do not assume

knowledge of co-regulated genes. Instead, it builds

quantitative or qualitative models to capture possible

interactions between transcription factors and target

genes. The assumption is that if a simple model can

be used to explain the expression levels of one or more

genes, then the variables used by the model are likely

responsible for regulating the genes. Figure 1 shows

the relationship between several types of methods

under the supervised machine-learning framework.

The first type of supervised methods attempts to

model gene expression levels/patterns with the regula-

tory motifs on promoter sequences (Fig. 1, Boxes

A and B). In Box A, the expression levels of multiple

genes under a single condition are modeled as

a function of motif occurrences on their promoters.

That is, each gene is treated as an instance, and attri-

butes are the motifs. Gene expression levels under

a particular condition are the response variables,

which can be either discrete or continuous. Commonly

used models include regression-based and rule-based.

Rule-based models have relatively better interpretabil-

ity over regression-based models. For examples,

Bussemaker et al. (2001) and others (Keles et al.

2002; Conlon et al. 2003) modeled the expression

levels of genes as a linear regression of putative bind-

ing motifs, and applied feature selection techniques to

find the most significant motifs. Hu et al. (2000) used

decision rules to find motif combinations that best

separate two sets of genes. Simonis et al. (2004) com-

bined a string-based motif finding method and linear

discriminant analysis to identify motif combinations

that can separate true regulons from false ones. In Box

B, the expression patterns of multiple genes under

multiple conditions are modeled by the motifs on

their promoters. The difference between these methods

and the ones represented by Box A is that each gene in

Box B has multiple response variables. To solve this

problem one can either pre-cluster the genes and then

use gene cluster IDs as response variables, or conduct

clustering and motif finding simultaneously. Probabi-

listic graphical models, e.g., Bayesian networks, were

used to explain gene expression patterns from motifs

(Beer and Tavazoie 2004). Phuong et al. (2004)

applied multivariate regression trees to model the
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Computational Methods for Transcriptional Regulatory
Networks, Fig. 1 Schematic representation of existing super-

vised machine-learning methods for modeling transcriptional reg-

ulation. The bottom right matrix represents gene expression levels.
The bottom left matrix represents motif occurrences on promoter

sequences. The top matrix is the expression levels of regulators.

Box A, the expression levels of multiple genes under a single

condition are modeled by the motifs on their promoter. Box B,
the expression levels of multiple genes under multiple conditions

are modeled by the motifs on their promoters. Box C, the expres-
sion levels of a single gene under multiple conditions are modeled

by the expression levels of putative regulators. Box D, the expres-
sion levels of multiple genes under multiple conditions are

modeled by the expression levels of putative regulators. Box E,
the expression levels of multiple genes under multiple conditions

are modeled by the motifs on their promoters and the expression

levels of putative regulators
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transcriptional regulation of gene expressions over

several time points simultaneously. In these two

methods, motifs will be associated with a cluster of

genes that have similar expression patterns; this is

similar to the unsupervised methods. However, in

these methods clustering of genes and identification

of cluster-specific motifs are performed

simultaneously.

The second type of supervised methods attempt to

model the expression levels of target genes by the

expression levels of other genes, e.g., TFs and other

regulators (Fig. 1, Boxes C and D). In Box C, the

expression levels of a single gene under multiple con-

ditions are modeled as a function of the expression

levels of putative regulators under the same set of

conditions. That is, each condition is treated as an

instance, and the expression levels of putative regula-

tors under the condition are its attributes. Similar to the

first type of methods, both rule-like and regression-

based methods have been commonly applied. For
example, Qian et al. (2003) applied support vector

machines (SVMs) to predict the targets of 36 yeast

transcription factors by identifying subtle relationships

between their expression profiles. Soinov et al. (2003)

and Segal et al. (2003a) used decision trees and regres-

sion trees for similar purposes. The method in Soinov

et al. (2003) used decision tree to identify possible

regulators for several cell-cycle genes individually,

while the method in Segal et al. (2003a) proposed

a more sophisticated procedure suitable for whole-

genome analysis. The method first clusters genes

according to their expression patterns, and then builds

a regression tree for each cluster to represent their

common regulation program. The procedure then iter-

atively refines the clusters and the trees.

Finally, the third type of supervised methods model

gene expression levels using both putative binding

motifs on promoter sequences and the expression

levels of putative regulators (Fig. 1, Box E). For exam-

ple, Middendorf et al. (2004) used an ensemble of
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decision trees to model gene expression levels by com-

bining putative binding motifs and the expression

levels of putative TFs. The method by Ruan and

Zhang (2006), Bi-Dimensional Regression Tree

(BDTree), is an extension to the multivariate regres-

sion tree approach of Segal (1992) and Phuong et al.

(2004). A multivariate regression tree recursively

splits genes into groups, where the genes in each

group have similar selected attributes (motifs) and

responses (Segal 1992). Phuong et al. (2004) extended

the method to handle multiple responses, so that

the instances in each group have a similar pattern of

responses across multiple conditions. The basic idea

of BDTree, as suggested by its name, is to extend

the multivariate regression tree approach to both

dimensions of the expression matrix (Fig. 1, Box E).

On one dimension, each gene is treated as an instance,

where the attributes are the binding motifs on its

promoter sequence, and the responses are its expres-

sion levels under different conditions. On this dimen-

sion, the approach recursively partitions genes so

that those in the same subset have some common

binding motifs and similar expression patterns across

the conditions. On the other dimension, each condition

is treated as an instance, while the attributes are

the expression levels of candidate regulators under

the condition, and the responses are the expression

levels of genes under that condition. BDTree recur-

sively partitions the conditions so that the expression

levels of the regulators and target genes within each

subset of conditions are similar. The final model,

represented by a tree, can be considered as a set of

rules, each of which has the form of “if a gene has

binding motif A, it will be up-regulated when TF B is

up-regulated.”

Other Methods

Besides the supervised and unsupervised methods,

several other approaches have been proposed to explic-

itly identify synergies among regulators or regulatory

elements without clustering or classifying genes. For

example, Pilpel et al. (2001) analyzed the combinato-

rial effects of motif pairs on gene expression profiles

and identified many significant motif combinations.

Also, several methods have been developed to

combine gene expression clustering with additional

information, such as promoter sequences, cellular

functions, and genomic localization data
(Ihmels et al. 2002; Bar-Joseph et al. 2003). Hybrid

methods that combine gene clustering and classifica-

tion iteratively have also been developed (Segal et al.

2003b; Beer and Tavazoie 2004).
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Synonyms

Kinetic modeling of microRNA regulation;Mathemat-

ical modeling of microRNA regulation; MicroRNA;

MicroRNA clusters; MicroRNA databases and Web

resources; MicroRNA gene prediction; MicroRNA

synthesis; MicroRNA target hubs; MicroRNA target

prediction; MicroRNA target regulation;

Regulatory networks
Definition

MicroRNAs (miRNAs) are small regulatory RNAs of

~22nt length that regulate the activity and stability of

a large number of messenger RNAs (Bartel 2004;

Ambros 2004; Filipowicz et al. 2008). miRNAs bind

to specific messenger RNAs and target them for cleav-

age, deadenylation, or translational repression. In all

three processes, protein synthesis of the targeted mes-

senger RNA is prevented. Until today, a vast amount of

human miRNAs has been detected (1.524 human

miRNAs are listed in the ▶miRBase database, r18).

Many of them are involved in the regulation of relevant

cellular processes, including cell signaling, metabo-

lism, apoptosis, and developmental processes (Ambros

2004).

In addition to their function in cancer, numerous

studies have validated the role of miRNAs as

key modulators in other high prevalence diseases,

including cardiovascular disorders like fibrosis

and atherosclerosis, neurodegenerative diseases, auto-

immunity, and infectious processes including pulmo-

nary infections (▶microRNA, Disease and Therapy).

On the other hand, strategies have been established

that use miRNAs as therapeutic agents by either

downregulating those that are abnormally

overexpressed or replacing silenced ones with stable

nucleotide constructs.
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Characteristics

The regulation of basic cell functions is controlled by

complex intracellular biochemical networks involving

interacting genes, proteins, and small molecules.

Recently, an additional level of regulation has been

discovered subsequent to the identification of a class of

short non-coding RNAs called microRNAs. The first

two miRNAs (lin-4 and let-7) were identified in

Caenorhabditis elegans (Lee et al. 1993). Later, homo-

logues of these were found in higher organisms

like D. melanogaster and soon also in humans.

This increased the interest in these small post-

transcriptional regulators, and subsequently many

more miRNAs have been found. Today, it is known

that miRNAs are involved in the regulation of many

critical cellular processes. For example, some of them

post-transcriptionally repress genes that control criti-

cal features in developmental processes, including

developmental timing and stem cell maintenance in

both plants and animals (Carrington and Ambros

2003). Additionally, many studies associate miRNAs

with a whole bunch of diseases either as mediator or,

when deregulated, as causal factor. Here, of highest

interest is the implication of miRNAs in

tumourigenesis via regulation of target genes which

play a role in tumor development and progression, like

Ras, c-Myc, BCL2, and cell cycle-dependent kinases

(Garzon et al. 2009). In this context, miRNAs can act

as tumor suppressors when they downregulate onco-

genes (Takamizawa et al. 2004), or like oncogenes (a.

k.a. oncomirs) by inhibiting tumor suppressor expres-

sion (Iorio et al. 2005). Other miRNAs play

a fundamental role during malignant transformation

(the so-called metastamir, Hurst et al. 2009,

▶MicroRNA Families, Cancer Progression).

MiRNA Biogenesis and Target Regulation

MicroRNA Biogenesis. miRNAs go through a complex

biogenesis process in which a maturated single-

stranded functional miRNA is generated from

a miRNA gene (Fig. 1). MiRNA biogenesis involves

several successive steps: (1) transcription of the

miRNA gene into a primary transcript, pri-miRNA

(miRNA genes are often embedded in introns of

protein-coding genes or clusters of several consecutive

miRNA genes); (2) cleavage into a ~80-nt-long hairpin

RNA (stem-loop structure) referred to as precursor

miRNA (pre-miRNA) via a microprocessor complex
composed of Drosha and DGCR8; (3) export from the

nucleus to the cytoplasm via Exportin 5; (4) Dicer-

mediated cleavage of the pre-miRNA into a short

miRNA duplex; and (5) Argonaute2 controlled final

processing, which generates a RNA strand that is

incorporated into the RNA silencing complex (RISC).

This protein-RNA complex structure can bind, in

a sequence-dependent manner, to the 30 untranslated
region (UTR) of messenger RNA targets

(▶MicroRNA Biogenesis, Regulation). Hybridiza-

tions with the 50 UTR and ORF of targets have been

observed but are typically nonfunctional in terms of

target repression.

MicroRNA Target Regulation. In miRNA-induced

target repression, the mature miRNA, previously

loaded to the RISC complex, binds to a specific

locus on the targeted messenger RNA (▶Target

Site). Success in the hybridization of miRNA-RISC

with the target site depends on the level of sequence

complementarity, where the so-called seed

(▶microRNA, Seed) region, nucleotides 2–8 nt of

the miRNA, plays a major role in miRNA-target rec-

ognition. Successful hybridization of miRNA-RISC

with the target side leads to post-transcriptional

repression of the target gene (Fig. 2). The degree of

sequence complementarity between the targeted

mRNA and the microRNA can designate the mecha-

nism by which the expression of a gene is hindered.

Rarely observed in animals but common in plants are

sites with extensive or perfect sequence complemen-

tarity, in which miRNAs direct Argonaute-catalyzed

cleavage of the target mRNA (▶Target Cleavage).

With imperfect complementarity, a miRNA bound to

a mRNA target site can induce deadenylation and

subsequent destabilization (target deadenylation), or

it can repress protein synthesis of the target by

blocking translation initiation or elongation, or by

causing early translation termination.

The identification of miRNA targets can be

achieved through various in silico, in vitro, and

in vivo techniques (target identification, microRNA).

These range from predictions of computational algo-

rithms to experimentally driven predictions using gene

expression assays, sequencing, or mass spectrometry.

Targets are typically validated by reporter gene ana-

lyses, immunoblotting, or immunoprecipitation. The

aim of target regulation studies is to quantify changes

in target mRNA and protein concentration upon

miRNA overexpression or knockdown.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1119
http://dx.doi.org/10.1007/978-1-4419-9863-7_1124
http://dx.doi.org/10.1007/978-1-4419-9863-7_1129
http://dx.doi.org/10.1007/978-1-4419-9863-7_1129
http://dx.doi.org/10.1007/978-1-4419-9863-7_1473
http://dx.doi.org/10.1007/978-1-4419-9863-7_1128


Computational microRNA
Biology, Fig. 1 Sketch of the
miRNA biogenesis pathway.
The primary transcript of

a miRNA gene (pri-miRNA) is

cleaved in the nucleus by the

endonuclease Drosha, yielding

a 60–70-nt stem-loop

intermediate (pre-miRNA).

The pre-miRNA is

translocated into the

cytoplasm and there cleaved

by Dicer. The resulting

double-stranded RNA

associates with Argonaute2

a member from the Argonaute

protein family (Ago2) to form

the miRNA-RISC loading

complex (miRLC). One strand

of the miRNA duplex guides

the RNA-induced silencing

complex (RISC) to specific

mRNA target that is

recognized by a certain

sequence complementarity to

the miRNA. This leads to

either repression or

Argonaute-induced

degradation of the target, with

subsequent reduction in the

protein level. ▶MicroRNA

Biogenesis, Regulation
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Networks Involving miRNA Regulation

MicroRNAs are often embedded in complex gene and

signaling networks composed of transcription factors,

miRNAs, and signaling proteins. Interestingly,

miRNA-regulated networks are often enriched in reg-

ulatory motifs like feedback and feed-forward loops.

Moreover, they exhibit other complex motifs that are

specific to miRNA regulation.

Feedback Loops. Often miRNAs regulate the

expression of signaling proteins that are involved in

feedback loop structures. In other cases, the expression

of miRNAs can be regulated by their own targets or

their interaction partners (▶MicroRNA Regulation,

Signaling Pathways). MiRNAs embedded in feedback

loop systems can reinforce a given transcriptional
program or be used as a backup option to ensure the

activation of those programs.

