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Definition

k is as a rule-based language for modeling protein

interaction networks that allows the formalization of

molecular agents and their interactions in signaling

networks (Danos et al. 2007, 2008).
W. Dubitzky et al. (eds.), Encyclopedia of Systems Biology, DOI 1
# Springer Science+Business Media LLC 2013
The k description of a system consists of a collection

of agents and rules.An agent has a name and a number of

labeled sites, collectively referred to as the agent’s inter-

face. A site may have an internal state, typically used to

denote its phosphorylation status or other post-transla-

tional modifications. Rules provide a concise description

of how agents interact. Elementary interactions consist

of the binding or unbinding of two agents, the modifica-

tion of the state of a site, and the deletion or creation of an

agent.

The rule-based modeling approach of k incorporates

causality constraints in the rules by using partial com-

plexes: Only the aspects of the state of a complex which

matter for an event to happen need to be specified. This

reliance on partial complexes allows to capture compact

descriptions and work around the huge numbers of

combinations one would have to contemplate (or

neglect) otherwise. The more detailed the partial com-

plex, that is to say the less partial, the more conditions

must be met for a particular event to happen.

It is possible to associate rate constants with each

rule and the rule has to be expressed in their elementary

form.

The language is equipped with a visual notation,

where proteins are represented by boxes with

domains on their boundaries. The calculus is provided

with an exact stochastic simulator, and a series

of tools (that can be found at http://www.

kappalanguage.org/) that allow different kinds of

analyses on k-calculus models.

In Fig. 1, we report part of small example (taken

from Danos et al. 2007) just to show the basic primi-

tives of the language.
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k-Calculus, Fig. 1 Consider two agents: a kinase K and a target

T with two phosphorylatable sites x and y. The behavior that

needs to be modeled is the set of the following three elementary

actions (i.e., rules) (1) the kinase K binds its target T either at site

x or y; (2) the kinase may (but need not) phosphorylate the site to

which it is bound; (3) the kinase dissociates (unbinds) from its

target. The code presented in the lower part of the figure models

the interaction between a kinase K and its target T. The rules are

labeled with a mnemonic on the left. “�u” (unphosphorylated)

and “�p” (phosphorylated) represent the internal state of an

interface, and physical associations (bindings or links) are indi-

cated by “!” with shared indices across agents to indicate the two

endpoints of a link. The left hand side of a rule specifies

a condition in the form of a pattern expressed as a partial

graph, which represents binding states and site values of agents.

The right hand side of a rule specifies (usually elementary)

changes to agents mentioned on the left. A double arrow indi-

cates a reversible rule, the name refers to the forward version of

the rule say r, while the opposite rule is written r_op. KT@x and

KT@y are the rules for the binding of K and T on site x and

y respectively. Tp@x and Tp@y are the rules for the possible

phosphorylation action of K on T. The dissociation of the two

agents is encoded in the reversibility of the first two rules
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Definition

KEGG (Kanehisa et al. 2010) (Kyoto Encyclopedia of

Genes and Genomes) pathway database is a well-known

publicly accessible pathway database. It is one main

database of KEGG, which was built in 1995, and is

a bioinformatics resource as part of the research projects

of the Kanehisa Laboratories in the Bioinformatics Cen-

ter of Kyoto University and the Human Genome Center

of the University of Tokyo. KEGG PATHWAY con-

tains our knowledge curated from scientific literatures

on the biological molecular interaction and reaction

networks, including protein-protein interaction, pro-

tein-DNA binding, protein-ligand interaction, enzyme-

mediated biomass reaction, etc. Interactions within

one specific biological process or function are drawn

manually to pathway maps. By far, there are 365 path-

way maps collected from 113,760 references, which

are categorized into metabolism, genetic information

processing, environmental information processing, cel-

lular processes, organismal systems, human diseases,

and drug development.
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▶Learning, Kernel-based
Kernel Methods
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Key Step
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Killer Cells

▶Natural Killer Cells, Mycobacterial Infection
Kinase Activity Assay

▶ Protein Kinase Assay
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▶ Protein Kinase Assay
Kinetic Equations

▶Cell Cycle Modeling, Differential Equation
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Synonyms

Dynamic modeling and simulation
Definition

In systems where (bio)chemical reactions take place,

kinetic modeling and simulation refer to mathematical

description of changes in properties of the system of

interest, for instance, concentrations of metabolites,

proteins, or other cellular components, and reaction

fluxes in the case of biological system with respect

to time. Dynamic properties of biological system often

start fromdynamicmass balance of cellular components

of interest and can be implicitly described as
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dx

dt
¼ S � v (1)

where S is the stoichiometric matrix of cellular

components involved in biochemical reactions, v is

the vector of reaction rates, and x is the vector of

concentrations of the considered cellular components.
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Definition

KiPar is an▶ information retrieval system designed to

facilitate access to the literature relevant for kinetic

modeling of metabolic pathways in yeast. Information

supplied as user input includes the enzymes catalyzing

the reactions of interest and the parameters whose

values are required for kinetic modeling. The output

is produced as a list of documents (either abstracts

from ▶PubMed or full-text articles from PubMed

Central) that should contain the required values of

kinetic parameters. There are two groups of users of

this specific application: (1) experimentalists who wish

to compare experimentally estimated values of kinetic

parameters to those reported in the literature, and
(2) mathematical modelers who wish to incorporate

known values of kinetic parameters into metabolic

models.
Characteristics

A typical systems biology network modeling strategy

has four main parts (Kell 2006; Herrgård et al. 2008):

two qualitative ones, in which the reaction partners and

their modifiers are set down, and two more quantitative

ones, in which the kinetic rate equations for each step

are described, together with the values of their param-

eters (such as Km and kcat). The latter two in particular

provide researchers with considerable challenges, as

the necessary data are often buried deep inside indi-

vidual papers (Ananiadou et al. 2006; Hakenberg et al.

2004). KiPar provides an integrative approach, com-

bining a number of publicly available data and soft-

ware resources, for effective retrieval of documents

relevant for the kinetic modeling of metabolic path-

ways (Spasić et al. 2009), which has been recognized

as one of the principal goals of systems biology

(Palsson 2006). The input information is provided by

the user as a set of identifiers, which include EC num-

bers to specify enzymes (e.g., EC 2.7.1.1 for hexoki-

nase) and Systems Biology Ontology (SBO) terms to

specify kinetic parameters (e.g., SBO:0000025 for

kcat). These identifiers are used as entry points into

the relevant public resources of biological knowledge:

▶KEGG ENZYME (Kanehisa et al. 2008) and Sys-

tems Biology Ontology (Le Novère 2006). The names

of the identified entities, including synonyms, are col-

lected automatically from these resources to be used

later as search terms against the literature databases:

▶ PubMed and PubMed Central. In addition,▶KEGG

ENZYME is queried for other types of information

related to the given enzymes, such as the compounds

that participate in the corresponding reactions. As

before, the names of the identified compounds are

collected from the cross-referenced databases: KEGG

COMPOUND, PubChem (Bolton et al. 2008), and

ChEBI (Degtyarenko et al. 2008). The gathered syno-

nyms referring to the enzyme and the compounds

involved in a reaction are combined together to search

the literature for information on the given reaction,

which is usually not designated by a name that could

be used as a search term (Ananiadou et al. 2010). The

search results for individual reactions are further
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http://dx.doi.org/10.1007/978-1-4419-9863-7_153
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Kinetic Parameter Information Resource, KiPar,
Fig. 1 Simplified structure of the system, given as a logical

sequence of the elementary acts performed. Given the input

specification about an enzyme and its kinetics, KiPar collects

the associated terminology (i.e., enzyme names as well as the

names of compounds acting as substrates/products in the

corresponding reaction, and the terms referring to the given

kinetic parameter) from publicly available biological databases.