MiRNAs are involved in positive feedback loops; in

the simplest of these structures, the expression of

a miRNA is inhibited by one of its target proteins

(Fig. 3 top left). This motif can induce bistable expres-

sion of both the miRNA and its target, while under

certain conditions this system transforms a transient

activation signal into a sustained cellular response,

driven by the miRNA target or downstream signal

mediators. This confers robustness to those systems

against fluctuations in gene expression and noise in

the activation signal (Inui et al. 2010; ▶MicroRNA

Regulation, Feed-Forward Loops). MiRNAs also par-

ticipate in negative feedback loops; in the simplest

http://dx.doi.org/10.1007/978-1-4419-9863-7_1136
http://dx.doi.org/10.1007/978-1-4419-9863-7_1136
http://dx.doi.org/10.1007/978-1-4419-9863-7_1123
http://dx.doi.org/10.1007/978-1-4419-9863-7_1123
http://dx.doi.org/10.1007/978-1-4419-9863-7_1124
http://dx.doi.org/10.1007/978-1-4419-9863-7_1124


Computational microRNA Biology, Fig. 2 Sketch of the dif-
ferent modes of miRNA target repression. A microRNA can

regulate its target by (a) blocking translation initiation or causing

early translation termination (left, translation repression) or

(b) by inducing deadenylation and subsequent destabilization

(right, target deadenylation and destabilization). Extensive or

perfect sequence complementarity between microRNA and

mRNA leads to Argonaute-catalyzed cleavage of the target

mRNA, which is rare in animals but oftener in plants

(not shown, ▶ target cleavage)

Computational microRNA Biology, Fig. 3 Basic regulatory

motifs involving miRNA regulation
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configuration, a target activates the expression of its

repressing miRNA (Fig. 3 top right). Those systems

confer homeostasis to network response, fine-tune

gene expression, and can induce fast decay or signal

termination (Tsang et al. 2007, ▶MicroRNA Regula-

tion, Feed-Forward Loops).

Feed-Forward Loops. MicroRNAs are also

involved in many gene and signaling networks with

feed-forward structures. In this case, the combination

of transcriptional and miRNA-mediated post-

transcriptional regulation plays a crucial role in con-

trolling gene expression. Feed-forward loops

containing miRNAs consist of three components:

a transcription factor (TF), a miRNA directly regulated

by the TF, and a target gene, which is regulated by both

the TF and the miRNA (▶MicroRNA Regulation,

Feed-Forward Loops). There exist two types of

miRNA-mediated feed-forward loops. In coherent

feed-forward loops, a target gene is consistently
regulated by direct TF interaction and indirect TF

interaction realized through miRNA repression

(Fig 3. bottom left). In these motifs, the transcription

factor and the miRNA repress the expression of the

target gene at the transcriptional and post-transcrip-

tional level to ensure complete gene silencing. In inco-

herent feed-forward loops, a target is regulated by a TF

and a miRNA, but with opposite signs (positively and

negatively), and is therefore inconsistently regulated

(Fig 3. bottom right). Incoherent miRNA-mediated

feed-forward loops can display accelerated response

as compared to the simple regulation motif, but they

can also realize a noise buffering function, fine-tuning

of the target gene, and can have the ability to convert

step-like activation into transient peak activation

(Osella et al. 2011).

MicroRNA Clusters. miRNA clusters are sets of two

or more miRNAs that are (a) transcribed from physi-

cally adjacent miRNA genes, (b) transcribed in

the same orientation, and (c) not separated by

a transcriptional unit or a miRNA in the opposite

orientation (▶MiRNA Cluster). Typically, members

of miRNA clusters are transcribed in synchrony upon

an activation event (Fig. 4 left). MiRNAs integrated in

a cluster sometimes target common but more often

different target genes. One example is the miR-17-92

cluster, which is found on the human chromosome 13,

and it is composed of six miRNAs. Among others, the

transcription factor c-Myc binds to the upstream region

of the miR-17-92 cluster to induce its expression.

Interestingly, two miRNAs belonging to the cluster

http://dx.doi.org/10.1007/978-1-4419-9863-7_1123
http://dx.doi.org/10.1007/978-1-4419-9863-7_1123
http://dx.doi.org/10.1007/978-1-4419-9863-7_1123
http://dx.doi.org/10.1007/978-1-4419-9863-7_1123
http://dx.doi.org/10.1007/978-1-4419-9863-7_100898
http://dx.doi.org/10.1007/978-1-4419-9863-7_1128
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Biology, Fig. 4 Illustration

of a miRNA cluster (left) and
miRNA target hub regulation

(right)

Computational microRNA Biology 477 C

C

(miR-17-5p, miR-20a) post-transcriptionally regulate

E2F1, which is itself a transcription factor that cross

activates c-Myc. Thus, a complex regulatory network

of miRNAs and TFs is formed, including negative and

positive feedback loops (Aguda et al. 2008).

MicroRNA Target Hubs. MiRNA target hubs are

genes targeted by many miRNAs (▶Target Hub,

Fig 4. right). These miRNAs might belong to the

same miRNA cluster or are subject to totally different

and independent transcriptional regulation. Under the

assumption that miRNA target hubs are regulated by at

least 15 miRNAs, Shalgi and coauthors (2007) found

470 of such genes in the human genome. It has been

suggested that miRNA target hubs are integrated in

larger regulatory networks, involving transcription

factors, signaling proteins, and miRNAs, enriched

with many of these regulatory motifs introduced

above (feed-forward and feedback loops). This multi-

plicity of miRNA target hub regulation can lead to

highly nonlinear features like miRNA-mediated cross

talk, cooperation between different transcription fac-

tors, and generation of tissue-specific expression pat-

terns (Lai et al. 2012).

Bioinformatic Tools and Algorithms for

miRNA Investigation

Advancements in the understanding of miRNA biol-

ogy have always been paved by bioinformatic tools

and algorithms. Computational methods are being used

for the prediction of miRNA genes and their targets,

for the analysis of high-throughput expression experi-

ments and functional assessment of miRNA targets.

Furthermore, bioinformatic approaches are used for

data integration and knowledge transfer.

MiRNA Gene Identification

Around the beginning of this century, it became clear

that there exist more miRNAs than just lin-4 and let-7.
And it was found that many of them are conserved in

different species. At that time, methods based on

▶ non-coding RNA prediction algorithms were
developed that could help to uncover many more puta-

tive miRNA genes. In ▶miRNA gene prediction,

sequence-based approaches try to find genomic regions

which may reveal stem-loop structures when being

expressed. Such methods are often complemented by a

conservation analysis of candidate sequences and their

predicted structures. Additional approaches investigate

structural properties, like stability and robustness, of the

stem loop in order to reduce the space of candidates.

Machine-learning approaches use known miRNA pre-

cursors as training set and exploit their features as

criteria to classify new candidates. Transcriptiomics

based approaches search in ▶RNA-seq data for short

transcripts that can be mapped to genomic loci that may

form stem loops upon expression. Nowadays, the search

for miRNA genes in newly sequenced genomes benefits

from the large body of knownmiRNA genes, which can

be used in a homology search in order to come up with

an initial set ofmiRNA candidates (Mendes et al. 2009).

Target Prediction

The first step in the functional characterization of

miRNAs and their association with biological pro-

cesses is the identification of miRNA-regulated

mRNA targets. Shortly after the first miRNA-target

pairs have been identified experimentally, computa-

tional algorithms for the prediction of more targets

have been developed (▶MicroRNA Target Predic-

tion). Soon, patterns in miRNA-target recognition

emerged and were exploited to improve target predic-

tion results. A central criterion for target candidates is

the sequence complementarity between a potential

▶ target site and the mature miRNA, with special

emphasis on the ▶ seed region. Other criteria that

suggest the presence of functional miRNA-mRNA

pairs are the evolutionary conservation of the target

site sequence, the thermodynamic stability of the puta-

tive miRNA-mRNA duplex, and the multiplicity of

miRNA binding sites in the 30 UTR of the mRNA

target. For many algorithms, target predictions were

made accessible in public databases. Some examples

http://dx.doi.org/10.1007/978-1-4419-9863-7_1122
http://dx.doi.org/10.1007/978-1-4419-9863-7_1117
http://dx.doi.org/10.1007/978-1-4419-9863-7_100880
http://dx.doi.org/10.1007/978-1-4419-9863-7_742
http://dx.doi.org/10.1007/978-1-4419-9863-7_100883
http://dx.doi.org/10.1007/978-1-4419-9863-7_100883
http://dx.doi.org/10.1007/978-1-4419-9863-7_1129
http://dx.doi.org/10.1007/978-1-4419-9863-7_1473


Computational microRNA Biology, Table 1 MicroRNAWeb resources. It has to be noted that URLsmight change for unforeseen

reasons. Similarly, users should be aware of the date of the last update of the database to avoid the use of outdated information

Relevant microRNA Web resources

Name Description URL

miRBase Primary miRNA registry www.mirbase.org

Pre-miRNA and mature miRNA sequence and structure information

microRNA.org miRanda predicted miRNA targets www.microrna.org

miRecords Database of validated miRNA-target interactions http://mirecords.biolead.org

miRGator v2.0 miRNA expression profiles http://mirgator.kobic.re.kr

Functional characterization of miRNAs

miR2Disease miRNA disease relationships www.mir2disease.org

miRWalk Target predictions from eight algorithms http://mirwalk.uni-hd.de

Validated targets

Predicted functional associations
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of single and composite Web-accessible resources of

miRNA target predictions are listed in Table 1.

MiRNA Web Resources

Apart from databases for miRNA target predictions,

there exists a large variety of other useful miRNAWeb

resources and Web services (▶MicroRNA Web

Resources). The data provided includes (a) primary

data of miRNA genes, their sequences, and expression

profiles; (b) processed data, like functional assign-

ments and computational predictions; and (c) collec-

tions of literature-based knowledge. The most

prominent example of a miRNA database is the

▶miRBase database, the primary miRNA sequence

repository. New miRNA sequences are registered and

annotated in this database. Additionally, it is a resource

for sequence and structure information of pre-miRNAs

and mature miRNAs (Enright and Griffiths-Jones

2008). Other examples are databases of target

predictions (e.g., miRWalk), collections of validated

miRNA-target interactions (e.g., miRecords),

databases of miRNA expression profiles (e.g.,

microRNA.org), and databases of functional miRNA

characterization (e.g., miR2Disease). An overview of

some relevant miRNA Web resources, a brief descrip-

tion, and their URL is provided in Table 1.

Mathematical Modeling of miRNA Regulation

In complex biochemical networks involving transcrip-

tional regulation, miRNA-mediated repression,

protein-protein interactions, and subcellular
compartmentalization of species, the spatiotemporal

organization of those networks can hardly be under-

stood without mathematical modeling. There is no

default modeling approach to be used in the investiga-

tion of microRNA regulation. The appropriate model-

ing framework to be used depends on several

circumstances, for example, the extent of biomedical

knowledge that exists, the quality and quantity of the

experimental data available, and the nature of the sys-

tem’s properties to be analyzed.

Kinetic Modeling of miRNA Regulation. Kinetic

models describe the evolution in time of the expression

levels for the different biochemical species (mRNAs,

microRNAs, TFs, signaling proteins) involved in reg-

ulatory networks. In this kind of models, reaction rates

account for biochemical events like processing,

degradation, and interaction of messenger RNAs,

miRNAs, and proteins, including the miRNA-induced

regulation of targeted genes. An exemplary model

structure is presented in Table 2.

Values of the model parameters characterizing the

reaction rates are assigned by using parameter values

taken from relevant publications and/or by applying

data fitting techniques over quantitative data. In the

context of miRNA regulation, several studies have

used kinetic models to investigate miRNA regula-

tion, some of which have addressed general design

principles of miRNA regulation. For example,

Levine and coauthors (2007) developed a simple

quantitative model for miRNA-mediated target

repression and used it to investigate how distinctive

http://dx.doi.org/10.1007/978-1-4419-9863-7_1130
http://dx.doi.org/10.1007/978-1-4419-9863-7_1130
http://dx.doi.org/10.1007/978-1-4419-9863-7_1131
http://www.mirbase.org
http://www.microrna.org
http://mirecords.biolead.org
http://mirgator.kobic.re.kr
http://www.mir2disease.org
http://mirwalk.uni-hd.de
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d

dt
mRNAi ¼ ks e2  FactðTFe2Þ � kd me2  mRNAi �

X
i

ka mRi  miRi  mRNAi

d

dt
miRi ¼ ks mRi  FactðProtX; TFmRi

Þ � kd mRi  miRi � ka mRi  miRi  mRNAj

d

dt
Tgti ¼ ks e2  mRNAi � kd e2  TgProti �

X
j

TgProtXi  ProtXj þ
X
k

Fk ProtXð Þ

In these equations, mRNAi accounts for

messenger RNAs, ProtXi for proteins and

protein complexes, and TFi for transcription

factors. Reaction rates account for TF-

mediated synthesis of messenger RNAs,

degradation of messenger RNAs, miRNA-

mediated regulation of target genes, protein

synthesis and degradation, and protein-protein

interactions. Rate equations are constructed

using mass action kinetics, Hill equations,

power-law terms, and other formalisms. In

addition, parameters kx account for the rate

constants
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responses in the mRNA and protein expression levels

of the target gene are affected by parameter settings,

which are thought as being target gene

specific. Others have shown how to employ kinetic

modeling to investigate the regulation of miRNA-

regulated networks that are of biomedical interest.

For example, Lee and collaborators (2010) devel-

oped a network model that characterized miR-204

as tumor suppressor miRNA and uncovered previ-

ously unknown connections between network topol-

ogy and expression dynamics. Additionally, they

validated 18 target genes related to tumor

progression.

Logical Modeling of miRNA Regulatory Networks.
When microRNAs are embedded in regulatory net-

works, the size limits the applicability of the kinetic

modeling approach. Logical models represent

a suitable alternative for larger networks. These can,

for example, be regulatory networks involving dozens

of transcription factors, miRNAs, and other types of

functional molecules (e.g., repressors, coactivators,

corepressors, ribonucleoproteins). The logical

approach can be classified into Boolean logic and

multivalued logic (▶MicroRNA-embedding Regula-

tion Networks, Logical Modeling). Boolean logic

works on the basis of binary categories. For instance,

a miRNA can only be treated as absent or present,

while a transcription factor as inactive or active.

Their time evolution is restricted to transitions

between two generic states encoded by 0 and 1.

Multivalued logic instead generalizes the Boolean

approach and allows the use of multiple ordinal
categories. In this way, the effective inhibitory level

of a miRNA can in multivalued logic be described by

several stages, for example, null, low, high, and max-

imum inhibition, while the expression of the target

might be categorized into silenced, low, high, and

maximal expression.

Graph Analysis of miRNA Networks. MicroRNA-

mRNA networks can be described by using

graphs that capture the processes by which mature

miRNAs control the translation of target mRNAs.

In these graphs, elements involved in the network

are represented as nodes. Edges that connect

two nodes account for a relationship (interaction)

between them, for example, the repression of

a mRNA by a given miRNA (▶MicroRNA-mRNA

Regulation Networks). Using this approach, miRNA-

mRNA regulation networks have proven to display

topological properties like fat-tail degree distribution,

abundance of cybernetic motifs, and modular

structures.
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Definition

First introduced by Sklansky (1972), further

researched by Bachelor (1979, 1980) and Borgefors

and Sanniti di Baja (1992), a concavity tree is a data

structure used for describing non-convex

two-dimensional shapes. It is a rooted tree in which
Concavity Tree for Protein–Protein Interaction Analysis, Fig.
actual shape of each node (c) and the corresponding three levels co
the root is a simple characterization of the whole

object boundary, i.e., its ▶ convex hull. The next

level describes the set of objects obtained by

subtracting the object from the convex hull. All

deeper levels are elaborated in the same way, itera-

tively. A node that represents a convex shape corre-

sponds to a leaf in the tree, so it does not have any

child.

Figure 1 shows an example of a shape (a), its

convex hull, concavities, and meta-concavities (b),

and its corresponding concavity tree (c). The shape

generates five concavities as reflected in level one of

the tree. The four leaf nodes in level one correspond to

the highlighted triangular concavities shown

in (d), whereas the non-leaf node corresponds to the

concavity shown in (e). Similarly, the nodes in levels

two and three correspond to the meta-concavities

highlighted in (f) and (g), respectively. Typically,

each node in a concavity tree stores information perti-

nent to the part of the object the node is describing

(a feature vector for example), in addition to tree meta-

data (like the level of the node; height, number of

nodes, and number of leaves in the subtree rooted at

the node, etc.).
Characteristics

One of the most successful approaches for protein

shape analysis and description is the structural one.

A complex shape can be segmented into its compo-

nent (e.g., a pockets set), and each pocket can be

subsequently decomposed into simpler regions, and

the complete description is given in terms of the
1 An object (a), its convex hull with green concavities (b), the

ncavity tree (d)

http://dx.doi.org/10.1007/978-1-4419-9863-7_293
http://dx.doi.org/10.1007/978-1-4419-9863-7_293
http://dx.doi.org/10.1007/978-1-4419-9863-7_222
http://dx.doi.org/10.1007/978-1-4419-9863-7_1306


D1

D2

A1

A2 C1

A

B

C

D

Concavity Tree for Protein–Protein Interaction Analysis,
Fig. 2 A 2D representation example with a tunnel and three

pockets in a section composed of three connected components

(in brown). The closed curve in black corresponds to the

first level convex hull, and the border in brown dotted-dashed
line embodies the area under analysis. Part of the second

level with three meta-concavities (A, B, C) is shown; in evidence

also five third level termination-node components (A1, A2, C1,

D1, and D2)

B111

B11

B12

B211 B21

B22

B32B31

B311

B331

B321B33

B1 B1

B2

B3
B3

B2

Concavity Tree for Protein–Protein Interaction Analysis,
Fig. 3 Continuing the 2D representation example of Fig. 2, the

details of the tunnel B component (light green) are shown. The
second level is composed of the three meta-concavities (B1,

B2, and B3). Each one has concavities at the third level: B1 has

a termination-node concavity (B12) and a second component

B11 which maintains a meta-concavity at the fourth level

B111; B2 has a termination-node concavity (B22) and

a second component B21 which maintains a meta concavity at

the fourth level B211; finally, B3 has three node concavities

(B31, B32, B33) each one maintaining a meta-concavity node-

component B311, B321, and B331 respectively, at the fourth

level
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region’s features and their spatial relationship.

This process can be executed recursively. In this

way, a sequence of approximations is built, and,

at each stage, this structural hierarchical representa-

tion can be effectively applied for analyzing

and comparing complex shapes. This approach is

particularly fruitful in proteomics (Cantoni et al.

2010), in which the morphology plays a fundamental

role, for example to study protein–protein interaction

in which also a geometrical congruence for

a normally extended part of the molecule surfaces is

required.

A hierarchical refinement of the morphological

analysis of extended regions is performed to describe

further details. The Convex Hull of each region at

every scale level is analyzed by the same process as

that applied to the whole initial shape, going through

concavity and meta-concavity. The process continues

until all regions of the last level are convex, or until
a level of detail sufficiently fine for the purpose is

reached.

The final result is a hierarchical structure: the (meta)

concavity tree. At each level, the concavities can be

analyzed and described on the basis of a set of features

evaluated at each node. Obviously, the features defined

for concavities can also be computed for the meta-

concavities of the same levels.

In Fig. 2 the concavities (three “pockets” and

one “tunnel”) and second-level meta-concavities of

a 2D example are shown. Figure 3 shows concavities

and meta-concavities of level two, three, and

four for the tunnel of level one. The corresponding

concavity tree is shown in Fig. 4. As an example

of the proposed data description, Fig. 5 is
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a partial representation of the concavity tree

for the three main pockets of the Crystal Structure

of uncomplexed HIV1 Protease subtype A

(PDB ID3IX0). Note that, each node can be

described quantitatively through geometrical and

biochemical parameters such as skewness, kurtosis,

mouth aperture, surface to volume ratio, travel

depth, etc.
PDB: 3IX0

1st Level

2nd Level

3rd Level

Concavity Tree for Protein–
Protein Interaction
Analysis, Fig. 5 The

representation of the concavity

tree for the Crystal Structure of

uncomplexed HIV1 Protease

Subtype A (PDB ID 3IX0)

A B C D

D1 D2A1 A2 C1

B3B2B1

B12B11

B31 B32 B33

B331B321B311

B211

B21B22

B111

Concavity Tree for Protein–Protein Interaction Analysis,
Fig. 4 Representation of the concavity tree for the 2D section of

Fig. 2 and Fig. 3. Note that each node contains the information of

the feature vector previously presented
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Concentration Control Coefficient

Emma Saavedra and Rafael Moreno-Sánchez

Department of Biochemistry, National Institute for

Cardiology “Ignacio Chávez”, Mexico City, Mexico
Definition

It is the degree of control that each enzyme exerts on

the concentration of the pathway intermediaries. It is

written as CX
ai where X is any pathway metabolite and

a is the activity of each pathway enzyme i.
Cross-References

▶Metabolic Control Theory
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Concentration Graph Model

▶Graphical Gaussian Model
Concept Extraction Task

▶Template Filling, Text Mining
Conditional Distribution

Lin Wang

School of Computer Science and Information

Engineering, Tianjin University of Science and

Technology, Tianjin, China
Synonyms

Conditional probability distribution; Conditional

probability density function; Conditional probability

mass function
Definition

Letting X and Y be two random variables over the

same sample space S, the conditional probability

distribution ofY givenX is the probability distribution

of Y when X is known to be a particular value. For

discrete random variables, the conditional distribution

of Y given the value x of X can be written as the

following formula:
pYðyjX ¼ xÞ ¼ PðY ¼ yjX ¼ xÞ ¼ PðX ¼ x\ Y ¼ yÞ
PðX ¼ xÞ ;

(1)

For continuous random variables, the conditional

distribution of Y given the value x of X can be written

as
fYðyjX ¼ xÞ ¼ fX;Yðx; yÞ
fXðxÞ ; (2)

where fX;Yðx; yÞ gives the joint density of X and Y,

while fXðxÞ gives the density of X.
Cross-References

▶Causal Relationship

▶Conditional Independence
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Conditional Independence

Katsuhisa Horimoto

Computational Biology Research Center, National

Institute of Advanced Industrial Science and

Technology, Koto-ku, Tokyo, Japan
Synonyms

Bayes rule; Causal relationship; Conditional distribu-

tion; Correlation relationship
Definition

In probability theory, two events A and B are condi-

tionally independent given a third event C, if the

occurrence or nonoccurrence of A and the occurrence

or nonoccurrence of B are independent events in their

conditional probability distribution given C. In the

standard notation of probability theory, A and B are

conditionally independent given C if and only if
Pr A \ BjCð Þ ¼ Pr AjCð ÞPr BjCð Þ

or equivalently,
Pr A B \ Cjð Þ ¼ Pr AjCð Þ
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In other words, A and B are conditionally indepen-

dent if and only if, given knowledge of whether

C occurs, knowledge of whether A occurs provides

no information on the likelihood of B occurring, and

knowledge of whether B occurs provides no informa-

tion on the likelihood of A occurring. In statistics, two

random variables X and Y are conditionally indepen-

dent given a third random variable Z, if and only if they

are independent in their conditional probability distri-

bution given Z. This is generally written:
X q Y Zj

and is read “X is independent of Y, given Z.”
Cross-References

▶Bayes Rule

▶Causal Relationship
Conditional Independency

▶Bayesian Network Model
Conditional Probability Density Function

▶Conditional Distribution
Conditional Probability Distribution

▶Conditional Distribution
Conditional Probability Mass Function

▶Conditional Distribution
Confidence Intervals

Andreas Raue1 and Jens Timmer1,2,3

1Institute for Physics, University of Freiburg, Freiburg,

Germany
2BIOSS Centre for Biological Signalling Studies and

Freiburg Institute for Advanced Studies (FRIAS),

Freiburg, Germany
3Department of Clinical and Experimental Medicine,

Link€oping University, Link€oping, Sweden
Definition

Often, parameter values are unknown and have to be

estimated from experimental data. It is important not

to rely on the mere estimated values and the predic-

tions that correspond to these values. It is necessary to

consider the uncertainties in the parameter estimation

procedure: frommeasurement uncertainties to param-

eter uncertainties and possibly non-▶ identifiability,

to uncertainties in the model predictions. In ▶maxi-

mum likelihood estimation, uncertainties in the

parameter estimates are usually described by confi-

dence intervals. A confidence interval ½s�i ; sþi 
 of
a parameter estimate ŷi to a confidence level a sig-

nifies that the true value y�i is expected to be inside

this interval with probability of a. For nonlinear

models, confidence intervals can be defined by

a threshold Da in the likelihood. This threshold

defines a confidence region
yjw2ðyÞ � w2ðŷÞ < Da

n o
with Da ¼ Q w2df ; 1� a

� �
(1)

whose borders represent likelihood-based confidence

intervals (Meeker and Escobar 1995). w2(y) is

the weighted sum of squared residuals and the

threshold Da is the 1�a quantile of the w2df� distribu-

tion. The choice of df yields confidence intervals

that hold jointly for df number of parameters

(Press et al. 1990); often df ¼ 1 is desired. For high-

dimensional models, the profile likelihood can be

evaluated to derive likelihood-based confidence

intervals; see in ▶ structural and practical

identifiability analysis.
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Cross-References

▶ Identifiability

▶Maximum Likelihood Estimation

▶ Structural and Practical Identifiability Analysis
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Configuration Type

▶ IMGT-ONTOLOGY, ConfigurationType
Confocal and Multiphoton Microscopy

Xiaohua Wu

Department of Pediatrics, Herman B Wells Center for

Pediatric Research, Indiana University School of

Medicine, Indianapolis, IN, USA
Definition

Confocal and multiphoton microscopy can achieve up

to diffraction-limited resolution when imaging virtual

tissue sections in intact tissue volumes, which is an

aspect of these methods referred to as “tissue section-

ing” or “optical sectioning.” In particular, laser scanning

confocal microscopy scans a focused laser beam inside

the specimen and uses a pinhole to reject photons that

arrive to the detector from out-of-focus areas.
Cross-References

▶ Spectroscopy and Spectromicroscopy
Conformational Epitope

▶Discontinuous Epitope
Conjugation Reactions

▶ Phase II Enzymes
Connectionist Model

▶Linear Additive Network Model
Connective Tissue

▶ Stroma
Connectivity Theorem

Emma Saavedra and Rafael Moreno-Sánchez

Department of Biochemistry, National Institute for

Cardiology “Ignacio Chávez”, Mexico City, Mexico
Definition

It links the kinetic properties of a particular enzyme

(elasticity coefficients) with its ability to control the

pathway flux (flux control coefficient). The sum of the

products of the elasticity coefficient and the flux con-

trol coefficient of each of the pathway enzyme has to

add up a value of zero.
Cross-References

▶Metabolic Control Theory
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Consensus Sequence

Jianhua Ruan

Department of Computer Science, University of Texas

at San Antonio, San Antonio, TX, USA
C

Definition

In transcriptional regulation studies, a consensus

sequence is a representation of a transcription factor-

binding motif. It is obtained from the multiple

alignment of a collection of binding sites recognized

by the transcription factor, and depicts which nucleo-

tides are most abundant in the alignment at each posi-

tion. For example, consider the following DNA

sequence, AccATGg. An upper-case letter means that

the transcription factor has a very strong preference of

the corresponding nucleotide at that position, while

a lower-case letter represents the most abundant nucle-

otide at those positions. When multiple nucleotides are

equally likely to appear, IUPAC nucleotide codes can

also be used, for example, ATNNCY, where N stands

for any base, and Y represents any pyrimidine.
Conservation Analysis

Sang Yup Lee

Department of Chemical and Biomolecular

Engineering and Department of Bio and Brain

Engineering, Korea Advanced Institute of Science and

Technology (KAIST), Daejeon, Korea
Synonyms

Conserved mass analysis; Conserved moiety analysis;

Stoichiometric mass balance analysis
Definition

Conserved moieties are molecular subgroups that

are conserved throughout the course of a network

evolution with respect to time due to stoichiometric
constraints (Sauro and Ingalls 2004; Vallabhajosyula

et al. 2006). Examples are the total amount of atomic

elements (mass conservation) and the conservation of

metabolites; the sum of ATP, ADP, and AMP remains

constant with time if the synthesis of these nucleo-

tides is not part of the network. A conservation anal-

ysis focuses on the identification of conserved

moieties in networks and involves linear algebra

methods (Sauro and Ingalls 2004; Vallabhajosyula

et al. 2006).
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▶Conservation Analysis
Conserved Moiety Analysis
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Constant (C) Domain

Marie-Paule Lefranc

Laboratoire d’ImmunoGénétique Moléculaire,

Institut de Génétique Humaine UPR 1142, Université

Montpellier 2, Montpellier, France
Synonyms

C domain; C type domain; Constant domain
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Constant (C) Domain,
Table 1 C domain

description per receptor type

and chain type

C domain Receptor type

C domain description

per chain type

C-DOMAIN IG CH1 Several CHa per IG-Heavy

chain (ex: 4 for IG-Heavy-Mu)CH2

CH3

CH4

C-KAPPAb

C-LAMBDAb

TR C-ALPHA

C-BETA

C-GAMMA

C-DELTA

C-LIKE-DOMAIN IgSF other than

IG and TR

C-LIKE-DOMAIN One or several domain(s) per

chain

aCH: C-DOMAIN of IG-Heavy chain
bIf the IG-Light chain is not specified, C-KAPPA and C-LAMBDA are described as CL

(C-DOMAIN of IG-Light chain)

C 488 Constant (C) Domain
Definition

The Constant (C) domain is a type of structural unit

(domain) that, with the ▶ variable (V) domain, charac-

terizes a protein chain belonging to the▶ immunoglob-

ulin superfamily (IgSF) (Duprat et al. 2004; Lefranc

et al. 2005). The C domain comprises the C-DOMAIN

of the immunoglobulins (IG) or antibodies and T cell

receptors (TR), and the C-LIKE-DOMAIN of the IgSF

proteins other than IG and TR. The C domain descrip-

tion per receptor type and chain type, based on the

▶ IMGT-ONTOLOGY concepts (▶Chain Type,

▶Domain Type), is shown in Table 1. IMGT® labels

are in capital letters.