The terms collected are used to search the literature for enzyme

kinetic parameters
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filtered out using the search terms gathered for the

kinetic parameters. Finally, the content of the retrieved

documents is annotated with the matching search terms

in order to allow the user easier identification of the

relevant information. Figure 1 illustrates a simplified

version of the information flow in KiPar.

KiPar makes extensive use of domain knowledge,

most of which is accessed dynamically through

the web services of the selected sources. Some of the
relevant domain knowledge is incorporated into

the formula for scoring the document relevance.

These facts free the user from formulating complex

search queries involving the use of knowledge and

terminology concerned with the relevant entities

and their relations, which otherwise make manual

searching for enzyme kinetic parameters complex

and time-consuming. This approach has been found

to perform better than the traditional Boolean search.
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In addition, multiple reactions and their kinetic

parameters can be specified in a single search request,

rather than one reaction at a time, which further

facilitates access to the literature discussing enzyme

kinetic parameters required for developing large-scale

metabolic models as is the case in systems biology.
Cross-References
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▶Lymphocyte Population Kinetics
Kinetochores

Rosella Visintin

IEO, European Institute of Oncology,

Milan, Italy
Definition

Kinetochores are large proteinaceous structures that

assemble on centromeres. They mediate chromosomes

binding to the spindle microtubules and orchestrate

sister chromatid segregation.
Cross-References
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Definition

Knowledge is a hard term to define. Epistemology is

the area of philosophy that deals with knowledge, but it

has yet to yield a definition that all philosophers can

agree on. Intuitively, though, most of us have a good

understanding of what knowledge means. For systems

biology, a working definition could be that knowledge

relates to the understanding of a subject or domain.
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When interpreted more computationally, knowledge

can be used to refer to concepts and the relationships

between concepts, or data that have been structured

according to rich semantics.

In computer science, knowledge is related to infor-

mation and data, and the meanings attributed to these

concepts may overlap or be used interchangeably. Gen-

erally speaking, we can say that data is “raw,” in the

sense that it refers to the signals or information (i.e., the

bits, or 0’s and 1’s) that derive from scientific instru-

ments, and that are collected and stored by computers.

Knowledge is more meaningful than raw data. Knowl-

edge helps us to make informed decisions and to act in

a skilful manner. An important difference between

knowledge and data is that knowledge is connected to

actions: knowledge is purposeful, it has meaning in the

sense that if we receive some data or information and do

not have any knowledge, thenwe do not react to the data.

Whereas, if we have knowledge, we know that the infor-

mation is important becausewe can relate it to its broader

context and implications. Knowledge enables scientific

discoveries to be derived from data, and it is sometimes

thought of as data about data. A property of knowledge,

as opposed to data, is that it can be used to generate more

in the form of new insights or scientific discoveries.
Cross-References
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Martin Swain

Institute of Biological, Environmental, and Rural

Sciences, Aberystwyth University, Aberystwyth,

Ceredigion, UK
Definition

Knowledge acquisition covers a range of techniques

used to obtain and represent knowledge about a specific

area of human expertise so that it may be used in

a▶ knowledge-based system. Human experts are impor-

tant sources of knowledge, and eliciting knowledge from

them is a common knowledge acquisition task.
Typically, the expert is interviewed by one or more

knowledge engineers and asked to solve a number of

case studies while attempting to outline their reasoning

process. Problems arise because the expert may

have developed, over many years, an instinctive or

unconscious approach to problem solving, which can

be very difficult to make explicit and formulize in

a computational system. Nonetheless, with the help of

the expert, it is usually possible for the knowledge engi-

neers to generate a number of heuristics, or rules of

thumb, which embody the ▶ knowledge of the expert

and which can readily be encoded or represented in

a format useful for automated inference.
Cross-References

▶Knowledge

▶Knowledge-based System
Knowledge Base

Martin Swain

Institute of Biological, Environmental, and Rural

Sciences, Aberystwyth University, Aberystwyth,

Ceredigion, UK
Definition

A knowledge base is a collection of knowledge

represented using a ▶ knowledge representation lan-

guage. In systems biology, a knowledge base is used to

refer to a cyber-infrastructure representing a dynamic

body of scientific knowledge. The sources of knowledge

contained in a knowledge base for systems biology may

include:

• Important data repositories, including results from

high-throughput experiments and repositories of

biological models

• Software and workflow repositories that contain

tools useful for data processing and analysis

• Frameworks for modeling, simulation, and making

scientific predictions

• Heuristic capabilities to improve the value and

sophistication of experimental design and for fur-

ther scientific inquiry
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In systems biology, knowledge bases are used to

couple modeling and simulation to experimental

design in order to facilitate further knowledge discov-

ery. An important challenge is to combine complex

and disparate sources of knowledge into a coordinated

whole in order to provide scientists with a more inte-

grated view of the various components of biological

systems.
Cross-References
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▶Knowledge-based System
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Knowledge Engineering

Martin Swain

Institute of Biological, Environmental, and Rural

Sciences, Aberystwyth University, Aberystwyth,

Ceredigion, UK
Definition

Knowledge engineering is used to build informa-

tion systems that utilize knowledge, concepts,

and reasoning in a structured way. It involves

constructing models or powerful abstractions of

human ▶ knowledge about biological systems (or

other areas of human endeavor). Knowledge engi-

neering is also related to the development of

computing systems for knowledge management.

This involves leveraging knowledge as a key

resource in scientific communities and organiza-

tions using advanced information and knowledge

systems.
Cross-References
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Knowledge Inference

Luis Tari

Pharma Early Development Informatics,

Hoffmann-La Roche Inc., Nutley, NJ, USA
Definition

Knowledge inference refers to acquiring new knowledge

fromexisting facts based on certain rules and constraints.

One way of representing these rules and constraints is

through the use of logic rules, formally known as knowl-

edge representation. The mechanism behind inferring

new knowledge based on the existing facts and logic

rules is typically known as reasoning. By encoding bio-

logical properties in the form of logic rules, the facts

inferred by automated reasoning can be more biologi-

cally meaningful.
Characteristics

By acquiring biological facts from various

publications, new knowledge can be inferred when

relevant biological knowledge is applied. Such kind

of knowledge inference enables the processing of

complex tasks such as the curation of biological path-

ways. Knowledge inferencing can be described in

two phases: (1) natural language extraction phase;

(2) reasoning and inference phase. The natural

language extraction phase is responsible for the

acquisition of the facts from free text such as Medline

abstracts.