A C domain (C-DOMAIN or C-LIKE-DOMAIN) is

usually encoded by one exon of a gene. Although the

C domain sequences may be very diverse, the structure

is well conserved. The C domain (C-DOMAIN or

C-LIKE-DOMAIN) is made of seven antiparallel

beta strands (A, B, C, D, E, F, and G) linked by beta

turns (AB, DE, and EF), a transversal strand CD, and

loops (BC and FG), forming a sandwich of two sheets

(four strands on one sheet and three strands on the other

sheet).

According to the ▶ IMGT unique numbering

(Lefranc et al. 2005), the four conserved amino acids

of a C domain always have the same position, cysteine

23 (1st-CYS), tryptophan 41 (CONSERVED-TRP),

conserved hydrophobic amino acid 89, and cysteine
104 (2nd-CYS). The amino acid at position 118,

although not conserved, is highlighted in the ▶ IMGT

Collier de Perles as it is one of the two anchors of the

FG loop.

Analysis of C domain sequences can be performed

by tools of IMGT®, the international ImMunoGeneT-

ics information system® (http://www.imgt.org)

(▶ IMGT® Information System):

• Nucleotide sequences of IG and TR C-DOMAIN by

IMGT/V-QUEST

• Amino acid sequences of C-DOMAIN and

C-LIKE-DOMAIN by IMGT/DomainGapAlign

(Ehrenmann et al. 2010)

These tools align the user sequences with the closest

C domains of the IMGT reference directory, create

gaps according to the ▶ IMGT unique numbering for

C domain (Lefranc et al. 2005), delimit the strands and

loops, highlight differences with the closest reference

(s), and generate the ▶ IMGT Collier de Perles.

Analysis of C domain three-dimensional (3D) struc-

tures and interactions is available in the 3D database

(IMGT/3Dstructure-DB) of the▶ IMGT® information

system (Ehrenmann et al. 2010).

Allotypes in humans are antigenic determinants on

C-DOMAIN of the IG (CH of IG-Heavy gamma and

alpha chains, and C-KAPPA of IG-Light-Kappa

chains) (Lefranc and Lefranc in press). They comprise:

• the Gm allotypes (‘gamma markers’) on CH of

IG-Heavy-Gamma chains,
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• the Am allotypes (‘alpha markers’) on CH of

IG-Heavy-Alpha chains,

• the Km allotypes (or ‘kappa markers’) on

C-KAPPA of IG-Light-Kappa chains (Lefranc and

Lefranc in press) (IMGT Repertoire, http://www.

imgt.org)

They have extensively been analysed in population

genetics and molecular evolution of the IG. They

presently regained a lot of attention in antibody

engineering and antibody humanization, in the anal-

ysis of the immunogenicity of therapeutic antibodies.

The corresponding amino acid changes are identified

and described according to the IMGT unique

numbering for C-DOMAIN (Lefranc and Lefranc

in press).
Cross-References

▶Chain Type

▶Domain Type

▶ IMGT Collier de Perles

▶ IMGT Unique Numbering

▶ IMGT® Information System

▶ IMGT-ONTOLOGY

▶ Immunoglobulin Superfamily (IgSF)

▶Variable (V) Domain
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Constant (C) Gene

Marie-Paule Lefranc

Laboratoire d’ImmunoGénétique Moléculaire,

Institut de Génétique Humaine UPR 1142, Université

Montpellier 2, Montpellier, France
Synonyms

C gene; Constant; Constant gene
Definition

The constant (C) gene, or “constant” is a▶ leafconcept

of the “▶GeneType” concept of identification (gener-

ated from the ▶ IDENTIFICATION axiom) of

▶ IMGT-ONTOLOGY, the global reference in

▶ immunogenetics and ▶ immunoinformatics

(Giudicelli and Lefranc 1999; Lefranc et al. 2004,

2005, 2008; Duroux et al. 2008), built by IMGT®, the

international ImMunoGeneTics information system®

(http://www.imgt.org) (▶ IMGT® Information Sys-

tem). “Constant” identifies a gene that codes the con-

stant region of an immunoglobulin (IG) or antibody or

of a T cell receptor (TR) chain (▶Chain Type).

It is one of the four leafconcepts that are character-

istics of the IG and TR loci (Lefranc and Lefranc

2001a, b), the other three being “variable” (V), “diver-

sity” (D), and “joining” (J) (▶Variable (V) Gene,

▶Diversity (D) Gene, ▶ Joining (J) Gene).

An IG or TR constant (C) gene in contrast to V, D,

and J genes does not rearrange itself and has a

configuration identified as “undefined” (▶Configura-

tion Type). A C gene is characterized by an acceptor

splice in 50 (the splicing occurring with the 30 donor
splice of a J gene).

The C region encoded by a C gene comprises one or

several domains (▶Constant (C) Domain) depending

on the chain type (▶Chain Type).

Cross-References

▶Chain Type

▶Configuration Type
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▶Constant (C) Domain

▶Diversity (D) Gene

▶Gene Type

▶ IMGT® Information System

▶ IMGT-ONTOLOGY

▶ IMGT-ONTOLOGY, IDENTIFICATION Axiom

▶ IMGT-ONTOLOGY, Leafconcept

▶ Immunogenetics

▶ Immunoinformatics

▶ Joining (J) Gene

▶Variable (V) Gene
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Constraint

Jon Umerez and Matteo Mossio

IAS-Research Philosophy of Biology Group,

Department of Logic and Philosophy of Science,

University of the Basque Country (UPV/EHU),

Donostia – San Sebastian, Spain
Synonyms

(Approx.) boundary condition; Control
Definition

Constraint refers to a reduction of the degrees of free-

dom of the elements of a system exerted by some

collection of elements, or a limitation or bias on the

variability or possibilities of change in the kind of such

elements.

Although the term has several meanings in diverse

scientific fields, the idea of a constraint is usually

employed in relation to conceptualizations in terms

of levels or ▶ hierarchies. Some general features of

constraints such understood are the following:

constraints do not interact with the elements they

influence and their dynamics; they arise from

dynamics at different levels of ▶ organization;

constraint relations are always asymmetric, and may

give rise to new phenomena.

In the tradition of the theories of emergent evolution

of the early twentieth century and, even clearer, in the

theory of levels of integration of the organicist

tradition of the 1930s, higher levels are understood as

arising from lower-level elements or processes, whose

laws all obey, but concurrently exerting some specific

influence on those very elements or processes (see

Blitz 1992). Later on, in most approaches to hierarchy

theory, the very concept of constraint is profusely used

to account for the specificity of nontrivial inter-level
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relation, where lower level and upper level act upon

each other but in different ways (see, e.g., Allen and

Starr 1982; Salthe 1985). Even the introduction of

some specific senses of constraint in evolutionary

biology (as developmental constraints and

historical constraints) is due to the attempt to

accommodate different explanations, stemming from

diverse factors or forces, and is a potential alternative,

if not rival, to adaptive selection, in an unavoidably

multilevel explanatory construction.
Characteristics

The development of more specific characterizations of

constraint (or alike) are attempts to spell out the inter-

action among levels of organization by deriving them

from epistemologically legitimate concepts grounded

in the physical sciences or in their explanatory armory.

The difficult issue of interlevel relation is rendered

more concrete by Polanyi’s (1968) account of organ-

isms (and machines) as dual control systems, which

relies on an indistinct concept of boundary conditions.

Polanyi deliberately employs the machine example to

introduce his idea of boundary conditions “harnessing

the laws of nature” that govern matter and the forces

acting on it. In a machine, the harnessing is exerted

with a goal, which makes easier to describe the dual

control: the design of the machine, by which the

machine does what it is intended for, and the laws of

physics and chemistry, that the components of the

machine and the machine itself must obey.

In the organism “its structure serves as a boundary

condition harnessing the physical-chemical processes

by which its organs perform their functions” (Polanyi

1968, 1308). The machine analogy goes on to compare

morphogenesis, as the process that develops that struc-

ture, with the shaping of the machine. Yet, as Polanyi

emphasizes, the analogy ends here: Although both are

systems under dual control (unlike inanimate systems

which may exhibit boundary conditions without being

subject to dual control), organisms are not artificially

designed. Therefore, the harnessing principle in organ-

isms has to be autonomous (▶Autonomy), task that

Polanyi attributes to the informational account of

heredity.

Is precisely this the challenge that Pattee (see, e.g.,

1968, 1972) undertakes in his research on the origin of
life and the nature of biological function and heredity,

using the concept of constraint as an explanatory tool

derived from Mechanics. He develops in several

papers the concept and the relevant distinction

between holonomic (▶Constraint, Holonomic) (struc-

tural-like) and non-holonomic (▶Constraint, Non-

holonomic) (▶ functional-like) kinds. Pattee claims

that, in order to explain hereditary storage, transmis-

sion, and the action of genetic instructions, we should

understand them in terms of non-holonomic con-

straints acting in the context of a very specific kind of

interlevel relation (semantic closure).

Following his description we may recall that, in

physics, initial conditions and laws of movement pro-

vide, in principle, an exhaustive description of the

possible behavior, future and past, of a mechanical

system. No other conditions are needed. The choice

of the coordinates of the system that specifies its space

of configuration or space of states defines all the pos-

sible degrees of freedom in the system or all the pos-

sible trajectories of movement of its elements. These

coordinates establish the variables of the movement

equations of the system. In this context, constraints are

those additional equations that are introduced as aux-

iliary conditions in order to define the specific mechan-

ical system subject to calculation (see, e.g.,

Sommerfeld 1952). In other areas of Physics, con-

straints may be expressed in a more general form as

boundary conditions. In Chemistry, constraints refer to

the steady state of elementary particles (chemical

bonds). When referred to dissipative systems, the con-

cept acquires an even more specific sense as it becomes

dynamical (an unstable macroscopic pattern that

remains as long as there is energy contribution).

Finally, its presence is patent in any form of biological

regulation (starting from a membrane) and more con-

troversial in its contribution to the understanding of

evolutionary paths. In social and artificial systems, it is

clearly manifested in the form of rules. In sum, con-

straints refer to certain conditions or rules additional to

the laws of dynamics (that are taken as basic), that rule/

govern the behavior of the elements and that arise from

their aggregation.

Whereas natural laws are, in principle, inexorable

and incorporeal, constraints are, by necessity, acciden-

tal or arbitrary, and require some distinct physical

materialization (as molecules, membranes, or sur-

faces). Constraints are alternative descriptions of part
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of the system. Namely, constraints cannot be expressed

in the same language than the microscopic description

of matter. In fact, what a constraint does is to selec-

tively ignore microscopic degrees of freedom in order

to obtain a simplification in the prediction or explana-

tion of movement. The concept of constraint means

a selective loss of detail or a predetermined rule about

what is going to be ignored.

Therefore, for Physics constraining forces are,

unavoidably, linked to a new hierarchical level of

description. When in Physics a constraint equation is

added to the equations of movement, we are always

dealing with two languages at the same time. The

language of the equation of movement relates the

detailed trajectory or the state of the system with

dynamical time, whereas the language of the constraint

does not deal at all with the same kind of system, but

with another situation in which the dynamical detail

has been purposely ignored. In other words, constric-

tion forces are not detailed forces of the individual

particles but forces of the collections of particles or,

sometimes, forces of simple units averaged out in time.

In any case, some form of statistical averaging process

has substituted microscopic detail. In Physics, then, in

order to describe a constraint, the detailed dynamical

description has to be abandoned. A constraint requires,

therefore, an alternative description.

Another relevant contribution to naturalize the con-

cept of constraint in the biological domain has been

provided by theoretical biologist Stuart Kauffman,

who has recently proposed the idea of the “Work-

Constraint cycle” (Kauffman 2000, 2003). The Work-

Constraint cycle is supposed to capture what Kauffman

takes as a central feature of all biological organisms,

namely, the fact of acting “on their own behalf”

(Kauffman 2003, 1089). Whereas this idea appears to

be in accordance with common intuition, Kauffman’s

scientific challenge consists in giving a naturalized and

consistent account of it. The concept of a Work-

Constraint cycle plays precisely this role. The main

idea is to link the idea of action to that of “work,” the

latter being defined, following Atkins, as “constrained

release of energy into relatively few degrees of free-

dom” (Kauffman 2003, 1094). In this definition, the

concepts of work and constraint are related: work is

constrained release of energy. This connection gives

a way to interpret the slogan acting “on their own
behalf.” A system acts on its own behalf if it is able

to use its work to regenerate at least some of the

constraints that make work possible. When this occurs,

a Work-Constraint cycle is realized. In physical terms,

it requires very specific conditions to occur. Actually,

the cycle is inevitably a thermodynamic irreversible

process, which dissipates energy and requires cou-

plings between exergonic (spontaneous, energy releas-

ing) reactions and endergonic (non-spontaneous,

energy requiring) ones, such that exergonic processes

are constrained in a specific way to produce work that

may be used to generate endergonic processes, which

in turn generate those constraints canalizing exergonic

processes. In Kauffman’s terms, “Work begets con-

straints beget work” (Kauffman 2000).

In evolutionary biology, the concept of constraint

has mainly been introduced as a challenge by develop-

mental approaches regarding the scope of selection and

the extent to which ▶ adaptation remains the main

explanatory factor (see ▶Explanation, Developmen-

tal). Besides the specific issue of connecting develop-

mental with evolutionary accounts, the concept of

constraint plays an important role, for instance, in the

criticisms to adaptationism, in the discussion regarding

the relevance of stasis and other macroevolutionary

patterns, or in the morphologically oriented proposals

of structuralism or ▶ complexity theories (see Orzack

and Sober 2001).

In an already classic paper that may be considered

to be an attempt to build a “consensus” position on the

subject, a developmental constraint is defined as “a

bias on the production of variant phenotypes or

a limitation on phenotypic variability caused by the

structure, character, composition, or dynamics of the

developmental system” (Maynard Smith et al. 1985,

266). The origin of this bias or limitation may be

attributed to various sources (materiality, genetic

dynamics, evolutionary pathways, complexity regime,

etc.) but what is agreed upon is that they have an

impact in evolution. A distinction is also drawn

between universal constraints, deriving from general

laws of physics or from invariant properties of some

material or complex systems, and local constraints,

confined to particular taxa.

Amundson (1994), while accepting that constraint

“implies some sort of restriction on variety or on

change,” claims that the key rests on the answer to

http://dx.doi.org/10.1007/978-1-4419-9863-7_896
http://dx.doi.org/10.1007/978-1-4419-9863-7_118
http://dx.doi.org/10.1007/978-1-4419-9863-7_118
http://dx.doi.org/10.1007/978-1-4419-9863-7_55
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the question: “What is being constrained?” Thus, he

identifies two possible answers depending on whether

the explanandum is adaptation or form. We would

therefore have to distinguish between understanding

the effect of developmental principles on evolution as

constraints on adaptation, that is, as restrictions

imposed by embryology on the adaptive optimality of

adult organisms on the potential of adaptation, or con-

straints on form, in the sense that in the morphospace

there are morphologies that cannot be achieved by the

process of development.

This distinction is orthogonal to the previous one

between local and universal kinds of constraints since

both of them may operate, irrespectively, on the pros-

pects of reaching more optimal adaptations and on the

scope of generation of organic form.

Sometimes, other kinds of constraints are men-

tioned in the context of contending evolutionary expla-

nations, even if they are not generally accepted as

specific constraints. For instance, historical constraints

are often brought up to contrast with developmental

ones though maintaining the same feature of imposing

restriction on adaptation, but they are due to more

“evolutionary” common factors such as contingency

or accident creating some kind of bias. Ecological

constraints can also be sometimes evoked.

Regarding these uses and besides those distinctions

about how to understand the concept, there is another

point worth mentioning, since it allows connecting the

concept of developmental constraint with the more

general idea defined in the beginning of this entry.

According to Schwenk and Wagner (2003), this col-

lective definition highlights the separation between

constraint and selection by distinguishing the “gener-

ation of variation from the operation of selection on

that variation” (p. 54). In this sense, the force of selec-

tion would assume the role of the general law upon

which some rules are imposed and, here too, some

potential degrees of freedom are reduced due to what

Polanyi was calling boundary conditions and what

Pattee called constraints in their more general

approaches.
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Constraint, Holonomic

Jon Umerez and Matteo Mossio

IAS-Research Philosophy of Biology Group,

Department of Logic and Philosophy of Science,

University of the Basque Country (UPV/EHU),

Donostia – San Sebastian, Spain
Definition

Holonomic constraints are auxiliary conditions that

limit permanently the number of degrees of freedom

of a system. They are, then, fixed and passive struc-

tures that, in a sense, are independent of time (at least

of the specific time frame, dynamics, of the system in

particular). They establish some fixed relations among

some coordinates of the system that are mathemati-

cally integrable with the fundamental equations of

movement. They are integrable since they introduce

no new temporal dimension. They just reduce degrees

of freedom once and for good. They are mainly found

in most physical-chemical and artificial mechanistic

systems. Constraints whose equations do not contain

time are called scleronomic.
Cross-References
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Jon Umerez and Matteo Mossio
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Department of Logic and Philosophy of Science,
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Definition

Non-holonomic constraints are variable auxiliary con-

ditions that limit in time the number of degrees of

freedom of the system. They are, then, dynamical

structures that establish time-dependent relations
among degrees of freedom. These correlations among

coordinates are nonintegrable with the equations of

movement, since they introduce a different temporal

scale. Classically, these constraints do reduce more

degrees of freedom in the dynamical movement of

the system than the number of degrees of freedom

that were necessary to define in the static description

that specifies the initial conditions and the states or

configuration space of the system. They are mainly

found in biological and social systems, where pro-

cesses of selection and classification are common,

opening up the state space and increasing the variety

of behaviors. Constraints whose equations contain

time are called rheonomic.
Cross-References

▶Constraint
Constraint-based Modeling

Osbaldo Resendis-Antonio
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Nacional Autónoma de México, Cuernavaca, Morelos,

Mexico
Synonyms

Genome-scale metabolic modeling
Definition

With the advent of high-throughput technology, there

has been a growing need to develop computational

frameworks that contribute to analyze these data for

unveiling the biological principles underlying meta-

bolic networks. Constraint-based modeling is

a paradigm in systems biology that contributes to this

latter aim by considering physical, enzymatic, and

topological constraints underlying the phenotype in

a metabolic network. In global terms, this method can

be stratified into four steps: metabolic reconstruction

of an organism, mathematical representation of the

metabolic network, in silico analysis, and experimental
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Fig. 1 Constraint-based
modeling. Constraint-based
modeling is a paradigm in

systems biology which

consists of four main steps.

(1) genome scale metabolic

reconstruction (region with

blue block), (2) mathematical

representation of the

metabolic network (black),
(3) in silico analysis (red), and
(4) experimental assessment

(green). A continuous

feedback is needed to improve

the in silico predictions,

extend the metabolic

reconstruction and design

experiments for uncovering

the organizing principles in

metabolism
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assessment of computational predictions. In the end,

this approach supplies with a powerful scheme for:

(1) integrating HT data, (2) exploring the metabolic

phenotype in a metabolic reconstruction, and

(3) designing experiments to assess biological

hypothesis.
Characteristics

The advent of high-throughput technology has

triggered the appearance of a significant number of

databases that constitute important sources of data for

understanding the mechanisms by which cells organize

their biological activity at diverse biological levels.

Given the high number of variables inherent to these

databases, this enterprise requires computational

methods that are capable of dealing with the heteroge-

neous and high dimensionality nature of high-

throughput data in a coherent and systematic fashion.

Constraint-based modeling serves as a model-

concentric database that provides with a framework

for describing and predicting metabolic phenotypes

in microorganisms. Having selected a metabolic

reconstruction in an organism, this computational

approach involves the application of a series of

constraints arising from the consideration of
stoichiometric, thermodynamic, enzymatic capacities,

regulatory and kinetic constraints when they are avail-

able. In general terms, this approach can be summa-

rized by four steps: genome scale metabolic

reconstruction, mathematical representation of the

metabolic network, in silico analysis, and experimental

assessment, see Fig. 1.

Metabolic Reconstruction

The current DNA sequence technologies and the bio-

informatics tools available in the literature have facil-

itated the development of metabolic databases in a

variety of organisms. In this contextual scheme, these

databases can be used to survey how genes codified in

the genome contribute to determine the innate meta-

bolic capacities in microorganisms. These databases,

such as KEGG (Kanehisa et al. 2008) and Biocyc

(Caspi et al. 2010) to name a few, constitute a good

base to construct a metabolic network by identifying its

components and defining their interactions (Feist et al.

2009; Reed et al. 2006; Resendis-Antonio et al. 2007,

2010). Furthermore, in order to characterize the feasi-

ble metabolic capacities in the organism, this informa-

tion usually is complemented with high-throughput

data and a carefully genetic and metabolic literature

review of the organism under study (Reed et al. 2006).

During this curation process, it is important to verify
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that all the reactions included in the reconstruction are

such that they are charge and mass balanced, this issue

is essential for ensuring proper in silico results and

interpretations (Thiele and Palsson 2010).

Mathematical Representation of the Metabolic

Network

The relation between the genotype and the phenotype

is a central issue when studying microorganisms in

systems and synthetic biology approaches (Palsson

2006). At a macroscopic level, the phenotype state in

a cell is well characterized by the activity of metabolic

pathways, which in turn, mirror the genetic and protein

activity required for facing external environment. For

this reason, the study of the metabolic capacities in

a genome scale reconstruction becomes relevant for

exploring the feasible phenotype space in an organism.

To this end, the set of reactions that form the metabolic

reconstruction are mathematically represented through

the▶ stoichiometric matrix, S. Thus, by assuming that

metabolic concentrations are at steady state condition,

the feasible metabolic space of flux distribution can be

calculated by:
S  v ¼ 0 (1)

where v represents a vector whose entries are the

metabolic fluxes of the reactions included in the recon-

struction. Hence, from a mathematical perspective,

the problem associated to the feasible phenotype

state is close related to solve the null space of the

stoichiometric matrix (Palsson 2006).

In Silico Analysis

Physical, thermodynamical, and enzymatic con-

straints. Even though the feasible metabolic capacities

in the metabolic network are quantitatively well

defined through Eq. 1, the number of possibilities

remains still huge and additional considerations are

required to limit their spectrum. Thus, in order to

limit even more this space, one imposes these main

constraints when available:

• Physical: when we have information that certain

reactions occur in well-defined compartmentalized

organelle inside the cell, for instance, mitochondria

or cytoplasm.

• Thermodynamical: when we have information

related with the irreversibility or reversibility of
certain reactions along the reconstruction. Other

constraint belonging to this classification is related

with the second law of thermodynamics, the latter

being a fundamental law to regulate the direction of

the biological process.

• Enzymatic:when one has information about the flux

capacity that one enzyme can be able to carry out.

For instance, uptake of oxygen is usually of 20

nMol•gDW/Hr.

• Additional constraints can be imposed to delimit

the metabolic capacities, for instance, regulatory

constraints when the transcriptional regulatory net-

work is known in one organism (Covert et al. 2004).

Taking into account these constraints brings as

a consequence a reduction of the feasible metabolic

space, this point is an important step toward a more

accurate modeling of genome scale metabolic recon-

struction, see Fig. 1 (black region). A variety of

approaches have been suggested to explore the pheno-

type capacities of a metabolic reconstruction and link

their outputs to experimental and high-throughput data

(Price et al. 2004). Among these approaches, ▶ flux

balance analysis (FBA) is a paradigm in systems biol-

ogy for exploring the metabolic phenotype in an organ-

ism and predicting its response under external

perturbation (Orth et al. 2010). In this biased approach,

the metabolic activity in a reconstruction is obtained,

first, by defining a function that represents certain type

of biological purpose – called objective function, Z, and

then, identifying the metabolic flux distribution that

maximizes it. Depending on the case of study, this

objective function can represent a specific physiological

state (as growth rate or bacterial nitrogen fixation) and it

is calculated through linear optimization,i.e.,
Maximize Z ¼
X
k¼1

ck  Xk

" #

such that:
X
Si;j  vj ¼ 0 i ¼ 1 . . . :m

� aj � vj � bj j ¼ 1 . . . n

where Xk is a metabolite participating in the objective

function and ck is a weight factor. Here m indicates

the number of metabolites and n the number of

http://dx.doi.org/10.1007/978-1-4419-9863-7_1366
http://dx.doi.org/10.1007/978-1-4419-9863-7_1085
http://dx.doi.org/10.1007/978-1-4419-9863-7_1085
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reactions along the reconstruction. Note that the latter

two equations indicate that the solution is subject to

a steady state condition and is constrained by thermo-

dynamic and enzymatic limits. This approach has

been successfully and extensively applied to explore

the consequences that gene perturbations produce on

phenotype in archaea, eukarya, and bacteria. The

number of papers where FBA has contributed to

understand the metabolic activity in microorganism

has been rising recently; a representative set of

applications in some organism can be reviewed in

Resendis-Antonio et al. (2007, 2012), Chang et al.

(2012) and Varum Mazumdar et al. (2009).

In parallel with this approach, a variety of methods

have been proposed for extending the analysis of the

metabolic phenotype inherent to a genome scale

metabolic reconstruction (Price et al. 2004). The appli-

cability of these methods ranges from sampling

the entire phenotypes in the null space of the stoichio-

metric matrix to calculating the metabolic phenotype

when knockout or gene deletion occurs in the

metabolic reconstruction (Segre et al. 2009). In addi-

tion, there are some algorithms devoted to explore the

relation between dynamic behavior of metabolites,

topology of network, and biological functionality

(Resendis-Antonio 2009; Jamshidi and Palsson 2008).

Experimental Assessment of In Silico Predictions

Constraint-based modeling lets us simulate real bio-

logical processes and explore the resulting phenotypes

when changes in parameters occur due to genetic

mutations or environmental perturbations. The struc-

tural organization of this approach is such that it lets us

to move toward experimental assessment with high-

throughput technology. Thus, transcriptome data, pro-

teome, and metabolome profiles – and other omics –
become valuable data for refining the model and

assessing the biological hypothesis emerging from in

silico analysis (Resendis-Antonio et al. 2012). This

feedback, established between experiment design and

computational evaluation, is a valuable and needed

task for completing our understanding of how micro-

organisms organize and control their metabolic

response at specific environments.

Conclusions

Constraint-based modeling of metabolic networks

contributes to establish a systems biology platform
capable of integrating high-throughput data and com-

putational simulations. This integrative description at

genome scale is useful for: (1) understanding the fun-

damental activity of metabolism, (2) predicting pheno-

type metabolic under internal or external

perturbations, and (3) designing more informative

experiments at various biological layers.
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Continuous Model

Yong Wang

Academy of Mathematics and Systems Sciences,

Chinese Academy of Sciences, Beijing, China
Synonyms

ODE
Definition

Generally speaking, continuous model is

a mathematical model whose variables are real num-

bers, that is, variables take the continuous value (for

example, a real number between 0 and 1). The related

term is discrete model whose variables take the dis-

crete value. Physicists often choose continuous math-

ematical models for problems ranging from the

dynamical systems of classical physics to the operator

equations and path integrals of quantum mechanics.

These mathematical models use the real or complex

number fields and we argue that the real-number model

of computation should be used in the study of the

computational complexity of continuous mathematical

models.
In Systems Biology, ordinary differential equations

(ODEs) are the most established continuous modeling

representation. For example, one uses ODEs to model

the concentration of each metabolite which is calcu-

lated by a single ODE encapsulating all the reactions

where the metabolite is synthesized or consumed, with

fluxes determining the transformations to and from

other metabolites in the metabolic network.