By representing the domain knowledge in the form

of logic rules, the reasoning and inference phase

utilizes the extracted facts to infer knowledge.

In the rest of the entry, the knowledge-inferencing

mechanism is illustrated with two examples: the

synthesis of pharmacokinetic pathways (Tari et al.

2010b) and the identification of drug–drug interactions

(Tari et al. 2010a).

Preliminaries: Pharmacokinetics

Pharmacokinetics is concerned with the relationships

between various processes during the course of the drug

consumption in the body. When a drug is taken orally,

the drug is absorbed in the intestine, and the

http://dx.doi.org/10.1007/978-1-4419-9863-7_210
http://dx.doi.org/10.1007/978-1-4419-9863-7_1030
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Knowledge Inference, Fig. 1 Pharmacokinetic pathway of

fluvastatin. Region A: metabolism of the drug by the enzymes;

Region B: drug transporters distribute the drug for absorption in

intestine in B1, for metabolism in B2, and for elimination in B3;

Region C: the drug is metabolized to metabolites by the enzymes

(Diagram source: PharmGKB)
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corresponding drug transporters move the drug into the

cells via the membrane. The drug is then distributed to

various organs including the liver through the blood-

stream, and the relevant drug transporters in the liver

cells distribute the drug formetabolism by the enzymes.

Drugs that are taken intravenously would bypass the

drug absorption phase. The pharmacokinetics of a drug

includes several processes such as the absorption of

a drug, the distribution of a drug to different tissues,

themetabolism of a drug that leads to the conversion of

the drug into metabolites, and the elimination of a drug

(Sharif 2003). The typical processes involved in
pharmacokinetic pathways are shown in Fig. 1. Drug

transporters are responsible for moving the drug in (as

in Regions B1 and B2 of Fig. 1) and out of the cell (as in

Regions B3). Metabolism takes place when the drug is

in the cell (Region A) and the drug is moved out of the

cell for excretion after metabolism (Region B3). This

mechanism can take place in many tissues such as

intestine and liver. Once the target drug is in the cell,

the enzymes play the role of metabolizing the drug

(as in Region A), which take place mainly in the liver.

Metabolites are produced as a result of the metabolism

of the drug, shown in Region C.
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Synthesis of Pharmacokinetic Pathways

Input: drug of interest

Output: pharmacokinetic pathway of the given drug

The extraction phase is performed by the PTQL (parse

tree query language) extraction framework (Tari et al.

2010c), which provides the flexibility to perform

diverse relationship extraction. The central piece of

our extraction framework is the parse tree database,

which is composed of the syntactic structures for each

of the sentences in the entire text collection. Extraction

of relationships becomes a matter of writing queries to

the parse tree database.

The system gathers the necessary facts from

various publications in order to synthesize pharmaco-

kinetic pathways. Here is an overview of the extracted

facts:

• Drug–transporter distribution relations. Before

a drug can be metabolized, it is necessary for the

drug to be distributed to the liver for the metabolism

process. The system identifies which transporters

are responsible for drug distribution. For example,

distributes(SCLO1B1, pravastatin)

corresponds to the fact that SCLO1B1 is a drug

transporter for the distribution of pravastatin.

• Drug–enzyme metabolic relations. Enzymes play

an important role in drug metabolism. The system

identifies which enzymes are responsible for the

metabolism of the target drug. For instance,

the system represents the fact that CYP3A4 is

responsible for the metabolism of pravastatin as

metabolizes(CYP3A4, pravastatin).

• Protein expression in liver and intestinal cells.

In the synthesis of pharmacokinetic pathways, it is

essential to find out whether a protein is expressed

in the liver or intestinal cells. For instance,

is_expressed(ABCC2, liver) and

is_expressed(SLC15A1, intestine)

corresponds to the fact that ABCC2 and SLC15A1

are expressed in the liver and intestine, respectively.

• Proteins responsible for drug elimination. Among

the interactions between the target drug and its

drug transporters, it is necessary to find out the

roles of each of the drug transporters, as drug

transporters are known to be involved in

various roles such as drug distribution, absorption,

and elimination. For instance, eliminates

(ABCB1, pravastatin) represents the fact

that ABCB1 is responsible for the elimination

of pravastatin.
• Drug–metabolites relations. The system identifies

which particular metabolites are produced as a result

of the metabolism of the target drug. For instance,

the fact that SN-38 is a metabolite of pravastatin

is represented as metabolite_drug(SN38,

pravastatin).

The role of the reasoning phase is to represent the

fundamental behavior and properties of the domain so

that the extracted facts can be utilized to infer new

knowledge. Implementation of the reasoning compo-

nent requires a language that is ideal in specifying what

kind of reasoning to be performed rather than how

the reasoning is performed. AnsProlog (Gelfond and

Lifschitz 1988, 1991) is a declarative language that is

useful for reasoning, as well as capable for reasoning

with incomplete information. The non-monotonic

feature of AnsProlog allows the handling of defaults

and exception.

With AnsProlog, biological properties of the

relevant domain knowledge are represented in the

form of logic rules. As an example of a biological

property in pharmacokinetics, drug metabolites are

produced as a result of drug metabolism. In other

words, a metabolized drug is a precondition for the

production of drug metabolites, and the effect of the

interaction is the production of drug metabolites. This

is represented as follows:

o(converts(Dr,M), Loc, T) :-

h(metabolized(Dr, Loc),T),

metabolite_drug(M,Dr),

metabolism_organ(Dr, Loc), not h

(converted(Dr, Loc),T).

The above logic rule states the preconditions for

the action of converting drug Dr into metabolite

M (i.e., converts(Dr, M)) at timepoint T in tissue

Loc (which can be either the liver or intestinal cell).

Timepoints are used to define the logical ordering of

the actions involved in pharmacokinetic pathways.

The following are the preconditions, which are

specified to the right of the “if” symbol :- in the

rule, for the action converts(Dr, M):

• The drug D has been metabolized in tissue Loc at

timepoint T, denoted as

h(metabolized(Dr,Loc),T)

• Metabolite M is known to be a metabolite of Dr,

denoted as

metabolite_drug(Dr, M)
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• Metabolism of D is known to take place in Loc,

denoted as

metabolism_organ(Dr, Loc)

• It is not known that D has been converted into

metabolites in tissue Loc in the previous timepoints,

denoted as

not h(converted(Dr, Loc),T)

By encoding the logic representation in the form of

pre- and post-conditions of the actions involved in the

consumption of drugs, reasoning can be applied to find

an explanation of how the drug is consumed based on

the extracted facts.

Suppose we are interested in the pharmacokinetic

pathway of fluvastatin, we provide the following logic

facts as input:

drug(fluvastatin)

h(is present(fluvastatin,

intestine),0)

The above logic fact indicates that fluvastatin is

consumed and present in the intestine.

The reasoning component takes the extracted logic

facts from the extraction phase and the logic rules

representing properties of pharmacokinetics to infer

the following sequence of actions that lead to the

consumption of fluvastatin:

o(distributes(slco1b1,fluvastatin),

liver,1)

o(metabolizes(cyp1a1,fluvastatin),

liver,2)

o(metabolizes(cyp2c8,fluvastatin),

liver,2)

o(metabolizes(cyp2c9,fluvastatin),

liver,2)

o(metabolizes(cyp3a4,fluvastatin),

liver,2)

o(metabolizes(cyp2c19,fluvastatin),

liver,2)

o(metabolizes(cyp2d6,fluvastatin),

liver,2)

o(converts(fluvastatin,x6 hydroxy),

liver,3)

o(converts(fluvastatin,m2),liver,3)

o(converts(fluvastatin,m3),liver,3)

o(converts(fluvastatin,m4),liver,3)

o(converts(fluvastatin,m7),liver,3)

o(eliminates(abcb1,fluvastatin),

liver,4)
Timepoints are used to define the logical ordering of
the actions involved in pharmacokinetic pathways.

Action A1 occurs before interaction A2 if A1 is assigned

with a timepoint that is smaller than the timepoint for

A2. For instance, the timepoints indicate that the action

metabolizes occurs ahead of the action converts.

Preliminaries: Drug–Drug Interactions

The issue of drug–drug interactions has received great

amount of attention as it may cause adverse drug

reactions. Drug–drug interactions are concerned with

how the consumption of a drug is influenced by another

drug. Inhibition of enzymes is a common form of

drug–drug interactions (Boobis et al. 2009). This kind

of direct inhibition happens when drug A inhibits

enzyme E, which is responsible for the metabolism of

drug B. The inhibition by A leads to the decrease of the

activity level of E, and this in turn may delay

the disposition of drug B. Such unexpected delay can

potentially lead to side effects for patients who are

administered with drugs A and B. An example

of such direct inhibition is the interaction between

quinidine and CYP2D6 substrates such as codeine.

Quinidine is responsible for the inhibition of

the CYP2D6 enzyme, while codeine is metabolized

by CYP2D6. The inhibition of CYP2D6 by quinidine

can increase the effect of codeine. Such increase

can potentially lead to adverse side effects of the

affected drug.

Another form of drug interactions is through the

induction of enzymes (Boobis et al. 2009). One form

of induction is known as direct induction when drug A

induces enzyme E, which is responsible for metabolism

of drug B. An example of such direct induction is

between warfarin and phenobarbital. Such drug interac-

tion occurs due to the fact that warfarin ismetabolized by

the CYP2C9 enzyme, while CYP2C9 is subject to induc-

tion by phenobarbital. This leads to the increase of

enzyme activity of CYP2C9, which increases the rate

of metabolism of warfarin by CYP2C9. Such increase

of metabolism decreases the life span of warfarin. While

direct induction is possible, it is not the most common

form of drug interactions due to induction. A more

common form is through transcription factors that

regulate the drug-metabolizing enzymes. An alternative

form is indirect induction through transcription factors.

Such interaction occurs when drug A activates transcrip-

tion factorTF, which regulates and induces enzymeE, and
enzyme E is responsible for the metabolism of drug B.
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Such transcription factors are referred as regulators for

xenobiotic-metabolizing enzymes. There are other kinds

of mechanisms that lead to drug interactions, but here we

focus on these three types.

Identifying Drug–Drug Interactions

Input: drug of interest

Output: potential interaction between a drug and drug

of interest

In drug design, it is important to identify potential drug

interactions in the design process. Given that the effect

of the drug is known as an inducer or inhibitor for an

enzyme, the question is to identify drugs that can be

affected by this new drug. Suppose our new drug is

a CYP3A4 inhibitor, we represent such information in

the form of logic facts as the input to our system.

drug(new_drug). enzyme(cyp3a4).

inhibits(new_drug, cyp3a4).

Among the extracted facts, terfenadine is found to

be one of the drugs that are metabolized extensively by

CYP3A4. This is supported by the following evidence

sentence:

Testosterone, terfenadine, midazolam, and
nifedipine, four commonly used substrates for human

cytochrome P-450 3A4 (CYP3A4) (PMID: 10681383)

This leads to the logic fact metabolized

(terfernadine, cyp3a4). With the input, the

extracted facts, and the logic rules, the reasoning

component returns the following answer set:

affects(new_drug, level(cyp3a4, low))

result(new_drug, increases,

terfenadine)

The answer set indicates that the new drug may

increase the effect of terfenadine, since the new drug

decreases the expression activity of CYP3A4.
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Synonyms

Data management; Information integration;

Information management; Knowledge organization
Definition

Knowledge Management (KM) encompasses techniques

and processes to represent, store, search, integrate, and

analyze ▶knowledge that is available in digital form.

KnowledgeManagement in Systems Biology (KMSB) is

concerned with knowledge about biological systems and

the way they interact to sustain life. Specifically, KMSB

covers the problems of formally representing knowledge

about biological entities and processes, the robust gener-

ation of biological knowledge from raw experimental

data, the integration of knowledge from multiple and

heterogeneous data sources, and the provision of search

and inference algorithms to access and use the knowl-

edge being managed by a system. Since human language

is especially appropriate to represent complex knowledge

but inadequate for being used by computers, an important
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subtask of KMSB is the transformation of knowledge

that is represented in unstructured text into structured

representations by▶ text mining.
Characteristics

The dominant aim of Systems Biology is to model

biological systems. To this end, researchers need to

infer knowledge, for instance, about the structure and

dynamics of▶ biochemical pathways, from raw exper-

imental data, like measured protein or metabolite

levels. Knowledge Management for Systems Biology

(KMSB) is concerned with developing algorithms and

tools that enable this work in a collaborative fashion.

The term does not denote a specific method, but rather

encompasses a range of different techniques. KMSB

transfers many results from research in information

systems,▶ data mining, collaboration, and▶ informa-

tion integration to the world of biological modeling

and simulation. In addition, it addresses the specific

problems of Systems Biology, which include the enor-

mous differences in the scale of the objects being

studied (from single molecules to a complete living

being), the extreme heterogeneity in the nature of the

raw data used, the complexity of the interplay between

the entities involved, and our limited ability to measure

or observe specific aspects of these systems.

In Knowledge Management, it is helpful to distin-

guish between data (raw, numerical, derived from
experimentation), information (data in context; raw

data interpreted in the context of a biological question),

and knowledge (abstract and confirmed set of informa-

tion answering a biological question). While KMSB is

mostly concerned with the latter, it also touches upon

the formers since all levels need to be considered to

ensure reliable knowledge. However, research in

KMSB is mainly focused on knowledge encoded in

or needed for building models of biological systems.