The use of continuous models is the main technique

of the quantitative sciences. The antonym of continu-

ous model is logic model (Please refer to the definition

of logic model).
Contractile Actomyosin Ring (CAR)

▶Actomyosin Ring
Contractile Ring

▶Actomyosin Ring
Control

▶Constraint
Controlled Vocabulary

J€org Hakenberg

Department of Computer Science and Department of

Biomedical Informatics, Arizona State University,

Tempe, AZ, USA
Definition

A controlled vocabulary (CV) is a set of preselected,

predefined, and authorized terms pertaining to

a specific domain.

http://dx.doi.org/10.1007/978-1-4419-9863-7_101061
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Characteristics

Controlled vocabularies contain carefully selected

terms to describe each anticipated concept in

a certain domain. As opposed to natural language

vocabularies, controlled vocabularies utilize fixed

terms and phrases. CVs are employed to build subject

headings, taxonomies, and thesauri. These are gener-

ally used for annotation and search of documents,

clinical notes, studies, experiments, studied mate-

rials, etc. CVs alleviate both the processes of initial

indexing as well as retrieval, when users are

restricted to use the same vocabulary and thus ambi-

guities such as homonyms, acronyms, and synonyms

are avoided.
Cross-References
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Conventional Gene

Marie-Paule Lefranc

Laboratoire d’ImmunoGénétique Moléculaire,

Institut de Génétique Humaine UPR 1142, Université

Montpellier 2, Montpellier, France
Definition

The conventional gene, or “conventional” belongs

to the “▶GeneType” concept of identification (gener-

ated from the ▶ IDENTIFICATION Axiom) of

▶ IMGT-ONTOLOGY, the global reference in

▶ immunogenetics and ▶ immunoinformatics

(Giudicelli and Lefranc 1999; Lefranc et al. 2004,

2005, 2008; Duroux et al. 2008), built by IMGT®, the

international ImMunoGeneTics information system®

(http://www.imgt.org) (▶ IMGT® Information Sys-

tem). The conventional gene allows to identify any

(coding or not coding) gene other than IG or TR genes.

A conventional gene has by definition the characteristics
of a classical gene (initiation codon and stop codon in

the same gene unit).

The conventional gene includes two “GeneType”

leafconcepts (▶ IMGT-ONTOLOGY, Leafconcept):

• “Conventional-with-leader” identifies any (coding

or not coding) gene other than IG or TR genes with

a leader L region (or signal peptide).

• “Conventional-without-leader” identifies any (cod-

ing or not coding) gene other than IG or TR genes

with no leader L region (or signal peptide).

The other four “GeneType” leafconcepts are, in

contrast, specific to the immunoglobulins (IG) or anti-

bodies and T cell receptors (TR) (▶Variable (V) Gene,

▶Diversity (D) Gene, ▶ Joining (J) Gene, ▶Constant

(C) Gene), have special characteristics (▶Recombina-

tion Signal (RS) for V, D, and J, initiation codon and

stop codon in different genes V and C, respectively),

and need DNA rearrangements during the biosynthesis

of the IG and TR chains (Lefranc and Lefranc 2001a,

b) (▶ Immunoglobulin Synthesis).

The configuration of a conventional gene is always

identified as “undefined” (▶Configuration Type).
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Convergent Evolution

William Bechtel

Department of Philosophy and Center for

Chronobiology, University of California, San Diego,

La Jolla, San Diego, CA, USA
Synonyms

Homoplasy
Convex Hull, Fig. 1 A 2D convex hull
Definition

Convergent evolution is the process by which dis-

tantly related species independently evolve similar

genotypic or phenotypic traits. Trait convergence is

typically caused by the adaptation of organisms to

similar environments by means of natural selection.

However, traits can also converge as a result of design

constraints imposed by biological systems and

chance. Well-known examples representing the con-

vergence of gross morphological traits include the

visual systems of vertebrates, cephalopods, and

arthropods and the wings of birds, bats, and insects.

Traits that are similar due to convergent evolution are

called “analogous,” in contrast to “homologous”

traits, which are similar due to common evolutionary

or developmental descent.
Cross-References

▶Mechanism, Conserved
Convex Hull

Virginio Cantoni1,2, Alessandro Gaggia1 and

Luca Lombardi1

1Department of Computer Engineering and Systems

Science, University of Pavia, Pavia, Italy
2Computational Biology, KTH Royal Institute of

Technology, Stockholm, Sweden
Definition

For a set of points S the Convex HullH(S), in 2D space,

is the smallest convex polygon P that encloses S,

smallest in the sense that there is no other polygon P0

such that S � P0 � P (Fig. 1).
3D Convex HULL

The previous definition can be easily extended to

the 3D space considering P as the smallest

polyhedron that encloses the 3D set of points S

(Fig. 2).

http://dx.doi.org/10.1007/978-1-4419-9863-7_100636
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▶Extended Gaussian Image for Pocket-Ligand

Matching
Convex Optimization

Frank Allg€ower, Jan Hasenauer and Steffen Waldherr

Institute for Systems Theory and Automatic Control,

University of Stuttgart, Stuttgart, Germany
Definition

Convex optimization is the task of solving a convex

optimization problem. The goal of an optimization

problem is to find a value for the optimization variable,

lying within some given constraints, which minimizes

an objective function.

Mathematically, an optimization problem over the

optimization variable x in an n-dimensional vector

space over the real numbers is written as
minimize
X2n

f0ðxÞ

subject to fiðxÞb bi; i ¼ 1; :::;m:
(1)
The objective function is given by f0, and the func-

tions fi are inequality constraints. If there does not exist

a variable x which satisfies the constraints, the optimal

value is1 by definition.

An optimization problem is called a convex opti-

mization problem if the objective function f0 and all

of the inequality constraints fi, i ¼ 1,. . ., m are con-

vex, i.e., satisfy the condition fi((1�a)x + ay) �
(1�a)fi(x) + afi(y) for all a 2 [0,1] and x,y 2 ℝn

(Boyd and Vandenberghe 2004). In convex optimiza-

tion problems, any local minimum is guaranteed to be

a global minimum. Convex optimization problems

can be solved very efficiently by interior point

methods.

An important concept in convex optimization is

duality. The Lagrangian function associated with the

optimization problem (Eq. 1) is defined as
Lðx; lÞ ¼ f0ðxÞ þ
Xm
i¼1

li fiðxÞ: (2)

The dual optimization problem for (Eq. 1) is

defined as
max
l2m

þ
inf
x2n

Lðx; lÞ: (3)

For certain classes of convex optimization prob-

lems, for example, linear programs or ▶ semidefinite

programs, the dual problem is of the same class as the

primal problem. Thus, solvers for these types of prob-

lems can also be applied to solve the dual problem.

The dual problem (Eq. 3) has the property that its

optimal objective function value is always less than or

equal to the optimal value of the primal problem

(Eq. 1). Also, evaluation of the objective function in

the dual problem for any feasible l directly gives

a lower bound on the optimal value of the primal

problem and can be used to estimate how far the

objective function value for any feasible x is away

from the optimal value. For convex optimization

problems, the optimal objective function values in

the primal and dual problem are even equal in many

cases. This property of duality can be used to certify

nonexistence of solutions to ▶ feasibility problems

where an algorithm to solve the dual problem is

available.

http://dx.doi.org/10.1007/978-1-4419-9863-7_976
http://dx.doi.org/10.1007/978-1-4419-9863-7_976
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Convex Programming

Lin Wanglin

School of Computer Science and Information

Engineering, Tianjin University of Science and

Technology, Tianjin, China
Synonyms

Convex optimization
Definition

A following nonlinear programming is called a convex

programming if f ðxÞ; giðxÞ; i ¼ 1;    ;m; are convex
functions in Rn:
Minimize f ðxÞ
subject to giðxÞ � 0; i ¼ 1;    ; m;

Ax ¼ b;

(1)

where A is an p� n matrix.
References
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Core Promoter Elements

Tetsuro Kokubo

Department of Supramolecular Biology, Graduate

School of Nanobioscience, Yokohama City

University, Yokohama, Kanagawa, Japan
Synonyms

Cis-Acting sequences in the core promoter
Definition

The core promoter elements are cis-acting functional

sequences embedded within the core promoters.

Several representatives in the RNAPII system are

summarized in Fig. 1 (Juven-Gershon and Kadonaga

2010; Smale and Kadonaga 2003). The first-

discovered and best-characterized is the TATA box,

which serves as a recognition site for TBP. This ele-

ment is widely conserved from yeast to human, but is

found in only a small fraction (approximately 10–20%)

of all RNAPII promoters. Importantly, TBP is essential

for transcription, regardless of whether the TATA box

is present or absent in the core promoter. Therefore,

TBP must play some indispensable but as-yet

unidentified role(s) in transcription, other than simple

binding to the TATA box. In some human promoters,

the TATA box is flanked by BREu and/or BREd, both

of which are recognition sites for TFIIB. These ele-

ments function positively or negatively depending on

the architecture of promoters and/or transcription fac-

tors present in the system.

The DNA region encompassing the transcription

initiation site(s) often contains the initiator (Inr)

element (Fig. 1). Inr consensus sequences appear to

be different in human (YYANWYY) and Drosophila

(TCAKTY) (underlined A indicates initiation site/+1).

In addition, even in human, there are multiple Inr

consensus sequences ranging from a very relaxed

motif (YR) to a very strict motif (sINR;

GSCGCCATYTTG) (Dikstein 2011), depending on

the estimation method. Therefore, it is likely that

there are a variety of core promoter elements

http://dx.doi.org/10.1007/978-1-4419-9863-7_410
http://dx.doi.org/10.1007/978-1-4419-9863-7_100923
http://dx.doi.org/10.1007/978-1-4419-9863-7_101333
http://dx.doi.org/10.1007/978-1-4419-9863-7_1449
http://dx.doi.org/10.1007/978-1-4419-9863-7_100209


DPE

−37~−32

MTE

−31~−24 −2~+4 +18~+22

+27~+29

SSRCGCC TATAWAAR TCAKTY (fly)
CSARCSSAACGS

-RGWYVT

−40 +40

RTDKKKK

−23~−17 +30~+33

Bridge

YYANWYY (human)

XCPE1: DSGYGGRASM (human)
XCPE2: VCYCRTTRCMY (human)

−8/9~+2

DCE

CTTC CTGT AGC
+6~+11 +16~+21 +30~+34

SI SII SIII

initiation site

BREu TATA BREd Inr

XCPE1/2

Core Promoter Elements, Fig. 1 S(G/C), K(G/T), R(A/G),

M(A/C), W(A/T), Y(T/C), V(G/A/C), D(G/A/T), BRE (TFIIB

recognition element), BREu (upstream BRE), BREd (down-

stream BRE), TATA (TATA box), Inr (Initiator), MTE

(motif ten element), DPE (downstream promoter element),

DCE (downstream core element), XCPE1/2 (X gene core pro-

moter element 1/2)
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encompassing the initiation site(s), with only a fraction

belonging to the original Inr. Consistent with this,

some human genes contain XCPE1 or XCPE2, which

were originally identified in the core promoter of hep-

atitis B virus X gene. These elements are not only

structurally but also functionally different from Inr.

In higher eukaryotes, some core promoter elements

are located downstream of transcription initiation

site(s) (Fig. 1). Although MTE and DPE were origi-

nally identified as separate elements, it was recently

proposed that they comprised two distinct functional

subregions, one of which is included in common in

these two elements. The novel core promoter element

that contains the 50-subregion of MTE and the

30-subregion of DPE is designated as “Bridge.” DCE

is another downstream core promoter element that also

comprises three subregions (SI, SII, and SIII). DCE is

not related to MTE, DPE, and Bridge, because the

distance from the transcription initiation site(s) is

highly restricted for the latter three elements but not

for the former element. Conversely, the TATA box

occurs frequently with the former element but not

with the latter elements.
Nearly all of the core promoter elements are recog-

nition sites for GTFs. As previously discussed, TATA

box and BREu/d are recognized by TBP and TFIIB,

respectively. Importantly, TFIID (transcription factor

IID), a large protein complex comprising TBP and 14

TAFs (TBP-associated factors), is involved in the

recognition of Inr, MTE, DPE, Bridge, and DCE. Spe-

cifically, Inr, MTE/DPE/Bridge and DCE may be rec-

ognized by TAF1/TAF2, TAF6/TAF9, and TAF1,

respectively. However, it is still unclear which factor

recognizes XCPE1/2. Native promoters contain only

one or a few of these core promoter elements, probably

because a weaker level of basal transcription is more

advantageous for regulation by activators. In fact, an

artificial core promoter containing TATA box, Inr,

MTE, and DPE is highly active even in the absence

of activators.

Core promoter elements such as Inr that

overlap with the initiation site(s) could function as

a platform for PIC assembly. However, these ele-

ments may also contain as-yet uncharacterized but

crucial information that enables RNAPII to initiate

transcription productively. Genetic studies indicate
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that such information may be decoded by TFIIB,

TFIIF, and RNAPII, since these three transcription

factors are required for accurate initiation site

selection.
Cross-References

▶Transcription in Eukaryote
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Cores

José Román Bilbao Castro

Supercomputing-Algorithms group, University of

Alméria, Alméria, Spain
Definition

Core is the name currently given to a single processor

within a multiprocessor chip. So, if we read “This

processor is a quad core one,” it really means “this

chip contains four cores of processors.” Cores are

encapsulated together to form a single chip and some

additional elements are added to improve communica-

tions among them.
Cross-References

▶Multicore computing
Corneal Pocket Assay

Marsha A. Moses

Department of Surgery/Harvard Medical School,

Vascular Biology Program/Children’s Hospital

Boston, Boston, MA, USA
Definition

This assay, originally developed for use in the rabbit but

now routinely conducted using rodent cornea, requires

creation of a micropocket in the normally avascular

corneal immediately above the limbus into which test

substances that represent putative angiogenesis stimula-

tors or inhibitors (proteins, cells, or tissues) can be placed

to determine their effect on blood vessels that arise from

the limbus (Gimbrone et al. 1974). Alternatively, blood

vessels stimulated by growth factors implanted in the

pocket can be inhibited via systemic administration of

anti-angiogenic agents (Moses et al. 1999).
Cross-References

▶Neovascularization
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Corpora for Biomolecular Event
Extraction

▶Text Corpora, Molecular Event Extraction
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Corpus Luteum

Marsha A. Moses

Department of Surgery/Harvard Medical School,

Vascular Biology Program/Children’s Hospital

Boston, Boston, MA, USA
Synonyms

Yellow body
Definition

The corpus luteum is a temporary endocrine structure

formed during the mammalian menstrual cycle. In the

early phase of the human menstrual cycle, 20–25 pri-

mary follicles containing oocytes begin to develop into

secondary follicles, among which only one will mature

into a Graafian follicle containing a mature egg. During

ovulation, the egg is released upon rupture of the

Graafian follicle, in which the follicular cells then

undergo reprogramming to form the corpus luteum

(Rizzo 2006). During this process, the follicular cells

exit cell cycle and undergo terminal differentiation into

estrogen- and progesterone-producing luteal cells. If

fertilization and implantation do not occur, the corpus

luteum soon degenerates to form the corpus albicans

(white body), and a new menstrual cycle is initiated

(Stocco et al. 2007). Intense angiogenesis occurs during

the formation of the corpus luteum, which is regulated

by key angiogenic factors such as vascular endothelial

growth factor (VEGF) and matrix metalloproteinase-2

(MMP-2) (Stocco et al. 2007; Zhang et al. 2005).
Cross-References

▶Neovascularization
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Correlation

▶Correlation Coefficient
Correlation Coefficient

Fuyan Hu

Institute of Systems Biology, Shanghai University,

Shanghai, China
Synonyms

Coefficient of correlation; Correlation; Correlational

statistics; Correlativity
Definition

A correlation coefficient is a statistic index which

measures the degree to which two variables are related.