Cycle of Experiment and Analysis

Figure 1 shows the prototypical process of model

development. Systems Biologists produce and inte-

grate various types of data, including properties of

gene sequences, high-throughput ▶ transcriptome,

▶metabolome, or ▶ proteome data sets, or molecular

interaction networks. After collecting such data

and processing them by statistical data analysis,

researchers develop abstract ▶mathematical models

of the biological system under study. Developing

such models requires, apart from the experimental

data, input from other sources including textbooks,

the scientific literature, existing models, and human

experts. Model simulations are then used to derive

new hypotheses about the modeled system, which

must be validated or falsified by novel experiments,

leading to new insights and refined models. Important

original data and modeling results are published and

possibly stored in specific databases. KMSB has to

support all steps of this process.
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Name Scope URL

Gene ontology Ontology for cell biological objects and functions www.geneontology.org/

Minimum information for biological

and biomedical investigations

Collection of minimal requirements

(for metadata, etc.)

mibbi.org/

Minimum information required

in the annotation of models

Minimum requirements for describing

biochemical models

www.ebi.ac.uk/miriam/

Systems biology markup language Computational models www.sbml.org/

Systems biology graphical notation Network diagrams sbgn.org/

BioPAX Language for exchanging biochemical pathways www.biopax.org/

PSI MI Molecular interactions psidev.sourceforge.net/

K 1080 Knowledge Management
Knowledge Representation

KMSB faces a variety of data, including experimental

results, biochemical knowledge, and computational

models. As a requirement for the exchange of data

and tools acting upon this data, these need to be

represented in standardized, computer-readable for-

mats. Formats like ▶SBML (Systems Biology

Markup Language, Hucka et al. 2003) cover different

application domains and are used as exchange formats

by Systems Biology databases. Biochemical networks

can be represented conveniently by the diagrammatic

language ▶ SBGN (Systems Biology Graphical

Notation), a standard for representing network

graphics. Furthermore, every data set needs to be

enriched with meta-information to allow its proper

usage. Conventions for minimal sets of metadata for

various sorts of data are coordinated by the MIBBI

effort (Taylor et al. 2008). A prominent example,

the MIRIAM standard for computational models

(Le Novère et al. 2005), is aimed to ensure a reliable

documentation of models and, ultimately, reproduc-

ibility of simulation results. A list of important

standards in Systems Biology may be found in Table 1.

Data exchange also requires a standardized naming

of fundamental objects (like proteins or metabolites)

and basic concepts (like functions of a protein). Ontol-

ogies like the ▶ gene ontology or the ▶ systems biol-

ogy ontology provide both controlled vocabularies and

definitions of biochemical concepts like enzymatic

mechanisms, gene functions, or the sub-cellular loca-

tion of proteins. Elements of a computational model

can be linked to ontology elements by so-called

annotations, which greatly help to search data sets

effectively and to interlink heterogeneous data

from different sources. Furthermore, annotations can
encode biochemical knowledge to be used for analysis,

e.g., to correlate the expression and the biological

function of genes.

Knowledge Extraction

Research projects rarely start on entirely new topics.

Therefore, existing knowledge from textbooks, scientific

publications, and biological databases play an important

role in developing and improving Systems Biology

models. Accessing this knowledge can be anything

from trivial to nearly impossible. If knowledge is

available in structured form, i.e., in databases, accessing

it requires efficient search methods and an understanding

of formats and names (see below). However, novel

knowledge is still predominately published in articles,

i.e., in natural English texts; in the same way, established

knowledge is still published primarily in text books.

Extracting knowledge from text can be performed

manually or automatically using ▶ text mining:

• Many large Systems Biology databases (e.g., Brenda,

IntAct, or Sabio-RK) employ human curators who

read selected texts and transform the relevant infor-

mation from the text into a computer-readable format.

Although curated databases are generally considered

to contain high-quality data, this view is sometimes

questioned, especially in terms of completeness

(Cusick et al. 2009). Therefore,most SystemsBiology

researchers perform their own literature searches dur-

ing modeling. Such searches can be supported by

automated tools specializing in biomedical informa-

tion retrieval (Hoffmann et al. 2005).

• A second approach to knowledge extraction from text

is to scan the texts automatically by computer pro-

grams using biomedical text mining. It involves

a series of subtasks including text preprocessing,

http://dx.doi.org/10.1007/978-1-4419-9863-7_101316
http://dx.doi.org/10.1007/978-1-4419-9863-7_1096
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grammatical annotation, identification of biological

entities (genes, chemicals, cell lines etc.), and extrac-

tion of relationships between these entities (regula-

tion, complex formation, metabolic reactions etc.).

A number of existing systems employ such methods

to reconstruct the topology of biological networks

(Bauer-Mehren et al. 2009). Another line of research

targets the extraction of ▶ kinetic parameters or the

stoichiometry of reactions (▶Stoichiometric Mass

Balance Analysis) (Hakenberg et al. 2004).

Computational biological models are a particularly

complex form of knowledge and creating them requires

extensive efforts in knowledge collection. Many large-

scale efforts to reconstruct networks (e.g., by Reactome,

KEGG, BioCyc, Yeast consensus model) mainly target

the topology of networks by listing and annotation of

relevant compounds and reactions. Computational pro-

cedures such as ▶flux analysis can be used to validate

that the reconstructed networks are biochemically plau-

sible. An alternative approach to collecting and distrib-

uting knowledge is provided by wikis (e.g., Lammers

et al. 2010). In contrast to traditional databases, wikis do

not impose a fixed data structure,whichmakes it difficult

to check the accumulated knowledge for consistency.

However, when various pieces of information need to

be collected from many domain experts, the easy access

provided by wikis turns out to be a strong advantage.

Knowledge Integration

Knowledge in Systems Biology is scattered over

dozens of different data sources, including protein

databases like UniProt, ▶model databases such as

BioModels or JWS online, databases on enzyme bio-

chemistry such as Brenda or Sabio-RK, or repositories

of experimental results such as GEO or ArrayExpress.

Acquiring a comprehensive view on these diverse

databases or performing a joint analysis of different

data sets requires their integration. This task is typi-

cally divided in two subtasks: Information Integration

is concerned with heterogeneity in metadata, i.e.,

formats or database schemas (Stein 2008). Solutions

to these problems are mostly built upon exchange

standards as described above. Data integration, in

contrast, addresses the biological data and is concerned

with statistical data normalization and experimental

biases (Searls 2005). By integrating data within

quantitative models, new knowledge may be inferred.

For instance, large ▶metabolic network models can

help to validate and complete ▶ thermodynamic data
sets. A pertinent problem in data integration is the

usage of different identifiers. To interrelate different

data sets or to map experimental data onto models, data

elements need to be aligned to each other. This is

usually achieved by matching their annotations,

which point to public databases and ontologies

like KEGG, ChEBI, Uniprot, or the Gene Ontology.

Comparing the annotations is also necessary to align

computational models and can help to spot inconsis-

tencies between them (Krause et al. 2009). Jamborees,

targeted meetings of domain experts, have turned out

to be an efficient way to obtain network integration in

a community effort (Herrgard et al. 2008).

A number of databases have taken over the task of

providing integrated data sets (e.g., Chowbina et al.

2009). These integrated databases relieve a user from

performing integration herself, but usually carry the

danger of being outdated or of missing some specific

information. Recently, scientific workflow engines

have been proposed as the appropriate mean to imple-

ment custom-data integration algorithms in a clean,

reusable, and extensible manner (Li et al. 2010).
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Knowledge Organization

▶Knowledge Management
Knowledge Representation

Martin Swain

Institute of Biological, Environmental, and Rural

Sciences, Aberystwyth University, Aberystwyth,

Ceredigion, UK
Definition

Knowledge representation refers to the technical prob-

lem of encoding human ▶ knowledge and reasoning
(▶Automated Reasoning) into a symbolic language

that enables it to be processed by information systems.

In systems biology, knowledge representation is used

to infuse data with scientific concepts and understand-

ing in order to maximize its utility for furthering sci-

entific insight.
Characteristics

Knowledge representation is an active area of research

in artificial intelligence (Brachman and Bector 2004).

It often refers to the complex and time-consuming

technical process performed by knowledge engineers

(▶Knowledge Engineering) when acquiring domain

knowledge for use in ▶ knowledge-based systems.

The question of how to represent human ▶ knowl-

edge is an old problem, and knowledge representations

are not limited to the rule-based approaches (▶Rule-

based Methods; ▶Rule Discovery) typically associ-

ated with ▶ knowledge-based systems. Among the

first knowledge representations are prehistoric bones,

carved with notches that enumerate the lunar phases.

Other knowledge representations include hiero-

glyphics, writing, arithmetic, mathematical tables,

and algebra, as well as various methods and languages

developed by artificial intelligence researchers to

reproduce human cognitive processes in computers.

Knowledge representations are closely related to

methods of reasoning: the purpose of a knowledge

representation, especially in the context of systems

biology, derives from its practical value in allowing

us to make predictions about the world.

Davis et al. (1993) argue that the fundamental task

of knowledge representation is to describe the natural

world. They elucidate five important roles for

a knowledge representation:

1. Knowledge representations are a substitute or

surrogate of the world. All representations or

models are inherently inaccurate because they are

simplifications of the real thing and may contain

artifacts.

2. Knowledge representations are a set of ontological

commitments. Knowledge representations approxi-

mate reality: different representations describe real-

ity from different points of view. The decisions

made about what is important for the representation

and therefore should be included, and what can be

left out, are ontological.
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3. Knowledge representations are fragmentary theo-

ries of intelligent reasoning. Sets of rules and sets

of mathematical equations are two different knowl-

edge representations that can be used to make pre-

dictions but which must be used with different

systems of reasoning. A knowledge representation

encourages us to reason about the world in a certain

way, and it restricts the types of conclusion that we

can draw.

4. Knowledge representations enable helpful or effi-

cient ways of computing and making predictions

about the world. If they did not, then there would

be no point in using them.

5. A knowledge representation is a human language. It

enables us to express things about the world, and it

acts a medium of communication.

Examples of knowledge representations that are

commonly used with ▶ knowledge-based systems

include:

• Symbolic logic: Also known as predicate logic or

first-order logic. Here, the term predicate is used to

refer to the relationships between objects, where an

object could be a physical object like a biological

organism, or a concept like a measurement of some

property of an organism. The objects are then called

the arguments or terms of the predicate, and the

values of the arguments are allowed to vary so that

a predicate may be said to be true or false depending

on the values of the arguments. In a ▶ knowledge

base, predicates that are logically true are used to

represent a collection of facts. Computer languages

like ▶PROLOG, which are based on predicate

logic, are able to automate logical processes like

▶ deduction and ▶ induction and are able to dis-

cover new ▶ knowledge.

• Heuristics: Rules that guide a search in a particular

problem space. They may be represented in an IF-

THEN format, meaning that if conditions are satis-

fied then a certain action may be performed or

a conclusion may be drawn.

• Frames: Are similar to objects in object-orientated

programming. Frames have slots instead of

attributes and procedural attachments instead of

methods. They enable▶ knowledge to be structured

in a hierarchical way and can be used to describe

various biological concepts such as reactions, path-

ways, and physical entities such as molecules. For

example, in Vastrik et al. (2007), a particular reac-

tion may be represented as an instance of the frame
“reaction,” and the frame may have slots for inputs

and outputs, which respectively represent the reac-

tants and products of the given reaction.

• Semantic networks: Graphs that use nodes to

store facts and links to represent relations between

facts. They were originally designed to model

human memory, with concepts stored at the nodes

of the graphs, and links that related nodes to each

other.

What is important for a valid knowledge repre-

sentation is that its formal structure is representa-

tional and carries meaning: It is not simply a data

structure. A knowledge representation creates

a correspondence between the constructs of the

representation and the real world, a data structure

does need such a correspondence. In this sense,

data is just data; it carries no extra meaning and

does not need to be related to its context in a wider

world.

Data structures, however, are used to

implement knowledge representations. For example,

a knowledge representation such as a semantic net-

work may be stored using a graphical data structure.

The graph itself has no correspondence with the

domain of knowledge being represented: It is the

semantics or meaning attached to the graph that defines

this correspondence and that dictates the graph’s

topology.

Knowledge representations in systems biology are

often used to represent both qualitative and quantitative

scientific▶ knowledge. Such knowledge representations

are based on community-agreed standardized tools and

formats (Brazma et al. 2006; Wang et al. 2005). Some

examples of important standardized formats for knowl-

edge representation in systems biology include:

• XML-based languages such as SBML: The Systems

Biology Markup Language for representing stoi-

chiometric and regulatory models; BioPAX: Bio-

logical pathway exchange language to enable the

integration, exchange, visualization, and analysis of

biological pathway data; and CellML: to store,

share, and exchange mathematically based models

of cells.

• Collections of computational models such as the

BioModels Database and the related MIRIAM stan-

dard. MIRIAM is an effort to help the systems

biology community to collaborate when annotating

quantitative models of biological systems with sci-

entific knowledge.

http://dx.doi.org/10.1007/978-1-4419-9863-7_596
http://dx.doi.org/10.1007/978-1-4419-9863-7_1033
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• ▶Ontologies from the Open Biological and Bio-

medical Ontologies (OBO) initiative. These include

the Gene Ontology (GO) and the Protein Ontology

(PRO). Ontologies are data models concerned with

conceptualization and embody a community’s

knowledge of a domain (Bard and Rhee 2004).

They define the basic terms and relations of

a domain of interest, as well as the rules for com-

bining these terms and relations so that they may be

used for reasoning. Standardized ontologies are

important for curating and annotating key scientific

data sets (e.g., reference genome sequences).

Knowledge representation in artificial intelligence

has typically focused on narrow domains of human

expertise, and this has been a crucial factor for devel-

oping successful knowledge-based applications. In

contrast, systems biology attempts to look at the bigger

picture. It adopts a holistic approach to science, as

opposed to a reductionist approach, and it therefore

inherently attempts to incorporate ▶ knowledge from

a wide variety of domains and scientific disciplines.