Generally, it varies from �1 (perfect negative correla-
tion) through 0 (no correlation) to +1 (perfect positive

correlation). If a negative correlation is detected,

whenever one variable has a high (low) value, the

other will have a low (high) value. If it is a positive

correlation, whenever one variable has a high (low)

value, so does the other.

The correlation coefficient of x1 and x2 is given by

the formula:
covðx1; x2Þ
s1s2

¼ E½ðx1 � m1Þðx2 � m2Þ

s1s2

(1)
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where m1 is the arithmetic mean of x1, m2 is the arith-
metic mean of x2, covðx1; x2Þ is the covariance of x1
and x2, s1 is the standard deviation of x1, and s2 is the
standard deviation of x2.

Cross-References

▶Correlation Relationship
References
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Correlation Network

▶Relevance Networks
Correlation Relationship

Katsuhisa Horimoto

Computational Biology Research Center, National

Institute of Advanced Industrial Science and

Technology, Koto-ku, Tokyo, Japan
Synonyms

Bayes rule; Causal relationship; Correlation coefficient
Definition

A correlation is the degree of the relationship

between two variables. A positive correlation is

a relationship that the amounts of the two variables

simultaneously increase. In a negative correlation, as

the amount of one variable increases, the amount of

another variable decreases. Note that there is no evi-

dence that changes in one variable cause changes in

the other variable. In statistics, correlation frequently

means the degree to which two or more quantities are

linearly associated. In particular, the degree of
correlation between the values on the two axes in

a two-dimensional plot is quantified by the correla-

tion coefficient. Also, correlating values of one vari-

able with corresponding values at different times is

called autocorrelation.
Cross-References

▶Causal Relationship

▶Conditional Independence
Correlational Statistics

▶Correlation Coefficient
Correlativity

▶Correlation Coefficient
CoSBiLab

▶BlenX
Cost Function

▶Objective Function
Covariance Graph

▶Relevance Networks
Covariance Selection Model

▶Graphical Gaussian Model
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CpG Island

Jianhua Ruan

Department of Computer Science, University of Texas

at San Antonio, San Antonio, TX, USA
C

Definition

In genetics, CpG islands refer to genomic regions that

contain a high frequency of CG dinucleotides, where

the “p” simply indicates that C and G are on the same

strand connected by a phosphodiester bond. CpG

islands are typically located near the transcription

start site of housekeeping genes or other genes that

are highly expressed.
CPM

▶Cellular Potts Model
Criterion Function

▶Objective Function
Cross Tissue Disease Network

Sanjeev Kumar1 and Shipra Agrawal2

1BioCOS Life Sciences Private Limited, Bangalore,

Karnataka, India
2BioCOS Life Sciences Pvt. Limited, Institute of

Bioinformatics and Applied Biotechnology,

Bangalore, Karnataka, India
Synonyms

Cross tissue signature network; Tissue-to-tissue

network
Definition

A cross view of the different molecular states,

interaction of physiological functions and pathways

across multiple tissues of a diseased system could be

appropriately and comparably presented through

▶ cross tissue disease networks. CTDNs are

constructed from specific gene/protein expression

data across important tissues of diseased organisms

(Fig. 1).

The application of CTDN could be properly defined

from the following examples:

• It could be used to study the inter-tissue relation-

ships and identify genes, which are important in

different tissues and can also act as information

relays in the control of peripheral tissues in obese

mice. The subnetworks, which are specific to the

tissue-to-tissue interactions, are enriched in the

genes having corresponding disease-relevant bio-

logical functions (Drake 2010).

• CTDNs derived from gene co-expression data have

been shown to determine the pleiotropic effects of

single disease gene in human. Such genes differ in

their expression-based tissue-specific interactions

(Schadt 2009).

• The gene enrichment and genetic association ana-

lyses of CTDN modules facilitate identification of

important modules relating to macrophage func-

tion and metabolic traits in human obese patients.

This module has been shown to have high correla-

tion with obesity-specific clinical parameters.

Such networks can also describe causal relation-

ship of genes with disease-associated phenotypes

(Schadt 2009).

• Tissue-to-tissue networks enable the identification

of disease-specific genes that respond to the physi-

ological changes in one tissue, which is actually

triggered in some other tissues (Sieberts and Schadt

2007).

• CTDN could also identify genes related

to communication between tissues. These net-

works provide a first step toward understanding

of the complex diseases by laying out the hierarchy

of interacting molecular networks. These

interacting networks in turn define various physi-

ological states in the mammalian systems (Drake

2010).

http://dx.doi.org/10.1007/978-1-4419-9863-7_298
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http://dx.doi.org/10.1007/978-1-4419-9863-7_201


Tissue A

Cross-tissue network

Tissue B Tissue C

Cross Tissue Disease
Network, Fig. 1 A tissue-to-

tissue network is generated

from each possible tissue pairs

by identifying the significantly

correlated gene co-expression

traits
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Crossover Design

▶Repeated Measures
Cross Tissue Signature Network

▶Cross Tissue Disease Network
Cross-Validation

Joo Chuan Tong

Data Mining Department, Institute for Infocomm

Research, Singapore, Singapore

Department of Biochemistry, Yong Loo Lin School of

Medicine, National University of Singapore,

Singapore

Definition

Training data set will be randomly partitioned into

i-number of subsets with equal size. Then one subset

will be evaluated by a model trained by the data from

the I-1 subsets, this process is repeated for i times.

A good model trained on data points that are represen-

tative for the population should consistently produce

high accuracy across the i-number of validation. This

process is called cross-validation.

Cross-References

▶TAP Translocator, In Silico Prediction
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CRSP

▶Mediator
C

Cumulative Causation

▶ Positive Feedback
Curation

Sabina Leonelli

ESRC Centre for Genomics in Society, University of

Exeter, Exeter, Devon, UK
Definition

Ensemble of activities involved in developing and

maintaining a database (Howe and Rhee 2008; Stein

2008; Leonelli 2010).
Cross-References

▶Bio-Ontologies

▶CellML Model Curation
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Cyclin Detection

▶Quantifying Lymphocyte Division, Methods
Cyclin-dependent Kinase 1 (CDK1)/
Anaphase-Promoting Complex (APC)
Oscillator

▶Cell Cycle of Early Frog Embryos
Cycling Egg Extract

▶Xenopus laevis Egg Extract
Cyclins and Cyclin-dependent Kinases

Marcos Malumbres

Spanish National Cancer Research Centre (CNIO),

Madrid, Spain
Synonyms

Cell cycle-regulated kinase complexes
Definition

Cyclins are proteins initially identified by their differ-

ential protein levels during different phases of the

▶ cell cycle. This characteristic depends on specific

amino acid sequences that are recognized by the pro-

tein degradation machinery. Cyclins are known to

function as the regulatory subunit of heterodimeric

protein kinase complexes that also contain a catalytic

subunit with serine/threonine kinase activity, known as

cyclin-dependent kinase (Cdk).
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Characteristics

Cyclins were first discovered as oscillating proteins

that accumulate and suddenly disappear during cell

division in sea urchin eggs (Jackson 2008). These pro-

teins are usually not expressed in quiescent cells but

they are synthesized in dividing cells to regulate entry

into the cell cycle and progression throughout the

different phases of the cell cycle. However, what

makes these proteins special is the tight control of

their levels by protein degradation. Cyclins contain

specific amino acid sequences, such as the destruction

(D)-box, that are recognized by the ubiquitin-mediated

protein degradation machinery. Specific ubiquitin

ligases recognize these residues and tag these proteins

through the addition of ubiquitin residues. These

ubiquitinated cyclins are then quickly degraded by

the proteasome.

Cyclins contain a common amino acid stretch,

known as the cyclin box, responsible for binding and

activation of their partner kinases, the Cdks. Mono-

meric Cdks are inactive as kinases and their activation

requires the interaction with cyclins. The binding

between cyclins and Cdks results in crucial changes

in the structural conformation of the kinase domain of

Cdks (Morgan 2007). In addition, cyclins are thought

to provide additional recognition sites for specific sub-

strates. Thus, cyclins determine the substrate specific-

ity and timing of activation of Cdks. In addition, their

interaction with Cdks modulates other crucial aspects

of Cdk function such as its control by upstream regu-

latory enzymes or by subcellular localization

(Malumbres and Barbacid 2005).

Mammalian Cyclins

Cyclins are defined by the presence of one or two

cyclin boxes. About 35 cyclins exist in the human

genome (Fig. 1). Many of these proteins display little

sequence similarity outside the cyclin box and their

functional homology is therefore unclear. The

N-terminal region usually contains regulatory and

targeting domains, including the D-box, that are spe-

cific for each cyclin class.

Major cell cycle cyclins are grouped into a cluster

that contains A-, B-, D-, and E-type cyclins. Cyclins C,

H, K, L, and T are mostly involved in the control of

transcription and RNA processing. G-type cyclins

have been proposed to play a role in the response
to DNA Damage (▶Cell Cycle Arrest After DNA

Damage) whereas M-cyclins are divergent cyclins

involved in ion transport. Cables1,2 are cyclin-like

proteins that are both partners and substrates of Cdks

and may be involved in apoptosis. Several other

cyclins including Cyclin F, G1,2, I, I2, JL, M1-4, and

O do not have cognate Cdk partners. Despite their

name, it is also unclear whether the protein levels of

many of these cyclins are tightly regulated by protein

synthesis and degradation.

Mammalian Cdks

The Cdk denomination was originally applied to

kinases whose function was clearly demonstrated to

be dependent on a cyclin. This denomination is now

applied to 20 different kinases (CDK1-20; Fig. 1)

although their control by cyclins is not well charac-

terized in some cases (Malumbres et al. 2009). All

Cdks display high similarity in their kinase domain

and contain a specific stretch of amino acids, usually

known as the PSTAIRE domain (or a1 helix),

involved in the binding to cyclins (Morgan 2007).

Similarly to cyclins, this family of proteins includes

members with a clear implication in the cell division

cycle. Thus, CDK1, 2, 3, 4, and 6 play distinct func-

tions in the progression throughout the cell cycle

upon activation by specific members of the A-, B-,

D-, and E-cyclins. On the other hand, other Cdks,

such as CDK7-9 and CDK11 display critical roles in

▶ transcription and RNA processing, usually in com-

bination with C-, H-, K-, L-, and T-cyclins

(Malumbres and Barbacid 2005).

Regulation and Function of Cdks in the Control of

the Cell Cycle

Only a few cyclin-Cdk complexes are known to be

directly involved in the regulation of the cell cycle.

CDK1, the mammalian ortholog of the yeast CDC2/

CDC28 kinase (▶Cell Cycle, Budding Yeast; ▶Cell

Cycle, Fission Yeast), is a major regulator of G2 and

▶mitosis (▶Mitotic Kinases) in combination with

A- and B-type cyclins. CDK2 (and perhaps CDK3)

are activated by E- and A-type cyclins and may par-

ticipate in cell cycle control during ▶DNA replica-

tion and G2 (▶Cell Cycle Transitions, G2/M) and in

DNA repair. CDK4 and CDK6, on the other hand, are

specifically activated by D-type cyclins and control

the entry into the cell cycle and G1 progression in

http://dx.doi.org/10.1007/978-1-4419-9863-7_47
http://dx.doi.org/10.1007/978-1-4419-9863-7_47
http://dx.doi.org/10.1007/978-1-4419-9863-7_304
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http://dx.doi.org/10.1007/978-1-4419-9863-7_11
http://dx.doi.org/10.1007/978-1-4419-9863-7_40
http://dx.doi.org/10.1007/978-1-4419-9863-7_40
http://dx.doi.org/10.1007/978-1-4419-9863-7_38
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Cyclins and Cyclin-dependent Kinases, Fig. 1 Representa-

tive interactions between mammalian cyclins and Cdks. CDK5

may interact with some cyclins (e.g., D-type cyclins) although

this binding does not result in kinase activation. Dotted lines

indicate interactions whose biological significance is not clear.

Evolution distances in cyclins and Cdks are represented at

different scale
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response to mitogenic signaling (Malumbres and

Barbacid 2005). It is not clear whether most of the

other Cdks play direct roles in the regulation of the

cell cycle. CDK5 for instance is activated by cyclin-

like proteins that are almost uniquely expressed in

brain cells. As indicated above, CDK7-9 and

CDK11 are involved in transcription and RNA

processing and the information available for most

other Cdks is too scarce to assign a clear role in the

control of the cell cycle.

The activation of cyclin-Cdk complexes is tightly

controlled at different levels including phosphoryla-

tion and dephosphorylation events, as well as folding

and subcellular localization. Cdks are regulated by
both activating and inactivating phosphorylations. In

mammals, CDK7 is the catalytic subunit of the com-

plex known as Cdk-activating protein (CAK). CAK

phosphorylates several Cdks at a critical threonine

residue at the T-loop of the kinase domain, and this

phosphorylation is required to unblock the active-site

cleft. On the other hand, two additional kinases,

WEE1 and MYT1, are able to phosphorylate two

residues located in the roof of the kinase ATP-binding

site and these phosphorylations inhibit Cdk kinase

activity. Dephosphorylation of these sites is mediated

by CDC25(A-C) phosphatases. Both WEE1 and

CDC25 enzymes are critical regulators of Cdk acti-

vation in response to multiple signals such as those
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involved in the DNA damage response (Morgan

2007; Jackson and Bartek 2009) (▶Cell Cycle Arrest

After DNA Damage). Cdks are also regulated by

direct binding to several ▶Cdk inhibitors of the

Ink4 (p16Ink4a, p15Ink4b, p18Ink4c and p19Ink4d) and

Cip/Kip (p21Cip1, p27Kip1 and p57Kip2) families.