The application of knowledge representation and

knowledge-based technologies to systems biology is

therefore challenging. In addition, with the rapid

growth in biological data repositories and the rapid

development of new technologies for measuring bio-

logical systems, the need for standardized systems of

knowledge representation continues to grow. The

development and widespread adoption of such stan-

dards by the community is of great importance: They

are crucial for integrating diverse systems of scientific

▶ knowledge into a coherent whole.
Cross-References
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Martin Swain
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Sciences, Aberystwyth University, Aberystwyth,

Ceredigion, UK
Synonyms

Expert system
Definition

A knowledge-based system is a computer program that

uses a▶knowledgebasewith an inference engine in order

to solve problems that usually require significant special-

ized human expertise. It embodies the problem-solving

▶knowledge of a human expert in a narrowly defined

domain and it is able to extend that body of▶knowledge

through its inference engine or query system.
Characteristics

People who possess specialized ▶ knowledge of

a particular domain are called experts. This knowledge

may take the form of a set of rules or heuristics

about how to deal with particular circumstances and

problems. Expert knowledge can be embodied in

a computer through techniques of▶ knowledge acqui-

sition, ▶ knowledge representation, and ▶ knowledge

engineering: a ▶ knowledge base is a collection of

such knowledge. Knowledge-based systems combine
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a knowledge base with automated inference mecha-

nisms: they replicate the cognitive processes that are

employed by experts when solving problems in

a specific area of human endeavor. An important aspect

of knowledge-based systems is that they are able to

outline the reasoning process by which they reached

their conclusions. They are one of the first successful

applications of Artificial Intelligence (Giarratano and

Riley 1998; Negnevitsky 2002; Liao 2004).

The key components of a knowledge-based system

are a ▶ knowledge base and an automated inference

mechanism. The inference or reasoning system uses

human ▶ knowledge that has been encoded in the

knowledge base to infer new beliefs and new knowledge.

One of the earliest examples of knowledge-based systems

is the program Dendral, which used heuristics derived

from the reasoning process of organic chemists to identify

organic molecules from mass spectra and chemical

knowledge. A more modern example is Adam (King

et al. 2009), a laboratory robot that is able to indepen-

dently perform experiments in yeast-based functional

genomics. It is able to test hypotheses and interpret find-

ings without human guidance. Adam is claimed to be the

first machine in history to have discovered new scientific

knowledge independently of its human creators.

An important characteristic of knowledge-based

systems is that there is a clean separation between the

▶ knowledge base and the inference mechanism.

Knowledge-based systems adopt the paradigmof declar-

ative programming, in which the goal of a program is

separated from the methods used to achieve it. In declar-

ative programming, the idea is that the user specifies the

goal (i.e., a hypothesis to be tested), and the underlying

inference mechanisms of the knowledge-based system

then try to achieve that goal. Various expert system shells

are available to help with the development of knowl-

edge-based systems. Expert system shells come with

inbuilt reasoning mechanisms, but they do not contain

any▶ knowledge: it is up to the knowledge engineers to

enter knowledge into the shell using a suitable represen-

tation [▶ knowledge representation].

A ▶ knowledge base may represent domain

▶ knowledge as a set of rules in the IF (condition, or

pattern to match) THEN (consequent, or action) struc-

ture (▶Rule). When the condition part of a rule is

satisfied, then the rule is said to “fire,” and the action

part is executed. The inference engine carries out the

process of automated reasoning that allows the knowl-

edge-based system to reach a solution. The inference
engine instantiates rules with facts. Usually, the infer-

ence engine has a prioritized list of rules to satisfy first.

An example of a rule from the MYCIN system for

the diagnosis of meningitis and bacteremia (bacterial

infections) is as follows:

IF the site of the culture is blood, and the identity of the

organism is not known with certainty, and the stain

of the organism is gram-negative, and the morphol-

ogy of the organism is rod, and the patient has been

seriously burned

THEN there is weakly suggestive evidence (0.4) that

the identity of the organism is pseudomonas

Methods of inference used by knowledge-based

systems in which knowledge is represented as rules

(▶Knowledge Representation) include forward

chaining and backward chaining. Chains of inference

are created as a consequence of a rule firing. When

a rule fires a new fact may be derived, which is then

added to the fact database (the set of facts currently in

working memory). This new fact could then cause

additional rules to fire. In this way, chains of interfer-

ence are created. An important way to control the firing

of rules is to prioritize certain rules, so that if many

rules are able to fire at the same time, then the priori-

tized rules will fire first. Each rule may only fire once in

order to avoid problems associated with endless loops

of circular reasoning.

Forward chaining is data-driven reasoning. It begins

with known facts or data that cause rules to fire. Firing

rules may add more data to the set of facts in working

memory, and the process of forward chaining continues

until no more rules may be fired. Forward chaining is

concerned with drawing conclusions or interpreting

something of interest from a given set of facts. It is useful

for prognosis, monitoring, and control.

Backward chaining is goal-driven reasoning. It is

concerned with testing hypotheses or achieving goals.

It starts with a hypothesis, assumes the hypothesis is true,

and then traces backward through the stack of rules to

find a set of facts that support the hypothesis.Whereas in

forward chaining the inference engine begins with facts

and the associated IF parts of rules, in backward chaining

the inference engine begins with the actions or THEN

parts of rules. To fire a rule, the inference engine must

first meet the condition part (IF part) of the rule. It may

only be able to do this by, for example, adding a new fact

to the fact database – which might be the goal or action

part of another rule. By first looking at the THENparts of

the rules in order to identify rules of interest, and only
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then considering how to satisfy the condition or IF part of

these rules, inference chains growing backward through

the set of rules are created. Backward chaining is typi-

cally used for diagnostic problems.

The types of reasoning and inference performed by

the knowledge-based system depend on the manner in

which knowledge is represented (▶Knowledge Rep-

resentation) in the ▶ knowledge base. Knowledge-

based systems for systems biology may consist of

a simulation environment that can import and execute

mathematical models described using SBML, along

with a rule-based decision support system that uses

ontologies to gain knowledge of different physical

entities. An example of such a system could be to

understand the medical problems associated with tis-

sues or organs in the human body.

Symbolic computing is a commonmethodology used

with knowledge-based systems. Prolog (▶PROLOG) is

an example of a symbolic computing language based on

predicate logic. Symbolic computing encodes qualitative

data, such as words, phrases, and sentences, into sym-

bols. For example, a▶ knowledge base might consist of

a collection of propositions represented as symbols.

Through the mechanisms of logical reasoning and the

formal manipulation of symbols, the knowledge-based

system is able to derive symbolic representations of new

propositions. The new propositions are assumed to be

true and can be used for further reasoning or decoded into

words and phrases that may be presented to a user as

a recommended course of action.

Knowledge-based systems may be demanding to

develop. They must be created individually for differ-

ent application domains. There is no general technique

for verifying the completeness and consistency of

knowledge-based systems, which makes it difficult to

identify incomplete or inconsistent knowledge. Also,

because they are restricted to very narrow areas of

human expertise, they may be inflexible. They cannot

be applied to general problems.
Cross-References
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▶Koch’s Postulates
Koch’s Postulates

Christian Sch€onbach

Department of Bioscience and Bioinformatics, Kyushu

Institute of Technology, Iizuka, Fukuoka, Japan
Synonyms

Koch’s molecular postulates; Koch’s postulates
Definition

Robert Koch presented at the Tenth International Con-

gress of Medicine in Berlin in 1890 three conditions

that must be fulfilled to proof the causal relationship

between a microbe and a disease:

1. The parasite occurs in every case of the disease in

question, and under circumstances which can account

for the pathological changes and clinical course of the

disease.