Ink4 proteins bind CDK4 and CDK6 thus preventing

the interaction of the monomeric Cdk with their acti-

vating cyclins. Cip/Kip inhibitors, on the other hand,

generally bind and inhibit cyclin-Cdk complexes gen-

erating inactive trimeric complexes (Sherr and Rob-

erts 1999)

The typical phosphorylation sequence recognized

by Cdks is [S/T]*PX[K/R], where [S/T]* indicates

the phosphorylated serine or threonine residue, P is

proline, X represents any amino acid, and [K/R] rep-

resents a basic amino acid lysine or arginine two

positions downstream of the phosphorylated residue.

Cdks exert their effects in the cell cycle by phosphor-

ylating a large number of proteins in the cell, thus

regulating many aspects of cellular architecture and

metabolism. In response to mitogenic signals, cyclin

D-CDK4/6 complexes phosphorylate and inhibit the

retinoblastoma protein (pRB), a transcriptional

▶ repressor that defines the ▶ restriction point in

mammals by preventing the synthesis of cell cycle

proteins. pRb exerts this function by inhibiting E2F

transcription factors and recruiting chromatin

remodeling complexes thus repressing transcription

at specific sites. pRB may be also phosphorylated by

many other Cdks such as CDK1, CDK2, CDK3,

CDK9. Upon pRB inactivation, many proteins

required for the synthesis of DNA and mitosis are

synthesized, and cells become committed to ▶DNA

replication and progression throughout the following

phases of the cell cycle. CDK2 and CDK1, in com-

plex with E-, A-, and B-type cyclins, are responsible

for the phosphorylation of a significant number of

proteins. CDK1 (▶Mitotic Kinases), the major Cdk

activity during G2 and M, phosphorylates more than

70 proteins involved in DNA condensation, formation

of the spindle, Golgi remodeling, nuclear envelop

breakdown, etc. (Malumbres and Barbacid 2005).

Mitotic exit (▶Cell Cycle Transitions, Mitotic Exit)

requires the proteasome-dependent degradation of A-

and B-type cyclins, thus switching off Cdk activity

and allowing DNA decondensation, spindle disas-

sembly, reformation of the nuclear envelop,

etc. Normal progression throughout the cell cycle is
monitored by several ▶ cell cycle checkpoints

which sense possible abnormalities and generally

result in the inhibition of Cdk activity and cell cycle

arrest.

In general, Cdks are considered as the major

engines that drive entry and progression throughout

the different phases of the eukaryotic cell cycle. Not

surprisingly, their activity is deregulated in human

cancer (▶Cell Cycle, Cancer Cell Cycle and

Oncogene Addiction) and inhibiting Cdk activity is

now considered as an attractive therapeutic approach

against tumor cell proliferation (Malumbres and

Barbacid 2009).
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Cytogenetics
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Oxford, UK
Definition

Cytogenetics is a branch of genetics that deals with

the study of the structure and function of the chromo-

somes (Prabhu Britto and Ravindran 2007).
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Definition

These are low molecular weight molecules secreted by

various immune cells which modulate the immune

system by acting as intercellular mediators (Gilman

et al. 2001)
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Definition

Cytokinesis is the process by which one cell

divides into two daughter cells with equivalent

genetic and cytoplasmic content. Cytokinesis initiates

after the chromosomes have segregated and culmi-

nates by dividing the cell perpendicular to the

mitotic spindle after the completion of telophase,

thus bringing closure to the ▶ cell cycle. The process

of cell division requires extensive rearrangements of

the cytoskeleton and vesicle trafficking apparatus.

Much of the spatial and temporal regulation of cyto-

kinesis is controlled by ▶ small GTPases and regula-

tory kinases that coordinate this process with the

nuclear cycle.
Characteristics

Cytokinesis can be universally divided into three major

events: determination of the cleavage plane, assembly

(and constriction) of the cytokinesis apparatus, and cell

abscission. However, different organisms have devel-

oped remarkably variable approaches to cytokinesis.

Specification of the division plane is the least con-

served of the three major events. Once the site is

determined, metazoans and fungi divide through the

use of a contractile ▶ actomyosin ring. In contrast,

plants assemble membranes and cell wall in

a structure called the phragmoplast, which assembles

in the cell middle and then expands outward toward the

cell cortex. The final joining of cell membranes to

bring about completion of cytokinesis is called abscis-

sion (Guertin et al. 2002). In this chapter, we will

survey the mechanisms by which different cell types

undergo cytokinesis, with special emphasis on the

model systems that have been extensively studied.

Both commonalities and differences (e.g., presence of

a cell wall, or the use of a contractile ring) are

discussed below.
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Determination of the Cleavage Plane

Animal Cells and Some Lower Eukaryotes

In animal cells and some lower eukaryotes (but not

yeast), the selection of the division plane is deter-

mined by the position and orientation of the mitotic

spindle at anaphase. Although the cell division plane

typically bisects the mitotic spindle, it has long been

argued whether the signal to position the furrow orig-

inates from the central spindle or overlapping astral

microtubules from opposite poles. More recent evi-

dence suggests that both types of microtubules can

induce furrow formation, with the emphasis

depending on the cell type. For example in large

cells such as early embryos, the central spindle is

a long distance from the cortex, and in these cells,

the astral microtubules seem to have a more important

role in positioning the cell division site. There has

also been a debate over the role of astral microtu-

bules, which could act either by promoting constric-

tion in the cell middle, or inhibiting cortical tension at

the cell poles (Eggert et al. 2006). At the molecular

level, there is evidence that spindle microtubules

control the equatorial cortex contractility by regulat-

ing the activity of the small GTPase RhoA, the master

driver of actomyosin ring formation and constriction.

The RhoA GAP MGCRacGap and the GEF ECT2

both localize to the spindle midzone in anaphase,

where they form a complex that is regulated by sev-

eral mitotic kinases, including Cdk1, Aurora B, and

Plk1. Unfortunately, it is not clear yet how the signal

is transduced from the spindle to the cortex (Piekny

et al. 2005).

Budding Yeast

Unlike animal cells, the plane of division in Saccharo-
myces cerevisiae is determined before▶mitosis. Since

this type of yeast divides through budding, the plane of

cytokinesis is the narrow connection between the

mother and daughter cell, known as the bud neck.

The site selection for bud growth is determined in

G1/S by the localization of landmark proteins. Inter-

estingly, as in mammalian cells, the landmark proteins

recruit a small GTPase (in this case RSR1), which

starts a GTPase cascade resulting in growth of the

bud and assembly of the septin ring, which acts as

a scaffold for actomyosin ring formation (Oliferenko

et al. 2009).
Fission Yeast

The division plane in Schizosaccharomyces pombe is

determined by the position of the nucleus in late G2/

early mitosis (Oliferenko et al. 2009). Fission yeast

cells are cylindrical in shape, and the nucleus is

roughly positioned at the center of the cell by inter-

phase microtubules, leading to the generation of two

daughter cells of approximately the same size. Mid1,

a paralog to metazoan anillins, plays a central role in

the determination of the cleavage plane. Upon entry

into mitosis, the bulk of Mid1 translocates out of the

nucleus in a Polo-kinase-dependent manner and local-

izes to protein assemblies called nodes at the equator of

the cell. Mid1 then recruits other components of the

actomyosin ring to the medial plane of the cell, stim-

ulating equatorial interphase nodes to mature into

cytokinesis nodes that will eventually form the acto-

myosin ring (Pollard and Wu 2010).

Plant Cells

Plant cells do not divide through actomyosin ring con-

striction but by the continuous deposition of membrane

and cell-wall components at a medial plane between

the recently divided nuclei. Shortly after mitotic entry,

microtubules, microtubule-associated proteins, and

actin form a cortical structure, called ▶ pre-prophase

band, at the future division site. The pre-prophase band

marks the cortex by localization of landmark proteins

before it is disassembled in pro-metaphase. Although

a number of proteins have been implicated in pre-

prophase band formation and function, the precise

mechanisms governing their action are still unclear

(M€uller et al. 2009).

Assembly and Action of the Cytokinesis Apparatus

Animal Cells and Some Lower Eukaryotes

In mammalian cells, actomyosin ring assembly and

constriction is regulated by RhoA (see above). Active

RhoA localizes to the cortical side of the division

plane, where it interacts with formin, promoting

assembly of actin filaments. RhoA also interacts with

the multidomain protein anillin, which binds actin,

myosin, and possibly anchors the actomyosin ring to

the cell membrane. Later in anaphase, RhoA activates

Rock kinase, which phosphorylates the regulatory

chains of myosin, inducing bipolar myosin filament

assembly and motor activity. A large number of other
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components contribute to actomyosin ring assembly

and dynamics, including septins and various actin-

binding proteins, such as the Arp2/3 complex and

cofilin. Actomyosin ring constriction was initially

explained through the “purse string” model whereby

bipolar myosin filaments walk along actin filaments to

bring about constriction of the ring in a manner similar

to muscle constriction. Although there is considerable

evidence for this model, other models are also

supported by experimental data, including global con-

traction of the cortex and weakening of resistive forces

in the cleavage furrow (Eggert et al. 2006). Alterna-

tively, cell division could come about by global con-

traction of the cortex and astral microtubule stimulated

relaxation at the cell poles distal from the cleavage

furrow. The amoeba Dictyostelium discoideum usually

undergoes cytokinesis in a similar fashion to metazoan

cells. However, cells defective in myosin II still form

equatorial furrows through a passive mechanism that

requires adhesion to a substrate and involves cytoskel-

eton actin dynamics and cortical tension. This could be

explained by models showing that contraction can be

generated in absence of motor proteins through

a ratchet diffusion based mechanism involving fila-

ment cross-linking and bundling proteins (Sun et al.

2010).

Budding Yeast

Cytokinesis in budding yeast occurs at the bud neck,

a small connection of about 1 um in diameter between

the mother cell and the bud. Septins arrive at the bud

neck by late G1 and sequential localization of evolu-

tionary conserved components of the actomyosin ring

result in a functional contractile ring by late anaphase.

Since the metaphase spindle resides in the mother cell,

cytokinesis is halted until one ▶ spindle pole body

enters the bud at the end of anaphase. Multiple mech-

anisms appear to block the mitotic exit network (MEN)

from triggering initiation of actomyosin ring constric-

tion until the daughter spindle pole body has passed

through the bud neck and into the daughter cell

(Balasubramanian et al. 2004). Ingression of the acto-

myosin ring is closely followed by deposition of

a septum. It is thought that because of the high turgor

pressure in yeast cells, the actomyosin ring cannot

cause constriction on its own, but instead acts to

guide the primary septum, which provides most of

the force required for constriction.
Fission Yeast

As previously described, actomyosin ring assembly in

S. pombe is driven by protein complexes called cyto-

kinesis nodes. Actin filaments form from nodes and are

cross-linked by myosin, whose contractile activity is

thought to bring about condensation of the nodes into

a discrete actomyosin ring. Interestingly, the Mid1-

dependent pathway only appears to operate prior to

anaphase. At anaphase onset, a signaling pathway

called the SIN takes over from Mid1 to promote acto-

myosin ring maturation and stability. SIN mutants

form rings in early mitosis through the Mid1-

dependent pathway, but the rings fall apart in ana-

phase. In contrast, cells lacking Mid1 fail to assemble

rings in early mitosis, but assemble misplaced rings in

late mitosis. In addition, activation of the SIN pathway

in interphase can trigger actomyosin ring assembly and

constriction independent of Mid1. Together, these

results suggest that fission yeast uses two pathways to

promote ring assembly; theMid1 pathway, which posi-

tions the ring in early mitosis, and the SIN-dependent

pathway, which promotes ring assembly in anaphase

(Pollard and Wu 2010).

Plants Cells

During anaphase, most plant cells use the remnants of

the mitotic spindle to interdigitate microtubules and

actin at the plane previously marked by the pre-

prophase band, forming the phragmoplast. Molecular

motors then use microtubules to drive Golgi-derived

vesicles containing cell-wall components and mem-

brane to the phragmoplast, where the new cell wall is

synthesized. The phragmoplast then expands toward

the region of the cortex marked by the pre-prophase

band (M€uller et al. 2009).

Cell Abscission

Abscission is the process by which the membrane

connections between daughter cells are severed.

Although it is clear that vesicle fusion is important

for this step, cell abscission as a whole is still poorly

understood, and the various model systems will be

dealt with together.

In animal cells, furrow ingression leads to the for-

mation of an intercellular bridge connecting both

daughter cells. Inside the bridge, stabilized

overlapping microtubules remaining from the central

spindle recruit g-tubulin and other proteins, organizing

http://dx.doi.org/10.1007/978-1-4419-9863-7_781
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into an electron dense structure called the ▶midbody

(Steigemann and Gerlich 2009). Actomyosin ring con-

striction proceeds perpendicularly to the midbody until

both structures interact. At this point, two events must

happen at the cellular bridge before the two daughter

cells complete cytokinesis: microtubule disassembly/

severing and membrane fusion. Microtubules at one

side of the midbody are usually severed through

a mechanism that is not fully understood but involves

the microtubule severing protein spastin. Spastin is

recruited to the midbody by the endosomal sorting

complex, or ESCRT, which is essential for cell abscis-

sion. The thin connection between daughter cells is

then sealed by vesicle fusion. Recycling endosomes

and exocytic vesicles accumulate at the cellular bridge

through interactions with t-SNARE proteins and tar-

get-site components of the exocyst complex, recruited

at specialized membrane domains at both sides of the

midbody. However, the exact nature of the vesicle

fusion events at the midbody is not known. In addition,

there is evidence that ESCRT proteins can promote

cell abscission by self-assembly into spiral-shaped

fibers that induce membrane curvature (Steigemann

and Gerlich 2009).

Although fission and budding yeast both require

a mechanism for final partitioning of the cellular mem-

branes upon contractile ring constriction, evidence for

a discrete abscission step has only been observed in

budding yeast. However, the mechanisms governing

abscission are unclear. Once abscission partitions the

cytoplasm of the two daughter cells, cell separation is

achieved through degradation of the division septum.

This process is tightly regulated to avoid cell lysis and

involves glucanases (fission yeast) and chitinases (bud-

ding yeast) (Balasubramanian et al. 2004).

In higher plants, vesicle fusion at the division

plane results in an outward growth of the cell plate

toward the cell cortex. The plane of cell plate growth

is oriented by the expanding phragmoplast, which is

guided toward the spatial cues left by the pre-

prophase band. How membrane fusion is coordinated

to occur all around the cell cortex at once remains

a mystery.
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