2. The parasite occurs in no other disease as a fortuitous

and nonpathogenic parasite.
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3. After being fully isolated from the body and repeatedly

grown in pure culture, it can induce the disease anew.

(Modified after Thomas Rivers’ English translation

of Koch’s postulates [Rivers 1937])

The third postulate poses a challenge for PCR and

sequence-based identification of new viruses and bacte-

ria. In 1988 Falkow proposed modifications, called

molecular Koch’s postulates that consider the associa-

tion of a gene and pathogenicity as necessary, rather than

sufficient (Falkow 1988; Fredericks and Relman 1996).
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▶Kozak Consensus Sequence
Kozak Consensus Sequence

Leoš Shivaya Valášek

Laboratory of Regulation of Gene Expression,

Institute of Microbiology AVCR, Prague, Czech

Republic

Synonyms

Kozak consensus; Kozak sequence
Definition

The Kozak consensus sequence (gcc)gccRccAUGG,

where R is a purine (adenine or guanine) three bases

upstream of the start codon (AUG), which is followed

by another “G” (Kozak 1986). This sequence on an

mRNA molecule is recognized by the ribosome as the

translational start site, from which a protein is pro-

duced according to the coding template of a gene car-

ried on that mRNA molecule. In vivo, this site is often

not matched exactly on different mRNAs and the

amount of protein synthesized from a given mRNA is

dependent on the strength of the Kozak sequence. The

AUG triplet is the most important because in the vast

majority of cases it is the actual initiation codon

encoding a methionine amino acid at the N-terminus

of each protein. The A nucleotide of the “AUG” triplet

is referred to as number +1. For a “strong” consensus,

the nucleotides at positions +4 (i.e., G in the consen-

sus) and -3 (i.e., either A or G in the consensus) relative

to the number 1 nucleotide must match the consensus.
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▶Kullback-Leibler Divergence
Kullback-Leibler Divergence

Daniel Polani

Adaptive Systems Research Group, School of

Computer Science, University of Hertfordshire,

Hatfield, UK

Synonyms

Kullback-Leibler distance
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Definition

Measure of dissimilarity between two ▶ probabilistic

variables defined over the same set of outcomes.

Formally, let X and X0 be two probabilistic variables
with the same set of outcomes w and with associated

probabilities p and p0. Then, the Kullback-Leibler

divergence D(X0kX) (Cover and Thomas 2006) of the

variables is defined by

D X0jjXð Þ � D p0jjpð Þ (1)

:¼
X

x2w
p0ðxÞ log p

0ðxÞ
pðxÞ : (2)

Special Cases: When probabilities can vanish in the

sum, use the convention of 0 log 0 � 0 and 0 log 0
0
� 0

(see also ▶Entropy). If for one of the summands

p(x) ¼ 0, but p0(x) 6¼ 0, set D(X0kX) :¼ 1.
Characteristics

The Kullback-Leibler divergence provides either

a nonnegative real value or infinity. It becomes

0 exactly when the probability measures p and p0

for X and X0 are identical. The Kullback-Leibler

Divergence is not symmetric with respect to X and X0.
D(X0kX) can be interpreted as a measure of the addi-

tional cost penalty (in bits, ▶Entropy) to predict the

outcome of X0 if one assumes a model measure

p instead of the true probability p0. When the Kullback-

Leibler divergence becomes infinite, this corresponds to

an outcome x0 for X0 with p(x0) >0 which “had not been

foreseen” inX, i.e., where the modelX assumes p(x)¼ 0.

An important special case of the Kullback-Leibler

divergence is the ▶mutual information between two

variables X and Y; if their joint probability is p(X, Y)

and the respective individual probabilities p(X) and

p(Y), one has
I X; Yð Þ ¼ D p X; Yð ÞjjpðXÞpðYÞð Þ

¼
X

x;yð Þ2w�y

p x; yð Þ log p x; yð Þ
pðxÞpðyÞ:

Expressing mutual information as Kullback-Leibler

divergence shows that the mutual information between

two variables is same as the extra cost (in bits,
▶Entropy) incurred when one models two random

variables X and Y as independent variables when they

are actually jointly dependent.

Note that the closely related ▶ (Shannon) Informa-

tion compares joint probabilistic variables over possibly

unrelated outcome sets, whereas the Kullback-Leibler

divergence compares random variables over the same

outcome set, but with possibly unrelated probabilistic

variables.
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Kuramoto Model
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Definition

The Kuramoto model is a mathematical model first

proposed by Yoshiki Kuramoto used to describe

collective synchronization. It is a model for the behav-

ior of a large set of coupled oscillators. Mathematical

formulation of this model was motivated by the behav-

ior of systems of chemical and biological oscillators,

and can be applied to many other examples.

The Kuramoto model shows that a population of

coupled oscillators can spontaneously lock to common

frequency, despite the inevitable differences in the

natural frequencies of the individual oscillators

(Strogatz 2000; Acebrón et al. 2005).

The Kuramoto model consists of N coupled phase

oscillators whose phase is represented by yi(t).
Each oscillator yi(t) has its own intrinsic natural

frequency oi. The frequencies oi are assumed to

http://dx.doi.org/10.1007/978-1-4419-9863-7_1555
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http://dx.doi.org/10.1007/978-1-4419-9863-7_101339
http://dx.doi.org/10.1007/978-1-4419-9863-7_719
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distribute with probability density g(o). The Kuramoto

model is given by
_yi ¼ oi þ
XN

j¼1

Kij sinðyj � yiÞ; i ¼ 1; 2; � � � ;N: (1)

The coupling matrix K ¼ (Kij) describes how the

oscillators interconnect with each other. Many

different models have been considered, such as

nearest-neighbor coupling, hierarchical coupling,

random long-range coupling, or even state-dependent

interactions (Acebrón et al. 2005).

The mean-field coupling model, taking Kij ¼ K/N,

was originally analyzed by Kuramoto. The mean-field

model can be rewritten as
K

_yi ¼ oi þ K

N

XN

j¼1

sinðyj � yiÞ; i ¼ 1; 2; � � � ;N: (2)

Here K > 0 is the coupling strength and the factor

1/N ensures that the model is well behaved as N ! 1
(Strogatz 2000; Acebrón et al. 2005). Through the

complex order parameter

rðtÞeifðtÞ ¼ 1

N

XN

j¼1

eiyjðtÞ;

we can rewrite Eq. 2 as
_yi ¼ oi þ Kr sinðf� yiÞ; i ¼ 1; 2; � � � ;N: (3)
Thus, each oscillator is coupled to the common

average phase f(t) with coupling strength given

by Kr.
When the coupling strength K ¼ 0, Eq. 3 yields

yi¼ oit + yi(0), which means that the oscillators rotate

incoherently at their own frequencies. In the case of

strong coupling withK!1, we have sin(f� yi)! 0,

which implies yi ! f, as t!1. Thus, we have r! 1

and the oscillators are completely synchronized. For

intermediate coupling with Kc < K < 1
(Kc ¼ 2/(pg(0)) is the critical value), we can have

partial synchronization with 0 < r < 1 (Acebrón

et al. 2005; Arenas et al. 2008).
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